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ABSTRACT

MULTIPLE SCATTERING OF ACOUSTICAL WAVES

by

David J. McCloskey

The general theory of the multiple scattering of acoustical
waves by a random distribution of isotropic point scatterers is con-
sidered. Configurational averages are taken of the equations of
multiple scattering and integral equations governing thes:e configura-
tional averages are obtained; the physical consequences of these
equations are examined in detail, A complete theoretical picture is
obtained of the propagation of the coherent and incoherent radiation
and of the connections between the coherent and incoherent contribu-
tions fo the average sound intensity and current,

The p1;oblern of the transmission of sound from a plane sound
source into a scattering half—space is studied; numerical results are
presented for the average sound intensity and current. The reflection
of an incident plane wave, inclined at an arbitré.ry angle to a scatter-
ing half-space is considered; an expression for the reflection co-
efficient, including both the coherent and incoherent reflection of

sound, is obtained. The foregoing results are then applied to sound ‘

propagation in a liquid containing a large number of small gas bubbles.
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I. INTRODUCTION

The general theory of the multiple scattering of particles by a
random distribution of scatterers has been extensively considered in
recent years with particular application to molecular transport in
gases, neutron and gamma-ray transport in matter, radiation transfer
in slars, and o a number of other physical phenomena. These prob-
lems are usually studied with some variation of the Boltzmann integro-
differential equation describing transport processes. This formula-
tion is merely the expression of conservation of particles in phase
space; hence the treatment is ‘classical, with no account taken of the
wave nature of the particles or photons. Such a theory would be
expected to be valid only if the wave length of the particles is much
smaller than the average distance of separation between the
scatterers.

There is also a large number of problems of multiple scatter -
ing in which the wave length is comparable with the average scatter-
er separation; some examples of this latter type of problem are
acoustic wave propagation in bubbly water, elastic wave propagation in
polycfystalline materials, and the scattering of electrons or x-rays by
the nuclei of liquids or amorphous solids. Any treatment of these
problems must include the reflection, refraction, and interference
phenomena thatare characteristicof wave problems. Hence it must be
based on the wave equation, rather than on the simple conservation

-statement leading to the Boltzmann equation.

The first systematic treatment based on the wave equation was
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made by Foldy , who considered the multiple scattering of scalar
waves by a random collection of isotropic point scatterers. This work
was a generalization of his previous study[ 2) of the propagation of
sound in water containing a large number of small air bubbles.
Foldy's unique contribution was the introduction of the concept of
"configurational! averaging of relevant physical quantities by defining
a joint probability distribution for the occurrence of a particular
scatterer configuration, By averaging the equations of multiple scat-
tering over the statistical ensemble of scatterer configurations, Foldy
was able to derive integral equations governing these configurational
averages. This procedure was later generalized by Lax[ 3] to treat
the multiple scatteriﬁg of quantum-mechanical waves by point scat-
terers having quite general scattering characteristics. Application of
the configurational averaging technique has also been used by
Twersky[ 4] to study the scattering and reflection of acoustic waves

[5]

by a rough surface and by Waterman and Truell to treat scattering
regions having non-vanishing dimensions.

Through the use of configurational averaging, the multiple
scattering problem admits the natural decomposition into the separate
consideration of the '"coherent'' and the "incoherent" radiation. The
sound intensity (or probability density in the quantum-mechanical case)
is proportional to the square of the absolute value of the complex
velocity potential (or wave function) LMJ*. We denote the configura-
tional average of this quantity by <LlJL|J*>; this is not, in general, equal

to the square of the absolute value of the configurational average
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(LL}(kP) This latter quantity is called the '"coherent'” component,

and the difference <L|JL[J*> —<L§J><LLJ> the incoherent component, of the
mean square wave. The solution of the coherent problem bridges the
gap between molecular and continuum physics since it may be shown
that the ccherent wave (Lg) satisfies the wave equation with a com-
plex propagation constant; thus a collection of discrete scatterers
imbedded in a matrix medium may be replaced by a continuous absorb-
ing medium having a propagation constant that depends, in general,

on position. The coherent wave, being governed by a wave equation,
displays the phenomena of refraction and specular reflection. The
incoherent radiation, on the other hand, arises as a result of the
statistical superposition of the scattered waves due to the random
nature of the scatterer distribution; it is governed by an equation that
is similar to the Boltzmann integral equation describing the transport
of particles,

Although there has been a considerable amount of work[ 6]
since Foldy's paper, the emphasis has been on the coherent radiation.
Foldy's treatment of the coherent wave for monopole scatterers has
served as a model fur those allemptling Lo lreal scallerers haviug
more general scattering characteristics. Little attention, however,
has been given to the incoherent radiation. Although Waterman and
Truell[ 5] have pointed out that the equations describing the intensity
([Lp [2) and the current ( qf":wj -Lp'VLp:::) merit further investigation,
apparently they have not been further considered on a fundamental

basis,



-4 -

In this work we again consider the physical situation studied
by Foldy - - the multiple scattering of scalar waves by a random dis-
tribution of isotropic point scatterers; emphasis is given to the special
case of acoustic waves. Our objective is to establish the general
theory of multiple scattering of waves and to apply this theory to
some acoustical problems of interest.

In Chapter II we review the necessary acoustical and statis -
tical definitions on which our theory is based. The definitions of the
configurational and time averages of a physical quantity are compared.
In the next chapter, configurational averages are taken of the funda-
mental equations of multiple scattering in order to obtain integral
equations governing the configurational averages of relevant physical
quantities. The firstthree sections of Chapter III follow the work of
Foldy[ 1] ; the latter section, which provides the basis for our con-
sistent treatment of the incoherent radiation, contains new results,
These integral equations are then reduced to more workable forms in
Chapter IV, and their physical consequences are discussed. The
treatment of the coherent wave is that given by Foldy. However, as
shown in Appendix A, his analysis of the incoherent radiation is in-
correct. We present a consistent formulation based on fundamental
conservation relations for the coherent and incoherent radiation. This
provides a very unified picture of the propagation of the coherent and
" incoherent radiation and the connection between the coherent and in-
coherent contributions to the average sound intensity and current. At

the end of Chapter IV we consider the special case in which the
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scatterer density is uniform throughout all space. We find that the
incoherent contribution to the average sound intensity satisfies the
Boltzmann integral equation describing the transport of particles,

As a specific example of the general theory, we consider in
Chapter V the problem of the transmission of sound from a plane
sound source into a half-space that is filled with a uniform random
distribution of scatterers. Numerical results are presented for the
average sound intensity and currcnt at an arbitrary distance from the
source., As a further acoustical application, the reflection of an
incident plane wave, inclined at an arbitrary angle to a scattering
half-space, is studied in Chapter VI, An expression for the reflection
coefficient, including both the coherent and incoherent radiation, is
obtained. Finally, in the last chapter the foregoing results are applied
tc sound propagation in a ligquid containing a large number of small gas
bubbles. Numerical results are given for the variation with frequency
of the cross section ratio, phase velocity, attenuation coefficient, and

reflection coefficient for twe different bubble radii.
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II. PRELIMINARIES

A. Acoustical Preliminaries

Let us first consider a homogeneous, ideal fluid having density

Py and sound speed Co the lincarized equations describing the

(7]

propagation of sound waves in such a medium are

9p 2o = .

5¢ +poco Viv = 0, (2.1)
ov

Po5r tVP=0 (2.2)

where v(;, t) is the velocity of the fluid and p(r,t) is the perturba-
tion in pressure about the steady-state value P, Upon introduction

of a velocity potential (b(;, t), defined such that
v =V (2.3)
Egs. (2.1) and (2. 2) yield the fundamental acoustical equations
p=-p, (2.4)

2
99 vz oo | (2.5)
ot? ©

Upon multiplication of Eq. (2.1) by p and Eq. (2.2) by v and add-

ing, we obtain
2
2 P,V
o 0
0 2 2

+ Ve(pv) =0 . (2.6)
t
2p cC
C O

This equalion is simply the statement of conservation of sound energy,

PE -
—é-z—- +d1vq =0 s (2.7)
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where the sound energy density E(;, t) and the sound energy flux

density a(;,t) are given by

E=- —L& +‘f2 , (2.8)
2
ZpC
O O

q =pv . (2.9)

For a travelling plane wave, having a velocity potential of the form

¢(x,t) = f(x-c_t) , (2.10)
we have
9 il __ 1 9 _ p
V—-'é;{——f(X Cot)— E—-W_pc ) (2,11)
(o] O

and hence, for this special case, the sound energy density assumes the
simpler form:

E- P . (2.12)
pOCO

In our study of the multiple scattering of waves, we shall
assume that the sound field is harmonic with a fixed frequency w.
Such an acoustic field may be expressed in terms of a complex

velocity potential 41(?), as follows:

6(r,t) = Re{d(r)e , (2.13)

where Re{ } indicates that the real part of the complex expression is
to be taken. Upon substitution of this representation into Egs. (2.3)

and (2.4), the time-dependent velocity and pressure fields are given by

—iwt}

v(r,t) = Re{Vii(r)e , (2.14)
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p(r, t) = Reliwp Wi(r)e 7} (2.15)
while the wave equation (2.5) yields
(V24 kEM(r)=0 (2.16)
where the propagation constant ko is given by
w
ko= . (2.17)

o
Of particular interest to our study will be quantities related to energy.
Let us define the '"sound intensity" e(;) as the mean-square pressure

“ 2 .
divided by pOCO_’ i.e.

R 1 1 T
e(r) = T S‘ p(r,t)zdt , (2.18)
Poo ©
where T = —Zzll is the period of oscillation of the sound field. It is

noted that for the special case of a harmonic plane wave, the sound
intensity equals the mean sound energy density. We shall call the

mean sound cnecrgy flux density the !"sound energy current'' j (;), by

Eq. (2.9), this quantity is given by

- T L L
@=L pE oeE v (2.19)
O

If we denote the real and imaginary parts of LIJ(?) by 41(;) and IJ(?)

respectively, Eqs. (2.14) and (2.15) may then be written as

v(r,t) = Vi(r)coswt + Vi(r) sinwt (2.20)

p(;,t) = mpo[;(;) ginwt - \.TJ(;)COS wt] , (2.21)
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When these representations are substituted into the above definitions,
and the integrations are carried out, it is found that the intensity and
current may be simply expressed in terms of the complex velocity

potential L)J(?), as follows:

L op et L o p w? -
e(r) = =>— [P +b(xP] = =— ()2 (2.22)
ZCOZ ZCCZ)

w e o
Po®

—_— p w ~ - — -~ — — sk —
i) = 5= [WEVEE) V()] = 7 [ @V E) 4T ()],

(2.23)

where the star indicates the complex conjugate of the quantity. If the
multiplicative physical constants are ignored, these expressions are
identical to those for the probability density and probability density

(8]

current of quantum mechanics

The effect of small viscosity in the fluid may be easily in-

cluded. For irrotational flow, the momentum equation (2. 2) is

[ 7]

modified to

@
<
[PV

o ar VP =3 RVVV) (2.24)

where [ is the viscosity of the fluid; the continuity equation (2. 1)
remains unchanged. Equations (2.1) and (2. 24) may be combined to
yield a single equation for the velocity potential,
2
8% _c2yzy o A vz(-g#f:’-) : (2.25)

at? ° 3po

For a harmonic sound field, the representation {(Z2.13) then yieids

(V42 (x) =0, (2.26)
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where the propagation constant Ko is now complex,

1
-2
ko= 2f1.g e : (2.27)
(o] (4 2
o 3p ¢
oo

The real part of K will be denoted by ko, and the imaginary part

o

by —22 ;. since __;4}_‘_‘“2_ « 1 for frequencies of interest, the above
3p ¢
o o

relation may be expanded to yield

s =+

o
The intensity of a plane harmonic wave is proportional to e ;
therefore @ is the attenuation constant for a plane wave in ‘the
medium.

We shall assume that the scatterers are isotropic point
scatterers such that the scattered wave from each scatterer is a
spherically symmetric (s-) wave. The scattering characteristics of
eaclh scatterer areassumed to be governed by a known complex scatter -
ing coefficient function g(?, R), defined such that if the velocity

potential incident on a scatterer located at rj is Lp'](rj), then the

velocity putential of the scaitered wave is given by

where iKO E:_;J l
E(r,r.) = S . (2.30)
J Ir - rj]

As indicated, the scattering coefficient of each scatterer may depend
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onits position ¥j as well as on a parameter Rj; the dependence on
frequency w 1is not indicated since a harmonic sound field of a fixed
frequency is being considered. Although each scatterer is idealized
as having vanishing dimensions, we shall eventually apply our theory
to configurations of small scattercrs. Thc thecory will be applicable
provided that the radii of the scatterers are small compared with the
wave length in the fluid, and provided that the average distance be-
tween scatterers is large compared with their radii. Since the scat-
tering characteristics of a scatterer is primarily determined by its
radius, the parameter Rj appearing in the above expression for the
scattering coefficient will be eventually identified with the radius of
the j'th scatterer. Therefore, throughout our subsequent discussion,
we shall refer to this parameter as the '"radius'' of the scatterer, al-
though a non-zero radius is contradictory to the notion of a '""point"
scatterer,

Lel us counsider a single scatterer of radius R excited at the

origin by an incident plane wave having the potential
o
P.(x) = Ae ; (2.31)

the total field is then the sum of the incident wave and the scattered
wave, .
R iKOX 1KOI'
- - e
b(r) =y, (x) +d (r) = Ae + Ag(0,R) — . (2.32)
The energy flux per unit area in the incident wave at x = 0 is pro-

portional to

* By oy
gt -y “8“;? = 2ik_|Af (2.33)
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while the total energy flux in the scattered wave crossing a sphere Sr
of radius r centered at the origin is, in the limit r > 0, proportion-

al to

lim
r—> 0

L BT, T9 ) a5, = ik [APlg(0, RIF . (2.34)
r

The scattering cross section is defined as the total energy flux in the
scattered wave leaving the scatterer divided by the incident energy
flux per unit area at the scatterer. Thus, at an arbitrary field point

—

r, the scattering cross section is given by

o_(r,R) = 4nlg(r,R)F . (2.35)

The total energy flux passing inward through the sphere Sr’ in the

limit r - 0, is proportional to

- R 4vy™)- a5 _ = -8mik_|AF |g(0, R)P

T

+ 4n|Al[g(0,R)-g (O,R)] . (2.36)

The absorption cross section is defined as the total energy flux absorb-
ed by the scatterer divided by the incident energy flux per unit area at

the scatterer; hence it is given by

Ga(;,R) = —GS(?,R) + i—“ Im{g(?,R)} . (2.37)

o

The sum of the scattering and absorption cross sections is called the

extinction cross section,

oe(?,R) = %Tl Im{g(?, R)} . (2.38)
O
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In the analysis of the multiple scattering of waves by a large
number of scatterers, it is convenient to employ cruss section
densities. The scatterer number density distribution n(;,R) is
defined such that n(;, R)dR is the number of scatterers per
unit volume at location T having radii in the interval dR about the
radius R. The scattering and absorption cross section densities may

be defined by

-y w —_— —
Zs(r) :S Gs(r, R)n(r,R)dR (2.39)
o
— w —— —
Z)a(r) = 50 aa(r, R)n(r,R)dR + a, . (2.40)

Absorption of sound due to the viscosity of the fluid medium is included
by addition of the attenuation constant a. The extinction cross sec-

tion density is defined as the sum of the above,

oe(¥,R)n(¥, R)AR +a_ . (2.41)

B. Statistical Considerations

If the exact position -;j and the exact radius Rj of each
member of a collection of scatterers is specified, wc shall say that
we have a configuration of the scatterers. In problems dealing with
the multiple scattering of waves by a collection of randomly distribut-
ed point scatterers, the exact configuration of a given collection of
scatterers will not be specified; rather, we will only have information

concerning the average distribution of the scatterers, or the
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probability of occurrence of a parficular configuration. For example,
if the scatterers are statistically independent of one another, i, e,

the position and radius of any given scatterer are completely independ-
ent of the positions or radii of all the other scatterers in the collec-
tion, then the only information that is available concerning the scat-
terer distribution is the scatterer number density distribution

n(?,R). For a random distribution of scatterers, the quantities of
interest are the average values of relevant physical quantities, taken
over all possible scatterer configurations, consistent with the known
statistical data concerning the average or probable distribution of

the scatterers. We shall call such an average a configurational
average,

In order to establish the probabilistic concepts defining the
configurational averages, we shall consider a statistical ensemble
consisting of a collection of an infinite number of scatterer configura-
tions, The nature of this ensemble is made precise by specification
of its joint probability distribution function p('lFl,R1 LT N
T RyMT dR .. .drdRy s the

probability of a configuration of N scatterers having the j'th scat-

R

— —

defined such that p(r ,R ;.
11

terer located in the volume element d;j about the position rj
and in the interval de about the radius Rj’ for j=1, . . ., N.

This probability is normalized such that the integral over all its co-

ordinates is unity; that is

r R ; T n T dr. =1 2.42
55 - .5§p(r VR .. Ty RAT AR L dr Ry . (2.42)
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where the spatial integrations are taken over all space and the
integrations over the radii are taken from 0 to . The probabil-
ity of a configuration having the j'th scatterer occupying

d;.dR., regardless of the locations or radii of all the other scatter-

ers, may be obtained by integrating over all but the j'th coordinates,

3

as follows:

— —_— n — — — —
p(r‘].,Rj)drdej :S.S‘ R 3§p(r1,R1; .. .;rN,RN)dr1 de .. .drNdRN

(2.43)

The superscript indicates the omission of the integrations over the
j'th coordinates. In like manner, the probability of a configuration
having the j'th scatterer occupying d;dej and the k'th scatterer
occupying dr. de, regardless of the locations or radii of all the

k

other scatterers, is given by

A kL
p(rj,Rj;rk,Rk)dr dRJdrdek % . 3‘3 p(rl,Rls .. .;rN,RN)
dr dR . . .drydRy (2.44)

the integrations over both the j'th and k'th coordinates having been
omitted.

It is also convenient to introduce the notion of "conditional
probability. The conditional probability for a configuration having

the j'th scatterer fixed at location ;j and radius Rj is defined by

—~ p(r ,R; . . .;rN,RN)

pj(rl,Rl; .. N,RN) L 1_, 2 (2-45)
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the superscript here indicating the omission of the j'th coordinates
within the parenthesis. Similarly, the conditional probability for a

configuration having both the j'th and k'th scatterers fixed is

defined by
N Jk N p(;,R ;. .;?N,RN)
ka(l' SR .. -;rN:RN) = L _.Ll ey 3 (2-46)
11 o .
p(rj,Rj,rk,Rk)

both the j'th and k'th coordinates having been omitted within the
parenthesis, The conditional probability thus effects a pseudo-
factorization of the complete probability distribution,

It will be assumed that the locations and radii of the scatter-
ers are statistically independent; i, e, correlations between the
positions and radii of separate scatterers are neglected. This
requires that the joint probability distribution be expressible as the

product of the individual probabilities for each scatterer; that is

N
PG RS .. TRy = ] pELR) (2.47)
j=1
As a special case of this, we have
p(r;, Ry  Ry) = P, Ry)P (o Ry) (2.48)

Finally, wc note that the probability p(:.:j, RJ) is simply equal to the
average number density n(r.,Rj) of the scatterers at location ;j
per unit radius interval about Rj’ divided by the total number of

scatterers present,

N n(;.,R.)
p(rJ,RJ) = ——JIN.——J— . (2‘49)



-17-

Let us now consider a complex velocity potential field QJ(;)
produced by the multiple scattering of an incident wave by a configura-
tion of scatterers, Let us indicate the dependence of this quantity on
the location ;j and the radius Rj of each scatterer, in addition to
the field point r where it is observed; the configurational average

is then defined as

(Y(r)) :SS . 'S.S‘Mr\rl’Rl;" . .;rN,RN)p(rl,Rl;. . .;rN,RN)
dr dR. . .drgdRy (2.50)

the average being taken over the statistical ensemble of scatterer
configurations. The configurational averages of other quantities are
definced in a similar fashion, The cxciting ficld of the j'th scattcrer
ij(;j) depends on the locations and radii of all the other scatterers,

in addition to ;j' Therefore we shall define the conditional configura-
tional average of this quantity by averaging it over a statistical
ensemble of scatterer configurations having the j'th scatterer fixed;

such an average may be defined in terms of the conditional probabil-

ity distribution, as follows:

(g (rj))j :‘D o gynp (rjlrl,Rl; R ;rN,RN)

j j

pj(rl,Rl; .o rN,RN)drldR1 . drNdRN . {(2.51)

—_—

Similarly, the conditional configurational average ol L|J](I‘J ).[Jk (;k),
taken over an ensemble of configurations having both the j'th and

k'th scatterers fixed, may be expressed as
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% ~ Jk , J
w%ﬂk§»:ﬂ 5@WER- T Ry)
j k o« s s ) j 1, 1: « e e 3 N, N
. k
k ~ ) .
\l) (l‘kll'l, Rl I rN: RN)
ik ik
X pjk(rl’R1; e e rN,RN)drl de. .. drNdRN . (2.52)

We have defined the ''configurational'' average of a physical
quantity as an average taken over a statistical ensemble of scatter-
er configurations. Hence, the average complex velocity potential
(LP(?)) represents the average value of a set of simultaneous
measurements of 41(?) taken on the distinct members of a collec-
tion of sirnilar scatterer systems, If the average deviation of LIJ(;)

from its average value is small, i.e.

uE) = WEY Y = (@B - KeE) B <« K@k, (2.53)

—_—

then a single measurement of Y(r) on a given system would be
expected, with high probability, to be very close to the average
value (q;(;)),

We may also envision a physical situation in which the loca-
tions ;J.(t) and the radii Rj(t) of the scatterers in a single configura-
tion are slowly changing with time such that it continuously passes
through the various states of the statistical ensemble (we assume
that the time required for the configuration to undergo a significant
change is much greater than the period of oscillation of the sound
field). The complex velocity potential, that is produced by the

multiple scattering of an incident wave by this system, depends on
P g Y bA s P
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time in addition to the point at which it is observed,
Glr,t) =b(r [r (6, R (£) . . e (t), Ro(t) ) . (2.54)

Hence a '"time' average of this quantity may be defined by

—_— 1 T
Ylr,t) =5 S Y(r,t)dt (2.55)
O

where T is the length of time over which the average is taken.
This average value has little practical significance and would be dif-

ficult to measure unless the mean square deviation is small, i.e,

1_§T
T

o]

2

4;(?, t) lz .

«

b0 - w0l aus leEnl? - bEe
(2.56)
If this is not the case, the mean square value of the velocity potential
(which is proportional to the mean square value of the pressure) has
greater physical significance and may be more easily measured.

This quantity may be decomposed into a ''coherent' and an ''incoherent!

part, as follows:
2

2

+9 lw(x, 0] - l¢(¥,t)| }

Wi, 1) = lLlJG,t) (2.57)

We shall assume that, provided the time average is taken over
a sufficiently long period of time for the scatterer configuration to
pass through the majority oﬁ states in the statistical ensemble, the
time average of a physical quantity is essentially equal to the corre-

sponding configurational average; for example:

YT, ) T () (2.58)
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Wi, 0l = (?) . (2.59)
The latter quantity may also be decomposed into a coherent and an

incoherent part,

C@I?) = Ko@) 2 + @Iy - ez . (2.60)

Therefore with this assumption, which is analogous to the ergodic
hypothesis of statistical mechanics, we may provide an alternative
description of the configurational averages as being equal to the cor-

responding time averages for a single configuration,
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III. CONFIGURATIONAL AVERAGES OF THE EQUATIONS
OF MULTIPLE SCATTERING

A. Equations of Multiple Scattering, Configurational Averages

Let us consider a given scatterer configuration and write the
self -consistent field equations of multiple scattering, completely
accounting for the effect on each scatterer due to the combined pres-
ence of all the other scatterers in the configuration. We shall assume
that the scatterers act as points which affect an incident wave only
through the additive constructive or destructive interference by the
scattered waves produced at these points.

The total velocity potential may be expressed as the sum of
the potentials of the incident wave and the spherically symmetric

waves from each of the scatterers in the configuration,

_—

b(r) =¢.(?>+>: gj¢j<¥j)E(r,r.) , (3.1)

1

where we denote

g; =g(rj,Rj) ; (3.2)
ik | r-7.|
- e © J
(r,r.) = —=— (3.3)
S EEEN

The wave incident on the j'th scatterer consists of the sum of the

incident wave plus the waves from all the other scatterers,

WE =604 g EEET) (3.4)
)

These equations are rigorous as they stand and include all orders of
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multiple scattering,

The quantities of physical interest are the average values of
the relevant physical quantities: the pressure, velocity, sound
intensity (or mean square pressure), and the sound energy current,
By Eqs. (2.20), (2.21), (2.22), and (2.23) these quaunlilies may be
related to the averages of Ll)(;), Vi (?), [qJ (;)[2, and
L{J*(?)Vnp (;) - 41(?)v¢>:<(;). Our present objective is to obtain governing
integral equations for (4:(?)) and { LlJ(;HJ*(;O)> . Since the operation
of taking a derivative with respect to r or ;o commutes with the
integrations over the scatterer coordinates in the configurational

averages, the quantities of interest may be calculated in the follow-

ing manner:

(Vp(r)) = V(o) (3.5)
ROl =oEn e 0l -, (3.6)
r=r
(o]
@ ETE B EEE) = (V-G EN T E N L L (3.7)
T =T
O

B. Governing Integral Equation for ( Lb(;)>

In order to determine an integral equation satisfied by the
average field (Y(r)), letus multiply each term of Eq. (3.1) by the
joint probability distribution p(; SR .0 T »R.:) and integréte

1 1 NN
over all its coordinates. By Eq. (2.50), the left hand side of the

resulting equation is then just the configurational average (xb(?) ).

Since the incident field qu(r) is independent of the locations or the
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radii of the scatterers, the second term is left unaltered. In order
to evaluate the third term, use may be made of the conditional probabil-
ity decomposition (2.45) and the definition (2,51) of the conditional

configurational average of LIJJ(;j), as follows:

gg ggZﬁ” W EEE TG R G T Ry)

drlde .. .d?NdRN
S G N A d oL J R
ZEBYg(rJ’RJ’p“j’RﬁdRJ NER SS Vgl R Ry)
J
J J
Pj(;l’Rl; C ';;N’ RN)d—ljlde' : NdRNE( T. )er

1N \"S“ z P JEy B, T)ds
=N/ ) g(r.,Rj)n(rj,Rj)de<Lp (rj)>jE(r,rJ.)er.

N R ey '
= NZS‘ G(rJ.)(U,J (1'j))‘].E(r,rj)drj . (3.8)
J

Here the scatterer coefficient density G(;) is defined by
— M co — —
G(r)::j g(r,R)n(r, R)AR . (3.9)
o

At this point the following approximation will be introduced
<¢J(rj)>j?<¢(¥j)> : (3.10)

that is, the configurational average of the exciting field of the j'th
scatterer, averaged over a statistical ensemble of configurations

having the j'th scatterer fixed, is approximately equal to the
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configurational average of the total field at the same point. The valid-

[9]

ity of this assumption has been discussed by Lax , and more

recently by Waterman and Truell[ 51 . The error introduced by such
1

an assumption would be expected to be O(—N); therefore the assump-

tion may be considered to be valid when the number N of scatterers

is large. With this assumption, the configurational average of

Eq. (3.1) then yields

—_— — 1 r —_ — —_ —_
(W) =y, (x) + ‘NZ ) G KeE ) E(, )dr; (3.11)
J

Since each of the N terms in the sum 1is identical, the governing
integral equation for the configurational average of the complex

velocity potential becomes

(b)) =4, + ) GEWE NEE T L (.12)

sle -

C. Governing Integral Equation for <L}J(¥NJ’| (r0)>

If we replace T by —ITO, j by k in the complex conjugate of

Eq. (3.1),

sk — S - sk 1(* — sk - —_ ‘

v <ro>=¢i(ro)+z g " FETE T (3.13)
k

and form the product ql(;NJ:':(?O) with Eq. (3.1), we obtain

p—y e e
b
.

GEWE ) =0, ) () +0, OETE ) -4, )] + e @)y, (7 )

+E g8, (W (1B T, )E*(?O,?j)+z > 3 gELpi G &k &
: 1K E(r,r.)E"‘(?O,rk) . (3.14)
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Let us again multiply each term by the joint probability distribution

p(;l,R1 HE ';;N’ RN) and integrate over all its coordinates. The
last term may be evaluated by use of the conditional probability de-
composition (2. 46), the condition (2.48) of statistical independence,
and the definition (2.52) of the conditional configurational average

with two scatterers held fixed, as follows:

ﬂ{-‘ N ke 1 — * — —_ s - -
“‘ . B)ZZ gjgktllj(l‘j)@k (l‘k)E(l‘,f-j)E (r 1)

jtk
p(rl,Rl; ; ST RN)drlde. . .drNdRN
~, ,n{"a N 5 R N
- zz SS\J g(r;, R)g (ry, Ry Jp(r), Ry Ry JAR ARy
jtk
Y Jk faTa) ‘] 3k k
{ yot s — k ——. e —
LY J . . . .
SS. . .“})LLJ (xﬁlrlb,Rl,. T By M (rklrl,Rl,. T Ry
jk ik
X p.k(rl,Rl; C e STyp RN)drlde. .. drNdRNdrjdrk

j
- L S'z gggg(? R.)n(r., R.)dR, S'g*(;‘ R, )n(r. )dR
v =L jr Ryl RyJARy ) g (g Ry I ndrye Ry JdRy
i#

sl
3K —

1 - - - = —_
N" (rk)>JkE(r’ rJ)E (ro, rk)erdrk

] —

<x|ﬂ(rj

1 - ko j = K~ o ke
= ;‘2 ZZ§§ G(l‘j)G (I'k)@f’ (I'J-NJ (rk)>jkE(r’rj)E (ro, rk)drjdrk
JF

Afterbaveraging the remaining terms of Eq. (3.14), we obtain
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(U (x ) =y, T () H (O (E ) 4, ()]
I TCTCINRNED) e

1 \ 1 . - —_ — sk — —_ —
L z HS‘ 5, (rj)<[¢(rj”2>j E(r, 7B (r, 7,)dr,
]

+ N AE &g‘G(rj)G*(rk)wj(rj)tle (rk))jkE(r, rJ.)E*(ro,r] )drjdrk ,
B
(3.16)

where the scattering cross section density 2_ (r) has been previously

defined by Eq. (2.39). It is again necessary to introduce approxima-

tions in order to obtain a governing integral equation; we shall assume

that
DI, = (el (3.17)
and g
<¢j(¥jwk’”<?k>>jk SENTE)) (3.18)
When these replacements are made in Eq. (3.16) and (Nt is re-

placed by unity in the last term, the following equation results:

—_ sk

(WEE ) =0, 0] @)+, EC ) 0] )+ e () 4 (7]
v (x,)

P Vs EOE e TR E, T

O
+§5 GE MG E M e E T EE, T E (¥, T M)dr dr " . (3.19)

This equation may be simplified by using the integral equation (3.12)
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for the coherent wave to form the product ( ()} (}'O)}*, yielding
(W)Y =4 0] () (G D -4 (7 )]
Q@) ;O] (x,)
* _SXG(; fE @ E Y ™) B r")E<(?o,?"')d¥"d?"' (3.20)

Upon subtraction of the latter from the former equation, a governing

) -

e

integral equation for the incoherent quantity (Lp(;wr.\(ro

<¢(?)> (qJ(?O))* is obtained:

OEWTED) - WENWE D = = V2 @@ [ DEETIET T

+5 G(? n )G*(; "W (; n )4‘*(—; myy - (g (;‘ ) <¢(; m )>=:<]

S e

E(r,r" )E"‘(?o,;”')d; "dr " | (3.21)

—

D. Integral Relation Connecting (q; Vq;( ) dg(;)VLp*(;)) and

e

Let us now consider a given configuration of scatterers and
construct an arbitrary surface S containing an arbitrary number of
the scatterers as well as a sphere Sj of radius P about each
scatterer j. Take each radius P sufficiently small such that none
of these surfaces intersects andlet V denote the multiply-connected
volume enclosedbetweenthe surface S and the spheres Sj lying with-

in S. Define:
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_{ 1 if the j'th scatterer lies within S
0

3,22
if the j'th scatterer lies outside S. (3.22)

The total field ¢(¥) is regular throughout the volume V, including

its boundaries; by applying the divergence theorem, we may write
§ [ (@04 () -0 (X)W ")) - a5
-EYJ (47 @) (x) -4 (x )94 ()] - dS,
: S.
J J

se —_

S Ve[ EVe(r) - (v (B)] dr . (3.23)
Throughout the volume V, the field Ll)(;) satisfies the wave equation
(V24 k2 b(r) =0 (3.24)

so that the foregoing equation may be rewritten as

—_—

SS [67(2)V0 () - 4 (x)99" (2)] - a8

z y TIVG(E) - p(E0e " (r r)]- ds;

-SV(:{; SISl TSI L (3.25)

Thc total ficld q;(?) is described by the fundamecental cquations
(3.1) and (3.4) of multiple scattering; in the neighborhood of the j'th
scatterer, it may be expressed as the sum of the exciting field ij(?)

and the scattered wave,

U(r) = i(F) + gjkpj(;j)E(r,r.) . (3.26)
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Using this decomposition, the energy flux passing through the

spherical surface Sj may be written as the sum of four terms:

S["’ V(e da('f)w*(‘r}]'d'éj_

s

= [ DR @) - WP @)- a5
S.
J

+S [gqﬂ )E(rr)V\lJ()
J

-ngJ( r,)E (r,;j)VLPj'P(;)]-d_S}

g[g¢ VErr)Lp‘]r

- g qﬂ (¥ WE (,T. Nﬂ( )] - dgj

2 do e e o T -

t g gl W LE e x VE, 5)
J

“E(r,T,VE (r,7;)]+d5; . (3.27)

We shall nowinvestigate the limit of each of the four terms on the
right of this equation, as the radius pj of the spherical surface Sj

tends to zero. For the first term, we note that the exciting field and

)

its gradient are regular at rj so that Lp‘] (;)VL‘JJ(I‘) =0O(l) as pj - 0,
and since the surface area of Sj is O(pjz) as pj - 0, then the fterm

vanishes in this limit, Similarly, we note that in the second integral

g LPJ ( )V¢J(r) - O(l) and E*(—;’;j) - O(pj_l) as pj —+ 0, so that this

term also vanishes, For the third term, we have
i _p.
(3.28)

2

2 -
S df
pJ



~-30-~

where d? is an element of solid angle, Since for T lying on Sj’

¢j(¥):¢j(¥j)+0(pj) as p; =0 (3.29)

then

—_

gjubj(;j)‘i?E(?, rj)qu (r)-ds S =-g; lLP lzdsz+0(pj)dﬂ as p; =~ 0
(3.30)

Therefore, in the limit P - 0 the third surface integral on the right

of Ec. (3.27) becomes -4mu( g g HJ (r. )‘Z Finally, we have that

e s m — — e — —

[E”‘(r,rwa(r,rj)-E( )VE (r, rJ)] ik *)ag +0(p;)asz
as p.~> 0 (3.31)

so that in the limit pj - 0 the last surface integral reduces to
8nikolgj[2 H;J(}‘j)lz, where ko denotes the real part of K- There~

fore, in the limit pj - 0 Eq. {(3.27) reduces to

P

th [0 72 )V(E) - p ()74 (r)] - a5,

L4 j = .
= - 2ik E-E- Im{g;} -4'n"lgj|2) lqﬂ(rj)\?- . (3.32)

By definition (2.37), the quantity within the parenthesis is the absorp-

tion cross section of the j'th scatterer,

3 4'rr .
oi :O‘a(rJ R) K, Im{g} 4wl,gj§2 ) (3.33)

Upon substitution of these results back in Eq. (3.25), we obtain
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JC W EWe(E) - 626 ()] dS
S
{\

= -2ik_ z vollolz )2+ \ o |e@)f?ar, (3.34)
NI j Jy ©
J
where the attenuation constant @, denotes half the imaginary part of
Ko This equation represents a simple statement of conservation of
energy; it states that the mean energy flux through the surface S is
equal to the rate of energy absorption by the scatterers plus the rate
of energy dissipation in the matrix medium.
Sincc we are interested in a random distribution of scatterers,

rather than a given configuration, we shall take the configurational

average of the above equation by multiplying each term by the joint

—_—

R and integrating over

probability distribution p(rl,R ; N)

3 . e e I'N:
the coordinates of all the scatterers. The configurational average of

the first term of Eq. (3.34) is given by (omitting the dependence of

—_— — —

Y(r) on the coordinates r ,R; . . . NG RN of the scatterers)
iT1

p K - — sk o— —_
( )S[¢ (x)V4 ()4 (=) (x)]- dS)

5\5 S‘SS‘ r)V‘-\J )qJ(;)‘VqJ*(;)].dgp(;l,Rl; . ';—ITN’RN)
drldR1 - .drNdRN
ST e B, s TRy
dl'l de. . drNdRN .ds

- § W EVE (@) -y ()-a8 (3.35)
¥S
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Thus the configurational average of the surface integral of the current
is equal to the surface integral of the configurational average of the
current. The third term of Eq. (3.34) may be similarly treated with

the resu‘lt:
< g aolxp(r)izdr> 25‘ o <N’ ‘2> dl‘ . (3.36)

The configurational average of the second term of Eq. (3.34) may be
evaluated by means of the decomposition (2.45) and the definition

(2.51) of the conditional configurational average, as follows:

J
e o == ~ ‘
S\g" ° GS\SL Y(rJ)O'a{rJ;R'J)ILPJ(rJi rl’Rl; L .;rN’RN)‘Z
j

p(rl,Rl; LT RN)drldRL. . odrdRy

J

_ =~ = i )

_Z,SY(TJ)SGa(rj,R) dRSS SS'M, |r R,. L

J
P2
J J
pilr R o Rygldr AR .o drdRpdr,
= N[__,Sl Xc (r R )n(r R dR (HJJ l )dr . (3.37)

J

—

It is noted that the effect of the function y(rj), defined by Eq. (3.22),
is to truncate the volume integration over ;3 to the volume V lying

within the surface S. Let us again employ the approximation (3.17)

e I (i PIEPIN (3.38)
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which states that the configurational average of the mean-square
exciting field of the j'th scatterer, averaged over the statistical
ensemble of configurations having this scatterer fixed, is approximate-
ly equal to the configurational average of the total mean-square field

at the same point, When this approximation is substituted into

Eq. (3.37), the left hand side may be simply expressed as

(% & Rl D3 ar
EVJ o (r,R)n(r, R)AR( [¢(r)|?) dr

o

Therefore, the configurational average of Eq. (3.34) results in
5 (U7 (x)74(r) - $(x)V4 7 (r))+dS
S

] o0 . . e .
= -2ik 5V 50 o_(r,R)n(r,R)dR +a_ (w(r)|®dr; (3.39)

by use of the definition (2,40) of the absorption cross section density,

this may be written as
\ W v - e@Eve ) as
S

= - 2ik_ gv zaG)(w(?);z) ar . (3.40)
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IV. COHERENT AND INCOHERENT SCATTERING

In the previous section, we have obtained governing integral
equations (3.12) and (3. 21) for (4)(?)) and <¢(;)L|Jq:(_1?o)> , as well as
an integral relation (3.40) connecting <LIJ*(;)'VL{J (;)-qJ (;)Vgp*(?)) and

([Lp(;HZ) . We shall now examine the physical consequences of these

equations and reducc them to morc workable forms.,

A, The Coherent Wave

Let us first recall Eq. (3.12) governing the configurational

average of the complex velocity potential,

(W) =9, (r) +S‘G(?‘)(¢(;'))E(;,;')d¥' : (4.1)

—

The kernel E(;, r') of this equation is proportional to the Green's

function of the operator (VZH{é),

—_

(Vi E(r, v ') = -4mb(r-r ') (4.2)

—_—

where 6(r-r') is the three-dimensional delta function having the

property: that for any continuous function f£(r)

Sf(?)a({-}?')d?' - f(r) . (4.3)

—

The incident wave 4Ji(r) is a regular solution of the wave equation,
based on the propagation constant Ko of the homogeneous matrix

medium,

(v2+;<c2))pi("£) =0 . (4.4)

Therefore, if we operate on Eq. (4.1) with (VZ-H{;) and use the
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property (4. 3) of the delta function, we obtain
(V241 2)($ () = ~47G(rK$(r)) (4.5)

Hence, the configurational average of the complex velocity potential

satisfies the wave equation
[Ve4k* ()] (P(r)) =0, (4. 6)

where the complex propagation coefficient k(r) of the scattering

medium is given by

[

k(r) =k(r) +i 5L = [« +47G(r)] % . (4.7)

The local phase velocity and attenuation coefficient of the coherent

wave in the scattering medium are given by the following expressions:

c(r) = 2 = @ , (4.8)

KB Re([k 244G}

]

noj=

oz(?)

Zlm{[l{;-!-‘l‘lTG(;)]%} ) (4.9)

The problem of determining the coherent wave <L|J(;)> has
been reduced to solving a boundary value problem for the wave equation.
If the function G(;) is sectionally continuous and approaches a con-
stant value at infiﬁity, then the integral equation (4.1) implies that
(Lb(?)) be everywhere continuous, have a continuous normal derivative
across surfaces of discontinuity of G(;), and represent outward

travelling waves at infinity.

The physical behavior of the coherent wave is quite simple.
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According to Eq. (4.6), the coherent wave satisfies a wave equation
having a complex propagation coefficient that depends, in general, on
position. Thus the incident wave and the scattered waves from all
the scatterers interfere, on the average, to form a new wave travell-
ing at a different phase velocity and undergoing attenuation. This
wave will display the reflectionandrefractionaspects of coherent

scattering at surfaces of discontinuity.

B. Conservation of Coherent and Incoherent Sound Energy

I.et us now return to the integral relation (3.40) connecting"
(dg>:<(;)'\7’¢ (;) - Lp(:_t:)VLp*(;D and <|¢(?)L2>. Since the configurational
average of the current is regular on and within the surface S, the
divergence theorem may be employed in order to convert the surface
integral into a volume integral, and since the volume V is arbitrary,

the relation may then be written in differential form as
div(y” (VP (r) 4V (rh= -2ik = (r)([e(r)]*) . (4.10)

Now let us compute the corresponding expression for the

cohe‘r’ent wave, which satisfies the wave equation (4.6), We have
div] (W (@) V@ E) - @IV ED T = (W) VX))

) VA ()

—_ *2- —_— —
= - [k%(r) -k (0)] Kw@)|r . (4.11)

Using the definition (4.7) of the propagation constant of the scattering

medium, the notation (2.28) for the real and imaginary part of K
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and the definition (2.41) of the extinction cross section density, we
may write

- w2 0 — —
KX (T)-K ()= 2i Im{l{;ﬁ- ‘1'TI'5 g(r,R)n(r,R)dR}
O

w —_— —_— —
= 2ik {oz +§ o (r,R)n(r,R)dR} = 2ik = {r} . (4.12)
o] o o © o e
Therefore, the divergence of the coherent current satisfies a relation

quite analogous to Eq. (4.10) for the total current:

e
b

aiv (W () KW (F)) - W EN V() )= 2ik Z @Ky @) 2 . (4.13)

In order to understand the physical significance of Eqs. (4.10)
and (4.13), let us denote the configurational averages of the total sound

intensity and sound energy current by

2

~ Pow —~ 5
e(r) = (lelzy (4.14)
2¢c ?
(o]
— OO.) Sko— —_ —~ Sk —~
Jx) = = (b E V() - W)V () (4.15)

The '"coherent' contributions to the average sound intensity and average

sound energy current may be defined as

LOZ
o]

e (r) =

etz (4.16)

2¢ ?
o
- - P -k —- - - %
@) = o L@E) @E) - (EVHEN T, 317

with the '""incoherent'' contributions to these quantities being defined as

the differences:
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— — —

ei(r) = e(r) - eC(r) ) (4. 18)
JiE =i -5 ) (4.19)

Equations (4.10) and (4. 13) may be rewritten, in terms of these

definitions, as follows:

—_ —.

div j(r) = - coza(?)e(r) ) (4.20)

divﬁc(?) - - coze(?)ec(¥) , (4.21)

The first of these is a statement of conservation of the total sound
energy; the latter describes the conservation of the coherent portion
of the sound energy. By employing the additivity property of the cross

section densities, the former equation may be rewritten as

— Py —_ —_ —

divlj (1) (0)] = - ¢ [Z(0)-2 (m)] e (r) - e 2 (x)e;(x) . (4.22)

Upon subtraction of the second, we obtain a statement of conservation

of the incoherent portion of the sound energy:

le_]i(l‘) = COZS(r)eC(r) - cOZa(r)e.l(r) . (4.23)
This last equation now shows the essenlial conneclion between the
coherent and incoherent contributions to the sound intensity and current,.
Let us use the divergence theorem to express Eqs. (4.21) and
(4.23) as integral relations relating the energy intensities and currents

for an arbitrary volume V bounded by the surface S; we obtain

—

gsﬁc(?)-d§ = - §Vco[za(r) +Z (r)]e_(r)ar (4.24)
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_gsf (r)-dS = SV ¢ B (re_(r)dr - SV c 2 (e, (r)dr . (4.25)

It is seen that the flux of coherent sound energy across the surface S
is equal to the combined rates of absorption and scattering within S,
The coherent energy lost as a result of scattering appears as a source
of incoherent energy, as evidenced by its presence on the right hand
side of Eq. (4.25). This equation states that the flux of incoherent

sound energy across the surface S is equal to the rate of production

of incoherent sound energy within the volume V by the scattering of

the coherent energy minus the rate of absorption of incoherent sound

energy throughout V. The integral form of Eq. (4.20),

g?(;)-dg - - SV coza(?)e(?)d}“ , (4.26)

expresses the over-all statement of conservation of sound energy.

C. Incoherent Scattering

We now return to the governing integral equation (3. 21) for

o,
¥

< qJ(?)p <(;O)> - gu(?))(q; (—1?0)>>'<, from which the incoherent contributions
to the intensity and current may be determined, by use of Egs. (3.6)

and (3.7) respectively. Let us assume the representation

WENED) - ENED = = | = @ e (E IHLE, 77 )dr !

le) E

(4.27)

.and substitute it into Eq. (3.21); after the order of integration has been

interchanged, we obtain
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L0~ - e e e
yip j Zs(r ')(Iup(r ')[2>{L(r,ro;r N-E(r,r E (ro,r )
- S‘(‘ G(;" )G:k(;lﬂ)L(;H’;IU;;Y)E(—;’ —1-?”)E>::(;O,;III)d;Y'd;‘ll}d;lzo
(4.28)

Therefore the representation (4.27) is consistent with the integral
equation (3.21), provided that the kernel L(?,?O;?') satisfies the

following integral equation:

—

Lir,r_;r') = E(r,r )E (r_,r") +SS G(r ")G (x ")L(x "z "ir ')

sl

E(r,r ")E"‘(?O, T M)dr "dr M (4, 29)

or, equivalently, the differential equation:

T2 2V T2 g 32 1 RN -
{(Vv +KO)(VO+KO )-167°G{r)G (ro)} L(r,ro,r')

= 162 5(?-?')6(ro-r oo (4.30)

The latter equation may be obtained by operating on the former
equation with (Vz-l-}{cz))(VéH{jz). Equation (4.30) was obtained by
Foldy and formed the basis of his subsequentanalysis. However, his
mathematical development for the kernel L(?, ;o;;l) appears to be
invalid, although his result is essentially correct in the limit of very
low scatterer density. This point is further discussed in Appendix A,
Instead of considering Eg. (4.29) further, we shall determine
the expression for L(;, _;O;;') by requiring the representation (4,27)
to be consistent with the conservation relations (4.10) and (4.13) of

the previous section. If wec diffcrentiate Eq. (4.27) first with rcepect
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—

to r, then with respect to r o subtract, set r =T, and then take

the divergence of each term of the resulting equation, we obtain

aiv (e (FV4(E) - @ @)- divky @) VWE) (pED VW@ EN ]

= % §25(9)<[¢(?)|2>V- [ (VL-VOL)(?,r;r Nldr ' . (4.31)

Now let us employ Eq. (4.10) and (4.13) in order to eliminate these

divergences, yielding
-2ik 2, (1) [9(r)|?) +2ik 2 (F)0 () [

- ﬁ S‘ N |2 V[ (VL- v, L)(r,r;r ")} dr' . (4.32)

By setting I:O =r in Eq. (4.27), we have

KN 2 =(le@)]?) - -——S (e |2 Lir, T dr (4. 33)

and using this to eliminate |[(y(r))|? in Eq. (4.32), we cbtain
2ik_Z_(r)(|w(r)|?) - 2ik T _(r) 4—1; §28(¥*)<E¢(¥')|2>L(?,?;¥v)d?'

:Z}Fg r)(lq) 2)\/[VL'\7L)(1‘ r;r' ]dr' , (4. 34)

which. may be expressed in the following manner
1 - - ) -~ o
yip gzs(r ') |¢(r ')\2>{'\7- [ (VL—VOL)(r,r;r "] - SﬂlkoO(I’—I‘ ")

+ Zikoze(?)L(?,?;?')}d?' =0 . (4.35)

—_ e

Therefore, in order for the kernel I(r, ro;r‘) of the representation
(4.27) to be consistent with the conservation relations developed in the

preceding section, it must satisfy the following relation:
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'V.[('VL-VOL)(‘{,?;?')]zswikoa(?-'{')-Zikoze(?)L(r,r;r') . (4.36)

—_—

If we take L(;, ?O;?')to be a product of a function of r times a
function of ;o’ this relation may be written, with the aid of Eq. (4.12),

as
{[V242(r)] L(r, ro;r') - ['Vgﬂc’-" (ro)] Lz, ro;r' )}I-;?O:Swikoﬁ (r-ro) . (4.37)

One may readily verify that a solution to this equation is

LE, T ) = yEORE TR (7T L (4.38)

—_

where K(r, r') is the outgoing solution of
[V2+i2()] K(r,z ') = ~4n6(r -1 ') (4.39)

and
N k
y(r') = — : (4.40)
Im{K(r,r )} _ 2

Upon substitution of this expression for the kernel inte Eq. (4.27),

we obtain

SEWT(E)) - GENE )T

(
1 S ) o ' o Ty
= = ) v 2 @K ED K, v K (r, T dr . (4.41)

In particular, the incoherent contribution to the mean square wave is

obtained by setting r_ =T, yielding

<I¢(¥)IZ>-I<4J(¥)>1"-=iﬂgy(¥')zs<l¢(?'>lz> |K(x,z)|?dr' ;  (4.42)



-43-

while the following expression may be obtained for the incoherent

contribution to the average current
WOV E G E ) - [ E) T Er@EN VW E) ]

=V vE D e E DK E VKR, T KE, T VK (7, T

(4.43)

D. Wave DPropagation in an Infinite Scattering Medium

In order to illustrate the rather general theory presented here-
tofore, let us now consider the special case in which the entire space
is filled by a random distribution of scatterers; assume that the
scatterer number density n(R) and the scatterer coefficient g(R) of
a single scatterer are independent of position so that the scatterer

coefficient density

0
ng g(R)n(R)dR , (4.44)

o

propagation coefficient of the scattering medium

1
K:k+i%:(K;+41TG)Z , (4.45)

as well as the scattering and extinction cross section densities

(‘oo
z, = 4m ) lg(R)|%n(R)dR (4.46)
~o
5 - im le { } d 4.47
e_E;Jomg(R)n(R)R+ozo , (4.47)

are all constant. We note that the scattering coefficient of a

single scatterer, along with the scatterer number density distribution,
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completely determines the macroscopic properties of the scattering
medium,

By Eq. (4.6), the coherent wave (LLJ(;)) satisfies the wave
equation

(V2K (r)) = 0 (4.48)

the average pressure, coherent contribution to the average sound
intensity, and coherent contribution to the average sound energy cur-

rent are related to this quantity by the following formulas:

p(r.t) = Re{iop ($(r))e ™ (4.49)
P
e (r) = =— [wEHi® (4.50)
2c ?
- - pow —_ 3k —a — - 3k
J () = = [N VWE)-@ERVEE)T] . (4.51)

Therefore the properties of the coherent radiation are completely
determined by the solution of the wave equation (4. 48).

For the case of constant propagation coefficient, Eq. (4.39)
has the solution

eixl;~;'t
K(r,r') = ———— , (4.52)

EREN

so that y(?'), defined by Eq. (4.40), is given by

N iK|T -1 K .
I — —_ — T —

vir'") = ko/lm == T T , (4.53)
[r—r l r=r' ©

i.e. the ratio of the phase velocity of the scattering medium to the

phase velocity of the medium when no scatterers are present. By
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multiplying Eq. (4.42) by and substituting these expressions

2c ?
o

for K(?,;') and y(;'), we obtain the following governing equation

for the incoherent contribution to the average sound intensity

S L el L
—_ ' -1 [
ei('r) _S S [ec(r') + ei(r )] —————— - dr' | (4.54)
o 4TTII‘—1"l
By Eqs., (4.7) and (4.12), we have
c Ziko * o
'5; = — (-i)K-k ) = 5 (4.55)
2 ¥ e
K™ -K

Let us denote the ratio of scattering to extinction cross section den-
sities by

zS
B -5 (4.56)
e

and base distances on the attenuation length in the scattering medium

—

by defining the coordinate T =oar ; Eq. (4.54) may then be written as

- L N
e.(T) = B S[e (T )4e.(1')] —— dr' . (4.57)
1 C 1 4_"[7__7;[2

Here we have the very interesting result, that for this special
case in which the scatterer density is uniform throughout all space,
the governing equation for the incoherent contribution to the average
sound intensity is identical in form and physical interpretation to the

Boltzmann integral equation describing the transport of monoenergetic

[10]

neutrons in an infinite homogeneous medium That is, we need

— —

only to replace ei('r) by the neutron density n(7) and B ec(—';) by the

—_—

neutron source density S(7) in order to obtain the fundamental



-46 -

neutron transport equation; f retains the same significance as the
ratio of the scattering to total macroscopic cross section. Thus it is
seen that the incoherent radiation is governed by an equation display-
ing '"'particle'' aspects, as opposed to the coherent radiation which is
go{zerned by a '"wave'' equation. It should be noted that in the pre-
ceding general theory no assumption has been made that the wave-
length is small compared with the average distance between scatter-
ers. Therefore, there is no reason to assume a priori that the
incoherent radiation satisfies the transport equation for particles,
since there are no wave ''packets'' which may be treated as independ-
ent discrete entities. Indeed, as will be illustrated later by specific
examples, this strict particle analogy results only for this one special
case in which there are no discontinuities in the average scattering
characteristics of the medium, with a resulting absence of any
specular reflection or refraction.

By substituting the expression (4.52) for K(;,;') into Eq.
(4.43) and using the definitions (4.14) and (4. 15), we obtain the fol-
lowing expression for the incoherent contribution to the average sound

energy current:

3. :‘gc 2 [e Ete.ry] o) melr-r'lgn 4 s
1 o S C 1 41‘[11‘—1"‘)

The physical consequence of this equation is easily understood since
it is an exact dual of the corresponding equation for particles. Here
COZS[ ec(r ')+ei(r ')] is the rate that incoherent radiation is scattered

away from dr ' (recall from Eq. (4.23) that ¢ = e (—1?’) is the rate
0 s ¢
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of production of incoherent sound energy per unit volume due to the
scattering of the coherent wave). This, multiplied by the kernel,
gives the average current at T due to radiation scattered from d;';
integration over all space then yields the total incoherent contribution
to the average current. Again, it is only for this special case that
such a '""particle'' interpretation is possible.

The average sound intensity, which is proportional to the
average mean square pressure, is obtained by summing the coherent

and inccherent contributions,

1 —_ —_

e(r) = ——(p(E, tF) = e (¥) + e;(¥) , (4.59)

C
pOO

and the average sound energy current is computed in a similar manner,

ir) = (pet)V(r, t) =j_(r) +j(r) . (4.60)
If we assume that our previous "ergodic' hypothesis applies, the
above configurational averages of mean quantities are equal to the
time averages of the quantities, taken over a sufficiently long period

of time,
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V. TRANSMISSION OF SOUND FROM A PLANE SOURCE
INTO A SEMI-INFINITE SCATTERING MEDIUM

As a specific example of the foregoing theory of the multiple
scattering of waves, let us consider the following problem. An
infinite plane sound source is located at the plane x = 0 and emits a
plane sound wave into the half-space x > 0, which is occupied by a
medium containing a random distribution of scatterers; the scatterer
number density and the scatterer coefficient are independent of
position throughout the half-space. The motion of the source is

harmonic and its velocity is given by
V{t) = A coswt . (5.1)

Sound will be both absorbed and scattered by the scatterers; sound
scattered back to the source at x = 0 is reflected back into the
medium. The problem is to calculate the average sound intensity
and the average sound energy current at an arbitrary distance x
from the source.

The macroscopic properties of the scattering medium will be
denoted by Eqs. (4.44), (4.45), (4.46), and (4.47) of the preceding
section, The coherent wave satisfies the wave equation (4.48); the
outgoing solution of this equation satisfying the boundary condition |

(5,1) at x=0 is

(W) = 2 X (5.2)

and hence the coherent contributions to the average sound intensity
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and the average sound energy current are given by

2 szz

o () = 2 () [P = o ex (5.3)
P PP '
o] o]
Pow % N sk p kaZ -
6 = 22 (W)™ g (W) - (D) 55 (W) ]—92—l——i—;e o
K

(5.4)

Let us choose the amplitude A such that thc average current
leaving the source is unity; this requires that
po(.ok.Az
_— =1, (5.5)
2|k |?
The solution for other amplitudes may be determined by a simple
scaling operation., With this normalization, the coherent contri-
butions to the intensity and current may be expressed in terms of

the dimensionless distance T = ax, as follows:

e (7) = -:; e” T, (5.6)
(o]
jm =e’T . | (5.7)

From Eq. (4.42) we obtain the following integral equation for

the average sound intensity:

2
e(x) = e (x) *g= |vixelx) [K(ix,7 )| ar ', (5.8)
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—_ -
where K(r ,r ) is the outgoing solution of

(V2 +k2)K(r,r ) =- 4rs(z-7) . (5.9)

We shall impose the boundary condition that at x = 0 the normal
PO |
gradient of the sum of K(r ,r ) and the coherent wave (Y(x)) is

equal to the velocity of the source; that is

%{[K(;J') * <LIJ(X)>]’X=O =v(t) , (5.10)

which requires that the normal gradient of K(; ,; ') vanish at x =0,

—_ !

-—§—-K(r,r )

A =0. (5.11)

x=0

Hence, the movement of the source does not influence the reflection

of the incoherent sound.
The solution of the differential equation (5.9) satisfying the

boundary condition (5.11) may be easily determined by use of the

1 N
method of irnages.,[1 ] Let us represent the position r' in cylin-

. : . e B -
drical coordinates about the x-axis as r = ix + erR; the image

— I —_

. =1, ot . . .
peintof r is r =-~-1ix +erR. The desired solution consists

of the sum of the outgoing spherical waves from r and from the

— 1

image point r ,

—1 —_
T f eil{lr—r I
+ —

r | EREN

ik | -
€

K(r,r )= . (5.12)

-1

|z -
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Let us define the one-dimensional kernel

1

[0 0]
L{x,x") = 5=\ |K(ix,7)|?27R dR , (5.13)

so that the integral equation (5.8) may be written as

0.0]
e(x) = e_(x) + —ZES' v{x"elx")Li{x,x") dx' .  (5.14)
o}

The factor vy(x') is easily determined by substitution of the solution

(5.12) into the definition (4.40),

k k -1
yix') = ) _ 0[ 1 4 8in 2kx' —ax'J . (5.15)
Im{K(; ?’)} N 2k
? r=r

At a point many wavelengths removed from the origin, 2kx'>>1,
this result becomes essentially equal to the expression (4,53) for
the infinite medium. Upon substitution of the solution (5.12) into
the expression (5.13) for the one-dimensional kernel, we find that

it may be expressed as the sum of three terms,

-1

|l|

3 (n) ooe—a/flx T ooe-ozhx r
Lix,x") ; (x,x") =S —— R dR +S —— RdR
~ o ix-r |2 Yo ix-+ P

T -k Tx-T

[o—

n=

ooem]lx—
'i‘Z.Reﬁ4 RdR ,
o}

— -1 Aﬂi

isc-r ||1:<x:—r

(5.16)

since by Eq. (4.45), i(K—K’ﬂ) = -a. In the first integral, let us make

the change of variables from R to u, by defining u = l?x—?, |/|x—x‘] =
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1
[ |x-x' ]z +R?%]%2/|x-x'|; this yields

S 1
L(l)(x,x’) - g‘l e—alx-x ’11 %1_4} = El(alx_xvi) , (5°17)

where the exponential integral functions En(t) are defined, for

t>0 by[14
® _ty -n L -t/v. _n-2

E(t)'—‘S’ e u du:S‘e v dv . (5.18)
1 o}

e )

1
2

— 2
Similarly, by setting u = |ix-r |/(x+x') = [(x+x') +Rz] /(x+x') in
the second integral of Eq. {5.16), we obtain
oo 1
L(Z)(X’Xl) :§ e CY(X+X )ll _du_u - El(a(x+x') ) . (5° 19)
1

-1

In the third integral let us set u = [l?x—;' [+[_fx—r /0 x-%" [+ (x+x"];

this term may then be transformed to

o ik[ |x-x"]|-(x +x')]—1-j;‘--62—¥[ |%-x"|+(x+x")]u

(3) 1y - du
L' (x,x'") = 2 Re gl e ; - -
(5.20)

Therefore, the one-dimensional kernel, expressed in terms of the

dimensionless coordinate 7T = ax, is given by

L(t,7') = E,( lr-7') + EZ(’r‘!"T') + L(3)(T,'T') ) (5.21)

where
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1
Zc cos )\T’ve_T/V %f for 7'< 7T
.U’O
LB, = (5.22)
1 1
ZS‘ cos )\Tve—T/v dv for T'> 7,
Jo v

with \ = 2k/a.
Using the relation (4.55) and the definition (4.56) of B, the
integral equation (5. 14) for the average sound intensity may be written

as

_9 @ sin\r' -7! -1
e(r) = e (1) +5 [1 + SHATL ] e(7)L{r,7") d7' . (5.23)
0

Let us now assume that the attenuation length 1/a of the scattering
medium is much larger than the wavelength 2x/k so that \ = 2k/a » 1;
this is normally the case for multiple scattering problems of practical
interest. Then except for small values of 7 and T', the integrals
defining LB)(T,T') will have a rapidly oscillating integrand and

hence would be expected to be negligible compared with the first two
terms of Eq. {5.21); this is substantiated by the asymptotic repre-

sentation of L(3)('r,'r'), which may be determined by integration by

(13

parts
Z . 1 -T 1 1
1
—)-\—'E—sm)\'re as \7'—> o for T'<T
L(S)(T,T')~ (5.24)
el
—f‘;—sink're T as M\ fr—~ o for T'>T1 .

Therefore at all points 7>> 1/\ (i.e. x several wavelengths
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reinoved from the origin), the third term of the kernel (5.21) is neg-
ligible over most of the range of integration of T'. Although this
term is of the same order as the first two terms over a limited range
about the origin, it oscillates rapidly in 7' and hence contributes
negligibly to the integral in Eq. (5.23). Therefore in our subsequent
calculations, we shall negleét L<3)(7,7') entirely; consistent with
this approximation, the factor within the bracket will be replaced by
unity. The integral equation for the average sound intensity then

becomes

Fs1060}
e(T) = eC(T) +-§5 e{t)| E |7-7! ])+E1(T+T')] dr'.  (5.25)
o

In the above equation, let us substitute the expression (5.6)
for ec('r) and replace T' by -7T' in the second term of the integral
giving

(00] ~ 0
e(r) = e’ +§SO e(rE (|7-7"[) ar' +-§3—m e(-E (T-7") dT' .

L
CZ
o
(5.26)

The following equation, with e(r) defined as an even function on

(-0 ,m™), is equivalent to the above:

e =< oIl %3@ e(TE ([7-7'[) ar’ . (5.27)

Cz -C0
o]

This equation may be interpreted as describing the problem of an

infinite plane sound source located at x = 0 in an infinite scattering



-55-

medium and emitting plane waves in both the positive and negative
directions, The construction of the latter sourée is such that the
scattered sound may pass through it unimpeded. Since, by sym-
metry, the net flux of incoherent sound energy across the plane
T =0 1is zero in this latter problem, it is essentially equivalent to
the former problem (in the limit \ — oo).

The integral equation (5.27) may be solved exactly by use of

the Fourier transform,

- {00 o T
f(s) = H{E(7)} =5 f(rye 5T dr (5.28)
-0
its inversion formula,
-1, a 1 (2 | isT
flr) = F {f(s)} = =— f(s)e ds , (5.29)
2t J_

and the convolution theorem for Fourier transforms,

00 - -
¥ g f(t)g(T-t) dt} =3{£(7)} 3{g(m)} = £(s) g (s) . (5.30)

¥ -00

Transformation of each term of the integral equation (5.27) reduces

it to an algebraic equation in the transforms

co) = S ale Ty v B sim () . (5.30)

The above Fourier transforms are easily evaluated:
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HE 7))} =w§ e 107

oo{‘gvl —['r[ vl dv
e e—
-] Yo v

dr

After substituting these results in Eq. (5.31) and solving for e(s),

we obtain the following expression for the transform of e(r):

;(s) - 2 1

(e]
Oml0

1+s% 1 - ﬁtan-1

s/s

(5.34)

The inversion integral (5.29) may now be applied to yield a repre-

sentation for the average sound intensity,

(5.35)

This integral may be transformed by contour integration to a form

amenable to numerical evaluation; the details of this process are

given in Appendix B, The result for 7 >0

is
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C ZGo 97 ® -7 /tanh w
e(r) = — e —S‘ glw;B,1)e dw), (5.36)
cg B+ Gcz> -1 o

where

glw;ip,1) = Bltanh w)" -, (5.37)

{1 - Bw tanh w)? + (12E tanh W)z-

and o, is the positive root of

o =tanh — ., (5.38)

In order to compute the average sound energy current j(x) at
a distance x from the source, use may be made of the integral
relation (4.26) describing conservation of sound energy. Let us con-
sider a cylindrical volume having unit cross sectional area and
bounded by planes at distances x and a > x from the origin,

Application of Eq. (4.26) to this volume yields

na
ja) - 36 = - e T, | elx) ax' (5.39)
xX
since the current must vanish at a in the limit a — o, we have

0
ilx) = Cozag e(x') dx' . (5. 40)
X

This may be written in terms of the dimensionless length 7T = ax as

c Z

QO
ag e(t') ar' . (5.41)

T

ilT) =
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Upon substitution of the expression (5,36) for e(T'), we obtain

cZa fo's) 200 -O‘OT' ~ o0 _7,/1: nh w

ir) = —= —_— —‘B g(w;p,1)e a dw d7') ;
CcC o 2
o T ﬁ-!—o-o- 1 o)

(5.42)

by Eqs. (4.55) and (4.56) this becomes, after interchanging the order

of integration, equal to

20 oo -o.T' oo ©
i) = (1 - ——— 5 e ° ar'- 5 g(w;ﬁ,l)g o T /tanh W g ;
T .

Z.
ﬁ+co 1 v 0
(5.43)
Therefore the average sound energy current is given by
-0 T (0
i =-p—2—e © -S glw;p,2)e” /AR W g b
ptot-1 o]
o
(5.44)

The solutions (5.36) and (5.44) require numerical evaluation.
The root o, may be determined by iteration of Eq. (5.38), using
Newton's method. In order to evaluate the integrals, a value W >> 1
may be chosen such that {fw - 1) > 0 and tanh w =1 for w= W e
After replacing tanh w by unity, the portion of the integrals from

w, to o may be carried out analytically, with the result:

o -”r/tanhw N Yo )
S g(‘mﬁ,n)e dw = ‘S' g(W;ﬁ,n)e ‘T/tanh W dw
o o

+in -%tan—l -1;2-5 (Bw - 1)]e™" . (5. 45)
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The integrals over the finite range may be evaluated numerically,
using Simpson's rule.

The resul;:s of the numerical evaluation of the solutions (5,36)
and (5.44) for Sg— e(r) and j(T) are displayed in Figures 1l and 2,
For small values of p = Es/Ee, the solutions approach closely thc
solutions (5.6) and (5.7) for the coherent wave. As the cross section
density ratio B approaches unity, the effects of the incoherent radi-
ation on the transmitted sound become important. Tt is noted that

the dependence of e(T) and j(r) on T is almost exponential,

although this is not apparent from the solution forms.



Lairiil

]‘TIIRT]

T

J

i 0.2
!0—2;-
-
(g3 | i \
0 | 2 3 4 5 6 7 8 9 10 Il

T=axX
Figure 1 » Sound Intensity vs, Distance



jlr)

10

I l!ill]l

lflll‘

1

|

—
e
-

LR N

] i ] ] | | ) ]

! 2 3 4 5 6 7 8

T=ax
Figure 2 - Sound Energy Current vs, Distance



-62 -

VI. REFLECTION OF AN INCIDENT WAVE BY A
SCATTERING HALF-SPACE

As a further application of the general theory of multiple
scattering of waves, we shall now examine the effect of a disconti-
nuity in the scatterver density distribution by considering the specific,
problem of the reflection of a plane wave by a half-space filled by
a scattering medium. The scatterers are assumed to all lie to the
right of a given plane; the scatterer density distribution is assumed
to be known and independent of position in this region. Hence, if
we orient our coordinate axes such that the scatterers are located
in the half space x > 0, the scatterer density distribution may be

expressed by

n(r ,R) = n(R)H(x) , (6.1)

where n(R) is the scatterer density per unit radius interval and
H(x) is the Heaviside step function, zero for negative argument and
unity for positive argument. A plane sound wave is assumed to be
incident to the boundary plane of the half-space, making an angle GO
with the normal. Our objective is to determine an expression for
the reflection coefficient, defined as the fraction of the sound energy
flux transmitted through a unit area normal to the boundary plane
that is reflected back through it. The calculation of this quantity
requires separate considerationofthe coherent and incoherent

contribution to the reflected current.



-63-
We shall take the matrix medium to be non-dissipative, with a
real propagation coustant ko. The propagation coefficient of the

coherent wave is given by

k? for x< 0
o R o
K? (x) = ké + 4TI'S g(R)n(r ,R) dR = (6.2)
° k2= k2 + 4G forx >0 ,
where
»00
G =§ g(R)n(R) dR . (6.3)
O

As before, the real and imaginary parts of the complex propagation
coefficient Kk define the real propagation constant k and attenuation

constant «,

1
— 2 2z . . @
K—(ko+411'G) =k ti. (6.4)
The coherent wave (L[J(; )) satisfies the differential equation
[V2 + (=) ] (p(x)y =0 . (6.5)

In addition to this, boundary conditions are established at x = 0 by the
required continuity of pressure and normal velocity at the interface.

Let us orient the coordinate axes such that the incident plane
wave, making an angle 90 with the x-axis, may be expressed in terms
of the spatial variables x and y as

ik (x cos 8 +y sin 0_)
by be.y) = Ae © ° o (6. 6)

The x-compounent ol the sound energy current of the incident wave is



-64-

proportional to

ES 8 ) sk .
Y (%, 7) gz b lxey) i, y) 32 b G y) = 2ik p (AR L (6.7)

where we denote p = cos 9,-

In the region x < ¢, the coherent wave

is composed of the incident wave and the reflected wave,

ik (xcos® tysin6 ) ik (-xcos® tysind )
(Wi, y)) = Ac ) o o' i pe © ) Vo

(x <0),
(6.8)

while the transmitted wave in the region x> 0 may be written as

- R
(Wlx,y)) = ColK(xcos 8 tysin ) (x>0) |, (6.9)
where 6 is a complex constant. The boundary condition of continuity

of pressure at the plane x = 0 yields

ik ysin®© . .
(A +B)e ° o _ celhysin® (6. 10)
whilc that of continuity of the normal velocity component at x = 0
gives
ik ysin® . .
kopo(A—B)e ° ° = KcosGCemysme . (6.11)
These are satisfied provided that
k,sin 8 _ =K sin B , (6.12)
A+B=C

(6.13)
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kOpO(A -B)=KcosBC . (6.14)
The latter two equations may be used to express B and C in terms

of A,

K cos O - ko“o

B=-roon 0 o A (6. 15)
o 0O

c Hoky A (6.16)
K cos € T ko“o ’ '

while from the first we obtain
1 i 1
Kcos 0 = k(1 - sin?0)® = (k? -k;sin?‘ 90)‘2 = (ki)cos2 90 +4nG)2 .
(6.17)

Let the real variable p be defined to denote the real and imaginary

parts of Kcos O as follows:

1
_ 2. .2 2 . . o .
Kcos O = (kO o +4nG)* = kp t+i o (6.18)

this is consistent since
2
Im {k? 2 +4nG} = m {k2+ 4rG} = Im {(k+i%) }=ke . (6.19)

Substitution of Eqs. (6.12), (6.15), and (6.16) into Eqs. (6.8) and (6.9)

yields the following expressions for the coherent wave:
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o . . .

ik px kp-k p tis— -ik p x| ik _sin@ y
(Wx,y)) =Ace ©° - 00 Zp, 00 e % for x<o0,

kp."'kop.o‘"l—zTL
(6.20)
2k B A i(kpx +k_sin© y)-—gE
(Ux,y)) = ez o€ ° © Zp for x>0 . (6.21)
kp+kOMO+l§T\L

The coherent contribution to the x-component of the average sound

energy current for x < 0 is proportional to

() S (W) - (W) o (blsy))

- 2 42
(kp kopo) + (Z'p.

2 LAY
(kptk _p ) + (Zu)

Y 2 _
= 2ik_p |A]¢ 1 . (6.22)

Comparison of this result with the expression (6.7) for the x-component
of the current of the incident wave yields the following expression for

the reflection coefficient of the coherent wave:

2 o 2
(kp - k) +(ZM)

R _(p)) = (6.23)

2 & 2
(kp Tk p) + (Zp
Equation (6.21) describing the coherent wave for x >0 may be

written as

1kos in Boy

(Ulx,y)) = (dlx)e , (6.24)

where we define
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2k _p A ikpx - 5=
(W) = CUCTR 21 (6.25)
kH+kOHO+l—2—}._L
Hence for any two points x and X, s We have
<L[J(X ,y))(l.l.l(xo’y» o - <L|J(X)><41(XO)> &
_ 4k? p? la 2 eikp(x—xo)—a(x+xo)/2;¢ 6. 26
24 (2 2 T
(g ke 1 )2+ (55)
or for the special case x = x_,
2 ax?p? Al
(tee,y)) *= [y 7= ——22 /h L (eu27)

2 X 2
(kptk p )"+ (Zu)

Since the corresponding incoherent quantities are also independent of
y, the total quantities <¢(x,y)¢*(xo,y)> and { [4(x,y)|?) are also
independent of y; in order to emphasize this, as well as to simplify
the notation, let us suppress the y-dependence in such quadratic

quantities and write
(0 (e )y = (e ) (6.28)

Clu) )®) = ey %y, (6. 29)

throughout our subsequent calculations.
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Application of the basic integral equation (4.41) for the inco-

herent quantities to the problem at hand yields

(WIS (e )y = () (Wl )y

i g ) o |2y R(Tx,7 VK (Tx 7)) a7 ' (6. 30)
411- (X|>O)Y T ’ O, ) .

where K(—f ,?') is the outgoing solution of the wave equation

[V2+ 12 (x)]K(z,7 )= - 4n8(r -7 ) , (6.31)

that is continuous and has a continuous normal derivative at the inter-

face x =0, Let us define the following one-dimensional kernel
1 (% > T ks
L(x,x;x') = -?:—j S K(ix,r K (ix_,r ) dy' dz' , (6.32)
so that the integral equation (6.30) may be written as

¢ « Ty .
(b(x)y (xo)) - <LIJ(X)><L11(XO)> = —Z-—S yix" W )] 2>L(X,Xo;x') dx' .
o}
(6.33)
Once the expression for the kernel has been obtained, the above

integral equation may then be solved for ( |{(x) |2> and

3 %) 2 Wlx) - @(x) 2 47 (x)), which are respectively proportional
ox ox
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to the average sound intensity and average sound energy current.
Since the solution K(; ,;‘l) of Eq. (6.31) depends only on

— —_—
x,x' and |r - r |, we have that

K(_i‘x,—i-x' +_5y' +Ez'): K(ix —?y' ~kz' ,—{x') = K(ix +?y' +kz'ix")
(6.34)

and hence the definition (6.32) may be rewritten as

L (® @ o
L(x,xo;x') = 77?5‘ S‘ K(r,ix")K (ro,ix') dy dz , (6.35)
- Y-

—_

with T =ix +jy +kz and ?o =ix +?y +kz. Because K(r,ix')
has cylindrical symmetry about the x-axis, we may take r=ix+ grR

and represent it by a Bessel integral representation of the form:

0
K(r ,ix'") =§ $(x,x" NI (NR)N AN, (6.36)
5 .

where JO(Z) is the Bessel function of the first kind of order zero.

The operator V2 in (x,R) coordinates becomes

(6.37)

sa that

o0}
[V2+ 12 ()] Kir ,ix") :S A (x)] ¢ (x,x";MT J(AR)X d\ . (6.38)
o Ox
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The three-dimensional delta function 6(_17 -Tx’) may be expressed as
- 1 1 (%
S{r-ix') = &(x-x") —L;——RS(R) = §(x-x" e SO JO()\R))\.d)\ s (6.39)

where 6&{x-x') and 6(R) are one-dimensional delta functions. There-
fore substitution of the Bessel integral representation (6.36) into the

wave equation (6.31) yields

Sm{[—a—a— - N P ()]0 (x,x"5\) +26(x—x')}J0()\R))\ dr=0 ,  (6.40)
0 ax*

giving the differential equation

[ 2 1k (x) - ]olx,x"5N) = - 26(x-x') . (6.41)

9x?

This equation may be replaced by the pair of equations

2
("Q—' +v2) ¢(x,x"\) =0 for x<0 ,
x> °
(6.42)
52
(— + v2)P(x,x";A) =0 for x>0, x#x' ,
ox>
where
1
_ (L2 _\2)2
v, = (k2 - ) ,
(6.43)
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are complex functions of the real variable \; we have the jump

boundary conditions at x = x'

$(x't,x";N) = ¢(x'-,x";\) ,
(6.44)

-g;%(X‘"F,X';K) = —gg—; ('-,x"5\) - 2

Since K(; ,_ifx') must be continuous and have a continuous normal
derivative at the interface x = 0, we have the following boundary

conditions on ¢(x,x":\) at x = 0:

¢(0-,x";\) = ¢(0+,x";\) ,
(6.45)

o¢ 1y = 09 ) )
'5;;(0',}( :)\) - ‘8“‘}2(0"’,)(',)\.) 3

we also require the solution to remain bounded for large magnitude
of x. The solutions of the differential equations (6.42) that satisfy

these boundary conditions are

* '—
i(vx vox)

blx,x"\) = —E— e for x<0 , (6.46)
o
. iv|x-x | v-v_ '
O(x,x";\) = —i‘;\:e © +m_9_e11/(x+x )] forx>0 . (6.47)
)

Now, using the Bessel integral representation (6.36), the one-

dimensional kernel (6.35) may be expressed as
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L(X,Xo;x')

0 0 | aw
=§ g ¢ (x,x AT (AR)A AN V <15"(xo,x';x')Jo(x'R)x'dx'}R dR
o o ~o

(6.48)

00 0o sk @®
= g 5 $(x,x";\)¢ (xo,x';x'){S J (\R)T _(M'R)R dR} Aant aan,
Jo Jo .

o}

where the order of integration has been interchanged. But the Bessel

integral representation of an arbitrary function f(R),
oo o0

f(R)=S {5 f(R')JO()\R’)R'dR'}JO()\R))\d)\
o (Yo

(0] o0
:(' £(R") g I, (ORI (AR dx}R'dR' ,

“0 0

gives the closure relation

*® : 1 :
SIO JO()\R )JO()\R) Adh = U 6(R' - R) ,

and hence Eq. (6.48) becomes

00 00 " 1
L(X,Xc');x') =S S‘ Plx,x";\)¢ (Xo,x';)\')-)? S(N'- MN'AN' N dN
o *o

(6.49)

(6. 50)

(6.51)

Thus we obtain a simple explicit representation of the one-dimensional

kernel in terms of the solutions (6.46) and (6.47),

Q0 2
L(x,xo;x') = g QS(X,X';)\.)_(bVP(XO,X';)\))\ dx .
Yo

(6.52)
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By setting x =x_, we obtain as a special case of Eq. (6.33)

= oo
(ux) 12) - Kux) |2 = _;:5 v [e(x") [2) Lix,x'") dx'  (6.53)
o]

where

Lix,x'") = L{x,x;x") . (6.54)

and by differentiating Eq. (6.33) first with respect to x, then with

respect to Xo, subtracting, and setting x = X0 we obtain

() 2 ) - ) () - L) o (W) - (b)) o () ]

p (s}
= 520V 16 [2) M ax' (6.55)
o]
where
M (x,x") = (g = o VL, 5x") . (6.56)
° X:XO

Upon substitution of the solution (6.47) for ¢(x,x'\) for
positive values of x into the representation (6.52) for L(X’Xb;x')’

we find that the latter may be expressed as the sum of three terms,

3
N - (n)
L(X,XO;X')= /_)JL (x,xo,x') s (6.57)
n=1
where
oo ile—x'[-—iv*:x -x'|
LW, x_sx) :f e o kA (6.58)

~0 vy



-74-

- 2 3 -l'x')r-iv*(x +x1)
(2 | Vv-v iv(x o \ d\ ,
L )(X,XO;X') = oyprey e — (6.59)
o o v

00
L(3)(X,XO;X') = g

o]
rv—vo

+(v+v
o}

Therefore the kernels L{x,x') and M(x,x') may be written as the

(v-vo) ivixtx')- 1v ]x -x'|
e

viv
o

¥ iv|x-x'|—iv*(x x')
o Axdh (6,60

vv

sums
3
L{x,x") > L n)(x x! , (6.61)
L
n=1
M, x') = Z Mty (6. 62)
n=1

where by Eqs. (6.54) and (6.56) the terms are given by

L5 = LM 5 k) (6. 63)

M (x,x') = <) L(n)(x,xo;x') ) (6. 64)

X=X

(ax
o)

These terms have a simple physical interpretation. The kernel
L(x,x') represents the incoherent intensity at x due to a plane of

" incoherent point scatterers at x'. The first term L(l)(x,x')
represents the sum of the intensities of the spherical waves emitted

directly by the sources, neglecting the effect of the interface at
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(2)

x = 0. The second term L '~'(x,x') represents the sum of the inten-
sities of the reflected waves from the interface. Finally, the third
term L(3)(x,x') describes the interference that takes place between
the direct wave from each scatterer and the reflected wave produced
by it. Similar statements may be made about M(x,x'), which repre-
sents the current.
Upon substitution of the expression (6.58) into Eqs. (6.63)
and (6.64), we obtain
oo i(V—V*) |x-x'|
A dA

LM e, %) Y e . (6. 65)

0 vv

Wy, oy (x-x") ® K i(v-v*) w-x'| N d\A
MY (x,=x") —qur{ S\o i(v4+v e , I — - {6.66)

vy

Let us introduce the change in variables
1
M=K - VR F g (- - D)0 (6.67)

where k and « are the propagation and attenuation constants of the
scattering medium and v is a real variable ranging from 0 to I;

the following relations are easily verified:

L«
V—kV‘l‘l—Z-‘—[ ’ (6. 638)
Ndh | dv (6. 69)

>l.: V * L]
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After making these substitutions, the expressions (6.65) and (6. 66)
may be written in terms of the cxponential integral functions En(t),

defined previously by Eq. (5.18), as follows:

~1 .
L(l)(x,xl) - ‘Soe-a’!X—X '/V _(_i\l,_fz El(alx_xrl) . (6.70)

1 1 1 1
MW (%" = zm%{%—’lg R A Zik-l(—-z—:—z—z-fllEZ(ﬂx—x' .

(6.71)

Although the remaining terms of L(x,x') and M(x,x') may also be
transformed Lo real inlegrals, the forms of these expressions are

rather complicated. Therefore we shall take
Lo, T 1. W%, (6.72)
Mix,x") = MP ) (6.73)

and neglect the effect of the interface on the incoherently scattered
radiation. It will be seen that the effect of this approximation on the
expression for the reflection coefficient will be quite minor. Con-
sistent with this approximation, we shall take the infinite medium

expression (4.53) for vy{x') ,

(6.74)

ko
v(x') = =
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The integral equation (6.53) may now be written as

(o o]

(W) 2) - [y |2 = %g (W) ]2YEr-rt]y ar' . (6.75)
)
where distances are expressed in terms of the dimensionless length
T = ax and by Eqgs. (4.55) and {4.56) ( is the ratio of the scattering
to extinction cross section densities. We may employ Eq. (6.55)
in order to compute the incoherent contribution to the current at
x = 0; the contribution to the reflection coefficient by the incoherent
radiation may be obtained by dividing by -2ik _p_ ‘A |2, which by
Eq. (6.7) is proportional to the x-component of the sound energy

current in the incident wave; this gives

-1 B *o
RL(HO) :;"———————_-2- 23 < I¢(T)|Z>M<O:T) dT
1kopolA[ o
. Kk U ) -
—ko " lzZS (lm) 2y B (r) ar . (6.76)

The inhomogeneous term of the integral equation (6.75) is given by

Eq. (6.27) as

| B2lal ko lal?
; = “T/R__ 9 9% 11 - -0T
.<L!J('T)> IZ (kH+k p' )2+( )Ze - kH [1 RC(HO)]e ’

(6.77)

where we denote o = 1/p. Let us define B(7,0) such that



-78-
|al?

Kk m
(|4 [?) = —=—[1- R (k)] B(T,0) . (6.78)

The integral equation (6.75) may then be written, in terms of B(7,0)

as
-gT o .
B(r,0) = e +-§§ B(T',G)El(j'r—"r']) dar', (6.79)
0

while the expression (6.76) becomes
o oo
Ri(ny) = [1- B, ()] 2§0 B(r,0)E, (1) d7 . (6.80)

The integral equation (6.79) turns out to be identical to the
"auxilary equation" of radiative transfer,[lzg The following result is
known for this equation. Let é(s,c) denote the Laplace transform

of the solution of Eq. (6.79),

i%(s,o)=§ B(ro)e T dr (6.81)
“0

then B(s,0) is given by

B(0,s)B(9,0)
(s +o) (6.82)

]%(s,c) =

and B(0.,0) satisfies the non-linear integral equation

B(0,0) = 1 + B(o,a)ggjo-s—(%wfz—g ds . (6.83)
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A proof of this assertion is given in Appendix C.
In order to apply this result to the present problem, we note

that by interchanging the order of integration,

o0 00
S‘ B(’T,O')EZ(T) dT :Sl B(T,G){S(D -Ts ds} ar =
o 1 2

e] s

:SOO{SOOB(T,G)e—TS d'r}is- —Smfa(s o) 38 | (6. 84)
1 o} “1

g? g?

and hence Eq. (6.80) may be expressed in terms of the solution B(0,0)

of Eq. (6.83) as follows:

R; (1) =[1-Rc<ponfuo,oy%§5“°Jiﬁb£ﬂ ds . (6.85)

1 (s +0)s®
In order to achieve a more conventional notation, let us set
» S5 = T (6. 86)

and define

H(w = B(0,p™0) . (6. 87)

Then the expression (6.85) for the incoherent contribution to the

reflection coefficient becomes

Ry(k) = [1- R_(ulH(w £ { %HT‘&— , (6.88)
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where by Eq. {6.83) H(p) is the solution of the non-linear integral

equation

H(p) = 1+ uH( )Eg :ﬂ’“}:) du' . (6. 89)

The function H(p), defined by the above equation, is the well-

known H-function introduced by Chandrasekhar to study radiation

1
(particle) transport in semi-infinite atmospheres.[ i It has been

1
shown b Crum[ 9 that the solution to this equation is given by the
Yy g Yy

following integral in the complex plane:

ico dw
log H(p) = }Hl— § log T(w) -
Yo

Re(p)> 0 , (6.90)
woo- N

where

T(w)=l—-§wlongi . (6.91)

Dy the substitution w = i cot®, this may bec transformed to a real

integral expression for H(p),

H(p) = exp( - ESW log (1 - B0 cot B) 4 : (6.92)
TJdo 1- (1-12)sin® 6

values of H(p) may be readily determined from this expression by
numerical integration. Chandrasekhar has shown that the function

H(n) also satisfies the alternative integral equation:[1 5]
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1 rl !
=0 -merdy aHE) g0 (6.93)

() o RTH

The last result may be used to rewrite the expression (6.88)

in closed form,
1
- 2
R.(p) =01 - R I - (1-p)2H(E] . (6.94)

An approximate expression, valid for << 1, may also be determined

by taking H(p) = 1 in Eq. (6.88),

- M1 . N
Rylhg) S L1-Rolug] £} e’ = [1- R (k)L 1- wrog B2
(6.95)

This is the same result that would be obtained if the inhomogeneous
term e O of Eq. (6.79) is substituted for B(o,7) in Eq. (6.80);
hence it represents the contribution to the reflection coefficient due
to the incoherent scattering of the coherent wave, neglecting higher
orders of multiple scattering. For values of § less than 0.1,
the apvproximate formula (6.95) differs from the exact result (6.94)
by less than a few percent over the centire range of p. A comparison
of the approximate and the exact formulas is given in Appendix D.
Let us summarize our results. The constants k, a, i, and
B are defined in terms of the scatterer coefficient g{R) and

scatterer number density n(R) by the following expressions:
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1
k = Re {(k; +41G)%} (6.96)
1
o = ZIm{(kcz) +47G)2 } , (6.97)
1
M= %{Re {(k; p; +41G)*} (6.98)

NN AT
z, Tm {G}

) (6.99)
where

00
G =§ n(R) g(R) dR . (6.100)
o]

The total reflection coefficient for the incident wave inclined at an

angle cos"1 powith the normal is given by

1
= - - {1-R\2
Rip) = R (1)) T11-R (p)][1- Q-p*H(W] (6.101)
where the reflection coefficient of the coherent wave is

o 2
R (i) = (e Kbl H?’ , (6.102)
T Gtk o) (5 P

and H(p) is given by the integral (6.92). A table of values of the
1

factor [1 - (1 - B)?H(m)] is given in Appendix D; for values of

B << 1, the approximation (6,95) may be used.

We recall the single approximation that has been made in the
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development of Eq. (6,101) -- the neglect of the reflection at the
interface of the incoherent radiation. Hence, if the scattcrcr density
in the region x> 0 is too large, the expression (6,94) for the
incoherent contribution to the reflection coefficient will be in error,
In such a case, however, the coherent contribution to the reflection
coefficient is much larger than the incoherent contribution; there-
fore the resulting error in the total reflection coefficient will be
comparatively small. Thus the expression (6.101) may be considered

to be adequate over the entire range of scatterer densities.
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VII.. APPIICATION TO SOUND PROPAGATION IN A
LIQUID CONTAINING BUBBLES

In the preceding sectione of this work wec have decvcloped a
consistent treatment‘of the multiple scattering of scalar waves by a
random distribution of isotropic point scatterers. Such a mathe-~
matical idealization provides an applicable model for the description
of the propagation of sound in a liquid containing a large number of
small gas bubbles. The presence of bubbles in a liquid may have a
dramatic effect on its acoustical characteristics; even a very few
bubbles, so Widely spaced as to be nearly invisible, may cause a
marked change in the phase velocity of the medium and produce a
significant attenuation constant. This is due to the possibility of
resonance between the sound field and the natural oscillations of the
bubbles. Such resonance may cause gas bubbles in a liquid to scatter
and absorb underwater sound to a much greater extent than their
geometrical cross sections would indicate,

The study of the acoustic properties of a bubbly mixture has
considerable practical importance and has been the subject of a

number of theoretical[ 2,17,18,19] 1[20’Zl ’22]

and experimenta
investigations. It has long been recognized that the presence of small
gas bubbles in the wakes of ships is the dominant feature affecting
their acoustic properti‘es[23]> . The effectiveness of bubbles in the
absorption of sound suggests their use as acoustical ""screens' in

[ 24]

order to attenuate sonar or shock waves in water Therefore

the acoustic behavior of bubbles in a liquid is an essential feature of
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the physics of underwater sound.

In order for one to apply the general theory of the multiple
scattering of waves to sound propagation in a bubbly mixture, the
acoustical behavior of a single gas bubble must be determined. The
scattering and absorption of sound by a single bubble is well under-

[18,25,26]

stood and has been discussed by several authors . A rigorous
treatment of this problem requires that one consider the bubble excited
by an incident plane wave and solve the linearized equations of con-
servation of mass, momentum, and energy both for the gas within the
bubble as well as for the liquid outside the bubble; the effect of sur-
face tension and viscosity must be included in the formulation of the
boundary condition at the gas-liquid interface. In order to solve for

the scattered wave from the bubble, the same partial wave decompo-

sition of the incident plane wave into spherical waves may be employed
[ 8]
[27]

Although such an ambitious program has been actually carried out ,

as is commonly used in atomic and nuclear scattering problems

the results are much too complicated to be incorporated in the analy-
sis of multiple scattering. Fortunately, such a detailed analysis is
not required in order to obtain a satisfactory description of the acous-
tical behavior of a gas bubble in a liquid. As long as the sound fre-
quency is less than several megacycles, several assumptions may be
made which greatly simplify the analysis and lead to a tractable
expression for the scattering coefficient of a bubble; we shall now

review these assumptions,
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1, It is assumed thatthe radius of the bubble is much smaller
than the wave length of sound in the liguid or in the gas. This condi-

tion is well satisfied for resonant air bubbles in water, as indicated

below,
Wave Length(cm)- Wave Length(cm)-
Radius(cm) Resonant Freq. (kc) Water Air
0.1 3.26 46.0 10.4

0.001 326 0.46 0,104

If this condition is satisfied, the bubble may be analyzed as if it was

in a pressure field that is uniform in space, but alternating in time.
‘fhis results in spherically symmetric bubble oscillations, correspond-
ing to the dominant first term (s-wave) of the rigorous solution. The
pressure may be considered to be uniform throughout the interior of
the bubble. |

2. The oscillation of the bubble is considered to be sufficient-
ly small such that the over-all change in radius during oscillation is
small compared with the radius, This allows the equations of motion
for the liquid and for the gas, as well as the boundary condition at the
interfacé, to be linearized.

3. For the irrotational flow of spherically symmetric bubble
oscillations, the viscous terms remaining in the momentum and energy
equations arise as a résult of the compressibility of the gas or liquid;
.since'the viscosity of the gas and the compressibility of the liquid are
| [25]

both quite small, these terms may be neglected It is noted,

however, that dissipation in thc liquid duc to viscosity may be
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included by the addition of the attenuation coefficient @, to the
absorption and extinction cross section densities, Although the net
force produced by the viscous stressis negligible throughout the bulk
of the liquid, it does act on the surface of the bubble, and must be
included in the boundary condition at the gas-liquid interface. For
very small bubbles (R < 10~ cm ) the effect of surface tension must
also be included in the pressure boundary condition at the bubble
surface.

4. Because of the large thermal conductivity and heat capac-
ity of a liquid, the temperature variation at the bubble wall may be

[25]

neglected However, as the bubble is compressed, the tempera-
ture within the bubble will rise and heat will flow from the gas to the
liquid; as the bubble expands, heat will flow back into the bubble,

This irreversible flow of heat represents an important mechanism

by which mechanical sound energy is degraded into thermal energy.
Hence, although the pressure may be assumed to be uniform within
the bubble, the temperature profile across the bubble must be con-
sidered.

5. In order for the analysis of a single bubble in an incident
sound field to be applicable to the bubbles in a configuration, the
bubbles must be widely spaced compared with their radii. When two
bubbles arc closcly spaccd, the scattered wave caused by their mutual
oscillation may no longer be considered to be the superposition of two
spherical waves originating from their centers; rather, the scattered

wave from each will act on the surface of the other to excite higher

modes of oscillation. Fundamental to the preceding analysis of the



-88 -

multiple scattering of waves by a fandom distribution of isotropic
point scatterers was the assumption that the positions and radii of
distinct scatterers are statistically independent. Since the scatter-
ers were assumed to be located at points (the '"radius'' being but a
parameter of the scatterer), the configurational averages were taken
over all scatterer configurations, including those in which two or
more of the scatterers lie arbitrarily close to each other. It is clear
that such a theory cannot be rigorously applied to a random distribu-
tion of bubbles; the condition of statistical independence cannot apply,
since overlapping of bubbles in a configuration is not allowed. Even
if a configuration of bubbles does not involve an overlap of two or
more bubbles, the spacing of the bubbles may be such as to cause an
appreciable amount of non-spherical oscillation. However, if the
bubble density is small, such that the average distance hetween the
bubbles is large compared to their radii, the great majority of con-
figurations in the statistically independent ensemble will consist of
widely spaced bubbles. Under these conditions, the theory may be
expected to be a very good approximation. |

Based on these assumptions, the scatterer coefficient of a
single gas bubble of radius R, excited by an incident sound wave

[18]

having frequency w is given by
g(R) = 7 , | (7.1)

where

f®) <[ -2) S (7.2)



44 . “o 20
d{(R) = + - 1+ Bo +a |, (7.3)
p wRZ gZ po
o)
and wo,a,g,n and ¢ are defined by
i
3yp
w_ = 2 , (7.4)
Q 0 Rz,
o
a=k R=B (7.5)
o] C
0
_ 3(y-1) sinhk-sink
E=1+ K coshig-cosk ’ (7.6)
_ 3(y-1) [sinhK +sink _ E]
n= K [coshl{ - CcosK K y {7.7)
20 £
=14+ = = 3o 3 7 8)
e Rpo 3y {
where .
Zcpr2 25 2
K=[m (1+T{ﬂ : (7.9)
g o

In the above formulas, various physical constants appear; the follow-
ing numerical values are appropriate for air bubbles in water at

l atm. and 60°F.

, = pressure of liquid = 1X 10° dynes/cm?
T = temperature of liquid = 288°K
¢ = viscosity of liquid = 0, 01 poise
p, = density of liquid - 1.0 gm/cm?
o = surface tension of liquid = 75 dynes/cm
c = sound speed in liquid =1.5X10° cm/sec
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Y = ratio of specific heats of gas =1.4
c_ = specific heat at constant = 0,24 cal/gm°C
P pressure of gas
K = thermal conductivity of gas =5.6X lO—5 cal/cm sec’C
Rg = gas constant = 2.87X10° dyne cm/gm°C

Let us assume that the number density of bubbles per unit
radius interval throughout some region of space is given as n(R). The
quantities of physical interest are the phase velocity ratio c/co, the
attenuation constant « of the bubbly medium, and the scattering to
extinction cross section ratio B = Zs/Ze. Upon substitution of the
expression (7.1) for the scatterer coefficient of a bubble into the
definitions@,39) and 2,41) we obtain the following expressions for the
scattering and extinction cross section densities:

¢
25:41T§ _Rn@®)  4p (7.10)
o f(R¥+4(R)?

4 K
> = =0 .@_ﬁl&@_)_dR+ao , (7.11)

e ko o f(RP+d4(R)
where by Eq. (2.28) the attenuation constant of the water (without

bubhles) is given by

S T (7.12)

O - 3
ijcO

The square of the complex propagation constant of the coherent wave
in the bubbly water, given by Eq. ( 4.7), may be written as

o 2
ke = (k+i %)Z = [k0+i —C?’—) + 4-n§: g(R)n(R)dR , (7.13)
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which gives

k%= k32X + ik = (7.14)
o o7 e
where
00
X:1+4Jl Ml_dl{ : (7.15)
k2 Yo f(R)+d(R)
ol
and - —49- has been neglected. By equating the real and imaginary

parts of Eq. (7.14) we obtain the simultaneous equations

2

kz-%—zk X (7.16)

2

O

ke =k % . (7.17)
O e

These may be first solved for the ratio of the real propagation con-

stants, which is inversely proportional to the phase velocity ratio

1
1.2
c X+ X2 [k P ]2
o] e o
i 2 ’ (7.18)

k
k
o

and then the attenuation constant may be computed

k

o
oz:-—k—-Z}e . (7.19)

Having determined the phase velocity ratio c/co, the at-
tenuation constant «, and the scattering-extinction cross section
ratio B = Zs/Ze, we may now estimate the transmission and reflec-
tion characteristics of bubbly water by reference to our previous
results, The sound intensity (proportional to mean square pressure)

and the sound energy current at an arbitrary distance x from an

infinite plane sound source may be determined from Figures 1 and
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2 respectively, we recall that these plots are normalized such that
the sound energy current leaving the source is unity. The coherent
reflection coefficient for an incident plane wave normal to a half-

space of bubbly water is given by Eq. (6.102) as

k
) )
R (1)= -2 , (7.20)
¢ k
[ ) )
and the total reflection coefficient is
1
R(1) = R_(1) + [1-R_(1)] [1-(1-B JZE(1)]
TR_(1)+[1-R_(1)] %—(140g2) for B «1 | (7.21)

Values of the factor [1-(1-B )%H'(l )] are given in Appendix D.

As a specific examplie of the use of these formulas, we have
carried out calculations for the special case of air bubbles of fixed
radius R_ in water at 1 atmosphere and 60°F, If n is the number
of bubbles per unit volume, the bubble number density distribution 1is
given by

n{R) = n6(R-RO) . (7.22)

It is convenient to employ the air-mixture volume ratio u; this is

related to n through

n = 38 , (7.23)
4:TT.K.3
O

Two different bubble sizes were considered, Ro =0,1 cm and

R = 0.001 cm; these correspond to undamped natural frequencies W
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of 3,26 kc and 326 kc respectively. Figure 3 gives the scattering-
extinction cross section ratio B = Gs/oe; it is noted that this ratio is
quite small at frequencies much less than resonance and approaches
unity at high frequency. Figures 4 and 5 display the variation of
phase velocity with frequency. It is interesting to note that the phase
velocity is very markedly decreased by the presence of the bubbles at
frequencies below resonance, while at frequencies above resonance it
is increased. This theoretical result is substantiated by the experi-
[20 ]

mental results of Silberman The variation of the attenuation

coefficient with frequency is indicated in Figures 6 and 7; the ordinate
is the attenuation coefficien.t a divided by the air-mixture volume
ratio u, The curves for u< 10-5 essentially coincide with that for
u = 10_5; at such a low bubble density, the attenuation coefficient is
very nearly equal to the extinction cross section density. These
results allow the sound transmission characteristics to be directly
estimated from Figures 1 and 2. The total reflection coefficient, for
a wave incident in the normal direction to a bubbly half-space, is
displayed by Figures 8 and 9. It is interesting to compare the shape
of these curves with those given by Spitzer“s] , who does not include
the effect of incoherent scattering. A very significant departure from

Spitzer's results is noted at low bubble densities and at high

frequencies,
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APPENDIX A

Criticism of Foldy's Analysis of Equation (4.30)

—_ —x

for the Kernel L{r, ro,'r‘)

The central problem of Section IV-C was the determination of
the kernel L(?, ;O;;') of the representation (4, 27). Our analysis
was based on the conservation relations (4.10) and (4.13) that were
derived from the basic equations of multiple scattering; this approach
led to the expression (4.38) for the kernel. Since this result differs
from that obtained by Foldy[1 ] , we shall now review his treatment
and point out what appears to be an essential difficulty with his
method,

Foldy based his analysis on the differential equation (4. 30}

which he first rewrote as the differential equation

1.4 Y —

[92442(r)] [ V24 (r )] L(r,x 5t') = o6 (r-r )5 (r -1 ')

a

+ar{GENV2+eT (r )]+G (V2 3@} Lir, Tty (A1)

and then as the integral equation

¢ o I e GG En [y e Gy L )

_ 3k o—

K(I‘, r"MK “(ro’?lll)d?lrd;|1x , (AL 2)

—.

where K(r,r') is the outgoing solution of the wave equation (4.39).

He then wrote the kernel as the Liouville -Neumann iteration series
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solution of the above integral equation,

K
S -Al — I 'Al
L(r,ro,r )_z Ln(r,ro,r Yy o, (A.3)
n=o

where

)

r LT, (A.4)

a1y SRRSO
Lo(r,ro,r ) = K(r,r")K {

- —_—
W it

L ) = g §) e a Gy

sle —_

PG EMT N L, @

—

X K(r, t"K (r, Tmydrndrm (A.5)

Such a solution is valid only if the series converges. Foldy asserted
that since K(;,;') contains a real negative exponential, the suc-
cessive series terms will die out rapidly because of the increasingly
larger number of integrations involving the negative exponential.

We may establish, however, that this is not the case. Let us
consider the special case in which G(;) and K(;) are constant
throughout all space. Then inspection of the differential equation
(A.1) for L(;, —;O;;') indicates that the kernel depends only on the
distances l?—;’l and ['—ITO-; '|; therefore we may take the origin of
our coordinate system at T and write L(r,ro) for L(?,;O;O),

where r and T denote the absolute values of r and r o Let us

define the repeated three-dimensional Fourier transform of IL(r, ro),

~ —i(p-r+po- ro) .
L(p,po) -3 L(r,ro)e dr dro , (A.6)
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which depends only on the magnitudes p and Py Transformation of

each term of the series represcntation (A, 3) yields

-8

Lipsp,) =) Lylrop,) (A7)

n=o

The first term of the series (A.3) is

— s - e

L (r,r ):K(r,O)K'(rO,O) = = : (A.8)

the repeated Fourier transform of this term may be carried out

—

by employing spherical polar coordinates in r and r, Sspace, with

the result:

wr K To L. Tap. T )
i ( ) - e e . o "o d;d; B 16T
oPr P/ = r Ty o

:}:2
(p2-K*)pZ-k )

(A.9)
Equation (A.5) may be written as
—- T D
PS' eil{}r—r”} e 1Klro r l N
L (r, =\ K(r", ™ —— e dr"dr™ . (A.10
n( rO) ) ( ) lr_rnl lr - m\ ( )
. o o
where
1 o2 P * o2, 2 )
F(r,ro) = I- {G(\/O-H{ HG (Votk )}Ln_l(r,ro) ; (A.11)

thus it involves a repeated three-dimensional integral convolution.
Application of the repeated Fourier transform and use of the convolu-

tion theorem for the three-dimensional Fourier transform results in
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-~

1 2 22 ® oo, o0 l167*
L lesp,) = 7— {(G(-p ot G (P )}Ln_l(p,po)

k2
(p?-k*)(p 2~k )

(A.12)

From Eqs. (A.9) and (A.12) we obtain the following series for the

transformed kernel:

o e |1
- 2 <
L(P,P ) = 16m > (_1)11 417G + 401G ' (A.l3)
O - ) w2 L (pZ _KZ) 2 %2
(p®-k")p -k ) n=0 (po-k )

The kernel IL(r, ro) may now be determined from the inversion

formula

1 20~ i(P‘r"'PO' rO) U
J) Blespyle dpdp_ (A.14)

(2m)

I{r, ro) =

the binomial may now be expanded and the inverse Fourier transforms
computed by residue theory to give an explicit representation of the
kernel,

Before doing this, however, it is instructive to consider the
direct application of the repeated Fourier transform to the difierential
equatibn (A.1), for G(;) and K(;) constant; this yields

2 2

[(-p%+r?)(=p 24K~ }-4nG(-p 2tk )=47G (-p*+k%)] Lip,p )= 16n* , (A.15)

or

-~ 2 2
Lip,p ) = — 10T ] 4 A6 4G . (A.16)

22 2 2
2 22 g p-K 2_,."
(p"-k“Np -k ) pok
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If we expand the term within the parenthesis into a geometric series,

we obtain the result (A.13); this gcomectric scrics converges if and

only if
24“G < N PO (A.17)
2 :}:2
pT-K p;_K

This is definitely not the case for all real positive values of p and

Po for example, if we take p = Po = Ko (for K real), we obtain
4G . 4rG 2 (A.18)
p K2 2 K
P, K

It is therefore apparent that the Liouville-Neumann iteration
series (A.3) obtained by Foldy fails to converge and hence cannot be
a valid representation of the kernel L(;, ;O;;:'). This becomes even
more evident if one substitutes Eq. (A.13) into Eq. (A.14) and
computes the first two terms of the resulting series for L(r, ro);
the inverse Fourier transforms may be carried out in spherical co-

ordinates in E and EO space, with residue theory being used to

evaluate the resulting integrals. The first two terms are

. -iKk r #
KT TG G T,
L{r,r ) = 1-21 - + . (A.19)
-0 T T K
o K
For Ko real and a sufficiently low scatterer density such that
lK[ ~ K this becomes
~ e"CYX.'
L(r,ro) = - (L+ar +. . .) (A.20)
T

where o = 2Im(Kk) is the attenuation constant of the scattering medium,

We observe that the second term of Foldy's expansion (A.3) is by no
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means small compared with the first, thus disproving his assertion;
computation of higher terms only provides further evidence of the
failure of his series to converge to a physically meaningful result.
The root of this difficulty appears to lie in the differential
equation (4.30) or alternatively in the integral equation (4.29) for
I{r,r ;r'). Since the heuristic approximations (3,17) and (3, 18)
are implicit in Eq. (3.21) leading to Eq. (4.29), it is natural to
guestion the validity of the latlter. Although the same lype of ap-
proximation, involving the replacement of a conditional configura-
tional average by the corresponding configurational average, was
employed in deriving the conservation relations (4.10) and (4.13), one
has no reason to question the very physical results that were obtained.
Therefore we may require that the representation (4.27) be con-
sistent with these relations; this imposes an additional condition of
constraint on the kernel L(;, ?O;;'), One may show, after a rather
involved calculation that the solution L(?, _1_:0;? "Y of Eq. (4.29} is not
quite consistent with Eqs. (4,10) and (4.13). This is the reason that

;r'),

ot i

we used the latter equations directly to compute the kernel IL(r,

rather than using Eq. (4.30) as did Foldy.
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APPENDIX B

Transformation of the Integral in Equation(5. 35)

The integral appearing in the solution (5.35), i.e.

1 /00
I(T) = 5= 3 U(s, T)ds (B.1)
Y =00

where

isT
bls, ) - —2 € , (B.2)

1+s2 1-B tan™ s/s

is similar to those arising from the solution of neutron transport

[10] _

problems By means of contour integration, the integral may be
transformed to a form for which numerical evaluation is possible; the
details of this process are given below.

Since

-1 1 -1, 1 1+is
tan s _—i—tanh is = 5= log Tois ,

(B.3)

the integrand Y (s,T) has branch points at s =+ 1; we construct branch
cuts in the s-plane from +i to +icw and from =~i to -ico, thus
making the integrand single-valued. The only other singularities of
b(s, T) arise from the zeros of 1-f tan”' s/s; these are at

s =%8_ =% icro, where S, is the positive root of

1 - B tamnle =0 (B.4)
ag (o]

O

(we assume that 0< B < 1).
We now consider the contour C depicted in Figure B-1.

Since y(s,T) is analytic on and within C, except for a simple pole
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at s _, we have by the residue theorem that

& ]

3 b (s, 7)ds = Residue of y(s,T) at sozslin; (s-so}p(s,T) , (B.5)
C .

2wi
o)

where the contour C = C1+CZ+C3+C4+C5+C6. The residue is given by

the following expression

iso'r
Residue = =

1+s? —a—(l- tan™ s/s)
o I:E)s P tan s/s ]

sS=£

0
is T
2 e ©

= ‘2 5 = ; (B. 6)
1+So "B —ga(tan SO/SO)

. . -1
but since s _is arootof l1-Btan s /s =0,
) o' "o

) tan s B-(1+s?)

Ez—udu 1t,-o/so) = 1 — - - ° _ , (B.7)
2
o so(l+s ) g Bso(l+s )

and hence
Zs 1so'r 20 -0 T
Residue = - —=— ¢ =i ——2 e © . (B.8)
ﬁ—s;—l [3+cré-1

Equation (B.5) then becomes

20 -0 T
O

1 g‘ o
=— P(s,T)ds = ——— e . (B.9)
e Je Bto2-1

Now we note that for s lying on the quarter-circles C_or C6 , for
2

7> 0

2

ial;(s,q')l -OR ™) as R—~0w |, (B.10)
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so that by a simple integral estimate, we have

lim

R_}OOS'C-FC Y(s,7)ds = 0 . (B.11)
2 6

For s lying on the circle C ,

4
lW(s,7)| =O(l/plogp) as p—=0 , (B.12)
and hence,
lim | X
6= 0 56 Y(s,T)ds =0 . (B.13)

Therefore, from (B.9) we obtain

Iim 1 { ‘ 20, ol
) "R—>w 2m SC Y(s, T)dT = —;;:— e
1 |3 o
lim sl
1
-p0 5o S Y(s,T)ds . (B.14)
R~ o ¢ C3+C5

s -1 . .
In order to properly define tan ~ s in the cut plane, lel us ilniroduce

the auxiliary coordinates indicated in Figure B-2. We have

(6 + lZT-) 3 ' . _
1+is = i(s-i)=r e ! (0<r<oo,——<6<—-) ,
1 1 2 1 2
- (B.15)
i@ - —Z—) . 3
l1-is = -i(s+i)=r e ? (0<r<oo, - =<6 <--——-) ,
2 2 2 2 2
s0 thal we may deline
tan "t s = L lo 1+ = 1 1o -rl— + 1 (6 -6 + w) (B.16)
2i 8 T3s ~ 21 °B T Z 1T : :

2
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On the path C: s =iu, @ > u> 1;r:u-l,r=u+1;6—>—g-,6:1,
3 1 2 1 g 2 2
-1 1 u-1 T . -1 1 T
tan s:z—i—logm+§—ltanh stz - (B.17)
. 37
On the path C: s =iu,l <u<oo; r :u-l,r:u+1;6—>——2—,
5 1 2 1
'rr .
02 =55
-1 1 u-1 L -1 1 ™
tan 5 = ‘2‘; 10g u_-i-—l— - Z = itanh a ~ -2— . (B,}.S)
Therefore the integrals appearing in Eq. (B.l4) are given by
lim 1
p_’O -2—'%- g LlJ(S,'T)dS
R—>w “C +C
307
= gl 2 e i du
"z — ~
o 1Hiuw)f B a7l +i;—ﬁ—
o0 -uT
* Tzlﬂ‘ g : B : 5
. . 2 - !
1 1+{iu) 1- = tanh -1 52
-17T
_ g\oo l/u ﬁe du
- s (1B omn L2 48]
1 1-u (1— E tanh ) +( 72U
1 -T/v ,
- g v Pe v (B.19)

Yo 1-v* (1—(3v1:anh_1 v )2 -|~(1—T-2E V]z

where the substitution u = has been made. Let us make the further

<

substitution v = tanhw; the integral then becomes

-7 /tanhw

g-oo p tanhwe
TTB I 3
Yo (l-Bwtanhw)®+ > tanh w
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We have thus transformed the integral (B.1) to

ZGO 0T ® -7/tanhw
IH{T) = ———— e - g g{w;p,1)e dw (B.20)
[3+0'2—1 “o
0
where
n
g(w;p,n) = B {tanh w) . (B.21)

(1-Bwtanh w)*+ IYZE tanh w

and o is the positive root of

o =tanh =~ . (B.22)
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Figure B-2 - Definition of Coordinates
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APPENDIX C

Proof of the Results (6.82) and (6.83)

In the analysis of Section 6, we used the following result.

Let B(7,0) be the solution of the integral equation

B(7,0) - AT{B(t,G)} = e 97 , (C.1)
where the operator A'r is defined as
A.T{f(t)} = % x f(t)El(\ T-t])dt (C.2)

(o]

and let B(s,0) denote the Laplace transform of Bl(T,0)

];)(s,cr):B B(’I‘,U)e_STd’T ; (C.3)

then this quantity is given by

-~

B(s,s) = B(0,8)B(0,0)

, o) , (C.4)
and B(0,0) satisfies the non-linear integral equation
_ B g ® _B(O,s)
B(O,G)—1+B(O,U) -2- l S_(S‘—F‘Tds . (C.5)
A proof of this assertion, following the discussion given by
1
Kourganoff[ 4 , follows,

-~

We shall first show that B(s,o) is symmetric in the variables

s and 0. We have by (C.1) that

-0T

B(T,0) -AT{B(t,G)} - e , (C.6)
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B(r,s) ~ A {B(t,s)} = ™" . (C.7)

Multiply the first by B(T,s), the second by B(7,0), integrate each

with respect to T from 0 to o, and subtract; we obtain the fol-

lowing relation:

0

."oo
- S B(’T,S)AT{B(TL,O‘)} d7+5 B('T,G)AT {B(t,s)} d7

~0 (¢}

:é(a,s) -]g(s,c) . (C.8)

But by interchanging the order of integration we may show that

B(T, s) g B(t,0)E (|7 -t;)dtdr
o

00

g‘ B(r,s)A, {B(t,0)}dr = &
Yo o

0 ) 00
= g g B(t,o) § B(r, s)El(l t—"r| drdt —g B(t,a)At{B('T, s)} At
. O 1= O

(-oo
= B(T,O‘)AT{B(t,S)} dr (C.9)

o]

and hence, Eq. (C.8) yields

B(o,s) = B(s,0) . (C.10)

The definition (C.2) may be written, after a linear change in

variables, as

o0
5 £(7 +0)E (w)du . (C.11)

o 1

N
[\ e

T
g f(’r—u)El (u)du +

IX'T{f(t)} =

By differentiating with respect to 7,

g w
5 S f'(7-u)E (u)du + % g fY7+u)E (u)du.
1 1

d _ B
97 AT{f(t)} =5 f(O)El('T) + 5 i ]
(C.12)
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we obtain the following commutation relation between H(%'_ and A’r

d
5 A ) - A {E'(8) = B foE A7) (C.13)

Let us denote B'(T,0) = 58? B(7,0) and differentiate Eq. (C.1) with

respect to T,

B'(1,0)-A_{B'(t,0)} = B(O o)E (7) -oe 7T, (C.14)

by setting

A(O',Il) =

TR

B(0,q)

=l

(C.15)

and using the integral definition of E (T), this may be written as
: 1

B'(r,0)-A_{B'(t,0)} S Alg,u)e Hdu-ce ™" . (C.16)

Let us replace ¢ by u in Eq. (C.l), multiply by A(c,u), and

integrate with respect to u from 1 to w« to obtain

oo 00
5 B(T,u)A(O‘,u)du—AT g B(t,u)Ao,u) g Alo, u)e ;
1 “1

(C.17)

Let us now subtract this from Eq. (C.16), yielding

[>0] "‘OO

BYT,0) - 81 B(T,u)A(CI,u)du—AT{B‘(t o) ) B(t,u)A(o, u)du}:-ce_o-’r.
Y1

(C.18)
The term on the right may be eliminated by multiplying (C.1) by ¢

and adding,
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[e0} YOG
B‘(T,O')-g B('T,u)A(O‘,u)du-l-O‘B(’T,O‘)-Ari{B'('T,O‘)—S B(7,u)Alo,u)du
1 1

+O‘B('T,O)}: 0 . (C.19)

Therefore,

B'(t,0) —g B(T,u)A(o,u)du + ¢B(T,0) = g(T) , (C.20)
1

where g(7) is an arbitrary function satisfying the homogeneous

equation

g(m) - A_{gt)y =0 . (C.21)

By taking the Laplace transform of Eq. (C.20),
- 0 . ~
(S'l'O‘)B(_‘G,O‘) - B(O:O-) - S" B(S’u)A(G:u)du = g(S) 3 (c-zz)

1

and replacing A(o,u) by its definition (C.15), we obtain

-~ 0 . ~
(s40)B(s,0) = B(o,a)[l ¥ %g B(s,u) %—1} +gl(s) . (C.23)
1

Let us now set 7 = 0 in (C.1) and interchange the order of

integration, as follows:

[o0]
B(0, s) = 1+AO{B(t,s)} =1+ Eg B(t, s)E (t)dt

~ oo 0 0 N
=1+ % S B(t,s)S‘ e-tu %l— dt =1 +% S‘ g B(t,s)e—tudt du
nl i 1 A o

) u
O

® - du
Y1

1

—

+
Nz

this may be written, with the aid of the symmetry property (C.10) of
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B(u,s), as
o
14 BV du
B(0,s) =1+ 2 ) B(s,u) 1
1

(C.25)

-~

By substituting this equation into Eq. (C.23) and requiring B(s,0} to

be symmetrical in its coordinates, we obtain the result (C.4),
(s+0)B(s,0) = B(0,0)B(0,s) , (C.26)

with g(s) = 0. The second assertion (C.5) is obtained by replacing s

by ¢ and u by s in Eq. (C.25) and eliminating ]%(o,s) = Jg(s,a)

with Eq. (C.26).
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APPENDIX D

1

Table of Values of the Factor [1-(1-p )?H(u )| Appearing in Equation(6.101)

g p = 0.0 0.1 0,2 0.3 0.4 0.5 0.6
0.0 0.000 0. 051 0.106 0.163 0.225 0,293 0.368
0.2 0.000 0.034 0.071 0.112 0.159 0.213 0,276
0.4 0,000 0,026 0.056 0.090 0.128 0.174 0.230
0.6 0.000 0.022 0,047 0,075 0.109 0.148 0.197
0.8 0. 000 0.019 0.040 0.065 0.094 0.130 0,174
1,0 0.000 0.016 0.035 0,057 0.083 0,115 0.155
p B~ 0.7 0.8 0.9 0.925 0.950 0,975 1.000
0.0 0,452 0.553 0.684 0.726 0.776 0.842 1.000
0.2 0. 352 0,451 0.592 0. 641 0.701 0,782 1.000
0.4 0.299 0.391 0.532 0.584 0.649 0.740 1.000
0.6 0.261 0. 348 0,486 0.538 0,605 0,703 1,000
0.8 0,232 0.313 0,447 0.500 0.568 0.671 1.000
1.0 0,209 0.285 0,415 0.467 0.536 0. 641 1.000

Validity of the Approximate Expression B 1-ilog I‘Lﬁ—l— for p =0.1

2
u Approximate Value Exact Value % Error
6.0 0.0500 0,.0513 2.1
0.2 0,0321 0. 0336 4.5
0.4 0.0249 0.0264 5.7
0.6 0.0206 | 0.0219 5.9
0.8 0.0176 0.0187 5.9

1.0 0.0153 0.0164 6.7



-119-

REFERENCES

L. L. Foldy, '"The Multiple Scattering of Waves'', Phys. Rev.
67, 107 (1945).

L. L. Foldy, ""Propagation of Sound Through a Liquid Containing
Bubbles', OSRD Report No, 6,1-sr1130-1378 (1944).

M. Lax, '"Multiple Scattering of Waves'', Rev, Mod, Phys., 23,
287 (1951). “"

V. Twersky, '""On Scattering‘ and Reflection of Sound by Rough
Surfaces'’, J. Acoust. Soc. Am. 29, 209 (1957a).

P. C. Waterman and R. Truell, "Multiple Scattering of Waves'",
J. Math, Phy. 2, 512 (1961},

V. Twersky, ""On Multiple Scattering of Waves', J, Research
Natl. Bur. Standards 64D, 715 (1960).

L. D, Landau and E, M. Lifshitz, Fluid Mechanics, Addison-
Wesley Publishing Co., Inc., Reading, Mass,, 1959,

R. H. Dicke and J. P. Wittke, Introduction to Quantum
Mechanics, Addison-Wesley Publishing Co., Inc., Reading,
Mass,, 1960,

M. Lax, "The Effective Field in Dense Systems'', Phys, Rev.
80, 621 (1952),

K. M, Case, F. de Hoffmann, and G. Placzek, Introduction to
the Theory of Neutron Diffusion, Los Alamos Scientific
Laboratory, June 1953,

P. H. Morse and H. Feshbach, Methods of Theoretical Physics,
McGraw-Hill Book Co., Inc,, New York, 1953, p. 812,

M. Abramowitz and Irene A, Stegun, Handbook of Mathematical
Functions , National Bureau of Standards, Applied Mathematics
Series-55, U. S. Government Printing Office, Washington, D, C.,
1965, p. 228,

A. Erdelyi, Asymptotic Expansions, Dover Publications, Inc.,
New York, 1956, p. 46,

V. Kourganoff, Basic Methods in Transfer Problems, Dover
Publications, Inc., New York, 1963, p. 165,

S. Chandrasekhar, Radiative Transfer, Dover Publications, Inc,,
New York, 1960, p. 105.

M. M, Crum, '"On an Integral Equation of Chandrasekhar', Quar.
Jour. Math. (Oxford) 18, 244 (1947).

A, B. Wood, A Textbook of Sound, G. Bell and Sons, London,
1941, p. 361,




[22]

[23]

[24]

[25]

[26]

[27]

-120-

L. Spitzer, Jr., Acoustic Pr’operties of Gas Bubbles in a ILiquid,
NDRC Report No, 6.1-sr20-918 (1943).

E. Meyer and E. Skudrzyk, Akust. Beih. 3, 434-440 (1953),

E. Silberman, ''Sound Velocity and Attenuation in Bubbly
Mixtures Measured in Standing Wave Tubes', J. Acoust. Soc,
Am. 29, 925 (1957).

E. L. Carstensen and L, L, Foldy, '""Propagation of Sound
Through a Liquid Containing Bubbles'', J. Acoust. Soc. Am.
19, 481 (1947).

F. E. Fox, S, E. Curley, and G. S. Larson, '"Phase Velocity
and Absorption Measurements in Water Containing Air Bubbles',
J. Acoust, Soc. Am. 27, 534 (1955).

The Physics of Sound in the Sea, Summary Technical Report of
Division 6, NDRC Vol. 8, Washington, D.C., 1946.

B. R. Parkin, F. R. Gilmore, and H, L. Brode, Shock Waves
in Bubbly Water, The RAND Corporation, RM-2795-PR
(Abridged), October 1961,

D, Heieh and M. S. Plesset, Theory of the Acoustic Absorption
by a Gas Bubble in a Liquid, California Institute of Technology,
Engineering Division, Pasadena, California, Report No. 85-19,
Nov. {1961),

C. Devine, Jr., "Survey of Thermal Radiation and Viscous
Damping of Pulsating Air Bubbles in Water'', J. Acoust. Soc.
Am. 31, 1654 (1959).

J.C.F, Chow, '""Attenuation of Acoustic Waves in Dilute
Emulsions and Suspensions', J, Acoust. Soc. Am. _3_6_, 2395

(1964).



