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ABSTRACT

Computation of the amplitudes of the diffracted fields which
are produced when a reflection hologram or a '"thick" transmission
hologram is illuminated requires that the 3~dimensional nature of the
hologram be accounted for. A general analytical method is formulated
for computing the diffracted fields in terms of the initial exposing
field, the film characteristics, and the illumination field, taking
into account the entire emulsion volume, This method, which is
applicable to both transmission and reflection holograms, involves
characterizing the emulsion volume by the volume density of scatterc
ing particles, with the diffracted rield belng found by coherently
summing the scattered waves, neglecting multiple scattering. The
initial exposing field and the illumination field are expressed in
the form of a sum of plane or qugsi—plane waves, and the diffractcd
field is expressed'as a sum of waves, each of which is found by
solving a variation of the same basic problem, This problem conm
sists of computing the directions, amplitudes, and phases of the
first—order diffracted waves produced whenAa 3rndimensional  array of
scattering particles having a sinusoidal density distribution is
illuminated by a plane wave. The solution of.this problem is cone
sidered, with the directions and phases of the diffracted fields
being computed for both transmission and reflection holograms, The
amblitudes are computed for the case of transmission holograms and
the analytical expressions are evaluated numerically for a number of

particular cases to determine the effect of varying different paraw
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meters on the amplitudes of the diffracted waves, The results are
compared with experimental data obtained by making a careful study
of different holographic diffraction gratings.

The results of the analytical method described above are
compared with the results of the method whereby the hologram is
characterized by the transmittance, and it is shown that with respect
to the computation of the directions and phases of the diffracted
waves, the two methods are eguivalent for the case of transmission
holograms.

The case where the referénce beam is composed of a series of
waves (ghost imaging) is considered using both of the above methods,
and the translational sensitivity and background noise which arise in
this case are in#estigated. An experiment dealing with translational .
sensitivity was carried out and the experimental results were found
to be in good agreement with the theory,

The duplication of holograms is considered and the duplication
process 1s descrived in terms of making a hologram of a hologram,
rather than in terms of making a contact print. Experimental results
are presented to support this point of view and thc cffcets of vary-
ing the characteristics of the illumination wave are described. The
duplication of both transmission and reflection holograms is dealt
with and a simple method for dupliecating reflection holograms Is

proposed and discussed.
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INTRODUCTION

Holography, or wavefront reconstruction, involves the record-
ing of an interference pattern which is generated by the coherent
superposition of two or more waves. The basic ideas relating to the
holographic process were discovered by Gabor (1) in 1948, who sougat
to utilize holography to increase the resolution attainable with the
electron microscope. A considerabie amount of work was done during
the 1950's to apply wavefront reconstruction techniques to microscopy,
but experimental work was difficult due to the lack of an intense
source of coherent radiation in the short wavelength portion of the
spectrum¥,

The discovefy of the gas laser eliminated this difficulty and
made practical the use of new experimental technigues. Leith and
Upatnieks described the holographic process from the viewpoint of com-
munication theory (2) and went on to demonstrate experimental tech-
niques (3,4) which made practical the application of holography to a
wide variety of problems. Before discussing those aspects of holo-
graphy which will be of interest here, it may be useful to give a
brief description of the holographic process.

The holographic process can be described in general terms as

a two-step process. In the first step an electroumagnetic field¥®

% See reference (68) for a complete bibliography for the period 1948
to 1965. :

*¥ Sound waves have also been used (63).
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interacts with a sensitive recording device {such as a photographic
emulsion layer) and changes its characteristics in some manner. In
the second step the recording device (which may have undergone addi-
tional processing such as development in the case of film) is illumi-
nated with aﬁother electromagnetic field in order to produce the
"diffracted" or "reconstructed" field.

The general description of the holographic process given above
is not .specific enough to point out those aspects which make it unique-
ly different from other processes which fit this general description,
such as ordinary photography. The fundamental idea which is the basis
of nolography is the utilization of the fact that the intensity dis-
tribution in an interference pattern which 1s generated by two or more
coherent electromagnetic waves is a function of the phases of the
waves. This idea is utilized in the recording step, where an addi-
tional field (called the reference beam) is combined with the "signal"
field which is to be recorded on the film plate. The resulting inter-
ference pattern which is recorded in effect contains both ampiitude
and phase information of the signal and reference beams. Thus, by the
use of the phenomena of interference it is possible to encode both
amplitude and phase information with a recording device such as film
which is sensitive only to the intensity of the exposing field.

Discussion and Summary of Text

In the following we shall briefly summarize and discuss the
various problems that have been dealt with in this thesis, without

attempting to trace the development of similar or related work done
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by other researchers, as this is done in some detail within the
body of the thesis itself.

In Chapter One we formulate a general analytical method for
computing the 4iffracted fleld in terms of the Initlal exposing
field, the film characteristics, and the illumination field. The
emulsion volume is characterized by the grain density, which spec-
ifies the volume density of scabtbtering particles, and the diffracted
field is computed by summing the waves scatiered by the grains, neg-
lecting multiple scattering. The neglect of the.multiple scatter-
ing allows us *to treat the prohlem of computing the diffracted field
from what might be termed a linear systems approach. We express
both the exposing field and the illumination field as a sum of
plane or quasi-plane waves and obtain the diffracted field in terms
of a sum of plane or quasi-plane waves, whose amplitudes, directions,
and phases are computed by solving variations of the same basic pro-
blem, that of computing the diffracted fields produced when a three-
dimensional array of scattering particles having a sinusoidal density
variation is i1lluminated by a plan wave.

We go on in Chapter One to compute the directions and phases
of these diffracted waves, both for transmission and reflection holo-
grams, and demonstrate that when the illumlnation wave 1s the rel-
erence beam, the signal beam is reconstructed. A comparison is then
made of transmission and reflection holograns.

In Chapler Two we compare the results of the analysis of

Chapter One with the analysis formulated by Gabor {5), which was



later put in communication theory language by Leith and Upatnieks
(2), and show that with respect to computing the directions and
phases of the diffracted waves, the two approaches are eguivalent.
In Chapter Three we consider the case where the reference
beam consists of more thar one simple wave, and examine how this
affects the reconstruction of the signal beam. If the reference
beam is quite complicated then the illumination of the developed
hologram plate is accomplished by repositioning the hologram in the
experimental setup. The sensitivity of the reconstruction of the
signal beam to repositioning errdrs is described in terms of the
analysis developed in Chapter One, and computed for a specific

experiment. This experiment was carried out and the experimental

In addition to being sensitive to repositioning errors, holo-
grams with multiple wave reference beams yield a reconstruction of
the signal beam that is accompanied by a background noise. is
background noise is investigated and a signal to noise ratio is
defined and computed.

Of particular interest is the case where we are dealing with
Fourier transform holograms with multiple wave reference beams, as
they find use in the area of character recognition and complex spa-
tial filtering. .We examine translational sensitivity and background
noise for this case when we have plane wave and diffuse illumination.

In Chapter Four we extend the analysis of Chapter One to in-

clude the computations of the amplitudes of the diffracted waves.
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Within the framework of that analysis, it suffices to solve the pro-
blem of computing the amplitudes of the two first-order diffracted
waves produced when an arbitrary sinusoidal 3-dimensional arra& of
scattering particles within the emulsion layer is illuminated by a
plane wave. This is done for an arbitrary illumination plane wave,
taking into account attenuation within the emulsion layer and re~
flection losses at the interfaces. Here, as in Chapter One, mul-
tiple scattering 1s neglected. The arnalytical expressions are eval-
uvated numerically for certain special cases and these results are
compared with experimental data derived from a series of experiments
with holographic diffraction gratings. The agreement between ex~
periment and theory was found to be satisfactory.

In Chapter Five the duplication of holograms is described in
terms of taking a hologram of a hologram, rather then as making a
contact print. The duplication of thick transmission hologram is
studied, and the effects of varying the characteristics of the il-
lumination wave are described. Experiments dealing with the dupli-
cation of holographic diffraction gratings are described and the
experimental results support the point of view taken here. A
simple method for duplication of refléction holograms is described
and the various factors affecting the production of duplicate re-
flection are discussed.

In the Sixth and final chapter the results of this thesis

are summarized and discussed-s



CEAPTER ONE

SCATTERING THEORY OF VOLUME HOLOGRAMS

1.1 Introduction

Gabor, in his classic paper (5) describes the holographic
process from the point of view which we shall term as the transmittance
approach. Basically, the exposing field is taken to be a complex

scalar quantity of the form

Us=U_ +U = aet? | (1.1)

)
where U is assumed to be specified in the plane of the film emulsion
layer. Variations with depth within the emulsion layer are neglected
and the response of the film is characterized by a parameter I (the
"gamma' of the film). Afier processing, the developed film plate or

"hologram" is assumed to have an amplitude transmittance T which is

proportional to [UU*]P, that is

v = clou*]’ . (1.2)
When the hologram plate is illuminated by another field U2, the
transmitted field UT is assumed to be given by

U, = C'U.z . (1.3)

Equatibns 1.2 and 1.3 are the fundamental relations used by Gabor and
by the majority of investigators engaging in research in the various

aspects of holography. The variations in analysis are primarily



concerned with different approaches in the computation of the exposing
field U and in the computation of the transmitted or "diffracted"
field at an observation point some distance from the fiim plate. Leith
and Upatnieks utilized communication theory to put these calculations
in transform language (2), and their approach has been widely used
-with excellent results.

The neglect of the variations with depth within the emulsion
loyer (i.c. considering the hologram to be two dimensional) is gquite
Justifiable when the spatial frequencies recorded on the film plate are
low, as was usually the case in the early work done by Gabor, Rodgers,
and others, prior to the invention of the laser. The inventicn of the
gas laser with 1ts high brightness and relatively long coherence length
made practical the ﬁse of high spatial frequencies in the experimental
configurations first developed and demonstrated by Leith and Upatnieks
(2,3,4). In these configurations the reference beam is brougnt in af
some offset angle, with higher spatial frequencies corresponding to
larger values of the angle. It was pointed out vy Friesem (6) that
as the spacing between fringes becomes comparable with the emulsion
thickness the film plate can no longer be regarded as two dimensional.
In this case the use of the average transmittance becomes questionable
as the wvariation of the transmittance with depth should be accounted
for. This does not méan, however, that tThe transmittance approach as
given by equations 1.2 and 1.3 i1s no longer useful when the spatial ‘
frequencies are high. It will be shown in Chapter 2 that with respect

to computbting the direction and phase of the diffracted waves (produced
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when the hologram is illuminated) the transmittance approach yields
results which are in agreement with the more general theory whiech will
e presented in this chapter. Where the transmittance approach breaks
down is in predicting the amplitudes of the diffracted waves. TFor
example, it has been noted by a number of researchers (7,8,9) that for
holograms having high spatiél frequencies the brightness of the recon-
-struction is highly dependent on the angle of illumination.

The first attempt at accounting for the finite thickness of
the emulsion layer appears to have been done by Denisyuk (10,11), who
was primarily concerned with the "reflection hologram." In this case
the interference planes (planes of maximum intensity in the inter=
ference pattern generated by the signal and reference beams) are nearly
parallel with the emulsion surface and the emﬁlsion layer is considered
as thick. P. J. van Heerden, in his investigations of optical infor-
mation storage in solids (12,13), takes full account of the three-
dimensional nature of the recording of interference patterns within a
film emulsion. layer. He outlines an approach whereby the exposing
field is treated as a sum of plane waves, and considers in some detail
the recording of the interference pattern of two plane waves on film.

Leith and co-workers (8) have investigated holographic data
storage in three-~dimensional media, and have analyzed the effect of
emulsion thickhess on - the optical characteristics of the reconstructed
- images. They treat in detail the case of a hologram of two plane
waves {a hologram diffraction grating) noting that the complex spatial

distribution of the light from an object can be decomposed into &



spectrum of plane waves.

Offner, iﬁ a recent paper (1L4), considers the special case
of & hologram of two point sources and treats the hologram as a
diffraction grating whose parameters are a function of position. He
then uses generalized grating equations and ray itracing techniques to
compute the direction of the diffracted wave in order tolexamine the
reconstruction process. Offner notes that these techniques can be
extended Lo more general holograms.

In this chapter the holographic process ié described from
a point of view which is closely related to the ideas of van Heerden
(13) and Offner {14). The exposing field in the vicinity of the film
vlate 1s written as a sum of well-defined wavefronts. The developed
fiilm emulsion layef is characterized by the grain density D, which is
related to the total electric field £ within the emulision layer by a
power series in E'E¥ . The various interfereace terms appearing in
the resulting expression for D, which yield the real and virtual
images, are ldentified., as are those terms which yield ghost images
and higher order images.

The assumption is made that each film grain acts as an inde-
pendent scatterer when the nologram is illuminated (i.e.,we neglect
multiple scattering). It is shown that this implies that with re-
spect to computing the direction and phase of the écattered waves The
various periodicities or "grating terms" in the expression for D can
be considered separately, with the total diffracted field being the

ilnear sum of the waves diffracted by each "grating.'" The compu-
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tation of the amplitudes of the diffracted waves is considered in Chap-
ter Four. In this chapter, general expressions for computing the
direction and phase of each wave diffracted by a typical periodicity

of D are derived for érbitrary plane wave illumination, in terms of
the initial exposing waves which generated that periodicity. These
expressions are then used to predict a reconstruction of the original
wavefronts (virtual image) when the illumination beam is the reference
beam.

The analysis is then extended to the case of the reflection
hologram. The reconstruction is described in terms of Bragg reflec-
tion from.the interrference planes within the emulsion layer, as glven
in the expression for the grain density D. The reconstruction of the
original wavefronts (virtual image) is then analyzed and finally, a

comparison is made of the reflection and transmission nolograms.

1.2 Recording Process

In this section we shalil consider the specification of the
relevant characteristics of the developed film emulsion layer in terms
of the exposing field. The exposing field in the viecinity of the
film plate is written in a general form, with no consideration being
given to the problem of relating the field at the film plate to the

sources which generated the field.

1.2.1 Fxposing Field

The field which exists in the region of the film plate during

exposure of the hologram is taken to be of the form of a sum of well-
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defined, regular waves. Plane waves or spherical waves would be
examples of such waves, but in general any wave whose wavefronts are
sufficiently smooth, such that they can de approximated (locally) by
a plane wave, satisfies the conditions being imposed here. It will
be_assumed that the source used is monochromatic and that tThe various
waves add coherently in the region of space occupied by the film
plate. Thus, using complex notation, the field in the region where

the film plate is to be piaced is written in the form

ik .vr+9) .
& =Z'E e n n’ o miwt . (1.4)

oy

In the above expression, En is a real vector, ¢n is a real con-

stant, and the propagation vector Er is given by

_n=_§_1;_'én - ~ , (1.5)
0
Both En and én may be functions of r, but are assumed to be
sufficiently slowly varying such that the wavefronts may de con-
sidered as (1oca11y)_planes*.
In most cases of practical interest (ghost imaging being an

exception) one of the well-defined wavefronts in the sum in equation
1.4 has a greater amplitude than the rest and has a direction of

propagation significantly different than those of tae other terms

in the sum. This wave is commonly referred to as tihe reference beam.

*See section 1.3.2 for a more complete discussion of this point.
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It will be convenient to write the term corresponding to the ref-

ence beam separately, thus

o R LE oS iELFeg)
E=E e e” +§-’E e ™Y . (1.6)
. J.n
n=1

Z.2.2 Recording Media

The characteristics of the developed film plate, or hologram,
which was exposed to the field given by equation 1.6, depends on the
nature of the fiim and development process, and upon the field within
the emulsion layer during exposure of the plate., The field within
the emulsicn layer will be of the same form as equation 1.6 but the
propagation vectors will have a different direction (and magnitude)
due to refraction at the emulsion-sir Interface. In addition, the
vectors En will be different due to reflection losses at the inter-
face. In the analysis presented here any attenuation or scattering
that may take place within the emulsion layer during exposure will be
neglected. No notational changes will be made tc differentiate
between the fields within and without the emulsion, the meaning being
clear from the text.

The characteristic of the developed film emulsion which is of
interest ﬁere is D, the volume density of grains within the emulsion
layer. 1In the case of photographic emulsions utilizing silver halides
within a gelatin matrix, the grains referred to are small metallic

- silver particles of rather complex shape. If the emulsion is bleached
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during processing, then these metallic silver particles sare replaced
by a transparent silver compound having an index of refraction dif-
ferent than that of the surrounding gelatin matrix. In this case the
grains referred to would be these transparent silver compounds. The
basic property of these grains which is of interest is that they pos-
sess elther an index of refraction or conductivity which is different
from that of the uniform gelatin matrix of the emulsion layer, and
thus tThey act as scatterers of radiation when the hologram is illu-~
minated. The details of the chemical processes which take placé with~
in the emulsion layer are discussed at length in several excellent
references on photograpnic chemistry (15,16).

Photographic film is sensitive to the total electric field,
rather than to the'power density or magnetic field. This is a sig~
nificant factor when the exposing field is of the form of an inter—
Terence pattern.generated by the coherent superposition of two or mdre
waveé, and is discussed more fully in Appendix I.

The grain density D is expressed in terms of the square of
the magnitude of the total electric field that existed within the

emulsion volume during exposure of the film plate. That is
D=C +CIE]2+CE1LL+--— (1.7)
0 I é ¥

where Co’ Cl’ C2, --- are constants which depend on exposure time,

film characteristics, processing procedures, and the wavelength of

the monochromatic exposing field. Tne quantity IE? is the sguare
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of the magnitude of the exposing electric field and is given by

o (1.8)

where E is given by equation 1l.4. It is a straightforward computa-
tion to express the grain density D in terms of the initial ex-
posing field given by equation 1.6 using equatioms 1.7 and 1.8,
These computations are carried out in detail in Appendix II and the

results are given delow. It is found that D can be written in tae

form
D=+ CE + CE + (20,5 +ho,E) Z b cos{(k -k )-r-g ]
0 170 270 1 270 = n n
+ (C. + 20.5°) ¢ cos{(E K )T+g -0 ]
1 20 nm nom n'n
n,m
+ 20 E2 Z b b cos[(k -k )er+p -0 ]
2 0 nm n ' m n ' m
m,m
2N 2 or oz
+ zczuo b COSLE(KO-—kn) r—2¢n]
n
. 2 - = - -
+ 202E0 E: bnbm co=[(2ﬂo—kn—xm) r—¢n—Qm]
L,
n#m

o}

+ MCZE rgq bncpq cos[(ko-—kn+kp—kq) -r—¢n+¢p—¢q1
) 3

. Z . i(kn-km+kp—kg)-r i(®n-¢m+¢p—¢q)

o Cpq e e
l,n,pPsqy

+ Thigher order terms - (1.9)
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The quantities b and C  are defined by
el nm

bn 1%‘1‘ EO'En (1.9a)
0

and

Com = Ba By . (1.9b)

In addition to the presence of '"grains"

distributeda through-
out the sensitive portion of the volume of the recording media,
there may also occur a variation in thickness of the recording media.
This has been observed by Rigler (17) for Xodak type 6L9-f and type
So-éh3 film'plates. Rigler reported that reconstructions in re-
flection could be obtained from such film plates when they were
coated with aluminum. Altman (18) discusses relief images on type
649-f plates in more detail and mentions ways in which such images
may be enhanced. Urbach and Meier (19) have produced holograms
using a "grainless" recording media, where a 'phase image' is pro-
duced by electrostatically induced deformations of a dielectric
surface. It is thqs clcar that in certain casges the variations in
thickness of the recording media may be the significant factor. In
other cases, however, such as when photochromic glass (20) is used
as the recording media, the variations in thickness will be negli~
givie or non-existent. In the analysis presented here any varia-
tions in the thickness of the recording media will be neglected.

This is clearly a good approximation for the case where photochromic

glass is the recording medium and appears to be a reasonable approxi-
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mation for type 6L49-f film (1T7}.

1.3 Reconstruction with Transmission Type Holograms

In the reconstruction process the developed hologram plate
is illuminated with some form of electromagnetic wave, usually the
reference beam or some wave of similar characteristics. The problem
which will be considerea now will be the computation of those prop-
ervies of the diffracted field which can be computed from a know-
ledge of the illumination wave and of the hologram film plate as
described by the quantity D given by equation 1.9. It is noted
that D, the veolume density of metallic silver grains within the
gelatin matrix of the film emulsion, 1s not a complete description
’of the diffracting structure, the film emulsion layer. No attempt
has been made to describe the characteristics of the individual
grains, such as their size, shape, orientation, etc. Thus it should
be expected that only certain characteristics of the diffracted
field can be computed from s knowledge of D alone.

Examination cof the expression for D shows that the film
emulsion layer is a periodic structure, and that these periodicities
are specified in the expression for D given by equation 1.9. A
knowledge of these periodicities allows the computation of the di-
rections of the various difffacted waves, as well as their phases.

A knowledge of the periodicities alone, however, may not be suf- |
ficient to provide for the computation of amplitudes, and thus the
distrivution of power among the diffracted waves. The situation

is analogous to the problem of computing the radiation pattern orf
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an antenna array, where the location of each antenna is known but
kthe individual characteristics of each antenna are unknown. Tae
array factor can be computed from the periodicity but the radia-
tion pattern of the individual antennas remains unknown. In the
case under consideration here, we [ind thal a greal deal of 1lnfor-
mation can be obtained regarding the amplitudes of the diffracted
waves from a knowledge of the periodicities aione. This is dis-

cussed further in Chapter Four.

+.3.1 ILinearity Hypothesis - Neglect of Multiple Scatztering

We shall assume that the field scattered by each grain
(metallic silver grain for unbleached gratings, dielectric grain
for bleached gratings) is essentially independent of the presence
of the other grains within the gelatin matrix of the film emulsion
layer (i.e., we neglect multiple scattering). That is, we assume
that the field scattered by any given grain is dependent primarily
on the illumination field and not to any great extent on the fiela
scaﬁtered by tﬁa other grains. This would clearly be the case 1f
the amplitude of each scattered wave is small and if the greins are
reasonably far apart, and if the emulsion layer is sufficiently
thin.

The total scattered field is then just the linear sum of the
individual wavefronts scattered by each grain within the emulsion
layer. It makes no difference how the terms are grouped in the sum,
provided each wavefront is counted once and only once. A convenient

wey to group terms is to consider all the grains associated with a
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particular periodicity term in equation 1.9. The waves scattered
by these particular‘grains will add in phase 1n cervaln directions,
‘resulting in the "diffracted waves" which are produced by that
periodicity. The calculation of these "diffracted waves" from &
given periodicity, neglecting the presence of all other period-
iéities, is seen to be a logical extension of the stipulation that
it is valid to treat the field scattered by each grain independently
of all others.

The assumption is made that the amplitudes of the waves
diffracted by each pericdicity are proportional to the coefficient
of the corresponding periodicity term in equation 1.9, and this is
merely a statement that in effect says that doubling the number of
.grains contrivuting to the diffracted wave doubles the amplitude
of the wave, since the individual scattered fields are summed co-

herently.

1.3.2 Nature of a Particular Periodicity - Restricticns on the

. Exposing and Illumination Fields

It is recalled that the propagation vectors En in equation
1.6 are not necessarily constants, but were assumed to be slowly
varying in the region where the film plate was to be located. It
is thus apparent that the periodicity associated with each cosine
interference term in equation 1.9 is in general a function of posi;
tion o&er the film plate. The stipulation that the En vary slowly
is defined by requiring that this variation be sufficiently slow

such that it is valid to compute the directions and phases of the
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diffracted waves assuming the periodicity is (locally) constant.
A similar restriction is placed on the illumination wave, namely
that it behaves locally as a plané wave, or in the more general
case, as a sum of such waves.

it is thus clear that what ié required is the general solu~
tiorn of the problem of computing the direction and phase of the
waves diffracted oy a diffraction grating which was made by record-
ing the interference pattern of two plane waves and which i1s il-
luminated with another plane wave. Consideration of this problem
shows that it is the periodicity'in the plane of the emulsion-~air
interface that determines the directions of the diffracted waves
(along with, of course, the direction of the illumination wave, on
the air side of the interface). Physically, this can be explained
by a simple consideration of the implications of the assumption
that multiple scattering can be neglected. If we consider the
grains associated with the particular periodicity under consider-
ation which lie within the infinitesimal layer between z' and
z' + dz ' (z"' defined normal to the emulsion-air interface), then
it is clear that the directions in wanich the wa&es scattered by
these grains add in phase are the same as for those grains that
lie in the z'' = 0 plane. Whether br not the waves scattered from
grains within the two "planes" add in phase is a separate question;
one which is dealt with in Chapter Four.

The periodicity in the plane of the emulsion-air interface

(z7 = 0) is specified by the fields that existed on either side of
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the interface during exposure of the film plate., This is a con-
sequence of the faet that the interference planes must match up at

the interface in order to satisfy boundary conditions.

1.3.3 Interference Pattern of Two Plane Waves

In this section we shall compute the orientation and spacing
of the intersection of the planes of maximum electric field in an
interference pattern (produced by two plane waves) with the z' = O
plane (plane of the emulsion-air interface). Thus, we consider the

non-localized interference pattern generated by the two plane waves

ik T + @) .
L =E ¢ L 10 mlwt (1.10)

zall
1

and

ilk.r + @) , '
E =F e ° 20 g TRwt (1.11)

What is of interest is the interference term in E:T* where

E = El + E2

It is readlly seen -that

— —-— - 2 ’E — — -— -
. CI% = -+ — . E -— .
E*E 2EO 2EO COS[(kl k2) r ¢l ¢2] o (.‘..12)

The interference pattern is characterized by locl of points of

maximmeﬁ‘ﬁ*J&dch are a set of parallel planes defined by

T = _ \
(kl - kz)-r + ¢l - ¢2 = 2aM (1.13)
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where M is an integer. The lines of intersection of these planes
with the plane of the emulsion surface, the 2z' = 0 plane, are the

loci of points given by equation 1.313 with
r=e x'+e vy . (1.14)

Letting !, m', n! be the direction cosines of k, and &', m!, n!

171 71 1 2 727 72
be the direction cosines of Ez, with respect to the x', y', 2z’
coordinate system, the loci of the lines of intersection in the
z'-= 0 plane is given by

2“ 1 1 1 21T t 1 1 -
prantaiy . — + —— — + ~— = \ -
n (ll 22) x X (ml m2) v ¢l ¢2 oM . (1.15)
These lines make an angle ¢ with the x' axis given by
-l o) '
o =tan™ (2 - *1) . (1.16)
m! - m

We shall find it convenient to define the xyz coordinate system by
a rotation of @ about the z' axis (see Appendix III for the
coordinate transformations and for the transformation equations for

the direction cosines). In this coordinate system
B = Ry, (L.l’().

and thus, in the 2z = 0 plane, equation 1.15 beconmes

21 ' _ .
X;i(ml - m2) y o+ ¢l - ¢2 = 2aM . (1.18)



22

The periodicity D, or spacing of the intersection lines in the
z = 0 plane is seen from equation 1.18 Lo be given by

A
o)

=3ml - m2’

a . (1.19)

This displacement & of these lines, defined by setting M = 0

in equation 1.18, is given by

§ = iﬂ. E?é_:JﬂL) . (1.20)
2w (ml - m2)

1.3.4 Generalized Grating Lquations

.Equations 1.16, 1.19, and 1.20 determine the orientation,
spacing, and displacement of the lines of intersection of the planes
ol maximum intensitylwith the emulsion surface plane. The problem
is now one of computing the direction and phase of the diffracted
waves when this periodic structure is illuminated by a plane wave
of the form

W+ 0)

E, =E e e s (1.21)

where Ei = gg_éi and A 1is not necessarily equal to Ao . The
X :

directions éd of the diffracted waves are determined by the re-
quirement that the "elementary" waves scattered by each grain in the
periodic structure add in phase. This condition can be stated

geometrically in terms of the path lengths between two planes, A and
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B, defined by

e;'r = ¢, (1.22)
and

ed.r - c2 " (1'23)
The constant cy is taken to be negative so that plane A is on
the incldent side of the diffracting structure, while c is

2

taken as positive so that plane B is on the transmitted side of the
structure. We are interested in L, which is the path length
between the planes A and B, going from plane A to a point PO along
Ei’ and then from Po to the plane B along e.. We see that,

d

if Eo is the position vector of P ,

L=-c, +7 +6, +C. =T e (1.24)

L= (% - 2.) X, * (mi -m.) Yot ey - . (1.25)

We now impose two conditions on L +to determine the allowed

directions of e. . The first of the two conditions is that L De

d
independent of x . This assures that there is no net phase shift
‘o

as we move along a grating line. From equation 1.25 we see that

this requires that
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L. = % . (1.26)

The second of the two conditions is that L change by an integral
number of wavelengths NA as v, changes by d , the periodicity of
4 the recorded interference pattern in the 2z = 0 plane. From eguation

1.25 we see that this requires that

= &
d—mi) = (1.27)

_mi) = — m -m (1.28)

The 2z direction cosine of e is determined from the condition that

d
2 2 2 X . . X
Qd + my + nd = 1 and the stipulation that we are considering trans-

mitted waves, which means that =n., will have the same sign as n, .

d
Equations 1.26 and 1.28 thus specify the direction cosines

of the diffracted waves in terms of the direction cosines of the

illumination wave and the two initial exposing waves. The x direc-

tion cosines of the initial exposing waves enter implicitly through the

definition of the x,y.z coordinate system. .The corresponding equa-

tions in the x', y', z2' coordinate system are found by applying the

transformation equations given in Appendix III:

v_1=_.1\z_)§_' =___N_A_ v . 2 T _m! :
Zd Zi 7 sin ) Ao [(22 21) sin® ¢ + (ml m2) sin ¢ cos &) (1.29)
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mé—m£‘= == cos ¢ = -;-[(Ré—ﬁi) sin ¢ cos ¢ + (mi—mé) cos® o] . (1.30)
Equations 1.26, 1.28, 1.29 and 1.30 are essentially the same as those
used by Offner (14) in his work on ray tracing in holography. Of fner
references the work of Toraldo di Franci (21) who presents these results
without reference or derivation.

The phase ¢d of the diffracted wave under consideration is
found by rcquiring that the interference pattern genera."ced by the trans-—
mitted portion of the illumination wave and the diffracted wave "match
up" with the interference pattern recorded on the film plate, in the

z = 0 plane. The intersection lines of the illumination interference

pattern and the z = 0 plane are given by

= (2, = 25) x + = (o, - my) y+ @, - Py = 2mM . (1.31)

the spacing of these lines di is given by
d, = : | (1.32)

Using the value of lmi -m given by equation 1.28, with N = 1 ,

al

it is seen that

a, = (1.33)
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and hence is equal to the periodicity of the recorded interference
'pattern. We specify ﬂd by requiring that the loci of minimum field
intensity coincide with the loci of maximum grain density in the

z =0 piane. Thus we set y =48 and M= 1/2 in equation 1.31, and

solve for @d . We obtain
d
Py =0, + > :lL e =) - (1.34)

Now from equation 1.28 we see that

A (md - mi)

[o]
A T -] N (1.35)

where N is an integer. Thus, we can write equation 1.34 in the form
By= By +uB, - 0) -7 (1.36)

where M is an integer. We use M rather than N because of the
ambiguity in sign due to the fact that we have the absolute magnitude

ﬁ‘mi-mg in equation 1.35.

1.3.5 Interpretatiop of the Terms in the Grain Density Equation
Let us consider the expression for the grain density D

given by equation 1.9. According to the theory presented here, the

field diffracted by this composite periodic struﬁture is found by

summing the fields diffracted by each periodicity, i.e., by the grains
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associated with each interference term in equation 1.9. In actuality
only a portion of these terms is of interest and 1t will be possible
to ignore most of the higher order terms. A discussion of the signifi-
cance of the various terms in equation 1.9 is thus of interest at this

time.

However, before doing this, it is useful %o show that illum-
ination of a particular pericdicity with one of the two original waves
that formed it yields a diffracted wave having the same direction and
phase as that of the other original wave. Thus, let us consider a

periodicity term of the form

_cos[(ki - kJ)‘r + ¢i - ¢j] (1.37)
and let the illumination wave be given by

2 (T e + -
1(ki T ¢i wt)

E, = E e . (1.38)

Then, in the xyz coordinate system defined by equation 1.16 with

1=1i, 2= §, it follows from equations 1.17 and 1.26 that

g, = 1, . (1.39)

Application of equation 1.28 yields

m, =m + N]mi - nﬁl (1.40)

and since N can assume the values %1, we see that one of the first

order diffracted waves has
m. = m, . (1.41)

The phase of this wave is found from egquation 1.3k and is given by
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. =0, -u . (1.Lk2)

Thus, it is clear from equation 1.39, 1.41 and 1.42 that one of the
two first-order diffracted waves has the same direction and phase
(except for the constant factor of -7 ) as that of one of the two
original exposing waves, when we illuminate with the other original
exposing wave.,

Returning to eqwtion 1.9, the constant terms
C0 + ClEi + C2Et + ... will constitute a bias, which is required, of

course, as 1t is physically meaningless to have & negative density, and

the various cosine interference terms assume negative values. The terms

(2c

3 C -
1Bt ucon) E b cos[(ko—kn) T - ¢n] (1.43)

" give rise to the real and virtual images, which are usually what is of
interest in the recoﬁstruction process. The real image is.assoéiated
with one of the first-order diffracted beams for each elemental
periodicity in equation 1.43, while the virtual image is associated
with the other first order. Because of the sinusoidal variation of
density of each of the periodicities, there areno second-order
diffracted waves associated with each of the periodicities,¥* and thus
N in equation 1.28 has allowable values of only -1, O and +1.

The "second order" real and virtual images which are observed
are produced by the first-order waves diffracted by the periodicities

associated with the terms

* This is discussed in Appendix VI.
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' 2 2 - - -
2C,E° g o cos[z(ko - kn)~r - 2¢n] (1.44)

The second order images thus arise because the film is not linear in
B.E® , which will in general result in the coefficients 02, 03, e

being non-zero. The terms

, o
(c; + 2C.E7) Zm c  cosl(k -k)r+¢ -¢]
+ 20,5 nz‘m bb cos[(E -K)F+g -¢] (1.45)

are of interest in "ghost imaging,"

and will be discussed in detail in
Chapter Three.

The remaining higher order terms contribute little of interest
and can usually be neglected due to the small size of their coefficients
and usually unfavorable illumination conditions.* Thus, the diffracted
fields that will be considered are those diffracted by the periodicities

associated with the terms given in 1.43, 1.44 and 1.45. Each of these

terms is of the form

coefticient X COS[(Kl - kg)-r + ¢l - ¢2]

By unfavorable illumination conditions we mean the case where the
direction of the illumination wave is such that the waves scattered
by the grains associated with the particular periodicity under con-
sideration do not add in phase when the entire emulsion volume is
taken into account, with the result that the amplitudes of the dif-
fracted waves are quite small. This is discussed in detail in
.Chapter Four.
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and thus equations 1.36, 1.38 and 1.4l4 can be used to compute the

direction and phase of the waves diffracted by each periodicity.

1.3.6 General Tllumination

It was shown in the previous section that the terms in
equation 1.9 for the grain density D which are of interest can be

written in the form
D=gd + izj dij cos[(Ki - K,)'r+ ¢, - ¢,] . (1.46)

If the hologram is illuminated by a wave of the form (which
satisfies the restrictions mentioned in section 1.3.2)
i(k.-7 + 8.)

E. =& e * 17 giwt (1.47)

then according to the analysis presented here, the diffracted field will

be of the form

ik, v +0,..) .
- - - ijN STiJNT ~iwt o
E, = Z F, d, ... € € . (1.48)
d . & ijN ijN
i,J.N J J
The propagation vectors EijN. are determined by applying equations
1.26 and 1.28, while the phase factors ¢ijN are found from either

equation 1.34 or 1.36. The diffracted waves as given by equation 1.L8

are taken to be proportional to the coefficient of the corresponding
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periodicity term di , as was discussed in Section 1.3.1. The real

J
vectors EijN account for the amplitudes and polarizations of the
diffracted waves. A rigorous computation of these factors requires
the solution of the electromagnetic boundary value problem of the
. system. This, of éourse, requires more information about the emulsion
layer than is given by the grain density D . The'problem of the

‘rigorous computation of fi. will not be considered in this thesis,

JN
but certain asbects of computing the amplitudes of the diffracted
waves will be considered in Chapter Four.

‘In the more general case the illumination field may be a sum
of terms such as given by 1.4T. In this case the diffracted field
would be the sum of fields given by 1.48, one such field for each
illumination wavefront. This assumes that the field that is scattered
by each grain within the emulsion layer when it is illuminated by a

number of separate wavefronts is the linear sum of the fields that would

be scattered by the grain for each illumination wave taken separately.

1.%.7 Reconstruction of the Original Fields (Virtual Image)

In this section we shall consider the case where the illumina-
tion beam Ei is identical to the reference beam that was used in ex-
posing the film plate. We saw in Section 1.3.5 that illumination of a
particular periodicity with one of the original exposing waves yields
the other original éxposing wave as one of the two first order diffracted

waves. Thus the grains associated with the periodicity terms given by

equation 1.43 give rise to a reconstruction of the signal beam when the
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illumination wave is the .eference beam. In actuality, the reconstruc-

ted field will be of the form

i(k,.r + ¢j - T - wt)

= = 3
E g FJ. (EClEO + ucon)bj e

+ zero order terms + real image terms + ghost image terms

+

second order terms + higher order terms (1.49)

Comparing the diffracted field as given by equation 1.49 with the field
that existed at the film plate during exposure of the hologram (equation
1.6), it is seen that except for the unimportant constant phase factor
of - m, the waves given by the sum in equation 1.49 have the same
direction and phase as those of the initial exposing field. Thus,
except for possible questions regarding the amplitudes of the diffracted
waves, one could say that equation 1.49 predicts the reconstruction of

the original exposing wavefronts.

1.4 Reflection or "White Light" Holograms

in this section we shall conslder reflection holograms, It
will be seen that they can be treated quite adequately within the frame-
work of the analysis presented in the preceding sections., The analysié
s essentlally the same until we compubte the direction and phase of the
diffracted waves, at which point a different method of adding the scate

tered fields is used.
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1.4.1 Introduction

The distinction between reflection and transmission holograms
is made with regard to whether the reconstructed fields are produced on
the same side (reflecfion) or on the opposite side (transmission) of
the film plate with respect to the illumination wave. In the case of
the transmiésion holograms, it was implicitly assumed that the reference
beam and signal beam were incident on the film plate from the same side
(@r _<__9Oo aﬁd OS < 90o in Figure l.la.) In the case of the reflection
hologram, however, the reference beam is brought in from the other side
(@r > 90° in Figure 1.la.) When the illumination is done using the
reference beam, the reconstructed signal beam (virtual image) is formed
in transmission for the transmission hologram in reflection for the
reflection hologram (Figure 1.lb,c.)

Reflection holograms were first investigated by Denisyuk (10,
11), who described the recording process in terms of the recording of
the intensity distribution in the standing wave interference pattern
formed by the reference beam and the light scattered by the object. In
the reconstruction process, Denisyuk described the reflected field in
terms of the waves reflected from the interference planes within the
emulsion volume. He noted that the refiection hologram should act as an
interference filter, reflecting only those wavelengths which lie in a nar-

row band about the wavelength used in exposing the plate.* This effect has

¥ Except for emulsion shrinkage effects, which shift this wavelength
band. This is discussed further in Section 5.5.2.



3k

FILM PLATE

REFERENCE BEAM
FOR REFLECTION
HOLOGRAM

N

REFERENCE BEAM
FOR TRANSMISSION
HOLOGRAM

OBJECT

(o) ARRANGEMENT OF REFERENCE BEAM FOR
TRANSMISSION AND REFLECTION HOLOGRAMS

RECONSTRUCTED \
WAVEFRONTS \

{(VIRTUAL IMAGE)

ILLUMINATION
BEAM

——

(b) RECONSTRUCTION ARRANGEMENT FOR TRANSMISSION

HOLOGRAM

RECONSTRUCTED
WAVEFRONTS

.

ILLUMINATION BEAM

—
T —
-
- —

(¢c) RECONSTRUCTION ARRANGEMENT FOR REFLECTION

HOLOGRAM

FIGURE 1.1 TRANSMISSION AND REFLECTION HOLOGRAMS



35

given rise to the use of the term, "#hite light hologram" for reflection
holograms, due to the fact that a reconstruction can be obtained when
the hologram is illuminated with white light.

Denisyuk, who was working with non-laser sources, used the
transmitted portion of the reference beam to illuminate the object.
" The object was placed quite close to the plate in order to keep path
length differences small. With the advent of the gas laser with its
long coherence length, more efficient and elaborate experimental setups
became practical. Stroke and Labryie (22) produced reflection holo-
grams (using a laser as a source) which could be viewed in reflection
with illimination provided by a flashlight or the sun. They described
the reconstruction in terms of Bragg reflection from the grating-like
stratifications within the emulsion layer. Lin et al (23) extended
the experimental technigues to the use of two different wavelength
lasers and made reflection holograms which yield multicolor recon-
structions when viewed using white light. Other work in the area of
reflection holograms has been reported by Upatnieks et al (24) and

Stroke and Lech (25).

1.4.2 Recording Process

The description of the recording process presented in
section 1.2 is sufficiently broad in scope that we may treat the case
of reflection holograms without any modifications. Indeed, it is re-
called that in section 1.2 there were no assumptions made with respect
to the relative directions of arrival of the signal and reference beam

wavefronts. Thus the formulation of the exposing fields as given by
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equation 1.6 is adequate for application to the case of reflection
holograms. The same restrictions that were placed on the nature of
the ihdividual waves which are represented by the terms in equation
1.6 are retained here; and thus the grain density of the developed re-
flection hologram film plate is given by equation 1.9. As before, we
neglect any variations in thickness of the emulsion layer and con-

sider both surfaces to be planes.

1.4.3 Linearity Hypothesis

The problem under considerabion now is lhe delermination of
the direction and phase of the reflected fields that are produced when
the reflection hologram is illuminated. The same assumptions that were
made in section 1.3.1 are made here, namely that multiple scattering
can be neglected. Thus, as was discussed in section 1.3.1, the field
scattered by the grains associlated with each basic periodicity within
the emulsion layer can be computed independently of the presence of
all others, and the total field is found by summing the fields scat-

tered by each of the periodicities as specified by equation 1.9.

1.4.4 Standing Wave Interference Pattern of Two Plane Waves

What is of interest is the computation.of the direction and
phase of the fields scattered by the grains associated with a particu~
lar periodicity term in equation 1.9. "It is recalled that the propa-
gation vectors of the waves which gave rise to these interference
terms were not necessarily constants, and hence the "periodicity"

varies as a funcltion ol position throughout the emulsion. As belore,
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we will assume that the spatial variation of the propagation vectors
was sufficiently slow such that we may regard the periodicities as
(locally) constant. The problem is then reduced to determining the
field scattered by the grains associated with an interference pattern
generated by two plane waves. This is the approach that was used in

- the case of the transmission hologram, only in this case the scattered
waves will be added in a different manner and hence it will be con-
venlent to use a different coordinale system Lhan the one thal was
used in section 1.3.3. In addition, we will wish to make the compu-
tations with respect to the fields within the emulsion layer.

.Thus, let El and E,. Dbe two plane waves which existed in

2

the emulsion layer during exposure of the hologram, where

ilk.'r + @)
L =E e 1 L (1.50)

=it
i

and
i(k,.r + @,)
E =F e ° S (1.51)
As before, we are interested in the interference term in E.E*,
where E =E. + E. and

- - R _ .
EE* = 2Eo + aEO cos[(kl - K2) T+ ”1 0.1 . (L.52)

2

The interference pattern within the emulsion layer is characterized

by the loci of points of maximum grain density, which are parallel



38

planes a distance d' apart, and specified by
(k. - k))'r + @, - @, = 2mM (1.53)

where M 1is an integer. It is convenient to carry out the calcula~

tions in a coordinate system where the interference planes are perpen-

11 ]

dicular Lo the =z axis. If the x', y', z' systew is our standard

" coordinate

reference coordinate system, then we define the x", y", z
system by two coordinate rotations. First we rotate about the =z'
axis by an angle ® (given by equation 1.16), to obtain the xyz

coordinate system. In this coordinate system, equation 1.53 is of the

form

(m. - m2) y +_(nl - n2) 7 + ¢l - ¢2 = 29M . (1.5L4)

1

The x", y", z" system is then obtained by a rotation B about the

x axis, where

-1 ,2-"1
3= tan T () (1.55)
1 2
In this coordinate system equation 1.53 is of the form
no_ i on _. -
(ol - ng) 2"+ @ - @, = 2 (1.56)

(the coordinate transformations and transformation equations for the
direction cosines are given in Appendix IIT.) The above equation
specifies the planes of maximum grain density within the emulsion

layer for the special case where the two exposing fields are plane
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waves. If they are not plane waves (El and Eg being slowly varying
functions of position) then equations 1.16, 1.55, and 1.56 are
applied at the particular location of interest within the emulsion

layer with the appropriate values of El and EQ being used.

1.4.5 Bragg Reflection Condition

In this section we wish to determine the field scattered by
those grains which are associated with the periodicity defined by
equation 1.56 when the illumination field is a plane wave of the form

0 b .— +
1(kr T ¢r)

.Er = sro e ‘ (1.57)

Equation 1.57 specifies the illumination field within the emulsion
layer, after refraction at the emulsion-air interface.

Each grain, of course, scatters a portion of the illumi-
nation wave in essentially all direcﬁions. We are only interested in
the particular case where the waves scattered b& the grains under
consideration add in phase in a particular direction. This will occur
if the wavelength and direction of the illumination wave are such that
Bragg reflection from the planes of constant grain density occurs.

The Bragg reflection condition can be simply stated in terms of the
spherical coordinate O; (of Er), the illumination wavelength AL
and the distance d4' TDetween ?lanes of maximum graln density. It

is

(1.58)
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where N is an integer. If @; and Ar are such that the above

equation is satisfied, then the waves scattered from the graihs in the

planes z" = ¢ + MA' will add in phase in the direction Ed’ whose
spherical coordinates are

it - n

oy = o (1.59)
and

" _ - 1"

6y =m - 0 (1.60)

where c¢ 1s a constant and M 1s an integer.

It is of interest to express d' 1in equation 1.58 in
terms of the sphericél coordinates of the propagation vectors of the
two plane waves which generated the pefiodicity. It is straightfor-

ward to show that if
-1 - -
a = cos ~ (—= k. *k,) (1.61)

then

A ' (1.62)

V2 —
d 2 sin (a/2)

1

Now, as a consequence of our choice of the x", y", 2" coordinate

system

@"

Il
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and

@E + @g =7 . _ (1.64)

It follows from equations 1.61, 1.63, and 1.6L4 that

sin (%0 = cos @; = - cos @g (1.65)

and hence, using equatioms 1.58, 1.62, and 1.65, the Bragg reflection

conditior becomes

NA WA

cos @; = -Xg cos G{ = . ~X£-cos @5 . (1.66)

Equation 1.66 expresses the conditions which are placecd on the prop-
agation vector Er of the illumination wave in terms of the two
original illumination waves whilch generated the periodiqity under con-
sideration. A similar equation exisfs for each periodicity term in
equation 1.9. (It should be noted that there is in general a dif-
ferent x", y", z" coordinate system associated with each periocd-
icity.)

It is of interest to determine 1f there is a particular
Er wnich will satisfy equation 1.66 for a significant number of
periodicity terms in equation 1.9. An examination of equation 1.9
shows that the terms which yield the virtual image in transmission

all have the propagation vector Eo in common, and the interference

terms are all of the form of the interference term in equation 1.52.
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It follows from equation 1.66 that if the illumination wave
is the same as either of the two original waves, then equation 1.66 is
satisfied (with |N| = 1 ). Furthermore, it follows from equations
1.59, 1.60, 1.63 and 1.64 that illumination by one of the two original
waves yields the other as the reflected wave. The phase factor ¢d
for the reflected wave is specified by requiring that the planes of
minimum intensity in the interference pattern generated by the illumina-
tion beam and the reflected beam coincide with planes of maximum
grain density. For example, consider the interference term generated
by the reference beaﬁ and the jth signal wave. The recorded inter~

ference pattern is, from equation 1.56,

(n" = n") 2" - ¢ = 2mM . (1.67)
o] J J

When we illuminate with the reference beam, the loci of points of

minimum electric field intensity is given by

(n - nl) 2" - @, =2n( + 3) (1.68)

and hence
g, =9, -m . (1.69)

Thus, except for the unimportant constant phase factor -7 , the phase
of the reflected wave equals that of the other original illumination
wave, and hence we can say that illumination of the periodicity Dby one
of the two waves which produced it yields a "reflected wave" whose

direction and phase equals that of the other wave.
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IL Lhus follows that when we illuminale lhe hologram wilh the
reference beam, Bragg reflection will result in reflected waves whose
directions and phases are the same as those of the original signal

beam, and hence a reconstruction (virtual image) is produced.

1.5 Comparison of Transmission and Reflection Holograms

There are a number of fundamental differences between the two
types of holograms that warrant discussion here. First of all, while
the directions and phases of the "diffracted" or "reflected" fields are
determined by requiring that the individual scattered waves add in
phase, there is a basic difference in the way in which we "group terms"
in summing these scatfered waves. In the case of the transmission
hologram.theydirections of the diffracted waﬁes (i.e., the directions
in which the individual scattered waves add in phase) are determined
from the periodicities in the plane of the emulsion surface, and these
directions are expressed by what could be termed "generalized diffrac~
tion grating équations." On the ofher hand, in the case of reflection
holograms, the individual scattered waves add 1n phase when the Bragg
reflection condition is satisfied with respect to the planes of constant
grain density within the emulsion layer.

It can be immediately seen that with respect to the determina-
tion of the directions of the "diffracted" or "reflected" waves, the
variation of grain density with depth is of primary importance in the
case of the reflection hologram, but of only secondary importance in

transmission holograms of the type considered here. Indeed, we could



let the emulsion thickness approach zero in a transmission hologram and
still cbtain a reconstruction, while this would result in the complete
disappgarance of the reconstruction in the case of the reflection
hologram.

It was seen in Section 1.3.4 that there were two directions
in which the waves scattered by thé grains associated with a particular
periodidity of the transmission hologram add in phase. This is
.anaiogous to the two first orders produced by a diffraction grating,
and in the case of the transmission hologram, these two directions
correspond to the real and vi?tual images. The situation is quite
different.in the case of the feflection hologram, where, as was seen
in Section 1.4.5, there is only a single direction in which the
scattered waves from a particular periodicity add in phase. Thus, only
a single image 1s formed by a reflection hologram, and as was seen in
Section 1.)4.5, when the illimination wave is the reference heam, the
single image is the virtual image. This does not, however, preclude
the formation of a real image. Denisyuk (10,11) explains the condi-
tions placed on the exposing and illumination beams that must be
satisfied in order fér the single reconstructed image to be real.

Perhaps the most striking difference between the two typeé of
holograms is the difference in reconstructions for the case when the
illumination wave has a wide range of spectral components (the
geometrical characteristics being the same as that of the reference
beam). In the case of the transmission hologram, each spectral compon-

ent yields diffracted waves whose directions are specified by equations
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1.26 and 1.28. It is seen from equation 1.28 that the directions are a
function of A, and thus each wavelength will yield an image displaced
some amount in éngle with respect to the images produced by the other
spectral components in the illumination beam. The end result is a
blurred image, the blurring becoming worse as the spectral range of the
illumination beam is increased.

The situation is quite different in the case of the reflection
hologram, as the Bragg reflection condition (equation 1.66) must be
satistlied in order to obtain any reconstruction. 1f the illumination
beam has the geometrical characteristics of the reference beam but has
a range of spectral components, only those wavelengths which satisfy
equation 1.66 will yield scattered waves which will add in phase, and
hence give a reconstruction. The other spectral components do not pro~
duce images and hence.do not degrade.the reconstructed image. Thus, one
can illuminate a refiection hologram with "white light" and still obtain
a reconstructidn of reasonable quality.

There are a number of practical considerations that modify the
previous statements regarding reflection holograms.' In practice, film
plates such as Kodak 649-f high resolution plates are used in making

either transmission or reflection holograms, and the emulsion layer is
typically 15u or less in thickness. In the case of the reflection
hologram this means that there will be only a limited number of interm
ference planes contributing to the Bragg reflection phenomena. The
radiation patternvor "array factor' associated with each periodicity in

the reflection hologram is thus much less directive than in the case of



L6

the transmission hologram, where the periodicity is in the plane of the
emulsion surface and hence many more basic periods are included in the
diffracting structure. The result is that the reflection hologram will
yield a reconstruction over a band of wavelengths, this band being
narrower. for thicker emulsions. In addition there is much less sensi-

© tivity to the angle of incidence of the illumination wave. An addition-
al consideration is the fact that emulsion shrinkage may occur during
processing of the film plate, and this will result in the shifting of
the wavelength band for reconstruction of the reflection hologram to
shorter wavelengths. Experimental data as well as an analytical treat-
ment of the wavelenglh sensitivity of reflection holograms can be
found in the works of Denisyuk (10,11) and Fleisher ét al (27). Al-
though the authors of (27) don't specifically consider holograms,

their work is directly applicable and includes a worthwhile amount of

information concerning processing of high resolution film plates.

1.6 Summary and Discussion

The analytical description of the holographic process that
has been formulated in this chapter takes into account the three-
dimensional nature of the recording media by characterizing the emulsion
volume by the volume density of scéttering particles, the grain density.
A general film response is allowed for by expressing the grain density
as a power series in E‘E¥, where E is the total electric field.

By expressing the exposing and illumination fields in the

form of a sum of plane or guasi-plane waves and neglecting multiple
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scattering we have becen able to handle the problem of computing the
diffracted fields by using what could be termed a linear systems
approach., This involves computing fhe waves diffracted by the grains
associatéd with each periodicity term in the expression for the grain
density, and then summing (coherently) these waves to obtain the total
‘diffracted field. The problem of computing the diffracted field is thus
reduced to solving variations of the same basic problem, that of com-
puting the direction, amplitude and phase of each of the two first-order
diffracted waves that are produced when a "volume diffraction grating'
is illumipated with a plane wave. We solve this problem for the
general case, considering the directions and phases in this chapter and
the amplitudes in Chapter Four (for transmlission holograms only). .

It should be noted that we have been dealing with the values
of the fields in the immediate vicinity of the hologram plate and have
not considered the problem of relating the exposing and illumination
fields to the sources that generate them or the problem of computing the
diffracted field at some distant observation point. These problems can
be dealt with by utilizing Fresnel-Kirchhoff diffraction theory (as
discussed in Chapter Two) or perhaps by using some sort of geometrical
optics or rays tracing technique, as was done by Offner (1h).

In general we shall deal primarily with the fields in the
vicinity of the hologram plate, except where we are considering a
specific problem where the field in some other région is of particular

interest, as is the case with Fourier transform holograms. We shall see
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that a knowledge of the field in the vicinity of the hologram plate is
sufficient to provide the solutions of a number of problems which are

of interest.
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CHAPTER TWO

TRANSMITTANCE DESCRIPTION OF WAVEFRONT RECONSTRUCTION

2.1 Introduction

- In this chapter we shall consider the transmittance descrip-
tion of wavefront reconstruction as developed by Gabor (5). We will
see that although the use of the concept of amplitude transmittance be-
comes questionable as the spatial frequencies involved become high
(i.e., when the emulsion must be regarded as "thick"), the analytical
formulation still remains valid. PFurthermore, we will show that with
respect té computing the directions and phases of the diffracted waves
the transmittance approach and the approach formulated in Chapter One.

are equivalent. We will then compare the two approaches.

2.2 Transmittance Approach

The term "transmittance approach" as used here refers to a
particular formulation of the problem of determining the diffracted
field produced when the hologram is illuminated. The diffracted field
is to bé specified in terms of the initial exposing fields, the film
characteristics, and the illumination field. The fields referred to
are specified in the immediate vicinity of the film plate, and the
problem of relating the exposing field to the sources which generate
it and the problem of computing the diffracted field at some distant

observation point are considered as separate problems.
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2.2.1 Analytical Formulation

The following formulation is due to Gabor (5) and has been
successfully used by ﬁany researchers to treat many different pfoblems
in holography. Letting the 2z = 0 plane coincide with the surface of
the film emulsion layer, the exposing field U i1s taken to be of the
~iwt

sunpressed )
S Yy 4

form (e

Ulx,y) = Uy (7)) + Uy (x,y) (2.1)

where Ul and U2 are complex scalar quantities which we identify as

the reference beam and signal beam respectively. It is convenient to

write
iy, (x,y)
U (x,y) = A () e (2.2)
and
U2(x,y) = Az(x,y) e (2.3)
where Al, wl, A2 and wz are real functions.

In ﬁhe recording process the amplitude transmittance 1T of
the developed film emulsion layer is taken as the quantity which
specifies the characteristics of the developed film plate which are of
interest. It is generally assumed that T 1is real and can be found in
terms of the intensity UU¥* from the characteristic curve for the
film. Furthermore, if one assumes that the amplitudes of U. and

1

U2 (and the exposure time) are chosen so as to have the exposure be in

the "linear" range or the characteristic curve, then the ampllitude
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transmittance T can be expressed in the form

T=b o+ (uu*) r/2 (2.4)

where bo is a constant and T is the '"gamma" of the film. It is
convenient to take I'= 2 as this simplifies the algebra. This can be
Justified by noting that if we make the amplitude of the reference beam
much greater than that of the signal beam, (UU*)I‘/2 can be expanded

in a binomial series, the first order terms corresponding to the case

/2 = 1. That is, writing

r/2 2 2 r/2
* = — .
(uu*) [Al + Ay + 2hA, cos(wlr we)]
or
2
A 24 :
T p
(o) 72 = 2 (e 2 4 B cos (4, - 41T (2.5)
A7 1
‘and assuming ‘A2/Al << 1 , we see
- 2
: ' A TA
(UU*)F/2 2 42 [1+ —2 ~—§-cos (v VAl
1 2 A 1 2
A7 1
or
r/z ~ 2 2
* = —
(uu*) AT+ As PAlAecos(wl wz) . (2.6)

Thus, taking T =2 and su@pressing the constant bo’ the amplitude

transmittance of the hologram plate is of the form

2 iy, = ¥p) -1(y, = ¥))
T = Al + A2 + A1A2 e + AlAE e . (2.7)
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Thus, by definition, if we illuminate the hologram with a wave U

3 b1
the transmitted wave UT will be given by
Up = Uy - (2.8)
Writing
iw3
Uy = Age _ (2.9)
equation 2.8 becbmes, using equation 2.7,
iy (v, - v, + ¥y) -1, -y, - ¥y)
.2 2 3 2 1 3 2 "1 3
Up = (Al + Ag) Ase * AAhe +h, A A e
(2.10)

"The first term is the zeroth order term, the second term is the virtual

image term and the third term is the real image term.

2.2.2 Variations with Depth

The choice of the amplitude transmittance as the quantity
which characterizes the developed film emulsibn layer implies that we
neglect or "average out" any variations in the =2z directions. This
is clearly a good approximation ﬁhen the thickness of the emulsion
layer is considerably less than the period of the highest spatial
frequency component in UU¥ . However, it is not a good approximation
in those cases where high spatial frequencies are invoived, such as with
the two-beam method (2) which is extensively used because it provides an
éngulaf separation of the images. For example, the emulsion layer on
typicalvhigh resolution film plates used in holography may be from 5

to 1Y microns thick, and trom equation 1.62 it is seen that with a
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wavelength of 6328A° and an angle of 70 between two plane waves the
period of the resﬁlting interference pattern will be of the order of
5 microns. One could go on and mention examples where the interference
fringe planes are inclined with respect to the 2z axis and where
averaging over z. would "wash out" the interference pattern. In
such cases the strict interpfetation of T in equation 2.8 as the
actual amplitude transmittance would clearly rule out the validity of
this approach. Howevér, it will be seen shortly that equation 2.8 is
valid even in such cases, but the interpretation of 1 must be dif-
ferent. |

- This should not be too surprising as it was seen in Chapter
One that the directions and phases of the "diffracted" waves are deter-
- mined by the periodiéity in‘the Z = 0 plane, In the expression for
‘1 as given by equations 2.h'or 2.7, it is the fields in the z =0
plane that are used, and it is preciéely the fact that the variations
with z are not included that allows the uée of equation 2.8 in those

cases where the concept of amplitude transmittance breaks down.

2.2.3 EquivaLence ot the Scattering Theory Approach and the Trans-

mittance Approach
In this section we shall show that with respect to computing
the directions and phases of the diffracted waves the transmittance
approach as given by equations 2.7 and 2.8 is equivalent to the approach
given in Chapter One for transmission holograms. In particular we shall
consider the special case where U

U2, and U, are plane waves, and

‘ 1’ 3
we shall show that for this case equations 2.7 and 2.8 yield the
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equations given in Chapter One for determining the direction and phase
of the diffracted waves.

Henée, let us take

1(kl-r + ¢l)

U = Ae (2.11)

U, = Ae i(E2=§ i ¢2) |  (2.12)
and

o, - e 1(E3-§ +_¢3). (2.13)

where Al; A29 and A are constants.

It is convenient to express the quantities El~§, E2'r and E3'f

in the x,y,z coordinate system defined as in Section 1.3.3 (equation
1.16) so that the x direction coslues of l-il and E2 are equal
(the z.=0 plane coincidinglwith the emulsion surface). Thus, in

the 2z = 0 plane

kl r = K;-(zlx + mly) (2.14)

EoF =2 (g x +my) (2.15)
2 Ao 2 2 ‘

E-F=2" (gx+my) - (2.16)
3 A 3 3

Let us consider the second term in equation 2.10, which is the term

which corresponds to the virtual image if Ul is identical as the

reference beam. It is clear that since we have taken Ul’ U2, and
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U, to be plane waves, the diffracted waves given by equation 2.10

3

will also De plane‘waves. Thus the factor w2 - Y

1 + w3 will be

of the form (in the z =0 plane)

w2 - wl“ ¢3 = %E-(th + th) + ¢h . ' (2.17)

 But wl, wg, and w3 are specified by equations 2.1L, 2.15, and 2.16,

hence (recalling Ly = 22)
2 _2r 2 i}
S (th + mhy) + ¢h =3 (23x + m3y) + X (m2 ml) y +'¢2 ¢l + ¢3 .

(2.18)

If this equation 1is to be valid for all values of x and y, the x

and y coefficients @ust be equal. That is

2, =2 (2.19)

3

and

- A '
my, - m3 = Ao (m2 - ml) . (2.20)

Now equations‘2.l9 and 2.20 are identical to the equations derived in
Section 1.3.3 that specify the directions of the diffracted waves
which occur when a particular periodicity is illuminated by a plane
wave. That is, cquatioh 2.19 ig identical to cquation 1.26 and
équaﬁidn.2;20 is identical to equétion 1.28 for the case |N| =1
(virtual image). Similar results are obtained for the real image term

in equation 2.10, the only difference being a change of sign of the
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right hand side of_equation 2.19 which corresponds to the case where

the opposite sign is taken in equation 1.38.

The phase factor ¢)-L for the virtual image is found to be

¢, = By + 9, - N | (2.21)
while the phase factor ¢ for the real image is found to be

g = ¢3 g, * 9 (2.22)

Except for the.absence of the constant factor -m , equations 2.21
and 2.22 are identical to equation 1.36. It was seen in Section

1.3.4 that the factor of ~m is a consequence of the boundary con-
ditions requiring that the total E field be a minimum inba regioﬁ of
maximum grain density. We can put this in the context of the trans-
mittance theory by noting that in Section 1.3.4 we are dealing with a
"negative." If we were to make a 'positive" (assuming that the
spatial frequency is sufficiently low that it is meaningful to speak
in such térms) then we would in effect shift ﬁhe fringe pattern by

1/2 period and the factor of -m would no longer be present.

| We have thus demonstrated, for the special case ofkplane
waves, that with respect to compﬁting the directions and phases of

the diffracted waves, the transmittance approach and the approach
described in Chapter One are equivalent. IT 1is clea; that this equiv;
alence will also hold when the fields are of the form of a sum of
plane or gquasi-plane waves, or when the fields can be expressed as a

continuous distribution of such waves.
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Having demonstrated the equivalence of the two approaches with
respect to the directions and phases of the diffracted waves, it is
logical to ask whether any such equivalence exists with respect to the
amplitudes of the diffracted waves. The formulation of the analysis
as given in Chapter One was done so as to take into account the entire
emulsion layer. Using this formulation, the problem of predicting the
reconstruction efficiency and the distribution of amplitudes in the
- diffracted waves will be dealt with in Chapter Four. The transmittance
approach, as outlined in Section 2.2.1, does not take into account the
entire emulsion layer, but instead deals only with the fields in the
z = 0 plane. Thus, we would expect that the two approaches should
yield different predictions when the emulsion is "thick" (i.e., high
spatial frequencies, with period comparable to the emulsion thickness)
but should agrcc in thce limit as thc ratio of cmulsion thickncas to
minimum fringe spacing approaches zefoe

This can be seen to be the case as follows: In the scatter~
ing theory approach the grain density is taken to be the quantity
which specifies the developed film emulsion layer. Any partiéular
diffracted wave is identified as being the result of coherent scatter-
ing by a certéin number of grains within the emulsion layer which are
associated with a particular periodicity term in equation 1.9. The
amplitude of this diffracted ﬁave is taken to be proportional to the
amplitﬁde of the illumination wave and proportional to the total number
of grains N associated with the corresponding periodicity term in

equation 1.9. Examination of the periodicity terms in equation 1.9
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which yield either the real or virtual images shows that N is prop-
ortional to the product of the amplitudes of the signal beam and re-
ference beam. In terms of the example used in the first part of this
section (where the fields are given by equations 2.11, 2.12 and 2.13),
this means that according‘to the scattering theory approach, the am-

- plitude of the diffracted waves (real or virtual images) will be prop-
ortional to AlA2A3 s Just aé is predicted by the transmittance
approach, as can be seen from equation 2.10. waever, the constant

of proportionality for the real and virtual images is the same accord-
ing to the transmittance approacﬁ but may be different according to

the scattering theory approach. In fact, this "proportionality con-
stant" is not a constant at all, but a factor which is a function of
the illumination wave geometry, emulsion characteristics, and other
factors as discussed in Chapter Four. It will be shown in Chapter Four
that this factor may differ by ordefs of magnitude between the real

and virtual image. These differences are due to the different con-
ditions for l;nv
planesl z = constant add in phase. In the limiting case where the
emulsion thickness goes to zero this effect clearly becomes unimportant
and the two approaches yield the same result. The same conclusion is
reached in the case where the emulsion thickness remains appreciable,
but where the spatial frequencies decrease to the point where the

ratio of emulsion thickness to minimum fringe spacing approaches zero.
In this case angular separation of the two images is sufficiently small

and the "width" of the orientation sensitivity curve (see Chapter Four)
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is sufficiently large that there is no appreciable difference in the

amplitudes of the two images.

2.3 Comparison of the Two Approaches

As a Dbasls of comparison of the two approaches, we shall
consider the range of applicability of the two approaches and the ease
with which calculations can be made using them. The concept of the
amplitude transmittance was clearly Jjustified in the early work of
Gabor and others where the spatial frequencies were low. The analytical
formulation of this approach has been shown to remain valid even for
high spatial freguencies, but we have seen in such a case that the
interpretation of the quantity T (as given by equation 2.4 or 2.7)
as the amplitude transmittance may not be correct. Instead, we must
view T as sﬁecifying the periodicities in the plane of the emulsion
surface.

In comparison, the formulation given in Chapter One takes
into account the entire volume of the emulsion layer, and allows, in
a very general way, the treatment of both transmission and reflection
holograms. By considering the coherent scattering by the grains within
the emulsion layer we were able to show that the directions and phases
of the diffracted waves are specified by the periocdicities within the
emulsion layef. In the case of the transmission hologram we saw that
the directions and phases of the diffracted waves are specified by the
periodicities in the plane of the emulsion surface. This verifies in

physical terms the validity of the application of the transmittance
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approach in those cases involving high spatial frequencies.

In addition, the formulation given in Chapter One provides a
convenient basis for the investigation of the dependence of the recon-
struction efficiency on the film characteristics and processing pro-
cedures as well as for the determination of the relative amplitudes
of the diffracted waves. The two methods, as we have seen above, yield
similar predictions for the amplitudes of the diffracted waves when
the ratio of emulsion thickness to minimum fringe spacing is small.
However, when this is not the case, the approach of Chapter One is
clearly the better of the two methods. If the problem is not one of
computing the relative amplitudes of the waves in the two images, but
rather that of computing the relative.amplitudes of the waves asso-
ciated with one of the images (say the virtual image, with the illumi-
nation beém being the reference beam), then the transmittance approach
may be satisfactory, as variations iﬁ the "proportionality constant'
between waves in the same image may be small.

We have secen that with respect to calculations involving the
directions and phases of the diffracted waves, the two methods are
equivalént. In the scattering theory approach, the fields at the film
plate are assumed to be in the form of a sum of quasi-plane waves. The
diffracted field is then given as a sum of such waves, where the direc-
tion and phase of each wave at each point of the film plate is computed
according to the formalism developed in Chapter One. In the trans-
mittance approach, on the other hand, the exposing and illumination

fields are written in a very simple form (equations 2.2, 2.3 and 2.9)
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and the diffracted field is found using the simple relationship given
by equation 2.8 or 2.10.

It is often the case, however, that part of the over-all
problem is that of relating the exposing fields to the sources which
generate them and computing the diffracted field at some distant ob-
servation point when the hologram is illuminated. Then, depending on
the problem under consideration, one or the other of the two methods
may be more useful. For example, consider the case where the exposihg
fields consist of a well defined reference beam plus the light scatter-
ed from the surface of a diffusely reflecting object. It would clearly
be quite difficult to specify Az(x,y) and ¢2(x,y) in equation 2.3.
On the other hand, the scattered field could be represented as arising
from a number of poiﬁt sources distributéd over the surface of the
oﬁject, and thus would be ofvthe form of the field given by equation
1.4, The diffracted field could then be computed in a straightfor-
ward (but lengthy) manner for any arbitrary illumination field which
can be put in the form of a sum of guasi-plane waves.

FIn contrast, an example where the transmittance formulation
is most useful would be for the casevwhere the exposing field consists
of the light diffracted by a two-dimensional transparency plus a plane
or spherical wave reference beam. Fresnel-Kirchhoff diffraction theory
could then be used both for s?ecifying the exposing field at the film
plate and for computing the field at some observation point when the
hologram is illuminated. These calculations can be put in transform

language and discussed within the framework of communication theory (2).
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Calculations of these types, using the transmittance formulation, have
formed the basis of the majority of hologram investigations thus far.
We shall have occasion to use both approaches in the following chapter.
Finally, we note that what might prove to be the most useful
aspect of the approach developed in Chapter One is that it allows us
- to gain a good deal of insight into the holographic process by examin-
ing in detail a very simple type of hologram, the holographic diffrac-
tion grating, formed by recording an interference pattern which is

generated by two plane waves.
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CHAPTER THREE

MULTIPLE WAVEFRONT REFERENCE BEAM HOLOGRAPHY - GHOST IMAGING

3.1 Introduction

-The concept of multiple reference beam holography or 'ghost
imaging' as used here refers to the case where the reference beam is
no longer a simple, well-defined wave (such as a plane or spherical
wave) , 5ut instead consists of a discrete sum or continuous distri-
bution of such waves. In particular, these waves may arise from a
portion of the object itself.

The first investigation of such a case was made by P. J.
van Heerden who, in a paper developing the theory of the intensity
filter (12), predicted that when a planar Fourier transform hologram
(or "inteneity filter") ie illuminated with a portion of the original
exposing field, a reconstruction of fhe remainder of the exposing
field is obtained. In the optical system considered by van Heerden,
this reconstructed field is brought to a focus to form an imasge of the
original transparenc&, and this image was referred to as a '"ghost
image."

The first experimental observation of such a "ghost image"
appears to have been made by Stroke et al (35), who were investigat-
ing the effect of "extended" sources on the resolution attainable in
Fourier transform holography. This was followed shortly by a series
of experiments by Collier and Pennington (36,37), who verified van

Hearden's original prediction that a translation of the portion of
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the object generating the "reference beam" during the illumination
results in a corresponding translation of the ghost image, which re-~
‘maine in regieter with the image of the object fragment. They also
presented experimental results showing the formation of a ghost image
with a diffusely illuminated tfansparency as well as with a diffusely
reflecting object. In the latter case, they observed that reposition-
ing of the hologram plate was critical, and that things had to re-~
méin as they were during the exposure in order to obtain a recon-
struction of the '"ghost image."

In this chapter we shall be interested in examining the
mechanism of the formation of the ghost image (i.e., a reconstruction
of the signal beam when a complicated reference beam is used), both
from the point of view taken in Chapter One and from the point of
view taken in Chapter Two. We shall examine the effect of errors in
repositioning of the hologram plate (the "translational sensitivity")
as well as the background noise that arises when the reference beam
is no longer a single wavefront.

We shall bégin by considering the case where the reference
beam is of the form of a sum of plane or quasi-plane waves, such as
would arise, for example, if the reference beam was generated by the
light from a diffusely reflected object. After computing the effect

~of repositioning errorsvand background noise, we shall describe an
experiment in which the power in the reconstructed signal beam is
measured as a function of repositioning error, or translation of the

hologram from its original position. The experimental results are
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then compared with the results obtained by applying the analysis pre-
sented here.

We shall then go on to consider ghost imaging with Pourier
transform holograms, and investigate the translational sensitivity
and background noise both for plane wave illumination (of the trans-

parency) and for diffuse illumination.

3.2 Holograms with Multiple Wavefront Reference Beams

In this section we shall consider the case where the ref-
erence beam is more complex than the simple single wavefront reference
beam considered previously, as is the case in "ghost imaging" or holo-
graphy with "extended sources". We shall use the approach outlined in
Chapter One, namely where we treat the exposing fields as sums of
locally plane waves. This approach is in principle essentially that -
used by van Heerden (13) in his treatment of ghost imaging in his paper
on information storage in three-~dimensional media, the basic difference
being that we shall allow for a (slow) variation of the propagation
vectors aéross the film plate.

We shall be concerned with the case where the illumination
beam is the reference beam, and shall examine in detail the effects of
s1ight changes ln Lhe reference beam (such as caused by an error lo
repositioning the film plate). Furthermore, we will consider the nature
of the reconstructed field (virtual image) and examine "noise" or
"digtortion" terms which generally arise when a multiple wave reference
beam is used. We shall treat this ''background noise" both from the

point of view taken in Chapter One and from the "transmittance" point
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of view, and will show that the results are equivalent, as is to be

expected.

3.2.1 Recording Process

We are now interested in the case where the "reference beam'
is no longer a singlé plane 6r spherical wave but is rather a sum of
such waves. The field at the film plate is still of the form of equa-
tion 1.4, but now the first P terms are identified as the reference

beam and the last M~P terms as the signal beam. The field at the film

plate is thus written in the form (e * suppressed)
P i(k,.7r +0.) M ik vr+¢)
=] E, e Y L) EK e & o (3.1)
g=1 Y n=p+l =

With E in this form the expression for the grain density D given

by eguation 1.9 becomes-

P P

D=C +¢C, )} ) C. cos[(k.-k )T +¢, -8]

° Lymikm IE : 3k
T

+ C C cos[(E -k )'; + ¢ - @ ]

1 n=P+l m=P+1 nom noon

P M _ _
+ 201 Z C 0 cos[(kj—kn)'r + ¢J - ¢n1
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+ higher order terms. (3.2)

Since we will be illuminating the hologram with the reference beam (or
a beam very similar to it) we shall be primarily interested in those
terms in equation 3.2 which correspond to interference between refer-
ence beam waves and signal beam waves. These terms are those included
in the third double sum in equation 3.2. The first and second double
sums in equation 3.2 correspond to interference between the various
reference beam waves and the various signal beam waves, respectively.
We will assume that the geometry of the problem is such that the dif-
fracted waves produced when these periodicities are illuminated with
the reference beam are either separated in angle from the reconstructed
signal beam or else ére sufficiently weak (due to unfavorable illumina-
tion conditions) sﬁch that they may be neglected.

Thus, under these conditions, we shall write
D=D_ +D (3.3)
v r

where Dv includes those terms which are significant in the recon-
struction process when the illumination beam is the reference beam and

hence 1s given by

P M '
D =2C, ) } ¢, cos[(E, -E )T +g, -01 , (3.4)
Voot gspepa 90 g8 g

and Dr represents the remaining terms.
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3.2.2 Reconstruction of the Signal Beanm

We are interested in the case where the illumination beam is

the reference beam, and is thus given by
E = L B e Y / . - (3.5)

Weiwill consider only one of the two first-order diffracted waves pro-
duced when each periodicity term in equation 3.4 is illuminated by one
of the reference beam wa&es of equation 3.5. These will correspond to
the virtual image. The other first-order diffracted waves correspond
to the réal image which is assumed to be separated from the virtual
image as well as being considerably weaker, and thus will be neglected.

Hence there will be PE(M—P) diffracted waves which must be
considered. P(M-P) of these waves contribute to the reconstruction of
the signal beam, and the remaining P(P-1)(M-P) waves constitute a
background noise.

Let us consider those waves that contribute to the reconstruc-
tion of the signal beam, leaving the others to be considered in detail
in Section 3.2.4. Thus, let us consider the Jth illumination wave in
equation 3.5,

ik, v+ 2,)
E =8, e ! J . (3.6)

We recall from Chapter One that when the illumination wave has the same

k and $ as one of the two initial waves which yielded the
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interference term under consideration, then one of the two first=-order
diffracted waves from this periodicity has its propagation vector k
and phase @ equal to that of the other wave (except for a constant

phase factor of -7 ). Thus the terms
M

2c ) ¢, cos[(k, -~k )r+¢, -0]
Top=pey 0 don g

¥ield the diffracted waves

when the illumination wave is given by equation 3.6. In writing equa-

tion 3.7 we replaced Cjn by Ej'En (equation 1.9b) and made use of
the factor F defined in Chapter One, and in addition we neglected the
diffracted waves corresponding to the real image, as discussed pre-

viously. If we now consider all the illumination waves as given by

equation 3.5, then we obtain

P
E.= ] E.. (3.8)
a j=1 aj
or
i % i(En-E + ¢n -7) )
E. =20 ) F. (E,'E ) e . (3.9
T lysipepe M J0m
We shall assume that
— -~ — [a¥} e
. - - O
2c, an{EJ En) CE,E_ (3.10)
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and hence equation 3.9 becomes

P XM ik r+¢g -~ |
= _ & n n
E, = ¢C _Z_ _Z EE e . (3.11)
J=1 n=P+1
Upon comparing equations 3.11 and 3.1 we see that equation 3.1l repre-

sents a reconstruction of the signal beam, there being P +terms con-

tributing to each wave in the signal beam.

3.2.3 Translation Sensitivity

Equation 3.11 shows that the reconstruction of each signal
wave fronﬁ consists of a superposition of terms, which add in phase
provided that the hologram film plate is illuminated by the "reference
beam' as given by equation 3.5. In general this requires that the
hologram be repositioned in exactly ﬁhe same place where it was during
the exposure of the hologram, and that the hologram setup remain un-
changed. If this repositioning is not gone accurately, the result will

i,

be the appearance of a phase factor e J

under the summation sign in
,equatiqn 3.11. This can, as was observed by van Heerden (13), result
in the disappearance of the reconstruction, as the sum may then average
out to zero.

To put these statements on a more quantitative basis, let us
consider a translation of the developed hologram film plate by an

amount Eo in the x',y' plane. We shall consider the reconstruction

of one of the original signal waves, which is of the form
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Em e e . (3.12)

In the absence of any translation, the jth wavefront of the illumina-

tion reference beam interacts with the periodicity term
C. cosf(k, ~k )r + - A
5 [y -k g, -2 (3.13)

. to produce a diffracted wave of the form of equation 3.12. The effect
of the translation of the film pliate is to make the phase factor Qm a

function of j :

g >0, . (3.1k4)

m mj

The phase factor Qmj may be specified by requiring, as before, that
the interference pattern generated By the transmitted portion of the
illumination wave and the diffracted wave of interest match up with the
recorded interference pattern corresponding to equation 3.13. This is
done in Appendix IIT. A much easier way of specifying the phase factor
¢mj éan be found by noting that a translation of the film plate is
equivalent to an equal and opposite translation of both the source and
the observer (or detector). Since we are considering each of the
wavefronts to be locally & plane wave, the specification of Qjm at
any particular point on the film plate reduces to the problem considered
by van Heerden (13), who points out that a dispiacement of the source

by an amount Eo introduces a phase shift of k-ro to a plane wave
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with propagation vector k . Since we are considering the source and
observer to be fixed, the total phase shift the observer sees in the

diffracted wave Em is
g, =(k, -k )7 , (3.15)

where Ej is the wave vector of the illumination wave and fo is the

displacement of the film plate. Thus, equation 3.1l becomes

_ P M ik, =k )-r ik T+ g - - )
Ej=cCc ) ) E.e ¢ T %F ¢ T o (3.16)
J=1 m=P+1 Y m .

We vuserve Lhal lhe factor

can be removed from under the summation over m , and thus each of the
reconstructed signal beam waves is multiplied by the same factor n ,

where
P T
n= J E, e Y . (3.17)

It is clear that if the Ej are essentially equal and if the Ej vary
sufficiently such that Ej-fo ranges over 0 -+ 21 , then n will be
essentially zero and we will have no reconsﬁruction.

We shouid bear in mind that Eo is a constant vector and

that the Ej may be functions of position, with the result that n
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may vary over the film plate. Let us consider the case where

Eo = Ax! éx, R (3.18)
then

P i%T- L' A"
n= ) B e . (3.19)
5=1

An estimate of the translation Ax& required to make n -+ 0 is found
by assuming that the 'Ej are equal and the direction cosines &' are

uniformly distributed over the range &', to &! . Then
min “max

. ) |

Ax! B L . (3.20)
max. min

We will have occasion to apply the above equation as well as equation

3.19 in Section 3.3, and we shall see that these equations yield pre-

dictions that are in good agreement with experimental results.

3.2.4 Background Noise

We view as background roise all diffracted waves other than
tnose correspondiﬁg to a reconstruction of the signal beam as given by
equation 3.11, which are not separated in angle from tne signal beam.
By separated in angle we mean having a propagation vector k whose
direction is significantly different from those of the signal waves.
We will retain the assumption made in Section 3.2.2 that the geometry

of the experiment 1s such that we can neglect the waves diffracted from
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all periodicities associated with the terms Dr in equation 3.3,
either because they are separatea in angle from the signal beam or be-
cause their amplitude is sufficiently small.

This leaves the periodicity terms given in equation 3.4. We
have seen that these terms give rise to a reconstruction of the origi-
nal signal beam when the hologram is illuminated with the reference
beam. There are P(M~P) periodicity terms in equation 3.4, where P
and M-P are the number of waves in the reference and signal beams,
respectively. When the hologram is illuminated with the P waves of
tae reference beam, each periodicity will yield P diffracted waves
(we are dnly considering one of the two first order diffracted waves),
but iny one of these P waves contributes to the reconstruction of
the signal beam. The other P-1 waves constitute a background noise,

“and thus the ratio of signal Terms to noise terms is

z‘mz

= - = (3.21)
The noise waves can be computed in a straightforward manner in the same
way that the signal field is computed, by using equations 1.16, 1.26,
1.28 and 1.3k,

The fact that the reconstructed signal beam is accompanied by
a background noise can also be seen from the transmittance approackh. We
recall that equation 2.10 specified the transmitted field in the
z' = O+ plane, in terms of the exposing and illumination fields. In

.applying this equation, we shall find it convenient to write the
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reference beam Ul and signal beam U2 in the form of a sum of plane

waves. Thus we write

P iy,
U, = ) Ay e J (3.22)
J=1
and
M iy,
Up=] B e : (3.23)
k = p+1

wnere the Aj and Bk are real constants and the wj and wk are

of the form.
Y= R'X+m'y + @ . (3.24)

Since we are interested in the case where the illumination beam is the

reference beam, we set

We recall from'Section 2.2.3 that an arbitrary field can be represented
as a continuous spectrum of plane Qaves. We can view our choice of
vriting the reference beam and signal beam as discrete sums of plane
waves as either a restriction to fields of this form or as an approxi-
mation to the more general case.

Now according to equation 2.10, the “ransmitted field UT

is gi?en by

5 :
= * * * ¥*
UIII Ul(UlUl + U2U2 ) + Ul U2 + UlUl U2 . (3.26)
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We are interested in the last term in the above equation, which corres~

ponds to the reconstruction of the signal beam. Now

P iy, -9, ) o iy
uu¥u, = 7 aa e 90K T 3 et (3.27)
i1 72 j= JAk 4=P+1 L
k=1

and we see that if the signal beam U2 is to be reconstructed without
distortion or background noise we must have P = 1 , which corresponds
to the case where we have a single plane wave for the reference beam.

We observe that we can write equation 3.27 in the form

P iy, - %) M iv P M iy
k % 2 %
uuv¥u, = J AA e Y J B,e “+ J aA° ] B, e .
rLE n i A p=Pe1 j=1 4 g=pa1 *
K=1
. .28

The first group of terms corresponds to the background noise mentioned
previously, while the second group corresponds to the rccomnstruction of
the signal beam.

It is of interest to coméare the power in the signal bean to
that in the noise beam. A convenient measure is the signal to noisge
ratio S/N , which is seen from equation 3.28 to be of the form (the

factors UEUZ cancelling)

SN =T ORIV T, -y
jzl A e jz A e
k=1 k=1
J#k J#k
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We observe that we can write the denominator N in the form

P (v, =¥ =¥ + ¥ )
N= ) AAAA e J & & m

jkig 9 F L ®

J#k

L£m

(3.30)

It is of interest to write out separately those terms in equation 3.30
for which the exponent is zero. This occurs when the j = £ and
k =nm (the cases where j =k and % =m not being allowed). There

2 . . .
are P such terms, and we can write N in the Fform

AA A e

‘ P 2 P iV, =% b+ )
_ 2 S k % m
N = ( A.> + ) shA A

(3.31)
=1 9 e
J=1 Skim
J#k
S#L
L#m
1#m
We recall from equation 3.24 that the wi are functions of position on
the film plate. It is clear that if the propagation vectors Ei . and or
phase factors ¢i have sufficient variations that at any given observa-
tion point (x,y) the V¥, will vary over the range 0 - 2w , and hence
' J
the contripution of the second factor in equation 3.31 can be neglected,

as 1t will essentially average out to zero. In this case the signal to

‘noise ratio is unity:
S/N =1 . (3.32)

This can be interpreted in a simple way by recalling that there are P
waves that contribute the reconstruction of each of the signal beam

waves. These waves add in phase so that the power in each of these
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signal waves goes as P2 . On the other hand there are P(P-1) corres-
ponding noise waves, but these don't add in phase and hence their power
goes as P(P-l) , with the result that the signal to noise ration goes
as

2

|5}

P(i’-l)

+ 1

for large P

3.3 Translaticn Sensitivity Experiment

In this section we shall describe an experiment where the
total power in the reconsiructed signal beam is measured as a function
of the error in repositioning the hologram plate. The analysis of
Section 3.2.3 is applied to compute the quantity being measured and ex-
perimental and computed values are compared, and found to be in excel-

lent agreement.

3.3.1 Description and Analysis ofvthe Experiment

The experiment consists of taking a hologram using a multiple
wave réference beam, and then measuring the total power in the recon-
structed signal beam as a function of the displacement of the developed
film plate from the position it occupled during the exposure of the
nologram. For reasons of experimental convenience, the signal beam was
taken‘to be a single converging wave. This corresponds to the special
case of M =P + 1 1in equation 3.1. It follows from equation 3.16 that

tae reconstruction of eacn wavefront in the signal beam can be
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considered separately with respect to the effects of plate translation,
and thus there 1s no loss of generality incurred by this choice of the
signal beam.

The reference beam is produced by illuminating a diffusely re-
flecting surface with & collimated laser beam, the scattered light form-
ing the reference beam, The reference beam is thus of the form given
in equation 3...

The actual geometry used in the experiment is shown in Figure
3.1. The converging wave which forms the signal beam is incidént on
the film plate at an angle of incidence of 2h0, and comes to a focus
behind the film plate at (x',y',z') = (-11", 0, -2L.7") . It exposes
aneiliptically shaped area centered at the origin. A converging beam
was used because it provides a convenient means for the measurement of
the total power in the reconstructiop of the signal beam, and for the
discrimination against background noise.

The reference beam is provided by the light scattered from_a
magnesium oxide powder layer sandwiphed between two microscope slides.
Tne magnesium oxide layer is illuminated by the laser beam (which was
divided into two beams by a beam splitter) which is passed through a
3/32" diameter aperture before striking the oxide layer at an angle of
260,30' as shown in Figure 3.1. The reference beam can thus be assumed
to arise from a large number of point sources distributed over an
elliptically shaped area in the x' = -1/2 inch plane, The amplitude of
each point source depends on the variation in ampiitude across the cross

section of the illuminating beam, and will be dealt with later when
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FIGURE 3.1 GEOMETRY OF TRANSLATION SENSITIVITY EXPERIMENT
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required in the calculations. The point sources have random phases.

The light scattered by the reference beam source points will
illuminate most of the film plate for =x' > -1/2 , but the only area of
interest is that area illuminated by both signal and reference beams
since this is the only area which will yield a reconstruction. This
consists of the elliptically shaped area which is illuminated by the
signal beam. The displacement Axé in the x' direction that the de-
_veloped hologram film plate must be moved in order to have the recon-
struction vanish is a function of the observation point in the hologram
area. That is, 1f we were to observe the reconstruction through a
small aperture placed at some observation point (x',y',0) in the
hologram area, the value of Ax¢ will vary with (x',;y',0) . In this
particular problem it is tane total power in the reconstruction that is
measured, which is the sum of the power passing through each element of
area of the region which constitutes the nologran.

An estimate of the Axé can be obtained by neglecting the
variation of the y' direction and applying equation 3.20. Thus, to
obtain an estimate of /\x‘} (max) , equation 3.20 is applied to the case
where the source points which generate the reference beam all lie along
the line between (~.5, 0, .948) and (-.5, 0, 1.052). The observation
point which yields the maximum vaJue of /\XX;_ is at (~.25, 0, 0).

The angles between the x' axis ané the lines whicna join the

two extremities of the source line and the observation point are

1 o(eok8 147 (3.33)

0. = tan

q
e
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-1 ,1.052 , '
6, = tan™ ( _22 ) = 76° 38" (3.34)
and hence
£' max = cos{75° 14') = ,25488 : (3.35)
£' min = cos(76° 38') = .23118 . (3.36)

Using the above values in equation 3.20, with A = .63284 , we find as

an estimate for Ax&

-Axé ~ 26.7 microns

.37)

~~
w

As will be seen later, this estimate is in quite good agreement with
experimental measurements.

The quanﬁity which is measured in the experiment is the total
power Pn in the reconstructed signal beam as a function of the dis-
placement of the film plate from its original position, normaiized with
respect to the power obfained when“the displacement of the film plate

is zero. Pn is given by

(3.38)

where the Integration over the x'y' oplane extends over the area of

the film plate where both the signal and reference beam wavefrontis
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existed during the exposure of the hologram.

The diffracted field Ed is given by equation 3.16, with

r = Ax'e_, . (3.39)

The factor n , defined by equation 3.17, then becomes

i%F-L;Ax'
n{ox') = ¢

J

E,

(3.L0)
1 3

Il o~3td

Recalling that wc have only a eingle signal beam wave, we see that
M=P+ 1 in eguation 3.16 (only one term in the summation over m ),

and hence, using equations 3.16 and 3.40, equation 3.38 becomes

J

)
P (ax') = F= . (3.h1)
i

ol *

B ] 1 ] '
- Em nlax') n" (ax')dx'dy

[ _ -
; . * 1 1
J Em Em n(0) n¥* (0)dx'dy
y

1 1

Observation of the developed hologram plates has shown that the ampii-

tude of the signal wave Eﬁ is essentially constant over the area of

%

integration, and thus it is a reasonable approximation to remove

Em~E~n from under the integral sign in both the numerator and denomina-
4

tor of equation 3.41. Thus
' *

J n(ax') n° {(Ax')dx'dy’
X'

1

Pn(Ax7) = . (3.42)

W G

J n(c) n* (0)ax'ay'
v

1 1
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The quantity Ej in the expression for n given by equation
3.40 is the amplitude at the point (x', y', 0) of the field scattered

by the jth scattering point on the magnesium oxide surface. E will

d
be assumed to be given by
CA,
E, = —& , (3.43)
J rj

where Aj is the amplitude of the wave illuminating the scattering sur-~
face at the jth scattering point and rj is the distance from the
scattering point to the point x', y' on the emulsion surface. C 1is

a constant which we will assume to have approximately the same value for
all scattering points and thus will cancel out in equation 3.42. Tae
illumination wave is an unfocused laser beam passed through a 3/32
diameter aperature. The variation of Aj across the laser beam de-
pends on the geometry of the laser cavity (mirror curvatures and spacing),
the transverse mode structure, and the distance from the output mirror.
The laser was operated in the lowest order transverse mode, and thus

has an amplitude variation which is Gaussian (truncated by the aper-
ture). - Thus, the variation with r {defined normal to the laser beam

axis) is
2
AMr) =E e . (3.LL)
The constant o was determined by fitting the above curve to measured

data on the variation of the amplitude with r . A value of

o = 1 e = 645,16 (in)”2 (3.45)
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was found to fit the measured data well. An examination of the geometry
of the experiment shows that the amplitude of the illumination wave at
the point (yj, Zj) on the magnesium oxide surface 1s found by setting

r2 in equation 3.4k equal to

r =y, - (z, - 1)2 cosz(

26° 301) : (3.L6)

The distance X from the scattering point (-1/2, Yy zj) to the

point (x', y', 0) on the emulsion surface is

Ty = [(x' +1/2)% + (y' - yj)e + Z§]l/2 . (3.L47)
Equations3.43 to 3.47 specify EJ as a function of the coordinates of
the jth scatﬁering point and the coordinates of the observation point
on the hologram. The remaining quantity that needs to be specified in
order to detefmine n is 25', the x' direction cosine of the propa-
gation vector Ej of the wave scattered by the jth scattering point,

evaluated at the observation point - (x', y', 0) . We assume kj

points in the direction from (-1/2, Vo Zj) to (x', y', 0) , and thus

- _x' +1/2
—=

Al
J .
d

(3.48)

The applicatlnn of equations3.40 and 3.42 to 3.48 permit the
computation of the normalized power diffracted into the virtual image
;s a function of the translation distance Ax' . This was done, with
the calculations being done numerically with the aid of a digital com-

puter. The results of this computation will be presented in Section



3.3.3, which follows the next section which deals with the details of

the experiment.

3.3.2 Experimental Setails

The basic idea of the experiment was to take a hologram of a
simple waveiront, witn the reference beam being of the form of a field
produced by a large number of point sources. The hologram was then re-
positioned and the total power in the recoﬁstructed signal beam wave-
froal was measured as a funcllon of translation of the hologram plate
from its initial position. The experimental apparatus which was used
to perform the experiment is shown in Figure 3.2.

The apparatus on the iron surfacc platc is that which was:
used to expose and 1iluminate the hologram. The source used was a
helium-neon laser winich has a power output of about three milliwatts
when operated in the‘lowest order transverse mode. A camera shutter
was used to control the exposure time, which was of the order of ten
seconds. A Dpeam splitter provides twc beams, one of which is passed
through an optical system which performs a low pass spatial filtering
operation and then produces a converging bean which comes to a focus
about 27 inches behind the film plate. The other beam is directed by a
series of mirrprs {which are positioned so as to make the path lengths
of the two beams approximately equal) positioned so that the beam falls
on a diffusely reflecting surface oriented so that the scattered light
reaches the region of the film plate which is illuminated by the con-

verging beam. The diffusely reflecting surface is a layer of magnesium
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oxide powder pressed between two microscope slides. The angle of inci-
dence of the incident laser beam is adjusted so the reflected beams from
the glass ailr interfaces do not strike the region of the film plate
which constitutes the hologram area. The film plate (Kodak 649-f
4x5x.25 microflat plate) was held in a specially designed film plate
holder which permitted accurate repositioﬁing and translation of the
film plate. Translations of the order of a micron or less were possible
through the use of a micrometer drive mechanism with a 187:1 gear reduc-—
tion attachment.

The apparatus on the smaller table (see Figure 3.2) is the
system uéed T0 measure the power in the reconstruction of the converging
wavefront. The codverging beam 1s chopped at about 103 CPS, passed
through a small aperture located at about the focal point, and then
delecled by a photomultiplier. The aperture has the function of dis-
criminating against background light scattered from the {ilm pliate which
is not part of the reconstructed signal beam. The output of tne photo-
multiplier is mcasurcd using a lock-in amplifier, which makes usc of a
reference signal generated by the chopper.

During exposure of the holograms the iron surface plate was
"floated " to uncouple the apparatus from building vibratione. In addi-
tion, acoustical shielding was used in.order to reduce any accustically
excited vibrations in the critical elements of the hologram taking

apparatus (beamsplitter, mirrors and film plate).
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3.3.3 Discussion

The results of the numerical calculations referred to at the
end of Section 3.3.1 and the experimental results are shown in Figure
3.3. The agreement between experiment and theory is excellent, consid-
ering the approximations made irn the analysis and numerical computa-
ticns as well as the difficulties involved with the experiment. TFur—
thermore, we observe that the estimate of Axé (the translation
distance required to make the reconstruction vanish) given by equation
3.20 of 26.7 microns (equation 3.37) is quite accurate.

There were two major areas of difficulty that were encounter-
ed in cafrying out the experiment, namely low power levels in the re-

construction of the signal beam and . difficulties in obtaining

accurate translation motions of the order of a micron or less. The low
power levels were due mainly to the fact that in this éxperiment we are
forced to illuminate the hologram with the reference beam which was
used to expose the hologram, which was quite weak due to the relatively
low power of the laser, the inefficiency of the scattering step, and
the l/r2 loss between the scattering area and the fiim plate. This
latter loss was minimized by placing the magnesium oxide scattering
layer as ciose to the film piate as was mechanically possible. In
addition, the relative power levels of the signal and reference beam

as well as the exposure time were adjusted to obtain maximum efficiency
trom the hologram. This was accomplished by an "educated" trial and
error procedure, making use of the results of an experimental study of

the holographic diffraction grating, which is discussed in Chapter Four.



NORMALIZED POWER IN VIRTUAL IMAGE P, {AX)

THEORETICAL
CURVE

|

-30 _ -20 -10 0 10 20 30
TRANSLATION AX’ (MICRONS)

FIGURE 3.3 EXPERIMENTAL AND ANALYTICAL RESULTS



gl

The most efficient hologram produced & reconstruction with a power
level of the order of 2 x 10—9 watts, which allowed a measurement of
Pn(Ax') down to a value of about 0.05 before the sensitivity limit of
our detection system was reached (about 10—10 watts). Lower values were
measured but the noise in the detection system became objectionable.

The translation of the film plate was accomplicshed by puching
the film plate sideways in a special holder with a micrometer drive,
which in turn was driven by a lBYfl gear reduction device. Once the
vacklash of the device was taken up there was no difficulty in moving
~ the rod pushing on the film plate by very small increments. Trouble was
experienced, however, with the movement of the film plates when thin
.0L0" x 4" x 5" film plates were used, and satisfactory results were
obtained only when thicker and heavier .250" x 4" x 5" microflat plates
were used,

It was observed that a translation of the hologram plate re~
sulted in a corresponding translation of the reconstructed beam. This
required a corresponding movement df the small aperture used to block
out the background noise. A similar motion of the focused heam was
opbserved in earlier experiments (not reported in this thesis) dealing
with holograpﬁic lenses, in which a hologram was taken of a converging
wave, using a single plane wave for a reference beam. Tn that case
the reconstructed converging wavefront remained in register with the

hologram plate, as could be expected.
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3.4 Fourier Transform Holograms with Multiple Wave Reference Beams

We recall that the fundamental process involved in holography'
is the interference of two fields in the'exposure of the film plate.
One of these fields is arbitrarily referred to as the reference beam
and the other as the signal beam. 3By convention we refer to the field
-which is used to illuminate the hologram as the reference beam, and the
field that is to be reconstructed (virtual image) as the signal beam.
We recall that the most common situation is where the reference beanm is
a single wave and the signal beam is some complex field such as the
light scattered by a diffusely reflecting object. It is now of interest
to examine a particular case where the reference beam is the complicated
field and the signal oeam is the plane wave. To be more specific, we
shall consider the case of the Fourier transform hologram, where we
- adopt the point of view that the field due to the transparency is the
reference beam, and the plane wave’is the signal beam.

This type of hologram is of particular interest, since it is
+in fact thne complex part of the "matched filter" used by Vander Lugt
(L1,k2) to perforﬁ signal detection by complex spatial filtering.
Similarly, Gabor utilizeé a variation of this type of hologram in a pro-
posed character recognition system (43). We shall be interested in ex-
amining the translational sensitivity of Fourier transform holograms,
both with respect to translations of the transparency and translations
of the hologram itself. We will also be interested in considering the
background noise, and will examine both the translational sensitivity

and background noise when the transparency is diffusely illuminated.



93
Before considering Fourier transform holograms with multiple wave ref-
erence beams, however, we shall review the case where the reference

bcam consiats of a single plane wave.

3.4.1 Review of Fourier Transform Holograms

By a Fourier Transform hologram we mean a hologram of a two-
dimensional transparency, taken under such conditions that the exposing
field at the film plate due to the transparency is of the form of a
Fourier transform of the field transmitted by the transparency. This
can be accomplished by the use of a converging lens, when the transpar-
ency and film plate are located in the front and back focal planes of
the lens, respectively (the Fourier.transform relationship betwéen the
amplitudes in the front and back focal planes of a lens is reviewed in
Appendix V). Other experimental configurations are possible (34), and
we shall briefly review Stroke;s method of "lensless" Fourier transfornm
holography at the end of this section.

The treatment which we shall give here will be a brief review
of this well-known aspect of nolography (2), (34), (38) and we shall
limit our treatment <o a.demonstration of the formation of an image of
the object transparency when a lens is used in the reconstruction pro-
cess. A further discussion of certain aspects of Fourier transform
holography will be given in the following sections.

Let us begin by considering the case where the object trans-
parency is placed in the front focal plane of a converging lens and il~

luminated by a plane wave of unit amplitude at normal incidence, If



9l

T(x ) is the amplitude transmittance of the transparency, then the

1 Y1

amplitude distribution - in the back focal plane of the lens is shown in

Appendix V to be given by

®w 21

i -i (%, + y.7,)
i Af 1% T VY
) =37 J J t(x,y,) e dx, &y,

00 -0

!/
Bo\Xss¥ 5

(3.49)

We shall take the reference beam to be an off-axis plane wave of unit

amplitude which has the form (in the X5s¥ plane)

i %;'(2x2 + my,)
B lxy,y,) = e . (3.50)

Such a reference beam could be produced by a point source suitably
located in the plane of the object transparency, or by by-passing the
lens entirely with a collimated beam; The hologram is formed by placing
a film plate in the back focal plane of the lens, and illuminating it
with the fields ES and ER . Fo? simplicity we shall assume that the
transmittance Ty
equal 0 the infensity of the exposing fields. Thus

of the developed film plate, or hologram, is simply

_ * L% * % '
Ty T Epp + Eoho + Bkl + ECED . (3.51)
In the reconstruction process, the hologram is placed in the front focal
plane of a similar lens and the reconstructed images are formed in the
back focal plane. Thus, the amplitude of the field in the back focal

plane (x ) is given by

3° 93
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T -1 ’2‘11'1' (g + yp¥3)
J E 1, e A dx2dy2

= J;

(3.52)

The terms in the expression for Ty as given by equation 3.51 which
are of interest are EREg and ESEg s which correspond to the real and
virtual images, respectively. Let us consider the virtual image. Sub-
stitution of ESE; for Ty in equafion 3.52 yields, using equations

3.49 and 3.50,
o
L2 MJ ey ) e M %y *+ x3) + yplyy * vl
J 1°Y1

xdx, dy, dx,dy, . (3.53)

i e . N2
Integration over X,.¥, yields (AI) é(xl + x3) G(yl + y3) and hence

E (x5, y3) = - 1{~x5,-y3) : (3.54)

Similarly, the amplitude distribution Er(x3, y3) due to the real image

term EREg is given by

. 2n
i Elx (—x, + x_ - 2fa)]
E (X s ) = - (—l.'; 2 1.J‘JJ' T*(X s ¥ € Aoz . 3
3 3 AL g 1 l
. em
-i 33 yol-yq + ¥y = 2fm). _
xe dxldyldx2dy2 (3.55)

and hence
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— *
Er(x3, y3) = T (x3 - 214, yg - 2fm) . (3.56)

Thus, both the real and wvirtual images yield a reconstruction of the
transparency, and these are separated due to our choice of an off-axis
rcference beam. The zero order terms are likewise separated from the
reconstruction being centered at (£, fm) .

Let us now briefly review the technique of Stroke (38, 39, 40)
whereby a Fourier transform hologram may be obtaincd without the use of
a lens. The essential feature of this technique is the use of a point
source located iﬁ the plane of the object for the reference beam. This
results in the cancellation of certain quadratic phase factors with the
result that the hologram obtained has a form similar tc that of a
Fourier transform hologram.

To put these statements on a more quantitative basis, let us
assume that the transparency and film plate are located in parallel
planes & distance z0 aparv. The transparency with transmittance
(o, ) is illuminated with a plane wave of unit amplitude at normal

incidence and this yields the field in the xy plane given by (Fresnel

diffraétion)
22z .
R L (xm0)? + (y-8)°)
Es(x,y) =-57 ¢ ” (a, B) &"70 dadg . (3.57)

Now suppose, as was suggested by Stroke, that the reference beam is pro-

. vided by a point source located in the «,8 plane. Taking the point

source at the origin in this plane yields a field in the xy plane of
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the form

ikyr
(3.58)

or, taking Ao =1,

Eg (x,7) .-—“1;8; : (3.59)

The resulting amplitude transmittance of the developed hologram plate

is, using equations 3.51, 3.57 and 3.59

/ _ * *
TH\x,y) = ERER + ESES +

im 2 2 2ri
: f AZO (a7 + 87) - Azo (ox + By)
~ 322 jJ (a,8) e _ e dadB
o)
im 2 .2 271
: ~ 3z (a” + B7) Nz (ax + By)
* 552 ” *(a,8).e e ° dadB.
o) .
(3.60)
We observe that except for the factors
£ 21 (4% 4 %) (3.61)

equatian 3.60 is of the same form as was obtained in the previous
section, for the case of the Fourier transform hologram. Stroke (38)

notes that the above phase factor merely makes the reconstructed object
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appear as though it were recorded through a thin negative field lens,
and that this can be compensated for in the reconstruction. Winthrop
and Worthington (34), in their paper dealing with the Fresnel transform
representation of'holograms and hologram classification, refer to a
hologram of the form of équabion 3.60 as a quasi~Fourier transform
hologram, and they discuss its imaging properties. Stroke (38) makes

it clear that this arrangement is not limited to transparencies, but
can.also be used with diffusely reflecting objects, and presents experi-

mental work in this area (LO).

3.4.2 Translation Sensitivity - Displacement of the Transparency

In the previous section weAreviewed Fourier transform
nolograms, and considered the case where the reférence beam was taken
to be a plane wave and the signal beam was the field due to the trans-
parency. We now wish to turn this around, and consider the field due
tq the transparency as the reference beam and the plane wave as the

signal beam. Thus

cofr -1 2T (xox + Y.Y5)
ER(XE,YZ) = - f? inT(xl,yl) e M L2 12 dx; dy, (3.62)
and
i gﬂv(zx N my,,)
B(x,yy) =e M2 TR (3.63)

This re-labeling of the exposing fields, of course, doesn't change the

hologram in any manner, but it is convenient because it allows us to
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retain our designation of the reference beam as the field which is used
to illuminate the hologram.

Thus, let uslconsider the case where a transparency having an
amplitude transmittance T(Xl, yl) is placed in the front focal plane
(xl, yl) of a converging lens of focal length f and illuminated with
a plane wave at normal incidence., The film plate is located in the back
focal plane of the lens (xz, y2) and illuminated by the field due %o
the transpareﬁcy (the reference beam) and by an off-axis plane wave
(fhe signal.beam). As before, in the reconstruction process, the

hologram is placed in the front focal piane (x of a lens of

2) Y2)
focal length f and the reconstructed images are formed in the back
focal plane of the lens (x%, y3). If the illumination is done with the

reference beam, then the resulting amplitude distribution in the back

focal plane 1is given by equation 3.52. That 1is,

2n

. -1 = (x.x, + ¥.7.)
- _ i % * AT 7273 2’3

Blxg,¥5) = = 33 JJ Bp(EpFp + Eglg) e dxydyy +

*
3t E.EX E

i -1 5F Gy * 753)
JJ R'R U5 © drodyy ¥

i 2L (X %X, + ¥.75)
= EEE ¢ MM 23 T34 gy . - (3.64)
2v2
. The lasl Lwo lerms are whal Is ol lialeresl, as Lhey correspond Lo Lhe
virtual and real images, respectively. Let us consider the virtual

image. Using equation 3.62 for the reference beam and equation 3.63
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for the signal beam, the virtual image has an amplitude distribution in

the (x3, y3) plane given by

E, (x5,75) = (3}?)3 J o J T(x,yp) () ,y))

2T
-i x (x, -x'+x_~2f) + vy, (y, =y +y-uf)]
AfT2Y1L 1L 73 2717173 -
xe dx, dy, dx/dy;dx, dy, - (3.65)

2

We see that integration over x

§(x, —x'+x_-of)

B R e

G(yl—yj‘_+y3—mf) and hence, after integrating over x! and Y] » ve

> and y2 yvields (Af)

1

ocotailn

=i .
Ev(x3,y3) = Xf-JJ T(xl,yl) T*(xl * X - 2, ¥y + s = mf)axldyl. (3.66)

Similarly for the real image, we have

Lxgory) = =G3[| ) )

. 2T, 1 ) ‘
-1 [x, (%, + X_L + X3 + Lf) + y2(¥l + yl + y3 + m‘f')]

Af-T2 L -
xXe dxldyldxlayldxedyz
(3.67)
which yilelds
= i X X R . -y =y = . )
Er(x3,y3) == JJ T(Xl’yl) T( X, =%q Lf, ¥y y3.?f)dxldyl (3.68)

The above analysis is guite siwmllar to that used by Vander
Lugt (L1), who has formulated these types of calculations in a conven-

ient operational notation in a recent paper (44). An examination of
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equations 3.66 and 3.68 shows the familiar result_(38,hl), that in a
system of the type considered above, the formation of the virtual image
involves a correlation operation, while the formation of the real image
involves a convolution.

Let us now examine the effect of a translation of the trans-
parency on the virtual image. Thus, we shall consider the case where
the nologram has been exposed and developed, and then replaced in its
original position, but where the transparency thgt was used to provide
the reference beam during the exposure of the hologram is translated

by an amount 50 in the x plane from its original position,

12 91
where

r =e_ Ax +e_ Ay . (3.69)

The illumination field, provided by illuminating the displaced trans-

parency with a plane wave of unit amplitude at normal incidence, is

then given by equation 3.62 with r(xl,yl) replaced by 'T(xl—Ax,yl—Ay).
Equation 3.65 then becomes

E(x,,y.) = (4303 { ..; T(x, - Ax, y. - Ay) t%(x!), y!)

v ¥32Y3 AE 1 > I 1> 91

27
-1 =Ix (%, =x14x_-LF) + Yy ¥y, -y +y ~nf)]
AL T2YLTTL3 2113 .
dx, dy, dx;dy.dx,dy,, (3.70)

which yields, after integrating over xl,yl,xi and yi

Ev(x3,y3) =37 JJ T(xl-Ax, yl—Ay) T*(xl+x3—£f, yl+y3—mf)dxldyl . (3.71)
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Making the change of variables u = x, - Ax and v = vy - Ay , the
above equation assumes the form

E {x
v

r
| "
3,y3) =T t{u,v) 1 (u+x3+Ax Lf, v+y3+Ay—mf) du av (3.72)

and it is seen that a translation of the transparency merely results in
s similar translation of the virtual image in the (x3,y3) plane. An
examination of equation 3.72 shows that this translation is equal to
—50 , ard thus the virtual image remains in register with the image of
the displaced transparency in the x3,y3 plane, whose image 1is also
displaced by —50 . This result 1s analogous to the prediction by
van Heerden (12) that his "ghost image' remains in register with the
image of the illuminating transparency, and is well known in the field
of complex spatial filtering (L1.4k).

We have thus seen that except for a displacement in the
{x3,y3) plane, the virtual image is not affected by a translation of
the transparency. This can be explained in physical terms by noting
that the field transmitted by the transparency can be expressed as a
continuous distribution of plane waves. A translation of the transpar-
ency in the (Xl’yl) plane doesn't alter the direction of any of these
waves, and hence they are Iimaged at the same points in the (Xe,yg)
plane regardless of the translation. There is, however, a phase shift
produced by the translation which accounts for the displacement of the
virtual image. This phase shift, in the (xz,yz) plane, can be found

by using equation V-1l (Appendix V), waich gives the optical path
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length between the points (xl,yl) and (Xg’ye) . What we are interest-~
ed in is the change in optical path length as a function of (x2,y2)
produced by a translation of the transparency or “source" in the

XYy plane. This will give us the phase shift ei¢ as & function of

(X2’y2) . We observe that

@ = jr-[r(xl + Ax, yl + Ay, x2,y2) - r(xl’yl’XZ’yQ)] (3.73)

where r is given by equation V-14 with g = ¢

Thus, using equation V-14 we find

' 2
g =—3£:(x2 Ax + ¥, AY) - (3.7h)
and hence
_ Loen
ig -1 == (x2 Ax + v, Av)

) (3.75)

which accounts for the displacement of the virtual image by (4Ax,Ay) in

the (x ) plane.
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3.4.3 Translation Sensitivity - Displacement of the Hologran

Let us now consider the case where the transparency is left
in its initial position, but the hologram plate is translated in the
(x2,y2) plane oy ;o . As before, we snall examine the effect of the
translation on the virtual image, in the (x3,y3) plane. In the ab-
sence of any translabion of the hologram (i.e., when the hologram is

replaced in exactly the position it was in during exposure) the
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amplitude of the virtual image in the (x3,y3) plane is given by the
secondterm in equation 3.6k

120 x +Y, ¥ )
i % Ae o¥3T o3
) = - i | vy Bigu,) Byl axay,

(3.76)

A translation of the hologram plate by 50 means that in the above

equation
* %
ER(xz,yz) Es(xe’yz) - ER(x2 - A%, ¥, = AY) Es(x2 ~ A%, ¥, - AY)

and hence.the expression for Ev(x3,y3) becomes, using equation 3.62

for the reference beam and equafion 3.63 for the signal beam,

E (xg,y,) = (;%03 I e J t(x,yp) T (x],y])

-gﬂ_ e ? _ ~ _ '
e M [l =x] + x5 - 2) + 3,(y) - ¥ + vy - we)]

2n

3 =L 1 1
i3y [Ax(xl + L) + Ay(yl + mf) ]

. ' H 3
Xe dxldyldxldyldxzay2 . - (3.77)

Integrating first over X55Y o and then over xi,yi yields

-1 | . |
Ev(x3,y3) =37 JJ T(xl,yl) T*(xl * Xy = AT, ¥yt Yg - of)

. 21
-i 57 [AX(xl + x3) + Ay(yl + y3)]

e dxldyl . (3.78)
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We see from the above equation that the result of a translation of the

hologram plate by an amount Eo is the appearance of the phase factor

. —ie—W[Ax(x + X)) + A +

v T IMECURCAS IR (3.79)
under the integral sign. It is clear that the effect of this phase
factor depends on the nature of T and upon the amount of translation.
Ir 1_'0 is sufficiently large such that the phase factor eiq) oscillates
rapidly in that pértion of tihe range of integration which contributes to
Ev(x3,y3) then EV(XB’YS) will be essentially zero, and the transla-
tion will.have resulted in the disappearance of the reconstruction of
the signal beam. On the other hand, if 50 is sufficiently small such
that eiw is very slowiy varying, then the effect of the translation
will also be small.

These results are analogous to those obtained in Section 3.2.3,
where no lenses were used. In both cases a translation of the hologram
plate can result in the disappearance of the reconstruction of the
signal beam, with the amount of translation required to make the recon-
struction vanish depending on the nature of the "source." There is,
however, an important difference vetween the two cases as when there
are no lenses used a translation of the source is equivalent to a
translation of the holiogram, and thus the reconstruction is equally
sensitive to either a translation of the source or a translation of the

holcgram plate., On the other hand, the Fourier transform hologram is

invariant to a translation of the source (i.e., the transparency) but
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is quite sensitive to a translation of the hologram plate.

A more direct comparison between the two cases will be made
in Section 3.4.5 when we consider diffuse illumination, out before
pursuing the analogies between the analytical results of this section
with those of Section 3.2, it should be noted that in Section 3.2 we
were interested in computing the reconstructed signal field at an
arbitrary point on the hologram plate, while in this section we have
dealt with the entire reconstructed field imaged in the back focal plane
of a lens. Furthermore, the virtual image that wé have dealt with in

this section includes what was referred to as noise in Section 3.2.

3.5.4 Background Noise

We saw in Section 3.2 that when a multiple wave reference
beam was used The virtual image contained both & reconstruction of the
original signal beam and a number of waves that were desigunated as
background noise. In that section, because of the form of the fields,
it was convenient to treat the reconstruction of the signal beam and the
backgrqqnd roise separately. In this section, however, we have found it
more convenient to treat the fields in their entirety. Thus the virtual
image Ev(x3,y3) contains not only a reconstruction of the signal beam,

but also the '"background noise." The form of Ev(x is found in

33y3)

a straightforward way by using equation 3.66 which expresses Ev(x

3DYB)
in terms of the autocorrelation of the amplitude distribution of the

reference beam in the (xl,yl) plane.

It is clear that since the signal beam has been taken tc be a
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plane wave, in the ideal case where the hologram and imaging lens are
of infinite apefture, a noise-free reconstruction of the signal beam
would require Ev(x3,y3) to be a delta runction. We can examine the
effect of the nature of the reference beam on ﬁhe form of Ev(x3,y3)
in physicai terms by observing that the more closely Ev(x2’y2)
approaches that of ES(XZ’YQ) (uniform amplitude with a linear phase

shift) the more closely EV(X3’y3) will approach being a delta

function. Thus, since
_ *

we see thét the more localized ER(Xg’yg) is, the more degraded will
be the reconstruction, as evidenced by the "spread" of Ev(x3,y3)

Thus the worst case would appear to be where ER(x2,y2) approaches a
delta function, which corresponds to a rather uﬁiform reference bean
(plane wave) in the (xl,yl) plane. On thg other hand, if the refer-

ence beam is produced by a single point source in the (x ) plane,

l’yl-
then

* fd
ER(X2:Y2) ER(X2,Y2) & constant

and hence the reconstruction will be essentially noise free. Thus, it
is clear that the more "localized" the reference beam source in the
Xl’yl plane, the more closely Ev(xs,y3) will approach the noise-free

case, Similar conclusions can be reached by an examination of equation

3.66.
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3.4.5 Diffuse Zllumination

We would now like to consider the case where the transparency
is diffusely illuminated, such as would be the case if a piece of
ground glass was placed behind the transparency and illuminated with a
plane wave. It is clear that an exact specification of the field in
the (xl,yl) plané is then quite impractical, because of the inherent-
ly random nature of the diffuser. Nevertheless, there is some definite

field distribution in the (Xl’yl) plane, and it can be represented oy
Bo(x 5y ) = W(x 5y, ) tlx .y;) (3.81)

vhere T ~is the amplitude transmittance of the transparency and N
accounts for the diffuser.

The gquestion arises as to whether it is valid to apply the
analysis used in the preceding four §ections, where we merely replace
{x,y) by N(x,y) t(x,y) . We recall that we did not place any ex-
plicit restrictions on 1(x,y) , but there are some implied restrictions
dgue to our use of thie Fourier bransform relationship between the ampli-
tude distributions in the front and back focal planes of a lens, which
is a good approximation to the actual case only for paraxial rays.

Thus, while the Fourier transform rclationship may yicld quite accurate
predictions for transparencies where the angular spread of the diffract-
ed waves is relatively small, it may not be too accurate wnen a large
angular epread exists;such as could be generated by a diffuser. A
thorough investigation of these points will not be.given here. Instead,

we shall use the analysis of the preceding sections, keeping in mind
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the limitations of the analysis.

Thus, it 1s clear that the samé translational invariance of
the transparency (plus the diffuser) exists as before, and likewise
the same type of translation sensitivity exists with respect to a
translation of the aologram plate.

We observe that with the dliffuser, 1t 1s quite reasonable o
consider the reference beam to arise from a very large number of point
sources of varying amplitude and phase distributed throughout the por-
tion of the (xl,yl) plane occupied by the transparency. Then, since
each point source in the (xl,yl) plane generates a plane wave in the
(xg,yz) plane, the exposing and illumination fields are of the form of
-a sum of plane waves, and the analysis of Section 3.2 is directly
applicable. The invariance of the reconstructed signal beam to a trans-
lation of the transparency (plus diffuser) is immediately evident from
equation 3.17 when we note that the lens has the property that all rays
reaching a given point in the (xe,yg) plane must have left the
(Xl’yl) plane in the same direction. Thus all the X's in equation
3.17 are constant and hence the magnitude of n. is a constant independ-
ent of ?0 , and thus the reconstruction is not affected by a transla-
tion of the transparency (plus diffuser).

Similarly, the analysis of Section 3.2 is directly applicable
w0 the case where the hologram plate is translated, but we will not con-
sider this further here, since this has been rather thoroughly covered
in previous sections. What is of interest, however, is an examination

of the effect of the diffuser on the "background noise." Thus, let us
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consider equation 3.66, with < replaced by Nt

Ev(x3ﬂ)"3) =‘—)\Lf' j[ T(Xl’yl) N(xl,yl) T*(Xl + x3 - &f, yl + y3 ~ mf)

N*(x, + xg = A, ¥ v yg - mf)dxldyl . (3.82)

It is apparent that in general the use of the diffuser will
make EV(X3,y3) much more highly localized, since one could reasonably
assume that the "random" nature aof a diffuser would imply that the above
integral will have negligible value unless the arguments of N and N*
are almost equal. To put this another way, we may think of the diffuser
as generating 'white noise," In the sense that the autocorrelation
function of N may approach a delta function. This will obviously
dominate the above integral, with the result that Ev(x3,y3) will be
quite localized.

These observations can be put in physical terms by recalling
that the spread in Ev(x3,y3) could pe associated with.a localization
of ER(xz,yz) . The effect of the Giffuser is then to spread ER(XE,yQ)

which in turn results in a narrowing of Ev(x3,y3) .

3.4.6 Discussion

In the previous sections we have examined the transiation
sensitivity and background noise associated with Fourier transform
holograms when the "reference beam" is the field generated by illuminat-

ing the transparency, and the signal beam is an off-axis plane wave.



This type of hologram is of particular interest because of its use in
various character recognition systems, such as those discussed by
Vander Lugt (41,42) and by Gabor (43). In systems of this nature a
Fourier transform hologram is taken of a transparency containing the
charactef or characters to be recognized, and the recognition operation
is accomplished by illuminating the hologram with the fiéld from a
transparency (using the same optical system as was used to generate the
hologram) which may or may not contain the original cﬁaracter or
characters. If the transparency is essentially the same as that used
to produce the hologram, then the field that illuminates the hologram
is essentially the "reference'beam, and the signal beam (the plane wave)
is reconstructed. This is brought to a focus in the output plane

(x where its presence signifies that the "test transparency" is

3>¥3)
in fact the one used to make the holqgram.

If the test transparency is different from the original then
the signal in the output plane, Ev(x3,y3), will be of the form of a
correlation of the amplitude transmittance of test transparency Tp with
the amplitude transmittance of the original transparency Tt (this type
of operation is often called correlation filtering or correlation detec-
tion). It is quite straightforward to apply the analysie of Sections 342

3.4.3, 3.4.4 andg 3.4.5 to this case, as all that is involved is to

use

21
: -1 = (x.%, + ¥.¥,)
_-i AT 172 172
E(xg,yg) =3t jJ TT(Xl,yl) e dx, &y, (3.83)



for the illumination field, instead of ER(XE’y2) as glven by eguation

3.62. We observe that the effects of this substitution on Ev(x3,y3)

is merely to change T to T, in equations 3.65, 3.66, 3.70, 3.71,
3.72, 3.77, 3.78 and 3.82 (the factor 1% in these equations remains
unchanged). We shall not go througn the analysis for this case here,
as it would add little if anything new.

It-might, however, be useful to make a few comments within
the context of character recognition about the case where we have dif-
fuse illumination of the transparency. BSuppose we keep the same dif-

fuser but use a different transparency, with amplitude transmittance

) is given by equation

TT b 3 5y3

3.82 with 1 vreplaced by =

to illuminate the hologram. Then Ev(x

T

-i

X
It == | * - of -
Ev\x3,y3) By L{ TT(xlayl) T (xl T Xy =oAL,y * Y3 nf)

xN(leyl) N*(x. + x (3.84)

N 3" M, ¥+ ¥y - mf )dx

1%
It is reasonable to assume that N will be a rapidiy varying irregular
function and hence the integral will have an appreciable value only

when the arguments of N and XN¥ are very close to being equal. This

means that the Ev(x3,y3) will be quite localized, as discussed in
Section 3.4.5. We also observe, however, that Ev(x3,y3) will depend
on how closely T and T are correlated, and it thus appears that

the system performance may be improved by the use of a diffuser since

the output is still dependent on how closely T and T a&are correlated
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out is now much more highly localized in the output plane. The possi-
bility of improvement of the operation of the system when diffuse illu-
mination is used seems reasonable from a physical point of view when we
note that the diffuser results in the field at the hologram plate due
to the transparency being ﬁuch more spresd out than before, and hence a
much greater area of fhe hologram plate is utilized.

Another interesting case is where a different diffuser is
used with each test traﬁsparency, as this situation is equivalent to
the situation which would exist if one were to use characters printed
on a diffusely refiecting surface for'input to the character recogni-

tion system. In this case Ev(x would be given by

35y3)
=i * - -

E (x3:¥5) = 33 ” tplxy sy ) T x, o+ oxg - RE, ¥+ ¥y - wf)
XNT(xl,yl) N*(xl *xg = 0, ¥ty - mf)dxldyl . (3.85)

In general, it would appear reasongble to assume that NT and N¥ are
uncorrelated, and hence Ev(x3,y3) will be essentially zero except
when NT = N . The system thus performs exceptionally weli with respect
o recognizing the diffuser, but this is not in general what is
desired, as what one wishes to recognize is 71 , independent of the
diffuser. Thus, when there is a different diffuser associated with
each test “ransparcncy, the system will not function satisfactorily as

a character recognition device. We cbserve that the situation is not

improved by setting N¥ = 1 in equation 3.85 (i.e., by illuminating
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the master transparency T with a plane wave when we produce the
hologram), since the factor NT will s©ill be present and will result

in Ev(x ) being essentially zero. It is thus clear that based on

3793
the assumption that in general NT and N will be uncorrelated, that
in any practical character recognition system the input data must be in
the form of a transparency, and if one wishes to construct a character
recognition system where the input data is of the form of characters on
ar: opague diffusely reflecting surface {i.e., printed page) then an

auxiiiary step is required to put the input iato the form of =

transparency.
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CHAPTER FOUR

AMPLITUDES OF THE DIFFRACTED FIELDS

4,1 Introduction

In this chapter we shall extend the scattering theory of
wavefront reconstruction, as developed in Chapter One, to include the
computation of the amplitudes of the diffracted waves. We will deal
only with transmission holograms, and will make use of both analytical
and experimental technigues to determine the quantities which are of
intereét.

'We shall be interested in dealing with transmission holograms
involving high spatial frequencies and thick emulsion layers, and hence
we must take into account the entire emﬁlsion layer. We recall that
this was done in Chapter One, as the grain density was speclified av
every point within the emulsion layer. We should note, however, that
although the grain density is specified throughout the emulsion layer,
the grain density alone does not provide a complete description of the
emulsion layer. The problem of specifying the characteristics of the
individual grains will not be considered, but instead, the effects
which are rclatced to the detailed nature of the film grains will e
investigated experimentally.

In Chapterlone we computed the directions and phases of the
diffracted plane waves produced when the grains associated with a par-
ticular periodicity term in equation 1.9 are illuminated by an arbitrary

plane wave. We saw that they were completely specified by the
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wavelength and direction cosines of the incident plane wave and by the
periodicity of the recorded interference pattern in the plane of the
emulsion surface (or in any plane z = constant ). The problem which
we wish to consider now is that of determining the amplitudes of the
diffracted waves.

It is clear that there are a number of factors which are of
significance with regard to the problem of computing the amplitudes of
the diffracted waves. They are as follows:

(a) The amplitude of a particular diffracted wave will be
strongly dependent on how well the waves scattered by the grains in the
various pianes z = constant add in phase. This will be a function of
the particular diffraééed order considered, the wavelength and direc-
tion of the illumination wave, the spaﬁial variation of the grain
density throughout the emulslon layer, as well as the thickness of the
emulsion layér.

(b) The ampliitude of a particular diffracted wave will de-
pend on the angular dependence of the amplitude of the wave scattered
by each individual grain. This will, of course, depend on the
characteristics of the particular grain under consideration.

(c) Thé ;mplitudes of the diffracted waves will be affected
by losses due to attenuation within the film emulsion layer and reflec-
tion losses at the various interfaces. The reflection losses are guite
straightforward to compute but the losses due to attenuation within the
emulsion layer will depend on the film characteristics, processing

procedures, exposure times, etc.
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(d) The amplitudes of the diffracted waves will depend on
the amount of light scattered by each grain as well as the total number
of grains present.

- The problem of computing the fields produced when a "volume"
diffraction grating is illuminated by a plane wave is not unique to the
particular‘approach which has been used here in connection with holo~
graphy. Indeed, it arises in connection with information storage in
thfee—dimensional media (8,13) as well as in the diffraction of light
by ultrasonic waves (52). We can designate the methods used to obtain
a solution of a problem of this type as being either "rigorous" or

."scalar" iuvnature. By rigorous we mean where the solution is obtained
‘by a direct applicatiqn of Maxwell's equations. We realize, of course,
that certain idealizations may be necessary in describing the diffract-
ing volume and certain approximetions may be rcgquired to obtain solu-
tions of the equations, and thus>certain "rigorous' methods may be
"more rigorous' than others. Born and Wolf, in Chapter Twelve of their
book, "Principles of Optics" (52) treat the problem of diffraction of
“light by ultrasonic waves using rigorous methods. More recently, and
with direct reference to holograms employing "thick" emulsions,
Burckhardt (53) 'svolved the problem of computing the diffraction of a
plane wave at a sinusoidally stratified (lossless) dielectric grating
using a rigorous approach;‘where the stratifications were perpendicular
.to the surface of the grating, and where the wave vector of the illumi-

natlon wave has no component in the direction of the grating lines.
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A "scalar" approach, on the other hand, refers to the case
where we régard each element of volume of the grating as a source of
secondary waves (when the grating is illuminated, of course), and where
the diffracted waves are computed by coherently summing the waves pro-
duced by‘ each element of volume of the gratling. This type of approach
was used by van Heerden (13) in coﬁnection with his investigation of in-
formatién storage in solids. Van Heerden restricted his analysis to
the case where the illumination plane wave i1s identical to one of the
two original exposing plane waves, and demonstrated that for a very
thick grating, the amplitude of the diffracted field is negligible ex-—
cept in the'direction of the other original exposing plane wave. More
recently, Leith et al (8), in a paper dealing with holographic data
storage in three-dimensional media, made a careful investigation of the
problem of determining the amplitudes of the diffracted waves produced
when a holographic diffraction grating is illuminated with a plane wave.
In particular, they considered the case where the propagation vectors
of the two waves which generated the grating and the propagation
vector of the illumination wave all lie in the same pliane, and made a
rather comprehensive study of the effect~of varying various parameters
on the amplitudes of the diffracted waves. They considered both trans-—

mission and reflection holograms.

The analysis which we shall employ to compute the amplitudes
of the diffracted waves will be based on the scalar approach, and nence
will be similar in many respects to that employed by van Heerden (13)

and Leith et al (8). There will, however, be a number of significant
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differences, both in the formulation and development of the solutions
and in the scope of the analysis. For example, we wiil consider the
general case where the wave veétors of the two original exposing plane
waves and the wave vector of the illumination plane wave may have
arbitrary directions, being restricted only to being incident on the
hologram plate from the same side (since we are considering transmission
holograms). Purthermore, we shall account for attenuation within the
emulsion layer, as well as reflection losses at the different interfaces.
Our basic analytic treatment of the problem will consist of
deriving general expressions for the power in the first order diffracted
waves, fof the case where the grain density varies sinusoidally with
position, which corresponds to considering the grains associated with
any one of the Basic periodicity terms in equation 1.9. This is done
in the following section (Section‘h.Q) . Supporting and extending this
analytical work is an experimental study dealing with holographic dif-
fraction gratings, formed by recording the interference pattern generat-
ed by two plane waves. Due to the nonlinear response of the film, the
variation of the grain density in the experimental gratings is not
sinusoidal. This, however, presents no difficulties as 1t is easily
handled within the framework of the analysis of Chapter One. The re-
sult is simply by the appearance of additional periodicities which can

be treated independently of the basic periocdicity under consideration.
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4.2 8inusoidally Varying Grain Density - Amplitudes of the Diffracted
Haves |

In this section we shall be interested in summing the waves
scatterea by all of the grains within an emulsion layer having a grain

density of the form

D = D0 + DO cos[(kl -k )r + ¢

n
1

l._.l

]
=

3]
| S}
™~
=
I._.l

for 0 <Z < T, where T 1is the thickness of the emulsion layer. We
shall assume that the emulsion layer is illuminated by a plane wave, and
that El 5 Ez R Ql and ¢2 are constants. |

The assumption that each grain acts as an independent scatter-
er allows us to group the grains in any convenient manner when summing
the scattered waves. A particularly convenient way of doing this is to
first sum over x and y and then sum over z . We saw in Chapter
One that the field produced by the waves scattered by the grains lying
between 2z and 2z + dz consists of a series of plane waves, whose
direcﬁions are specified by equations 1.26 and 1.28. The number of
plane waves produced corresponds to the number of allowable values of
N in equation 1.28, with one additional constraint, which is that when
the variation of the grain density in the transverse direction is sinu-
soidal, the second and higher order waves will be absent. This is cis-
cussed in Appendix VI. It can be seen from equation 4.1 that this is
the case here, and hence we need conslider oualy the two first—order

waves produced by the grains in each infinitesimal layer of the emulsion.
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We saw in Section 1.3.4 that the directions of these two
first-order waves depend only on the direction and wavelength of the
illumination wave and the spacing and orientation of the loci of con-
stant grain density, none of which are a function of =z . Thus there
will be ornly two plane waves produced when the emulsion layer is il-
luminated by a plane wave. Each of these two plane waves can be thougnt
of as being a superposition of a number of plane waves having the same
propagation vectors Ed but different amplitudes and phases. Zach of
these component plane waves is associated with a different "layer"
within the emulsion volume (i.e., with a different value of =z ). Thus,
if E{z)dz is the complex amplitude of the wave resulting from the

scattering by the grains within the region between 2z and 2z + dz ,

then the total amplitude E of the wave is
E = ( E{z)dz . (L.2)
J

It will be convenient to write E in the form

=
H
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waere the function g accounts Zor all factors which are not a function
of z, andé A and $ are real functions.
We shall assume that g 1s proportional to the amplitude Ei

of the illumination wave and to the number of grains contributing to a

unit area of the diffracted wave under consideration. Thus g will be
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proportional to D0 and to l/nd , where ny is the =z direction
cosine of the diffracted wave. The factor l/nd accounts for the in-
creased number of grains contributing to a unit area of the diffracted
wave by virtue of the inclination of the diffracted wave with respect

to each elemental "

scattering layer" within the emulsion volume.

It is clear that since ﬁe are adding the amplitudes of the
waves scattered by the individual grains in certain specific directions,
the angular dependence of these waves should be accounted for. We know
from the solution of the problem of determining the field scattered by
such simple objects as spheres, ellipsoids, discs, etc. (50) that the
amplitude of the scattered fields often exhibit a varieiy of loves and
nulls which are a function of the size, shape and orientation of the
scattering particle as well as of the polarization of illumination
wave. Thus, 1f the grains are all iQentical, then the function g will
be proportional to some function F which accounts for the angular de-
pendence of the field scattered by a typical grain. If, however, the
grains have different sizes, shapes or orientations, then the angular:
dependence of the field scattered By each grain will bevdifferent. In
our analysis we treat each grain as being identical, and for the case
wanere the actual silver grains within the emulision layer are quite dif-
ferent from one another (as is usually the case (51)), then we take as
a model an emulsion layer containing identical grains whose character-
istics represent the average characteristics of the various different

grains.
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In the analysis which will be presented here, we will assume
that the averaging of the radiation patterns of the different grains is
such that we can regard the function F <to be a constant. Thus, we
can write the function g in the form

CE.D
L 9 (L.4)

g€ = 4

d

where C 1is a constant.

L.2.1 Attenuation

" In this section we wish to determine the function A(z) ap-
pearing in equation 4.3, It is clear that A(z) will depend on the
attenuation of the emulsion layer, which will be a function of position.
-Thus the attenuation suffered by a wave passing through the emulsion
layer will be a function of the particular path along which the attenua-
tion is computed.b However, any measurements which we are likely to
make will involve a collimated beam whose diameter is much larger than
the fringe spacing d , and thus the variations in attenuation will

etffectively '"average out,"

and the attenuation can be accounted Ifor oy
some ''average attenuation constant" o . We shall thus assume that the

dependence of A(z) on the attenuation can be expressed in the form

4
Alz) = e—aL'\Z) {4.5)

wnere L'(z) is the total path length within the emulsion. The path

length L'(z) is composed of two parts, namely the distance traveled
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by the illumination wave in reaching the scattering layer at the depth
z and the distance traveled by the diffracted wave in going from the
scattering layer to the edge of the emulsion at z =T . It is quite

straightforward to show that

Z T-z
L'(Z) =% s (LI-6)
n. n
i d
where 5, and n, -are the & dircection cosines of Ei and Ed , The

unit vectors pointing in the direction of the illumination and diffrac-

ted waves, respectively (within the emulsion layer).

4,2.,2 Phase Factor

The phase'factor f(z) , it is recalled, represents the phase
~difference between the wave generated by the gra;ns in the liayer bve-
tween 2z and 2z + dz and the wave generated by the grains in the
layer adjacent to the emulsion surface plane, z = 0 . There are two
factors which contribute to the phase difference. First, there will,
in general, be a path length diffefénee between the two cases by
virtue of the fact that the diffracted wave is "generated" at a dif-
ferent depth within the emulsion surface, and second, there may be an
inclination of the 'fringe planes' which will result in a phase shif
due to the resulting "displacement' of the loci of maximum grain
density, which will increase linearly with 2z . The phase shift due
to a 'displacement" of the fringe planes was computed in Appendix IV
in connection with the problem of translation sensitivity with mul-

tiple wave reference beams as discussed in Chapter Three. The results
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of this ahalysis will not be used here, but instead, an approach similar
to that used in Section 1.3.4 to derive the generalized grating equations
will be employed.

 Let us begin by considering the grains lying in the layer be-
tween z and z + dz . If we use the xyz coordinate system defined
in Section 1.3.3 then the loci of maximum grain density will be lines
parallel to the x axis, spaced a distance d apart. Since the di-
rections of the two first-order diffracted waves are defined by requir-
ing that the phase difference between the waves scattered by any two
grains whose y coordinates differ by d be 2r , the phase of the
individuél scattered waves in directions of the two first-order dif-
fracted waves will vary linearly with y , being of the form 2%[ .
It is clear that since the grain density also varies with y with the
pericd 4 , when we add up the contributions to the two first-order
diffracted waves by all the grains in the layer, the phase of these
diffracted waves will be equal to the phase of the waves scattered by
the grains located at positions of maximum grain density.

Thus, sincé we are interested only in a phase difference, we
can neglect such factors as phase shifts of 7 on scattering and com~
pute the phase factor @(z) strictly in terms of path length differ-
ences. We can write @(z) in the form

#(z) = &L (1(z) - L(0)) (4.7)

i
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where L{z) is the path length from an arbitrary wavefront of the il-
lumination plane wave to an arbitrary wavefront of the diffracted plane
wave under consideratioﬁ, where the scattering takes place from any
grain in a plane of maximum grain density #hich is located at a depth
z . Although phase differences of 2N7 (N an integer) are not of
significance, it is most convenient to compute L(z) wusing the same
plane of maximum grain density, so that @(z) will be a continuous
function.

In computing L(z) , we shall make use of the analysis of
Section 1.3.4, and define the path length of interest in terms of the
planes A and B defined therein. We recall that plane A is normal
to the wave vector of the illumination wave, and is located on the inci-
dent side of the emulsion layer, while plane B is normal to the wave
vector of the diffracted wave under ponsideration and is.located on the
opposite side of the emulsion layer. In general the region surrounding
the film plate will have an index of refraction differing from that of
the emulsion layer and its suppofting substrate, and hence refraction
will occur at the various interfaces. We find, however, that this does
not affect @(z) , as the path length differences which yield #(z)
occur solely within the emulsion layer. Thus we can assume, without
loss of generality, that the surrounding medium hés the same index of
refraction as the emulsion layer. |

The path length T.{z) <s given by equation 1.24, which we
shall rewrite here with 50 repiaced by r{z) , the position vector

of a point lying in a plane of maximum grain density at a depth z
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L{z) =C, - C, + ;(Z)'Ei - r(z)-e

5= €y (1.8)

d . -

Using equations 4.7 and 4.8, the expression for @(z) TDecomes

#(z) = £L [(F(2) - F(0)) 5, - (F(z) - F(0))3,) ,  (h.9)
i

where Ai is the wavelength of the illumination wave within the
emulsion layer.

The vector r(z) - r(0) is a vector pointing from a point in
a plane of maximum grain density With Zz coordinate equal to zero to
anéther point in this same plane with 2z coordinate equal to z . In |
actuality, the value of @(z) is not changed if we simply use a plane
of constant grain dehsity, rather than a plane of maximum grain density.

The planes of constant grain density are defined by

(51 -8)F=c (4.10)

where T is the position vector, C is a constant and El and 52

are unit vectors pointing in the directions of El and E2 in
equation 4. 1.
It is clear that since both r(z) and r(0) satisfy

equation 4.10 for the same value of C , we can write

(e, - &) ir(z) -r(0)] =0 . (L.11)

It is convenient to express both the vectors (El - 52) and

(r(z} - r(0)) in the xyz coordinate system, which is defined so that
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the vector '(El - 52) has no x component (see Section 1.3.3). 1In

this coordinate system we can write

El - e, = e Iel~- 52[ cos y - Ez]él - 52] sin y (4.12)

.

where <y 1s the inclination angle of the fringe planes, defined as the
angle the normal to the planes of constant grain density makes with the

plane of the emulsion surface. Similarly, we can write
T -7 = e + e + ze ( .1
r(z) - r(0) Axe Ayey' ze, R (4.13)

wvhere Ax 1s arbitrary and Ay 1is a function of y and 2z . We can
evaluate Ay by using equations L.12 and k.13 in equation 4.11. That
is

Ay cos y - |le, - e |z siny =0

N 5 y (4.14)

61—82

and hence

Ay = z tan vy . ' ' {4.15)

Thus, using equations L4.13 and 4.15 in equation 4.9, the expression for

#(z) Tvecomes

= am o P a2 Yel(a - = 'y 2
g(z) = N [(Axex + 2 tan y e, + zez} (e:.L ed)] {4.16)
or
#(z) = —fl [ax(e, - &) + a(m, - m) san y + a(n, - )] (4.17)
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where &, m and n are the x, y and z direction cosines in the xyz
coordinate system. In this coordinate system, the x direction cosines
of the illumination and diffracted waves are equal (equation 1.26) and

hence the coefficient of Ax 1is zero, and @(z) becomes

#(z) = E-KE [(m, - m) tany + (n, - n)] - (4.18)
S

d

L.2.3 Integration Over =z - Summing the Fields Generated at Different

Depths Within the Emulsion Layer

Making use of equations 4.5, 4.6 and 4.18, the integrand in

equation .3 can be written in the form

i(z) - e—aT/nd V2

Alz) e - (k.19)
where w 1is a complex valued function which is independent of 2z :
w=a+ ib (L.20)
where
,
a = —a(=- ) (4.21)
n, n
i d
and
=2 [(m, -m ) tany + (m, -n)] - (h.22)
Ai i d i d

The integral in equation 4.3 is thus easily evaluated to yield the
following expression for the amplitudes of the first order diffracted

waves.:
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—aT/nd (eWT-l)

E = ge -

(4.23)

The power per unit area in the diffracted waves is given by P = EE¥ |

which can be expressed in the form

-2aT/n
CDiEiEie 2aT aT
P = (1 +e - 2e" 7 cos bT] (L.24)
2, 2 2
nd(a + b7)

a

where we have used the value of g given by equation 4.4 and set CC¥
equal to a new constant C .

We shall not attempt to compute either C or o , but we can
cbtain an estimate of the value of o for a particular grating by
making a direct measprement of the attenuation of the emulsion layer.
The other quantities appearing in the above equation can be computed
from a knowledge of the characteristics of the original exposing fields,‘
the illumination wave and the physical characteristics of the emulsion

layer.

4.2.4 Computing the Diffracted Waves

In this section we shall describe in detail the computational
steps involved in computing the amplitudes and directions of the two first-
order diffracted waves, when refraction at the various interfaces and
reflection losses are taken into account. We shall assume that the
initial exposing plane waves and the illumination wave are given, being

specified in the region adjacent to the film emulsion layer.
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We begin by defining a general reference coordinate system,
(x', y', z') defined so that the emulsion layer occupies the region
0<2' <T, where T is the thickness of the emulsion layer. The

original exposing field is taken to be two plane waves, whose propaga~

tion vectors in the region z' < 0 ‘are given by

= _ 2 -
*0 7% %0 (.25)
o
and
E =2Tg - (4.26)
20 A 20 ’
0
The unit vectors e,  and e, are specified by their direction cosines
3 L 1 1 t 3 1 i ! I 1
1n.uhe x'y 2 | coordinate system, namely 210, s nlO’ and 220,

méo, néo . These two plane waves undergo refraction at the interface
between the emulsion layer and the adjacent medium, the z' = 0 plane.
If n is the index of reffaction of the emulsion layer and no is the
index of refraction of the region z! < OQ, then the wavelength in the

emulsion layer is given by
n

A= _E-Ao . (4.27)

The wave vectors of the two plane waves in the emulsion layer are then

of the form
T = 2T n_ = 3
kl i walie ey (4.28)
o) o
and
s _21r n - \
k2 =3 m e, (4.29)
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The directions.of El and 52 are found from e

applying Snell's Law. We find that we can express the direction cosines

10 and 5 by

of e, and 62 in terms of those of 610 and e20 as follows:

nO

21 - R'I. . .

3 j; 50 (4.30)
no

! = el !t

n! = '\/1 - (2992 (1 - pe?) (4.32)

dJ n S0

where Jj = 1,2 . Next, we define the xyz coordinate system by a ro-.

tation of ¢ about the 2z' axis (equation 1.16), where

1 _ gt
%5 "1)
n! - m'

2

. (4.33)

We observe that the same value of ¢ is obtained if we use the fields
in the region external to the emulsion layer, since the factor no/n
will cancel in equation 4.33.

The transformation equations for the direction cosines are

given by (Appendix III)

L, = L&! cos & + m! sin ¢ (4.34)
J J ]

m, =-2' sin & + m'! cos & (4.35)
J J J

n =n (L.36)
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where Jj = 1,2 . By virtue of the way the xyz coordinate systen is
defined, the intersection of the fringe planes with the z = 0 plane
are lines parallel to the x axis. The periodicity 4 in the z =20
plane is the distance in the y direction between planes of maximum

grain density, and is given by (equation 1.19)

a= . (4.37)

The fringe plane inclination angle <y is the angle that the normal to

the fringe planes n makes with the vy axis. Thus

Ty = cos™t (E'Ey) (L.38)

where the sign of y is fixed by equation 4.15 and

(] -

e
R = 62 . (4.39)
2

ol
[

The xyz coordinate system, d , and vy along with the physical pro-
perties of the emulsion layer such as its indek of refraction, attenua-
tion, and thickness are adequate to specify the naturé of the grating
arnd hence allow us to ccmpute the amplitudes and directions of the first-
order diffracted'waves produced when the grating is illuminated with a
plane wave. It should be kept in mind, however, that we are still con~
sidering only the case where the spatial variation of the grain'density
is sinusoidal.

| Having specified the nature of the grating, let us now apply
the results of Section 1.3.4 to compute the directions of the two first-

order diffraéted waves produced when the grating is illuminated with a
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plane wave (there may, of course, be no diffracted waves produced for
certain illumination waves). If the propagation vector of the

illumination wave is given by

- _2r -
Kio = o ®io (4.Lo)

in the region 2z < O , then it will be given by (after refraction at

the interface at 2z = o)
e, , _ (L.h1)

in the region z > 0 , where

n
A= 2, (4.42)
1 n 10
and
T]O ’
5 o (L.43)
nO
myoE oy (4.Lh)
a, V1 - 2% (1o e (1.15)
i~ T M - nio ' ’

The direction cosines of the two first-order diffracted waves are given

by (equations1.26 and 1.27)

e = 2 (4.46)
m,
md = _—CT]; + mi N Ao
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where N has the values +1 and -1 , corresponding to the two dif-

ferent first-order diffracted waves. The above two equations specify

og by virtue of the relationship
2 2 2
2qtmg+tn; =1 . (4.48)
That is
NA '
_'\/ 2 % 2
ng = V1= 8 - (F+ mi) , (4.49)

where we have taken the positive sign for the square rcot by virtue of
the fact that we are interested in transmitted, ralher Lhan reflected
waves. This completgs the specification of the quantities mgs Bg» d
and vy 1in terms of the parameters of the original exposing waves and of
the illumination wave, which are assumed to be given. Thue, once ﬁc
assign values to C, Di, EiE;, o and T the diffracted power can be com-
puted, using gquation 4.2k, This will yield the diffracted power at
the boundary plane of the emulsion layer 7z = T in terms of the il-
lumination power EiE§ at the other boundary surface, z =0 . In
practiée, however, the illumination power is specified in the region
z < 0 and the power in the diffracted waves is measured after the waves
leave the film plate, and.hence it may be necessary to take reflection
losses into account.

We shall be interested in the case where the film plate con~

sists of an emulsion layer supported by a glass substrate (such as Kodak

6U9~t glaés film plates), and thus there are three interfaces at which
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reflection losses can occur. In general, however,'the index of refrac-
tion of the substrate is close enough to that of the emulsion layer so
that reflection losses at the emulsion-substrate interface can be
neglected. This leaves two interfaces to be considered, the front and
back surfaces of the film plate.

The quantity which is of.interest to us is the transmissivity
t of the interface under consideration, defined as the ratio of the
transmitted power to the incident power. It is shown by Born and
Wolf (54) that the transmissivity depends only on the polarizaticn and
angle of incidence of the incident wave, and on the index of refraction
- on either‘side of the interface. TFurthermore, they utilize Snell's Law
to obtain

sin 2 @, sin 2 Gt
T, = = (4.50)

. 2 2,
sin (ei + @t) cos (@i - @t)
and
sin 2 Oi sin 2 @t
W T T . (L.51)
sin (Oi + St)

where T, applies to the case where the electric field vector lies in
the plane of incidence aﬁd T4 applies to the case where it is perpen-
dicular to the plane of incidence. In the above expressions Gi is the
angle of incidence of the wave incident on the interface and @t is the

corresponding angle of the transmitted wave after refraction at the in-

terface.
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The transmissivity of the front surface of the film plate can
be found using whichever of the above expreséiohs is appropriate (or
perhaps both if the illumination wave has an electric field vector with
componenfs in both directions), where the angles 6, and O  are

given by

0, = cos (n. ) (L.52)
and

9, = cosjl.(ni) ' (L.53)

where n. o is assumed to be given and n, is computed using
equation 4.L5.
Similarly, the transmissivity of the back surface of the film

plate is found using values of Oi and Ot ~given by
-1
0, =cos ~ {(n.) (L.5k)

0, = cos (ndl) (4.55)

where nd is given by cquation 4.49 and B4 is given by
L .

= - _T‘I__2 . 2 | ;

o = V1 @R - (1.56)
1 :

where n and n, are the indices of refraction of the glass substrate

and adjacent medium respectively.

The diffracted power per unit area in the two first-order
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waves, taking into account reflection losses, 1s thus given by

~20T/ny 2aT

CD? EiEi TiT aD
e 1.+ e - 2e” cos bT] (4.57)

n2(a2
d

d
%)

P =
+ b

where Ti and T are the transmissivities of the front and back
d

surfaces, respectively.

4.2.5 Speecial Cascs

In this section we shall examine the case where the wave
vector of the illumination wave has no component in the direction of the

"grating lines" (the x direction), and hence where

2, =0 . | (4.58)

2y =2y =0 (L.59)
and hence the wave wvectors of the illumination and diffracted waves all
lie in the yz plane. If we define the angle © by

6 = sin—l (

m) (4.60)

then

m = sin © (L.61)

and, from equation 4.48 with 2, =0,
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n = cos O ; (L.62)

Using equations 4.61 and 4.62 in equations 4.2l and 4,22, the expres-

sions for a and b Dbecome

1 1
cos Oi cos O

) (4.63)

a = -af
d

and

27 . .
b = » [(51n Oi - sin Gd) tan y + (cos Gi - cos Gd)] (h.6k)

or, using simple trigonometric identities, b ‘can also be shown to be

equal Lo

27

b = X;—Esg;? [cos (o, - v) - cos (0, - v)] . (L.65)

Next, let us consider the case where we neglect attenuation losses

(a = 0) , neglect reflection losses (1.7

1T =.1), and let y =0 (fringe

planes normal to the emulsion surface). Then, equation 4.57 assumes the

form

2 % 217
_ 2CD0.EiEi {1~ cos[fx; (cos @i - cos @d)]}
P = (L4.66)
cos2 0 [-?-1 (cos ©. - cos © )]2
a i a

2 A
(Z

) .

or, using the identity 1 - cos A = 2 sin

2 ¥ . 2 1T
CDo EiEi sin A[k' (cos @i - cos @d)]

P = - = T . (L.67)
[X;-cos 64 (cos 6, - cos Gd)]
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The above expression is equal, to within a constant, to the results

obtained by Leith et al (8) for the same case (equation 31 in reference

8).

4.3 Producing Holographic Diffraction Gratings - Experimental

Apparatus and Technigues

In this section we shall describe the experimental apparatus
which was used to produce the holographic diffraction gratings referred
to in this and the next chapter. Variations of the basic experimental
setup described here were used in the experimental studies described in
Chapters fhree and Five.

Figure L.1 shows a diagram of the experimental apparatus. The
source is a helium-neon laser and the optical system consists of a beam
splitter, mirrors and lenses positioned so as to illuminate the film
plate with two plane waves. The film plate is held in a rotatable
ﬁolder, which allows the orientation of the film plate to be varied with
respect to the illumination plane waves, which are fixed in direction
(the angle between them being 30°). The various components are fastened
to the surface of a 3 x 6 foot surface plate, which is "floated" to

uncouple the apparatus from building vibrations.

h.3ﬁl Source

The source is a helium-neon laser having a cavity length of
57 em, with a 60 cm radius output mirror (Spectra Physics #7259 HT, with

collimation correction) and a high reflectance flat for the other mirror
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(Spectra Physics #8283). The CW power output at 6328 A° ranged from 1
to 4 milliwatts at a beam current of approximately 15 miiliamps, depend-
ing on the mirror alignment and on the cleanliness of the Brewester
angle windows.

The laser normally oscillates in more than one axial mode,
a.a.nd no attempts were made to achieve single mode operation. Efforts
were made, however, to limit the oscillations to the lowest order
transverse mode (by mirror adjustments) and were in general reasonably
successful. The fact that the laser is oscillating in more than one
mode implies that the coherence length of the laser output is corres-
pondinglj reduced. Questions regarding the coherence length were
sinmply avoidea by making the path lengths approximately equal by
+suitably positioning the mirrors.

'The laser tube was oriented so that the output beam (which is
linearly polarized) had its E vector perpendicular to.the surface of
the surface plate. This choice of polarization is advantageous as it
results in higher values of reflectivity for the beam splitter and
avoidsvdepolarization upon reflection from the mirrors. A more import-
ant reason for choosing this polarization arises from the fact that the
film is sensitive only to the total electric field, and with this pola-
rization the electric field vectors of the two 1llumination waves are
colingar. With the other polarization, however, this is not the case
and when the two waves are propagating at right angles to each other
there will be no interference pattern formed (With respect to the

electric field). This is discussed in detail in Appendix I.
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4.3.2 Mechanical Stability

Before discussing the steps we have.taken to achieve mechanical
stability. let us briefly review the reasons why it may be necessary to
insist on & high degree of mechanical stability in a hologram-taking
apparatus. In recording a hologram, we are in essence recording an in-
terference pattern which is quite sensitive to path length changes. To
be assuréd of an adequate recording of the interference pattern we must
require that the film'plate remain in register with the interference
pattern to ﬁithin at least one quarter of a fringe during the duration
of the exposure. It is clear that the stability requirements are di-
rectly rélated to the exposure time, which for the apparatus described
here ranged from several seconds to more than one hour.

A change in register of the film plate with respect to the in-
terference pattern can be caused by either a movement of Lhe film plate
or by a shift of the interference paftern. Whilé the effect of the
former is proportional to the spatial frequency of the interference
pattern, the latter is not. Indeed, a path length change of A will
cause a shift of one fringe regardless of the fringe spacing. Such path
length changes can be.causéd by similar changes in the position of the
reflecting eiements in the optical system that encounter the beam after
it has been divided (beamsplitter and mirrors). Changes in the opfical
path length that occur prior to the beamsplitting operation are not
important.

in the apparatus described here, alllcomponents are rigidly

mounted and securely fastened to the surface plate. The surface plate,
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which weighs approximately one thousand pounds, provides structural
rigidity as well és inertial damping for the system. .The surface plate
is isolated from mechanical vibrations in the floor of the building by
suppérting it on a layered structure of felt, neoprene sponge rubber,
plywood and 1low pressure rubber inner tubes. Measurements made by
J. Azmuth (55) on this system in the 20-20,000 CPS range have shown
that the pegk surface plate.acceleration is approximately 1/28 that of
the nearby floor. Isolation from acousbical vibrations is accomplished
by covering the components with felt covered boxes. This also reduces
the effects of air turbulence.

;‘The apparatus, as described above, was found to be very
stable. Hoiograms were obtained using it in which the exposure times
_exceeded one hour. Holograms were also obtained with the table

"unfloated," with exposure times of the order of five minutes.

4.3.3 Optical Components

The optical components consist of the veam splitter, mirrors
and the two collimating lens systems. The beam splitter is simply a
L 1/2.inch diameter quartz plate, .242 inches thick, with a wedge
angle of L7 éeconds. It yields two primary beams of equal intensity
when the angle of incidence is T5 degrees, with L0O% of the power being
lost due to multiple reflections. The mirrors are high quality front
surface mirrors (Davidson Optronics Model D615). It was Ffound that
ordinary front surface mirrors (coated select piate glass) often exhibit

what is referred to as the orange peel effect, which is evidenced by a
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mottled appearance of the reflected Deam.

The two co}limating lens systems were identical, each_con—
sisting of a 16 mm microscope objective lens and a 6" aperture 19"
focal length lens, placed so that their focal planes coincided. It was
found that invariably dust or other small particles would be present on
the surface of the microscope objeétive lens or on the mirrors, and
that these particles generated diffraction patterns that caused rapid
.amplitude variations across the beam. These effects were removed by

placing a small aperture, or "pinhole,"

at the focal point of the
microscope objective lens. The operation of the pinhole is readily ex--
' plained in Terms of a 1low pass spatial tiltering operation, ﬁsing the
analysis contained iﬁ Appendix V. It was found that pinholes with a
diameter in the rangé from 10 to 30 microns were quite satisfactory
(the pinholes were obtained from Buckbee Meers Inc.). Accurate position-
ing of the pinholes was required (to within at least .00l inch in all
three directions) and this was achieved by using three-dimensional
micropositioners (Kulicke and Soffa Model 200). |

. Although the low pass spétial filtering operation eliminated
the rapid amplitude fluctuations across the beam, there was still a
slow variation due to the decrease of amplitude with radius which is
characteristic of the lowest order transverse mode of the laser. This

produced a decrease in the power of an order of magnitude at a radius

of 3 cm when a 16 mm microscope objective was used.
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4.4 Measurement of the Power in the Diffracted Waves - Experinmental

Apparatus and Techniques

In this section we shall describe an experimental apparatus
whose function is to measure the direction and power of the various
diffracted waves which are produced ﬁhen a holographic diffraction
grating is illuminated hy a collimated beam. A diagram of the appara-
tus is shown in Figure L.2, from which we see that the apparatus con-
sists essentially of a source to illuminate the grating and a detection
system to measure the power in the diffracted waves. The photomultiplier
can be rotated about the vertical axis only, and thus we are restricted
to measurements in which the iillumination wave and the diffracted waves
all have their propagation vectors in the same (horizontal) plane.

The device used wo hold the grating and photomultiplier is a
converted spectrometer. The grating is mounted on a rotatable table
which in turn is mounted on the spectrcometer table. The use of this
additional rotatable table, whose rotation with respect to the illumina-
tion beam can be measured to withinm 5 wminules ol arc, allows the angle
of incidence of the illumination beam fo be read directly, without
being dependent on thé angu.ar position of tne viewing telescope.

The photomultiplier, an RCA T102, is mounted on the body of
the viewing telescope of the spectrometer, which can be rotated to pick
up the various diffracted orders. The spectrometer is of quite high
quality, and the angular position of the viewing telescope, and hence
the photomultiplier, can be read to within one minute of arc. In mount-

ing the photomultiplier on the viewing telescope, the objective lens
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was retained but the eyepiece assembly was replaced by a small aperture.
By making this aperture sufficiently smalli, the angular sensitivity of
the detection system could be made equal to the accuracy of the gradu-
ate@ clrcle, wihlch was oue minube of arc. In praclice, however, we
found it convenient to use a larger (.078" diameter) aperture, which
yielded an angular sensitivity on the order of 20 minutes of arc.

The source was a helium-neon laser which produced a linearly
polarized output beam at .6328u . A Spectra Physics polarization ro-
tator was used to enable us to illuminate fhe grating with any desired

linear polarization.

L.4.1 Photomultiplier Detection System

A phase sensitive detection system was employed which allowed
the detection of very low signal levels. The output beam of the laser
was chopped at about 103 CPs, withlthe chopper providing a reference
signal at the same frequency, which remains in phase with the chopped
laser peam. The output signal from the photomultiplier is detected by
a lock~in ampliiier {Princeton Appllied Researcn Model JB—5S whicii ubili-~
zes the reference signal generated by <the chopper to discriminate against
that portion of the signal from the photomultiplier not in a narrow
freguency band centered at 103 CPsS.

What was desired was the ability to detect signals having a
wide range of power levels, from 1 milliwatt (the power level of the

i

direct laser beam) down to 10-6 or 107 ' mw. Rather than have the input

to the detection system vary over such a large range, this range was
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achieved by the use of neutral density filters, with the input to the
photomultiplier varying only over one order of magnitude. What was

done was to position the photomultiplier so as to pick up the direct
laser beam (with no grating in place) and then set the photomultiplier
volfage and lock-in ampiifier gain so that the meter on the lock-in
amplifier read 100 with a neutral density of 5 in front of the photo-
multiplier (five N.D. filters of N.D. = 1.0). Weaker signals cculd then
be read by appropriate removal of neutral density filters. This gave a
reliabie range of readings over 60 db, with an additional range of 10 db
corresponding to meter readings from 1 to 10 with no neutral density
filters in the beam. This method has the additional advantage that the
data is automatically normalized with respect to the power in the
illumination beamn.

The sensitivity of the system could be increased in two ways,
either by increasing the phétomultiplier voltage and_working at lower
signal levels or by increasing the laser power. This latter method, of
course, is most aesirable but one is limited by the power output of the
lasers that one has available.

‘A numbexr of different helium-neon lasers were used in the
sebup, and there was o falrly wide range in the stability of the output
power between the different lasers. The instabilities were observed to
be of two types, slow long term drifting of the power level and rapid
noise-like fluctuations. The long term drifts could be corrected by.
periodically resetting the photomultiplier voltage and the rapid

fluctuations could be allowed for in reading the meter, provided they
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were not too large. v is estimated that together these effects

limited the accuracy of the readings to about *5% for the worst cases.

4., 4.2 Relating the Measured Power Ratio to the Amplliludes of the

Diffracted Waves

In the analysis of Section 4.2 it was assumed that the grating
was essentially infinite in extent and was illuminated by a plane wave
which was likewise infinite in extent. The amplitude of the diffracted
plane waves were then computed and the power per unit area was computed
by taking the square of the'amplitude‘ of the diffracted wave. In the
experimental apparatus described here only a portion of the grating is
illuminated, and this with & collimated beam whose amplitude varies
across the beam. The ratio of the total power in the diffracted beam
to that in the illﬁmination beam is what is measured, and from this we
wish to determine the power per unit area in the diffracted beam,
normalized with respect to the square of the ampliitude of the
illumination field.

Let ue define (x', y'), (x,y), and (x", y") +o bec the trans-
verse coordinates of the illumination béam, the grating and the diffract-
ed beam, respectively. The amplitude of the illumination beam wiil be
some function of x', y', which we shall denote by Ei(x', y') , and

the total power in the illumination beam will be of the form

-~ * 1 ]
p. = ¢C J J EiEi dax' dy (L.68)

XI y-l
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where ¢ 1s the appropriate constant and the integration extends over
the cross sectional area of the illumination beam. Likewise, if
Ed(x”, v") is the amplitude of the diffracted field under considera-

tion, then the total power in the diffracted beam is of the form

Py = © J' J EdEz ax" ay" , (4.69)
X” y"

where the integration extends over the cross sectional area of the dif-
fracted beam and the constant ¢ 1s the same constant appearing in
equation 4,68 . We assume that the characteristics of the grating are
constant over the iiluminated area and hence that the variation of Ed

with x", y" is due solely to the variation of Ei across the illum—

inated portion of the grating. We can thus write Py in the form

.
p, = cK J J EEY ax" ay" (4.70)
X" yrl
where
*
E
K = fﬁlé} . (L.71)
B, E

We observe that the illuminatior beam and the diffracted beam share the

same area of the grating, and that we can write

r

. i ?*

p, = cn, J f E,E; dx dy (L.72)
Xy
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‘and

p, = cKn, J J EE, ax dy (4.73)
xy

where 1, and nd are the =z

direction cosines of the illumination
and diffracted beams, respectively.

The quantity which is measured,
pd/p: , 1s thus of the form

(h.7h)

We thus have the choice, in comparing the measured power ratio pa/pi
with the computed power as given by equation 4.57, of converting the
measured data by multiplying by the factor ni/n
L. P
a

a or of computing

-

- %
;——'ﬁ;ﬁf rather than P/EiEi

In general we shall do the Zatter, since

it merely requires a simple change in tae computer program. Thus, what
we will wish to compute is

- ~2aT/n
C1y7q © : 2aT al
p = 5 5 (1 +e - 2e”" cos bT]
+
nind(a b))

where wé have absorbed the factor Di in the constant
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.5 Experimental Study of Holographic Diffraction Gratings

In this section we shall consider the dependence of the power
diffracted into the first-order waves on the direction, wavelength and
polarization of the iliumination wave, as well as on the characteris-
tics‘of the particular grating being considered. In particular, we
shall discuss a number of measurements that were made and compare the
experimental dats with the theoretical values computed using the
analysis developed in Sectiom 4.2. A brief description of the results
of some of these measurements was reported in a previous publication (9).

The application of the analysis of Section 4.2, which deals
with the éase where the variation of grain density 1s sinuscidal, to
the case of a holographic diffraction grating, is gquite straightforward.
According to the analysis developed in Chapter One the grain density of
a hologram formed by recording the ipterference pattern generated by
two piane waves can be written as a sum of sinusoidal terms, the lowest
order of which generates the two first-order diffracted waves. By
virtue of the assumption of the neglect of multiple scattering,
the waves generated by the grains assoclated with the different
sinusoidal terms can be dealt with separately, and hence the problem
reduces to the provlem considered in Section 4.2. We observe, however,
that we have not as yet specified the constant Dj appearing in
equation 4.1 and thus we can only compute the power in the diffracted
waves to withirn a multiplicative constant. In comparing theoretical
and experimental results, this constant will ve chosen so that the

two cases agree at some convenient point.
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The holographic diffraction gratings that are descrived in
this section were made using Kodak 649-f 3 '1/4 x 4 1/k x .0LO"
glass film plates, and were processéd in the séme manner. The pro-
cessing procedure was:

5 minutes in d-19 developer at T0 T

30 seconds in a 1.65 percent acetic acid stop bath

5 minutes in a fixing soluvion (757 cc paper fixer,

355 cc ammonium thiosulfate, and 3,030 cc distilled
water)

30 minute rinse in distilled water.

Constant agitation was maintained throughout and the pliates were air

dried.

4.5.1 Orientation Sensitivity

We have seen in Section L.2 that the amplitudes of the
diffracted waves depends on how well the waves generated by the grains
at various depths with the emulsion layer add in phase, and that this
in turn is a function of the direction of the illumination wave. In
this section we shall consider a specific grating, snd we sha.l mea-
sure the power diffracted into the first-order waves as a function of
the direction of the illuminstion wave. We will then use the analysis
developed in Section 4,2 to compute the diffracted power, and then we
shall compare the experimental and theoretical results.

The grating which will be considered was made using the
apparatus discussed in Section 4.3, with the two exposing plane waves

(with A = .6320u) Vbeing lncident on the film plate at I 15°
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and Oi0= - 150, ‘respectively. This produced a grating whose fringe
planes are perpendicular to the emulsion surface (y = 0) and whose
fringe spacing d in the plane of the emulsion surface is equal to
1.223u (equations 4.37 and 4.61).

The grating was then l1lluminated by & collimated laser beaum
(A = .6328u) and the ratio of the power diffracted into each of the
two first-order diffracted waves to the illumination power was measured
as a function of the direction of the illumination beam. The prop-
agation vector of the illumination wave was restricted to lie in the
pléne of the two original exposing waves (i.e., L= 0) in order
that the wave vectors of the illumination wave and diffracted waves
would all lie in the same plane.

The experiﬁental results are shown in figure M.3,.where the
power ratio is plotted as a function of @io, the angle of incidence
(defined by equaﬁion L,61) of the illumination wave prior to refraction
at the emulsion air interface. Three experimental curves are shown,
one for the zeroth order (the direct transmitted beam) and the other
two for the N = - 1 first-order diffracted wave - one with the
emulsion side facing the illumination beam and the other with the .
emulsion side away. The N = + 1 curves are not shown as they were
simply the mirror images of the N = - 1 curves with respect to the
origin., In all three cases the illumination beam waé linearly polar-
ized with its electric field vector perpendicular to the plane of

incidence.

Also shown in figure 4.3 is the theoretical curve, computed
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using the analysis of Section L.2. The gquantity which was computed
was pd/pi , &s given by equation 4.75, which is the ratio of the
total power in the diffracted wave under consideration to the total
power in the illumination beam. The calculations were done numeri-
cally, using a digital computer and plotter, with points being computed
every 10th of a degree over the range of @io of interest.

In order %o carry out the calculations, it was necessary
to assign a value to the constant C appearing in equation L4.75, as
well as to specify a(the attenuation constant), T(the emulsion
thickness), and n(the index of refraction of the emulsion layer).
The constant C was chosen so the maximum value of the computed value
of pd/pi was equal to the maximum measured value. The attenuation
constant a was estimated from the attenuation suffered by the trans-
mitted portion of the illumination beam, at @io= 0, and found to be of
the order of .lu_l for the grating under consideration. The emulsion
thickness of the 649-f plates vefore processing is 15 , but shrink-
age occurs during tae processing procedure, with the result that the
emulsion thickness T i1s somewhat less then 15u. The index of
refraction of the emulsion layer was taken to be equal to that of the
gelatin matrix of the emulsion layer, 1.52 (66).

The value of T used to generate the theoretical curve
snown in flgure 4.3 was 12y . Thils value was determined by comparing
a number of similar.computed curves (with T = 5,6, ..., 15u) with

the experimental data shown in figure 4.3. It was observed that the
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effect of varying T was to change the number and width of the various
maxima, with the width decreasing and the number of secondary maxima
increasing with increasing T . Tane location of the central maxima
did not vary with T +to any significant extent.

'he etfect of o on the shape of the theoretical curve was
also investigated, and it was found that the difference between « = O
and o = .lu-l was slight, amounting to a siight filling in of the
nulls and a slight supprcssion (lcss then 2db) of the secondary maxima.
The difference in the region of the central maximum was negligible.

As a 1is increased the filling in bf the nulls and the suppression

of the secondary increases, and becomes rather pronounced at a = lu—l.
The shapé of the centrsl maxima remains essentially unaffeéted as do
the secondary maxima on either side of the central maximum.

An exsmination of figure 4.3 shnows that the agreement of the
theoretical curve and the experimental curves is quite good in the
region of the central méximum. Qutside this reglon the agreemenl is
not quite as good but the general nature of the curves 1s the same.
Tae difference between the case where the emulsion side faces the beanm
and thc case wher.e the emulsion side is away from the beam is consider-
able, and appears, perhkaps, to be due to a decrease of grain density
with depth, due perhaps to attenuation within the emulsion layer during
exposure of the film plate‘(the amplitude atienuation constant for an
undeveloped 649-f emulsion layer was measured and found to be .O22u—l)
and for a decrease'éf development activity with'depth during the pro-

cessing of the film plate. . These factors are outside the scope of the



159

analysis presented here and will not be considered further,

The shape of the zeroth-order curve can easily be explained
by attenuation within the emulsion layer and reflection losses at the
interfaces, except for the two humps at ®i0= t 150. These anomalies,
which have also been observed by Leith et al (8), do not appear to
be explained by thevanalysis presented here.

We observe that the maximum diffracted power occurs when
@io= * Lﬁo, depending on which diffracted order is being considered.
These are the two angles of incidence of the original exposing piane
waves. We shall consider this point in some detail shortly (Section
4.5.3), but before doing so we shall examine the polarization depen-—
dence of the ratio of the power diffracted into the first-order waves

to the power in the illumination beam.

L.5.2 Polarization Dependence

In order to examine the polarization dependence of the
power diffracted into the first-order waves, measurements were made
with the electric field vector perpendicular to the plane of incildence
and paraliel to the plane of incidence. The results, for the case
where the emulsion side is facing the illumination beam, are shown in
figure 4.4, In making these measurements, the polarization was changed
at each value of @io with a polarization rotator (figure 4.2).

The curves shown in figure 4.4 contain the effects of re-
fiection losses at the different interfaces, which differ for the two

polarizations. Figure 4.5 shows Lhese same Lwo curves with the re-
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flection losses divided out, with the power ratio normalized To one

at the maximum value. The conversion of the data was done with the
aid of a digital computer, and amounted to dividing each data value

by the transmissivity of the front and back interfaces, waich were
computed for each value of eio using the analysis outlined in Section
L.2.k. In making these calculations the index of refraction of both
the emulsion layer and the supporting glass substrate was taken to ve
equal to 1.52, and multiple reflections were neglected.

We observe from figures L.L and L.5 that the difference
betweern the two polarizstions is rather small for the particular case
which we have considered. There is, however, an observable difference
and it may well be that for a grating having & different fringe spacing
d or a different thickness T that this difference may be greater.
Burckhardt {53), in his paper dealing with the diffraction of a plane
wave at a sinusoidally stratified lossless dielectric grating, pre-
sents a rigorous solution of the problem of computing the amplitudes
of the diffracted waves when the fringe planes are perpendicular <o
the emu.sion surface and when the propagation vector of the illumi-
nation wave has no component in the direction of the grating lines.
His results indicate that the difference in the maximum diffracted
power for the two polarizations increases with increasing T and de-
creasing d. Burckhardt also.shows that in all cases the diffracted
power is greatest when the electric field vector is perpendicular to
the plane of incidence. We see from figures 4.3 and L.4 that this is

+he case for the grating under consideration here, with the maximum,
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diffracted power being about /2 db greater for the case where the
electric field vector is perpendicular to the pliane of incidence. A
similar result was obtained with the emulsion side away from the Illumi-
nation beam.

We recall that in the analysis developed in Section L.2,
the polarization of the illumination wave entered in the analysis
through its effect on the individual scattered waves produced by the
various grainsvwithin tne emulsion layer. We made lhe approximation
. of neglecting the angular dependence of these individual scattered
waves, as well as the.effect of different polarizations of the iilumi-
nation wave. It appears from the cxperimental rcoults chown in figures
4.3 and 4.4 that the neglect of the polarization dependence is quite
a reasonable approximation, at least for gratings whose thicknesses

and fringe spacings are of the order of those considered here.

4.,5.3 Gratings with Inclined Fringes - Bragg Condition

We recall from Section 1.3.5 that when we illuminate a
grating with one of the two original exposing plane waves, one of the
two-first order diffracted plane waves has the same direction and
phase (except for a phase factor of -m ) as the other original ex-
posing wave. We now wish tc show that the analysis develioped in
Section 4.2 predicts that the power diffracted into that particular
first-order wave is a maximum for this case.

The power per unit area in the first-order diffracted waves

is given by equation 4.2k, and is of the form



164

-20T/n
d 2aT ay
e 1+ e -2 os bT
R S -2 s B (1.76)
n'd a + b ‘

where we have absorbed the various multiplicative constants in the new
constant C' . It is clear that if o = 0 (so that a = 0) and the
factor l/ni is presumed to be slowly varying, then P will be a
maximum where b = 0 . The quantify b is given by equation 4.22 for
the general case (no restrictions on the direction of tne illumination

wave other than 1, > 0) and by (equation 4.65)

b = ————[cos (6, ~y) - cos CRERY) (b.77)

for the case when the propagation vector of the illumination wave lies
in the plane of the wave vectors of fhe two original exposing waves
(i.e., when lio = 0). It sufficies to consider the expression for b
given above, as we are interested in the case where the illumination
ﬁave is the séme as one of the two original exposing waves.
| Tae fringe pliane inclination angle vy 1is given by
6. + 0
y = wLE;_E . (4.78)

where Ol and 62 are the angles of incidence (6 defined by equation
4.61) of the iwo original exposing plane waves after refraction at the
emulsion air interface. Using the expression for vy given above,

equation 4.7T becomes
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b = 2“6 oo [cos (o, - 2%-— %;0 ~ cos (€, - 2%-— %?)]- (%.79)
Ay cos (3 =)

Let us nbw consider the case where we let @i = el‘. We are interested

in the first-order wave for whick 949, (equation 4.37, 4.L7 ana

4.61). We observe that substitution of 6, =06, and 0, =06, in

equation 4.79 yields © =0 . The same result is obtained for

@i ='®2 and ed=ol .

Thus, apart from questiocns regarding the effect of o, a, anc
ny in equation 4.76, we observe that the maximum diffracted power is
obtained when we illuminate the grating with one or the other of the
two original exposing waves, depending on which of the two first-order

waves 1s being considered. The effect of «, a and n., on the location

d
of the maximum does not appear to be too significant for the gratings
which we have considered, Jjudging from the numerical calculations we
have made, and will not ve considered further here.

The above results are equivalent to the results obtained by
Leith et al (8), and are in agreement.with the results of van Heerden
(13) and Burckhardt (53). As has been noted dy a number of authors
(8,9,53), the above results can be stated in terms of Bragg reflection
from the planes of constant grain density._ Bragg's law, or the Bragg
condition, is simply a statement of the conditions on the angle of

incidence, wavelength and distance between the parallel planes for

which thé waves reflected from the different planes add in phase. We
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can express Bragg's Lav in the form (67)
sin Wi = == (4.80)

where Wi is the angle the illumination wave makes with the parallel
planes, X 1is the wavelength of the illumination wave (within the

structure), d' is the distance between the planes, and N is an

intcger.
It is straightforward to show that when 0y equals either
@l or 62 » the Bragg Condition is satisfied. Suppose we let
0; = 0 , then ¥, is given by
¥y = - . ‘ .
i 7% - | (k.81)

or, using equation L4.78 for y ,

v e 5

¥, = = o == . .

i 2 T2 (4.82)
In order to have Bragg reflection, the angle of reflection of the dif-

fracted wave must equal the angle of incidence of the illumination wave.

This requires that Wd = —Wi , wWhere

vo=o -y . (4.83)

We recall that when 6, =0, , 0, = ©, for the first-order diffracted

wave of interest. Thus

Y. -6 -y (4.8L)
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or, using equation L.T8

© @l

2
Yy = =2 . —=

and hence ?d =-Wi as required. The distance d' between the planes

of maximum grain density is given by (equation 1.62)

4! =

@|>
-

_— ' (L.86)
2 sin (~——z;———1 '
and hence, substituting the expression for &' given above in equation

L.80, we see
g, -0
2
)

sin Wi = N sin (—i—————

5 (L.87)

An examination of the above equation and equation 4.82 shows that the

Bragg Condition i1s satisfied, which is what we wished to show. A simi-

lar result is obtained when we let éi = 92 .
A number of different holographic diffraction gratings were

made having different fringe plane inclination angles y . These

gratings were made using the experimental apparatus described in

0 - @20 (prior to refraction)

was held constant at 30 degrees, and the fiim plate holder was rotated

Section 4.3. The beam spread angle @

in steps of 10 degrees to provide a range of values of Y , as shown
in Table L.1.

The variation of the power diffracted into the N = -1 first
order was measured ag a function of Oio for each of these gratings,

and the results are shown in Figure h.6, with the power ratio Pl/P*
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being normalized to 1 at the maximum value for each grating. The soli
curves are the corresponding theoretical curves (computed using equation
4,75 and the analysis outlined in Section L4.2.L4), which have been shifted
horizontally to yield the best fit, and where the constant C appearing
- in equation 4.75 has been chosen so that the maximum computed value of
pl/pi is equal to 1. The amount of horizontal shift for each curve is
shown in the last column of Table L.l1.

We observe that, apart from the observed shift of the loca-
tion of the peaks, the theoretical curves are in excellent agreement
with the experimental data. The broadening of the curves with increas-
ing v ‘ié due to the increasing value of d . The cause of the shift
in the location of the peaks is not clear, but may be due to emulsion
shrinkage effects. Another possibility is that the actual index of re-
fraction of the emulsion layer might be different from 1.52, which was
the value used in the computations. Our numerical computations show
that changing the index of refraction changes the location of the pesks.
Neither of these two effects was investigated in detail and we shall

not consider these points further here.

4.5.%k Varying the Wavelength of the Iliumination Beam

In the measurements. discussed in the previous sections, the
source was a helium-neon laser, and hence the value of A was fixed
at .6328u (in air). In thie section we shall describe measurements made
with other values of A . BExperimentally, this was accomplished by re-

placing the laser source shown in Figure 4.2 with a low pressure
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mercury arc lamp and using monopass spectral filters to isolate the
various spectral lines. A small aperture and collimator were uéed to
provide a collimated beam with which to illuminate Lhe holographic dif-
fraction grating. Using these techniques the ratio of the power dif-
fracted into the ‘N = -1 first—order wave to the illumination power
was measured with A {air) cqual to .5790u, .5460u, .4358u and

.4oL6y, for the grating used in Sections 4.5.1 and 4.5.2 (d = 1.223y,

vy = 0).

The experimental results are shown in Figure L.Ta, where we
have also plotted the curve for i = .6328u . We observe that the
peaks are-shifted to smaller values of eio for shorter wavelengths,
as predicted by the analysis of Section L.2. -Computer generated curves
showed that the peaks occurred at 0,, = 15°, 13.9°, 13°, 10.4% and
9.7° for A = .6328u, .5790u, .5h'6ou, L4358y and .UOL6YU, respectively.
Observation of the experimental curves shown in Figure 4.Ta shows that
the location of thé peaks are within 1/2 degree of the predicted values.

We also observe that there i1s & difference in efficiency for
the different wavelengths, the efficiency being greatest at A = .6328y.
Furthermore, there is a broadening of the curves with shorter wave-
lengths. This broadening is not predicted by the theory if one assumes
that the index of refraction is the same for all wavelengths. However,
it can be accounted for by using larger values of the index cof refrac-
tion in the computations. Thié is iilustrated in Figure L.To, where
we have plotted the experimental curve for A = .4Ok6uand theoretical

curves computed using n = 1.5, 2.0 and 2.5. No shift of the peak
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occurs when we vary n when the fringe planes are perpendicular to the
emulsion surface {y = 0). We see from Figure 4,Tb that an index of re-
fraction of the order of 2.0 provides a reasonable [it, which suggests
the possibility that the film emulsion layer may be quite dispersive.
We shall merely note this possibility here and shall not consider this
point further, as it is outside thc scope of our treatment of the

problem.

L.5.5 Orientation Sensitivity -~ Grating Lines in the Plane of Inecidence

In fhe previous sections, we have restricted our experiments
and numerical computations to the case where the propagation vector of
the i1llumination beam had no component in the direction of the grating
lires (i.e., 2, = 0), in order that all the propagation vectors would
lie in the same plane. The analysis developed in Section 4.2, however,
is not limited to this case, and in order to verify the gene?al
validity of the analysis an experiment was performéd where the wave
vector had components in the direction of the grating lines.

What was done was to rotate the grating by 90° about the =z
axis from its normal position on the rotatable table shown in Figure
L.2, which results in the grating lines being parallel to the horizontal
plane. Rotating the rotatable table then results in Qﬁo being varied,
with mio being equal to zero. With this change, the wave vectors of
the illumination wave and diffracted waves no longer lle In the same
plane, and it was necessary to modify the experimental apparatus so that

the photomultiplier could be positioned to pick up the diffracted waves.
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What was done was to add another deéree of rotational freedom to the
photomultiplier holder, so that in addition to a rotation about the
vertical axis, rotation could be achieved about = horizontal axis
which passes through the illuminated portion of the grating.

The experimental results are shown in figure 4.8 for the
same grating that was used in Section 4,1 (y =0, 4 = 1.223u) .

+ 1 first—order wave

The ratio of the power diffracted into the N
to the power in the illumination beam is plotted against ¢ , which

is defined by

L, = sin ¢ . (4.68)

10

Also plotted is the theoretical curve, for three different emulsion
thicknesses. The agfeement is best for T = 1luy. The point ¢ =0
corresponds to the point 6, =0 in figure 4.3 (emulsion side fore-
ward), and the observed difference in pl/Pi is due to the fact that
different portions of the grating were illuminated in the two cases.
This was due to the design of the holdef, and could not be avoided
ﬁithouf cutting the film plate, which was not done.

We observe from figure 4.8 that the variation of pl/pi
with ¢ is much smoother then with @io , and that the central peax
and secondary maxima are absent. Our numerical calculations show
vhat this same general behavior is to be expected for other gratings
having different parameters, but that the general shape of the curve
will vary considerably, and in some cases will be a minimum at $ =0

(this has been observed).
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4.,5.6 Efficiency

We have seen 1n the previous sections that for a given grat-
ing, source, and diffracted order, there is a particular direcﬁion of
the illumination wave for which the diffracted power is a maximum.
his "optimum" direction of illumination, or "optimum iilumination

condition,"

is the same for similar gratings (same 4, y, T) , but
one finds that the diffracted power that is obtained under such
conditions 1s not necessarily a constant, but may vary from one grat-
ing to éhe next, depending on the exposure and processing procedures
used in produciﬁg the various gratings.

IL 1s of Llulerest Lo examine the effect of varying the
exposure and processing procedures on the efficiencies of the dif-
ferent gratings. This was done experimentally, using gratings similar
to the one discussed in Scctioms 4.5.1, 4.5.2, 4.5.4, and L.5.5
(d = 1.223, vy = 0). Vhat was done wés to make a number of such grat-
ings, where the exposure time was varied to provide a range of ex-
posure. The efficiency of each grating (i.e., pl/pi for optimum
illumination conditions) was then measured and plotted against the
attenuétion suffered by the zeroth-order beam (po/pi at eio = 0)

and the results are shown in figure 4.9. Recalling that we estimate

the attenuation constant o by

o = == In () (4.89)

We can view figure 4.9 as being equivalent to a plot of efficiency
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vs a {where 1 is the power in the illumination beam, P,
is the power in the ftransmitted portion of the illu_minati.on heam, at
normal incidence, and T is the emulsion thickness).

The lower curve in figure k.9 corresponds to the case where
the film plates are processed in the normal manner, as outlined in
the beginning part of Section 4.2. This curve can be interpreted in
& qualitative way with the aid of equation 1.9, the grain density
equation. There appears to be two competing processes that occur as
we increase the exposure. First of all, we Iincrease the number of
grains which contribute to the first—order diffracted waves which
increasesthe power diffracted into the first-order waves. At the same
time, however, we increase the total number of grains present which
increases the attenuétion of the emulsion layer. Initially, the first
factor dominates and the efficiency increases rapidly with increasing
exposure. The film response slowly begins to saturate and the co-
efficients of the other terms in egquation 1.9 bégin increasing faster
then the term contributing to the first order diffracted wave. The
efficiency then begihs_to level off and finally begins to decrease,
and when the film :;'esponse has become completely saturated, a further
increase in exposure results only ir a corresponding increase in
attenuation, as evidenced by the straight line poftion of the curve.

This description is supported by the upper curves shown
in figure 4.9, which corresponds to the case where the gratings are
bleached (using Kodak Chromium Intensifier). Here the attenuation

has been removed and the saturation of the film is clearly evident.
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It is interesting to note that the efficiencies of the
bleached gratings are about a factor of two greater when the emulsion
layer is still wet,.following the bleaching process. This appears to
e due to the chemistry of the bleaching process, rather than to the
increased thickness of the emulsion layer due to swelling, as resoaking
of the emulsion layer after it had.dried did not result in an incresse
in efficiency. In addition, it was observed that bleaching of the
very hignly exposed plateé resulted in rather severe light.scattering,
but that scattering was not a problem for the more lightly exposed
plates. |

'The gratings used to generate the curves shown in Figure 4.9
were made using approximately egual power 1in the two original exposing
waves. Gratings were made using unequal power in the two waves and

they were found to be less efficient, as is expected.

L.6 Discussion

In this chapter we have extended the analysis of Chapter One
to include the computation of the amplitudes of the first-order dif-
fracted waves that are produced by the grains associated with a
particular periodicity term in equation 1.9. The analysis was then
applied to the case where the hologram was & holographic diffraction
grating, for which a series of experiments were carried out, and the

experimental and analytical results were found to be in good agreement.
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We found that there are two optimum directions of illumination
that maximize the power diffracted into the first-order waves, one
direction belng associated with each of thesevwaves. Ihese directions
Were_fouﬁd to be (apart from relatively small shifts that were observed
experimentally) +the directions of the two original exposing plane
waves that were used Lo generale the grating. That 1s, 1f one
illuminates the grating with one of the two original exposing plane
waves, then the amplitude of the first-order diffracted wave, which
corresponda to areconstruction of the other original cxposing wave,
is a maximum.

It was seen that the sensitivity of the diffracted power to
the direction of the 'illumiynati‘on wave increases with inereasing
emulsion thickness and decreasing periodicity & , with the result
that for a "thick" grating (d4/T < .2) the amplitude éf the first-
order diffracted wave corresponding to the reconstruction of the
original exposing wave will be much greater than that of the other
first-order wave.

It is thus clear that fof the case of a more general
hologram, the best reconstruction of the original signal beam will be
obtained when the illumination beam is the same as the reference beam.
If the hologram is "thick," then the power diffracted into the
reconstruction of the signal beam (i.e., the virtual image) will be
much greatef than that diffracted into the real image oeam, when thé

ililumination is done with the reference beam.
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CHAPTER FIVE

DUPLICATION OF HOLOGRAMS

5.1 Introduction

The idea of duplicating hoiograms has been a subject of con-
siderable interest for a number of reasons. TFirst of all, if one has
a "master hologram,'" then oftentimes one can produce copies of com~-
parable qualiity without the need for the more elaborate apparatus fe—
guired to make the original hologram. Holograms have been success-
fully duplicated in a number of laboratories (L5), and indeed, it ap~
pears that at least part of the interest in the duplication of nolograms
arises from the Tact that a certain amount of experimental research can
be done in this area without the need for the somewhat specialized ap-
paratus required for making holograms. This was the case here, where
the initial experimental work in the field of holography (March 1965)
consisted of duplicating a borrowed nologram using both a helium-
neon laser and conventional lignt sources of different spectral width.

More recently, during the summer of 1966, a more compre-
hensivé study of the duplication process wés made, with particular
emphasis being placed on the case where the hologram must be regarded
as "thick,” in the sense that the periods of the fringe patterns are
small compared to the emulsion thickness. It was determined, from a
carefui study of the duplication of a very simple type of hologran,
the holographic diffraction grating, whose properties were reported in

a previous publication (9), that the duplication process should be



182

viewed as that of making a hologram of a hologram. Described in
these terms, tne various aspects of copying holograms can be treated
in a straightforward and consistent manner.

Various aspects of the idea of making a hologram of a hologram
have been considered by other researchers. F. B. Rotz and A. A.
Friesem (U47) demonstrated the interesting result that if one takes a
hologram of the real image of a hologram, then the real image of the
new hologram doesn't exhibit any of the pseudoscopic effects normally
associated with the real image. In the experimental arrangement used
by Rotz and Friesem, the film plate for the second nologram was located
sufficiently far from the original hologram sco that it was illuminated
only by the real image field. Tae reference beam was provided in the
normal manner. D. B; Brumm, in a recent publication (48), developed
this idea furtﬁer, and pointed out that one could effectively duplicate
holograms in this manner, and that it was not necessary to sepgrate the
two film plates, as the zeroth-order beam can provide the reference
beam, and either the real or virtual image beams can provide the signal

‘Deam.

5.2 Duplication of "Thick" Transmission Holograms

In this section we shall consider the duplication of trans-
nission holograms where the sﬁatial frequencies of the recorded inter~
ference patterns are sufficiently high such that periods of these
'patterns are small compared to the emulsion thickness. In such a case,

as was discussed in Section 2.2.2, the variation of the grain density
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with the depth must be accounted for, and the concept of average ampli-
tude transmission becomes of questionable use. We shall consider the
case of duplication of low spatial frequency holograms briefly in
Section 5.6, where we shall treat them as a limiting case of the case

considered here.

5.2.1 Duplication Process

The basic duplicavion process can be described in somewhat
general terms as that of exposing a film piate to the field produced
by illuminating a hologram in some manner. We would normally think of
the film plate as being in close proximity to the hologram, but this
need not always be the case. It is clear that the nature of the dupli-~
cate hologram will depend primarily on the nature of the field that
exposes it. This, in turn, depends on the nature of the field used to
illuminate the master hologram, the_characteristics of the master holo-
gram, and the location of the duplicate hologram film plate with re-
spect fo the master hologram. It is thus apparent that what is in-
volved in a detailed description of the duplication process is the
solution of the general problem of specifying the diffracted fields
produced when a hologram is illuminated by some arbitrary field. Cer~
tain aspects of this problem were considered in the previous four
chapters, and we shall apply the analyses, results, and conclusions
contained therein to the solution of the problem at hand. In particular,
we shall make frequent use of the material contained in Chapter Four,

and will develop our treatment along the lines of the analysis con~
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tained in Chapter One.

5.2.2 Production of an Exact Copy

It is clear that the duplicate hologram will be an exact copy
of the original’onlyvif the exposing fields are identical to those used
to produce the original hologram. This can, to a large extent, be
achieved provided that the original reference beam was a single wave,
preferably a plane wave (this requirement must be satisfied if the vir-
tual image is to. be an accurate reconstruction of the signal beam, as
discussed in Chaptef Three). Then, as we recall from Chapters One and
Two, illumination of the master hologram plate with the reference beam
will yield a reconstruction of the signal beam. This reconstruction of
the signal beam, plus the transmitted portion of the illumination or
reference beam, are then essentially the same as the original exposing
fields.

There are, however, additional fields produced which corres-
pord to the real image, second order images, and other fields as dis-
cussed in Chapter One. There is always a certain amount of background
scattering also, as well as fields due to multiple reflections. All
these additional fields.can be neglected provided that their amplitudes
are sufficiently small with respect to the two fields of interest. We
saw in Chapter Four that this is usually the case for "thick" trans-
mission nolograms, provided‘that we illuminate with the reference bean.
As was discussed there, this arises by virtue of the fact that when we

iZluminate with the reference beam, the waves scattered by the grains
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at various depths within the emulsion layer that contribute to the vir-
tual image add in phase, while those contributing to the other images
do not. The result is that the amplitudes of the real and higher order

images may be sufficiently small such that they can be neglected.

" 5.2.3 Effects of Varying the Geometrical Characteristics of the

Illumination Wave

In the.ﬁrevious'section we considered the case where the
master hologram plate was illuminated with the reference beam, assumed
to be a laser generated plance or spherical wave, of the same wavelength
A as that used to produce the master hologram piate. In this section
we shali deal with the case where the illumination wave is still a
iaser generated plane or spherical wave of wavelength A, but inci-
dent at a differernt angle of incidence or having a different radius
of curvature, or both.

We shall find it cbnvenient to deal with the problem using the
description of the holographic process developed in Chapter One. This
allows us to determine the effect of varying the geometrical charac-
teristics of the illumination wave orn the total field by a careful
examination of the effects of changing the angle of incidence of a
plane wave on a holographic diffraction grating, since we can consider
the hologram to be composed of a "linear" sum of such gratings, as
discussed in Cnapter One. Looking at the problem from this point of
view, we need consider only the case where the illuminaticn wave is a

plane wave, as at any given point we consider a spherical wave to be
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approximated by a plane wave. We should bear in mind, however; that
while a change in the direction of a plane wave illumination beam
brings about the same change in angle of incidence of the illumination
wave at all points on the film plate, this will not be the case for a
spherical wave illumination beam.

It is clear that changing the angle of incidence of a plane
wave used to iiluminate a holographic diffraction grating will change
the amplitudes and directions of the various diffracted waves. It is
shown in Section 5.3, where the duplication of holographic diffraction
gratings is considered in detail, that in general only the two first-
order diffracted waves and the transmitted porﬁion of the illumination
wave need be considerea. Furthermore, it is shown in SBection 5.3.1
that although the directions of the first-order diffracted waves are
changed by varying the angle of incidence of the illumination wave,
the periodiecity of the interference pattern generated by either of
the twe first-order diffracted waves and the transmitted portion of the
illumination wave is a constant in any plane parallel to the plane of
the master film plafe. This constant is independent of the angle of
incidence of the illumination wave and its wavelength, and is equal
to the periodicity of the master holographic diffraction grating in
the plane of the emulsion surface. This means that the periodicity in
the plane of the emulsion surface of the duplicate hologram will be
the same as that of the original {provided the duplicate film plase is
placed in a plane parallel to that.of the original during tae dupli-

cation process). Since this is the periodicity that determines the
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directions of the diffracted waves which are produced when the dupli- -
cate hologram is illuminated, this means that with respect to the
directions of the diffracted waves produced, the duplicate gratings
will be an accurate duplicate of the original.

These results, while derived for the special case of a holo~
graphic diffraction grating, can be extended to more general types of
holograms. There is, however, one modification which must be made.

We recall that with the holographic diffraction grating, illuminated
by a plane wave, there was no need to specify the distance between

the duplicate fiim plate and the master film plate. This was the case
because the diffracted waves were all plane waves, and hence the inter-
ference pattern is tne saﬁe in any plane paralliel to the emulsion sur~
face. With the more general type of hologram, however, we may have
spherical waves, and while they may be considered as "locally'" plane,
the interference pattern may vary considerably with the distance from
the master hologram plate. Thus ﬁe must add the addlitional cohstraint
that the duplicate film plate be in close proximity to the master film
plate, if the periodicity of the duplicate hologram is to be equal to
that of the original.

Thus, if the above mentioned condition is satisfied, then
we would expect, for example, that i1f we duplicate a pictorial holo-
gran with a laser-generated plane or spherical wave, the reconstruction
of the object produced by the duplicate hologram should look essentially
the same as that produced by the original hologram, regardless of the

geometry of the illumination wave used in the duplication process (with-
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in reasonable limitations, of course). This was observed to be the case
by Tandry (L6), who reported that either parzllel or diverging laser
light produces similar results in the copying of holograms.

Let us now go back and consider the effect of varying the
geometrical characteristics of the illumination wave on the amplitudes
" of the various diffractied waves. As mentioned eérlier, we are inter-
ested in the case wnere the emulsion layer of the master hologram plate
must be regarded as "thick," and hence, as was seen in Chapter Four,
the smplitudes of the various diffracted waves are highly dependent on
the angle of incidence of the illumination wave. In addition, we re-
call from .Chapter Four that the efficiency of & hologram depends on
the ratio of the amplitudes of the signal and reference beams. TFor the
case of the simple two-beam holographic diffraction grating, we saw
that the optimum ratio was unity.

In the case where we are duplicating & hologram, we nave
essentiaily three beams to consider, the two-rirst order beamé and the
transmitted portion of the illumination beam (the zeroth order). We
can think of each of these first-order beams as interfering with the
zeroth order to yield a separate hologram encoded on the duplicate
hologram film plate. The efficiency of each of these "aolograms"
depends on the ratic of the amplitude of the corresponding first—order.
beam %o that of the zeroth order. In general, the amplitudes of these
first-order beams will ve considerably below the value required to

give maximum efficiency, so that the higher the amplitude of either of
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the two first-order beams, the higher will be the efficiency of its
corresponding "hologram."

It may appear at first glance that the separation of the
duplicate hologram into two "holograms" is somewhat artificial, since
we have shown that both of these holograms yield identical diffracted
images. A closer examination of the situation, however, will show
that this separation is quite meaningful when the emulsion layer of
the dupiicate hologram film plate must be considered as "thick." In
such a case, the complete spatial dependence of the interference pat-
terns generated by the two first-order beams and the zeroth-order beam
is of importance, rather than just the periodicity in the front surface
plane of the emulsion layer.

It 1s clear that since tae direcbior}s of the two first—order
beams are quite different, the two corresponding interference patterns
will also be quite different, even though they have the same pericdi-
city in the plane of the emulsion surface. The net result ie that
when the emulsion layer of the duplicate hologram is "thick," the
ampiitudes of the waves diffracted by each of the two holograms encoded
on the duplicate hologram film plate will be highly dependent on the
angle of incidence of the wave used to illuminate the duplicate holo-
gram, and that this dependence will be different for the two holograms.
There will thus be two .angles of incidence at wnieh the "Bragg condi-
tion" is satisfied for any given diffracted order produced by the
duplicate hologram, one for each of the two recorded interference

patterns, This is shown experimentally to be the case in Section 5.3.1,
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where & careful study was made of the duplication of a holographic
diffraction grating.

We recall that the relative amplitudes of the two first~order
beams are highly dependent on the angle of incidence of the beam used
to illuminate the master hologram plate, and hence the efficiencies of
. the two holograms wnich form the duplicate hologram may be gquite dif-
fereanl. In Tacl, 1f Llie amplilbude of one of Lue Lwo Cirst—order dif--
fracted waves is much greater then that of the other, then the effi-
ciency of the corresponding hologram will be sufficiently high com~
parcd with that of the other hologram such thet only it neced be con-—
sidered. -This is usually the case, as was mentioned in the previous
section, when the master hologram plate is illuminated with its ref-

erence beam.

5.3 Duplication Experiments with Holographic Diffraction Gratings

We have seen that the nature of the duplicate hologram depends,
as does any hologram, on the charsacteristics of the exposing field.
The nature of this exposing field, of course, depends on the nature of
the master‘film plate and the nature of the field used to illuminate
it. In.this section we will consider the case where the master holo-
gram plate is a holographic diffraction grating, and where the dupli-
cation apparatus is as shown in figure 5.1. With this apparatus, we
are able to illuminate the master hologram with a laser-~generated plane
wave af various angles of incidence. For reasons of experimental and
computational convenience, we shall deal only with the case where the

propagation vectors of the original exposing plane waves (which
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generated the master hologram), the propagation vector of the illumi-
nating wave, and the normal %o the film plate, ail lie in the same
plane (the horizontal plane). The grating lines are thus normal to

the horizontal plane, and the y axis of the xyz coordinate system
defined in Section 1.3.3 lies in the horizontal plane. The generalized
grating equations given by equations 1.26 and 1.27 reduce to the ordi-

nary grating equation, wanich is given by

. . m _
sin Od = sin Gi + 3 (5.1)
where (equation 4.60)
. =1
0 = sin ~ (m) , (5.2)

m Dbeing the y direction cosine of the wave under consideration.
Equation 5.1 can be applied either to the fields inside or outside
the film plate, provided the appropriate value of A is used (this
follows directly from equations 4.42 and L.L4). In this chapter we
shall deal primarily with the fields outside the film plate, and we
shall drop the subscript o on @i which was used in Chapter Fpur
to designate @i prior to refraction at the emulsion air interface.
In the experiments that will be described in this section,
the holographic diffraction gratings that are duplicated all have the
same fringe spacing, d = 1.223 microns, and all have thelir fringe
planes perpendicular to the emulsion surface (y = 0). These gratings
were produced with the apparatus shown in figure L.1, with the two
pLane waves being symmetrically incideunt at in= * 150 « The wave-

length of the two plane waves was,6328u .
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A5.3.¢ Varying the Direction of the Zllumination Wave

The effect of varying the angle of incidence @i of the

plane wave that illuminates the holographic diffraction grating (i.e.,
the master hologram) is twofold. First of all, the directions of the
diffracted waves are a function of @i, as specified by equation 5.1,
and second, the amplitudes of these diffracted waves are strongly
dependent on Gi, as discussed in Chapter Four. The power in each

of the two first~order diffracted waves, for an illumination wavelength
of 0.6238 yu , is shown in figure 5.2 as a function of 6, for the
holographic diffraction gratings under consideration. In figure 5.2
we have used the values for the case where the emulsion side is away
rom the beam and the polarizaticn is perpendicular to the plane of
incidence, as this is.the configuration used in the dupliéation of
the gratings. The second-order diffracted waves, whose powers are of
the order of two orders of magnitude smaller than those of the first-
order waves in the range of @i of interest, are neglected. We will
also neglect waves arising from reflections at the various inter-—
faces.,

Tne field which exposes the duplicate film plate thus consists
of three plane waves., corresponding t; the transmitted portion of the
illumirnating plane wave and the two first-~order diffracted waves pro-
duced by the hqlographié diffraction grating. Recalling that the
holographic diffraction grating was originally produced by two plane

waves incident at 9, = 15°, it follows that letting o, = * 15°

in the dupiication process will result in a duplicate hologram that is
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essentially the same as the master hologram, the holographic diffrac-—
tion grating. This can be seen to be the case by letting @i = 150
in equation 5.1, Then the three plane waves that illuminate the dupli-
cate hologram film plate will consist of the transmitted portion of

the illumination plane wave, which is incident on the duplicate film
platé at 150, and the two first-order diffracted waves which are in-
cident at - 150 and 50.70'. The relative amplitudes of the two first-
order diffracted waves are found from figure 5.2 with Oi = 150,

and it is seen that the N =<1 first-order diffracted wave, which is
incident on the duplicate hologram film plate at -~ 150, is consid-
erably stronger than the other first order; Thus, except for the con-
siderably weaker beam at 50.70, the field that exposes the duplicate
film plate is essentially the same as that which was used to produce

the original holographic diffraction grating, and hence the duplicate
hologram will be an accurate reproduction of the master hologram. A
number of duplicate gratings were made.using the apparatus shown in
figure 5.1 (with @i = 150) and they were observed to be very similar
to the original, as expected. Both theioriginal and duplicate gratings
were made with Kodak 6L9f film plates, 3 1/k x 4 1/L x .0LO size, and
were processed in the same manner. The basis of comparison between

the original and duplicate gratings was taken to be d, the fringe
spacing, as determined by applying equation 1.19, and the fringe plane
orientation, as determined by measuring the amplitudes of the two first-

order diffracted waves as a function of Oi . The various duplicate

gratings exhibited different efficiencies, which depended on the rela-
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tive amplitudes of the two principal exposing waves, as well as the
total exposure. These factors will be discussed in more detail in the
next section.

Let us now consider the case where the illumination wave has
some angle of incidence other than Oi =t 150. This will mean that
" the field that exﬁoses the duplicate film plate will consist of a dif-
ferent set of plane waves than in the previous case. Their directions
and magnitudes are found from equation 5.1 and figure 5.2, respectively.

Let us consider a specific case, for example, Oi = 0. This
case is of special interest, as it would be the configuration most
likely to be used by someone who might vicw the duplication process as
that of making a "contact print." For Gi = 0 the second-order dif=-
fracted waves are quite negligible, and we need only consider the three
waves corresponding to thezeroth order (i.e., the transmitted portion
of the illumination wave) and the two first-order waves. It is seen
from figure 5.2 that these two firét—order waves will have equal ampli-
tudes when @i = 0, but that this amplitude is considerably smalier
than that of the primary firstorder wave’yhen @i = % 150 (it should
ve kept in mind that power, rather than amplitudes, are plotted in
figure 5.2).

The directions of the two diffracted first-order waves are
found from equation 5.1; and él‘e egqual to * 3101”(1+O . The field
that exposes the duplicate hologram film plate thus consists of a
relatively large amplitude plane wave incident at Oi = 0 (the trans-

mitted illumination wave) and two relatively small amplitude plane
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waves (of equal amplitude) incident at 6, = * 31.174°. The result-
ing interference pattern, which is what is recorded to form the dupli-
caﬁe hologram, thus consists of the interference patterns of each of
the two firstTorder waves with the zeroth-order wave and the pattern
corresponding”to'the interference of the two first~order waves with
each other. Because of the relatively large amplitude of the zeroth~
order wave, the first two of the above mentioned interference patterns
will be the most important, and if the amplitudes of the first-order
waves are sufficiently small compared with that of thezeroth-order wave,
their mutual interference pattern can be neglected. In such a case

the duplicate grating can be considered as the superposition of two
gratings. It is clear that in the special case under consideration
these two gratings héve the same periodicity d' in the plane of the
emulsion surface. This periodicity, or fringe spacing, can be computed

using equation 1.19. We find
d' = 1.223 microns (5.3)

which is the same as that of the "master" grating.

The above result is not merely a coincildence for the special
case considered, but is a consequence of a general rule which can be
stated as follows;

The periodicity of the interference pattern which is generated
by the zeroth-order wave and either of the two first-order waves, in
any plane paraliel to the plane of the master grating, is a constant

independent of the illumination aﬁgle Oi and the illumination wave-
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length X and this constant is egual to the periodicity & of the
master grating.

This can be demonstrated with the aid of equations 1.19 and
5.1. Writing equation 1.19 in terms of the angles of incidence
911 and ®i2 of the two plane waves which generate the duplicate
graﬁing, the periodicity d' of the duplicate grating can be expressed

in the form

a' = A (5.4)

sin O,
i

1~ sin @i2

where A _ is the wavelength of the illumination plane wave. In the

case under consideration @il and @i are the angles of 1ncidence

2

of the transmitted portion of the illumination wave and either one of

the two first-order waves, respectively. The angle eil is arbitrary
and the angle Oiz is specified by equation 5.1. That is
sin 0,., - sin 0,, = ¢ 2 (5.5)
i2 il d

where d 1s the periodicity of the master grating. It is clear that

substitution of equation 5.5 in equation 5.4 yields
ar =4 (5.6)

which is what we wished to demonstrate.
Returning to the duplicate grating formed with @i = 0,
it is clear that its periodicity in the plane of the emulsion surface

is the same as that of the master grating, and hence as far as the
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directions of the diffracted waves if produces when illuminated, it is
equivalent to the master grating. The basic structure of the duplicate
grating, however, is considerably different from thaf of the master
grating. In the case of the master grating, the fringe planes are
normal to the emulsion surface, and there is only a single set of them.
The duplicate grating, on the other hand, has two sets of oppositely
inclined fringes, corresponding to the interference patterns of the

two first-order diffracted waves with the zxoth-order wave.

These two sets of fringe planes have the same periodicity in
the plane of the emulsion surface, and hence the fields scattered by
the grains associated with either set of fringe plancs add in phasc in
the same directions. Thus, although there are two distinct sets of
fringe planes, there.will only be two first-order diffracted waves
produced by the duplicate grating, and as was mentioned earlier, the
directions of these diffracted waves are the same as for the original
master grating.

The amplitude of either of the first-order diffracted waves
produced by the duplicate grating is clearly equal to the sum of the
amplitudes of the waves contributed by the two sets of fringe planes.
Because these two sets of fringe planes are inclined in opposite
directions, the relative contributions to the total amplitude of either
of the two Tirst-order diffraclted waves varles greatly with the angle
of incidence of the illumination wave. In fact, there are essentially
two distinct rénges of Oi where either one or the other of the two

sets of fringe planes dominates and the other can be neglected. This
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is verified by the experimental results shown in Figure 5.3, where the
normalized power diffracted intc the N =-1 first-order beam is
plotted against @i . The apparatus used to make these measurements is
shown in Figure 4.2, and a discussion of the experimental details for
this case would be essentially the same as that given in Chapter Four,
and hence will be omitted.

The curve plotted in Figure 5.3 is seen to consist of two
similar curves, one centered at @i = 1° and the other centered at
@i = 34.,5° , with a transition region in between. ''he curve centered
at @i = 1° is essentially due only to the fields scattered by the
grains in the fringe planes associated with the original exposing waves
at 0, = 0° and 0, = -31.17L4° . Similarly, the curve centecred at
Oi = 34.5° is essentially due only to the fields scattered by the grains
in the other set of fringe planes, which are associated with the original
exposing waves at Oi,= 0 and @i = 31.1Thk° . We observe that the maxima
are shifted slightly‘from the values (0° and 31.2°) of 6; that we
would expect on the basis of Bragg reflection from the inclined fringe
pianes. A similar shift was observed and discussed in Chapter Four, in
the section dealing with holographic diffraction gratings with inclined

fringes (Section L4.5.3).

5.3.2 Efficiency

It is 'often of interest to compare different holograms on the

basis of how "bright" a reconstruction can be obtained, with a given
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illumination power. While a meaningful comparison may be difficult
between two entirely different holograms, such is not the case when we
have duplicates of the same master hologram. In the special case of
the holographic diffraction grating, comparisons of this nature are
particularly straightforward, as was seen in Chapter Four. A conven-
ient basis of comparison is the efficiency, which we define as the
ratio of the power diffracted into the primary first-order beam to the
power in the illumination beam, when the "optimum" illumination angle
Oi is used. TFor example, consider the grating corresponding to fig-

ure 5.3. It has an efficiency given by

- -3
€4 1.5 x 10

while the efficiency of the master hologram plate from which this grat-

ing was duplicated is seen from figure 5.2 to Dbe

e =3 x 10"2 .
m

We observe that in this case the efficiency of the duplicate grating
is much lower than that of the original, This is not always the case,
howevef, as it is quite possible to have the efficiency of a duplicate
grating exceed that of the original. Furthermore, the original grat-
ing which yields duplicate gratings of the highest efficiencies is not
necessarily the one with the highest efficiency itself.

| These statements follow directly from the results of Section
4.5.6 of the previous chapter, where we saw that the efficiency of a

two-beam holographilc diffraction grating depends primarily on the ratio
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of the amplitﬁdes of the two beams and on the total exposure. For a
given amplitude ratio, there is some optimum exposure that will yield
maximum efficiency. The maximum efficiency is greatest for an ampli-
tude ratio of unity, and becomes less and less as the ratio departs
farther and farther from unity.

Let us return to the case where we wiéh to duplicate a holo-
graphic diffraction grating of the type described in the previous sec-
tion (i.e. @ = 1.223u, fringe planes normal to the emulsion surface).
The variation of the power in the zeroth—order beam and in the two
first~-order beams with Oi as shown in figure 5.2 for a particular grat-
ing of this type is tyﬁical, with differences between different grat-
ings amounting to displacements of the zeroth-and first-order curves
in the vertical direétion.

In all cases (except possibly for bleached gratings) the
amplitude ratio is closest to unity when Oi =t 150, and thus the il-
lumination angle which gives the most accurate duplicate gratings also

gives the most efficient duplicate gratings.

5.4 Duplication with a Non-laser Source

The first duplication of holograms was done by Gabor (5),
using "conventional" or "non-laser" light sources. Indeed, the forma-
tion of a "positive” (or duplicate hologram from our point of view )
was an important part of the holographic process as described by Gabor,
Since the holograms which Gabor was dealing with involved fairly low
spatial frequencies, the duplication process consisted of essentially

making a "contact print" of the original hologram. Later, with the
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invention of the laser, it became practical to make holograms having
much higher spatial frequencies, and these, too, have been duplicated
using conventional light sources in what appears Lo be a contacl print
type of process (45, 46). It was observed (45, 46), however, that it
was quite important to have close contact between the master hologram
and the duplicate film plate, otherwise no reconstruciion can be ob-
tained from the duplicate hologram which is produced. This and other
effects are easily explained in terms of the description of the dupli-
cation process as that of producing a hologram of a hologram, rather

than as the formation of a contact print.

5.4.1 Coherence Length and Path Length Differences

In the previous sections we assumed that the illumination of
the master nologram'plate was done with a laser generated plane or
spherical wave. Thus, although the dﬁplication process has been
shown to involve the recording of the interference patterns generated
by the two first-order beams and the zeroth-order beam, it was not
necessary to take into account path length differences, as the co-
herence length of the illumination field could be considered as quite
long. We shall now consider the case where we have a point source
which has some finite, perhaps large, spectral width, and hence may
have a very short coherence length. In such a case, 1if the path length
differences exceed the coherence length of the source, then there will
be no interference pattern, and hence no duplicate hologram produced.

There is, of course, no specific path length difference at
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which point the interference pattern abruptly disappears, but. rather,
as discussed by Born and Wolf (65), the disappearance is gradual. The
cohcrence length LC is defined in such a way aé Lo give a measure of
the path length difference for which the interference pattern is essen-
tially gone, as évidenced by a very low value of the visibility of the

 interference fringes, and is given by
(5.7)

where Alo and Ao are the spectral width and the mean wavelength of
the source, in a vacuum. In comparing path length differences with Lc’
we must use the optical path length rather than the geometrical path
length.

In general, fhere will be a range of path length differences
assoclated with a hologram of a fairly complex nature, and these path
length differences will depend on a number of factors, which, to a
certain extent, are under our control. In examining this problem, it
is convenient to use the approach developed in Chapter One, as the path
length differences associated with each Périodicity of the master holo-
gram plate can be computed separately, in a straightforward manner.
This allows us to consider the effect of varying certain parameters in
the duplication process independently of the details of any particular
hologramn.

Thus, let us consider the case where we wish to duplicate a
holographic diffraction gfating, of periodicity 4, using a point

source whose mean wavelength is Ao. We shall assume, for computa-
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tional convenience, that the grating is illuminated with a collimated
beam, and that the projection of the propagation vector of the illu-
mination beam on the emulsion surface plane is perpendicular to the
interference fringes. In this case, the propagation véctors of the
diffracted waves lie in the same plane as that of the illumination

wave, and their directions are specified by the simple grating equa-

tion
sin 0, = gin O, + I\D‘o . (5.8)
v a i —_—
d
In writing the above equation, we have assumed that Alo is suffi-

ciently small such that we can neglect the ahgular dispersion which
it produces. If this is not the case, then we must take'into account
the range of A and.apply the grating equation separately for each
wavelength.

The interference patterns which are of interest are the two
which are generated by the interference of the first-order waves with
the zeroth order. If the coherence length of t?e source is relatively
short, then these two interference patterns will be localized in the
immediate vicinity of the emulsion laye; of the master hologram plate,
the holographic diffraction grating. Thus, if one is to be able to
record these interference patterns, and thus obtain a duplicate holo~-
gram, then the emulsion layer of the duplicate film plate must be
placed within the region where the interference patterns exist. In
practice, this is usually accomplished by placing the two emulsion

layers in contact, and illuminating the master hologram plate from the



207

back side. It is not possible, however, to reduce the path length
differences to zero, as the emulsions themselves have a finite thick-
ness. Furthermore, it may not be possible to reduce the separation
distance to zero, especially If an index matching fluid is placed be-
tween the two emulsion layers.

The optical path length difference arising ffom a separation
of the two emulsion layers by an amount 6., neglecting emulsion thick-

nesses, is shown in Appendix VII to be given by

1 1
1,

cos ©! 7 cos @i'

AL = né [(tan ©' - tan ©!) sin 0! +
i d i a

(5.9)

where n 'is the index of refraction of the medium between the emulsion

layers and Gi and @é are related to Gi and Gd by Snell's law:

1
. R
sin @i — sin @i (5.10)
and

1
] 1 = = a4 .
sin Gi = sin @d . (5 ll)

The values of Gd’ which are of interest, correspond to N = *1 in
equation 5.8, and are specified once the angle of incidence @i of the
illumination wave is specified.

We oObserve Lhal lhe palli length diflference, while being pro-
portional to §, is also a function of n_, O, 0, X0, and a. The de-

pendence of AL on these quantities was investigated numerically and

some typical results are shown in figure 5.4 (for N = -1, n = 1.0).
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The corresponding curves for N = +1 are found by replacing Oi by
_@i, We observe that for a given film emulsion separation distance

§ higher spatial frequencies (smaller d) and longer wavelengths
yield larger values of AL. In addition, if d is small {of the order of
o) then AL is strongly dependent on ei, It is seen from figure 5.k
| that (for N = ~1) Ag increases very rapidly as @i approaches some
minimum value, which is a function of *o /d, This minimum value of

©, corresponds to the smallest.value of © from which a solution for

1 1
@d exists (equ.a.tion 5.8 with N = —l), and thus is the solution of

sin @i = Ao ~ 1 . ' (5.12)

d

Similarly, for N = +1 there will be a maximum allowable value of @,

4

which is specified by

pjg”

sin Gi = + 1 . (5.13)

We observe that if d< &o then there will be no value of ©,
i

for which both first-order diffracted waves exist, and neither first
order will exist for éi= 0. Thus, if “the illumination wave is
brought in at normal incidence (which is the standard procedure for
making a "contact print'), then it will be possible to obtain a
duplicate hologram only if d> Ao This is independent of the co~
herence length of the source.

On the other hand, if d is large compared with Ao then,
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(5.14)

and we see that the path length differences involved with either first
order decrease very rapidly with increasing d. It is thus clear why
holograms involving low spatial freguencies (less than 200 lines/mm)
are relatively easy to duplicate using what appears to be a 'contact
"

print" process, as reported by Vandewarker and Snow (L49).

5.4.2 Barly Experiments

As mentioned in section 5.1, the initial experimental work in
the field of holography which was done nere consisted of duplicating a
borrowed hologram,f the subject of the hologram being a model train.
The apparatus which was used is shown in figure 5.5, and consisted of
a source, a collimating lens system, and a photocopy frame which was
used to hold the two film plates in close contact. The illumination
beam was incident at @i = 0 in all cases, and no special vibration
elimination techniques were used.

Both the‘master,hologram and the duplicate film plates were
Kodak type 649f film plates, L" x 5" x .0LO size. The master holo-
gram was apparently made without the use of spatial filtering in the
reference beam, as it exhibited the characteristic rings and swirls

of diffraction patterns caused by dust on the elements of a coherently

¥ The hologram was borrowed from Ivan Courtwright of Spectra Physics
Corporation, and the experimental work was done with the assistance
of Milton Chang.



211

ALvid W4
WYHO0T10H
31voIndnd

Mova
aooM—""|

A=

SSY19 v 1d—"
e

INVYA

AdOD

010Hd

SNLVYVddY NOILVOITNI

Wvd9010H
SRR

<

IAUM
ANV d

=4

SN3T

¢ ¢ dMNHTA

dWVT 28V AYNOY3IW
34NSS3dUd HOIH
10 1300N

S8v M3d

ANLHIIVY —— ——

SYAL A

/
JOHYIN
J18VAONIY

3ALLI3r80
3400SOHOIN

() (&

D)

d3SvV1 NOIN-WNIN3H



212

illuminated optical system. This was, in fact, somewhat of an advan-~
tage, because these large fluctuations in the transmission of the
master hologram made the duplication process less sensitive to the
total exposure.

A number of different sources were used, the first being a
helium-neon laser operated at 6328A°. A number of duplicate holo-
grams of a quality comparable to that of the master hologram were
obtained with this source, both with the emulsions in contact and
wifh the duplicate film plate turned around (which provided a spacing
of .0L0" Ybetween the two emulsions).

The other sources consisted of a high pressure mercury arc
lamp (PEK LABS MODEL 701) used with a variety of filters, as noted
below:

(a) Spectrolab No. 2hiz (7a° wide at 6643a°)

(b)  Spectrolab No. 1709 (100A° wide at 63284°)

(c) Corning 2-63 and 1-69 (band pass 59004° to 90004°)

The coherence lengths of (a) and (b) are found from equation 5.7 aﬁd
are equal to 670 microns and 40 microns,”respectively. To compute the
-coherenée length of source number (c) we must take into account the
fact that the 6L19f type emulsion 1s only sensitive out to a wavelength
of about TOOOAO, which would make A)  in this case equal to llOOAO,
and hence Qc = ly for source (c).

All three of the above sources yielded duplicate holograms

of a quality comparable with that of the original hologram when the
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emulsion layers of the master hologram and duplicate hologram were
placed in contact (and held there by the spring loaded photocopy
frame). It is thus evident that there is little difficulty in reducing
the separation distance between the two emulsion layers to a value suf~-
ficiently small such that the duplication can be done with conventional

sources.

5.5 Duplication of Reflection Holograms

In this seection we will consider the case where one wishes to
duplicate a reflection hologram. It is clear, from the analysis and
discussion of reflection holograms in Chapter One, that it would be
completely meaningless to talk about making a "contact print" of such
a hologram. However; if one views the duplication proéess as that of

"making a hologram of a hologram,"

it is quite straightforward to
demonstrate that a duplicate reflection hologram can indeed be pro-
duced. What is required, as is the case with transmission holograms,

is to illuminate the duplicate film plate with essentially the same
field as was used to produce the master hologram. This can be done by
illumiﬁating the master hologram plate so that it yilelds a reconstruc~
Lion of the original signal be@m, and then placing the emulsion layer of
the duplicate film plate in the region where the interference pattern
generated by the illumination wave and the recpnstructed signal beam
exists;

In the case where we are duplicating a transmission hologram,

this region exists on the side of the master film opposite that which
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is first illuminated by the illumination beam, and hence the duplicate
film plate is placed '"behind" the master hologram plate, as if making
a contact print. With a reflection hologram, however, this region
exists in front of the master hologram plate, and hence we must place
the duplicate film plate between the master hologram plate and the
illumination 'oeém, as shown in figurc 5.6b. The illumination wave
thus passes through the emulsion layer of the duplicate film plate
first, prior to striking the master hologram plate. The transmitted
portion of the illumination wave then illuminates the master hologram
platé, producing a reconstruction of the signal beam in reflection,
which then illuminates the duplicate film plate. ‘An examination of the
situation shows that if the illumination wave is essentially the same
as the original reference beam, and if it produces a reconstruction of
the original signal beam, then the field which exposes the duplicate
film plate is essentially the same aé that which produced the master

hologram, and hence a duplicate hologram will be obtained.

5.5.1 Source Reguirements

We recall from the discussion of reflection holograms given
in Chapter One that there are a number of fundamental differences be-
tween reflection holograms and transmission holograms and these dif-
ferences will be reflected in the duplication process. We recall that
for a transmission hologram, a change in the wavelength of the illumi-
nation wave doesn't preclude the production of a duplicate hologram,

as a reconstruction can usually be obtained over a wide range of
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wavelengths with a transmission hologram. With the reflection holo-
gram, howevef; there is only a narrow band of wavelengths for which a
reconstruction of the signal beam can be obtained. This means that tae
illumination wave used in the duplication process must have a wavelength

within this same band.

5.5.2 FEmulsion Shrinkage Effects

In the absence of any shrinkage of tne emulsion layer during the
processing of the master hologram film plate, the center wavelength of
the reflection band of the master hologram will be at about the same
wavelength as that of the original exposing field. If there is emul-
sion shrigkage, then the reflection band will be shifted toward shorter
wavelengtns. Jeisher et al (27), in an article desaling with an opti-
cally accessed memory using the Lippmann process, have reported record-
ing standing wave interference patterhs using Kodak 649~f film plates
in which emulsion shrinkage shifted the reflection band from 5h6lAO to
L504°, Upatnieks et al (24}, who also used Kodak 649-f film plates,
report similar large shifts in the reflection band of reflection holo~
grams,vstating that a reflection hologram made with red light requires
green light for the reconstruction. They also note, howeVer, that
emulsion shrinkage can be reduced considerably by eliminating the fix~
ing step of the development process.

It is apparent that emulsion shrinkage may prevent the use of
the same laser source in the duplication process as was used to produce

the original reflection hologram, as while the reflection band may be
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vof the order of SOAO wide (27), shifts of lOGOAo may occur. If we are
forced to use a laser source of a different wavelength in the duplica-
tion process (assuming that one exists with the approximate A ), then
it is clear that the fields which expose the duplicate film plate will
not be the same as those that exposed the original master hologram

" plate. Thus the duplicate hologram wili differ from that of the origi-
nal. The most striking difference will be that the duplicate hologram
will have a different retlection band, being shifted agaln towards

shorter'waveiengths due to emulsion shrinkage in the processing of the

duplicate film plate.

5.5.3 Use of Non~Laser Sources

It may Well.be that in some cases no sultable laser source will
exist for the duplication process, or more likely, that none will be
available. If such is the case, then a conventional source would have
to be used, and one would need to consider coherence lengths and pata
length differencesf A discussion of these factors for the case of the
reflection hologram would be quite similar to that given in section 5.k
for transmission holograms, and would add little new insight into the
problem, and hence will not be considered here. We should perhaps
note, however, that with reflection holograms we may De dealing with
very thick emuisions and hence the path length differences associatea
with the path lengths within the master hoiogram plate should be given
more attention than they were in section 5.4,

If a conventional source is to be used in the dupiication
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process, the question may well be raised as to whether or not the wave-
length selectivity of the reflection hologram itself can be used to take
the place of a narrow band light source. The basic idea of such a
scheme would De that since the reflection nologram reflects only in a
narrow portion of the spectrum,_the reflected 1light would be narrow
band, regardless of the spectral width of the illumination wave. The
reflected wave could thus interfere with that portion of the illumina-
tion wave that lies with the band of reflected wavelengths. There is
one obvious opbjection to this scheme and that is that all of the 1llumi-
nation wave passes through the duplicate film plate prior tc reaching
the reflectior hologram, and hence those wavelengths not of interest
would produce an undesirable level of background exposure. IS may be,
nowever, vhat if this background level is not too high, bleaching of the

emulsion layer as described in Chapter Four may effectively remcve it.

5.5.4 Efficiency

We shall 1limit our discussion of efficiency of duplicate re-
flection hoiograms to & brief discussion of the implications of having
the illumination beam pass'through_the duplicate nologram film plate
first, prior to striking the master reflection hologram. We cbserve
that if the master hoiogram has a very low efficiency then the power in
the ”reference beam" will be much greater than the power in the "signal
peam'" which exposes the duplicate film plate. Tais should resuls in a
very inefficient duplicate hologram. The situation is gquite different

when we duplicate an inefficient transmission hologram, when the in-
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efficlency is due to overexposure, as although the power in the recon-
structed images may be low due to the attenuation by the high back-
ground grain density, the "reference beam'" is likewise attenuated, and

thus a favorable power ratio may still be obtained.

5,6 Discussion

In this chapter we have described the duplication process from
the point of view of making a hologram of a hologram, rather than in
terms of making a "contact print." Described in these terms, 1t bew
comes clesr that the production of a duplicate hologram involves the
recording of interference patterns, just as is the case when one pro-
duces a hologram by qonventional means. In the case where the master
Lologram is a transmission hologram, there are essentially two such
interfercnce pattcrns that nced bc.considored, namely thosce generated
by each of the two first-order ”imagés” and the transmitted portion of
the illumination wave. On the other hanc, there is only one such inter-
ference pattern that is recorded when we duplicate & reflection holo-
gram, as a reflection hologram only yields one "image" when it is
illuminated.

We have seen that the nature of the duplicate hologram depends
primarily on the nature of the interference pastern (or patterns) that
are produced when the master hologram is illiuminated. In tae case
where the master hologram is a "thick" transmission hologram, the nature
of the two interference patterns are Lighly dependent on the geometrical

characteristics of the illumination wave. A careful study was made of
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the effects of varying the angle of incidence of the illumination wave
when the master hologram was a holographic diffraction grating. TFrom
this study we are able to conclude that varying the geometrical charac-
teristics of the illumination wave will not affect the form of the re-
constructed images produced by the duplicate grating, but will affect
"~ the overall efficiency of the duplicate hologram. Furthermore, if the
emulsion layer of the duplicate hologram is itself "thick," then the
way in which the brightness of the images reconstructed by the dupli-~
cate hologram vary with the geometrical characteristics of the illumina-
“tion beam will Pe strongly dependent on the geometrical characteristics
of the illumination wave used in the duplication process. We recall
from Chapter Four that in general the most efficient reconstruction
of the signal beam is prodgced when the reference beam is used to illu-
minate the hologram. The same principle applies in the case of the
duplicate hologram, only now the reference beam feferred to is the
illuminatiorn wave that was used in the duplication process. The effect
of using a non-laser source was aiso considered, and it results in =
localization of the interference patterns in those regions where the
path Length differences are less than the coherence length of the
source.

Transmission holograms involving low spatial frequencies can
also be treated from thé point of view developed in this chapter, al~
though most of the interesting effecfs predicted by this approach be-

come negligible in the limit of very low spatial frequencies. For
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exampie, we observe that as the spatial frequencies diminish o low
values, the sensitivity to the geometrical characteristics and co~
herence length decrease accordingly (the path length differences de-
creases as f2 for low spatial frequencies). As the spatial frequen-
cies decrease to the point where the variations with depth are unimpor-
tant, the duplication process is quite adequately described n terms of
the transmittance approach described in Chapter Two. In such a case,
the duplication process can be viewed as that of msking & "contact
print." It is clear, however, that this will never de the case with a
reflection hologram, as in this case it is the variations with depth
that produce the nologram.

We observe that the mechanical stability required in a holo-
gram duplication apparatus such as shown in Figure 5.1 is far less
than what would ve required in a conventional hologram apparatus, such
as shown in Figure 4.l. The basic requirement for mechanical stability
in either éase arises from the requirement that the interference pat-
tern that is being recorded remain fixed with respect to the recording
media during the duration of the exposure. In the case where we are
duplicating a hologram, the interference pattern is fixed with respect
to the master hologram plate, and hence all we need do is to be sure
that ©the duplicate film plate remains fixed with respect to the master
hologram plate. Furthermore, the allowable rélative motion of the two
film plates can be fairly large if the spatial frequencies in the mas-
ter hologram are low. The situation is quite different when we are

recording a "master" hologram. In this case, the interference pattern
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and film plate are fixed with respect to a third item, the table on
which the apparatus is mounted. The sensitivity to motion of the film
plate is similar to that of the duplication process, being proportional
to the spatial frequencies being recorded. On the other hand, changes

in the path lengths involved in the interference pattern on the order

par

of A/2 will completely wash out the recording of the interference
pattern, irrespective of the spatial frequencies involved. Suca changes
could be produced by motions of the reflecting elements in the optical
sysﬁem occurring after the beam is divided into two portions,

In addition to the greatly reduced requirements for mechanical
sbabilily, a duplication apparatus can employ a source having a relative-~
1y short coherence length. Thus, although great effort may be reguired
to produce a master hologram having a very large depth of field, such a

hologram can be duplicated with no more effort than is required to

duplicate a hologram having a very limited depth of field.
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CHAPTZR SIX

SUMMARY AND COXNCLUSIONS

A general analytical metnod has been formulated for com-
puting the diffracted field that is produced when a volume hologram
is illuminated. The diffracted fieid is computed in terms of the
initial exposing field, the characteristics of the recording medla
(assumed to be film), and the illumination field. The analysis
allows for a careful accounting of the response of the recording
media, and 1s appllcable to both tramnsmission aad reflection holo-
grams.

In the formulation of the analysis, it is assumed that
the exposing and illumination fields are known and can be specified
in the région of space occupied by the hologram in the form of a
sum of plane or quasi-plane waves. The diffracted field is computea
in the immediate vicinity of the hélogram plate, and is also expressed
in the form of a sum of plane or gquasi-plane waves. By expressing
the fields in this form, and neglecting multiplie scattering,we are
able to compute each of the diffracted waves independently of the
others by solving a variation of the same basic problem, that of com-
uting the amplitudes, directions, and phases of £he two-first order
waves that are produced when a three-dimensional sinusoidal array of
scattering particles is illuminated by a plane wave.

The directions and phases of the diffracted waves pro-
duced by transmission holograms were found to be independent of thae

three-dimensional nature of the recording media, and are a function
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only of the direction, wavelength, and phase of the illumination wave
and the periodicities of the recorded interference patterns in the
piane of the emulsion surface. General expressions were derived
(equations 1.26, 1.28, and 1.34) for the directions and phases of
these diffracted waves, which are equivalent to the equations used

by Offner {1L), and these expressions are shown (in Chapter Two)

to bg equivalent to the expressions used by Gabor (5) in his for-
mulation of the theory of holcgraphy.

The equivalence of the two approaches with respect To the
computation of the directions and phases of the diffracted waves
stems from the fact that these quantities are independent of the
three~dimensionalil nature of the recording medié, and thus the char-
acterization of the emulsion layer by the ampiitude transmittance as
done by Gabor, which implicitly neglects variations with deptn, still
yields correct results for the direétions and phases of the diffriacted
waves - even when the concept of amplitude transmittance becomes
questionable, as with thick transmisslon holograms involving high
spatial frequencies.

The transmittance approach, however, is not applicable tc
reflection holograms or to the computation of the ampiitudes of the
diffracted waves. Reflection hologramg are treated using the analysis
formulated here, and it is shown that a reconstruction of the signal
bpeam is obtained when the illumination wave is the reference beam, but
that no real image beam accompanies the reconstruction of the signal

beam, or "virtual image." Reflection holograms are then briefly
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discussed and compared with transmission holograms.

In computing the amplitudes of the two firsi~order waves
diffracted by the sinusoidal array of scattering particles, the
individual scattered waves are summed coherently, neglecting multiple
scattering. Réflection losses as well as attenuation within the
emulsion layer are taken into account, and the illumination wave is
allowed to have any direction or wavelength. The resulting expression
for the diffracted pover (equation 4.57) is shown to reduce to the
results of Leith et al (8), who neglect attenuation and reflection
losses and consider the case where the wave vector of the illumi~-
nation wave has no component along the direction of the grating
lines.

Supporting and extending this analytical work was an experi-
mental study of the hoiographic diffraction grating. The ratio of
the power diffracted into each of the first-order waves to the illumi-
nation power was measured as a function of the direction of the
illumination wave for different gratings, using different polarizations
and wavelengths. Comparison of computer generated curves with mea—.
sured data showed that the theoreticaiAand experimental results were
generally in good agreement. It was seen that for thick transmission
holograms, the power diffracted into the virtual or resl images is
highly dependent on the direction of the illumination wave, and that
the power diffracted into the virtual image is a maximum when the
illumination wave is the reference beam.

The effect of having a reference beam which consists of a

sum of plane or quasi-plane waves was investigated (Chapter Three),
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and it was shown that in order to obtain a reconstruction of the
signal beam, the hologram must be illuminated with almost the idendi-
cal reference beam that was used to expose it. In practice this
usualiy requires that.the experimental apparabtus that was used to
expose the hologram be left undisturbed, and that the developed Lolo-
gram be exactly repositioned in the ex?erimental setup. The power
diffracted into the virtual image was computed as a function of error
in reﬁositioning the hologram plate for a specific experiment and
then measured, and the experimental and theoretical results were
found to be in agreement.

The fact that the reference beam consists of a series of
waves rather than a single wave was seen to imply that the recon-
struction of the sighal beam is accompanied by a "background noise."”
A signal to noise ratio was defined and computed, and found to
approach unity as the number of waves in the reference beam becomes
large.

Complex spatial filtering and character recognition opera-
tions were interpreted in terms of multiple wavefront reference beam
Fourier transform holography, and the effects of translations of the
transparency and hologram were investigated, both with plane wave
and diffuse illumination.

In Chapter Five the general analytical method for com-
puting the diffracted field was applied to tae problem of the
duplication of holograms. It was shown that the duplication process

should be viewed as that of recording a hologram of a hologram,
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rather than thalt of making o conlacy priunt. Experimental evidence
was presented to support this point of view, and the effect of vary-
ing the characteristics of the illumination wave was described. In
addition, a simple method for duplicating reflection holograms was

proposed and discussed.
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APPENDIX I

VECTOR INTERFERENCE OF TWO PLANE WAVES - PREFERRED POLARIZATION
FOR THE CASE WHERE THE RECORDING MEDIUM IS FILM

+ In this appendix we shall exémine the interference pattern

© generated by two plane waves. of the same Irequency. We shall compute
the time average of the Poynting vector, energy in the electric field,
energy in the magnetic field and total energy. We shall then point out
that it makes a differénce which qugntity is used to characterize the
interference pattern and discuss the reasons why, in the case where the

recording medium is film, that the time average energy in the electric

then show that there is a preferred polarization with respect to the
recording of the interference pattern.
Thus, let us consider the case where two plane waves exist in

the same region of space, where thelr propagation vectors are given by

= _am ;= . - |

kl = jr-(ex sin © + e  cos 0) (1-1)
and

= 27 _z . - ) ' ‘ _

k, = jr-( e, sin 6 + e cos 0) . (1-2)

The two waves will be assumed to have arbitrary eliptical polarizations

‘and thus their electric field vectors can be written in the form (using

complex notation and suppressing the factor e iUty
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_ 16,y . i, _ ik -r
E, = [Eyl e e, + B, € (e cos @ - e, sin 0)]e (1-3)
and

is i6 ik, T
5 - vz - . 20 /- - . 2
E, [Eyz e ey + By € (eX cos © + e sin 6)]e4 (I-4)
where Eyl’ Ey2’ ElO’ EEO’ 6yl’ 6y2’ 6lo.and 620 are real constants.

The corresponding magnetic field vectors are found from a straightfor-

ward application of Maxwell's equations, using

f--%t vaxE ' - (I-5)"

is ' — 18
H = [E /(E e vl (~e. cos 0 +e_sin©) + E /(E e 10 e le 1
X z 10" u v

(1-6)

_ is. ., _ i,  ik.er
B =[E V5e Y“ (-6 cos 06 -¢e sin0) +E. V< e =0 e le ©
) X 7 20 u h's

(I-7)

The total electric field E = El + E2 can be decomposed into

two orthogonal fields Ea and Eb’ with corresponding magnetic fields

Ha and Hb’ which are given by

ik, er+s )
- 1 vl
Ea = ey[Eyl e + Ey2 e

1(Ey T+ 5, (1-8)



= - € A i(k, -r+8 ) ilk, r+8_,)
i =-e cos & [E I e
ye
i(k. *T+8 ) ik, cr+s )
+ e J(: sin @ [E . e 1 1" g o 2 2 ]
A 1 ye
(1I-9)
and _
=3 cos 0 [T el(kl r+8, ) . E 1(k2'r+62o)]
b x ©° +510 20 ©
ik, 'r+8. ) ik, r+6,..)
- . ' 1 10 2 20
- e, sin 0 [ElO e - E20 e ] (I-10)
Hb = ey a—[nlo e + 3, e ] (I-11)

We observe Ea is perpendicular to the plane of incidence of the two

waves {the plane y = constant) and Eb is in the plane of incidence.
We are interested in computing the time average of the
Poynting vector, electric energy density, magnetic energy density anad

total energy density. Papas (56) shows that these quantities are given

by
- 1 = -
S=7%Re {E x ¥} (I-12)
W= = ¢ E-E* (1-13)
e L
W= oy HeE (I-1k)
m L

and
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W= We + Wm (I-15)

respectively. It is clear from an examination of the above four equa-

tions that due to the orthogonality of the fields Ea and E the above

b 3
guantities can be computed for each of these two fields separately.
We find

= _ - £ cos 6 (.2 2 21X . L
ba e, /f; > [Eyl + Ey2 + 2Eyl Ey2 cos( L sin 9 - oyl Gyg)]

: - € sin @ .2 2 s f2TX Lo
+ e /C: [Eyl -E_ ~-2E _ E s¢n(—K—-81n e + Syl - Gya)]

x U 2 ye yl “y2
(I-16)
L 2 2 21X . _ _
wea =T e [Eyl + Ey2 + EEYl Ey2 cos(—;—-31n 0 + ayl 6y2)1 (I-17)
_1 2 2 orx . ' \
wma =Te [Eyl + Ey2 + 2 cos(20) Eyl Ey2 cos(—i~—s1n 0 + Gyl 6y2’]
(1-18)
and
_1 2 2 2 . . _ \
LA [Eyl + Ey2_+ 2 cos“(0) Eyl Ey2 cos{(==s5in 6 + & N 5y2’]
(1-19)

Similarly, we find



232

3 = a £ ] N _.2_-”.22 1 -
5, =¢e, e [ElO + Eyy + 2B, By cos ( o sin 6+ 8. 620)]
- £ sin © 2 2 . /2TX .,
oy Vo T (B - Byp + 2By By edn(S55% sin 0 4+ 8, - 6,4)]
(1-20)
L1 2 2 21X . . \
Web =T [ElO + By + 2 cos(20) ElO E2O cos( 7 sin o + 8.0 - 620)]
(I-21)
. L ) 2 2rx
Wﬁb =y € [Llo + E2O + EElO E20 cos(—x— sin @ + 61O - 620}] (I-22)
and
1 2 2 2 omx . .
W5 =€ {Elo + EEO + 2 cos“(0) ElO E2O cos(—x— sin 6 + 610 - &20)]

(1-23)

It is cliear from equations I-16 to I-23 that it makes a con-
siderable difference as to which quantit& is taken to characterize the
interference pattern. This, of course, will depend on which of the
quantities is important in the recording or measuring process. In
holography, when the recording process involves film as tane recording
medium, it is the time-average energy in the electric field that is

important. To understand why this is so, it is necessary to consider



233

some aspects of the formation of an image in the photographic process.
When the emulsion layer of the 7ilm is exposed to light of a sufficlently
short wavelength, certain changes take place which result in the forma-

tion of what is termed the "latent image."

When the film bearing this
latent image is chemically processed during the development procedure,
an image composed of metallic silver grains is formed, corresponding to
that which initially existed in the latent image. |

What is of interest here is the interaction of the electro-
magnetic field with the film emulsion in the formation of the latent
image. The nature of the process as it is presently understood is dis-
cussed in detail in treatises on photographic chemistry and photography
(57, 58). The essential point with regard to this discussion is that
the process involves the interaction of the electromsgnetic field with
a bromide ion (BR ) in a silver bromide crystal within the emuision
layer, with the extrs electron being raised to a higher energy state.
Thus, the interaction of interest is essentially that of tﬁe interaction
of an electromagnetic Ifield with a nearly free electron. Thls problem
has been treated in detail, both from a classical point of view (59)
and frﬁm e quantum mechanical point of view (60). One finds that it is
the electric field that is important in.the interaction, and not the
magnetic field.

Thus, since the recording of the interference pattern depends
primarily on we , we should expect different‘results for the two dif-
ferent polarizations, Ea and Eb . Comparing equatiqns I-17 and I-21,

we observe that for small © , cos 20 a1 and both cases are the same.



234

However, as © increases, the visibility of the fringes will decrease
for the case where the electric field vector is in the piane of inci-
dence, going to zéro at 20 = 90o . On the other hand, the visibilility
of the fringes will be independent of @ when the electric field vecvor
is perpendicular to the plane of incidence (Case a). These observations
were experimentally confirmed by Wiener (61) and are discussed in detail
by Born and Wolf (62).

It is clear then, in holographic experiments where the refer-
ence beam is brought in at a different angle from the signal beam, that
it is best to have the polarization of the signal beam and reference beamn
_ﬁe perpen&icular to the plane defined by the wave vectors of the signal

and reference beams.
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APPENDIX IT

GRAIN DENSITY EQUATION

In this appendix an expression for the grain density is
derived in terms of the initial exposing field and film constants
¢, C,, =-~- . The field within the emulsion during exposure of the
G e .

film plate is given by (equation 1.6 )

iRer L. 0w ikt + @)
E=F e © W, F g o B n’ gmiwt (1z-1)
[¢] n
n=1
The grain density D 1is expressed in terms of powers of [E\g by
{equation 1.7 )
2 b -
D=0C +CE"+ CAEI e (11-2)
o L :
2, .
where IE[ is gilven by
-
|E{"= E-Ex . (1I-3)

Substitution of E from equation II-1 into equation II-3 yields

ik -r -i(k_r+g ) -ik -r i(k_-7+g_)
Fik-F +e © TEFE e B Mie ° TEFE e ° 0
o) o o n
n n
ik, -k )r+i(g -9)
+ T EE e & n n n . (11-4)

n m

It is convenient to define the real numbers bn and Cnm as follows
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b = —2— F B (II-5)

(I1-6)

Then E-E* can be written in the form

) 5 3 i(k -En)-E-iQSq
Ef* =E"+EZLbp e ° “+EXD e
o3 ) n : o3 n

-i(kb—kn)'r+i¢n

+ Z C__ e m ) (11-7)

It is readily seen that the second and third terms in equation II-T7
can be combined as follows:
1(R -E_)er-ig i(k -E_)-F+ig
Ty (e © O D, g e n ) _ 28 B cos[(E -K_)-E-f]
o) n [ T o n a
n n
(11-8)
Noting that Cnm = Cmn it can be shown that the last term in equation
II-7 can be written in the form
i(k -& )-r+i(g -¢ )
n m n’'nm - - \
= J - L - . -\
= o @ - C_. cos[(kn &m) T ¢n ¢m] (1I-9)
n,m n,m
Upon substitution of equations II-8 and II-9 into II-7 and

regrouping, one obtains
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E-B%* =E°+ 2E D b_ cos[(k -k _)r-g 1+ % Co cos[ (k -k ). rf¢ ¢
o . o n n
n N, M
(II-10)
in 2

The computation of E = (EF§ is somewhat lengthy but will

nevertheless ve carried out in detail here. It is more profitable to
2

use the expression for E] given in equation II-7 rather than the one
given in equation II-10 , as it makes the eventual grouping of the

terms casier. The expression for IEIQ given by equation II-T7, is of the

form of a sum of four terms. Recalling

(atbrord)® = al+b+c+d® + 2ab + 2ac + 2ad + 2be + 2bd + 2cd

it is seen that B  is of the form (written in the order

-2ab, 2ac, 2ad, ae, bg, 02, da, 2be, 2bc, 2cd)

i(ek -k_-k )-r -i(¢ + %)
2E2-E + E Deboe °© BT oo RO

o -i(ek -k -k )T oilg + @)
+ E° T bbb e c o n e B m
o nm
n,m
(E -E +F -F ). - -
. ., el(kn Ktk -k )r 1(¢ RN
n,m,p,q P
~i(k -k )or i(g - 4)
+ 2E2 T bbb e -2 W e B o
© n,m nm

LR KRR -1 )
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-i(E K -k +E )F ei(¢n+¢q-¢p>

+ 2F z an e (I1-11)

° m,p,q
This can be written in the form (recalling Cpq = qu)

EY = 2ESE-E+2E° T b cosl (2k - - )-F-g ¢ ]
o [+ o LL,onm [o} n m n"m

2 » T Rk Vam
+ 2E nbﬁ bnbm cos[(ﬁn—km) r+¢n~¢m]
’

+ 4 Lbv e % -k 45 <R )T +f -
020 cc>s[{<.o k| 5 kq) T ¢n ¢p ¢q]
L ei(¢n-¢m+¢p-¢q>

+ > C_C e

(1I-12)
nm
n,m,p,q P

The expressions for EF and]ﬂu given in equations II-10 and II-12

are substituted in equation II-2 to yield

(e}
it

2 y 3 e =\ = =
+ + + : - L
cO ClEO C2E° (EClEO + ACQEO) i} b cosL(ko kn) 7 gzﬁnj

+

oy D ey -
| (c]L + zcemo) nzm Cou cos[(kn-km)-r+¢n-¢m]

o - - -
+ 20230. nEm b b cos[(kn-km) r+gz$n-¢m]
2

B 2 - = - -
* 20,8 L v, cos[2(kb-kn)-r—2¢nj
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2 - - - -
+2CE T bb cos[(ek -k -k )F-g -7 ]

n,1
nfm -
+ Lo E Z DbC
2 C

n
° n,p,q P

+C2 z C

C
n,m,p,q amopd

CcO

(=

+ higher order terms -

sU(K -K +E K )-F-p+f -]

(k-5 K R ) T ‘ei(¢n—¢m+¢p-¢q>
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APPENDIX TIIT

TRANSFORMATTON EQUATIONS

In this appendix we shail list the transformation equations
for the coordinates and direction cosines that exist between the
x'y'z', xyz, and x"y"z" coordinate systems, as referred to in
Chapter One.

The xyz system is formed by a rotation of ¢ (equation

1.16) apout the 2z' axis. The corresponding transformation equation

are
X' = x cos® -y sino (III-1)
y' = x sind® + y cos? (ITI-2)
2" =z (I1I-3)
and
2' = f cosd® - m sind ' ' (ITI-L)
m' = £ sind + m cosd (III-5)
n' =n | (I1I-6)
the x"yl'zn

system is formed by a rotation of B (equation 1.55)

about the x axis. The corresponding transformation equations are

x = x" (ITI-7)

y =y" cos B - z" sin 3 (1Z1-8)

z =y" sin B + 2" cos 3 (ITI-9)
and

L= 4" (IZ1-10)

m=mn" cos 8 - n" sin B (II1~11)

n=un" sin 8 + n" cos B (11I-12)
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APPENDIX IV

TRANSLATION SENSITIVITY CALCULATIQNS

In this appendix we shall compute the effect of a translation of
the filim plate on the phase of one of the diffracted waves whnich contri-
butes to the reconstruction of the mbh signal wave in equation 3.1l.
There are P such waves which contribute to the mbth signal wave, and

h

we shall consider the jt one of these. This wave Is produced by the

0 reference wave interacting with the periodicity corresponding to

ij cos[(nj - km) e r o+ Qj— Qm]

The loci of points of maximum grain density in this periodicity is given
by

(k=% ) T+ @9, = 24 . (zv-1)

Defining, as before, the x y 2z coordinate system to be formed by a rota-

tion of ¢ about the z' axis, where

. / AN ,
¢ = tant Zd (Tv-2)
nl - n'
J o
(¢',m',n' Deing direction cosines in the x' y'.z' system;, equaticn

IZT-1 can De written in the form {(in the =z = 0 plane)

(mj- mm)y + ¢j - .= 2n . (ZV-3)

A displacement of the film plate an amount Ay in the y direction
means that we replace ¥y by y - Ay in equation IV-3. The loci of

points of maximum grain density are then specified by

(m, = m )y - 6y) + 9, - 0, = 2 (zv-4)

J



oho

We specify the phase of the wave diffracted by the periodicity under
consideration by requiring that tne interference pattern generated by
the transmitted portion of the illumination wave and the diffracted
wave "match up" witn the recorded interference pattern as specified by
equation IV-L. Since we are re-illuminating with one of the two
original waves which produced the periodicity under consiceration, one
of the first-order waves will have the direcction of the other dinitial
wave. The re-illumination interference pattern which is of interest
is thus specified by (in the 2z = 0 plane)

(m,- m

: m)y + ¢j— g, = 2mM . (IV-5)

We specify ¢d by requiring that the loci of points of minimum electric
field in the above re-illumination pattern coincide with the locii of
points of maximun grain demsivy. Thus we set M = 0 in equation Iv-L,
solve for y, and substitute this value of y in equation IV-5. We then

solve equation IV-5 for ¢d with M= 1/2.. Thus

g -,
y = = J + Ay (IV"6)
(m,- m )
and
¢n -0, /
= - - = T Ve
(m‘j mm) {(mg‘ - + Ayl + ¢j ¢d = 7 (IV=T)
or
¢d = ¢m -7+ Ay(mj- mm) . (Zv-8)

‘This is equivalent to the result specified oy equation 3.15, which is
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silghtly more general since it allows for a translation of the film
plate in the z direction, while IV-8 only allows for & translation in
the x'y' plane. To show this equivalence we express equation 3.15 in

the x y 2z coordinate system defined by equation IV-2. Recalling that

- in < S 0% o= ""+ = s 14
zj zm in this system, and taking Ty Ax . Ay ey , equation 3.1k

becomes -

¢J.m = (mJ. - m ) by ' (IV=9)

which corresponds to having

= - {m - ' -
¢d ¢m o+ Ay\mj mm) _ . | (IV-10)



2kl

APPENDIX V

TRANSFORM RELATTIONS IN COHERERT OPTICAL SYSTEMS

In this appendix we shall review the subject of transform re-
lations in coherent optical systems. We shall derive the relationship
between the field amplitudes in the front and back focal plane of an
ideal lens. The derivation which we shall give will be essentiaily
that given by Cutrona et al (29).‘ Other derivations can be found in
articles by Champagne (30) and by Vander Lugt (Lk).

Let us consider the system shown in Figure V-la. Some systen,
sucn as a.point source in the focai plane of a lens, produces a colli-

mated beam which has some complex amplitude distribution El(xl,yl) in

plane Pl . We wish to compute'the resulting distribution Ez(xg,y2)
in P2 , where the plane P2 is taken to be the back focal piane of
lens 1.

The method that will be used will be to apply Fresnel-
Kirchhoff diffraction theory, treating plane Pl as a large diffracting
aperture with complex “ransmittance El(xl,yl) , illuminated by a plane

wave of unit amplitude at normal incidence. Thus, applying the results

of Fresnel-Kirchhoff diffraction theory (64), we write

. r ixr
= _ 3 e .
E,(%y,7,) b JJ E. (x,y,) S5~ [1 + cos yJax

) 1)
16y, (v-1)
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where the effect of the lens has been taken into account by replacing
the distance S in the exponent by r , the optical path length between

The guantity ;_i_éQE_ﬂ_ will be removed from under the inte-

gral and set equal to 2/f . Note that we set 1/8 = 1/f not 1/f+g ,
as we neglect the amplitude attenuation due to the distance g between

plane Pl and the lens, since we have a collimated beam to the left of

the lens. Thus

R ikr

The next problem is to compute r , the optical path length. This will
be done for the special two—-dimensional case that results if we set

Yy =¥, = 0 . Consider the diagram shown in Figure V-1b. Since piane
P2 is the back foecal plane of the leps, a-plane wave making an angle 6

with the normal to the Pl (wvith wave vector k in tane =xz plane) is

brought to focus at the point (x2,0) in plane P Any point cn the

o

Pi plane which is taken to be a plane perpendicular to Kk is the same

optical distance ¢ = Ty + T, from Xy o The optical path length be-
tween (xl,O) and (x2,0) is thus seen to be

r(xl,p,xz,O) =r tr,-d . (v-3)
Now

2 2 2 2 2
ry tr, = ﬂﬁig - x, cos 6 + X, + £ (v-4)
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or

x x
_ 042 2 2,2
r, tr, =g V 1~ (1;) cos” © + f£Y 1+ (=) . (v-5)

By similar triangles, it is seen that

So_ 2
g. i

(v-6)

It will be assumed that © is small, which implies that we can take

*2
cos @ = 1 and —§-<< 1 . Hence
X X
v 2.2 2.2
r YT, =8 1 - f) + £y 1+ (f.) (V-7)
Expanding the square root using (1 + a)n = 1+ no yields
X X
¥ ora o l242 12y _
v+ 1, gl - 2 (9] + rl1 + 5 (597 (v-8)
or 5
N g X5
r,+tr, =gt f+ (1- f) 27 . (v-9)
The distance d 1is seen to be (from Figure V-1b)
d=x sin 0. (v-10)
but
*2
sin @ = T (v-11)

hence
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X.X
172
d == . (v-12)
Thus x2 x
- _g& 2 __1z2 -
r(xl,O,xe,O) g+ £+ (1 f) 57 : . (v-13)

A similar, but more lengthy, computation yields for the general case

2
X XX

gy (2 Yoy Mo ive
£ ‘T er £ £

r(xl’yl’xz’y2) =g+ £ + (l -

The constant term g + £ will be suppressed since it merely adds &

constant phase factor. Thus, 1f we define B(xe,y2) as

2
. Xty
= (1 - 8&) (=_"¢& -
Blxyoy,) = (1 - &) (B2 (v-15)
then
ikB(x, ¥ ) - i@ﬂ,(x Xyt Y Y5)
E (X.,7.) = - = e 2”2 [ E (x,,y.) e AL 1 2 gy dy. .
2 %229 Xt [ FM 1%
(V-16)
Defining the "spatial frequencies" & and n as
_en | _
£ =57 % (v-17)
and
= 2T -
n=SEY, (V-18)

equation 2.8% becomes

s f
. ~i{Ex. + ny.)

B 1 1% . (v-19)
E e JJ El(xl,yl) e dx, &y,
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The above formulas were derived assuming a time variation of the form

~ilwt ; . i . .
e 0 If a time variation of the form elwt is used, then the re-

sult is a change in sign of k and hence & and n are defined as

= . au

£ = - nT x2 (V-20)
2

n = - Af y-2 (V_Zl)

and the expression for E_, becomes

2
i _ixp [( -i(gx, + ny;)
E,=<=¢ 1 E (%, ,y,) e ax.dy. . (v-22)
& AL J} A 4 4
In the following we will use the e—lwt time convention so equations

V-16 and V-19 will be applicable.
It is observed that when plane Pl is the front focal plane

of the lens, then g=f and B =0 . Thus, for this case, {(apart

from a constant) El and E2 form a Fourier transform pair. Hence El
can be found from E2 by an inverse Fourier transform
. : i(ex, + ny.)
= - (=2 || (ALY g 1 1s 1

B (x5y,) = - (55) ” (57) E,(g,n) e ég dn  (V-23)

or, since & = g-T-T-.x and n = gﬂ
: Tar %2 T X Ve v
. 27
i 157 (g + vy

oL AL ~
El(xl,yl) =33 JJ Ez(xg,yz) e dxgdy2n(v 2L)
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We can check to sce if the constant 1i/Af is correct by applying
Parseval's theorem and the conservation of energy. This is done as

follows: Conservation of energy requires that
oo
2 (x Jax_ dy = { B2 (x )dx, 4 (V-25)
IR R s B A B e~ A L /

where E2 = EE¥ .
We have shown that E, is given in terms of El by

( —iEXl ~inyl
E.=C ] J El(xl,yl) e e dx, dy, (v-26)

oxr

0

-i(ex, + ny,)
J E, e . dx,dy, = f{El} . (v-27)

N

—-C0  amOQ

Thus E2/C and E form a Fourier transform pair. Applying Parseval's

1
theorem
J J E. ax,dy; = (37) J I Eg (£,n) ag dn (v—28.)
or
o ) cx: 0 EZ
2 RV 2 (2my2m _
J J E) axydy; = (55 J J C2_(Af)(Af) dx Ay, - (v-29)
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We observe conservation of energy requires AE (%?02 z 1 , hence

C

- L _20)
le| =% - (v-30)
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APPENDIX VI

SINUSOIDAL GRAIN DENSITY - ABSENCE OF THE

SECOND AND HIGHER ORDER WAVES

In this appendix we shall show that if the spatial variation
of the grain density is sinusoidal, then only the first-order diffracted
waves are produced when the grains are illuminated wita a plane wave,
Let us begin by summing the waves scattered by the grains located in
the z = 0 plane (we shall use the Xxyz coordinate system defined in

Section 1.3.3). The grain density in this plane is of the form
D(x,y,0) =D [1+ Cos(.%gl)] A (Vi-1)

where d 1s the periodicity or fringe spacing in the 2z = 0 plane {the
plane of the emulesion surface). The directions of the diffracted waves
are specified (see Section 1.3.4) by requiring that there ve no phase
difference between the waves scattered by grains with the same ¥y

coordinate and that there be a linear phase shift of

127Ny
a
e

as we move in the y- direction, where N is the diffracted order under
consideration (N = #1, #2, etc.). The amplitude of the particular
diffracted wavc under conaideration is proportional to

izt
A= J D(x,y,0) e ¢ ax dy (VI-2)
Xy
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where the integration over x and y corresponds to integrating
over the transverse extent of the hologram grating. Because of the
periodic nature of D(x,y,0) we need only consider the integration

over y =0 to y=4 . It is straightforward to show that

a i2nNy
J [1+ cos(g%X)j e ¢ dy

vanishes for all integer values of N except N = 1 , and thus we
conclude that only the two-first order waves will be produced by the
grains in the 2z = 0 plane. The same conclusion is reached for the
grains located in any plane =z = constant and hence the grating will

produce only the Lwo first-order waves.
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APPENDIX VII

PATH LENGTE DIFFERENCES

in this appendix we shall compute the path length differences
involved in the duplication of a holographic diffraction grating.
I1lurination of the holographic diffraction grating as shown in
Figure VII-1 with & plane wave produces two first-order d4iffracted
plane waves and a zeroth-order plane wave. The directions 0., of the

d

diffracted waves are found from

~

NA
-

"sin O, = sin @i + (VII-1)

d

We wish to consider the case where arrangement of the master
and duplicate plates is as shown in Figure VII-2, where the region be-
tween the two emulsion layers is filled with a fluid having an index of
refraction n . We shall compute the optical path length differerce be~
tween the zeroth-order wave and either of the two first order waves at
an arbitrary point P in the plane of the emulsion surface of the
duplicate film plate. We shall assume that the diffraction by the
holographic diffraction grating takes place at the emulsion-fluid
interface (i.e., we neglect the thickness of the emulsion layer) and
hence, as seen from PFigurc VII-2, thc optical path lcangth difference

AL 1is given Dby

= - . -2
AL e dl + nd2 nd3 (VII-2)
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SUPPORTING EMULSION LAYER

ZEROTH ORDER

_9\
o\ Y

o

g ;’HRST ORDER
+Yd

= N

JITTTTAETT,

aF

INCIDENT WAVE

Figure VII-1 ILLUMINATION OF A HOLOGRAPHIC
DIFFRACTION GRATING

EMULSION LAYER OF EMULSION LAYER OF
MASTER FILM PLATE

Figure Vil-2 DUPLICATION GEOMETRY



We observe that

_ .0 "
dl hl sin @l
and that
h +h
_ 2 1
tan @i 5
Now
= L
hl § tan @i h2
and
h, = § tan @é
and hence
= | 1 . 1" .
d; §(tan 6; - tan ed) sin 0]
We see that
§
dy = ———
2 cos @d
and
8
d, = ———
3 cos @i
and thus
- . n ' + 1 N - n
AL = 5[ne sin o} (tan 0] - tan @d) + o 5T ~ 5os 6]

Now, using Snell's Law

e sin Og = 1 sin Oi .

(VII-3)

(VII-L)

(VII-5)

(VII-6)

(VII-9)

] (VII-10)

(VII-11)



257

equation VII-10 becomes

[ 14
cos @d cos Oi

AL = né[(tan @i - tan eé) sin @i + (VII-12)
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