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ABSTRACT

I. The problem of draining of a liquid from a cylindrical
tank through a hole in the bottom is considered. The flow is irro=
tational, and the free surface boundary conditions are linearized.
Solutions are obtained and the shape of the free surface determined
for any constant mass flow rate. At large mass flow rates, the
free sui'face deforms appreciably when the mean depth is about 40
per cent or less of the tank diameter.

The initial acceleration distribution of the free surface and
the transient behavior of the mass flow rate are determined for a
flow started impulsively from rest as a result of a constant pressure
head.,

At large Froude numbers it is possible to compare the re-
sults with the recent experiments of Gluck, Gille, Zukoski, and
Simkin, and the present analysis is consistent with the experimental

observations.

II. The stability characteristics of a laminar film with a free
: surfdée flowing under the action of gravity down an inclined plane are
examined. Approximate solutions of the Orr-Sommerfeld equation
are obtained, These are valid as long as the wave speed of the dis-
turbance is somewhat largel; than the maximum velocity of the un-
disturbed flow. Curves of neutral stability as functions of Reynolds
number of the undisturbed flow and wave number of the disturbance

are found. These are valid over a larger domain of Reynolds num=



—iv=
ber and wave number than the previous results of Benjamin.

The special case of a vertical wall and zero surface tension
is also discussed. It is shown that undamped waves of the type
predicted by Yih {and tentatively suggested by Benjamin) cannot ex-

ist, and a source of error in Yih's analysis is suggested,
g
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PART I. SURFACE DEFORMATIONS IN A

DRAINING CYLINDRICAI TANK



1.1 Introduction

Until very recently, there has been very little attention fo-
cused on the problem of the irrotational draining of a liquid from a
tank, since vortex formation usually plays a dominant role, particu-
larly with respect to the deformation of the free surface. However,
at very large mass flow rates, such as may be produced under the
action of a pressuhre head many times greater than the normal gravi-
tational head, rotational effects become unimportant (unless, of
course, they are artificially enhanced by external means), but large
surface deformations can occur nevertheless.

In modern liquid-propellant rockets, propellant tanks are
often drained at extremely large flow rates, and the resulting surface
deformations can lcad to the ingestion of pressurization gas into the
drain hole well before all the propellant has been emptied from the
tank. As a consequence, there has been renewed interest in studying
the phenomena involved.

The problem of irrotational flow from a cylindrical tank was
treated by Saad and Oliver15 in 1964 for the case of a constant mass
flow rate. As will be shown, however, their analysis contains a
serious error which renders their result invalid except in the case
of small Froude numbers. (The Froude number, which may be taken
in this problem as a nondimensional measure of the mass flow rate,
is defined as the ratio of the time rate of change of the mean surface
height to the square root of the product of the cylinder radius and the
acceleration due to gravity.) Even without this error, their solution

is based on approximations which are valid only in the case in which,
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first of all, the Froude number is small compared to the ratio of the
cylinder radius to the exit hole radius and, secondly, the displace-
ment of the mean surface height from its starting position is small
compared to the cylinder radius. But it is precisely the case of
large Froude numbers ahd large distances of travel from the starting
position of the mean surface height that is of primary importance;
hence it is desirable to have a method of solution which is valid under
these conditions.

Such a method is presented here. For the case of a constant
mass flow rate the surface profiles are found, and the accuracy of the
solution is seen to be independent of the size of the Froude number or
the distance traveled by the mean surface height. Instead, it is as-
sumed that the mean surface height itself is not small (i.e., not less
than about one fourth of the tank diameter). It is found that in the
limit of very large Froude number F the shape of the surface is in-
dependent of F , and for small F the amplitude of the surface
deformation is proportional to F* . (Hence this phenomenon is
not easily observed in one's kitchen sink; any visible deformations
are most likely due to the presence of a vortex. ) At low starting
heights and low Froude numbers , surface oscillations, originally
predicted by Saad and Oliver, are found; it is argued here, however,
that these oscillations are largely the result of boundary conditions
(both in the treatment of Saad and Oliver and here) which become un-
realistic in the case of low starting heights. The starting transient
(for which the net pressure head, rather than the mass flow rate, is

held constant) is also examined, and the results give some insight into
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the nature of the surface deformation phenomenon.

1. 2 Statement of the Problem

The flow field considerAed is that of an incompressible fluid
draining from a tank which is in the shape of a right circular cylinder
of radius a with its axis parallel to the gravity field (see Figure 1).
The fluid leaves the cylinder through a circular hole of radius af§ in
the center of the plane bottom. The center of the hole is taken as the
" origin of the coordinate system, with the positive 2 ~axis pointing to
the interior of the cylinder in the direction opposite to that of the
gravity field. The upper surface of the liquid is free and is charac-
terized by a coefficient of surface tension ¢ . The flow is assumed
to be irrotational at all points and axially symmetric.

The liquid is considered to be draining under the combined
action of gravity and a net pressure head, but it will be assumed that
the rate of mass flow out of the chinder is constant. (This implies
that the pressure head varies in a precise way with time, but this is
not unrealistic; constant mass flow rates are often required in pro-
pellant tank applications. ) The initial conditions are that the surface
is un&eformed (i.e., in a horizontal plane) and all points in the sur-
face have initially the samc 3 -component of velocity. Thus, in ef-
fect, the fluid is assumed to have been draining at a constant rate
with the surface constrained to be in a horizontal plane, and at the
initia;l instant the constraint is removed and the surface becomes
free. (The question of how realistic the assumed initial conditions

are, will be treated later.)



1 .' 3 Notation

The following symbols will be used to represent dimensional

parameters (refer to Figure 1):

a = radius of the cylinder

q = acceleration due to gravity (and, possibly, due to an
axial acceleration of the cylindrical tank)

h = average height of the surface above the bottom

yo* = Ppressure

v = radial coordinate

R, = radius of curvature of the surface in radial direction

R, = radius of curvature of the surface in the azimuthal

direction
t* = time
dh : :
u = - = & rate at which average surface height de-

creases (a positive constant)

2* = axial coordinate

’o = density

o = coefficient of surface tension

*

45 = velocity potential (the sign convention used is that
the velocity field is the positive gradient of the poten-
tial function)

The following symbols will be used to represent nondimen-

sional parameters:

a = 2 T,(4.5)
PALS [
B = ﬁ%_-:‘— = Bond number
B, = nlCh coefficient of series for first-order potential func-

tion
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U
Fo= = Froude number
Vagq
J; = Bessel function of the first kind of order :
>
P = —%—r
r *
t =
O‘/U
- A
2 T a
§ = ratio of exit hole radius to cylinder radius
f = ratio of local displacement of surface (from mean

value) to cylinder radius

7 ==

w = nth zero of J, ( T4 = O )
L

¥ = initial value of ¥

= =

& = zeroth-order part of ¢

o
1l

first-order part of ¢

s YO )

1.4 Formulation

£
[

Since the flow is irrotational and axially symmetric, we seek
a velocity potential ¢ which satisfies the following form of La-

place's equation:

) 2o Yo
?S?(? >7> O (1.1)

On the cylinder axis and the outer wall, respectively, the fol~

lowing boundary conditions apply:

?_ib = (&

(I) 5,7 7 (1' 2)
7:0
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(11) % = O ) (1. 3)
»=

It will be assumed that the flow through the exit hole is adequately
described by requiring the 5 -component of velocity to be uniformly
distributed across the hole in the plane of the bottom. Thus, the

boundary condition at the bottom becomes:

'—'SL;_ for Oéyég

(1I1) = (1. 4)

o
;; ly-o
0 Sor §¢ 57 2

At the free surface, as is usually the case with free surface
flows, two boundary conditions are required. This arises from the
fact that the location of the boundary is unknown, i.e., §= f(zt) is an
unknown function. One of these conditions is a kinematic relation
which guarantees that the function $(»,%) is consistent with the poten-

tial function, that is, that fluid particles in the surface remain in the

surface. In dimensional form we have:

yCheat) >” S(hrel) | 20"
(IV) BT S;,;Z DN Nz (1. 5)
g )

2’*: h+af *2h+ ¥

The other [ree surface boundary condition is the dynamical relation
which actually governs the motion of the free surface. It is
Bernoulli's integral of the equations of motion evaluated at the sur-

face, which in dimensional notation becomes:



(V) [% LET (a3 =H7) e

where § (t") | is a function of ¢” only.

Before nondimensionalizing equations (1. 5) and (1. 6), we note
the following. First of all, we may choose the pressure above the
surface as the zero of the pressure scale without loss of generality,
in which case the pressure in the liquid at the surface is just that due

to surface tension effects:

)

- ) (1.7)

where R, 1is the radius of curvature of the surface in the radial di-
rection and R, , the radius of curvature in the azimuthal direction.
Since the problem is going to be linearized with respectto I , we

may write R, and R, in the following way:

. Ny (h+af) . 3

_E. - Py ©(3%) > (1. 8a)
LS 3(h+ad O (33

R, r o . (1. 8b)

In addition, we note that there will be no explicit time dependence in
the problem; all variations with respect to time are implied by func=-
‘tions of h , since h is a function of time. It is therefore con-
Venie_ﬁt touse h (or ¥ )as the independent variable which reflects
time variations. We note that

Yy _dh 3

RIS
Y* ¥ dh °t T ¥



-9-

Thus, the nondimensional forms of equations (1. 5) and (1. 6)

become:
¥ > v9 [ 24
Iv) 5= -l~[§f * S [3,7 (1.9)
2:‘5!-5’ J:Ff ’
L Y
V) -d L3 (53] +J;L+[;(’)— +z(~‘)-—£] = 4(5 1,10
(V) F ;7(77»() F ?:) 4 >S’9:s+f ( )

kS

where B 1is the Bond number —f—%_i and F  is the Froude num-
ber U’/JTS" . The function £(f) is a function of ¥ only, that is
to say, it is not a function of 7 or P

Thus we seek a solution to equation (1. 1) satisfying boundary
conditions (I) through (V). The approach to be used is to assume that
5 is small compared to one and to linearize the equations with
respectto 5§ . We expand ¢ in the following way:

¢:¢°+q§,+.._ , (I.11)

in which we define ¢ to be the potential function for the flow field
in the absence of surface deformations; this will be called the zeroth-
order flow. Similarly, ¢ gives the first-order correction to &,
obtained by keeping terms of order ¥ only, dropping higher order
terms. The flow field generated by the sum of C#b and ¢, will be

called the first-order flow.

1.5 Zeroth-order Flow

Taking the zeroth-order part of equation (1. 1), we find

Y b, ¥ P,
> 5o 07 3 - 1. 12
? 37( 377) ;2 _ . ( )
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The zeroth-order parts of boundary conditions (I), (II), and (III) be-

come
3¢ -
(1) o / = o , (1. 13)
7=0
>d
2% = o
(11) ~ / , (1. 14)
17:!
-4 fo < < §
N ¢° S" 14 o 77
(111) N = (1. 15)
9 3’0 .
o for $ < w </

Since the zeroth-order flow corresponds, by definition, to a surface
constrained to remain in a horizontal plane, the free surface bound-
ary conditions (IV) and (V) are clearly not the ones to use. Instead,
we need merely to require that the surface moves downward with a -

speed U ; in nondimensional notation that becomes

4,

= = (1. 16)
}9 -

;=E

The solution to equation (1. 12) satisfying conditions (1. 13),

(1. 14), (1,15), and (1. 16) is seen to be

Cbo: -5 +§7ﬂ" ol d, (5~ ¥) _T,,(Av.vf)

o A, (1. 17a)
. th =
where A, isthen  rootof J(A)= O , and
g = = 1D (1.17b)

S S SR e N W)
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NN and  J, are Bessel functions of the first kind of order zero
and one, respectively.
We note for future reference that A, is of order one and is
a decreasing function of n . Also, for increasing »n , we see that
the quantity [ ceak A (5-¥)] Sah d§ decreases roughly like e~ £
if 2 isnear ¥ . Thus, if 4 is nottoo small, the series in

equation (1. 17a) is a rapidly converging one, and may be accurately

represented by a finite truncation.

1.6 First-Order Flow

The initial conditions assumed for the first-order flow are
that there is no deformation of the surface, and that all points in the
surface have the same 5 -component of velocity (-U ). Thus,

o, (1. 18)

—b
—
(o)
0
el
Il

and

= 0 . (1.19)
§=%

©

The first-order part of equation (1. 1) is

1 d \?__?i_' )“’dD' —
7‘7'77(7 ay)+ Sgv = 0 (1. 20)

Similarly, the boundary conditions (I), (II), and (III) become, for @

')

(1) E}i - o (1.21)
(11) ?_CEI - o (1. 22)
7 |



12~

20
3

= O
” (1. 23)

2°°
The most general solution to equation (1. 20) which satisfies

conditions (I), (II), and (III) is:

qb, = E B, (5) cm:jr)up J:(JnV) (1. 24)

where the B,’s are arbitrary functions of ¥ . (The '""most gener-
al' solution would include an additional function of ¥ , say B_(¥%),
but such a function can clearly be ignored without loss of generality
in the present problem. )

For the present it will be assumed that the series in equation
(1. 24) is rapidly convergent; this assumption may be checked after the
functions B, ($¥) are found. On this basis, we shall truncate the
series of equation (1. 24), as well as that of equation (1. 17a), after N
terms, where N is a relatively small integer such that 4, may
still be treated as a small quantity. - That it is possible to find such
an integer, without destroying the accuracy of the series in which the
truncations are made, must be verified after the solutions are ob-
tained.

We shall also restrict the solution to the case where ¥ is

w

large enough to make e negligible compared to one. The error
incurred by doing this is less than ten per cent for ¥ greater than
0.6, and less than five per cent for § greater than 0.8. Actually,
it 111a$r be anticipated that this assumption does not restrict the value

of ¥ any more than it already is restricted by the assumption that

Y is small; this, too, can be checked after the solutions are
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obtained. Nevertheless, with this assumption, both <« A.f and

ed A, % may be represented very accurately by exponential

functions, since

A .LCA"‘[I - O({e'x“yfil
- <
cond A8

Thus, substituting the complete expression for 36 into equa-

tion (1. 9) and keeping first-order terms only, we find:

5 X AL ¥
(IV) = £ 2B AT Ty (1. 25)
in which we have also assumed that % is not less than order ¥.

(Again, this may be verified with the final solutions. ) We note then
that a series whose coefficients behave like B, e Ao is of order ¥
or more. Finally, substituting the expression for C,{) into egquation
(1. 10), we find:

, .5
g g a My + (8 v M T oy -

(V) (1. 26)

V'V
(=3

)+ zF—:f- = ,Zf,‘_(f)

212
BF* 7 37 (7 7
where primes denote differentiation with respectto § . Differenti~

ating equation (l. 26) with respect to ¥ and using equation (1. 25) to

eliminate I , there results:

N ’ ' /l: "

- <//4,,A:e"1“g}l(f'w7) = 24, (F) (1. 27)
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For a given value of § the right member of equation (1.27)
is a constant, and hence the left member must be an expansion of
that constant in a series of Bessel functions. However, since the set
of functions J,(du#7), n=1,2,3,--- (0t7=21), lacks a constant of being

a complete set, both members of equation (1. 27) must be zero, and,

in fact, the left member must be zero term by term. We therefore

have 1
n } w -
Bn *2‘(1“8“’ +(E';_+(‘}M+ a;,_) Aan ad
~ ~-24,%
:glgn,}“e fo\r n=12--N.

(1. 28)

Evaluating equations (l.25) and (1. 26) when § = ¥, by using
the initial conditions of equations (1. 18) and (1. 19), we find the fol-

lowing boundary conditions for B,

B (F)= o (1. 29)
/ - _Zfln fe
B (%)= - YA,d, e (1. 30)
The solution for B8, (%) is thus found to be:
B (5) = 2Andn {e”l“(?"*f) { D0 o (5,mT) -
“ w;"f' A: n
~2 4§ (1. 31a)
_muow(fg"-f)}'/—e .
?
where
- L Ae oy
SnTF Z/’("O* 5 ) (1. 31b)

Since equation (1. 25) gives
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¥
] N )Myl
'5:-3%.' A“I(rlmy) B,(%)e d¥,
§°
we have
NoA A"e—’]”“;°
§=2 =2 ‘:)_:'4_".,_ ow o, (F - B) +

v

ST Am(a,-f)]
+ 2 e, (5-X) -~ e T, (Auw)
2 (day (1.32a)

If the Froude number F is either large or small compared to one,

§  has the following asymptotic forms:

N A, An _ T
sm 2 3 Lon AR L Sh e ) 0T -
=]

Nt

-2 ?]
- w J: (r’l“ ) _S_oy_ F << 1
< ‘ 7 ’ (1.32b)
~ &3
Tzzéﬂn[é,lnfogt»raw(f; 53} -e J:yo(,qn,/)
Sor F >> 1
(1.32c)

Thus, we see that the amplitude of the surface deformation is inde-~
pendent of F for large F , and proportional to F* for )sma.ll F .
Typical surface profiles indicated by equation (1. 32c) are presented
in Figures 2, 3, and 4, for § =0, .2, and .5, respectively. The
starting position: ¥, has been taken to be infinite for these curves,
but it is clear that the results are essentially independent of ¥, if

¥ is greater than 2, say. It should be noted that the profiles
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shown in the figures indicate that, if § is small, the deformations
tend to grow quite rapidly when ¥ reaches a value on the order of
0.7.

The solutions obtained for ¥ have been based on the assump-
tion that the series in equations (1. 17a) and (1. 24) are very rapidly
convergent when 2 is of the orde'r of ¥ (only their behavior for
values of } near the surface has been needed). It is now clear,
using equation (1. 31a), that for either series the ratio of any given
term to the preceding term is roughly the order of e ™ s Ssince
An—/l,,_,”"'”'. Since we are treating only the case in which ¥ is large

A negligible compared to one ( 4, = 3.832),

enough to make e
the truncation procedure is clearly justified.
It may now also be verified that for large F the assumption

that e ¥

is negligible does not place any new restrictions on the
acceptable range of ¥ ; the curves in Figures 2, 3, and 4, for ex-
ample, indicate that the linearization procedure will break down at
about the same values of ¥ as the above assumption.

Finally, it was assumed that é{? is at least of order J;
equation (1. 32a) indicates that this is indeed the case.

If the Froude number is not too large, equations (1. 32a) and
(1.32b) indicate that the shape of the surface is influenced by surface
tension effects because of the formal dependence of ¥ on the Bond
,number B . It should be noted, however, that, unless the radius a
is so small that the cylinder becomes essentially a capillary tube,

this Bond number dependence is extremely weak due to the large values

of B . For example, if the radius of the cylinder is as small as ten
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centimeters, and if the draining liquid is hydrazine (which has an un-
usually large coefficient of surface tension and, incidentally, is a
common rocket propellant), then the Bond number is greater than
1000.

Although detailed experimental measurements of surface pro-
files ha;ve not been made (with whi_ch to compare the profiles in Fig-
ures 2, 3, and 4), it is possible to compare some of the general fea-
tures of the flow predicted by equation (1. 32a) with the experimental
observations of Gluck, Gille, Zukoski, and Simkin4. They measured
the height at which ingestion of the pressurization gas into the drain
hole first occurs, i.e., at which 3’7 =%, = - F . By plotting

this "ingestion' height as a function of a Froude number F- given by
=

they found that the results appeared to be independent of § .
Although the linearized analysis given here clearly does not

apply to the case of the extreme surface deformation associated with

actual gas ingestion, we may define a somewhat different critical po-

sition ¥, at which ¥, =-K¥ , where K is a constant small

compared to one (rather than equal to one, as in the experiments).

If F is not too small, the variation of §  with F- and § should

be similar to that of the measured ingestion height.

If we take N to be one, and ¥, to be very large, equation

(1.32a) predicts the following dependence of f, on F and § :

¢ AF [ § ][ T, (A.8) ]
. e - z 2 A, 1.33
RAZGFL] (A + =) | - ( )
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Equation (1. 33) indicates that ¥. asymptotically approaches
a limiting value for large Fr , and the values of F- at which §
first drops significantly below this limit are of the order of one. The
same is true for the ingestion height measured by Gluck, et al.

The dependence of ¥, on § indicated by equation (1.33)
is very weak, and in fact, at a given F+ , the range of % as (
varies between .1 and . 3125 (the values used in the experiments) is
considerably less than the scatter in the experimental data. Hence
the variation of ¥  with § implied by equation (1.33) is consist-
ent with the experimental difficulty in finding a systematic dependence
on § .

The solutions obtained by Saad and Oliver15 are based on the
assumption that, if the velocity of the mean surface ie constant, and
if the surface deformation is small, then the nonlinear terms in the
Bernoulli equation (i.e., those terms which involve the velocity
components) can be entirely neglected. This assumption is only val-
id, however, for small Froude numbers, in which case all velocities
are indeed small. The present analysis shows that in the general
casevfhe terms in question do make a contribution to the linearized
equations and in fact significantly influence the final results. (Saad
and Oliver also explicitly assume that

Fe< )1+ 2=
so the range of F 1is strongly limited even if the Bernoulli equation

is properly linearized. ) Their basic approach is to linearize with

respect to the quantity (% - %) , as well as with respect to AT
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Under these assumptions for F small and ¥, relatively small,
they find surface oscillations.

The set of initial conditions which leads to these oscillations
requires careful examination. In formulating the initial conditions,
Saad and Oliver state that they are considering the case in which the
liquid is initially at rest; the surface is thus assumed to be unde-
formed (if the Bond number is not too small), and all initial veloci-
ties are zero. It thus appears that the effects of the starting transi-
ent are to be included in their analysis. However, in solving the
problem they treat only the case in which U 1is a constant. Since

it is clear that they are

they refer to this as "step function flow,
considering the flow to be started from rest, but to be accelerated
instantaneously to the velocity U at the initial instant. Although
no justification is given, they are obviously assuming that since the
starting transient is likely to be very rapid (this point will be verified
in Section 1. 8), it has little effect on the phenomena involved in the
deformation of the surface. To justify this assumption it must be
shown that a characteristic time associated with the starting transient
is small compared with a characteristic time associated with the
deformation of the surface. It will be shown in Section 1.7, however,
that this is in fact not the case when Fo is not large. In other words,
it will be shown that i‘{ = O (% during the starting transient,
if ¥, is notlarge.

Thus, by setting U equal to a constant at the outset, Saad and

Oliver have in effect used the same initial conditions as those in the

present treatment. The solutions obtained in both treatments there-
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fore apply to thé case in which the surface is initially traveling down-
ward with speed U and is constrained to lie in a horizontal plane;
when §= ¥, , this constraint is removed and the surface is allowed
to deform. Equation (l.32b) shows that the present analysis also
predicts surface oscillations if F is small and ¥ is not toco
large.

The physical mechanism involved in creating the oscillation
appears to be the following. For a given position ¥ there exists an
"equilibrium' surface profile, which we may define as that shape
which the surface would have at ¥ if it were started (with constant
speed U ) from a position ¥, much greater than § . It is clear
that if ¥ is large, this equilibrium profile is essentially a horizon-
tal plane. Thus, the initial conditions given by equations (1. 18) and
(1. 19) are realistic if ¥, is not small.

On the other hand, if ¥  is small, the assumed starting
profile is quite different from the equilibrium profile, and restoring
forces will drive the surface towards the equilibrium state; that is,
relative to the mean height, the liquid at the center of the tank ac-
celerates downward and that at the outer circumference accelerates
upward. It is reasonable to assume that the magnitude of these re-
storing forces is a function of the amount by which the actual surface
is displaced from the equilibrium profile. Thus, in a sense, this
process possesses a certain momentum; that is to say, when the
equilibriﬁrn profile is reached, the liquid in the center will have ac-
celerated to a significant downwafd velocity relative to the liquid

near the outer wall. Therefore, the surface profile will "overshoot'
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the equilibrium profile in much the same way as a mass, oscillating
on a spring, overshoots its equilibrium position evéry half-cycle;
thus, the oscillation of the surface will continue under the action of
the hydrodynamically supplied restdring forces.

The important point is that the oscillations are the result of a
set of initial conditions which require the surface to be moving with
an undeformed surface at the initial instant. I[ the starting position
given by ¥, is relatively low, it would be extremely difficult to
reproduce these initial conditions in a laboratory setup. Therefore,
it must be concluded that for the case of small ¥ the initial con-
ditions are unrealistic, and the surface oscillations which are pre=-
dicted as a result of these initial conditions are of little physical

significance.

1.7 Initial Accelerations

In this section we shall attempt to find the initial acceleration
distribution across the surface when the flow is started from rest.
It will now be assumed that the net pressure head, rather than the
mass flow rate, is held constant. We shall again linearize with re=-
spect to quantities of order ¥ ; this in no way compromises the ac-
curacy of the final results, however, since we need only consider the
flow during an infinitesimal time interval starting at the initial
instant, which we shall take bto be t=0.

The notation will be essentially the same as that used in the

previous sections, with the following exceptions and additions.
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C, = unknown coefficient in expression for ¢ (see equa-
tion (1. 33))

F = ‘r-lﬁ. ( U, is defined below)
29
}o: = pressure above the free surface
‘P: = pressure at the origin
* ¥ X
bi = Pa = Po
R = ["(6]7:0 / ["“],7:, (¢, 1is defined below)
_é-%
t = ——
2/,
U =7k
f
* _ dh
V= 2
v = Vvi/u
_ 3
74 = ;_E; (§ + 3)
ol - <>t|
t=o
qS - T a

The equations in this section will be nondimensionalized using
U, = \/P:/f’ as a characteristic velocity, since we are primarily
interested in the case of large mass flow rates and thus large pres-
sure heads.

From the analysis of the previous sections it is obvious that
the potential function » ¢> must be of the following form:

_ - = —_Z w3 -7
QS-— V; Vn:r)q" PN Anf Q(Anv) *

+Z ¢ 0 end Ay T (Au7y)
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where the coefficients C,(t) are unknown functions of time which
permit ¢ to satisfy the free surface boundary conditions (IV) and

(V). In the present notation, condition (IV) becomes:

33 _ ¥
(1Iv) V+ 5= >

ye —= (1.34)

.»_g! S,
>
}:j+§ ;‘—fff 7

If we evaluate the Bernoulli constant in condition (V) at the origin, we

find:
) * >\ $+7 >’—¢ -
(V) /*"i[(%f) + g) F +(:>t] =
’ 9=F+f ;=§+f
A ¢
:2\_/Sq + [;{i{ (1.35)
2°°
7—-0

Although our primary interest is finding the acceleration
distribution at time t = O , we now have formally enough informa-
tion to generate first-order equations for the unknown functions C, (%),
V(t) , and J(» t) . The problem is well-posed with the following

initial conditions:

1| = o, (1.36)
t=o0

g -

%L__o < (1.37)
V{m -2 (1.38)

In substituting the expression for (P into equations (1.34) and
(1.35), we shall make use of the fact that during the time interval
considered, V , as well as ¢ and §, is an infinitesimal guantity.

Thus, keeping lowest order terms only, we find:
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BN ] .
(IV) b—f: = Z C,,,A,,‘ er’l“ F J: (r‘M’)?) y (1° 39)
and o o4
(V) E {CV,/ ur-vﬁ- (IME, -V *’—_‘fT?}J:(,Jwﬁ) =
hzi Rt v

§ ’ = o= )
= - —z - Z’ﬁ,,w'd. ..Y Z v
(I+F) V(?*’M:‘ d )+"='c s (1. 40)

where primes now denote differentiation with respectto € . We
again note that since the set of Bessel functions in equation (1. 40)
lacks a constant of being a complete set, all the terms in the series

must be zero. Thus we have:

o AV’
A p— 1. 41
ed At d (1.41)
and
Se = (’+F">+V($+,,=, : W3) . (1.42)
Combining equations (1. 41) and (1. 42) to eliminate Cnl , we find:
¥
, I =
v = - (1* F) (1. 43)

§+ S A, tank A5

We note that the quantity ( [+ ;2‘_) is the total head acting
on the liquid in the tank; the pressure head has been normalized to
one, and § / F* is the nondimensionalized gravitational head.

Finally, putting the expression for V' into equation (1. 41),

there results:
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" (orih 22,8) (§+ 3 R, Gank A, ¥) | (1. 44)

We seek the dimensionless acceleration «:

™ _ oy, S
X = SZ" (? + T) - V + 3~
The guantity }i—{ is obtained by differentiating equation (1. 39):
B‘Lf od ’ )
- S a0 et s AV ek 1,517, () (1. 45)

n=j

Because of equation (1. 39), initial condition (1. 37) implies that

C, () = O for all n , and we have
v f - ' ,
T T 2 G (0) wd ALK T ) (1. 46)
t=o0

or, substituting the expression for Cw' of equation (1. 44),

SEl o5 An Ay T2 (Aary) e
>th ( FJ%(mmuf.,)(fﬁmé’:ﬁmwn}ma) o (4T

ThuS.,

(:+§°;) s A, d, T Choy)
X = -

+ ]
° ¥+ S A ad AT | = cd A1, (1. 48)

A useful parameter which may be taken as a measure of the

initial tendency of the surface to deform is the ratio R of the initial

acceleration at the center to the initial acceleration at the outer wall:
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. I+ 2 oz
R = — 7o = (1. 49)
= 4,1
. nn T, (A
" I‘7=' l+ -MZ"‘ cot AT,

The dependence of R on ¥, and § is indicated graphically
in Figure 5. For ¥, greater than about l.2 there is clearly very
little tendency for the surface to deform. This indicates that the ini-
tial conditions assumed in Section 1. 6 may be considered realistic for

¥

o of that order or larger.

A curious property of equation (l.49) is that R is independent
of the total head acting on the liquid. This means, for example, for a
very low value of ¥  , the initial tendency of the surface to deform
is extremely large, even if the total head on the liquid is quite small,
This implies that the surface accelerates very rapidly (with respect
to the displacement of the mean surface height) towards it "equilib-
rium'' position, which it would have at ¥, if started from a greater
initial height, even though that equilibrium position may represent
only a very slight surface deformation.

We have seen that C,(o)= 0, and thus, using equation (1. 44),

the Taylor series expansion for C,(¢) about the point t=0 must be

of the form

A
24, (1+75)¢2

W ’Jn §e>(fn+4§‘ﬁm ta""’(‘ Au F& )

Cm(t)z— A O(fz) . (lo 50)
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Similarly, using equations (1. 43) and (1. 38),

( (1 _i—:) £ + O (¢¥)
€)= -
V) ‘}u+§_ﬁnﬁwl\_h§c, (1.51)
Therefore,
Cn_ 2% . o(e)
vV awnd 24,%, : (1.52)
Using equation (1.39),
oM S ey F T ) .
Mo o % G JF TG ot
HTVN T2 v 7 ) (1.53)
or
M LR Adn 5,y
S T 2 oaam e (1. 54)
tzo
Thus, we see that if §_, is not too large, -z—;o is of order one,
t=0
that is,
»Y _ > §
= =0(5) . (1. 55)

It follows that the ''step-function flow' assumption of Saad and Oliver,
that the starting transient precedes any significant surface deforma-
tions is clearly invalid. Equation (l.55) also shows, because of the
large acceleration ratios indicated in Figure 5, that one may expect
the starting transient itself to be verly rapid, or, more precisely, to
occur during a very small displacement of the mean surface position.
This will be investigated in the next section.

It should be noted that the solutions for «, and R found in

this section are exact solutions of the potential-flow problem as
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formulated, regardless of the maghitude of «, or R . (Since
the surface is initially undeformed, surface tension effects do not
enter,regardless of the size of the surface tension coefficient, as-

suming the contact angle with the wall is zero. )

1.8 Zeroth-order Starting Transient

We now consider the zeroth-order variation of the mean height
if the flow is started from rest and the pressure head is held constant.
By definition, the zeroth-order flow is that which results when the

surface is constrained to lie in a horizontal plane. We shall denote by

the quantity U,”  the guantity j—%; » and by U, the parameter
U /U, . Otherwise, the notation will be essentially the same as in

the previous section,

It may be anticipated that the first-order correction to U, is
relatively small, except at low surface heights, for the following
reason. The average pressure, integrated over the surface, is al-
ways }o; » and thus always equal to the value it would have if the
surface were allowed to deform. In addition, the difference in the
pressure distribution on the bottom of the tank for the zeroth~- and
first-order flows will be very small even when the first-order sur-
face deformations are significant, as long as the height ¥ 1is not too
small. (Of course, the pressure near the origin is assumed to be the
same in both cases. ) bThus, the total force acting on the liquid and
controlling the mass flow rate will be roughly the same for the two
cases. (It will be possible to verify this hypothesis to a limited ex~

tent when the solution is obtained. )



229~
The flow field for the zeroth-order starting transient is
equivalent to the flow which results if on the surface of the liquid
there is a weightless, frictionless piston, above which there is a
pressure p/* . (This, of course, is not the same as having a
piston of weight p* mTa®* because of the dynamics of the piston. )
The only initial condition that is required is

U =0, (1.56)

and we again note that it will be convenient to use § instead of t as

the independent variable. To this end, we observe i =V, %—9

As we have seen, the potential function must be of the follow-

ing form:
& e A, (
d)o = _U; ‘U; wz::ﬂ,, U*I'FL— T(r?,,';?) . (1.57)

We shall again use the Bernoulli integral to generate the governing
dynamical equation. Evaluating the Bernoulli constant first at the
surface and secondly in the exit hole, and then averaging, respectively,

over the surface and over the plane of the exit hole, we find:

( | + -g"t— + % + J [( 3} )J ';75/7 + ,Z,-U;.\V Eid;‘j 7d77 =
o Ea
R S S
T K )J v dy - —:{ [&“j ydy (1. 58)

o F7°

. - »* . -
in which we have assumed that p,~ is now the average pressure in

the plane of the hole, rather than simply the pressure at the origin.
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When substituting the cxpression for Cf)o into this equation, we shall
restrict the solutions to values of ¥ not very small by assuming that
e 2MF is negligible compgredtoone. The error incurred is, for
example, less than ten per cent if ¥ is greater than 0.3, and

less than one per cent if ¥ is greater than 0.6 . We shall also as-

sume that §  is negligible compared to one. Thus, we find:

\ ¥
dUr | - Vi gt - -2 (1+ %)
= = 2 Ay .
U FEE Rawn) T SR Emas o0

which is subject to the initial condition U."

3

{g g: O . After some

algebraic manipulation the solution for U* may be written as fol-

lows.,
= A / + &¥ VS”
oA, - ST g0 _ 222 7,0
R 5 ( s & e ! . 55, *
1:2"‘3—: T,C2.8)
/ 5§ 5 !
+ =
25" 2& A, _ 2ZE 5,8
+ = (F"‘ 3 “E:' ');J,—(rl.,,g)) / N St ] (1.’ 60)

In the final bracket in this expression, the exponent (? - 1) may
accurately be replaced by !/¢4 even if the factor on which the ex~
ponent appears is significantly less than one, since in that event the
factoi- raised to either power is an extremely small number, which is

to be subtracted from one. Thus, there finally results:
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!/t .»,4
- - "T(AS) 5
U, = /= 2§ (/"‘ = ‘ (1. 61)
' "’"—mn

Of course, the functional dependence of ¥ on % is formally implied

. by the relation

3 ,
dF.
g sy t . (1. 62)
13

o

Equation (1.61), however, is in a particularly useful form.
The quantity in thc sccond set of rectangular brackets is exactly the
'"quasi-steady' result obtained for a slowly drainiﬁg tank. The other
set of rectangular brackets gives precisely the transient effects.
Although its initial value is zero, it goes very rapidly to onc because
the exponent is an extremely large number. Hence, the starting
transient occurs over an extremely small distance, regardless of the
size of the total head (1+ g—;) ; as anticipated in the previous section.

A partial check on the accuracy of the zeroth-order analysis
can be made by comparing the initial acceleration which it predicts

with the exact value obtained in Section 1.7. We note that

ik = o 4 1. 63
dt Tz gy (1.63)
t=o :

Using equation (1. 59) we have.

1,
dvtl o (1+£2) : 64)
|l 2 8 A, ; 2.

4 t=o §° M § »Z Rt (2.9

Equation (1. 43) gives the exact result as
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_d_V/ - - (1+3) (1. 65)
t=0

dt ¥+ = A, tand 4,5,

Equation (1. 65), however, is based on the assumption that fof is de~
fined as the pressure at the origin, while equation (1. 64) is based on
the assumption that p is the average pressure across the plane of
the exit hole. Hence these two results are comparable only in the
limit of very small § . However, the data in Figures 2 through 5
show that surface deformations are largest as § tends to zero, and
thus this case is the severest test of the accuracy of the zeroth~order
analysis.,

Therefore, defining M to be the ratio of the zeroth-order

result to the exact result, we have, in the limit of small § ,

g o+ 3 tand A5,

1w r = o A, [J‘Q(ah)]:.
S= o & v (1.66)
5+ MZ ALL7 gt
since
{
lim A = ——=—3
oo a,[nal] : (1. 67)

If ¥, is greater than 0.5, the two series in equation (1. 66) differ
by less than five per cent, and thus [7 differs {rom one by even less.
Thus we see that if §* is very small and F 1is greater than about

0. 5, the transient behavior is well represented by equation (1.61).

1.9 Concluding Remarks

The solution for the deformation of the surface given by equa-

tion (1. 32a) is valid (unlike previously available solutions) for the
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physically important case of large F  and large values of (¥, - ¥) .
It is the surface profiles which correspond to this case which are
given in Figures 2, 3, and 4.

We have seen that i’%/ . » given by equation (l.54), as
well as the transient behavior of the mean surface when accelerated
from rest, as given by the first set of rectangular brackets in equa-~-
tion (1. 61), is independent of the total head on the fluid in the tank.

It should be noted, of course, that this does not mean that the?._c:_—
celerations which occur during the starting transient are independent
of the total head, but rather that the distances over which the transi-
ent effects take place arc themselves independent of the total head.
Thus, if ?S is defined as the value of ¥ at which the starting
transient is essentially completed ( ¥, may be defined, for example,
as the value of ¥ for which ]U’,' is a maximum), then ¥,- ¥ is
virtually independent of the total head, but the time required for ¥
to reach ¥ clearly decreases as the total head increases. An
important result of Sections 1.7 and 1.8 is that €, will be very
close to ¥ , but that the amplitude of the surface deformation
when % = 5 will be significant if = ¥, is not large. Thus, any
attempt to find the surface profiles whenthe flow is started from rest

must properly take into account the surface deformation which oc-

curs during the starting transient.
As noted earlier, the primary application of the problem con-
sidered is in the design of rocket propellant tanks. Since the surface

deformation can lead to the ingestion of pressurization gas into the



~34a

propellant lines while a significant amount of propellant remains in
the tank, it becomes a propellant utilization problem. The emphasis
here has been on calculating the surface deformations which occur
for the tank geometry indicated in Figure l. A related problem,
which could prove to be an area of fruitful research in the future,
would involve trying to optimize the tank geometry to minimize the
amount of unused propellant remaining when gas ingestion occurs. A
conical geometry, for example, might lend itself to a theoretical
analysis, and the opportunities for experimental investigations are

virtually unlimited.
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PART II. STABILITY OF A LAMINAR FILM

ON AN INCLINED PLANE
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2.1, Introduction

In this part we shall investigate the stability characteristics of
a laminar film on an inclined plane. Because of the presence of the
free surface, this problem is in many respects quite different from
the classical problems in hydrodynamic stability. Many of these dif-
ferences become readily apparent when a comparison is made with -
the problem of the stability of plane Poiseuille flow between parallel
walls. The Poiseuille flow is roughly the equivalent of the laminar
film with the free surface eliminated; if one regards the plane of the
undisturbed free surface of the film as corresponding to the plane of
symmetry in the Poiseuille flow, the undisturbed velocity distributions
in the two flow fields will be identical.

The stability of plane Poiseuille flow has been extensively
treated in the literature, notably by Lin13; Heisenbergé, and Shenl(). |
The flow is found to be stable for values of the Reynolds number
(based on the mean flow velocity and the channel half—width) less than
about 4000, at which point the transition to turbulence begins. On the
other hand, for the laminar film, the transition to tp.rbulence is known
to occur at Reynolds numbers on the order of 300. (See, for example,
J'effreys7. ) Thus, the free surfa.ce. is seen to have a destabilizing‘
effect.

It has, however, a much more profound effect than that; it
introduces, in effect, an additional degree of freedom, and this leads
to a different mode of instability which is observed throughout almost
the entire laminar flow regime. Instead of parallel laminar flow with

straight streamlines, there is observed a wavy laminar flow with
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visible surface waves propagating in the direction of flow, even at
’Reynolds numbers as low as ten or less. It is the stability with re-~
spect to the transition to this wavy flow regime that is treated here.

The problem has long been of interest to chemical engineers
concerned with the properties of films of condensing vapors. A num-
ber of attempts have been made to measure experimentally the so-
called critical Reynolds number, defined as that Reynolds number be-
low which infinitesimal disturbances are positively damped, making
the parallel laminar flow stable, and above which at least some kinds
of infinitesimal disturbances are negatively damped, leading to waves
of finite amplitude. Friedman and Miller3 studied the flow éf thin
films down the outside of a vertical cylinder, and noted an apparent
critical Reynolds number on the order of six. Grimley 5, using both
cylinders and plane surfaces, determined the critical value to be 6. Z‘.
On the other hand, Binniez, using an optical system cé,pable of detect~
ing waves of very small amplitude, obtained photographs of unmistak= -
able wave trains at Reynolds numbers as low as 4. 4.

Perhaps the most sensitive experimental setup for detecting
the waves, however, was designed, somewhat unwittingly, by Kirk-
bride9 in 1934 for an experiment designed to measure ‘heat transfer
coefficients. In first trying to correlate the friction factor with
Reynolds number, he observed a systematic deviation from the ac-
cepted theoretical curve for Reynolds numbers greater than about two.
Since his measured values for the film thickness were apparently too
large, and since his experimental setup (involving a micrometer de-

vice which was moved until contact could just be maintained between
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the liquid and the micrometer) actually measured maximum film
thickness rather than average film thickness, he was forced to con-
clude that waves, which could not be observed visually, were in fact
present. He therefore, in effect, measured a critical Reynolds num-
ber of about two. Thus, although there is a considera’ble spread in
the experimental results, there is also an obvious trend; as tech-~
niques for detecting the presence of waves become more sensitive,
the measured value of the critical Reynolds number‘ decreases.

From the theoretical point of view, the desired end result, of
course, is not merely a value for the critical Reynolds number, but,
as in other problems in hydrodynamic st‘ability, a curve of neutral
stability in the R-a plane (R is the Reynolds number, and a, the
nondimensional wave number). Each point on such a curve indicates
the wave number (or wavelength) of an infinitesimal sinusoidal dis-
turbance which, at the corresponding Reynolds number, is undamped.
Such a curve in general separates a region of stability (positive damp-
ing) and a region of instability (negative damping),and the minimum
value of R along such a curve corresponds to the critical Reynolds
number. In the classical problems, as well as in the present prob-
lem, the primary difficulty' in finding a neutral-stability curve is
solving the Orf—Sommerfeld equation, which the first-order stream-
function must satisfy. The approach almost always used, with con-
siderable success, is based on the assumption that the reciprocal of
the Reynolds number is a small quantity; this clearly is not the case
in the current problem, and an alternate approach is required.

On the other hand, a significant difficulty common to most of
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the classical stability p;oblems is averted in this case by the presence
of the free surface. In the usual case, the speed of propagation of the
disturbance is not large enough to exceed the zeroth-order (undis-
turbed) flow speed at all points in the flow. Thus there exists a layer
in the flow that travels with the same speed as the wave disturbance,
and hence fluid particles in that layer remain at a constant phase of
the wave motion. This is the primary mechanism for the energy input
into the first-order flow, and is reflected by serious difficulties in the
mathematical formulation of the problem.

That these difficulties are not likely to occur in the present
problem can be seen in the following way. For the case of long waves,
the theory of kinematic waves developed ‘by Lighthill and Whi’cham1 2 is
applicable. They showed that when the volume flow rate past a given
point is a function only of ''concentration' (in this case, film thick-
ness), continuity considerations alone are sufficient to determine the
speed of propagation of long wavelength disturbances. For the para-
bolic velocity distribution of the zeroth~order flow of the present
problem, this leads to a prediction of a wave speed exactly twice as
large as the maximum flow speed. Thus, in sharp contrast to the
case of plane Poiseuille flow, for which there is no analog to the
kinematic wave, the indicated difficulties should not arisc for small
wave numbers. (This therefore appears to be one of the rare cases
in which mathematical difficulties are eliminated, rather than cre-
atéd, ‘by the introduction of a free surface. )

The problem has been atta.ckéd theoretically only relatively

recently, and in each case, the approach has been to obtain approxi-
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mate solutions to the Orr-Soxnmerfeld equation by assuming that the
product of the wave number and the Reynolds number is a small quan~
tity. Only two quantitative estimates of the neutral stability curves

19

have been given, the first by Yih ° in 1954 for the case of a film with
no surface tension on a vertical wall, and the second by Benjamin
in 1957 for the more general case of arbitréry surface tension coef-
ficient and arbitrary wall inclination. Benjamin's results appeared to
contradict those of Yih, and in 1963 Yihzo conceded that the numerical
calculations on which his solutions were based were ''not accurate
enough. " Using an approach similar to that used in 1954 he was able
to show, without obtaining quantitative results, that the general fea~-
tures of Benjamin's neutral stability curves appeared to be correct.
| Although Benjamin's curves were accurate only in a small
neighborho’odr of the R~axis, their significance lay in the fact that they
implied, for a vertical wall, a critical Reynolds number of zero, i.e.,
that the film was unstable at all Reynolds numbers. They a,lso indi-
cated, for the first time, that the shapes of the neutral-stability
curves were quite different from the distinctive shapes associated
with ‘the classical hydrodynamic stability problems. (A more detailed
account of the theoretical work in this problem in given in Section 2.4.)
A new approa’chv is suggested in Section 2. 5 for obtaining ap-
proximate solutions to the Orr-Sommerfeld equation. The resulting
solutions for the neutral-stability curves are valid over a much larger
domain in the R-0 plane than those previously obtained. In the case
of small &, however, they provide the first quantitative confirmation

of Benjamin's surprising results.
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In the literature, there has also been considerable confusion
regarding the existence of undamped waves for the case (originally
studied by Yih) of a film with zero surface tension on a vertical wa.ll;
Benja.min1 ha.é tentatively suggested that undamped waves do exist,

i. e., that there is a neutral stability curve in the first quadrant of the
R-a plane, but Yih20 concluded in 1963 that the entire first quadrant
is a region of instability. In 1965, however, Yih21 cdrrected alge~
braic errors in his 1963 paper and apparently proved that undamped
waves do indeed exist. In Section 2.7, a proof is given that un-
damped waves of the type considered by Yih cannot in fact exist, and

a possible source of error in Yih's proof to the contrary is suggested.

2. 2. Notation

The following notation will be used throughout Part IL

Dimensional parameters (see Figure 6):

L

c = wa\}e'speed of disturbance wave motion
Ej = elements of the stress tensor

9 = acceleration due to gravity

h,‘f = local film thickness

K’ = film thickness of undisturbed flow

P* = pressure

= time

T = stress acting on the film surface
,)7; = components of T

o~

U = —g;? A = mean speed of undisturbed flow
" = x-component of velocity
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~ = y-component of velocity

#" = coordinate measuring distance along the wall

4" = coordinate measuring normal distance from‘the wall

A = wavelength of disturbance wave motion

N~ = coefficient of viscosity

v = 4;-'- = kinematic coefficient of viscosity

P = density

0° = coefficient of surface tension

Dimensionless parameters:

A,A,B,B. = constants of integration (see equation (2. 51))
-
*

h = t

T = /:'T'

K, K., K,k = functions defined by equations (2.56), (2. 57),

(2. 58), and (2. 59)

W = unit normal vector at the surface -

N, Ny = components of n.
" .

R = zeroth-order part of p

R = first-order part of p which does not vary with
the phase of the wave

p, = first-order part of P which travels with the wave

disturbance

g = a function defined by equation (2. 54)

»
R = Lhe

oy = Reynolds' number

S = a function defined by equation ( 2. 60)
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”»

t
t = =
b/
£ = unit tangent vector at the surface
tx, ty = components of %
w = ==
Ve
U, = zeroth-order part of ««
VU, = f{first-order part of «« which does not vary with '
the phase of the wave
<+, = first-order part of -«  which travels with the wave
disturbance
L
PRt
LA
~, = first-order part of .o
»
EA :‘*
= X
b W .
ath, . . .
e 2 = nondimensionalized wave number
g = ﬁrstv-orderk correction to mean flow thickness
73
o~ 3
¥ = ‘F(JJ"’Q )
Y7, = first-order correction to film thickness due to wave
' h = he
motion ( Eit7 = —h—:’:—b )
®, = amplitude of oscillations given by 7, .
5 = per cent error in approximation involving (c-1,)
Kk = average value of #°
A, A, = functions defined by equations (2.52) and
(2.53)

5
i

y-dependent part of first-order streamfunction

¥ = first-order streamfunction
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w = angle of inclination of the wall with respect to the horizontal

2.3. Formulation

The flow field whose stability we wish to investigate is the
parallel laminar ﬂo§v of a film of viscous liquid with a free surface,
moving down a plane inclined at an angle w» with respect to the
horizontal (see Figure 6). The flow is assumed to be at ""terminal"
conditions, i.e., the flow has established itself with an equilibrium
velocity profile and constant film thickness, both of which are
uniquely determined as a function of the mass flow rate, the angle w,
and the properties (viscosity and density) of the liquid.

For stability considerations, a two-dimensional analysis is of
little value unless it can be proved that two-dimensional disturbances
are indeed the first to become unstable. There does exist, however,
a classic proof for the general hydrodynamic stability problem, first
given by Squire” in 1933, that two-dimensidnal disturbances have a
greater tendency toward instability than three-~dimensional disturb=-
ances. Squire showed that the mathematical formulation for the three-
dimensional problem is identical to that for a two-dimensional prob-
lem ét a lower Reynolds number, and hence the stability boundaryis
governed by two-dimensional effects.

The governing equations are the continuity equation and the
Navier~Stokes equations of hnotion. In dimensionless notation, these

become, respectively,

SStso T © (2. 1)
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in which we have made use of the fact that 2

In solving the problem, we shall need the following boundary
conditions.

(I) The shear stress at the surface must be continuous and
thus zero (assuming the viscosity of the atmosphere is negligible com-
pared to the viscosity of the liquid). The elements of the stress ten-

sor are the following:

S

Ee = =P v 20 T

_ - é/(fx
T e
2

| LEZ
Exj =_/U(>ﬂ“ S

and the unit normal vector n (outward pointing) on the surface is

defined by the following relations;

%
3

n, =

i [§]

- [I* ) ‘)._:]’/a.. ,

(%
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With these definitions, the stress T  acting on the surface is given

by
T = Ee e * E»\:{ Iy , (2.4)
T = E., " + £ #,
Ty = Fuy wa (2.5)
The unit tangent vector £ is defined by the following relations:
T = Ay ,
ti = —”X
Thus, the boundary condition becomes
(1) T.¢t =0,
or
dh (30 _ 3« PEC R - WA o e A
(I) Z—Q(g—;—;)*‘(;ﬁ'f)%)[, [34])=O éor sz\- (2-6)

(II) The normal stress must be continuous (and thus equal to
the atmospheric pressure) at the free surface, except for a discontinu-
" ity arising from surface tension effects. Taking the atmospheric

pressure to be zero, we must have
-
(33)
oAy

) 3
Sk t R
[H (m)]

Thus,
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(III) The no-slip condition at the wall requires

(111) a = O for y=o0. ' (2.8)
(IV) Since there can be no normal velocity at the wall, we have

(IV) , Ar = O for 4= o. (2.9)

(V) Finally, we need the kinematical constraint that fluid

particles in the surface remain in the surface:

(V) 5‘.‘;"=M—M}gé for y=h . | (2. 10)

In order to linearize the equations, we expand the velocity
components, the pressure, and the film thickness in the following

manner.

= Uy + ]__uc@; ety Gy, )]

/U'=A):(Af,5;t)+ - -
| P (2. 11)

p = P‘,(‘j) 1—[?.(:() + P, (4,3,1‘.)]-#- -

-h_:(-v-[_e.-r){,(a(,tﬂ-o--‘. ' J



The zeroth-order flow parameters associated with the undisturbed
flow are indicated with the subscript e , whilev'bche subscript
denotes the first-order perturbation quantities associated with an in-
finitesimal wave disturbance.

The zeroth-order parts of the Navier-Stokes equations, equa-
tions (2.2) and (2.3), are

U+ 3=0 ‘ (2. 12)
K (2. 13)

where primes denote differentiation with respectto y . Only the

first three boundary conditions have zeroth-order parts. These are

o Cwlen=o (2. 14)
m ped =0 (2.15)
(1I1) Y, 0) = 6 . (2. 16)
Thus we have the following solutions for Ullyq)  and F.(g)
V= 3 (- 2) (2. 17)
Po(j) = 3-1—;2——-—{) € o . |
(2. 18)

These relations determine the undisturbed flow and are exact solu-~
tions of the Navier-Stokes equations.

| The lowest-order part of the continuity relation of equation
(2. 1) is

Doty Yol
e o (2. 19)
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We therefore define a streamfunction ¥ such that

2% 2

AL, = )j R S

Our goal is to find curves of neutral stability in the R-o plane;
that is, for a given Reynolds number we wish to be able to find the
wavelength of the infinitesimal sinusoidal wave (which may be regard-
ed as a Fourier component of a general periodic wave) which has
zero damping. We may therefore restrict our attention to the situa-
tion for which the wave profile has the form

2ot (e = o C)

7= 9 (2. 20)

and we shall look for solutions for the streamfunction ¥, of the fol-
- lowing form:

Pod (x-cl)

blry,t)= Gge (2. 21)

We note that undamped waves will occur when the imaginary part of

¢ 1is equal to zero.

The first-order parts of the equations of motion are:

244, B4y ‘ = 2o L (T "N,
e tUe g t U ?IEE '\ TU - a (2. 22)
S ' ‘ * N
?_Aﬁ-o-'();-——- :—Fs};.}f_'-y—'—Ch—"—Il-r—i:_)
6 Ml - SN (2. 23)

The first-order parts of the boundary conditions are:
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II) SwXw (Br7)-Fl)-p +3757F ool c
( ) K. P R ¥y K.t’/‘;cw‘»_."“)/3 or
(10) Ullel + 4 = O ~ for
V) Lo, = O for
) B !l = ) 1
v = - UL R

y= 1,
=1,
4=,
4= ©,

(2. 24)

(2. 25)

(2. 26)

(2. 27)

(2. 28)

Averaging equations (2. 22) through (2.26) with respect to « over a

wavelength, we find, respéctively:

7] =
'UI (j) o )

Rlep = o

(I) -3g, ~UN = O
@m oew - RO,
(m) —U'l(O) = O

Thus we have:

_()-,(-1\':3@':( )

(2. 29)

(2. 30)

(2. 31)

(2. 32)

(2.33)

(2. 34)
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We shall require, however, that the average mass flow rate of the
perturbed flow past some station (say, x = o ) is the same as for the

undisturbed flow:

AT g

oRC

» [ {U.* (Upu,h-»-}dﬁ]dt . (2. 36)

-] o

i

o= 3

(-4

305

Inperformingthe integration, we note that equation (2. 28) implies
(V) ey =(c-2) e | (2. 37)

Thus we find, from the first-order part of equation (2. 36),

'Q' = 0. (2. 38)

Therefore, ,
Ui(q) = © , (2. 39)
P:(t() = O . ; (2. 40)

Thus the average values of the film thickness, velocity profile, and
pressure distribution, are unchanged by the wave motion.

Assuming the streamfunction is of the form given in equation
(2. 21), we can integrate equation (2. 22) to obtain an e xpression for

the first-order prcssure variation p,  :

1w K

h‘: {-—'—- (M-w ')+ (e~VIE' + U-"ﬁ} gt e ) (2. 41)

Then, by differentiating equation (2. 22) with respect to v and equa-
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tion (2. 23) with respect to « and subtracting to eliminate the pres=-
sure, we obtain the differential equation which governs é‘ , the

well-known Orr-Sommerfeld equation:
A R R T CAEE R AN (2. 42)

It is now clear that all five boundary conditions are necessary;
in addition to the four constants of integration in the general solution
to equation (2. 42), the free surface gives us an additional unknown
parameter ©,. (We have specified that the wave be sinusoidal and
have wave number <« ; only the amplitude, which istaken to be in-
finitesimal, is unknown.) In terms of Cb, the boundary conditions

become:

(1) g 0+ [arCe-r-3] e = 0, (2. 43)

' . "3 ‘
(H) C#'“CI) + “[‘,R (c_g)-g.,c qsl (I)-1a[m3+3wge, = D’ (2.. 4:4:)

(I11) b, ter= o , (2. 45)
(1v) b, (o) = O , (2. 46)
vy b -(c-32)e, = O . (2. 47)

We see that if one finds four linearly independent solutions of the Orr-
Sommerfeld equation, boundary conditions (I) through (V) become
linear homogeneous equations for the four constants of ihtegration and
e, . A nontrivial solution will therefore exist oniy if the detexr-
minant of the coefficients va.nishe;c,. Setting the determinant equal to

zero yields a complex equation involving «, R, ¢, w, and ¥ .
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Thus, we have generated an eigenvalue problem. For a given
point in the R-a plane, and for a given wall inclination <« and a given
liquid (the surface tension parameter ¥ involves only properties of
the liquid and the gravitational acceleration), setting the real and
imaginé.ry parts of the above-described equation equal to zero yields
two simultaneous equations for the eigenvalues of the real and imagi-
nary parts of ¢ . However, since we are interested in curves of
neutral stability in the R-Q plane, a more useful approach is to
specify the imaginary part of ¢ to be zero (which by definition is
the case c;n a neutral-stability curve) and use the eigenvalue equations
to solve for o and the real partof c .

The formulation given here is in most respects the same as
. the formulation of most of the classic problems in hydrodynamic sta-
bility. (Boundary conditions (I), (II), and (V), however, are peculiar
to this problem because of the free surface.) In particular, the Orr-
Sommerifeld equation is the basic equation which invariably governs
the streamfunction, and the only obstacle which prevents one from
proceeding in a straightforward fashion to the end results is the dif-
ficulty involved in finding the general solution to this equation. The
usual approach is to expand QS' in powers of :z;(— since, typically,
R is quite large. Referring to equation (2. 42), one sees that the
zeroth-order inviscid equation so obtained‘(the left hand side equal to
zero) has a singularity at the "critical point, " defined as the value of
y for whiéh V.= ¢ . Thus, one sees how the difficulties re-
ferred to in Section'2., 1 can arise.

As indicated in Section 2.1, however, in the present problem
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¢ is always greater than U, for small « (for undamped waves,
i. e., for the imaginary part of ¢ equal to zero). The kinematic
wave theory predicts that, for « tending to zero, ¢ (as nondimen-
sionalized here) tends to three exactly. Equation (2.17), however,
shows that the maximum value of U, is 3/2.

On the other hand, the usual procedure of treating ;lTi as a
small quantity is clearly not valid here, since the experimental re-

sults mentioned in Section 2.1 indicate that this quantity is of order

one in the region of interest; a new approach must be found.

2.4. Review of Past Attempts to Solve the Problem

The first attempt to find a curve of neutral stability in the

19 in 1954. His formulation of the problem

R-a plane was made by Yih
was essentially the same as that given in Section 2. 3, except that the
term corresponding to the one 'containing ?he quantity “5173 in equa-
tion (2. 44) was omitted. Thus, his analysis pertained only to a fluid

with no surface tension. The method used was to treat xR as a

small quantity and expand 45. in powers of «R

qS = 4;["’ + 2 £ écu + .- . (2- 48)

/

Then &'¥ and ¢’ . could be found by successive approximations,
and the resulting expressions were then used in the boundary condi-
tions (I) through (V). | A corhplica.ted numerica.lﬂ scheme was used to
solve the resulting eigenvalue equations for the case of w= T (a
vertical wall). The resulting neutral-stability curve was roughly a

C-shaped curve looking very much like the neutral-stability curves
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in the classic problems (except for the much lower Reynolds num-~
bers). The minimum value of R on the curve, i.e., the critical
value, was about 1. 5. (This is not to be compared to experimentally
measured values for water, since Yih's analysis was for zero sur-
face te’nsion. ) The value of xR at the critical point was between
l.1and 1.2, and & was of the order of a half or more of ¢~ "
except when y was close tozero ( ¢''te) = © ), so the expansion
indicated in equation (2. 48) was at best a very slowly converging
series. In addition, the limiting value of ¢ as « tended to zero
was greater than twelve, contradicting the kinematic-wave result.

Benjamin1 attacked the problem in 1957, and his remains the
major contribution. He successfully demonstrated for the first time
that the characteristics of the neutral-stability curves were quite dif-
fere\nt from the classical shapes.

His formaulation of the‘problem was{essentia.lly equivalent to
that given here (including the term containfmg the surface tension

parameter ¥ ). His approach was to look for a solutionfor c(>| in

the form of a power series in y o

R adh ”
¢ = = Ag
The recursion relationship for the A4, s shows that for large n they
are given as increasing powers of «" and «R . Benjamin treats
both « and «R as small parameters (of the same order) and
truncates the series accordingly. The bounciary conditions, of course,
are also expanded in powers of « and «R . Since in equation

(2. 44) the term containing the surface tension parameter also involves
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R, it may be expected that an expansion in powers of «~and
«R would cause difficulties. Benjamin's approach is to carry the
quantity = along throughout the analysis, essentially treating it

R
as a constant.
’The resulting neutral-stability curves, for different values of

¥ , were shown to be curves of positive slope that intersect at a -
point on the R-axis. (One should expect surface tension to be of no
importance as « tends to zero. ) The point of intersection, which
marks the critical Reynolds number as long as the curves never
turn back to lower values of R at some point far from the R~-axis,

was shown to be given by the relation
R.. = o o'T o . » (2, 49)

Since «  and «R are both zero as « tends to zero, equation
(2. 49) is an exact result. |

The important consequence of equation (2. 49) was that for a
vertical wall ( w=7F )the curves merge at the origin, indicating the
surprising result that there exist unstable wavelengths a.tz all Reynolds
numbers. Benjamin also performed a very approximate calculation
whicﬁ showed that amplification rates were very small at the low
Reynolds numbers, thus accounting for the difficulty in detecting
waves at very low values of» R . Although his approximations are
valid only in a small neighborhood of the R~-axis, his demonstration
of thé fact that the neutral-stability curves for a vertical wall merge
at the origin, where his approximations are indeed valid, was a very

significant result. |
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For the case of a vertical wall and zero surface tension (the
case studied by Yih in 1954), Benjamin's results indicated an appar-
ent neutral-stability curve which was essentially a horizontal line at
= equal to .44. He includes it as a dotted line in his graph of the
neutral-stability curves, and concludes that ''the values of « in this
case are rather too large for confidence in the accuracy of the
result. " |

It should also be noted that in the limit of small « his solu~
tions indicate a value of ¢ equal to three, in agreement with the
kinematic-wave theory prediction.

In 1963, Yihzov returned to the problem and considered the
asymptotic behavior of the solutiop to the Orr-Sommerfeld equation
in several limiting cases, all of which he treated with a method of
successive approximations essentially the same as he had used in
1954. His goal in this paper; however, is to deduce the general fea-
tures of the neutral-stébility curves by finding the sign of the ima.gvi-
nary part of ¢ in various regions in the R-a plane; no attempt is
made to obtain quantitative results for the neutral-stability curves
themselves.

For the case of o« wvery small, the analysis is a little less
complicated than that which results by only taking the product «R to
be small, since, for example, the zeroth-order equatbion is now
(2. 50)

LRTY
ﬂ = O .
a(:i"

He is able to reproduce Benjamin's result that the neutral-stability
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curves branch out from the R-axis at a point K, , given by equa-
tion (2. 49).

For the case of the product «R small, he obtains zeroth~
and first-order equations for " and ¢ identical to those ob-
tained in his 1954 paper. His analysis follows very closely that giveﬁ
in 1954 except that the term containing -%;3 is now included in
boundary condition (II). The analysis, of course, is valid only if the
product «R is small, but by considering vanishingly small values
of R he attempts to find the sign of the imaginary part of < at
arbitrarily large values of

The term containing é—i—h is treate\d in much the same way as
Benjamin handled it; it is factored out and regarded as a constant
which cannot be dropped. There is, however, an important difference
in the two approaches. Since Yih's result is to be applied to the case
of large « , his zeroth-order solution mﬁst pertain to the case of
zero Reynolds number (for any assumed value of ¥ ). Thus, é;%
is constant only if ¥ is proportional to R% , but ¥ 1is considered
" to be a constant. Yih's approach therefore Becomes an attempt to
expand ¢ about a singular point at R= © implied by condition (II).
Thus it follows that the dependence on ¥  of the resuiting ex-
pression for the imaginary part of ¢ will not be correct.  Using
these results, however, he finds that the general qualitative features
of Benjamin's curves appear to be correct. |

Yih uses the expression for the imaginary part of ¢ atlarge

o« in returning to the case of zero surface tension and a vertical

wall. By setting ¥ equal to zeroand w equalto T , he obtains
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an expression which is assumed to be valid for very large « and
vanishingly small R . Using asymptotic expansions appropriate to
the case of large « for the functions of « involved, he finds the
imaginary part of ¢ to be positive, thus implying the flow is unsta~
ble at iarge « . Since it is also unstable at low « , he concludes
it is probably unstable at intermediate values, and the entire first
quadrant is a region of instability.k |

In his book, Dynamics of Nonhomogeneous FluidsZI, however,

Yih reveals that there was an algebraic error involved in finding the
sign of the expression for the imaginary part of ¢ atlarge o ; he
now finds it to be negative. Thus, he necessarily concludes that
since there is a positively damped (stable) region at large « , there
must be a neutral-stability curve (similar to the dotted line tentatively
suggested in Benjamin's curves) at some intermediate value. This
proof, however, is highly questionable for the reasons indicated
above, and,in fact, an alternate pfoof to the contrary is given in

Section 2.7,

2.5. The Present Solution

: As indicated earlier, the usual approach to the Orr-Sommer-
feld equation is to make use of the fact that xR 1is a large quantity.
All attempts vto solve the current.problem have also used «R as the
‘primary expansion parameter, usually taken to be small rather than
large; We note, however, that the difficulty in solving the Orr-
Sommerfeld equation arises from the non-constant coefficient (¢~ ).

But since ¢ is of the order of three for long waves, the
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y-dependence of (c-U,) is a relatively weak one. ( U, varies be-
tween 0 and 3/2.) Thus a simple and straightforward first approxi-
mation may be obtained by replacing (<-u:) by its average value
(c-1) . The domain of validity in the R~@ plane of the solutions
which r‘esult from this approximation will be estimated after the so-
lutions are obtained.

With this approximation, the general solution to equation

(2, 42) is readily found to be

q% (j) - ﬁ:e(l‘ﬁ + B, ‘9_'1,:( * /47-‘34‘:{ +Bze—r{z"! y (2. 51)
where
e VA
i bt
« R /2
(].,_=f,(°(L— 'E)"L ?:(— %(C—/) - %)}
, (2. 53)
and in which
Yo
g = Z),— = x‘f"(c—/)b+ .A_V.x‘/ﬁy(c_—/)yqr (1¢) o("RTj (2. 54)
In equation (2. 51), A, , A, , B, , and B, , are, of course, un-

known constants of integration.
If we use this expression in the five boundary conditions and
set the determinant of the coefficients equal to zero, we obtain the

following complex eigenvalue equation:
K K, = K, K, (2.55)

in which
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K= et fdie™(avd) v FAehdd-d) +

+(o¢?‘(C-—f‘)"3> (ef(' - .A_' eend A - cond J,]

2 f?‘:.. (Zo 56)
K= A% pple™ -l s At () -
(DLL(C_%)"B) ({ l
+ Cv% [e +I’:mlr?1—-c,njgzl,] ’ (2. 57)
A, * ) e (‘]L
K,= d,e™ (47=8) - 54 - S)(d+d. ) e™ -
L AT - S (A=) e
<gix e+ 8 )
R (aie )’ A
= e - T el A, T ek dy (2.58)
> 4 7% »

K= -t (= )+ 2Q-s)(1-d) ™ +

L (Ao S (Ard) e

2

S
(31’0\@“\4‘ 2 ¥

- . ) [ew'}‘ + LMAI‘(.«J\({;{, (2. 59)

. 3
T 3
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where

S= 3« - tuR(c-2) | (2. 60)

Assuming ¢ 1is real, equation (2.55) can be separated into its
real and imaginary parts, and for any given R f{and ¢ and w ) the
solutions for o« and c¢ can be found. Using the IBM 7094 com-
puter, solutions have been found for the three wall angles correspond-
ing to w = 900, 600, and 30°, Figures 7, 8, and 9 give the result-
ing curves of neutral stability, and f‘igures 10, 11, and 12 show the
solutions for ¢ , corresponding to the neutral-stability curves. We
note that as « tends to zero, ¢ tends exactly to three, as pre-
dicted by the kinematic-wave theory.

In Figures 7, 8, and 9, Benjamin's solutions have been plotted
for comparison. The data points for Benjamin's curves have been
computed using his equation (4. 13), but an apparent typographical sign
error on the last term in the equation has been corrected. (Without
this change, the resulting curves are radically different from the
curves Benjamin has drawn in his Figure 2; with the sign change the
curves and the equation are in perfect agreement. )

In Figures 7, 8, and 9, the region below each curve corre-
sponds to a positive value for the imaginary part of < (i. e., nega-
tive damping) and thus is a region of instability. Similarly, the re-
gion above the curves is a région of stability. As is reasonable, in-
creasing the value of the surface tension parameter & 1is seen to
have a stabilizing effect.

The solutions given are based on the assumption that (c-U.)
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is approximately equal to (c - 1) . The per cent error, relative to

the exact expression (c-U.) is givenby ¥
[}
K = /Oo(m /) . (2.61)

Using the expression for U, given by equation (2. 17), and inte-

grating from 0 to 1, we find the average value of 4 to be:

5= ,OO[M o i_} 3 ] | (2. 62)

In Figure 13, the variation of 5  with ¢ is indicated
graphically. The dependence of & on < 1is seen to be rela-
tively weak for c  greater than about 2.4, and the accuracy of the
resulting neutral-stability curves may be expected to be relatively
independent of the solutions for ¢ if ¢ 1is between 3.0 (its maxi-
.mum value) and about 2.4 .

Benjamin's solutions should be very accurate for very small
values of o (they are exact in the limit as « tends to zero), and
the present solutions are in extremely good agreement with Benja-
min's for the case of small o« . Referring to Figures 7 through 13,
it is ‘clear that the present solutions may be expected to give a quan-
titatively useful representation of the neutral-stability curves up to
values of o« on the order of 0.8 (which roughly corresponds to val-
ues of ¢ on the order of 2.2 or 2.3, or values of & on the order
of 10 to 15 per cent, compared with 5 per cent when « equals zero
and ¢ equals 3). In contrast, it is clear from Figures 7, 8, and 9

that Benjamin's solutions break down for values of « - on the order
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of 0.3 .

A few of the neutral-stability curves in Figures 7, 8, and 9
have been extended to values of « as large as 1.0 to indicate the
general trends, but these points, which correspond to values of ¢ of
about 2.0 and values of 5 of about 20 per cent, are of questionable

accuracy.

2.6 Energy Conservation

The points on the neutral-stability curves correspond to un-
damped wave motion., Since energy is continuously being removed due
to viscous dissipation, the question arises as to what is the source of
energy input into‘ the flow and what is the role playved by gravity in
this process. The energy input cannot come directly from gravita-

- tational effects, since the first-order Navier-Stokes equations, equa-
tions (2. 22) and (2. 23), are independent of gravity. (Gravitational ef-
fects are completely accounted for by the zeroth-order flow. ) In fact,
one is led to suspect from this that gravity plays no role in the sta-
bility problem, that is, that the analysis is exactly the same if one
considers the stability of a film whose given velocity profile (in the
absence of gravity) just happens to be that given by equation (2. 17).
(We may consider a vertical wall, so equation (2. 18) is also satisfied. )
Of course, this zeroth-order flow will decay with time in the absence
of gravity, but if the characferistic relaxation time is long compared
to a characteristic time associated with the wave propagation, this
will not be an important effect.

In fact, however, this is not the case. If one considers the
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parallel laminar flow without gravity, the equation of motion becomes

% = 2 e (2. 63)
The solution which satisfies the boundary conditions is

—_ v(n"/z)L’rrL tx'

P S W Comeg) g 2.
et = ”Z-' /f}” =4 e —*\"f— £ , ( 64)
where the A, s are the appropriate Fourier coefficients in the ex-

pansion of the initial velocity profile. Since we are considering a

parabolic profile given by equation (2. 17), the first eigensolution is
¥

clearly the dominant one. It has a characteristic relaxation time %,

given by

i
On the other hand, the characteristic time t,l for a wave crest to

travel a distance of one wavelength is, non-dimensionalized,

2T
= ¢

At a typical solution point.we have, say, R equal to 5.0, x equal
to.3, and ¢ equalto3.0. Then ¢, is of the order of 2 and t,
is of the order of 7. Clearly, ¢, is notlarge comparedto ¢, .

Thus, gravity plays a vital role, even though it enters the problem

directly only at the zeroth order.

It follows that there must exist some mechanism by which
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energy is diverted from the zeroth-order flow into the first-order
disturbance motion. This mechanism becomes apparent from an ex-

amination of the first-order equation of motion for ., , given by

equation (2. 22). Since U " is zero, this becomes
R T T (2. 65)
ot ° A R -
The term U, has been placed on the right side since it is not
part of the Eulerian derivative of ¢, . Using the continuity rela-
tion of equation (2. 19) and noting that U, is not a function of = ,

this term may be written

o T P ey
Thus we see that _«, is acted upon by a normal stress, - U, wr, s
. and a shear stress, - U, , (similar to the Reynolds stresses that
arise from turbulent disturbances) which arise from the interaction
of the zeroth~order and the fifst-order flows. This, then, provides

the mechanism by which energy can be diverted into the wave disturb-

ance (at a large enough rate to balance the loss due to dissipation).’

2.7 _The Case of a Vertical Wall and a Liquid Without Surface Tension.

We now consider the case of w= T and ¥ = o . It should

z
be noted under these conditions there do exist solutions to equation
(2. 55), but the values of ¢ associated with these solutions are be-
tween 1.78 and 1.8, and Figure 13 indicates that such values of
are too low for the solution to have significance.

We shall assume that there exists an undamped wave, for

which ¢ is greater than 3/2 (this is the case considered by Yih), and
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examine the consequences of that assumption. We now choose a co-
ordinate system that travels with the wave at speed ¢ , as indi-
cated in Figure 14. In this coordinate system we have a steady-state
flow field, and the wall travels upward with speed c . The coor-~
dinate system has been chosen so that .« is zero at a point of maxi-
mum thickness. Thus,

7,5 B o ot . (2. 66)
It is clear that, to be consistent with this, the streamfunction must
vary like a cosine also:

(#l = (75[ Coa 4L . (Z. 67)
Thus the velocity components are

Y a— (25’ o2 ol nl (2.68)

/u":aqﬁ‘ R ol AL . (2°69)

To first order, the slope of a streamline is given by

Jﬂ e o/ d>|
= o3 + O(e™) = 03 e xe + OC(92) (2. 70)
and the curvature, to the first order, becomes
dy 2
d = X ¢ coe .  + O (87) . (2. 71)
dx* U,

As we move along the y-axis from the surface toward the wall, we
must reach a point 4, where the curvature goes to zero, as indi~
cated in Figure 14, (The curvature must be zero at the wall, so s
may be zero. However, if there exists a node in the flow, 4, may be
greater than zero.) We note that we must have d)| (4s) equal to

zero. This means that at 4= Ys the curvature and the y-
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component of velocity are zero for all . ; the streamline at 4= Ys
is straight and parallel to the wall, as shown in the figure.

We shall now restrict our attention to the streamtube bounded
by the free surface and the streamline at Y=Ys » and we wish to
consider the change in .«, which takes place along any stream-
line in that streamtube between station 1 and station 2, a half-
wavelength away.

In this coordinate system, the first-order equation of motion

(cf. equation (2. 65)) is

UE&:—%—%—FLVLM,_UIU . (2-72)

o Y 4 ° !

We note that the total rate of change of a quantity with respect to

along a streamline is given by

LA T

dx T Y dx ’
but since j_,.i is a first-order quantity, as indicated by equation
(2. 70), we have

$ o= s role (2. 73)

Thus, equation (2. 72) becomes

4_"_{':—2{-8'-*—"71/‘11—1)—./&)' + C)(el-“)
O de 3 ® '

Integrating from station 1 to station 2 along a streamline, character-

ized by, say, Y= Y , as indicated in Figure 14, we find
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st 2 stha
'U; &, wn, = -—A‘ﬂ_‘o' +_KL (Vi) dy ~ (/U;IAJ',) de + 0(8*) R (2_ 74)
st L st 1
where &, indicates the value of a quantity at station 2 minus
its value at station 1.
We shall consider the terms of order &, on the right side

of equation (2. 74) individually. We note that at station 1 all the fluid
in the streamtube being considered has an acceleration vector pointing
towards the wall. There are only two possible sources for the forces
which produce those accelerations: stress gradients and pressure
gradients. The stress gradients which act in the y-direction are pro-
portional to ¥v* .o, . We see from equation (2.69), howeve.r, that
at = o we must have v v, = © . Thus, the acceleration is
solely the result of the pressure distribution. It follows that the
pressure profile must be as indicated in Figure 14 (atmospheric
pressure is still taken to be zero). Thus, at station 1 the pressure is
necessarily negative in the streamtube considered. A similar argu-
ment shows the pressure to be positive at station 2. Thus, AL P
is a positive quantity, or

A, p < O
Considering the second term on the right of equation (2. 74) we note
that v*«, is a function of both x and y , both of which vary

along the streamline. However, as we have shown, to the lowest
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order the y-variation along the streamline may be neglected. Thus,
from equation (2. 68) we see that w*«, is proportional to coee xxx

and thus its integral from station 1 to station 2 (i.e., from x = o to

ar

# = ) must vanish. That is to say
st.2
F| (e = Ox O(e)
st. 1

We now note that between station 1 and station 2 both Ub' and

AT, are negative. Thus

s*.l
- (Vo) de < O

sho1

We therefore conclude that equation (2.74) implies that

A,}z “t < O ’

that is, the x~component of the velocity decreases along every stream-
line in the streamtube in traveling from station 1 to station 2. Since
the streamtube thickness is less at station 2 than station 1, it follows
that the mass flow rate is less at station 2 than station 1. Thus, the
continuity equation is violated.

Thus we see that for w =T and ¥Y= o waves of the type
predicted by Yih, and tentatively suggested by Benjamin, cannot in
fact exist on simple physical grounds; the momentum and continuity

equations cannot be satisfied simultaneously.
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2.8 Concluding Remarks

It should be noted that the neutral-stability curves given in
Figures 7, 8, and 9 are based on an approximate method of solution of
the Orr-Sommerfeld equation which is fundamentally different from
the approach used by Benjamin. The remarkably good agreement
which results at small values of o  thus serves to confirm the
validity of both approaches. (Benjamin's solutions are valid over a
much smaller domain than those presented here, although they have
the advantage of being obtained analytically, rather than numerically. )

Yih's20 recent approach, on the other hand, has been shown to
be unsatisfactory. He considers separately the case of small « and
the case of small R . In the latter case, his approach becomes an
attempt to expand a function of R in a Taylor series about a singular
point of that function. In this way he is led to the erroneous conclu-
sion that there exists a neutral-stability curve in the R-0 plane for
the case of zero surface tension and a vertical wall. It has been
shown here that the undamped waves which would correspond to the
points on such a curve are not physically possible.

It should be noted that the emphasis here has been on finding
the neutral-stability curves, i.e., finding « (and < ) as a function of
R when the imaginary part of < is.zero. If information about
the amplification rates is desired, equation (2. 55) may equally well be
used to find, for example, both the real and imaginary parts of c

for given values of o« and R .
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FIGURE |: DEFINITION SKETCH FOR PART I
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FIGURE 2: SURFACE PROFILES

FOR &-»=0
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o

FIGURE 3: SURFACE PROFILES

FOR 8=.2
({o—=® , F—=® )
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VELOCITY PROFILE OF
UNDISTURBED FLOW

.- FIGURE 6: DEFINITION SKETCH FOR PART II
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SCHEMATIC REPRESENTATION
OF THE PRESSURE
DISTRIBUTION AT STATION 2.
(PRESSURE HERE IS POSITIVE)

STREAMLINES

N\

N

-y

SCHEMATIC REPRESENTATION
OF THE PRESSURE
DISTRIBUTION AT STATION 1.
(PRESSURE HERE IS NEGATIVE)

2—VELOCITY PROFILE FOR
ZEROTH - ORDER FLOW.

-

FIGURE 14: THE FLOW FIELD CONSIDERED IN SECTION 2.7
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