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ABSTRACT

The case of a spinning symmetric body flying at a constant
speed where the aerodynamic restoring moment is én arbitrary
function of the angle of attack is examined. The analysis is two-
fold: first, the general problem is discussed, in suitable non-
dimensional form, to establish the generalized stability boundaries
and, second, the attention is directed to the inverse prohlem where-
by the pertinent aerodynamic parameters are extracted from a given
bounded solution, suitable for use in data reduction. The general
case of non-planar motion is examined and shown to be analogous
to the classical orbital problems, differing only in the form of the
governing potential function. The general solution is obtained in
integral form and the special cases of linear aerodynamics and cubic
restoring moments have been integrated and studied to reveal all the
pertinent characteristics. The various combinations of potential,
initial conditions and angular momentum (including that due to the
impressed spin rate) are shown to determine whether or not the
motion is planar, circular, elliptic or non-conic; stable or unstable
and the various cases are categorized to aid the prediction of the
motion of spinning symmetrical bodies acting under non-linear

aerodynamic restoring moments.
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L. INTRODUCTION

Up to fairly recent years the underlying design criteria for the
dynamic free-flight motion of ballistic missiles and rockets, both
guided and unguided, has had as its basis, the linear theory. Such a
theory restricts all forces and moments acting on the aerodynamic
body to be proportional to the dcviations from the flight path. In many
cases, the linear theory may be ap‘plied with impunity and the sub-
sequent rocket flight is a success. However, embarrassing failures
on some flights has prompted a deeper analysis of the spinning aero-
dynamic body problem (Refs. (1) - (5)) in an attempt to isolate the
destabilizing influences and to enable the designs to circumvent such
failures.

The present paper attacks the general problem of the spinning
bodies in a non-linear aerodynamic field and by suitable transforma-
tion techniques shows that it is related to the classical problems in
orbital mechanics. Such an analogy allows for a generalized treatment
which allows for the governing parameters to be revealed succinctly.
The problem is considered first from a topological concept to estab-
lish the stability boundaries and secondly the analysis has been
quantized so as to provide the data analyst means by which a given
bounded solution, or trajectory, may be analyzed to extract the
pertinent aerodynamic parameters, both linear and non-linear.

Certain restrictions have been placed upon the analysi’s to

¢

allow for tractable solutions: the motion is assumed to be conservative



and the non-linear restoring moment is, for the most part,

assumed to be a two-term polynomial in which the power and magni-
tude of the non-linear term is left arbitrary. It must be further noted
that in the body of the report certain real phenomena are ignored and
prudence must be exercised in the application of the analysis in any
particular case. It is assumed that throughout the flight of the
(constant) spinning missile that the velocity remains constant together
with the density of the air and further that the oncoming stream is
uniform with no gusts causing random disturbances to be applied to
the hody. Such distunrhances cnuld destroy any phase eoherency of an

otherwise periodic motion.



II. THE GENERAL PROBLEM

The free-flight motion of a spinning aerodynamic symmetric
body is but a special case of the classical rigid body vibration problem
frequently encountered in physics. The idiosyncracy of the aerodyn-
amic problem lies in the form of the potential from which the inherent
forces are derived. In this Section will be given the basic assumptions
and analysis leading to the generalized and normalized equations of
motion and their integral solutions from which the succeeding Sections

may extract the pertinent results for further analysis.

A, Basic Equations of Motion

For the purposes of continuity and reference, the equations of
motion will be derived from Newton's Laws. It will be assumed that

the body has six degrees of freedom defined vectorially as,
4 -y
u(t) = (U+tu, v, w) ; wl(t) = (p, q, 1) (2.1)

The vectors 3(1’), 3(1:) pertain to a body-fixed axis system. Fig.1
serves to describe the system and symbols used in the text, The
angular momentum ?: = dw where, by virtue of the choice of a
principal body-axis system, the inertia tensor ¢ is diagonal and

given by,

o=[0 1 0  (2.2)



The aerodynamic forces and moments are,
-> ->
F(t) = (X, Y, 2) ; N = (L, M, N) (2.3)

For this study it will be assumed that the aerodynamic forces are

linear functions of the perturbations. The aerodynamic moments

will be assumed expressible in uncoupled static and dynamic components
of which only the static restoring moments will be assumed to be non-
linear functions of the perturbations. The exact form of these func-
tional relationships is to be given,

Newton's equations, expressed in the hody-fixed system are,
- > ¢
(%* a’x> {u}= F(t) + mg (2. 4)

(.&45 " :sx) {L}-_- N(t) (2. 5)

where in the operator on the left hand side of the equations the time
derivative is with respect to the body-fixed system. The basic

equations then assume the form

u + gqw - v X{a, B, «.-) g;
m{v + r(U+u)- pw = Y(a, B, )P +m g, (2. 6)
w + pv - g{U+u) Z(a, B, «..) g3

where g represents the gravity vector.



and
uP L{a, B, ...)
I {q - (1-u)pr} = {Ma, B, ...) (2.7)
r + (1-u)pq N{a, B, «..)
L 1
where u = — , the slenderness parameter and a = tan” (w/U) and

B = tan—l(v/U).
Before equations (2.6) and (2. 7) can be simplified further the
-> >
specific nature of F (t) and N(t) must be given. From the assump-

tion of symmetry and linearity the forces are expressed as,

1

Y(a, B, ...) = Z_p (2.8)

Z(a, B, ...) = Z_a (2.9)

It will be further assumed that the forward speed remains constant
throughout that portion of flight under consideration (U = constant)
which eliminates the need for the X(a, B, ...) equation and reduces
the problem to one in five degrees of freedom. This does not preclude
a discussion of the dissipative problem but does imply that the
analysis will apply most directly to slender bodies of low resistance.
For the main part of the study the roll rate will be assumed constant
at some specified rate (p = constant), or, at best, as a slowly varying
function in time; in which case the need to specify the L{a,3,...)
equation is also avoided. This reduces the problem, not too restrict-

ively, to one of [our degrees of [reedom (u, B, y, ).



The main objective is to study the effects of a non-linear
static rcstoring moment on the system in regard to both stability
boundaries and the nature of the solutions. A further objective is to
enable the pertinent parameters of the system to be revealed given
the physical bounded solution.

The static moment will be separated from the dynamic moment

in the form,
- > > . . ,
N{a, B, ...) = NS(a, B, «..)*F ND(a, Byers) (2. 10)

where the dynamic moment is assumed to be linear in the velocity
perturbations:
Lp
- .
ND(a,p, ces) = qu—FMda-{L... (2.11)

M T +MB+...
q a

If it is further assumed that the airflow over the body is symmetric

such that the non-linearity in the static restoring moment may be

sk

1
expressed in terms of the resultant angle of attack (a2 + BZ)Z

, then
> :
a polynomial representation for NS(a, B, ...) is given by,
'N n+m
> j > > > .2 2 2
Ngla,B) = (-1 IIM | (ai+pj) -1 E (ai¥BjNa™+p7) M~ (2.12)
n=1

> >
where i, j are unit vectors along the perturbation a, B axes

respectively. The potential from which the restoring moment may be

ale
B

which implies small angles.



derived must. satisfy,
-’
VU(a, p) = N(a, B) (2.13)

Tt can he shown that senich a potential exists and is found to be,

_ N M ntm+ 2
Ula, B) = (-1 1IM | (a®+8%) - E — 2 %% ¢ (2.14)
n=1

The quantity m (=1, 2, ...) is an arbitrary integer. From physical
considerations it is seen that a characteristic of the static restoring
moment representation is that it is anti- symmetric with respect to
the origin (or trim condition). This property implies that §S(a’ 8)
as given by (2. 12) would necessarily consist of a power series in odd
powers of the resultant angle of attack. Graphically, the restoring
moments under consideration may be presented as shown in Fig. 2.
Note: (-1)j)MOJ is the familiar linear static stability

parameter where,

j=0 corresponds to initial static instability

1

j=1 corresponds to initial static stability

For this papecr, only thc first term in the polynomial representation
will be retained (i.e., r = 1) but m will remain arbitrary. The
special case m = 1 the cubic (plus linear) restoring moment will
receive particular attention. With these assumptions, the equations
of motion reduce to,

l1+m

2

1
2

e . 1
B+HE+ vp - (2= )M |2 pé + K IM |2 pa + M pla” +p%)

= Q,(t) (2.15)



1+m
1 . i =
G+ Ha+ va+(2-#)IM % pp- K IM_|Z pp+ Ma(a’tpd) °
=f)2(t) (2.16)

These two second-order ordinary differeutial equations will describe
the motion of the spinning body in the a, B (cross-flow) plane. In this
plane the motion will resembile that shown in Fig. 3. The system is
one of four degrees of freedom where the remaining two g, r have
been algebraically eliminated but may be recalled from the subset

of (2.15) and (2. 16), viz:

. 7
r{t) = pa - B +5%, B+ G,(t) (2.17)
. Za
g, Q) g, Q)

For the particular system under study namely free-motion C.)_l(t) =

Qz(t) = 0. Further it will he taken that f): 0 i.e. p = constant, or
M
at best a slow function of time and also that T(i . m——% << | MOI

the usual aerodynamic case. The various coefficients in (2. 15) and

’

(2. 16) are related to the aerodynamic physical quantities by the

following,

H= £25 %CN -(-I-lé)"‘ [Cm ¥ c“"]% (2. 20a)
q a

Us -2 ' .
M= 5 IK jcma(O)j (2. 20b)



z

1 a
Kl— T ;Mq-&Msz t— (1 -u)

; 2 My 7,
-(-1))1\/101 ~=(1-u)p t— =7

"1

Ml’ m = amount and degree of non-linearity.

(2. 20c)

(2. 20d)

I'he dots denote differentiation with respect to real time.

B. Non-Dimensionalized Form of Equations

To avoid the occurrence of an imaginary time

scale for the

case j = 0 the equations will not be completely normalized but merely

1
distorted by the linear frequency parameter IMo’ 2. From a suitable

dimension analysis the following non-dimensional quantities may be

formed,
M

o= H ' ; e=—-——l——1 ; P=——P—1 (2. 21a)

IM,Z JMIZ iM ]2
o o o

a= = . p=s ; T=JMI%t (2. 21b)
a 2 ‘3 2 o .
m m

Also, for convenience, let 1 -uy= K . There should b

e no confusion

on the use of qf for the non-dimensional as well as dimensional

perturbations. In normalized form the basic equations

become,

of motion
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l+m
B+ 68 - v°B- (1 +K) P+ K, Pa+ Bla+p’) 2 =0 (2. 22a)
l+m
ve . 2 - . 2 2 2 .
a+6a-va+(l-ﬁh)P{5-KlP[3-E— eala + B7) =0 (2.22b)

where, now, the dots denote differentiation with respect to normalized

time, 7 , and the linear frequency parameter v 2 is given by

VZ = (-1)j + KP‘2 (2. 23)*

Equations (2. 22) form the basic set, in normalized form, from which
the analysis will evolve to yield solutions and criteria for the general
motion. KEven in the linear theory ( € = 0) the complete solution for
a{r) and B(r) involve the superposition of oscillations and is only
conditionally periodic; for unless the resonant frequencies are
commensurable a( ) and B( 7 ) will never repeat themselves.

It will be shown that only for special conditions will the motion be
periodic and moreover that periodic motion does not exist for a{ r)
and B( r ) in the general non-planar case. This is tantamount to
saying that the physica! coordinates a( 7 ) and B( 7) are not the
separation coordinates of the problem, which should not be surprising
These separation (or normal) coordinates, which by definition, are
periodic may be obtained by a contact transformation and this will be

done such that the problem becomes much more tractable.

" It might be thoughl from Eq. (2. 23) that a resonance value

for P exists for the linear aerodynamically stable case but this is not
the case as will be shown when the equations are expressed in the
proper coordinate system.
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Also, in order to study the boundedness of the solutions and
other useful insight the polar form for these equations will be
obtained. In such a coordinate system, which it may be reasoned,
is a natural choice for this symmetric problem, the resulting
equations resemble those describing the motion of planets, electrons
or other orbital problems encountered in physics but with an unfam-
iliar potential. This analogy will allow for several interesting
characteristics of the aerodynamic problem to be revealed. The
normal coordinates are actually a misnomer in this context since
by definition they can only uncouple the linear equations. However,
by decoupling the linear part of the equations of motion a helpful
form of the equations are derived. These normal coordinates may

be defined by the transflormation equation

3 % = (ayy) zalg (2. 24)
p o,

The transformation will consist of a rotation in the plane. Consider
then the system (2.22) with ¢ = 0 and put a{(7 ) =7v( 7 ) and fi ()=
v {7 ) and consider thevector X (7 )= (a, B, Y, u ). For this
transformation, the system is to be described by the first-order
equation in the four-dimensional X-space, given as,

dX
dr

= AX (2. 25)

which on substituting the components gives,
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0 0 1 0 ()
0 0 0 1 \s()]
> (2. 26)
z v K,P -5 -(1+K)P V(o)
- 2 IC . |
2 K,P 0 (HKP 5 i)

The matrix A must be diagonalized for (2; 25) to be uncoupled,
which condition is determined from | A - )‘aij ! = 0. The eigenvectors
may then be determined and finally it may be taken that the required

transformation is {when expressed in 2~space),

a
3 g (2.27)

—~—
Q Q
ot
——————
1]
e~
al a
e
N
N
- L
o ot
\—/

Furthermore, no real form exists for the normal coordinates that
are complex conjugates as seen from (2.27). Expressed in terms

of the normal coordinates the basic equations assume the form,

14+ m

¢+ [6+ i(1 -&K)P] v - I:VZ-F iKlP]O' + eolol 0 (2. 28a)

2 ¥+ m

7+ [a - (1 +K)P] T+ [u 0 (2. 28b)

1
-1K1P]’6 + ezlel

It will be shown later when the initial value problem is discussed,

that the set (2. 28) yields periodic solutions for the non-linear system.
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C. The Central Force Field Formulation
1. Energy Relations and The Orbit Equation

By a further transformation to polar coordinates the motion of
the spinning body will resemble that of the single or two-body problem
in physics. The origin of the force field will be the center of gravity
of the aerodynamic body and the unit mass will trace out an orbit that
in actuality will be the path traced out by the nose of the missile with
respect to the center of gravity. The symmetryv of (2. 28) allows for
consideration of just one normal coordinate say ¢(7 ). Its equation

may be written

eo’la‘l*m

o+ AI& + Bg + = 0 (2. 29)
with the complex aerodynamic coefficients,
A1 = §+i(l+K) P (2. 30)
B = - [(.1)J + KP? 4 iKlP] (2. 30b)
Consider the transformed coordinate system,
-%Alr
¢ = Qe (2.31)
such that the equation of motion becomes
. -3Ar| l+m
Q+ L+ €Q |Qe = 0 (2.32)
Thc cquivalent frequency parameter,
_ 1 2
L= B- 7 A (2. 35)
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It will become informative to study the motion in a physical

plane, in which case the transformation,

ip

Q = pe (2. 343.)
1 1
-z AT 1 -5 AT
2 2 1 -2
with p = re L. (o + ﬁz)z e 1 (2. 34b)
will culminate in the orbital equations
o ‘2 + 2
6 - ple) + Relp+ ep ' “= 0 (2. 35a)
1 d 2 _
5 qs 070) + AR = 0 (2. 35b)

Note: These equations (2. 35) will also result from operations on the
equation for the conjugate normal coordinate 7 (7).

In terms of aerodynamic parameters

1

i1 2 2 2
(-1 + z (1 -K)"P" - 36

Re(dR)

(2. 36b)
J(E) = P[K1+ %S(IJ%K):l (2. 36b)

The closed solution form for (2. 35) requires that { )= 0 which

can only be satisfied for the cases

(i) P=0 (2.37a)

(i) K= 6=0 (2. 37b)

(i) K= - % 5(1+K) (2. 37¢)
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Case (i} is the case of zero spin rate which may be appreciable for
certain aerodynamic missiles. Case (ii) may be considered as the
non-dissipative case where the aerodynamic damping becomes
negligible. Many examples of slender missiles approach thig cage
for the purposes of stability investigations. Case (iii) would be a
special case where the Magnus moment contribution was nullified
by the aerodynamic damping according to the relation expressed
in (2. 37c).

In what follows, the analiysis will require that J((;C) = 0 such

that equation (2. 35b) integrates directly to give the conservation law,

ng', = A (a constant) (2. 38a)

or when expressed in terms of the physical coordinates,

20 ¢ %-(1%]{) P = A (2. 38b)

This conservation law states that the combined angular momentum
(A) of the inherent rotational motion in the {a, ) plane and that due
to the impressed spin rate remains constant. With this in mind,
the new rotational variable may be introduced in terms of the

physical variables, as,

¢=g+%—(1+1{)¢ (2. 39)

ASS

where d = P = constant.

Q)
Q
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From (2. 38) comes the distinction between planar and non-planar
motion*:

(1) A= 0 implies that for bounded motion ¢ = 0 and the
motion is planar in the a, B plane and the oscillations
appear as a straight line orientated at some initial
value ¢(0).

(2) A # 0 implies that for bounded motion ¢ ¥ 0 (although
monotonic) and the motion will resemble Lissajoss
figures in the a, p plane dependent upon the magnitude
and degree of non-linearity in the static restoring
moment.

Since A is a constant and positive definite for this non-dissipative
case then ¢ must be a monotoenic function in time, although 0 may
not be, as seen from (2. 39). Substitution of the conservation law
(2. 38) into (2. 35a) will give the equivalent single degree of freedom
system equation of motion, expressed in r-variable as,

m+ 2 2

;*[‘(-1)J+%(1—K)ZPZ:|1’+ €T —%=0 (2. 40)
T
The linear static stability parameter.
a=-(-1Y+3 (1-K)% P (2. 41)

will determine the character of the linear motion. It is seen that

e

N A similar classification of motions appears in Ref. 6 although
the fundamental nature of the angular momentum constant is not
given there per se.
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for € = 0 the aerodynamically stable case {j = 1) will remain stable
for all r and 7 since a > 0. A full discussion of the stability of the
motion as governed by (2. 40) may be found in Section III.

Equation (2. 40) shows that the general problem is described
by a second-order differential equation in the class of equations
¥+ f(r) = 0. Autonomous systems governed by such equations have
received considerable attention in the literature and the basic
analysis in this paper will revolve around such an equation and its
manifestations.

The equation of motion (2. 40) may be integrated once to

yield the conservation of energy law:

(+)%

) =

+ U (x) = E (2. 42)

which shows the analogy of the spinning body motion with that of a
unit mass existing in a central force field. The potential energy

Ul(r) may be written,

>
N

Ul(r) = U(r) + (2.43)

[N
N

H

where the potential U(r) is the normalized form of (2. 14) and is such

that the central force is F(r) = - g;— U(r) and,
1 2 ¢ m + 3
U(I‘)-— zar + m T (2. 44)
G
and the potential energy due to the centrifugal force is 5 =3

I



Before the orbit equation can be derived, a derivative transformation

is required such that,

d A d d A d A d
—— T e e and — = -— = —= ) (2. 45)
der rZ do ar 2 rz de rZ de
whence the equation of motion (2. 40} may be written,
2 2
A d A dr A _
T T r
where the forcing function,
m + Z
f(r) = -ar - er (2.47)

Introducing a new variable u = —i} equation (2. 46) becomes the orbit

equation,

-m-4

_—, + u = — u + u (2. 48)

£
AZ
so called because of its analogy with the equation describing the
classical orbit problems. Following Goldstein (Ref. 7), rather
than attempt to solve (2. 48) formally, use will be made of the energy

cquation (2. 42) which gives,

2

r o= ‘[Z[E—U(ril - fz | (2. 49)

and which, with the transformation equation (2. 45) gives,
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Adr
d¢ = (2.50)

rz‘/z[h}—U(r)] -f%z

Hence, the integral solution to the orbit equation may be written,

Adu
o= ¢ - (2.51)

| ‘/z [E - U(uﬂ- A%?

[0}

which completes the formal solution to the general non-linear

aerodynamic problem under study.

2. The Orbit Integral

Provided the motion is bounded (see Section IV) the path of

1 and r,.

These limiting values for the resultant angle of attack are the turning

the nose of the missile lies entirely within the annulus r

points and are the roots of the energy equation (2.42). Whence, the
resultant angle of attack rotates through an angle of precession

whilst r passes from rytor and back again, where

2
dr
2
r
U

rZ A
Ao = 2 N—
4
f \/z [E- (r)jl S
rl r

)*

(2.52

See Figure 4.
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At these turning points ry and s t = 0 but this does not imply a
stationary point since angular momentum is conserved and in general
) # 0 at these points. The conditions for boundedness are determined

from (2. 42) and these form the subject of the next Section. The
condition for periodicity in the classical sense, on the other hand,
given a bounded solution, requires that A¢ be a rational function of
2w i, e. that A¢ = 2m p/q where p and q are integers. According to
Landau and Lifshitz (Ref. 8) the motion would be periodic only for
those cases in which the potential energy varies as 1/r or as r%. By
induction, it is seen that all non-linear aerodynamic potentials will
not yield periodic solutions i. e. the solutions will never repeat them-
selves. However, if the definition of period is from peak to peak is
accepted then values for A¢ and T (the period) may be obtained by
integration and this will be considered in succeeding sections.

The precession A¢ may be reduced Lo a more Lractable

form by a suitable non-dimensionalization. Define a new coordinate,

1
E=a T4A u (2.53)"

then the precession reduces to,

&
m ¥ 3
-Zf ¢ z td

‘I VF(E K, K)

A= (2. 54)

Note that such a coordinate only has meaning for 2 > 0. In
the later discussion on stability such a restriction will be removed.

ala
b
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where & EZ are two real roots of F( £, K., Kz) = 0. Expressed

2

19
in full, the expression under the radical becomes

m+ 5 Em+3_fm+l

F( 5 K, K)) T - ¢ + K, - K, (2.55)

1’ 2

For the bounded motion, the coefficients K1 and K2 characterize the
system and may be thought of as representing the initial conditions

and non-linearity in the system respectively. In terms of the system

variables;
K = 2E (2. 56)
\/EA
14+ m
K, = 24 : 2.5
2 m + 5 (2.57)

(m+ 3)a %

With this particular form of polynomial representation for the potential,

the general solution for may be written
EZ m -; 3
3 d¢
Ap= -2 (2.58)
3

This will be integrable in terms of simple trigonometrical functions
only in certain cases. Goldstein (Ref. 7) discusses the possibilities
of the exponent m in the radical to yield solutions expressible in terms
of the circular functions and the Legendre elliptic integrals of the first,

second and third kinds. Some examples of interest to thc acrodynam-

icst will be considered here.
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3. The Orbit Integral Solutions (Examples)

Of especial interest would be those cases where the spinning
slender missile was acted upon by a linear restoring moment (€ = m
= 0), a cubic restoring moment (m = 1

> € >0 or <0) and a quintic

restoring moment {m = 2, € >0 or < 0).

(a) The Linear System

For m =0, Ag reduces to an elementary integral and
may be shown to be A = 2w, whence A0 =27 -3 APAq . If
instead of integrating over the half-cycle, the integration is performed
over an arbitrary range of { the equation for the resultant angle of
attack may be obtained, i.e. write,

L3

3
@ = ¢ - _ffd (2.59)

o
3 ‘/Fl( £, Kl)

which upon integration yields the result,

259 - K
- n -
Z(CPO-(p) = gin~? -—————1—-}—sinl 1}(.?..60)
where for convenience, ¢ 22 n . It may be assumed without loss

of generality, that @, = 0 when ¢ = ¢ At this point § = r=0

o’

and from the energy relation (2. 49)

_ 1 2 :
0= % [K1+ K, 4] (2.61)
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when expressed in normalized form. With this value for LS (2. 60)

becomes,
sin(—g-Zga):E—:,—é-:—i{—l- (2.62)
K1 - 4
and finally in usable form as,
LT K, K,%- 4
2 N5 — [1 + -——-———Kl cos Zso] (2. 63)

which will be recognized as the equation of a conic section in the

(-rz, 2 ¢) plane. TIn the (r, 8) or (a,p) plane the solution would
exhibit a precession that included the impressed spin rate P. A full
discussion of the initial value and bounded solution problems will be
reserved to the later sections. Here it is sufficient to show that the
familiar linear system is but a special case of the integral solution
(2. 54) and further to show the elegant form of solution employing this

technique.

(b) Cubic Moment

A case frequently encountered in free-flight motions of
spinning aerodynamic problems is one where the static restoring

moment varies according as the cube of the total angle of attack, i.e.

M(r) = -ar - €r m=1 (2. 64)



For m = 1, the precession A ¢ , from the general result (2.54) may

be written,

¢ \/n'-d 2
Ag = ;o om= & (2. 65)
7 ‘/ 3k, 52 K
I A O

The question of boundedness of A ¢ will be given in Section III. If it
is assumed that the motion is bounded i.e. that A¢ remain real then

7 is bounded such that,
iy K K)=93-K772+7;+K <0 (2. 66)
O R 1 2 ’

Assume that F(7) . Kl’ KZ) can be factored in terms of the ordered

three roots 771 > 7)2 > 773 then,

7

2 Js ds

A;P:J (2.67)
Y Vs =230 (s -7,0(n s

which may be recognized as a complete elliptic integral of the third

kind and from Ref. 8 may be shown to have the solution,

2\/772 n(aZ-KZ)[l-Ao(ﬂ,k)]
Ay =\[7-__-—-—-—- K+ - (2. 68)
=7, 2'/(12(1—0.2)(0.2— k‘z)
where
N, -M
aZ = ! Z and kz_ —?2— az
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is the complete elliptic integral of the first kind expressible as,

I(:%[1+;11-k2+g-4 k4+...:, (2. 69)

and AO( d, k) is Heumann's Lambda Function

Al Y k):lzi I:EF( 3, k) + KE(¢, k') - KF( 8, k'):’ (2.70)

The argument ¥ is related to the roots of F(7 ; Kl’ KZ) = 0 by,
1l - a2
sin 08 = 5 (2.71)
1 -k

In this exact form it is seen that the solution is not quite so elegant
as that for the linear system and is certainly less amenable to the
data analyst who wishes to interpret a given bounded solution to
extract the pertinent motion parameters. A numerical set of compu-
tations was performed on the IBM 7090 Computer at Ames to indicate
the effect of a cubic non-linearity on the precession A¢ and the
bounds on the motion (determined by the energy level). The results
are plotted on Fig. 5. From such a plot it is noted that for € <1,
the precession A¢ is strongly dependent upon € but for e > 1 the
dependence is slight implying that data reduction techniques employing
the measurement of A¢ to deduce the magnitude of the non—linearity

are most accurate for € <0 (1).
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III. THE INITIAL VALUE PROBLEM

In general, no explicit solutions exist for non-linear differen-
tial equations. It is fortunate, however, that by use of well-developed
methods, considerable insight may be gained as to the nature of the
solutions without recourse to actﬁally requiring the solution. One
such method is the phase plane method developed by Poincare/,
Lie/nard and others (Refs. 10 and 11), another method employs the
potential energy plane. The equations developed here, thusfar, are
particularly amenable to such methods, Other methods provide
parallel results and also results not conveniently obtainable by the
phase plane method, such methods cncompass perturbation techniques
and orbital mechanics. KEach method will be presented as required to

extract the desired stability criteria and related topics.

A. Phase Plane

For the non-dissipative case (6 = 0) the orbit equation for the

general non-linear system was found to be,

2
du a -3 € -m-4
+ u= = u’ + =, u (3. 1)
dg° A% A’ |

With the transformation to a new coordinate system ( ¢, ¢ ) where,

E = VA u (3. 2)
Note: This coordinate ¢ is the same coordinate as given in (2. 53)

except that now for the discussion of stability the restriction a > 0
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has been removed. In these coordinates, the orbit eguation assumes

the form,

2 .
—d——g—z--f-{ = a§‘3+ bz‘(m+4) (3. 3)
de
- where the aerodynamic parameters are given as
a = -(-1Y+ 711.(1 - k)% PP (3.4)
1+ m
b = eA (3.5)

The quantity (a) is a purely aerodynamic property and does not
depend upon the initial conditions. The quantity (b), on the other
hand is a function both of the non-linearity in the system and the
initial conditions, through the angular momentum A. The initial
conditions are U Vg and A in the phase plane, which are directly
related to the initial conditions r o 1"0, @, and (i)o in the physical
plane.

The differential equation for the integral curves is,

dv _ -f + at >4 pg ™%

th = N (3. 6)

where the velocity v = d }‘,/d(p . Equation (3. 6) is but a special
example of the general non-linear conservative Vsystem governed by

the equation,

dv _ -£( &)

v

I (3.7)

S ad
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which shows that the integral curves have a zero slope at the points

¢ ;» the roots of f({ ) = 0, provided v # 0 and moreover all the singular
points occur along the E -axis. (3.6) may be integrated directly to
give,

E=3v¢ + Ug) (3. 8)

where the potential energy is,

TR S S Tt LN L

The relation between U( &) and f(& ) is,

o,

U(g) = - | #(%)ax (3.10)
0

As shown by Poincare/(Ref. 13) the only possible singular points to
(3. 7) are either centers, saddle points or their confluence. The
location of the singular points and their character will provide the
desired results for the non-linear aerodynamic system. Since the
resultant angle of attack » = \}c,Z + BT is always a real quantity
greater than zero then only the positive quadrant in the (v, § ) phase
plane need be considered for conditions of stability. Furthermore, a
trajectory will exist in the phase plane for all initial conditions such
that E - U( { ) > 0. Since the problem requires the solution of a
non-linear system with the singular points characterized by centers

or saddle-points the linear approximations in the phase-plane method
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are not valid (Ref. 11) and the singular points are determined from
v = 0 (3.11a)

dU(E) _
5t " 0 (3.11b)

describing the conditions for equilibrium. The exact trajectories

are analytic and described by,

m+ 5 2 m 3 m t 1 2b
4 + (v" - EX - akl -3 =0 (3.12)

where the (normalized) total energy E can be expressed in terms
of the coordinates, viz:

2 1 -2 2b -m-~3
§ Ea{ { m

m m + 3 m

(3.13)

the subscript m denotes the maximum value and {m is the greater
of the turning points of the motion. Following Minorsky (Ref. 12)

express f( £ ) in a Taylor's series around the singular point to give

00 n

cn\I/
H(E) = E — (3.14)
n=1
where ¥ = - E‘s and ¢, = fn({ )] . The potential energy is
g =& s

%
Such a condition does not necessarily imply a stationary point
since (é #0 when v = O.

ot
b Y



thus automatically expressed as a Taylor's series and the conser-

vation law (3. 9) becomes,

n+ 1

VZ 2 c V¥
E = > - E _r}(__.I)_.._ (3.15)
n+ :

n=1

The discussion now is reduced to considering the potential energy.
If the potential energy U(& ) is a minimum at the singular point, then
the system is locally stable; if it is a maximum there, then the
system is locally unstable. The condition of a stationary point for
the extrema would result in neutral stability which for all practical
purposes may be considered as unstable.

It is informative to consider the first term in the series in
(3.15) such that the equation describes an ellipse or hyperbola

about the singular point, viz:

1 2 1 2
E = E v - -2— Cl\lf (3.16)
Clearly, the condition for stability depends on the sign of ¢ and from
what has gone before, ¢, = -U'¢g )Iz_ r e The conditions c, 20
s

depend on the sign and magnitude of the aerodynamic parameters
a, b and Z,S. Mathematically it is convenient to study the stability
in & - variable; graphically it is clearer to present the results in

the inverse coordinate, i. e.

R = &1 - (3.17)
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In R-variable the energy equation is,

E = % v + U(R) (3.18)

ot
I
[\

where U(R) = (3.19)

T2

In the equation for the potential (3. 19) the first term is due to the
centrifugal forces set up by the rotation in the (r, ¢ ) plane; the
remaining two terms constitute the potential due to the restoring
moments, linear and non-linear. There will be stable regions and
unstable regions in R dependent upon the signs and relative magnitudes
of a, b and m; the singular points located within the boundaries will
characterize the regions as stable or unstable. These singular

points will occur along the v = 0 axis at the roots of U'(R) = 0 i. e.

at the roots of,

bR YP _art 41 = 0 (3. 20)

Assume that the real roots of (3. 20) are RS then stability is assured
for U"(RS) > 0 the region is an unstable one (the trajectories in the
phase plane are hyperbolas, see (3.16)) and for U"(RS) = 0 neutral
stability is experienced which for practical purposes may be

considered as unstable. Written more concisely,

< 0 stable
—3Rs—4 - a - b{m+ 2) Rsm + 1 = 0 neutral (3.21)

> 0 unstable
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The various cases may now be discussed with the aid of the potential

energy curves and the accompanying phase plane.

Linear System, b= 0

Here the familiar aerodynamic system is described by the
potential function

-2 2

1 1
U(R) = - 5 R -3 aR (3.22)
. A .
The singular points are located at RS = v—— . For this to be a
Vva

real point in the physical plane then a > 0. Is the region in which

RS is located stable? To answer this question, the criterion U”(RS) <0
gives -4a <0 which again requires that a < 0 for stability.
Expressing these results graphically in the complementary potential
and phase planes gives Figures {a) and (b). Physical motion is

1 For E < E1 motion is elliptic in (r, ¢ )

plane between the bounds R, and RZ which are the roots of E - U(R) = 0,

possible provided E > E

I

provided only that a > 0. For the special case E = El” circular motion

1
results at the radius R = ﬁ-; where the energy level E; = Vva.

Note that the question of stability is unaffected by the magnitude of
the angular momentum provided only that A # 0. This is in contrast
to the non-linear system as will be shown. For a < 0 the motion is

unstable for all R. Consider the full expression for the parameter ‘a’

(1 - k)2 P? (3. 23)
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ac<o

-U(R)

v(R) . no real singular
points

Figure (b)
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The question of the sign of 'a' will depend on j and the spin rate P.
For the aerodynamically stable case (j = 1) a >0 for all P, The
aerodynamically unstable case (j = 0) however may be spin-stabilized
if spun at a ratc P> VY4/(1 - K)” i.e. approximately twice the
natural frequency of the complementary stable case. This value
depends on the inertia characteristics and aerodynamics of the
specific vehicle in question. Once determined however, the nature

of the motion is completely determined by 'a’.

Non-Llinear System, b # 0

Here the possibilities are a little more varied and the governing
cases will be listed.

The singular points will be located along the v = 0 axis and at
the roots of U'(R) = 0, and in general, there will be %— (m + 5) roots
in the R2 plane of which only the positive roots will have physical
significance. The solution of (3. 20) to obtain these critical values
of angle of attack is left to the usual techniques of numerical analysis

in the general case of integer m., For the special case (m = 1} of

the cubic restoring moment exact solutions are possible.

Example: Cubic Restoring Moment Singular Points

Put p =R’ (1 + m) then the singular points are located at the

roots of,

p - ap-b =0 (3. 24)
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For m =1 (3,24) becomes a cubic with the three real roots

given by,
Poy = 2 % cos 3% cos™? 3\/}:}3 ; (3.25a)
2ay\/a
Pyy = ZJ-;?: cos ? ~31— cos_1 A EL) + %Tg (3.25Dh)
2ay\/ a
Pe3 = ZJ-%- cosg é— cos™ -3—@{“ %1} (3.25¢)
Za\/-a

Certain conditions are implied for the roots to be given by (3. 25)
which depend on the discriminant A = (b/Z)2 - (a/3)3. For A <0
there will be three real and distinct roots given by (3. 25). For A = 0
there will be three real roots, two of which will be equal. For A >0
there will exist only one real root, the other two being complex . Only
those roots pSj > 0 have meaning in the present context. There exist
four basic possibilities for stable and unstable motion and these will

be considered in turn.

Casel, a>0, b<o0

This would be the case of a soft spring acting on a stable linear

system. Here the potential function,

-2

U(R) = - >R __é.aR -

D]

The singular points are determined from the roots of (3. 24). Since

instability is characterized by a local maximum occurring in the
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potential function, then instability would occur for large R if,

2bR™ + 1

—_— > 1 (3.26)
(m + 3)a

R—eoo
i. e. if for large R the destabilizing influence of the non-linear term
overcame the basically stable linear system. Conversely,

m + 3)a <1 implies a stable system for all R. Expressing
these results in the two planes, gives Figures (c) and (d). It is
possible then for lnstability to vccur at large R if the non-linearity

is large enough to overcome the stabilizing influence of the linear
term. The designation 'large R’ may not require a large angle of
attack for instability but merely a low angular momentum, since

as A—>0 then R—» oo for all r. From this it is seen that nearly
planar motions are more susceptible to instability than, say, a nearly
circular motion.

The limits of bounded and physical motion are than E, L E<E

1

Given a physical motion the upper bound to the stable region is the

3.

separatrix in the phase plane with energy level E3. The equation to
this separatrix is given by (3.12) with E = E3 determined from

U”(RS) < 0 at the singular point.

Cage 2, ag0, b<O

The case of a soft spring acting on an unstable linear system.

Clearly this would be unstable for all R.
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Case 3, a0, b>0

The case of a hard spring acting on a stable linear system.

This case would result in stability for all R.

Case 4, a<0 b>0

3

The case of a hard spring acting on an unstable linear system.
This is the complementary case to Case 1 where now the non-linearity
is attempting to stabilize an otherwise unstable system. The
diagrams are similar (see Figure (e)). The inequalities now require

a modulus sign to give the criteria,

m+ 1
ZbR- > 1 stable for large R (3.27a)
a(m + 3)

m + 1
ZbR € 1 unstable for large R (3. 27b)
a(m + 3)

In all of the above cases the initial conditions must be such that
physical motion is possible i.e. that E > E, where E1 = U(RS) .

The singular points Rs are the real and positive roots of U'{R) = 0.

B, Perturbation Method

Having described the stability of the non-linear aerodynamic
system and established the necessary bounds it becomes necessary
to quantize the solutions for use in extraction of the pertinent

parameters. The perturbation theory of Poincar€ and later math-
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Figure (e)
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ematicians will now be applied to obtain the first orcier of ¢ solutions
to the non-linear problem. No attempt is made at this time to improve
the approximations to O ez) as it is not expected that any qualitative
change will occur in the solutions.

It has been chosen to concentrate on obtaining the precession
Ag in what follows, as it is fclt that A is most readily obtainable
from a given bounded solution. If the period T of the oscillation is
desired, a simple derivative transformation (2. 45) applied to the
results will yield the desired expression. Consider the normalized

orbit equation,
2
‘l—g_z- +& = a{‘3 + bi -m-4 (3.28)

where the coefficients (a, b) are given by (3.6). The perturbation
method as applied to the physical coordinates a{ 7 ) and B( 4 ) did not
yield suitable results and the reader is referred to Appendix A for
such a derivation. The transformation to a polar coordinate system
was made early in the analysis in anticipation of this difficulty and

a series solution for &( ({;) will be assumed in the form,
N

éoie) = Z en{n(q:*) (3.29)

n=0
where the rotational variable { has been distorted by a 'frequency"

factor due to the non-linearity in the system.

@ = (1+ e+ .....)@ (3.30)
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so that for € = 0 the two 'rotational scales are identical. A substitution

of (3.29) and (3. 30) into (3. 28) gives,

2 2
a“ ¢ a“ &
o -3\ ., 1 -3 -m-4
(-—-—,g-qzwv» 4io-aﬁo)+ e<-——?2+tl-a{1 -blio

d@ d
dz { o 2
+291—T2— + 6( ....... ) = 0 (3.31)
d @
Equating the coefficients of the like powers of there derives the

following recursive system

2
dE"%E -2 =0 (3. 32a)
PP o~ T3 :
(8]
2 2
a“é a“&
1 a ~m-4 o )
+ & -2 = 4p & 20 (3.32b)
dqﬁzz 1 £13 1’0 1 dQ*Z
d2§
n a
*z + an -z-—3 = F(En—l; bl; Qn_, ---) (3.32(:)
d @
n
d§
1(0)

with the given initial conditions {i(O) and The solution

de

to the zeroth order equation has been found and is,

2
2 c - a #
E = C [1 +~—-—c——— cos 2 ¢ ] (3.33)

o)
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which describes a conic section in the (1/& 02 ,2'0*) plane. Again
it will be assumed that the conditions are such that the motion is
bounded (see Section IV), which means that (3. 33) describes either

2

*
a circle or an ellipse in the (1/ , 2@ ) plane. The straight
o g

line or planar motion case is excluded from this analysis by the
requirement that A # 0. From (3.33) the necessary operations

for the right-hand side of (3. 32b) may be performed, viz:

m+ 4

—(m+4) ‘(‘——2—-‘ Y & "("'2"")
to = ¢ [1 +‘{1 - :2 cos 2@ (3. 34)
& - t-al, -2 «| 75

o = - = - —5 cos 2Q

s a , # - w1
2 cos 2% + l—-——z sin 2@ i fi- —3 cos 2 ¢ (3. 35)
c c
For bounded motion /1 - _a_z < 1 and hence the term(‘/l - %) -
c c

3
cos2¢@ < 1 and an expansion procedure will provide results of.

sufficient accuracy to give

__(m+4)
-(m + 4) 2 m + 4 _a *
go 1 - 5 1 -c-z cos 2@ + ...[(3.36)
2
1t _ ot - a b
¥, = -2 - cos 2@ +... (3.37)

which together with the expanded linear solution

a 2 %
.ﬁc=‘/c~ 1+4;—‘/1--?_ cos@ +. .. (3.38)
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will give to O( ¢ ) the equation for the correction to the linear

solution

(o o
[N}
# I
DI =
-+
I
—
i
lem
(%
3
RN
b
[
(9]
0
i
[\
(¢
[¢]
wn
™o
)
*
+
=
[on
—

- %k
r (214 blvc — % cos 29

+ , {3.39)

To eliminate these secular terms then,

m+ 4
—491 + | —-—2—-—) bl = 0 (3. 40)

From (3. 40) and (3.5) with b -':G.bl then the non-linear frequency

correction is

14+ m .
0 = + mt+4 L 2 (3.41)
8
So that to O( ¢ ) 1+m
* ¥ 4 2
¢ = (1+ mS ¢A .. (3.42)
VA S
but Ag= Z_A‘Q hence
1+ m
Jagle 252 ca % on (3.43)
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For the special case m =1 this gives

qu=3—52 €A 27 (3. 44)

%
A comparison of this result with the exact results and the expansion

of the orbit integral are given in Figure 5

ES
Obtained by numerical integration applied to constructed

examples on an IBM 7090 digital computer.
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IV. THE BOUNDED VALUE PROBLEM

Before applying the preceding analysis to the non-linear problem
it is informative to reiterate the linear aerodynamic system in this
new context. It will be shown that the elegant orbit formulation yields
known results in a more direct and compact form and further to give
new ingight into the spinning aerodynamic body problem. The
extraction of the pertinent aerodynamic parameters from a known
linear amplitude history will follow by way of a concluding example.
The linear aerodynamic spinning body describes an amplitude history

according to the exact solution,

202 = E [1+ ‘/1 --g-z cos Zte} (4. 1)

whether or not the orbit is bounded will depend on the total energy

(initial conditions) and the orbits eccentricity e = ‘/1 - a/Ez

The governing relations are,

e > 1 E >0 unbounded motion
e < 1 E <0 bounded motion
and in particular, circular motion is possible if e = 0.

Unbounded Motion

For e <1 the motion is bounded and for e > 1 the motion is
unbounded. The transitional state e = 1 will determine any

tendency to resonate or pass from one state to another, This
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resonance condition implies a =0 i.e. - (-1)J + —}4— (1 - K)Z.P2 =0
which would imply a resonant spin value such that,
_1y
p % . _i(.._l)_z (4. 2)
(1 -K)
or, in terms of the physical aerodynamic properiies,
2 4 | (-1
PR = 7 (4. 3)
(1 -K)

The square of the spin (Pﬁ) is simply a mathematical way of showing
that this critical value would occur whether the spin was in the direct-
ion of the inherent rotational motion @(t) or against it. For this
resonant value to exist, however, the right-hand side of (4. 3) must

be a positive quantity. For j = I this value does not exist, as found
earlier. Indeed this ''resonance' value for the spin rate is actually
that value for which the spinning body passes from an unstable state
to a stable one and the body has become spin-stabilized. A related
condition for unbounded motion is that E > 0; again the transitional
state E = 0 will determine the limiting values for & 0(0) for the

bounded motion. From (3.13),

(4. 4)

which states that for unbounded motion {mz > \/; a known condition

from considerations in the potential energy plane.
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Bounded Motion

Bounded motion for the linear case is ascsured if e < 1 and
E <0 . That the total energy be negative for bounded motion is a

known result and is automatically satisfied for all real m &S seen

i

from (3. 13), on placing b= 0 provided E mZ < \/; i. e.

=
i

3Lttt s

In general, the bounded motion will be elliptic when traced in the
proper coordinate system, viz: in the {( ED—Z’ 2@) plane (see

equation (4. 1)).

Circular Motion

A special case of the bounded motion solution is when the ''force'’
derived from the potential U( { ) just balances the centrifugal force
set up by the rotation such that the angle of attack is a constant i.e.
circular motion. The eccentricity of such an orbit is zero (e = 0)
which would arise when E = - \/EL , whence circular motion would

result when the spin rate is given by,

_(-1Y + EZ
p2 . (1 +E (4.6)
¢ 1 12
Z(l -K)
From (4. 2) and (4. 6) it is seen that
pZ . p 2, A4E (4.7)
c ~ "R 2 :
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and on substitution of the aerodynamic parameters it can be shown
that the spin rate required for circular motion is approximately
one-half that for spin stabilization.

To complete the discussion for the linear aerodynamic problem
use will be made of the orbit integral solution to extract the static

stability parameter from a given bounded solution.

A, Linear System

The orbit integral (2. 54) provides the simplest result for the
linear system when transformed back to the time variable, with the

aid of (2. 45) to give the simple result (for ¢ = 0),

VB o= X’q (4. 8)

Expressed in terms of physical variables this gives,

2
1 2 2 21
Ch = ~llz9 * 7 (1-K) p} —5 (4.9)
m [At 4 puzsﬂ
If it is found that the affect of the spin is small then the following
simple relation holds,

21

£ (4.10)
a p8£

where As = UAt is the distance flown along the flight path during

one complete oscillation of the angle of attack. Hence knowing the



number of peaks in the amplitude a,p plane and the distance flown
{or time taken) for each peak the static stability parameter (Crn ) is
easily extracted using (4. 10). If the roll rate is measurable fro:n
flight data then (4. 9) should be used. Figure 6 illustrates how the

required information is obtained from a given flight trajectory

(taken from Ref. 14).

B. Non-Linear System

Once the assumption of non-linearity in the system is accepted
the number of possible sclutions becomes infinite as opposed to a
finite number (enumerated above) for the linear system. It would
be desirous in this instance to have a method whereby the data itself
indicates the magnitude and degree of non-linearity in the system to
the analyst. The alternative is to assume the form of the non-linearity
a priori and force the data to conform (say fit a cubic dependence for
the pitching or restoring moment). It is possible, by such methods
to obtain ''good fits'' for the data in hand but it is questionable
whether or not one can predict the stability characteristics of other
missiles within the same family as the one analyzed. Itis clear
that the first approach is the better although more difficult to apply

but to this end the following experiment is suggested.

Suggested Experiment

From the general result, the precession in the a, B plane of

the resultant angle of attack loops is given by,
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A m3+24 2re AlTT (4.11)

Taking logarithms of both sides gives,

InA@ = In -r-n—;—‘zﬁ 2re + (L+m)fnA (4.12)

If now several launchings or free-flight tests are made on the
configuration under study where various rates of spin are intentionally
given a series of results (A@) will be obtained for a range of angular
momentum (A). The angular momentum may be deduced from the
data by making use of the sectorial velocity which from Kepler's
second law of orbital motion is one-half the angular momentum

(see Figure 7). The angular momentum may then be computed for

the particular free-flight data under analysis together with the
precession A(. Plotting these quantities on a logarithm plot will
enable the magnitude and degree of non-linearity to be deduced from

the data. Figure 7 serves to illustrate the data reduction technique.
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V. CONCLUDING REMARKS

The foregoing analysis has shown that the many isolated cases
of spinning aerodynamic body behaviour are but special examples of
a general theory presented here. Further it has been shown that the
aerodynamic problem may be analogized with the orbital motions
encountered in physics with all their elegant solutions and general
results. The behaviour of the spinning aerodynamic body in a non-
linear field is governed by a potential which has been studied with a
view to establishing stability boundaries for the various families of
aerodynamic bodies (encompassing such characteristics as spin
rate, inertial distribution, form of static restoring moment, etc.).
The analysis has proceeded further to study the bounded solutions
to yield easy-to-apply methods for parameter extraction. Methods
are given for extracting the parameters from linear data (together
with an example) and from non-linear data. In the case of the non-
linear system emphasis has been placed on allowing the data to
indicate the magnitude and degree of non-linearity in the system

rather than fit assumed forms to the data.
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APPENDIX A

The Non-Existence of Periodic Solutions for Physical Coordinates :

a(7), B(7)

To investigate the solution for the physical coordinates a( ),
B{ ) consider the non-dissipative case, & = 0, such that the

equations (2. 22) become,

l+m
B+p-(1+K)Pa+K Pa- ¢pla®tph) % =0 (A1)
l+m
ctat (1+K)Pp-K Pp- ea(a®+pd) % =0 a.2)"

To describe the system completely two characteristic time scales
would be required; one to describe the non-linearity ( f ) and the
other to describe the effect of spin (P), on the solution. Since it is
not clear that a(%) and B(T) are periodic even for P = 0, this case
will be considered first to illustrate the solution. This obviates the

need for two time scales and solutions are assumed to be of the form,

N
perse) = ), p ) (A.32)

n
n=0

N
a(vie) = Z? R an(t*) (A. 3b)

n=0

* For this section it has been found convenient to distort the time
scale such that - 2 = 1
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where t =owY-= (l+ewl+... )7 (A.3¢)

and « is the natural frequency (if it exists) of the non-linear
oscillation and has yet to be determined. Substitution of (A. 3) into

(A.1) and (A. 2) gives,

50-'[1+2€w1+...] + eﬁl"[1+..,] t Byt €Bpt ..

l+m
- elp t€p, + o+ 2ea +...4p%+2ep, + 2 =0
o R o ERE o ERE
(A. 4a)
a | 1+2ew + .., + ea" | 1+... |+a_ + €a,+t ...
o 1 1 o} 1
_ l+m
2 _ 2 2 _
- él:a0+ 6al+...:|[ao %2€a1+... ¥ BO 1Z€ﬁl+...:| = 0
(A. 4Db)
whence derives the recursive system
B, tPB, = 0 (A.5a)
!
a '+a = 0 (A.5b)
o o
1] - . 3] e 3
B+ B = ~2wWB "B B, (A. 6a)
a,"+a, = -Zwa”+aﬁ2+a3 (A. 6b)
1 1 170 o"o o )
1] - 13
By B, = FRT s e sWwoao ) (A. 7a)
1" -— :
a '"+a = G(ﬁ”n—l s seeaaen s W ) (A. Tb)
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where for the purposes of algebraic simplicity the case m = 1 has
been ‘chosen. Now, from (2.34b) it is seen that for P = 0, the

angular momentum A may be written,
A = (A.8)

where N, = B(T) and ')Zz = a(7T). Provided the initial conditions

are antisymmetric i. e, '2'1(0) = a where the Kronecker delta

SRENE

=0, i7jand 613. =1, 1i= _] and a,. is an arbitrary scale factor then

513‘ ij

A # 0 and the motion is non-planar. From these conditions, assume

that the zeroth order of ¢ solutions are of the form,

*
a = A0 cos t (A.9a)

i

B B_ sin (t* + ©0) (A.9Db)

o)

where it is noted that @ = w/2 implies planar motion (A = 0) and is
to be excluded. After some algebra the first order of ¢ solutions

become,

AZB
o o

] w

* *
[31" + [31 = 2 wlBo [sin t cos @+ cost sin ¢] +
* * *
[sin t cos @+ cost sin ¢:| + Bo3 [% sin t c053¢

* ' *
+ 2¢int cos g sin2¢ + "i' cost cos @ sin 2¢

4
#* * ‘
£ % cost sin @ cosz¢ + % cos t sin3¢ + 'le sin t

sin @ sin 2¢] + non-secular terms (A.10a)



59

‘and
* 2| 1 * 2 3 *
it = w - : { — —
a;'' oy 2w A cost o+ A B [ 7 Cost cos g + Z cost
, 2 3 . % 33 *
sin ¢ + Z sin t sin Z¢] + AO 7 ©°s t
+ non-secular terms (A, 10b)

To avoid secular terms which would invalidate the assumption of a
convergent series solution (A. 3), the integration constants Ao’ Bo

must satisfy the equations:

3, 2 3 .3 3 35 3 .2
(2w, B+ 3 A "B ) cos g + 7 B, cos” @+ 7 B~ cos g sin” @
+%sin¢sin2¢=0 {A.11)
(2 wlBo + AOZBO) sin @ + % Bo3 cos @ sin 2 @ + 'z:'lf Bo3 sin @ c052¢
+2sin° @ = 0 (A.12)
1 2 2 3 2 3 3
2w A+ 7 A B cos @+ 7 A B, sin @+ T A =0 (A.13)
3 AOBOZ sin2@ = 0 (A. 14)

Since A # 0 in this general non-planar case then (A. 14) requires that
A # 0, B, # 0 and thus the phase angle (§ must have one of the

following values
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But ¢ = 0 implies B, = 0 for & to exist which violates A # 0.

1
Also @ = n/2 implies A = 0. Substitution of § = 7 into (A. 11) and
(A.12) will reveal once more that Bo = 0. From induction therefore

it is seen that there exist no conditions such that the non-planar

motion is periodic and the method fails in this coordinate system.
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»

FIG. | NOMENCLATURE
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Linear
M,>0,j=1
Hard Spring M, = o)
:ﬂo>o, j = l

; T _
EN{) Mn>0,m>0

Soit Spring
M0>O:j=l
M, <0
m >0

My <0,j=0

My >0, m>0

Static Resforing Moment

r=(a?+ Bz)%
Resultant Angle of Altack

FIG.2 STATIC RESTORING MOMENT REPRESENTATION
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FIG. 4 OBSERVABLE BOUNDED MOTION PARAMETERS
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FIG.6 EXTRACTION OF STATIC STABILITY PARAMETER(Cmal
FROM LINEAR DATA
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{(a)Measuremeant of A .

4 MAQD)

{o)Measuremert of Ao \
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FIG.7 EXTRACTION OF STABILITY PARAMETERS FROM

NON-LINEAR DATA



