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ABSTRACT

The near-equilibrium dynamic behavior of a homogeneous
batch chemical reactor in which only one reaétion occurs has been
studied. The system has been analyzed thermodynamically and kinet-
ically near equilibrium. The equétions cbtained have been linearized
and then solved by means of Laplace transform techniques. The deri-
vation for isobaric case has been presented in detail. The solutions for
other cases, which include isothermal, isochoric, and adiabatic, have
also been given. Omne numerical application indicates that the linear-
ized equations can be useful even for protracted tin;xe intervals provid-
ing the forcing function is sufficiently small.

A general expression for the displacement of extent of re-
actions and mole fractions for multiple reaction systems near equilib-
rium has been derived. The displacement of extent of reactions for a
two-reaction system which obeyé ideal solution laws under isobaric
condition has also been given. A numerical example has been worked
out. The result agrees with the one obtained by brute force approach.

| The condition for a multiple reaction system to obey

LeChatelier's theorem is derived. s shown th th

obey the theorem the matrix composed of Onsager phenomenological

coefficients must be positive definite.

to maximize a desired product or to suppress an undesired product of a

system of chemical reactions proceeding toward equilibrium have been
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as an ideal solution. It is assumed that the initial feed contains only
the reactants and no inerts are present. Three different cases have
been considered. They are isothermal-isobaric, isothermal-isochoric
and adiabatic-isobaric. The expressions are implicit and complex so
that no direct conclusion can be deduced. However, a numerical ex-
ample (methane -steam system) shows that the effect of initial feed on
the distribution of the final product is significant and deserves atten-

tion.
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I. DYNAMIC RESPONSE OF NEAR -EQUILIBRIUM SYSTEMS

(7-9)

In three previous contributions , referred to belowas I -
I1II, Pings has considered the displacement of the equilibrium chemical
yvield of a variously constrained system for different types of distur-

. bances. Those results are combined here with first-order linearized
kinetics to give the transient response of systems slightly perturbed
frofn an equilibrium state. Although there are many textbook illu-
strations of dynamic response of chemical reactions utilizing simple
relaxation time expressions, there apparently has been no systematic
treatment which simultaneously accounts for the kinetics and the ther~
modynamics. The results obtained below are of admitted limited use
because of restriction to conditions near equilibrium. As such, how-
ever, they should be useful for verification in the limiting case of
generalized numerical and graphical techniques for handling systems
farther removed from equilibrium. In addition, the expressions de-
rived here are useful in themselves for certain practical problems
where it is known that the system subjected to perturbation does not
deviale substantially from equilibrium. An obvious example is the
dynamic response of chemical storage vessels in which very slow
chemical reactions take place under the influence of diurnal tempera-

ture variation.

“This section has been accepted for publication as a paper by C. S. Lu
and C, J. Pings by the Chemical Engineering Science.



A, THERMAL RESPONSE OF A CONSTANT PRESSURE SYSTEM

Thermodynamics

An isobaric closed system will be considered; for example, a
homogeneous batch reactor. ZFor purpose of simplification, only one
reaction is assumed to occur. By taking the time derivative of equation

(I. 33)# under isobaric conditions, the following is obtained:

Q=mCy T+ 48 . (1)

I~

#

From equation (I. 11)# the following expression may be obtained for the

isobaric rate of change of equilibrium extent of reaction with respect to

time:
- 5 1 (@)
RT"
where
n (d1Inf
k _
@ = 2 V| — . (3)
k=1 “( o% )T,P
# o a
5q _ a7 dP dg
## a N
— dT = | dP
{ ? VkMk(H/T)} ds [Z} \)kMkvk] qs
de _ | k=1 k=1 (T 11)
ds ‘ .

n
RT 2 v.(d1Inf /3
et R S NP



The kinetics of the system is now introduced in a simplified form by
assuming that the time rate of change of the extent of reaction can be

represented by the following equation:

€ = k(E¥ - €) . (4)

In subsequent treatment it will be as sumed that near equilibrium, k,
which is an effective relaxation time, may be considered as a constant.
This cuefficient k involves equilibrium concentrations and various
stoichiometric and kinetic coefficients as well as the kinetic rate con-
stant., In Appendix A, two illustrations are given of the reduction of
'general kinetic expressions to the linearized form of equation (4).

The dynamic response of the system to heat input at constant
pressure is determined by the set of simultaneous differential equa -
tions given by equations (1), (2), and (4).

Since we restrict ourselves to conditions near equilibrium,

quantities such as C R (Aﬂ/RTz), and o are treated as constants.

P g
An alternative approach would be to develop power series expansions of
“each such term about its value in the equilibrium state, dropping all

but first-order terms. For example, considering for the moment only

the variation with temperature of the 'I‘"2 term on the right-hand side of

equation (2},

ra O\ ¢

.5 =) T-T .

E =|{—> ld et ... | T . (24
RT" a T -

But we restrict the analysis to cases where (T—T*)/T* << 1 justifying

the neglect of higher-order terms. AR also depends on T and £, as

- ¥



does o. However, a general expansion in all of the independent vari-
ables of all of the state-dependent coefficients leads to exaétly parallel
treatment. The range of applicability of the final equations of course
depends on the domain of justifiable neglect of the higher-order terms.
This is particularly restrictive in the case of coefficient k, which
might be reasonably expected to hé.ve an exponential behavior in abso-
Iute tempe rature.

Equations (1), (2), and (4) are advantageously solved simul-
taneously by first taking the Laplace transform of each equation and
then solving algebraically for the Laplace transform of the temperature,

yvielding the following expression:

oy <H[E7(0) - £(0)] .

T(s) = - L
8 me,xg s(s + K)

mC S(SS-:'l]{:i) x &{Q] (3)
P,

where we have defined

(AED)
K=k 1+ - A . (6)

C RT
Mo, € o

X{Q} represents the Laplace transform of the heat input function.
As examples, four special cases of heat input are considered,
namely, a delta function input, constant heat input rate, a sinusoidal

heat input function, and a completely arbitrary heat input function.



Delta Function Heat Input

This rate of heat input is taken as

Q = }36(6) (7}

- where §(8) is the usual delta function and B is a weighting factor.
For this type of heat input the Laplace transform of Q is simply B,

and equation (6) becomes after inversion

.. KAH . g
T = T(O) + g §(0)-§(0):|[e -1]

P, g
B K-kl «K§ K6 k
+ e | . (8)
mcp,%[( K ) K]

Constant Heat Input

In this case the rate of heat input is given by
Q= W.U(e) (9)

where U(8) is a Heavisidé function, and W is a weighting factor. The
Laplace transform of Q gives W/s. On substituting and taking the in-
verse Laplace transform of equation (5), the following expression for

the dependence of temperature on time is obtained:

kAEA. K -
T = T(O) + g {g (0) - g(O)] e 89 . 1]




Sinusoidal Heat Input

In this case the heat input is represented by

Q = AO,+ A1 sin{c8)

(11

Upon substitution for o(\"{é} and taking the inverse transform, the fol-

lowing is obtained for dependence of temperature on time:

KAH y | K6
T = T(O)'l'm——l}, (0)'§(0)] l:e - }
p, €

K K

1 k K~k -K6
7 T ) - ©
E| Kc& K¢ + K7)

or

| kAL % . -K8
T = T(O)+m g (0)-€(0)]l-‘e - 1:1
P, :

0 K-k, 6 Lk kr~K -KB6
+m L +-K9+——Ez——e }

C )
P,E|] K
Aqc k K-k _-K@
t =T st o ©
P, & | Kc K(c™ + K7)

+ J(l—l Kz/cz)(ll kz/cz) si;q(ce ) ¢):]

c2 + Kﬁ‘Z

A .
0 K-k, 6k k- K —Ke‘-
+ g A +.._e+__.T_e

sin(cG)}. (12)

(13)



where ¢ is a phase factor.

2
$ = tan~ 1[%%} . (14)

Azrbitrary Heat Input

For any arbitrary rate of heat input (including the three pre-
vious cases) it is always possible to approximate Q as a series of
discrete Heaviside functions with proper weighting factors.

n
Q = 151 W, U6 -T) . (15)

U(g - T Tx
th

Heaviside function becomes effective, and Wk the appropriate

) denotes the Heaviside function, notes the specific time the

k
weighting factor, The inverse Laplace transform of equation (5) be-

comes:

kAFL 5_* -K8
p,EL
1 k-K(-KO ) }
+ e - 1] 4 6
m\Cp,gl:KZ.

u _
X [kél W, U9 - rk)J . (16)

Ak

It might be noted that when n = 1, and 7, = 0, equation (16) reduces to

k
equation (10),



B. CHANGE IN PRESSURE DUE TO ISOTHERMAL PERTURBATIONS
IN VOLUME

Results similar to those in previous sections may be obtained
for other choices of variables. As an example we consider the change
~ in pressure due to imposed perturbations in the volume of a system con~
strained to constant temperature. From an equation equivalent to
(1. 45)#, the following expression may be obtained,for the time rate of
change for the total volume of the system due to isothermal change in

pressure:

y'_:‘\ﬁ_} P+AVE . (17)
Also, from equation (I. 11)## the following is obtained for the change in
equilibrium yield due to change in pressure:

Ay,
-Z—mp . (18)

->"¢

Equation (4) is also assumed to be applicable in this case.
Therefore, the dynamic response of the system is determined by si-
multaneous solution of equations (4), {(17), and (18), Again, coefficients

in these three equations may be treated as constants, since we restrict

(a_\[) (ay_) R 5 v (5‘5') (. 45)
= +"'— . .
5P T TP w2 M k(3P

##See page 2.



ourselves to conditions only slightly removed from equilibrium. 3By
taking the Laplace transform of the three equations and solving simul-
taneously for the Laplace transform of the pressure, the following is

obtained:

+—§-('§—i-—§-r7 Of{\}} (19)

where
2 . .
K'=k |1~ (8Y) (20)

oV
T,
T,€

We treat only the general case in this instance, by represent-
ing the arbitrary volume disturbance in terms of a summation of

. Heaviside functions:

n

5 1

V= X w. U6 - T (21)
k=1

By substituting equation (21) into equation (19) and taking the inverse

Laplace transform, the following is obtained for the dependence of

pressure upon time for a prescribed volume disturbance:
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(22)

C. OTHER VARIABLES

Other variables and constraints have been studied. Since the
derivations are similar to the ones shown iﬁ the previous two sections,
the details of the derivatives are not given. However, the results
(including the ones shown in previous sections) are summarized in
Table I.

Inspection of these equations will reveal that they explicitly
include terms to account for the fact that the system may not be ina
state of equilibrium at t:'u;ne zero, namely the. difference §*(0) - E(0) .
If the system is initially at chemical equilibrium when disturbed, those

terms will of course disappear in all of the equations derived above.
D. EXAMPLE

As an illustration of the possible use of the equations, we
compare the predictions of equation (10) with the results obtained by
stepwise numerical solution of the rigorous kinetic and thermodynamic

equations for a specific system. The following reaction was studied:
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ZHI = H, +1

A total weight of 127,92 grams of the equilibrium mixture initially at
850° K was considered. Two examples were worked out, one involving
a heat input of two calories per second and another of four calories per
second. The results obtained by the numerical solution are compared
in Figure 1 with predictions from equation (10). For sufficiently small
values of the perturbation function the linearized equations apparently
may be used for extensive time intervals after the disturbance., For
larger values of the perturbing function, the equations still may be use-~
ful for short time intervals following the perturbation, as indicated by

the upper curve in Figure 1.
'E. SUMMARY

The near-equilibrium dynamic behavior of a homogeneous
batch chemical reactor in which only one reaction occurs has been .
studied. The system has been analyzcd thermodynamically and kinet=-
ically near equilibrium. The equations obtained have been linearized
and then solved by means of Laplace transform techniques. The deri-
vation for isobaric case has been presented in detail. The solutions
for other cases, which include ithothermal, isochoric, and adiabatic,
have also been given., One numerical application indicates that the
linearized equations can be useful even for protracted time intervals

providing the forcing function is sufficiently small.
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II. DISPLACEMENT OF EQUILIBRIUM EXTENT OF REACTION
FOR MULTIPLE REACTION SYSTEMS NEAR EQUILIBRIUM

In this section the displacement of chemical equilibrium with
respect to changes in physical states of multiple reaction systems is
" studied. Pingsw-g) has investigated this problem for one-reaction
systems in detail. Similar treatments can be found elsewherem’ 16).
The discussions presented herein are restricted to the effect of tem-
perature and pressure to a closed multiple reaction system. However,

the extension to the effect of other variables, such as volume, enthalpy,

and entropy, is apparent.
A, DERIVATION

The system can be represented by the following set of equations:
0
2 v, J =0, i=1,...,R . (23)

At equilibrium, the following conditions must be met simultaneously,

n

I
fa—
&

Vik Mk My = 0, i (24)
Dividing each term of equation (24) by the absolute temperature, T, and
then differentiating it with respect to a general varia.b‘le, s, gives

d(uk/ T)

151 Vo M —— =0, i=1L...,R . (25)
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Since the chemical potential, u, may be expressed as a function of T,
P, and Ei, equation (25) can be rewritten in the following form.

n o{u, /T) 4T n
z vikMk(—T——a )PE Tt 2 Vi My
? i -

k=1 k=1
a(uk/T)) e R (a(u /T))
\—— —+ 2 Ly x
( T,éi ds j=1 k=1 ik ng T:Pavgl
g =0, i=1,...,R . (26)

The partial derivatives of the chemical potential can be expressed in

terms of other thermodynamic variables as in the foliowing(7).

2 (B(uk/T)) AH, ('27)
V. v = -
o Vi M T pE, Tz
2 (a(p,k/T)) AV, (28)
V. = ———
o Vi M E T g : T - | |
n a(pk/T)) : n dnfy
15'1 Vil Mk( dF . TR kz—>1 vik( JF ; ) :
= i T,P,E = j/T,PE,
i=1,...,R (29)
where

) ,
AH, = 121 vy M H (30)
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and
n

AV, =

. k=1

Vie M Ve (31)

The overhead-bar indicates partial quantities.
Substituting equations (27), (28), and (29) into equation (20)

gives

AV, dpP ATT, dT
1 1

——— y mem— - PR ———

RT ds RT ds

R dinf dE .
T Zv.k(\ x| - gl=o0,
j=le=1 M 0% oo 90
i /T,p.E,
i=1,...,R . (32)

This equation can be written in matrix form as follows

Cz

B ' (33}
or

7z =Cc-1lB (33a)

where C is a matrix of rank R with elements

n 3 in fk
Cov = 20 V., | e , (34)
13 k=1 1k\ 0fg. v
J T’ P’ g
y)
Z is a column vector with elements
dE .

2, = 2 (35)
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and B is a column vector with elements

b_:-—-—-z—.-—-—--—-——-"—-——- . (36)

Equation (32) is a general expression which relates the
changes in temperature and pressure with the changes in equilibrium

extent of reactions of a closed, multiple reaction system.

4
Two useful special cases can be derived instantly from

equation (32).

R n 3 4nf 2E AH, |
z Vik(""——k_) (ﬁ) rohll
=X T P.E ~ RT

j b ’gz P}gz
i=1,...,R ' (37)
R n aznf\ | >E AV
k i _
>z El\’lk( ) (s*p‘) L fRr =0
s b T, Pg, /TNE,
i=1,...,R . (38)

Equation (37) predicts the isobaric change of equilibrium extent of re-
. actions with respcct to temperature and equation (38) givees the iso-
thermal change of equilibrium extent of reaction due to the change in
pressure. Although the use of extent of reaction as one of the state
variables in the study of problems involving chemical reactions has

been widely accepted in academic circles, changes in mole fractions
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are, in most cases, of primary concern to practicing engineers.
Therefore, it is also c,o_nvenient to have expressions relating mole
fractions with extent of reactions.

Let us assume that initially the system is composed of m;.)

moles of jth component and

n
m® = 2 m° . (39)
=1

After the chemical reactions have taken place and the equilibrium state

is reached, the number of moles of jth component becomes

o R
m.=mJ.+Z

V... . 40
; = 15 51 (40)

Consequently the total number of moles in the system changes to

m=m+ 2 T v, E, (41)

and the male fraction of jth component can be expressed as

_n:l_i - i=1 i
Vi == T T (42)
m®+ 2 Do, El
i=1j=1 Y

or
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¥ = ' - | (42a)

where
€ = §/m° . (43)

Differentiating equation {42a) with respect to a general vari.a.ble, s, and

then rearranging, one gets

v
L - = d4F
a5,

IL%j-ﬁHng?é, j=l..m . (44)

d"j 1
_dg- - Q'z .

For convenience, this can be written into the following form.

1 T
where elements
N
(dyllds
dyz/ds ' :
Y = . (46)
dy_/ds
N S
1 R n v
Q =142 2 v,E, (47)
- i=1j=1 ¥ 1

and V is a RXn matrix with elements

(n)

_ )
'vij = \’ij Vj Yy . (48)
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Equation (44) relates changes in extent of reactions with changes in
mole fractions for a closed, multiple reaction system.
Combining equation (33a) and (45) yields

T -
Y=-Q-1'-ZV cls . (49)

This is the expression which explicitly relates the changes in equi-
librium mole fractions with changes in temperature and pressure.
Equations (33) and (49) are useful in thermodynamic studies involving
chemical changes along the equilibrium path. These expressions are
explicit and the only difficulty involved in the application is the evalua-

tion of thermodynamic quantities, AH., AV,, and (3 #n fklaé.) v
o i't,p,E,

These quantities are state variables and, hence, depend only on the
thermodyﬁamic state of the system. However, the degree of complex-
1ty in the evaluation of these quantities depends greatly upon the nature
of the system. A thorough discussion on the evaluation of these quanti-
ties has been given by Pings(7).

In order to demonstrate how equation (33) can be transformed
into a usable form, let us consider here a simple case. Suppose we
wish to find out the temperature’_' derivative of equilibrium extent of re-
action of a two-reaction system under isobaric conditions, Let us
further assume that the system can be treated as an ideal solution. As

a consequence, the following relationships exist:

®
f. = vy.f,
37 757 |
V.=V, 50
j j (50
H, = H.

J J



It follows that™

LA
or 151 Vik| v E V1s ('a"r

k=l K Vi oga1 28] aI/P,Elj RT
_ B g
Ly, DR (a )
t . v
[ Zk_yk I 1s_ R) p,%,
+ £ v —-\jg-li - %1; v (E——g‘-\ = AHZ
k=1 K| VK s=1 2] BT)P,EI RT?

Solving equations (52) and (53) simultaneously one obtains

(551\) ' | AH g, - AH,
3T Pk, RT %11%22 T %12%21

(agz) ol | BHeyy - BHym,
ol P,Tgl RT% | %1100 = G105,

“The derivation of this equation is given in Appendix B,

(51)

(52)

(53)

(54)

(53)
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" where

s=1
n ) n ]
2k
a = E AV] - Z) A
127 g0y |V em1 28
_ (56)
Ao, = N - v
2l _1 2k R4S s=1 IS_
n Y, n B
. 2k
o = 20V —_= - T v
22 7 pl1 PR Vi e=1 8

B. EXAMPLE

A numerical example is worked out to show the computational
scheme and to verify the correctness of the displacement equation, The
application to practical problems has been pointed out by Pings(7). The
steam-hydrocarbon process is considered. The system consists of two

independent reactions:

O = CO, + 4H (R-2)

1

GH4_ + ZHZ

2 2

CH, + H,0 =CO + 3H, (R-3)

It is assumed that initially the system is at equilibrium. The tempera~
ture of the system is then perturbed under isobaric conditions. The

temperature derivative of the equilibrium extent of reaction at constant
pressure can be obtained irom two different approaches., The first one

is by the use of equation (37). The second one is to evaluate the
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equilibrium extent of reaction at the vicinity of the initial temperature
and then graphically evaluate the numerical value of the temperature
derivative of equilibrium extent of reaction at constant pressure. Both
approaches are being ﬁsed in this example. To perform either of the
com“putations, it is essential to first compute the equilibrium extent of
reaction. In order to do this, let us assume, for simplicity, that the
system can be treated as an ideal solution. Egquation (24) can then be

al»

transformed into

_ -~
o . -
n y. +v. E. 4+,
i 1°1 i°2 '
i_El \)l.en - 2% - % + 8, 0
- 1+¢8 v. + § M
B liop 1 72 8
— g (57)
n V. TV 7§ +'r].v
i1 i°2 L
i:-El ﬂiﬁ,n - f’ - 121) t g, = 0
48y & vy +8;, «4m
L i=1 i=1 J
where
] Ff A . '
vg1=1i‘?1v -R—,—r-+1&nf)- (58)
I FO
g, = E]n ———-—+J&nf | (59)
‘l..

and 2 and n; are stoichiometric coefficients for reactions 1 and 2

als
£

See page 34.
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respectively, taken as positive for products, negative for reactants,
and zero for components not having a part in the reaction. Equation

(57) is then solved simultaneously for Tgl and éz. Since the explicit

solutions are not possible to obtain, the iterative method of computa
tion is emplovyed.
The Newton-Raphson method is used to obtain the solution.

(6).

The description of the method can be found elsewhere Computer
programs for the IBM 7094 digital computer have been prepared for
the computational schemes mentioned before. Appendix C shows the
outline of these procedures.

The initial state of T = 1000° K and P = 1 atm. is taken.
Thermodynamic data used are listed in Table II. Table III gives the
temperature derivative of equilibrium extent of reaction at constant
pressure of both reactions for different initial mole fraction distribu-
tions. Table IV and V give equilibrium extent of reaction for different
temperature levels at P = 1 atm. for reactions 2 and 3, respectively.
These results are plotted és éi versus T in Figures 2 and 3. The
derivatives are then taken graphically and tabulated in Table VI. The

agreement between the numerical values given in Table IIl and Table VI

is excellent,
C. SUMMARY

A general expression for the displacement of extent of re-
actions and mole fractions for multiple reaction systems near equilib-

rium has been derived. The displacement of extent of reactions for a
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two-reaction system which obeys ideal solution laws under iscbaric
condition has also been given. A numerical example has been worked

out. The result agrees with the one obtained by brute force approach.
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.III. STABILITY OF MULTIPLE REACTION SYSTEMS

.NEAR EQUILIBRIUM

In this section a particular case of thermodynamic theorems of
moderation is discussed. It serves partiaily as an extension of pre-
vious section, and at the same time, provides a criterion in the appli-
cation of LeChatelier's theorem for multiple rveaction systems.

Prigogine and Defay (16) have stated that

Theorems governing the behavior of perturbed systems

are known as theorems of restraint or theorems of modera-
tion.

The best known thermodynamic theorem of moderation
is that of LeChatelier-Braun, which in the form stated by
LeChatelier is:

Any system in chemical equilibrium undergoes, as a re-
sult of a variation in one of the factors governing the equilib-
rium, a compensating change in a direction such that, had
this change occurred alone it would have produced a variation
of the factor considered in the opposite direction.

Denbigh(4) and Prigogine and Defay( 16) have shown the applicability of
this theorem to the perturbation of the temperature of single reaction
systems. However, multiple reaction case has not been included in

the disucssion. In this section we shall extend the discussion to include

multiple reaction systems.
A, DERIVATION

Let us assume that the system is a closed, isobaric, and
mechanically reversible system and initially at equilibrium state I.
The state variables are P, TI, éil, i=1,...,R. The system is then

perturbed by adding (or subtracting) a small amount of heat from its
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surroundings to a neighboring state II which is not an equilibrium state.

The state variables are P, TH, é:.fl, i=1,...,Randat g = 90

T = T4+ 8T

I _ zI .

gl —éi H 1"1,--1,R
II

Since state II is not an equilibrium state, T and E’EI will undergo

change. The rate of change in temperature is

R (dE.
2. B (3 (60)
me i=1
where

m = total weight of thc system
C_P = average specific heat of the system

- . .th .
AH, = heat of reaction for i~ reaction.

1 .

The rate of reaction for each reaction, §i, at the vicinity of equilib-

rium state, can be assumed to have the form

. dg, R
€ = =7 = szl 'Zij Aj (61)

where 4; . are Onsager phenomenological coefficients. KExpanding Aj
3 .

near equilibrium and neglecting higher order terms, since Aj at equi-

librium equal to zero, one has

1T - I
R JA . e
Al =2 /—-v-l) (é”-én) (62)
o s=1 \3€ - s s .

(¢] O
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where the superscript, *, denotes equilibrium state. By letting

ala
bR

Ags = és - és equation (62) can be transformed into

I I

R /JA.
_ =1\98
=8, © s

Substituting equation (63) into equation (61) and then rearranging terms

I1
s

A

A
j g

6=6
o)

(63)

gives
CH R -
£, = 2 W, AET, i=1,...,R (64)
1 1S S .
=6  s=1
[¢]
where
[3A., |H
W, = z..k 1 (65)
18 . i) ax_; |
=1 5" lg=g
o]

Combining equation (64) with equation (60) gives

aT 1 [R R
S ==\ T T w, AE_MH. | . (66)
dé 6et mCP =] s=1 18 s i

o
s . I I .
Dividing both sides by AT = T" - T one obtains

-1 R R Ags ﬁ |
= ____[ 2 W, (-ﬁ-) AHiJ . (67)

1 ‘de)
AT | dé — .
\ _ mC i=] s=1
6—60 P
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Now, note that

where P is kept constant.

Hence,
2
'A’IT(%%‘) = =1 ‘:BTWZ] )
6=6 mCp

dA., n d4nf

Vl = - RT \).k = k\

dE y k=1 * 3E ) y
Yr,p,g, R P

Combining equations (34), (65), and (68) it is obtained

L [at >
AT \dB

6=6 mﬁp

O

where L is a square matrix of rank R with elements 'Qij'

Substituting equation (33) into equation (70) gives

3
1 (4T RT [T ]
- B* LB

l(dEJ m'C'P

6=0_

If the system obeys LeChatelier's theorem then when AT > 0, T

increase when 6>90. Hence, dT/d6 > 0 and

(35)

(68)

(69)

(70)

(71)

will
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When AT <0, TII will decrease when §> 60. Hence, dT/d8 < 0 and
aT
T == >
o (2 >

We may then conclude that for the system to obey LeChatelier's theo-

rem the following condition must be satisfied.
L>0 . (72)

In other words, the matrix L must be positive definite.

For a two-reaction system the condition become 5(5)

£11 >0

fyp > O (73)

4144

>0

11422 = 412424

B. SUMMARY

The condition for a multiple reaction system to obey
LeChatelier's theorem is derived. It is shown that for the system to
obey the theorem the matrix composed of Onsager phnomenological -

coefficients must be positive definite.
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IV. OPTIMIZATION OF EQUILIBRIUM YIELD FOR
MULTIPLE REACTION SYSTEMS

One of the most important phases of the modern engineering
techniques is to provide means so that the_ natural resources are uti-
lized in the most economical way. In chemical industries this may
imply to the selection of a series of operations in a process or a set of
conditions for an operation so as to.maximize profit or production, or
to minimize cost, resources, or time,

The application of mathematical techniques to explore the
"optimum" conditions can be traced all the way back to the ages of
Newton and Lagrange, The classical techniques include Lagrangian
multiplier method and the calculus of va.ri.ations. Recently, mainly
due to the introduction of new mathematical techniques such as the

(15) (n

maximum principle , the dynamic programming' ™, and the linear
programming(z), and the ready accessibility of large scale digital
computers, the research activities in this field have heen very vig-

orous. Reviews( 17-19)

on the scope of the activity are available. The
content of this work is directed to a class of problems in chemical
engineering which has not been attracting many attentions but is a
rathér important one in industrial practice.

De Donder and Van Lerberghe(3) and Prigogine and Defay‘("")
have shown that thé equilibrim vield of a chemical reaction, which
observes ideal solution laws, is maximized when the reactants are

brought together according to the stoichiometric ratios in molal basis,

Pings( 10- 14) has extended the treatment to many practical cases.
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In this section a closed, multiple reaction system conforming
to ideal solution laws is studied. Expressions for the initial distribu-
tion of mole fractions of reactants maximizing a performance index
which is a linear function of extent of reaction are derived. Three dif-
ferent cases are studied, namely isothermal-isobaric, adiabatic-
isobaric, and isothermal-~isochoric, The adiabatic-isobaric case will
be treated in detail. Since the thermodynamics and the mathematics
‘involved in each case are similar, only the results of other cases are

presented.
A, THERMODYNAMICS

Consider an adiabatic-isobaric system with n chemical
species and R independent reactions. The chemical reactions taking

place in the system can be expressed by

Mz
<
y
1
o
-
fl
“I'-—‘

... R (74)

where Jj is the chemical symbol of jlCh species and Vij is the stoichio-
metric coefficient of jth species in ith reaction, taken as positive for
products, negative for reactants, and zero for the species ﬁot partici~-
pating in the reaction. Without loss of genefality the species are so
numbered that 1 through L. denote reactants and L + 1 through n de-
note products. Let us assume that initially the system is composed of

reactants only. Thus we may write
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L
2 Y? = 1;
j=1"
o
yj=0, j=L+1,...,R . (75}
It is also required that
y. >0, i=1,...,n (76)

J
When the reactions take place, the system temperature and mole frac-
tions of the species undergo changes until they reach equilibrium. At

equilibrium, the following conditions must be met simultaneously.

N _
2 V... =0, i=1,...,R 77
=1 ij ¥ (77)

where s is the chemical potential of jth species. The chemical po-

tential can be related to the fugacity by
by = J}’zr) + RT In £ {(78)

where u'?(T) is a function only of temperature and fj is the fugacity of

jth component. Combining equations (77) and (78) gives

n ' n
2 V.p(TY+RT Z vy,,#mnf, =0, i=1,...,R (79)
=1 R =191
or simply
n AF':' .
Z v..Anf t g =0 i=1,...,R (80)
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where

AFT = jz_)l oF p,?'(T) . (81)

Since. the system is closed, isobaric, and mechanically reversible,
the change in enthalpy throughout the process is zero. The transition
from initial state to final state can be treated as two consecutive steps,
The initia;l feed is formally heated (or cooled) to the final temperature,
T, by adding {or removing) some heat Ql’ The reactions then take
place at isothermal condition until chemical equilibrium is reached,
The heat generated (or consumed) during the course of isothermal re-

action is QZ' It is required that

Q1'+ Q2 =0 .
Hence
L T R . . .
> yoc2 ar + L MH,E, = 0 . (82)
. i P. . i°®i
j=1 T° J i=1

An objective function of a multiple reaction system can be expressed by
I= 2 b, E. (83)

where bi is a weighting factor assigned to ith reaction., The value of
bi may be adjusted to accommodate different objectives. For example,
if one of the reactions, say kth, in the system is to be 'maximized, the

performance index, 1, becomes
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I="b & (84)

When one wishes to maximize the yield of a particular product, say

th
k™, then

R
I= 2 v

i=1

ik 53 (85)

B. ADIABATIC-ISOBARIC CASE

The foregoing discussion can be stated in mathematical terms
as follows. It is wished to find the distribution of yf which optimize the

performance index

R
I= izal bi §1 (83)
undezr the constraints
n AFi
L
Brop = 2D ¥: - 1=0 (75)
: 5=1 J .
inO, ji=1,...,R (76)
and
L T o o R .
griz = X y; Cp dT + 2 AH. E. =0 . (82)
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Since the fugacity is a state variable, it can be expressed as a function
of the state variables T, P, and V- .This can be done either in tabular
form or as an equation. For simplicity, it is assumed that the system
behaves as an ideal solﬁtion.

f.o=y.f., j=1,...,n (86)

&
where fJ’ is the fugacity of pure component and y is the mole fraction.

By taking the material balance for jth species one obtains

(87)

Substituting equations (86) and (87) into equation (80) gives

a % N
R V,. §
e J =1 £j "8

1 i : R o0 )
=T o1+ B Vi 5y
2=1k=1 "]

i=1,...,R . (88)

Lagrangian multiplier method is used to obtain the expressions for y;)
which optimize equation (83) under constraint of equations (75), (76),

(82), and (88).
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Let

L =1+ 2 g, (89)

where A is an undetermined muliiplier., At optimum, the partial de-
rivatives of the Lagrangian, OQD“ with respect to state variables are

ZEero.

e R og og
BN b Do || 4y —2) o,
i k R+2 3E. )
i i

i=1,...,R (90)

ay°
j j Vi
i=1,...,L (91)
R dg [og
dch I R+2) _
3T ° 131 Xk(’é”?‘) + KR+2(—3‘T‘—> =0 (92)

The partial derivatives of the constraints with respect to state

variables can readily be obtained as following.

n
6g1\ n V. . Z Vis
< — 7 v ij _ g=1
¥ ) %pes =1 K| g % 3 % z 3
i - .+ v, . 1+ v
i _YJ p=1 4 > g=1s=1 %8 §£—J

k=1,...,R ; i=1...,R (93)
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g
( f“z) - MM, =1, R (94)

Joog=1 B
k=1,...,R ; j=1,...,L (95)
og T
R¥z) . C_ dT = o
3v° T P ]
.Yj ° J
j= L., L (96)
dg. AH
k k
e = - y k=l,...,R (97)
(BT) g
og L R m
R+2) & o . T Ty
=T | >j Vi Cp 7 R2 _2 Vij Cp, § =B (98)
j=1 i i=1 j=1 N

Substituting equations (93) through (98) into equations (90), (91), and

(92) gives

R |
b, + kz:/l Xka’ki T Mesa AHi =0, i=1,...,R (99)
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kZ_Jl}‘k R — T ARy T AR42 9 7 0
- vo 42 Vﬁ.gz
Joog=1 M
j=1,...,L (100)
% AH, ,
- DA — tag.,8 =0 . (101)
k=1 ¥ RT R+2 |

Here we have R + L + 1 equations arising from differentiation of the

Lagrangian together with R+2 constrained equations. The unknowns are
§.1, i=l,...,R; yj, =1, ..., L )\i, i=l,...,R+2; and T. I_n other words
we have a system of 2R+L+3 equations with 2R+L+3 unknowns.

From equation (101) it is obtained

, R
1

A = - 2, bH (102)

R+2 ~ gpr2 =1 kK K

v

2 3 4 and then summing up

R
Multiplying equation (100) by ij) + 20V
=1

from j=1 to j=L yields

A, V. .+ A 1+ v g
k=1j=1 & ™ R+l p=1j=1 474
L T |
+ Apyp 4 Z J’ y; Cp_dT
j=1 J g0 j

R
+ 2 §£j vzjcp_dT] =0 . (103)
T° J
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Letting

R L v
L=1j=1 J .
] 215 T (o] % v T
¢ = j y; Cp dT + 2 ng v,;Cp &T|  (109)
j=1 T° J 4=1 T° J
‘and solving equation (103) for )‘R+1 gives
1 % Ii) 1
A = - AV, A o1 -. (106)
R+1 Vi1 =1 k “kj R+42 |
.Rearranging equation (100) cne cobtains
'Y_ = - - \) . g . (107)
] 7‘R+1 )‘R+2 O, g1 AT
Combining equations (102), (106), and (107) yields
- R _
. 7:7 X Vi j ] % §
Vi = L AI—I e - Vg ®

J ¢~ y0. 1 434

Z Z sz + 1% . 4=l

k=1 4=1 RT O

j = 1’ » e ,I—l (108)

Lagrangian multipliers appeared in equation (108) can be obtained by

solving equations (99) and (101) simultaneously.
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X . AH,
Vo el = wb., i=1,...,R . (109)
k=1 X\ KL gTRT? i
By letting
L AH ¢ -4o0.
k J
Qr. = 2 Vv + - , (110)
kj 4=1 k4 RTZ B8

equation (108} can be simplified to

[%
AoV L Y
o Ll BN 5 ¢

Yy, = -
j R _

2y Q. 2=1
k=1 J

j=1;...,L . (111)

Fguation {111) is the expression for the distribution of initial mole
fractions which maximize the equilibrium yield of a multiple reaction
system.

: Let us consider now the simplest multiple reaction case,
namely, a system with two independent reactions. Since R=2, by solv-
ing equation {109) one obtains

b, Yo -b. ¥
A, o= 2 21 1 122 (112)

Y11Y¥22 = Yi2Y21 .

by Yip =Py Yy
A, = —— (113)
Y11Y¥22 ~ Y12Y21
where
AH,
o = ol b et (114)
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Equation (111) can be rewritten into the following form.

o Yy VoV 058 - Ve Q155,

y. = X

J 2
Qs 6

2

Vv

+ j

Y -v,. 0, E -\).Q.V
2 ¥ 2 2j 52 7 V13825 51 (118)

1
B-Qlj + sz

Substituting equations (112) and (113) into equation (115) gives

2 - Vig ¥ - V09551 - V20158,
J Q +b1“‘22‘b2V21
boYi1 = PyYya

0,

1j i

Voi ¥ = Vi 0. 85 = Vs 0p5 8
PaY11 " P1Y12

0, + Q.
2] Py Yap = Pa¥py L

+

(116)

C. OTHER CASES

. , . . o
As mentioned previously, expressions of y. for other cases,
isothermal~isobaric and isothermal-isochoric, are also obtained. In

isothermal-isochoric cases, instead of the adiabatic condition, one has

V = constant . (117)

The constraint equation becomes, by assuming perfect gas,
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o R n
_ m RT p4
Braz = F TTW (”El e %3 - e

The partial derivatives for the constraints with respect to the state

variable, P, are

Bgi AVi :
W =-§T' N 1—1,..-,R (119)
og
(_3%}_2) -8 =1 . (120)
The expression for y; becomes
[E M Vk;}‘” R
v = SR TS PR LS TR (121)
Z) Z Me Vi 4=1
k=1 j=1 )

The Lagrangian multipliers, A k=1,...,R, can be obtained by solv-

k’

ing the following set of simultaneous equations,
Z ' mOAVk %1)
A v v,.| +b, = 0,
k=1 K k v =1 4 i

i=1,...,R .~ (122)

When the system has only two independent reactions equations (121) and

(122) can be reduced to
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y° = i=1 : =1
.= — 7
j 2o o1V Ve (% . )
| B— T
g=1 M PoYyp - RyY5y p=1 o4

L 5 L .
Vo; Vi (Z Vu)gl‘ Vlj(z’ sz) 1

+ 2=1 4=1
.. 1 b
L LPATILIY L
L vy g | Yy
4=1 1Ya2 = P2¥a; 4=1
j=1,...,L . (123)
where
: ' mAVk 21_1)
Yij = C(.ij + T (j=1 vij o (124)

For isothermal~isobaric cases the constraint due to the adi-
abatic condition, equation (82), and the partial derivative of the
Lagrangian with respect to temperature, equation (92), do not apply.

The final expression of y? has the following form.

j=1,...,L (125)

and the Lagrangian multipliers are obtained by solving the following set

of simultaneous equations,
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> Ao 4+b, =0, di=1...,R . (126)

It is worth noting that when

AHi::O, i.:l,na',R

equation (111) reduces to equation (125),

For two-reaction cases equations (125) and (126) can be com-

bined to form-

L v % v-
IS ¥ Vi (Z_J sz) $2 = V2; "u) 52

+
vo = 4=1 J=1
Ld - T T
j L bloLzz—bzor.z1 L
D VRS s oy Zi vy,
2=1 2211 P12 \y=1
% ) L .
Vo; t V251 © Vu) 51'\’13(2 VZz)gl
. g=1 . 2=1 -
¥ - ] H
%j y +52“11 b,a’)
T 1
=1 24 bjan, - boun,
j=1,...,L . (127)

D, COMPUTATION

It is important to point out that the solutions for the dislribu-
tion of initial mole fractions are implicit. Since some unknown vari-
ables are included in the right-hand side of equations (111), (121), and
{125), direct evaluation of the nﬁmerical values of yjo is not possible,

However, a simple iterative scheme can be employed, with the aid of a
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digital computer, to obtain the solution. The iterative procedure in-
volves the following steps. The adiabatic-isobaric case is used as an
example,

1. Assume a set of y;.), j=1,..., L such that

L0
Ey:l,

.

j=1 7
2. Assume a temperature T,
3. Compute AFi’ f? and AHi
4, Compute extent of reaction éi’ i=1l,...,R by solving equa-
tion (88).
5. Ewvaluate Br+2 by equation (82)., If BR42 is not equal to
zero, modify T and then go back to step 3.

6. Evaluate A, by solving equation (109).

k
7. Compute y? by equation (111).
8. If the computed y; are not equal to the assumed y;.) then

repeat the whole calculation ﬁsing the computed y?.' Normalize y‘(].) if

necessary.
E, EXAMPLE

The production of hydrogen by the steam hydrocarbon process
is considered. The purpose of this process is to generate hydrogen
from light hydrocarbons, such as xhethane and propane, which can be
obtained in abundance from natural gas. The hydrogen is being used
for the synthesis of ammonia and hydrogenation. With methane as the

raw material the reactions are
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CH, + 2H,0 = CO, + 4H (R-2)

4 2 2

CH, + H,0=* CO + 3H

4 2 (R-3)

2

The by-products of the reactions are carbon monoxide and carbon di-
oxide.

We shall consider two different types of production schedule.
The first one is to f.:roduce the maximum amount of hydrogen per mole
of feed. This will be the optimum policy when the content of impurities
in the production stream is not very important, Since carbon monoxide
is an active poison for the nickel catalysts employefi in many types of
hydrogenation operations, the carbon monoxide content of the produc-
tion stream must be reduced. Hence, in the second type of production
schedule only the first reaction will be maximized. The performance

index for the first case is .

I=§1+0.75!§,2 | (128)
and that for the second case is

I= §1 . . (129)

The reactions are assumed to take place at 1000° K and 1 atm. The
thermodynamic data required are taken from API Research Project 44,
These data are summarized in Table II. The result of computation is
given in Table VII. It reveals the following. The maximum hydrogen
content in the production stream is 0. 68. The molal feed ratio of
methane to steam which maximize the hydrogen content is about 1 : 1.

By changing the methane to steam ratio from 1: 1to 0.29 : 1, the
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hydrogen content is reduced from 0. 68 to 0.53; a reduction of 22%.
But the carbon monoxide content is reduced from 0.20 to 0.08; a re-
duction of 60%.

For the sake of comparison an& for general verification of the
corréctness of the analysis, equation (88) is solved simultaneously for
various mole fraction distributions. Ob jective functions, equations
(128) and (129), are plotted in Figure 4 as a function of ng4. The
‘arrows indicate tiue computed values of Y%H4 which maximize the ob«

jective functions. The agreement is excellent.
F, SUMMARY

Expressions for the initial distribution of reactants required
to maximize a desired product or to suppress an undesired product of a
system of chemical reactions proceeding toward equilibrium have been
derived. The system consists of R independent reactions and behaves
as an ideal solution. It is assumed that the initial feed contains only
the reactants and no inerts are present., Three different cases have
been conéidered. They are isothermal-isobaric, isothermal-isochoric
and adiabatic~isobaric. The expressions are implicit and complex so
that no direct conclusion can be deduced. However, a numerical ex~
ample (méthane-steam system) shows that the effect of initial feed on
the distribution of the final product is significant and deserves atten-

tion.
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NOMENCLATURE

affinity for kth

component.
constants in the periodic heat input function, equation (11).
activity of component i.
ith element in B vector defined by equation (36), Section II,
a vector constant coefficient, Section IV,
a constant, equation (7).
an element in C matrix defined by equation {34).
a matrix defined on p. 14, Section II.
isobaric molal heat capacity of an unreacting system.
isochoric molal heat capacity of an unreacting system.
frequency of periodic heat input.
concentration of component i.
total internal energy. |
n ~
kZ:l Vi My By -

(3E/m, )
Pk T,V, m,

1
fugacity.

defined in footnote to Table I,

a constraint equation defined in Section IV,

specific enthalpy.

specific partial enthalpy.
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chemical symbol for kth component.

linearized rate constant; see equation (4) and Appendix.
forward and reverse rate constants based on activities.

forward and reverse rate constants based on concentrations.

Onsager phenomenological coefficient.
molecular weight.

total number of moles.

number of components in a system.
pressure,

heat.

defined by equation (47).

universal gas constant,

number of independent reactions in a system.

Laplace transform variable, Section I,

a general variable, Section II.

. absolute temperature.

total volume.
a matrix defined by equation (48), Section II.

specific partial volume.

a constant, equation (9), Section I.
defined by equation (65), Section III.

mole fraction of component.

an element in Z vector defined in equation (35).

a vector.
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Greek letters:

o defined by eqﬁation (3), Section I.

“ij defined by equation (56), Section II.

a.l,J : defined by equation (93), Section IV.
"B defined in footnote to Table I,

B' defined in equation (98), Section IV.

) the delta function operator,

¥ chemical potential,

Q ‘defined by equation (110).

& defined by equation (104).

o defined by equation (96).

uh kinetic coefficient, Section I.

M stoichiometric coefficient, Section IV.

time,

6
K,K defined by equations (6) and (20).

7\1 kinetic coefficient, Appendix A.
)‘i undetermined multiplief » Section IV,
Vi vij stoichiometrif: .coefficients.

n
Vi(n) ) \)ij.

j=1

g extenf of reaction.
g £ /m®
T time.
¢ | phase lag, equation {14).

) defined by equation (105).
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Subscripts:

k refers to corﬁponent k.

(0) denotes initial value, i.e., at 8 = 0.

Superscripts:

1,1I,... points in state space.

o initial state.

o standard state.

% equilibrium state,
@ pure substance.
Operators:

¥ dF/deé.

R,P,L indicates summation or multiplication over reactions,
products, and reactants, respectively.

2 summation.
H ~ product.

evaluated at 6 = 90'

OC {1} Laplace transform operator.
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11.

12,

13'

14.
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TEMPERATURE DERIVATIVE OF EQUILIBRIUM EXTENT
OF REACTION AT 1 ATM. FOR STEAM-METHANE

PROCESS USING EQUATION (37)

_ - # . #
CHy p.§, P.E,
0.3 -0.2213 x 1l0~3 0.4286 x 10-3
0.4 -0.2897 x 1072 0.9454 x 103
0.5 -0.3579 x 10-3 0.1386 x 1072
0.6 -0.2375 x 103 0.9316 x 10°3
0.7 ~0.8705 x 104 0.3397 x 1073
#mol/molloK.
TABLE IV
EQUILIBRIUM EXTENT OF REACTION FOR THE
REACTION (R-2), £;, OF STEAM-METHANE
PROCESS AT 1 ATM.
Initial Mole Temperature in °K.
Fraction '
for Methane 900 990 1000 1010 1100
0.3 .11413 | 0.09322 | 0.09099 | 0.08884 | 0.07266
0.4 .09844 | 0.06517 | 0.06220 | 0.05945 | 0.04356
0.5 L07674 | 0.03422 | 0.03056 | 0.02714 | 0.00876
0.6 .05295 | 0.01362 | 0.01111 | 0.00892 | 0.00101
0.7 .02984 | 0.00414 | 0.00317 | 0.00240 | 0.00021
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TABLE V

EQUILIBRIUM EXTE].‘;IT OF REACTION FOR THE
REACTION (R-3), £,, OF STEAM-METHANE
PROCESS AT 1ATM.

Initial ‘Mole

Temperature in °K,

Fraction
for Methane.

900 990

1000

1010 1100

o
~3

. 11999 | 0.19599
. 15878 | 0.29356
. 18439 | 0.35095
. 19628 | 0.34283

. 19134 | 0.28293

. 20049
.30339
.36501
.35260

.28666

.20449 | 0.,22656
.31228 | 0.35240
.37839 | 0.45404
.36128 | 0.39478

.28969 | 0.29891

TABLE VI

TEMPERATURE DERIVATIVE OF EQUILIBRIUM EXTENT
OF REACTION AT 1 ATM., FOR STEAM-METHANE

PROCESS BY GRAPHICAL METHOD

v%H =, ..
4 P,E, - P,E,
0.3 -2.19 x 1074 4.25 x 10-%
0.4 -2.86 x 10-4 9.36 x 10-%
0.5 -3.54 x 10~%4 1.372 x 10~3
0.6 -2.35 x 1074 9.225 x 10™4
0.7 -0.87 x 10-4 3.38 x l0~%

#

mol/mol/°K.
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APPENDIX A

LINEARIZATION OF KINETIC EXPRESSIONS

Examgle 1 ‘

If the reaction is elementary,

g-x, [ -5 I [

reactants products
-V, V.
-V, 1 1
IR I I
= Kl |3 N —
R . R L2 PL2i

R

‘R R, P %

-V,
- %] 1 -V, da. *
ka]___[[ai] }:—1}-5-51- £ -8

and

- ) * -vi -\). aa—i
k =k a, -
a i a % JF
R , P i A

For an ideal solution this reduces to

(A. 1)

(A.2)

(A, 3)

(A.4)

(A.5)
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Examgle I

Suppose there is a dependence of rate on concentrations which

can be generaily represented by:

=% 1l [Ci]ni Sl [Ci:]Ki - (A6

R,P,I R,P,I

Using the relationship between 1'<‘c and ‘]:_cc at equilibrium condi-

tions
. A,
. . 1 1
- n; c, c,
gor D) 013 D3]] en
R,P,1 R,P,I1-% R,P,IL %
_ n
= K " gt M
=k, c, +e—z|E~-E
R" PlI R-, P,I mi
.. 3 A\
- [le(?'@) (A.8)
R,P,I my N
- ul v.{n. - 1.) :
~ kc H fcﬂ 1 Z 1 . i’ (g - §*) (A.9)
R,P,1 = R,P,I ™4 .
and

k= K H [c;"]ni Z :3-(33_:.;.1). : (A. 10)
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These two cases do not exhaust all possibilities. However,
for any situation involving known kinetics, the k of equation (A.4) may
be suitably evaluated as above in terms of a true kinetic rate constant,
equilibrium co_ncentra.tions (or activities), thermodynamic derivativeé,

and stoichiometric and kinetic coefficients,
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APPENDIX B
DERIVATION OF EQUATION (51)

Consider a multiple reaction system denoting by

n
21N, T, =0 i=1,...,R . (B. 1)
j._._.l 1\] \]

The mole fraction of kt}1 component can be expressed by

(B.2)

-

Differentiatin with respect to an extent of reaction, sa , gives
g Vi P Yy 54 &

oy : n

k 1 o

—_ = =59 Vg * QY 2 v,

(ags) - Ql sk k(-}:]‘ SJ)
T,P,E . B

». ’.Z
305,
- 2 Ve i 1Vik§i (B.S).

where

M

. ) .
23 v..E, . (B. 4)

Q' = 1+
1j=1 ij >1i

i

n
Rearranging Eq. (B.2) and then multiplying (21 Vsj) to both
. j=

sides of the equal sign gives



n R . -
_(J;Zl Vs (:ﬁl Vi Bi| - (B.5)

Vi 1 2 )
—v— ) - ——I' AY) - Y E V. ° (B. 6)
(BES) Q' | k(jﬂ >

For ideal solutions

_ ®
An fk = in Vi T in fk (B.7)

th

where f. is the fugacity of k= component and the superscript, ®-, de~

k
notes pure composition. Differentiating Eq. (B.7) with respect to és’

d 4nf 1 [3Y
(_____}S.) - __( Vk) : (B.8)
o gs ' ¥ Yk a’gs .
Combining Eqs. (B.6) and (B. 8) yields, for ideal solution,

0 inf 1 v n
| —k =..;[.._Sk - vs:\ . ’ (B.9)
3 Q LYk =1 ®J

one gets
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APPENDIX C-1

FLOW DIAGRAM FOR THE COMPUTATION OF
EQUILIBRIUM EXTENT OF REACTION AT

GIVEN TEMPERATURE AND PRESSURE

Read in
Data ,

hd

Assume gi

Calculate Vi

[:Eq. (42aﬂ

| Calculate g5
[Eq. (88ﬂ

Are g; Within\ Yes
tolerance /

No Print

Calculate Result
agk
0§

iJT,P,Es

[Eq. l(93)1

Calculate
new §i

}
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APPENDIX C-2.

FLOW DIAGRAM FOR THE COMPUTATION OF

(aéi/aT)P,%

Read in
Data

Compute equilib-
rium extent of
" reaction

[:See Appendix C- l:l

Compute

I\ %% Jr,poe,

[Eq. (511 *

Compute

(=
ST p,g

[Eq. (33afj

Print out
Results
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PROPOSITIONS



71

PROPOSITION I

ON MEASUREMENT OF FLUID DENSITY BY A
MODIFIED ROTAMETER

A variety of methods is available for measurement of fluid
density. The method proposed here is to put two spherical floats of
the same size but slightly different specific weight into a tapered tube.

The velocity of the fluid flowing through a Rotameter is given
by .

v(O‘f -g) ®

v=Cr 5T (1)

where
u = velocity
v = volume of the float
O = specific weight of the fluid
g = specific weight of the float
Sf = maximum cross-sectional area of the float

C = constant

Let the subscripts 1 and 2 denote the two floats in the same Rotameter

'resp_ectively. Since the volumetric rate of flow is the same through-

out the tapered tube, we get

= L
(051 - O0F (S, - S;) = (0 - 0)% (S, - 5) (2)

where

(S - Sf) = annular area between the tube wall and the float.
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Now, if we adjust the flow rate such that the float 1 is at a fixed posi~-

tion, then

-

0
1
n
i

constant =

(3)

b I

and

9)]
1
[9)]
fl

, - S, = F(h) (4)

where F(h) denotes a function of the variable h, the position of the
float 2. Substitute equations (3) and (4) into equation (2) and then re-
arrange it.

2
)

KF(h)" 0gy ~ 0gg

KF(h)Z - 1

. (5)

The specific weight of the fluid may be calculated by equation (5).
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PROPOSITION II

GENERAL EXPRESSIONS OF THERMO-ECONOCMIC CRITERIA
FOR OPTIMUM FEED-STOCK COMPOSITION IN

GAS PHASE REACTION

In considering the closed system, gas phase reaction with no
products in the feed, Prigogine and Defa.y(l) have shown, for a system
. of perfect gases, that in order to obtain the maximum yield the re-
actants should be combined in the ratio of their stoichiometric coef-
ficients. Ping 5(2) has indicated how that result must be modified for
moderately dense gases which may be described by the virial equation
of state truncated at the second virial coefficient. He(3) has also
pointed out that in commercial operations the maximum economic re-
turn from a reaction does not necessarily correspond to the maximum
yield, Explicit expressions(3) héve been derived for the distribution of
initial mole fractions necessary to maximize the profit for a given dis=-
tribution of values of the reactants.

The purpose of this proposition is to present a general equa-
tion for the distribution of initial mole fractions necessary to maximize
the profit or the yield from a gas phasé chemical reaction.

(3)

Following the analysis given by Pings'™’', we may write

P o h o}
— = E 2 v.a, - .2 vid o (1)

m j=1 21 5o
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If the feed is free from products

h
(o]
Z y, = 1 . (2)
i=1
At equilibrium
m AS . '
where
s P % % '
- £ - A
fie = Yk SR RT 2 e ViV s+ by ij). }’ ' (4)

To reduce the problem to a form suitable for mathematical analysis,

let us define the following expressions.

h
gvs) = Ty -1=0 (5)
' i=1
o m Als)
g(&s vy) = i=21 O A (6)

The equations for Vi which maximize the profit, P, then are
obtained by applying the method of Lagrange's multipliers to the equa-
tions (1), (5), and (6). After a series of mathematical manipulations,

we obtain

o vk{l - éQk/é }+ ¢k(1 + Vg v(h)) - vké qb(h) -
y -
k VL s o N 5] 4 g™




where

a, = (+E vy - o™ Cgun® (8)
e = ————(—y(\’a)(m) (9)
6 - (p8)'"™"
6 = - (vp)'™ (10)
m .
¢1 = -RZ—% J=21 (\)J - YJ \)(m)) Y:LAlJ (11)
Vs V(m) , :
] = - - v ) (12)
Bl y;)+\) 3 1+v(m7§
and
h
P T g . (13)

If the gases are ideal, the second virial coefficients will be zero.

Hence

Aij =0 | ' (14)
¢, =0 . (15)
3 = (va)(m)/e . o (16)

Equation (7) then reduces to

k v(h){l + enk/v(h) (va)m}

(17)
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This is identical with the equation (15) of Pings(B). For the non-profit

case, we may assume that

This leads to
Qk =0 (18)

‘and equation (7) reduces to

yo = Mgl - Al P 1¥E o /vk}. (19)
k MU L) |

This expression is identical with the equation (3) of Ping S(z).
Substituting equation (18) into equation (17) or equation (15) in-

to equation (19), we obtain

ELE R @

This corresponds to the expression for the non-profit ideal gas case( 1).
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NOTATIONS

A% = standard affinity of the chemical reaction (= -AFS),

a, = value per mole of component i in the final equilibrium mixture.
a? = value per mole of component i in the initial feed stock.

Bij = contribution to the second virial coefficient arising from inter-

action of species i and j.

gy, =2 function defined by equation (5).

g; = a function defined by equation (6).

AF® = standard free energy change,

f = fugacity,

h = total number of reactants.

2, = ag - a;, loss per mole in value of component i.

m = total number of components in system.
m® = total number of moles in original feed stock.
P = profit.
P = pressure.
| R = universa_,l gas constant.
= absolute temperature.
yf = mole fraction of component i in original feed stock.
y; = mole fraction of éomponent i.

= denotes variable.
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Greek letters:

Q = defined by equation (8).

& = defined by equation (9).

8 = defined by equation (10).
¢ = defined by equation (11).
g = defined by equation (12).

v. = stoichiometric coefficient of component i, taking as positive for

products, negative for reactants.

£ = extent of reaction.
E = extent of reaction per initial mole, E/m°.
- oL _
ij = Pij 7 # By - By
Superscripts:
s = denotes standard state.
o = refers to original feed stock.
(n) = indicates summation over the range 1 to n.
Subscripts:

i,k,etc. = denote components.
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PROPOSITION III

A SYMMETRICAL FORM OF THE FOUR-SUFFIX MARGULES

EQUATIONS FOR QUATERNARY SYSTEMS
ABSTRACT

The asymmetrical form of the four-suffix Margules equations
for quatei'nary systems derived by Marek is transformed into a sym-

metrical form. The new form of the equations not only avoids ambiguity

with the definition of the systems, but also permits easier evaluation of

the activity coefficients, especially when a digital computer is used.

In the evaluation of vapor-liquid equilibrium constants of non-
ideal solutions, the concept of activity is widely used. A number of
equations expressing the dependence of the activity coefficients of the
components on the composition of the ‘s()lution have been proposed. Such
relations ianclude the Margules(z), van L_aar(4’ 5), Scatchard-Harher(3),
and Wohl(é) equations. Based on the concept of excess free energy of
the solution, the Wohl equation assumes the most general form, from
which the others can be derived according to their individual assumptions.

Although the Wohl equation for the excessive free energy is
symmetrical with respect to the composition, the resulting equations
for the activity coefficients are not. This not only results in possible
ambiguity regarding the definition of the system, but also causes incon-
venience in actual computations, particularly when a digital computer is

used. Wohl(‘7) has presented a symmetrical form of the equations for
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activity coefficients of the Margules type for ternary systems. Similar
forms for quaternary and higher systems are, however, not available.

(1)

Marek has derived the four-sullix Margules egquations for

quaternary systems, which are not symmetrical:

( > NAGE )
on. Z.303RT
1 P,T,n2n3n4

log v,

]

2+2x 21-A12 2.)+3x D12

L.

1( 31 13 1713

2
+2.x1(A - A -D14)+3x D

14

!— +2x (A, -A__-D )+3XZDJ
30 13
I: 1714

XXy [Au T Ay m Agy F 2x(Agy - Agg) F 2x5(A4; - Ags)

+ 3x%.%, D. -x {2 ~3x.)C

2¥3 Pa3 = %3 1 - %l - 3x

) C

1123 1 1223

- %31 - 3x)) 61233]
X%y [Az T I Y B R T i VL

+ 3x,x, D x(2—3xl)C l)C

2%4 D2g = % - %l - 3x

1124 1224

- %1 - 3% C1244],
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tx3E, E"u Fhg Ay oAy - A Ay - Ay

+ 3x,x, D xl(Z -~ 3x1) C

3%y Dy - 1134 =~ ¥3(1 = 3%)) Cyq5,

- %l - 3xy) c1234]

ToRyEX [Z(Az;z - Boy) T 3%, Copg T 383 Cpaay + 3%, Coayy

+(1-3xl)E1234:| | (1)

where the various constants are given by the relations

A = 2a..+ 3a,., + 4a.... (2)
ij. i] ijj 133

D,. = 4a....+ 4a....~ ba.... (3)
lJ 111_'] 1JJJ llJJ

Ciape = Curt sy T Buae T PR (4)

Eip3s = = (Cypg 7 Cyp ¥ Cuay ¥ Cogy) ¥ 240154, (5)

with

Cijk = 3aiij +3a,, + Sajjk - 6a‘ijk + 4a‘iiij + 4a, gt 4ajjjk (6)

and the restriction that in equation (6), i < j < k.
Similar expression for the activity coefficients of the remain-

ing constituents can be obtained by a cyclic permutation of the indices

1—2

1

4 43
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Equation (1) can be rearranged, however, to a symmetrical form:

2 : 2
log vy = % I:AIZ t2xy(Ayy - By - D) + 3% DIZJ

2 2
* ¥ [Al.% taxlhgy - Ay m Dyg) ¥ 3% Dl3:]

2

2 .
+x4[A14+ 2:>s:1(A41 -A14- D14) + 3x1D14:\

+A,,+tA L -A - A

_
T xpE BB, AL AL T A=Al - As,)

+x1(A ~A ,+A - A

21 " B2t 831 A3 C123)

+ (x3 - XZ) (A32 - A23) + 3}{2}{3 D23

. 5 s s
{1 -3%x) (x; C 153+ %, Cronatxg C1233)]
1 - -

Ty EZ(AZI A TATA - By Bl

+ x. (A -A1

B
Bog =B T A, 4~ C1124

Ty =) (Byp - Apg) + 3%, Doy

S (L= 3% (%) Cpppg ¥ %5 Craag T %y C5124:4)]

+ X3X4[§(A31 TRt AT A - Ays - Agy)

TrBg m AT A =B - Cygy)

Ty - 33) (A yg - Agy) +3x3%, Dy
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C

- (1-3x)) (%, 01134+ ¥3 V1334 T X4C1344)]

P e
TR KK [3 5 Cap3at 3%; c2334 + 3%, Cozaq

+ (1 - 3x,) E1234] (7)

where the constants Aij and Dij are the same as those defined by equa-

tions (2) and (3), and

ats s
b

Ciijk = Cl_]k * 4Ea'111‘] 4a:'Liik - lzaiijk (8)
Ep3s = = (Cpas + C. + Cq C234 - 242 454,) (9)
with
e 3 o
Cine = Tyt 2 ™o ¥ 35T g ¥ 259
+ 2(a

1445 T ik T %4555 T 255k T 2 tae 2 ik

- 6aijk . (10)

Expressions for the activity coefficients of other components can be ob-
tained from equation (7) Ey interchange of any pair of indices. For
binary or ternary systems, eqﬁa’cion (7) reduces to the forms presented
by Wohl(7).

Use of equé,tion (7) avoids the necessity of cyclic permutation

and is also very convenient for machine coding.
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NOTATIONS

i
ijk |
ijk
iijk

iijk

H o o a o »

ij
E
1234

ats

1234

n,

ot

measure of interaction between molecules il
constants defined by equation (2).
constants defined by equation (6).

constants defined by equation (10).

= constants defined by equation (4).

= constants defined by equation (8).

constants defined by equation (3).

constants defined by equation (5).

= constants defined by equation (9).

total moles of a system.

moles of the ith component.

total pressure.

universal gas constant.

absolute temperature.

mole fraction of the i-th component.
activity coefficient of the i-th component.

excess free energy.

iy

. etc.
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PROPOSITION IV

EXTENDED KRASOVSKII'S METHOD FOR CONSTRUCTING

THE LIAPUNOV FUNCTION

One of the basic problems associated with the study of dynamic
systems is the determination of the region of stability in the state space.
Due to the inherent nonlinearity of chemical kinetics, solutions to the
set of differential equations describing the dynamic characteristics of
chemical reactors are not available except for some special cases.
Consequently, studies have been made either by linearization of the
equations or by numerical techniques. Since the linearized solution
provides information only in a region sufficiently close to the equilib-
rium point in the state space, and since enormous effort is required for
the numerical technique to cover the entire region of the state space,
the p‘ra.ctical application of these methods is limited,

The direct method of Liapunov provides a way of identifying
regions of stability in the state space without recourse to the solution of
nonlinear differential equations. This method was proposed some sev-

(7)

enty years ago by A. M. Liapunov' ' and became well established during

the past decade mainly by contributions from Lur'e(s), Letov(6),

Malkin'?), Krasovskiil?s3) (10)

, and Zubov An excellent summary by
Kalman and Bertram( 1) and books by La Salle and Lefschetz(4) and
'Lefschetz(s) on this subject are available. The Liapunov technique may

be summarized as follows.
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Suppose that for a dynamic system’

X = £(X) and £(0) = O (1)

where X is the vector of the dependent variables, _}_C_ = dX/dt, and £(X)
is a vector. If there exists a region of state space within which there
exists a scalar function V(}_{_) with continuous first partial derivatives
such that V(_}E) is positive definite and '\./'(_}_(_) is negative definite, except
at the origin, where V(X) = '\'f(_)i) = 0, then the system is asymptoti-
cally stable within that region. If V(X) is negative semidefinite, then
the system is stable.

The major problem of applying the direct method of Liapunov
to the analysis of dynamic systems is the construction of the Liapunov
function, V(E(_) .

(

Krasovskii 3) has proposed an effective way of constructing the
Liapunov function. For a system described by equation (1), one may

assume
T
V(X) = £7(X) A LX) (2)

where A is a positive definite symmetric matrix,
It is readily shown that the time derivative of equation (2) has

the form

v = £ (A F@ + FT® A €0) (3)

-7 (X) Q £(X) (3a)
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. - .
where Q= - LA F{x) + F (X) AA\ (3b)

and F(X) is the Jacobian matrix of the system.

Since the Liapunov function defined by equation (2) is positive
definite, by applying Liapunov's theorem, one may claim that the sys-
tem is asympototically stable inside the state space where V < 0.

For a nonlinear system, the existance of a Liapunov function
- is a suificient but not the necessary condition for the determination of
stability. Hence, a point in the state space may be stable even if it is
not in the region of stability defined by a particular Liapunov function,
It is important to notice that the presence of the symmetric ‘matrix A
in equation (2) is very useful in constructing various Liapunov functions
for a dynamic system. |

In this proposition, it is suggested that the constant symmediric

matrix A can be substituted by
T
A(X) = BT (X) © B(X) (4

which is also assured to be positive definite.
Let us assume that the Liapunov function V(X) has the follow-
ing form.
n

VX = aT® - aX) = 2 akX) . (5)
=1

This is a positive definite function. The time derivative of V(X) is
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. n [ 3V(X) dxi
V) = E(”gg— s
. i=1 i
n [ oV(X)

Differentiating equation (5} with respect to =, it is obtained

BV(_}_C_) n aaz(z{;)
X T : ;El 42 T 0

Substituting equation (7) into equation (6) yields

. n n Baz(_}_{.)
VX =2 & D oayX) s e f(X) . (8)
i=1l £=1 1

This equation can be expressed in matrix notation as shown below,
VX =227 (X) - I(X) ¢ EX)
T T T 1 '
= £ (X) [a (X) © J(X) 4T (X) - alX) ] () (9)

where J is an nXn matrix with elements

- 2ax)
Jij - 5Xi ‘ (10)
Now, let us introduce a matrix B such that
a(X) = BX) - £X) . (11)

It can readily be seen that
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a(0) = 0 - (12)

provided B(0) is bounded.

By substituting equation {11) into equation (5) it is obtained
T T
V(X) = £7(X) BT(X) BX) £X) . (13)
Combining equation (13) with equation (4) gives
T
VX) = £1(X) AX) (X)) . (14)

Since V(X) is a positive definite function and V(0) = 0, itis a legitimate
Liapunov function for the dynamic system represented by equation (1).
It follows immediately that the system is asymptotically stable inside

the region where the matrix
‘ T T
-0 = B (X) - JX)+ I (X) BX) (15)

is positive definite.

As a special case, let us assume that the matrix B in equa-
tion (11) is a constant matrix, I—I.ence, by expanding equation (11) one
gets

1l

A® = T e ‘ (16)

k=

By differentiating it with respect to %, it is obtained

da.(X) n Bfk(_}_{_)
Iy = —35— = & B —ox— (17)

i =1 i
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or
I(X) = B F(X) (18)

where F is the Jacobian matrix of the system.

Combining equations (4), (15), and (18) it is obtained

- Q

BB F(x) +F (X)B'B

AFX +F (X) A . (19)

It can readily be pointed out that equation (19) and equation (3b) are

identical.
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PROPOSITION V

ON THE STABILITY CRITERION OF MULTIPLE
REACTION SYSTEM UNDER ISOTHERMAL-

ISOBARIC CONDITION

Prigogine and Defay( 2) have developed a stability condition
‘using the second law of thermodynamics for systems where R simul-
taneous reactions can take place. They have also shown that the condi-
tion is always satisfied in an ideal system, so that equilibria in ideal
systems are always .stable, However, the éondition of the existance of
more than one equilibrium point in a chemically reacting system is not
found. Nor is a real example available,

It is hoped that by numerically computing the free energy of a
multiple reaction system at constant temperature and pressure as a
function of extent of reactions, a better understanding of this problem
may be obtained.

One way of obtaining the free energy of a system is by using the
equation of state. For simplicity, the virial equation of state trun-

cated up to the second term is used.
PV
T © LBV . (D

The free energy function corresponding to this equation of state is given

by the following equation(é).

o 2 .
e eyt e 3B 5 @
) V
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B denotes the second virial coefficient of the system and may be com-

puted from the following combination rule(b).
B=XL XLy, v.B.. . 3
- v, V5 By (3)
The mole fraction of a multiple reaction system can be expressed as

o]
Y; +:43 Vis &
= (4)

Y.
J l+22v‘z§i
i g 1

where .Vij is the stoichiometric coefficient of jth component in ith re-
action, §.1 is the extent of reaction of ith reaction, y; is the initial
mole fraction of jth component. It can be seen that by substituting
equations (1), (3), and (4) into equation (2) the free energy function,
(F - F°)/RT, may be expressed as a function of extent of reactions.
The steam-methane reaction is chosen as an example. . The

chemical reactions involved are:

CH, + H

4 O+=CO +3H, (R-1)

2

CH, + 2H,0= CO, + 4H, (R-2)

Values of the free energy function are computed for different combina-
tions of extent of reactions at 300°C and 30 atm. with initial mole
fraction of ng4 = 0.5 and YIO-IZO = 0.5, The result is given in Table 1.
Since the free energy function increases monotonously with the increase
in extent of reaction, the .contour of the total free energy in the state
space will not be changed by the correction due to the deviation from

the ideal mixture,
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Also this experiment does not give a definite answer to the
question regarding the existance of more than one equilibrium point in
a multiple reaction system at isothermal-isobaric condition., It is
hoped that it has presented the problem in a more concrete manner and
also has pointed out one possible way of studying the problem.

Now, let us proceed one step further and ask ourselves the fol-
lowing question. Suppose there exist more than one equilibrium point in
a multiple reaction system, can we identify which one is stable and
Which one is unstable ? This question can be answered by means of the
second method of Liapunov.

Suppose that there exists an equilibrium state, denoted by I,

for a multiple reaction system characterized by the following set of

chemical reactions

N
2; v..B. =0, i=1,...,R (5)
:l 1J J

.

whére Bj is the chemical symbol of the jth component and Vij is the
‘stoichiometric coefficient of the jth component in the ith reaction taken
as positive for products, negative for reactants, and zero for compo-
nent not participating in the reaction. At the vicinity of the equilibrium

state the rate of reaction, &, can be expressed as( 1)

. R‘ ‘
gi.= iL—,\ BlJAJ s 1= 1,...,R (6)
j=1
where Aj is the affinity of the jth reaction and ﬁ'ij is the Onsager phe-
nomenological coefficient for the jth component in the ith reaction. Ex-

panding the affinity under isothermal-isobaric condition gives
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- R aa\* - *)
g R B Fg—lk | (gk-gk
‘ T,P,¢,

PR (7)

where the superscript * denotes equilibrium state. Since the affinity

of an equilibrium state is zero(z), by truncating the higher order terms
equation (7) becomes

% aA \* ﬂ
AJ = k=1 BE'IJ{ . (gk- gk . (8)

T:Psgz }

By combining equations {6) and (8) it is obtained

R
4

. % 3 0A, * ( *) _
§i=k=1 J=1 IJEIJ(- gk-gk ’ i=1...,R . (9)

T,P.§,

Equation {9) is the set of differential equations governing the changes of
extent of reaction with respect to time. The stability criteria of it can

readily be obtained by using the direct method of Liapunov.

The direct
method of Liapunov is summarized as follows(S-fs).

Suppose that for a dynamic system

X = £(X) and £0) = 0 (10)

‘where I_K_ is the vector of dependent variables, 2.(_ = d§/d’c, and {(X) is
a vector,

If there exists a region of state space within which there

exists a scalar function V(X) with continuous first partial derivatives
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such that V(X) is pbsitive definite and \.f(_}_C_) is negative definite, except
at the origin, where V(X) = \.T(_}_{.) = 0, then the system is asymptoti-
cally stable within that region. If \./'(EC_) is negative semidefinite, then
the system is stable,

| The major problem of applying the direct method of Liapunov
to the analysis of dynamic systems is the construction of the Liapunov
function, V(X).

Krasovskii(3) has prc;posed an effective way of constructing the

Liapunov function. For a system described by equation (10) one may

assume
V(X) = £ (X) D £X) ‘ (11)

where D is a positive definite symmetric matrix.
It can readily be shown that the time derivative of equation (11)

has the form

V) = £ [DFX) + F(X) D:\ £(X) (12)
- -£1(X) Q £X) (13)
where Q= -[pF+FE D| (14)

and F(X) is the Jacobian matrix of the system.

Since the Liapunov function defined by equation (11) is positive
definite, by applying Liapunov's theoren, one may claim that the system |
is asymptotically stable inside the state space where QO > 0.

In order to apply the direct method of Liapunov the system

equation, equation (9), must be transformed such that the equilibrium
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point is also the origin of the state space., This can be done by letting

€E=g-8 . | (15)
Equation (9) then becomes
. * '
: 1%) IZ% i 3 1 R 6
g, = 4, —2 £, i=1,...,R . (16)
'ok=1j=1 M aék k
T!Psgz .

It must be pointed out that the criteria of stability obtained by way of
the direct method of Liapunov are sufficient, but not necessary condi~
tions.

Krasovskii's method is used for the construction of the
Liapunov function.

By letting the constant matrix D in equation (11) be equal to

unit matrix it is obtained

. RI|R 3A, R
V) = 2(2Z Z ... — €. . (17)
i=1l |k=1 j=1 J agk
TIP,EL
It follows immediately that
% 3A, , aAj .
Q, = - T (1 __la“ + Ay = (18)
T,p,§, T,P,gz

where Qik is an element at the it®

row and kth column of matrix Q.
The stability criterion becomes

Q>0 . (19)
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TABLE 1

THE FREE ENERGY FUNCTION (F-F°)/RT
FOR THE REACTION SYSTEM

CH, + H,0=3H, + CO

4

CH4+ 2H

2
2

2

O\——‘4H2

+ CO2

AT T = 300°C AND P = 30 ATM,

51
52

0. 02
0. 04
0. 06
0.08
0. 10

0. 12
0. 14
0. 16
0.18
0.20

0,22
0. 24

0.0 0.1 0.2
3,385 3.399 3. 406
3.391 3. 402 3. 408
3.395 3.404 3. 409
3,398 3. 406 3,410
3,401 3. 408 3.411
3.404 3,409 3.411
3. 406 3,410 3.412
3. 407 3.411
3.408 3.411
3. 409 3.412
3.410
3,411

(R-1)
(R-2)



