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A new a.pproach to tail buffeting is by studying the 

problem of a thin airfoil perfo:rming a periodic oscillation of 

arnplitude in the presence of an interface across 1;,.thich the 

flow undergoes a constant change in density and velocity. .A gen

eral solution to the problem is fol;lnd. Lift and moment for some 

special cases are obtained in simple forn-1s and arc }">lotted bi 

:b"'igm. J 4 for the two basic of oscillation: 

and torsion. ,~ ... typical application to flutter analysis is made 

and it is fou,nd that tail flutter at low speeds is possible for the 

tail lying in. the wake of the wing. 



I. INTRODUCTION 

TaU buffeting, l. e. tall vibration under the aerodynamic 

action of the wake shed by the wing at Large angle of attack, i.$ a 

well ... ltnown phenomenon. Following the unusual accident of the 

J'u.nkera alrph.1.ne at Meopham, the problem took on a aerioua :as

pect and led 11u;:ientiftc orgianiza.Uons tn: various couutries to u.n• 

dartake detailed investigationu . . (Refs. l-4}. i>ased on these and 

other itiVEtllltigl'ltfons, a l~Pge n.u1-nb.er of !limple dc,ivi.eeaJ ar• UQW 

available for the elimination of the tall buffeting. HowtJYlt~, 

theories for predicting ph~nomeuon arltll still la.eking. 

The main dU'fkulty in trcii\Ung the tail l:n,~t'f!i1Ung U.ea. in 

the fact that thfol actu~l na.tttre oft.he aerodynamic wake behind. 

the bodies has not yet been established. In Ref. 4, ,.i.\bdrasb.itov 

a.pproxiroated the effect ol the wake on the tail. by a harmonic 

disturbs.nee fo.rce and found that tb.e chara.ctera 0£ the ta:U vibra•.' 

ti.on 1.u·• fundamentally determined by 

(a) the ratio o:i the freq\lel\ey of the flow in the wake of the wing 

to the natural frequency of the tail surface. 

(b) the amplitude of the di$turbance forces produced. by the wa.k.e 

of the wing, 

(c) the magnitu.de of the speed of flight, and 

(d) the vertica.1 position of the tail surface relative to the 



wing* . 

In this paper. a11 ~n:tirely di.lferent approach is made. The 

aerodynamic wake shed by the wing is here approximated by a.n inter-

f~ce across· which the 'f'low undergoes a constant change in density ~n4 

v1t.lodty (Fias • l and Z) . The problem ir. then set to determine the 

possibilities o.£ the tail flutter in the presence of the interfacie at 

ts believed to be approximated by the 'ef!ect of mutual in.fluence be-

tw~en the vQrti~lty 01:1 thtt interface and the vorticity generated by 

tll• osclllation of the a.i:rt'oll. 

It is found convenient to discuss the results in terms of 

. >t.h 
the two parameters: ."'£:" . • the vertical distance between the air.,.. 

loil and. the inter.face divided by the half chord, and R • the re-

duced fl."equency (the product of the half chord and the vibr·ation 

freq,u.enc::y of the tail divided by the flying speed}. 

(a) When ~h" i. tbe influence of the interface is extremely small 

for all valuea of .fl. • Therefore the tail flutter has es.sen.ti.ally the 

tu.ttu.:re of the wing flutter (R.ef. 5 )', when. the vertical distance be-

tween the airfoil and the inter.face is greater than the half chord. 

· (b) When JL< l, the influence of the interface is small for au vat ... 

ues o! '!." . Hence in high speed range of flight (since JL < 1 means. 

*It is noted that he also made an important approximation in taking 
only the quad-steady values for the aerodynamic force and moment. 
i.e. neglecting the effect of the tail wake produced by the non-steady 
motion of the tail. 



.. 3 ... 

U > <:.::'. ) • .If f f °"" • the tail 1.lutter again has the nature o the wing lutter. 

~h 
(c) When c = 0 and J'2. > 1, the in(luenc:e of the interface is so 

large a$ to render the tail flutter possible. Ul'llike the wing, the 

tail has the possibility of entering into flutter· at low speeds of 

flight, when it lies in the wake of the wing. 
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u. FOR~f.ULA TlON OF THE PROBLEM 

'l'HE GENERAL PROC.EDIJRES 

To formu.l.ate the general problem the following a11sump

tions at"• made: 

(a) the wake given o.«by the wing may be approximated. by an inter

face across whi¢h the flow u11det>goes a co1u1iant change in velocity 

and density; th• interface is flat• of zero thickneaa am.t eX:tend.1$ 

to lnflnlty tn all fitrectiona; 

(b) the tail surface i~ of infinit«t ~•pect retioi · 

(c). the oscillati:ng motion. is two dimenaional, i.e. every cros&"' 

section ta.keu. perpendicular to the &pan has identical motion· and 

remains in lte own plane during the motion; 

(d) the flow ia incompr.-usible and non-viecous; 

(e) the thickness o! the tail surface and the amplitude are small in 

compal'i&on with the ch9rd; 

{!)the oscillation is periodic; 

(&i) the tail a mean position p&rallel to the interface. 

Ustng the a1uumptiorul (a)-(c), th1e problem beeomem two 

dimensional. As shown in Fig. Z, the interface is located at y=h 

The airfoil is put on the x-axis with its leading edge at x=-1 and 

its trailing edge at x = ,,. I • The chord ia taken as a so that all 

d.i.s.tancea. in this. ana.lysl.a a.re mea9u.red. r•lativ~ to th• half chord. 

The interface divides the whole space in.to two regions. The region 
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whicb. the tail is situated, yt:::h i~ designated by u1P and the otliet• 

region, y ~h . is designated by 11 l 11
• velocity and density of 

_the u.ndintul."bed flow in region l arc denoted by rr, and fl . and the 

t:.orrespondin.g quantities in region a are denoted by rr:l. arid '" . 

The assumption (d) makes the flovvs potential in both r•egiona. 

i.e. the~e exist the potential functions, ~, and ~.4· satisfying the 

L~1.p1.ace differential equation for the flows in regions l and 2. For 

detern-iining £, and $.~ , complete boundary conditions should be 

specified~ These conditions are 

(a) on the surface of the airfoil. the normal component of vc: lodty 

should be equal to that of the prescribed motion of the airfoil; 

(b) ~t infinity, i.e. poirits tar from the airfoil, the disturbance should 

(c:) at the interface~ the velocity vectors 011 the two sides in-

and the st.a.tic pressures on the two sides are equal. .l•"or calcu ... 

lating lift and moment, only ~ v,d.ll be required. Ho·v1ever 1 since 

b.oth if, and .ffi.il.. enter into the conditions at the interface. they 

must be investigated sinmlta11eous ty. 

Using the assumption (e). tbe boundary conditions (a) and 

(c) can be applied at the u.ndisturbed or mean positions. The <=<a:::.u.·iu1-,

tions (e) ... (g) enable one to write for the boundary condition (a): 
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0) 

where v is the velocity component in the y-direction and 8 
_, 

..:: cos x 

as given bv .Eq ~ (7) below . 

.Becatuse the: Laplace differential equatiot~ is linear, 

the general solution can be obtained by superposing elementary 

solutions. The elementa1·y solution smtisfies the Laplact"; di!fe.1.·-

ent.ial equation and part of the boundary conditions. The s·uperpo-

sition ia then made in such· a manner th.at the rest of the boundary 

conditions are satisfied. The general procedures of the analysis 

are &$ follows: 

iA,-t 
(a) Taking only .one term of Eq. (1). e co.sme, as the boundary con-

dition at the airfoil; </>om• the velocity potential for a. uniform flow 

without fnte:J:9faee is determined; 

(b) introducing the interface, the velocity potentials tP11n and (A»t 

are so determined that </>o,,,,+ <Pnn for the flow in region l and s6~11C 

for the flow in. region a satisfy the conditions at the interface with 

vanishing disturbance at infinity; 

(c) considering </>0 ,,,,-1-<Am as the elementary solution, the general 

solution is obtained by superposition 

(2) 
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where Am is c;leteri:~'1ined in terms of Bri. by the boundary condition 

at the airfoil, Elq. (1) . 

(d) using l., , lift and moment acting on the oscillating airfoil arc 

calculated. i;n pa1·ticular for the two basic modes of oscillation: 

bending and torsion; 

(e) calculations for soine special cases are carded out. in detail 

and others are discussed; and 

(f) a typical application to the flutter analysis is made through a 

numerical example. 

It is noted that the airfoil has been set below tric interface 

(Le. '1 :>- o ) ~ Si.nee the aerodynamic force and moment bear a def

inite relation with the motion of tl1e airfoil normal to the intarface, 

the results obtained under the above condition can be easily inter

preted for the case of the airfoil lying above the inter!ac:e. 



III. 

(a.) DETERMINATION OF cf>o,,,_ 

ftJm is 4efined as the velocity poten~ia.l for the oscilla:ting 

motion of an air£oil described by 

v ( e, tJ = e'"'t: cos me (3) 

in a uniform 'now without interface . In accordance with the theory 

ol thin air:loilG in oscillating n'lotion (Rd. 6) th!llt whole a.yate.1.-i1 is 

represented by the two vortex sheets: 

(a) the bound vortex •he"'t lying along the chord of the airfoil• Le. 

. . l 

on the x•a.xis between X=-/ and. x= +I i and 

(b) the wake vort-ex sheet lying on the x•a:lds from x::+/ to x==+ro. 

assuming that the motion has been occu.rring so long tb~t transient 

phenomf;!n.a. have disappeared. The bound vortex sheet is considered 

to b•. made u,p of the two parts: (a.) the quasi-rdeady part which would 

be produced if the motion were steady•· or if the wake had no effect 

on the motion; and (b) the indu.eed pa.rt induced by the wake vortex. 

De'noting the distribution of the vortex strength. (or circulation) along 

the x-axis by r ·' the definition of circulation yields 

. x+4\x. x 
r<X,t:J = Lim l.x [ J U(X,o+,t) dx. + 1 l((X,o-)t) dx.] 

.ax.-+o . )\ :x+i!X 



or, by carrying out the lirnit procedure , 

along y=o (4) 

where U()(,o+it-) denotes the velocity component in the x-direction 

on the upper surface of the sheet y=o and u.txp-,t:) denotes the cor-

responding quantity on the lower surface oi the sheet ,Y=O . V.'rit-

ing o0 m • rll'n and IY.i"t for the strength distributions of the 

quasi-steady vortex t .the induced vortex and the wake vortex re-

spectively, the velocity potential, <J.,,,,,_ takes the form 

(5) 

according to the twlJ dimensional potentfo~ theory. 

Calculation of ¥",,,. • The quasi-steady p::.trt of the bound vortex 

is deterrnincd by the use of the conformal transformation 

where 

i! .:::. ...L ( f; +- J_ ) 
~ ! 

~=X+~y and 

{6) 

By this transformation, the airfoil in the z ... plane is transfo:rmeJ. 

into a unit circle in the ~ -plane with the re 1ation 
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The radial and tangential components of ti.le velocity ln the ~ -plane, 

'f;i and ie . a1·e easily found tc be re lated to the u and v compon-

ents of the velocity in the z-plane by 

t::. V Stn 9 (8) 

and 'f ~ == - u sin 8 (9) 

By J;q. (8), 8q. (3) is transformed into the boundary condition on 

the unit circle, 

~wt· 
'f--"- = 1; · [sin (m+-l)B- Sin tm-tJB] (10) 

The velocity potential in the ~-plane evidently has the general form 

( 11) 

where the p 's at·e undetermined cons.tanb. 

Using Eq. (10). aU constants except fo in J!:q. (11) are determined. 

For rn:::::. 0 I f1 =-I 

For In= I , tb~-f p, = f3 = ... = d (lZ) 

For ,,,, ~~, I _ _1_ 
m-1 -.;Um-I) ! - I Inf.I - - ;;;;i+1) ofher p·d = o 

To determine fo , the Kutta-Joukowsky condition is used. The con-

cHtlon states that the velocity at the trailing edge 0£ the airfoil should· 

be finite. By Eqs. (8) a~d (9), the condition becomes that 



at II= o 'J4 satisfies the condition as seen frorn 

(IO). The condition 1"= o at fl =o yields 

.F'o:r. lrl=/ B = .J,. 
I (J ~ 

formula 

which iti obtained the U:ie of . (4} a.mi (9) and the fact that 

. (11). Thus 

- iUJt /- C<>S {}- iW t;-
Y.,"' ( ~t)::::; -~ e sln8 = - ,;z,, e /i.1: 

. 1,wt . i.u.Jt F 
v {x t-) =-oz.. e Bm f} = -a., e 1-x.:i 
flO I / 

and 
).- . t ilOb ' Uoml>v ) :: -de S111,mf) for 

(l3) 

(14) 

( 15) 

fhe total circulation of the quasi-steady v~n·te:;:. rorn . is obtained 

by integrating ro,...., from x:::: -I to x. = -1- I , and is 

r: ~w-t 
rn{i-)=-lrC:: , 



Calculation of Yon . The induced part of the bound vortex may 

also evaluated by the .conformal transformation given by Eq. (6). 

The induced vor~ex dist:ributton on the airfoil due to a single free 

vortex with circulation r' located at x=:J and y:::o has been eva.i ... 

uated in Rel. 6 as 

r' 
olx) == -1.... . ~ /I+I · re ~-)( ll+X 1-1 

(17} 

Putting r'===- ril.#1 dj and integrating the result frorr, X==I to X= 00 

yield 

(18) 

The total circ:u\a.tion of the induced vortex, r;m is obtained by 

integration of Eq. (18) from X.=-1 to. X=.+-1 , and is 

'. 

(19) 

Calculation of o.;i.,n-i • .Assuming that the wake vortex is left in the 

fl.uid with invariable strength and position (i.e. the wake vortex is 

moving away from the airfoil at the velocity rr, along the x-axis 

and with fixed strength) its strength distribution, ~"' , can be ex-

pressed as 

(ZO) 

where 7m. is undetermined constant. 
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To evaluate 'fm • the law of conservation of circu.latiou is used. Th.z: 

law states that tU.e total circulation o! the W;:..ole system is invariably 

zero. Denoting the ch-culation 1;1.bout tl1e airfoil by r/'11 (::::: COWi + r,nt) I 

the increment of. rm, iii""' it must be equal and opposite to the 

Thua. there is obtained 

( 21) 

Putting Sqs. {16), (19) and (lO) into .8q. (Zl) yields 

. 3 I .::: f( t>( i..f'L) + /-(
1 

( i J2.) 

where -12- w ~~d K., ,and K, are the modified Bessel functions of 
U,, 

the second kind and can be expres~ed by the Bessel functions of the 

first kind· as 

(23) 

*In this deduction the following integration formula given in Ref. 6 
is used . 

j .... -i.11..}( ®-I) d~ = K lll\.) + K (.r.JL)--).... e-·fl.. 
I e rr=/ J V t Jt,. ( .22a) 
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Putting Zq. (Z2) iub Eq.(.20) gives 

(24) 

and for 

whi!re K,, and 11, are used as abbreviations for Koli..JL) an:d K, l,;AJ • 

Eq. (S) tog•th~r with Eqs ~ (lS), (Us) and (24) gives the complete dl!>

termination of ,Po ..... 
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IV. ELE:~vlENTARY. 

(b) DETERMINATION O.F' fan 

tfmt is defined as the velocity potential to be added to .<f~. 

to !ol"rn an elementary.velocity potential o~tiliOfying the boundary con-

dition:s at tlle interface and at infinity for the flow in region. l, while . . 

another potential tPVn. is defined as the corresponding elementary 

velocity potential for the now in region l. Th6 boundary conditions 

at the interface t y='1 -.re given by 

at (~) 

ft = at ( ;?6) 

Negle.;;ting u.1 !il.nd t./.:t. in .:;omparison with rr; and. ~ and introducing 

the ve loeity potentials , Eq. ( 25) becomes 

at y= h (Z7) 

Bq. ( U) can. be replaced by 

at (28) 

because f 1 :::}'4 at y::::h and x=.-(X) for all values of t . Using the 

lh1earized Eulerian equations of motion in the x-direction 
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where the velocity potentials are introduced. 

To detetmine <Pm. and film. by ~Qt. (27) and (Z9). it is convenient 

to write them in the Fourier integral forms.. The appropriate ex-

pressiou for· ¢,,n and tfUlf satisfying the Laplace differential 

equation and vanishing at infinity are 

£or '/::>Ii (30) 

tor y 3 /, ( 31) 

~here ttm , bm. • .i<m. and Jm a.i·e undetermined functions of .A • 

cff)m given by Eq. (5) can- also be written in the form 

(32) 

where, by the Fourier integ,,..-al formula. 

(J3) 

(34) 
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Putting Eq. (5) into 'Sq. (33) yields 

L w'f A . _i. [ 1 ' [ { I 1 ·] • 1 J I € /lJ?t (J.) =-.:Z.nA 'I ~"111 ~' i:) + Ytm (X, t) ..Sin .\J< aX + 

(35) 

by the use of the integration formula· derived in Appendix l. 

Putting into l<:::q. (35), Eq. (lS) for h111 , 1'-:q. (18) for a,n. and 

Eq. (24) for . r4n yields, by the use of t_he integration formulas de-

rived in Appendilt .? , 

(36) 

for 111.:;: ~I 4 > b J • • • 

for J?t ::::; 3 1 !i I 7, • • ' 

where Mn. :i.s given in Appendix land calculated in f',ppenciix 3 and 

are 



Similarly, the following e>cpressions a1·e obtah"led for ~ from 

{f>J4) t 

1'iH 

- ;,...Q_ 
.vre 

+
Ko+-K, 

dL Cc.5 A-A :sin:-' ) 
A~-..n.~ I 

B,,,C:t)-:::;~ [ {-).L«h11l J;s~..t)} for m::: 3, 5' 1 lf · ·· 

Puttins Eqa. (3o):..(3a) into Eqs. (a7) and. (a9) yields fou:r linear 

{37) 

(J8} 

algebraic: equation& for the four unknowns am • b_.,,, • o<."" and /,,., 

Solving them, the results for a.,,, and b111 are 

(39) 



·where 

f = J7.. (/+-.Ii) 

r= 1-1/l,-J.,,,,. 

1J ;;:..fl_'-{1-)Li<.J 

i = il.Ji}'k (1-"k) 

52 = ~ . r:r; 

(40) 

Zq. (30) together with E:qs. (39) (36) and (JS) completes the deter-

mination of </> 1111 • 



~ " 
\ . "J'':"•'"""l"'"· 

;, f .. L .i'.,.,. 

region I and is obtained by superposing ti.,~ cle ~ncnt.:.;.ry velocity ::o~· 

~q. (l). §, in this generv.l form satisfi..'.!:::. the i..aplaclf:: diffor-

infinity. Tl1e only condi"tion left is that at t1lr:: airfoil given h)' . 

.,~ 
(1). To satisfy this condition it is convenient to expand <J y nt 

y ==o and -J "- ~ ... 1 into the Fourier series. For <Poni , it is evi-

dent that 

:wt 
;:::: e Co5 ml} ( «11) 

For ¢1..,, , it may be written that 

(42) 

wher~ uy the 1f'ourie1· e'll:!ries form.ula 

Putting Sq. (30) into Z.q. (43) yield6 

-!or n. .:::: 0, ,;z. 4, "· 



by USillg fhe_ integration formula ci~l'iVti.1d in iLppendix: ", 

Putting Eq. (39) into ~q. ( 44) arJ.d using Sqs. (36) tu1d-(38) •. the 

final results obtained after son1e sirnple algebra are 

(->'t Ca.n,o = ~-- [ jlNcVt,t (hJ + jS QrU-t,/ (Ii, aJ + if. ~n,o (h,JJ J + 

(·;5) 
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for m? / 

for m ;;i.· / 

for m ~I 

for m ~I 

wher~ the following de.finite integrals (with their principal values, 

if improper) a.re defined. 

. . J"° ,V,.J.. N '1tJ = e - .J,. (J't) .Tm (.>.J cJ.>.. 
nm. o 

for /n-m.J == 1, 3, 5", ·- · 

for /n-m/=~~.4;--. and h7 ~ / 

for n.-m=t,3,5",··· 

for n. == I, 3, !J, · · · 
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for n = /1 3, 5, · · · 

for n::::: D i2.. 4 · ·· ' , , 

th• !ollowing fun~tions assocfat$d with thtit definite integrals ar~ daffo.ad. 

(46) 

and the other notationa are given by :::;q. (-40). 
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1\dding Eqs. (41) and (42) and superposing the results give 

(47) 

by interchanging the repeated summations, provided that the result-

ing aeries converge. 

Zquating the coefficients of cos 116 1.n Eqs. (l) and (47}, an infinite 

set of linear algebraic equations for the unknowns. A. 's are ob .. 

ta ~ned and arc 11us follow a 

P6 
Ila Ao+ J_ 

~ Com Am :::: (48) ,;z. di.. 
h1=t> 

Al? + 
IXJ 

L Cnm A'" - Bn for n -= 1,oz.,·3, ... 
l'>r=o . 

The general solution is then reduced to the determination of the A's 

from Eq. (48). In order that such an analysis has practical value, 

it is. required tha.t c,,ni tends to zero so rapidly when h1. increases 

for fixed n.. th.at approximate solutions can be found without too 

much labor and with enough accuracy. c"'""- is expressed in terms_· 

of a number of definite integrals as given by .Sq. (45). The evalua-

tion of the definite integrals is then the next step of the analysis. 
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VL GENER.Al SOLUTION' 

(b) FORMULAS FOR THE DEFL~ITl-; INTEGRALS 

1~ nwnber of formulas are obtain~d for the definite integrals 

defined in Eq. (46). Some integrals are evaluated under the two di£-

.fe:t."ent conditions: h.> o and h=n due to the difficulties in evaluating 

them in general forms. 

Evaluation of N"",,.<ftJ. For Nnm • the following formula ia · estab-

lished· in Append.ix 5 . 

where h >D and n+m >-I 

In addition, a recurrence formula is obtained for Nnm in Appendix 

6 and is 

for n=O 
(50) 

for 

By the relation that J:-roiJ = t-P J. 11 0 1J • it is evident that 

m . n+m 
- f-J Nn -m = (-) N_n -rn , , (51) 
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Using J:!::qs. (50}, (5 l) and N11m= N,,m • the evaluation of N nm is 

reduced t•.::i that of N nn • The first two integrals of Nr1n are 

easily obto.ined by the use ol. Eq. ( 49) and are 

;, I di) = .J_ [(,R.,-b<J K (/-'(.} - .(, [(._I.(.) J 1v11 rr r<. · 

where K and £ are the complete elliptic intagral& of the first and 

second kinds respectively. 

It is seen that Eq. (49) also holds for h=o when ln-rn /=M+J • The 

following formula is easily obtained 

N, (0) = 100J. (..\)Im (-l..) d.>... rim 0 n 

= -frj
0

f' ca.s (11-mJIJ d~ = (-/ i 
C.i::>S f). <, 

(5 i!) 

where J n - m J = ils +- I . 

Evaluation of Onn/hJ . For 0,., 111 • the following formula is estab-

lished in Appendix 5 • 

(53) 
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where h >o and 

011m. can also be evaluated in terms of Nmn • Le . 

.:2. m Onm = N n, 111-1 + N n, m+-1 

which is obtained by the recurrence formula 

T J Jmc~) 
Jm-1 (.,..\) + 1?1+1 (.-\} = «..-m ~ 

Also it satisfies the relation 

Eq. (53) also holds for h= 0 and n+m >o and becomes 

In particular , 

tor >1= m. 

(54) 

(55) 

(56) 

Q lo) = 
n~ [ 

-'
dl..17 

and I n-m I= o, .i, -6··· (5 7) 
0 for n..\; Jn 

as required in this analysis. 
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Evaluation of f?tm, Q1tni, En, ht . G11 and 1-Jl't whe.n h>o • The 

integral Pnm ca.n be written as 

The !irat definite integral of Eq. (58) can be expressed in terms of 

the Whittaker function. YV;;m 

a.a deduced in Appendix 1. 

By the formula for derived in Appendix 8 • Eq. (59) be-

comes 

where Ei"l-:xJ is the exponential integral defined as 

for x 70 (60a) 



By the use o£ Zq. (60). the second definite integral of E.q. (58} is 

obtained 

where 

a.s given in .lite!. 7, pp. 1- l. 

Putting Eqtl. {60) and (61) into Eq. (58) yields. for n-m.::::f/,cf.,,4-,··· 

(6Z) 

By similar procedures, the following formulas are obtained 
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a> s -n-'m-.;u 
I z f-) [Cnt-m+-.i!..s+I) {41,; 

+TS= " s ! rt h+.Hf) rrm+.fH) rrnrrnl-SW) 

(63) 

for n= o, d., 4-, ·-- (64) 

for n = I, 3, 5, (65) 
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for (66) 

for ft .:: 0 ) cl,/ 4- / ... (67) 

In Eq. (59). using the asymptotic expansion for the Whit-

taker function for <.-hf,>> I gives 

Also, for ;LJ,-:; >:> I 
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Putting Eqa. (68) and (69) into Eq. (58) yield&, for ah&»/ 

Similarly, the following asymptotic expressions are obtained for 

(71) 

(7Z) 

(7 3) 

(74) 

(75) 

Evaluation of Pnm • 0..,m , £1'(. • F11 , Gri and J-1 .. when 1,-:::o • The 

following .formula is established for Pnm in .:1.ppendix 9, 



By the use of Eq. (SS), it is easily obtained fr.om Eq. (76) that 

1( =--I. (6) Y. f IJ .X.b n h1 
(77} 

It should. be noticed :that the subscripts n and wt on the right side 

of Eqa. (76} and (77) are not interchangeable. Using the expansions 

(Ref. 8 • p. 22). 

the following formulas a.re obtained 
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(80) 

(81) 

where In and '>;:; are uaed as abbreviations for Ll i>) and Y,,t.J.) • 

The calculation 0£ £,.,, ~, &,, and Hn can be' airnpli£ied: by the u.ae. 

of Eq. (55) and the relation (Ref. 8, p. 77) 

The fil":E.it few -V,: defined ln Eq. (46) are obtained by the use of the 

above results and are 

v. 7r ~(, v 
(of)~- - e t .. 

e.' il, v 

(82) 



J!;va.lua.tiou oi R,, J S,, and Tn. when h= o • The infinite series R11 de-

fined itl. L;q •. (46) becomes, when h=o 

(33) 

by the use of Eq. (52). Using the summation formulas derived in 

Appendix 10. Eq. (8J) becomes. 

n-1 ~ J } R.v: l.ll;oJ = <~> [.;,, ~ M-t.r..+-1 (./ZJ + f. ['(,,(.JV +t-L (.JL) 

(84) 

Using Eqr.;.. (76) and (77), the in.Linite series 5'.., and -,-;, defined in 

Eq. (46} take the following forms 

{85) 
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VII. GENERAL EXPRESSIONS FOR LIFT .AND MOMEI'-!T 

The lift, L 1 a.nd the moment, M. are defined as the aero-

dynamic forae a.nd moment acting on the oscillating airfoil. In the 

following analysis. Land M are taken at the mid-chord point, L is 

positive when it is in the positive y-direction and M is positive when 

it causes di vlng motion. 1 ike ~' in .Eq. ( .?) , l. and M can be ex-

presaed aa 

co 

L::! .?:. A,.,., Lht 
h"t--o 

(87) 

tV 

AmMrx /V1= z_ 
ff1"'0 

where Ln. and Mn.. are the lift and moment· produced in the flow rep-

resented by the elementary potential, cfo,,,.+- f1H<t , and the constants 

A1 are those of Eq. (Z) and are determined by Eq. (48). 

In the flow represented by tfun , the static pressure varies 

contlnuoualy, because the Bernoulli's equation gives 

~WI 
where both i>t: and ""''"' . ( ) 1:tR are continuous as seen from Eq. 30 . 

The forces acting on the upper and lower surface of the thin airfoil 

are equal and opposite and therefore no lift and moment is produced. 

As defined in. Section. III, the velocity potential Po,.., repre .. 

sent& the oscillating n1otion of a thin airfoil in a uniform flow with-
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out interface. The lift and moment produced in such a flow have 

been calculated in Ref. 6 t IU, by the momentum conaidera.tion of 

the vortex system reproaenting tho motion. Uaing the notations 

of the present paper, they are 

(88) 

where the first terms are the quasi-steady values. the second . 
I 

terms are the contributions o! the apparent mass and th.e last 

terms are the direct contributions of the wake vorticity. 

Putting into. Eq. ( 88). Eq. (15) for J;,wi • Eq. ( .14) !or r .u... 

and Eq. (16) !or rem• , carrying out the &imple integrations and 

summing the results according to Eq .. (87}. the final results are 

L ;wt [ . ij!,ff, J A + k, A ,;JL A J . =-7l';, Ui e ti.JL-t Kb+K, 0 Xo+K, . ' - T 'l-

M ::::; tr/, ir, e~""t[ .:vK.c. A -(·'-R+ _& ) A -A + i.JZ. A J 
a, lto+K, o 4 Ko+K, ' l(, + 3 

(89} 

where K
0 

and K, are the abbreviations for . Ko<ifl.) and K, ( .:...R.) • 

It is seen from Eq". (89) that only the first four constants, A0 , A,. 
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AOL and A~ are t'equired to be solved from Sq. (48) for the determin-

ation of the lift and the moment. 

In the following analysis, the two basic modes o£ oscillation: 

bending and torsion, are conaid~red in d.eta.H. The bending oac:Ula-

tion is defined as the translatory motion normal to the flight direc-

tion and the torsio11al oscillation is defined as the rotational motion 

a.bout the mld-chord polnt. The boundary condition for the former 

may be· expressed as 

(90) 

where Be> has the dimension of velocity. 

The boundary condition for the latter may be expressed as 

vto, tJ = e~wt: [ ~ 8, + B, cos I) J (91) 

· where B. has tb.e dimension of angular velocity, the second term 

represent& the upwash due to the angular ve loc::ity, and the first 

term represents the upwash due to the angle of attack at rotated 

positions.. Since the !irst term of Eq. ( 91) can be included in Eq. 

(90), it is convenient £or presenting the results on lift and moment 

to use only the second term of Eq, (91) as the boundary condition 

for the torsional oacilla.tion. The oscUla.tlon represented by the 

aecond term of Eq. (91) will be denoted aa the "torsional 11 oscillation 

in order to differentiate lt from the real torsional oacillation which 
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is rep1·esented by tbe complete expression of I.:.q. (91). The lift and 

moment for the real torsional oscillation are then the sums 0£ those 

for the 1'torsionaln oscillation and those £or the bending oscillation 

with 8,, == '-~ B, In accordance with Ref. 6 , tb.e lilt and moment 

will be presented in the non-dimensional forms 1 

and 
/VJ 

where, for the bending oscillation 
fv1o 

L 
Q ~LOt -- ,.,..,, 7X, Voe 

013 

·rre,u:; B i.wt: Moa = .x... 0 e 

and for the 11torsiona11: oscillation 

(9Z} 

(93) 

Lo 8 ~ IVlofJ and l oT in Eqs. {92) and (93) are the respective quasi-

steady values in a uniform flow without interface .. The c:orrespond-

ing value for MoT is zero. The value of Mor given in Eq. (93) is 

arbitrary but with the dimension of moment. 

In the preceding analysis only the case, h>:-o i.e. the tail 

lying below the interface is considered. It can now be seen that the 

lift and moment for the case of the tail lying above the interface 
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are the same as those for the case of the tail lying below the inter-

face with the same vertical distance. h , provided that the density 

and velocity of the undisturbed flow in which the tail lies are p, 

and -a; and those of the other flow are f-<- and U~ for both cases. 

Based on the playaical fact that the force and moment depend only on 

the motion o£·the airfoil normal to the interface, Eq. (89) should 

give the force and moment acting on the airfoil lying above the in-

teriace if !orce • moment and motion are now positive Ln the re-

versed directions. However, a change in the Bign of motion means 

L ,M,,..., e'twt 
a change in the aigna of lift and mon"lent. because 

in Eq. (89). Therefore Eq. {89) ean be used without chanfie for 

the case of the airfoil lying above the interface. 

Before calculating the lift and moment in detail, the 

ranges tor the various parameters under consideration are Hated . 

h = 0 

i. (= CGJ u, .I r= A) 
f, 

where the case, h =o and 00~k7t is excluded. bec:auae its lift and 

moment can be similarly interpreted from those obtained for the 

case, h:::o and l>'t. ?-O. .f Ls sometimes taken as unity for conven-

ience in the following analysis, which is consistent with the assump-

tion o! inco;.npressaibiU.ty. 
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VIII. LIE'T AND lv:Ol\.'IZNT WH.SN '&fr. >I c . 

Due to the difficulties of evaluating the definite integrals 

in general forms. only special cases are carried out in detail. 

These spel';;i.al ca.JSes, be11d.Cles having advantages in mathemat-

ical manipulation, are a_lso important from. the physical point 

af view. The first case studied is ¥»I or h >>I in the no-

tations of the present paper. (Slnce c, the chord, hae. been 

take~ as 2). Using the formulas of Section VI, ·the asymptotic 

results £01.• the. case; ft >>I , . are easily obtained.. i\ s seen from 

the equations listed below, they actually yield good approxima-

tiona even when Ir= il. • which is ve?:y close to the value usad 

in conventional airplane designa. The investigation of thi& case 

therefore has p:c:actica! value. rt i5 found convenient:to discuss 

the case, It 7'>/ , by considering tbe different v~luea of J2. 

separately . 

(a) When st is so small that h.JL<:..< I. 'I'he asymptotic expansions of 

N,,,w/lr) and O,,,m(h) for h>>I are obtained by the use of Sqs. (49} 

and (53). The approximate expressions of P,,"'t/,,SJ, Qnmfh,~J.£,,(h,S) 

Eqs. (62)-(67) ~ Using the above results, the associated £unctions 

of ;:'.;q. (46) and then the coefficients, C>im of .<l:q. (45) are calcu-

lated. For the bending ogcillation., putting 8,=8~::::.·.-=o in Eq. (4.8) 

and then solving for A0 , A,, A.z. and AJ , :"Cq. (89) gives L and lvi. 
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Dividing L and M by L.~ cmd Moe of Eq. (9Z). the .final results are 

(94) 

(M.) =Ir i-Jl.. l••rJl.+ 1rti.IJ,<i-"{-ei.~'.J?.""'1'1JL-.L~"'· L+O(.fl. /,JL~..11..~1.Jt.. ..L J 
Mo 6 Cl ( 1+/i_«-J.,__ ({ 8 1 +./-It.,_, Jr:l. ., ' h .:i..,. k" · 

(48). similar procedures yield L and M. Dividing them by Lt:>/ 

and Mor of Eq. {93) give a 

(95) 

(b} When .Jl Ls of the order of unity. For this ease• the asymptotic 

and H..,(/i,S; are given by Eqa. (70)-(75). Using the same ex

pansions for N,,,,.p) and {2,J/•J and following similar procedures t 

the final results are 
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(96) 

Eq. ( 96) are also valid when J2. >)I . However, for this case simpler 

cxpre::;::; iun1;; can be obtained as bl! luw. 



(c)\Nhen Jl >> I . Introducing the .:.syrnptotic e;rp::.nsions of l'\o( c'JU, 

(40} for various notutions, the fin.al results are 

( !::_) _ iJL _f_ _j_ _ _L 1-Jk_ iJL+I + O( _L _j_ _L ) 
LoB-- 01.- +CJ. 8JL lb 1+/fl h"- .IL"-, h~JLJ /.r4 

(~ 7) 

( L ) .L i, I 1-)i _L + 0 ( .L _L _L ) 
1-07""' ~ - 8'.Jl -lb l+.f{ t,;,, .JL;;.,,) h:i.A) J,+ 

( M) Z.fL +...L+_i_ + 7fH.'J 1--l-l _L + O(.-L .-L h'4-) 
U T := 1- d., 8JL 5/~-!iFJi... 7+71;_ 4"- .JLZ/ h-'-JI../ 

It is seen that the thin airfoil oscillating in a uniforrn flow 

without interface is a special case corresponding to either Ir= cO 

or .f=-:k=I . Th~ expression of the lift "-nd mcment have been ob-

tained in Raf. 6 p. 385 as follows 

( '-?/:":) '_. 

which have been evaluated and plotted in f~ef. 6, ;; . 3<1G. :::etti~1rr 

is reduced to the asyn:ptotic ~}q.i:::nsion of ~:q. (91-;). ::.:etting ft --->' oo 
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and hJL_,,.. 0 , Eqs. (94) anci. (95) are reduced to e'.:pansion of Sq. 

(98) for Jt-;... o . Noting this fact. the lift and moment for h » / 

can be evaluated by the perturbation method using the relations of. Eq. (92) 

as bases .?..nci the terms contaihing '1 i.n :Sqs. (94+--(97) as P'~rturb21.-

tions, and superposing the latter to the forn."ler. :.:iuch a method is 

good if the perturbations are small relative to the basic values. 

For h::::: ~ , 0 <,f .::.ro and i=o and co 1 the perturbations are found. 

less than 10°/o of the corresponding values to which they are super

posed when o~ J2..-< .04- by the use of ~:qs. (94) and (95) and whe11 

Sl. ~. 5 by the use of Eq. (97). Believing that the approxima-

tions are good for practical usaQ:e, the results for h ~ , o<- .I..:.. co 

and -k = o and co are plotted 

those for Ii= co cited above . 

in Figs. 3 and 4 together with 

The significance of the results is that the winr, wake has 

very little effect upon the tail oscillation when the tail is loc::..te.d 

away from the wake with a vertical distance equal to or greater 

than its chord. In other words. the tail flutter under this co~1-

ditfon possesses the nature cf the wing flutter. Sinct.? the flutter 

speeds for wing are normally high re luti ve to the flight speeds, 

the tail buffeting which usually appears at low speeds ca.n ce. 

avoidad by putting the fa.il s.ufficientl}' a\·,iay fro::ri the path ol: the 

wing wake. 

It rnay be.n:ientiorn~cl that putting Jl::::o in Eqs. (94) and 
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(95) yields U1e 1Tatios of the quasi-stcac.ly values of the lift and 

moment in z.. flow with interface at y~ h to those in a flow without 

interface.> exeept 
tM) 
lMo T of .:::q. ( <)5) which states that the quasi-

steady moment r~mc..ins zero in a flow with interface. ~./i.oreovet, 

the above ratios /:ire less than one when (or 

and grea~er than one when .I k-<-> J , 



lX. ., :-. .. -.T•· 
.4« ..ii,. 

(_b) 

the oscillating tail lying in the ·v.;<;,.ke of the 'tK • o:.· h= o in the 

notations of the present paper. The mather.:1atical calculf.;tions 

are facilitated by the closed forr.ns obtain::cl for t~1e definite int~-

grals at h = O However. the difficulties b s~m~-ciing the:: infiri.-

ite series S,..Ul,o,$) and 7':iul.,o)) give:1 by . ( 
fine the investigation to the~ two special ca.se~,-;: (a) Sl. <.<.I and 

(or -k=o ) . In the forn1er th·~ series arc S?lmr.ncC.. 

app:i.·o:.dmately. fa the latter the su:n~.,ations <a~e avoided aml 

ex<:.:.ct expres.siom:; are obta.irled fo;.· lift <.J.ncl. ~n-:.m:1ent. This in.ves-

tigo.tion is of i·:'l.terest. c&uze it woulo. reveal the essential 

featu:::es of the; interc:icticm, between the interface 2.nd th::: tail os-· 

tigation of thi:; t&H flutt<."!r 2.t all 
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(a) Jl <<I . Nnw/o) ancl Onnf 0 ) are given by L:qs. (52) und (57). 

and Rn (JL,t>) for Sl <-<-I • are obtained by the use of .Sqs. (76 )-(f;l) 

and (84). ~""allowing the procedures stated in the last section, 

the final results for lift and mornent are 

{99) 



l' • t' ' ·-, (O~) ' .ht ls see:1 11nt .. ,..,q, ~'J is ve i·y close- to tbe c or res ponding ex.pan.-

sion of ~:q_. (913) and ii.; reduced to it by putting 1:::: k:=; I . rt ::nay 

then be said that the functional ci.ependeuce of the lift anci mornent 

actin:;r upon tlle oscillating tail ;..i.pon the :re:duced f1·equency is not 

much influenc0d by the we.ke when the flying speed is so high that 

R <. I • In this high speed range 1 the tail flutter sti.11 has the na-

ture of the wing flutter even though the tail lies in the wake. Set-

ting Jl.=o , Eq. (99) yields the ratios of the quasi-steatly lift and 

rnoment at h =O to those at h =t>O. 

{b) k= o *. Putting "k==o in Zq. (45), the terms containing S.,.rsz..,of) 

and Tn (Sl..,o,$) disappear and C111n:;= o for In ~4. and n.9' ltt. • Due to 

this fact, the ·. 's can be solved from Sq. (48) in the exact forms. 

Using Eqs. (76)-(81) and (84) for the various integrals and func-

tions , the final results for -lift an.cl mc~11ent are 

*On c.ccount of the lineari:wation used i.n deriving c:q. (27). it is nec
essary to interpret this as ~.<::<Tis while the condition, U..,;i_, v~ (the per
turba.tion velocity components in region 2) « U,z. is still satisfied, 
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(lOC) 

where 

( 
~ ,;, -<.. - iJL l V ~ J;., ) · T .L (, ) v ( I · ) C.== ----)e -1T l~+-0 -7tJ,( +- -7f J1 --1.,. . ...rt. ..n.. ::>... o ~ I ..(.. .fl.., .fl. 

and ~ and 'ti are used es abbreviations for l;(Jl) and 'r:,C.ll..) 

By the use 0£ Eq. (100), the lift o.nci moment arc calculated £or 

o ~fl -6 ol.4- • The results are tabulated in Tu.ble land are plotted 

out in .Figs. 3 and 4. It is seen that when JZ.< I the variations cf 

lift and moment with . Jl are very si:nilar to these of Zq. (9S) 

as shown in case (a) above. 'Nhen R >I , the: vari:ritions becor.:1e 

entirely different. It is therefor~ interesting to investi!5ate the 

asymptotic expansions of .Sq. (100) which are obtained as follows: 

(
l ~JZ.. I ~,· I-~ 6>i 
- ) = - - - { 1 - e c...os I J + q r,;;:-;; ( 13 - e e,os 1J) + 

. Lo 8 4 b ./ vlr.11.. 



t' [J.J§.. 8 ( 3 1- !Ji. 11 .1.. .:u,· <i, J ( L 
+J..Jl. lb +y.;r- a+3rr) e casu-+ e ("as tJ- + () :Ji.-h) 

(101) 

: -l d-J9 €°:<.. _J_ 4 &~· ...L ;;zA -'l. J <i +a- tr:+ -371 + ( 8 - 3-irJ e cos&- 4 e <'oS 5 +- o J2w 
_,..Jl. I 

where 

By comparing the values calculated by Eq. (101) with those calcu-

lated by Eq. (100), it ~s founci that, neglecting the tern'1s of the 

order Jt and the higher orders the expansions for ( ~ ~ c..nci 

f ~)T of Eq. (101} yield vcr}' good approximations (error less 

than 5°/ 0 ) when .51.. >3 • By compr..:.ring the coefficient? of thi? v~u:-

ious expansions of i!:q. (101), it is expected that the expansions for 

(£,,Jg and ( tJr are accurate when J2. "> /00 . l1 s JL---? co • the 

limiting values of 
L. 

( L)r and the ree::.1 parts of 

and ( ~)1 are periodic in J2. with the pericci, TC • 

Fra:n Figa. 3 and 4, it is seen that the variations o! the lift <'l.U'l 

niomcnt against Jt are peculiar when Jl. > 1 • Hence, when the 
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flying speed is so low that J1. >/ ~ the Util lying in thi:: wake of the 

wing inay be subject to se 1£-cxcited. vibr~tion, i.e. flutter. Such 

a possibility will later be verified in the nurnerice.l example. 

Befo1·c doing this. the cases excluded from this and the last sec

tion are investigated. 
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The c~sce rcma.ining to be studied o.rc (u) f ~ h >o and 

e>o ~-t. ~o and (b) h =o, l>-k. >o and J2>/. The exp1.·essions for 

lift and moment have not been obtained due to mathewatical dif-

ficulties. However by considering the continuity character of the 

various functions with respect to h and k, and using the results 

for the boundary cases obtained in the last two sections, it is pos.-

siblc to r:.1ake some qualitative remarks about the lift and moment 

variations with .J2 

(a) I :::::- h > o 
. ,/ 

and 00 ~"'.k ~ O • The difficulty lies in finding the 

ascending power series in h for the definite integrals of the fol-

lowing type (Eq. 46) 

f'n111. ch,$) hi e'f"idently continuous in h. at h ?O , becat.u:H.: its 

first derivative exists there. It is also continuous in h for A>,,o. 

This in seen by considerir~g th~ difference 

(10 2) 

.. ~.rherG '(.. is <:. small positive quantity • 

. (102) c&n be \Vritten as 
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(103) 

.1.. 

where T is taken equal to t-~ and is greater than S • .:1s · 

e:.- o • the £irst term of Eq. (103) approaches ~ei·o, !or 

-.:t.t/I 
( 1 e J-:)> o ; and the second term approaches zero for 

which approaches zero when T-ro i.e.. t--+ o 

Hence R.m(h, ') is continuous iu h at h=o and therefore 

L/m R.m (h,$)::::: Pnm (o,6) = - : J; !SJ 'fm UJ 
h-4() 

as given by :::q. (76). ()ther definite integrals of Zei.. (46) have 

the same prOj_:lerty. Therefore the lift z.nci moment vary contin-

uous ly from those· at k::::..i.. to those at /, == o , when h ciecreo.se s . 

from ·Z to 0. By the use of the findings of the last bvo sections, 

the following :;nay be saici about the variations of the lift and mo-

rnent with 52. 

-
(i) dhcn J1 £../ , they are similar to those for h== CO • 
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(ii) ",•,:hen Jl '7 / and h is close to one• they are aguin similar to 

those for h ::::::. a? • 

(iii) ·vlhen Jl >/ and h is close to zero, they are different from 

tho:::e for it=o::J and becorne sirnilar to tho5e for A~ o . 

( b) h ::::. o , I > i1t > o and Sl. > I The calculation requires the 

summation of the series of the following type (:Z:q. 46) 

or, by the use of Eq. (77) 

where /V/s{JL) is defined ir1 E:c.:. (37) and is expressible in terms 

of J;,CJZ..) and Y.,(Jt....) as sho·,;;,·n in .Appendix 3 ~ and 

The e>:act .summation has not b·~en obtained. The asymptotic sum-

mation for .IL»/ is complicated. by fac fact that th.er~ e:dst 

thl'ee different asymptotic eicp<=.msions for J;,l.Jl..) a.ncl 'f:rCJl..) \vhen 

..ft 
both h anclJl are forge according as Yi"" is less th2n, neE.rly 

equal to or greater than one. J:.;esides, the usefulness of the 

asyE'.lptatic expansions is in doubt, because at i=o some of 

thern yield good approximation only when 12.?loo as given by 
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Zq. (101). The numerical su~.-nmatior ... for specific values of .1 , k 

and SL c:.::.n however be easily done. 

tions are made for Jl = .1, . 4, l. 5 &.nci 3 \~·it'..1 an en· or less than 

10°/0 • The results arc tul:t ... latcd hi. I'i:o.blc 2:. and shown ir. Figs. 3 

and 4 by broken lines. Though the points a;:e too fe•N to deter-

mine the curves precise l~', they definitely show that the varia-

tions of the lift and. rr.on.:.ent with J2. for k-= ± n.rc :no re s imi-

lar to those foi~ i=o than to those for k=/ \vhen ..n. >I 5inc€i: 

the lift and mo.-nent are conth1uous in k as seen from ( {5) I 

it may be maid that- the vari<..-.tions of the lift ~~1d ::-:1.omen.t with 

.52.. fr:.>r ±. ;::.;k, >o h::>.n) the character p~rtairiing tc• those £0:-

It i . t t. t t• • t• . . t. .... f ./ - §._ s 1n ere s 1 ng ·o con 1nue lns ln ve s ·1g:~ ~ion 01· ,q_- 4 
l 

or for i:::::: /- t where £: is a positive= s1-:iD.ll :-:Juantity b cleter-

lnine t!1e value of i corresponding to the transitic:n in tl1e ''a.r-

iations of the lift and morr1ent. However, the tL01;·e irr1port:i~1t 

question is that: Do the peculiar va.ri2.tions o! thr: lift and mo~1H::::-1t 

at i= o really cause the t2-i l flutter z.t lo·.;· of f1 ? 
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XL TYPIC/.l i\PPLICATICI'\ TO .ET UTT.:!:;:;. 

! ND DlSCUSSICN OF TH:r.:. RE~~ULTS 

To illustrate the essential features of the tdl flutter 

under the influence of the interface, a flutter analysis is l1ere 

carried out using the lift and 'moment obtained for the 

typical cas::: h= ~=O • The flutter an"!-lyi:;;is is a t\vo-dimensional 

one. P, tail of unit span with locked.elevator is considereC.. ~;uch 

a tail has two degrees of freedom, namely bending and torsion. 

The procedures of the analysis used below follow mainly those 

given in Ref. 9. 

Calculation of the Aerodynamic Coefficients. A representative 

section of the tail with all re lated notations is shown in Figure 

5. E denotes the elastic center and G the center of gravity. 

The ti· ans latory moti011 of E and the rotationary ;.lotion about 

E are expressed as 
\ 

and 

y = y 

e = e 

Zwt: 
e 

respectively. The aerodynamic force F and moment T acting 

c.t S are expressible in terms of the lift and moment defined in 

(10~.i.) 

Section VII and Y and e of Eq. (104). J.:-ccording to Fig. 5, it 

is obtained that 
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F = - n/ w.<.-( A Y +. c. B 1f ) _e ~wi: (105) 

T = wz 1 c. w ~ C c Y + c. D 8 ) e ,·w-e-

where 

and A, .B , C and 75 are kno .. ~m a$ the aerodynamic <.~oefficients 

and are given by 

(l06) 

Using Table l and taking ~ = . 35 in Eq. (i06). the aerociynamic 

coefficients are evaluated for o :S.JZ..<«..4- and are tabulated i.n 

Table 3 ~ 

Calculation of the Flutter Coeffi.cie11ts. Denoti.ng the :ne.ss of the 

tail by rn , the mass moment of inerti2,· by J , the elastic 

constant for tr an& lation at E by ca and the elastic constant fo:.:-

rotation about E by CT and assuming vanishing damping, the 
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rri. < y + s ii> + cs y - F 

(lC 7) 
+• •• 

. T e + rn s y + Cr B :::: -r 

Putting .Sqs. (104) and (105) into (l:Yt) rields 

!r1? +8
1 e=o 

(IOS) 
c I -y- -r p' 1J ;:::::o 

\Vhere If', 13' ~ c 1 

and o' are k.r:Q•~,tn 8..5 the flutter CQefficicntc 

ai1d are given by 

8 1 
= -Jn.5 + rn'c 8 (W9} 

_, 
D 

where L.Q6 an.a Wr a::e the natural fre<;ucnc.ies of the bendi:':.C vi-

bration z.nd the torsional vibration of the tail in v1 .. cuum anC: ~.~·e. 

. . f!J.s rr1v"r. ,..... -t.. ......... •"') ,,.,., ;'.nd /¥ respectively. 

/II -! 
n=C=O 
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(b} In pure torsion, 8
1
=- !5

1

=0 

_,_, -1-.1 

(c) in coupled bern:Hng~torsion, AD - BC = o 

(110} 

-, -1 -) - J 

r'or a specific structure, A, 8 _, C and D are functions of 52.. and w 

or U, and W (£or Jt "":;,,;;, ) as give<• by l.::1:,,,b. (109) ar~::. (106). 

Th~ task is to determine: the values of U, and w \;1bich satisfy 

the criterion of .L:::q. (110}. There r;.1ny e~::ist a nu.n.1ber of solutions 

for one criterion. Those with U, lyini; it: the spec:::--: i·anGe of 

flight or nearest to the range are of interest and faese valu(;e; of rI, 

are called us the flutter speeds. In th~ generd \">'iag flutter ar.al-

ysis, only (c) of Eq. (110) has solutions and the Hutter speeci.s ar\! 

higher than the £lyir1g speed. 

Numerical :C:xample. The numerical e:rnm;:ilc under conskle.ratio~1 

is described as follows. 

The tail.: 

·:.'he flovv: 

Span = l in. , c = 100 in. • a = 35 in. , s = 5 in. 

m = .009 lb-secz;hi.., S = 5 .62. lb-in.-sec. 2 

w 5 = 40 rad./ sec. , w 1 = 50 rr;;.c..{/ sec. 

:Vamping constr.nts = 0 

h=oJ V<
u, O ::.nd -1 6 -<--/. 4-f, = f,,_:::: l./47XIO ! -5ec./tJ1. 

/;.ccorciing to the two dimensional winr;, fli.;.tter andysis, only the 

coupleC. bending-torsion is possible in <:.. uniforr, . ., flo·"'' v.·ith no in-

terface and. the £1utte1· speed for the tail under this condition is 

equal ta l80 m.p.h. by the use of Graph 1-f·.(n) in .flef. 5. The 

v«lue is rather low relative t:::> the flying speed of modern <:i.irpknes. 
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This is mainly due to the vanishing clarnpina a.sEun1ed z.bove. For 

the discussion of the present example, it \•?ill h'! assum~?d that the 

flying speed is about 100 m. p .h. sc that no flutter occurs for the 

tail in the absence of interface. To calculate the flutter speeds of 

the tail in the presence of the interface. 2:q. (no) with I::.q. (109) 

and Table 3 are used. The results are as fellows: 

(a) No flutter occurs in pure bending. 

(b) N,, flutter occurs in pure. torsion. 

(c) Flutter. occurs in coupled bending-torsion. And it occurs at 

speeds below as wel 1 as above the flying speed. The lowest i:peec. 

above the flying speed which may be called the upper flutter. speec: 

is equal to 160 m.p.h. and the highest speed below the flying 

speed which may be called the lower flutter speed lies between 

zero and 6 m.p.h. No flutter speed lies between 6 m.p.h. and 

160 m. p. h: Tb.0 levier flutter speed has not beer. cletermit'l.ed 

eJ:actly because it rcc;.uires the lift ancl :no=.1ent of Eq. (100) to 

be calcu.lated fo1· .n. >;i...4 (Table l). lf Hutter occurred at .Jl=~4-, 

the flutter speed would be about 6 r.n.l;.h. The ei:istence of the 

flutter speeds greater than zero is shown by the use of the aaymp

totic e:.:pansions for the lift anc< moment. The criterion (c) of 

::::q. (110) becomes 

-.o:;;ro8 + ,;i.1~0 sinti.-.ll.- .U6t3!J- :rln~JLt-;r/;:-.JI.., [ 4,3b3 -/.!li?..5 s;n ceJZ..+ 

+.14-W Cos tl.JL + , o5'J 79 ( si"n..z.<....1z. - Si'ri&-JL cos d...Jl..) J +- Q ti_)= o ( l 11) 
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by the u::>e of i:;q:;;. (lOl), (106) s.nc.~ (lu\:) 2:.:-.t..i <.!.SS\.ix.-...ing that J2. < w .. 

Sq. (Hl} Ci.as real solutions. I'\eglecdng -;;h~~ te.nns of the o::.·c1er m 
and the higher 01•ders in I!::q. (111) yie l-::is the sok.tim1s 

Jl::::: rnr+.13/ and n TT + /,44-0 (112) 

where: n is an integer. 

Eq. (112) gives good approximation \vhen. n-> 10 
4

• It is in.tere.:>tinf 

to note that corresponding to .E:q. (112), the anguL~r f're1~uency is 

equal to 37.7 rad./sec. 'Vhich ties very close to w 13 • FroG1 Cc:_. 

(ID!:!), is obtained 

(113) 

which represents the ratio of the displace:::.1ent of th~~ trailing edge 

due to torsion to that due to bendine. u~;i:>.s: :_~(~- (112) • .>.__ is equa1 

to . flt..:5, -.:.:hich indicates tha.t bendinr.; is _t>l'e1~.C~Td.n2.nt during th•..; 

flutter at low speeds. For the £lutte ::.· ;:;t lGO 1:-;. p. h. , the angtc.lc.r 

frequency is 50 raci./sec. and ,..\ is 3. 44 v-.-:<ich inaic.:-=.t12s t!:u:;t torsior-. 

is predcrr1inant at the upper flutter c;_::r::('.!Lt. 'This \-;ill later be C:is

cusseci.. Taking n.:::.10
4 

in E~. (112) yields a flutter speed eq_u.al 

to . 0034:2 m. p. h. Taking the te r:n; of -/.;;_ into co:i.s iderai.:ion in 

Eq_. (111) gives flutter speeds of the order .3 m.l).h. o.nd A. re

maining less than one. Finally setting 12..::::co the criterion (c) 

of Eq_. (llO) yi>.?lcis 
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w = 37 .9 end sa .o raci../scc. 

'.vhich a:z.·e the natu1·al £r"1quenciec 0£ the bcr • .:iing vibr.<.d;ion c.nd the 

torsional vibration of the tail in the still air \vith the cicnsity given 

w.bove. 

Discussion of the Results. The most important results of the 

cxarnple are summarized and ditcussed ::;..s fol~ov,;s. 

(a) There elt:ist a lower flutter speed ::.:is well as an upper flutter 

speeci. The uppei· flutter speed is very close to the flutter speecl 

obtained by the wing flutter analysis, i.e. neglecting the ·effect of 

the interface. The t~xistence of the lower flutter spee<l is entirely 

new to the usual flutter a1~alysis and is caused by the presence of 

the interface. The occu1·rence of the tail lH.11'fetiug m::ar sto.ll.inr; 

speeds is qualitatively confirmed.. 

(b} At the upper flutter speed• the predominant J:'i..'10de of vibration. 

is torsion and at the lovl speeds of flutter, the preC..omina.nt moc.e 

is bending. The former is found in the \Ving flutter ana1ysis. n~.e 

iatter is at;ait1 new tc. the unual flut'..:er <:.nalysis and confirrns tho 

finding of the :i~nglish inve stigata:r s that the failure of the JU l3 

irose £:-orn the flexural str,.:!sses en the tail (:.'':.e£. l). :J3:;:.sed en 

the discuasiot1s of the lift and mcm<ent in Section X 1 it is belkveci. 

thnt these i·esults are also valid when the flow is describeci. by 

h < < I and a~ i. < I while the othc r data re ma in unc h<:rnged.. ln 

this ex.ample, it is seen that the theory c.nd. the observed facts 
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agree in the essential features and therefore a continuation of the 

investigation along the line of approach of the :;:n:esent thesis ni.ay 

be profitable. 



:c.he integration form~.l;:is used in L~q. (3.5) aJ~~ 

for .-1 y.;::;r- o 

anu (115) 

l..:Cerivation . 'i'he integr&l of ::.::c:. (114) is 

by p<:.rtial int0gration 

for .A.y > o by Corm ulc: 490 i:l Ref. 10 

Similarly, .L::q. (115) is derived. 



INTEGR.A TION :ff'OR)/UL.\S USED IN -~C. (36) 

The integration forrr.ulas used in 1~:q, (%) are 

J 
1 

r;::x sin.A><. dx. _, l!+x 

J 'jt=X >d _ - eris.,..:.::: x 
-1 l+X 

- rr J,t>.> 

P1-'<, 

(116) 

(117) 

JI • • \ 1 [ (-)---z rn"l('~()..)/J...., form= 2,4,6,.. (llE.} 
Sin m{} $1>1"")( a.( = 

-1 o , for m = l , 3 , 5 , ... 

(I . J S/n m& Cos>.J<. dx. 
-J 

r o , 
'L(_-)7 >h7[ J:,(>.) /.>... 

wi1ere x =cos& or Eq. (7). 

f\,.:r /11 = Z, 1t, 6 ,, . ~ 

for /11. = l , 3 , 5 •... 
(119) 

{ l.2;0} 

(121} 

( 12.2) 

where i\1; n is ·given by Eq. (3 7) ilnd ce..lculatcd in the ne~t a~)j.:Kn1dix. 

i1erhratinns. Eqs. (116)-(119) are imrneclic:.tdy obt::.ined by puttine 
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X = c.o0 & and then using the e)i:punsi<..m. for!riulas (Ref. S, p. Zl). 

(:>:> Yf. 

cos (.A. coso) :::::- J:(.>..) +c2 L, H . .Lt.>..) cos ou1B (124) 
n""/ 

s/n (J.... Cos()) ::::: (125} 

The integral of Eq, (120) is 

_z,.n_[ jiv -t,J2X . j<o -Z.12.x J 
:::. € C.OSA e s:nJ.x + $/nJ. e Cos...\~ dx 

0 0 / 
by setting )=X+J 

_ ;. .h... >. c..os-A. -1- L.. .. rz. .s ln .;>.,, 

:::=. e ""<-<-_ .11.:.i... by Formulas 414 and 415 of Ref. 10. 

Similarly, Eq. (121) is derived. 

The integral of Sq. (llZ) is 

= F -iJ~;H·l d< J ';1-X ~d.x. 
. ~ e ~-1 s _, i+x 3-x , 

provided the re:,;:ulting series exist. 

provideC.. that the resr.ilting 
inter:;ral ..::xists 

by puttir~g X = cos() 

rt is then required to evaluate the integral where 

n is an integer. Evidently, 



by setting 

for j :>I by the residue theorr.;:;:. 

are used to derive Eq. (123). 

= jcv e-Wl-j /f! J LrJ' ·eosJ.x dX.-{ ;-nj' Co5v\.x cf_x.__- J 
I ~-/ ~ -I.//-)("-' -I ,/f-.X.-{., ~ X 

co 

::: -<l-7i 2 (-f J..?.S (,J.._} /VI d .. i .J7..) 
.S=o 



- t.n. .. 

~-..L[K+v-~J - d.... (;) f\1 i,J'L 
(37) 

and for s = 1, 2, 3, .. 
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APPENDIX 3 

CA LC UL.I\ TION OiT /VI s (J(.) 

General Formula for Mst.nJ , s = 1, 2:, 3. . . The integral for Ms(f!.) 

given by Eq. (37) is 

J/X] -2} 
Ms(.Fl-) = e ( J-

1 
where 2::::: c..'Jl. 

"" i [-{l _ _:__~"'--- f ~ -c J J S-f'l (j :._ 1/t 17( f 
n-:::.o r{5-rt-H) I , by the binomial 

theorern 

Using the integration formula obtained from Eq. (29) on p. 50 of 

Ref. 11, 

(126a) 

where f arq. ~!.::.. "1f, i.:=Fo and RI< ~+1) > o , yields immediately 

The right h<4nd side of i::q. (126} can be put in tern1.s of kv (z.) 

the use of the formula {Ref. 8, p. 79) 

( 127) 
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J,, [.fL) and '(,,(.fl.) by the formula (Ref. 9, pp. I 3- ·rn) 

3.nd K n+-;f; ( ~JL) '.:vhere n :::: 0, l, 2 .... can be put in terms of sirnµlc 

t::ansc;:nr.:.ental functions by the use of the asymptotic e:i::pansior;. of 

(l~S') 

•,vhich obviously termh1ates for Y==n+-± and thus yields e:;;:act vc:.h1e!::. 

Evaluation <.>f /v75 (J?..J , s= o-S . . Using Eqs. (12.6)-(129), Ms (s::: t- 5 l 

are cbtc.ine<l as fr.Hows .to;;ether vJith !v'l. 

' -·-JL. 7' ( , r JT (J, ·v M (JL) =< _ J::._ e + 
4
- V + f..,Jn) +/I / - I /1) o ;L.J1... 10 o ., 

. I -L'.il 7r (Y. '')' M(..n.)==(-!:..--:z.-.)e --;--- ,+(..J, 
I .JL ..,fl; 0<..JL 

L, 3 .:1.A-i- ::i.1> -~fl. ( v · r !v13 ( .JL) =; _ - - -~ + -r + ) e +- 'J" + ,,.J ~) t. ./\... .....,i..; .J1.: ~Jl... 
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3q. (130) are evaluated for J2. = 0, .1, .2, .4, 1. 2 :1.ncl 3 and the 

results are given in Table 4. 

Asymptotic E~cpansion of M.sU'-) for J7.. >JI . By the uf.e of i:q. 

{126) , it is obtained that, putting ~ = ~·J2.. 

(131) 

Introducing Sc... (129) into :!i:c... (131} yields, for J2 >> J 

(132) 

E::pansion 0£ Ms(.nJ £0-:::- .r >.>I . The integral of /0,,-(Jt) is 

J {() -i.J1.J -- sd 
M/Jt) == e O-lr--1 > i by setting ~ = Co..sh K 

. I 

- J.. [1 ttl -(S·i)X -i....IZ..O>shxd. la:> -(..St-I))( -l.TLCCJJl.-X_) ] 
~ e e :x - e e c1.x.. 

0 0 
(133} 

It is the11 required to consider' . Noting 

that 
- ;fLcoshx M 

e is analytic in :;.: , when Ix l 6 \Vhere J:-1: is (;. po5.-

itive large value and. has the exp:.lnston, when Ix/ :S M 

a.no when'~ is pcsitive and x -3- M 
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the Wat son's Lemma (Ref. 12:, p. 218) gives 

Puttbg Eq. ( 134) into Eq. (13 3) yields 

(135) 

\~here :S>>I. 



.II 

f rr [ (-0102..,,. I,. rJ..) 
COS 11/}. CO.J (.\ COJ (Jj C1

1

Dl ::::: 
0 

for n =G , 2, 4 , . . (t 36) 
forn =l,3,5, ... 

forn:::0,2,4 .. (13?) 
forn=l,3,5 .. 

which are easily derived by the use of oSqs. (124) <:.nd (125). 



V.'here 

where 
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:'he integral of Eq_. ( ~9) is 

by i:q_. ( !) on p .. 150 cf Ref. 8 , 

by Eq. (3) on p. 3f.6 of Ref. 3 

R/{n+m) >-t a ncl /(/(h)>o • 

The integral of Zq. (53) is 

by E:q. (7) on p. 386 of Ref. 8 

I J<,--
-~ , If.I ( n+m) > D and R/(/,J>o 



T!1e function of .E:q. (50) is defined by 

Consider in.g 

r -t when n ""rn""' o 

L () 
when 11 and mare otherwise. 

and, also 

Using the recurrence 1·elation of J;. f.'\) 

and equating the two e:x:.pressions for I yield the recur-rence form-

N IV f\J N · J<i1. <J1hen ft.,,.rr?= o 
n, ·rt+ tt+l,ITI;;:;:;. 1 Yn-i,171-4-h '1,m -tNn,nr-1 +lo otherwise {138) 



?utting n=ni {50). 
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J.,PF1!:NDIX 7 

DI!:RIV,\TICN' OlT EC1. {59) 

The integral of Eq. (59) is 

by Eq. (l} on p. 147 of Ref. 8, 

(139) 

pi·ovided the l:et>ulting .series converge. 

rt is now requh-ed to evaluate the integral 

,\J sing the integral representation of the .di.ittaker function, Wnrn 

given on p. 310 of Ref. 13 yie k1fj 

where /cugh!/<.rr and .!fir-&) >-I 

?utti1:1g; Eq. (140) into Eq. (139) gives irnmediatclr Sq. (59). 



Putting 

ula of ~l1.. (..l() 

and in the ex pans ion fol."m-

given en p. lt6 0£ H .. eC 14 yielos 

-"t t: -I ,,..,._ J + (.-x) 2- ra-,P-J (-x) 
')'-:>:.() 

( 1·11) 

r = i:ulcr 's constant = .5 77 2 

and i = 0 , l • l . . . 

~q. (60a) gives 

wh~re x :> 0 

by puttin.3 

by putting r "" f'~ 

VV_...t. 0 (X) 
.;{.., 

·by (140) I 



-80-

by ::~e;. (141) 

Thus , feil· x > o 

z (Kt:) 
y,,.o 

Putting Eq. (142) into Eq. (141) gives th•.::; expansion formula fo1· J?V:.-1-1 t
- £-, ~ 

t- -¢f.f .x x 't ) 
~ (:-) l( ~ i. -~ -t - ~ w (X)= -- [-e Ei:. (-.><) + e (-X) 2 r<t-~) {-:x) J 

_-t-4-J f.. r{-f:::.H) ~"" o 
<'<. J .:l.. 

where t = 0 • l, 2, ... and X :> o . 
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The inte f;:ra l of. :::;c,_. (76) is 

Using th0 contour inte gra ti on of the Hanke 11 s type ( t 13 . 5 3, p. 4 2.G 

P~ef. 8), the following integral is consid.ereG. 

•Nb.ere ~ is real and positive and the contou1· C is shown in 

y 

(.3) 

------+---·-+---.J:...i-.--..... - x 
-R -~ o H +f\ 

the figm.·e where 

By the residue theorem, .I= 0 . 

Denoting the integrand of I by Q (i!.) , L can be written as 

I::: J Qf2Jd:C +I (){z.)dt +I Qr:t)t/i: -+- f Q{e) d:c. + p r R Q(x)dX. 
(/) (~) (j) l4) J-R. 



v-.rhere the paths (1), ( Z), (?.>) and. {4) are sho·.v:'l in the figure and P 

denotes the principal v~lue 0£ the integ1·21. 

when I~ I~ ro 

where the first terr:.1 approaches zero by the Jordan's L~mma 

06.222, p. llS, Ref. 13) and the second term approaches ze1·0 by 

the results of j 6. 22 on p. 113 of Ref. 13. 

n-nt+-1 I 
C: d3. where M is a constant, when Jzj_,.o 

--;)> 0 providecl that n + :i .> ni 

J Qf?:)d 2- :::::: - 7r~ { Residue of Qt'!.) at i!: =; } 
(3) 

= . rr,: J,;lS) [ Jn(..~J +; 'r;,,_c;.) J 
d,, 

j Q L:r.) di: ::::: ~n < L Residue of Q(?:) at r""-~ } 
(.4-) 

= - !Ji Int~) f-:Tmt{,) -ri. /m(t)] 
d, 

provided ,..,_,.., = 0, Z, 4 •... 
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by the use of the re la Hons that J"(-X.)>::t-tJn {>(.J ::c.nc:l 
U:> nt U) ~ H (-j(J =l-J [1-t 1xJ-Vcx) ,,, ,.,.. ,,., . 

Using the above results yields imme!diately ~'.:q. (76). 



DERIVi~T!ON C·F ZC. (84) 

i.Cq. (83) can be written as 

ri CD 

[ Mol.n.HJ.., :Z. Mil.Sl-'l.J- 2.., Ma.~/ Jl.) J 
5-::/ .1 =I 

where for .:J -3 f , 

It is req_uirt:d to sum and 

(145) 
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by .similar :::;tepis above 

by Eq. (127) 

by Sq. {lZ6a) 

'i.'hus, 

~ Meuf-A) = ± [ K/i.AJ -/ c:~ ki (~.11) J 
,:/,%-./ 

Putting Eqs.. (145) and (146} into .Sq. (144) anci using Sq.s. {128) an~~ 

(129) give immediately Eq. (84). 
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