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ABSTRACT

A new approach to tail buffeting is made by studying the
prgblem,of a thin é‘irf‘civl g)'jerfaxming'a periodic oscillation of
small aﬁz,giitudé‘in the presence of vém interface across ;;v}:ivcvzh the
flow unéerr’gaes a constant c&éagé m density énd velocity. z?e gen-
‘eral scluﬁ@n to the problem is found. Lift and moment for &:éme ‘
ﬁpe;:ial ca’scs‘ }a;:e obtained in’aimpl& forms and are ‘glat‘té& i‘n.
f&"igéy. 3} and ’4 for the two imsie: modes of oaciltatiwnf bending
and ﬁars*ion.’_ & ?ygxicat aixp&iéatic}n to flutﬁer anaiysié ie made
afxé ié ‘is' f%:sunﬁ ﬁﬁét f:é;ﬂ flutter at low s?@ééé is possible for the

tail lying in the wake of the wing.
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1. INTRODUCTION AND SUMMARY

‘ Taki]; buffetmg " ;.a . bail vibration uéder the aaradymmim
action éft%w ‘W&’Eéa »sheé by the wing at la‘rge' migie of attack, ‘ig.,-.é.
| ixzéii-kﬁc;wﬁ phenomenoca. ‘Fol.inwiﬁg the unusual accident e}fthﬁ
qur&ew éirpi&ﬁé at Maaphm the prohiem took on &'seéiaué aé—
:paat and leci mientiﬁit organimtisns in various couneriea to un= o

‘ "a.artake ﬁataila& mtmshgatwm . {Rafs 1—4) Baaed on these ané

B m;her investzgat{ons, large rm.mber of cimple &évicm; are now .

nvaxlable fm: the Mimimtwn of the tail bufi’eting E{awaver ’
| thaories for preéicting tha p enomenon are still Iacking‘ ;

; 'I:hﬁ main aiffic.u.lty in %:re:atiug the tail buffettng li&s inb :
the f&c‘& that t‘n& actual nature of the aercéymmtc wak@ b@hind
the bodies has not yet been established. In Ref. 4, .@bdrashitav
- apéroximéted the. effg‘ct of the wak& on the tail byva harme;nie‘
diaturbanm fcxme and fauncl that the characters of the tail vibra—»v'
tion are muciamantaily éetarmined by |
{a) the ratio of the fr&qu@&ey ni the flow in t‘:ae w&ke of the wing
to the u&ﬁm*ai freguency of ﬁhe tail surface,

(b) the amplitude of the disturbance forces produced by tl;a ‘wa,i;a
of the wing, | | | o
(c) the mggnimde of the speed ;nf flight, and

(d) the vertical pa‘a:iiic’m of the ¢ail surface relative to the



B
x#ing? .
'Im this pag,-er an entirely dxffezrent apmrmch is made : The

| aeroéymmic wake shed by the wing is here approximatad by an in@ar«-—
féce across_which the ﬁow undergoes 2 cq&stant ghange in dgnaiﬁy ﬁné
_velccity (E‘igs 1 and 2). The problam is then set to determinéthe |

‘ ,pasuibilitias aﬁ the ta.il fluttm in the preaence of the mterface at
e -;.variaum speerdn af ﬂight The mai‘n @erocﬁynamic effect c;f the"w'qké

is beueved to ba appraximate@ by the effect of mutual inﬂuence be-

- tween the vortxcity on the interface and the vorticity genemw& by :
- ‘—me esciuatwn of the airtctl. , - ‘
it is isun'd cc}r;wmient to discuss the results in terms of
' ~tha two paramewrs: "% ", the vex-tical distance betwe@n the #ir,_
: Imil au& ﬁw interface divided by the half chor& and JL , the _rvg‘*'
duced fraqwucy (the product of the half chord and the vibration |
f;ec;ueéxéy 'avf the tail divided by the flying ‘speer}a) . |

A

(a) When > 1, the influence of the interface is extremeky smaﬂ

- for éll vai%a of 2 . Therefore the tail ﬂutﬁer has easentiany tha |

nature mf the wing fluttezr (wa 8), when the vertical diatance Be- | |
| twaen the airfoil and the interface is greater than the half eho:rd.'

” - (b) W’ hen .;L< 1, thé influence of the intexjface is smé.ll for all val~

ues of %ﬂ . Hence in high speed range of flight (since N < | means

; ;:; ;; noted that he also made an important approximation in taking

only the quasi-steady values for the aerodynamic force and moment,

- i.e. neglecting the effect of the tail wake produced by the non-steady
mcﬂ:wﬁ of the tail. '
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LT > %{-’- ), the’ tail ﬂuﬁ:&r again has the nature of the wing flutter.
{c) When k :7*&.;1 = U ﬁ.ﬁd. J?. >'1,  the 'in_fluérixce' of t?ﬁe intérfafca is éo
large és to rendvejr‘ the tail flutter pﬁss‘ibie . Unlike thé w;ng, ﬁhe

. taii has the pogsibility of entering into flutter at low speeds of

flight, when it lies in the wake of the wing.



.
- II. FORMULATION OF THE PROBLEM

 AND THE GENERAL PROCEDURES

Taférmu;&m the ggéﬁarél pmbl&mz’ the following ak'spméq
'V;mns are mée.

(a) the wake given off by the wing may be approximated. by an inter- | i
face gcrmw whwh t’m flow undergoes a mmtant ahange in veic‘n:ity -
and denmitfki thas inmrfam s flat, of zero thickn@% anﬁ emnda -

. to inﬂniw in all directimxm

| (b) the tail surfaca is of iaﬁnita aspect ratio;’

(c) the oscillating metian is twg dimensional, i.e. e?a_i:y cross-
' séctiaa}tak&n iaerpendigmlar to the span has identical mat’ioh'éad;
_ iarﬁ&iﬁf‘s is:; its own plané dgring the “m;o'tion: k‘

{(d) the fl;iw is ingcmpm‘ssible’ and Aoﬁ-wiscpu&; |

{e) the thickness of the tait surface and the am?uﬁa&e are smaﬂ in
comparison with the ‘chord; |
{f) the csc:i}.latian is p@riodic, |

{g) the tail h@.s a mean posittcm paranal to the interface.

Using thzs awumptiaus (a)~ (c), th«a prablam becwmea wo
éiménsion&lt As shown in Fig_. 2, the inﬁerfaca is located at y=h
The airfoil is put on the x-axis \S/ith its leading edge at "x:~/ and
its trailing edge at X=+/ . The chord is taken as 2 so that all
distances in this anslysis are meggﬁr&& relativé t@ the haif choré.

The interface divides the whole space into two regions. The region
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in whiéh the t;.éii is simaééd, y&h is &Msignﬁad by ”i”]aﬂd‘ﬁhe other
'.regioﬁ;‘ S84 ?/h is éesigmﬁad by "&". The .Vga-locitgf and &enséty Qf'
,. _ﬁhé"undi;sﬁu‘!j'becl,ﬁgw in ."t"cgiaz‘;i are idc:m‘gtzcéd‘ by Ui‘. and P - e.z;& ths
"::;,aé'rr‘e&gﬁon&ing quantiﬁiés in region 2 &‘ré avgnoté& by U, a::idv f.z, o
The assumption (d) makes the flows potential in ’c;ath,régiéﬂﬁ,
Les ths;g}e exiét ‘ﬁ‘he‘jpbtential funic:tions., 5‘:: and .é:;’ gatiﬁfyiag thé "
Laplacméliffﬁ?gntiaiia:quatian ‘f‘oi‘ vth@ flows in_regions 1 an’d“ 2. Far |
determiﬁiag _?f, and . .1, » complete baun&éry conditions should be
SP-&c_iﬁed . Thesé cdnditians_ are
(a) on the surface of the airfoil, ﬁhe normal component of velocity
._;sh'ebui& be equal to that of i:hg 'pr%acribeé mstima of the a«.irfsii;'
-~ {b) at infyirﬁty,' i.e. ‘;miz;ts far from the airfoil, the disturbance E;hiﬁlliﬁ |
, yanish, an;:i . |
(c)n ét the interface', the veloeity vectors Dﬁ the two sides of the in-
terface :m-é paraileai 80 ﬁhaﬁ the interface rermains a streamline
and the static p?emsﬁreg dn the two sides are equal. Kor talcuf
létiagl 1ift and moment, only é., wrill bs required. I—anéveé, sir:cea
bbtii £, ‘a,nd .é.z enteriinto the conditions at the interface, t&{e.y
muat’ibé investigated simultaneously. |
Using‘ the aéaum‘piién (e). tﬁe baum’zaﬁr can&iﬁioﬁé (a) &nd.
(c:j)‘ can be a?gziié&i' i;'t the undisturbed or mean positions. The assump-

tions (e)-(g) enable one to write for the boundary condition {a):
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V¢ = gl [ Loy Z B, cos "@j m

where »? is the velocity component in the y-direction and &= cos™
as given by Bq. (7) below. . |
| ;&acagse the Laplace éifferéntial é@ua&i«:;t}f is linear,

_the general solution can be obtained by superéosing glemehtary'
ﬁéi@kiong . ;X‘lxé. ele,;tpe:ntary s;alut.iml satisfies the lLaplace diffe o

' mﬁt}a} eéu&tioﬁ and part of the boundary conditions. The s'dpergo-'

- sition is then made in guch a manner that the rest of the boundary
‘eén&ition‘é are satisfied. The general procedures of the anaiysis
are s fcxilows: |
(a) Taking only one term of Bq. (1), E’. casm&', as the boundary cona—.
dition at vt,her au'foxl ¢am, the velomty yotantxal for a umform ﬂcaw -
witha;sﬁ iﬁteri&cé m ’ fi@termxne&;

{b) intreducing the interfaca, the velocity pménﬁiala $im and  Pom
ara*stj deterxx;ine& that ¢om+ ¢zm for the f},aw in raéicm 1 é,nd ¢.u’n
for the flow in region 2 satisfy the conditions at the mmrféae with
vanishing disturbance at mfimty,

{c) cansiﬁ%rmg ¢qm+ oy BB the elementary solution, the general

smluﬁc}’n is obtained by superposition

& = = A (bomt $n) @
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| where Am 18 de-tefzgnined interms of Br by the boundary condition
- aithe airfoil, Hq. (1). |
(d} using $, ., lift and moment acting on the oscillating airfoil are
calculated, in particular for the two baisic modes of oscillation:
bending and torsisn.;
{e) caleculations for sorne special cases are carried out in detail
and others érédiscuésed; and
{f) a typical application io the flutter analysis is made through 2
numerical example.

It is noted that the airfoil hlaa been set below the interface
(i.e. h>0 ). Since the aerodynamic force and ﬁoment bear a def-
inite relation 'wit‘h the motion of the airfoil normal to the interface,
the results obtained under the above condition can be easily inter-

preted for the case of the airfoil lying above the interface.
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HI. ELEMENTARY SOLUTION

(a) DETERMINATION OF fom

7‘om is defiﬁed as the velocity potential for the oscilléti_ng

motion of an airfoil described by
v(&',ﬂ'= et cos me , - ' (3)

ina mﬁif,arm flow gvithbuf intarface. In accordance with the the#zty

of "thin airfoils in osciliatiﬁg motion (E%.ef. 6) the whole syat;ex;h i‘s‘

r ijresaate’é b§ the ’twé; vbrtex sheets: |

{a)? the bauﬁd; vortex sgéet lying élgng the chord of the airfoil, i.e.

én the xaaxi-é be“tween‘ X=- lang!. x; +/ 3 and

(b) the:‘* wake -v#rtvex éﬁeet 1§rir§g on the x«axis from x=+| to X=‘Hb.‘
asaﬁmiﬁg ﬁl?'t tize motion has been ecéﬁriing so léng that transient
phanom_ena; have disappeared. ‘E;he bound vort_éx sheet is considered -
_to be made up of the 'tw:; parta (a) the quasi-steady ﬁs&rt whichwwﬁalé |
be pr;odueed if ﬁim motion were steady.,‘or if the wake had no effect

- on the nﬁctiqﬁ{aﬁ& (E)'the in.éuc_-:eé p@rt induceé by the wake vortex ;
Eg‘naﬁiﬁg the. &fstfibuﬁiogx of the vortex strength (or circulatiori) along
the xaagis by ¥ , the deﬁnitién of ci?culaticn yields

‘ ' » - p X4+4X X .
| Y X tY= é{m —5;( [J); u(x,o+,§) dx +jx+4x U<¢x,0-,¢) a’x}

>0
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or, by carrying out the limit procedure,
Yixt)= X 0+ E) — Ulx,0~,t) along y=o {4)

where Ulxoht) denctes the veloc‘ity component in the x-direction
on the upper surface of the sheet y=o and w(p-t) denotes the cor-
responding quantity on the lower surface of the sheet y=0 . Worit-
ing ¥on » Yim and Yaum for the strength distributions of the
quasi~steady vortex, the induced vortex and the wake vortiex re-

apectively, the velocity potential, @H.s takes the form

- / , .
Fom (%, ¥, &) =~37 - [va("f"-‘)’f' rrm(’fﬂ‘)] +an IX-—-—WZ’X, dx/ +

oo “ -
"5'!'1;.’/‘ Yam (3, £) tan k-??d; %)

according to the two dimensicnal potential theory.

Calculation of ¢oms . The quasi~steady paxt of the bound vortex

is determined by the use of the conformal transfermation
z=4(s+L) {6)

' T4
where z=x+iy and g=-xe€" .
By this transformation, the airfeil in the z-plane is transformed

into a unit circle in the % -plane with the relation

X = Coc & (?)
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The radial and tangential components of the velacity in the 5 -plane,
1?;,, and %6’ , are easily found te be related to the u and v compon-

ents of the velocity in the m-plane by

‘?4= \./‘_.5/}15. | | : (8)

and Fo= — & 3iné S _ ' (9)

By ©q. (8), Bq. (3) is transformed into the boundary condition on
the unit circle,

.é—. éwtf in ( S/, 1 |
— S (m+1)O —~ Sin (m—1)
Fo= "z LOMImEDOmSmimmNG | (10)

The velocity potential in the Z -plane ‘evidently has the general form
o cwt 2y : | o
_¢(JL,9,#)= e [/B,G +,;2=:’ ;;LfnSIn ﬁa_] : - (11)

wheye the /3 's are undeterminad constants.

Using Eq. (10), all constants except /B, in £q. (11} are determined.

For m=uo, ﬂ!:::—/ ,IB‘L=IQ€=._.=O
For m2z, /_3”'" 2.770_573) Pomt :"azf:n+1) | other /g"; =0

To determine Fo , the Kutta~Toukowsky condition is used. ~The con=~

dition states that the velocity at the trailing edge of the airfoil should’

be finite. By Eqsa. (8) and (9), the condition becomes that



wll=

;4:?& =0 at fd=0 . 74 satisfies the condition as seen from

Zg. {10). The condition =0 at f=o0 yields

for  m=o0 /9,,:.{
For m=|] /3‘,‘-‘-' ‘f
- Fop #1220 ’ /eoa o

Jony can now be calculated directly by the forrmula

Sl'}’lﬁl

{13)

(14)

which 18 vbtained Ly the use of ifgs. {4) and (9) and the fact that

AY

Z,(*N = Fo(+8) ag sesn through ©g. (11). Thus

- wt |~ Cos wt T,
¥, (xt=-2 et 228 5 et =x

sinb 14+X
- - .Mt_ l‘ A -
N, D=~2 e Sine =-2 et e
and %m(&t) = —a eL S mﬁl for wt3a

The total circulation of the guasi-steady vortes, [ on
. N

by integrating $om from X=-1 to x=+/ | andis

3

ot

z ’

[:o (_é)-‘—'f’%?reé

(15)

B s

rine

o
P
3

£,

, iso

/_;,‘(1£~)_~__-7re““’é and [ b =0 form2a{l5)
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Calculation of ¥im . The induced part of the bound vortex may

also be mvamaiﬁd by the conformal tranasformation given by Zq. (6).
The induceéd vortex distribution on the airfoil due to & single free
vortex with circulation T located at x=3 and y=o has been eval«

uated in Ref. 6 as |

: r’ py = ‘ :
= : Lt /
Y= 7 3% [i7x —fi::l— m)
: ?uétiﬁg ‘ /M: D2m J; and integrating the result from x=/ f{o x= oo

- yleld

J"m ©X +) T ¢ THX ‘/I déh:x ‘ ) 3 {1 ) )

The total circulation of the induced vortex, //m is obtained by

i-umgraﬁon of Bq. (18) from X=—/ to X=+/ , and is

[im (8 7=' fl'wa:zm (3,€) (/j:g ~1 )krdg | (19)

Calculation of Uam . Assuming that the wake vortex is left in the

fLui& with invariable strength and position (i.e. the wake vortex is
maviug‘away from the airfoll at the velocity ;, along the x-axis
and with fixed strength) its strength distribution, Yam , can be ex-

pressed as

.3 -
‘ lt -~ = ,
Gm 3,8) = I o) (20)

where Im is undetermined constant.
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To evaluate }m , the law of cnnser;vaticn of circulation is used. The
law states that the total circulation of the w;que system is invariably
zaro. Denoting the circulation about the 'aiyfbn by [m (= [omtim 5',
the increment of /i, 3('{?:" ¢ must be equal and oppesite to the
circulation in the wake between 3 =1land F=HU dt , or %L 04t .

Thus, there is obtained
49% + S VW =0 | , | (21)

Putting E.qs . {16}, (19) and (20} into £q. (2l) yields

L am ,
.;70" KoleR)+ K (En)

(22)
. gz S/ 4
g HCol ST #K, (62

qm=0 for mza
where JZ,L%": aﬁd K,, ‘and K, are the modified Beszel functions of
the second kind and can be expressed by the Bessel functions of the

first kind as
K==~ Z [ +i e ]

Kn=-Z [ J- Y]

a

® e oo "

*In this deduction the following integration formula given in Ref. 6
is used

j,me—an}(,/g—f';‘ -1) d; = K Un) + K ) —2_’:: e

- N :
(22a)
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Putting Zq. (22) into Bq.(20) gives

S egw(f—%)

Ko+,

Va0 (3,8)=

. 3
w (t-5)
5, o= ="1— &

and Tam =0 for mza

 where /5, and M, aré used as abbreviations for A4

(24)

and A ) |

"Eq. (5) together with Eqs. (15), (18) and (24) gives the complete de-

‘te rmim&tion of Pow.



IV. ELEMENTARY SOLUTION

(b) DETERMINATION OF frm

] ?m. is éefined as the vel;)city pmﬁential to be a&deé»t@s ¢om
- fo ftx;rn;a s:m_» ;é‘lamemtai'y,velncitf potential ﬂ:atisfyin‘g the¢ boundary con-
ditions at the il‘i,t‘kerface aﬁd at inﬁnity for the i}aw in region 1, whiié ; B
another g;,afént'iax 9‘m is, defined as the b.érmspc?ﬂding elema'knta;fby' |
ve-loc;ty‘pbgential for thg flow in region 2. The ‘bc-mndarry eenmﬁiens

at thé interface, y=A are given by

v, . Va_, . - .
W+, Uz +Uy ' at  y=h (23)

b= ke Cat y=h ()

‘Neglecting «, and 4, inc;_dxnpa:ison with T, and 7 and introducing

the veieci_ﬁy potentials, £q. (25) becomes

ij,m;Wf"“"} - A , — 3
e +'"”3y” %3;3”’_0 at y=h (27)

Eq. (26) can be replaced by

b - 28 at y=h ; | (33}

9X 2x

because F,;}p& at y=h and x=-o for all values of # . Using the

linearized Eulerian equations of motion in the x-direction
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pax T OPE U 3%
nd AT 1
~and 7k = s THe X

é:“;q (28) becomes

a".[ ch Py 1.8 3 |
ST Lot b~ #im] *u's"ﬁ[“"%m*%’-"ﬁ Gdenl=0 ot yap (29)
where the velocity potentluls are introduced.

f}?aﬁeter;:nine Sm BTG Pam byﬂ‘ﬁqs;  (27) and (29), it is coavani'e-nf
to _int& i’i‘xéﬁﬁ %n the E"aqrier integral forms. The apprapx;iat& ex-
‘gtgssiam for ¢,m and ‘451,,, satisfying the ..Laplage éiffere&dtial '

equation and vanishing at infinity are

i [

9!},»"‘1?'"- e” f ef” [g,,,u) CooAX + byid) Sr'nz\)s’] dA for ysh (30)

]

| zw‘f W _,_A}l : "' ’ ) ’ ‘ .‘, : . . . .
QSM(X,)':IQ) & e [d,m(..)\) Cos AX +ﬁm£~\)5m,\xj ar tor y24  (31)

whéxe am , b,ﬁ , %Am  and /Bm are undetermined functions of AL

Fom given by Byg. (5} ¢&¥: also be written in the form
. ok [® Ay . o
éw(x,y,t) = e jﬁ e {:Am(-'\) CosAX + B (A SZhAXJ dA (32)
where, by the Fourier integral formula

st <A o .
S AN =k [T, (s,y2) cosds ds (33)

l: t ~A @ v ' B
. é“” e Y5M<A)-';-7L{f_m ¢m(s,y,£) SinAs ds (34)
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Dutting Saq. (5) into Tq. (33) yields

[t / S, : i~ :
2" Am OV =-_{f;\ {/‘ [J,mfx,t)+.?’,m(xjf)3 SinAX'dx’ +

+j’> Yam (3) SinA3 %;} o (35)-

by the use of the integration formula derived in Appendix 1.
Wutting inte £q. (35), £q. (18) for Yom , £q. (18) for ¥m and
. Bq. (24) for fom yields, by the use of the integration formulas de-

rived in _Appehéixé,‘

Aoy = {,zn,m)_

K0+K g =) js+;('\’) Ma,5+l("2) +
R
Ame€ T ) os A F R Sin K }
K+ AT~ J?.‘L:
A,mpzt;;{ L2 S " s D) Mage (R) + (36)
: ot ), 570
+ T e A cosA+iRSinA
Koth, — A—a?
RS\ PR B I ] £ m=2,4.6,
An ™ = =355 {() Lmm or ,
Am(;s.)::. ) : . for - m= 3,5,7,

where Mn is given in Appendix 2 and calculated in Appendixz 3 and

are
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M(ﬁ.):’”f[;‘( + A,

M= [Tt g 5 gy

Iy Tas ) Mas(SL) +

Similarly, the following expressions are obtzined for By from B
R Jodn) — 47 2

(34), .
. e )
8ot = > ' Ko+ K, 555
| T '
i ire (L cos A~AsinA }
/frow\’, AL - ®
T(r\] anm S
B o = MA{ ar 2 2 ég—-) Tas ) /V/gs{ ) -
iR '
e LR Cos A ~ASin A }
B\ = for = R,4, 6,
Z ‘
oZIJ;')} for m=3,5,7,

= A
Bn=g05 60
Putting £qs. (30)-(32) into £qs. (27) und (29) yields four linear

algebralie equations for the four unknowns @ . bn, . %m and /3;»

S@lving them, the results for @, and bm are
- £ | :
x a«m Q) = D(‘Z.AL~F'L [(f‘/\ V) A A+ Z"’k ﬁml)‘)} |
—2AA 2
[ 7 AAp N = QUA~ ) &,,,M)J

b (A) = a(‘e""\l"‘/’



where

g 1o 14®
/3':_-;& (l1+4%)
p= 1- 147
y=250-2%%)

(40)

Z,::»‘;;,Jljé (I—%)

and 7
Zq. (30) together with Zqs. (39) (36) and (38) completes the deter«

mination of ¢/ .



@, is defined as the total veiocity potential for the fisw in
region 1 and is obtained by superpnosing ti.e clementary velocity 20«
tentials, %mw+#m with the unknown cocfficienis Am as given vy
. (2). 2, in this geunersl form satisfics the Laplace differ-
ential equation and the boundary conditicns at the interface aad at
infinity. The only condition left is that at the airfoil given by “7.

. e ces . 22

(1). To satisfy this condition it is convenient to expand zy at

y=0 and -/«*</ into the Fourier series. For don , it i3 evi-

dent that

cwt

¢ N
9 %o = e  cos m@ (41)

2y

)/:D

For $m . it may be written that

cwt | ©
iﬁ”’} =~ L %’N— 2. Cam r:o.sfze] (42}
Y ly=o n=|

where by the Fourier secries formula

T

lwt L 2 . 4
e“? Cam = -ﬁ-jo [-a’)‘f ,m[Cos 8, Y, t)}yvoCOSﬂﬁdH {i3)

Tutting ©q. (30) into Zq. (43) yields

“@ @ .
2
Cogm = & ) /0 A,y (A) _7;1(»\) Md A for n=0,2.%"
' (<)

n=i - 4 v _.
ac—»“j b CA) T, (A) A dA for n=1,35,.
o

it

Crm
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by using the integration formula derived in appendix 4.

Putting Eq. (39) into iiq. (44) and using iqs. (36) and-(38), the

final resulis obtained after some simple algebra are

-y Cano = 5’._& [/{NM/'-(A) + 65,5 Qam,/”"é) -+ L?'E’Ln,n“’/‘”]"’

~ % ko [ R+ 45 Sy 0uh, )= ig Ton(RA$)]+

- if:fl[VM(AAZH% V@r{,/g)] .
| (";wcdnﬂ,oz l%‘ [_df N.znu,ad') = 45 Qano™ S ,+ “F P, B 5)-]‘*" '
”ff“fﬁl'ﬁ? U R 1) +§5. S, (b8 + i Tomn(SL4,$) ] +
+ 2 [V th,) - 2 Vomay h$)]
' G, = %‘% SO,

- % -—J-KD+K‘ DLK’M(JZ,A) +945 SM(JZ,A,S)~E;TM(J2/1,/5)]+

-
o N
T [ Vo th ) = & Van 645




-d 3

n+|

) S, T ﬁ“’ [7‘ OMH ' thy + 3«? P&nw(/"‘”J +

*LK,,*‘K,D ,(ﬂjh)+$55d,,ﬂ(.izlz 5)+¢? TM,(JL;,55J+

et

* ot i5,

[Vanw (h, ) ~ % VaneiCh$) ]

ntm

&) Canam= ﬂ/;_':*i.[—y()mﬂmm+7$ g.n,md""] f?r m>

‘M-m . y : ' .
£ Consg ambs MM“[?O&MJWI(KH-gg Panw,amw“fﬂj for m >/

F-‘L
&) Cavrm%-;:‘ ua(_a _QM,MH (4/5’) . ..for m >/
m iam :
€Y Camiam =-___3:4‘d£ , QMH/'U" (h,5) for m >/

where the following definite integréls (with their principal values,

if improper) ere defined.

-4

. e
Nmn(/.) = [ e”u’)‘,];(}\) T (A) A for |n-m)=135,--

' @ _ dA | '
Onm(/’) =[’ e d}"‘J;,p\) I ) N for In-ml=024... and m2/

v ® _am 2 -

(2]
o —«2})1 \
Q. 9= /o TN T 573 for n-m=1,3,5,

o A '
En (A,é’).—.j e w\_/;(z\) Cos A f\;;é‘;;_ for n=o0,2,4,-
A -

F, )= / e T0) cosA ds’* for n=1,3,5,-
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dA
G,l(/i,é) =-fo ““’*I,Q\)S‘n&ﬁl_ﬁ_ » for n=1,325,---
H Ch, %) = ] TLSin 3_“}{ . for n=0 a4 -

the following functions associated with the definite integrals are defined

R.,Zn (R,h) = ,Z;_: (h) MJS‘H &3] N&nJ.z_tH-; (A) (40)

S=wO

Roani (b)) = Z e /\// ) Ny as )

S=0

. |
San (R4 8) = S e Maser ) (s aoes Ch,5)

s=e

SWL-%A,S) Z “) Mas(‘!z) Q +as (4}5)

J=0
T,, (L8 = Z €) Mes(R) Par, ;.5(/' $)
7;,,,,_,(J>—/1 §) = Z (’ MQS-HCJ)') Paenf-/ asi(55)
Vonthsy = E,, h8)+c8 H,, (49

VM’(“, = GMH“'/‘)~¢5 Fong, ¢h8)

g+
R

and the other notations are given by Zg. (40).
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Adding Eqgs . (41) and (42) and superposing the results give

2%

ot =@ Comt o
= =¢ 2 Anlcosmo+ Somy S o, cosno |
y y=o0 =

2
. rreg
eiwt[(xf +LZM¢ A+ S y) +£c A.) o
= o2t Loy " rrrr Ty co
ol L ) Z( = S”QJ

=i

by 'interchanging the repeated summations, provided that the result-
ing series convex;ge.

‘Squating the coefficients of cos#8 | in £qs. (1) and (47), an infiﬁite
sef. of linear algebraic equations for the unknowns, A's are ob-

tained and are as follows

20
Ao + é Z Com Am = % (48)
m=o '
Laid : @
'/I',,“P ‘_2: S Am = 5,, for n=1,2, 3,
M=p -

The general solution is then reduced to the determination of the A's
frc;m Eq. (48). In order that such an analysis has practical value,
it is_ret';uired that C,,; tends to zero 80 rapidly when m increases
for fixed n that approximate solutions can be found without toe
much labqr and with enough'acéﬁracy. c,,é,,_ is expressed in terms -
of a number of definite integrals as given by Zq. (45). The evalua~

tion of the definite integrals {s then the next step of the analysis.



2B -
VI. GENERAI SOLUTION

(b) FORMULAS FOR THE DEFINITE INTEGRALS

4 number of formulas aré abtéined far the definite integrals
defined in Kq. (46) .- Zome integrals are evaluated under the two dif-
'.iéru'nt coﬁditions: 4.>0 and ~/I—'f’ due to the difficulﬁea in evaluating
them in general forms.

Evaluation of V). For Aum , the following formula is estab-

lished in Appendix 5.

® _aha

Ny = ) €77 T 0) T ) dA

= B[ costnmt (/RS LS (a9
° (cese )™ f1 xEsne '

where h >0 and n+m >~

/
K= ——
Y
In addition, a recurrence formula is obtained for NV,m in Appendix -

6 and is

1 for n=0

N per = Nn,n~l = 24 N, +{ (30)

0 for nt

By the relation that - JocA) =6/ J.4(0) , it is evident that

(] o, n+m
m= N = N = 6 Ny o (51)

N

’
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Using i2gs. (50), (51) and  Num= Ny, , the evaluation of Num  is
reduced to that of /Vpn . The ﬁrst.two integrals of Nan are

easily obtained by the use of £q. (49) and are

K K (k)

l

N, thy

1.

M, b = s [a-xy Koo =2 Ecx ]

" where X and £ are the complete elliptic integrals of the first and
second kinds respectively.
It is seen that Eq. (é‘;‘) also holds for #=o when [n-m/=2s¢/ . The

following formula is easily obtained

N e () =_f0 Ty () Ty <) dA

(52)
= L < Los =)l g — oy J__
0 Cose

where jn-m|] = 254+

Bvaluation of Onm'®) . For Onm , the following formula ix estab-

lished in Appendix 5,

Opthr = [ € T Tt 2

[-4

KT cm(rr-m)ﬂ ( (=K = hie)"* 0

Tty 0 (cosa)"""m (53)



where M= 7/%/"% P h >0 snd )

Onm can also be evaluated in terms of N, , L.e.
| 2m Onm= Noa,m + N n, mii (54)
which is obtained by the ;‘écurrence formula
T Q)+ Ty Q)= 2m L2 (55)
Alsé it satisfies. the relation

" m bea Vel
Onm: Oﬂrm =) O—n,m = {) Oﬁ,-"m = ) Qrb—}fi (56)

Eq. {53) also holds for /=2 and »+m>c and becomes

[+ o]

0. (a)-——jo Tan Ty 22

- < 2 Yy (b7 T
= - - X Sin M)
7T nm) /0 cos (n-m)h 1719 = 3 2 F3

In particular,

i for nN=m
On (o) = { . and [n-m|=044.-.(57)
m 0 for nim :

as required in this analysis.
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Svaluation of fm, onm. En . F:; R G,, and Hn when A>o . The

intagrai Prim can be written as

Py R AdA
B th$)= [ e L T0 5757
A A5

]

e

i

[ eFTenaZes [T w2 ] sy

The first definite integral of Eq. (58) can be expressed in terms of
the Whittaker function, Vam
o

-
-_/0 e 'J;M)j”‘('\).)\+$

Nimbas

| . s . ], g
St 5 S Censmeasen ] ms (85) W 2k
s=0 S![Ulntsv1) [tmiss)) [ Tntmest1) »'ﬂ%ﬁ‘iﬁ 2'%&5? (59

=

as deduced in Appendix 7.
By the formula for TV t# £  derived in Appendix 8, Eq. (59) be-

comes

oo ’ S » - ' -
~2hA o+ '
fc T ) By = e T T8 Eicansy+

0o s ~n-m1~RS _ pimpasd M
¥ ) F(n-l-'m*.z._sf-l) (44) Z /7h+m}~2,$-7m)(—4’./75) J
<= 5! TCntss) [mrsH) [(n+mistl) Zo ' :
> . (60)
where £((x) is the exponential integral defined as
® -t
X0 (60a)

Ec (-X)=~] . de for
x ¢



‘&(:}an
By the use of £q. (60), the second definite integral of i£q. (58) is

obtained

je LWLW;—;=—e T8 Ed(2h6)+

[

o R T B V-3 HEMPRLS ~
& [rnsm+ast) (G4) < e
+st0 S Cinwsit) [Tmestt) [P(nems) o [ r s ) (248) ](61)
where
— - c ' ~LTT
Ep= £ [ Ecexe v Ecxe™D ]
as given in Ref. 7, pp. 1-2.
Futting Eqs. (60) and (61) into £q. (58) yields, for »-m=o 2,4 -
Boih =2 L T8) [ €™ Ec(-ahd) + €% EC (a46) ] +
nEMIRS-R.
o0 S —N-m-R5 - 2
& [cn+mias+) (4h) _ p
+5._=Z,, s tnts+1) [tm+544) [{ntmst) lﬂz,__o F(n+m+u/9 (=hs) J
(62)

By gimilar procedures, the following formulas are obtained

® b gyy A
-6),,,"(/7,5)?]0 e JaN) T 5233

| 2h8 - —
= ~£L5‘J;1($)‘];n(5) [ € Lot-2h5) + ¢ aré Ec (.suf,,()j +



ez

L= apt

[Z [cntmsas-ap-1)(245) J
pzo |

~-N-Pr-25

o i &’ [(nrmeast) (44)
§ =7 SITUntsH) [Tmestt) [irmmisH)

for p-m=14,3,5 ... - {63)

o AdA
Enth) =jo B-MAJ;M)‘ CosA J2g2

" 2h ks =
=L T ass [ Ecanr P E () ]+

® s i A-n—aﬁ ,”-n’/-l ‘ . ap
> 9 [rsst+3) }: 2. [[nrzas—am) (R45) ]
M=o '

L
VT 27 [(asH) [ (en+as+])

fOI‘ n: o/ d‘l 4’/ o (éé)

_ e ;MA A
Fo thsy= [ 7™ T oy cosn 122,

== T st L—e"‘""‘ Fi(-abg) + c* Z:':Z(M.S)]Jr

nAws~3

o P : L ;’—-)‘l"&s,_ e Q,“‘H
+L L 58O tnsas+z) h [ cneas- 1)(%48)
Vi S sf:“o‘ [P(as+l) [(an+as+l) /%.o. 7 ]
for M=/ 3,5 - (65)

o
FYAY ' A4A
Gn(_I;JKJ ::/D e J:,M)JIHAM.«._'J,L

::ai“,];lﬁ)ffnf [{zASEL[-MS) + e_—‘uﬁ E(%g)) +



“3la

N+RS—)
@ ~h ~R5— o2 U
(n4R5-2pH) (R4S
i =0 »l’"(.z.sﬂ,)‘f” (a‘uﬂ-ds+&) [ m=o # ) J
for n=135, .. (66)

(22
~2hA . dA
H, M,s):jog TN 5 F

= _._, J (8)sing l 2hs Ei(-245) + R EE(&AU}L

”n 9-2.$-4L
-rroes5-l ..a/d»!

[Z [t rasgp (2hsy ]

@
Ll S - [tnrast2)4
i) s=0 [Mas+z) Cantasta)

for n=o0,2, %, .. (67)

In Eq. (59), using the asymptotic expansion for the Whit- .

taker function for 246>/ gives

bV} } .
jw -2k ,\ J o ~ ;; é—f [tn+m+as+)@h) i 5 [entrmtassVa) '(63)
[ ) )A+$ s ‘:J’r("l+5{-l)F(m{»’gﬁ){’(;”m,rs,‘,,) 70 (~34§)

Algo, for 245>

~Rn RS~

@ _ahA H F L rtimtRs H) (44) "f [tnsmsaseH)
A/D € J';CV\)J;’ ZS’[”('H-#I) [ tmesH) Ttnsmssty) l‘) =0 (348) (69)



Putting ©qs. (68) and (69) intoc £q. (58) yields, for 245>>/

: ~H-m-25 .
S imimgas) (4h) o o [Untmrrastarra)
P, (48~ Z p |

7
S S Ctntsry Ptmes1) [(nim+5+) (2h§ 12> ¥ {70)

Similarly, the following asymptotic expressions are obtained for

Zhs2> 1
Qopih 81~ 5 S tnmeasiy )T S /7(”1”"1”‘4’4'%3’#)} 71
53’ s=0 5! [tnts+)y[(mvrs+)) [ (nimassly ~ Jzp JEYY; )w ( )
m Ed -— -
E .51~ 1 S onvasrd) ! [ = [(rr+astariz)
H IS L, [rs41) [Mansrs+i) P=0 124§ )= (72)
~-zS-l, CO :
FLA $) Z =" [(n+ast L)}~ [ F/n—i—gjt,z?-!-/) } (73)
" &F5L5~o [lasH) TtantasH) P=o 279 ud
@ ~Heas.a3. o
4 §ra - ) [(rtastd) b [(r+agrar+s) ] 74
Gn( %) /% 5 ;:Zp’ Ctas+a) [P antas+a) ?Z*'O (ki ).eVﬂ ( )
i I ~—2§~2
H (},‘;),.,_lw& (;;'* C(h+z,s+%:)fr i / (n-huh;zﬂha)] (75)
n TS 5 [as+2) [(an425+1) = (2h$)2”

Evaluation of fFom + Cwns En s Fn, Gn and Hu when h=oc . The

following formula is established for Fam in Appendix 9,

[+
F;‘mro,é)xf j;m;]:,,(z\)-’3-4'9—~
I

/\Q._.JJ

e

=-L J;(éJ);(é) for n-m=o24... (70)

®
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By the use of Eq. (55), it is easily obtained from Zq. (76) that

B N
Q,,,@H= / L,

=-—I~J;(6) Y, (%) for »n-m=1,3.5,.. (77)

It should be noticed that the subseripts # and # oa the right side
of Eqa. (76) and (77) are not interchangeable. Using the expansions

(Ref. 8, p. 22),

cos\ = T+ a2 = F-—)J
m..

S/nd = 2 Z e m

m=e

the £ollow£ng formulas are obtained

> ‘
AdA
E@(G’,S)z‘é J;,;M) COS%./\Z:;‘L

n:l _
o VRS S AT S B

80
- AA
Ferato® )"_fv Tony ) CosA 5273

?*%{WL”H\)DL ~Je Yartl 4 ZH (Tomy Tarm ™o %M:)"'@g!\';w} (79)
=y



~ 34«

@ . AdA
Gn?ll-ﬂ (o, £)= _-{ J;umb\) S;nlm
(80}
51 .
= “I{ZH ( Fyo .em,u Jamﬁ YMH )“"fun Y-MH}

2 A
Hﬂr‘(o’&):‘fo I o) 5’”"\*“\4« 52

n-i

=~ 5 {Z -2 (j Ya&n{-) Am+; Yé’a” )+ %"f Y‘u’}

where J, and ), are used as abbreviations for J.(%) and 7,¢J) .
The calculation of £~ P, &, and H, can be simplified by the use

of Bq. (55) and the relation {Ref. 8, p. 77}
T Vst = Tt Yo == 25

The first few ‘V,; defined in Eq. (46) are obtained by the use of the

above results and are

(82)
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Kvaluation of A, , 9. and 7. when 4=0., The infinite series Ra de-

fined in £q. (46) becomes, when #A=0

n-f n =
RM(R,O’.:;%Z‘ [é MM-H(“Q')“Z M,{.ﬁ-[ (JL)]

S<nti

» ” o0 (83)
Ry o1 = & [ 32 Myim- 5 M&sw}

Sz e Sxhn+l

by the use of Eq. (52). Using the summation formulas derived in

Appendix 10, Hq. (83) becomes

-}

R, ro=5 [a,s_é Mg (2 + 5 [ Vo +2J, ) ¥

| (84)
. (—-—,)n . ' n ) T . ¢ e--l.uz-a
R, u9=5 {M.+ 22 Mestn) +3 [Frm-io-£ & §
Uaing Zgs. (76) and (77), the infinite series 5, and 7. defined in

Zq. (46) take the following forms

o S=n 25t

! rn-t 53] . ’ [«0] $H
S, 20 H=LT > 6 M (m) Y (94328 Z 6 M, AT (4
{85)
T — - 2 sh
Sank 08 ﬁggl;mwsz 6 WMoel2) Tas (D + T Ve 20 Mo b Tos08)
=e :

S=m#

n~ 2 SH -
T (208)= T L6 Z, 63 Myet) Y9+ T Vou®) 260 Myt Te5(®)  (86)
S=p S=n

)

. o
7 S )4 SIS ~ (_)S‘H ) (4
fwcago,&),mg T I(s);o&) ,{/me_)}zwtéw;— b/ +}5)ff; Ly ‘)J_;JH )
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VII. GENERAL EXPRESSIONS FOCR LIFT AND MGMENT

The liit, L., and the moment, i, are defined as the aéro-
dynamic force and moment acting on the oscillating airfoil. In the
following analysis, L and M are taken at the mid-chord point, L is

- positive when it is in the positive y-direction and M is positive when

it causes diving motion. Iike &, in £q. (2), L and M can be ex-

pressed as
(87)

where l.,,, and M, are the lift and moment produced in the flow rep-
resented by the elementary potential, %+ #m , and the constants
A5  are those of ©q. (2) and are deter@ined by ©iq. (48).

In the flow represented by #,.x , the statié pressure varies

continuously, because the Eernoulli's equation gives

f,,,,(x,y,f)szl [%%M+ZZ,%L"' + constant, for yaé

where both ga’%m and aﬁém are continuous as seen from Eq. (30).

| The forces acting on the upper and lower surface of the thin airfoil

are equai Qnd opposite and therefore no lift and moment is produced.
As defined in Sectim'x [I{, the velocity potentia; Borm repre=-

sents the oscillating motion of a thin airfoil in a uniform flow with-
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out interface. The lift and moment produced in such a flow have
been calculated in Ref. 6, III, by the momentum comideraﬁ@oﬁ of
the vortex uiotﬁm representing the motion. Usi.x;g the nbtaf.icms

of the preasent paper, they are

L o~ P et T, [ 5y

! !
M=, zz',j_l Foms X <4 7, —;—’EL o 06) (i Ly dlx + o

+_L/>U'f.__.¢a.}_.‘t

where the firat terms are the quas!-steédy valﬁes,,the second
terms are the contributions of the apparent mass and the last
terms are the direct céntributions of the v;rake vorticity .

Putting into Eq. (88), Eq. (15) for L., , _..q (34) for %am
and Eq. (16) for [om , carrying out the simple integrations and

summing the results according to Eq. (87), the final results are

L=-mpue {“’“ °+K K,,+K, A A*J

M = a5 et [ ol 4 (iR

o+ VA~ Aat ﬂAaJ (89)

4-KK

where A, and A\, are the abbreviations for /.(cJ/Y and H(LR),

It is seen from Eq. (89) that only the first four constants, 4,, 4,,
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Aa'_ and /43 are required to be solved from :3q. (48) for the determin-
at;on of the lift and the moment.

"In the following analysis, the two basic modes of oscillation:
bending and torsion, arc considered in detail. The bending oscilla-
tion is defined as the translaf:ory motion normal to the flight direc-

"~ tion and the tofsio_nal oscillation is defined as the rotational motion
about the mid-chord point. The boundary condition for the former

may be expressed as

Bo ¢'w~t~

' _ Ve = =" e - (90)

where 5. has the dimension of velociiy.

The boundary condition for the latter may be expressed as
V(H,t)=ke°“’t [:—_L,z B, + 5, co:ﬁj ‘ (91)

where B has the dimension 61’ angular velocity, the éecond term

: repreaeqts the upwash due to the angular velocity, and the first

term represents the uﬁwash due to the angle of atta‘ck at rotated
positiona . Since the first term of £q. (91) can be included in Eq.
{90), it is iconvenient for presenting the results on lift and moment
to use only the second term of Eq. (91) as the bouﬁdéry ‘conditiox‘m
for the _tdrsional oscillation. The oscillation represented by the
.aecoﬁdv term of Eq. (91) will be denoted as the "torsional" oscillation

in order to differentiate it fromm the rezl torsional oscillation which
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is represented by the complete expression of Lg. (91). The lift and
moment for the real torsional oscillation are then the sums of those
for the "torsional" oscillatioﬁ and those for the ﬁending oscillation
with B, = = 5, . In accordance with Ref. 6; the lift and moment

will be presented in the non~dimensional forms,

L_ .
7 and M where, for the bending oscillation
e 0
ot
Log =% Br
(92)
M,s = B2 B, 6"
O
and for the 'torsional" oscillation
rwt
. LQT :'."F}DJH;B’Q (93)

Mar ____7_[%1_1_1_7’ B, e.‘:“’t
L.s, M,z ‘and Lorin Egs. {(92) and (93) are the respective quasi-
steady values in a uniform flow without {nterface. The correspond~
ing value for Moy is zero. The value of Mot given in Eq. (93) is
a'rbitrary buﬁ with the dimension of mmoment.

In the preceding analysis only the case, h->0 .i.e . the tail
lying below the interface is considered. It can now be seen that the

lift and moment for the case of the tail lying above the interface
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are the same as those for the case of the tail lying below tl;e inter-
face with the same vertical disténce, A, provided that the density
and velocity of the undisturbed flow in which the tail lies are P
and U, and those of the other flow are Pe énd U, for both cases.
Based on the p;hysicél fact_ that the force and moment depend only on
the mo?ion of the airfoil normal to ﬁhe interface, Eq. (89) should
give the force and moment acting on the airfoil lying above the in-
terface if force, moment and motion are now éositive in the re-
veréed directions. However, a ch#nge in the sign of motion means
a .cha_ti‘ge in the signs of lift and moment, becausé L, M~ e*?t
in Eq. (89). There_foré Eq. (89) can be used without Vchange for
the case of the airfoil lying above the interface. |

Before calculating the lift and moment in detail, the

ranges for the varicus parameters under consideration are listed.

:J_'_l' =J.. —gé —-!} _ Y,
h (C’C ) ] i—m} ,, {"’D,) R"‘aa;)
@ >h >0 Wz k ZO

' ’ w2z fZ0o |wz SL zo0

h =0 /-?—'-;( Z O

where the case, /=0 and aoa;éw is excluded, because its lift and
moment can be similarly interpreted from those obtained for the
case, h=o and 1>%20, ¢ s sometimes take‘e.n as unity for conven-
iencefe in the following analysié , which is consistent wiih the assump-~

tion of incompressaibility.



3

VIIL. LIFT AND MOMENT WHEN ¢ >

- Due to the ;nfficulties of evaluating the definite integrals
iﬁ generél forms, oﬁly special cases are carried out in detail.
These special cases , besides having advantages in mathemat-
ical manipulation, aie also important from:.the physiéal point
of view. The first case studied is af»f or A> 1 in the no-
tations of the pres'ent paper. (Since c, the chord, has been
taken as 2). Using the formulas of Séction V1, the asymptotic
results for the case, h>>l . vare‘: easily cbtained. As seen from
the equations listed below, they actuény yvield good approxima-
‘tiona.e‘ven whefh 4=a , which ia very close to the value used .
iﬁ conventional airplane tiesigns . The investigation of this case
therefore has practical value. It is féund convenient;te discuss
the ¢asge ?/z 72l , by ;:onai-:'iering the diffzrent values of JSe
separately.

(a) When Rt is so small that A<</., The asymptotic expansions of

.Nmoﬂ') and Oum#) for A>| are obtained by the use of £gs. {49)
and (33). The approximate expressions of Pm(4#), Qumlh ), E, (4, 5)
Falhs) | G, (4,5 and Hulh$) for h>>1 anci h<<l are given by |
Ecis . (62)-(67). Using the above resulte, the associated functions
of .:2q. (46) and then the coefficients, Cam of Zg. (45) are calcu-
lated. For the bend'mg oacillation, putting B,=8:.= =6 in Eq. (48)

and then solving for A,, 4,, A, and /43 , 5g. (89) gives L and k.



Dividing L and M by L. ond Mog of 15g. (92), the final results are

Ly . I+2l4(1-%)~ _ryt 2
(Lof;." '“ﬂ"j”fﬁ‘*“ (I+169% “217“1“ + -——%,,,fi+ O hiZ ﬁ/ﬁf )25.4

(94)

M) o v iR g st Ir2 b0y 47? -t /-/é A
(MO)B I+i + T id% xJL(?/:JL i"'/t" ﬂ(JZJJL '7?;,—‘ %)

For the "torsional’ oscillation, putting B=B,=8;=--=0 {n kEq.
(48), ‘ similar'procedufea yield L. and M. Dividing them by L.+

" and Mor of Eq. {93) gives

L ,. - 142 (-4 1-—»(i -4 20 i
(LD)T—- I*‘l%’,{'}' [ 1+ /}éz)a’ JZ,!?;QJ'L -1 ﬁz "L'+'0(J?.A.fl y /14‘)

(95)

~f- L2 . 2
(X Moy Tl = -bjzztzpu Hﬁ%;f; L »JZ./?{MJ— O(n, ha* Jl._,zlh SN

(b} When JL is of the order of unity. For this case, the asymptotic
expansions of /Z,.,%J) y @Onnh® , EL(hs) |, FL(hS |, Guihs)
and /. 5) are given by Egs. (70)-(73). Using the same ex- |

-panmons for /V,,,.,(‘) and 0,.4% and following similar procedures,

the fina{ results are

= i Mo - AL S
(LOB 2 KUH\’"—{( 1'4'(‘;4—:‘\’,)[-( ‘2T ar T 3Rt

RV ey M‘° _AM, AT I [__'- 2
d%ﬂ’ﬂﬁ( & +£f K+~P\'(azn:" Fx a!ﬁ"xs A% 4¢¢(/&;}+
MM, 3 2 L
" 2L KGR, ) ’M S) z(prr) dJZ 'Y )J} + 0! ,,4.,,,@16,)
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q. (96) are also valid when JL>>/ . However, focr this case simpler

expressions can be obtained as below,
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(c)¥When SL >> | . Introducing the csympiotic expansions of /(<)

K Gy, My and M) for SUs>1 inte Z£q. (96) and using Sa.

(40} for varicus notations, the final results are

L P S N LY £, 3
(Lo)g'”' « & g 76 T3k

My o Lo 1-1% 7; v g
()= 2~ 7€ iz (" T maR ) gt O, 7
(S7)
L ”.L_“AL._J./ e I L. L
(LO)T‘ X En 16 ¢4 /,1 + 0 (.JI_J" S 54/
M 70-0) -4k |
¥ r J_+5Jl S1207n T+ 4% 4‘ O(ﬂ‘ i, /;")

It is seen that the thin airfoil osciiiating in a uniform flow
without interface is a special case corresponding to either /=@

or f=A=! . The expression of the lift énd mcment have been ob-

tained in Ref. 6 p. 385 as follows

(é;) = ﬂ.f...
Lo'T /’(of“K[
LA K

el I
C/‘/}a)T 4 KeF K

which have been evazluated and plotted in Ref., &, p. 330. netting

h—reo L. (96) is immediately reduced to Dg. (90) and ng. (§7)

iz reduced to the asymplotic expunsion of Ze¢. (G8). letting b —> @
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and AJL—>e¢ , Egs. (94) and (95) are reduced to expansion of PBqg.
(98) for L—=o0 . Iﬁféting this fact, the lift and moment for 4>/
can be evaluated by the perturbation method using the relations of Eq. (9¢)
as bases and the terms contaihing 4 in Zqs. {94)-{97) as perturba-
tions, and superposing the latter to the former. Such a inethod is
good if the perturbations are small relative to the basic values.
For h=2 ,° <f<® gnd Z=0 and @ , the perturbations are found
less than 10%0 of the corresponding values to which they are super-
posed when osx 2 < .04 by the use of Zgs. (94) and (95) and when

J'Z.‘ =5 by the use of Eg. (97). Believing that the approxima-
tions are good for practical usage, the results for /A=2 , o< f<c®
anci %= o0 and @ are plotted in Fiés . 3 and £ together with
those for A=ew citéd above.

The significance of the results is that the wing wake has
very little effect uﬁon the tail oscillation when the tail is located
away from the waké with a vertical distance equal to or greater
than its chord. In other words, the tail flutter under this con-
dition possesses the nature of the wing flutter. Since the flutter
speeds for wing are normally high relative to the flight speeds,
the tail buffeting which usually appears at low speeds can ke
avoided b'y putting the tail sufficiently away from the path of the
wing wake .

It may be mentioned that putting =0 in Eqgs. (24) and
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{95) vields the ratios of the quasi-steady values of the lift and
rmoment in & flow with interface at y=A to those in a flow without
. : gy - - . .
interface,except (47,/r of Zq. ($3) which states that the quasi-
steady moment rémeinsg zero in & flow with interface. lvioreaver,
. a--’(_
the above ratios ure less than one when /%4°</ (or %"—Ui}v < 1)
1

and greater than one when /£ #£7>/



are raade for the case of
the oscillating teil lying in the wake of the wing, or A=0 in the
notations of the present paper. The mathemitical calculations
are facilitated by the closed forms obtainzd for the definite inte-
grals at /230 . However, the difficulties in summing the infine
ite s’erias Su(,0,8) and Ti(e8) given by ZJgs. (35) and (E6) con~
fine the investigation to the two special cases: (a) SU<</ and

r ,
{b) %ﬂ;’za {or =0 ). In the former the series are summed
approximately. In the latter the sumications are aveoided snd
exact expressions are cobtained for Lt and moment. This inves-~
tigation is of interest, because it would reveal the essontial
features of the inlerzction between the inferface and the fail ca«
cillation if the interaction exists at all, cnd therefore should lend

to an improvement in understanding the rea

puffeting.

fiatter ot

e (b) rep-

[
]
£

rosents the coadiiion

Fa - vy e T RLT - A—
ezt possible lutore

ot

action may be expesciad.

tne lulicr caso, the lLiff and moment
are obtained for the whole range of U and thus o typical inves-

tigation of the tail flutter at all oo

iz made nossible.,
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(&) JU<<! . N,ne) and Chinfo)  are given by Zgs. (52) and {57).
The expansions of Fiml08) , Qum(©@8 , E(08), Fulos, G,les), H.co
and A, (L) for J5) <<l , are obtained by the use of Tgs. {76)~(1)
and (84). Following the procedures stated in the last section,

the final results for lift and moment are

f+1£ S AEE 1A 2 N eV i ne &
34 AAE L FEA4* [T %l~E) Rt ﬂ'( 3¥44% &3“#/%40—&)

(2:;6

L odt U4 (1449 2| [GHED UL, [1-447
3(34-1% 1+L4(1-F) [ I+d%li-%) - HiHlE )J[ (Hé”) ( 2 H"é

(%{% +3(;vzé’")_) ] } + o(xn)

L
{‘M%I,) = (£), + O
(99)
Ly _ g 1444 IS g
(/.o)]' L /+1£(:~b 1? )Hi(/%) { 4 H—Jé“' (1) +
2 A B i i & i 4d40-%)
- F Ty A i) [ 5= Tt T2 (’“1_‘/‘9)} + o)

My Lo h‘w’i '-'H‘:" lfif:
(MOT 2 /7 /-H:él'ﬂ{ & A AR

bl | [ IARR L AR T 50 g
4“3/:1‘[0“‘ IrdE(-1) m" A% ][ /53 L 3(1-{% )}j'f‘@/./l)
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It is geen that 2g. (99) is very close {o the corres‘;pondiﬁg eupan-
sion of Zq. (68) and is reduced to it by putting 4= %=1 . i may
then be said that the functional dependence of the 1lift and moment
acting upon the oscillating tail upon the reduced frequency is nct
much influenced by the weke when the flying speed is so high that
JU <1 .| Inthis high speed range, the tail flutter still has the na-
ture of the wing flutter even theugh the tail lies in the wake. Set-
ting SL=0 , ©q. (59) yields the ratios of the quasi-steady lift and
moment at A=0 to those et A=00,
() 7::: o %, Putting Z=0 in Zq. (45), the terms i:ontaining S.(2,05)
and Tn(%,05) disappear and Cam=0 for m 2z aﬁd nF¥Fkm . Due {o
this fact, tﬁe “'s can be solved from Tq. {(£8) in the exact forms .
Using Eqs. (76)~(81) and {84) for the various integrals and func-

tions, the final results for-lift 2and moment are

' ) ez \ i ,
(M) =t feg-Tar 2 2 o (DoY) I ]

*Omn account of the linearization used in deriving g. (&7), it is nec~
essary to interpret this as W, <<U, while tke condition, 4., V2 (the per-
turbation velocity components in region 2) << I, is still satisfied,
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. ; —t . v )
(i—_) _{_Z<,4bvi§4 ’ﬁg)e JL+;;’—J‘,-%(J;L /.k)j

L.T*
My o LSL_ i o8 afi af, ~on v, T (162)
(ﬁu)TEZL(W“-qu_L+ﬁ“ “5- F)e ({+4~)+ C L)+
LN /A TR YA ST, & AV s Ty
tg ) rarE g (R T T 3
where
c=(-3-%)e n_rr[\/+°“75 : n]‘(l--t-f—) e ,(J%-L)

and J;, and 7, are used &s abbreviations for Il and T,() .
By the use of Eq. (100), the lift and moment are caleulated for

0 <Jl s24 . The results are tabulated in Tauble | and are plotted
out in Figs. 3 apd 4. It is seen that when JL</ the variations cf
1ift and moment with R aré very similar to those of Zg. (98)
as shown in case (2) above. Whaen JU>/ , the variations become
entirely different. It is therefore interesting to investigate the

asymptotic expansions of ¢ . (100) which are obtazined as follows:

Ly i | 8¢ 1= be
()= 74_—~79-(:-e cosf) +?f757& (13-¢e cos@) +

+ ":— [ / (d) 37_) 4 6059—“6,2&&05’%)4- O(
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(,./‘{7,,) = -(/+6:&Co59)+ (az,me ‘aps&)+
Mo

s 3
+5.71 '*,L(-;‘Pmr ( +3ﬂ_)6 Cos& —Le ‘cos &]-%O( 34

L o : B
() —-~(;—g cos)+iz (13~ eas0) +
bor Tir (101)
‘ < B¢ 28 2
+ R "1/72 (3 zx)e cas&~2;{~e CasﬁJ+0(J2[3-
My _ _:/_2: J et o
(Mo)T_ z tr(-e Ca9(9 37'1 e cosf) -+
3.+
[ - / *37;/\6’ r‘as'ﬂw,é, /’0‘5‘ 19]4. 0/ .%)

where =N - 2_75

By comparing the values calculated by Zq. (101) with these calcu-

lated by Eq. (100), it is found that, neglecting the terrns of the

order o) and the higher orders the expansions for (Mos and
/71/‘%"0)—,- of £q. (101) yield very good approxxmatlong (error less

than 5% ) when J2>3 . By compuring the cozfficients of the var-

icus expansions of ©q. (101}, it is expected that the expansions for

-ﬁ’ﬂ)g ‘and /2_[:;)., are accurate when JL>/00, As fN— o , the

limiting values of ('",1/1;1’1',)3 . (ZL:,)-,— and the resz! parts of (ﬁ)B

and {Mo r are periodic in JU  with the pearied, 7T

Fram Figs. 3 and 4, it is seen that the variations of the lift and

moment against X are peculiar when R>/. Hence, when the
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flying speed is o low that JL >/ , the tail lying in the wake of the
wing may be subject to self-excited vibration, i.e. flutter. Such
a possibility will later be verified in the numerical example.
Before doing this, the cases excluded from this and the last sec-

tion are inveastigated.



. The cescs remaining to be studicd are (o) [ 24 >0 and
00 2% 20 and (b) A=o0, !>& >0 and 2>/. The expressions for
'lift and moment have not been obtained due to matheinatical dif- .
fiéultieé . However by considering the continuity character of the
Vgrious functions with respect to h and % , and using the results
for the boundary cases obtained in the last two‘sections , it is pos-
sible to make some gualitative remarks about the liff and moment
variations with 2

(a) /> h >0 and @2%>0 . The difficuity lies in finding the

ascending power series in # for the definite integrals of the fol-

lowing type (Eq. 46)
| _ [® -z Adi
Famh,8) = [ &™ 7 Jh) Tedy 5552
' -4

and’,ﬁ) is evidenlly continusus in A st hro |, becausc its
' first derivative exists there. It is alsc continuous in A for 420.

This is seen by considering the difference

~2£0

) Ty Tuth) 3222,

K7
/,7,,,,(0,5)~ ﬁ’,,,,(f«,é):/ (1-€

where & 1s & small positive cuantity.
I3 i bl

Fg. {192) can be written as

(1G 2)
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T . ] A dA
P (03—, 5= f (= Tw L ma t

© ~2EA Ada (103)
+ I}_ (r— & )‘];M)‘];"M)m
-z
where T is taken equal to & and ts greater than § . As

£—> © , the first term of q. (103) appfoaches wero, for

~28A

(I—e *Hso ; and the second term approaches zero for
} “h-e* Ao < [° J w214
Jro-e* T Lo smm | e [ Ted i) 4

which approaches zero when /—w i.,a. £— 0

Hence Fm(h$) is continuous in # at A=0 and therefore

Limt Py )= By (0,8) == T J(5 %, (D

b0

-

as given by Zq. (76). Other definite integrals of Dq. (40) have

the same property. Therefore the lift and moment vary contin-
uously from those at A=Z to those at 4=0 , when 4 decreases
from 2 to 0. By the use of the findings of the iast two sections,
the following may be said about the varieztions of the lift 2nd mo-
ment with 2

(i) when Jf2</ , they are similar tc those for f4=@ .
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(ii) when X >1 an e to cne, they are again similar to
those for A= |

(iii) ‘When S2>/ and A is close to zero, they are different from

thosze for A=a and Lecome similar to those for A=o .

(b) hA=0,!/>% >0 and L >/ . The calculation requires the
sununation of the series of the following type (Zq. 46)

o>

P e Mgt QM%M(D,S)

S=o
or, by the use of Eq. (77)

T < 5
= E N6 S Maery () ags (5

el =
where Ms() is defined in Zc. (37) 2nd is expressible in terms
of J,(2) and Y.() as shown in Appendix 3, and

_ I+d%
)+ L%*
The exact summation has not been obiained. The asymptlotic sum-~
mation for JL>>/ is complicated by the fact that there exist
three different asymptotic expansions for J,(2) and \)f,(Jl) when
both n and U are large according as 7 is less than, nearly

aqual to or greater than one. PBesides, the usefulness of the

asymptotic expansions is in doubt, because at %=0 some of

them yield good approximation only when S2>/00 as given by
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Zg. (101). The numerical summation for specific values of ./ , %
and SL can however be easily done. For A= and %zi , calcula-
tions are mﬁde for L= |1, .4, 1.5 and 3 with an error less than
10%c. The results are tabulated in Table & and shewn in E‘iés . 3
and € by broken lines, Though the points ave tc:a.:;f w to deter-
mine the curves precisely, they definitely show that the varia-
tions of the lift and moment with 3L for 7«’/,=i- are more simiw
lar to these for A=0 than to those for Z=| when 52>/ . Since
the lift and moment are continuous in % as seen from Yo, (45),
it may be said that the variations of the lift and moment with
2 for 2% >0 have the character pertaining to those for
%.'—'—‘0 . | It ’ib interesting to continue this investigation for %= f}

-

or for %:rl* ¢ where £ is a positive srmall quantity to dete

S

L4

mine the value of Z corresponding to the transiticn in the var-
iations of the lift and moment. However, the iore important
guestion is that: Do the peculiar variztions of the lift and momeant

at 4=o0 really cause the tail flutter at low spesds of fiight?



RI. TYRICAL AFPLICATICON TO FLUTTIHR

£ND DISCUSSICN OF ThE RESULTC

To illustrate the essential features of the tail fluiter
under the influence of the interface, a fluiter analysis is nere
carried out using the lift and'moment obtained for the
typical case Ah=#=0 . The flutter analysis is a two-dimensioual
one. A tail of unit span with locked elevator is considered. Such
a tail has two degrees of freedom, namely benciing and torsion.
The procedurcs of the analysis used below follow mainly those
given in Ref. 9.

Calculation of the Aerodynamic Coefficients. 4 representative

section of the tail with all related notations is shown in Figure
5. £ denotes the elastic center and G the center of gravity.
The translatéry motion of E and the rotationary motion about

L are expressed as

o wt i
Y=17Ye 1
. s et
and G =0 e
respectively. The aerodynaraic force F and moment T acting

at £ are expressible in terms cof the lift and moment defined in

Section Viland Y and 6 of ©g. (104). According to Fig. 5, it

is obtained that

64)
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F:"M’W‘?’(g‘?‘l“' < Eé‘ J.cdw‘é (105)
T = m’cw¢C5?+c5§')@‘M

L
¢
where m'= Z—%—-

and 4, B, C znda D are kaown as the zerodynamic coefficients

and are given By

B-[Za-0rn]d) S E),
(106)
= 538y - % (E- 2R,
D= [;?:%L “_)+4-J1*J (Maﬁwgﬂ{ ) .’?Je’*
G RGD]E SR (T 0(h),
Using Table 1 and taking %— = .35 in £q. (106), the serodynamic

coefficients are evaluated for o <JL< 2t and are tabulkted in
Table 3.

Calculation of the Flutter Coefficients. Dencting the mess of the

tail by # , the mass moment of inertiz- bty J , the elastic
constant for translation at & by €8 and the elastic constant for

rotation about E by ¢y and assuming vanishing damping, the



differentia? couations of motion are

m(y+5Q)+ gy =F

T o6+msy + cr8 = |

R

Putting Zgs. (104) and (105) inte Za. (131) yields

(108)

where A I, g

»

— ey 4 . . .
, €’ and £ ars known as the flutter coefficicnts

and are given by

~/ we* P
A = mn —L—‘;v-z“‘-/ﬂ-l-'mﬂ

—) p—

B =—ms+mc B (109)

ms + m'e C

M
i

2
— T Lo A
7,{:’1‘;/+7+mc D

S
l

where @y and Wy are the natural frequencies of the bending vi-
bration and the torsional vibration of the tzil in vacuum aund are

. . [<a . /ex .
piven by Yom  and VT respectively,

Celeulation of the Tlatter Spoeds.  From Wo. (163), the eriluric

for flutter in various modze are immedaiatey obtained.

(a) in purs bending, A'=C'=0
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L =
(b) In pure torsion, B'= D'=o (110)

P )

(c) in coupled bending-torsiecn, ALD - BC

i

o

For a specific étructure. 4,8, c’ and D are functions of 72 and
or U, and e {for Jt:ﬁg ) s givea by Sgs. (109) and (100).

The task is to determine the vaiﬁes of U, and w which satisfy

the criterion of Lq. (11C). There mnay exist a number of solutions
for one critefion. Those with . lying in the speed range of

flight 51' nearest to the range are of interest and these valucs of U,
are called as the flutier speeds. In the generzl wing flutter aral-
ysis, only (c} of £g. (110) has solutions and the flutter speeds are

“ higher than the flying speed.

Numerical xample. The numerical example under consideratiou

is described as follows.

“he tail: Span=1in., ¢ =100in., 2 = 35 in., s =5 in.

m = .009 lb-secé/in., § = 5.62 lbein.-sec.?2

]

wyg= 40 rad/sec., wr =50 rad/sec.

anc Lamping constents =0

The flow: h=o “gtf‘; C wnd /)' '—“/7& = )/a7 /(/O“7/é ~sec S ®
Aecording to the two dimensional wing flutter anclysis, only the
coupled bending—toraio;z is possible in « uniform flow with no in-~
terface and the flutter speed for the tail under this condition is
equal to 180 m.p.h. by the use of Graph I-4A(n) in Ref. 5. The

value is rather low relative to the flying speed of modern airplanes.
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This is mainly due to the vanishing damping ascumed above. For
the discussion of the present example ,A it will be assumed that the
fiying speed is about 100 m.p.h. sc that no flutter occurs for the
tail in the absence of interfac.e. To calculate the flutter speeds of
the tail in the presence of the interface, Zq. {110) with Zq. (109)
and Table 3 are used. The results are as fcllows:

{2) No flutter occurs in pure bending,

{b) N flutter occurs in pure torsion.

{c) Flutter occurs in coupled bending-torsion. And it occurs at
speeds below as well as above the flying speed. The lowest speed
above the flying speed which may be called the upper flutter speec
is equal to 160 m.p.h. and the highest speed below the flying
speed which may be called the lower flutter speed lies between
zero and 6 m.p.h. No flutter speed lies between 6 m.p.h. and
160 m.p.h. The lcwer flutter speed has not been determined
exactly because it requires the lift and mnoment of Eq. (100) tc

be calculatea for L >24 (Table i). I flutter occurred at Ji=x4,
the flutter speed would be about 6 m.p.h. The existence of the
flutter speeds .greater than zero is shown by the use of the asymp-
totic expansions for the lift and moment. The criterion (c) of

Zg. (110) becomes

— U508 + AI30 Sindll~ U135 5in eIl 1—}%1} [4.363~/.525 sin @+

+Jﬁwasan4mOW79(a#%ﬂ~SM&QCMdnj]+cyi)ao (111)
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by the use of ifgs. {101}, (106) and {1U5) and assuraing that J2 <@

Zg. (1U1) nas real sglutions. INepgleciing the terras of the order [—j—_{
and the higher orders in ©g. (l11) yisids the soluticus
= nmr+.131 and nr+ 490 (112)

where /L is an integer.

v

q. (112) gives good approximation when #> /04. It is interesting
to note that corresponding to Lg. (112}, the angular frequency is

e,

equal to 37.7 rad./sec. which lies ver

ot

rclose to Wz . Frow L.

{108), is obtained
— vy —
(c-a) }é—] = <c-m[%,f = (¢=a) j—g—;{ =4 (113)

which represents the ratio of the displacerment of the trailing edge

s
H

due to torsion to that due to bending.

ieing Dol (112), A is equal
to .845, which indicates that bending is precominant during the

flutter at low speeds. For the flutter at 160 m.p.h., the angular

frequency is 50 rad/sec. and A is 3,44 wonich indicates that tersion

e

s predeminant at the upper flutter szeed. This will later be dis-
s s 4 . o . i

cussed. Taking r=/0 in ¢, (112) yields a flulter speed egual

to 00342 m.p.h. Taking the term of JJE inte consideration in

g, (111) gives flutter speeds of the order .3 m.n.h. and A re-

maining less than one. Finally setting 2= the criterion (c)

of Eq. (110) yields



(3.

W =37.%end 52.0 rad./sec.
which are the natural frequencies of the bending vibration and the
torsional vibration of the tail in the stili air with the density given
ubove,

Discussion of the PResults. The most important results of the

example are summarized and diccussed as follows.

(a) There exist a lower flutter speed as well as an upper flutter
speed. Thé upper flutter speed is very close io the flutter speed
6btained by the wing flutter analysis, i.e. neglecting the effect of
the interface. The existence of the lower flutter speed is entirely
new to the usual flutter analysis and is caused by the presence of
the interface. The occurrence of the tail bulfeting near stalling
speeds is qualitatively confirmed.

(b) At the upper flutter speed, the predominant mode of vibration
ig torsion and at the low speeds of {lutter, the precominant mode

is bending. The former is found in the wing flutter analysis. 7T

2

I

latter is again *;'zew tc the usual {lutler analysis and confirme the
finding of the Znglish investigators that the failure of the JU 13
trose from the flexural stresses on the tail (Ref. 1). Boged cn
the discugeions of the lift and moment in Section ¥, it is belicvea
that these results are aleo valid when the {low is described by

h<<! and a<# </ while the other data remain unchanged. In

this example, it is seen that the theory and the observed fzcts



-b4-
agree in the essential features and therefore a continuation of the
investigation along the line of approach of the present thesis may

be profitable.



DMYCGRATION FOAUL 8 BEnD 10 a0, (35)

“he integration formulas used in £g. (35) are

Lval
VY gy TV,
j—w cos)\7{ 7‘% Yx 47/— Bt € TsinAX for Ay=o
@
-
ana [m S!'ﬂu\')] -rlan"%-%; o('/[—:*”‘lj{-c yco.\/\x for /\)l?o

Lerivation . ‘the integral of c. (114) is

©
J/ Cos A7 7Lan o _ L ,,!/
o ’7

y /tv sin A7

d’] , by pertial integration
A @ y‘;(q‘(,;].‘)()&’/ §ok

@
S AX cosAYT PP R
= f I+3% "(f ’ by seiting F X = 3y

%\T—‘ e..)/)’ S AX

i

Sirnilarly, Zg. (115) is derived.

s for Ay>o0 by f"ormule 490 in Ref.

1

-

J
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APPURDEL 2

IMTEGRATION FORMULAS USED IN 20, (36)

The integration formulas used in &g, (36) are

1

/Ii};i SindXdx = =70 J,00 (116)

/

nd

U
]., /{+§_ cosAX dx = JTJ';[-)&) (117)
IR
! : ) T Tl /A, for m = 2,4,6 (118)
f Sin 710 SrnAX dx = { " ’ = by, 0, &
- o for »=1,3,5,.
. _ [ O, for m = 2,4,6 {1e)
j_} Sinml CosaXx dx = L(—)@gmn‘ T Jn form =1,3.5,...
where Xx=cosd or £q. (7).
@ . —o N A COSAH R SinA i
/ e “R”}SmAfai}’z e’ POy (120)
‘ . .
ot ' RcosA ~ASinA
-/'Q)e LJL% ”05.;1)0‘;:3 --—-——L ‘)lzt g {121‘)

Dk . me""ﬁ'} IH o 2 s by s

j’/}:’;%mnxxale’ i }':7"‘5“ avré()]wﬁ(&) Myl (128)
(0]

/) X vo_«,wdx/ £ ;Jrll Jz.:“awgu\j;ru)/%jm) (23)

where ipn 18 glven by ¢. (37) and celculated in the next appondis.

Verivations. Bgs. (116)-(119) are immediately obizined by putting




T~

X=¢o50 and then using the expansion formulas (Ref. §, p. 22).

Cos (A cos®) = T ) +oZZ £ Tl Cos anb {12¢)
‘ “—i ’1
S\ casB) = Lo, 0 Tapysy (N €os (@rt) § (125)
: ‘ n=p

The intagral of Eq. (120) is

j.me..iJL% Sl‘ﬂ.)\§d§

[
She v _lax ' D Lohx
=g [cosxj e sindx + 5‘:‘»7}] e - cos,\xj dx/, by setting 3=x+)
o o

R _AcosA+ LRSI <
e T AR, by Formulas 414 and 415 of Ref. 10

Ut

Similarly, Eq. (121) is derived.

The integral of £q. (1424) is
t [=]
f1-X_ .
l, /_'_x SJ/’).)\X d/’(f‘

-Lfd[ } [ 1=X Slﬂb)‘x - td e+l 3 o oy
#[W d3 /H—x e , {J‘r’o\?dt,c.‘uhlat‘-the resulting
infegral exists

s N i A
IR A SlpAcos8)
"?'J/( e V3% d;

& by nputting X = cosé
|+ 3—Coss Vi g

- Cos (asH0 N
- Z . 5+l(¢\)/ e /"’" 4;’/ TP C[) by using Zg. (125)
=0

provided the reculting series exist.

.
: ; : 4 cos n&
It is then required to evaluate the integral j mdﬁ where
-

# is an integer. Evidently,



w530 a

e ™ L‘Ito
/ _____(n(‘n@ A = ] e qd4
-7 3~ Cos® - 3—~Cosh
a8 .
=aulf z———d=2 by setting e'’=z
2'3a+tl €

g)=)

= T -—»-----—--—«-—'-"(?’. =1 )n

> e resi heora:r,
e for § by the residue tne.g

Thia completes the derivation of g, (122). Simdlar procedures

are used to derive kq. {123).

® 3
f '/er COS-)\XeD\j ?e:c" ?%—’dg

= [T e [

= [ Ly [ [ AR gy [T gl ]
~

Viex* -1/ I~x= 3-X

= j’”e-ixg/g Ag [/‘?Téos(dw;&)dww@-/)énm)dﬂj

5 - Cosé

~ ’fj, ~in3 w 3L s [J—( ) /1: {jop)+¢é HZJ@)L?*/FJ)M}]

o0

= —al Z &) [\A) Ma__j(ﬂ)

S=0

where



OO

- Lol
Ml T B )k by Bq. (222)
, ,
-
ot 2
— g [+ TR ] SO

va _-n3 Y F
and Mslﬂ—)cx e o (‘f"/fﬁf)df for s =1,2,3,..



APPENDIK 3

CALCULATION QF M (S2)

General Formula for Msw , s =1,2,3.. . The integral for Ms(?)

given by Eq. (37) is
o _ - ‘
MS(JZ‘):_[ € 2255“/3’3»1 )Sa’§ where z=.4Z

5

7 [T¢s+i) -23 5 /
2:;3 !‘(s—nﬂ)l”(nw)/e ! C’; U i

» by the binomial
the orem

Using the integration formula obtained from Eq. (29) on p. 50 of

Ref. 11,
2t
po .27 = /—’(fH).z,?T T
j, ¢ TGt = = (5) Kau () (126a)
where [arg 2/ < T, 2*0 and R/(%’H) % ,» yields immediately
! (5~n) ?zH

5 [7(s+) s F(%H) 2 ® [ (E)J L3126
M (=& s %‘ s-nt1 ) [PLH) dg(-“") 2 KHH er (/26)

The right hand side of £q. (126) can be put in terms of Ap(2) by

the use of the formula (Ref. 8, p. 79)

d. Ky(—&)] KVH(?") -
dz



Tl
Furthermore, Ha(R) where 7 =01,2,... can ke put in terms of
Jn ) and Th(W by the formula {(lef. 9, pp. 73-78)

NTe

T}_Yn(m-f“\/n(ﬂ)] (12%)

Ko =—T%e

and K,,,.i-(‘;ﬂ-) where 2 = 0,1,2.... can be put in terine of simple

transcezndential functions by the use of the asymptotic expansion of

K;j(a) s

2,41 {42}‘7:3‘} {4D2'~/«25*’fz.} }

L S
TR -2 . {421
H,@)~(33) e ['+5.Z, =

(1z9)

27 2%

which obviocusly terminztes for Y=hn+% and thus yields exact vaiuec.

Tveluation of WMs(R) , 5=0-5 | Using £qs. (126)-(129), Ms (5=/-5)

are cbtained as fcllows together with M,
M=~ ™" ”(Y+J)+ J;- )
M) = (~}‘~;—J—’L)e";&~§jﬂb(ﬁ+éf,)
Mo = ("%_*.‘%ﬁi%' ﬂ‘n— z (T~L )

.9 L aAl asy ~CR 34 :
M‘?(JL)‘(—R”JG‘%_ 3 +;B.‘)e +é’1—(\7§+'\)—3)

N
. , i
M= (v 12 8L 228, 2280, 2T (Y]
W EN T TR T AT s T
N —e e . ‘o
M(n)«(n-_&«? f’im +ﬁ9 %——%@.)e +%“L(7§+LJ;)+ (13%)

+ 2T (% i)



T

where Jn end 'a are shbrevietions of Jhu¥0 and (%) .

Zg. (130) are evaluated for R =0, .1, .2, .4, 1, z and 3 and the
resulis are given in Table 4.

Lsymptotic Expansion of Ms(WY for J2>>1 . By the use of 4.

(A

{126), it is obtained that, putting 2=/ R

'J' -
M, E2) A (ﬁ)’“/{,%(a-g/@@) 5(’"')(,2%)’“/( 2@ (3))

Introducing Zg. (129) into Ze¢. (131) yields, for 255/

e~ ) v | L aa
M L)~ S [1- /w + ! ,;,)’4”,_,, 3 o(n;i)] 132)
Enxpansion of M) fo» 5>>] . The integral of MR is

(JL) / }(g- 3% )Sclg" by getting 3= casd X

!

I-o]
= (50X ~L L CoshX D _sHIX ~CTLceshX
z [/ e e % ~f e e alx

{133}

os .
. .. VX _ ~{R coshX
It is then required to consider _[ e e alx

Moting
o ~incoshX . s « . W
that € is analytic in x, when X1 SN ghere 3 is & pos=

itive large value and has the expansion, when Ix]sM

[ coshx —c,:z_ 2 Sy F :}
- }:/».-.. el §—+&4)x+

and when x is pesitive and x> M

~ 4L ca;hx/ < ex



w3

the V.atson's Lemma (Ref. 12, p. ZI8) gives

O _px ~Stcoshx - . 2, -
f € e"ﬂ.' C{X/ve [;_E_J}AM‘,,_‘”]
o 7 sz y‘*

Putting Eq. (134) into Eq. (133) yields

e 3 2 4 & :
U ) ) e .S L,
M (' .)_4‘ € (.S ") (54"’)[[- '{S ,) ('f“’.) (SJ-Z-+C~}Z_)+“'
S s alsey)* 2 (s5%)%

where 3 >>|

(134)

(135)



INTEGRATICON FORLMUL ~5 UngD 17 20, (44)

The integration formulas ased in g, (44) are

'~

‘ 2z
5 = i 1% J,:(u\) fornm
7

m
f COs @ COS(AC05a) d for 52

]

T (@)
: _y ~ 4 Tna
foca5n@;:n(LC0J0)q'0—~ i(..,az. ﬂ'Ino/\)

which are easily derived by the use of Zqs. (124)

=¢,2,4,..
=1p3;5,..¢

and {125). .



LSRIVATIONS CF
The integral of Iig. (49) i

[ Ty LA

©  _ahh

-2 [ «\j Trm(@sh 058 ) Cos(n-rm)6 4 6

o

E [
£ -ad
= %jcos[n—r’%clﬁ‘/‘;e ffjﬁc‘w\cm&)ol/\ 5
0

r
—n-h

a
a X Cos (=) & ooy
= 7C(h+h1—) j n+rr] (/—m /IK)
(o]

(Cosﬁ-)

/
/“"14'2‘ j] K/(H‘f‘m)}b

where A=

and

by Eq. (3) on p. 366 of Ref. 3
e & 77t
_ TN R cosenerie (K Sine ~ A4 g
T o (Cos 5;'/)”1.'”- e
. - L .
' x.»}.lere 24 = , Rl (rem) >~ and A/ (hk)>o .
The integral of Zq. (53) is
o _akA
f e _],_,(./\)J—n(&\)fg‘
o A
ps @
—3’-/" rompdaf €7 @ies8) 42 by £q. (7) on p. 386 of Ref. 8
= C -} —-——— Tl . 4 . FS W >0 N .
e o o5 o “]ﬂ-‘i'm ‘/\' ’ y - p °

L

Kil(h)>o
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Ldaa

DORIVATION OF EC, {50)
The function of £g. {50) is defined by

Nom = [T Tn) T

o

I = ]D”%\ (&M Lo Tt Jaa

Considering

EVIN
I=e '\LQ)LP\) / = al when ~n=m=0
| L

o when s and m are otherwise .

and, also

& ~RhA I ’ |
L= / € [“o?% TntA) Jon A+ T ) Ty A+ T ), ) ] A
(o} .
Using the recurrence relation of J, &)

7 . -~
o= L ] T~ M)J
and equating the two expressions for L yvield the recurrvence form-

ula for Nyp (A

2 when A=m=o

+ = - ‘ e
NT' H /MH”M /\/,7-,,,,., 4AM'W+N’5W” go otherwise (138)



.
ey

where /V,,,,, are used as abbreviaziion of

Putting #=m  in Ta. {(132) vields fomedis

Ny (4)
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DERIVATICN OF 80. (59)
The integral of Eq. (59) is

T A B .
fo € TN ImAN) bevi ‘ by Eq. {1} on p. 147 of Ref. &,

— Pl S

- S (:‘)s F(H'*MQ*&S‘H) 2 [QD e:‘ Q/w‘;k’”‘m':;’j\ (139)
- 2 S CentsH) [imtstl) [Pltnemish) Jy A +5

provided the resulting series converge.

it is now required to evaluate the integral

Jsing the integral representation of the «hittaker function, Vi

given cn p. 340 of Ref. 13 vields

o —&hA T hs _tH
/ CJ‘} éu\- da.= e [(ah) < g L [T(E4) W&, & (2hS) (142)
° 2, 2

where |arg /15) < and K/ (€) >/

Putting £q. (140) intc Eq. (139) gives immediately Zg. (39).
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LPEANDIN 8

EXPANSION FORMULA FOR Wiogy 2
2

?

. i +t+/ s ., ,
Putting A=~ "I and m=z inthe expansion form-

ula of Hx/u (x) given cn p. 116 of rflef. 14 yields

=~

e xR f x¥ ¢ 1 |
Wog 1= rm L2 7 (YOl p?
—~t t-
tEx0 o > F(Y’:«/*)(*XJ/LJ (141)
o

where

S=

Yorin = 2 [/&6? /“(;/mJ:«aw-Zy +

) = FAuler's constant = .5772

jargx| < %

and 7 =0,l,2..

Bg. (602) gives

_. ® -t where x>0
Ev(=X%) =~/ — dE
x &
—x m e"/w
=~ g —— dAm by putting  £FMFX
o /IL':"X
X
-x (% é . : X
=-¢ £° axn by putting =z
“{ A+ 4 a M8
R -
=-e e YW L, by Sg. (140),



u
('n
N
F“
b
Y
I

J’?x ] by e (141)

Thus, for x>0
CD

y; L‘f“’*‘”"“/";fo =™ E (~X) (14:2)

=0

Putting Z¢. (142) into Eq. (141) gives the expansion formula for ;E 4 £

@, &
tH X
W (x)=L:)i<-—& [ c’ﬂ Ec )+ eﬂx( X) /Z [ee-p9 %) J
'%’,% FE+)
(123)

where £=0,1, 2,... and X>o .
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LAV ATION OF S, L H,‘)

The integral of Tg. (76) is

A AN

2]
[ T Tm 5=

A 5>

Using the contour integration of the Haﬁkel's type (§13.53, p. 428

2ef, g2), the following integral is considered
&

I = f’ T (2) Hfﬁ (2) 2d 2
c

2 g%

where § is real and positive and the contour C iz shown in

Y
L,
[
()
“) () (E)]
D\ .y
R -4 0 +$ +R ,

the figure where Z=Xx+uy
By the residue thecrem, I =0

Denoting the integrand of LT by ((2) , LI can be written as

R
I- /Q(z)df+/ Qiz)d2 +{/ RBdz + [ Qr)dz+ P[R QR (x)dx

o) () 4)



2o
where the paths (1), (2), (3) and {4) are shown in the figure anc P

.

denotes the principal value of the integral.

d;mamm*_;gt/ﬁ) N e; ’»‘—;fff‘ztd .
=L 2 \
/@éz)d&wm/ o d2 + Ve when [Z]l—>w®

- = )

o )

where the first term approaches zero by the Jordan's Lemma
(%86.222, p. 115, Ref. 13) and the second term approaches zero by
the results of £ 6.22 on p. 113 of Ref. 13,
+.
| f Q(27d2{ < MI ] PY Ida where M is a constant, when |2]—»o
@ _ @

— 0 provided that m+2 >m

| Qurdz = -7« { Residue of @) at 2=5 }
(3 :

= EL ) [ Tk +¢ Vu50]

j REe)dz = —71¢ z Recidue of RE@) at 2=-5 }
“
= _%‘ TS EJ;&) +L 7,/"(5)]
’ o @) X X
F)‘/~R, Q(JO dx o= P’[w _T,I(X) /"fm(x) ;z:;c when K-»00

xdx

@ 2y
[ e T rlen] 25

w
_ Xdx
"'"Z’Pjo In(x)fn(x)xtgl provided #-m= 0 2,4, ...



-G3a

n > m [1p]
by the use of the relations that T Jph) gnd H o =6 D—I’#x)—&],;m:}'

Using the above results yields immediately Zg. (76).
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DERIVATION OF 30, (84)
£qg. {83) can be writien as

n—1

n oo
Ko (1,00 = %L [‘2’5% MaLSH () 'szo M“_H(JL)]

n

— n @
Fany (1,00 = % LMD(JLH&/SZ Mu(“)"J% /l/fas(JL)}
= =

L T 2 § s
where M (r) = / e (z-F 3 for 3z,

’

v oo
it is reguired tc sum g Mocy  and Z{L Mas
o N a5
Z. Moy = 2, [ e G- 43
v ! :

s=p
o

= Lim /

e

%3 0 s

. 0
e-bng g (f— 5__4“} )é’s#q/i

o= Lim ‘oe”[ﬂf $— V3 ﬂ/§

VSRS G, SO

g2o b -y 2

3,0. . L
= ij e”aﬁ(?&—l)‘*a’;

= 4+ K, (Rr) by Eq.(l12ta) .
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po

Do - e RS
Mty = 2 [ g™ 4=/ d

§$=)

Ms

@
n

_ a‘é’fwebbﬂ§((/§%ﬂ -1 ) 43 by similar steps above
i

[ A =i [ [

TK C‘JD] cy Bg. (126a)

a/(«n)
= () by £q. (127)
po  ~cR3 -
e dz = L /{_L(u-fb) by Zq. (126a)
, e
Thus,
po J— ’
= Mady = + [Kem= /5 Kﬁ,““’] (1)
5=1

Putting Eqs'. (145) and (146) into Zq. (144) and using Eqs. (128) and

(129) give immediately £g. (84).



TARLE 1:

po)

RE),

LIFT

I(fya

ATYTS v 7y o
."“sI\.?,‘ G AN

R (::/IMo )B

86w

o, W
PR

N

WHEN h=o o<{l<eo anpy

164)

Ry 1)

R

%

.

-

*

COCOTC VO WOUWO VO Vlipemo

-

N I I N P R

50000
403
. 345
L3305
L3016
L2661
.19386
12747
A 1654
.16426
.21720
L22704
17403
.100G5
10667
LE0177

.09225

.06450
17816
09474
032720
15341
10251
.010408
12661
BEFI

QG 3047

00738
L 12085
LCOBLS
L06384¢
12670

- OG5 T75

S
. {ig0)
3

G
-.086
-.076
~.0239%
0214
L2165
3730
46103
51984
60785
.75359
.94158
1156
L2255
.3538
6653
.9857
.1128
.6281
L7416
.8787
L1234
L4921
L6495
.8585
L2362
L4230
5984
LST4AS
L1656
L3442
L7090
066

LATE AT GT b b oD D W W W W pg B B D P e e e e

50000
R
341
LT
.315
L2061
L2368
17973
18093
.23566

.29932 -

31911

LAT372

.20503

22141 .

.32890
. 22850
.20623
.34839
.25207
.19371
.32025

.30785°

.18596
.30620
.29674
LEEB3ES
L20TTS
.3i408
J15802
L2666T
L 32882
.1981¢

0
106
L1379
L0883
L0693
.01250
L0589
.03049
.03172
L06675
04392
02221
07509
06267
05874
.00203
.07537
04826
.020251
L0802T
.032977
040781
06343

LGL3Ga0

05763
07038

R T ICH SN

LGBGeSE

JOBGTO

Fat R R v g4
LO2TERE -

L37E35

L Y e, £
. Q.‘iBf'}m}

046991 -

-

50000
ALY

346

.302

L3016

L2661

19366
12747
L11957%
L16446
L21T7E0
L 228704
17403
.10CG5
L10667
Le0177
L0edds
.06450
.17816
09474
.032720 -
15341
L10251
.210408
L1E661
JA12LL
T

RVisly e
. 12085
OGRS
L0849
L2670

LO0EYE

058439
009361 .
02451
14562
08414

o]

[ B}

L1 th
125 164
.13 169
L0988 185
.0336 .2

[V

¢
002le L2633
.0390G .3203
L1052 L31907
L1422 Leba34
12146 20062

.18090

22623

29500
L2760
L7111

.01433 .271%2
L1372 26374
10734 17161
LO083C L 24795
J12113 33848
L12665 17975
008082 L3828

.10042 . 3lalT
V14177 L1938
.013792 .2032

LOTT413 (31619
JABYT2 L2iEz

L 025092 L1069

054290 31190
JIB5TS L2335

040996 17156
L03306 30182

wei = Real and I = Imaginary

e
N

AR SN F I

£ Bud
IS

Bog Pag o e bl ped

[ 3

. .
pad oot

=8 00

[
(YA AV IS

L L 8

[l LU SR

A IR #4

& L Dy b S b

. s s e
A R
[ AN CEIES B

&
[PLIENS)

Fag 53 By 3 =g e b gl
-] i

3 I el

OO s Do T Fe 0 f
D~ omd B D

o
[




TABLE 2: LIFT AND MOMEINT WHEN h=o, /=/ AND #=%

2 RE, TH) RUs,  IGR, RE) I(£), RGLY IE5)
¥ 63077 0 63077 -0 .6006GC 0 3 G

L 503 -.108 .505 - 137 477 -.141 .13¢ L1582
L4 .384 .0149 .39¢ -.101 386 ~.132 223 170
.5 . 260 454 L2065 .033  .210 -.067 .37 La36
Y 425 1.25 .603 -«.03 .386 -.0%1 408 .349



[ABLE 3 ACRODYNAMIC COEPRICIENTS WHEN A=0,0f<w |, £=0 ANT) ==.35
W2

S2 /4/{ '41: BR B[ CR CI D/? DI

0 = (3 @ o ) ™ o )

.5 - 1064 . 206 1.289 .5882 L0851 .134 . 165 ~ . 1565
. -, 2330 5322 L2179 iy A T 5850 L0683 085436 -, 00648
i -, 4973 2587  .01233  .26G2 05500 .04013 .03223 <.0430<
2.0 -.46103  .12747 -.027537 .16626  .061532 .025812 .02794 ~.035311 .
2.5 -.41587  .095632-.02222 -.12143  .068725 021841 .02877l -.03009¢
3,0 -.4052%  .10951 -.018834 .11134  .07192  .022851 .029447 -.023&7% .
3.5 ~.43062  .12411 -.029511 .11117T  .070B68 .024144 .028672 ~.016322Z
4.0 ~.47079  .11352 -.040124 .10426  .DG6T843  .022861 024873 -.Gl4gé2
4.5 - .49582  .077346-.064738 .086030 .066031 .018811 .025377 -.013701
5.0 ~.49020  .040024-.067077 .06502S .067263 .C14499 .025230 -.0L3427
6.6 -.45126  .035432-.052598 .051837 .072585 .013125 .027011 -.(11220
7.0 ~.47579  .057648-.061206 .057044 .071225 .014846 .026426 -.0°8077¢Q
5.0 -.40643 L02306 L. 072127 .040252 L0697513 010822 .0256454 ~.0278438
9.0 -.46951  .01434 -.062008 .031817 .073107 .009307 .026636 -.0%7282%

10 -.52562  .03564 -.071694 .040535 .079856 .0L1074 .027606 -.oﬁssxzx
1 -.49848  .0172 -.073608 .02954¢  .071123 .02883 .025214 -.0°53650
2 -.47979  .005457-.066694 .022173 .073342 .0272528.025087 -.0%56985

15 -.48052  .023602-.066300 .027923 - .073648 .023777 .026671 -.0241295

14 -.49837  .01464 -.074020 .023675 .072567 .0287$8 .027335 -.0252372

15 ~.48660  .021389-.069596 .016775 .07346  .0%59895.02645¢ - s%&ma

16 -.48231  .01583 -.067422 .021403 .074148 .0°71949.02675% -.033458

17 -.49838  .01320 -.073962 .019934 .072686 .0267492.026147 -.0%3114

1§ ~.49154 -.033386-.071592 .013519 .073540 .0251572.026428 ~.0934523

1o - .45404  .0103 -.068340 .016863 .074432 .0%6025 .026807 -.0%z838

20 -.49748  .01206 -.0736G3 .017271 .073204 .0%60617.026282 -.0%253¢

Bl -.£0482 -.03775 -.072950 .011470 .073560 .024504 ,026409 -.0°28%C5

22 -.48584  .0%622 -,065193 .013533 .074587 .0°51268,026826 -.0%242¢

23 ~.49643  .0L10l ~.073331 .015199 .073624 .0254914.026444 -.0%21213

24 - 59724 -.048 -.073907 010167 .073607 .0%42000.026405 -.0%4l7e

”'{:f- Zg. {106) %2 0% - 00 ana = .000



DARLL 4. PUNCTIGN  MsEw Wi S=0-5 LD JSe=0-3 %
(&) leal ~art

] RiM,)  RM)  RMD  RM) RiMy)  R(My)

0 - X f oo ~— ) —_— 0 —x -

.1 -i.66494  .05234 29403 Jlaze .07 G

.2 -1.26762 61028 2h644 L0469 065 015

s -. 00878 .2632¢ 1835¢ 09910 L5756 oy
1.G 0955036 -.15465  .0%2224  .0250¢ 0223 Ui
z.5 62648 - .26655 - .13808 871927 -.030834 -.02357%
3.0 53875 ~.10704 ~.095171 ~.0TC8TE  -.05053G -.630143

(b} Imnaginary Fart

S (M) I(m,) L(M) (M) (M) M)

6 -0 - po ~bo 0o Do - 00

ol 88126 -.75113  .083965 - .¢lSC .00 G

L2 23792 -.71507 -.12391 - G4 -.01 -0

4 1.006166  -.63858 - . 17586 -.06%142 ~.03105 ~.Cit
1.0 (94440 -.39006  -.1986G8 -.10292 -.0554 - .35
2.6 36354 -.0175&1 -.060G526 -.05457C -.041417  -.0305
3.0 - 20424 16815 078081 034786 .015171 GCEe

sof, Gg. (130)
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FYGURE 3 :
VECTOR DIAGRANM OF THE LIF T AND MOIMENT ON
THE ARFOIL IN BENOING OSCILLATION, AS FUNCTIONS OF b€, B~ L
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FIGURE 4
VECTOR DIAGRANT OF 7TrE L/IF7T AND N ONENT ON
THE AIRFOIL N TORSIONAL OSCILLATION, AS FUNCTIONS OF 8 € B .



Equilybrium Position

FICURE 5: SCHEWATIC DIAGRAM OF A FLUTTERING AIRFCIT
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