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ABSTRACT

Free and forced oscillations in oscillators governed by the
equation x - €[1 - g(x, %)] x + h(x) = e(t) are studied with appropriate
constraints on g(x, x), h(x) and e(t). Theorems are proved on the
_existence and uniqueness of stable periodic solutions for free oscil-
lations using the Poincare’-— Bendixson theory in the phase-plane.
There follow several examples to illustrate the theorems and limit
cycles are obtained for these examples by the Liénard construction.
A result on the existence of periodic solutions in the forced case is
obtained by use of Brouwer's fixed point theorem. The part on
topological methods is concluded by applying Yoshizawa's results on
ultimate boundedness of solutions to the forced case.

Approximate analytical solutions are obtained for specific
examples for different regions of validity of the parameter €. For
free oscillations, the perturbation solution is obtained for small €.
A Fourier series approximation is given for other values of €, and
the limit cycle for the case € —~ o is obtained. Finally, the first
order solution for forced oscillations is obtained by the method of
slowly varying parameters and the stability of this solution is

examined.
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I. INTRODUCTION

By the turn of this century, a remarkably simple and powerful
theory of harmonic or sinusoidal oscillations had been developed
which enabled engineers to predict with accuracy the behavior of
many machines and electrical networks, and which enabled physicists
to e@lain phenomena in acoustics and other disciplines. This funda-
mental theory assumes that all physical phenomena obey "linear"
laws, for example, Ohm's law, Hooke's law, and so forth.

There were some phenomena, however, which could not be
explained by this theory. In the theory of oscillations some of these
phenomena which could not be adequately explained by the linear
theory were: the generation of "maintained" oscillations, that is,
oscillations that had constant amplitude and period over many cycles,
frequency synchronization in forced oscillations, the existence of
forced oscillations in an oscillator which were different in frequency
from the frequency of the forcing function, The linear theory either
could not explain these phenomena at all or explained them inade-
guately.

As an example, consider the problem of explaining the genera-
tion of "maintained" or "sustained" oscillations in a resonant electri-
cal or mechanical circuit. The differential equation govelrning the

. behavior of such a circuit, by the linear theory, is

¥ +px +w’x =0, (1.1)
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Here x is a real variable representing a physical quantity, for
example, displacement or charge, the dots above the variable x
fepresent differentiation with respect to time, P is the "damping
factor" which is a constant, and « is the "natural frequency" of the

oscillator. If the dampling is zero, equation (1.1) reduces to
. 2
x twx=0, (1. 2)

whose solution is x(t) = A sin {(wt + ¢), where A and ¢ are constants
which depend on the initial conditions. This method is a mathemati-
cally adequate representation of "maintained" oscillations but,
physically, this explanation is open to the following objections:

First, surely the damping factor B cannot be exactly zero.
It must be either positive or ne_gative, no matter how small in magni-
tude. If it is positive, the oscillations will eventually die out. If it
is negative, the oscillations will increase without bound. In either
case, sustained oscillations are not possible. Second, according to
linear theory, the amplitude A of oscillation is determined solely
by the initial condition. This would mean, for example, that the
power which an electric generator will put into a load can take on any
arbitrary value depending on the way in which it was started. A
startling prospect which, happily, does not agree with experimental
observations: In practice, the amplitude of oscillation in oscillators
is independent of the initial conditions.

This inadequacy of the linear theory to explain "sustained"
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%
oscillations was apparent to Lord Rayleigh(l) in 1883, and, with his
usual deep insight, he saw a correct way out of the difficulty and

pi‘oposed that the nonlinear equation
¥ or(k k' %)k +wix=0 (1. 3)

was a better mathematical model to the physical situation than a
linear equation. He assumed k and k' to be small and gave the
solution of (1. 3) to be

k'wA3

x(t) = A sin wt + 35

cos 3 wt : (1. 4)

where A is independent of the initial conditions and given by

2

3 'w2A% = 0. (1. 5)

k+ 3
From (l. 5) it is clear that steady vibrations are possible if k and k'
have opposite signs, and that these vibrations are stable if k is
negative. The physical interpretation of this model is that for small
velocities the oscillator has "negative damping" which adds energy

to the system, causing the oscillations to grow in mégnitude. For
large velocities, however, the system has "positive damping" which
dissipates energy from the system causing the oscillations to decrease
in magnitude. The "maintained" oscillations are those where the

energy input exactly balances the energy output during one complete

cycle. It would, of course, be incorrect to conclude from this thai no

*
Numbers in parenthesis designate references at the end of this
thesis.
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source of energy is needed: the dissipated energy cannot be recovered
to its original form, and therefore, outside the system represented
b'y equation (1. 3), there must exist a source of energy.

We now give examples from several disciplines to show the
wide variety of applications the nonlinear theory of oscillations has:
In radio engineering there is great interest in the working of triode
oscillators. In 1920 B, van der Pol(z)' proposed that the oscillations

of this oscillator were governed by the nonlinear equation

X —6(1-x2);c+x=0. (1. 6)

This is the well known van der Pol equation, and it is actually equiva-
lent to Rayleigh's equation. One can be obtained from the other by a
change of variables. Van der Pol's paper generated considerable
interest in this type of oscillation and there was a flurry of research
activity on this subject by Appleton, van der Pol, van der Mark,
Greaves and others. They considered questions about the stability
of oscillations, two degree-of-freedom oscillators, frequency
demultiplication, and approximate solutions for € small and large.
These researches are summarized in excellent review papers by
van der P01(3) and Le Corbeiller(4) whe re many additional references
may be found.

For € >>1, the motion governed by equation (1. 6) is not a
smooth periodic function but is very rapidly changing for part of the
cycle. The period of oscillation of the oscillator for € >>1 was

found to be not the "natural period" of the oscillator, but the same as
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the "relaxation time, " RC, of a linear RLC (resistance, inductance,

capacitance) circuit. Hence such oscillations were called "relaxation
‘oscillations" by van der P01(5). Such oscillations have technical use,
for example, in scanning in television. The heartbeat has been con-

sidcred as a relaxation oscillation(é).

‘The field of control engineering provides further examples of
these nonlinear oscillatory phenomena. Minorsky”) discusses the
self-oscillations observed during experimental work on the roll-
stabilization of ships by the activated tanks method. Other examples

(8) (9)

may be found in the books by Popov and Gibson' "',

Many examples of such nonlinear oscillatory phenomena may
also be observed in mechanical systems. There are, for example,
a whole class of maintained oscillations caused by the presence of
dry or rubbing friction in various devices. The oscillations of a
violin string excited by a bow are of this type, as is the phenomenon
of "chatter" in machine tools. More homely examples are the binding
and creaking of doors on unlubricated hinges when opened, and thé
screeching of a piece of chalk that is held perpendicular to the black- |
board when writing. A torsional vibration of this type has been
observed in the propeller shafts of ships when rotating at low speeds.
The shaft is usually supported by two water lubricated journal
bearings and at low speeds no water film can form and the bearings
are "dry."

Examples of maintained oscillations caused by fluid dynamic

forces are stall flutter in aircraft wings and stall flutter of turbine
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blades. Many other examples of such mechanical nonlinear vibration

k(lo) . These oscilla-

phenomena are given by Den Hartog in his boo
tions are often called "self-excited" because the alternating force
that sustains motion is created or controlled by the motion itself; if
the motion stops, the alternating force disappears. This is in con-
trast to forced vibration where the sustaining alternating force exists
independently of the motion and persists even when the motion has
stopped. Thus "relaxation" oscillations are a particular type of
"self-excited" oscillation, but the two terms are often used inter-
changeably in the literature.

The precise form of the equations that govern these oscilla-
tions are often not determined, but they are known to be governed by
equations of the van der Pol type. So, obviously, generalizations
were proposed so that many of these oscillations can be studied

together as a class. A, Lie,nard(n) used the more general equation
X +ef(x)x +x=0 (L.7)

when giving a method for the graphical construction of solutions.
Shohat(lz) used a Fourier series approach in getting an analytical
approximation for the solution to this equation, and LaSalle(B) studied
the limiting case as € — oo.

The next obvious generalization is to also have a nonlinear

"spring, " and for forced vibrations the equation is

X + ef(x)x + h(x) = e(t) (1. 8)
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Many different results on the existence, uniqueness, stability and
boundedness of solutions of the equation may be obtained, depending
on the initial assumptions regarding the functions f(x), h(x) and
e(t). Researchers who have obtained results related to this equation

(14) (15, 16)

are Lefschetz , Levinson
(21)

, Cartwright and Littlewood(17’ 18, 19),
(22)

Cartwright(zo), Urabe and Reuter . This is not an exhaustive
list of references. Many others may be found in Cesari's book(23)
which contains an extensive bibliography on the mathematical aspects
qf this eq_uation and related topics.

)

Levinson and Smith (%% supposed that the "damping" was a
function of both displacement and velocity and proved the existence

and uniqueness of periodic solutions of
X +1i(x,X)x +h(x) =0 (1. 9)

under appropriate restrictions of f(x, x) and h(x). Levinson also

obtained existence results for the forced case

¥ +flx, %) x + hix) = e(t) , (1.10)

(27) (28)

and Reuter and Antosiewicz obtained boundedness theorems
for solutions of (1.10) under different assumptions on f(x, x), h(x)
and e(t).

This is a sufficiently general equation to include a great many
practical applications to self-excited oscillations. Levinson and

Smith's assumptions about (1. 9) allow for great generality but the

proofs are lengthy and the theorems somewhat difficult to apply.
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Caughey and Malhotra(zg) have considered the equation
x - €[1- glx,%x]% +h(x) =0, | (1.11)

and have proved the existence and uniqueness of a periodic solution
when g(x, %) and h{x) satisfy appropriate conditions.

In this thesis we consider the "self-excited" oscillations of
systems whose motions are described by (1.11), and also the forced

oscillations governed by the equation

¥ - €[l - gl x)]x + hix) = elt) . (1.12)

To understand the global properties of the solutions, the
equations are first studied by topological methods. The Poincaré-
Bendixson theory is applied to the system with no forcing term.

Some speéific examples are given, and their periodic solutions
(limit cycles) are constructed by Lidnard's graphical method(u). The

stability of periodic motion is established by Lyapounov's Second

(30)

Method The forced problem is very much more difficult to work

out, but some progress can be made by the application of the Brouwer

(31). Boundedness of solutions can be established

(32)

by use of several theorems, especially those of T. Yoshizawa .

fixed point theorem

Finally, analytical approximations to the solutions are made for
particular cases for special regions of validity using the perturbation

method,' Fourier series approximation and other methods.
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II. TOPOLOGICAL METHODS

To study the motions of a system governed by the differential

equation

.

X - €[l - gx,x)]% +h(x) = e(t) (2.1a)
with the arbitrary initial conditions
x(0) =a and x(0)=b , (2. 1b)

it will be necessary to restrict the class of functions glx, ;«;), h{x)
and e(t) so that the existence and uniqueness of the solution of the
initial value problem is assured. Here, this is accomplished by
requiring that the Cauchy-Lipschitz existence theofem, as stated by

(33)

Minorsky , be applicable to the equivalent system of first order

differential equations

dx

a -
' (2. 2)
% = €[1- glx,%)]% - h{x) +elt).

The system of equations (2. 2) will have a unique solution to prescribed
initial values if the partial derivatives %g , _E')_g and ﬂ-l exist and are
X 9% ox
‘continuous. This is a sufficient condition.
However, physiéa11y§ it is of even greater interest to study the
conditions under which the existence and uniqueness of periodic

solutions of equation (2.1) is assured. Also, we are interested in

finding out what these solutions are if they do exist, The precise or
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quantitative nature of these solutions is very difficult to obtain in
general, However, certain good approximations to the solution can
be obtained for restricted regions of validity. These approximate
solutions will be obtained in the next part. In this part, however, we
will study the global or topological properties of the solutions.

One of the most fruitful techniques for the study of second
order differential equations is to study these solutions in the (x, g—?)-
plane, commonly called the phase-plane. Extended to higher order
equations, this phase-plane is called the state-space. But the geom-
etry of three or more dimensions is very difficult and the advantages
of planar representation are lost. However, this technique is
generally useful only to autonomous systems, that is, systems that
do not explicitly depend on time. So we now consider only the

autonomous differential equation
% - ¢€[l- glx,x)]% +h(x) =0 (2. 3)

or the equivalent system of equations:

dx _
-—-d-t— = X

(2. 4)
L = 1 - glx, 0] - hx)

The solutions x(t) and x(t) of equation {2.4) provide a

parametric representation of the solution which is a curve in the

t

hase-plane. This curve is known as a "trajectory." By eliminatin
1% P J b Y g

dt from equations (2.4), the differential equation of the "integral
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curves" of the autonomous system is obtained:

_q_;_c €[l - glx,x)]x - h(x)
= s . (2. 5)

Tt should be noted that equations (2.4) and (2. 5) are equivalent, that
is, they have the same integral curves, with the difference, however,
that (2. 5) gives a geometrical curve without any reference to what
happens in time. |

This time independence results in the so-called translation
property of autonomous differential equations: To a given trajectory,
there corresponds an infinity of solutions {motions) differing from
each other only in phase. This property is very convenient for the
geometric study of integral curves.

It is easy to see that this procedure breaks down for nonautono-

mous systems for, in that case

dx _ .
'a—}'{ = f(X, X t)

which varies in time and it is meaningless even to speak of integral

" Tn fact, if one assumes that the

curves in the sense of "trajectories.
solutions are to be represented in the phase-plane, two different
trajectories may, in general, even intersect each other which is con-
trary to the Cauchy-Lipschitz theorem, and so on. This difficulty
can be removed by introducing time as a third dimension, but then

the advantages of two-dimensional representation are lost.

The advantage of introducing the idea of trajectories in the
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phase-plane is that a trajectory which closes on itself represents a,
stable or unstable, periodic motion. The problem reduces to one of
finding if any such closed trajectoriés exist. We will make use of the

s
Poincare-Bendixson theory for two-dimensional autonomous systems,

(33)

an exposition of which may be found in the books of Minosky

(34) (35)

Coddington and Levinson , Stoker R Lefschetz(36) and others.

(29)

Existence of Periodic Scolutions of the Autonomous System

The existence of periodic solutions can only be assured by
further restricting g(x,%) and h(x):
Assume g(x, ;:) =1 defines a simple, closed, convex curve

and let ﬂl be the compact set g(x, xX) = 1. Define the function

Vix, x) =

N{n—*

. X
X2 + g h(g) at (2. 6)
0 .

and assume that h(x) is odd and monotone increasing, and that

xh(x) > 0 for x# 0. Then V(x,x) = constant also defines a simple,
closed, convex curve. Select a constant C2 such that V{x, ;c) = C2
inslcribes the set 91, and let V(x, ;c) = C‘2 be the compact set QZ'
Similarly, select constant C3 such that V(x,x) = C3 circumscribes

Ql, and let V{x,%) = C, be the compact set 93. Note that

3
QZ c Ql c 93 (Figure 1).

Theorem 2.1. Suppose g(x, %) defines a simple, closed, convex

curve which is four-point symmetric: g(x, %) = gl-x, x) = glx, -x) =

gl{-x, -x)> 0 if both x,;caé 0. Suppose also that g—g . -Q-g and -g—h
x ox x
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FIGURE |
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exist and are continuous; h(x) is odd and monotone increasing;
xh(x) > 0 for x# 0; h(0) = 0; and € > 0, Then the autonomous

equation (2. 3)

s

X -€[l-gxX)]x+hx)=0

has at least one periodic solution (limit cycle). Further, any limit
cycle that exists will be in the region of the phase-plane bounded by
the simple closed curves V(x, %) = (3'2 and V(x, x) = C3, that is, in

the region 93 - SZZ.

Proof: From equation (2. 5):

dx _ €[l - glx x)]x - h(x)
dx X

it is readily seen that the only singular or critical point of the
equation, where both the nume rator and denominator are simultane-

ously zero, is the origin x = % = 0, Further, at x =0 and x# 0,

dx

jectory. Since glx, %) is assumed four-point symmetric, g(x, x) =1

is unbounded so the x-axis does not contain any arc of a tra-

encloses the origin, and the only singular point of the equation is
outside the region 93 - QZ.

Differentiating equation (2. 6):

%-1—’ = V(x, %) = xx + xh(x)

but along a trajectory of (2.3)
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x =€[l-glx %]k - hix),
hence

Vix, %) = €1 - glx, )] % (2.7)
and

V(x, ;{) <0 in —Q—l

\.f(x, x) = 0 on the boundary of Ql’ glx, x) =1

V(x, x) >0 in Ql .

Hence V(x,%) >0 in Qz except at the two points of contact
with g(x, %) =1, where \'/'(x, 5{) = 0; and \./'(x, x) <0 in Q-3 and on

the boundary of 2 Thus each trajectory in 373 and on the boundary

3°
of 3'23 is directed inward to {; - 2,, each trajectory in 92 is
directed outward to Q3 - Qz, and each trajectory inside 823 - QZ
remains in that finite region. Hence all the conditions of the Poincard -
Bendixson theorem are satisfied, and there exists at least one

periodic (limit cycle) in 93 - QZ'

Note that g(x, x) need not be four-point symmetric for the
existence of periodic solutions: all that is really required in the given
proof is that g(x, ;c) =1 be a simple closed curve which encloses the
origin. The four-point symmetry will, however, be required to show
that only one periodic solution exists.

Levinson and Smith(24) have proved a more general form of
this theofem: let xh(x) >0 for x> 0. Moreover, let S:mh(x)dx=oo.

Let f(0,0)< 0 and let there exist some X, > 0 such that {(x, 5:)?_ 0
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for |x|= X . Further, let there exist an M such that for |x| < X,
f(x,x) Z - M.

Finally, let there exist some x, > 0 such that

1

' S"ﬁ f(x,x) dx = 10 Mx

X
O

where x > 0 is an arbitrarily decreasing positive function of x in

the above integration. Under these conditions
X ti(x,x)x +h(x) =0 (2.8)

has at least one periodic solution.

Comparing theorem 2.1 with the above, it is seen that the
functions in theorem 2.1 satisfy all the conditions given above. How-
ever, theorem 2.1 not only proves the existence of periodic solutions,
But also gives upper and lower bounds in the (x, i)—plane for these
solutions. Further, its proof is much simpler than that of the more

general theorem.

Uniqueness of Periodic Solution of Autonomous System

It has been demonstrated that the autonomous equation (2. 3)
has at least one periodic solution. It will now be shown that if g(x, x)
satisfies certain additional conditions, this equation has only one
periodic solution, that is, the periodic solution is unique, and it is
also stable.

Since the curves V(x,x) = C and g(x, ;c) =1 are assumed
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four -point symmetric, simple, closed, and convex, the points of
contact between V(x, x) = C, and g(x, x) =1 can only be {i) on the
x-axis or (ii) on the x-axis. These two cases will be proved

separately.

Theorem 2. 2. Suppose g{x, ::{) and h(x) satisfy the conditions of

theorem 2.1, and that x—g—}gc >0 for x+# 0, and ;{%'g>0 for x# O.
X

Further, assume [1 - g(x, x)} - x—g-g] <0 in Ql - QZ if the points of
X
contact are on the x-axis [ case (i)]; or, if the points of contact are
on the x-axis [ case (ii)], let [1 - g(x, %) - x%g] <0 in 93 - Ql'
%

Then equation (2. 3) has one, and only one, periodic solution.

Proof: Integrate equation (2.7) along the trajectory AGH (Figure 1)

H .o . |H pH oy
S‘ Vix, x) dt = V(x, x) l =§ e[l - glx,x)] x~ dt
A A A

aﬁd, if the trajectory is a limit cycle, A = H and
H
. _ » . 2
Vix, x) I = ge[l-g(x,x)]x dt =0,
A

Further, since the trajectories are point symmetric, it will be suffi-

cient to demonstrate uniqueness for only a semi-trajectory, that is,
G

= 0 for one, and only one, X,.
A A

loss in generality if we consider the semi-trajectory to be wholly in

to show Vi{x, ;c) There will be no

Q3 - 92 since V(x,x) <0 in ‘93 and V(x,%) >0 in QZ (except at
the points of contact). For convenience, we consider a semi-

trajectory starting at x = 0, x>0 and terminating at x =0, x < 0.
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Case (i): Consider two neighboring semi-trajectories ADG and

A'D'G' (Figure 2) which are contained entirely within 93 - QZ'

| \{(x, x) [j = Sje[ 1-g]x dx + S:+Sf+ §:+ §;+ S;e[ 1-g] % dx
' V(x,;c)lf::=S‘B1€[1 -g] xdx+S SD:+5 g S [1-g] x dx

Compare the integrals along ADG and A'D'G' for each of the sub-

intervals:

B! B . . B ] .
S =5 e[1-g(x, %) - 6(x) =& - ... ][ x + &(x)] dx
A! A Bk
B B
zS‘ e[ 1-g] x dx +S e[l—g~;c—a—'g] dx
A A ox

! B
5 <S since [1‘—g—5¢—a-,g]<0 in -8,
' ! A ox

CI

Now B'C' is in 371, hence S‘ <0
Bt
. C
and BC is in Ql’ hence S‘ > 0,
B
. D' D
Also, since _ii_g >0 for x>0, 5 <§ .
ok C' C
le
Since D'D" is in n‘l, <0,
Dl

Similarly, it can be shown that
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Note: BB', CC, DDD, EE and
FF are paralle! to the
X = axis.

FIGURE 2

Note: The outer points of contact rmay not lie on either the x-axis
or the x-axis but the nature of the proof is exactly the same as
before. .
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and
G' G
<5
! F

Hence, over the entire semi-trajectory:

.G . G .
V(x,x)} <V(x,x)i if x,, > x (2.9)
Al A A A
o . |G
Now if we choose A = A7, then V(x, x) = 0 since each
A

trajectory in QZ spirals outwards; and if we choose A = A", then

Vi{x, %) = 0 since each trajectory on the boundary of Ql
A G

inwards. And by (2.9), V(x,x) l is monotone decreasing for in-

A

spirals

creasing X hence

. 1G
Vix, x) l =0
A

for one, and only one, ScA and equation (2. 3) has a unique limit

cycle which lies in the region 93 - 92 in the phase-plane.

Case (ii): Again, consider two neighboring trajectories ADG and

A'D'G' (Figure 3) which are contained entirely in 523 - QZ.

. G pB . C pE pF G
V(x,x)l =S e[1-glx dx +§ +§ +S +S' e[1-g] x dx
A YA B YC YE VYF
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Note: BB, FF and CC, EE'
are parallel to the x-
X and x- axes respectively.

FIGURE 3

Note: The outer points of contact may not lie on either the x-axis
or the x-axis but the nature of the proof is exactly the same as
.before.
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V(x,x)lG' S‘B'e[l‘g]x dx +SC' S SF"+S‘:€[1-g]5¢ dx

Comparing the integrals along each sub-interwval:

B . .
S =S‘ e[l-g(x,k)-G(Q)E-g—...][xi-é(x)] dx
' A ox

B . B 5
zS e[1-g] x dx +S G[l-g-x-—g] dx
A A

B L]
S <S‘ since [l-g-x-@-g]<0 in 93-91
Al A 9%

Cl

A
o

Now B'C' is in Q—l, hence g <
Bl

~C
and BC is in Ql’ hence 5 = 0.
B

We can write

E . E . dx .
S‘ e[1-glx dx=§ e[l-g]x— dx
C C d

X

Substituting for $X from (2.5)

S‘Ee[l-g] X dx = S‘E e[1-g]

C c €[1l-g]x - h(x)

SvE'L SE E[l_g);{z i +‘S‘E 6;{2A(X) {%}% h(x) + (l—g)—g-g}
' — c €ll-glx - hix) o C {e(l—g)i - h(x)} 2 o

i - i . BE dh -
But (1-g)> 0 since CE is in Ql, o hi(x) >0 and P > 0 since

h{x) is monotone increasing
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E' E

Similarly, it can be shown that

F! F
Sl <0 and g >0,
! E
G' G
(e
! F

Hence, over the entire semi-trajectory:

and

G' G . .
Vix, %) 1 < V{x, x) ‘ provided X gt > XA (2.10)
Al A
l . G 0 . G
Again, V(x,x) ’ =0 if A= A" and Vi(x, x) =<0 if A= A", and
A A

G
by (2.10), V{x,x) ‘ is monotone decreasing for increasing X -
A

Hence
G

V(x, x) ‘ =0
A
for one, and only one, S{A and equation (2. 3) has a unique limit
cycle which lies in the region Q."} - Qz in the phase-plane.
The limit cycle in both cases is stable for if the motion is
p'er’curbed so that the representative point is outside the area enclosed
by the limit cycle, then V(x, %) < 0 and the resulting trajectory con-

verges onto the limit cycle. If, on the other hand, the perturbation

is such that the resulting representative point is inside the area
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enclosed by the limit cycle, V(x,x) > 0 and the subsequent trajectory
again converges onto the limit cycle. So the unique periodic solution
is stable,

Levinson and Smith's theorem on uniqueness is: If f(x, %)
and h(x) satisfy the conditions for the existence of at least one
periodic solution of equation (1. 8), and if for every C the minimum of

1 9f(x, x)

x £(x, %) 9%

F(x, x) =7}~2- +
x

on RZ(C) is positive and exceeds the maximum of F(x, x} on RI(C),
then equation (1. 8) possesses a unique solution. Here R1 denotes
the region in the (x, ;c)-plane where f(x,x) is negative, and RZ the
region where F(x, %) is positive. That part of the curve

X
Vi(x, x) = lz}'{z +§ h(x) dx = C which lies in R, is denoted by R,(C)
0

1

and that part of V(x, %) which lies in R by RZ(C).

2
The additional conditions presented above are more difficult

to verify in applications than those given in theorem 2. 2.

Examgle S

A few examples are now given to illustrate the type of functions

glx, %) and h(x) which satisfy the conditions of theorems 2.1 and 2. 2.

(i} As an example of case (i), consider the equation

. xz 5{2 . 2 2
x -6{1-—---— x+x=0, a~<b (2.11)
2 2
a b
. XZ 5{2
Here gi{x,x) = —Z+_Z’ hix) =x, and
a b
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[\¥]
a8

glx,x) =1= % + is an ellipse.

a

o lN'
N

'Ql is bounded by the ellipse g(x,x) =1, 92 is bounded by the

inscribing circle x% + %% = az, and 03 is bounded by the circum-

scribing circle xz + 5{2 = b2

. It can readily be checked that g(x, x)

and h(x) satisfy all the conditions of theorems 2.1 and 2. 2 for the
existence and uniqueness of a stable limit cycle (periodic solution),

and it would be desirable to know what this limit cycle is. A gene ral
solution is not known, but graphical solutions using Liénard's Method(n)
have been.constructed for the particular case when a =1 and b =1.5
for € =1.0 and € =10.0. These graphical results are presented in
Figures 4 and 5 respectively. It is seen that the trajectories con-
verge to the limit cycle faster, that is, the transients die out faster,

for € =10.0 than for € =1.0.

It is observed that

v oo 2 4 Zn < 2 * 4 2m
.g,(x,x)-(alx +azx +..e +anx )+(blx +b2x +... +bmx )

nm=1,2,3,...
and

hix) = Cx +Cpx> #... +Cx7" 1 r=1,2,3,...

satisfy all the conditions for g(x,x) and h(x) of theorems 2.1 and
2. 2 for the existence and uniqueness of a stable periodic solution.
By the pfoper choice of the constants a and b, gix, %) =1 can be

made to approximate a great number of four-point symmetric, simple,
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closed, convex curves; and by a proper choice of the constants C,

h(x) can be made to approximate a great number of odd, monotone

increasing functions.

(ii) As an example of case (ii), where the points of contact between

Vix, %) = Cz and g(x, x) =1 are on the x-axis, consider the equation
. v2  véT. 2 .
Y’E[l'%'%]y+yzo’ a®>3 (2.12)

a

2

* 2
Here Ql is bounded by the ellipse 12 + 13— =1, QZ is bounded by

the inscribing circle yz + ;’2 =3, ar?d 93 is bounded by the circum-
scribing circle yz + irz = az. Again, it can easily be verified that
g(y,ir) and h{y) satisfy all the conditions for the existence and
uniqueness of a stable periodic solution of equation (2.12).
| It is interesting to note that in the limit as a — oo, equation
(2.12) becomes the Rayleigh equation
2

yo-el-5)yty=0 (2.13)
The Rayleigh equation itself does not belong to the class of equations
discusse& in the theorems because g(y,y) =1 is not a closed curve.
Thus, on the basis of the theory presented, we cannot strictly say
that equation (2.13) has a unique and stable periodic solution. How-
elver, a unique and stable periodic solution exists for a large but
bounded and, physically, if a islarge enough, it will be impossible

to di‘stinguish between the motion for a large but bounded compared

to the motion for a large and unbounded. For this reason, we may
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say that equation (2.13) has a unique and stable periodic solution as
the limiting case of equation (2.12) for a — oo.
Further, if we set y =x and y = x in equation (2.13) and

differentiate with respect to time, we obtain the van der Pol equation
. 2, -
x ~e{l - x")x+x=0, (2.14)

Since vy, y = x and y =X are uniquely defined on the limit cycle of
equation (2.13), X is also uniquely defined by the use of equation
(2.14). Hence van der Pol's equation also has a unique and stable
periodic solution.

The existence and uniqueness of a stable periodic solution for:

the Rayleigh and van der Pol equations has been proved directly(23).

A Special Class of Problems

Consider the class of problems where
g(x, %) = m| V(x, x)] (2.15)

where m 1is a positive real constant. For convenience, take m = 2.

172-, g(x, %) =1 which is the boundary of Ql. Hence

Then if V(x, 5{) =
for the class of problems where equation (2,15) holds, both the in-
scribing and circumscribing curves V(x, x) = (L'2 and V(x,x) = C3

are simply the boundary of ﬂl, g(x,x) = 2V(x,x) = 1. Hence, the

exact solution of

¥ - €[1-2V{x,%)] x +h(x) =0 (2.16)
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is given by solving

Vix, x) =

pol-

« 2. X 1
+ h(§) d§ = = (2.17)
x 'S‘O 2

As an example, suppose h(x) = x, then

2 2

Vix, %) = }Z(x + x%) = -12

and it is readily verified that
x = sin (t + ¢) (2.18)

is an exact solution by direct substitution into equation (2.14). The

limit cycle is simply the circle

To get an idea of the transient re sponse, trajectories converging to
this limit cycle are shown in Figures 6 and 7 for € = 0.1 and € =10
respectively. The trajectories were drawn using Li.e,nard's graphical
construction. It is observed that the trajectories converge slowly

to the limit cycle for € = 0,1, but rapidly for € =10.

(9)

It is interesting to note that J. Gibson gives the equation

X -G(I—XZ-;CZ);:'i-yx:O

as representing a number of control systems where the nonlinearity
is frequency dependent, and works it out as an example.
The stability of this exact solution (2.18) of the differential

equation (2.16) can be checked by Lyapounov's Second or Direct
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Method. A very readable exposition of this method is given by
L.aSalle and Lefschetz(Bv).

Since

X
Voo = 332+ ne at,
0

therefore

h(x) = -gg

and equation (2.14) may be rewritten as

x —e[l—ZV(x,;:)]k+g;{Y=O (2.19)

Suppose uf(t) is the solution of (2.17). Perturb the system slightly

and let
x(t) = uft) + n (2. 20)

Substituting (2. 20) into equation (2.19):

. e - - 6V BVD - L
u +n - E[l - Z{V(u,u) +—a-;{11+5€11 +---}:|(u+n)

Regrouping terms:

Wo-ell-2Vigwh+dY +q +26(-3—V-q +?-.Yh>{1

9u 9u ou
.. 8ZV .
-e[1 - 2V{u,u)]n t——snt (higher order terms of n,M) =0
ou

- Applying (2.19) and noting that [1 - 2V(u, u)] = O(n) since
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1- 2Vix, ;c) = 0 is a solution, we get

2

0 +2e({1--3v>h+ 2y ;’ +2e——gvi1 n=0 (2. 21)
. R u
2u du

if we neglect higher order terms of 1, n. Let

2
v - 13[_:.5;1 . 2V n]
Then V*> 0 provided either n# 0 or m+ 0. The possible exceptional
case _@_Y N+ -g—:lf‘q = 0 1is ruled out since this corresponds to a point

on the 611;‘mit cycle.

Differentiating v

dv* _|av. . 8v_1|d |8V, ., 8V
at “[ﬁ"JrT)E”}&?['T"J'Bu”]

du
But
u
?-?-’=—@.—[~lzixz+§ n(€) a¢ | = &
du du 0
, % av. oV vV . azv. 32 .
V =]—m+54=—n{un tun+ —mt+t|—su+t ul n
. du du 2 .
du ou udu
i
0
or

. ou ou 2
ou du

Along a trajectory of the differential equation, substitute for u  and

n using equations (2.19) and (2. 21) respectively.

sk .
- 2en? [.@L Q_Y]n

<
i

ou ou
* . 2

- 4e0®V = 0

<.
1!
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.
V" satisfies all the conditions for a Lypounov function, and integrating

. He
V' we get

V= V] exp [-4eg u? dt]

sie .
and. V. — 0 as t—o. Hence either both n and n— 0 or

[g—zn + _Q_Y:r]] — 0. In either case, the result is that the perturbed
ou

motion tends to the limit cycle as t — oo. Hence equation (2.16) has

the stable limit cycle V(x, x) = 12- .

Existence of Periodic Solutions in the Non-Autonomous System

We now turn our attention to the non-autonomous differential

equation
X +efglx %) - 1]x + h(x) = elt) (2. 22)

or, as is more convenient for our purposes, the equivalent system

&=k
dt ~

(2.23)
dx

= -e[ glx, %) - 1]x - h(x) + e(t)

The difficulties involved in treating this problem in the phase-
plane have already been pointed out: e.g., the traje‘ctories may
intersect, etc, However, some progress can be made by use of a
theorem from topology, the Brouwer Fixed Point Theorem. DBut as
a preliminary step, a closed curve C must be constructed in the

(x, x)-plane, enclosing the origin and having the property that every
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solution x = x(t), x = ;c(t) crossing C passes from the exterior of
C to its interior. The devices on which such curves C are con-
structed vary widely from author to author, and here we follow the

procedure of N. Levinson(zs). Also see La;ngenhop(38).

Lemma. Let g(x, ;c) =1 be a simple closed curve surrounding the
origin, and h(x) an odd, monotone increasing function for which
xh(x)> 0 for x# 0, and h(0) = 0. Suppose the partial derivatives
—g-g , Qg , and —g—h exist and are continuocus and ’chat‘ x%g >0 for

x’' a% x X
x# 0 and x—g—i >0 for x# 0. Suppose e(t) is a bounded continuous
function and that € > 0. Then there exists a simple closed curve C
in the (x,x)-plane such that a solution of equation (2.22), [ x(t), k(ﬁ)] ,
that crosses this curve passes from the domain exterior to the curve
to the domain interior to the curve, Further, through any point in

the phase-plane sufficiently remote from the origin, there passes a

curve with this property.

Proof of Lemma: It is clear from the hypothesis that there exists a
simple closed curve gix, :'»c) = conétant =1 +—I§- , m>0 which encloses
g(x, ;{) =1. Curve C will completely enclose the curve g(x, x) =1 +—n£—.
In the domain outside g(x,x) =1 + % :

e[glx,x) -1] >m >0 (2. 24)

Also, from the assumptions, there exists an M such that

e[glx, %) -1] > - M inside g(x,x) =1+ % (2. 25)
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Denote the maximum of |e(t)| by E, and select a constant a such

that

ma > 2E (2.26)

Again, it will be useful to introduce the "energy" associated

with the motion of (2..22):

2} H(x), (2. 27)

Vix, x) = l-z x

whe re

H(x) = S: h(g) dE . (2. 28)
Differentiating V(x, x) with respect to time

’\./'(x, %) = xx +xh(x)
‘and al.ong a trajectory of (2. 22)

V = -] glx, %) - 1]%% *elt) k (2. 29)

Now proceed to construct the closed curve C, shown as

PleP3 e P8P9P1 in Figure 8,
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» X

FIGURE 8

Point .P4 is located first. This point lies on the curve

% = -hix) - E (2. 30)
m

sufficiently far out so that if P4 = (x4, ;c4), then for x= Xy hix) >>.0
and Hi{x) >> h(x). That such a point will exist is clear from the

hypothesis. More precisely, choose x4> X where X, is sufficiently

large so that

h(x) = - h(-x) > 2(Ma t+ E) (2. 31)
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and

2

x
H(x) =S‘ h(€) d§ > 2a (2.32)

0
That portion of the curve C consisting of P3P4 is deter-

mined by the equation

V(x, x) = constant = V(x4, x4) (2. 33)

Point P3 is chosen so that 543 = - a.

Along any trajectory of (2. 22) recall that

Vix, %) = - e[ glx, ¥) - 1]%% + e(t) %

but since P,P, lies outside glx, x) =1+ —r?— , by (2. 24)

V(X,S{)<-m5cz+E|5c|=-m;{2 1- E
mix
Since x Z a on P3P4:_
\.’(X,;I) < - m_:ecz 1- E
ma
and by (2. 26), E/ma< %, hence
| T 1.2
Vi, %) €< -5 mx" <0 (2. 34)

2
for any solution of (2. 22) which intersects the arc P3P4. Hence
Vix, 5{) decreases along a solution that cuts the arc P3P4. But
Vix, ;:) is constant along P3P4. Thus a solution of (2. 22) which cuts

P3P, can only pass from the domain exterior to C into the domain

interior to C.
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P2P3 is the vertical line segment x = X3, "2 = x = 0. Now
%}—é =x <0 since P2P3 lies'below the x-axis. Hence x must
decrease along any trajéctory intersecting PZ'P3, that is, any solu-
tion of (2. 22) which cuts P2P3 must go from right to left, from the
domain exterior to C into the domain interior to C.

That portion of C made up of 1'—"1P2 consists of that part of

the curve

3%+ Hix) - (Ma+E)x = H(x,) - (Ma +E)x, (2.35)

L
2

which starts at P, and for which 0 = x <a. On P,P,, by differ-

entiating (2. 35) with respect to x, we have

dx _ h{(x) + Ma + E
= =- . (2.36)
X
By eliminating dt from (2. 23), we have for solutions of (2.22)
.Eii‘ _ -€l plx, x)-1] Sc-h(x)+e(t)< -hix)tMa+E (2. 37)
dx ~ . . *

X X

And, as an immediate consequence of (2. 31)
0>- hi{x) + Ma + E.

Thus (2.36) and (2. 37) indicafe that the slope of sclutions of the solu-
tions of (2. 22) is more negative on PIPZ than the slope of PIPZ itself.
Thus the solutions of (2. 2) cut Ple from the exterior of C to its
interior,

The determination of P1P4 is complete. Next, we turn to

P4P5. P4P5 is the horizontal line segment X = 5c4, 0 =x= Xye



-41-

Since P‘}:P5 is that part of the phase-plane lying below the curve

5{: -h(X) - K
m

we have

0<-mk-hx-E. (2.38)
Along solutions of (2. 22) outside g{x,x) =1 + %

9% - - h(x) - e[glx %) - 1]k +e(t) > -hix) - mk - E.

ax
dt

solutions of (2. 22) as they cross P4P5. So, again, the solutions of

And by (2, 38) this means that > 0, that is, x increases along

(2.22) can cut PP only by passing from the exterior of the curve
C into its interior.
P5P6 is given by the curve V(x, %) = constant = V(XS,;c()) with

5{6 = - a. As in the case of P_P ’{/'(x, x)< 0 along solutions of

374
(2. 22) in this region. Thus these solutions cut P5P6 from the

exterior of curve C to its interior,

P P7, much like P is that portion of the curve

6 A

lz. %% + H(x) + (Ma+tE)x =-12 a

24 H(x,) + (Ma+tE)x,

for which -a = x = 0 and which starts at P(). As in the case of
Plp2 we make use of inequality (2. 31) here. If X is not sufficiently

large in magnitude for the inequality
~h(-x) > 2(ma + E)

to hold, |x6[ can be increased by moving P4 out so that the
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inequality does hold and lxbl > X .

P7P8 is the vertical straight line segment x = Xy 0= x =< a..
Here —3—%—( =x>0 so the éolutions cross P7P8 from left to right,
from outside C to inside it.

P8P9 is the curve V(x, ;c) = constant = V(x8, ;:8) which starts
at P8 and goes to P9 whe re ;‘9 = a, Here again \./'(x, x) < 0 on the
solutions cutting P8P9'

P(}P1 is the horizontal straight line segment x = a between
Xg and X Once it is demonstrated that Xq < X it is easy to show
that the solutions of (2. 22} cut P9P1 from the outside of C to its

inside. This must be so because on P9P1 for solutions of (2. 22):

dx

G = ~<lgbe x)-1]x - hix) +e{t) < -ma - hix) + E.

And since ma > 2E and h(x) > 0 for x> 0, we have —g—i—‘ < 0. Thus

P9P1 is cut by solutions of (2. 22) from top to bottom, from outside
C to inside it,
To demonstrate that P9 lies to the left of Pl’ consider the

changes in the "energy" V{x,x) as curve C is traversed. Denote

V(xn, xn) by Vn:

- - Jl .2
V2 - V1 = .H(xz) H(Xl) 5 a
and using the defining equation (2. 31)
V.-V, = H(x,) - Hixy) - 5 a2 = (Ma +E)(x,- x,) (2. 39)
Y2 2) - Hx) -3 2™ ™ '

By (2. 39)
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X, ‘
H(xz) - H(xl) =Sx hix)dx = (Ma+E)(x2-x1) + lz a

so by (2. 31),

2(Ma + E)(xz- xl) < (Ma + E)(xz- x_l) +lz az,

Thus (2. 39) becomes

Along ]P2 3

By definition

Along P4P5,

And, much as bhefore,

1 2
(Ma+E)(x2—xl)<-za.
2
VZ-V1<§a
x=xz=x3, thus.

- 1 2 _ __l 2
V3—V2-—H(x3)+—2a' H(xz)-—za
V4-V3=0.

x = ;c4 = ;45, hence

_ 1.2 1:2 :
VS- V4— H(0) +-z X - I—-I(x4 e R H(x4)
V6-V5=0

1 2
V7'V6<—Za

_ 1 2
V8~V7——2-a.

Vo-V,=0

h{x) > 2(Ma + E) for x= x

2

1.

(2.40)

In (2., 40)

(2. 41)

(2.42)

(2.43)

(2. 44)

(2. 45)

(2. 46)
(2. 47)

(2.48)
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By (2.41) - {(2.48), we have

2 :
V9 - V1 < - H(x4) t+ 2a (2.49)

But in (2, 32) it was required that H(x) > 2a® for x| > X If Xq ) 2 X

take P4 sufficiently far away to assure that Xg > X Hence

V9-V1<0,

and since ;‘9 = x.l = a, therefore Xg < X7 This completes the proof
of the lemma.

We are now in a position to consider the existence of periodic
solutions. The general approach is to try to find a splution which
closes on itself. However, since the system is non-autonomous, it
is clear that unless the forcing function is periodic, the solution may

not close on itself again. So we assume e(t) to be periodic with

period L,
The Brouwer Fixed Point theorem will be applied. It is for-
mulated, for example, in the books of Cesari(23) and Lefschetz(36).

For reference, it is stated here: Let region R be a closed interval
in the Euclidean x-space E _, x = (xl, ceeyX ) with a, =x. =b,,

n n i i i
i=1,2,...,n. Suppose that the transformation T, given by y = f(x)
where x € R, is a continuous mapping of region R into itself, that
i i = = = =
is, if f=(f,..., fn), fi fi(xl’  SYRREY xn) and a, = fi(xl’ e xn) "bi’
i=1,2,...,n for all x € R, then there exists at least one point x € R

(fixed point) such that Txo =X that is, f(xo) =X This will now be

applied to the following theorem on periodic solutions:
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Theorem 2.3. Let g(x,%) =1 be a simple closed curve surrounding

the origin, and h(x) an odd monotone increasing function for which
xh{x) >0 if x# 0, and h(0) = 0. Suppose the partial derivatives
—g—g . -Q-g , and oh exist and are continuous and that x-@-g > 0 for
x' 9% ox 9x
x#0 and x28 > 0 for x# 0. Suppose e(t) is a bounded periodic
9x
and continuous function with period L, and that € > 0. Then
equation (2. 22) has at least one periodic solution with the same period

as the period of the forcing term e(t).

- Proof: Let C be a closed curve around the origin of the (x, x)-plane
with the property that every solution of (2. 2) which crosses it, goes
from the domain outside C into the domain inside C. The existencé
of such a curve C 1is assured by the Lemma we proved. Let the
region R be the 2-cell of the (x, x)-plane enclosed by C. For
every point Po = (xo,;r:o) of R, consider the solution [x(t), 5{(1:)]

of (2.22) with x(0) = x_, x(0) = 5c0, and P, =(x1,;;<1) in the (x,x)-
plane defined by X, = x(L) and ;{1 = x(L). }Pl must also be in R as
no solutions of (2. 22) go from inside R into the domain outside R.
Then the transformation T which maps Po € R into P1 is defined
in R, is continuous in R, and TPO € R for every P0 € R; that is,
T(R) < R. By the Brouwer theorem we conclude that there exists at
least one point P = (E’;_‘) in R such that for the corresponding

solution _x(t)., ;c(t) of (2. 22) we have

x(L) = x(0) =x, x(L)=x(0) = x
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and since we also have e(L) = e(0), the solution [ x(t), x(t)] is peri-
odic with period L. This completes the proof.

It should be observed that in theorem 2. 3 the periodic solution
need not be stable or unique. Moreover, L need not be the minimﬁm
period either of e(t) or of the periodic solutions. Hence, there

exists the possibility of sub or super-harmonic solutions of (2. 22).

Ultimate Boundedness of Forced Oscillations

Whether a periodic solution exists or not, it is of great
engineering interest to know the eventual behavior of the solutions

in the forced case. Consider the system of equations of the form
{x} = {xX(x,t)}, tz=o0,

Suppose {x(t)} 1is a solution such that {x(to)} =% . Then, either

the solution may be extended for all t = t, in which case the solution
{x(t)} is said to be "defined in the future," or there is a time T = tg
such that ||x(t)|| =~ +o as t— T in which case the solution {x(t)}

" These two possibilities are

is said to have a "finite escape time.
mutually exclusive. LaSalle and Lefschetz have given some theorems
which give conditions for solutions to be defined in the future or to

(37)

have finite escape times We state them below without proof.

Theorem: Let £ be a bounded set containing the origin and let V{x,t)
be defined throughout € and for all t= 0. Moreover, let V(x,t)=— too
as ||x|| = +o and this uniformly on every finite interval

0=a=<t<b. Furthermore, let v = G(V,t) hold throughout $ and
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for all t= 0. If
v=Gv,t), t=0 (2. 50)

has no positive solution with finite escape time then every solution

x(t) of
x = X(x,t), t=0 (2. 51)

is defined in the future. Here, x, X, v, V and G are all vector
quantities.
The next theorem gives conditions for a finite escape time

and may be considered as an instability result.

Theorem: Let £ be a region such that if a solution x(t) starts in
2 it remains thereafter in 2. Let V(x,t) be positive for all x in
§2 and all t= 0. Suppose V = G(v,t) holds for all t= 0 and all x
in Q. If

v=Gv,t), t=0 (2. 52)

has no positive solution defined in the future, then each solution x(t)
of (2. 51) with x(to) =X has a finite escape time. Again, x, X, v,
V and G are vector gquantities,

These theorems will now be applied to the differential equation
(2. 22):

.o

x - €[1- glx,x)]% + h(x) = e(t)

The functions g(x,x) and h(x) safisfy the conditions of theorem 2. 3,
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and let e(t) be continuous for all t= 0. The above equation is

equivalent to the system

=y
(2. 53)
v =e[1- glx,y)ly - hix) +elt)
.Let
1 2, (F
Vix,y) = Y + ‘g h(u) du (2. 54)
0
Take the set § of the first theorem to be the set g(x,x) <1
Vix,y) = e[1 - glx, )] y% + elbly (2. 55)

and outside this region {2

V= et |yl = V2 |etn] V2.

Thus V = G{v,t) = k(t)L(v) for g(x, ;c) = 1 and for all t= 0, Here

k(t) = V2 |e(t)] and L(v) = vl/z. The inequality

vE k(t)L(v)

or

or

v{t) t
S dv éS‘ k(t) dt t, S t<T

has no positive solution with finite escape time T because

+F +
© 4, _(T®
T =

dv = + oo
L{v) V172 -
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(the integral does not converge), so the right-hand side is bounded
as t— T while the left-hand side would approach + oo if there
were a positive solution with finite escape time T. Hence every
solution of the system (2.53) is defined in the future.

The info rmation that a solution is defined in the future might
be sufficient in astronomical problems where the orbits of the planets
are only computed for one or two orbits at one time. But in many
enginee ring problems, for example in some resonating circuits or
control systems, oscillations occur at high frequencies and "1oﬂg
term" behavior is manifested in a few seconds. Then it is important
to know if the solutions are "ultimately bounded. "

First the term "ultimately bounded" .will be defined and then
some results on ultimate boundedness obtained by T. Yoshizawa(?’z)

will be quoted and applied to an example which is a sub-class of the

oscillators we are considering in this thesis.

Definition: We say that the system of differential equations (2, 51) is

ultimatcly bounded if there is a b > 0 such that, corresponding to

each solution x(t) of (2.51), thereisa T>0 with the property that

[|x(t)|| < b for all t> T.

Theorem: Let V{x) be a scalar function which for all x has con-
tinuous first partial derivatives with the property that V(x) — oo as

l|x|| = 0. If

Vix) < - n<0
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for all x outside some closed bounded set M, then (2. 51)

x = X(x,t), t=0

is ultimately bounded.
We now apply this result to the sélf—excited oscillators

governed by
¥ - e[1-%%-Kk(x)]k +hix) =eft), t=0 (2. 56)

where k(x) and h(x) have continuous first derivatives; h{x) is odd
and monotone increasing, xh(x)> 0 for x+# 0, h(0) =0 and €> O,
Suppose k(x) = k{(-x) > 0, and e(t) is a bounded continuous function

with |e(t)| £ E.

Dr, Caughey(47) suggested the function
) . X X
V=Lx2+ -1-(x+x)2——(—1—tglx2+€ uk(u}du + 2\ h(u)du + C
2 2 2 0 0

where constant C is selected to assure that V > 0 for all (x, ;c).

Differentiating V:

Vexx +(x+x)x+% - (1+e)xx + € xxk(x) + 2h(x) x

Vz2x¥ +%% +x% - exx +exxk(x) + 2h(x) % . (2.57)

But along a trajectory of (2. 56)

¥ = €[l - %% - k(x)] - hix) +elt),

50
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V = 2€[1 - X2 - k(x)] X% - 2h{x) X + 2e(t) x + X°
+ef1 - ;{2 - k{x)] xx - xh(x) + xe(t) - €xx

+ €X;ck(x) + Zh(x);c

< - 2e[ %% +k(x) - 1] X° + fz-écz(xz + %% + %%
- xh(x) + |x|E + 2|%|E
3.2 2 .2 .
= -el 3%°+ 2k(x) "}'(é“ - (2e+1)] x° - xh(x) + |x|E + 2|x[E.

2
Hence, if k(x)> -’—2—- then there exists a closed bounded set M such

that in M, V = -n<0. So the system is ultimately bounded.
For completeness, we quote another of Yoshizawa's results
on ultimate boundedness of solutions which uses a non-autonomous

function V(x,t):

Lemmal. V(x,t) is a scalar function with continuous first partials
for all x and all t= 0, and M 1is a closed set in n-space. For
any positive number r, let Mr denote the set of all points whose
distance from M is less than r. Thus x in M, means that for
some point y in M, ||x - yl! <r, If V(x, t) =0 forall x in M
and if V(Xl’ tl) < V(XZ’tZ) for all tz = 1:1 =0, all X in M and all
x

5, in T\/I—r, then each solution of (2. 51) which at some time t =0

as in M can never thereafter leave Mr'

Lemma 2. If, in addition to the conditi;)ns of lemmal, V(x,t)=0
and \‘/(x, ) = -1<0 forall t=0 and all x in ™, then cach

solution of (2. 51) that is defined in the future is ultimately inside Mr'
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Theorem: If in addition to the conditions of lemma 2, the set M is
bounded and V(x,t)— oo uniformly for t>0 as ||x|| = oo, then

the system (2. 51) is ultimately bounded,

The above theorem suffers from the fact that there are a
large number of conditions to be verified. But if the simpler theorem
does not give the results required, this more general‘,itheorem may
be useful. }

These methods concerning existence of soluti;zns in the future
and ultimate boundedness are like Lyapounov's method. Lyapounov's
theorem draw conclusions aBout stability from the inequality = v =0,
where V 1is taken positive. The methods just described consider
the more sophisticated inequality +v S G(v,t) from which interesting
conclusions are drawn. For this reason, these methods are said to
be extensions.of Lyapounov's Method. Mathematicians have taken
great interest in such methods recently and many results and refer-

ences on this topic are given in the monograph by W. Hahn(48).
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III. ANALYTICAL METHODS

In the last part we considered the conditions under which the
claés of oscillators we are studying have unique and stable periodic
solutions for free oscillations and periodic or bounded solutions for
forced oscillations. In this part we consider the quantitative pro-
perties of these solutions. Unfortunately, no quantitative information
can be obtained for the general class of oscillators we are considering.
The functions g(x,x), h{x) and e{t) have to be explicitly specified.
In other words, quantitative information can only be obtained for
particular examples. These examples will give some idea of the
behavior of the solutions, even though a general solution is not
available, These methods give approximate solutions for limited
regions of validity. Both free and forced oscillations will be studied.
We begin by obtaining the perturbation solution for small € in the

autonomous case.,

Perturbation Solution in Autonomous Case

The perturbation method, which is valid for small_ €, 1is due
7(39)

to Poincare who applied the method to problems in astronomy. A

mathematical justification of this method may be found in Stoker's
book(35).

The specific equation that will be considered here is

. 2 2, 2
X - €l -x —l‘-z)x+x=o (b°>1) (3.1)
b

which is related to equation (2.11). Equation (3.1) can be obtained
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from (2.11) by a change of variables., Equation (3.1) may be rewritten

as:
*3
. 1 d .3  x _
x-e[x——S—-——dt (x -—bz] +tx=0 (3. 2)

Since the frequency of the periodic solution is not known, it is advan-
tageous to replace the independent variable t by 6 = wt, where is

the unknown frequency of the periodic nonlinear solution. This change

of variables in (3. 2) gives
2 2 3
2d'x dx w d, 3 w  dx _
@ ""dez‘e[‘*"d'e‘?'de(x)'bz(de)]+x'0 (3.3)

Assume for x and w the following power series in €:

_ 2 :
x-xo+€x1+€x2+... (3.4)

_ 2
wuwo+€w1+€wz+... (3.5)

We may now assume that the solution x(0) of (3.3) has the period
2w, and that dx/dé = 0 for 0 = 0, that is, that the velocity is zero

at time t = 0. Ilence we require that all the functions xi(e) have

the period 2w and that (d:x:i/de)e:0 = 0.
Multiplying (3. 4) and (3. 5) out and inserting into (3. 3):

[w2+€2w0w1 +€2(2w w +w12)+... ][.;;0'*‘6;{.1"’62;{-24‘...]

o 2
- €lw tTew *+ ;c+e' +€23c+
0 l LI B 0 xl 2 . s 0
+
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Equating like powers in €:

mz.:&. +x =0 (3.6)
o0 o
w3
2-. — . . _ 2- - —-g . 3
wg X1 + Xq = Zwowlxo + W X, T WX X b2 X (3.7)
wzsf Fx. = -20 WX, - (2w w +w2)3{. +{w %, twx )
o 2 2 ol1 o2 10 01 "1o
- [w (2x x x + x5 ) ¥ wxx ]
o 0071 ! 170" 0o
3m§k§ . . ~
) (wox) + wpx,) (3.8)
2.- _
W, X3 + Xy = ..
Recall that the periodicity and initial conditions are:
xi(E) + 2n) = xi(G)
and i=1,2,3,... (3.9)
dxi
(=5 ) =0
do 0=0

The set of differential equations obtained above can be solved
sequentially and we begin by solving equation (3. 6) for the initial

conditions (3.9). The solution is well known and is

xo(e) = A0 cos 0; W, = 1 (3.10)

whe re Ao is still undetermined and will be obtained in the next step

of the sequence.
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Substituting (3.10) into equation (3.7):

.. 3 2 A
x, +x, = 20.A cos 9 - A sin 0 + ATcos 0 sin 6 + — sin™ 0. (3.11)
1 1 1o o o bZ
By use of trigonometric identities, (3.11) becomes
. Ao 2 Ai 2
X, +x, = 2A wcos B +A |— (3+b7) -1]sin 8 +—= (b"-1) sin 30.
1 1 o'l o 4b2 4b2

The periodicity condition requires that there be no resonance. Hence
there must be no forcing terms of the same frequency as the frequency

of the oscillator. That is, the "secular terms" must be zero:

2

A 2
AOI:-——%(3+b)-1] =0
4b
(3.12)
Z_Aowl =0 .
The non-trivial solution is:
_ 2b
Ao - > 1/2
(3 + b7) {(3.13)
w = 0 ‘
Thus equation (3.11) becomes
. 2b(b? - 1)
% + % = A——————Z—WZ sin 30 . (3.14)
(3 +b7)

The particular solution is Clsin 30, and substitution into (3.14) gives:

b - 1)

2,3/2

C, =
4(3 + b")

1 (3.15)
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The general solution of (3.14) is:

x1(9) = A,cos 0 + B1

1 sin 0 + C1 sin 30.

Applying the initial condition:.

(dx,/d6)g_q = By +3C; =0, = By =-3C
and (3.16)

xl(e) = A,cos 0 - 3C151n o+ Clsin 30,

1

whe re A1 will be determined in the next step.

Substituting W, Wy xo(e) and xl(e) obtained above into

equation (3. 8) gives:

:.n:. + x 2w

2 5 = Aocos o - Alsin 0 - 3C

cos O + 3C1c:os 36

2 1

+ 2A§sin 8 cos 8{A cos 8 - 3C,sin 0 + C,sin 30)

- Ag cosze(—A1 sin 6 - 3C1cos 0 + 3C1cos 30)
a0,

- ) sin @ (~A sin 0 - 3C1c:os 6 + 3C1cos 36) .
b

" Expanding using trigonometric identities and grouping terms:

y ale, A7,
x,tx, = |2w,A - 3C.+ (9+b%)|cos 8+A |~-1+~— (3+Db7)|sin O
2% 2807 34 3 1 2
2b 4b
3AZA] Al
+ > (b”-1)sin 36+3C1 1+—-——2(b -9) | cos 30
4b 4b
2
Asc
- 2.1 (5b2- 9) cos 56.

4p?
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Again, periodicity requires the secular terms to vanish:

alc, 2, _
2w,A_ - 3C, + (9+b7) =0
2o 1 A
2b
and : (3.17)
342 2
A1 -1+ 2(3+b) =0,
4b
whose solution is
3w
@2 = 2
8(3 + b) :
(3.18)
A1 =0.
So equation (3. 8) becomes
. Ag 2 ACL 2
x2+ X, = 3C1 1+ — (b” - 9)| cos 30 - > (5b"- 9)cos 560
4b 4b

or, using equations (3.13) and (3.15):

_ 3b(b2- 1)(b2- 3) S(bz- 1)(5b2- 9)

S cos 30 + cos 56. (3.19)
2 2 2(3 +1°%)°/2 4(3 +b%)°>/?
The particular solution is
Czcos 30 + chos 50
and substitution into (3.19) gives
c - 3b(b2- 1)(b>- 3)
2 16(3 + b2)572 _
and (3. 20)
2 2
D. = -b(b™ - 1}(5b" - 9)
2 96(3 + bZ)S/Z
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The general solution is:

xz(e) = Azcos 0+ stm 6+ Czcos 30 + Dzsin 50,

and since (dxz/de)e=0 =0, B,=0; and A, and w; may be deter-
mined in the next step.

It is clear that the computations become longer and more
cumbersome with each succeeding equation in the sequence. So we
will truncate the series now. Collecting the information gained so

far together:

- 2
x(e)—xo+ex1+€ x2+..

Aocos 0 +€e{(-3C.,sin 0 + Clsin 30)

1

+ eZ(A2 cos B + C,cos 38 + D,cos 50) + ...
or
x(0) = —22 _ cos 0 +E2 b%- 1) (3 sin 6 - sin 36)
(3462172 4(3+p%3/2
2
+e”( ) +... (3. 21)
andv
w=w_ tew t €2<.o +
o m]- 2 e 2 9
or
2 3(b%- 1)
w=1+e2 31D o (3. 22)

8(3 +b%)%

These results are what we would expect. If b =1 then we
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have the special case of equation (2.16) and frequency w=1 and .
amplitude AO = 1, and the coefficients of all € terms are zero in
this case. For b2> 1, according to the geometric theory of the last
part, 1< Ao < b, and this is certainly correct here. According to
equation (3. 22) the frequency increascs as 62 from unity, and we
expect w>1 for € > 0. But it is interesting that the coefficient of

€ is zero here, a fact which could not be foreseeﬁ from geometrical
arguments, and which means that frequency changes very slowly with

€ for small €,

Periodic Oscillations inthe Limiting Case € = oo

It is of great interest to know the behavior of equation (3.1)
for large €. It would appear that in this case, the "damping" term

dominates the equation and the limit cycle would be the ellipse

‘2
x2 + 3{-2—- =1, But this argument is not valid for very small x and it
b

is necessary to examine this case more closely, We will now study
the limiting case € —> oo.

From theorems 2.1 and 2. 2 we know that for equation (3.1)
there exists a stable and unique periodic solution. We will now prove

the result that for this equation (3,1):

o

-ell-x%-% ) kx+x=0, bZ>1

o

in the limiting case € —* o, the periodic solution (limit cycle) is the

ellipse
. 2
g(x,x)=x2+ % =1.
b
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To prove this result, define the Lyapounov function

2

2 e 2 .
oL X X 1,_ 1,2 -ax
V(X, X) = —‘—?‘- +-z—;z —2(1 -'—-bz )X e (3. 23)

where a is some function of €. Here we take a =€, If x is small

ax

such that c.::cz <<1, then e &1 and

Vix, ;c) = constant = l-z(xz + }'{2)

is approximately a circle., If, on the other hand, x is large such

. 2
that a.;cz >>1, then e % ~ 0 and
- 2
V(x, x) = constant = L (x2 + X )
2 b2,

approximatcs an cllipse. Note that we intend to take € to be very
.large so that V(x,x) = constant approximates an ellipse everywhere
except for very small :::, where it approximates a'circle.

. _ ¢ 1 1
Now define constant ACI = (-z 2—172-) and note that for large

€ the near-ellipse

Vix, %) = C, =

ol

1
26172
- is contained entirely within the ellipse g(x, x) = 1. It is further

observed that the near-ellipse

o _ l__ 1
V(X,X) = C]. = 5 +E;|._72-

completely surrounds the ellipse g(x,x) =1 (Figure 9).
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b 3

V(X,X)= C,
glx,x)= |
Vix,k)=C,

7).

FIGURE S

The next step is to show that all solutions of {3.1) eventually
lie in the region between V(x, x) = C2 and V(x, x) = Cl' This can be
done by examining the change of V{(x, %) along solutions of (3.1). So,

differentiating V(x, ;c) with respect to time:

. . 2

Vix, %) = xx +ZE 4 (- —12- )1 - ax?) x¥X e % . (3. 23)
b b

But along a trajectory of (3.1)

2 2

;£=€(1-x -

|4

)Sc-x

[\8)

b

so that
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. . . » - .Z
V(x,x):xx(l--—l-z)[l- 1 - ax“)e ** :I
b
« 2 + 2
+ 25%e(l - x2- i‘-z)[_l-z (1= )1 - ax®)e ™ ] (3. 25)
b b b
. 2 .2
Consider the region V(x,x) = Cl‘ Here {1 - x“ - ?52 }y> 0,
b

x2<1 and 5{2<b2

. One can distinguish two cases depending on
whether a;cz is (i) less than or equal to one or (ii) greater than one.

(i) Suppose 0 < ax® =1, and let

ak’ = 0
and
L2 -ak?
(1 - ax )e = [3;
then
Ce 1 2, 2 %21 1
Vix,x) = xx(1 - 5)1-p) +x (1-x"-=)— +(1 - )B]
b? b [bz b2
or
1/2 2 32

y . 0 1 1 1

Vix, x) == (1-—)1-p)+6{l-x -—-)[——4'(1--——){3]- (3. 26)
€172 bZ bZ bZ bZ

Since 0< 0 =1, 0= B<1 so thatthe second term of (3. 26) is posi-

.tive, while the first term may change signs. But the positive term

dominates for sufficiently large €. This is true even for small x

since {1 - B} —~ 0 for O —+ 0. Hence
Vix, x) > 0 if € is large enough.

{ii) Suppose axz >1, then (1 - a.;:z) is negative and the second
term is not necessarily positive. Let us examine this term more

closely.



1 1 2, -ax 1 1 -0
— +{l -—=<M1 -~ ax")e = =+ - )1 - O)e , 90>1
b2 B2 pe bl
The minimum of (1 - B)e-e is of interest:
L oa-0e® =-(z-0e’=0.

rI“he refore, the minimum is at 0 = 2, So for the second term to be

positive, we must have

Lo o
b b e

or,
bl<(l+ed)=8.4...

Here, \./'(x, ;{) again takes the form given in (3. 26), and
\./'(x, 5{) >0 if € is large enough and b2 < {1+ ez). This restriction
on b is sufficient but not necessary. The bound could be impr(-)ved
by another choice of the Lyapounov function V(x, ;c). However,
Lyapounov's theory is not constructive and no definite procedures
exist to assure a more suitable choice of V{(x, ;c). Hence \'/'(x, 5{) >0

2

in the region Vix, x) < Cl if € is.large enough and if b” < (1 + ez).

Hence all trajectories in this region eventually go into the region

bounded by V(x,x) = CZ and Vi(x, x) = Cl'
<2

- %) <o.

b

Again we distinguish two cases depending on whether u;cz is less than

2

Now consider the region V(x, X) = CZ' Here (1 - x

or equal to unity, or greater than unity.

2

(i} Suppose 0 < ax“ =1 then, again 1> B=0 and
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o 1/2 N2
L =£9T7'2“ a - fzm- B) + 0(1 - x2- i.z)[glz + 1 -;1-2){3]
€

Here the second term is negative while the first one may change signs.
For |x| > M, the x2 of the second term dominates the x of the
first term so that “/'(x, x) < 0. For [x| <M, the second term
dominates if € is large enough and V'(x, Sc) < 0.

(ii) Suppose aicz > 1. Here again, the second term is negative

2

if o<1+ e2), and dominates the first term if € is large enough.

Thus \-f(x, ;c) < 0 in the region V{x, ;c) = CZ' Hence all trajectories
in this region eventually go into the region bounded by V{(x, X) = C2

and V(x, ;c) = Cl’
Thus, all trajectories eventually lie in the region bounded by

Vix, ;;) = C, and V(x,x) = C. and the stable and unique limit cycle

2 1

of (3.1) must lie in this region. Now, in the limiting case € — o

. 32
V(X’ X) = -3

xz 1
+ e =C,=C, = =
sz 1 2 2’

so the limit cycle is the ellipse
2, ¥

x~ 4+ _>_c_2_ =1 =g(x,;<),
b

as claimed.
A similar result for the equation

e Xz .2- 2
x-e(l-—-z-x)X'i’x:O, a“>1 (3. 27)

a
is that in the limiting case € — oo, the periodic solution is repre-

sented by the ellipse
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glx, x) = -X—Z-‘*'x =1.
a

It should be noted that equation (3. 27) can also be derived from (2.11)
by a transformation of variables.

The proof of this result is very similar to the result proved
for equation (3>. 1) so some details will be omitted. In this case we

use the Lyapounov function

- ox X% 1,1 -2 -ak® :
Vix,x) = —= + 5+ 5{(—=5 -1)x"e (3. 28)
2 2 2 2
2a a
For a;<2 << 1,
V(x, X} = constant = ——1—-2- (x2 + 5{2)
2a

approximates an ellipse. For € very large, V(x, ;c) = constant
approximates an ellipse everywhere except for very small x. Apgain,

_choose
c, = %- and C,= &+ L
1 2 26172 : 2 2 ZE172

The curves V(x, ;:) = Cl’ C(x, ;:) = Cz and g(x, ;{) =1 are shown in

Figure 10.



-67-

V(X,).()= C2
glx,x)=1
Vix,x)=C,

o

FIGURE 10

Differentiating V(x, x) in (3. 28) with respect to time:

* . . ®* s . 2 e - .2
Vix, x) = ?i.?.;_. +xx + (—% -1 - axz)xx e 0%
a” a
and along a trajectory of (3. 27):
| . ‘24 o1/2
: v S - anlymax 0
Vix, x) = (—a-j-z- 1) {1 1 - axe ]x-ﬁ-—17§
2 o, 2
ol - %5 - %% [1 + (—12- S - axP)e %X J (3. 29)
a _ a
.2 .2, -ak® .2
If 0<ax“ =<1 then 0=(1- ax)e <1, andif ax >1

then {1 - o.;cz)e-ax < 0 so that in the region V(x, ;c) = Cl’ Vix, x) > 0
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if € is large enough; and in the region Y(x, x) = CZ’ \'l'(x, x) <0
if € is large enough., Thus all trajectories of equation (3. 27)
eventually are contained in the region bounded by V(x, x) = C1 and
V(x,%) = C,, and the stable and unique limit cycle must lie in this
region.

| In the limiting case € —~ @

2 c 2

Vi) = 5+ %20 =G, = 3,
Z2a

so that the limit cycle is the ellipse

2

X +x =1=g(x,;c),

2
a

as claimed.

The se examples show that the crucial point in the proofs is
the choice of a suitable Lyapounov function Vix, 5{). Unfortunatély,
there are no standard techniques for géne rating these functions and

the choice is based on experience and trial and error procedures.

Fourier Analysis of Periodic Solutions
We have obtained approximations to the periodic solutions of
.2 5

S E )x +x=0, b%>1
2

::<.~€(1—x2

for small € and for € = oo. The behavior for intermediate values of
€ is also of great practical interest. A stable and unique limit cycle
exists, and since g(x, ;c) and h(x) have continuous partial dériva’cives,

the limit cycle must be, at least, piecewise-smooth so we can express
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the solution as a Fourier series:
A [o.0)
0 .
z =2 + .
x(t) 3 +Z (An cos nwt Bn51n nwt)
n=1

Geometrically, we know that the limit cycle is point symmetric,
that is,

xlt + 2 ) = - x{t)

where T is the period of oscillation. So we must have

A0=AZ=... :AZn:"' =0

and
B2=...=B =,.. =0,

Also, the time axis can be shifted to make B1 = 0, Let us truncate

the series and assume:

x(t) = A cos wt + B sin 3wt + C cos 3wt . (3. 30)
Substituting this into (3.1) rewritten as

14,3 ¥ 2

X"€(X——§-a-tcx)-—gz)+x=0, (b™>1) (3. 31)

we get:
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-w2(A cos ot +9B sin 3ut +9C cos 3ut) + €w(A sin t - 3B cos 3wt +3C sin 3ut)
+ (A cos wt + Bsin 3wt +Ccos 3wt)t -63- %{A3cos3wt + B3sin3w’c + C?’cos3 3wt
+3A%B coset sin 3ut +3A2C cosZut cos 3ut +3AB%cos wt sin® 3wt
+ 3AC2cos wt cosz3wt + 3BZC sinz?;wt cos 3wt + 3BCzsin 3wt cosz3wt

. €w’ [ .3 .3 3 3
+6 ABC cos wt sin 3wt cos 3wt} - —5 Asin"wt - 27B cos™ 3wt

b

+ 27G3sin30t - 9AZB sinut cos 3wt + 9AZC sin®at sin 3ot
2 . 2 2 . . 2 2 2 s
+ 27AB%sin wt cos“3wt +27 AC“sin wt sin“3wt +81 BYC cos 3wt sin 3wt
- 81 BC2 cos 3wt sin23wt - 54 ABC sin wt cos 3wt sin 3wt} = 0.
By use of trigonometric identities the square, cubes and products
of the trigonometric functions can be put in terms of the various

harmonics. We are only concerned with harmonics up to the third

order so higher harmonics are ignored:
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~w?(A cos wt +9B sin 3ut +9C cos 3wt) +€“(A sin wt - 3B cos 3wt +3C sin 3uwt)

e d (A> 38>
+Acos ot +B sin 3ut +C cos 3ut) + 5 ET{T (3 cos wt +cos 3wt) + 22 sin 3ut

A%B 342

4 4

2 2 L2 2
3AZB cos wt + 3A2C wt + 312 c cos 3wt + 3B4C sin 3wt}

C

3 .
+3 —%—-cos 3wt + (sinwt + 2 sin 3wt) + {cos wt +2 cos 3wt)

+

- {A3(3 sin wt - sin 3ut) - 81B3cos 3wt + 81C sin 30t
4b

+9A2B(cos wt 2cos 3wt) - 9A2C(sinwt - 2s5in 3wt) - 54AB2sin wt
2 . . 2 . 2
+ 57TAC " sinwt +81B"C sin 3wt - 81BC“cos 3wt} =0

Equating the coefficients of sin wt, cos wt, sin 3wt and cos 3wt to

zero, we get the four equations:

2.2 2 2.2 2.2
EZ)A (4-AZ-AC— ZBZ- ZCZ_. 3w2A +9w ?C _ 54(.02B _ 54w2C ) =0
b b b b
(3.32)
Al - wo +AB €w - 9AB €w3)= 0 (3.33)
7 Z
4b
B - 9Bw? +£2 12C - A3 -3¢ - 6a%c - 3B%¢)
€w>, . 3 3 2 2
+59 (4% - a1c” - 18a°C - 81B°C) = 0 (3. 34)
4b :
C - 9Cw? - £2 (12B - 3B° - 6A”B - 3BCH
cuw 3 2 2
+ €9 (318° +184%B + 81BC%) = 0 (3. 35)

4b

The above are four nonlinear algebraic equations in the four
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variables w, A, B, and C. These equations are difficult to solve and
the best we can do is to find an approximate solution by numerical
methods. A possibility is to try an extension of Newton's method:
Suppose the four equations are written |
fj(?c) =0, x=(x, x5 X3 %X,) = (0 A,B,C) (3. 36)
j=1,2,3,4.

Newton's method extended to more than one variable gives:

& of,
—d = = :
Z oy 6x, + fj(xn_l) 0 (3.37)
: 1T = n
= *¥n-1
n=12,3,... ; j=12,3,4

which is a vector equation and may be written
[Fﬁ]_ I T R EX ) (3. 38)

n=1,23...; i,j =1,2,3,4

The solution is then obtained by fixing a value for € and guessing
the value of §n_1 =§0 for n =1, Then equation (3.38) gives {6x1}

and ;1 can be determined by
(e ) = (5} +1ox ). (3. 39)

The solution can then be obtained to the desired degree of accuracy
by iteration for n=2,3,... . This iteration can best be done us.ing

a digital computing machine. There are two problems associated
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with this however. It is not certain that the iteration process itself
converges and second, even if the iteration process is convergent,
the machine computation may not converge.

The computation described above was carried out with
limited success using the IBM 7094 digital computer at the Computing
Center, California Institute of Technology.

By equations (3.32) - (3.35), the elements of the matrix

[F..] == are:
it x=x
) 1,3 1,2~ 1, 22 1, 2
Fll An_EAn ZAnCn ZAan Z.Ancn
2
9w A
- nzn(Az—3AC +18B% +18C%)
1 nn n 1
4b
- _3 a2 01 1 gn2 12
Flpo=wl-z4a -5AC -5B -5C)
90 1,2 2 2
-—Z (5 A" - A C +3B° +3C%)
2'2 n nn n n
2b
zmi
Fl?: =" wnAan(1 * bZ )
1 2 27 2
F14 w, A (ZAn-i- Cn_ 4waAn-’FEZmn Cn)
_ € A2 . _27e 2,2
FZl -3 ALB anAn 2 wnAan
4h
.. 2, € _9¢ 3
FZZ 1 wn+ 2 wnAan ZbZ wnAan
_ € 2_ 9¢ 3,2
Faz = 7958, 7 98y
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Fou =0
_ _€ a3 _3€ 2, .2, ~2
F31-36Cn 4An 4Cn(An+Bn+Cn)
+3€ 2a3- e - 18a%c_ - s1B2C ) - 18w B
4b2 n' n n n n nn n n
L 1 12 302
F32 - _3€wnAn( 4 An * Cn T2 wnAn * 2 wncn)
4bh b"
_ 2 3¢ 8le 3
Faz=1- Yy - —Z—manC 2 nBnCn
2b
- 41,2 1 52 3.2
F34 - 36“on(l An 2 Bn 4 Cn)
- 25 BP(aal + 982 + 27C))
4b

F, =-180. C_+3eB (-1+5a%2+L82+1c?)
n n n n

41 AR S
+ i-z (18 AZB + 8133 + 81B_ c )
4b
_ 3 2
F,,=3€co A B (I+ 2 w2)
_ .1 ,2,322,.1 .2
Fy3=3€ (-1+5A +7B +7C)
+ 26 S(zal + 2182 +9¢2)
n n n n
4b
- 1 8le 3
F44 =1 9wn * 2 wancn + 2 BnCn
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And the elements of the vector - {fj(-;:n)} are:

_ 1,2 ,1 1 2,1 2
f1 - mnAn(_1 +Z An +7f Ancn +—2 Bn +'2 Cn)
+ 2o WA (a2 - 3A B +18B% +18C%)
n“n''n n-n n n
4b
_ _€ 9¢ 3,2
fZ - An(-l + “h TZ @ A,B 2 wnAan)
. 4b
_. e sl ads3aZc +3p2c 133
f3 - Bn+€wn( 3Cn+4An+ZAncn+4BnCn+4cn)
1 Ww(-a3 +184%¢c_ +81B%Cc +81C7) + 94%B
42 D1 n n n n n n n

f =-C +3c0B (1-1a%-L821c?+94%c
n nn n n n

4 2 n 4" n 4
- € B3usals +s1B3 +siB c?) .
2 n n n n n n
4b
Take b2 = 2, then the computer solution for € = 10z is:
w=1,133
A =1,165
B=-1.484 x 10>
C=-4.755x 1072,

For € = 104s the computer solutibn is:

©=1.132

A =1.167
B=-1476x10°
C=-4.760x10"2 .
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It is seen that for both solutions, 1< w<b and 1<A<Db as
predicted by the topological methods. The amplitudes B and C of
the third harmonic terms are very small, thus justifying the trunca-
tion of the Fourier Series at this point, The coefficient B of the
sin 3wt term seems to tend to zero as € increases, but there is no
appreciable change in the coefficient C of the cos 3wt term. The
frequency w is slightly less for € = 104 than for € = 102. One would
expect the reverse to be true as the frequency increascs to b = V2
as € — 00. But the difference is so small that it may oe discounted.

The significant point, however, is that the difference for the
two values of € is so small that the convergence of the computations
or of the machine calculations is not certain., Due to time limitations
this question was not properly resolved, and would be an interesting

problem for future investigation.

Forced Oscillations by the Method of Slowly Varying Parameters

We turn now to obtaining an approximate analytical solution
for the equation

2
2

.

x -€(l -x );c+x=Esinvt'. . (3. 40)

The method of slowly varying parameters has been developed to
obtain first-order approximations. For predominantly harmonic

solutions, one may start by assuming' the solution

x(t) = A sin vt + B cos vt (3. 41)
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where A and B vary slowly with time, that is, the variation over
the period 2w/v is small. When (3. 41) is assumed the method is
often known as van der Pol's method(40). One may equally well

choose the equivalent solution
x(t) = A sin (vt +.¢) (3.42)

where A and ¢ vary slowly with time. When (3. 42) is assumed

the method is often called the Kryloff-Bogoliuboff- Mitropolsky

d(41, 42)

Metho « This method has been applied by Dr. Caughey to

various nonlinear problems (43, 44). C. Hayashi has several examples

worked out in his book(45). These predominantly harmonic oscilla-
tions are significantly different from linear oscillations as "jump"
phenomena may be exhibited in the nonlinear case.

For our purposes it is convenient to suppose the solution has

the form of equation (3.42). Assume that the velocity is
;c(t) = Av cos (vt + ¢) . (3. 43)

By differentiating (3.42), it is seen that this assumption about the
x}elocity implies that

dA . de _
5t sin (vt +t o) + A < ¢os (vt +¢) =0. (3. 44)
From (3, 43) we get

X =g£v cos (vt +¢) - Av(v +%—‘£)sin(vt + ). (3.45)

Substituting x, x and X into the equation of motion (3. 40), using
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trigonometric identities and grouping terms:

2 2
Al vZE -y 82y -s}.é--[-ﬁ: .ﬂ_}
A(l-v®-v dt)sm(vt+¢)+ (dtv €Av|1l 7 (1+bz) cos (vt t¢)
€A3v 2

+

7 {1 +-Y-z)cos 3(vt +¢) = Ecos ¢ sin (vt +¢) - Esingcos (vt +¢) .
: b

(3. 46)

Multiply {3.46) by sin (vt + ¢), and subtracting from the resulting

equation (3. 44) times Vv cos (vt + ¢):

AQ - vz) sinz(Vt + ) - de Av sinz(vt + @) + cosz(Vt + ¢)1
at |

2 3v2 AZ

An+2)+4-q +-1—2>] sin (vt +¢) cos (vt + )
b b

+€Av[1--;—

=FEcosog sinz(Vt +¢) - E sing sin (vt +¢) cos (vt + ). (3.47)

Averaging out (3.47)
-vA R - (v -1)A+Ecos ¢ . (3. 48)

Similarly, multiply (3.46) by cos (vt + ¢) and add Vv sin (vt + ¢) times
(3. 44) to it., On averaging the resulting equation we get
2 2

1+ ?;vz )] + = E sineg . (3.49)

A
7

-2v —— = €Av [«1 +

For steady state oscillations we must have

dg _ dA _
dt - dt T (3.50)

so equations (3. 48) and (3. 49) become



(vz—l)A = E cos ¢
and
Ac2> 3v2
€A vi-1+ —4—(14' bz )] =Esintp°.

Fliminating ¢ by squaring and adding

2
A 292
E% = (v - 1)%A% + 2a%)2 l:1 -2 +:°’.l’__)] (3. 51)
o} o 4 b2'

which gives the relationship between the amplitude of oscillation, Ao’
and the frequency of the forcing term, V. The locus of vertical
tangency of the amplitude-frequency curves is of great interest, as
we shall see, in the stability analytis of these steady state oscilla-
tions so now we determine this locus:

2
A 2. A . .2

dv _ 2 .\2 2,2 2 __ o 3v o 3v

5 = 28,0507 ractaly [1 T3y )M S22 )]

b
2
A 2 2
+ 2¢%v2A [1 -2 +-3—"-)] =0 .
o 4 2
. b -
Rearranging:
2 . -2
2 2 A 2 3A 2
yo-1 o 3v o 3v.i_
( sy ) +[1"T(1+—-z)][1--—4—(1+~°z)}—0. (3.52)
b dk b
We are particularly interested in small "detuning, " that is, v &1,
In such a case (3.52) becomes
22 7SS 7
(——) +[1‘T(1+;i)][1‘—“4 (1+b—2-)]=0. (3. 53)

Recall that the amplitude a, for free oscillations for small € is



-80-

given by equation (3.13) as

2b

a_ = ——————
(3 + bt 2

o

and so (3. 53) may be written

L2 2 Az 3a?
{ p=y ) +(1-—z)(1>-——-2—-)=0. (3.54)
a a
[s] (o]
Let
2
_voa
X = €V
and
A
Y = —5"
a
(9]
then (3.54) becomes
X240 -17)1-3Y)=0 (3. 55)

which is the equation for the ellipse

5 2
x2 (Y - 3)

5+ > =1. (3. 56)
1/v3) (1/3)

Thus the approximate result for small detuning is the same as for
van der Pol's equation,

The stability of these steady state solutions will now be studied.
We use the standard technique of introducing a small disturbance into
the solution and determine whether this disturbance dies out or not.

So suppose
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A:A0+§ (3.57)

and
p=¢,*tm (3.58)

where & and m are small. Substituting these into (3. 48):
S2v(A +£8) L (p +m) = (- 1A _+E) +Ecos (p t M. (3.59)
o dt ‘"o _ o o * ‘
Subtract out the steady state solution
2 -
(v® - 1)A0 + Eocos (Po,“ 0 (3. 60)

and neglecting higher order terms, (3.59) becomes

d 2 .
-ZvAo—&’% =(v“- 1)t - Ensing_. (3. 61)

Similarly, putting (3.57) and (3. 58) into (3.49) gives

2

d (Ao+§) 3v2 .
“2v (A _+E) =c(a +E)v [-1 P2y )] + Esinlp +n) (3.62)
Subtract out the steady state solution
Ai 3v2'
EAOV ['1+ T(l +—-1;-27 )]+Esin (/)0=0 (3.63)

and neglecting higher order terms, (3.62) becomes

2

- 3A 2
2v§.§. = evf [-1 - 40 1+ 3; )] - Encos ¢ _. (3. 64)
b 0.

dt

Assume the distrubances to be

£=g et (3. 65)

and
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n=ne . (3. 66)

Substituting & and m into (3.48) and (3.49)

— (v, - o
-ZvAono)\ = (v 1)§o Enomn P (3.67)
and
- 3AZ L2 ,
ngOx = €v§0L1 e (1 + bz )J - Enocos Po (3. 68)

But E cos ?s and E sin ¢, are known from the steady-state solutions

(3. 60) and (3. 63) so equations (3. 67) and (3. 68) may be put in the

form
' (vz-l) 2VA AN-€A v l-f—;(l +3v-—2)-' £ 0
( o o) 4 b2 o
2 =
3A 2
s) 3v : 2 .
LZVX+ €V -1+T (1 +-;2—) -(V -1)AO Tlo 0

For a non-trivial solution the determinant must be zero:

2 Az 3v2 3A§ 32
(v-1)A_tA_ 32v7\+€v S+ 32vx+€v —+=5) -1} =0,
b

Rearranging:
2 € 3v2 vE
)\+EA(1+————)—Z)\+(‘-—L———-)
b
2 ~apl

€2 AO 3v2 3A0 3v2

Equation (3. 69) is of the form

A +mh+n=0 (3.70)
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S0

x:-%‘-x‘(f) -n . {3.71)

For the disturbance to die out, that is, for stability, A\ must have
negative real part so we must have m >0 and n > 0,

The requirement m > 0 means

2 .
AZ > —-2——-2-]3——2-— (3.72)
°  b“+3v

for stability., The requirement n > 0 reduces to

2 2

2 2 A 2 3A 2
v©o-1 o) 3v o 3v
( — ) + 1_.__4 (1 +_._....2 ) -—I (1 +-————2) >0, (3.73)
b b
So there is marginal stability if
2 2
2 2 A 2 3A 2
v©-1 o 3v 0 3v _
(=) +[1'T(1+?)][1"-—4-(1+b2)]—0 (3. 74)

which is exactly the locus of vertical tangents of the amplitude-
frequency curves for steady state oscillations (equations 3.52).

For small detuning v=1 and (3. 72) and (3. 73) become:

aZ
2 (o}
AgZ 7
and
vz—l2 AcZJ Ac2>
{ 6V) +(1-—-Z)(1—3—2-)>0.
a a
o - (8]

These are just the conditions for the stability of van der qu's equation
and a good set of response curves may be found on page 82 of

McLachlan's book(46).
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These analytical results using the method of slowly varying
parameters on (3.40), of course, agree with the topological results
obtained in Part II. As proved in theorem 2.3, there does exist a
periodic solution with the same period as that of the forcing function.
This solution is stable only under certain conditions, but may also
be unstable. Theorem 2.3 does not predict anything about stability
and this had to be investigated separately. It should be pointed out
that if a periodic solution is unstable, it does not exist in a physical
sense as it will not be observed in practice,

The solutions of equation (3. 40)

;:.-E(l-xz--}f-z-
b

[\¥]

);c"f'x:Esinvt

are defined in the future as the equation is a particular case of

equation (2. 22)

%X - e[l - glx, %] x +hix) = elt)

whose solutions were shown to exist in the future. By the change of

variables x = by, equation (3. 40) becomes

¥y =€(1~§r2-b?‘y2)§r+y= {Esin vt

which is the form of equation (2. 56) with k(y) = bzyz so that the
solutions of (3.40) are also ultimately bounded. The theorems on
ultimate boundedness, however, do not actually give bounds but

only state that bounds do exist. This is in contrast to the topological

results obtained for free oscillations.
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IV. SUMMARY AND CONCLUSIONS

Self-excited oscillators are those in which periodic oscillations
are possible without the presence of an external periadic forcing
function. Such oscillations are physically realizable if a mechanism
exists by which the system can absoz;b energy from its surroundings
during part of a cycle to compensate for the ene rgy‘dissipation during
the remainder of the cycle.

In theorem 2.1 the existence of periodic solutions for free
vibrations was proved for g(x, x) =1 a simple closed curve. This is
only slightly more restrictive than the general result obtained by
Levinson and Smith, but the proof of the theorem is simpler and it is
easier to apply. Not only that, but theorem 2.1 gives bounds in the
phase-plane within which such periodic solutions exist and this is
of great engineering interest.

To prove that this periodic solution is unique we assumed that
glx, %) was four-point symmetric, that is, g(x,x) = g{x. -x) = g(-x, x) =
g(-x, -:::) > 0. Even with such a restriction, many important problems
can still be analyzed. But it is felt that it should be possible to
extend the result to curves g(x,x) =1 with other axes of symmetry
or even to convex curves with no .symmetry. This is not very easy
to do, however, as many cases will be involved. But extensions
would be_vaiuable and merit fu.rther investigation. It is true that
Levinson and Smith have proved a somewhat more general theorem,

but their result is difficult to apply.
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The examples which illustrate the topological theory for free
oscillations of self-excited oscillators are generalizations of van der
Pol and Rayleigh's equations. The limit cycles for these generaliza-
tions are obtained graphically for two values of the parameter €.
These limit cycles are of interest because, besides illustrating the
behavior of the solutions of these self-excited oscillators, worked
examples are not abundant in nonlinear vibration theory.

It is shown that for the special class of problems for which
glx, ;c) = mV(x, _:x:) where V(x, ;<) is the Hamiltonian of the system,
the upper and lower bounds for the limit cycle are the same and the
limit cycle is given exactly by V(x, x) = 1/m; and for m= 2 and
h(x) = x, the stability of the periodic solution was proved directly by
Lyapounov's Second Method.

By use of the Brouwer fixed point theorem it was shown that
if the self-excited oscillator is externally excited by a periodic
function, then there exists at least one periodic solution with the
same period as that of the forcing function. This periodic solution
fnay' or may not be stable, Also, it is' deduced that super oxr subhar-
monics may exist but no conditions that assure the existence of
these harmonics are available. These topics are important and need
to be studied further.

The concepts of solutions being "defined in the future, " having

" or being "ultimately bounded" were introduced

"finite escape times,
and some theorems on these were quoted. These results were then

applied to self-excited oscillators. These methods tell us if a
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solution is ultimately bounded or not and if it has a finite escape
time but they are not constructive results as no specific bounds
are given,

An analytical approximation to the periodic solution for free
oscillations of a particular example for small values of the parameter
€ is satisfactorily obtained by the perturbation method. And the
exact limit cycle is obtained for the limiting case € —~ oo, For
inte rmeciiate values of €, the approximations are not easy to obtain.
A Fourier series approach is given and a sample computation was
carried out using a digital computer. This calculation had only
limited success as convergence of either the method or the machine
computation was not certain.

The whole problem of obtaining analytical approximations to
the periodic solutions for intermediate values of the parameter ¢
is very difficult. Cartwright and Littlewood have worked this out
for van der Pol's equation using real variable theo ry. DBut their
methods are very complicated and not suitable for direct application
to engineering problems. There is also the approach of using different
approximating differential equations for different regions of the phase-
plane. This is the so-called "boundary layer™ approach, and it was

(49)

applied to van der Pol's equation by Dorodnitsyn A possibly

fruitful approach to solutions of

x —E(I-EE—-%'-E);{-F}:—O
aZ bZ

is to obtain an approximate solution analytic in € and 6 = (.E -1),
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~

6= 0. Here a = b and the solution will be close to harmonic as, by
theorem 2.1, it will be bounded within a narrow annular region in
the phase-plane. The limiting case a =b has been worked out as
the special class of problems where g(x, 5{) = mV(x, 5{). The analytic
solution may then be extendable to larger 6.

As a last topic, an approximate analytic solution was obtained
for the self-excited oscillator with a sinusoidal forcing term for the
predominantly harmonic case by the method of slowly varying
parameters. The conditions for the stability of these solutions were
also obtained. Even the predominantly harmonic case is of interest
as jump phenomena may occur which are not possible in the linear
case. This method of analysis is available for small e,

It is clear on the basis of the examples that approximate
analytic solutions are difficult to obtain even for quasi-linear oscil-
lators, and very often cannot be obtained at all using currently
available methods for large nonlinearities. It is for this reason that
the qualitative information obtained from topological methods is so
important for applications. Applied to the solutions of self-excited
oscillators, these topological methods yield elegant and useful results
and provide a global understanding of the types of possible behavior

such oscillators can exhibit.
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