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- THEORETICAL FRAMEWORKS FOR TESTING RELATIVISTIC GRAVITY;
. THE PARAMETRIZED POST-NEWTONIAN FORMALISM

by Clifford Martin Will
- ABSTRACT

Increasing sophistication and precision of experimental tests of
relativistic gravitation theories has led to the need for a detailed
 theoretical framework for analysing and interpreting these experi-
ments. Such a frameworkbis the Parametrized Post-Newtonian (PPN)
formalism, which treats the post-Newtonian limit of arbitrary metric
theories of gravity in terms of nine metric parameters, whose values
vary from thebry to theory. The theoretical and experimental founda-
tions of the PPN formalism are laid out and discussed, and the de-
tailed definitions and equations for the formalism are given. It is
shown that some metric theories of gravity predict that a massive,
self-gravitating body's passive gravitational mass should not be
equal to its inertial mass, but should be an anisotropic tensor which
depends on the body's self-gravitational energy (violation of the
"principle of equivalence'). Two theorems are presented which probe
the thgoretical structﬁre of the PPN formalism. They state that (i)
a metric theor& of gravity possessesvpost-Newtonian integral conser-
vation laws if and oniy if its nine PPN parameters have values which
satisfy a set of seven constraint equations, and (ii) & metric theory

of graviﬁy is invariant under asymptotic Lorentz transformations if



and only if its PPN pafameters satisfy a set of three cbnstraint
equations. Some theories of gravity (including Whitehead's theory
and theories which violate one of the "Lorentz-invariance" parameter
constraints) are shown to predict an anisotropy in the Newtonian
gravitati?nal constant. Gravimeter dats on the tides of the solid
Earth are used to put an upper limit on the magnitude of the pre-

dicted anisotropy, and thence to rule out such theories.
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A. INTRODUCTION

I_L. Brief Summary o_f the Thesis



Recent progress in space and laboratory technology has made high-
precision testing of relativistic theories of gravitation an active
and exciting branch of experiﬁental physics. Radar ranging tb space-
craft and planets, laser ranging to the Moon, long-baseline inter-
ferometrx, application of low temperature techniques to spacecraft,
MBSsbauer.techniques, high—precision optical astrometry, accurate
gravimeter devices --- all these technological advances have made
relativists hopeful and confident that experiment will soon tell us
which theory of gravity is the correct theory.

As these experimental techniques become more accurate and more /
sophisticated and probe deeper into the effects of relativistic
gravity in the solar system, we theorists have two important duties
to perfdrm: (i) to examine and eveluate the theoretical significance
of each proposed experimental test and (ii) to suggest new possible
experimental tests of gravitation theories.

This has motivated us to devise a theoretical framework which

.is ideally ‘suited to the performance of these two theoretical duties,

This framework, celled the Parametrized Post-Newtonian (PPN) Formal-

ism, is not new; it dates back to Eddington (1922), Robertson (1962),
and Schiff (1967), and has recently been generalized'by Nordtvedt
(1968), Our version éf the PPN formalism is a further generalization
(and, we feel, an improvement) of the Nordtvedt version. It treats
~the post-Newtonian limit of arbitrary metric theories of gravity in
terms of a series of nine metric parameters, whose values vary from |

theory to theory.



Such a formalism allows one to study the solar-system effects of
relativistic gravity in an elegant and useful form: each effect ~~-
perihelion shift, radar tiﬁe delay, massive-body equivalence-principle
violations, ete. --~ finds a simple expression in terms of linear
combiﬁatiens of PPN parameters. This gives a convenient method for
inﬁerpreting the results of experiment: any experimental measurement
of a relativistic effect in the solar system is viewed as a measure-
ment of the values of the corresponding PPN parameters. In order to
decide which theory of gravity is "correct", we compare these
measured parameter values with the values predicted by various theo-
ries.

The PPN formalism is also useful as a purely theoretical tool.
The theorist can use the PPN parameters as "tracers" to determine
exactly how the various 'pieces" of the metric of spacetime contri-
bute'to each observable effect. The formalism also permits the theo-
rist to catch a glimpse of the structure of arbitrary metric theories
(at the post-Newtonian level, at least) by analysing theoretical con-
)cepts such as invariances and conservation laws within the PPN frame-
work. -Such theorefical analyses will conﬁribute to our understanding
of relativistic gravity, no matter which theory turns out to be the
"correct” theory of gravity. |

The remainder of this thesis is a detailed exposition of the PPN
formalism. In Part A, following this Brief Summary of the Thesis, we

analyse and discuss the theoretical and experimental foundations on



which we have built the PPN formalism. A study of elementary particle
experiments and of the gravitational redshift experiment leads us to
conclﬁde'that (i) there exists a metric which governs the ticking
rates of atomic clbcks and the measurements made by physical rods;
and (ii) freely falling test bodies move along geodesics of the
metric, and stressed matter responds to the metric according to the
standard curved-spacetime equation of motion "divergence of the
stress-energy ténsor vanishes". These two postulates, plus a few
elementéry'physical considerations, are enough to create the PPN
formalism.

The detailed strﬁcture of the PPN formalism is explored in Part
B. Section 3 is concerned with setting up the formalism and giving
key definitions and formulas to be used in any PPN analysis. We then
apply the formalism to a particular problem in relativistic gravity:
the breakdown in the principle of equivalence for massive self-gravi-
tating bodies ("Nordtvedt effect“). We show that some theories of
gravity (not including general relativity) predict that a massive
self-gravitating body's passive gravitational mass should not be
equal to its inerﬁial mass, but should differ from it by terms
which depend on the body's self-gravitational energy and the PPN
parameters (and which may be anisotropic). In Section L we show that
an arbitrary set of values for the nine PPN parameters does hot
necessarily correspond to a theoretically '"well-behaved" theory. In

particular, we prove that a metric theory of gravity possesses post-



NewtonianAintegral conservation laws for momentum, angular momentum,
and center-of-mass motion ifvand 6nly if its PPN parameter values
'saﬁisfy a set of seven constraint equations. Such a "conservative
theory has only two freely specifiable PEN parameters. We also show
that ﬁhe metric of a given theory is invariant under a "Post-Galilean
transformation" (a transformation which reduces asymptotically to a
Lorentz transformation far from the matter) if and only if its PPN
parameter values satisfy a set of three constraint equations. A
theory whose,parameters did not satisfy these three constraints
would be an "ether theory" of gravity, i.e. it would be a theory
which would demand that all calculations involvinévgravity be done in
a particular uniquely defined reference frame (the rest frame of some
cosmological ether, for example). Asymptotic Lorentz transformations
“to other reference frames would give different physical results fof
any calculation involving gravity.

Such an "ether" theory would have observable consequences. One
of them ;-~ an anisotropy in the locally-measured Newtonian gravita-
tional constant --- is examined in Part C. The predicted anisotropy
in G would cause fariations (as the Earth roiates) in the acceleration
of gravity as measured by a gravimeter at rest on the Earth ("Earth-
tides"). By examining Earth-tide gravimeter daﬁa, we put a limit of
one part in 109 on a possible G-anisotropy, and we show thatvthis
represents a three per cent confirmation of one of the three "Lorentz-

invariance" parameter constraints derived in Section 4. In a sep-



arate computation we show that Whitehead's (1922) theory cannot be
the correct’ theory of gravity since it predicts a G-anisotropy (of a
different type than the PPN anisotropy) and hence an Earth tide,

200 times larger than the'experimental limit of 1/109.
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" THEORETICAL FRAMEWORKS FOR TESTING RELATIVISTIC
GRAVITY. I. FOUNDATIONS*

Krp S. THORNE AND CLIFFORD M. WILLT
California, Institute of Technology, Pasadena, California
. Recetved 1970 August 24

ABSTRACT

This is the first in a series of theoretical papers which will discuss the experimental foundations of
general relativity. This paper reviews, modifies, and compares two very different theoretical frameworks,
within which one devises and analyzes tests of gravity. The Dicke framework assumes almost nothing
about the nature of gravity; and it uses a variety of experiments to delineate the gross features of the
gravitational interaction. Two of its tentative conclusions (the presence of a metric, and the “gravitational
response equation,” V-7 = 0, for stressed matter) become the postulates of the Parameirized Posi-
Newtonian framework. The PPN framework encompasses most, if not all, of the theories of gravity that
are currently compatible with experiment. Future papers in this series will develop the PPN framework
in detail, and will use it to analyze a variety of relativistic gravitational effects that should be detectable
in the solar system during the coming decade.

I, INTRODUCTION AND SUMMARY

Since 1963 a number of astronomical discoveries and observations have forced astro-
physicists to make general relativity a working tool in their theoretical model building:
The cosmic microwave radiation, QSOs, pulsars, gravitational waves —models for all
these are constrained by or involve relativistic gravity in a fundamental way.?

We theorists, who wish to build models for these phenomena, are hamstrung: Experi-
ment has not yet told us which relativistic theory of gravity is correct—general rela-
tivity, the Brans-Dicke theory, one of Bergmann’s (1968) multitudinous scalar-tensor
theories, a theory which nobody has yet constructed, . . . . The answer is of the utmost
importance to astronomy today!

It would be naive to expect that the very astronomical phenomena in which rela-
tivistic gravity is crucial will provide the answer. In cosmology, in QSOs and pulsars,
and in the sources of gravity waves, gravitational effects are inextricably interwoven
with the local behavior of matter and magnetic fields. There is little hope of separating
them sufficiently to get clean tests of the nature of gravity. The astrophysical enterprise
must be largely one of using the laws of gravity as an input, and trying to get out infor-
mation about what the matter and fields are doing “ 'way out there.”

The greatest hopes for clean tests of relativistic gravity lie in today’s rapidly advanc-
ing space and laboratory technology. Atomic clocks, very-long-baseline interferometry,

* Supported in part by the National Science Foundation [GP-15911, GP-9114, GP-19887] and the
Office of Naval Research [Nonr-220(47)}. )

- This is the first in a series of papers on “Theoretical Frameworks for Testing Relativistic Gravity.”
With the exception of the present one, the papers in this series will tend to be rather theoretical and
mathematical. A companion series on “Relativistic Gravity in the Solar System’ will be more observa-
tionally oriented. It will concentrate on the nature of various relativistic effects and on prospects for.
their detection in the next few decades.

With great pleasure my students and I dedicate this series of papers to my close friend and colleague,
Professor S. Chandrasekhar. This dedication is in honor of Professor Chandrasekhar’s beautiful and
systematic development of post-Newtonian hydrodynamics, which is an indispensable foundation for
the “PPN framework” developed and used in this series of papers. )

1 Gulf Oil Graduate Fellow.

197‘2§70r a very readable treatise on relativistic astrophysics see Zel'dovich and Novikov (1967, 1971,
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interplanetary radar, laser ranging, spacecraft-transponder ranging, and superconduct-
ing gyroscopes should make possible, in the next decade, a number of independent solar-
system tests of non-Newtonian gravitational effects, with precisions as great as 3 X 10—
(see Thorne and Will 1970 for a review). In a very real sense, the 1970’ will be “the
decade for testing general relativity.”

Although there are many new experimental possibilities, the cost of carrying each one
out in terms of manpower and money is very high. (We can expect the megabuck to be
a useful unit of measure for some of the tests.) For this reason, it is crucial that we have

~as good a theoretical framework as possible for comparing the relative values of the
various experiments—and for proposing new ones which might have been overlooked.

The most simple-minded theoretical framework would be a direct comparison of gen-
eral relativity with Newtonian theory. Indeed, it was just such a comparison that mo-
tivated Einstein’s original three tests: the grav1tat10na1 redshift, the deflection of light,
and the perihelion shift of Mercury. One might think that we should merely continue to
measure these and other non-Newtonian, general-relativistic effects to higher and higher
accuracy; and only if a discrepancy between experiment and theory is found should we
begin to consider other theories.

This would be a reasonable approach if we had enormous confidence in general rela-
tivity; but we do not—at least, some of us don’t. So we would prefer to design the
experiments to be as unbiased as possible; we would like to see them force us, with very
few a priori assumptions about the nature of gravity, toward general relativity or some
other theory. And, of course, this can happen only if we first open our minds to a wide
variety of theoretical possibilities.

A leading exponent of this viewpoint is Robert H. Dicke.? It has led him and others to
perform several high-precision null experiments (Dicke-E6tvés experiment; Hughes-
Drever experiment; ether-drift experiments) which greatly strengthen our faith in the
foundations of general relativity (see Dicke 1964; also § IT below). Without this view-
point, some of the null experiments might not have been performed, and we would
certainly not understand their significance so well.

Dicke himself has suggested one type of theoretical framework for comparing various
theories of gravity and analyzing the significance of various experiments. His framework
(see § 1I below) is particularly powerful for discussing the null experiments, for delineat-
ing the qualitative nature of gravity, and for devising new covariant theories of gravity.
However, in our opinion it is not so well suited to the analysis of the high-precision
solar-system tests which may dominate the coming decade.

A second theoretical framework, one better suited to the solar-system tests, is the
Parametrized Post-Newtonian (PPN) formalism of Eddington (1922), Robertson (1962),
and Schiff (1967) (§ III below). Although it has been very useful in the past, the PPN
formalism is too narrow and unsophisticated in its original form to serve the needs of the
1970’s. Improved versions due to Baierlein (1967) and to Nordtvedt (1968) look much
more promising, though they are still not broad enough.

The purpose of this paper is to review and compare these theoretical frameworks,
which have been -used in the past, and to make several modifications—or, we would
prefer to say, improvements—in them. This paper contains little new material. Its chief
raison d’étre is to lay out a particular way of thinking about old material-—a way that
will become a -guide for future papers in this series.

In § IT we will discuss and modify the Dicke framework. In § ITI and in Paper II of
this series we will deal with the PPN framework.

Fundamental to our viewpoint is the following assessment of the relationship between
our versions of the Dicke and PPN {frameworks:

The Dicke framework assumes almost nothing about the nature of gravity. It helps

* See also pp. 100-101 of Schild (1962) for a very convincing discussion of it.
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oné to design and discuss experiments which test, at a very fundamental level, the nature
of spacetime and gravity. Within it one asks such questions as: Do all bodies respond to
gravity with the same acceleration? Is space.locally 1sotrop1c in its intrinsic properties?
What types of fields, if any, are associated with gravny——scalar fields, vector fields,
tensor fields, affine ﬁelds, Lol ?

The PPN framework starts where the Dicke framework leaves off: By analyzing a
number of e\perxments within the Dicke framework one arrives at (among others) two
“fair-confidence” conclusions about the nature of gravity. These are (i) that gravity is
associated, at least in part, with a symmetric tensor field, the “metric”’; and (i) that the
response of matter and fields to gravity is described by “goT = 0,” where v- is the
divergence with respect to the metric, and 7T is the stress-energy tensor for all matter
and nongravitational fields. These two conclusions in the Dicke framework become the
postulates upon which the PPN framework is built.

We call theories of gravity that satisfy these two postulates “metric theories.” The
PPN framework takes the slow-motion, post-Newtonian limit of all conceivable metric
theories and characterizes that limit by a set of nine real-valued parameters (see
Will 1971 [Paper II] for details). Each metric theory of gravity is characterized by a set
of particular values for these PPN parameters. The task of solar-system gravity experi-
ments in the coming decade can be regarded as one of measuring the values of these
PPN parameters and thereby delineating, hopefully, which theory of gravity is correct.

It is important for the future that experimenters concentrate not only on measuring
the PPN parameters. They should also perform new experiments within the Dicke
framework to strengthen—or destroy—the foundation which it lays for the PPN frame-
work.

II. THE DICKE FRAMEWORK
a) Statement of the Framework

The Dicke framework for analyzing experimental tests of gravity was expounded in
Appendix 4 of Dicke’s (1964) Les Houches lectures. Here we shall present a slightly
generalized version of Dicke’s framework, and we shall couch it in slightly different
language.

Dicke begins with two statements about the type of mathematical formalism to be -
used in discussing gravity. These statements have little physical content;? they serve
primarily to delineate the vantage point from which gravity will be viewed. They say:*

Statement (1).—Spacetime will be regarded as a four-dimensional manifold, with each
point of the manifold corresponding to a physical event. The manifold need not @ priori
have either a metric or an affine connection.

Statement (i1).—The theory of grav1ty will be expressed in a form that is independent
of the particular coordinates used; i.e., the equations of gravity and the mathematical
entities in them will be put into covariant form.

Notice that even if there is some physically preferred coordinate system in spacetime,
the theory can still be put into covariant form. For example, one can introduce four
scalar ﬁelds, whose numerical values are equal to the values of the preferred coordinates:

alg) = (), B9 =@, (=2, 8(q) =g, (1

g a point in spacetime,  (x, v, %, ) preferred coordinates;

and one can then regard these fields as associated with gravity.
The Newtonian theory of gravity is an example of a theory that is not normally

3 See, however, Trautman’s (1965, p. 101) remarks about the physical significance of assuming space-
time to be a differentiable manifold.

4 These statements are equivalent to items 1, 2, and 3 on p. 50 of Dicke (1964).
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expressed in covariant language; the Newtonian equations, v2U = —4xGp, F = mvU,
are valid only in a particular class of coordinate frames. However, as Cartan has shown
(see Trautman 1965 for a review), Newtonian theory can be expressed in an alternative
covariant form involving a nonmetrical affine connection.

Having laid down his mathematical viewpoint [statements (i) and (ii) above], Dicke
then imposes two constraints, which he requires of all acceptable theories of gravity.
They are:®

Constraint 1.—Gravity must be associated with one or more fields of tensorial charac-
ter (i.e., scalars, vectors, and tensors of various ranks).

Constraint 2.—The dynamical equations which govern gravity must be derivable from
an invariant action principle.

These constraints have deep significance; they strongly ‘confine the theory. For this
reason, we should be willing to accept them only if they are fundamental to our subse-
quent arguments. For most applications of the Dicke framework they are not needed at
all. Therefore, we skall usually not assume them. If we ever need and use them, we shall
state so explicitly.

There is one final item in the Dicke framework—an item of great significance:

Guiding principle—Ockham’s (1495) razor: Nature likes things as simple as possible. ¢

This guiding principle is used, of course, to tell us what kinds of theories of gravity are
the most likely to be correct—and, therefore, what kinds of experiments are the most im-
portant ones to perform.

Notice that by telling us to apply Ockham’s razor within a covariant mathematical
framework, Dicke builds a very particular bias into his formalism. Only those theories
which look simple when expressed in covariant form are deemed promising. By this
criterion, general relativity is very promising—perhaps the most promising theory of
alll However, Newtonian theory is not: In its covariant form (Trautman 1965; Misner
1969b), in contrast to its conventional form, Newtonian theory is exceedingly compli-
cated. A physicist working in the Dicke framework would never be so pathological as
to dream up a theory like that of Newton!

Keeping this bias in mind, but not referring to it again, we shall proceed to discuss
experiments within the Dicke framework. Note that our present discussion does not
attempt to be rigorous. As we have said, this paper is intended only to develop a par-
ticular viewpoint, which will function as a guide for later, more rigorous papers.

b) The Ficlds Associated with Gravily

The Dicke framework is particularly useful for designing and interpreting experi-
ments which ask what types of fields are associated with gravity. When Dicke himself
uses it for this purpose, he imposes constraint 1 (above)—i.e., he considers only scalar,
vector, and tensor fields. We'think this is a dangerous policy. Since Newtonian theory,
in its covariant form, attributes gravity to a non-Riemannian affine connection, we
should at least admit non-Riemannian affinities as well as scalars, vectors, and tensors.
To be on the safe side, we shall go all the way and admit any field that takes on a co-
variant form; i.e., we shall abandon constraint 1.

i) Second-Rank Tensor Field (Metric)

First let us consider tensor fields of rank (§). There is very strong experimental
evidence that at least one such field exists in the Universe: a symmetric “metric” field

® These constraints correspond to items 5 and 4 on p. 50 of Dicke (1964).

¢ This corresponds to item 6 on p. 50 of Dicke (1964). Actually, this “principle of economy” (pluralitas
non est ponenda sine necessilate) did not originate with Ockham (ca. 1300~-1349), but can be traced back to
Aristotle. Ockham’s use of it was new because of his empiricism.
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g, whose orthonormal tetrads are related by Lorentz transformations, and which deter-
mines the ticking rates of atomic and nuclear clocks and the lengths of laboratory rods.
- The evidence for a metric field comes largely from elementary-particle physics. It is of
two types: firs/, experiments which measure space and time intervals directly, e.g.,
measurements of the time dilation of the decay rates of unstable particles;” second,
experiments which reveal the fundamental role played by the Lorentz group in partlcle
physics,® including everyday, high-precision verifications of four-momentum conserva-
tion and of the relativistic laws of kinematics. To cast out the metric tensor entirely
would destroy the theoretical backing of such experiments.

Let us notice what particle-physics experiments do and do not tell us about the metric
tensor, g: First, they do not guarantee that there exist global Lorentz frames—i.e., co-
ordinate systems extending throughout all of spacetime, in which?®

gi; = Minkowski metric 4;; = diag (1, —1, —1, —1). (2a)

However, they do demand that at each event ¢ there exist local frames, related by Lorentz
transformations, in which g;;(g) = 5.;. Moreover, given such a frame, elementary dif-
ferential geometry guarantees that we can construct coordinates in which

gii = nij + 0S| 2* — x*(g)|?) ; 9gi/0x* =0 at g¢. (2b)

Such a coordinate system we shall call a “local Loreniz frame at ¢.”

Second, particle experiments do not guarantee that freely falling particles move along
geodesics of the metric field, i.e., along straight lines in the local Lorentz frames. In
particular, we do not know from elementary-particle experiments whether the local
Lorentz frames in an Earth-bound laboratory are freely falling (so they fly up from the
center of the Earth and then fall back with Newtonian acceleration g = 980 cm sec™?);
whether they are forever at rest relative to the laboratory walls; or whether they undergo
some other type of motion. The strong equivalence principle (Einstein elevator argu-
ment) predicts that the local Lorentz frames should fall freely, so that a free particle
initially at rest in one frame would always remain at rest in it. Contrast this with flat-
spacetime theories of gravity, in which rods and atomic clocks are governed by the
global Minkowski metric (2a), and gravity, like electromagnetism, is described by a
field (scalar, vector, tensor, or combination) which resides in flat spacetime. In such
theories a Lorentz frame initially at rest in an Earth-bound laboratory would remain
always at rest (except for accelerations <980 cm sec™2 due to the Earth’s rotation and
orbital motion). These possibilities and others are permitted by all elementary-particle
expgriments to date (except the Mosshauer redshift experiments discussed in § ITc be-
low).

Third, elementary-particle experiments do tell us that the times measured by atomic
clocks depend only on velocity, not upon acceleration. The measured squared interval is
ds? = gadxeda?, independently of acceleration. Equwalently but more physically, the
time interval measured by a clock moving with velocity v* relative to a local Lorentz
frame is

ds = (gapdxda®)? = [1 — (19)? — (v¥)? — (2°)2}%d¢ @3)

7 For a 2 percent test of time dilation with muons of (1 — #2)"¥2 ~ 12 in a storage ring, see Farley
el al. (1960). For earlier time-dilation experiments see Frisch and Smith (1963); Durbin, Loar, and Havens
( 1952); Rassi and Hall (1941); Ives and Stilwell (1938, 1941). For an experiment which verifies, to one
part in 104, that the speed of light (y-rays) is independent of the velocity of its source (decaying #*) for
source velocities v > 0.99975¢, see Alviger ef al. (1964).

8 See Lichtenberg (1965) for a discussion of Lorentz invariance, spin and statistics, the 7CP theorem,
and relevant experiments,

% Here and throughout most of this paper we use units in which the speed of light is unity.

I3
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independently of the clock’s acceleration d2x*/d¢2. If this were not so, then particles mov-
ing in circular orbits in strong magnetic fields would exhibit different decay rates from
those of freely moving particles, which they do not (Farley et al. 1966); and 37Fe nuclei
would show acceleration dependence in the frequency of their Mdssbauer transitions,
which they do not (Sherwin 1960).

We shall henceforth assume the existence of the symmetric metric tensor; and we shall
use it to raise and lower indices on all vectors and tensors.

We shall discuss the relationship between the metric and gravity in § Ilc, below.

. i) More than One Second-Rank Tensor Field

The Hughes-Drever experiments rule out, with very high precision, the existence of
more than one second-rank tensor field (see pp. 14-22 of Dicke 1964 for discussion).

iii) Vector Fild

Various ether-drift experiments make it unlikely that a vector field is present (see
pp. 22-25 of Dicke 1964; also Turner and Hill 1964; Champeney, Isaak, and Khan
1963). :

) iv) Scalar Field

No experiment performed thus far has been able to rule out or to reveal the presence
of a scalar field. However, future studies of the polarization properties of cosmic gravita-
tional waves might reveal the scalar field, if it is present. The deformations produced in
a disk placed perpendicular to the incoming waves are area-preserving (quadrupolar) if
the waves are purely tensor in nature; but they can be area-changing (monopolar) if the
waves have a scalar component. Other ways of experimentally delineating a scalar field
are discussed by Dicke. (1964).

v) Scalar, Vector, and Tensor Densities

When Dicke (1964) writes down his constraint 1 (cf. § IIg above), he explicitly states
that he will not consider theories in which boson fields, such as gravity, transform as
tensor densities; he admits only tensorial transformation laws. However, once we have
concluded that a metric field is present, such a constraint becomes superfluous. Any
scalar, vector, or tensor density can be expressed in terms of the determinant of the
metric and a corresponding pure scalar, vector, or tensor. Hence, without loss of gen-
erality we can ignore the densities. '

vi) Aﬁne-C onnection Field

The metric endows spacetime with one affine-connection field—the “Riemannian
affinity”

3:;; = %gae(geb.c + Bec,b — gbc,e) . (4)

However, there might be some other affine field I'%, present. If so, the difference between
it and the Riemannian affinity is guaranteed to be a third-rank tensor:!!

10 The experiment of Farley el al. is a 2 percent check of acceleration independence of the rate of muon
decay for energies E/m = (1 — 12)"1/2 ~ 12 and for accelerations, as measured in the muon rest frame,
of ¢ = 5 X 102 cm sec™? = 0.6 cm™1, Note that, at accelerations a factor 10" larger than this (¢ ~ 10%
cm sec™? ~ 1012 ¢m?), in 1 light travel time across the muon it accelerates up to near the speed of light,
if it was initially at rest. Such large accelerations will probably affect the decay rates—not because of any
breakdown in relativity theory, but because the decay cannot be analyzed within a single comoving local
Lorentz frame, The muon ceases to be a valid special relativistic clock. See Ageno and Amaldi (1966) and
Bailey and Picasso (1970).

11 Here and élsewhere in this paper we use well-known results from differential geometry without proof

or comment. The reader can consult such texts as Hicks (1965) or Trautman (1965) for the necessary
mathematical background.
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S%, = Iy, — %;ﬂ} = tensor. (5)

N

Thus, searching experimentally for another affinity I'%, is equivalent to searching for a
third-rank tensor S%.. Since affinities, from a certain viewpoint, are very simple and
fundamental entities, we should, in applying Ockham’s razor, give higher priority to
third-rank tensors than we might at first wish to.

The most attractive way to incorporate a non-Riemannian affinity I'%, into the laws
of gravity would be through the trajectories of freely falling bodies: those trajectories
might be geodesics of I'%.. However, as we shall see in the next section, this possibility
is made unlikely by gravitational-redshift experiments, which suggest that the free-fall

trajectories’ are probably geodesics of the Riemannian affinity g bac% rather than of

some other affinity I'%.. Unfortunately, those experiments do not have very high pre-
cision.
Free-fall trajectories can be geodesics simultaneously of I'%. and of g @ 2 without

¢
the two affinities being identical. But then one must find ways other than free-fall motion
to incorporate T'%, into the laws of gravity. The most obvious other ways are explored
in the Appendix and are shown to be fruitless. Thus, it seems to us that, to within the
accuracy of the redshift experiments, a non-Riemannian affinity is probably absent from
the laws of gravity.

¢) Test-Body Trajectories and the Gravitational Redshift

According to the Dicke-Edtvés experiment (see, e.g., Dicke 1964), the trajectory of
a freely falling, neutral, laboratory-sized object (“test body”) is independent of its
structure and composition—at least to a high degree of accuracy. We shall assume com-
plete independence (Dicke’s “weak equivalence principle”).

This means that spacetime is filled with a family of preferred curves, the test-body
trajectories (called “free-fall” trajectories in the preceding section). Any initial event in
spacetime and initial velocity through that event determine a test-body trajectory
which is unique except for parametrization. If we knew all the test-body trajectories,
we would know a great deal—perhaps everything—about gravity.

There is a second family of preferred curves filling all of spacetime: the geodesics of
the metric g. It is tempting to identify these geodesics with the test-body trajectories
(Emstem’ “strong equivalence principle”). However, we should not do so without rather
convincing experimental proof.

In order to see what kinds of experiments are relevant, let us elucidate the phy51cal
significance of the geodesms

A geodesic of g is most readily identified locally by the fact that it is a straight lme
in the local Lorentz frames. Put differently, a body’s motion is unaccelerated as measured
in a local Lorentz frame if and only if the body moves along a geodesic of g. Hence, to
determine whether test-body trajectories are geodesics, we must compare experimentally
the motion of a local Lorentz frame with the motion of a test body.

It is easy to study experimentally the motions of test bodies; relative to an Earth-
bound laboratory they accelerate downward with g-= 980 cm sec~2; and this acceleration
can i;e measured at a given location on the Earth to a precision of one part in 10¢ (Cook
1965

Unfortunately, it is much more difficult to measure the motion of a local Lorentz
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frame. It seems to the authors that the only experimental handle we have on this today
is gravitational-redshift experiments.!?

The redshift experiment of highest precision is that of Pound and Rebka (1960), as
improved by Pound and Snider (1965). It reveals a redshift of z = AN/A = (gh/c)(1 +
0.01) for photons climbing up through a height % in the Earth’s locally homogeneous
gravitational field—if the emitter and receiver are at rest relative to the Earth’s surface.
This tells us that the local Lorentz frames are not at rest relative to the Earth’s surface
as predicted by flat-spacetime theories of gravity; rather, as predicted by the strong
equivalence principle, they accelerate downward with the same acceleration g as that
which acts on a free particle (to within 1 percent precision). To arrive at this conclusion
from the experiment, we argue as follows.1?

We wish our argument to be as independent of the special-relativistic laws of physics
as possible. The only aspects of special relativity that we shall use are (i) the relation-
ship between the Minkowski metric of the local Lorentz frames and the ticking rates of
atomic clocks; and (ii) the conservation of wave fronts in electromagnetic waves. Let
us assume (falsely) that the local Lorentz frames were unaccelerated relative to the
walls of the tower used in the Pound-Rebka experiment. We can then perform a calcula-
tion in that particular Lorentz frame which was attached to the walls of the tower and
was large enough to cover the entire tower. The static nature of the emitter, receiver,
gravitational field, and Lorentz coordinate system guaranteed that, although the space-.
time trajectories of the wave crests might have been bent by gravity, they were cer-
tainly the same from one crest to another, except for a translation Afy, in the Lorentz
time coordinate. Hence, the coordinate rates 1/Afy, of emission and reception of wave
crests were the same. But by assumption these Lorentz coordinate rates were also the
proper rates measured by the atomic clocks (*’Fe nuclei) of the experiment. Hence,
theory predicts zero redshift, in contradiction with experiment. Qur assumption that
the local Lorentz frames were unaccelerated must be wrong!

We must assume, then, that the local Lorentz frames were accelerated relative to
the tower. Since gravity pointed vertically and all horizontal directions were equivalent
in all respects, the acceleration of the Lorentz frames must have been vertical. Denote
by e its value in the downward direction. As in our previous argument, in a static -
coordinate system (i.e., in coordinates at rest relative to emitter, receiver, and Earth’s
static gravitational field) the wave-crest trajectories must have been identical, except
for a time translation A¢, from one crest to the next. But in this case the static coordinates
were not Lorentz coordinates. Rather, they were accelerated upward (in the 4z direc-
tion) relative to the Lorentz frames (here we show the speed of light explicitly):

cly = (2, + ¢¢/a) sinh (at,/c) , 2L = (3. + ¢*/a) cosh (ais/c) ,
XL = Xg, ¥y, = Ys .

12 Thus, we regard the redshift experiments as a crucial link in the chain of reasoning which will point,
eventually, to the correct theory of gravity. By contrast, Dicke (1964, pp. 5 and 6) believes that “the
gravitational redshift is not a very strong test of general relativity” because it can be derived from the
weak equivalence principle, plus energy conservation, plus equivalence of inertial mass and conserved
energy. We do not find Dicke’s argument fully compelling, The fact that general relativity has no satis-
factory local energy-conservation law, except in static external gravitational fileds, makes us worry about
the a priori assumption of energy conservation. More importantly, we see no convincing a priori argu-
ments why the inertial mass must equal the conserved energy to the precision required by Dicke’s argu-
ment. In fact, this is not true in some theories with two tensor fields (see Peebles and Dicke 1963; we
thank Professor Dicke for pointing this out to us). Finally, there exists a variety of relativistic gravitation
theories which have been considered viable and attractive at one time or another but which disagree with
the gravitational-redshift experiments (see p. 100 of Schild 1962).

13 For a variety of somewhat similar arguments see chapter § of Schild (1962). The argument in the
original Orange-Aid-Preprint version of this paper contained a flaw, which Charles W. Misner kindly
pointed out to us; the corrected argument presented here is due largely to him. .
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(For an elementary derivation and discussioh of this transformation law between Lorentz
frames and accelerated frames, see, e.g., chapter 5 of Misner, Thorne, and Wheeler
1971.) Hénce, proper time as measured by atomic clocks was given by

cdrt = czdtf — dxt — dy? — dz
(1 + az,/c®)2cdiE — ~ dyi — dz®.

Since, as before, the wave-crest emission and reception rates were the same (l/At,
when measured in static coordinate time, they were related by

AN _vem _ 4 [1 + (a2,)ree/ AL
>\ Vrec a [1 + (az,).,m/ﬁ]Ats

when measured in the proper time of the atomic clocks. But the experimentally measured
redshift was gh/c?® to a precision of 1 percent. Hence, the downward acceleration of the
inertial frames was the same as that of a free particle, g = 980 cm sec?, lo precision of 1
percent.

The Pound-Rebka-Snider experiment is the easiest redshift experiment to interpret
theoretically because it was performed in a uniform gravitational field. Complementary
to it is the experiment by Brault (1963), which measured the redshift of spectral lines
emitted on the surface of the Sun and received at Earth. To a precision of 5 percent he
found a redshift of GMy/Rgc?, where M, and R, are the mass and radius of the Sun.
This is just the redshift to be expected if the local Lorentz frames, at each point along the
photon trajectory, are unaccelerated relative to freely falling test bodies. It certainly
could not result if there were a single global Lorentz frame, extending throughout the
solar system and at rest relative to its center of mass!!4

In summary, the redshift experiments reveal that, to a precision of ~0.01 GM /R?,
where M and R are the mass and radius of the Earth the local Lorentz frames at the
Earth’s surface are unaccelerated relative to freely falling test bodies. Equivalently, tést
bodies move along straight lines in the local Lorentz frames. Equivalently, the test-body
lrajectories are geodesics of the mebic g.

Because this conclusion is crucial to the foundations of the PPN framework (see be-
low), as well as to general relativity, it is very important that the precision of the redshift
experiments be improved as much as possible, both on Earth (homogeneous field) and
elsewhere in the solar system (inhomogeneous fields). Of particular interest will be experi-
ments in which atomic clocks are flown in spacecraft (see, e.g., Kleppner, Vessot, and
Ramsey 1970; Havas 1970; Geisler and McVittie 1965).

a[(8)ree — (Zo)eml/ S = ah/c*,

d) The Response of Stressed Malter to Gravity

For discussing solar-system tests of gravity in the PPN formalism, we will need to
assume something about the response of stressed matter (e.g., the matter inside planets)
to gravity. Our assumption will be that, as in special relativity (gravxty absent), so also
in the real world where gravity is present

vT=0. (6)

Here T is the total stress-energy tensor for all matter and non-gravitational fields; and
v- is the divergence with respect to the metric ¢ and its affine connection .
- Unfortunately, we do not have any firm experimental basis for the validity of equation

1 See chapter S of Schild (1962) for further discussion of this point.
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(6) in the presence of gravity. However, we can make it seem reasonable—perhaps even
compelling—by the following argument.

Geodesic motion for test bodies and v - T = 0 for stressed matter go hand in hand.
In particular, from the assumption ¥+ T = 0 we can derive geodesic motion (see, e.g.,
.. Fock 1964). From geodesic motion, i.e., straight-line motion in local Lorentz frames, we
can derive v+ T = 0 for the smeared-out stress-energy tensor of a swarm of noninteract-
ing test particles. For test particles that interact only by means of instantaneous colli-
sions, each of which conserves energy and momentum in the local Lorentz frames,
geodesic motion again guarantees v T = (.

Unfortunately, one cannot prove that geodesic motion implies v+ T = 0 in all cir-
cumstances. The closest one can come is the following: Consider a laboratory-sized object
made of stressed material. Geodesic motion and conservation of rest mass mean that the
body’s four-momentum is conserved as seen in any local Lorentz frame:

J T®dS, = P¢ is independent of Z . (N
2 M

Here 2 is any spacelike three-surface, contained entirely within the local Lorentz frame,
which passes all the way through the body.!® Using Stokes’s theorem in the local Lorentz
frame, we can infer from equation (7) that

ST d0 = S (V- T)d0 = 0. (8)
0 0 ‘

Here U is any four-volume contained entirely within the local Lorentz frame, which is
intersected by all parts of the body. Equation (8) is equivalent to geodesic motion. The
most straightforward way to guarantee the validity of equation (8) is by imposing
v« T = 0. But that is not the only way. For example, if n is some spacelike vector field
whose variation through the body is completely negligible, and if 7' = 7%, is the trace
of the stress-energy tensor, then

Vv.T+ avl =0

would imply equation (8) and thence geodesic motion. However, there is no obvious,
satisfactory way to pick out the vector n,

It is tempting, as another alternative to v+ T = 0, to demand that D . T = Q,
where D- is the covariant derivative with respect to some affine connection I'%, different

(f % plus a torsion. We show explicitly in the Appendix

from g bac E—for example, 3 be

that this is untenable.

It is very important to seek, in the future, direct experimental proof that v+ T = 0.
To the accuracy of all laboratory experiments performed thus far (i.e., measurements of
the behavior of stressed bodies in the Earth’s gravitational field), v - T = 0 is true. But
these experiments are probably not of sufficiently high precision for the purposes of the
PPN formalism.!® ‘

; . . . . . a
18 Here and elsewhere in the argument we ignore small corrections due to the Christoffel symbols, 3 be %3

which vanish only at the origin of the local Lorentz frame. Clearly those corrections go to zero linearly
with L, the size of the spacetime region under consideration—i.e., the “size of the local Lorentz frame.”

16 Note the great difference in spirit between the above discussion and the usual viewpoint. One usually
- assumes V- T = 0; and when confronted by any apparent violation of it (e.g., the apparent breakdown in
energy-momentum conservation in g-decay), one normally seeks a modification of the stress-energy
tensor T which will then restore the validity of V+T = 0 (e.g., Pauli’s 1930 postulate of the existence of
neutrinos). By contrast, we are assuming (without much justification) that all the contributions to T
are knovovn, and that the metric and covariant derivative V are known; and we are then asking whether
VT =0,
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III. THE PPN FRAMEWQORK
a) Postulates; Melric Theories of Gravity

In constructing the PPN framework we shall use as postulates two, and only two, of

the fair-confidence conclusions gleaned from analyzing experiments in the Dicke frame-
work:

PosTULATE L. There exists a melric of signature — 2, which governs proper lenglh and
proper time measurements in the usual manner:

. dst = gdzidz? . | 9)

Posruratke 1I. Stressed maller, being acled upon by gravity, responds in accordance with

the equation
v-T =0, (10)

where T is the total stress-energy tensor for all matter and nongravitational fields.

It is interesting to notice that these two postulates can be obtained directly from a
single, attractive assumption: the existence of local Lorentz frames everywhere, in which all
the laws of special relativity take on their usual form.!” However, we prefer to put the
PPN formalism on the narrower base of metric plus v+ T = 0, so that its experimental
justification can be discussed more clearly.

Those theories of gravity which can be given mathematical representations that satisfy
postulates T and IT will be called “metric theories of gravity” throughout this series of
papers.

One should keep in mind that any metric theory of gravity can perfectly well be given
a mathematical representation that violates postulates I and II. For example, the Brans-
Dicke theory, in the mathematical representation of Dicke (1962), does not satisfy our
postulates: Dicke’s scalar field causes deviations from geodesic motion, and physical
rods and clocks do not measure ds* = g;dxidx’. However, in the original mathematical
representation of Brans and Dicke (1961), the theory does satisfy our postulates.

Notice that, in that representation of a metric theory where postulates I and 1I are
satisfied, the metric is the only gravitational field which enters into the response equation
v+ T =0 and into the resultant geodesic equation for test-body trajectories. (The
metric determines ¥; and T contains no gravitational fields.) This does not mean that
the metric is the only gravitational field present. On the contrary, as in Brans-Dicke
theory, there may be other fields. However, the role of the other fields can only be that
of helping to generate the spacetime curvature associated with the metric. Matter may
create them, and they plus matter may create the curvature, but they cannot act back
directly on the matter. The matter responds only to the metric! :

Throughout this series of papers, when dealing with a metric theory of gravity, we
shall use the mathematical representation which satisfies postulates I and I unless we
state otherwise,

17 In applying this assumption, one must be careful to allow for coupling to the Riemann curvature
tensor in certain of the usual special-relativity equations. For example, the usual laws of vacuum electro-
dynamics in terms of the physical observables E and B,

V:E=VB=0, VXB=—9E/at, VXE-=0dB/dt,
in curved spacetime imply that the vector potential 4 in the Lorentz gauge (V+4 = 0) satisfies
(A —-RA=0

rather than [J4 = 0. Here [J is the wave operator (d’Alembertian) and R is the Ricci tensor.
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b) The Post-Newtonian Limil

The comparison of metric theories of gravity with each other and with experiment
becomes particularly simple when one takes the slow-motion, post-Newtonian limit.
Fortunately, the post-Newtonian limit is sufficiently accurate to encompass all solar-
system tests that can be performed in the foreseeable future.!®

The most primitive type of post-Newtonian limit for metric theories is a limit in
which one assumes geodesic motion for planets as well as for test bodies, and one idealizes
the solar-system metric as that of a spherical, nonrotating Sun. In thxs limit one obtains
the original Eddington (1922)- Robertson (1962)-Schiff (1967) version of the PPN
formalism. The solar-system metric in this limit reads

ds? = [1 = 2M*/r + 268(*/1)de — (1 + 2vM*/r)(dx2 + dy? + d=) , (11)

where 7 = (2? 4+ 9?4 2%)'/% is a radial coordinate; M* = GMy/c? is the geometrized
mass of the Sun; and 8 and v are parameters that differ from one metric theory to
another. For general-relatlwty theory, 8 = ¥ = 1. For Brans-Dicke theory, g8 = 1,

v = (1 + w)/(2 + ), where w is the Dicke coupling constant. For the last 45 years the
goal of light-deflection and perihelion-shift measurements has been to measure the
parameters 8 and v.

*Schiff (1960), Nordtvedt (1968), and Baierlein (1967) have shown that the Eddington-
Robertson-Schiff version of the post-Newtonian limit is too idealized for the 1970%. It
is too narrow to encompass (i) the precession of a gyroscope due to the dragging of iner-
tial frames by the rotating Earth (Schiff 1960); (ii) periodic terms in the Earth-Moon
separation due to the nonlinear superposition of the Earth’s and the Sun’s gravitational
fields (Baierlein 1967; Krogh and Baierlein 1968); (iii) an anomalous time-varying
eccentricity in the Earth-Moon system due to a breakdown in geodesic motion for the
Earth (Nordtvedt 1968). These effects, and others like them, should all be measurable in
the coming decade.

Each of the above researchers has modified the original Eddington-Robertson-Schiff
post-Newtonian limit to encompass the types of effects that interested him. Schiff added
a metric term associated with the dragging of inertial frames. Baierlein began over again -
by taking Chandrasekhar’s post-Newtonian limit for general-relativistic fluids and put-
ting arbitrary parameters in front of some of the terms. Nordtvedt began over again by
taking the Einstein-Infeld-Hoffman post-Newtonian limit for general-relativistic point
particles, by adding several terms which are absent in general relativity but could be
present in other theories, and by putting an arbitrary parameter in front of each term.

None of these new versions of the post-Newtonian limit is fully adequate. The Schiff
version is clearly too narrow. The Baierlein version leaves out some fairly simple terms
that are absent from general relativity but could appear in other metric theories, and it
lumps together five terms in the metric that should each carry its own arbitrary param-
eter. The Nordtvedt version treats the planet as a swarm of noninteracting point par-
ticles moving in the smoothed-out gravitational fields of each other (self—consxstent field
approach), which is much too idealized for reality.

In Paper IT of this series one of us {C. M. W.) will present a new—and we hope
definitive—version of the post-Newtonian limit, valid for any metric theory of gravity.
This version will combine the best of the Nordtvedt and Baierlein approaches. The
essence of this post-Newtonian limit is that it contains a series of parameters, 8, 81, 8,

18 There is one exception: gravity-wave experiments. (Gravity waves do not. exist in the post-New-
tonian limit.) However, gravity-wave experiments can be dlscussed more fruitfully in the Dicke frame-
work than in the restricted realm of metric theories,
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Bs, B4, v, A1, Ay, ¢, with undetermined values. These parameters distinguish the various
metric theories of gravity from each other: the post-Newtonian limit of general rela-
tivity has one set of values for these parameters; the post-Newtonian limit of Brans-
Dicke theory, with fixed Dicke coupling constant w, has another set of values, etc. In
solar-system experiments, the task of the experimenter is to measure the values of one
or more of these parameters. The implications of such measurements for relativistic
gravitation theory are summarized schematically in Figure 1.

* We shall refer to our post-Newtonian limit for metric theories of gravity as the
Parametrized Post-Newtonian (PPN) framework. Subsequent papers in this series will
use the PPN framework to analyze various relativistic effects in the solar system and
experiménts to measure them.
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Parametrized Post-Newtonian Hyperplane .

F16. 1.—Schematic diagram of the PPN framework. A variety of exact, self-consistent metric theories
of gravity exists or can be constructed, including among others general relativity theory (GRT), Brans-
Dicke theory (BDT), and three hypothetical theories, A, D, and D’. By and large there is no simple rela-
tionship between the various exact metric theories. Some contain only a metric field and differ in their
field equations; others contain, besides the metric, also a second ténsor field, or a vector field, or a scalar
field. The post-Newtonian limit is obtained (schematically in the diagram) by projecting each theory
down into the “parametrized post-Newtonian hyperplane,” which has nine dimensions corresponding to
the nine parameters 8, 61, 8, B3, B4, ¥, A1, 2, §. (In the diagram seven of the dimensions are suppressed
for ease of visualization.) In the post-Newtonian limit the theories are distinguished from each other
completely by where they lie in the hyperplane—i.e., by the values of their nine PPN parameters, All
reference to gravitational fields other than the metric has been lost at the PPN level (see Paper II for
details); all the theories are on the same footing.

Experimental measurements of the PPN parameters could land us at one of three types of points: (i)
At a point such as a, to which there corresponds precisely one self-consistent, exact theory, A; then we
might be happy. (ii) At a point such as b, to which there correspond no self-consistent, exact. theories;
then we would have to go back to the theoretical drawing boards. (iii) At a point such as 4, to which there
corresponds more than one self-consistent, exact theory; then we would have to wait for sufficient tech-

. nology to permit solar-system experiments at the posi-post-Newtonian level, or we would have to devise
some other means for experimentally distinguishing the theories.

Of course, this is a very highly idealized story; reality is never so simple. Nevertheless, this story is
useful for organizing one’s theoretical thoughts. In particular, it suggests that one should attempt to
determine which points of the PPN hyperplane are of type a, which are b, and which are 4. Hopefully a
subsequent paper in this series will discuss this question.
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. APPENDIX

GRAVITATION THEORIES WITH A METRIC AND
A NON-RIEMANNIAN AFFINE CONNECTION

Since the covariant mathematical representation of Newtonian gravitation theory involves
a non-Riemannian affine connection, it is tempting to speculate that the correct relativistic
theory might similarly have a non-Riemannian affinity I'%,, in addition to its Riemannian
affinity — : o . .
C a
zbcz = %gav(geb.c + gee b — gbc,e) B (Al)
The two affinities must then differ by a third-rank tensor
» a a ' .
Pbc"—“ bC +Sbc- (AZ)

Let us attempt to build a viable theory of gravity in which this tensor comes into play.
In Newtonian theory the test-body trajectories are the geodesics of the nonmetrical affinity
T'. However, the gravitational-redshiit experiments suggest that the relativistic test-body

. . . a . f .
trajectories are the geodesics of ; bcz and its metric. Both statements are possible-—the geo-

desics of T'%, and g be % can coincide without 5%, vanishing. If the geodesics are to be identical,

including parametrlzatxon, then S%. must be a ““torsion”; i.e., it must be antisymmetric. If the
geodesics are the same except for parametrization, then for any vector #%, S%#"u® must point
in the #* direction. For example, S%, could have the form

S, = S$%be1 + %6 [0y (A3)

where brackets denote antisymmetrization, parentheses denote symmetrization, and f, is an
arbitrary vector.
Let us suppose that, except perhaps for parametrization, the test-body trajectories are

geodesics both of I'%, and ;c % . Then S%, cannot be measured by means of test-body motion.

How, then, can it be measured? We might hope that it would affect the manner in which a
gyroscope transports its spin axis. For example, if a geodesically moving gyroscope were

. . a
to parallel-transport its spin with respect to I'%, rather than % bl then S%. would have an

effect on it (Misner 1969a).

We cannot simply postulate that gyroscope spins are parallel-transported with respect to
I'%,.. Rather, we must derive this fact from the response of stressed matter to gravity. The
response equation which is usually assumed is V- T = 0, where V is the Riemannian covariant

. . . . a
derivative. But this necessarily leads to parallel transport with respect to g bc}

The most obvious way to incorporate the non-Riemannian affinity I'%. into the response
equation is to assume D+ T = 0 rather than V- T = 0, where D is the covariant derivative with
respect to I'. However, as we shall show below, the condition D+T = 0, plus the condition of
metrical-geodesic motion for test bodies, guarantees V+ T = 0. This means that 5%, can have
no effect whatsoever on the behavmr of stressed matter—in particular, it cannot affect the spin
axis of a gyroscope!

We have been unable to find any other viable way to incorporate a non-Riemannian afﬂmty
into the response equation, and at the same time guarantee that test bodies move along geo-
desics of the metric. It seems likely that all viable theories with non-Riemannian affinities will
violate metrical-geodesic motion, and will thus violate the gravitational-redshift experiments
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to a greater or lesser degree. Thus, redshift experiments might be viewed as tests for a non-
Riemannian affinity.

We conclude with a proof that DT = 0 plus metrical-geodesic motion for all test bodies
guarantees VT = 0. Our proof assumes nothing, a priori, about the nature of the tensor

8%, = Ty, — ;Z}

Consider a test body made of stressed material. Let the test body be so small that coupling
to the curvature is negligible. Then we can work in a local Lorentz frame, where ; :c } = (.
The condition D+ T = 0 reads ‘

' = (DT)e = T + Tor g + S%T% + ST, (a4)

Integrating this equation over the volume of the body, on a hypersurface of constant local-
Lorentz time, we obtain

aP/dt = (S Td%) 0 = — (%L + ST™) . (A3)
* = ST (A6)

is the integral of the stress-energy tensor over the body. The motion of the test body must be
metrically geodesic, and its rest mass must be conserved. (Nonconservation of rest mass would
make electrons with different past histories be distinguishable, in violation of experiment.)
Consequently, d P%/dt must vanish; i.e.,

Sabczbc + Sbbczac = 0 . <A7)
Now T is completely arbitrary in its algebraic properties—except for the constraint that it,

be symmetric.!® Hence, if all test bodies are to move along geodesics, conserving their rest
masses, then S%,. must satisfy the algebraic constraint

S B + S% B = ( for all symmetric B . (A8)

(The tensor (A3) with % + % fo = 0 is an example of such an S.) Condition (A8) implies
directly that D-T = v+ T, so that if DT = 0 then v-T = 0. Q.E.D.

Here
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ABSTRACT

Chandrasekhar’s post-Newtonian equations of hydrodynamics are generalized to encompass any
metric theory of gravity by the use of arbitrary metric parameters. The resultant Parametrized Post-
Newtonian (PPN) hydrodynamical equations are then used to calculate the Newtonian acceleration of
the center of mass of a massive body of perfect fluid toward a very distant point mass. This acceleration
can be written in terms of a gravitational-mass tensor and the gradient of the Newtonian potential:
ma® = m®8 U . The gravitational-mass tensor m8 is equal to the isotropic inertial mass (méaf), plus a
small correction (“Nordtvedt effect”), which depends on the gravitational internal energy of the body
and on the metric parameters that characterize the particular theory being used. In general relativity,
the gravitational mass is precisely equal to the inertial mass (correction terms vanish), in accordance with
. the equivalence principle. In Brans-Dicke theory the two masses differ by a small isotropic correction
which varies from body to body, in violation of the equivalence principle. A simple explanation of these
two results is discussed. This work generalizes and substantially agrees with previous calculations by
Nordtvedt.

I. INTRODUCTION AND SUMMARY

In Paper I of this series (Thorne and Will 1971), the theoretical and experimental
foundations for metric theories of gravity were described, and qualitative aspects of the
Parametrized Post-Newtonian (PPN) formalism were discussed. Central to this for-
malism were the postulates that there exist a metric of signature —2 which governs
proper length and proper time measurements, and that the response of stressed matter
to gravity be described by the equation

v-T=0. )]

Here v is the covariant derivative with respect to the metric, and 7T is the total stress-
energy tensor for all matter and nongravitational fields. In this paper a series of metric
parameters will be used to develop in detail from these postulates the PPN formalism
for perfect fluids. The formalism will then be applied to a particular problem in rela-
tivistic gravity: the “Nordtvedt effect.”

The Nordtvedt effect isa violation of the principle of equivalence in the motions-of,
massive, self-gravitating bodies. Recent calculations by Nordtvedt (19685, 1969) and
by Dicke (1969) have shown that, according to a wide class of metric theories of gravity,
such violations should occur; that is, in an external gravitational field, different massive
_ bodies should fall with different accelerations. In Newtonian language, this means that

‘the gravitational mass of such a body is no longer equal to its inertial mass. We may
define a gravitational-mass lensor m*# by

me*= m*U,, (2)
where m is the inertial mass of the body, ¢® is the acceleration of its center of mass, and
U is the external (Newtonian) potential, which can be measured by means of test

* Supported in part by the National Science Foundation [GP-15911, GP-9114, GP-19887] and the
Office of Naval Research [Nonr-220(47)].
t Gulf Oil Graduate Fellow in Physics.
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particles with negligible self-gravity. (In this paper, Greek indices will take the values 1,
2, and 3; Roman indices will take the values 0, 1, 2, 3; and summation over repeated
indices will be employed. Commas will denote partial differentiation.) Experiment has
shown that laboratory-size bodies obey the equivalence principle; i.e., within an ac-
curacy of one part in 10! (Roll, Krotkov, and Dicke 1964), they have

me = msef (3)

But for a massive-body configuration without radiation pressure, Nordtvedt (19685)
finds, to lowest order in a post-Newtonian expansion,

mf = m{38(1 — 4|Q|/m) + £Q°8/m + O([Q/mP®)} , €))

where 5 and £ are dimensionless constants depending on the theory of gravity, Q% is
the body’s Newtonian gravitational potential tensor, and © = Z,Q%"is its gravitational
potential energy. We use units for which the velocity of light is unity and the Newtonian
gravitational constant in the outer regions of the solar system today is unity.! In general
relativity theory, n = £ = 0, while in Brans-Dicke theory, n = 1/(2 + w) and £ = 0,
where w is the Dicke coupling constant. We shall use the name “Nordtvedt effect” for
this breakdown in the equivalence principle (m®® s m5™) for massive bodics,

In his caleulation, Nordtvedt makes use of a post-Newtonian metric which has been
generalized through the use of arbitrary metric parameters to encompass a broad set of
gravity theories, and with this metric he calculates the post-Newtonian equations of
motion for a system of non-interacting point particles (“EIH problem”). He then com-
putes the acceleration of the Newtonian center of mass of a gravitationally bound spheri-
cal cloud of such particles (model of a planet) toward a distant point mass, retaining
only those terms which decrease as the inverse square of the distance from the center of
mass of the body to the distant object. It is important to note that Nordtvedt’s cloud
of point particles which do not interact except through mutual gravitation is by defini-
tion an “ideal” gas. Nordtvedt (19685, 1969) obtains equation (4) for a sphere in hydro-
static equilibrium, for a pulsating sphere, and for a rotating sphere. But when he in-
cludes the effects of radiation pressure, he finds a result slightly different from the
above:

m? = m{s5(1 — 9|Q|/m + 3(1 — v)E./m) + 20/ m} . )

Here E, is the total energy in radiation in the body, and v is one of the metric param-
eters; in general relativity, ¥ = 1, while in Brans-Dicke theory v = (1 + «)/(2 + ).

In this paper we will show that Nordtvedt’s original expression (4) for the gravita-
tional-mass tensor, with the metric parameters reinterpreted in terms of the fluid picture,
is actually valid for massive bodies of arbitrary shape, with arbitrary matter distribu-
tions and internal motions (such as convection), and obeying arbitrary equations of
state. Since, from the fluid viewpoint, radiation in a star merely changes its equation
of state, our result that equation (4) is valid in general disagrees with Nordtvedt’s
correction term for radiation (eq. [5]).

We will make only two assumptions regarding the nature of the massive body:

a) The body is composed of “perfect fluid.” A fluid is said to be “perfect” if, in its
rest frame, it cannot support shear stresses. Nordtvedt’s ideal gas is a special case of a
perfect fluid. ,

b) The (anisotropic) flux of radiation and heat through the body is negligible compared
with the internal energy density. ' ,

! In some theories of gravity, the gravitational “constant” varies in space and time. Such variations in
G must be small over the solar system or they would result in violations of Newtonian theory. Variations
in G generated by the matter in the solar system (local matter) can be incorporated into the PPN metric

parameters. Variations associated with cosmological models (such as a time-varying G) cannot be so
easily incorporated and may require a modification of the formalism.
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These assumptions will be justified below for those massive bodies of interest, namely,
the Sun and planets. \ .
~ Our calculation will then proceed along lines similar to that of Nordtvedt, except
that, instead of EIH point-mass equations of motion, the PPN generalization of the
hydrodynamical formalism of Chandrasekhar (1965) will be used. This formalism has
the advantage of including pressure (and hence the equation of state) in a straight-
forward and realistic way, and of taking care of large-scale internal fluid motions (such
as convection and rotation). ‘

Dicke (1969) has calculated m®# for a massive body in Brans-Dicke theory, using a
very different approach. From Dicke’s point of view, the Nordtvedt effect arises from
the fact that the gravitational “constant” G (related to the scalar field) is not constant,
but depends on the gravitational potential at each point in space. Hence, the internal
gravitational energy, E,, of any body in an external, Newtonian gravitational field, U,
depends on the body’s position in space. Conservation of energy then demands that the
body feel an acceleration 4, given by (see Appendix)

ma, = (mU , — 8E,/dx*) at body’s center of mass, (6)

where m is the inertial mass, and the partial derivative is taken holding the body’s
structure fixed. In Brans-Dicke theory (Nutku 1969)

G=1-U/2+ w). - (7?2

The internal gravitational energy E, is directly proportional to G:

E,= G2 = —3GS !l’;t("—)_”-g"‘—,) dxde’ = Q{1 — U/(2 + w)} (8)
N 0B./0x0 = —U.0/(2 +a), ©)
and
mag = Uqs{m+Q/(2 4+ w)} . (10)
The gravitational-mass tensor is thus (cf. eq. [2])
mf = ms*#{l — [1/(2 + w)]|Q|/m} . (11)

The nature of this derivation shows that equation (11) holds for very general massive-
body configurations in Brans-Dicke theory. In particular, it agrees with our result (and
disagrees with Nordtvedt’s) that radiation energy in the body has no effect on the
gravitational mass.

Dicke’s calculation also sheds some light on the problem of why massive bodies do -
obey the equivalence principle in general relativity. Since the physical constants are
truly constant in general relativity, the internal structure of a massive body, and in
particular its binding energy, are independent of location in any uniform external field.
There is no anomalous acceleration due to a change in internal energy. Thus the gravi-
tational mass is equal to the inertial mass.

A second way of understanding the absence of a Nordtvedt effect in general relativity
has been suggested by Richard Price (private communication): Consider a massive body
located in an external gravitational field which can be considered uniform over a region
that is very large compared with the body’s gravitational radius. Focus attention on a
large volume of space V sutrounding the massive body—a volume so large that in its

2 'The variation in the gravitational constant (due to the scalar field) used in this argument is an ex-
ample of a variation generated by local matter (see n. 1), If we use the (1961) representation of Brans-
Dicke theory (which is the representation used by Nutku 1969, and in this paper), the effect of the scalar
field shows up in the metric parameters, and the gravitational constant is treated as a true constant,
namely, unity,
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outer regions the spacetime curvature produced by the body itself is small to some
desired accuracy (asymptotic ﬂatness) but a volume still small enough that throughout
it the external gravitational field is homogeneous to some other deslred accuracy. In
the outer regions of V one can introduce an inertial reference frame that falls freely in
the homogeneous external field. Of course, that inertial frame cannot be extended into
the massive body; but it does completely surround the body (asymptotic flatness).
Conservation of the body’s total four-momentum in that frame (valid for any massive
body in asymptotically flat spacetime) guarantees that, if it is initially at rest in our
inertial frame, it will always remain at rest there. Slmxlarly, any lest particle (far from
the massive body) initially at rest will remain at rest. Thus both test particles and the
massive body are tied to the inertial frame. This means that, as seen in the original
accelerated frame where the external field is manifest, they fall with identical accelera-
tions.

This classical, “Einstein elevator” type of argument fails in Brans-Dicke theory
because there a uniform Newtonian field U carries with it a position-dependent gravita-
tional “constant,” so it is #of completely equivalent to an accelerated frame.

The coupling between thé massive body and the inhomogeneities of the external
field, which is neglected in the above argument, should lead to multipole-type forces on
the body which die out faster than 1/(distance to external body)2. Such forces are not
the subject of this paper.

Later in this paper the result that massive bodies obey the equivalence principle in
general relativity will be seen to be due to the exact cancellation of various metric
parameters.

The Nordtvedt effect can be put to observational test. In particular, it means that,
according to Brans-Dicke theory, in a Newtonian gravitational field the Sun will fall
with an acceleration which is less by about one part in 10° than that of a test body,
Jupiter will fall more slowly by one part in 10% and the Earth by one in 10'°. Nordtvedt
(1968a, ¢, 1970) has discussed this point in connection with the Trojan asteroids, the
lunar laser reflection experiment, and interplanetary radar experiments; Thorne and
Will (1970) have discussed it in connection with tests of gravity using spacecraft, Future
systematic studies of the motions of the planets will have to include the Nordtvedt effect.

The rest of this paper details the hydrodynamical computation of the gravitational-
mass tensor for an arbitrary massive body. Section II presents the generalization of the
post-Newtonian fluid equations of motion' using metric parameters (PPN hydro-
dynamics). In § ITI, we calculate the acceleration of a massive body toward a distant
body (with both bodies assumed momentarily at rest in the post-Newtonian coordinate
system), keeping only those terms which vary as the inverse square of the bodies’
separation. This calculation vields a post-Newtonian expression for the gravitational-
mass tensor in any geometric theory of gravity. In § IV, the gravitational-mass tensor
is specialized to general relativity and to Brans-Dicke theory. Brief concluding remarks
are presented in § V; and the details of Dicke’s derivation of m*# are given in an Ap-
pendix.

II. PARAMETRIZED POST-NEWTONTAN EQUATIONS OF HYDRODYNAMICS

Consider a perfect nonviscous fluid, which, in the Newtonian limit, obeys the usual
Eulerian equations of hydrodynamics:
o X dva — .a_U ap d == —

3/t + pr?)/8z* =0, por=prm =2, T =73 +v a = (12)
where v* is the velocity of an element of fluid, p is the density of matter in the element,
2 is the total pressure (matter plus radiation) on the element, d/d¢ is the time derivative
“following the fluid,” and U is the Newtonian gravitational potential, defined by

VU = —dwp. (13) -
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The same fluid in a metric theory of gravity is described by an energy-momemufn
tensor of the form
: Ti= (e + pluiu’ — pg, (14)

where e is ‘the total mass-energy density, #* is the fluid’s four-velocity, and g¥ is the
metric. We separate € into a rest-mass density p, and a density pII consisting of all
other types of energy density (radiation energy, compressional energy, thermal energy,

etc.),
e=p(1410). (15)

Before writing down the parametrized metric to be used in this paper, we must make
a few comments about orders of magnitude involved in the post-Newtonian approxi-
mation; The fundamental quantity in the post-Newtonian approximation is the New-
tonian gravitational potential U. In the solar system, U is everywhere less than ~1075,
Other dimensionless quantities which are also small in the solar system are planetary
and fluid velocities (22 < U), the ratio of pressure to matter density, p/p (10~° in the
Sun, 1071? in the Earth), and the ratio of energy density to matter density, IT (10~% in
the Sun, 10~° in the Earth). These three quantities will affect the motion of massive
bodies only at the post-Newtonian level. This fact entitles us to neglect two quantities
which are even smaller, namely, radiation transport and shear stresses. The assumption
that there is negligible radiation transport in the massive bodies in the solar system
allows us to include radiation as an additional energy density in pIl, completely “tied”
to each element of fluid. This is a good approximation in the solar system, since the flux
of radiation momentum through the Sun is less than 10~ of the internal energy density,
pIL It is even less in the planets. The other quantity which we can neglect is shear stress.
In the Earth, for example, the shear stresses are about 10~3 of the hydrostatic pressure
(Jefireys 1959); and in the Sun they are totally negligible. Of course, shear stresses are
important in determining the shape of the Earth, even at the Newtonian level, There,
a 10~* deviation from isotropic pressure is important; but in the equation of motion
for the planet in an external field, where p rather than p is the dominant factor, a 103
shear correction to p should be negligible.

By comparing these numbers with the precision to which solar-system tests of the
Nordtvedt effect can be made in the next decade (see Thorne and Will 1970 for num-
bers), one finds that the perfect-fluid approximation is of adequate accuracy even for
the planets.

Let us now turn to the metric parametrization. We use a parametrization similar to
that of Nordtvedt (19685), except that ours involves the fluid idealization, while his
involved the less-satisfactory point-particle idealization. The fluid parametrization used
by Baierlein (1967) is not general enough for our purposes.

We write the post-Newtonian metric as an expansion in terms of functionals of the
small quantities U, »%, 11, and p/p (which are all of the same order of magnitude), using
ten parameters 8, 81, B, B3, Bs, Z, ¢, A1, Ag, ¥:

g =1—2U + 280? — 4® + ¢@ + =@,

8oa = %Alva + 38,0, 8ap = — (14 2vU)éas (16)
where

UG, = S 2D

el D6, D)
B(x, ) = fwdx ,

¢ = B1o* + BU -+ 3601 + 3Bup/ 0,

9
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‘@(X, t) = f p(x’, t)[(lia:x:’,c]:)va(x’)F & ’

= p(x', t)P(xni t) (xa _ xla)(xla - x,"a) 13t
(B(x’t)_f ’x__x,Hx,_x,,la dx'dx y

_ e, Dualx) -,
Valx, ) = fp—x—_le——dx )

Wa(x, l) — f p(x,! t)vﬂ(x’)l(xxﬂ__xf‘i’f) (xa — x’a) dx’ . (17)

This is the most general post-Newtonian metric which can be written to satisfy the
following conditions: :

a) The deviations of the metric from flat space are all of Newtonian or post-Newtonian
order; no post-post-Newtonian or higher-order deviations are included. (For a discussion
of the distinction between Newtonian, post-Newtonian, and post-post-Newtonian terms,
see, e.g., Chandrasekhar 1965.)

b) The metric becomes Minkowskian (flat space) as the distance | x — x’| between the
field point and the matter becomes large. This condition prevents the appearance of

terms such as
So()M(x)dx’  or  SIE)[p(x')/ p(x")]dx’

in goo, for example. , ,
¢) The metric is generated only by the rest mass, energy, pressure, and velocity of
the matter; not by their gradients. This is a reasonable condition to put on physically
acceptable metric theories, and is a condition which can be relaxed quite easily if there

is ever any reason to do so. Terms involving gradients, such as

S v6(x)(ws — #'g)[p(x')/ p(x")].a 45’

in goa, for example, are prohibited by this condition.
d) The coordinates are chosen such that the metric coefficients are dimensionless.
This rules out terms like
p(x’
S x

_x,|2dx'

in goo, for example.
A further restriction on the form of the metric in equation (16) is the choice of gauge.
One can make an infinitesimal coordinate transformation

| (=) = & + £ . (18)
Then the metric changes to

ghi = g — kij — i+ (19)

We have chosen £, £2, £ in such a manner as to make g's = g'1s = g's; = 0 to post-
Newtonian accuracy. In other words, we have chosen that coordinate system in which
the spatial part of the metric is diagonal. We are still free to choose £, however. For
example, the choice

b= a(a/at) fp(X', t) |x - x I dx’ s (20)
where a is a constant, and the resultant change of gauge

gloo = goo — 2800,  gloi = goj — o.j > . (21)
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will 6nly transform the various parameters into each other. The above transformation
(eq. [20]) causes the following changes in the values of the parameters:

(A1)1=A1+%ay (T=¢+4 20,
(A2)7=A2—2a, ZT=2—2a,
B =8+3a, @G =843%. (22)

This means that the individual parameters do not have direct physical significance, since
they are coordinate-system dependent. Only certain linear combinations of the param-
eters may be measured. In this series of papers we shall always work in a standard
gauge—that in which 2 = 0. Thus our PPN formalism will be characterized by nine
parameters: 8, B, B2, B3, B4, ¥, A1, As, ¢ Equation (16) in the standard gauge is thus
written

go=1=20+ 280"~ 48 +{Q, gu = Z0Va + 30,
s = —(1+ 270)bes . (23)

The post-Newtonian limit of any metric theory of gravity can be expressed in a
representation and gauge where the metric has the form (23). Only the values of the
parameters will vary from theory to theory. The field equations and all gravitational
fields except the metric, which go along with a particular theory, are automatically
incorporated into the formalism by writing the metric in terms of volume integrals over
the matter. No further reference to the field equations or other fields is needed. They
now disappear from the PPN formalism.

Before deriving the equations of motion, we must first relate this perfect-fluid metric
parametrization to Nordtvedt’s point-particle formalism, and to Baierlein’s formalism.
In the limiting case of a fluid composed of point masses (for details, see e.g., Estabrook
1969), our PPN metric has the same form as Nordtvedt’s (1969) point-mass metric.
The relation between the PPN parameters and Nordtvedt’s parameters can be seen by
comparing the parameters in front of each term (Table 1). Similarly, when the PPN
metric is written in terms of the “conserved density” (see below, eq. [28]), it has the

TABLE 1
RELATION BETWEEN NORDTVEDT’S PARAM-

ETERS, BATERLEIN’S PARAMETERS,
AND THE PPN PARAMETERS*

PPN Nordtvedt Baierlein
B 8 8
i 1 (42" +1) 1 (368'+1)
[ T 3 Bv—d) 1@v—#)
Bso o Absent 8
Baov oot Absent ﬂ,
Y Y
34 } Gnw)
8A’ ”I .
—x Absent
o« " Absent

*The relationship between the PPN and the Nordtvedt
parameters is obtained by taking the point-particle limit of
the PPN formalism, in the manner of Estabrook (1969).
The PPN-Baieriein relationship is obtained by expressing
%hfe PPI(‘I2 8f]l)uid metric in terms of the conserved density p*

cf. eq. .
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same form as Baierlein’s (1967) perfect-fluid metric—except that Baierlein’s lacks
some terms that PPN contains. The correspondence between parameters is given in
Table 1. Notice that the parameters 8; and B84 do not appear in Nordtvedt’s point-
particle approximation, since pressure p and energy density II are zero for point masses
which do not interact except through gravity.

We now calculate the components of T'/ using definition (14) and the metric (eq.
[23]), and we also calculate the Christoffel symbols. To the order required in the post-
Newtonian equations of motion,

T = p(1 42420 4+ 10),
T = (142U + T+ p/6) ,
T°% = povp(1+49* + 2U + WL + p/p) + pdas(l — 2vU) ,
Do = — 8U/at, T%, = — oU/os",
s = 180U /0t + ZA(Va,6 + Vpa) + 18:(Was + Wp.a) ,
Do = — dU/dxa+ (8/82){(8 + v)U? — 2% + ¥@}
— IA0V./0t — 3As0W, /0L,
Togs = ¥0a30U /0t — (701 + 89)(Vas — Vi),
Y(updU /5% + 8,,0U/ 358 — 550U/ 9x%) . (24)

In these calculations we have used the fact, readily verifiable from equations (17),
that Wa,s — Wga = Vas — Vs.ar
The equation of motion for the fluid (called the “response equation” in Paper I)

is (cf. eq. [1]) Ti5,) o+ TipT + Tig,T% = 0| (25)
The ¢ = 0 equation reduces to ,
(8/00){p(1 + v + 2U + I} + (8/82=) {pv=(1 + #* + 2U + 1 + p/p)}
+ @y — 2)paU/dt + 3y — 3)pv=aU/dx= = 0. (26)

Following Chandrasekhar (1965), we simplify all post-Newtonian terms in the above
using the Newtonian hydrodynamical equations (12). Doing this, and making use of
the first law of thermodynamics,

Deg

pdll/dt = (p/p)(dp/dt) , Co273
we can rewrite equation (26) in the form of an equation of continuity for the so-called
conserved density, . :
: . = p(1 4 3* + 340), (28)
namely,
30"/ 01 + 8(p"1e)/3x= = 0. (29)

This conserved density is useful (as opposed to physically significant), because for any
function f defined in a volume V whose boundary is outside the fluid,

(4/dt) f 5'fdx = pr'(df/dt)dx'. - (30)

® The derivative d/d! is the “convective derivative,” or the rate of change of the quantity for an ob-
server following the fluid as it moves along; 8/ is the rate of change for an observer who is at rest rela-
tive to some extetnal coordinate system, The relation between the two is given in equation (12).
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The i = a (@ = 1, 2, 3) equation of motion yields, after similar manipulation,

U

2 (ow) + 25 ) = 02+ 2+ Gy - DU

6x"

+ p;‘ﬂ {5y —- l)Uv« - %(7Al + A) Vo) — LAM (Wa - V)

P
+ 308+ A)r? S22 o gor O 9, 22
p1 U
~[o+ et er-sw+nU+n+n]piioo, G
h .
ere o= p(l+ 9+ 20 + T+ p/n). (32)

It will be convenient in this equation of motion to express ¢ in terms of p°. Using New-
tonian equations where appropriate, we get, to the desired post-Newtonian accuracy,

. “dve P 1
o G = 0 gt am b+ 3y - (3w + L)

. d LU 9
+ o, EZ[(Z'Y'FZ)U'D"——(7A1+A2)V]—1)"‘ p_gt___azp_

d

= e 2 (W = V) + 13 Vst

1-
t3 dx=

_zpa‘g_,,(wz (25—2)U+371’)——=0 (33)

Equations (29) and (33) are the required generalized perfect-fluid equations of motion.
Taken together with equations (23) and (17) for the metric, and the law of geodesic
motion for test bodies, they completely characterize each geometric theory of gravity
--at the post-Newtonian level.
III. CALCULATION OF THE GRAVITATIONAL-MASS TENSOR

In Newtonian physlcs, we write the equation of motion of a massive body being at-
tracted by a distant point source of strength m, in the form (cf. eq. [2])

ma® = — mym*SRP/R3 , (34)
where R is the vector from the distant source to the Newtonian center of mass of the

massive body, and ;
R = (Z3RARG)32 (35)

To calculate m"8, we consider a density function p*(x) made up of a density distribu-
tion p°(x), localized in a volume V,and a distant point source of strength m, located at xo:

P1(x) = modlx — x0) + p°(x,8) . (36)
The center of mass of the body will be defined by '
Mz = [px, Davdx, &)

M= [fp(x, t)dx .. (38)
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This definition is somewhat arbitrary, since we need not have used the “conserved”
density p®. But it has the advantage that the velocity and acceleration of the center of
mass aré given by (cf. eq. [30])

My = [ ov(x, 1)[dx=/dl]ldx , (39)
, Max = [ p°(x, )[dv=/di)dx . (40)

Note that M is the total rest mass of the particles making up the massive body. From
equations (38), (28), and (23), we get, neglecting post-Newtonian corrections, ‘

M= Sp(1 + 3>+ 3yU)dx = S[pu'/(—g)ldx
= S pd (proper volume) = total rest mass of particles . (41)

This M is not equal to the inertial mass 7 (which in special relativity is the total mass-
energy of the body), but can differ from it at most by terms of post-Newtonian order
(such as internal energy pIl, internal kinetic energy, and internal self-gravitational
energy). However, we have been careful to express both the acceleration p*dv®/df and
the Newtonian gravitational force p*dU/dx" in equation (33) in terms of the same con-
served density p* (or p* when integrated over the volume containing the body). The
fact that we will express the final Newtonian equation of motion (eqs. [65] and [80]
below) in terms of inertial mass m instead of rest mass M will not change the final answer
at all. Of course, in all post-Newtonian terms, m and M can be used interchangeably,
since their difference will contribute terms of a higher order than those we are inter-
- ested in.

We now consider the center-of-mass coordinate system for the massive-body-point-
mass system. This is the frame in which the center-of-mass velocity of the entire system
vanishes (cf. eq. [39]),

Mviga = S p'(x, t)redx = 0. (42)

system

This frame can be obtained from our initial coordinate frame by a “post-Galilean”
transformation of the form (Chandrasekhar and Contopoulos 1967)

' =2 — (1 + 3®)ust + fxeun~ + g(x X u)=
' = (1 4+ 3u*) — x-u + (other post-Newtonian terms). (43)

Here u and «” denote the relative velocity between the two frames and #® is equal to
— 1wl (cf. eq. [42]) of the system in the initial frame; and ¢ is a measure of the rota-
tional motion between the frames. The metric parameters appear in the “other post-
Newtonian terms.” Under this transformation, the metric and the equations of motion
(egs. [23], [29], and [33]) are invariant. (Notice that since this transformation leaves the
metric unchanged, it does not affect our choice of gauge.)

We assume that the massive body and the point source are both momentarily at rest
with respect to the center-of-mass coordinate system. By this we mean

v, =0, and v =dr/d=0. (44)

We then re-express the dv*/d! of equation (40) in terms of the metric functions and ther-
modynamic variables by means of the equation of motion (33); and we expand our result
in powers of 1/R, keeping only the dominant R~2 terms. The sum of the coefficients ap-
pearing in front of such terms will give m®,
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First, we evaluate exphcxtly the functions appearing in the metric. To the requxred
order of approximation (cf. egs. [17], [28], and [36], -

N ALENIE (x ) 1o ("2 » ' " PPl
U S 7 l | [1 — 3v(x) —37U(x)]dx = Ix"oxol +f|x__x/| dx
L EGLONE  Syme D
T T W S T
o p*(x', 1)dx’ P (’: p*(x", ) 7 3.0
| 3ymo S F— 2] =] - 3vSS AT dx'dx" | (45)
®=p f P fx t)'”(xl,) dx’ + l Bamao l J- |P (x t) dx’

(', t)dx’ p *(x, 8)o*(x", 1) 7 gt
+Bzm0f [x — er |+52ff‘ /H ’f uldxdx
+ 18/ p fx t)II(ix) &+ 38, s Ip(x )d_,,‘;I : 6)
— x AN
o= f o t)[lvacx )(x'i' = #F 4 , wn
x '3
_ p*(x, D)va(x) '
Vo = f—-—-—-————lx 7 dx (48)
_ o' D)e(x) (x5 — #'8)](%a — #%a)
Wem S e — 1 & (49)

We now evaluate the acceleration (eq. [40]) by integrating the equation of motion (33)
over the volume of the massive body, replacing p" everywhere by p” since the external
point mass is outside the region of integration. In the following computations, the ar-
row is used to signify that we have dropped all terms which decrease faster than k2,
where

Ra=xca_x0ay R = Ixc—'xﬂl y (50)

and we have also dropped all terms which are constant, i.e., totally internal terms. To
clarify this point, the second term in equation (33) will be discussed in detail. Using
expression (45) for U, we find

fP (x’ t) dx - —my J‘ P (x’ t)(xu x(nx) dx

x = xf?

+ 3ymo S S P *(x, ) p" (x t)(xa a) dxdx’ . (51)

|2 — o' 32" — x|

To first order, the first term in equation (51) varies as R~%, and the second term as R—1,
Thus these terms are retained. We have neglected terms which vary as R~3, such as

p°(x, p* (%', £) (Wa — 0a) ;.
3ymJSS PErUrET dxdx’ ,
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and terms which do not depend on R at all (“internal terms”), such as

102 D", D) (Ha — &a)
isr PETIE dxdx

" or

v ,l v /,t v ”,t a " ’a
v s 2 )fx("_ }faf’; _)i’f,, %) dxdx'dx'

* For the special case of spherically symmetric bodies, all the “internal” terms which
appear.in the acceleration (eq. [40]) are identically zero. For arbitrary bodies, however,
they represent a constant post-Newtonian acceleration in some preferred direction—the
spin axis of a rotating body, for instance. These terms arise because of the manner in
which we have defined “center of mass” (cf. eqgs. [37] and [38)). It can be shown that the
momentum of the center of mass (as defined by eq. [39]) of an isolated system is not
conserved, in contrast to what is expected in Newtonian physics. This violation involves
just those “internal” terms discussed above. In general relativity and Brans-Dicke
theory, it is possible to define a “conserved momentum” (cf. Chandrasekhar 1965;
Nutku 1969), which mvolves p"v® (as in our definition) plus post-Newtonian correctlons
involving V., Wa, U, I, 9%, and p. Then the momentum of the center of mass defined in
this sense remains constant for an isolated system, and “internal terms” do not appear.
However, this formulation is not used here because the generalization of the “conserved
momentum” to arbitrary metric gravity theories is difficult, if not impossible. Also,
since the “conserved momentum” is no longer directly proportional to 7% the interpreta-
tion of the “inertial mass” becomes unclear.

Before the motions of the planets in the solar system can be calculated with confidence
using the PPN formalism (with arbitrary values of the parameters), the “self-accelera-
tions” due to the “internal terms” must be understood more clearly and explicitly.
However, the self-accelerations will be small (of post-Newtonian order, diminished
further by their essentially nonspherical nature). Therefore, they will just add linearly to
" the externally produced accelerations (< R~?) calculated in this paper.

Henceforth, we will use definitions (39) and (40), and ignore constant “internal
terms.” Then, by definition, the first term in the integral of equation (33) over the
volume V is Ma“®, where a* is the acceleration of the center of mass. The remaining terms
are

S (8/0x=) {p[1 + 3yUlpdx = 0 (52)

since = 0 at the surface of the body,
S (0p/0x) G + I + p/pdx =0, (53)

0)v*(x) v (x) (s — %a0)] ;.
[x — x0|?

J‘p";t (Uv)dx — —mo S it

_ moffp (x t)P (x t)(xa — )dxd ’ mof ap(x)/ax

[x — xo| |x — x'|3 |x—xol

- moff P (x; t)p (x t)(xa an) d dx ’ ‘ (54)

[x — x| |x — x[3

dVa ,t v ’)t. ,a_ ot
So° dx — — m“‘/‘fp(ﬁx)ﬁssz’(ai— xo|:;°)dxdx', (55)

S (83U /dt)dx — 0, (56)



38
No. 3, '1971 RELATIVISTIC GRAVITY
S (op/ot)dx — 0, : (57)
fb"-% (Wo — V.)dx |

p°(x, Do, 1) (5’5 — wop) (x5 — o'8) (%a — %a)
— —mJS S x =7 Fl¥ — ma] dxdx’

+ mS S pv(’i’xt)_‘:vgll’@r(gé ; [ 3xo =) dxdx’ , (58)
S e"¥(d Vﬁ/ dx*)dx — 0, (59)
S (60)
v 99 t)P”(x') t) (xa - x’a) ’
fP Ixe lx—x'|3lx'—xo| dxdx ) (61).
j‘pvvz dx — —mo S p*(x, t)lvx(xlz(:)al 3“ Xoa) dx, (62)

i

j‘p“U—qu—> oS 2 002, D za = £ g

Az~ [x — xo| [x — x|?
p*(x, 1) p*(x', £) (Xa — %0a)
—mJSS T — x0]7]x — ¥ dxdx’ (63)
S () ——dx—> —me fﬁ"i(f“—x—olf"")dx (64)

Bringing these terms together, we get

Ma“ + mﬂf pv(x’ t)(xa - an) 31 + (7A1 — 27 — 23)./' p (x t')l d /

Ix - .7(0'3 l
P+ (= 2p00)/ e, 0}
+ mof P"(x’ t)Pv(xl) t)(xa - x,u) dxdxli(zﬂ + 28, — 'Y)

|x — x'[3]x" — x|
: xg — x's)(x’s — xoﬁ)%

+%A2(

[ — xo|2
Now,
ow 1 ---1——R(xﬂ—x°ﬁ)+0(—1—-) (66)
[x—x] R R R/’
1 _ _1_ _ Rﬂ(x',s - x,;p) _1__ .
|x — xOI - R3 + O(Ra) H (67)

Xa — %oa _ R® 1 '
[x—xn!3=§3+0(7€_3)' (68)
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Thus, retaining ‘only terms which decrease as R~ (all the R™! terms are ldentlcally zero),
and using the fact that

.ff p"(x, p*(x', t)(xa - x’u)(x,ﬂ - xcﬂ) dxdx’

lx = ®

— %ff 14 (x1 t)Pv(x t)(xa — xa)(xﬂ — xﬂ) dde (69)

lx —x'*

we can transform equation (65) into the form
" meR®
=-5

*(x, 1) p*(x', 8)

M M + Gar— 29— 20) /s el dead

+ 1S Dolads + (v = 2) St

pr(x, ) p° (s 1) (% — #'a) (s — &) | .
ff FEE £ & dxdx

t)v,,(x)v,g(x’)dx (70)

: (2ﬁ+232“7+Az)

+(27+2

In order to simplify the post-Newtonian corrections.in equation (70), we will use the
Newtonian tensor virial theorem. By manipulating the Euler equations (cf. eq. [12]),
with the “conserved” density p? in the center-of-mass system of the body, we find

. & , LU L 9U 3 ap
p "—it—z (xaxﬂ) 2p¥va0 = p*( x Y] —+ ) ( axﬂ + x ﬂaxa ’ (71)

where U” is now the internal Newtonian gravitational potential. Integrating equation
(71) over the volume of the body and making use of equation (30), we get the Newtonian
tensor virial theorem (cf. Chandrasekhar 1964)

%dzluﬂ/dtz = Zi:aﬂ + Qaﬁ + BaﬂP - (72)

where the moment-of-inertia tensor, kinetic-energy tensor, and gravitational-potential
tensor are defined, respectively, as

Iaﬂ = fpv(x, t)xaxﬂdx; (73)
zaﬁ = %fp”(x) t)va(x)vﬁ(x)dx! (74)
Qus = LSS P (x, ) p* (¢, f)x(:ii ;|5’:Ia)(xﬁ — 2s) dxdx’ (75)
and where
P= ,V/‘p(x)dx. (76)

For a body in static equilibrium, I,g is constant, so the virial theorem becomes
0 = 2T0p + Qo + 8asP . an

For a body in which 7,4 is periodic with a period small compared with the time required
for the body to acquire a significant velocity toward the external point mass, the virial
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theorem can be averaged over a period of oscillation, with the same result. (The period
is always sufficiently small for this if the body and the source are sufficiently well
separated.)

Contracting equation (77) on a and 8, we get the usual scalar virial theorem,

0=2T+Q+ 3P, (78)
where

9=2a9aa=—%fe%—t)p—(il—t)dd' (79)

By ‘using the virial theorems (77) and (78) in the equation of motion (70),> and by
making use of the definition (34) of the gravitational-mass tensor m*#, we finally obtain
for mef:

me8/m = §°F{1 — (71A, — 3v — 4B)(Q/m)} — {28 + 2B, — 3y + As — 2} (Q*8/m) , (80)

where we have replaced M by m in the post-Newtonian correction terms (cf. eq. [41] and
the discussion following it).

This result is a very general one. It applies to bodies which obey a broad class of
equations of state, and which have arbitrary macroscopic interior fluid motions, in-
cluding convection and rotation. The only restrictions are that, to the desired degree of
accuracy, the body be made up of perfect fluid and have negligible radiation transport,
and that the moment of inertia be, at most, periodic in time. This derivation and result
have the advantage of including the effects of radiation and equation of state in a realis-
tic and straightforward way. The breakdown of the equivalence principle is seen to
depend only on the gravitational-potential tensor, for that class of metric theories de-
scribed by the metric of equation (23).

IV. THE MASS TENSOR IN GENERAL RELATIVITY AND IN BRANS-DICKE THEORY

We will now specialize to general relativity and Brans-Dicke theory. Comparing the
metric of equation (23) with the post-Newtonian fluid metrics obtained by Chandra-
sekhar (1965) for general relativity and by Nutku (1969) for Brans-Dicke theory, we
find the values for the ten parameters given in Table 2. These particular values are not
unique; they depend on the specific gauge chosen by Chandrasekhar and Nutku—which

TABLE 2
VALUES OF THE METRIC PARAMETERS

General

Parameter Relativity Brans-Dicke
S 1 . |
Broveeninnns 1 34+2w)/(4+2w)
Bawwonn 1 (142w)/(4+2w)
Ba.ovon v 1 1
Bawnoooninn 1 (14w)/(2+w)
Yoot 1 (14w)/(2+w)
Dieeeinniann 1 (10+7w)/(144+7w)
De.....o.... 1 1
¢.. 0 0
D1 0 4]

* In the standard gauge of this series of papers, = van-
ishes identically, independently of the theory.
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happens to agree, in both cases, with our “standard gauge.” In another gauge (for
example, that used by Estabrook 1969) the parameters take on different values, but the
linear combinations of parameters which would then appear in expression (80) would
. ‘be numerically the same. '

" In general relativity and Brans-Dicke theory, we have

286+ 28,—3v+4:—-2=0. (81)
This result means that anisotropic terms proportional to
RBQaB / 'R3

will not appear in the Newtonian acceleration of the massive body. Such terms would
cause Newtonian accelerations transverse to the line from the center of mass of the body
to the external source. In general relativity,

74, — 3y — 48 =0; (82)

mF = mseb (83)

S0

as expécted. In Brans-Dicke theory,
T8 — 3y — 48 = —1/(2 + w) ; (84)
mes = mget {1 — [1/2 + W)(|2]/m)} . (83)

This agrees with the general result found by using the method of Dicke (1969) (see
Appendix), and with Nordtvedt’s result for spherical bodies without radiation (Nordt-
vedt 19685, 1969). By including radiation pressure in massive bodies, Nordtvedt finds
an extra term, Am®?, in m°6; ’

SO

Am=t = m5[3(1 — v)E./m], (86)
where E, is the total radiation energy in the body. In general relativity,
' 1~y =0; : 87)

and in Brans-Dicke theory

1—vy=1/2+ w). (88)

The source of this erroneous term is, presumably, the artificial way by which Nordt-
vedt tries to introduce the effects of radiation pressure-into his pressureless gas of non-
interacting point particles. Our hydrodynamical formalism treats this probem in a more
straightforward and rigorous way.

V. CONCLUSIONS

In the post-Newtonian approximation, massive, self-gravitating bodies were found
to violate the equivalence principle in arbitrary metric theories of gravity, with the
exception of general relativity. In Brans-Dicke theory, the breakdown in the equivalence
principle (Nordtvedt effect) was seen to depend only on the body’s internal gravitational-
potential energy.

The calculations in this paper were restricted to massive bodies which, like the source
of the external gravitational field, are momentarily at rest with respect to the coordi-
nate system. Including the motion of such bodies, as in the solar system, might introduce
further violations of the equivalence principle.
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APPENDIX

*HEURISTIC CALCULATION OF THE GRAVITATIONAL-MASS
TENSOR IN BRANS-DICKE THEORY

From the point of view of Dicke (1969), massive bodies violate the equivalence principle
because the gravitational ‘‘constant,” G, is a function of position in space, which causes the
internal energy of a body to depend on its location.

_ Consider the following gedankenexperiment. Take n particles, each with rest mass u, and
create from them a bound massive body centered on a point at height % in an external field
U (k). There is a release of binding energy Eg(k) in the process of formation. Raise the massive
body a distance §%. The force on the body is

F = [np — Es(W)]a, (A1)

where nu — Ep(k) is the inertial mass (total energy) of the body and a is the acceleration it
feels. The work done on the body is

E(up). = —Féh = —[nu — Ep(k)]adh + O@H?) . (A2)

At the top of the cycle, the body is pulled apart. The energy Ep(k + 64) required to do this is
obtained by converting some of the particles into energy. The particles are then lowered one by
one back down to the starting point. Since each particle is a ““test body,” it experiences an
acceleration g which is the gradient of the external field U. So the energy retrieved from the

body is
E(down) = [nu — Eg(k)]gsh + O(842) . (A3)

The cycle is closed since we are now left with # — Eg(k)/u particles plus the energy Eg(k)
released when we first created the massive body. Energy balance thus demands

[me — Es(W))(e — g) = —dEs/dh . (A4)

Denoting the inertial mass by m, we find that the force on the massive body is
ma = mg — dEp/dhk . (AS)

Consider raising the body a distance 8%, keeping its internal state fixed. Then the only change
in binding energy is that due to the change in gravitational internal energy E,, which is produced
by the Brans-Dicke change in G. After the body has been raised, it is out of equilibrium, so it
begins to pulsate; damping of the pulsations generates enough heat to keep the total non-
gravitational internal energy constant, despite the readjustment of density and pressure due to
the change in G. Hence, the only change in binding energy is the change in gravitational internal
energy: :

dEp/dh = dE,/dh . (A6)
The final result for the force on the body (eq. [A5]) is, thﬁs,
. ma, = mU o — OE,/dx*. ' (A7)
Since (cf. eq. [8])
E, = Q{1 — U/(Q2+ w)}, (A8)
then .
mag = U {m + Q/(2 + w)} (A9)

and (cf. definition [2])
m® = maed{1 — [1/(2 + w)]|Q|/m} . (A10)
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' The gedankenexperiment which leads to this result was first introduced by Dicke (1969); but
the reasoning leading to the crucial equation (A6), and thence to the validity of equation (A10)
for any massive body, is due to Kip S. Thorne (private communication).
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I. INTRODUCTION

In Papers I and 1I of this series [Thorne and Will (1971) and Will
(1971a), hereafter referred to as WII] the foundations for the Parametrized

Post-Newtonian (PPN) framework were laid out and discussed. This framework

treats the post-Newtonian limit of arbitrary metric theories of gravity in
terms .of nine metric parameters -- 7, B, Bl, Ba, 53, Bh’ Ai’ AQ: { -- wbose
values vary from theory to theory. Hand in hand with the parametrized

metric goes the equation of motion of stressed matter .
’ (1)

where,Tij is the'stress-energy tensor for matter and non-gravitational
flelds. |

The PPN framework gives a complete description of gravity and of the
response of stressed matter to gravity at the post-Newtonian level, once one
chooses a set of values for the PPN parameters (see WII for the key formulas,
eqs. [17], [23], [24], [25]). 1In this paper we will show that only a

restricted set of PPN pavameter values will lead to a description of gravity

which has integral conservation laws at the post-Newtonian level. In par-

ticular, we will demand that the PPN perfect fluid equations of motion lead .
to conservation laws for energy, momentum, and angular momentum, as well as
uniform motion of the center of mass; and we will show that the PPN para-

meters must then satisfy the following constraints:

pp=3(r+1), ' A1'=%(‘&7+3),
By=3(y-28+1), 8, =1, (2)
ﬁS =1, | { =0,

A= 7
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Thus the demand that comservation laws exist reduces the number of arbitrary
patémeéers in the PPN formalism from nine to two -- for convenience we have
chosen B‘and 7.

' The constraints of equation (2) are satisfied by general relativity and
Brans-Dicke Theory (WII); by generalized scalar-tensor theories (Nordtvedt
1970) and by Nordstrpm's first and second theories (Ni 1971). They are not
satisfied by scalar-metric theories with a "Universal time coordinate,” in-
cluding.Einstein's, Whitrow and Morduch's, Yilmaz's, and Ni's [see Ni (1971)
for discussion and references for these theories].

A second set of weaker PPN ﬁarameter constraints related to three of

those in equatibns (2) can be derived by imposing "asymptotic Lorentz in-

variance" on metric theories of gravity. By demanding that the PPN metric -

for a moving point mass be the Lorentz transformation of the metric for a
static point mass, and by requiring that the gravitational fields in the PPN
metric be properly retarded (i.e., that gravity travel with the speed of -
‘light in flat, empty spacetime), Nordtvedt (1969), wusing his version of the
PEN formali#m, has obtained the constraints (when tragslated from his para-

meters into ours):

A2 +-1=0 s
7A1+A2=)+7+’4- ’ (3)
In ﬁhts paper we will confirm and generalize Nordtvedt's result using

the full PPN fluid metric rather than specializing to a static point mass,

and using the formalisin of Post-Galilean Transformations introduced by

Chandrasekhar and Contopoulos (1967). We will prove that the nine-parameter
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PPN metric is invariant under a post-Galilean transformation (a transforma-

tion which reduces to a Lorentz transformation far from the matter) if and

only if equations (3) are satisfied. We also discuss the physical signifi-
a c#nce'of this invariance. |

Any theory which is "conservative", i.e.; which satisfies the conserva-
tion law constraints, is also asymptotically Lorentz invariaﬁt (compare egs.
[2] a;;_ES]). We will show explicitly that the 10 conserved quantities of
such a "“conservative'" theory behave as a four-vector and a second-rank anti-
symmetric tensor under Lorentz transformations.

We will also show that "conservative" theories of gravity predict equal-
ity bf the active and passive gravitational massés of massive self-gravitating
bodies. In Néwtonian ph&sics, equality of active and passive gravitational/-
mass ("action equals feaction") goes hand in hand with conservation of
momentum and uniform center-of-mass motion. We will thus show that this
connection between conservation laws and "action equals reaction' holds ;t‘
the post-Newtonian level as well.

The constraints on the PPN parameters which we will derive in this paper

are theoretical constraints -- they do not tell us which theory is the

correct theory of<§ravity. Only experiment can do that. Indeed, the con- '

.

‘straints in equations (2) and (3) should be subjected to experimental test
in ordér to confirm the.exiséencé of conservation laws and the validity of
Lorentz invariance on astronomical scales where gravity is present. Several
such experimental tests already exist: the author has rgcently used gravi-
meter data on the tides of the solid Earth to put an upper limit on a
possible anisotropy in .the Néwtonian gravitational constant (Will 1971b),

and has shown that the parameter combination (A2 + ¢ - 1) should be zero to
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.within about 3 percent. Thorne, Will, and Ni (1971) have discussed ways to
pué iimics on Bl, 53, and éh,by using laboratory measurements of the equality
af‘activé and passive gravitational mass (Kreuzer~1968). Other possible
tests of the constraints derived in this paper are currently under investiga-
tion.

Ia Tablé 1 we present a list of experimental tests of relativistic
gravity and their PPN parameter dependence. We show the values predictéd
for these parameter combinations by theories of gravity with conservation
laws and by theories of gravity which are aéymptotically Lorentz invariant
(but which might not have conservation laws); .

In §II we derive the conservation-law constraints (eqs. [2]) using the
_eqﬁations of motion (eq. [1]) for matter in the PPN formalism. In §III the
constraint equations (3) are obtained using post-Galilean transformationms,
and in §IV the transformation properties of the 10 conserved quantities are
determined., We make concluding remarks in §V. Appendix A presents a diécus-
sion of the reasoning which leads us to five of the conservation-law
constrgints; Appendix B gives a derivation of the active gravitational mass'

of a massive self-gravitating body.

II. CONSERVATION LAWS AND PARAMETER CONSTRAINTS

DERIVED FROM PPN EQUATIONS OF MOTION

It is well known [see, for example, Landau and Lifshitz (1962)] that

integral conservation laws cannot be obtained directly from the equation of
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motion for stressed matter,

™. =0 | Oh

1 In this paper Greek indices will take the Qalues 1, 2, and 3; Roman indices
will take the values 0, 1, 2, 3; and summation over repeated indices will be
employed. Commas will denote partigl differentiation, and semi-colons will
denote covariant differentiation. We use units for which the velocity of
light is unity and the Newtonian gravitational constant in the outer regions
of the solar system, toaay is unity. Square brackets enclosing indices will

denote antisymmetrization and round bratkets will denote symmetrization.

where Tij is the stréss-energy tensor for matter and non-gravitational fields,
because of the presence of the Christoffel symbols in the covariant deriva-
tive. Rather, one searches for a‘quantity ®ij which reduces to Tij in fiat

spacetime, and whose ordinary divergeﬂce is zero, i.e.,

13 _ ‘ _
o ;=0 , (s)

'Then, providing @15 is symmetric, one finds that the quantities

pl I}: @“' dij ST 5 J’z xL 1gdJk i, e

are conserved, i.e., the integrals in equation (6) vanish when taken over a
closed 3-dimensional hypersurface . If one chooses a coordinate system in
which £ is a constant-time hypersurface and extends infinitely far in all

directions, then Pt and Jij‘are independent of time, and are given by

P j‘@“ dx , JHae27 x[tgilo gy | (7)
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where 45 is a volume element of ordinary three-dimensional space. An,
appropriate choice of @1j allows one to interpret the components of Pi and
-Jij in tﬂ; usual way: as measured in‘the asymptotically flat spacetime far
" from the matter, 20 is the total energy, ?® is the total momentum, I 1
the total angular momentum and Joa determines the motion of the center of
mass of the matter.

-

The quantity @11, normally called the stress-energy complex, has been

found for the exact versions of general relativity (Landau and Lifshitz
1962) and of Brans-Dicke theory (Dykla 1971). It has also been explicitly
calculated in the po;t-Newtonian and post-post-Newtonian approximations of
gener#l relativity (Chandrasekhar 1969; Chandrasekhar and Nutku 1969).
(A wide variety of non-symmetric stress-energy complexes have been found
for general relativity, but only the symmetric version guarantees conserva-
tion‘of angular momentum.) In this sectionvwe will show that such a
symmetric stress-energy complex can be found for the PPN formalism (and"
hence that conserved quantities exist) only if the parameter‘constraints
of equations (2) are satisfied.

_We now proceed to determine ®ij.

The PPN metric is given by

=1 -.20 + 2807 - ko + £Q

800 ’
Boa = T& Vot 3W, - (®)
8ap = - (1+270)8,4 o

where

(9)

- lp o +24 ¢
© = B0y + Bpdp +2P505 +3 A0,
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ﬁere q is the Newtonian g;avitational potential. For explicit definitioms
of the functions appearing in the metric the reader is referred to WII,
equation‘(17). We also state the foilowing definitions: p is the rest-
mass density of fluid; pll is the density of radiation energy, compressional
energy, tﬁermal energy, etc.; p is the pressﬁre and v is the fluid velocity.
ghe most general possible form for eij'which réduces to Tij in flat
spacetime (negligiblé gravitational fields), and which is accurate to post-

Newtonian order, is
ol = (1 - an)(rtd « 1y, (10)

wheré o is a constant (Fo be determined), and t1d s a quantity (which may
be interpreted as gravitational stress-energy) which vanishes in flat space-
_time, and which is a function of the fields U; o, Q, VEH and Wd and'thei?

- derivatives (and may also contaln the matter variables p, I, p, and g). We

reject terms in @ij of the form
i i i
vertd , nrtd , (o/o)xd ,

since such terms do not vanish for arbitrary distributions of stressed
matter in regions of negligible gravitational field.
By combining equations (4), (5), and (10) we find that ¢ must satisfy

(to post-Newtonian order)

tij - U tij = I‘i

»3 »J ik k] 23

% . pd otk Lo Ti_j . (11)
In order to solve equation (11) for tij we will use the following

equations (which are equivalent to the definitions for the metric functions

given in WII) to express matter variables in terms of field quantities:
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U = - hip » ’ v

- kgpv ,

o Q
. 2 ‘
7201 = - hnpva s Yoy =- bapt
, (12)
2
V203 = - l#ﬂpn 3 v ¢]+ = - l"ﬂP ’

Va,0= - Y0 7

.

" and we will use the following identity, which is valid for amny functionm f:

= - - 1 2 .
lmpf’a 2(a/axﬁ)(u,(af’ﬁ) ‘ gaaau,yf”) +U oY £ (13)

We substitute into equation (11) the formulas for Tij and for the PPN
Christoffel sywbols given in WII (eq. [24]), and use equations (12) and (13)

L3

to obtain (to post-Newtonian order) for i = O,

bxe® | = (a/at) [} (67 + 2 - 5) lvu| 3]
' ()

- (/axP)(37+a- 2)6’511,0 +(3r+a-3)u (v, 5-Vg )]

Equation (14) can be integrated directly (making use of the condition that

t'3 venish in flat spacetime) to yield

«® = () Moy s 2 - 5) |wI®, (15)

. th = - (hn)'l[(37+&-2)U,aU’o + (37+a'S)U,y(vy,d-vaﬂ)}' (16)

An expression for the conmserved energy can be obtained using equations

(7), (10), and (15). The result is (after an integration by parts):

P = I p¥(1 + % v - 32U+ H)‘df , (17)
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where p* is the so-called "conserved" density, given by

7

33t + T-(p'V) =0 ,
(18)

p¥ = p(l + -%vz + 37U) ,

(w11, ;qs. [28] and [29]). The first term in equation (17) is the total
conserved rest-mass of particles in the fluid (WII, eq. [41]). The other
terms in equation (17) are the total kinetic, gravitational, and internal
energies in the fluid, whose sum is conserved according to Newtonian theory
(whiéh can be used in any post-Newtonian terms). Thus Po is simply the
total mass-energy of the fluid, So far we have fbund nothing new. Equa-
tion (17) for Po can be found directly using the PPN equation of continuity
(eq. [18]) and Newtonian theory. .

For 1 = ¢, we must first compute taﬁ to Newtonian order. Equation'(11)

ylelds

bxt® | - B U, -3 u »
X ’B. (a/ax ) (U,a ’ﬂ 2 saﬁ U,7 ’7) ’ ) (19)
from which we obtain the standard Newtonian result (Chandrasekhar 1969)

af - hoy-l 1
£ Newtontan = (%) (U o0 g = 38550

u
27 57

WA @

oB

This Newtonian approximation for t” can now be used to éimplify all post-

. Newtonian terms in equation (1l1). We obtain after a lemngthy calculation,

'
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the post-Newtonian equation for taj:

. b | = (a/ac) [% (15, - Aa)u,av’o +3 (18 + Ag)u’7 (vna - va”)
(rra-1u 3 - (7 va- 1)(a/ax7)(uva 7)]
+ (3/axP) {[1 3(4p+1py-7-0-3) UY(U U a is Bu 7U,7)

* [U’ (C‘(u‘b‘ B ga):&) - % aaﬁ U:V(}w N ga),7]

(21)
[ (o{1T) * B¥gy) 0 = & 06 T (8%, 254, ]
- 2 + Az) [V[a,r]v[ﬁﬂ] - ¥ %5 V7,81 V[MJ]
- % (- £) 855 (U ¢ ) + (57 + - 1) U(ovP + Gdﬁp)}
+ bnd®,
wherg
* = (au/ax™) [(2‘;'31.-7- 1) ov° + (8x)7! (28+ 2a2-37-1)leI2'
: ‘ ' (22)

+.(53-1)'pII + 3(&-7) P+ (8::)-'1 ;vaa] .

The temm Qa can not in gemeral be written as a combination of gradients

and time derivatives of fluid quantities and gravitational fields -- or so
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we believe. (We have been unable to develop a completely rigorous proof;

but strong arguments that this is so are given in Appendix A.) Therefore,

in order for tai to have a form which involves only matter and gravitational
field variables and their derivatives, each parameter combination in Qa
(eq. [22]) must vanish séparately, i.e., the parameters must satisfy
ﬁ1=%(7+1):
Bp=3(r-28+1),
B =1,
B =7

t =0.

(23)

We have thus obtained five of the seven conditions of equatioms (2).
These conditions can also be obtained using Chandrasekhar's (1965) technique
which consisés of integrating the hydrodynamic equations of motion over.éll
space and calculating a comserved moméntum . Using the PPN formalism, the

corresponding result'is

(d/dt) J‘ p*{va [(L+ 3 v+ (ey+1)u + 1 + p/p] -4 (18, vy +.A2Wa)}d§
| (24)
+ IQa d:j = 6-

The second termfin equation (24) can be wriften as a totai time derivative

of an integral over all space, only if Qa can be written as a combination

of time derivatives, and spatial divergences (which 1ead‘to surface integrals
~at infinity that vanish). But according tb the reasoning\given in Appendix A,

this can only be true if the five parameter comstraints of equation (23) are
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satisfied. Then Qa = 0, and we have a conserved momentum.

. We 'now demand that tij-be symmetric. The taB

part of equation (21) is
manifestly symmetric. Thus we learn nothing new --'the five conditions of
reﬁuation (23) are necessary and sufficient to guarantee conservation of
spatial angular momentum Jaﬁ. This can also be shown using the methbd of
Chandrasekhar. It is the symmetry of toa, i.e., uniform motion of the
center of mass, which 1ea&s to the final two constraints. Comparing th of

equation (16) with tap of equation (21) we find the conditions

a =1 -5y,
7A1=1+7+3, ‘ ‘ (25)
61,

which complete the list of parameter constraints of equations (2). Using

these constraints along with equations (10), (15), (18), and (21), we ob-

tain for tij and @ij:

% o - (8)7 (47+3) |gul®, | O (e8)

O o0 -1 Y-
= ™ [(ere DU (ere2)u g - Voo » (27)

P . (hn)fl ;[1 - (57-1)U] (U,o‘u,‘5 -4 8o U 7u 7)

.+ v [U’ (aQ:B) - %.adahuy7°:7]
(o x re3) [U,(a"a),o -3 %@",7"7’,0]
. . (28)
* [U, (o"8),0 = 2 8aﬁu,7w7,°]
-8 (r+1) ["tan] Yte,71 = * ®ap V17,8 "cr,sn]

- & (27+41) 8, (U,o)ai’
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@ij = [1+ (57-1) U] ('1‘ij + c“). (29)

Chandrasekhar (i969) and Chandrasekhar and Nutku (1969) have computed
B tij in theAbost-Newtonian limit of general relativity using the Landau-
Lifshitz (1962) symmetric energy-momentum pseéudo tensor. Their results are
i complete agreement with equations (26), (27), (28), and (29), if we sub-
stitut; the general-relativity parameter values y = B = 1. Chandrasekhar
and Nutku found that a careful derivation of the post-Newtonian version of
635 from the exact Landau-Lifshitz version required knowledge of the post-
post-Newtonian Christoffel symbols. They then found that the contributions

o8

of these higher-order terms to the post-Newtonian t

(as they must). Our derivation of %

exactly cancelled
using the equations of motion did

not require any knowledge whatsoever of higher corrections to the PPN

Christoffel symbols, and thus confirms this cancellation.

In Brans-Dicke theory, Dykla (1971) has found an exact, symetric
energy-momentum pseudo tensor analogous to that of Landau and Lifshitz.
Applying the post-Newtonian Christoffel symbols for Brans-Dicke theory (w1t
eq. [24], plus the Brans-Dicke parameter values) to Dykla's formula for tij,
and assuming that the contributions of post-post-Newtcnian Christoffel sym-
bols.canéel; one can show chat‘che resulting expressions agree with equacions.
(26), (27), (28), and (29).°

Finally, we use equations (26), (27), (28), and (29) along with equa-

tion (7), to obtain expressions for the conserved quantities:

Ponfp*(1+%v2-%U+T[)d§, v (30)

© =Ip*3v°‘ [1 + %v2+ (2y+1) U+n+p/p] -%—(h7+3)Va _%wa ax , (31)4
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J“ﬁ;éfp*xfagvﬁl 1+lv +(27+1)U+H+p/p] %(h7+3)v <3Pl ax, (32)"

1

°°=J‘p*x°‘(1+%_-v2-%0+ﬁ) dgg-Pat- (33)

In general relativity and Brans-Dicke theory, these expressions agree
with results obtained by Chandrasekhar (1965), Fock (196l4), and Nutku (1969).

' By defining a center of mass xa, given by

‘fpx(l-i- 2-%—U+]‘[)d§

v
< . (34)
Ip (L+3v--2u+m) ax
we find from equations (30) and (33) and the constancy of Joo, that
ax¥de = 2O, _ (35)

i.e., the center of mass moves uniformly with velocity Pa/Po.

In Newtonian gravitational theory, this uniform center-of-mass moti:c'm
is a result of the law "action equals reaction”, i.e., of the law "active
gravitational mass equais passive gravitational mass." In the PPN formalism,
one can still use such Newtonian language to describe the post-Newtonian
motions of massive self-gravitating bodies in their mutual 1/(separation)2

" gravitational fields., I‘I‘he passive gravitational mass is a tensor given by

(see Nordtvedt 1968, Will 1971a)

°‘B °‘3{1 - (18, -37- hs)(n/m)} - (2e+252-37+A2 2) o (36)

where m is the body's total mass energy, given by (cf. eq. [17])

N

.m=Ip*(1+

=u+zkin+n+zint_ .

-1
1 U + 1) 57)

Ll
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Here, M is the total rest mass of particles, Ekin is the total kinetic

energy, @ and Qaﬁ

are the body's self-gravitational energy and energy tensor
respectively, and Eint is the internal energy. Similarly one has, for the

v active gravitational mass [Nordtvedt (1969); see also Appendix B]

m o=m+ 2‘(2sl-pu - 1)x~:kin + (67-hs2- B, - 1)a + (33- I)Eint
‘ ' ' (38)

af
= § Byn %o

;vhere Oflﬁn is the body's kinetic energy tensor, and e is a unit vector
joining the massive body to the field point at which its field ié being
measured.

Sﬁbs:ituting the conservation-law parameter constraints (eq. [2]) into ’

equations (36) and (38), we find that for comservative theories the two

masses are isotropic and equal, and are given by

a

m, =m, = m.[l‘ + (bp-7-3)(a/m)] . - , (3‘9)

III. POST-GALILEAN TRANSFORMATIONS, LORENTZ INVARIANCE,

AND PPN PARAMETER CONSTRAINTS

I_ﬁ this section we will prove that the post-Newtonian metric of any

theory ofv‘gravity is invariant under a post-Galilean transformation if and -

oauly if the PPN parameters for that theory satisfy three constraints:

A2'+§-1=0 5
TN ‘ (o)
) h51-27+2_+g. v
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A post-Galilean transformation (see Chandrasekhar and Contopoulos 1967) is

a coordinate transformation which (1) reduces to a Lorentz transformatiom

_ ofvvelocgty lu] << 1 in the asymptotically flat region of spacetime far
| from tﬁe matger generating the metric, and (ii) preserves the post-Newtonian
Ygauge" being used -- 1.e., preserves the poét-Newtonian equations in their
sﬁandagd form.

Before proﬁing the theorem in detail, we must first discuss its physical
meaning. Consider two observers who set out to calculate the metric due to
the same given distribution of perfect fluid, using the same particular
theory of gravity. Each sets up a global éoordinate s&stem which satisfies
the standard post-Newtonian gauge conditions, and which becﬁmes inertial
asymptotically at very large distances from the fluid; thus the two coordi-
nate systems are related by what we have called a post-Galilean transforma-

" tion. Each observer then uses the variables of the perfect fluid (density,
velocity, etc.) as determined in his own coordinate system, along with éHe
machinery of the metric theory of gravity, to compute a metric. The obser-
vers then compare their results. This theorem states that their results
will be physically equivalent if and only if they used a theory whose PEN
parameters satisfy equations (40). Such a theory is "asymptétically Lorentz

invariant" in the sense that physics, including the generation of the metric

by the matter is independent of.the velocity of the (asymptotically Lorentz)
frame in which it is calculated. Examples of such theories are general
reiativiﬁy, Brans-Dicke theory, and Nordstrom's theories (which in fact are
more than just "asymptotically Lorentz invarianq" -- they are "generally”
covariant). ' .

A theory which did not satisfy the conditions of the theorem
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(i,e.,Awhose PPN parameters violated some of eqs. [40]), would therefore
predict different physical results fo? computations of the metric in each
asymp;otic Lorentz frame. Such a theory would have to pick out some
preferred reference frame (the rest frame of some cosmological "ether"
for instance) in which the "correct"‘metric was to be calculated. Examples
of such theories are a class of scalar-metric theories which contain a
universal time coordinate, devised by Einstéin, Yilmaz, Ni, and Whitrow
and Morduch [see Ni (1971) for discussion and references]; anotﬁer example
is a theory which predicts different flat-space speeds for gravity and for
light, given in Will (1971b). These theories -- like any theory (cf. §III
of Thorne and Will 1971) -- can be written in a generally covariant form;
but in the preferred reference frame their equations are particularly
simple; they thus assign strong physical significance to this simplicity.
We obtain the form of the post-Galilean transformation by expanding the

usual Lorentz transformation in powers of velocity u, assuming u2 is of

Newtonian order,” i.e., u is 0(1), v is 0(2), and so on. We then generalize

2 For a discussion of the process of assigning Newtonian and post-Newtonian
"orders" to various terms in the expansion see Chandrasekhar (1965). In our
notation the Newtonian potential U(x) is 0(2), velocity v is O(1), time

. derivatives dfdt are 0(1) and so on.

the resulting transformation (to take into account gravitation-induced devia-
tions from perfect Lorentz invariance) using arbitrary functions. -For a

transformation from coordinates (x,t) to coordinates (&,t), the post-Galilean
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transformation has the form (Chandrasekhar and Contopoulos 1967):

x=g - (Ledu)ure 3 (gowde+ Y (57),

| (k1)
t=1(1+% W 4 g-u%) -(1+3 u2) Eru+ 2 (g,7) + £ (8,7)

where Y is 0(2), Z is 0(1), and £ is 0(3) [we have assumed that ut is 0(0)].
This transformation must reduce asymptotically to a Lorentz transformation

far from the matter, i.e., Y Z and £ must be bounded functions of §, or must

satisfy
¥l
—=>0 , Z .0 s £..0 , as |gl-oo. (42)
gl g} el :

Since equations (41) represent an asymptotic Lorentz transformatiom, with
velocity u, the outer region of the (x,t) frame moves with velocity u with
‘respect to the outer region of the (g,7) frame, and conversely the (5,1)
outer region moves with velocity - u relative to the (f,t) outer region:.

This leads to the conditions

(d/ dv)

Ll

(a + ut,7) =0,

(43)

L

(¢/a7) ¥ (a,0) =0,

where a is any constant vector in the outer region of the (¢,7) frame.
' We now apply this transformation to the PPN metric, equation (8), and
demand that, in the new coordinates (5,1) the metric have exactly the same

functional form as it had in the old coordinates (x,t). We use the standard

transformation law (x° = t, £ = 1): . .
(8,5) = 3o (o - (b )
B15°027 T T ST g TR :
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We must also express the functions (fields) which appear in 8kl(§’t) in
terms of the new coordinates. We note that since the density p* is con-

served (cf. eqs. [18]), then for any element of fluid, -

p*(x,t)dx = o*(g,t)de

(45)

= amount of rest mass in the corresponding volume elements dx and df.

1f v(x,t) and v(E,7) are the fluid velocities in the two coordinate systems,

they are related by

yeuly-3u)+ (g dyar. (46)

iq
i
i<
'
e
'
" nipe”
[
<
+

Also, because they appear only in post-Newtonian terms, we can write

P(E:t) = P(g:") + 0o(k) ,
(%7)
K(x,6) = T(e,7) + O) - 3
We make use of a formula given by Chandrasekhar and Contopoulos (1967),
namely ‘
1 1 | 2 '
= 1+3 (' w)- (2" -uln'* ")
Ix-x'] lg-8'] {
| o . (4e)
- [(¥-X") - (y'-w)(z-2)1) 4 o),
lg-gl -
where

o' = (E-8")/18-8" . - (49)
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We define the potential y(£,7) to be
wE,7) == foX (e, et lagr . (50)

" Then x‘ has the property that
LY o B
p (g,7)n""n' 4
Xog="0 U(§T)+[———————,d§'. (51)
0P ap R IE_E,I 2
We then find using equations (45), (ks&), (47), (L8), (51), along with the

definitions of the metric functions (WII, eq. [17]), that

O(x,t) = U(E,t) + u%a(g,r) - uawa(g,'t) + 3 u%P x,aﬂ(é,‘t)

o*(g',T)aEt |
-[-—-—-——-———2—. n' e [(¥-3') - (v'-u)(2-2')] + o(s),
le-gl |
o(x,t) = 0(g,7) - 28, v (8,7) + B, vZU(E,7) + 0(6), (53)
Q(x,e) = (g, 7) - 26 (,7) + wBU(g,7) + wNP x o(5,0) v 06),  (sh),
W (x,8) = Tles®) - e, + 0(S), | SN CS)
Wolnt) = W(E,7) - up(e,®) < o x o(8,7) + O(s). - (s8)

Applying the transformation equation (#1) to the PPN metric equation (8),

and making use of equations (4k), (52), (53), (sk), (55), and (56), we °

(s2) -
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obtain for the metric in the (£,7) system, to post-Newtonian order,
s ) 2 .
8o(Es) = 1 - 2u(g,7) + 2pU(g,7)" - balg,7) + g alt,v)
+ 2 z’o
+{2f . +2 (u2-1m+z Y+ (70, + --27-1»5 -2+§)u2ll (57)
,0%%0 ,0) H\TB + 4y 1

+ (eal-ml-a)ﬁa - 8+ 28 - 20w, + (8, +8 - 1)uRP X o

p (s"")dé'
+a/-—————~g- [(Z-3") - (v*-u)(2-29)] + 237X o},
g ’

soa(g,'r)' =38, VoE,7) + 38,W.(8,7)

+ 2

" \
2 .\ a, B )
Q Q
+ {f,a + Z,a(%u -2U) -u Z’0 - Y 0 + u Ys,a
3 (rebamy -0 - dayoPy ),
8op(tsT) = = 8,5 [1 + 27"U(5;>'r)]:-' Yop ™ Yp,q o : (59) *

We demand that the transformed metric be of the same functional form as the
untransformed metric. Then we must have [from eqs. (57) and (58), since

z’o is 0(2) and z!a is 0o(1)],

z,0 = 0, and z’d =0, | (80)
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‘Thus Z must be a constant, and since we have not specified our origin of

time, ‘it can be set equal to zero; without loss of gemerality

z(g,tJ = 0. (1)

In equation (59) we require
Yy p* Yp,q = O _ (62)

Thus Y must be of the form
Y = AC) + B(s) x § (63)

But conditions (42) and (43) imply A(7) = B(t) = O, whence
¥(g,7) = 0. N (%)

(Note the condition B = O means that our Lorentz transformations are pure
boosts -- they contain no rotations.)
We obtain the remaining conditions from equations (57) and (58), using

equations (61) and (64):

0 =2f o+ (1 sy -27-4B, -2+8)6°0 + (88, - 78, - 20w,
(65) .
- (A2 +2¢ -Q?uaﬂa + (A2+g - 1)uauB x,as s

O.= .f’a + 31 (47+h-7A1-A2)qu - %AE“BX',OLB . ’ (es)

Equations (65) and (66) can be solved for the function £(£,7) (and hence a

post-Galilean transformation exists for the metric), if and only if £

satisfies the integrability conditions.

f’[“] = 0, (67)
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From equation (66) we have

ACI A A S COU R (©8)

For this equation to hold for arbitrary physical systems and for arbitrary

wvelocities u, we must have

7A1+A2=h7+h. .(69)

From equations (65) and (66), the integrability condition leads to

£, [oa) = -;;[(27 v24g - bp) R0, - 2y, )

(70) .

+ <AE +¢ - 1)(uau7 X, ay * 2P x,Oaﬁ)] = Oe

Where we have made use of equation (69) where possible, and have used the

relation (easily obtained from eq. [507])
X oa® Vo~ Vo * | (71)

For equation (70) to hold for arbitrary physical systems and for arbitrary

velocities u, we must have
kg =2y e2+t, (72)
a,+8-1=20 . . (13)

We now solve equations (65) and (66) for £, using the parameter constraints,

equations (62), (72), and (73), with the result

f(é:") = %AE “ﬂ X;B + G, ‘ : ()
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where C is a constant. Far from the matter, X . takes the form
. : 2

B
: *(g',7)(e-¢") Ok | Mg |

xﬁ,.f" z 2 adg’z-—&fp*(g','r)dg'=-—é. (15)
; -t N T

Thus f satisfies condition (42):
Ceflel s - dagMe0)/1el® v /il o, as gl + w. (76)

The constant C is arbitrary, and we can set it equal to zero by appropriately
redefining our zero of time. Then the post-Galilean transformation takes the
form

“2) ut +

nj=

x=g- @

(V]

(E ‘ ,‘_1) u -,
| (17)
t=1(l+ %u2+%uh) - {1+ %ug)s- U+ %Azua X,B(E,'r).

If we had used a gauge for the PPN metric in which A2 = 0, the term in

equation (77) involving x(&,t) would not appear, and our post-Galilean trans-

3

formation would be identical to a Lorentz transformation.”  The infinitesimal

31 thank Yavuz Nutku for pointing this out to me.

gauge transfcrmation which 1;ad§ to 02 = O has no physical significance, and
changes only the form of the final post-Galilean transformation; the existence
of-a posi-calilean transformation for a given theory is not affected at all
by the choice of gauge. This can be easily seen by repeating the calculationms
of this section using an arbitrary PPN gauge instead of the "standard" gauge -

(WII, eq. [23]). In an arbitrary gauge, the PPN metric differs from the
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metric in the standard gauge only in the 8o Metric term (W11, eq. [16]):

' §(§',t)p(§",t)(§-§') < (x'-x")
86 A =g +Z
OO[arggﬁggry] °°[s§§nﬁ§§d]

dx'dx", (78)
l§_§n|l§| '?..‘"ls

where £ is a "tenth" PPN parameter. But this additional term is not
affected at all, to post-Newtonian order, by the post-Galilean transforma-
tion equation (41).. Thus the calculation goes through as if this term were

absent, and we obtain the same parameter constraints as before, independent

of gauge.

IV. TRANSFORMATION PROPERTIES OF THE CONSERVED QUANTITIES

Any métric theory of gravity which possesses comservation laws, i.e.,
whose PPN parameters satisfy equations (2), automatically satisfies the’
conditions for post-Galilean invariance, equations (3). We can therefore
use the post-Galilean transformation derived in the preceding section to
determine the transformation properties of the conserved quantities of such
'"consegvative" theories. We apply equations (77) to the integral formulas
in equations (30), (31), (32), and (33), and take into account equatioms

(hs),'(hs), and (47). Denoting the conserved integrals in the (&,7) co-

ordinate system by primes, we obtain to post-Newtonian order,

.'Po n.PO.(l + %ua) -u- PA'F ’ . (79) .

Po=p-(1+ %22)21'9' + 3u(u-p'), (80)
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3% . JQB"_ JZ[a'uﬂ]uy +2(1 +‘%u2)v.)'0[a'usl R - (s1) ‘

' . : ' '
JOO = ..'Ic0 (1 + %uz) AL A 3 uauaJao . (82)
Thus ]'.-‘i and .:li'1 transform under a Lorentz transformation as a vector and an
antisymmetric tenmsor, just as they do in special relativity (note that the
L gauge-cfependent, term involving x in eq. [77] did not appear anywhere in this

analysis~ =~ its order was too high).

1] .
A Lorentz transformation of velocity u = g'/Po , leads to a frame in

which

P =0,

P = - 3peyP ()2 - P pyE . (83)

'y
2=mo

1.3
= (g, 2" %)
In this frame -- the 'rest” f:ame'of the matter -~ we also have
J°°‘=V‘[p*x°‘(1+%v2-%u‘+n) ax . (s4)
' _ o a .«
By an appropriate redefinition of the origin: y = x - a  where

(¢

‘rp*xa(l +—12-v2-=£-U+I[) dx
a =

" T (85)

Jo*(1+3v -3u+m) ax
we can set Joa = 0, In this frame we also denote :IO!s by Saﬁ, the "™ntrinsic"
anéulat momentum of the matter. This frame is normally called the center-of-

mass frame:

P=0, P =m %0, ;%% (86)
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. In any other (asymptotically Lorentz) frame whose outer region moves
with velocity-u with respect to the center-of-mass frame, one gets the

‘standard special relativistic result:

P =, P="myu,
‘ 1% . (7P 4 WuP)s2)7 (87)
JOO = ursar »
where
y = (1-u2)'% = 1+-§u2+o(h') . (88)

. Notice that in this "moving" frame, the center of mass is obtained from the .

Lorentz invariant equation

PjJ” =0, : . (89)

and is given by (eqs. [33], [34], [87], and [89])
o () W7 O, | (s0)

The asymptotic form of the metric of a "conservative" theory can be
written,‘ to lowest order, in terms of conserved quantities. Far from the
matter, we can approximate:

l/ll“’j'l ~ 1/R + x' - }}/Rs ’
' (91)

3 5 = 3 ‘

'(x-»x')c‘(}\:-x')5 R8P 3(:_5'-1_3)Rc_‘Rﬁ «'%RP & xPg®
kP & R R

Then the metric (eq. )] taices the form, for a "conservative" theory
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(c£. eq. [2])

8gp =1 - (2/R) folx',e) dx' - (2R7/R%) [olx',0)x'P ax' + o(k)
&g = %O(IU""S) (I/R) fp' V'adf' + é(RaRB/RS')" J'p| vlﬁ d?_"
* 4 %(l&7+3) (Ra/Rs) J‘p' V'ax'ﬁd?.c' + .g. (RaRBR-y/Rs) J‘pl v'ﬁx'7d:‘5' (92)

- 2% [or vPx®axt - L(RYR) [ty -t ax!

’
Bop = = Sgp [1 + 27(1/R) [o'dx' + 2y(RY/E%) [0 x'Pax']
To lowest order, we have:
[ eletst)ex’ = 2° (1 + 0(2)]
et ewt - P v o@] ()
O [ (y,:);'%f' = (3% 4 PO + o(2)]
For a body with static structure, i.e., in which

(d/at) Idﬁ = (d/dt) Ip(l",t) x.axlgd}' o -

we have-

j'p(zs":)x.avlsdasn = % Ip (5',:)(x'av'a - anv|a), d’.f.
(s5)
=131 4 002)].
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" THen the metric takes the form

.0 3 3.
gy = 1 - 2F/R - 21PrF/8 - 2(p - R/R%)t + O(1),

Bog = & (47+3) YR + £ (- R)RYRS
. (s6)
+ 3 (27 + 1)3%P%85 4 o(5) ,

8ap = " aaﬁ [1 +27P°/R + '27Js°n‘3/113+ 2y(p - g/Rs)t] + 0o(l).

Thus the conserved quantities can be given a physically measurable meaning
to lﬁwest order. One can measure P and JOo by means of Keplerian orbits
and Jaﬁ by means of gyroscope precession (dragging of inertial frames) far
from any distribution of matter. The results of equation (96) agree (for

y = 1) with those obtained in general relativity [see for example Misner,
Thorne,. and Wheeler (1972)] and [for y = (1-+uﬂk(a-+w)] with those obtained

" in Brans-Dicke theory (Dykla 1971).

V. CONCLUSIONS

In this paper, we have tried to show how a theorist would go about
_deciding what the values of‘the.PPN parameters should be in a reasonable
universe. By demanding that the correct theory of gravity be Lorentz (or
p&st-Galilean) invariant, he would restrict some of the parameter values,
He.would also demand that the correct theory possess conservation laws -
(since theorists like comservation laws), and would further restrict the

PPN parameters, until his final restricted PPN formalism would have the
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metric
B = 1 - 20 + 280° ~ o ,
Boq = 3 (W7 +3)Vy - 3 W, , (97)
8op = = Ogp (1+270) ’
where
o =% (r+l)o; + 3 (3y-28+1)0, + 305 + 3 0, - . (o8)

But these are theorists' constraints. Since the ultimate test of relativistic
gravity theory is experiment, these constraints themselves should be sub-
jected to experimental tests. A number of possible tests have already been
discussed (Will 1971b; Thorne, Will, and Ni 1971; Nordtvedt 1971) and future
paﬁers in the companion series to this one ("Relativistic Gravity in thg

Solar System") may deal with others.
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APPENDIX A

DETAILS OF REASONING WHICH LEADS TO FIRST FIVE CONSERVATION-LAW CONSTRAINTS

He}e we discuss in‘more detail‘the reasoning thch leads us to conclude
that the term Qa in equation (21) cannot be written as a combination of
divergences and time derivatives, unless the parameters obey equations (23).

We first argue that Qa cannot be written as a spatial divergence alone.
In fact, in obtaining equation (21), we have "extr#cted" all the divergences
from Qa, using equations (12) and (13). Any further use of these equations
to transform Qa leads nowhere -- we are always left with a residue which is
_ not-:l.n the form of a divergence., This is shown 'explicitly‘in the following

-equation which follows from equations (12) and (13):
(o7 -1 B
Q =~ (2x)"" (3fax") [U,(a3,a)3
2 .
= [(2B -7-1)0; o - 2 (2B+28,-37-1)(V) .(,u)

+ (B3 -1)oz o + 3-(51,, =M, - 2LC,L],

where

B = (28 -7-1)0, - & (28+28,-37-1)0° + (B; - L)o,
' (a2)
+3(B, - 7)o, - 3tC .

In order to. attempt to write Qa as a combination of divergences and
time derivatives, we make use of the (Newtonian) equations of motion (WII,

eq. [12])

o "
pdv-/dt ";pU,a LR

(a3)
dpfat + ¥+ (py) =0 ,
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where nd/dt is the derivative "following the fluid” given by

d/dt = 33t + Y- g - ()

" As an example of this, conmsider the term pU o in equation (22). Using
: 2

equations (A3) and (Ak), we get
P o= (3/38) (ov")

18 .U

+ (3faxP) [Q)™h u(v, 0 8’7",y

B
(4s)

+ (p vc_!\.vB + Baﬂp) U]
-1 2 o
- (8n) U o |gul€ - pv” du/dr .

Thus, although we have extracted a time derivative and a divergence from
pU,a, plus a term (U’algU|2) which can be combined with one of the other
terms in Qa, we are left with a residue, pvadU/dt which cannot be combined
with any other terms in an All manipulations of this kind (which we have
performed) have led to the same result: Each term in equation (22) can be
split in a variety of ways into a time derivative, a divergence, and a
"residue”; but the residue is always independent of any of the other terms
in Qa. Thus the only way to make these "residues'" disappear for arbitrary -
fluid: c-onfigurations is to set .each parameter combina'tion in equation (22)
equal to zero, i.e., t;o demand that the parameters satisfy the conétraint

equations (23).
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APPENDIX B

ACTIVE GRAVITATIONAL MASS IN THE PPN FORMALISM

The 'acti\.re gravitational mass of a configuration of perfect fluid can .
" be given a physically measutablev meaning: it is the mass which determines
the periods of Keplerian orbits far from the matter, i.e., it is ome-half
the cdefficient of the 1/ (distance from matter) part of the 8o metric term.

Far from the matter, we can approximate

Vig-%'l~ 1“5"5(<:em:er: of mass)[ slR. (81)

" Then the 8op Part of the metric (eq. [8]) can be written

8o = 1 - (2/R){ J'pdg'c + 2p, J‘pvzdlc + 2B, IpUdg_:

(82)
+ By .rpIId}_E + sa,h]'pd;; - %;Ip{}!°§/R]2 d;g}+ o(a‘e) .
From equations (18) we have
fods = [o* (1 -3+ - 570) ax
(B3)

a M- F‘kin + 678
vhere Eki.n and Q are the internal kinetic and gravitational energies,

~

respectively, and M is the total ‘rest mass of particles in the fluid. We

define
Ege = [olax, ' (84)

- m=M+ B+ 8+ By (35)
BS

= total mass energy.
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We. also make use of the Newtonian virial theorem for a static configuration

of fluid (WII, eq. [(787)

0=2Ekin+n+3fpd§, (B6)

to obtain from equation (B2),

‘8_00 =1« (2/R) [m + 2(251-%-1) Egin * (67-&52-%-1)3

(B7)
ap -2
+ (Bg=1) B = & By eaea] + O(R™),
where Ekaiﬁn is the kinetic energy tensor, and e is a unit vector directed
from the fluid to the field point, given by
g = B/R. (B8)

The active gravitational mass is thus the quantity in square brackets in
equation (B7). For a massive body made up of point particles, without pres-
sure or internal energy, equation (B7) agrees with the results of Nordtvedt

(1969).
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I. INTRODUCTION AND SUMMARY

| Since the formulation of the Brans-Dicke scalar-tensof theory, consider-
able intérest has focused on the constancy of the Newtonian gravitational
v'constaht G. One line of investigation examines the effect of the evolution
of the universe ﬁn the value of G as measured far from any local distribu-
tion of matter (solar system -and galaxy). This yalue‘of G we will denote
’ Gco' ‘Brans-Dicke theor& predicts a secular rate of change of Ga;’ and this
change has recently come under experimental scrutiny (Shapiro, Smith, Ash,
Ingalls, and.Pettengill 1971). A second line of investigation examines the
effec; of nearby matter (planets and stars) on the value of G measured in
laboratory Cavendish experiments (Brans 19623).' This value is normally
called the '"locally-measured" value of the gravitational constant. In an
idealized version of such a Cavendish experiment, one measures the relative
acceleration of two bodies as a function of their masses and of the distance
between them. (Later in this paper the two bodies will be the Earth and.é
-gravimeter at rest on the Earth.) Distances and times are measured by means
of physical rods and atomic clocks at rest in the 1aboratory: The gravita-
tional constant G is then identified as that number with dimensions
o g_l sec™2 which apéears in Newton's law of gravitation for the two
bodies.

In this paper we will ;how.that some theories of gravity predict an
anisotropy in the "1ocaily-measured"'value of the gravitational constant.
Ve will ihén make usebof gravimeter data on the tides of the solid Earth
to put an experimental-upper limit on this anisotropy.

We focus attention on the locally-measured gravitational constant be-

cause this can be analyzed within the Parametrized Post-Newtonian (PPN)
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framework {Nordtvedt 1968; Will 1271a; see also Appendix A), whereas the
cdsmological variation in the gravitational constant cannot be analyzed

within the PPN framework.® Our result, in the nine-parameter PPN formalism

1 In scalar-tensor theories this variation is due to the changing value of
the scalar field in an evolving cosmological mo&el. But in the PPN formal-
ism, ;;1 reference to scalar fields and other fields has disappeared (seé

Will 197la for discussion). Thus to compute the cosmological variation in

G, one must go back to the original full theory of gravity.

of.Will (1971a), for the gravitational constant as measured in a laboratory

moving with velocity v relative to the PPN coordinate system 1s2

2 Here and throughout we use "geometrized".units; units in which the velo-
city of light is unity, and the gravitational constant as measured today,

~ at rest, fgr from the solar system and galaxy (i.e., GOD today) is unity,
For the purposes of our computation of the locally measured G, we will

ignore cosmological variations in Goo’ and set Goo = 1.

6 = 1-(2B+2z-2§2-2)0+%(1+BI+27+1-7A1)v2

-3 (p+8-1)(xee)” .
Here g_s 0 ;s the Newtonian gravitational potential due to all the matter
in thé solar system and galaxy outside the laboratory, and e is a unit
vector in the‘directibn sgparating the two bodies of the experiment. The
parameters §, 51, 52, 7, 4y 8a» { are PPN parameters. Nordtvedﬁ (1970)
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has performed the same calculation using his version of the PPN formalism
(Nordtvedt 1968), but neglecting the effects of velocity. His results are
in agreement with equation (1) assuming y = O.

‘In both Brans-Dicke theory and general relativity (Will 1971a),

L

L+ 2r + 1 - 7A1 =0,

(2)
by + {t -1 =0,

so the velocity effects are absent in these two theories. The parameter
{28 + 2y - 28, - 2) is zero in general relativity and is equal to 1/(2+w)
in Brans-Dicke theory; thus our results agree with those obtained by Brans
(1962a,b).

We will concentrate our attention on the velocity-dependent terms in
equat;on (1), and especially on the possible anisotropy in G predicted By
the (v gt)e term, A

In every theory for which the PPN parameters have been calculated, the
parameter combination (Aa +¢ - 1) is zero, i.e., the anisotropy in G is
absent (Will 1971a, Ni 1971, Nordtvedt 1970). In fact it can be shown
(although we will not do so in this paper; see Will 1971b) that any theory
whose post-Newtonian metric admits a "post-Galilean" transformation
(Chandrasekhar and Contopoulos 1967) should have PPN parameters whose values
gatisfy equations (2).- [These "poét-Galilean" transformations are irans-
~ formations vhich reduce to simple Lorentz transformations fa? from the
sources of the metric, and which leave the form of the metric unchanged,
See also Nordtvedt (1969).] Put differently, the combinations
(hB1 +27+ 1= 7A1) and (A2 +¢ =1) should be zero for any theory whose
iineatizéd equatioﬁs for the metric (i.e., linearized in small deviations
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from flat spacetime) are Lorentz invariant. Instead of giving a proof of
this using post-Galilean transformations, we will simply illustrate it (§IV)
by givin; an example of a theory of gravity which does not satisfy Lorentz
invariance in i{ts linearized field equations, and which thus predicts that,
in regions of negl;giblé gravitational fields (flat spacetime), gravity and
light‘should have different propagation speeds. Such a theory picks out a
preferred reference frame (the rest frame of some cosmological "ether", for
instance) in which all gravitational fields are to be calculated. Lorentz
transformations to other frames of reference will thén not give the éame
physical results for any computation involving gravity -- though all the
rest of physics will remain Lorentz invariant. If v f 1 is the speed of
propagation of gravity in the rest frame of the "ether", we will show that,

for this theory of gravity,

by + 27+ 1 - 74 = (1/V?) -1, .
| ' (3)
b+t -1=(H7) -1

Note that, in.this theory the calculation which leads to equation (1) is
valid only in the rest frame of the "ether”, and hence the velocity v which
appears in equation (1) must be the velocity of the laboratory relative to
this ether. » V

From this point of view, one can consider an experimental measurement
of the apisot:bpy in G to be a test of Lorentz invariance inllinearized
' gravity or of the equality of the speeds of gravity and light.

There is another type of anisotropy in G which does not involve veloci-
ties, gut which can arise in two-tensor theories of gravity. Peebles and

" Dicke (1962), [see also Peebles (1962)], have argued that theories of gravity

@



86

vwhich cpntainbtwo tensor fields should exhibit anisotropies in the masses
of ﬁodies. They use the Hughes-Drever experiment to rule out, with preci-
- sion one ;art in 1023, anisotropies iﬁ the inertial masses of atoms, From
chis tﬁey conclude that a second tensor field probably does not occur in
nature. However, their analysis did not include theories which couple
maﬁtet‘to the second tensor field purely gravitationally. ‘An example of

~ such a theory is Whitehead's (1922) theory,® which is too complicated to fit

3 Recall: Whitehead's theory agrees with general relativity in its predic-
tions for the classical experimental tests -- redshift, perihelion shift,

light deflection, time delay.

into the 9-parameter PFN formalism, Whitehead's secoﬂd tensor field is a
background global Lorentz metric. This Lorentz metric appears only in the
equations used to compute the physical metric; otherwise it has no effect

on the motions of material particles or other fields. Therefore it predicts
for atoms (with self-gravitational energy aalo'sg of rest-mass energy)

highly isotropic inerti;l masses, in agreement with the Hughes-Drever experi-
ment. But it predicts,>according‘to our calculations (§III); that active
gravitational masses are anisotropic, at the level 1 part im 106. This
anisoéropy is produced. by a.coriesponding anisotropy in the locally measured

G of Whitehead's theory:
G S1+20+z U (e, + 2.2 (1)
Whitehead k k ~k ~r’°

Here Uk is the Newtonian gravitational potential due to the th external

body (including sun, moon, planets, and stars) and ¢, is a umnit vector from

k
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the laboratory to the center of mass of the kfh body. The anisotropy will

be dominated by the influence of the central regions of the galaxy:

=1+2U0 + (M 2, (s)

Cunitehead gal/ Rgal)(sgal.’ &)

Since the equations used to calculate the megric in Whitehead's theory are
Lofentz.invariant, there is no (§‘ gr)e anisotropy in equation (%).
| From the above viewpoint, an expériment to seek anisotropies in G (or
equivalently in active gravitational masses) is complementary to the Hughes-~
Drever experiment. |

We will now discuss the oﬁservational consequences of the possible
anisotropy in G. As the orientation of a Cavendish experiment is rotated
(by the rotating Earth, for example), the unit vector gr rotates relative to

the v of the PPN formalism and the ¢,  of Whitehead's theory. Hence the

k
anisotropy terms in equations (1) and (4) vary. The amplitude of the aniso-

tropy and hence of these time variations is

| A6/G ~ % (a,+¢ - 1)[v(solar system)/“]a ~2x1077 (a,+8-1) [Pm],

-7

2
AG/G ~ U(galaxy)/c ~5x 10 [_whitehead],

where we have used the sun's velocity around the galaxy (~ 215 km/sec) as a
rough ;stimate for the,relative‘Earth-"ether" velocity. Of course, one can
obtain any desirgd periodicity in the effect of the anisotropy by rotating
the laboratory relative to the Earth (or by doing the experiment in a rota-
ting space probe).

Recent progress in the design of Caven@ish experiments has opened up’

the possibility of measuring the absolute.magnitude of the gravitational
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constant to accuracies of at least one part in 10h and perhaps even one part
in ios (Rose, Parker, Lowfy, Kuhlthau, an& Beams 1969). Such Cavendish
experiméﬁgs would have to be made sensitive to periodic changes in G of a
part in 108 in order to test for the anisotropy with fen per cent precisiom.
However, there already exists a body of‘experimental data -- gravimeter
. measurements of the tides of the solid Earth - which gives an accurate test

of the anisotropy in G.% Such measurements can be regarded as Cavendish

4 I am indebted to P. J. E. Peebles for pointing this out to me.

expefiments with the Earth as one attracting body and a gravimeter at rest
on the surface of the Eérth as the other body. As the earth rotates, the

. anisotropy in G produces "Earth tides", i.e.; variations in the acceleration
g measured by the gravimeter, which are completely analogous to the tides
produced by the Moon and Sun. These gravimeter measurements are affected
not only by the varfation in G, but also by the displacement of the Earth's
surface relative to the center of the Earth and by the deformation of the
Earth [see Melchior (1966) for a discussion]. By analogy with solar and
lunar tides, one can show that the variation in graQimeter readings is re-

lated to the variation in G by

- (ag/g) = a (a6/6), " (8)

where ¢:is a dimensionless number (a combination of so-called Love's Numbers)
whichqdepends only on the structure of the Earth, and has a value of about
1.18 (Melchior 1966).“ These anisotropy-induced variations have periods of
12 hours sidereal time, since the vectors y and N (c£. eqs. [1] and [4])

are fixed relative to inertial frames (the galaxy).
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Assume for concreteness that the velocity v of the Earth relative to
the cosmological “ether" is approximately the same as its velocity through
the galaﬁy. Then v is oriented at an angle of ~ 62° away from the Earth's
" equatorial plane, and the G-induced perturbatiomns in gfavimeter measurements

on the equator have amplitude

(88/8) ppyg ~ 3 (8y + £ - 1) cos® (62°) (5+7)

(7)

~ (8, + ¢ ~ 1)(3 x 107,

according to the 9-parameter PPN formalism. Similarly, since the galactic
center is about 25° south of the equator, Whitehead's theory predicts the

amplitude

2 Oy/71
(88/8)ypgtencaa ™ @ €08 (297)(3U,,,)

(8)

~2X10-7.

The semi-diurnal tides predicted by Newtonian theory have three
principal frequency components, a 12-hour lunar-time component {denoted Mz),
a 12-hour solar-time component (82), and a 12-hour sidereal-time component
(K2). (The sidereal component depends on the declination (tilt) of the
lunar and solar orbits relative to the Earth's equatorial plane.) These

components of the tides have amplitudes at the equator of’

(ag/8),, ~ 9 x 10“8,

Y

A (ag/8)5 ~ b x 1078,

(ag/g), ~1 x 1078

%

The M2 tide is easily separated from the other two semi-diurnal tides by
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means of Fourier analysis of one month's gravimeter data. However, separa-
tiéﬂ of the 82 and K2 tides requires at least one year of continuous gravi-
meter daéa. Because of gravimeter drift and iong-period tides, such a
aeparétion is not easy to obtain [see Barsenkov (1967) for a partial separa-
tion of S, and K, using 19 months of data taken at Talgar, U.S.S.R.7.
| Efperimental measurements of the combined 82 and K2 tides (émplitude
" S X 10'8 g) are found to agree with the predictions of Newtonian gravita-
tion (coupled with reasonable models for the structure of the Earth) to a
precision of 2 per cent (Harrison, Ness, Longman, Forbes, Kraut, and
Slichter 1963; Pariiskii, Barsenkov, Volkov, Gridneﬁ, and Kramer 1967).
Thus.any discrepancy between Newtonian theory and experiment for this com-
ponent of the tides must be less than one part in 109, and hence the ampli-

tude of the tides caused by the G-anisotropy must satisfy

. -9 . ‘
(Aglg)anisotropy <10 . .(9)

Comparing equation (9) with equation (8), we see that Whitehead's theory

cannot be the correct theory of gravity, because it predicts an effect 200

times larger than the experimentally measured value. Since Whitehead's
theory agrees with genefal relativity in its predicﬁions for'the standard
experimental tests (redéhift, light deflection, time delay, and perihelion
shiftj, this is the first‘aécurate experimental evidence ruling out this
theory. ‘

Equations (9) and (7) also show that the parameter combination

(A2 + § - 1) must satisfy

(A2+§-1)<3)'<10-2 . (10)

-
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Thus, to a precision of about three per cent, the parameter combination

192 + ¢ - 1) must be zero. According to our discussion of Lorentz invar-

iance, this means that, for the theory devised in §IV of this paper, the
flat-space velocity of gravity must be the same as that of light to a
precision of ~. 1.5 per cent. '

These are the central conclusions of this paper. The remaininé sec-
tions are devoted to detailed calculations. In §II and {III, respectively,
we calculate the locally-measured value of G using the PEN formﬁlism, and
using Whitehead's thegry. In §IV we present and discuss a theory of gravity
which predicts (42 +¢{ = 1) £0. Concluding remarks are made in §V.
Appendix A gives the PPN n-body point-mass metric and Christoffel symbols;7 
» Appendix B gives the n-body point-mass metric and Christoffel symbols for

Whitehead's theory.

°

II. CALCULATION OF THE LOCALLY-MEASURED GRAVITATIONAL CONSTANT

Since gravimeter measurements are the most sensitive of all experiments
for seeking anisotropies in G, we shall use an Earth-gravimeter 'Cavendish
expe;iment" to calculate those anisotropies. A calculation for Cavendish
experiments with both bodies of laboratory sizes would proceed similarly
and would produce the same final answer (eq. [1]).

We idealize our Earth-gravimeter Cavendish experiment as follows: a
body of mass o, (Earth) is freely falling through spacetime. A test body

with negligible mass (gravimeter) is moving through spacetime, maintained at
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s
a constant proper distance rp from the Earth by a four-acceleration F.” an

5 We will denote four-vectors by bold-face roman symbols and three-vectors
by boid-face italic symbols. Greek indices will take the values 1, 2, and
3; Roman indices will take the values O, 1, 2, 3; and summation over re-
péateq indices will be employed. Exceptions to this rule are indices j and

k, which will be used to label the masses in the problem.

. invariant “radial" unit four-vector Eir, carried by the gravimeter points
directly away from the center of mass of the Earth. Then, according to
Newton's law of gravitation, the radial component of the acceleration as

measured by the gravimeter is given by
2
F.-E_ = Gmy/x " + ¥, (oE_/pr) - (DE_ /D7), (11)

where D/Dt is the covariant derivative with respect to the gravimeter'Q
proper time T along the gravimetér's world line. The last term in equation
(11) is simply the centrifugal acceleration, defined in an invariant way
lexcept for corrections of order 10-9 Gcoml/rpa which we ignore; see below).
181nce Fe. Eir is an inyariant quantity, we can calculate it in the PEN
coordinate system and then use equation (11) to identify the 10ca11y-measurea
graviga;ional constant G. S |
Before proceeding with the computation, we must say a few words about

‘tﬁe approximation scheme we will be using. First, we work {n the post-

Newtonian approximation throughout.® Second we will neglect any terms which

® This means that we retain only Newtonian terms and terms which are O(2) or

less beyond the Newtonian result. For a discussion of the process of assign-
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ing Newtonian and post-Newtonian "orders" to various terms in the expansion
seeVChqndiasekhar (1965). In our notation the Newtonian potential U(x) is

0(2), velocity v 1s 0(1), time derivatives d/dt are O(1), and so on.

produce accelerations of 10"9 g or smaller, as measured by the graviméter.
This amounts to neglecting Earth-generated post-Newtonian accelerations of
the gravimeter, post-Newtonian corrections to the centrifugal acceleration
and to tidal accelerations, and other, more complicated accelerations. We
do this.for two reasons: first, 10'9 g seems to be the limit at present of
reliable gravimeter data on the tides of the Earth, and second, a anumber of
these relativistic effects which produce accelerations smaller than 1C)'9 g
have already been dealt with by Nordtvedt (1971). We will discuss these
neglected accelerations in more detail later in this section, but for the
purpose of ease of presentation, we will ignore theq in most of the explicit:
computations to follow.' Of course all these neglected accelerations would
be even more negligible (<< 10'9 g) in a laboratory-type Cavendish experiment.
We will do our calculations in the PPN coordinaté system, which is a
quasi-;artesian coordinate system whose metric is given by equation (Al).
At any given moment of PPN coordinate time t, each "particle", denoted by
a subscript j, has a three-vector position denoted fj(t) and a velocity
denoted !j(t)' We will treat all "particles" of the problem -- the gravi-
meter (3 = O), the Earth (j = 1), and the sun, planets, and stars (3 =2,
3, «..) == as point maéses. [See Nordtvedt (1971) for the result of treat-
ing the Earth as a massive body, with resultant accelerationg of magnitude
F 4 10"-9 g due to the equivalence-principle breakdown, andraccelerations
vdependent on the structure of the Eatﬁh.] We will separate the Newtonian

gravitational potential U due to the Earth from that due to the other
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planets and the sun

W) mm/r e B | )

“where
Y

A S A B At PYCRE R CEE Ll ¢

We also define, for later use,

Ege = %y = B =l oxle (14)

We first calculate the proper distance r:p from. the gravimeter to the
center of the Earth. We use a physically reasonable definition for r --
namely one half the proper time (as measured by the gravimeter) required
for a photon to travel from the gravimeter to the center of the Earth and

back:

, . \ ,
i 1 - gge)] - 3320 e, (15)
e

where t, and t. are the PPN coordinate times corresponding to emission and
reception of the light gignal, and the integral is taken along the gravi-
wmeter's world line. The round trip time (t e ce) is obtained by integrating
the geodesic equation for the light signal along its path from its emission
at §o(£e) to its deflection at the center of the Earth El(td) and back to

its reception at 350( tr), and is given by

fomt, = ligle,) - x5 (el + beyeg) = 2] |
o (16)
+ (1+7)f Ulx(0)] do + 0(3) ,

where g 18 PPN coordinate time t along the path of the light s"ignal. We

°
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take into account the motion of the gravimeter and the Earth during the

:mé. of transit of the sigﬁal according to

o o, a a
X, (tt) ~ Xq (t.e) + (tr'te)vo + 3 (tr- te)edvo /dt,
(17)
[0 o x . 2 a
x, (td) ~ X, (te) + (td'te)vl + 3 (td-te) dv, /dt.

(o] 1
be evaluated at t = t,. Equations (15), (16), and (17) lead to the final

The velocities v @ and v.% and accelerations dvoa/dt and dvla/dt are all to

result
, . 2
(¥; -¥) * E10 ¥1° %10 P
raTg QL+ ) +7
P 10 10 k#1,0 "1k _‘
' (18)
+ Srp »
where
. = - . - l - 2 -
B, = T10 {(d/ dt) [(‘11 ¥o) 2510] 2 (v =) - m/7g
(19)
e (1+7) it
+37 = (£, °Eyy) + 3 do +0(3) 7 .
K£1,0 "1k3 10 ~lk Tio o Arl(a)

The proper distance rp is to be kept constant (by the force which holds the

gravimeter at rest on the surface of the Earth).7 Thus

7 Because .of the response of the Earth to the time-varying g ("Earth tides"),
t_h.e disténce from the gravimeter to the center of the Earth éctually varies
by about one part in 107 (see discussion of Earth tides in §I above). This
{8 too small to have any significant effect on the anisotropy in G; hence

we will assume rp is constant in our calculation. Of course, the actual

°



96
gtavi@etgr measurements wil} be affected by the Earth-tide variations in rp
caus‘ed by the lunar and solar tidal forces as well as by the G-anisotropy.
Because this variation is so small, it can be accounted for by means of

Newtonian theory [see Melchior (1968) for a discussion of this effect].

P/ P/ ’

d2rp/d1'2 = d°r /dt° = 0.

Equations (18) and (19) along with equations (20) then give the following

results:
(¥; - %) * 519/ T10 = 903), 21)
dyy %\ [E10 ¥ "I (v, - "o)2 |
e N 4] = ) + = + 0(3) = 0. (22)
10 10 10 .

We also find that the term Srp in equation (18) leads only to gravimeter-
measured accelerations of less than 1.0-9 g, and can thus be ignored. It is

equation (22) which we will use to determine the acceleration measured by

A the graviﬁeter..
Assume that the Earth follows a geodesic of spacetime (neglect

equiva'lence-pri.nciple \_ri'ola:'ions) , but that the four-acceleration of the

gravimeter is F:
Dup, eh/PEaren = Or (23)
D ugravim/ DTgravim = F’ (24)

F-u

gravim 0. ‘ (25)
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In PPN coordinates, equations (23), (24), and (25) may be written

dv].Cx a b ¢ c. o
<t * Tty 11‘rbc(")"1 i1 =9
B 18 et i
- ‘(drm i/ 90 (FF - v %9,
P = Feyy+ o(h;,
vhere 'v1° = voo = dt/dt = 1, and

draravim/d"-)a =1-2 % (m/ Ty ) - v02 +(10°° g terms).
K#£1,0

 (26)

(a7)

(28)

(29)

By making use of the PPN n-body point-mass Christoffel symbols (eqs. [A3])

along with equations (26), (27), and (28), and using the Newtonian equations

-

of motion to simplify any post-Newtonian terms, and as usual ignoring small

force terms, we get from equation (22):

. a_ B a_. B__ 2,08 R
o s k10 10 (Gry T -~ ik © )+ (vo-vy)
T S T,
10 kfL0 et 10
mk
1-(sy+2B-28,-2) = — - i4B +27+1-78 )v
2 2 T 1 1
T1o k£1,0 Tlk

-3 (84 0)(y; - Exo/‘lo){l .

We must now compute the invariant radial unit vector Er'

(30)
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The tangent four-vector to the photon path 7\a at the moment of emission
by the gravimeter is given according to the photon's geodesic equation by

(ignoring terms leading to small forces)
N =1,
Aa-(r cz/x: ) 1-v=r0/f -iva-(1+7) z Jx (31)
e T U i R0 0 T2 0 " Tk

kA 1,0
+ 3 (g 1o/x.-m) ] + 0(3).

The radial unit four-vector Er is the direction of the emitted photon, as
measured by the gravimeter. This is simply the projection of 7\1 onto the
hyperéurface orthogonal to the gravimeter's four-velocity ui, suitably

normalized:

(5" = (8%, - w2\ 1(6% - wupn’
' (32)
= [Xa/(%bub)] -ut. )

Then the invariant radial component of the gravimeter's four-acceleration is
' b a )
Foo= (F,)/(Ny,) - Fou, . (33)

From equations (18), (21), (28), (30), (31), and (33), we get for the radial

acceleration measured by the gravimeter:

a =} a_ B 2. af
poo. xS0 T10 Ot e tfe ® ) MitYo
5 r
kf1,0 T Tio P

)2

+ (mlzrpa) [1. - (25+?7-252-2) kﬁzl o mlJrlk | | (34)

- 4 (kB +27+ 1-7A1)v12 -3 (ap+g-1)(y; e 510/'10)2] )
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The first term in equation (34) is simply the Newtonian tidal acceleratibn,
which is of the order of 10"7g. The second term is the Newtonian centrifugal
acceleration Owlo-sg), which is equivalent (to the necessary accuracy) to the
vivnvariaﬁt expression rP(D Er/D‘r) « (D Eljbr) in equation (11). From thg
third term we get the locally-measured gravitational constant G, as in
equ#tioq (1).

7 In Table 1 we list the accelerations which we have ignored as being

too small (S 1072

g). The first two, obtained by Nordtvedt (1971), result
from the fact that the Earth is not a point mass, but is a massive self-
gravitating body. Our treatment of the Earth as a point mass has neglected '
these accelerations. The third acceleration in Table 1, also derived by
Nordtvedt, depends on the fact that the externally-produced gravitational
field is not uniform. This acceleration can also be obtained with the point-
mass analysis of this paper by retaining the appropriate terms. .The fourth
acceleration is a velocity-dependent acceleration analogous to the two we
have retained (cf. eq. [1]). However, this acceleration is smaller than

-9

10 ¥ g. The other accelerations in Table 1 have more complicated forms and

are not particularly enlightening.

III. LOCALLY-MEASURED GRAVITATIONAL CONSTANT

ACCORDING TO WHITEHEAD'S THEORY

For Whitehead's theory, the calculation of the locally-measured G can

be repeated using the n-body point-mass metric given in Appendix B.°

® Whitehead's theory is too complex to be compatible with our nine-parameter
version of the PPN formalism. More complicated versions of the formalism

with more parameters would be required to handle Whitehead's theory.
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According to equation (Bh), the Whitehead metric is the same as a PPN metric

with parameter values

513'%’ Aé=7: ' {§ =-6, (35)

except for the following additional term in Boo°

5800(15) =21 I b [(Ej-xk) o Xk)] (36)‘

1ty lz-xyl® Lle-xl  lxy-x

This extra metric term changes only the equation of motion for the gravi-
meter via the Christoffel symbol I‘aoo -- other effects of 6g°0 are either
of post-post-Newtonian order or produce forces smaller than 10-93. The

resulting change in the force F is

BF *£3o/Ti0 = - (“‘1/"102) [ m /g + m (10 * Epi) /"1k ] (37)

kA1,0 k,élo

Combining equation (37) with equations (33) and (34), and substituting the

parameter values of equation (35), we obtain

(3 M @ 4 2 2
e Tio ‘10“3 (3ry, tlka'rlk 8%)  (v) - vp)
o7 k:l ) r. ¢ TooE
’ 1k ‘10 P
. (38)
2
+ (m/rc)l1+2 = r (£,4° E18) /r
VY p [ k’él’o“‘k/ 1k k}“o“‘k 10° f1k/ [Tk

The value of G identified from equation (38) agrees with equation ().
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Since the Whitehead metric must be calculated in a global Lorentz co-
ordinage system of Tab [or at best in a spacetime of constant curvature
(Temple 1924)7], the field due to the galaxy cannot be removed by transforma-
gion to a local inertial frame surrounding the solar system (as one would
do in general relativity). Hence the galactic gravitational field must

appear in equation (38) (see §I).

IV, EXAMPLE OF A THEORY WHICH PREDICTS A

VELOCITY-DEPENDENT ANISOTROPY IN G

We take, as our example of a theory which violates Lorentz invariance
in its linearized equations for the metric, linearized general relativity
modified {n a suitable way. In linearized general relativity, the field

equations are [see, for example, Misner, Thorne, and Wheeler (1972)]

Dﬁij = -16xTy, , (39)

where O is the ordinary flat space d'Alembertian, defined by

0= (a/ac)2 - v2,

T,, 18 the matter stress-enefgy‘tensory_and‘E

1}

i is related to the metric by

i

(ko)
13—
hij .

A3

h =q

We modify equation (39) to allow the speed of propagation of gravity to differ

from that of light, by replacing the Lorentz invariant d'Alembertian O by

@
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the operator
2 2
(1/v5)(3/3¢t)° -
where v ,é 1 is the speed of propagation of gravity in flat spacetime in a

particular reference frame (the rest frame of the "ether"). All calcula-

tions involving gravity must now be performed in this frame. To the appro-
priate (post-Newtonian, but linearized) order, the modified equation (39)

may be written {see Will (1971a) eq. [24] for expressions for Tij}

2\ = 2 = 2
(1/v°) hO0,00 - ¥ hy, = -16np(l+vo+1) ,

v .an = -16npva s (%1)

v —aﬁ = 16“(9 B+P6aﬁ) 2

where pIl and p are the matter’s internal energy and pressure, respectively.

These equations have the solutions

<
]

- b0 - boy - bog + (2/V%) x 0

hoo=4v, , h_=-Ly -Ud (42)

oo = e a8 ap ~ Pap %
ho= - 40 - by, + 120 + (2/+%) X 00’

where 61, 0z, 0) are given in Will {1971a), and where a8 and y are given by

Vix==2U, X='I9(§a)l?§'§'ld§'f

D(X)Va
Ba -
9p = f dx’ , gow-el.

(43)



103

" Thus the metric is given by (egs. [L0] and [h2j)

b4

2v
Bgo = 1 = & - boy - 205 - 60y + (1/V7) x o4

Bog = 1V, 5 | (4

ga5=-(1+2u)5a5.

Making a gauge transformation {see Will (197la) eqs. [18] and [20]} to the

standard gauge in which the PPN metric (eq. [Al]) is written, we obtain

goo =120 - ""(®1 + %03 +'23"®)+) b4
g =3[8- (A1 +3 (AW (45)
8o = - (1+2U)8a5“

We can thus read off the PPN parameters by comparing equation (L5) with

equation (Al):

B =0, 7, =1 )

B, =1, 8, =58 - (/)]

By =0, B, = (1/°) , - (46)
=1, ¢ =0 .

XIS

Note: 8 and B, are zeroc, because our theory is limearized in the gravita-
2 ¥

tional fields.) Thus we have

(1) -1,

A2 +f -1
(B7)

bp, + 27+ 1. W, (12 -1,

[}

@
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and this theory predicts an anisotropy in the iocally measured gravitational
constant.

Nordtvedt (1969) has discussed the relation between Lorentz invariance
and the values of the PPN parameters and has found that the parameter com-
bination (A2 + ) should be unity in order that the Bgo metric term be

properly retarded. He also found that the parameters should satisfy

g, =2y + 24+ ¢,

1

B+ By = by 4+ 4 ,

(48)

irn order that the PPN metric of a moving mass be obtained from that of a
static mass by a Lorentz transformation. These results are in agreement
with the results of this section and with the discussion in §I. [See also

will (1971b) for detailed discussion of this Lorentz invariance. ]

V. CONCLUSIONS

The 1oca11y—meas§red Newtonian gravitational constant was calculated
and was found to be anisotropic in Whitehead's theory and in a theory of
gravity (devised in this paper) which predicted different flat-space propa-
gation speeds for gravity and for light.

Earth-tide data were found to put an upper limit of 1/109 on the
magnitude of the anisotropy. This ruled out Whitehead's theory and showed
that the speed of gravity and of light in the theory devised in this paper

must be the same to within about 2 per cent.
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APPENDIX A

THE PPN n~BODY POINT-MASS METRIC AND CHRISTOFFEL SYMBOLS

The metric for the Parametrized Post-Newtonian formalism has the form

(wWill 1971a)
. ) . X s
goo =1« 2U + BU - ll-(ﬁlQl + 62°2 + 3 Bsos + 3 %oh) + ;a}

8oy = F Vg * BON, s ‘ (a1)

8aﬁ="(1+27u)5a39

where B, 61, 52, 53, Bh.’ 7, Al’ A,z, t are PPN parameters and U, ®1s Ops 0z
o, s a, Va, wa are fields defined as integrals over the matter {for explicit
definitions see Will (1971a) eq. [17]}. The point-mass metric can be obtained
from equation (Al) by using a "conserved demsity" distribution (Will 197la,
eq. [28]) made up of point masses, or by taking Nordtvedt's (1969) point-mass
metric and translating from his parameters to PPN parameters dsing Table .1
of Will (1971a). The result is
2
o) =1 -2 §%+ 26(&%) - (g - 1)z

v 2
Ve
Tk

=

-(haz-s;v)zﬁi 5 —J— +L T

Tk jEk Tk k
(a2)
mkv m
%Aeﬁ:f Yie* BT s

30a(x) =% 6 E

Spl¥) = - (e Z m/Ty) Bog -
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The resulting point mass Christoffel symbols are

0 3 0 a, 3
Fgo = =% (m/nl) ye g s Poa“lz(mkrk/rk s

(¢} i .
Map = 7+ 38 oggx (m/7 ) ¥, 5, ~ 3 b L (md v ) (v 1) 7 e
-3 (7Al - AE) 5}_‘.‘ (mk/rks)(vka rk5+ ka rka) ,
o« T ay n
0 =T 2i- 1+ (e, -3 = o (maonsd
ko R V3 S 3753

(a3)

+ 3 (11'51.+A2 - 1)Vk2 -3 (52 “”C)(l’k ’ sk/tk)2+%Aéjik(mj/rkjs)sk : Ekj]

o

. mk mrkj s mk a
+ £ — zx—3—~+~(2 7N Y — .
%%krk#k rkjs 2 (2L =T +by krks (v "5 s

raoﬂ = Pgp ¥ (mk/rks)!k i (784 8y) E (mk/rks)(vka rkﬁf ka )

& .. 3 1 B a
T By 7i (mk/rk )(5aﬁrk +6cmrk -Sﬂnrk ).
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APPENDIX B

THE n-BODY POINT-MASS METRIC IN WHITEHEAD'S THEORY®

9 I would like to acknowledge the comtribution of Wei-Tou Ni to my under-
standing of Whitehead's theory. As a result of our discussions of his re-
search on the post-Newtonian perfect-fluid metric for Whitehead's theory, I

was able to learn enough to handle the point-mass version of the metric.

Whitehead's (1922) theory of gravity is a Lorentz-invariant action-at-
a-distance metric theory. The metric gij determines the ticking rates of
atomic clocks and the measurements made by physical rods, and determines

the geodesics-along which freely-falling test bodies move.}© However, the

. 10 In its original form, Whitehead's theory could not describe measurements
made by rods and atomic clocks, and said nothing about the trajectories éf
photons. The interpretation we use here was first introduced by Synge
{1952) to make Whitehead's theory complete. For further discussion of
Whitehead's theory, see Rayner (1954, 1955), Schild (1962), and Whitrow and

Morduch (1965).

theory also contains a global Lorentz metric uIRY which 1s physically un-
observable, but which appears in the equations used to calculate 8ap° for

& field point with four-vector position X, 841 is given by the following
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‘equations

pm
-3
—~
>
~
[’}

Nap = 2 x mk(yk)a(yk)b/wk3 ’

<
Ly
§

X-—Xk, Yk‘- Yka‘o,
(B1)

g
[}

e = Yy o (@X/da)

do® =, dx® ax”

2

where "+" means contraction with respect to 7 . Thus the metrj.c 8, 18

determined at a point in spacetime by the effect of all other masses along’
the past nab-"light cone’ of the point. By taking the usual low-velocity,
weak-field approximation one can determine the post-Newtonian limit of the
Whitehead metric. In the post-Newtonian metric, all field quantities are:

evaluated on a constant-time hypersurface rather than along the past

nab-"light cone” at each point. The crucial formulas used in the deriva-
tion are

a a a oY@ 1, 2

Ve =Tk *TR Ve t (v, ;k) Vi 8, T,

y0=r 1+vvrk/r »+-1~v2+—1—(v-rk/r)2-i ‘x (B2)

k k I "I TRTE Vg T VA Ty 2 3" K| 0 -

=r [1+3 (v r)2+-1— .r
== Tk SR VAN 2 B "Xy o

We make g gauge traﬁsformation to put the metric in the standard PPN form:

& | v %4 Ermkrkajrk 5
(83)
L + L.2g m Inx 4 3 R/et) zmr, ,
’ k k

3
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2 2
v m
8y = l-2% §E-+ 2 SE) +3z mi:k + 2% ;E bt ;;i~
k Tk k "k k "k k 'k JFk K]
L L r
-622}%(‘/‘(':1‘) +27_’.mk3k‘ = 1 -;!‘-?—'l>,
k oz, kr” 3tk i k

o4
So = TE MY [y +

(B4)

3 2
T (/) (v md
‘

8op = " (L+2 i mk/rk) Baﬁ .

Except for the final term

parameter values

g = 19
Bl”‘%p
52 = 1 .

in 800” this is the same as a PPN metric with

1
.—.'7’-’

=7,

bt
A,

The Christoffel symbols for Whitehead's metric can be obtained by substitut-

ing the parameter values (eq. [BS]) into the PPN Christoffel symbols (eq.

[A371), and adding to r°

00
™ ey
8I‘a00==8"‘—3~ z mj<1:j
k T 1#k ]
(o4
T
uszmkk T e
k rs ~k j
k

In the case of two bodies,

(19sk),

the contribution of the additional 800 term:
a B p_a
_l>_8“k’k N GTREN
"/ ko5 jik 3 r ik
(8s)
T T
g om (2.2
Ak I\T3 Tk

these results agree with those obtained by Clark

v
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