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ABSTRACT

vThe e.xact expressions for the local stability of a buck
regulator are found, and these expressions are simplified when the
ratio of the natural frequency to the switching frequency is small,
Simplified eﬁpressions are élso found for the local stability of the
boost and buck-boost regulators when the frequency ratio is small
and the damping factor is less than the nondimensional switching
period, & < 7. The feedback constants of the .Iix‘lear control law
determine both the local stability and regulation of the linear .
discrete regulator.

Liapuhov's direct stabil‘ity method as applied to discrete
systems and the method of paired systems due to Kalman are used
to obtain sufficient conditions for global stability. The paired |
system technique is also used to analyze the switching regulators

for their global convergence properties.
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CHAPTER I - INTRODUCTION

‘The switching regulator is a product of the space age. In
space, energy is expensive, and an efficient method for regulating
voltage is required. A resistive regulator dissipates energy in
the resistance used to regulate the voltage. A switching regulator
turns a switch on and off in such a way as to maintain the proper
output voltage, Since there is little resistance associated with the
switch, the efficiency of the switching regulator is very high. |
These devices are being used increasingly on earth due to the
increased cost of energy. In fact, the energy crisis of the last
few years has generated.a lot of interest in switching regulators.

A partial answer to solving the energy problem is to
engineer better control systems to make all processes using energy
more efficient., Dr, R. H. Caﬁnon in a talk given at Caltech
advocated this approach to the energy problem and gave some
examples to illustrate how better control systems could result in
significant energy savi.ngs. The revolutionary developments in solid
state technology have occurred soon enough to be of use in helping
to solve our energy problems. Since solid state devices make up
an essential part of all switching regulators, fufther advances in
solid state technology should help to improve the regulators,

it is indeed fortunate that great advances in solid state
technology and therefore our computing capabilities have preceded
the energy crisis, In refs, [15] and [16] Norbert Weiner talks

about the relationship between life, energy, entropy, and information,
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A thermodYnanﬂic point of view of life is very interesting because

~ the life prc;cess apparen’cly' contradicts the second law of thermo-
Adyn.amics, The idea that matter could spontanecusly organize
itself to pfoduce a living organism is contrary to our intuition and
to the second law which states that a system tends toward maximum
disorder. This apparent conflict is solved by noting that a living
organism is. not a closed system and requires energy to survive,
The increase in entropy caused by the degradation of energy is
more than the decrease in entropy resulting from the increase in
order of the orgahisrn. The fundamental issue of life is concerned
with entropy.

If society is viewed as a large.organism, ‘then it too stavys
organized by degrading energy, and as civilization has advanced its
energy requirements have increased. Like a biological organism,
the fundamental issue confronting society's survival is entropy.
The use of better controls to save energy may be more than just
a stopgap solution to our energy problems until other energy
sources are found. In ref, [15] Weiner states:

"Just as ‘che. amount of information in a system
is a2 measure of its degree of organization, '

so the entropy of a system is a measure of

its degree of disorganization; and the one is
simply the negative of the other."

The control system decreases entropy by making the proper
decisions based on the information obtained from the system.

This approach, besides appearing to me to be more fundamental
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than trying to ‘obtain new energy sources, 1S based on a technology
~ which haé ;Llready been de\}e10ped to a high 1e§rel of sophistication
and is still dndergoing rapid developmen’c.

In aﬂ age of specialization the applicability of con>tr01 theory
to many different types of systems is unique. It is not unusual
for a mechanical engineer, such as myself, to work on an electrical
problem. Iﬁ fact, because the control devices are usually electrical,
an engineer interested in controls should have some kind of a back-
ground in electronics. The techniques used in this thesis are
applicable to nonlinear, discrete systems whether the systems are
electrical, mechanical, or biological. Many times a system of
one discipline will have a direct analog in another. One analog for
the electrical switching regulator of this thesis is the pressure
switching regulator. The equations of the two systems are iden-
tical when the pressure and flow rate :is substituted for the voltage
and current of the electrical system., The major problem with
implementing the pressure regulator is that of noise. The noise
results from the rapid switching which is necessary to operate
the pressure regulator, |

ThAe'analysis of switching regulators is done in two parts,
In the first part the equations governing the switching regulators
are linearized, and the linear regulator is analyzed. In the second
part, techniques which can be used to determine the global
perperties of the nonlinear regulator are demonstrated. In the
past switching regulators have been linearized in the time domain,

refs, [ 3,4, 7], and by using describing functions, refs, [12,13,14,17].
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The rnostvp'opu‘lar method at present is to linearize the equations
~and thenvéairry out the ana.lysis in the frequency domain., With
linéar contin{xous systems many of the techniques used in analysis
and aesign. are done in the frequency domain., The advantages
gained by doing the analysis in the frequency domain usually out-
weigh the trouble of transforming the continuous system from the
time to the .frequency domain. With discrete systems it is not
clear what advantages, if any, are gained by transforming from the
time to the frequency domain. The debate over what domain the
analysis should be performed in has been going on for twenty
years. R. E. Kalman and J. E. Bertram in ref. [9] make a strong
case for performing the analysis in the time domain. There are a
number of reasons, however, why engineers still like to do analysis
for discrete systems in the frequency domain. The most important
reason for continuing to use the frequency domain is that the
engineer is used to thinking in those terms from analyzing con-
tinuous systems. Another important reason for using the frequency
domain is that discrete systems many times interface with con-

- tinuous systems where specifications are given in terms of the
frequencAy domain. In this thesis the analysis is performed in

the time domain.

The recursién formula relating the state of the (n+1)St
iteration to the state of the nth iteration is derived for.the buck,
thé boost, and the buck-boost regulator in chapters 2 through 4
respectively, These chapters are all organized in the same

manner. After the recursion formula is derived, the steady-state
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without feedbaék is found, and it is used in the control law as the
reference vector for feedback. The control laws examined in this
Athe’sis are either linear or can be approximated adequately by
their' lir_leaf part. In analyzing the linear regulator there is no
loss of generality in assuming a linear control law. In fact, the
entire éharacter of the linear regulator can be determined from
the feedback constants of the control law, Once the general form
of the control law is specified, the regulation properties are deter-
mined, and then the local stability is derived. The regulation and
local stability of the linear regulator are related through a quantity
defined as the closed loop gain., The closed lbop gain, which was
or'iginally defined by Dr. Yuh in ref. [17], gives an indication of
how well a regulator regulates, and it is therefore used as a
figure of merit in the stability analysis.

The regulation properties are obtained by first assuming that
the ratio of the natural frequency to the switching frequency is
very small (i. e. wk/ws K 1 or 7;s K 1) and then linearizing the
recursion formula about the design point. The linearization is
valid when the change in on-~time, ATO, and/or switching period,
AT, are small so that the new equilibrium point is close to the
design point. In the case of the boost and buck-boost regulators
the additional assumption that the damping factor is less than or
equal to the sﬁitching period is made to simplify the expressions
(i.e. & = T). The analysis shows that the closed loop gain gives
a good indication of the regulation properties of the regulator and is

therefore used in the local stability analysis as a figure of merit.
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After thé closed loop gain has been defined for the various

’ regulatofs,nt‘ne conditions for local stability are obtained. In the
‘caée of the buck regulator the local stability criteria are exact,
Thevs"e critéria can be simplified by making the assumption that
T, << 1.,‘ In the case of the boost and buck-boost regulators the
assumptions that T, < 1 and ESTS are used to obtain simplified
sj:ability criferia. The assumption that Ty < 1 is usually wvalid
since the ripple voltage, which is usually small, is directly pro-
portional to the switching period. The local stability criteria afe
expressed in relation to the closed loop gain so that the various
control laws can be compared for regulation. The closed loop gain
can be increased by increasing the feedback constants, but if the
feedback constants are made too large, fhe regulator becomes
unstable. The properties of the linear regulator are deséribed
when the feedback constants are specified.

In Chapter 5 techniques for analyzing the global properties
of the nonlinear regulator are discussed, and an example is given
to illustrate how these techniques can be applied. The first
technique discussed is Liapunov's direct method for determining
stability as applied to discrete sysfems. The other technique used
is that of pairing a continuous system to the discrete system, and
this technique whiéh is due to R, E, Kalman, ref. [8], is known
as the paired system method. The analysis is performed in the
discrete phase plane. The discrete phase plane for these
regulators has regions where the system saturates so that in

these regions the system is linear relative to some center. It is
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in these regioﬁs that a continuous system can be paired to the
~ discrete 'synstem. Sufficient conditions for global stability are
‘obtéined by éhowing that the Liapunov function always decreases
even" though it might not decrease every step. If for some step
the Liapunov function does not decrease, then it is possible, at
least for the example given, to follow the discrete system by
means of the method of paired systems until it does decrease,
The true trajectories of a buck regulator in the saturated
regions are the same as the trajectories of the paired continuous
system. The reason the trajectories are identical for the buck
regulator is that the voltage is either on or off the entire switching
period. If the discrete system is continuously monitored, and the
system made so that trajectories can be changed during the
switching period, then the discrete system becomes a continuous
system, and a switching line can be defined. In fact, the optimal
switching curve which minimizes the time the system takes to
reach the origin can be found for such a regulator. For the other
regulators, it is possible to find the optimal switching curve
associated with the trajectories of the paired systems, and this
curve is believed to approximate the optimal switching curve of

the discrete system,



CHAPTER II - BUCK REGULATOR

2. 1  Recursion Formula

The buck regulator will be the first type of switching regulator
to be analyzed. This regulator provides an efficient way of stepping
down. the su‘.pply voltage in a D.C. system to the desired output

level., A block diagram of the buck regulator is shown in fig. 2,1, .

‘TOO *Tss
/v
. _ T
P.W.M, - = k
\V
r
L

Buck Regulator

Fig. 2.1

The P.W.M., pulse width modulator, controls the switch such that
when no error exists (i.e. e = 0), the on-time and switching period

will be T and Tes respectively., When the error vector is not

00
zero, the input to the P.W.M. will be the gain matrix, G, multi-
plied by the error, e. The on-~tinie and/or switching period will

be modified to decrease this error.
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The differential equation for the filter is

dZVO av,
+ 28 er + V, = KV _(T)
d'TZ' | a7 0 s
where
R
2 _ 1 s -
L
R
L
=T R I
- 2R. NT =
L ! \[1+RS/RL
with
p, = RC , K = RL/(RL+ R.)
and

1t

E switch-on
v (7)

0 switch-off -

The differential equation is dimensionless with respect to time. The

solution to the equation in state vector notation is

T
x(7) = Y(7)x(0) + f Y(7-s) b(s) ds )
0

where

b(s) = (1) = =
- KV, (s) = <X v,
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- and
VII(T) ylZ(T)
Y{(7) = - principal matrix solution

The principal matrix solution can assume three different forms

depending on the damping factor &.

1]

e 8T (cos w,T + & sin w ,7)
> d

£ <1: Yll(T)
V1-¢

ET sin W ,T

- d
¥i(T) = e —
V1-¢
yZ].(T) = ”le(T)
¥,2(7) = ™57 (cos wyT - — % _ sin W 47)
7
1-¢
E=1: oy (1 = (147
— -T
Vi2(™ = Te
v, (1) = mypp(D
Yoo(T = e (1-7)
E>1 y(n) = ™57 (cosh W, T+ 3 sinh w_7)




YT = e -
& -1
YZ].(T) = "le(T)
&7 .
YZZ(T) = e 3 (cosh wCT - ———éz—-——-— sinh wC‘T)
& -1
where
_ 2
wy = 1-§
- 2
W, = £ -1

The switch's voltage, VS(T), is only on during a portion of the
switching period so that the value of the state vector at the end of

the switching period is

. ) To
x(T) = Y(7)x(0) + f Y(T_-s) b ds
0

where

0

b’ = ( ) - constant vector
KE

Since this relation will hold for any switching cycle, a recursion

equation can be derived for the state vector,

7'0 ‘
— 7

X 41 Y(Ts)zc_n-i- f Y(TS—S)E ds
0 .
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. This equation is easily integrated to give

X

X 41 ° Y(TS)§n+ (75, T)

where

Yll(TS—-TO) - Yll(Ts)\ (2- 1)
V12T = ¥12(Tg=Tp)

Egn. (2.1) is the recursion formula for a buck regulator. This
equation along with the control law is .all that is needed to com-
pletely describe the system.

The P.W.,M. controls the regulator by varying the on-time
and/or switching period. The control laws examined in this thesis
are either linear or can be approximated adequately by their linear

part so that

TO(En) = TOO + al(xr—xn) + bl(ir—z';n) (2. 2a)
and

Ts(_}fn) =7 s * aZ(Xn"'xr) * bZ(Xn-Xr) (2.2b)

S

Eqn., (2.2a) is the control law for the on-time whereas eqn. (2.2b) is the
control law for the switching period. The coefficients in these general

control laws will be different for the various P. W.M. s analyzed.

2,2 Regulation and Local Stability

After the control laws are given, the recursion formula, eqgn.
(2.1), is completely determined, and the steady-state can be found.

If no control is used the on-time and switching period are constant,
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and the state vector is

Cx = x = x steady-~state value
Zn+l ~n Zss without feedback

SO

x = [1 - wr )] im0, 7, )

SS

where

TO(ES s) - TOO

1]
-

TSS(-}ESS) SS

The matrix inversion can be carried out, and the value of the state

vector is

-zgrss 2§DOTSS

¥11PpTss) ~V11{Tsg) T [1-e Y2207
x =KE
ss -gTss —ETSS A
l+te [e - 2cos (wd'rss)]
(2. 3a)
. *ZgD(’)Tss

. YZI(D{)TSS) } YZI(Tss) € YZI(DOTSS)
X _ = KE(- :

ss —‘g"rss -g'rss
1+e [e - 2cos (vwdes)]

where

ro
Dov——l-DO

If the assumption is made that Tes K 1, then the above equations

can be expanded in a Taylor series to give a first order approxi-

mation



(2. 3b)

>’c=2’rDOO

Eqn. (2.3) was derived for an uncontrolled regulator so if aﬁy of
the parameters change, a new steady-state will result, The purpose
of feedback 1s to minimize the change of state due to a change in
parameters, For sirnplicity the reference vector is taken to be the
steady-state value under design conditions so that when the regula-
tor is operating at the design point, b there is no error. Eqgn.
{(2.2) can now be rewritten with L substituted for X

The equilibrium point of the regulator with feedback cannot
be solved analytically, It can be obtained with a computer by

solving the following transcendental equation

Zef v[ TsZat )]Esf + _f_[ Tolxgr ) T(Xgg )] (2. 4a)

where

X ¢ = steady-state vector with feedback

If the assumption that Tes < 1 is made, then the equations can be

simplified to
(2. 4b)

where
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- Egn. (2.4b) is still a nonlinear equation in the variable x of" In

Appendix (I. A) eqn. (2.4b) is linearized about the design point to

give
KD .E kD E <
x +—9 [1+ °(b+b)+ (b, +D b,)]
ss DT 7' 2
< _ 0 ss
sf 1
14+ [1+ [(D -Dg)b, + D bz)]
_ (2. 5)
kD E fa _+a X D
Slx - T, D DIE |1+ 0 (1’2) - |20 . )al+-——?~a2]
. ) ss D0 ss —DODO D0
sf
KE
51+[1+T (a1+D0a2)]
SS
where
E KZE DODE)
S (a1+Doa2) +—-—-—-—-»—-—-—-ZT (a le- blaz)
sS SS
2.2 ,
K°D“D D
KE 2 0-0
S1 = --s—;[(D0 o)by ¥ Dgb,) + """2‘“7:5“""'(31 , - bja))

The above equation, egn, (2.5), was derived mainly to define the
loop. gaiﬂ, S. A large value for the loop gain implies that th¢
voltage is close to the desvired voltage and thereby indicates the
regulator's ability to regulate. The loop gain cannot be increased
to any desired value because at some point the regulator will
become unstable. The maximum value the loop gain can achieve

before it becomes unstable, Smax’ is used as a figure of merit
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Cin thé stabiiity analysis. J.M. Yuh defines the loop gain in ref.
/{17], on pég; 118, |

| "The v-ali:dity of eqn. (2.5) is restricted to small changes in the
on-time or switching period, see App. (I. A). However, this restric-
tion does tolerate a fairly large variation in the load and input
voltage paralmeters. In fact, according to the linearized egquations,

variations in the load have little effect on the equilibrium point,

Xgg the 6n1y dependence being due to the changes in the parameter
K = RL - 1
RL—I- Rs 1 +RS/RL

Since the regulator' is designed to be efficient, the ratio of the
resistances, RS/RL, must be small for all operating coﬁditions. _
Switching regulators do not have the same load regulation problems
as the cdnventional, resistive type regulators.

The exact solution to eqn, (2.4) for the equilibrium point,
—}fsf’ also shows very little dependence on load changes. The
exact and approximate equilibrium points will be compared for
some of the control laws analyzed. It is necessary to know the
equilibriﬁm péint because the stability of the System is defined
relative to it. The system is said to be asymptotically stable if it
returns to the equilibrium point after being disturbed. For small
disturbances from equilibrium, the recursion formula, eqn. (2. 1),

can be approximated by the first two terms in its Taylor series

expansion
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- let | glx) = Y(T)x + £[74(x ), 7 (x )]
‘then ‘ x 41 = glx) | , (2.1)
og
and o ¥ B ) Yy bt

Zn Zsf O
Since the expansion is carried out about the equilibrium point,

Esf - —g-(fsf)

so that
. dg
62‘—n+1 = Zat1l " Esf T ox IX Gzn
—n =sf

The variation in the state of the (n+1)st iteration is related to the

state at the nth iteration by

6-}-§-n+1 = Pafn o (2.2)
where
dg , .
P = —6-.’_2_11 Esf - constant matrix

Eqgn, (2.2) is called the variational equation and it completely
determines the local stability of the regulator. The perturbations,
6_15_11, will decrease if and only if the modulus of the eigenvalues
of the P matrix are less than one. An instructive proof of this
statement is given by T.K. Caughey and S.F. Masri in ref, [5]
The elements of the P matrix are evaluated in Appendix

(I.B). They are
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[ (%) "nal'éEylz(Ts_TO) - ahll (7)) - By KEY (7, -Tg) - Bohy]
'[Yzl(Ts) - a KEy, (T -T)) - azhz][ytzz('rs) - b KEY, (T, ~T)) 'bzhz]
where |
hl - YIZ(Ts)xsf - y22(7-3)}231‘.' * KE[YIZ(TS—TO) - y12(1—3)]
hZ - YZZ(TS)Xsf; + [YIZ(TS) ~I-2&’22(7”3)]}2315 * KE[YZZ(TS—TO) - Y22(7-3)]

The stability criteria when the eigenvalues of the P-matrix are

complex is

Det. (P) < 1
and is 1 + TR(P) + Det. (P) > 0

when the eigenvalues are real, see App. (I.B). These stability

criterions reduce to

(a2 - 2§b2) X ¢ + bZ(KE - X )

| 28T 2&T
+ (a1 + aZ)KEe ylZ(T - (b1 + bz)KEe 0 1] 1(’1’

0 o
+ (a,b, - azbl)'I{Ee2§TO [(KE - % )y,,(T) + % %,(70)]

2T

(2. 3)

< e7%'s - 1 (2. 42)

for complex eigenvalues, and to



Tt e_gTs)‘-l' (a;+ az)KE[e-ZE(TS—TO)ylz(TO) - ylZ(Ts-TO)]

-1 +.e_£TS (2 cos o

- (bl+b2)KE[e-2§(Ts~TO)Y11(TO)+Y22(TS—TO)] - aZ[(Xsf —KE)le(Ts)"p'}ESf ]

- bz[p,(xsf -xE+2§>’;sf ) + ylz(*rs);s‘;sf]

+ (albz-‘asz)KE e-2§(TS-TO)[(KE - Xgg )VIZ(TO) + ;;sf YZZ(TO)]

>0 (2. 4b)

where

_25

_ T
IJ' - e s + YZZ(TS)

for real eigenvalues. The dependence of the stability on the param-
eters and the equilibrium point is clearly shown. It is interesting
fo note that there is no explicit dependence on the equilibrium

point when only the on-time is varied. The equations derived in
this section will be used in thé next section to evaluate the stability

of various P.W.M.'s,

2.3 Comparison of P, W, M. s

The regulation and stability characteristics of the P,W.M.s are
relaﬁed by the loop gain. When the loop gain is made large in
order to decrease the change in voltage due to changes in para-
meters, then the system becomes unstable. The largest loo‘p
gain, Smax’ for which the regulator remains stable is determined,
and it is used to compare the different P, W, M. s. The stability

is defined relative to the equilibrium point, Xof and will not be
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. valid for other equilibrium points., When the parameters change,
the equilibrinum changes and even the loop gain, which is also a

function of the parameters, will change,

2.3.1 Uniformly Sampled Voltage P. W, M,
This P.W.M. samples the voltage at the beginning of each switching

cycle. The cbntrol law for the V.0.T., variable on-time, regulator is

TO(Xn) = TOO + al(xss N Xn)

so that b, = a, = b, = 0
The loop gain of this P, W.M., from eqn. (2.5), is

KalE'

T
S5

S =

and because the eigenvalues of the P matrix are complex, the

stability criterion is given by eqn. (2.4a)

287 28755
alKEe ylz(’l'o) < e -1

The stability criterion can be rewritten as

allcE < eZ!;“TSS o1
T ZETO .
58 | Tsse ylZ(TO)
: : 2ET
or s <& _ss-1 s (2. 52)
max

2ET
T e g OYIZ(TO)
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where

To = Toot 21(xgg ™ %)

Eqgn. (2. 5a) can be further simplified if the assumption that

T, = zﬁ(wklws) « 1 is made, then

s < (2. 5b)

max

oﬁ{ I\

Y
2
w

The local asymptotic stability about the equilibrium point, Eog o is

guaranteed for closed loop gains, S, less than the critical loop gain, -

max,

The equilibrium point, X g » Can be approximated by eqn.

(2.5), and it reduces, for this P, W.M., to

x _+ KD.E/S
ss 0
Xsf T T 173

(2. 6)

: 1 N o1 ’
5 - %ss + 21-ssDO(Xss KDOE) 2KT&;SDODOE/S

sf ‘ 1+ 1/

When the loop gain is zero, eqn. (2.6) gives, as it should, the same
equilibrium values as the uncontrolled regulator, egn. (2.3b). If the
loop gaiﬁ were made very large (i.e. S =~ =), the equilibrium voltage
would approach the reference value, but the derivative of the voltage
would not, |

If the switching period is varied instead of the on-time, then

the control law becomes

= Ts+a2(xn—x )

TS (Xn) ] SS



. so that

and the stability criterion is

T

257’00 2¢ s
a + a,KEe YIZ(TOO) < e -1

2%sf
or

Dd(ezsfs - 1)
S < : ; - (2.7a)

X
sf 251’00
T ['KE' te Vlz('roo)]

If the assumption is made that 7. < 1, and the equilibrium point is
taken to be the design point, Eog? then eqn. (2.73) can be approxi-
mated as

4§ s
ST ATy Y Smax (2.7

The local stability of this regulator, unlike the V,O.T. regulator,
depends explicitly on the equilibrium point.
The approximate value for the equilibrium point, Xy o of the

V.S.P,, variable switching period, controlled regulator is
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X o + KDOE/S

Fsf T 17173
(2.8)
. 1 _ 1 ’
: ) x ot 3T (% KDOE) ZKTSSDODOE/S
sf 1+1/8

Except for a slight modification in x the equilibrium for the

sf ’
V.S.P. regulator, eqn. (2.8), is identical to the equilibrium for the
V.0, T. regulator, eqn. (2.6). The closed loop gain, S, as defined,
will affect the regulation of both regulators in the same manner,

In figs, 2.2 and 2.3 the maximum closed loop gain, Smax’ is
plotted against the damping factor, & The recursion formula, eqn.
(2.1), along with the proper control law was used on a digital com-
puter to simulate the regulator. The curve for the local stability
was verified by slightly decreasing and then increasing the closed
loop gain from the predicted value. If.the system was stable at ti'le
lower value and unstable at the higher for a small perturbation
from equilibrium, the predicted value was judged correct., When a
comparison is made between the two control laws, the variable
on-time control is found to be superior to the variabl.e switching
period control, and the two approach each other as the on-time
approaches the switching period (i.e. Dy~ 1.0). The exact stability
expressions can be approximated by simple equations such as eqn.
(2. 5b) when T, << 1. These simpler relationships are reasonably

accurate, and they could certainly be used in the first stages of a

design to compare different control laws.
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'Iv"h_eu puréposé of these swiﬁching regulators is to regulate voltage
so that when thé input parameters change the output voltage will remain
constant. In figs. 2.4 and 2.5 the output voltage is found for a wide
range of input‘ voltages and loads by sOlving eqn. (2.4a) m;mnerical].yA°
This ’solutic.m is then compared with the approximate solution of eqn.
(2.5). The domain of the parameters are restricted to those values
which produce an on-time greater than zero but less than the switching
peribd, TS. .The domain of the load ratio, Rf‘:/RL, where the * quanti-
ties refer to the input variables at the design point, is also limited to
thosev values which result in a damping factor less than one. The
maximum loop gain was used to determine the equilibrium output
voltage. This value for the loop gain could not be used in practice
since the system would converge very slowly, if at all, to the equili-
brium point. In fact the regulator is locally unstable for voltage ratios,
E/E*, greater than one and will never converge in this range of param-
eters, The grai)hs do indicate the best possible regulé.tion attainable
using these P, W.M.s. The curves for the approximate and exact solu-
tion of the Voltage agree well over a wide range of parameters, The
dependence of the volté.ge on the load ratio is very small in comparison
with the dependence on the input voltage.

The main function of these regulators is to regulate against input
voltage variations and not load variations. An open loop controllér
which would chg.nge the design duty cycle, DO = OO/Tss’ by detgrmining
the ratio of the reference to the input voltage would enhance the regula-
tion propertiebs of these devices. Such a controller would be required to
sense and average the input voltage to obtain the D.C. value, and then

change either the on-time, 00* ©F the switching period, ss’ accordingly.
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A

. 2.3.2 Error In\tegrating P.W.M.,

‘The error integrating P.W.M. integrates the output voltage of
the ’regulator to a prescribed value. The time it takes for this
inﬁegfation process to occur is the duration of the pulse, Ty The

prescribed value is a constant, ER , and the control law is given

T
SS

implicitly by

fn'rss+ 7o f’ro
BT, = J V(tdt = . {3y (0 + vy, (0% +E[1 -y (0]} at
58 .

2.9)

where X is the state at the beginning of the nth switching period.
A small variation in the state at the beginning of the nth switching

period will result in a small variation of the on-time, TO’
" )
0 = f yll(t)éanr ylz(t)ﬁxn dt
0

+ f{yl [Todxge + v p(Todxge + KE[L - Y11(To)]} AT

where X g is the equilibrium point of the regulator. The coefficient
of the ATO term is just the voltage evaluated at TO’ X(TO). After the

integral has been evaluated, the variation in on-time is found to be
ar. = -2 Ay (my+2di-y (1]} ox - —2c[1-y (1] 6% | (2. 10)
0 .xlTOS‘ 120 110 n xl’TO; 110 n -

The coefficients of 6x_ and 5{;n will take the place of a; and b,

respectively, in the stability analysis, see App. (I.B). The closed
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. loop \gain, S, could be defined as

B alKE _ KE le(To) + Zg[ 1- Y].].(TO)]
> Tss -7 X(TO)( Tss ) (2. 1)

It is not necessary, and in fact it would be inconsistent, to use the
above form for the closed loop gain since in arriving at the figure
of merit it was assumed that T K1, A more consistent definition

for the closed loop gain is

KETO

S = ' (2. 11b)

sS

where the assgmption that TSS << 1 has been used to reduce eqn,
(2.11a). The closed loop gain given in eqﬁ. (2. llbb) is the figure of
merit for the error integrating P.W,M., The determination of x(’ro)
involves solving eqn. (2.9) along with eqn. (2.1) for the on-time, |
Ty s and the state,zsf. If it can be assumed that the time av‘erage

of the voltage over the interval To is approximately x('TO), then

from eqn. (2.9)

E.T = X(TO)TO

R ss
and
.2
T
S ~ T’EJE. __0.2.. (2. 11c)
R 7% .
SS

The closed loop gain defined by eqn. (2.1llc) is the same one used
by Dr. Yuh in ref. [17].
The local stability of the error integrating P.W,M, is given

by eqn. (2. 4a)
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.
é%é{i%iﬁﬂﬂﬁ+zﬂl'yn“b”}g¥n)ﬁﬂ7&

T T
- KE 2&T 0, 2&7,
—m’i-s'[l—yll('ro)]e OY“(TO) < Tfs:(e Ss - 1)
or
s < Jo (25T - 1

TSS engo[YIZ(TO)j{le(TO) + 25[1 - Vl 1(70)]} - Yl 1(7-0)_{1 - yl 1(70)}]

- and after simplifying

T 28755
s < =2 (e i (2. 12a)
Ts [1 _ e2£TO (T )] max
22170
When T.s XK 1, eqn. (2. 12a) reduces to
s < 2 & s (2. 12b)
TO max

The local stability of the error'integra’cing P.W.M. is given by
eqn. (2.12), The maximum loop gain, Smax’ attainable by this
P.W.M., eqn. (2. 12b), is double that of the uniformly sampled

vbltagé P.W.M., eqn. (2.5b).

2.3.3 Dither Stabilized P.W.M.,
The on-time, TO’ of the dither stabilized P, W,M. is deter-
mined when the sum of the output and ramp voi’cage reach a

specified value, C 1
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Eb .
C, = = Ty + Vo7
SS
or
Eb .
C, = . To + v (To)x, + v(To)x, + kE[1 - Yll(TO)]_

The variatior_l of the on-time due to a variation of the state at the

beginning of the nth switching period is given by:

e |
- b . )
0 = ["‘Tss (Tt ¥ (T g - "EV21(70)]ATO

+ ) l(To)lﬁxn + ylZ(To)ﬁxn

now
K(To) = vy (Tdxgp ¥ % (T)x g - KEy, (7)) = V(7))
SO
T Vi 1(Tp) T Vi {Tn)
Aty = - =510 0 g o 8812 0 5 (2,13
E, + T, _XT,) E, + T, _X(T,)

The coefficients of 6xn and 5)'<n play the role of a;, and b, respec-

tively in the stability analysis, so that the loop gain is

a. KE v, (T )KE
5= —4— = 119 (2. 14a)
S8 Eb+ ‘Tssx( ’J’O) :

As in the case of the error integrating P.W,M., a more consistent

form of the loop gain is
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s = KE (2. 14b)
E, + TSSX(TO)

where’ the assumption that Tes <« 1 has been made. If the added
assumption that )E(TO) X Eb/Tss , then eqn. (2. 14b) can be approxi-

mated as

s = K= (2. 14c)

This last assumption is generally valid, and the closed loop gain
defined by eqn. (2. 14c) was used by J.M. Yuh in ref, [17].
Since the eigenvalues of the P-matrix are real, the local

stability of the dither stabilized PWM is given by eqn. (2.4Db)

1+ e-'STS(Z cos w, T+ e-ETS)
S
KE "zé(Ts"T )
i e Fys TssY11(Tg) © O y1(7g) = ¥1(%-Tp)
~"b 8s o’
[ ke [ 2g(1,-7p)
K - ~Tg
- TssY12(70) |© ° v 1(T) * sz”o’] >0
Eb+ T X(TO) i

substituting in S and simplifying gives

(1+ e"zél’rS + Ze-‘ETS cos.wd’l's)

s <
T I 1TV (T~ Tg) + ¥1,(Tp)¥0(7, - Tg)]

which reduces to
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(1 + e—zg'rss + Ze‘g’rss cos wyT )
. ss

s < = 8 (2. 152a)
T (7. ) max
ssylz ss

If the assumption is made that T, << 1, then eqn. (2. 15a) reduces to

4
s < — ~ Smax (2. 15b)

Tss
The maximum closed loop gain for the dither stabilized P.W.M., is
independent of the on-time and almost independent of the damping
factor., In fig. 2,6 the .exa-ct and approximate maximum closed loop'
gain are compared for various damping factors.

The dither stabilized P, W.M.,, like the error integrating
P.W.M., has a control law which is implicitly dependent on the
state over an interval of time, Since the local stability analysis
requires an explicit dependence on the state only at the beginning of
the switching period, it is necessary to find the variation of the
on-time for a variation of the initial staﬁe. In this manner the con-
trol law is effectively linearized about the equilibrium point, and the
- approximate feedbaék constants can be obtained for use in the
general s—tability equations, The loop gain of the dither stabilized

P, W.M, is the largest of the P, W.M, s analyzed.

2.3.4 Zero Eigenvalue P.W.M,
The previous analysis has been concerned with examining the -
local stability and its connection with regulation. Increasing the

loop gain improves the regulation but decreases the stability., A
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-~ large loop gé.in also has the added disadvantage of increasing the

. t‘ime’ it >ta1’<e; the system tovreturn to equilibrium after being dis-
turbed. The ‘zero eigenvalue P, W, M. is important because it con-
vergeé rapidly, in two steps for the linearized model. In ref. [4]
the authors define the optimal regulator to be the one which has
Zero eigenvélues. If the eigenvalues of the P matrix are to be
zero, the detérminate and trace must also be zero., When only the
on-time is wvaried for control, the determinate and trace of the P

matrix are
Det.(P) = ¢ 285 +a ke 28T 0y (1) b kEe X ETss ")y (1) = 0
TR.(P) =y l(Tss) +Y22(Tss) - al’{EYIZ(Tss"TO) —blKEVZZ(Tss-TO) =0

The two feedback constants, 2y and bl’ can be chosen so that the
above equations are satisfied. In matrix form the solution for

these constants is

' -2ET
a, ! sz( ss”To) M11{7o) e ~0
= KEv (7 )
by 12" ss (T._~Tp) (7,) (7,) +y,,(T )
N12Y%s7 0! N2'Y0 N1 H2\'s

and after further simplifications '

yll(T +'TO)
a, = (2. 16a)
1 KEY]_Z(T ) .
Y Ts T ’ro)

1 KEYIZ( ss
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- The féedback co.nstants, as given by eqn. (2.16), are actually func-
tions of the Ainput voltage, the damping factor, and the on-time, It
.woulvd be nece‘ssary to change these constants as the parameters
changé in ofder to maintain the convergence properties of the
regulator., Alternatively, a set of parameters can be chosen,
usually the design parameters, which will be the only set for which
the regulator. will be optimal,

The closed loop gain for this P, W.M, is then
a.KE yll(’l‘ +TO)

g = = (2. 17a)
7, ssylz( ss)

If the constants are fixed so that an increase in the input voltage
will increase the loop gain, then the maximum loop gain possible
is given by eqn. (2. 4b)

'TL'[I + e %8Ts 4 26785 cos (w
ss

d ss)]

a,.KE
+ ——[e ~24(T Vlz(’fo) ylz(Ts-To)]

Ss
a.KE b
1 1 -2 s-T )
- L [em8Ts7T00) (7 )+ (-T)] > 0
sSs 1
but
bl _ ylZ(T +TO)

al y11(7—ss+ 1—OT

S50
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-2&(7 _-Tp)

S[_Vlz(Tss‘To) -e "Pss 0 ¥ 2(7o)]

1275t 7o) 1 -28(75- 7o)

-+ S m yl]_(TO).FYZZ(TS”TO)]

A [1+e 28755 4 2675755 qos (wd’rss)]
Tss

which finally simplifies to

. < y (T Tl 1+ o 28Tss 4 2.78Ts (g (@, SS)]

< (2.18a)

2ET. o
Tss[6 S8 le(Tss) + ylz(z’rss)]

If the assumption that Tes <1 is made, eqn. (2. 17a) and eqn,

(2. 182) reduce to

1

S = 17- (2.17b)
SS
and
4/3
SSs

The zero eigenvalue P, W.M. is a good regulator, eqn. (2. 17)A, and
it converges rapidly, but a thirty-three percent increase in the
input voltage will fnake it locally unstable,.

The difficulty with this regulator is that it must operate with
a high loop gain to achieve rapid convergence. If the loop gain
could be made independent of the input voltage, as it actually

should be to have rapid convergence for any set of parameters,
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- then the 1egu1ator would be guaranteed to be at least locally stable.
If the 1nput voltade was sensed an analog multiplier could be used

to make the feedback constants, when T < 1, equal to

1
a ~
1 KETSS
. Tss + TO
1 :cETSS

A method of making the loop gain independent of the input voltage
would be beneficial to all the P, W, M., s,

In fig, 2.7 the equilibrium volfage is given as a function of
the input parameters, The range of the input parameters is limited
for a number of reasons. When the load ratio is greater than two,
the damping factor, £, is greater than one, and the form of the
recursion formula changes. The bound on the lower voltage ratio
occurs when the input voltage is less than the desired output voltage
so that the on-time is equal to the switehing period. The maximum
voltage ratio is limited by local stability considerations, eqn. (2, 18b),
such that a thirty-three percent increase of the input voltage makes
t];1e system locally ﬁnstablea An importanf design consideration is
the sensitivity of the local stability to changes in the input param-
eters, A more important consideration, but a harder one to obtaih,
is the sensitivify of the global stability to changes in the iﬁput
parameters, In this example, all the éoints shown in fig, 2,7 are
at least locally stable, and the system does converge to these

equilibrium points with zero initial conditions,
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S 2.3.5 Zero Matrix P.W. M.

The zero eigenvalue P, W.M. converges to the equilibrium
poinf in two steps., The zero matrix P, W, M. will converge in one
step. v"The .zero matrix P. W.M, requires four constants to be
determined so that every element in the P-matrix, eqn., (2. 3), is
zero, | |
[y 1(7) - 21 KEy (7, - o) - 250y 13 (7)) =By KE (T, - Tp) - By ]

P = .
[ 1 (1) - 21 KE w7 - ) = 20, [y o(T) =B KE Y (T - Tp) =B by |

where

By = WalTegs - %alT)Egy * KELy (7= Tg) - w7

hy = (g + [y,(n) + Zgyzz(Ts)]’.‘sf t KE[y (- Tg) - ()]

If both V.O.T. and V. S.P. control is used, then the four constants ay,
by, a5, and b2 can be chosen to make the P-matrix identically zero,

The solution is

hoyy (7)) - by (7))

av =
1 ‘
KE[R, 3 (1= Tg) = Byy,(7-Tg)]
a - YZ].(TS)YIZ(:I;S_TQ) - yll(TS)YZZ(TS-TO) (2 19a)
2 hoVio{Tg=To) ~ By %,(7,-Tp)
L. ho¥12l%) -~ BaYal®y)
1

KE[h,y, (7.~ Tg) = hy%,(7,- 7))
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205" Tod%alTs) ~ %2207~ T ¥ ,(7)

b = - - (2.198,)
z YRl =To) ~ Bp¥al%-To) cont.
These. expressions can be greatly simplified by assuming that
7. < 1, then
ss
hy & -xy N ZKEDDT,
hZ ~ X A ICED0
and
~ 2
a; ™ -
KEDOTS
. 2
a, ® =
I{EDODO’T
(2.19Db)
_— 1 +D0
1™ “kED!
0
b, & - : ;
KED0
The loop gain is given by eqn. (2.5) which simplifies, for this
regulator, to
I{ZE DODO
(2.203a)

since

al+ Doa2 ~ 0

After substituting the values of the cdnstants, eqn. (2. 19b), into the

equation for the loop gain, it becomes
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1

SS

This 1s the same value of the loop gain found for the zero eigen-~
value P, W, M., compare eqn. (2.20b) with eqn. (2. 17b}). The loop
gains of'the‘ two P, W.M, s are defined differently, with the loop
gain of the zero matrix P, W.M. dependent upbn a product of the
various feedback constants, eqn. (2.20a). Like the zero eigenvalue
P.W.M., the loop gain of the zero matrix P, W.M. is a function of
the parameters, and the system becomes unstable when the input
voltage becomes large,

In fig. 2.8 the exact and approximate equilibrium point is
plotted against a range of parameters., The regulation is very good
and so is the comparison between the exact and approximate solu-
tions. The equilibrium points shown are at least iocally stable
since the system converges to them from the approximate values,
| Stability considerations severely limit the range of the voltage ratio,
In fact this system is not even globally stable at the design point,
The switching period and on-time for this P, W,M, are also very
sensitive to changes in the input voltage,  For the example shown,
a fifteen percent decrease in the input voltage causes the switching

period and on-time to more than double.

2.3.6 Discontinuous P, W. M,
At very low damping factors, & <.1, which uéually means a

high load resistance, the current in the inductor can become zero.
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- When this oc'cur‘s,the P.W.M., is said to be operating in a discon-
‘tinuous cohdﬁcting mode, see ref, [3] In fig. 2.9 the inductor
curr.ent is plo;cted against the time, The inductor current goes to
‘zero ét timé T and the previous analysis, eqn. (2.1), is only valid

during the switching period until 7 = T
IL _
]

max

Inductor Current

(e e —— — —

‘,‘-—-———-—-—

Fig. 2.9

Inductor Current Waveform

The state at which the inductor current goes to zero, _:_:_(TC), is

Yll(Tc-TO) - Yll(Tc)
E(TC) = Y(TC)E(O) + KE , (2.21)
V(T = W27 T

After the inductor current goes to zero, but before the next switching

period, TC < T STSS , the capacitor discharges into the load, and the

differential equation describing the system 1is



x(1) + 2Ex(T) = 0 (2.22)
)Where‘
2b = L
0 wKRLC

The relation between the two damping factors, & and EO’ is
& = §0 + KwKus/Z

and when w‘cus_« 1 (i.e. RS% 0), it is reasonable to assume them
equal, The differential equation, eqn. (2.22), is easily solved, and

the voltage at the end of the switching period is

x('rss) = e"zgo(Tss‘Tc)X(Tc)

When the voltage, x(TC), from eqn. (2.21) is substituted into the

above equation, the result is

(T ) = o 280(Tss- 'rc):{yl HTI%(0) + 3 H(T)%(0) + KE[y, (T - 7)) - 3 1(’rc)]}

The voltage and its derivative at the beginning of the switching

period are related by eqn. (2.22) so that

X041 euzgo(TSS—TC)[Vu”c) - 28y,(T) %,

+ kEe 250(Tss" 7-C)[‘.)’11(Tc" T - (2.23)

The matrix recursion formula of eqn. (2.1) is reduced to a scalar
equation, eqn. (2. 23),,fdr the discontinuous P, W,M. It would appear

that the stability analysis should simplify for the scalar case, but
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. it is necessary to solve for the time at which the inductor current
becomes iefo, Tc' The added equation needed to solve for the time
‘TC‘ is obtained by substituting the voltage and its derivative from

eqn. (2.21) into eqn. (2.22) to give
T (T, KBy (1) = 9,7 - T + 280Dy (7= ) =g (] = 0 (2.2

where the aséumption that & =~ 'EO was used to help simplify the

equation. The on-time, TO’ is defined by the equation

7.O(Xn) = Too * al(xss - xn) (2.25)

Since the voltage and its derivative are not independent, it is only
necessary to have feedback on one.

The above equations, eqn. 2,23-2, 25, completely describe the
system, and they are all that is needed to solve for the equilibrium
voltage, Xop o the time, T and the on-~time, To

KE (T-7) - )T )
_ [y ARRAUA) (2.23)

X
0 Q2Bolss™ T [y (1) - 284y, ,(1)]

st ylzl S{Vlz(” 7,07~ T + 28Iy (- 1) - 3 (]} (2.24)

and

To = Too * 21(%gs = %gp) - (2.25)

A computer is needed to solve these equations exactly. If the
assumption is made that Ts <« 1, then the above equations simplify

to
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FKE(2T T, - 702)
wop © — (2. 23)
28075 £07ss) 2Ty - 46T T,
now
2 5
50 < 1 go = 0
SO
KETO(ZTC- 'ro)
X N v (2.23)
T ¥ 4§O'Tss
and
KETO
X T = (2. 24)
c
The approximate solution for T from these two equations is
LT T - 4T _ =0 (2.26)
c 0c 0'ss )

or

‘TO \/TO 2
Tc = 2 + '—2— + 4£O'rss

The relation between Tc and To is nonlinear. The magnitude of T
is constrained to be less than the switching period, T.g? OF else

the current in the inductor will never be zero.

To To
s 2Nzt <—2_> N %EOTss
or
TO 4¢
IR (2.27)
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- Since the assum‘ption that Tss<< 1 is used to derive the above equa-

/t-ions, the ’danmping factor, §0, can be seen from eqn. (2.27) to be

veryv small (i.‘e. EO_< . 025 for ’l‘SS =,1) even for small values of T..
The equilibrium voltage is given by ecin.i(Z. 24) where 7. is a

function _of TO

KETO
X s = W (2. 24)
and
TO - TOO + al(Xss B Xsf)

If the right hand side of eqn. (2.24) is expanded out in a Taylor

Series, it becomes

KET T, 0T oT
< - OO-I-KE--l-—-—O c O(X B R
sf TCITOOS T TCZ 570 axsf sf ss _
: T. 0oT oT
1 0 c) 0
let S = ~-KE{— -~
(TC ';;2" STO axsf
oT
but axo = —al
sf
and from eqn. (2, 26)
a'rC ) T
aTO ZTC-TO

1o
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alKE 2(1 - TO/TC)

TC (2 - TO/’TC)

The approxi'mate solution for the voltage is then

KET
00
%ss T /s
x . = : : (2. 25)
af 141/
where
a,kE 2(1 - TO/TC)

T Z=7,77)

(o

The form of eqn. (2.25) is the same as eqn. (2.5), but the closed
loop gain is defined differently. The closed loop gain defined by
eqn. .(2.25) will be used in the stability analysis as a figure of
merit for the discontinuous P, W.M,

The stability analysis begins by perturbing the voltage about

the equilibrium point, Xsfb on the n'P switching period.

ox 41 = ¢ 200 280{ly () - 280y (T #KEDy (7T -3y (T

. _ ' o7
+ [y, (1) - 28y, (T ) g + KEDy, ((T,-70) - 35 ()] ’5?; Ox

oT :
0 Ox

-2 (T..-T.) _
+ kEe ">0'ss ¢ (7, TO) _a-%-l n

N2

+ e-ZEO(Tss‘Tc)[yll(Tc) - 280y ()] O,
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o7
C
ox

n

is zero by eqn. (2.22)

The coefficient of

28x(T) + X(T) = 0

and from eqn. (2.25)

The wvariational equation for the discontinuous P.W.M. is then

Ox 1 = e'zgo(Tss'Tc) [Yl Ak Zgoylz(TC) - aKEy (T - To)] ox (2. 26)

The system will be stable if the magnitude of the variation for the
(n-i-l)St period is less than the variation of the nﬂrl period. Since

the feedback is negative, the stability criterion is

-1 < e2BolTesm Ty (1) - 280, ,(7) - 2 KBy (- 7]
or

2(1-7/7) [e?%0ss Tl ay (1) -280y, (0]

S-<
'rc( 2 - TOTTC) ylZ(TC- TO) max

(2.27a)

If the assumption is made that 7, < 1, eqn. (2.27a) reduces to

s < 4 N S (2. 27b)

2 max
'rc (2 - 'rO/'rC)

The value of the maximum loop gain for the discontinuous P, W, M.

is higher than all the others except for the dither stabilized P.W.M.
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- Since there is oﬁly one degree of freedom for the discontinuous
P.W.M., ’si;’nple proportionél control is all that is needed for
good regulatio‘n.

A regﬁla’cor which converges in one step, similar to the

zero matrix P, W.M.,, is obtained by setting

) - 2wl
1 KEylZ(TC— TO)

(2. 28a)

this makes the variation in the (n+1)St iteration equal to zero, see
eqn. (2.26). If it is assumed that T, << 1, then the feedback con-

stant is approximated by

1
The loop gain of this regulator is one-half the maximum loop gain

so that the margin of stability is good.

2.3.7 Minus One Eigenvalue P.W.M.
The discontinuous P.W,M.,, because its recursion formula is
a scalar with negative feedback, was unstable when the (n+1)St

variation of the state, Gxn -became greater in magnitude but

+1?
opposite in sign to the nth variation. The variations oscillate

from one side of the equilibrium point to the other while increasing
in magnitude. The matrix equivalent of the scalar case occurs

when the eigenvalues of the P-matrix are minus one. The control

law for the minus one eigenvalue, M,O.E., P, W.M, is found by



RN R
. equating the determinate of the P-matrix to plus one and its trace
to minus two,

) - o-2ET -2K(7,5-7) “2E(Tyem T (ry
Det.(P) = e SS+a,kEe ss ylZ(TO) -bkEe ss 0 ) 1(’I’O) =1

TR(P) = y; (1)) +y,,(T)) - 2 KEyy (T, = Ty) - b KEy, 5 (7~ 7)) = -2

The solution to the above equations for the feedback constants, ag

and b1 , is

- 1 &35 e - -287y_ 2E(7,-Ty)
afm.{zwfox“e TsScos W Tys) - R AT, - Tl T2~ 570}

_ 1 -£T _ _ 2E(1y5-Ty)_ -2ETg7
bl—m {ZYIZTO)(].‘I'C 58 cos wdTS S) 'yl Z(TSS TO)[e 0 e ]}

(2. 30a)
and when 7 <1
S8
a ) __é:.—.._
1 KETSS bl
_— = TO (2. 30b)
4T 1
b, = 0
1 KET
ss

The maximum closed loop gain for a P.W.M. whose feedback con-

stants are in the ratio bl/a1= Ty can be obtained from eqn. (2. 4b)

-ET -ET, "25(7 -Tp)
l4e 3 ss[z cos (wdes) +e Ss] +a1l{E:{e ss™ 0 ylZ(TSS-TO)

b1
a

1

[e"zzg('rss"ro)y1 AR yZZ(Ts-TO)]} > 0

or
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Fig. 2.10., Voltage Regulation for M.O.E. P.W.,M.
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s < 1 +e_£TSS[_2 cos (wd'Tss) +e"€7-ss]

2.31a)

= - (
' TSS{YIZ(TS‘S“TO) T T Tg) — e 2205 Toj[ylz”o) ~To% 1(70)]}

and when 7 <1
S

4
s < = S ox (2.31b)

SSs

This loop gain, eqn. (2.31b), is the same as the one derived for
the dither stabilized P.W.M., eqn. (2.15b). In fact the ratio of
the feedback constants for the dither stabilized P, W,M. is also
the on-time (i.e. bl/alﬁ 7'0). When 7__ <1, the dither stabilized
P.W.M, approximates the M,O,E. P.W, M.

In fig. 2.10 the equilibrium voltage is plotted against the
input parameters. The load ratio is limited to those values,
RE/RLg 2, for which the damping factor is less than one., At
the lower voltage ratios the P.W.,M, saturates, and the on-time
equals the switching period. The range of the voltage ratio for
which the system is locally stable is large, E/E® = 3.0, when
compared to the other P, W,M., s investigated in this chapter,
The systém converges to the equilibrium voltage from zéro initial
conditions for all values shown in fig. 2. 10 except when the load

ratio is less than point five, RI>:;/RL< . 5.

2.4 Discussion of Results

The general expression for the local stability and regulation,

derived in App. A and B, are used to evaluate the various
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P, W.M. s. The P.W.,M,'s ability to regulate is summarizéd in the
loop gain,’S,h such that a 1afge value for the loop gain means good
regulation, Tiw.e analysis shows that requireme‘rits for good regula-
tion ahd staBility are contradictory, at least for the P, W. M, s
analyzed in the previous section. The loop gain portrays this con-
flict by showing that stability considerations limit the maximum
loop gain, thﬁs limiting the maximum regulation possible. The
maximum loop gain therefore makes a good figure of merit in
comparing the stability of the different P, W.M. s. The ratio‘ of
the loop gain to the maximum loop gain gives a measure of how
stable the regulator is,

The approximate and exact solution for the equilibrium voltage
are compared for a few of the P.W.M. s. The agreement between
the solutions is remarkable considering the assumptions made in
arriving at the approximate soluﬁon. For both the approximate
and exact solutions, the dependence on the load is very small and
is mainly a function of the parameter Kk = 1/(1 +RS/RL). The
reason for this lack of dependence is that switching regulators are
designed to be very efficient so that the ratio of the series resis-
tance, R;, to the load resistance, RIJ,is very small., In the
examples of this chapter the ratio was two percent. The output
voltage is much more sensitive to changes in the input voltage
than to changes in the load. It is apparent that the main function
of vthe buck_-regulators is to regulate against input voltage variations.
An open loop controller which would set the on-time, To0° and

the switching period, T, according to the current value of the

sSS8?
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: input\voltage Wc;uld make a more effective regulator. Such a
controller’ WAould, in effect, éon’cinually update the design point with
respéct to the‘ latest information on the input voltage.

The eﬁact expressiohs for the local stability of the various
P.W.M.s can be adequately approximated by simple formulas when
Tss<<’1‘ These simple formqlas contain much useful information.
They show tﬁat the uniformly sampled voltage P, W, M. does not
regulate as well as the other P, W,M.s. The reason for its
inability to regulate is that it uses only simple proportional control
on the voltage. At very low damping factors, when the current in
the inductor becomes zéro, the matrix equation reduces to a scalar
and proportional control is again effective, eqn. (2.27b). The error
integrating and dither stabilized P.W.,M.,, although they only sample
the voltage, have proportional plus rate control since the control
law contains information on both the voltage and its derivative.

The stability of the dither stabilized P, W.M. depends mainly
on the switching period, Tog? and is almost independent of the
damping factor and on-time., The inpu’c voltage is the only param-~
eter the dither stabilized P, W.M. is dependent on, and that is
because the definition of the loop gain contains the input voltage, E,
If the input voltage could be sampled and the feedback constants
modified to make the loop gain independent of the input voltage,
then the local stability would be independent of all the parameters.
,Méking the local stability independent of the input voltage would

greatly improve a number of P, W.M.s, such as the zero
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: eigen{falue PW., M., whose range of input voltage is limited solely
by stabilify considerations.

| 'O-ne way‘ of modifying the design on-time, Too? in response to
ché.nges in fhe average input voltage, E, is illustrated in fig, 2. 11,
The on-time is defined as the time it takes the control voltage,
VC, to reach a specified level, V. The control voltage is a linear

function of the average input voltage so that

]
=
&3
3

v_(7)

and

1]
=

&=
-—1

v (Tg) 0

The product of the average input voltage and on-time is constant,

and this is the control needed to maintain the output voltage at the

1

desired reference voltage, VR {i. e. VR= ?;;TOE)' The control

voltage can be produced by using a current Generator, a com-
parator, and a capacitor as shown in fig. 2.12. The current, I,
is proportional to the average input voltage so that the voltage
across the capacitor is the control voltage, VC(T). The comparator
turns the switch off when the control voltage reaches the specified

value Vg so that

IcTO .
Vc(TO) = C = Vg

It is also possible to regulate against changes in the load by letting

Ve(m) = Vg + [V -~ V(]
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§ Ve(T)

To Tg

Fig, 2.11. Control Voltage

KE_| FILTER

A - Current Generator
B - Comparator
C - Switch

Fig. 2.12. Control Circuit



. then
1T
c 0 _ :
= ZVR - VO(T)
but
I = KkE
C
SO
_ KKE
ZVR = C To + VO(T) (2.32)

This equation, eqn. (2.32), is the same equation as the control law
for the dither stabilized P.W.M. except E is replaced by E. The

feedback constant a, will be the same as the dither stabilized oﬁe

except for E being substituted for Eb

%1(Tg)

1%?‘ + x(7))

and when : }.;(7'0)‘<< BCE_

Yll(TO)
a_l R erroemminns
k K
-

The closed loop gain for this dither stabilized P.W.M. is

v 1(Tq) :
S = ...1_.];.--9-._ (2.33)
k/C
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_ which is indepehdent of the input voltage, This is one way to make
the stability of the dither stabilized P.W.M. independent of the input
i)ara’meters. This type of control also achieves the desirable

charav‘cterist'i(‘: of modifying the design point on-time, 700’ according

to the value of the average input voltage, E,
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CHAPTER III - BOOST REGULATOR

3.1 Recursion Formula

vThe oﬁtput voltage of a boost regulator is higher than the
input voltage. The voltage increase is achieved by first charging
an inductor and then discharging it into the load. The circuit
configuratioﬂ is different during the charging and discharging part
of the switching period. The charging part occurs when the switch |
of fig. 3.1 is closed. The circuit is then modeled as two first
order differential equations, When the switch is open, the circuit
is the same as that of the buck regulator during its duty cycle. The
duty cycle, D, of the boost regulator is defined as the ratio of the
charging time to the switching period.

The state variables of the boost regulator are chosen to be
the output voltage and the current. The choice of state variables
was madé because the voltage across the capacitor and the current
through the inductor are continuous, whereas the derivative of the

output voltage is not. The state variables are defined as

' 1
2 () RAG
z(7) =
| e (T)
The derivation of the recursion formula is divided into two parts

depending on whether the switch is closed or open,
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- Switch Closed:
The on-time, To? is defined as the time during which the switch
is closed. In this configuration the inductor is charging and the

capacitor is discharging.

diL ' dVv, VO
EzlLRS+Ldt C’H‘E’"L'R—I::O
or
dz(z) 4 Rs Z(2) = KE dz(l) " vz(l) 0
d7 ka dT kaLC
let
2, = ! and H_ = R C
0 w. R.C s s
kL
then
e_ZEOTO 0 _ 0
2(Ty) = =0 g s To) (3. 1)
- - ks
0 e‘Kwku'sTO ' 1

Switch Open:

This con;figuration is the same configuration the buck regulator is
in during its duty cycle. The output voltage and its derivative at
T=1T, is

S

E(Ts) = Y(Ts - To)_}_:_(TO) + KE
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- The transformation which relates the state variables, _7:('1’), to the

vector x(T) is

1 0
o7) = (1)
28y, 1
SO
- 1 0 1 0
T) = Y(7T - T,) (7,)
2 28, 1 s 00\, o ! =0
1 0 1~ (7.~ 7.)
+ KE 1Y% 7 Yo
28y 1)\ M2l%s - o)
FOI'
2T) =
_{Yl 1(75'70)'2503’12(2"70)} {V1z(7s’73}
z(To)

{YZl(Ts- 28y (T T (T T)l-44 g {0 1 iyzz(Ts' o F2EgvdT 70?} )

l-y. . (T-T))
+ KE 11Y's 0
Y].Z(TS- TO) +2 50[1 - Y].l (TS- To)]

substituting eqn. (3. 1) for E.(To) and simplifying
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| z(7) =

o2 o1 O{YZZ(TS; TO) +2(%- 3):0) ylZ(Ts— TO)} o KWk sTy 2] Z(T s--TO)

z(0)
¢ 24070 by ragetonrgt WSOy ry s oy ront

. Vi, (T -T.)
(1-e K@WKHsTo 12''s 0

+ KE
Kwkus

Y]_ 1 (TS_ To) +2 (60" g) Yl Z(TS— TO)

1 -yll(Ts-To)
+ K E

Y].Z(TS——TO)'I-ZgO[l_YlI(TS—TO)]
The relation between the two damping factors, & and £O, is
£ = §0+ Kwkuslz

if the assumption is made that CHUTISS ¢ and W T <K 1, then the
expression for the state vector at the end of the switching period

can be greatly simplified,

“To) N1

ToN2T T + L1 -w(7-7)]
+ KE (3.2)

ToN 1Ty Tg) * ¥ (T =To) + 28l 1~y 1(7,-7()]
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-Eqgn. (3.2) is th;: recursion formula for the boost regulator. A
control law must be given before the state of the system is com-
pletély descril;ed.

| The céntrol laws used with the boost regulator, like those of
the buck regulator, are either linear or can be approximated

adequately by their linear part., The control laws are given by

Tolzy) = Too T a‘l[z(sls) - ZS)] + by[ 22 - zf)] (3.32)
and |
N O IROW R T

where the feedback is on the state variables of output voltage and
inductor current. The feedback constants of the general control

laws will be specialized when analyzing the different P. W.M.s.

3.2 Regulation and Local Stability

The recursion formula and the control law enables the state
to be calculated for any switching period. The steady-state, Zog?
can be found by solving the recursion formula, eqn. (3. 2), with the
feedback constants of the control law, egqn. (3.3), set equal to zero.
The solution for the steady-state without feedback, _?_SSA, is more

easily carried out if the assumption is made that 7__< 1, then



v ' 1 2
_{1 - 2§7’SS - Z(Tss-TOO) } j{TSS—TOO}
Zes ' , 2 Zss
_iTss_TOO j{l h E(TSS—TOO) }

1,2 2

E(TSS-TOO)
+ KE
T
ss
so that
(1) ’
Z_g KE/DO
(3. 4a)
T
(2) 2¢ 00
zss KE —y m
D’
0
where
DO = TOO/Tss

Eqn. (3.4) gives the steady-state for an uncontrolled boost regula-
tor. When control is added, the steady-state solution without feed-
back, Zgg is assumed to be the reference vector.

The equillibriu.m point with feedback, 2 g cannot be solved
analytically, but it can be solved numerically. If the assumption
is made that ‘Ts'<< 1, then the steady-state with feedback, Zog is
given by eqn. (3.4a) with the on-time and switching period now

functions of the state.



KET
(1) o s
(3. 4b)
p
T T
z(z) r KEf2¢ 5 "
sf (T -T )L 2
s 0

In Appendix‘(II. A) eqn. (3.4b) is linearized about the design point
to give

KE

’
ZDO

' KE /D’
() _1.(1) 0 2& Y
“sf {Zss + ""'§"“‘[1 T KE ———5 (by + Djyb,) + [_(Do Dyby

To0P0
(bitDgbo) () 1 4t '
— zss]} / {1 rgl1+kE --——~—'-—3-(bl+D0b2)

ss 0 TssDO

b,] +

2
2
+D02

- KE —;—1—]}

v T
Sl ,{Slzgzs) * "E("éé'z' - ”’%9‘) - 5?2 (a 4D )

D’ T D!

0 ss 0
2.2 a
K°E ' ’ 2 4¢ 19 (1)
“““‘;“Z[a-l(Do‘Do) + Dya, | +"E["""’,‘§(31+D032) -5 lzgt
2D, TssP0
KE y
/st +[1+7 2 (a;+D2 )]} (3.5)
TssDO
KE KZEZDO
S = ———'—-Z(a1+D0a2) + ————'—z-(albz-blaz)
T D 27 D



2_2

" b1 K'E DO
S1 = KE —-—--—--—-(b +D ) —?:- +-—————-sz(a1b2—b1a2)
4 ?
: .T. D 2T D
ss 0 ss” 0

The derivation of the equilibrium point with feedback, Z g Was
done mainly to define the loop gain, S. The loop gain, like that of
the ‘buck reé_ulator, indicates the regulator's ability to regulate.
The boost regulator exhibits a greater dependence on the load than
did the buck regulator because the damping factor, &, appears
explicitly in the expi'ession of the boost regulator's output voltage,
.

The local stability is obtained by perturbing the recursion
formula about the equilibrium point, Zge The wvariation of state of
the (n-l-l)St iteration is related through the perturbation matrix, P,
to the variation of state for the nth iteration. The variational

equation, see Appendix (II. B) for the derivation, is

G-Z—n-l-l = P ﬁgn (3. 6)
where
.{au -a;g, ta hl} {alz g;+byby
P =
_{azl -ag,t azhz} _{azz - byg, T byh,
and
-25070 (1) ( ) '
ylz(T To)z yZZ(T -T )z - KET yzz('r ‘TO)
-ZEOTo (1) (2)
(T 'To)z +y12(T To)z + KE‘TOVIZ(T 7)
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h =

2807 Dy oy (2) |

- T30 0y - T) 42 (- T 2 T To) 2 +REL T (- To) Hyy T 7o)
2£4T v (1) (2)

-e Bl o) Zgg TY10T T 2og WELT, (T-T0) 4y (T-70) ]

The boost regulator will be locally stab1e> if the modulus of the
eigenvalues of the P matrix are less than omne in magnitude.

Before the local stability can be evaluated, the steady-state with
feedback, Zop along with the on-time, Tos and switching period, Tor
must be solved for from the recursion formula, eqn. (3.2), and

the control laws, eqn. (II. A. 1la). The general solution for the local
stability of a boost regulator is obtained easiest with the use of a
computer,

It is possible to simplify the form of the perturbation matrix
if it is assumed that T <<>1. The elements of the P matrix, see
eqn. (II. B. 5a), are then |
Pyj= 2T alf{(Ts"To) ng) - Z(szf) - KET) - az_{[(Ts'To) t24] ZSL‘) - Z(s? - kBTt
p1p= 2y byl gty - alg - af -bllr-r 2l el - 23 - wmr
il a‘1_{Z(s? o) ng)} -a,t zeg +,-T) Zg) - KB}

Pay

AN LR A D SR B RAE P (3. 72)



. 71

. 1f the system is being evaluated at the design point (i.e. Z T2 s,

then the perturbation matrix is

. * 27T ~T % T
g ) 2EF ss 00 ORI 27 ss
pll = all + a1K E { 5 - } + aK'E DO{—-——Z - -2———}

4 2 2 I
D0 D0
- 4 ‘+ b KFE® 25* _ 2‘rss--’rO() + b K*E*b 28 _ Tss
Pio 12 1 2 2 2 0,2 2
D0 DO
- _ sk o skk ’
Py 5 25y - 24K E /D0 a K E DO/DO
(3. 7b)
— el ? b ’ .
Pyy = 2,5, = b K'E /D0 - b,K'E DOID0

The asterisk is used in eqn. (3. 7b) to indicate that the parameters
are the design parameters. The approximate stability criterion for

a boost regulator, eqn. (II.B.7), is

al[zg? + KETb] + aZ[—Zﬁzg? 4-zg? + KETb] - (b1+b2)zg?

| (2) (1)\2

< 28T (3. 8a)

S

when the eigenvalues of the perturbation matrix are complex,

and
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4 +val\'{2[z(si) + KET,] - (TS—TO)Z(Slf)}

+ a2{~[(TS—TO) + 4£] z(slf) + ZZng) + KE(TS-I-TO)}
B bl{zzglf.) * (TS-TO)ZE-;Zf)} B sz{z[ Z(S? - kE] + (TS“’TO)ngf)}
: Z(z) z(l) Zl |
+ KZEZ‘albz—blaz) {(K;f + 70) - 25(-}%) ’ > 0 (3. 8b)

when the eigenvalues are real. The stability criterion, egn. (3. 8),
has been derived, see App. (II. B), by neglecting terms of order T
multiplied by the damping factor, & The stability criterion is valid
to second order in T only when £ < 7. In the next section the
general expression for stability will be used in ev'aluating some

P, W.M.,s.

3.3 Comparison of P.W, M, s

3.3.1 Uniformly Sampled Voltage P, W.M.
The feedback constants of the uniformly sampled voltage
P.W.M, are all zero except one. The control law, when only. the

on-time is varied, has the form

Tolzy) = oo * 2il7gg - 7, ]

and the closed loop gain is defined as
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- The maximum closed loop gain for which the regulator is locally

stable ‘is given by ean. (3.8a) which reduces, for this P.W.M., to

2§ -
A ) * Shnax (3. 92)
’ sf
e

If the system is evaluated at the design point, Zos T Egp then eqgn.

(3. 92a) becomes

2 max

S < = S (3.9b)

The maximum loop gain is small and it can never become larger
than one (i.e. Tsslé* &~ 0). The buck regulator, in contrast, exhibits

much better stability, eqn. (2. 5).

When only the switching period is varied, the control law is

e

and so the loop gain is
’
TSSDO

The maximum loop gain for the variable switching period P.W.M,

is



26D,
5= 222 A0 ¥ Smax - (3.103)
’ sf sf
Dy [K'E“ - 28 % +To]

and when Zog T Zgp €AD. (3. 10a) reduces to

—sf

s < g (3.10Db)

)
D0 7-ss

1+ :
4 g:,:

The stability of the V.S,P. controlled regulator is no better than
that of the V,O,T. regulator.

The uniformly sampled boost regulator is more unstable than
the uniformly sampled buck regulatqr. The reason for this can be
seen by comparing the perturbation matrix of the two regulators at
the design point with 7 «K'1l. For variable on-time control, the

perturbation matrix of the boost regulator, eqn. (3. 7b), is

e 2T ~T
s [ 28F ss 00
{all + all{ E ( 5 - > )} a12 v

Dl
0

’ Stk 4 :
{a21 L /DO} _ I
and for the buck regulator, eqn. (2.3), it is

{Yl l(TS) - alK'.‘E P(TS" To)} ylz(TS)

AAREN e %2(7)
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The boost r'eguiator has, for the damping factor, &¥, sufficiently
large, pOéitAive feedback on‘the voltage whereas the buck regulator
alwéys has négative feedback., The positive feedback results from
the c1‘1.rrent‘ buildup in the inductor, zfszf), as shown by eqn. (3.7a).
If the Voltage is high at the beginning of a switching period, the on-
time is decreased so that the time the inductor is charging the
capacitor r’nﬁst increase. The result of this increase in charging
time is to increase, not decrease, the output voltage at the begin=~
ning of the next switching period., It seems feasible that making the
switching period proportional to the change in on-time might solve
the problem., In fact, if the feedback constants were

a, = %L | (3.11)

0

the dependence of the perturbation matrix on the damping factor
would Be eliminated completely and thé stability improved., How-
ever, with the feedback constants related by eqn. (3. 11), the loop
gain, eqn. v(3° 5), is zero and the regulator does not regulate, As
in the case of the buck regulator, it is necessary to go to propor-
tional plus rate confrol to improve the st‘ability of‘ the boost

regulator. The rate control is obtained by using feedback on the

inductor current,

3.3.2 Zero Eigenvalue P.W.M,
The zero eigenvalue P, W.M. utilizes proportional plus rate

control, and it achieves better regulation than the uniformly
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sampled voltage P.W.M. The two equations needed to solve for the

feedback constants, 2y and bl’ are obtained by setting the deter-

minate and the trace of the P matrix to zero,

’

Det.(P) = 1 + a KFE 28", i - b K*E*/DI = 0
St B 1 Tz T2 1 0o

Do
(3. 12)
w 2T ~T
= L i ZE"‘ _ 55 00 _ ksk .
TR(P)—2+a1KE('2 5 ) b k*E®/Dy = 0
Dy

The solution of eqn. {3.12) for the feedback constants is

17 ‘ﬁSLF‘“
: ‘ ss
uts ’ 2
b, = 28 + Dy (1,54 Tgo/2)
K*E:{:D(I) TS s

Unlike the zero eigenvalue P, W.,M., for the buck regulator, the

feedback constant, bl’ of the boost regulator depends explicitly on

the damping coefficient, ’g’*. The closed lboop gain, eqn. (3.5), for
this P.W,M, 1is

and at the design point this becomes
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S = —— (3. 13)

This closed loop gain is very similar to that of the buck regulator's
(i.e. S = l/Tszs)°

Thé zero eigenvalue P.W.M, is locally stable at the design
point, Zogt If the parameters change, the equilibrium point will
change as will the steady-state on-time, To» and switching period,
T.. The local stability is g‘iven by eqn. (3.8) when T, 1 and
¢ < T, for any equilibrium point, but it is not easy to see what
changes in the parameters will cause the system to become locally
unstable.

In fig. (3.2) the equilibrium voltage of a zero eigenvalue
P.W.M, is plotted against changes in the parameters, The system
is locally stable and converges from zero initial conditions to the
equilibrium voltage shown. The upper limit to the voltage‘ ratio
results when the input voltage exceeds the desired output voltage,
but all other limits are due to bthe system being unstable, The
dependence of the boost regulator on the load is much more pro-

nounced than that shown by the buck reguiator.

3.3.3 Minus One Eigenvalue P, W, M,

_The feedback constants, a, and b,, for the M,O.E, P. W M.

1 1’
can be solved for by equating the trace of the perturbation matrix

to minus two and its determinate to plus one. The equations to be

solved are



PO ’ " =79-

!
DO

DET {P) = 1 + a K*E* 28" +----_T00 - b K*E¥/D! = 1
ol 1 —Z ' 72 1 0o

o 7 e ZT "'T
_ ) Zg"‘ _ SS 00 SRk ’ —
TR(P)—2+a1KE( > 5 )_ble/DO——Z

’

Dy

and the solution is

1 R ERT
K S S

(3. 14)

2
0 0 Tss)

>.:.~I
KEDOss

2048 +D

SO

o

2§*+ 070 'ss

F
Dy

)
[e—

The feedback constant, b, is dependent on the damping factor, £,

The closed loop gain for this P, W,M. evaluated at the design point

is

- 4 ‘ '
S = z Smax (3.15)

The form of the loop gain for the boost regulator is very similar
to that of the buck regulator (i.e. S = 4/TSZS)." The loop gain derived
is fhe maximum loop gain so that the regulator is only marginally
stable. The feedback constants must be decreased in order for the

regulator to operate effectively.
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The closéd loop gain, S, was derived by assuming that
g = T méking the gTS ternis second order, This assumption is
partly justi_fie‘d by the fact that the Pyj and p;, components of
the pérturbation matrix, see eqn. (3.16), exhibit positive feedback

when the damping factor is large.

% 2T - T
s | 2EF ss 00
Pi1 al + a,k E - 5

I

(3. 16)

% 2T - T
+ b K*E* 28 .

1

Pio T 212

In fig. (3.3) the maximum closed loop gain, Smax’ does drop off
as the damping factor, §*, increases.,

In fig. 3.3 the approximate and exact expression for the
maximum loop gain is shown., These expressions diverge when fhe
damping factor, &, becomes comparable to the switching periods

(i.e. when & -~ Teg © .2) so that the higher order terms are not

s
negligible. The exact solution for the maximum loop gain is
obtained using both the approximate, eqn. (3.14), and correct
values for the feedback constants. The maximum loop gain for

~ both sets of feedback constants drop off for the higher damping

factors. This decrease in the maximum loop gain for the higher
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- damping factors‘ (i.e. &= ’TSS) is attributed to the problem of posi-
tive feedbécl; as discussed i.n Sec, 3.3.1., The series resistance,
R, 1s made zero to make certain that w b << §

The local stability of this P.W.M. is very sensitive to changes
in parameters. Small changes in the parameters from design
conditions causes the system to become unstable. This behavior
is in contras;c to the M,O,E, P.W.M. of the buck regulator which

was stable over a wide range of input parameters, see fig. 2,10,

3.3.4 Zero Matrix P. W, M

The feedback constants for thé zero matrix P, W.M, can be
solved for by making the perturbation matrix equal to zero., If it
is assumed that 7, XK1 and £ < T then the elements of the P-matrix
given by eqn. (3.7b) can be used to give an approximate value for

the constants. The feedback constants are

2

K*E*D! T
0'ss

a ~
1

- - (3.17)
K*E*D DT

Q

and
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2

o ’
48 +D D! T
b, & - 0 02 3 (3. 17 cont.)

[OSEON 4
“E*D. D
K 070 Tss

where the asterisk denotes the design parameters, The loop gain

is given by eqn. (3.5), and its value is

(3. 18a)

since

a, +Doa2 ~ 0

At the design point the loop gain simplifies to
S = —_— (3. 18b)

The behavior of the zero matrix P, W. M, for the boost regulator is
very similar to that of the buck i'egulator. In fact, the feedback
‘constants on the voltage, a, and ass of the two regulators are the
same, compare eqn. (2,19b) with eqn., (3.17)., The regulators also
};ave a loop gain Wﬁich is dependent only‘on the product of the
feedﬁack constants, compare eqn. (2.20a) with eqn. (3.18a), and is
equal to the loop gain of the zero eigenvalue P, W.M.

The local stability of the zero matrix P, W.M. is very sensi~-
tive to parameter changes, see fig. (3.4). The system is also
globally unstable at the design point. In addition to these drawbacks

the on-time and switching period undergo large variations for small
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. changes in the equilibrium state. This behavior is similar to that

found for the Zero Matrix P.W.M. of the buck regulator.

3.3. 5  Discontinuous P. W, M,

In ref. [10] the operation of a discontinuous P.W.M, for a
boost regulator is explained. The inductor current waveform of
this P, W.M. ‘, fig. (3.5), shows that the end of one switching period
and the beginning of the next one occurs when the current becomes
zero, Thev switching period, TS, is therefore not constant and

depends on the on-time, 7 This situation is different from that

0
of the discontinuous P, W.M. for the buck regulator whose switching
period was constant, see fig, (2.9). Since the inductor current at
the beginning of each iteration is always =zero, the recursion for-

mula, eqn. (3.2), can be modified for the discontinuous P.W.M. to

give

- 28T _ ’ _ _ _
ntl - © Voo~ Tz, + KE{TOYIZ(TS ) +[1-v 0, TO)]} (3. 19a)

2t
= %00 ) 2, * KE{TOYII(TS- To) + ¥l T) + 2811 - 3y, (7- To)]}
(3. 19D)

with the on-time given as

TO = TOO + al(zss - Zn) (3. 19¢)

The first equation, eqn. (3. 192), is the recursion formula for the
output voltage, z - The second equation, eqn. (3. 19b), defines the

switching period, T while the on-time is given by eqn. (3. 19c).
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The equilibrium voltage, Z g along with the switching period
and on-time can be solved for from eqn. (3.19). If the assumption

is made that T, < 1, then the above equations can be reduced to

KETS
.Zsf = -(-7—_;—;—5:5)- (3. ZOa)
T AT - T )% - 4572 = 0 (3. 20b)
0''s 0 s .
and
Ty = Too + al(zss—f Zsf) »(3.20c)

Since eqn. (3.20) is valid'for any equilibrium point including the

design point, the equilibrium voltage without feedback is

I{ETSS ,
z Z e = KE/D
ss Tss_TOO 0.

When feedback is used, the steady-state on-time and switching
period become a function of the equilibrium voltage. The linear

part of eqn. (3.20) is

T T o7 | oT
z . = KE/D! + kE S - 00 s 0 (z .~z )
sf . 0 ( -7 )? (T -7 )2 ar |1 sf “ss
ss” 00 ss~ 00 0f%%s

and from eqgn. (3.20Db)

U557 To0) ~ Too
4
270" 8§/D0

aTs
Ty =

with
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BTO
. = ~a
Ezsf. 1

The approximate equilibrium voltage can now be solved for, and it

is
KE /D!
zZ + 0
_ ss S
Zsf 1
1+ %
where
,2
a.kE |3D.D, 7. _ - 8¢
5 = —L |2 0, SS (3.21a)
7. D! | 2PgPo7%s ™ 85
ss 0 v

The closed loop gain, S, is a function of both the input voltage, E,

and the damping factor, & At the design point eqn. (3.20b) can be
used to eliminate the damping factor, £, so that

. aIK*E*
(3. 21b)

4
2DyDy T

S =

The closed loop gain, eqn. (3.21), will be used in the stability
analysis.as a figure of merit for the discontinuous P.W.M,
The stability is determined by slightly disturbing the voltage

on the nth switching period. The variation in the voltage at the

beginning of the (n-!-l)St switching period is, from eqn. (3. 19a),

+ h. —S

_ aTO oT
6z 41 % it 19z, " M oz, (3.22a)
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(2)

‘where and h, are given by eqgn. (3.6) with the current, z. ., set
g1 e | g _ st

equal to zero. The partial derivatives are determined from eqn.

(3. 19a & b)
B’Ts ) _a21 _i’: 87‘0
azn h2 h2, oz
and
Mo,
0z, 1

The variational equation, eqn. (3.22a), reduces to

1
n+l h2

6z = ——-.{(allhz— aZlhl) - al(glhz— gzhl)}ﬁzn (3. 22hb)
If the magnitude of the variation in the voltage for the (n+1)St
switching period is less than that of the nth switching period, the

system is locally stable. The system will be stable if

1
-1 < E’Z‘_{(allhz" ayihy) - aylg b, - gh)
or
(a;;h,-2a,,h,) + h
al < 1172 2171 2 (3.232)

(g)h, - g,hy)

If the assumption is made that T <« 1, then the terms of eqn. (3.23)

are approximated in App. (IL.B), and the étability criterion is

2[1 - 22T+ TO)]ZSf - 2(1 - ET)KE

2
KkE® {70-25[1 - 21 +7)] (T{—SEf) }

) (3. 23b)
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At the design pdint the stability criterion reduces to

s < . 1

2 lz ES '2
7..Dy [Do— 2E%/(Dy ’T’SS)]

ate
>

and after eqn. (3.20b) is substituted for the damping factor, s

it becomes

$ < —Ffe ™S (3. 23c)

ssDODO

The maximum closed loop gain for the discontinuous P.W.M, com-
pares favorably with the other P, W,M.'s, Since the recursion
formula reduces to a scalar for this P.W.M., good regulation is

-achieved with only proportional control.

3.4 Transformer Coupled Regulator

In some practical applica’cioﬁs the input and output voltage of
a boost regulator are coupled through a transformer as shown in
fig, (3.6). G. W. Wester analyzes a transformer coupled boost
regulator in ref, [13]. The current in the transformer, as can be
seen in fig, (3.7), is discontinuous but operates in a continuous mode.

The ratio of the currents before and after the jump can be
determined from the laws of conservation' of flu}; and charge, The
“following definitions are needed for the analysis.

¢

¢>1 = magnetic flux associated with L,

i

total magnetic flux associated with the transformer
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magnetic flux associated with L,

©
o
|

M = rw/"fflgl_.—é = mutual inductance

r = >ra‘tio of flux reaching L2 from Ll to flux generated
‘in L. The transformer is said to be perfectly
coupled if r = 1,

L o= L+ L, +2M

L
Switch-on: ¢ = ¢ = -N~l-il i=i  i,=0
1

Switch-off: [0)]

I
©
-
e
-
2
[
1]
ok
ot
1
o)
v

<
1]
A~
A
+
Nz‘ N3
S— N

It is easy to show that if the magnetic flux is conserved (i.e. ¢

is constant), then the following relations must be true,

NZL
i(7,) = i (71.)
0 N2L1+N1L2> 1'°0
and -
L (0) = NZLI + NILZ 0)
1 NZLI

If the state variables, z,» are defined to be the current and voltage
at the beginning of the on-time, To just prior to closing the switch,

then
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Z;([12)(TO) = equkp'S“LTO Z(z) + m’)/'E (1 - e—Kwk“S’J'LTO)

n wkus
where
' L
By = 1
L L1
and
o Nty
NZLl + NITLZ

The recursion formula for the transformer coupled regulator is

slightly different from that given by egn. (3.2).

~2ENT
070 _ -
e V2T~ To) Y275 Tp)
Z 41 = Z (3. 24a)
B ~2807,

e %ilTs-Te) N1l T

B Ton AT To) + [1-y (7~ 7]
+ KE : ’

' ,
B Ty 1Ty To) + yp(T - To) + 28 [ 1 -y (7 - 70)]
let
N, L

4
y = by o=
L NZLv1+NlL2

80 Y = (N1+N2) /N1 for a perfectly coupled transformer (i.e. r = 1),
The recursion formula can be written in a different and interesting

way as



—Zg TO
e 0 yZZ(Ts_-TO) ylz(’r 'r)

Zn+1
B =28y
e 0 YZI(TS—'TO) N l(Ts—TO)

TovialT- o) +1 1=y (7= 7]
To 1T~ To) + 9 (75~ Toh + 28011 - vy (7 - )]

le(’r T)

+ (y-1)KET (3. 24hb)

0

11{7- 7o)
When the parameter 7 is equal to one, eqn, (3.24) is the same as
the recursion formula for the regular boost regulator, eqn. (3.2).
However, when ¥ is not equal to one, the added forcing term is
like that of the buck-boost regulator, eqn. (4.3). Since the analysis
has already been done for the boost and buck-boost regulators, the
analysis for this regulator is made much simpler.

The a_pproximate steady-state vector without feedback, Zogo

can be solved for from the recursion formula

KED
2 = KBy oy 0
S8 D' DI
Do 0
(3.25)
T T
2) _ 28 To0 i 2t Tss
ss - ME\—=% ~ 7 ) T (r-DKED( =25 - 5=
Do Dy

If y is set equal to one in eqn. (3.25), the steady-state vector for

the boost regulator, eqn. (3.4a), is recovered. When ¥ is greater
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than one, the added term is the steady-state vector of the buck-
boost regulatbr, eqn. (4.5), multiplied by (y-1). The steady-state
Vbltage given above, for a perfectly coupled transformer, can be
rearrahged to have the same form as that derived by G. W. Wester
in ref, [13]. If the recursion formula is linearized, and the
assumptién made that T, <« 1, then the closed loop gain for this

regulator is-

2. 2.2
s = YKE (a+Da)+Z—f_:E_?_9.(ab-ba)
: '2 1 072 ,2 172 172
7T D 27T D
ss 0 88 0
and
2k 2&(1+DO) bl
S1 = gE -——-;-z-(b1+D0b2) + YKE —"'":'3"".(bl+D0bz) - =
T D 7T D
ss 0 ss= 0
'}?ZKZEZDO
+ — (a;b, - bjay) (3. 26)
27 D
ss” 0

The expression for the closed loop gain of the regulator, eqn. (3.26),
is-very si_rnilar to both the boost and buck-boost regulator, eqn.
(3.5) or eqn. (4.6).

The variational equation for the transformer coupled boost

regulator is

Oz

LI Pﬁg_n (3.27)

where
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L+ b,h )

{au - ag; aZhl} {312 b8

{a g, T ayh } {azz - byg, bzhz}

It is relatively easy to form the vectors g and h from eqn. (3. 6)

of the boost regulator, and eqn. (4.7) of the buck-boost regulator;

SO

20Ty rm)2 D -y r-n) 2D - ykET A1) t (- )KEy (T -T,)
g =

e’ngToyll(Ts-TO) zg? Y, T, )z( )+W{E ToYi2 T To) T (71 KEy;, (T~ )
and

& 200y - 1) 428 ol )] ey dr o) 2 Bl Tyt T) )
h=

(2)

2807y (D)
-e V2lTs~ oY 25 1951 To) 2 ¢

HELY Ty ) 49110, T) ]
If it is assumed that T, < 1, then the above expressions simplify to

(r-7 )z (1) - Tr-ze - 7] ()-KE(T - 1) + Y KE(T, - 27)

(1-25 )z( 1) +('r ’T)z( 2) + (y-1)KE
and
-l - 7)) + 281 - 287 z(s? +[1- zg(fs- 1] z(s? + kE[T + (y-1) 7]
o -(1 -ngS) zglf) - (Ts )z(z) + KE
At the design point, z_.=2z__, and for T < 1, the elements of the

S S

perturbation matrix are
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sk 2T -7 )
. L e 254 ( 58 00
pyp = 2+ K E =z [1+('y—1)D0] -y 5
Dy
B ’}/TSS
+ a,k"E"D, ——7 [1+(')/-1\D ] - 5
Do
: % 2T - Tnn)
- w_s | 2 ( ss 00
P, = 2y, T bk E = [1+(7-1)D0] -y —
D,

+ b K*E*D 2¢" [1+(y-1D,] " s
2 ) Y-43pd1 -

. Z
Dy

_ PO ’ I * !

Py; T @y - 2K E ')//D0 - &,k E 'yDO/DO

_ _ sk r L Pk ’

Py, = 2,5, = bk ETY /Dy - b kE ¥D, /Dy,

The above expressions always reduce to the corresponding quan-
tity of the boost regulator when ¥ is set equal to one.

The transformer coupled boost regulator will be locally stable
about the equilibrium, Zogo if‘and only if the moduli of the eigen-
values of the P-matrix are less than one. The determinate of the

P-matrix is

Det. (P) = Det.(A) + al(alzgz- azzgl) + az(azzhl - alzhz)

+ by(a )t b,la

21817 2118 1Ry - 3p1h))

t (a;b, - bjas)(hg, - gh,)
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. If the assumption is made that Tss<< 1, then the coefficients of the

feedback constants in the previous equation become

: - = - (2)
21282 7 22281 ° [1-28(1,-T) =y + vKET,

aZZhI - athZ = —Zf(l-Z‘g’Ts)zg:lE) + [1~_2£(TS—TO)]Z(SZf) + ')/KETO

2,8, - a8, = -lL-28T 4] - (12870 1kE

21102 - 221 T “[1‘2'5(75+70)]Zg? t (1-2£7)KE

and

2 Z(?})
_ 22 S \
hlg2 - glh2 = KE {'y TO + y[l-ZE(TS—TO)](—-——KE )

(1), 2
- 2g[1-281+ 7)) (%) }

The stability criterion for the transformer coupled boost regulator

when the eigenvalues are complex is

al[z(s? + YKET,] +a2[-2§z$) + zg) + YKET,]

-.(bl+bz)zg? + kE[b, - (y-1)b,]

) (2) (2)_2
+ KZE (alb2 - blaZ) {'y ['y’ro+ K;:f] - zg[Tst-] :
< 2%T (3. 28a)

S

and when the eigenvalues are real the stability criterion is
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4+ aL{vz[ A2 4 ykeT ] - (T-T) Y - (ke - T}
4 éé_{—A{(TS—TO) +4f] z(slf) + ng + ke[ 7, + (2p-17 ]}
. b, 12[ z(s? +(y-1kE] + (TS—TO)Z(S?}

- b {2[2(1) - kE] + (7~ 'TO)Z 2)}

o (2) A1)
+ KzEz(alb -b az){ ['yTo-!- —%] - zg[KEf] } > 0 (3.28b)

The stability criterion given by eqn. (3.28) will reduce to that
given by eqn, (3.8) when ¥ is equal to one. This stability criterion,
like that of the boost regulator, is only valid to second order in

7. wh <T.
Sweng\s

3.5 Discussion of Results

In this chaptef the same analysis which was done for the
buck regulator is done fo:f the boost regulator., The recursion
formula is derived, and then the general expressions for the
regulation and local stability are obtained. It is found that a
closed loop gain can be defined for the bbos-t regulator which plays
the éame role as the one defined for the buck regulator. The
actual definitions of these two loop gains. are véry similar,

Comparisons between the buck and boost regulators are also
| possible when examining the different P. W.M.s. The loop gains of
the zero eigenvalue, zero matrix, and M,O.E. P, W,.,M.s of the

2

buck regulator differ only by a constant, D(') , from the
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‘correspondin'g quantities of the boost regulator., The loop gain of
the zero éigenvalue and»zer(.) matrix P, W. M. for the boost
regulator are ‘identical as they also are for the buck regulator,
The fact that they are equal is surprising since the feedback con-
stants ‘of_ the two P, W, M.s are dif:fereﬁt. The feedback constants
on the voltaée of the three P.W.M.s mentioﬁed above for the
boost regulétor are identical to those of the buck regulator,

The similarities between the two regulators are many, but
there are also a number of contrasts, .The equilibrium voltage
of the boost regulator showed much more dependence on variations
in the load than did the buck regulator. The dependence of
stability on the input parameters was much more sensitive for the.
boost regulator than was observed for the buck regulator., This
difference in sensitivity is dramatized by the M.O.E, P.W.M.,
which was stable over a wide range of input parameters for the
buck regulator but showed virtually no range for the boost regu-
lator. The biggest difference between the buck and boost regulator
is that the boost regulator exhibits positive feedback for the
higher damping factors. In fact, the simple expressions derived
in this cﬁapter are valid only for small damping factors (i.e.
the assumptions are TSS<< 1. and § < Tss)’ If the damping factor is
made large in comparison with the switcﬁing period, the expres~

sions derived are not valid, and the stability is decreased.
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CHAPTER IV - BUCK-BOOST REGULATOR

4.1 Recursion Formula

The buck-boost regulator can regulate an output voltage which
is either lower or higher than the input voltage. It therefore acts
both és a buck and a boost regulator, When the switches of fig.
4.1 are closed, the buck-boost regulator is in the same configuration
that the boost regulator is in during its duty cycle, and when the
sx&itches are open, the configuration is that of a buck regulator not
in its duty cycle. The derivation of the recursion formula proceeds
in two parts depending on whether the switch is closed or open. The
state variables, like those of the boost regulator, are taken to be

the output voltage and inductor current,
Switches Closed:

The time the switches are closed is denoted as the on-time, TO’ and
the duty cycle is defined as the ratio of the on-time to the switching
period. The differential equations are the same as the boost

regulator during its duty cycle, so the solution is

e—z§070 0

0
E(TO) = _Z_(O) + Q)E[l (l-e'-Kwli‘s?b) ( ) (4. 1)
0 e”“"k”sTo k''s . .\1/
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" Switches Opén:

The ‘output voltage and its derivative for this configuration is the

same as that of the buck regulator with no input voltage.

(4. 2)

*(7) = YT,-T) (7))

The transformation which relates the state variables, z(T), to the

vector x(7) is

1 G
z(7) = x(7)
&50 1
so
1 0 1 0
z(T)) = Y(T.-7T,) z(Tn)
Vg s 0 -0
2, 1 -2¢, 1
and after‘ eqn. (4.1) is substituted for _Z.(T())
21 =
~2E4Ty ) _ -k s Ty -
& 20T0dy i T ralt- £ T e Vi)

| z(0)
2800y (o) tatg - S &S Oy s Byt Tt

Vi (T.-T))

12¥s 0

+ _E (l_e-xwkp.s'ro)
wk”s

¥y T 20 - By (T T)

If the assumptions are made that w, U X £ and w B T <1, which
are the same assumptions made for the boost regulator, then the

above equation reduces to
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-2E0TH "
e 00y, (-7 0T PAURKAY

—Z-n+ KETO (4. 3)

Z = ‘

—n+1 25 -

. - 0 O ~ - R -

e 7200y T -T) vy (T ) 15T

Eqn. (4. 3) is the recursion formula for the buck-boost regulator,
It is very similar to the recursion formula of the boost regulator,
eqn. (3. 2).

- The form of the control laws used with the buck-boost regula-
tor will be the same as the control laws used with the boost

regulator, These linear control laws are

Tolz) = Too+ 2yl - A N] ¢ b [2 - zf)]_ (4.4a)
and
Ts(En) = T, + az[zill) - Z(sls)] + bz[ Z:E12) - Z(SZS)] (4.4b)

The feedback constants in these control laws will be specialized

later for the various P, W.M.s analyzed.

4.2 Regulation and Local Stability

The steady-state with feedback, Zogr €D be calculated from
the recursion formula, eqn. (4. 3), with the feedback constants set
equal to zero. If the assumption is made that T < 1, then the

recursion formula can be approximated as

1 2 ,
{1—257;55- E(Tss—TOO) } {Ts s_TOO} (7~ 'TO)
Zss ” Zgs T KETO °

—{Ts s 1o O} {1 -2 (Ts s 7o 0) 2} '
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- so that

A1) ~ (D /D!
(4. 5)
-
(2) 2¢ 58 '
Zgq EDol =2z - =
Dy
where
Dy = Too/Ts

Eqn. (4.5) is the steady-state for an uncontrolled regulator when
T <<'1, The reference vector for the controlled regulator is taken

to be the steady-state of the uncontrolled regulator, Z -

The steady-state with feedback, z can only be solved for

f’
with the aid of a computer, An approximate solution, eqn. (4. 6),
is derived in Appendix (III, A) for small changes in the equilibrium

on-time or switching period and when Ts<< 1.

,
1) ‘(”.¥KEDO[D0 L+ cED __Eém_u,+p bt KED, (b, +b,
Sf g 0 3 2 ? 2
L ’ D
7. D 0
ss— 0
(by + Dyb,) i
+———-——————-—-—2~z(szs) / 1+-S]i 1
. 4
7,sPoPg il ,

25(1+D0) bl
+ KE "“”““T(b1+D0b2) - =



A ' T 2¢D
(2) _ (2) 2£ ss 2.2 0
25t = S l%ge T HKEDG| =z - =) - KET ———(a;#Dga))
DO TssDO
KZEZDS a1+ Doa2
ZDO TssDO =
[25(14D ) a
. 0 1Y) (1)
KE[———3 (2" Doap) - 5~ J7gs
TssDO
: (4. 6)
a.+D a
S1+ |1+kE ._1._._9_2_2.
!’
TssDO
KE: ”ZEZDO
S = -——-—-—-—--—-, > (al-l- DOaZ) + , > (albz—blaz)
TssDO 27_ssDO
2(14D ) b, k“E%D,
= - b o —— -
§1 = KE|—empe (b;#D b)) = — > (ab,-bja,)
7 D! - 27 D!
ss— 0 _ ss— 0

The closed loop gain, S, of the buck-boost regulator is defined the

same as the boost regulator's, The buck-boost regulator also shows

the same sort of dependence on the load as the boost regulator does,

In fact, all the comments made about the equilibrium voltage of the

boost regulator can also be made about the buck-boost regulator. -
The variational equation of the buck-boost regulator, see

Appendix (III, B) for derivation, is

0z +1 = PGEn | (4. 7)
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where

B {a), - aggy v anyt dag, - bigy + bhyd
P =
{a21 - ag, t azhz} {azz - big, bzhz}
and
280 oy D oy (@ B
e N2~ T 2t = Yool =T 2 g + KELy o1 - T) = T3, (7, -7
g:

2ty oy (D), @
e Oy, (T =Ty zeg + ¥y (T~ T 2l + KBy (T -T)) + Ty o7 - -]

(2)

-2E07 (1)
~e [y, 1) + 280y, (T-T) 7 +9,, T -T)) 2 HRET Y, 5 (T-T)

=
i

_e'“z%OTO Y (7-

o TO) (1)+y,)1(7' O)Z( )+KET yzl(T 'r)

f

The local stability of the buck-boost regulator will be guarantéed if
the modulus of the eigenvalues of the P matrix are less than one.
The elements of the P matrix can be simplified, see eqgn,

(III. B. 5a), if it is assumed that TS<< 1,

Ppp T 2117 @ {(T TO) (1) ng) + KE(TS-ZTO)}
ST AR RT3 P L et
Py ~ alé B bl{( - o)z(l) (S? t KE(TS—ZTO)} (4.8a)
- vl - r2glay - B - e )
P21 T %21 ° al_{;zé%f) * (Ts"To)Zi:zf) + kE} - 'QZ{ZL? + (1722}
Paz = %22 bl{z(slf) + (E“'To)z(s?f)"‘ KE} - b { (1) + (7~ }
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- When the system is evaluated at the design point (i.e. Zo T Z ),

—-~8S

the perturbation matrix is

P11

- Pa2

The

. 28D, (2-D )T (28%D . T |
- g, 0 0’ ss T ek 0 Ss
et Ry - T Akt E Dy |5~ - 3
Do . L Po :
28D, (2-D )T | B
_ ksl 0 0’ ss ok 0 SS
= 1.,+be 5— - > +bZ/{ED0 = " 3
D, D,
0 . L0 .
— ok SRk ’
= a,y - agk E /D - a,k E DO/DO | (4.8b)
= - SR Iy ek ’
= a,, = bK'E /D0 b, K*E DO/D0
asterisk in eqn. (4.8b) indicates that the parameters are the

design parameters. The approximate stability criterion for the

buck-boost regulator, eqn. (III.B.7), is

aIIZ(s?E + KE’J‘] + a [ 2§z( ) + 2(2) + KETO]

: (1) _ |
- (bl'l-bz)zSf - bIKE

. ,(2) A1 e
+ k°E%(a b -ba,) {(ﬁé.. + 'ro) - 2% _K%ff_ (1 + 725.)}
< 2fT, | | (4.92)

when the eigenvalues are complex, and
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4+ al[yzzﬁ) - (TS—TO)Z(S? - KE(T,-37,)]
¥ a‘z{‘-[(Ts—TO) +ag]dD + 2,2 ¢ 2y}

- b l22) + 2kE + (7-7)2l8] - b 22D + (772

(2)
0/ “sf ]

. %) (1) e)
+ KZEZ(a b,-b,a,) {(_,fé_ + ‘TO) - 28 (1+ _Esé_)}
> 0 ' , ' - (4.9b)

when the eigeﬁvalues are real. The stability criterion given by

eqn. (4.9) is only valid when T << 1. The stability criterion for the
buck-boost and the boost regulators are rémarkably similar {i. e,
compare eqn, (3.8) and eqn. (4. 9)]. The equilibrium point, z of?

is of course different for the two regulators. The stability criterion,
eqn. (4.9), is valid to second order in 7, only when &< T.. In the
next vsection the general stability equation will be used to evaluate

some specific P, W, M, s,

4.3 Comparison of P,W.M. s

4.3.1 Uniformly Sampled Voltage P. W.M.
The control law for the uniformly éampled voltage P, W, M.,

with only the on-time varied, is

Tolzg) = Too * al[ I

The closed loop gain defined by egn. (4.6) is



The maximum closed loop gain is given by egn. (4.9a) which reduces

to

s < 28 ~ S (4. 10a)

max
, 277
Do \7em * 7o

When the stability is evaluated at the design point, 2o T Zopo the
maximum loop gain becomes
s < ! ~ S (4. 10b)
max P

2
D! T
p {1+ -2 58
o\!" —zEF

The maximum closed loop gain of the buck-boost regulator in eqn.
(4. 102) is the same as thatvof the boost regulator given by eqn.
(3.92a). The equilibrium current, z(szf) , however, is different for the
two regulators and that is why eqn. (4. 10b) and eqgn.. (3.9b} are not
the same, |

The control law for this P, W.M., when only the switching

period is varied, is
- (1) (1
Tlz) = Tt aZ[ n T Zgg ]

S

and the loop gain, eqn. (4. 6), is



The maximufn closed loop gain for the buck-boost regulator is

2D,
-5 < S (4. 11a)

2( 2 AV e
’ S S
D, (——-E-K - 2¢& on T

Q

which is the same form as the boost regulator, eqn. (3.10a). At

the design point the maximum closed loop gain can be written as

s <

2
®

- . (4. 11b)

?
D +D0 Tss

4] 4£>:=

The maximum closed loop gain is small for either a V.O.,T. or
V.S.P. controlled buck-boost regulator, and the expressions are
similar to those derived for the boost regulator,

The reason the maximum loop gain is small for the buck-
boost regulator is that the perturbation matrix, eqn. (4, 8b), exhibits
positive féedback for sufficiently large damping factors, E*; The
explanation for this»positive feedback is the same as it was for the
boost regulator, A decrease in the on—tir.ne. increases the charging
time of the capacitor, When feedbaék is useé on both state variables,

the stability of the buck-boost regulator can be greatly improved.
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4.3.2 Zero Eigénvalue P.W.M,

The ieéo eigenvalue P..W. M. has feedback on both the state
variables, and ‘it does have better stability than the uniformly sam--
pled voltage P, W.M. The feedback constants, 2, and bl’ can be

solved approximately from the following two equations

A ek 25* (Z—DO)TSS ek ’
Tr(P) = 2 + a KEFD| S5 - 7D, - b, K*E¥/D] = 0
DO
(4. 12)
Det (P) = 1+ a K*E:}:D _%:2?::{: :‘rﬁ - b K*E*/D’ - 0
ot 1 oj ™z " "2 1 0

Dl
0

The solution of eqn. (4.12) gives the following values for the feed-

back constants

a ~ 1
1 ~ ek
KB ss
2 T
Sk ’ 00
N 2D & + Dy (T, + —)
1 ~ Rl 7
, K"E DOTss»

The closed loop gain evaluated at the design point is

)]
14

(4. 13)

[a¥]

The feedback constant on the voltage, a;, is the same for both the

buck-boost and boost regulators, and therefore the loop gains are



OUTPUT VOLTAGE, V,

Vo

}

OUTPUT 'VOLTAGE

~113-

1

7H
6 | ] | . 1 1
=N\ | 2 3
*
LOAD RATIO , RL/RL
7 —
" EXACT
- —— = APPROX.
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Fig. 4.2, Voltage Reguiation for Zero Eigenvalue P.W.M,
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~also fhe same [see eqn. (3. 13)]. The same comments made about
the zero ‘r’na‘\trix P, W, M. fof the boost regulator are applicable to
the bucknboos’; regulator,

In fig, 4.2 the equilibrium voltage is plotted against changes
in the input parameters. All the points shown are locally stable,
and the sysfem also converges to them from zero initial conditions.
The load ratio can be increased past three and the regulator will
still be stable. At the lower load ratio the current becomes zero,
and the equations are no longer applicable. As in the case of the
boost regulator, the buck-boost regulator shows more dependence

on the load ratio than did the buck regulator,

4,3.3 Minus One Eigenvalue P, W,M.,
The feedback constants, ay and b1 » wWhich will make both
eigenvalues of the perturbation matrix equal to a minus one can be

solved for from the following two equations.

2 8% (2-D) 7 ke,
Tr(P) = 2 + 2 K E"D, 2 - 2D, - by K'E /D0 = -2
Dy
(4. 14)
28t | %s '
_ % & - H 14 -
Det(P) = 1 + 2, K"E"D |25+ — b KE /DO 1
D, -
0

The feedback constants for the M,O.E, P.W.M. are

::dEﬂCT
. Kk Ss
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2
. = 4
b~ 2D0(4§ + D0 7;38)
1 = Lk 7
KE DOTSS

The closed loop gain of this P. W, M, evaluated at the design point‘
is

(4. 15)

14

4 ~
S<“;**’z~5max

ss 0

The loop gain so derived is the maximum loop gain, and it is equal
to the loop gain of the boost regulator with a M.O.E. P.W.M,

Since eqn. (4.14) is valid to second order in 7, only when ¢ < T,
the maximuin closed léop gain is valid, eqn. (4.15), only when the
damping factor is small. This fact is illustrated in fig, (4. 3) where
the approximate and exact curves for the maximum loop gain'di,verge
when the damping factor equals the switching period (i.e.,

&= Ts%: .2). The drop in the stability for the higher damping

factors is attributed to the positive feedback exhibited by the buck-

boost regulator,

4.3.4 Zero Matrix P.W.M.

The feedback constants for a buck-boost regulator with a

zero matrix P, W, M. are

Eog ]
KB DOTss
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_ 2
aZ - - Mo L 3k }
KTE DODOTSS
ats l 2
L 4§ DO+ DO Tss
1 o e} 2
K'E D0 Tss
and
als ¥ 4 2
- 4¢ +D0 Teq
2 N
K'E D0 Tss

The loop gain for this P.W.M., see eqn. (4.6), is

2.2

K E DO : .
S = (albz- blaz) --—-—;—T-—-—' . (4.16&)
ZDO T
ss
because
a. + D = 0

1 02

The loop gain given by eqn. (4. 16a) reduces, at the design point, to

S = ———— (4.16b)

The loop gain of the buck-boost regulator with a zero matrix
P.W.M. is the same as that of the boost regulator. In fact, the
feedback coﬁstants on the voltage, a, and as, for the zero matrix
P.W.M, are the same for the buck, boost, and buck-boost regula-
tofs. The loop gain of the zero matrix and the zero eigenvalue

P.W.M. are also the same for each regulator.
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In fig. (4. 4) the equilibrium voltage is plotted against the
input parafnéters. The lower load ratio results when the current
becofnes zero,‘ but the other limits to the parameters are due to
the system Being locally unstable, The design point of the example
is mnot gl_obally'stable since the system does not converge to it
from zero initial conditions. The regulation is good over a limited
range of par#meters, but the system, although locally stable for the

points shown, is not globally stable even at the design point.

4,4 Discussion of Results

Thebresults of this chapter are almost identical to those of
the previous chapter. Most of the 1'00p gains of the various P.W.M.s
analjrzed are the same for both the buck-boost and boost regulators,
and even the feedback constants on the voltage are iden'cical. The
equilibrium voltage of the buck-boost regulator is dependent on
variations in the load., Its stability is very sensitive to changes in
both the load. and input voltage. The problem of positive feedback
occurs at the higher damping factors in both the buck-boost and

boost regulators,
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CHAPTER V - GLOBAL STABILITY AND CONVERGENCE

5.1 Introduction

In the vstability analysis the system is assumed to be at its
equilibrium point, Eopr If the system returns to its equilibrium
point after being disturbed, it is said to be asymptotically stable.
For small diéturbances, the linear part of the recursion formula is
used to determine if the system is 10ca11y stable. The exact equa-
tions are needed to solve the large disturbahce stability problem,
and if the éystem is asymptotically stable for all disturbances, it
is globally stable,

In the previous chapters the local stability was examined for
some switching regulators, The conditions for which the systern is
locally stable are also the necessary conditions for global stability,
In this chapter, a method is derived which gives sufficient conditions
for global stability, The conditions for local stability do not cor-
respond to ‘the sufficient conditions for global stability which means
a system could be locally stable but globally unstable.

Sufficient conditions for global stability are obtained by trans-
lating the origin to the point being investigated so that the new

coordinates are

Sn = i{n - Esf

The recursion formula before the transformation is

Zn+l An-)—{-n + En (5.1)
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where the subscript n denotes a function of X - The equilibrium

point, _’Esfk’ is defined by the following equation

Esf - Asffsf + Esf (5.2)

where the subscript sf denotes a function of X g The recursion
formula relative to the new origin is obtained by subtracting eqn.

(5.2) from egn., (5.1) to give

£n+1 = Zn+l T Zsr =

where

AA = A - A
n n sf

Ab =b ~-b .
—n —n —sf

It is convenient and instructive to rewrite the above recursion

formula in the following form

-§n+1 = Pn-gn (5.3)

Egn. (5.3) is the perturbation equation, and Pn is the nonlinear
perturbation matrix, The nonlinear perturbation matrix, Pn’ is
related to the perturbation matrix, P, in the following manner

Ilim Pn = P (5. 4)
|1g_[I~o

It is always possible to construct the matrix P1r1 if the system is
locally stable since eqn. (5.4) is simply the nonlinearity condition
of the proof, see ref, [5] The system must of course be locally

stable if it is to have a chance at being globally stable.
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The method for determining the form of the nonlinear per-
turbation ina:trix, Pn’ is best illustrated with an example. The

recursion formula for a buck regulator, eqn, (2.1), is

%= To) - 117

X

X 41 = Y(TS)_}_cn + kE

Y12{Ts) - ¥2(T5- )
If only V.O.T. control is used, the control laws become

TOO + a].(Xss - Xn) + bl(Xss - Xn)

I

Td(zsn>

P

1
SSs

{

T.(x)

After the origin is translated to the equilibrium point, the recur-

sion formula and control laws become

N1l T = TolEM - 711074~ 7)

-§n+1 = Y(Tss)gn T KE (5. 5)
ylZ(Tss_TO) - y12[ Tss - TO(Sn)]
and
Tol&n) = To = 218, - B8,
where
To = Too T 21(%ge~ X9 T bylx - x.0)

L s
77n= Cn+5—1_€n
n_ = ¢
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5

.then the recursion formula can be written as

. -1
= TY(TSS)T _7_’)_n+ T—f—(nn)

| 1 b,/
NS
0 1

It is now possible to divide the forcing term, _f_(?]n), by UM because

a4

where

1im0 I_f__(nn) l/'nl1 < o

n =
so that
04 = T ) +[g(n )/ o}t iy
or
Dot1 ='TF£Trlﬂn.$ Sot1 = Fnly
where
b
{y )+ £ (m) i} {y 0, )+ a-i-fl(nn)/nn}
Pn =

b
{3, (T, + 6,3/} {y,(r, )+ ?;f £,(n)/n_}

The nonlinear perturbation matrix, Pn’ given by eqn. (5. 6) does
reduce to the perturb-ation matrix, P, givén by eqgn. (2.3) when UM
becomes zero, | ‘

Liapunov's direct method for determining stability can be

extended to difference equations, see ref. [6] The method involves
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- defining a Liapunov- function
Vn(-gn) - Sn L—g-n

where the ésterisk denotes the conjugate transpose., The Liapuno{r
matrix, L, must be positive definite and Hermitian, If the
Liapunov function always decreases while inside some domain
defined by thé relation Vn‘—‘ const, , then the system is stable in

this domain. The change in the Liapunov function is

AVn = Vn—i—l T 'n
= Ll - SLE,
but
~§-n+l = Pn—‘-:-n
AV = ¢*[(P)*LP - L]f < 0 for stability
let

Q =L - (P)YLP
n n n

The condition for stability is that the Hermitian matrix Qn be
positive definite. The difficulty with using this method is in
chodsing the Liapunov function. The proper choice for the
Liapunov function can greatly increase the domain of stability, and
it is thérefore worthwhile to investigate the Liapunov function more
closely. |

| The Liapunov function is actually a way of defining a norm,

or, to be more precise, the square of a norm,
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If 1, is set equa‘l to I, then

. s
V = x"x

n i 8 R 6§

which  is the Euclidean vector norm squared. The Euclidean vector
norm is compatible with the spectral matrix norm. The curves
of constant Vn are represented by circles in the two-dimensional

space X . If the following transformation is made,

In © VZn
then the square of the Euclidean norm of Yn is

ale

Wpr X)) = In¥n = Z,NNX,

The matrix N*N is a positive definite Hermitian matrix and so a

Liapunov function can be defined such that

ale

ok — sk
Vv =xN"an—-x Lix

n b 8 ¥

The curves of constant V_ are circles in the two dimensional Y
space and ellipses in the X, space. The system will be stable if
some norm in»_;En space can be found which decreases after each
step. Alternatively, the system will be stable if the Eucli»dean
norm relative to some basis, I decreases at each step. The
selection of a norm, a basis, or a Liapunov function are equivalent
procedures for determining stability. |

- The easiest application of Liapunov's rﬁethod occurs when the

recursion formula is a scalar



"where the sﬁbscript n denotes a function of tn' This is the form
of the recursion formula of the discontinuous P.W.M., for either

the buck or boost regulator,

Liet
Y-
Vn - tn
50
AV = Vn'i-l - Vn
_ 2 2
- C"n+l - Cn

_ 2 2 i
AVn = (an - 1)§'n < 0 for stability

T'he Liapunov matrix, L, reduces to a séalar in this case and is
equal to one, The domain of stability is determined by finding the
smallest Vn for which the Liépunov function increases, Any point
whose Liapunov function is less than this will be stable, The
domain of stability in this case is a line segment centered at the
origin. Since only sufficient conditions for stability are given, a
point not on the line segment is not necessarily unstable.

If the perturbation matrix is constant, then the recursion

formula is written as

S

2n+1 =Pg

(5. 6)

The form of eqn. (5.6) is familiar since the local stability is
determined from a similar type of equation, The necessary and
sufficient conditions for stabilii:y are that the modulus of the

eigenvalues of the P matrix be less than one. In order to derive
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‘these same results using Liapunov's method requires the selection

of the proper Liapunov function.

Let

Vo T 5 BE,
where

L o= (T h*ro!
and

A = T lpr - diagonal matrix

(ie. assumes P diagonalizable)

The change in the Liapunov function is

' Avn = -§-x';+l L—§-n+1 - £n L—C:-n
= CHPRLP - L)L

let v

SO

_ 3 -1 PO |
AV = (T PT)NTTPT) - 07

= pXAA-17 < 0 for stability

The system is stable if the modulus of the eigenvalues of the P
matrix are less than one. The Liapunov matrix used to obtain
the necessary and sufficient conditions for stability is related to
the eigenvectors of the perturbation matrix,

It is informative to investigate the stability of egn. (5. 6) in
a different but equivalent way. For any initial conditions, sn,

the value of the state after m iterations is
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mgn

¢

£ otm = P.P.P....»Pﬁn = P

If some matrix norm for P can be shown to be less than one, then

&l < PI™E,]
and
|—§n+m' < lﬁn'

If the following transformation is made, the choice of the proper

norm to use is simplified.

Let
_ -1
Hn =T —C;n
then
_ - lom,

Dotm © T P U/
or

= - lppr-ler... 77 lpT

Dntm — Tt Ny

I

Since the P matrix is constant, it can be diagonalized by a

similarity transformation so that

or

D] < lml 12 ] <1

If the matrix norm used is the spectral norm, this result is the
same one derived by using a Liapunov function.
When the perturbation matrix is symmetric and a nonlinear

function of the state, Cn’ the sufficient conditions for stability are
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- the same as the ones derived for the constant matrix case. The

recursion formula is

:P§

2nt1 n-=n
where
_ T
P o= (F)

The Liapunov function chosen to show stability is

v, = L8

n =1} =11
SO
AV = _gp: (PI; Pn - I)_c;n
let
-C;n =T y—n
where
A=TlpT = %P T
n n
then

e

- sy sk % B
AV = p¥T*RFTT*R T - THT)

- % *
=1 (AnAn_ I)zzn

-n

The fact that the perturbation matrix is symmetric makes it
possible to diagonalize it with an orthogonal transformation, T.
Sufficient conditions for global stability afev_ that thé modulus of the
eigenvalues of the Pn matrix never exceed onie for any point in the
phase plane, If at some point the modulus of an eigenvalue does
exceed one, the domain of stability will consist of a circle centered

at the origin with the above mentioned point on its circumference.
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The system will Probably be stable for a larger domain, buf the
stability criterion does not guarantee it. The sufficient conditions
afe very stringent because it requires that the system decreases
relativé to some norm at ev.ery step. When the per'turbation matrix
was constant the system could be shown to decrease at every step
if it de»creased one step, and hence necessary as well as sufficient
conditions were obtained. When the perturbation matrix is a non-
linear function of the state, the system cannot increase in the norm
of interest for any step without nullifying the sufficient conditions.
It is instructive to look at the system after an arbitrary

number of iterations.

S-n-!-m = Pn+mPn+m- 1" Pn.g-n : (5. 8)

The subscripts on the perturbation matrices are used to indicate that
the matrices are dependent on the state of the particulai' iteration.

The previous stability criterion is easily obtained since

'|£n+rn’ < an-l-rn’ an+m—1|”“ IPnl I-g-nl

Ile< 1 for n <j < ntm

then

le < el

n+m

If the Euclidean vector norm and spectral matrix norm are chosen
for the above norms, then sufficient conditions for stability are

that the modulus of the eigenvalues of each matrix be less than one,
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This result is oniy true for symmetric matrices since only then will
the spectr'ai norm be equal to the modulus of the largest eigen-
value; The sufficient conditions so derived are violated if the
norm of one ‘of the matrices in the long chain of matrices is
greater than one,

It is difficult to obtain worthwhile sufficient conditions when
the pebrturbatién matrix is nonsymmetric and a function of the state.

The recursion formula for this example is

—§-n+l = Pn—c-n (5. 9)
where
T
P # PI1
let
vFn = —gn —C;n
then

AV_ = t¥P*P

n =n n n

- I)_C:n < 0  for stability

The stabi.lity condition so derived is the same as that of the sym-
rnetric‘ matrix, - However, when the perturbation rﬁatrix is non-
sy.mmetric thé modulus of the largest eigehvalue of the perturbation
matrix does not correspond to its spectral norm. The spectral
norm of a nonsymmetric matrix is the square root of the modulus
of the largest eigenvalue of the matrix Pn Pn"~ Unfortunat.ely; these
”sufficient conditions are not very good for the switching regulators

investigated in this thesis.
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It should be possible to find a Liapunov function which is
~ better than the simple' Euclidean norm used above. If the recursion
formula, eqn. (5.9), is written in terms of its linear and nonlinear

parts it becomes

!
o
Va3
+
D>
T
e
B

E o4l = (5. 10)

where

and

P = constant matrix

For values of the state close to the origin (i.e.,‘vl_g;nl < 1), the
nonlinear part of egn. (5.10) will be negligible so that only the
linear part is left. It is the linear part of the equatlon which is
used to determine the local stability, and the Liapunov function used
to derive necessary and sufficient conditions for local stability is
known. If the nonlinear part of the recursion formula is not sig-
nificanﬁ, then the Liapunov function associated with the linear part
will be a good one to use in trying to establish sufficient conditions
for global stability. |

Let

-1

L = (T"h*cT™!

where

A=TlPT - diagonal matrix

and
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1/(1 - Al)tl IZ) 0 diagonal matrix where the
= 2) - A;s are the eigenvalues of
0 . /(- a9 the P matrix

then

I

AVn S;(P + APn)"‘L(P + APn)_g_n - _§_n“L_§;n

. Rk _ By £
§ EXPTLP - L)E + L (PTLAP_ + AP'LP)L

+ gn” AP: LAP £

The first term on the right side of the equation is that of the linear
regulator, the second involves both the linear and nonlinear part of
the recursion formula, and the third contains only the nonlinear part.

If the transformation is made so that

then the change in the Liapunov function can be written as

AVn = -y_r‘;ﬂn+ _'Qn(A CRn+ RnCA)_T_)_n

+ n*R¥CR 7 < 0 for stability (5. 11)

where

R = T“lAP T
n n

The local stability criterion can be recovered from eqn. (5.11)

since for small values of state the last twb terms on the right hand
side become negligible, The reason for choosing the above Liapunov
function is that it gives the most negative value to the first term of

eqn., (5.11). This function will not necessarily be the best one to
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use because the ﬁonlinear terms can be more important than the
linear teri'r’ls.

’It would :c,eem possible that if the Liapunov matrix, L, were
made a funcfion of the state the domain of stability could be
increased. In the previous examples of the constant and symmetric
perturbation matrix, the stability criterion was that the modulus of
the largest eigenvalue of the perturbation matrix be less than one.
It seems reasonable that this same result could be shown for the
nonsymmetric case, In the many attempts to show this result, the
one which illustrates most clearly the problems involved is based

on the following Liapunov. function,

Let
Vn - —§n+1Ln—§n+l = cr;(Pr; LnPn)Cn
where
—1 s "1
(e
and
A = - lp T
n n nn

The Liapunov function associated with the state at the nth iteration
depends on the perturbation matrix, and therefore the states of the
nth iteration. The ch'ange in the Liapundv function from the nth

to the (n+1)% iteration is

P

AV = g P T Parr - I8

let

£n+1 = Tn+1 ﬁn+1
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then
" b3 sk -1 E3 -1 eqe
AV = LA Ay - (T T ) (T, Ty < 0 for stability

The stébilityv criterion depends not only on the modulus of the eigen-
values of the perturbation matrix but also on the transformation
matrices. When the transformation matrix is orthogonal, as they
are when the jperturbation matrix is symmetric, the complex con-

jugate transpose of it is also the inverse

—1 sk —1 -
(Tn Tn+1) (Tn Tn-!-l) =1
The product of the transformations shown above is also equal to the
identity matrix when the perturbation matrix is constant (i.e.,
Tn= n+1)'

the previous stability criterions for the case of the constant or

The stability criterion of eqn. (5.12) thus reduces to

symmetric perturbation matrix,

If a Liapunov norm is associated with each step, then the role
the transformation matrices play in the stability criterion of eqn.
(5. 12) can be clearly shown. When the state of the system moves
fro‘rn the nth to the (n+1)st position, the square of the Liapunov

norm used to measure the change is defined to be

_ %
Vn - S—n+1 Ln-§-n+1

where

L = (T'l)*T’1 and A =T 'PT
n n n

then
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ro= % ‘>:< ~ sk g
AV = L P o1 Parr - L) S S (T - T8
let
L1 © Tl T
SO

AVh = MWy Bosy - Dl S ey - Tion

The system dées decrease relative to some defined Liapunov norm
each step if the modulus of the largest eigenvalue of the pertur-
bation matrix is less than one. However, it is necessary to take
into account the change in the Liapunov function which results from
the change in norms. The second term on the right hand side of
the expre‘ssion for the change in Liapunov function does exactly
that. In fig. (5. 1) the dilemma described above for the nonsym-
metric matrix is illustrated by showing a system which decreases
relative to some norm every step and yet is still unstable. In the
case of the symmetric matrix, curves of constant Vn are circular
so that if the system decreases relative to one norm it must
decrease relative to all the norms, When the>perturbation matrix
is constant, onlly one norm needs to be considered. The stability
criterion of eqn. (5. 12) requires that the system truly decreases
and not just decrease relative to some norm éonveniently chosen
for that particular step,

If the system is two-dimensional and the eigenvélues of the
perfurbation fnatrix are complex, the stability criterion given by

eqn., (5.12) can be simplified since
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——

gn' space : §n~ space

Symmetric Matrix Constant Matrix

TR
=2 ,

En- space

Nonsymmetric Matrix

Fig. 5.1, Liapunov Norms



Ao * l>tn+1II
where
IAn-l-ll = modulus of either eigenvalue of the perturbation matrix

If the following transformation is made

-§-n+1 = 6)1'1-7-7-11
where
¢ = 9—18 8 - diagonal matrix
T n nn
and
S = (T—IT )*(T_IT } - positive definite Hermitian matrix
n n  ntl n ntl P

then the stability criterion of eqn. (5. 12) becomes

als

- S 2 a%k e '
AVn - p—n( |7&1r1+1l 6n en - 6nSn Gn) ﬂn
now
9* 6—1 (i.e., S_is a Hermitian matrix
n n so that"§_ is orthogonal)
S0

. ) , .
AVn = -7-7-1‘1( ’An+ll I- ¢n)-7-7-n

For this special case, if the modulus of the eigenvalues of the per-
turbation matrix are less than the smallest eigeﬁvalue of the product
of the transformation matrices, qbn, the system will be stable. This
condition for stability should be contrasted with that of the symmetric

or constant perturbation matrix which required only that the modulus
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of the largest eiéenvalue be less than one., Although the matrix
Sn is.a function of the two states -§-n and £n+1’ the subscript n is
used because -§;1+l can always be related to -§n by the perturbation
matrivan. |

The method which will be used to obtain sufficient conditions
for global stability is based on the phase plane. The phase plane
approach for &iscrete systems is not as powerful as the techniques
developed for continuous systems, The trajectories of the con-
tinuous system naturally dissect the phasé plane into regions which
can then be classified for stability, The difference equation trans-
forms one point of the phase plane into another and no curves are
identified with it,

R. E. Kalman in ref, [8] uses the idea of paired systems to
enable techniques developed for continuous systems to be used fbr
discrete systems. The basis for the method is that the stability of
the discrete system can be determined from the continuous system
if the ordered points of the discrete system (_:50,5_1,... ,_:_i_n) lie on
the trajectory of the continuous system. It is always possible to -
pair a discrete system with a continuous system, bﬁt it is not
always poésiblé to pair a continuous system with a discrete system.
It is, however, always possible to pair a linear differential equation
with constant coefficients to a linear difference equation with con-~
stant coefficient, X 415 P_:En, if and only if none of the charécteris-
tic roots of P is real and negative, In the inext section an example
is given which illustrates how the preceding techniques are used to

guarantee global stability for a buck regulator.
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5.2 Example

- In this example a buck regulator with a zero eigenvalue
P, W.M. is shown to be globally stable, The method used to show
stability is basically Liapunov's, and although the system is not
shown to decrease relative to a Liapunov norm every step, it is
alwayé shown to decrease after a number of steps. It is possible
to keep track of the discrete system for the required number of
steps by pairing a continuous system to the discrete system in
thé saturated regions of the phase plane, see fig. 5.2, The
saturated regions are so némed because the forcing vector, f, of
the recursion formula, egqn. (5.5), is saturated in these regions.
The forcing function saturates because the on-time must be greater
than zero but less than the switching period, Tss'

When the forcing vector saturates, the recursion formula takes

the form

g

==

+1 7 Y(T:-;s)—}’in th
where
-Yll(Tss) - yll(Tss—TO)
b = b; = KE when Ty ) =0
(T —To) - YlZ(TSS)

Y12 SSs

and
N l(Tss - TO)

KE when TO(—c;n) = Tg

o
1

jo
i

V1207557 7o)/
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-Besides the origin, the system will have two equilibrium points
which result because of the forcing vector saturating. These

equilibrium po‘ints are
£ = Y'l(T )b

If the origin’is translated to one of these equilibrium points, the

recursion formula is

e | = —§n+l - —ge = Y(Tss)aqn * -13 - [Y(Tss)-ge——}z]
or |

nt1 T Y(Tss)En (5. 13)

when the forcing vector is saturated. The matrix Y(TSS) is a con-
stant matrix with complex eigenvalues, and it is therefore possibie
to pair a continuous system to the discrete system,.

The perturbation matrix of the buck regulator is given by
eqn. (5.6), and it is a function of only one variable, N, If this
variable is below a certain value, nﬁ , the P, W, M, keeps the
voltage on for the entire switching period while if it's higher than
7, the voltage is turned off. The region in the phase plane which
corresponds to the voltage always being turned on is to the left of

the line

and the region where the voltage is off is to the right of the line



=

_ 1
77h-" Cn—*— ;;C

In fig. 5.2 these lines are labeled My and UM respectively., The

recursion formula in the saturated regions is given by eqn. (5. 13)
LS Y(Ts‘s)}in

where the origin of the new coordinate system is at the equilibrium
point Se of the old, The origins for the saturated regions will be
cailed centers, The center of the saturated region located to the
left of the origin in the phase plane showﬁ in fig, 5.2 is C2, and
the center of the saturated region located to the right is Cl, In
these regions a continuous system whose origin is at the proper
center can be paired to the discrete system,. | Trajectories can
then be drawn in these regions. It is possible to find a center
for every forcing vector of the system. The line connecting the
two centers Cl and C2 is called the line of centers, Ewvery point
in the phase plane has a center on the line of centers where its
recursion formula is given by eqn. (5. 13).

The entire nonlinear region of the phase plane is contained in
the fhin strip between the saturated regions, The strategy of this
analysis is to first find a Liapunov function which will decrease
for any point in the nonlinear region; then it is only necessary to
show that the Liapunov function decreases in the saturated region.

The Liapunov matrix chosen is



f1 o\ _
L = (T-"l)"‘( )T 1 (5. 14)

where

J = T-lPT - Jordan form

The T mé.tri:s; is composed of the generalized eigenvectors of the
linear perturbation matrix P, The change in Liapunov function for

the linear system is

AV = E¥P*LP - L)§

let
T, = TS,
then
. 1 0 10
A T I\ (o 2.) T (o z) In
but
)
J =
0 0
so
AV, = oD, T,

The change in the Liapunov function for the nonlinear system is

AV = §

. (Pn L Pn h L)—C;n

The system will decrease at { relative to the given Liapunov norm

—

if the matrix Qn’ which is defined below, is positive definite.
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Q =L -P*LP
n n n

The nonlinear perturbation matrix, Pn’ is a function of only one
variable, N, and if the Liapunov function decreases for those
values of U between My and M, » then the norm of all points in the
_ nonlinear region will decrease,

in the example chosen, a Liapunov function was not fouﬁd
which showed that the norm of all points in the nonlinear region
decreased. It was necessary to limit the amount of time the switch
was on thei-eby decreasing the magnitude of the maximum forcing
vector, f. When the on-time is limited to two-thirds the switching
period, a Liapunov function is found which gives stability for the
shaded region shown in fig. 5.2. This decreése in the forcing
vector also causes the rcentb:er CZ to move closer to the origin, The

Liapunov function used for this example is

. [28.01 1,123
Vh = -gn -§-n

1.123 1. 055

The Liapunov matrix used above is that given by eqn. (5. 14).
However, the linear perturbation matrix from which the Liapunov
matrix was calculated is dimensional in time, It -was found that
the domain of stability could be greatly increased by varying the
frequency w, aﬁd switching period T, while rmaintaining wkT;= T
Stability depends only on the parameter T but the Liapunov matrix

generated by eqn. (5.14) depends on Wy and T_ individually. As

was mentioned before, the Liapunov function which gives the
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greatest decfeas\e for the linear system is not necessarily the best
one to us‘év f(;r the nonlinear' system.

’I‘he phas‘e plane of fig., 5.2 is divided into three regions, the
nonlinéar region, which is the cevnter region located between the
two straight lines, and the saturated regions, with the Liapunov
curves superimposed on these regions. The continuous system
whose trajeétéries are associated with one of the saturated centers,
Cl or C2, is paired to the discrete system 7 ., = Y(Tss_)zzﬁ The
systerh, in one step, will decrease relative to the Liapunov norm
from any point in the nonlinear region, If the trajectories in the
saturated regions are followed, the system can also be shown to
decrease relative to the Liapunov norm from any point in the
saturated region, Global stability is therefore guaranteed.

In fig. 5.2 a trajectory is followed into the shaded region of
the phase plane from the initial point @. The vtrajectory is easily
followed until it enters or jumps across the nonlinear region. The
nonlinear region acts like a switching line of a continuous system
in as much as the system switches from one set of trajectories
to another. Since there are identified with one continuous trajectory
a numberA of discrete trajectoi'ies depending on the initial conditions,
the exact point and manner in which the switch is made is not
clear,

If the system jumps across the nonlinear region, the new
trajectory will begin on the dashed line whose ends are marked
@ and @ . If the point trajectory lands in the nonlinear region,

the new trajectory will begin somewhere on the line segment @
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“to @ . The w‘orst trajectory as far as the stability analysis is
(_:onc,ernedlocncurs when the éystem lands at @ . The worst
trajectory is r;llways used as the new- trajectory, and in this way
the Wérst péssible trajectory is obtained for the system. As can
be seen in fig. 5,2, each time the system crosses the nonlinear
region the new trajectory is always closer to the origin than the
trajectory bof.thé previous cycle, If this were not the case, the
system could be unstable, The system can only be sthn to be -
unstable if the best trajectory for stability, not the worst one, is
found to be farther away from thé origin than the previous trajec-
tory, If neither of these conditions hold, the system could be |
either stable br unstable. In Aref. [8] R.- E, Kaln;xan notes that
even though the discrete sjrstems are completely deterministic, it
is sometimes necessary to‘ use a probabilistic approach to deal
with the nonlinearities,

The two most important parameters in the global stability
analysis are the switching period, Tes> and the damping factor, £,
The damping factor is important because it determines the shape
of the trajectdries in the saturated regions. If there is a lot of
damping,‘ the frajectories will decrease rapidly relative to the
centers while if there is no damping, the ti-ajectories will be
circular. The global stability is improved for large damping
factors. The switching period can be {riewed as the step size of
thé system, The larger the -switching period the larger will be
the distance between successive points in the discrete trajectory,

The worst trajectory occurs when the system steps from @ to
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@ in fig. 5.2, If the switching period is small, then the worst
traje{ctor'y» will be close to the origin, and the stability will be
improved, The dependence of the global stability on these param-

eters is analogous to the local stability dependence.

5.3 'Converg.ence

In the previous section it was mentioned that the nonlinear
region of fig., 5.2 approximates a switching line of a continuous
system. A buck regulator is actually a continuous system in the
saturated regions because the voltage is either on or off all the
time. If the nonlinear region was replaced by a switching line,
the continuous trajectory would have to switch at the line, and
the exact trajectory éould be determined, It might be desirable to
replace only the nonlinear region outside the shaded, stable region
of fig. 5,2 with a switching line., This system would involve two
levels of control with the discrete control only operating when the
Liapunov function formed from the current value of state became
less than the value of the stable Liapunov curve., With this type of
céntrol, the system would converge to theborigin and act as a buck
regulator in the shaded region around the origin, The rate of con-
vergence of the system from a point in the phase plane can be
manipulated by changing the slope of the switching line.

In the case of the buck regulator it is possible to define an
optimal switching curve. The curve is optimal in the sense that

the system will switch trajectories so that the time it takes to
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reach the origin is a minimum. In ref. [1] the minimum time
problem with "bang-bang" control is discussed. The optimal
switching line is found by minimizing the following performance

index

minimize J = [ £ oar

with the constraints

L) =0
where
0 1
F =
-1 -2¢
0)
—g_ =
“\1
and
-(x * 2§’>’:sf) s o) < (KE - x_,~ ztz'csf)
or

The control function, u(7), is constrained to lie between an upper
and a lower value, These values are functions of the equilibrium
state because the system's origin has been translated to the equilib-
rium point, When the constraints are adjoined to the performance

index, the Hamiltonian, H, which must be minimized with respect
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‘to u is
- T
H=1+2a (F €+ gu)

where
5 = Lagrange multipliers used to adjoin
= the constraints to the performance index
The Hamiltonian is linear in u so that to minimize H with respect

to u requires that the product of _Zt_T_g_u be as negative as possible,
ATg <0

The optimal control operates with either the voltage full on or off,
This predicament is not uncommon for linear systems since a true
minimum does not exist, and the optimal control is the maximum
control, |

The trajectory to the origin must be with either the maximum
positive value for control, U, or the maximum negative value, ~ug.

The differential equation is then

<

n
b
o
1
L
R

or

1 F+ug

These equations can be transformed to new origins such that only

the homogeneous part remains,
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' _71 = F7nq relative to Cl (-uﬁ control)
and

n = F7 relative to C2 (u}1 control)

The centers Cl and C2 are the centers of the saturated regions of
the discrete system, If it is assumed that only one switch is made
before the system rea,che‘s‘the origin, then the switching line can
easily be drawn, The switching line for the undamped case is
shown in fig. 5.3, The switching line is composed of the natural
trajectories relative to the saturated centers which pass through

the origin, and for the undamped case these trajeétories are circular
arcs.

In the present examplé the trajectories of the continuous and
discrete systems are the same, The reason the systems are
identical is that the voltage is either on or off the entire switching
period, and wheﬁ the switching line is reached, the discrete system
changes control no matter where it is in the switching period. If
the voltage were ‘only on during part of the switching period, the
true trajectory of the discrete syétem would not follow that ofvthe
associated continuous system, The tfajectbries in the left hand
saturated region of fig, 5,2 are not the true trajectories of the
discrete system since the voltage is only on two-thirds of the
switching period. The optimal switching curve for the discrete
system shown in fig., 5.2 is not easy to find, However, the problem
of finding the switching line for a continuous system using a discon-

tinuous forcing term has been solved,



S -152-

'y

ourT SuIyYd3IMS

‘g *814q

O | —

02=3

0=3
02°0=%1
62'0=°0

LNIOd NOIS3d




PURR ~153-

D. W. Bushaw in ref. [2] solves the above problem for the

differential equation

2
mé——§+c§-§-+Kx = +D
dtz dt

The metﬁod he uses in arriving at thé switching curve is quite
elegant, and it is based on the idea that because the trajectory is
composed of only two sets of arcs, the arcs which pass throug'h
the region of higher velocities will minimize the time. H. S. Tsien
in ref, [11]‘ gives a simplified explanation of the procedure used to
choose these arcs, The switching curve is again composed of the
two trajectories which pass through the origin. As has been shown,
if the forcing terfns +D are the maximum and minimumn possible,
the linear system will converge to the origin in minimum time,
The problem of finding the optimal switching line for the
continuous system associated with the discrete system of fig. 5.2
can be solved, It is not clear, hdwever, that the switching line
associated with the continuous system is the optimal switching line
of the discrete system. Since with linear systems the optimal
strategy is to use tﬁe maximum control a{railable, the maximum
use of the voltage, even if it is only for two-thirds of the switching
period, appears to be a plausible control ~sChemé. The real diffi-
culty in the analysis is that the continuous and discrete trajéctories
only correspond at the sampling instants. Only a plausibility
argument has been made to indicate that the optimal switching line

of the associated continuous system can be used for the discrete
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system, In the case of the boost and buck-boost regulators, the
Acént_inuoﬁs systems associated with the saturated regions are
different so that solvingk for the switching line of the associated
continuous system is made more difficult,

The switching line derived for the associated continuous sys-
tem can be‘yiewed as only an approximation to the switching line
for the discrete system. An approximation to the switching line is
usually necessary since it is difficult to store the exact curve and
make decisions from that knowledge. A polypomial can be used to
approximate the switching line so that near optimal co'nvergence is
achieved. In engineering applications the near optimal trajectories
are good enough to eliminate the complexities of using the exact

curves,

5.4 Summary

Liapunov's method is used to obtain sufficient conditions for
global stability. The method works very well when the system is
a scalar or when the perturbation matrix is either constant or
éymmetric. For these cases the stability criterion is that the
modulus of the eigenvalues of the perturbation matrix be less than
one. When the perturbation matrix is nonsymmetric and not con-
stanﬁ, the sufficient conditions for stability obtained by usihg
Liapunov's method are not very good. The concept of paired sys-

tems is introduced so that better conditions for global stability can

be derived.
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An exampie is worked to illustrate how Liapunov's method
along with ti'le method of paired systems can be used to evaluate
the ’stability of a buck regulator., It was found that the nonlinear
region of thé phase plane is a small part of vthe total area., The
rest of the phase plane is cdmposed of two saturated regions
where continuous systems can be paired to the discrete system.
Stability is slhown by finding a Liapunov function which decreases
for any point in the nonlinear region and also decreases along the
trajectories after a few steps in. the saturated regions. In this
way it is shown that the Liapunov function will eventually decrease
although it does not necessarily decrease each step.

The nonlinear region of the phase piane in some ways
resembles a switching line, This resemblance is due tb the fact
that the system changes trajectories from one saturated region to
another when it crosses the nonlinear regioﬁ. It is possible to
monitor the discrete system continuously so that it always switches
exactly at a switching line. Two levels of coﬁtrol could be used
with the system being brought close to the origin by using a
switching line where it would then revert to the usual discrete
regulator).

A desirable characteristic of any regulator is rapid conver-
gence, For a buck regulator where tiae on-time is allowedvto vary
between zero and the switching period, an oijtimal switching line
can be found, For the particular case mentioned, the trajectory
of the associated continuous system and the discrete system are

exactly the same, This fortuitous situation allows the analysis of
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-the discrete s;rs\tem to be carried out exactly as a continuous sys-
tem. The oiatimal control sfrategy for a linear system is to use
the fnaximum control possible, This type of control is called
”bang—bang”' control,

When the trajectories of the discrete and associated continuous
systems do not coincide, the analysis of the discrete switching
strategy of tﬁe associated continuous system, which can usually be
solved for, can be used for the discrete system. The idea for
doing this is that the optimal switching strategy for the associated
system should, in some sense, approximate that of the discrete
system., In fact, evben when the exact switching curve is known,
it is usually necessary to approximate it with a polynomial so that

the implementation of the control is simplified,
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CHAPTER VI - SUMMARY AND CONCLUSIONS

The reg‘ulation properties of the linear switching regulator-
can be effeétively characterized by the quantity called the closed
loop gain, The definitions of the closed loop gain for the different
regulators dre very similal;, and the definitions of the boost and
buck-boost'régulators are identical. The closed loop gain is a
function of the feedback constants and is also dependent 6n the
design parameters. It is therefore possible to modify the closed
loop gain by either changing the feedback constants or design
point. The regulation properties of the regulator are improved by
increasing the closed loop gain, but the fegulator is made less
stable, The closed loop gain makes a good figure of merit for the
stability analysis because it does portray this conflict between good
regulation and stability, The major difference found between
the regulators in performing the regulation énalysis is that the
equilibrium voltage of the buck regulator is not. as sensitive to the
damping factor, and ti'lerefore the load, as the other two regulators,

The exact expressions for the local stability of the buck
regulator' are derived. These expressions are then simplified by
assuming that Ts K1, Simplified expressions can also be derived
for the boost and buck-boost regulators with the additional assump-
tion that £ <7,. This added assumption is usually valid because
rtheA boost and buck-boost regulators exhibit positive feedback when

the damping factor is made too large. The positive feedback
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.results from thé increase in charging time of the capacitor,
(_Ts"TO)’ Whe1i1 the on-time, ’fo, is decreased to compensate for a
high ’output voitage.

After fhe stability criteria are derived, the different P.W.M.s
can be analyzed. The P.W,M.,s are classified by their feedback
constants which determine the properties of the constant perturba-
tion matrix, .When the regulators are classified in this way, many
similarities between them become apparent. The feedback constants
on the voltage of a P, W.M., such as the zero eigenvalue P, W.M.,
are identical for the‘ three regulators. The closed loop gains of the
three regulators are very similar, actually identical fdr the boost
and buck-—bobst‘regulators, for a specified P.W.M. A comparison
between the P, W, M, s of a regulator also shows some similarities,
The zero eigenvalue and zero matrix P, W, M., s of a given regulator
have the same loop gain although the feedback constants are
different. The closed loop gain is an effective and simple way of
comparing P, W.M. s, but the stability expressions are valid only
for the assumptions for which they were aerived.

For all the regulators analyzed the stability appears to be
improved Aby decreasing the switching period, however, in the case
of the boost and buck-boost regulator the assumption that § < T
means that when the switching périod is decreased beyond a certain
value, the stability expression is no longer wvalid, Sinqe positive
feedback occurs when the damping factor becomes larger than the

switching period, the system is more unstable than indicated by

the derived expressions for large damping factors. The assumptions
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-made in deriviné the recursion formula must also be considered in
_ interpreti’xﬁg the final expres.sions for stability. These assumptions
will ’be valid when the parasitic resistances of the circuit are
negligible, ‘W'hen the damping factor is small, the parasitic resis-
tances, é_ven though they are also small, may still not be negligible.

The above assumptions, and the simplifications which these
assumptions ﬁlake possible, are not necessary in evaluating the local
stability of the regulator, The local stability can be easily evaluated
with the use of a computer. Computer techniques, however, while
accurately predicting the local stability of these regulators, do not
readily yield insight to the regulator's design. The simple relation-
ships developed in this thesis could be used in the first stages of
a design to compare different control laws.

The local stability of switching regulators not operating at the
design point was investigated. It was found that the stability of
some of the P.W.M.s are very sensitive to changes in the input
parameters., An important consideration in the design of a
regulator is how sensitive the stability is to changes in the param-
eters, For the buck regulator, a "feedfoxjward" type of control
system which Cha;nges the design on-time, T 00’ in relation to the
current values of parameters can be used to minimize the stability
dependencé on changes in parameters. This type of control can
also be used for the boost or buck-boost regulators.

The discrete phase plane is used to analyze the global
properties of the switching regulators. Liapunov's direct method

for determining stability as applied to discrete systems aldng with
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‘paired continuous systems are used to obtain sufficient conditions
for globalvstability. The neéessary conditions for global stability
are actually tlr;ose obtained from the local stability analysis. A
buck regulator is shown to be globally stable to illustrate the
phase plane techniques mentioned above. The techniques are thus
used to guar‘antee that the system converges globally.

In the stability analysis a continuous system and its trajec-
tories are associated with the discrete system in the saturated
regions of the phase ‘plane. The saturated regions are separated
by the nonlinear region which acts somewhat like the switching
line of a continuous system, The discrete system for a buck
regulator can actually be >made into a continuous system Wi’(v:hv a
switching line. The analysis in this case can be carried out in the
continuous phase plane, and the switching line for which the system
converges to the equilibrium point in minimum time can be deter-
mined. The optimal switching line can also be‘ found for the
paired continuous systems of the boost and buck-boost regulators,
This switching line is not the optimal switching line of the discrete
system because the associated continuous trajectories in the
saturated-regiéns are not identical to the trajectories of the
discrete system, The optimal switching line of the paired con-
tinuous system does, however, approximafe the one for the discrete

system,
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-Appendix I:

A. Regulation Analysis for Buck Regulator

The derivation of the regulation equation begins by substitut-

ing the CAOIltl:O]. laws, eqn. (2.2), into eqgn, (2. 4b)

89 S

' T..+ AT
X . = KE 00 0
sf T ¥ AT

1 700 * ATO
g 5O EKE(TOO + ATO) 1 - AT

ss s
where
ATy = aglx g~ x50 + bylx - Xgg)
ATs = aylxge- Xss) by (x g - Xgg)

If the changes in the on-time and switching period are small in
comparison with the switching period (i.e., ATO/TSS« 1 and

A‘TS /TSS<< 1), then the above equations can be expanded out and
linearized.’ The final results can be thought of as the local
regulation_ and will be valid only for small changes from the
reference state, Xyge This linearization is being done to arrive at
a figure of merit to compare the different types of regulators and
not for accurately determining Xog The -ran’ge of ‘validif,y for
‘these assumptions can be illustrated by notiné that regulation over

twenty percent of the switching period corresponds to ATS/Tss= iTlﬁ

2 1 . . . . .
and (ATS/TSS) =150+ <The linearization begins with
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L~ KE(TOO s ATO) (1 ) A'rs>
sf T T T
SS SS SS
2 e deEr Too AT, (7o, AT . AT
st 2 ss\ T T T T T
SS sS ss S8 SS

multiplying 6ut and neglecting higher order terms

ATO—DOATS
XSf = KE DO+ =
58
’ 2
R (D =~ Dg)AT + DyAT,
sf 2%'ss 00 T
ss
since
b = 100
0 T
5S

The equations have now been completely linearized, and the steady-
state with feedback, X g Can be solved for.
After the expressions for ATO and ATS are substituted into

the above equations, they become

_ KE KE . .
xgg = KDoE + T (a;#Dgay)x g - xgq) + T (by+Dgb,)xy - %)
KT
. _ sSs ’ KE ' 2_ -
% ¢ = -——DDE + == [(Dy-Dgla, + Dga,l(x,, - x )

KE ’ 2 . .
+ 552 [(Dy-D)by + Db, 1 - %)

in matrix notation
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/ KE KE

{1 + 5 (a4 Doaz)} XZ (b * Dgb,)
sS §S a

: ' Zsf

KE ’" 2 KE [ oyt 2

~-L(Dy-Dglay * Dga,] 11+ 5[y Dy, + Dgb, 1}

) KE .
)x == (b;+Dgb,)x

oaz ss 0 ss
ss

:cDOE+§r.P_3.(a1+D
- 88

KTSS ' KE ] 2 KE ’ 2
- D.D E+_Z.[(DO-DO)a1+DOaZ]XSS+T[(DO—DO)b1+DObZ]XSS

2 00"
let
G, = &5 (a,+ D e, | Cy = = (b * Dgb))
sS v S8
c, = -Z%[(DO-D{,)aﬁDgazj Cy = z’%‘[(%@&bﬁ Dgb,]
thep
{1+C1} C3 KD0E+C1XSS+C3;§SS
! % =
T.C, {1+TSSC4} —si _KZSSDODE)E +7, Cox_ +7 C % _

The solution for the state vector with feedback is then

(1+7 C -C KD.E+C.x +C_x
SSs sS

1 4:) 3 0 1 37ss
Zs£” Det, KT, " .
—TSSCZ (1+C1) T2 D0D0E+TssC2Xss+ Tssc4xss
where
Det. = (1+C)(1+7,C,) - 7, _C,C,
= (1+ TSSC4) + Cl + 7'5;3(01(34 - C2C3)



. , ~166-
but

‘ ' KZEZ{ ' 2
- _ == - K=Y/
C1C - CC4 2 (21+Dga ) [(Dy-Db +D b, |
SS

’ 2
- (b1+DObZ)[(D0~D0)a1+D0a2]}

2.2

- K E ’ 2 )

Ry {(Do Dgla byt Dga;b,+Do(Dy-Dy)b,a
SS :

2

3 ! 2 !
+ Doazbz-— (DO—DO)albl- Doblaz— DO(DO—DO)aIb2

3
- DOaZbZ}

22 ’
E DODO

2T2
S8

K

1l

(2155 Byay)

define

S = C1 + TSS(C1C4— C2C3)

k“E2D D’

070
ss 2755

(alb - b,a

2 1 2) (I.A.1)

The parameter S is important to the regulation problem and is
called the loop gain.

The steady-state vector with feedbaék is determined by
multiplying the matrices out aﬂd simplifying

KT

SSs ¥ 4 *
3 —3— DoPol + Caxgg

+
S (l+‘TSSC4)

_ Sx (147 COKDGE + C

Xsf ~
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. KTSS ’ ( C].DE)
. Slx . - —— DyDyE - kD47 E C2+—"Z""'_ + TSSCZXss
st S1 + (1+C1)
where
S1 = ‘TSSC4 + TSS(CIC4— C2C3)

. 2.2 ’
s1 = ¥E (D -D"yb. + D%, ] + KEDODO(ab - b,a.)
7 H{DgPoly ¥ Dobal ¥ (2453~ P13,

but
KT, , KZDCZ)EZ
T C4kDgE + Cy —5— D DGE = ——eme (b b))
and
C.D! KD E
170 _ 0
Cut =5 = 57— (a1%a)
S5
The final equations can be written as
KD E KD E X
x +—9 [1+—2 (b,+b) + <=2 (b,+D_b.)
ss S 2 1 72 DOTss 1 072
X = e
sf T KE 7 2
1+ _S,{l + £ [(DO-DO)b1+D0b2]}
(I.A.2)
' KD .E fa_+a x D,.-D/ D
six_ _-ikr D D'E |1+ 0 (22} 35 (8 0}, + 0
ss ss~ 070 TS D’ Ts D.D’ 1 r 2
Xsf-— - - - .
K
s1+[1+ — (a1+D0__aZ)]
SS
forr

S £ 0
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"It can be seen from eqn. (I.A.2) that in some sense the loop gain,
S, is a measure of the regulator's ability to regulate, for as the
loop gain becomes large, the value of X ¢ will approach - S The

loop gain is used as a figure of merit in the stability analysis.
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- Appendix I:

B. Stability Analysis for a Buck Regulator

The variational equation, eqn. {2.2), can be written as

oy 97,(x)
7

_ 0Ty(x,)
6x 4y = | . % __5__.__0 | o
.a.___
——n s f Est
since
O(En) - 1-00 + al(xss
and
Ts(En) = Tss + az(xn— XSS) + bz(xn- X

- Xn) + bl(fiss -x)

—3—) | 0,
~sf

When these partial derivatives are evaluated at the equilibrium

point, Xop they become

(alﬁxn+ blﬁxn)

3; 'X 65 - Y(Ts)ﬁfn
—n —sf
oz 07, 12{% = To)
5 0| px - -kE
TO a—-n Esf -
Vo (T, = Tp)
22' s 0

and

29g T, Y(r) 120
T, T, |§Sf5§n= oT Zer T HE
AUy

where

7)) - ¥, (%)

o) ~ %)

(azﬁxh'i' bzﬁxn)
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-.Y].Z(TS) YZZ(TS)
oY _ ‘
aTS ,
% (1) [y (T) 28y, (1) ]
with
To = Toot aylxgg - x50 + byl - %)
Ts © Tss + aZ(Xsf_ Xss) + bZ(xsf._ xss)

These terms can now be combined to form the P-matrix

_ dg a_g_ aTO(--}En) a_g_;_ aTs (-}-C-n)
P o= % + o7 0X + oT 0x I =x (L.B.1)
Zn 0 ~n s n En Zsf

or

[y, ) - 2 KEyR(T-T) - ayh ] [y (T) - b KBy, (7-T)) - byh ]
P = .

[YZl(Ts) -a KEy,(T-T)) - azhz] [VZZ(TS) - b KEY,,(T-T)) - bzhz]
where

hy = y,(T)%g = % (T % + KELy, (T~ To) - y,(7)]
hZ = y22(1"5)Xsf + [YIZ(TS) + ZgyZZ(TS)]Xsf + KE[ VZZ(TS—TO) - YZZ(TS)]

The P-matrix consists of a natural part, Y(Ts), and a control part,
Because negative feedback is used on the state, most of the control
terms are negative, For the buck regulator, increasing the feed-
back gains will decrease the trace of the P-matrix,

The eigenvalues of the P-matrix can be written as

. IRE) /[TR(P) - Det. (P)
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where

TR(P) = Pl + Ppy - Trace of the P-matrix

Det, (P) = P11Ppp = PiaPyg - Determinate of the P-matrix

The system will be locally stable if and only if all the eigenvalues
of P have modulus less than one. For complex eigenvalues of a
two by two matrix, the determinate is equal to the modulus of the

eigenvalues squared so that the condition for stability is
2 _
IX[% = Det.(P) < 1 (B. 2a)

When the eigenvalues are real, the magnitude of the largest eigen-
value must be less than one for stability. If the trace of the

P-matrix is negative, then the stability criterion is that

(1< IRE) . J[IRENZ e (p

or

1 + Tr(P) + Det.(P) > 0 | (B. 2b)

The instability associated with real eigenvalues usually occur at
high gains where the trace of the P-matrix is negative. These
two stability criterions, eqn. (I.B. 2a&b), are used to evaluate the
stability of various P, W,M., s.

The easiest way of deriving the structure of eqn. (I.B.2) for

a buck regulator is to change eqn. (2.1) to its canonical form.
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where
1 1
X, = Tl’n and T =
7&1 7\2
with
Alzg—!-i\/]_..gz 7/:..._...:E_:.._..
v 1-¢g2
A, = & - iv 1-&2
The variation of the state at the (n+1)St iteration, G-Xn-l'l , is
related to the variation in the state at the nﬂr1 iteration, 6_y_n, by

eles

0 Y, eM{Ts=T0) o7,
Oy .1 = Yo~ > y
In+1 In~ 2 oy L
" o 2T/ _MalTe-T)) I TP
kleMTS 0 v, exl(Ts-'rO)
+ Zsf+-ZT
0 }uzeAZTS _ehz(’l‘s- 7o)
7, ATy aTS .
-7 oy °In
_eAZTS .Xn
where
Zsf T-Xsf
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The variational equation can be rewritten as

oT oT oT. oT
“eAlTs-i-d — - 0}{ —=2 ¢ --—-9-}

1 1 1. :
. P Pn Byn ' Yy,
Oy = oy
“mil o, or ar ory) |
d >o-c 0 eA2T5+d S5 0
2 oy 2 dy 2 e 2.
n n aYn oYy
where
AT Yi sy i
d1 e (Alysf + - e ~
o T . Vi T, Y
‘12“6,8("23’sf”7e )
T. Vi T
= 27 Y 'AZTO
CZ = e -—'2— e

The determinate of the perturbation matrix is

oT T
Det. (P) = e(A1+ A2)7s + (eths dz--E- + eKZTs d 2 )

oT oT
- (eAlTS c, 0 4 eAZTs c _....9_)

Yy, ! ayn
b (codo - dicy) a7, o7, _.Aa'ro 0T
1727 172"\ 7 oy Y. -
. ayn n n ayn

now
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n
and
n = T—Y‘n
0x
no.
5Yn :
a;;n
yrea = A
Yn
combining terms
aTO = -a. - A,b
0y 1 1
n
a'rs
-ry; = a2 + Albz

_174-

oT

0 _ 70 “n 0 “Fn
. 6 . . -
ayn Xn ayn axn ayn
oT oT_ Ox T 0%
S - S n
: 3 : :
ayn *n ayn an A
o7
— = ~Db
a%_ 1
ff.s_ = b
. 2
axn
1 )
In
1 AZ
axn
—_— =1
8yn
a;:n
- = Az
ayn
o7
e = =ga. - A_b
. 1 2
9y, ;
aTS
— = a, + Azbz
oy.
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When these quaﬁtities are substituted into eqn. (B; 5), it becomes

Det. (P) = ‘e(MH‘Z)TS + az(dzeMTS + dleAZTS)

A2%s 4 ad et’s
+ bz(Aldle + ?deze )

. AqT A7 AT A7
- 15 2°'sy _ 2's 1's
| al(cze t cje ) bl(Alcle + }xzcze )

+ (ed, - djc,)(0, - A)(ajb, - a,b))
Evaluating the terms on the right
e(>\1+>L2)TS = 6‘257-5
az(dzéhl’rs + dleAZTS) = aze-2£TS[>ESf+ KEez‘gTO ylZ(TO)]
bz(}‘ldlehﬂs * >tzdzeklﬁrs) = bze-ngs [kE(1 - £2570 Y (T - 3¢ - 265 ]

AT ;\ZTs — "'25(7"70)
al(cze : + c,e ) = alKEe 5 y21(T0)

AT, AT,
bl(}\le 2's )tzcze 1's)

b KEe'ZE(TSf To)

1 11T

and
(edz - 4100 (R = M) (ayby - 3pRy) =

yEe- 2675 Tp) [(Xsf' - E)y,(7,) +£;Sfy22(7'0)] (a;b, - a,b,)

The stability criterion for complex eigenvalues is

Det.(P) < 1

or
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(a,- ?gbz)xsf + bz("ht" Xsg)
. 287 2£Tg
¥ (a,ta,)kEe V1,(Tg) = (b tb)kEe™ Oy (7))
+ (a,b -ab)KEeZgTO[(KE-x ) vy (7o) +x (Ty]
1°27 22°1 st/ Y12V 0! T X522 0

‘,< (e257s 1) (1.B.3a)

The stability criterion for real eigenvalues is
1 + Tr(P) + Det{P) > 0

which can be written, after the trace of the P-matrix from eqn,

(I. B. 1) is determined, as

-&T -ET. ' “2E(T5-T
1 + e gs(Zcos wd’rs+ é 'SS) + (a1+a2)KE[e &(Ts O)ylz('ro) -ylz(’rs—’ro)]

(b, +b)KE] e~28(75-To) ¥, (7o) + ¥ (T, Tg)]

- a,l v () x g - Bx - KEY,(T)]

bz[,u.(xsf— KE + zg;‘;sf] + ylz('rs)fcsf]

. ,

(ajb,-2a,b 1)"Ee-2§(TS- T (= - Xgg) Yklz:(To) TR V(T )]

\%
o

(I.B.3b)
where

-2&T

po= e 284y (T)

The stability criterions, eqn. (I.B.3a&b), are used to evaluate the

local stability of the buck regulators,
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Appendix II:

A, Regulation‘Analysis for Boost Regulator

The procedure for deriving the regulation of a boost regulator
is the same as that of the buck regulator., When the control laws,

eqn, (3. 3), are substituted into egn, (3.4b), it becomes

(1) _ (1 gt AT)
- (’T —TOO)+(AT A7)
(I.A.1a)
2
A2 - ke (Tt A7)~ - (TOOZATO)
[(7,5- 7o) * (AT,- ATR)]

where

ATy = al[ZglS (1)] + b [z (2) (2)]

il

AT
S

R

When the changes in the on-time and switching period are small in
comparison with the difference between the switching period and on-

time (i.e. AT /(‘T « 1 and ATS/(TSS-—TOO) « 1), then eqn.

00)

(C 1) can be llnear1zed so that

AL o KE + A AT - ,—-———-Z-DOKE AT
sf D! 0 s
o 7 D’ 7 DI

ss 0 ss— 0
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Since the change in on-time and switching period are a function of

the state,"_z_sif, eqn. (IL. A, 1b) can be rewritten as
| - N
!
KE/DO
_ -1
Zgf T (I+G) < i + G—Z-ss>
2& 00
KE | =5 -~
. Dy J
where
KE
—3 (a; + Dja,) KE (b, +D.b.)
. Z'°1 To2
ss 0 7T D
G = ss 0
E b, KE
4EKE 2k 4EKE 1K
— 3 (a; + Dyay) - — 3 (b) +Dyb,) - —5
TssDO ' 7ssD0 »
and
S —
(L+g, N1+g,,) ~g,,8
11 22 12821 -8, (L+g)
let
KE KZEZDO
S = g111T 8118, 812851 = — 3 (2 ¥ Dg3ay) ¥ ———(a;b, - b;a,))
T D! 27 D!
ss 0 ss 0
AEKE b; KE I{ZEZDO
= - = - . { -
Sl=g,,%8118527812821 by#D(b,) - —5— F———s(a b, -b,2,)
T D! - 27 DI
ss 0 ss 0

SO
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(1+g,,)KE/D] ~_g12KE(£_§_ - _9_9) S, (1) + 2

’ 2 2 ss 812
D
A 0
sf .
b.KE
4EKE 1
l'f‘“'*jf§(b1+'Dobz)' > + 8
7-ssDO
T
— ’ 2& 00 (1) (2)
821KE/Dg ¥ (“gu)“E("Tz' - "'2"") t8a1%s TSz
D
L2 0
sf |
1'*————77?(a 4‘D0a2) + s1
sDO
now
(L+g, JWE/D) - g xm(2h 100} 4 g (2
822 0”812 2772 T B12%ss T
Dy
(b, +Dby)
KE f) +_£§'£E§(b 4D b )+....~[(D -D!)b, D2p,] 4+ L 00 A2}
! - 14
DO TSSDO ZDO TSSDO
with

1}

: : T
. 2¢ 700 (1)
“821/EDg + (1 +g11)KE(—-2- - T) T8,1%s

¥
DO

T ' 2 2
KE( 252 _ _g_(.)-) _ K,‘ZEZ ____&__4 (a_ 'l'D 2) - —..__.2. [al(DO-D(’))'l‘Dgaz]

4
Dy TSSDO 2D
4¢ 1| (1)
¥ KE 21+ Dy aZ) "2 | %ss
4
7..D
ss— 0
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. The approximate expression for the state with feedback, Zges is

o < KE/D’

ng) = f{z(sls) +—g— [14kE "%“H*Dobz)
T D!

ss” 0

| (b, + D b.)
+ X2 (D - Db, +D%b,] + ——— 02 (21},
7 L{Dg = Dglby T Db, ; 58
2D T D
0 ss— 0

b
/{14~é[1+KE-é£m?(bl+I%b2-HET%]}

’
Ts sDO

. T
(2 _ (2) 2& 00 2.2 2¢
ZSf = SlZSS + KE ——’-2- - -——2——- - K E ——-————,'-4—(8,1'}‘]:)03.2)
DO TssDO
2.2 : a
K'E ' 2 4& 1
- ,Z[aﬂDO—L%)+I%a£]+KE —«—T?(al+Iba? -
ZDO | TssDO
(1) ' KE
T D
ss 0
(1I1.A.2)
' KE KZEZDO
S = -————,-:—-z(al-l'Dan) +———-—-—~—-2-(a1b2-bla.2)
T D 27 D!
ss” 0 ss” 0
. , 2.2
Sl=KE—-—~é-§————(b+Db)—KEE)—1-+KEDO(ab-b’a)
, 371 072 2 ‘ ,2 172 172
7 D 27T D
ss— O ss 0

The closed loop gain, S, will act as a figure of merit in the stability

analysis of the boost regulator.
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Appendix II:

B. Stability Analysis for a Boost Regulator

The recursion formula for the boost regulator, eqn. (3.2), is

Z 4 = Az +hb (IL.B.1)
where
'25070 (T.-7.) v, (7.~ T,)
22" 0 124’5770
A =
-2¢ To
e P00 v (T-Tg) v {T-Tp)
and
ToalT=To) + L1 -yp1(7- 7))
b = kE

TV {Ty- To) + (7= 7o) + 28[ 1~y (7~ 7()]

The variation of the state at the (n+1)®% iteration is related to the

variation in state of the nth iteration by

a7y a1,
= 0A ob 0A db
02p41 = 402, (afo Zet ' T ) 3z, OZn* ( 5T Zsf T)T 0z, (LB.2)

L3

where

-2&y7g ;

e N12(Ts~ To) Y2475~ Tp)
oA |
7

0 28T

e 0°0 Yll(TS—TO) le(T T )
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_-2&gTg ;
N [vip07- 7o) + 2803, T) ] wp(7,-Tg)
—51_— — .
.S —Zg TO .
e 2070 v, (7 7)) %17~ To)
b Yoo T5= Tg)
= KET
L 0
YlZ(Ts— TO)
and

ToY2lTs™ o) + 912075~ 7o)
To%1{T~ To) + ¥71(75- T)
The variational equation, eqn. (II.B. 2), can now be written as

0z

Z 41 T Pﬁgn _ (I1.B.2)

where

W?i.th

|= Joo
1 l.l
/\ o ——
o
[ ot
S



~The on—time‘and switching period are related to the state by the

control law, eqn. (3.3), so that

a'ro aTS
= ~a = a
az(If 1 azilf 2
n i ¢
870 ' a—rs :
—7r T P 7 T P2
azn azn

Substituting the above expressions into the perturbation matrix

gives
{all-a +ah} {alz-bl +bh}
P = (IL.B. 3)
{a - a 2 + azhz} {aZZ - blg2 + bZhZ}
where
-2&,7 (1) (2) _ .
e P00 vy (- Tolzgy - %(T- Todzgy - KEToy, (T, - Tg)
g =
- ~2£4Tg (1) (2)
e "P0°0 v (1= Tedzgy + o WlT- Tz + KETY (T - T()

280y (12t ) bt ) D g

=
'

2£4T (v
- 20Ty (1T 2 (1T 2l e 0%1 05Ty 0T
The structure of the perturbation equation for the boost regulator
is more complicated than that of the buck regulator. It is there-
fore convenient to make the assumption that T < 1 in order to

simplify the calculations, If T < 1, then
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(1 - 2&7) (7~ T)
A~ |

-(TS— TO) 1

and
(1T - [1 - 281 -79123 - kET,
_g ~
(1 - 2g7)2lY + (7-7 )27
with (II.B.4a)
o rrze-2em)] 20 4 [0 - 287 -1 )]28 + kET,
h =

(1 - 280) 2l - (m-728 4k

where terms of order 'TSZ have been neglected. Some of the terms
of crder T, in eqn, (II. B.4) serve to only slightly modify a coef-
ficient of order one, and these terms can adequately be approxi-

mated by one (i.e. 1 —2.§TS ~ 1) so that

)z(l) 22 - kET

(7= To Zef 0

20 4 (- 722
and : | (IL. B.4b)
—[(TS—TO)-I-Z‘f]zg? + zng) + KET,
-z(s? - (TS-TO)ngj:.) + KE

The elements of the perturbation matrix can now be approximated

as
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LTS E.‘1_{(75’ 70) Z(s? - ZSE) - “ETO} - azi{[(Ts' T + 24 Zg? - Z(s?E) - KETf

Ppp= 2 bl{(Ts‘- Y Z(szlf)‘ - Zg -kET} - b il - 1) +24] Zg? - Z(szf) -kET}
(IL.B.5a)

Py =8y~ 3 { ( )+(~r (2)} a {z(l)+(r T)Z(Z) KE}

Py 200~ Prlzgy + - i} vl + - 7o - )

If the system ié being evaluated at the design point (i.e. z =2z )

—~sf —ss’?

then the perturbation matrix is

sk ZT -T KA T
_ S s g"‘ S8 00 ,“ % 2 gq‘ S8
Pyp = 2t K E = - — T At E Dy =5 - 7
Dy Do
sle ZT —T . a¥s T
- w] 2EF ss 00 2£&* ss
Pra = 212 ¥ DI ET ) = - —— +b2“EDo‘—,'Z"T
Do Dy
. (IL.B. 5b)
_ sk £ ! >A‘ 4
Pa1 = 3p1 - 21K E /Dy - 2,k E¥Dy /Dy
= _ de ok r B ’
Pyp = 255 bllc E /DO b, K" E DO/D0

The above equations, eqn. (II. B. 5a&b), give only the approximate
values for the elements of the P-matrix when the switching period
is small (i. e, Tss« 1). The asterisk is used in eqn. (II. B. 5b)} to
indicate that the parameters are the desién parameters, and- to
emphasize that the equation is only valid for lthe design point,

The stability criterion for the buck regulator is applicable to

the boost regulator., If the eigenvalues of the P matrix are
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complex, then the stability criterion is given by eqgn. (L. B. 2a).

Det, (P) = Det.(A) + 'al(alzgz ZZgl) + a (3-22 1 - 12h2,)

tby(ayi8y - ag8,) + bylag by - ayhy)

+ (alb2 - “bla.z)(hlg2 - glhz) < 1 (IL.B. 6)

If the assumption is made that T <K 1, then the coefficients of the

feedback constants in eqn. (II. B. 6) become

_ _ (2)
31,8, = 3,,8 = [1-25(78-70)]sz + KET,

ayoh) - apph, = ~28(l-2e)2 D + [1-281- 70122 + kmTy

_ (1)
a,18; - 2118, = -[1-2&7 7]z

a11Py - apqhy = -{1-zg(rs+ro)]z(s? + (1~ 26T )KE

and

(2)
hig, - g;h, = k2E? {7‘ + [1—21;'(7 'ro)]

: e
- 23;[1 24T +T0)](T) }

The stability criterion for complex eigenvalues when TS<< 1 is

al[zﬁ) + KETO] + aé[-Zﬁzg? + z(szf) + I{ETO] - (b1+b2)zglf)

A A A2) (1)
+ bZI{E + KzEz(albz- blaz) {(——-E—+ T > - 2§< ) }

< 2&T, , (1_1.B.7a)'
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and when the eigenvalues are real it is

4 +'a‘1{2[ z(s?%)‘-l- KETO] (T T )z }
+ az{-[(TS-TO) + 4£] zg? + Zz(s? + KE(TS—I-TO)}

- b {zZ( 1) 4 (7. - To)z 2} _p {2[ (” - kE] + (T ‘To)z(z)}

A2) (1)
+ K2E2(a1b2 - bja,) {(T* T> - zg( ) } S 0 (IL.B.7b)

The above equation, eqn. (II. B.7), gives the approximate locél
stability for a boost regulator, Since the terms multiplying the
feedback constants have different signs, it is possible they could
cancel, thereby making terms of order T multiplied by the damping
factor, &, important. If the damping factor, &, is less than or

equal to the switching period, T then eqn. (I, B,7) is wvalid to
second order (i.e. TSZ, §Ts, or §2). A certain amount of care should

always be used when applying eqn. (IL. B, 7).



FUE ©-188-

Appendix III:

A, Regulation Analysis for a Buck-Boost Regulator

The steady-state with feedback, 2o

eqn. (4.5) where the on-~time and switching period are now a

when Ty K1 is given by

function of the state.

(1) _ 0
Zsf KE T - T
s 0
(IIL.A.la)
2&T
ng) = KETO 2 5 - %
(TS - To)
where
= = (1) (1) (2) (2)
To = Too* ATy = Too * alzgg - 2p 1 + byl 2l - 2]
- - (1) (1) (2) (2)
Ts = Tss * ATs = Tss * aZ[ Zgf T Zss] t bz[ Zsf T Zss]

When the changes in the on-time and switching period are small in
comparison with the difference between the switching period and
on-time (i.e. .ATO/(TS— TO) <« 1 and ATS/(TS- TO) < 1), then eqn.

(III. A, 1a) can be linearized to give

KED ‘ KED

(L) _ 0 KE _ 0
“sf D! + 3 ATO , 2 ATs
0 TssDO ‘Z’SSD0 (I1T. A, 1b)
T 2£(1+D ) 28D (14D,)
(2) _ 2¢& 58 0 1 0 0
Z = KED - —} + KE - 3 AT -KE———-——-—-;——-AT
sf 0 , 2 2 , 3 2 0 , 8
D T D 7 D
0 gs 0 ss 0 .
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When the contfol laws of eqn. (IIL. A. la) are substituted into eqn.
(II1. A. 1b), the solution for the steady-state with feedback can be

written as

e N
1/D:)
1
Zg ¢ (1 +QG) gKEDO . + G-Z-ss
28 ss
, 2 2
. D0 yi J
where
al—l-Doa.2 bl+D0b2
T D 7T D
ss 0 ss” 0
G = KkE
: 2§(I+D ) 2, 2§(1+D0) b1
4 14
TssDO TssDO
now
_ ) (Ite;2)  -81
(I+QG) [ : I ] :
(1+g, Hl+g,,) - g,,85
11 22 12221 “€51 (1+g11)
with

(1+ ijD /D! vep, (25 .58\ 4, L2
€22 ‘0 " 812/ 2" "2 glz ss
Dy

KED KED, /b +b (b#Db.)
Ol1+kED, —25 _(b4D b )+ — 0 12} 4 2. ,(2)

= 0 3102 T z T Do ss
0 T D 0 ss20”0

and
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, | 2t s (1)
KEDO/D"0 + (1+g11)icED0<-——-~----A2 - —-2—-> + gzl =

“821 ;
Dy
26 s 2.2 ZED ( ) ZEZDZ(
KED —= . g - K E ———-——-Ia-!-D -—-——7-a+a)
° D’ z D’ 2D
0 TssP0 0
2&(1+D ) a
0 1 (1)
+ KE (a,+D.a,)) - 5~
[ , 3 1 02 2 |%ss
T D
ss 0

The approximate steady-state with feedback, Zg g is then

KED /D’
(1) _ (1) 0°'~0 2&
Zof = (%ss T 1+ kED, —_,_g(b tDg 2)
T D
ss 0

KED, (b, +b (b;+Dyb,)
+ 0(1 2)+ Z(Z):/{l.‘.

’ 2 ? S8
Dy TssP0P0
. 2£(14D ) b,
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2
T 2£(D
(2) _ )aq2(2) 2& Ss 2.2 0
g, Slzss + KEDO ——,*Z A k'E -—-5~——,—4:(a1+D0a2)
DO ‘ TSSDO
KZEZDS a1+DOa2
- —-———’-—2—' (al+ az J{S1+|1+KE ——-—-—-;—-z—
ZD0 TssDO
| 2&1+D ) a.]
0 11 (1)
KE —-—--—-—---3-(3. +D0a2) - 5| %3¢
+ 0 =
a +D a
1+ KE 0 -Z
I
sDO .
(II11.A.2)
KZEZD
S = ———-—,—T(a +D03.2) + ————-—-—-Z-(albz-blaz)
7T D 27 D!
ssT 0 . ss 0
2£(14D,) b, K’E’D
S1 = KE | = () #Dby) - 5| + ———7 (1P~ B13))
7 D 27T D :
ss” 0 ss 0

The closed loop gain, S, of the buck-boost regulator is identical to

the closed loop gain of the boost regulator.
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Appendix III:

B. Stability Analysis for a Buck-Boost Regulator

The recursion formula for the boost regulator, eqn. (4. 3), is

Zo4 = Azt (IIL.B. 1)
where
2{%~ o)
c = KETO
11(%- To)

and the matrix A is the same one used for the boost regulator,

see eqn. (II.B. 1), The variation of eqn. (III. B, 1) is

24 oA
where
~280T, -
oA _ © OMalT-To) %l To)
=
: -2 : :
’ 2800 5 (=T W )
—e~26070 - ] 3
" e [y ,(7- T + 2E09,,(T= Tl 3, (7~ 7))
T
; -e728070 (7, - 7o) T )

V2T~ To) = To¥aolTs 7o)

1107~ To) + To¥p2(T5- Tp)



and

se %2{%= To)
—6—7'7;- = KETO
%175~ Tp)
The perturbation matrix is then
) oT oT oT oT
a;1t 8 ""‘(01'5' *hy "(’D’S 21, t 8 "'(Z)‘S T g —(Z)'s
oz 0z oz oz
n n n n
P =
oT ot oT oT
a + g O +n = a+ g, —r+h >
21 2 §)) 2 M 22 2 2) 2 (2)
o0z 0z oz 0z
n n n n
where

i
]

low

oA _ ~ , 0d¢
—a_"r_o--z-sf'"?"

(=]

()
()

After the feedback constants are substituted for the partials of the

s
!

oA + ac.
m:zsf -5-77;

on-time and switching period with respect to the state, Z. the
p_erturbation matrix for the buck-boost regulator assumes the same
form as the boost regulatdr, see eqn. (II, B. 3),
{ajy - 2pg v ot o, - bgy + 550
P = (IlI.B.3a)
L N

where
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2801 oy, 1) @), m
e 0Oyl T g - Vool ) 2 +KELY 0 T) - Ty Y07 )

- -2&7 (1) (2) ‘
e V10T 25 1500 T) 25 +RED (T 7o) + 7y, 7~ T)]

28 - (1) (2)

e [0 70) + 2807, (- M 2’ + 9551 T) 2y +KET 3y, (72 7))
n=|{ -
T\ _s28m 1) _r1.42) i}
\-¢ "0 0y~ zgs T Tz TEETY, 0 T)

It is convenient, as it was with the boost regulator, see eqn,
(1I. B. 4b), to make the assumption that 7.<< 1 in order to simplif
_ | P g plify

eqn. (IIL, B, 3a); so

(TS- TO)Z(S]:‘E) - [ 1- 2§(TS~ To)] zg‘? + KE(TS- 270)

(1-2§To)z(s? t(T-7T zng) + KE

o
and (II1.B.4)

(-7 + zg(l-zg‘,—s)]zg? + [1_25(75570”2(;6) —

SO JCRAY

The elements of the perturbation matrix can be approximated as

P11 = 211 - al{(Ts_TO)Zg? - ng) + kE(T - 27 )

- az{[('rs-ro)+2£] Z(sif) - zng) - KETO}

Pz = 212" bl{(Ts-TO)Z(slf) - zfjﬁ) * KE(TS-ZTO)}

oyllig o221l - o2 - e

(II1.B.5a)



-195-

2,1 - a,i Z(s? * (TS;TO)Zng) + KE} - az{zfe,}f) + (Ts’To)Zi-?E)}

P21

Py, = 2y, - bl{zilf) + (=122 + kE} - b {2 (D 4 (-7 ( 2}
(IIL.B. 53)
cont,

)s

When the system is evaluated at the design point (i.e., BT 2o

then the perturbation matrix becomes

28*D,  (2-Dy)T 28D 1
- oS 0 ss ek 0 ss
Py1 = 31t KR 7z z A E Dyl —7 - 3
Dy Dy
28D, (2-D)T. [28* D, T
- L 0 0 S8y - P 3 0 SS
Pip = 3, T bKE '2- 5 | '+ b,K"E"D, 7 "2
D, : : D,
(II1.B.5b)
- P ’ Wk ’
P,; = 2,7 - 2K E /Dy - a,K*E D, /Dy,
— Lk 4 q~ = ’
pzz—azz—bllcE/D - b, ED/D

The asterisk in eqn. (IIL. B, 5b) indicates that the input parameters
are the design parameters.
The stability criterion of the buck-boost regulator when the

eigenvalues are complex is given by eqn., (II. B, 6)

Det, (P) = Det.(A) + a,(a;,8,- 2,,8) ’_‘ 2,(2,20 - 2120))

t bylayyg) - 3118, + byla b, - a, b))

+ (albz-blaz)(hlgz- glhz) <1 (OI1.B.6)
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When the assumption is made that D XK 1, the A matrix is approxi-

‘mated by eqn.-(IL. B, 4a), and the vectors, g and h, are approxi-

mated by eqn. (IIL B.4) so that

[1- 24(7 - TO)] z(s? + KET,

21282 7 22281 T

ay,hy - ah, = -2g(1-26m)2Y + [1-25(78-70)]zg? + KET,

2,81 - 2118 * -{1-zg(rs+70)]z(slf) - (1-2ET)KE

b - - (1)
allh2 a.zlh1 = —[l—Zg(TS+TO)]sz

2
’ 2 2 Y
hlgz - glh2 = K'E {TO + [1 f2§(7’s—7‘0)] =

| (1) . (1)
- 28 [(1 2¢r) + [1-28(m 7)) 3 ]}

The stability criterion for the buck-boost regulator when the

eigenvalues of the P-matrix are complex is

al zng) + kET,] + —Zgz(s? + zng) + KET)] - (bl+b2)zg?
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and when the eigenvalues are real the stability criterion is
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The local stability of the buck-boost regulator is given by eqn.
(I11. B. 7). The form of the stability equation for a buck-boost
regulator is very similar to the stébility criterion for the boost
regulator, and like the boost regulator, care should be taken in

applying eqn. (IIL. B, 7).





