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Abstract

In the first part of this dissertation a two-dimensional unsteady separated flow past a semi-infinite
plate with transverse motion is considered. The flow is assumed incompressible and at high Reynolds
number. The rolling-up of the separated shear-layer is modelled by a point vortex whose time
dependent circulation is predicted by an unsteady Kutta condition. A power-law starting flow is
assumed along with a power-law for the transverse motion. The effects of the motion of the plate on
the starting vortex circulation and trajectory are presented. A suitable vortex shedding mechanism
is introduced and a class of flows involving several vortices is presented. Subsequently, a control
strategy able to maintain constant circulation when a vortex is present is derived. An exact solution
for the non-linear controller is then obtained. Dynamical system analysis is used to explore the
performance of the controlled system. Finally, the control strategy is applied to a class of flows and
the results are discussed.

In the second part of this dissertation the previous results are extended to the case of a two-
dimensional unsteady separated flow past a plate of variable length. Again the rolling-up of the
separated shear-layer is modelled by a vortex pair whose time dependent circulation is predicted
by an unsteady Kutta condition. A power-law starting flow is assumed while the plate length is
kept constant. The results of the simulations are presented and the model validated. A time-
dependent scaling which unveils the universality of the phenomenon is discussed. The previous
vortex shedding mechanism is implemented and a vortex merging scheme is tested in a class of flows
involving several vortices and is shown to be highly accurate. Subsequently, a control strategy able
to maintain constant circulation when a vortex pair is present is derived. An exact solution for
the non-linear controller is obtained in the form of an ordinary differential equation. Dynamical
system analysis is used to explore the performance of the controlled system and the existence of a
controllability region is discussed. Finally, the control strategy is applied to two classes of flows and

the results are presented.
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Chapter 1

The semi-infinite forced plate

1.1 Introduction

Two-dimensional unsteady separation of an incompressible flow past a semi-infinite plate at high
Reynolds number has been extensively studied in literature. Basically two different inviscid models
have been used to predict this phenomenon. In the simpler case the rolling-up of the separated
shear-layer is modelled by a point vortex with time varying circulation [1} [20] while in a more
sophisticated approach a continuous vortex sheet is used (see Pullin [17]). This classical problem is
a particular case of the’more general one where the semi-infinite plate is allowed to move transversely
to the flow. In the case in which the plate moves with constant transverse velocity into the fluid the
problem represents the two-dimensional unsteady analog of the steady separation off the leading of
a delta wing. Furthermore, as we are not constraining the plate velocity to be constant, the present
study can be related to the current research on separation control where, for example, dynamical
leading edge flaps are used to influence the large vortices on a delta wing (see [8]).

Following the pioneering work of Rott [20], we model the unsteady separation from the trans-

versely moving plate by means of a point vortex whose time-dependent circulation is predicted by



an unsteady Kutta condition. The choice of this model is in part justified by the complexity of the
problem and in part supported by the evidence that the model produces satisfactory results when
the flow separates from the tip of a zero angle stationary wedge [20]. In the general case of a finite
angle wedge the flow is complicated by the occurrence of a secondary separation [18] [20] which
cannot be predicted by the present model. Furthermore, in the finite angle wedge case there is some
ambiguity concerning the implementation of the Kutta condition [10].

First we investigate power-law starting flows in which the plate also moves with a power-law
velocity. Because the equation of motion, which describes the trajectory of the vortex, is singular at
the initial time, an analytical solution valid for small time is required and is obtained via perturbation
analysis. When the plate is at rest the exact solution proposed by Rott [20] is recovered. In the
general case, when the plate is allowed to move, the form of the solution depends on the power law
exponents chosen for the free-stream and the plate velocity respectively. In particular, there exists
a limiting value for the power law exponent of the plate velocity beyond which separation does not
exist in this model. The numerical integration of the equation of motion provides details about the
evolution of the flow for large times. We also discuss the potential for controlling the separation

process by a prescribed transverse motion of the plate.

Extension of the above results to the case where several vortices are present is obtained by imple-
menting a vortex shedding mechanism first proposed by Graham [9]. In this scheme, a new vortex
is introduced into the flow every time the rate of circulation production changes sign. Eventually,
Graham abandoned this scheme because it led to divergent results. In the present study further
restrictions have been added to the original scheme producing a successful implementation. The
set of equations which describe the evolution of the system grow in time, a new equation is added
when a new vortex is introduced into the flow. The new equation is singular at the initial time
and an approximate solution valid for small times is derived, as before, via perturbation theory.

This analysis predicts a limiting value for the plate velocity beyond which the separation process



éannot take place. The numerical integration of the equations of motion provides details about the
evolution of the system.

The above results show that the motion of the plate affects sensibly the flow separation and
it therefore should be useful for control purposes. The possibility of actively controlling the flow
separation is of great interest because, although extremely simple, this basic flow involves several
important features common to many unsteady separation processes. In particular, because this
flow can be interpreted as the two-dimensional unsteady analog of the three-dimensional steady
separation over a delta wing, it could provide deeper insight about vortex management concepts in
such three-dimensional flows [19]. Based on the observation that there exists a critical plate velocity
beyond which the separation cannot take place in the model, we derive a control strategy which
inhibits the production of further circulation when a vortex is present into the flow. Furthermore,
we obtain for any time-dependent free-stream velocity the analytical closed form solution of the
controller, i.e., the predicted motion of the plate that satisfies the Kutta condition without requiring
further shedding of vorticity into the wake. The performance of the controller is then characterized
by a dynamical system type of analysis. Finally, we discuss the results provided by two simulations

in which the controller is successfully tested.

1.2 Mathematical formulation

In this section we introduce a mathematical model able to represent the phenomenon of two dimen-
sional unsteady separation from the tip of a vertical semi-infinite plate which is allowed to move
along the y-axis in the presence of an unsteady free-stream velocity. Let us assume that the regions
of vorticity that separate‘from the boundary layer and are convected away are thin enough to justify
a description by means of a vortex sheet. The consequent stretching and rolling up of the vortex

sheet, due to the unsteadiness of the flow, suggests a more coarse description via point vortices.



The vortex sheet is not completely lost, It is assumed to consist of a sheet of negligible circulation
that connects the feeding point to a point vortex of variable strength which is able to satisfy an
unsteady Kutta condition. Mathematically the feeding vortex sheet is just the branch cut due to
the logarithmic singularity representing the vortex.

The mathematical formulation of the problem can be simplified by choosing a frame of reference
fixed to the plate so that the body can be identified with the negative imaginary axis of the complex
plane. In this frame of reference the plate is still and the fluid moves parallel to the y-axis with
velocity —up(t). Then, the flow of an incompressible irrotational fluid about such a plate can be
solved via conformal mapping. The Schwartz-Christoffel technique permits the transformation of

the semi-infinite plate in the z-plane onto the real axis in the {-plane (see Figure 1.1) with the map:
z = ~i<2. (1.1)

Since Laplace’s equation is linear and the boundary in the mapped plane is simple to treat, we
can build the complex potential F by superimposing basic flows. Note that for convenience we are
departing from the usual convention and taking the circulation positive when the flow rotates in the

clockwise sense. Thus, the complex velocity field w = ‘i’z in the mapped plane has the form:

B . il4(t) L
w((,) = U(t) + 2up(t)¢ + — (C-—Cl(t) g-gl(t)>

+Z (c A0 c—é“n(t))

In the above expression we have the free-stream velocity, U, the velocity of the plate, u,, and N

(1.2)

vortices at ( = {, with their images at the complex conjugate position { = Cn. Note that U is
labeled free-stream velocity for simplicity, in reality, it is the leading order of the expansion of the
potential flow past a finite plate about the tip of the plate. We allow the strength of the first vortex
to depend on time so that the Kutta condition may be satisfied. We choose the convention that the

vortex of variable strength is labeled with the subscript 1, so that any time a vortex is shed all the



others are renumbered.

The need to impose the Kutta condition is a consequence of the fact that the potential flow in
the physical plane presents a square root singularity. In the ¢(-plane the flow is non-singular since
the singularity has been absorbed by the mapping. To remove the singularity in the z-plane the

complex velocity (1.2) in the mapped plane has to be zero at the origin all the time. Solving for T’y

oG il (G —Cn
e (550 [ 52 (525

n=2

we obtain:

Note I'; does not depend directly on u, because the motion of the plate reduces in the mapped
plane to a stagnation point flow about the origin, in other words, the motion of the plate cannot
affect the velocity of the fluid at the origin. However, a change in the position of the plate modifies
the relative position of the vortices with respect to the tip and so I'; will be affected indirectly.

To describe the motion of this system of vortices in the physical plane we use the following set

of ordinary differential equations:

2 W ANEAN S G {-fl- [F- 1 yoe(z— zl)]}

di Fl dt Z-+2y dz 2r (1 4)
dz,
; = 31_1'{1;1r {_diz. {F L log(z — zr):i } ,
with the initial conditions:
21 (ts) = Zg
(1.5)

2(ts) = 2y, r=2...N,

where F' is the complex potential and zp is the separation point. Note z,, was the final position of
the vortex r —1 at the shedding time ¢ = ¢, which becomes the initial position of the vortex r. Thus
the number of equations increases anytime a new vortex is shed. The term containing % in the
first of the above equations is known as Brown and Michael’s chrection [1]. The motion of vortex of
variable strength described by this equation guarantees no net force on the vortex and its connecting

cut. The limit on the right hand side, which represents the complex velocity at the vortex location



without the self-induced contribution, has been left indicated to remind the reader that some care

has to be taken in its computation. Note that:

F— St log[+(¢) - #(¢0) (16)

= FoSllogl¢ - ) - ¢~ cl){(jzi) (dz)"l} o

{=(1

i
F— -?73- log(z — z1)

Taking the derivative with respect to z and then computing the limit, as 2 and ¢ go to 23 and (3
respectively, the higher order terms not given go to zero at least fast as O(¢ — ¢;) and the last term
in the above expression produces the so called Routh correction [5].

Now we consider if it is more convenient to solve the problem in the physical or in the mapped
plane. In both cases we must use icomplicated transformations, but in the {-plane it seems easier to
understand and to keep track of the different contributions. Once we have performed the change of
variables, substituted for the complex potential and, carried out the limits required in the equations

(1.4), we obtain:

.z GG ] dG i} }_{1_@_ _
[22(1 * G~ 51} {Cx(ﬁ ~G))oat
[ iFl 2F (Cn ot En) zI‘1
— 9 e b ——
oG |V T e T A G oG - G) 47@}
] 2 (1.7)
du il (1 d¢, 1 d¢, iTp Ca —Ca
—i [ Z («;2 at Z’E—d_t—)} { " Z 27l }
d, 1 iTn  (Ga—Gn) il
T {U” T +,§ 2 (G — GG — G 4wcr}’
with the initial conditions:
t) =0
Gilts) (18)

¢ (ts)=¢, r=2.N,

where T'; is given by (1.3). Note because of Brown and Michael’s correction [1] the equations are
coupled not just through the position of all the vortices but also through their velocities. The size

and complexity of the problem is such to discourage any attempt of an analytical solution.



1.3 Starting vortex

In this section we will consider the problem of shedding the first vortex only. The starting vortex is

of particular interest because 1t must handle the singularity of the potential flow. The equation of

motion is:
.z 6161 | d [ i3 ] d¢;
2 vl uryeiiantll Byanryammuns-arll Bhasemlit=—
{ Gt {1 — CI] dt (¢ —¢1)) dt (1.9)
i b ahi ] i du
2¢y [U+ 2upGa 2n({y — fl) 47rC1] U dt’
where
A GG
= —ree |V T .
fr = 2me (Cl - Cl) ’ (1.10)
and the initial condition is
¢1(0) =0. (1.11)

The second and third term on the left hand side and the last term on the right hand side of the
equation of motion are the contributions due to Brown and Michael’s correction [1]. Consequently,
the velocity of the vortex depends not only on the local velocity but also on the free-stream acceler-
ation. The term before the last on the right hand side is Routh’s correction [5] which is consequence
of the limiting process. Note if u, = 0 and U has the form of a power-law then the problem can be
solved analytically in close form (see Rott [20]), but in the general case is necessary to integrate the
equations numerically.

Algorithms for the solution of the ordinary differential equations are well known and basically
well behaved if the solution is smooth and, if the integration is carried out carefully, the results
can be very precise. A singularity can be a source of trouble, in general, but if it affects the initial
condition it can be particularly annoying because many algorithms cannot even start. This is exactly
our case since the problem is singular at ¢ = 0. To overcome this difficulty is necessary to produce

an approximate analytical solution valid for small time so that the integrator can start from a well



behaved point.

To find a valid expansion we stretch the time about t = ¢ defining a new time

~ 1
t= pt (1.12)
and expand in ¢ all the quantities which depend on time. We set:
Cl(t) = €” (Ch ({) + fﬁch ({) + - ) (113)
and,
Uty = V™ =emvim (1.19)
up(t) = wpt" = ePupt", (1.15)

where @ and 3 have to be determined balancing the different terms of the equation and, m and n
are positive real numbers. Substituting these relationship into the equations (1.9-1.11), at the first

order we have:

P ner } st dC1, { iC3, ] 20m1 41,
2i¢y, + ——=—1 ¢ = — = € =
[ NG -G, a6, -G di (1.16)
i il co T o] K ae1dU
5|20 +2 * —e of DLy 2a1 8
%, { MR A = vy S P } U a
where
. ¢1,G )
Ty = 27ie” (———-—’-—-i-— U, 1.17
' G, -G, (L.17)
and the initial condition is
(1,(0) = 0. (1.18)

Note T’y ~ O(e™**) which is consistent with the fact that the strength of the vortex has to be zero
at time ¢t = 0. By inspection we can see that the terms related with the vortex velocity or with the
rate of circulation production are ~ O(e2*~1), the terms depending of U are ~ O(¢™~%) and, the

term containing u, is ~ O(€"). Hence, in general, is not possible to find an o which balances all the



first order terms. Since it is difficult to predict which terms should be kept, let us proceed blindly
by computing ¢ = «,,, when the term containing u, is assumed to be negligible and @ = @, when
the terms depending on U are supposedly negligibles. Then, the leading order is obtained in the

following way:

m+1 n+1

a = min{an, = 3 % = —-2——}, (1.19)

Now, the second order is obtained by balancing all the terms of the equations and, of course, it is
direct consequence of the choice made at the first order. Hence if

_3(n+1)—2(m+1)
= . ,

(1.20)

o = = Bm

otherwise

_2m4+1)=3(n+1)
= 5 .

a = ap = Bn (1.21)

Figure 1.2 shows in which domain the terms depending on U are dominant and where, instead, the
term containing u, is dominant. The common boundary identifies the (m,n) pairs for which all
the terms in the equation balance at the same time. It is interesting to observe that the case of
the two-dimensional unsteady analog of the steady separation over a delta wing is within the region
where U is dominant.

With this information about the order of the expansion we can proceed to compute the approx-
imate solution. Note both the time derivatives of ¢; and (; appear in the equation (1.9), thus it
becomes necessary to take the complex conjugate of the equation and solve for one of the deriva-
tives. However it is more convenient to separate real and imaginary parts and to switch to polar

coordinates. Equation (1.9) becomes:

7 2 7
dt 1202 3U dt 3p1 (1.22)

df;  Ucos20;  wup,sin26;
dt — 8pdcost, 2p?
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with the initial conditions:

p1(0) =0

81(0) = 6o.

(1.23)

The initial condition for 8; will be derived below because we do not know a priori the initial direction
of the vortex.

Although, the following results are valid for any m and n real positive, we are limiting our
discussion to m, n k: 0,1,2, i.e., only step, ramp and parabolic trends are considered. The following
results represent the approximate trajectory of the vortex in the mapped plane. One should keep in
mind that inverting the map implies doubling the angles and squaring the radii.

Let us consider first the case where the terms depending on U are dominant, i.e., o = ay, < ay,

and # = fBy,. Then the approxirnate solution up to second order valid for 0 <t < 1 is:

(
3 H H
i e
23 (2m + 1) 2[2(5m + 2) + 3(n + D] V|3
(1.24)
w 32(2m + 1)) Y .5
= — i
\ 60 =som(V) g + S ) 3 D VI
where {1 = ipi(sin 0y + i cos ;) and, the strength of the vortex is:
Pl(t) m
= e | A .
Ty (t) c0s 61 (1) TV (1.25)

Note if the plate is at rest (i.e., v, = 0) the higher order corrections are zero and the first order
expression becomes the analytical closed form solution to the problem, first obtained by Rott [20]
by taking advantage of the self-similarity of the flow. The exact analytical solution of the problem
for an arbitrary free-stream velocity is presented in the appendix.

Figures 1.3-1.6 show the results for this case when m = 0,1, 2. The vortex takes off and moves
on a trajectory always perpendicular to the plate since 6,(t) = 4 satisfies identically the second
equation of the set (1.22) for all m. Figure 1.4 shows how the rate of circulation production depends

on the free-stream acceleration. For the impulsively started case %[{— is a delta function and %‘;L
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is initially infinite while for the ramp case -‘f—g— is a step function and -‘%:tl starts with an infinite

derivative. Figures 1.5 and 1.6 show the instantaneous streamlines for m = 0, 1.

We can also make a comparison with Pullin’s computation [17] in which the problem has been
solved numerically using a full vortex sheet. Because of the lack of data it is not possible to compute
the locus of the center of vorticity of the spiral and compare it with the trajectory of our vortex,
but we find good agreement between the time dependent circulations: the power laws are exactly

the same, only the multiplicative constants are slightly different.

o —Pullin —~Clurrent Results
3 :
m=( 'y = § Jovgt% ' = }-) rV‘a*t%
4 2
Jo = 2.640 Jy =2.744
1 1
m=1 ro=(3) v ro= (1) 2yt
8 6
Jy = 2.185 JT = 2397
1 1
1 3 4.3 1 3 4.3
= = - = | — 3t
m=2 Ty <4> JoV'3t I‘1 (10> Vv
Jo = 2.079 Js = 2315

The constant J,,, are computed numerically in Pullin’s work [17]. To compute the effective J}, for
our results we equate the two circulations for the same m. Note how the disagreement increases as m
becomes large, i.e., when the circulation at later times becomes more and more important. Further-
more, because of the self-similarity, a qualitative comparison is possible between the instantaneous
streamlines showed in Figure 1.5 and those presented by Pullin [17].

Figures 1.7~1.12 show how the motion of the plate, when n = 1, modifies the previous results

for m = 1. When v, > 0 the plate is moving into the fluid and the angle of the initial trajectory
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and the circulation increase while the radius decreases with respect to the unforced case. In this
case the fluid has a “harder time” going around the tip so a higher circulation is required to satisfy
the Kutta condition, see Figures 1.9 and 1.10. In addition the vortex is carried downward along the
plate so the angle increases but, at the same time, it also feels its image which pushes it upstream
thus the radius increases more slowly (see Figure 1.8). If v, < 0 the plate is pulled out of the fluid
and the above arguments can be reversed, see Figures 1.8-1.10. The fluid can go around the tip
more easily, requiring less circulation, while the plate moves away from the vortex, decreasing the
angle. The effect of the image is reduced hence the vortex is convected away, increasing the radius.
Figures 1.11-1.12 show the instantaneous streamlines for the forced cases.

Now let us see what happens when the term containing up becomes dominant, i.e., @ = ap < &
and @ = Bn. It is worth remembering that, because of our assumption, if U(t) = 0 then the plate
can slip back and forth through the fluid without shedding any vorticity. Physically when the plate
starts to move forward and U(t) = 0 there is no separation, the boundary layer builds up uniformly
on both sides starting from the leading edge. If we start the motion in reverse the boundary layer is
released into the fluid creating a thin wake. Now if we add a cross flow and v, > 0 our semi-infinite
plate flow can be viewed as blowing near the leading edge of a flat wing at angle of attack, for v, < 0
it represents a trailing edge flow. The approximate solution up to second order valid for 0 <t <1

has the following form:

2 (o3
pl(t): \/;(m+l)+3n+lv~vpt

(1.26)
0,(1) = V/22(m+1)+3n+ FIE
BT, 32(2m + 1) V=0’
and the strength of the vortex is:
t
)= ——8—1-(—)——7th’”. (1.27)

cos B (1)

Note the term \/=v, which makes the solution imaginary if v, > 0. A possible interpretation is that
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the model does not know, in this case, on which side of the plate to put the vortex, The connection
with the physics is the following: at early times the cross flow is so weak in comparison to the
speed of the plate that only the boundary layer can be recognized. When v, < 0 there are no such
difficulties and a weak vortex leaves the plate along the imaginary axis. It is worth observing that
the second order correction to the radius p; is in this case identically zero.

Figures 1.13-1.18 show the results of the simulation when m = 1 and n = 0. Note in this case the
plate moves initially with infinite acceleration which gives more insight about the term /~v,. The
vortex leaves parallel to the plate, then the trajectory bends because of the cross flow, see Figure
1.14. The rate of circulation production and the total circulation are very similar to those presented
for the unforced case, see Figures 1.15 and 1.16. Nevertheless, the instantaneous streamline pattern
is completely different, see Figure 1.17 and 1.18.

Let us see now if there is any choice of the parameters so that a = a,,, = a,, and 8= 8,, = 5,.
We find that the combination m = 2 and n = 1 satisfies these conditions. In this case all the terms
in the equation (1.16) are of the same importance and consequently it becomes more difficult to find
an approximate solution. However, it is possible to derive the leading order when the ratio between
the magnitudes of the free-stream and the plate velocities is very large or very small with respect to
unity.

if l;‘-/;’ > 1 then the terms depending on U are dominant and the leading order solution valid

for 0 <t lis:

pi(t) = [_‘J—K‘—‘_} % e

23 (2m +1) (1.28)

1
- Ly A
0:t) = sgn(V)g + 57 (2(2m+ 1)) ‘
Note this result is just the leading order of the solution (1.24) with the departure angle modified.

Figures 1.19-1.24 show the results of the numerical integration when m = 2 and n = 1. From

the comparison with the unforced case we see that the vortex no longer takes off in a direction
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perpendicular to the plate, instead its departure angle is corrected in agreement with the sign of
the large parameter, see Figure 1.20. The motion of the plate affects slightly the rate of circulation
production and the total circulation, see Figures 1.21 and 1.22. When v, > 0 a larger amount of
circulation is necessary to satisfy the Kutta condition. Figures 1.23 and 1.24 permit comparison of
the instantaneous streamline patterns when the plate velocity is positive and negative respectively.
It is interesting to observe that the closeness of the solutions for early times (see (1.24) and (1.28))
is reflected in the similarity existing between this simulation and that presented in Figures 1.8-1.12.

When

Y
Vp

< 1 and v, > 0 the flow resembles the separation at the leading edge of a plate at

angle of attack. The leading order solution valid for 0 < ¢t <« 1 has the form:

_f vy, v
nit) =3 [(.‘2m+ 1) T, }t

1 -1
6:(t) = sgn(V) -;E-—% [(%) +§%J€E_‘} ‘_:)_;_l

The vortex takes off almost tangent to the imaginary axis, (see Figure 1.26) and it is convected

(1.29)

downstream along the plate forming a little separation bubble, see Figure 1.29.
Finally, if }-}’;i < 1 and v, < 0 the flow is similar to the separation from the trailing edge of a

plate at angle of attack. The leading order solution valid for 0 <t < 1 is:

-y
pi(t) = E—ge
2m+1 (1.30)
1V J2m+1
a = - .
1(t) 8 vp —vp

In this case the vortex is left behind on a trajectory which makes a small angle with respect to
the direction identified by the plate, see Figure 1.26 and 1.30. Note how the ratio between the
magnitudes of the two velocities is always present in the correction of the departure angle. Based on
this observation we can conclude that if the effects of the free-stream and those due to the motion

of the plate are of the same order then the starting vortex can leave the plate with any angle. This
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seems to be physically acceptable and naturally complements the results obtained for the other two
more radical situations. Figures 1.25-1.30 show a comparison between the last two cases and the
unforced solution. In contrast with the previous simulation (see Figures 1.20-1.24) the motion of
the plate strongly affects the evolution of the system in this case. This effect is particularly evident
in the trends of the rate of circulation production and total circulation where more than a factor

two separates the case where v, > 0 from those where the plate velocity is negative.

From the results presented in this investigation it follows that the motion of the plate is a strong
candidate for the active control of the separation process. A careful choice of the motion of the plate
in relation with the free-stream condition can produce results that vary from a large modification of

the flow structure to fine tuning of the production of circulation.

1.4 Code validation

As pointed out in section 1.3, setting up(t) = 0 in equation (1.24) recovers the exact solution
of equation (1.22) for U(t) = V™. With this result we can check and validate the numerical
integration carried out with a modified Runge-Kutta-Feldberg fourth-fifth order scheme [2]. Below
are some data obtained running the code in double precision on a VAX station 3100, setting the

local error tolerance at 10~ and using the approximate solution (1.24) up to time t = 105:

m trinal error CPU(sec)
0 1.0093 5.72 x 10710 11.42
1 1.0058 3.65x 1071 13.09
2 1.0019 1.69 x 1019 5.18
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where the relative error has been computed as

SOIe:x:(tfiﬂal) — Solnum (ijinal)
SOlex(tfinal) .

error =

It is very encouraging to observe that the total error at lfinar & 11is two orders of magnitude smaller

than the local error threshold.

1.5 New vortex

In this section we will consider the problem of shedding a new vortex when N - 1 other vortices
are already present in the flow. If ¢, is the shedding time then it is crucial to analyze the transition
from ¢7 to t+. Up to the time ¢ vortex 1 has variable strength such that the Kutta condition is
satisfied. At time ¢ = {, this vortex has its strength frozen and, all the vortices renumbered. Finally
at t} a new vortex 1 is introduced into the flow to remove the square root singularity. If we restrict
our simulation to the case where the shed vortices have alternate sign, then we can model the vortex

shedding making the assumption that the time ¢ = {, is determined by the condition;

LN Y Y (1.31)
dt t=t,
Assuming
dly _dL e
dt {t o i }tztf“’ (1.52)

the circulation produced before t, is of opposite sign of that produced after ¢, , s0 that ¢, is the proper
time to freeze the former vortex and introduce a new one. Any other choice for the shedding time
implies the arbitrary production of more than one vortex of the same sign or the existence of a vortex
which strength decreases in time. The latter situation is physically unacceptable. This procedure

has been implemented by Graham [9] to simulate the flow induced by an oscillating diamond shaped

cylinder. Eventually he abandoned this strategy because of a divergence in his calculation. We
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do not have enough information to understand this negative result but in our simulations such a
divergence is not present.

The quality of the simulation with many vortices depends in large part on the shedding mecha-
nism. To avoid any ambiguity we have to restrict ourselves to cases in which the rate of circulation
production presents only one peak or trough between two consecutive zero crossing or, equivalently,
that —d—“—gl does not change sign between two zero crossing. For example, let us assume that in a
particular interval of time -‘ﬂl is positive and has two peaks. Then it is not clear whether one or two
vortices will be shed. It probably depends on the deepness of the trough separating the peaks. If
the trough is very deep it seems reasonable to shed two vortices otherwise just one. Although these
restrictions limit the applicability of our model there still are numerous flows we can simulate.

With this in mind let us start the analysis of the equation of motion of the new vortex. The

equation has the following form:

GG 14 { i} } ¢
{QC +C1 Cl] G(G—¢C)) dt
iTy il (G=Ga) il (1.33)
2(1 {U + 2up(r — 27((3 -G) +n=2 21 (C1 ~ )G —En) 47"(1:1
N, (1d¢ 1 dG, Tlo=lal|
— { ; (Cz at 2 dt) U+,§ 27 (nla ’
where

oG Mir, (c —cn)
fo=2m (Cr-(fl) {U+§ Cnln } (1.34)

with the initial condition
Gi(t) =0. (1.35)

Note that this equation, although much more complicated in appearance, has exactly the same
structure as that for the starting vortex (see 1.9). It is singular at the initial time also, except that
up through time ¢ = t; there is another vortex which satisfies the Kutta condition. Consequently it

is reasonable to expect a different time behavior for § < (¢ — ¢,) < 1. Once again it is necessary to
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find an approximate analytical solution so that the numerical integration can start smoothly. Let

us stretch the time about ¢ = ¢, defining a new time

-~ t—1
f=22t (1.36)

€

and then set
() =€ L, @)+, + ). (1.37)
All the other quantities which depend on time can be expanded in Taylor’s series, i.e., we can write:

) = f(0)+e%‘ Py

= f8+6§ft.t {+ (138)

Note we can expand in this way the positions of the other vortices as well, as can be verified
substituting the above expansions into their equations of motion. Substituting these relationship

into the equation of motion (1.33), we have to first order:

. - - -'_3
2~"’ ZCIIC%} } 2a—1dC1~z _[ ZCI: - } 20~1d(:£1 -
[zch + C1, ~ €1y ‘ dt €1, (C1, —¢1y) ‘ dt
i €2, + (o
—{ U, (2212 2 (1.39)
2{ v ( (2,62, )+ e

i (Car = Cns ) [Go +8ns Con + G iC2 et
+Z§;( gﬂ.gﬂ. ){ Cn.én. - 42,52. ] ‘Tf ’

n=3

with the initial condition

¢1,(0)=0. (1.40)

Since I'; ~ O(e!**) the desingularized velocity is independent of {1, and the strength of the vortex
at time ¢ = t, vanishes. By inspection we can see that the terms related with the vortex velocity
or with the rate of circulation production are ~ O(¢?*~*!) while the term due to the desingularized

velocity are ~ O(€®). In this case there is no ambiguity and the leading order is ~ O(/%).
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Proceeding as before, we find that the leading solution valid for 0 < (t —¢,) < 1 has the form:

< 5 . n=3 w Pn, p2, Ty

. N . .
2 sin 8 I'n [sin8,, sinfy, \ cosfy,
() =45 |Us 2~-u,,,+5_j-—( B ) ](t-ts)
P2 P
(1.41)

91(1) = 0,

where the quantity between square brackets is just the value of the desingularized velocity field near
to the tip of the plate at the shedding time. Analyzing the argument of the square root it follows

that a solution exists if, at the shedding time,

wy, < U, sinfy, i_l_‘_n_ (sin On, sin92,> 08 0n, (1.42)
pzs n=3 T pﬂ‘ pza pn:

i.e., if the velocity of the plate is less of the velocity with which the new vortex is convected away.
This result supports Rott’s prediction of the Qxistence of a limiting value of the plate velocity beyond
which the separation process cannot take place, see [20]. Furthermore, the above inequality suggests
that a particular value of u, which inhibits the separation may exist.

The above result provides a valuable test for the validity of the numerical simulation because
the sign of the argument of the square root depends on the history of the flow. When the sign is
negative, an error was made during the integration or the assumed shedding time was not compatible
with the evolution of the system.

We are now able to run simulations with many vortices. A great deal of experimental work has
been done concerning the starting vortex produced by a flow impinging on a thin wedge or towing
a thin plate in a fluid at rest at infinity. Photographs show (see [25]) that as time increases the
vortex sheet which leaves the edge presents some secondary spiral. The vibrations of the experi-
mental apparatus could account for such a behavior. In our numerical simulation the free-stream is
accelerated from rest to a peak value and then starts to oscillate about a nonzero mean (see Figure

1.31). In other words we are in the frame of reference fixed with a plate which vibrates parallel to
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the free-stream. Figure 1.33 shows that the rate of circulation production is strongly affected by
the oscillation, to the point that a small amount of negative circulation is necessary every period
to maintain the Kutta condition. On the other hand, it is interesting to observe that the total
circulation (see Figure 1.34) includes just some waviness in its behavior. Figures 1.35-1.36 show
instantaneous streamlines. The waviness of the zero streamline coming off the tip of the plate closely

resembles the secondary roll up present in the photographs.

1.6 Active circulation control

In section 1.3 we have seen how the motion of the plate can modify the flow, in particular how it can
affect the rate of circulation production. In section 1.5 the approximate solution (1.41) suggests that
there may exist a particular u,(t) which inhibits the shedding of vorticity. Now it seems legitimate
to ask: once the starting vortex has been shed, i.e., t > 1, is it possible to move the plate in such a
clever way that the Kutta condition remains satisfied without requiring a new vortex 7

First let us recall the equations of motion in polar form for the starting vortex:

dpy _ Usindy  py dU  u, cos? 6,
dt — 122 3U dt 301

(1.43)
i@_l _ UC08291 u,,sin?@l
dt ~ 8p3cost, 20
with the initial conditions:
p1(0) =0
(1.44)
61(0) = bp.

Now if we assume, as we have before, that a reasonable criterion to shed a vortex is when the rate
of circulation production goes to zero, i.e., at = t,, then is important to analyze the expression for

d—%—. Taking the time derivative of the Kutta condition (1.10) in polar form, we get:

dI‘l T dp1 dgl dU
dt cos 04

— U“Ez—ﬁ-U‘plt&nﬁl-Z{-{-%p]-aT]‘ (145)



21

Using the equations of motion (1.43) we can rewrite the right hand side of the above expression in

terms of U ,-‘f{;’- and u,. Equating it to zero and solving for u, we have:

29 _ 2 al 2
Up, = (4 cos? ;1’ —3) ® Cozpi).l'cosjélsjn b, Us + 2;2' %It{-’t:tj . (1.46)
Hence for this choice of u, the rate of circulation production is zero, At this point then we have a
technique to discontinue feeding the starting vortex and to create a new vortex.

Let us assume for the moment that as long as one vortex of fixed circulation is present in the
flow it is possible to move the plate in such a way that the Kutta condition is satisfied for all time.

Then, from (1.4) without the Brown and Michael correction, this vortex of fixed strength I';, moves

in accordance with the following equations:

jd_g_l_ _ Usinby Iy, sind; up c0s 20,

dt ~  4p?  16wp3cosf 201 (1.47)
d91 U cos 91 Fls Uy sin 2(91
T 3 7t 7
di 4py 87pi 2p3
with the initial conditions:
pl(té') = pls
(1.48)
01(ts) = 04,
where py,, 0, and,
£1
= - 1.
Pl‘ WCOS 91, Us ( 49)

are the values at the shedding time. From the Kutta condition or the requirement that the complex
velocity be zero at the origin, we obtain the relationship:

r st

L2 _p=o. (1.50)
T A

If this constraint on the trajectory of the vortex is satisfied for all time after the shedding time,

ts, then the Kutta condition is satisfied. We must now impose this constraint on the equations of

rotion (1.47). To do so we take the time derivative of (1.50) to obtain:

[ dp do, dU
Ty 0, 90, 2V o 151
sty |V TUptanbim + ) =0 (1.51)
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As before, using the equations of motion (1.47), we can rewrite the above expression in terms of U,

4 and, up. Then solving for u, we obtain:

om2p2U2sin 20, + wp1UTy, (4cos? @y — 1) sinfy — I'] sin 26,
8wp? (wp1U cos 26, — T'y, sin 26, sin ;) cos 6,

’llpz

(1.52)

X 2t w
(wp1U cos26; — Ty, sin20; sinby) dt |
This then is the speed that the plate has to assume for t > t, to take advantage of the presence

of the starting vortex now with constant circulation and keep the Kutta condition satisfied without
forming a new vortex. Before verifying this result by different means let us check the compatability

of the two parts of the argument computing the following limit:

hm u, = 77, +

1 (8 cos? fy, — 3)sin b, 2p, au
11, (4cos? 6y, — 3) 8py, cos? 0y, U, dt],

] . (1.53)

Note the result is equal to the right hand side of (1.46), i.e., the value of u, which forces to zero the
rate of circulation production, and this verifies the continuity of the plate speed. Substituting the

plate velocity (1.52) in the equation of motion (1.47) we obtain:

(

. du
flﬂ _ (T'y, cos 8y — 2np U) Ty, sin by cosb; + 87r2p§’-21? cos 20,

dt 87p3 (T'1, sin 201 cos 01 — wp U cos 20;)

(1.54)

d
6, (T4, cosby — 2xp U) U cos by — 87rpf—£— sin 264

dt 8p3 (I'1, sin 26, cos 8y — mp, U cos 201)

\

These are the equations of motion of the vortex in the controlled case. The trajectory of the vortex
is intelligently affected by the displacement of the plate which keeps the Kutta condition satisfied.
Since the above equations implicitly satisfy the constraint (1.50), we can use such a relationship

to decouple the equations of motion. After the simplification (1.54) reduces to:

dé, 1 [ 73 4 . sin20, _d_Li]

6 _ 1.55
@ " deos?0,—3) |83 cos? 0y | U @ (1.55)

with the initial condition

81({,):91,, (156)
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where the radius is

_ Ty, costy
P11 T U s (1.57)
and the plate velocity is
_ 1 7(8cos?0; —3)sinb; , , 2I% cos? 6 dU
Up = (4cos? 6y — 3) [ 8I';, cos® 6 Ut+ w23 dt |~ (1.58)

Analyzing the denominator of the above expressions we can see that in general, 4% and u, become
g p g a1 P

singular for:
T

a
U =0, 0 = 2 . (1.59)

*3
Let us consider the source of these singularities. The constraint on U means that it is not possible to
reverse the direction of the free stream and at the same time maintain the Kutta condition satisfied
without further production of circulation. In other words, when U = 0 the plate prefers not to have
a vortex in the flow because the singularity caused by the vortex cannot be balanced, hence the plate
takes on an infinite velocity leaving the vortex behind. When 6; = £5 the vortex touches the wall
of the plate, to avoid this situation the plate has to take infinite speed. Finally, the first constraint
on f; is particularly curious because it divides the physical plane in three sectors of angle -23i each

and the vortex is not allowed to move from one to another without having the plate take on infinite

velocity.

1.7 Dynamical behavior of the controlled system

In the previous section we have been able to find a controller which inhibits the production of
circulation when a vortex is present in the flow. Now, we are interested to know if it is possible to
control the system for infinite time and, if so, how this might be done. If it is not possible, then we

would like to understand how to maintain control as long as possible. Hence, this section is devoted
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to the analysis of the dynamical behavior of the controlled system.

Let us start this investigation by determining the fixed points of the unperturbed and uncontrolled
system. The set of equations describing this case can be obtained imposing U(t) = U, and u,(t) =0
on (1.47). The result is:

51!2- _ Ussinty _ Iy, sinf
d —  4p? 167p3 cos 6,

(1.60)
gt_?}_ _ Uscost _ T,
dt —  4p8 8wpt

It is easy to prove that there does not exist any pair (p1,6;1) such that the right hand sides of the
above equations are simultaneously zero. Physically this means that, given a fixed free-stream U,
it is not possible to find a vortex of necessary strength that at the same time does not move and

satisfies the Kutta condition.

The lack of fixed points for the unperturbed system makes the search for periodic orbits of the
perturbed one much more complicated. It also suggests the possibility of the total lack of such
orbits. Hence, the best way to conduct this search is to investigate the global structure of the flow

field.

The equations of motion for the perturbed and controlled case (1.54) can be simplified by the
use of the trajectory constraint (1.50). The form of the simplified equations can be crucial for the
analysis of the dynamics of the system. At first, it seems natural to eliminate one of the equations
using the constraint. The result of such simplification (1.55) is numerically very useful because it
reduces the computation time and improves the accuracy but does not aid in the analysis. The right
hand side of (1.55) is singular which violates the required Lipschitz-continuity to apply averaging
methods. Also the use of the singular perturbation theory is very difficult in the case of periodic
forcing, the one of interest, because at each cycle we have to match inner and outer solutions. A

better way to use this constraint is to eliminate I';, from the equations (1.54). Substituting and
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simplifying we obtain:

dpy 1 ) 5dU
£ 6 - 6
dt 82U (4costf; — 3) {U sin 01 + 8p; - cos 26, (w61)

w1
dt ~ 8pjU(4cos?f; —3)

[U"’ cos by + Sp?%tq sin 201] .

Note that we recover the same singularities as defined by (1.59), but the right hand sides present
an interesting symmetry. Such a symmetry suggests the use of a Liapunov type stability argument
[26] to determine the global behavior of the system. In other words, we attempt to determine a
function V(py,81) such that its total derivative with respect to time has a definite sign. We limit
the free-stream velocity so that it will not change sign because of the above singularity in U and
if we assume for the moment that ; € [0, %] or 6; € [~7,0] depending on whether U is positive
or negative, then the free-stream acceleration is the only quantity that can change sign without
du

constraint. Hence, the total derivative of V' with respect to time should not contain the term .

Helped by the symmetry of the equations we are able to find such a function as follows:
Vip,01) = pfsill?ﬁ — A, (1.62)

for A € [0,00) describes a family of hyperbolas which cover the entire first quadrant (see Figure

1.37). Now taking the total derivative with respect to time we obtain:

dV dx OVdpy 0OV db;, Ucost
oy 22 T t > t, )
ATl P T TR T VA vt > (1.63)

if
Ut) >0 vt > t,, (1.64)
the converse is also true. Strictly speaking the function V(py,6;) cannot be called a Liapunov
function because it does not have a definite sign [26].
From now on let us restrict our discussion to the case where U(#) > 0 for all £ > £, and we leave

to the reader the trivial extension to the other case. To interpret the above result let us assume
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that at time £ = t, the position of the vortex is identified by the pair (p1,,61,) then the hyperbola

which passes through this point is
V(p1,01) = p?sin 20, — p? sin20y,. (1.65)

Now (1.63) proofs that the vortex moves away from this curve to another with a higher value of A
and so on, i.e., the vortex drifts irreversibly away from the origin in this sense. This result gains
greater physical meaning if we map the function V onto the physical plane. Let us first write (1.62)

in complex form, i.e.:
V(0 = 3¢~ )~ A= (OO - 4, (166)

then using the map (1.1) we obtain:
V(z,2) = -;—(z +5)— A=iR(z) - A (1.67)

For A € [0, 00) this function describes a family of straight vertical lines which cover the entire right
half plane (see Figure 1.38). Note for A = 0 the function V' coincides with the imaginary axis.
Finally, we can conclude that the relationship (1.63) excludes the existence of any periodic orbit
and consequently the controller cannot trap the vortex near to the plate, it may only slow down the
drifting motion.

We can gain further insight about the behavior of the controlled system changing variables and
describing the motion of the vortex in terms of a new pair (A,6;) where 8, is the original angular
variable and A is defined as:

A = p?sin 20;. (1.68)
Under this transformation the equations of motion (1.61) take the following form:

ié _ U+/sinb cos® 0y
dt 224 (1.69)

déy U sin 264 - 4/2 A3 dU
—_— Vsin 6y cos® 0y + ———-1 -
dt — 4/243(4cos?6; — 3) Uz dt
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Note how the first equation above basically restates the previous result (see 1.63). Performing the

same operation on (1.52) we obtain the following expression for the plate velocity:

U (8cos? 8; — 3)V/sin® 0 + 4243 dU
t

Up = 1.70
P 4/2A(4 cos? 0, — 3) sinf; cos by Vcos Oy U? d (1.70)
We now wish to determine how the singularity at 8; = £ affects the evolution of the controlled

system. The second term between square brackets in the last two equations above is common to

both expressions. If we set:

_ 423 dU

P Uz dt’

(1.71)

then P has the same sign of id%. Using this term as parameter we can plot % and u, versus 0, (see

Figures 1.39 and 1.40). The presence of the singularity is clearly shown in both plots by the vertical

s
6

line at §; = £ which divides the domain (0, %) in two parts. The plate velocity becomes infinite as
the vortex approaches the values 6; = 0,%, %, consequently the motion of the vortex is confined in
the sub-domains (0, %) or (£,%) depending on the initial conditions. Note how the behavior of the
singularity depends on the sign and magnitude of P: for P > 0 the vortex is attracted by 6; = %
while for P < 0 it approaches or drifts away from the singularity depending on the initial condition
and on the value of P. Figure 1.41 presents a phase portrait which gives a condensed view of such

behavior.

To better understand how the system evolves let us consider the following four basic scenarios:

au _
1.'&'-—0, vt > t,.

In this case the free-stream velocity is constant and the equation for the vortex trajectory can

be obtained by taking the ratio of the equations (1.61). We have:

dpy
2 79
0, p1tanfy, (1.72)

with the initial condition:

pi(fh,) = p1,- (1.73)
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Performing the integration we obtain:

cos §;
cosfy,’

p1=p1, (1.74)

The trajectories are plotted in Figure 1.42. Note all the trajectories, independently of the
initial condition, end up at §; = %. This is consequence of the fact that P = 0 and hence
the singularity behaves as an attractor (see Figure 1.41). As the vortex moves along one of
these trajectories the plate picks up speed which tends to infinity as the vortex approaches the

singularity (see Figure 1.40).

S0, Ve >t
In this case the free-stream velocity increases monotonically. Note for the particular choice:

1 dU
'5:2"&? = D, (175)
where B is a constant, it is possible to find the equation for the trajectory. Taking the ratio

of the equations (1.61) we have:

flﬂ _ _—,01 (sin 81 -+ Sp?B COs 261)
dg, — cos 0 + 8p3 B sin 20,

(1.76)

and the initial condition is:

pl((?l.) = ,01‘. (177)

This equation can be integrated analytically and the vortex trajectory is given in implicit form

by the following expression:

4Bp?sin 20, — cos f; - 4Bp3, sin20,, — cos by, ) (1.78)

P P1,

when the free-stream velocity has the form:

Us

1
,T T e o T— e .
U(t) AT VB>0 Vtelt,t,+ ) (1.79)

BU,
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Figure 1.43 shows the vortex trajectories for this case. As in the previous case all the curves,
independently of the initial condition, end up at §; = %. The singularity behaves, again,
as an attractor because P > 0 (see Figure 1.41), but its strength is greater than before (see
Figure 1.39), explaining why the trajectories approach more directly the singularity. The plate

velocity has the same trend as before but its magnitude is larger (see Figure 1.40).

au
CEE <0, V>t

In this case the free-stream decreases monotonically and if it satisfies the constraint (1.75) for
B < 0 then the vortex trajectory has the form

4Bp}sin20; — cosf; _ 4Bpf sin26;, — cos b,

= , 1.80
P1 Pi, ( )
when the free-stream velocity has the form:
U(t)————-——-—c-é————— VB<0 Vi>t (1.81)
T 1—BU(t—t,) * ’

The trajectories are plotted in Figure 1.44. The complexity of the pattern is due to the fact
that the singularity at ; = £ behaves as an attractor or as a repulsor depending on the vortex
position and on the value of P. The dashed curve in Figure 1.44 identifies the solution of the

following equation:
\/sinf; cos? b, + P =0, (1.82)

which determines when idi'} changes sign (see 1.69). When the vortex moves within the area
defined by the imaginary axis and the dashed line its angular position is attracted by the
singularity. Outside this region the singularity switches behavior and the vortex drifts away
from the dashed line #; = Z. Note there are trajectories which are crossing the dashed curve. In
these cases the attractor is not strong enpugh to keep the vortex inside the region. Thus when
it crosses the dashed curve the singularity starts to repel the vortex which moves irreversibly

away.



30

4. & = sin(wt + ¢).
This is a case of simple periodic forcing but in each period we satisfy the condition of one
or the other of the two previous cases. Note the upper bound on the acceleration amplitude
is given by the free-stream magnitude which we restrict not to go to zero nor change sign.
In this case a comprehensive quantitative analysis is possible using the Poincaré map. As
an alternative to this computationally intensive technique the evolution of the system will be
described qualitatively. The parameter P swings from positive to negative values in accord with
the free-stream acceleration and consequently the singularity acts as attractor or as a repulsor
in agreement with it (see Figure 1.41). It is important to observe that over an entire period
the singularity behaves as an attractor for more than half a period, hence we speculate the
vortex drifts down-stream fatally attracted by it. Figures 1.39-1.40 suggest that the evolution
of the system is largely affected by the initial condition and that an unlikely escape to infinity

is still possible.

From the above analysis it follows that the performance of the controller can be greatly improved
by an appropriate choice of the initial condition. Since the vortex eventually ends up on 8; = %
then the best initial condition is that one which forces the time necessary to reach the singularity

to be as large as possible. This time can be formally expressed as:

T/ dt
tior = — ) db;. (1.83
tot /g“ <d91> 1 )

Then, it would seem that #;,, can be made larger choosing the initial condition so that the integrand

is singular at t = t,. It follows that the best 8, is the one for which:

o,

@t |iey, ; (59

and consequently

\/sinfy, cos36;, + P(t,) = 0. (1.85)
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Note the above equation has a solution only if P < 0, i.e., when the free-stream decelerates. In case
of uncontrolled periodic forcing, see Figures 1.31 and 1.33, the first vortex is cut away when % <0

hence the optimal ¢;, can be determined.

1.8 Results

In section 1.5 we presented a simulation where the free-stream at time zero suddenly rose and then
oscillated about a nonzero mean. In that case we kept the plate stationary and a sequence of
vortices was produced. Based on the results of the last two sections we can run the same numerical
experiment moving the plate to inhibit the production of circulation. Here, we want to present and
to compare two cases, one when the motion of the vortex is confined in the third sector and another
which evolves within the second. As we have noticed previously the formulation (1.55-1.58) is the
most convenient for a numerical integration.

We want to start with the active circulation control in the third sector because in the uncontrolled
case (see Figure 1.32) the first vortex is naturally shed in this region. Figures 1.45-1.52 illustrate
the growth of the starting vortex and then the evolution of the controlled system. Note the velocity
of the plate up to the shedding time has been chosen to provide a reasonable distance between the
vortex location and the sector divider. Figures 1.47-1.48 show that up to time t, ~ .32 the starting
vortex grows in circulation. When the rate of circulation production goes to zero the strength of
vortex is frozen, triggering the active control for the rest of the simulation (tfina &~ 6.75). From
Figures 1.45-1.46 we can see that as the vortex is convected farther downstream the plate velocity
must increase to maintain control. Also as the trajectory becomes closer to the sector divider the
speed of the plate becomes larger making the situation progressively more critical with a complete
lose of control for t > tf;n41. Figures 1.49-1.52 are snap shots of the streamlines during the controlled

period, giving insight into the behavior of the flow near the tip of the plate.
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An example of active shedding control within the second sector is given by the Figures 1.53—
1.60. Note the free-stream velocity is the same as before and the plate velocity up to the shedding
time is basically the same but with opposite sign to provide the necessary initial condition. Figures
1.53-1.54 show that as soon as the controller takes over it imposes large oscillations on the plate
motion but the amplitudes grow only slowly in time. Roughly speaking the plate moves as close or
as far away from the vortex as necessary to maintain the Kutta condition. Figures 1.57-1.60 show
the instantaneous streamlines during the controlled period.

The different behavior of the controller in the two cases is direct consequence of the position and
strength of the vortex at the shedding time. In the first case (vortex in the third sector) the plate at
the beginning is moving into the flow and a strong vortex is trapped in the recirculating bubble near
to the leading edge. Initially, slight movements of the plate are enough to satisfy the Kutta condition,
then as the vortex drifts downstream larger oscillations are required. Of great help in this case is
the fluid flowing around the edge which “keeps” the vortex away from the attractor and the vortex
strength which maintains smooth flow even if the vortex is quite far downstream. In the second
case (vortex in the second sector) these factors become handicaps, the vortex is convected toward
the sector divider and its strength is almost half of the previous case reducing the controllability
of the system. Note the streﬁgth of the vortex is the result of the compromise between having a
strong vortex too close to the singularity and a weak one too far away from the tip of the plate. The

controller is left with a very delicate task and its performance is not as good as the first case.

1.9 Conclusions

An irrotational model has been used to simulate the unsteady separated flow past a semi-infinite
plate with transverse motion. The analysis of the power-law starting flow when the plate moves

with a power-law also showed that the motion of the plate strongly affects the separation process.
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The flow separates in a different fashion depending on the relative strength of the free-stream flow
and plate motion. When the free-stream velocity is dominant the motion of the plate introduces
a second order correction to the similarity solution proposed by Rott [20] for the motionless plate.
When the flow produced by the motion of the plate is dominant, separation is predicted only if the
plate is retracting from the flow. In other words, there is a limiting value for the plate velocity time
exponent beyond which the separation is not allowed in the present model. Finally, when these two
effects balance the separation process depends on the ratio of their magnitudes.

The irrotational model has been extended to the case where several vortices are present in the flow
by implementing a suitable vortex shedding mechanism. The separation of the flow in the presence
of other vortices was then analyzed. In this case the trajectory of the new vortex is always parallel
to the plate but there exists a limiting value of the plate velocity beyond which the separation is
not allowed in the present model. This result gives mathematical evidence for Rott’s prediction of
such a limiting value [20].

Within this model we derived a control strategy which inhibits the production of additional
circulation when a vortex is present in the flow. Because of the mathematical simplicity of the
model we obtained the analytical closed form solution of the controller for any time-dependent free-
stream velocity. Subsequently, the performance of the controller was characterized with a dynamical
system type of analysis. This investigation showed that the time over which the system is controllable
is finite as a consequence of the drifting motion which convects the vortex downstream but it can
be maximized by an intelligent choice of the separation conditions. Finally, we successfully tested
the controller when the free-stream oscillates about a nonzero mean and showed that the motion
of the plate, before the shedding time, can initiate the controlled system in two totally different
controllable states. The robustness issue was not addressed in the present work because in general

it is strictly related to the final application.
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Figure 1.51: Shedding control ( ¢ = 4.4192 ).
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Figure 1.54:

Starting vortex trajectory.
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Appendix

In this appendix we derive the exact solution of the equations of motion for the starting vortex,
under the Brown and Michael approximation, for an arbitrary free-stream velocity when the plate
is stationary. Let us assume the free-stream velocity finite and positive semi-definite, i.e., U ®H>0
Vi > 0. These restrictions do not violate the generality of the solution because in the first case an
infinite velocity is unphysical and in the second case when the flow reverses the solution cannot be
given in terms of only one vortex. We obtain the equations of motion in polar form by setting u, = 0

in (1.22). We have:

(1.86)
_c_ig}_ _ Ucos24,
dt ~ 8plcosh,’
with the initial conditions:
p1(0) =0 (1.87)
6,(0) = 6o, bo € (-%,%)-

"The initial condition for 6; will be derived below because we do not know a priori the initial direction
of the vortex.

We multiply the first equation by 3U p? and the second equation by sin 6;. Then, we combine the
left hand side of the first equation with the last term on the other side by using a basic differentiation

rule. After the manipulation the equations have the following form:

d(Up?) _ U?sin 6,

dt 4

(1.88)

d(sinf;)  U(1 - 2sin®6;)
dt 8p3 '

Let us now divide both equations by U? and introduce the following new variables:

a=Ups, B =sinb,, (1.89)
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and
1
i= / UR(¢)de'. (1.90)
0
Rewriting the above equations of motion in terms of these new variables we obtain:
do _B
e 4 (1.91)
g _1-— 2p3°
a8«
with the initial conditions:
a(0) =10
(1.92)
B(0) = Po, Bo € (—1,1).

Note the set of equations is independent of the free-stream velocity and hence autonomous.
Combining together the above equations we obtain a second order equation for o only, which
has the following form:
a4 (da\? 1
dt2+a<dt) 8a (1.98)
We multiply this equation by «/4 and then we combine the first two terms together by using, again,

a basic differentiation rule. We have:
d (a-d-‘l) =L (1.94)

The integration of this equation is now trivial and the solution is:

72
a:i\/%+01t~+02, (1.95)

The solution for /4 is only matter of a differentiation (see 1.91) and we obtain:

{ 7\
B =42 —l*é'+cl E*}'Cﬂ‘f‘Cg . (196)

Let us determine the constants of integration by imposing the initial conditions. From the condition

on o we have:

a(0) =0 = Cy=0. (1.97)
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From the condition on f it follows:
B(0) = Bo foe(-1,1) = C, = 0. (1.98)

Finally, the solution is:
i

b
2%

V2
2

o=+ B=+12, (1.99)

where the signs have to be taken positive if the flow is from left to right and negative in the opposite
direction. Since we assumed initially U(t) > 0 Vt > 0, we choose the positive signs. The solution for

p1 and 6, is recovered simply by inverting the relationships (1.89). We obtain:
1 ' 2040\ 34! $ T
= [—— [ U*(#H)dt'} | 6y = —. 1.10
p=o= [vrer] =1 (1.100)

Note that 6, = % is the universal departure angle, i.e., within this model the starting vortex leaves
the tip of the plate and moves on a trajectory always perpendicular to the plate for any free-stream

condition. We derive the circulation associated with the vortex converting the expression (1.10) in

polar coordinate and then substituting for p; and #; the above expressions. We obtain:
1 1 9 %
= — thdt'| . 1.101
r, w[w/ov()} (1.101)

The rate of circulation production is the time derivative of the above expression and has the following

form:

i
dty w [dU [t o ., ., U? U2/‘2,,3
e = —_— e B i . .
- 3U[dt/0U(t)dt+2 5 0U(t)az (1.102)

The last two results permit us to define the range of validity of the solution. The solution is
physically valid V¢ > 0 only if the free-stream velocity is a monotonically increasing function of time.
Otherwise, if the flow is allowed to decelerate then the rate of circulation production might change
sign and hence the solution is valid only up to time ¢, when -‘%‘ = 0. To analyze this situation let
us assume that the free-stream velocity is a monotonically increasing function of time up to {4,

where it reaches its maximum and then it becomes a monotonically decreasing function of time up
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to inar When it becomes zero. In other words, U(t) is such that:

>0 0 <t < tmas,
%:0 t = tmars
%%,'<0 tma:f:<t<iﬁnal-

For such a free-stream velocity the above solution is mathematically, but not physically, well defined.
In fact, from the expression for I'; it follows that the sign of the circulation agrees with the sign of
the free-stream velocity and it goes to zero at ffinq1. Consequently, the the strength of the vortex
increases at the beginning, then it reaches a maximum, then starts to decrease and finally the vortex
vanishes. This behavior is unphysical but the solution is valid up to time t, when the circulation
has its maximum. In other words, at time t,, when the rate of circulation production changes sign,
the simulation should be stopped and a new vortex introduced in the flow as assumed in Section
1.5. Tt is interesting to predict when this happens. The expression (1.102) shows that the sign of
the rate of circulation production depends on the sign of the free-stream acceleration. Since % is
positive up to time t,,4,, because % > 0, and negative at time tf;nq1, because T'y = 0, it follows that
tmas < ts < tinai. Hence, the rate of circulation production changes sign always during the flow
deceleration or, in other words, the system starts to produce circulation of opposite sign before the
flow is actually reversed. The time ¢, when the rate of circulation production goes to zero depends

on free-stream velocity and in principle can always be computed by solving the following equation:

- -U—séﬁl Uﬂt U?(t')dt'] - (1.103)

av
dt

t=t,

The case where the free-stream velocity has more than one maximum is physically ambiguous because
we do not know how many vortices are actually created. The solution is mathematically well defined
but its physical meaning depends on the particular situation under investigation.

The form of the above solutions (1.100-1.101) suggests scaling the problem in the following way:

k4
Pi = p1, 01 = 0y, = -g,—/ U(thdt', (1.104)
0
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and

Iy

Ur=—==1, I"{::—U-.

S A

(1.105)

Note the scaled rate of circulation production is related to the physical quantities in a rather unusual

and complex form:
~1

dri _[dby LydUl [, 1dU/ 2
b { i U dt] [ va o U @)at] (1.106)

Rewriting the solution in terms of the above quantities we obtain:

.o gr=12 1.107
P1 = 2% ) 1 47 ( . )
and the circulation and its rate of production become:
1
N t*\? al'y = 1
Iy ~-7r<2) , = =3 (1.108)

It is worth to underline that the scaled solution is, within the model, the universal solution of the
problem and coincides with the solution for the impulsively started case when U(t) = 1. Conse-
quently, the knowledge of the behavior of the system for the impulsively started case is sufficient to

produce complete information about any other case.
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Chapter 2

The finite plate of variable length

2.1 Introduction

In recent years, the efforts to actively control unsteady separated fluid flows in a broad range
of applications have become more intense, see [8] for a discussion and references. In particular
the control of the flow past bluff bodies is receiving a great amount of attention because of the
large variety of applications: lift enhancement, drag reduction, noise and vibration control, mixing
improvement, etc.. It is worth recalling that most of these studies are of an experimental nature
while numerical contributions have increased in the past few years. Theoretical work is almost
nonexistent probably because of the high complexity of the equations governing the flow.

The description of the flow through the full Navier-Stokes equations might be preferable for
accuracy but would be dependent on large-scale computation and would not necessarily lead to
any insights that would guide to the derivation of a control strategy. Consequently, this route will
unlikely produce a controller which can be applied to an experimental situation in the near future.
The approach we are taking in the present study is to derive a simpler fluid model which is able

to capture the major features of the flow. With a simpler mathematical description it might be
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possible to solve theoretically a class of interesting control problems and to produce fast numerical
algorithms. All the secondary details neglected by the model and the further uncertainty introduced
by the final application can be accounted for by making the controller robust [6] [7].

Recently, efforts to control certain features of the wake behind bluff and slender bodies, such as
reduction or magnification of the wake thickness [24], vortex cancellation [11] and pattern repro-
duction [15] [16] have been successful. In all these experiments the free-stream velocity was kept
constant and quasi-steady results were achieved, in general, by moving the body with a frequency
scaled by the shedding frequency. In a more general situation in which the free-stream velocity is
time dependent this approach is generally not sufficient to control the flow and a feedback control
strategy is necessary.

In the present study we investigate active circulation control of a two-dimensional separated flow
past a flat plate of variable length. Based on the successful results obtained in Chapter 1 we extend
the model and the control strategy derived for the semi-infinite plate to the finite geometry. At first,
we give a general formulation of the model but subsequently, due to the complexity of the problem,
we Impose symmetry respect to the x-axis. In other words, we restrict ourselves to study symmetric
wakes only and, consequently, the only degree of freedom left to control the flow is the length of the
plate. This restriction is not that severe because there is experimental evidence [13] that the near
wake is almost symmetric when the free-stream acceleration is nonzero. The well known symmetry
of the starting wake is an example. Furthermore, the plate of variable length can be regarded as
the two-dimensional analog of a delta wing of variable sweep angle and therefore these studies could
provide deeper insight about vortex management concepts in such three-dimensional flows [19].

Following our previous work we model the unsteady separation from the finite plate by means of
a vortex pair whose time-dependent circulation is predicted by an unsteady Kutta condition. The
expansion of the equation of motion about the tip of the plate recovers, at the leading order, the

equation of motion obtained for the semi-infinite plate. Therefore, the small times approximate
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solutions derived in Chapter 1 can be used to start the numerical integration of the present problem.
To validate the model we compare the results regarding the drag experienced by the plate and
the length of the recirculating bubble during a power-law starting flow with those provided by
experiments and a full numerical simulation (see [4], [13] and [23]).

The analysis of the results obtained for the power-law starting flow also suggests a new approach
in scaling the flow. When the problem is scaled with a suitable function of time the hidden univer-
sality is revealed, i.e., all the results nearly collapse on to a set of universal functions. During the
evolution of the flow we can recognize two distinct regimes, at early times there are two small recir-
culating bubbles while at later times only a large bubble is present in the flow. Consequently, two
time-dependent scaling functions are proposed which unveiled the universality of the phenomenon
for small and large times.

The vortex shedding mechanism proposed and tested in Chapter 1 is extended to the present
problem to allow the simulation of flows involving multiple vortices. Because our final goal is
to derive a fast numerical algorithm, a highly conservative vortex merging scheme is proposed to
recombine vortices and improve the computational time. A new approach is taken with respect to the
conventional merging schemes [22] and the vortices are recombined in such a way that the velocity
at the separation point remains unchanged and the impulse is identically conserved. Furthermore
for a proposed merge to take place, the change in the rate of circulation production and in the drag
must be below certain limits.

From the expansion of the equation of motion for the first vortex when other vortices are present
in the flow we obtain an expression which is closely related with that derived in Chapter 1 for
the semi-infinite plate. As before there exists a critical rate of change of the plate length beyond
which the separation cannot take place in the model. Based on this observation we derive a control
strategy which inhibits the production of further circulation when a vortex pair is present in the

flow. Furthermore, we obtain for any time-dependent free-stream velocity an ordinary differential
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equation which predicts the length of the plate that satisfies the Kutta condition without requiring
further shedding of vorticity into the wake. The performance of the controller is then characterized
by a dynamical system type of analysis. Finally, we discuss the results provided by two simulations

in which the controller is successfully tested.

2.2 Mathematical formulation

In this section we introduce a mathematical model able to represent the phenomenon of the two
dimensional unsteady separation from the tips of a finite plate of variable span in the presence of
an unsteady free-stream velocity. Let us assume that the regions of vorticity that separate from the
boundary layer and are convected away are thin enough to justify a description by means of a vortex
sheet. The consequent stretching and rolling up of the vortex sheet, due to the unsteadiness of the
flow, suggests a more coarse description via point vortices. The vortex sheet is not completely lost,
it is assumed of negligible circulation that connects the feeding point to a point vortex of variable
strength which is able to satisfy an unsteady Kutta condition. Mathematically the feeding vortex
sheet is just the branch cut due to the logarithmic singularity representing the vortex.

The mathematical formulation of the problem can be simplified by choosing a frame of reference
fixed to the plate so that the body can be identified with the segment [—2¢a(t), 2ia(t)]. In this frame
of reference the plate is still and the fluid moves parallel to the x-axis with free-stream velocity U ().
Then, the flow of an incompressible irrotational fluid about such a body can be solved via conformal
mapping. The Joukowski transformation maps a finite plate of semi-span 2a in the z-plane onto the
circle of radius a in the (-plane (see Figure 2.1) preserving the characteristic of the flow at infinity.

If the span of the plate changes on time then the mapping has to depend on time too, so we have:
2.1)

Since Laplace’s equation is linear and the boundary conditions in the mapped plane can be treated
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using the circle theorem [14], we can build the complex potential F' superimposing basic flows. Note
that for convenience we are departing from the usual convention and taking the circulation positive

when in the clockwise sense. Thus, the complex velocity field w = -‘-;—?— has the form:

we =) (1-20) ¢ HO (L G0 1),

2 \C=Gl0) © @(0) - <CH0D)
+§; = (hw mo w1 )
+30 (c o az(t)cg_%(t) i 'cl') i
! ZY: = (caw + moedEn e

In the above expression we have the free-stream velocity, U, the radius of the circle, a, N; vortices
shed by the top tip at { = ¢} with their images within the circle, and N} vortices shed by the bottom
tip at ¢ = ¢¢ and their images. We allow the strength of the first top and bottom vortex to depend
on time so that the Kutta condition at the two tips of the plate may be satisfied. We choose the
convention that the vortex of variable strength is labeled with the subscript 1, so that any time a

vortex 1s shed all the others are renumbered.

To describe the motion of this system of vortices in the physical plane we use the following set

of ordinary differential equations:

(
a o= ([ g )]}
ddiﬁ = lim, {zz% [F - ;F; tog(= ~ Z:)]} (2.3)
E‘% + (2 - 53)%{—% = lim, {?z% [F - %F—E- log(z — Zi’)] }
2 B2}
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with the initial conditions:

A(ts) = 2

ZH(t) =28, r=2.N
(2.4)

zf(t,) = z(b)

)=z, r=2.N,

\
where F is the complex potential and 2§ and 2} are the top and bottom separation points. Note,
for example, z{ was the final position of the top vortex r — 1 at the shedding time ¢t = ¢, which
becomes the initial position of the top vortex r. Thus the number of equations increases anytime a
new vortex is shed.

There is experimental evidence [13] that the near wake is nearly two dimensional and symmetric
about the x-axis if the plate moves with a non-zero acceleration. Under these circumstances the

problem can be simplified through the following constraints:

r F;:Fn I‘f,;:"rn
R n=1..N. (2.5)
Crt;:Cn Crbz:Cn
&=, | &=

Imposing these conditions on the complex velocity field (2.2) it reduces to:

o (1-8) e D (A e L)
w((,t)_U(l C2)+27r (C—C1+€12—C61 (=G a®=(G ’

N, [ 1 Cn 1 Cn
+,§'§?(<-cﬁa2-<<‘n A "a?-ccn)'

(2.6)

The need to impose the Kutta condition is consequence of the fact that the potential flow in the
physical plane presents a square root singularity at the tips of the plate. In the {-plane the flow is

non-singular since the singularity has been absorbed by the mapping. To remove the singularity in
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the z-plane the complex velocity (2.6) in the mapped plane has to be zero at the top and bottom of

the circle, i.e., at ( = %ia. Solving for I'y we obtain:

(a +C1)(a +C) W — er (Cn‘Cn)(a "Cn(ﬂ)

b= @ =6l |V T T (@ T )

2.7)

From the comparison of this expression with that obtained for the semi-infinite plate (1.3) we can
see that the structure, although more complicated, is basically the same. Note, also, the strong
dependency of I'; from the radius a of the circle, i.e., from the length of the plate. Let us see now

how the symmetry constraints affect the equations of motion (2.3). They collapse to:

dfl _ 1 dl’l _ d IFI
-Ei—t— -+ (21 ) T, @t = zl-»zl {dz [F —_ log(z —_ Zl)]}

a5 _ . fd [, il
PRl P 27 ’

with the initial conditions:

(2.8)

alts) =20 (2.9)

z(ts) = 2zr, r=2.N.

Hence, formally, the problem reduces to the same one we have solved for the semi-infinite plate (1.4),
all the differences are due to the more complicated form of the complex velocity field w, compare

(2.6) with (1.2).

Now we consider if it is more convenient to solve the problem in the physical or in the mapped
plane. In both cases we must use complicated transformations, but in the (-plane it seems easier
to understand and keep track of the different contributions. Once we have performed the change of

variables, substituted for the complex potential and, carried out the limits required in the equations
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(2.8), we obtain:

(

[<2+a LGtiaP (@4 ¢f)a? ) ]ﬁ
¢ G (@ + DG - G)@? = G6)
(ST R T2 W
G (@@ + )G - G)a? =)

2ada Cf) ( a"’) lrl[ G 1 G ]
51dt+<a2+C2 {U b ¢t * 2-0G -G @ +

a - Cl)(Cn - En)(az - Cnén) iy a?
+Z 27 (C1 = Cn) (G = Ca)(a? = C16n)(a? = (1Gn) T Ci(a? + ¢ )}

G : za)2 [(0? = i&0)? = GG+ )1, da
(@ + )@+ ) — GGy e
U Wil [ a2=(¢2 dl, a2 di,
* [2'&? -l {w? TR A (@4 5,2)2"&“] * (2.10)

2_Cn€n2—CnEn<n+<-n2 d
Z e T T ]2“?1%]
_1}

Y iy (Cn - én)(az — Cngn)
{QU "L e @ a)

n=2

dzr _ 2“@ _Cic_l+
dt " (a2 di

CSC? a? il ér 1 Cr
* [(32+C1?)(92 +C—1?)] {U (1 B C—3> 27 [‘12 ”Crgr B Cr “ér a? __Cr?] +

a” — 2 n’-n az"‘Cnfn "rr aZ
*Zzw«, (a2 = ¢)(Gn = Ca)( ) i }

ndr - Cn)((r - Cn)(az CrCn)(a2 - Crén) 27 Cr(az + Cy?) ’

with the initial conditions:
Cl (t ) = ia
! (2.11)
¢(ts)=4¢, r=2.N,
where I'y is given by (2.7). Note because of Brown and Michael’s correction [1] the equations are

coupled not just through the position of all the vortices but also through their velocities.

To make the problem dimensionless we have to define a characteristic length and time scale. For
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this purpose we write the free-stream velocity and the radius of the circle as follows:

U(t) = Uso + Us(t) a(t) = ap + a1 (2), (2.12)

where U, is the unperturbed free-stream velocity and ag is the initial radius of the circle. If we
choose ag as characteristic length and % as characteristic time of the problem then we can define

the following dimensionless quantities:

*___‘_z__ *-—_C_
z “ao) C "a0$
t*:Uoot)
o (2.13)
U"‘:-—g—zl—}—cy, a*:—a—:l-%—ea,
U ag
r
I'" =
Uooao,

where ¢y and €, contain the unsteadiness of the free-stream velocity and of the span of the plate, not
necessarily small compared with the steady terms. Note the advantage of this choice is that after
substituting these quantities into the equations of motion (2.10), simplifying them and dropping the
asterisks, the resulting equations are identical to the former ones with the only convention that the
starting radius of the circle and the mean free-stream velocity are unity.

Because of the size and complexity of the problem we are not attempting an analytical solution
of it but we will show in the next sections how it can be integrated numerically taking advantage of

the analytical work done for the semi-infinite plate (see Chp. 1).

2.3 Drag calculation

The forces acting on the plate are of particular interest because they are the crucial quantities in any
problem involving the interaction between fluids and structures. Furthermore, since these quantities

can be measured experimentally we have the opportunity to validate our model and further extend
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the experimental results. The forces acting on the plate can be computed by means of the Blasius

—iv = -zpf ( ) dz ~ipg: fpdz (2.14)

The evaluation of these integrals can made easier by a smart choice of the integration path C. Since

theorem [14]:

by construction the vortices cannot sustain any force then the forces acting on the plate are the
same as the forces acting on the entire system constituted by plate plus vortices and the contour
C can be taken around the all system. Now, all the singularities are inside the integration path,
while outside C the integrands are analytic function, hence the contour can be stretched to a circle
of infinite radius by means of the Cauchy theorem [14]. Finally, the forces can be computed using
the theorem of the residues [14].

Since all the quantities are known in the mapped plane it is necessary to rewrite the above

formula in the following way:

zY:—-z }(( ) = ip% C( ngg (2.15)

Substituting the expressions for the complex potential and the mapping, the integration can be

carried out successfully and the drag has the following form:

(e -GGG — (:1)] 4

d 2 . d
X_47rpa-£(a U)+zpa[ X2

+ZPZI‘ 4 [(a —cncc:écn—cn)]_

(2.16)

Note the component of the force along the imaginary axis is zero because of the imposed symmetry.
This result agrees with those obtained by Graham [9] and Cheers [3], both of whom used slightly
different and more complicated arguments. The first term on the right hand side is the force due to

added mass, i.e., is the inertia of the attached flow. If we expand this term we have:

da

47rp (aQU) = 47 pa’ 24U + 87rand

= (2.17)
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where 47pa? is the added mass for a flat plate of length 4a, see [21]. The first contribution is the
force necessary to accelerate a plate of fixed length, while the second is the force necessary to tow
at constant velocity a plate which length changes in time.

It is possible to write the drag as the time derivative of the total impulse, see {12]:
dI
X = R (2.18)

where

_ _ N - _
I = dnpaU +ip [I‘1(a2 — GG - Cl)] + ipZI‘,, [(a2 (T Cn)] ' (2.19)
n=2

GG Caln

The last expression represents the impulse required to set up the irrotational flow instantaneously

from rest.

2.4 Starting flow

In this section we will consider the initial evolution of the flow, i.e., we will restrict the problem to
the shedding of the first pair of vortices only. This transient is interesting because both experiments
and full numerical simulations often are unable to capture the early stages of the separation process.

The equation of motion is:

[é?:kaz L(Gtia? (@)@ —C) ]_d_CLr
¢t G (@4 (G =) e - GG)] dt
_ [(fl’tia)2 (¢® f)(?z"rflz) ) }fiﬁ _
G @+ G -GN e = GG)] d (2.20)
f)(_ﬁ)&[@ﬂl_(x]&f
(a2+<:% {U =F) e @oah -G @-gl T wmaw "
_ (@ + ia)? | [(a® = (:61)? - C_151(C1 + 51_)2] Qafiﬁ n 1dU 2ada
Cl (GQ+C%)(G2+C%)(GQ‘C1C1) dt U dt Cl dt’
where
: (a2+cf)(a2+€f>]
T, = —2 ik ) | g, 2.21
e [(cl “8) (@ =Gk (221
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and the initial condition is
¢1(0) = ia. (2.22)

The second term within the first pair of square brackets and third term on the left hand side and
the term before the last on the right hand side of the equation of motion are the contribution due to
Brown and Michael’s correction [1]. Routh’s correction [5] can be recognized as the last term within
the first pair of curly brackets on the right hand side. The last term on the right hand side is the
contribution due to the unsteadiness of the mapping. Note how the trajectory of the pair strongly
depends on the free-stream velocity and acceleration and on the plate span and its rate of change.
The numerical integration of this equation is complicated by the fact that the problem is singular
at t = 0, but the kind of singularity is the same as that we were able to overcome in section 1.3. To
find an approximate solution valid for small time let us then use the same approach and stretch the

time about ¢ = 0 defining a new time

~ ¢
t= — 2.2
: (223)
and expand in € all the quantities which depend on time. We set:
Gt =ia+ e (G, () + LG, E) + ) (2.24)
and,
Ut) = Vt™ = emVim m>0
(2.25)
a(t) =14 AtP = 1 + P AtP p>1

where o and 3 have to be determined balancing the different terms of the equation and, m and p
are positive real numbers. Substituting these relationships into the equation of motion (2.20), at

the first order we have:

21'511 + iCth }52&—1(1(_11 . [ 25?1 ]€2a—1dc%~1 —

Cl; - Clx di( Cll(Cll - C‘ll) di B (226)

i da ily _ iTy _ ] €2 5., dU
T 2U 4 4y, = — = % — €Y - =Rt T
21, [ ‘e dt  27(¢r, —Gy) 4m(y, U dt
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where
. ¢, )
Iy = 4wie® (——’-——%- U, 2.27
! 1, ~ (1, (227)
and the initial condition is
¢1,(0) = 0. (2.28)
Now if we set:
U =2U, tp = 2513,
di (2.29)
n=p-1,

we can see that (2.26-2.28) coincide exactly with the leading order equations (1.16-1.18) obtained
for the semi-infinite plate. This is not surprising because, at early stages, when the small vortex is
very close to the tip of the plate it sees the plate as semi-infinite and it cannot feel the presence of
the other vortex. The factor two of difference is due to the fact that the fluid velocity at the top of
the circle is twice the free-stream velocity. Hence we can use as leading order approximate solutions
those obtained in section 1.3.

An opportunity to validate this model is given by the experiment done by Taneda and Honji
[23]. In this experiment they measured the length of the symmetric wake bubble behind a flat plate
impulsively started or constantly accelerated, i.e., when U(t) = V™ with m = 0,1. The main result
is that the growth of the bubble is independent of the Reynolds number and for the impulsively

started plate the time law is:

2
t 3
%”i = 0.89 [YZ’] : (2.30)
while for the constantly accelerated case is:
Ly ]
=048 || (2.31)

where Ly is the length of the bubble, L is the length of the plate.
We can basically repeat step by step this experiment and determine the length of the bubble.

Furthermore, because of the simplicity of our model, we can also compute the position of the
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stagnation points to obtain a complete characterization of the flow. At early time the flow presents
two small recirculating bubbles close to the tips of the plate and three stagnation points can be
recognized on the back face of the body (see Figures 2.10 and 2.11). The stagnation point on the
front face of the plate is always present and it coincides with the origin because of the imposed
symmetry. Later on, as the two recirculating bubbles grow the two stagnation points move away
from the tips until they meet at the origin. At this point the two bubbles start to merge together
and a new stagnation point is created and moves away from the origin along the positive x-axis (see
Figures 2.12 and 2.13). The merging process is rather quick and soon a large recirculating bubble
dominates the flow (see Figures 2.14 and 2.15). In all phases of the flow the length of the bubble is
defined as the streamwise length of the recirculating domain.

Because of the mathematical formulation it is easier to compute these quantities in the mapped
plane. A further simplification is consequence of the fact that the experiment has been performed
with a plate of fixed length. If we assume a = ag and use the scaling (2.13) the equation of motion

(2.20) becomes:

[ijrl LG =6 }5{@_1_
¢t G (LG -1 GG dt
_ [(51 +14)° (1-¢H+¢3) } 46 _

G DG -0a-ald T, .
Ji.) (,i> i&[ G 1 _Cl] a1
(1+C12 {U ! : * o 1-GG G-G 1-¢ +27"C1(1+C12) *
(C]—H‘)zlil_{
TG Ut
where
: (1+Cf)(1+ff)]
ry=— 2 L | U, 2.33
1= {«rl—cl)(l-acl) (2:39)
and the initial condition is
€1(0) = 4. (2.34)

Let us start with the stagnation points on the back face of the plate. They can be determined by
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the points where the complex velocity w is identically zero along the circle. One point is trivially
determined by the intersection of the circle with the x-axis, while the other two points are identified

in terms of polar coordinates as follow:

2 »
p=1, # = 4 arcsin [_(_/’_1__‘*:%)_?21_?_1_} . (2.35)
1

The position of these points in the physical plane can be determined using the mapping (2.1):

2 -
z =0t Y= i~p—1- \/pf ~(p} 4+ 1)2sin’ 6;. (2.36)

Let us continue with the computation of the stagnation points on the x-axis. They can be identified
with the points where the real part of the complex velocity field is zero. The nontrivial point created

by the merging of the two bubbles has the following position in the mapped plane:

 (eT + 1)2sin? 0, — p + (6 + D) sin s
B p1

, 7=0. (2.37)

As before, the position of this stagnation point in the physical plane can be determined using the

mapping (2.1):

o [(0F +1)sinb11/(5% + 1)2 sin? 01 — pF + (o + 1)?sin® 0, — }
r = -
~ \/(pf—f— 1)2sin® 81 — p? + (p? + 1)sin 6y

, y = 0. (2.38)
Note how the evolution of the flow is determined by the sign of the following expression:
(p? + 1)%sin® 6, — p?. (2.39)

The above quantity is negative at the early stages of the flow when there are two small recirculating
bubbles and consequently the expressions (2.35-2.36) are well defined. Later on, when the bubbles
meet at the origin the quantity ’(2.39) is zero and the stagnation points defined by (2.36) and (2.38)
coincide. Finally, as the merging process takes place the above quantity turns positive and the

expressions (2.37-2.38) become well defined.
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The length of the recirculating bubble can be mathematically identified with the real part of the

complex variable z which satisfies at the same time the following two equations:
S(F)=0 %(%) = 0. (2.40)

The solution of this set of equations is a point which lies on the zero streamline, the one that
separates the recirculating region from the rest of the flow, and the complex velocity field at such
a point is parallel to the plate. Note as the merging process is completed this statement becomes
trivial and this point is the stagnation point defined by the expression (2.38). At earlier time the
solution of this problem is not trivial but it can be obtained numerically.

It is interesting to observe that all the above expressions {2.35-2.39) are independent of the free-
stream velocity U(¢) and the only important information is the position of the vortex pair. This fact
agrees with the result given by Taneda and Honji [23] that the length of the bubble is independent
of the Reynolds number (Re = %‘2) Furthermore, it predicts that the entire geometry of the flow
evolves independently of U{t).

The numerical simulation of this experiment is illustrated by Figures 2.2-2.15. These plots
permit the comparison of the cases where the plate is impulsively started, constantly accelerated
and linearly accelerated, i.e., when U(t) = V™ with m = 0, 1,2 (see Figure 2.2). A striking feature
is that each vortex moves almost on the same trajectory in all three cases (see Figure 2.3). Figures
2.4 and 2.5 show the total circulation and rate of circulation production for the top vortex. The
small window magnifies the trend at small times when it is comparable with the results obtained for
the semi-infinite plate (see Figure 1.4). Making this comparison we should remember that there is
a factor 2 in the dimensionless free-stream velocity {see 2.29).

Figure 2.7 shows how the length of the recirculating bubble for the impulsively started case
compares with that measured by Taneda and Honji {23] and with that obtained by Chua [4]. Note

that Chua in his simulation uses a vortex method algorithm able to model the boundary layer on the
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plate. The agreement is reasonably good but both numerical simulations show a similar departure
from the best fit proposed by Taneda for late times. At small times, we are able to extend Taneda’s
result down to time ¢ ~ O(1077). We estimate that at very early times (1077 < ¢ < 1075) the
bubble grows proportionally to t%6%, which is in good agreement with time-law of ¢3 derived by
Pullin for the semi-infinite plate case (see [17]). This time-law slightly changes with time, as the
coupling between top and bottom vortices becomes more important. In fact, during the merging
process (.15 < t < 1.5) we estimate that the bubble grows as ¢t°7. Later on, the departure from
the quasi-linear trend, in the log-log plot, can be clearly identified with the end of the merging
process, see the solid diamond symbol. Finally, for large times the deviation from the experiment
is not anymore negligible but consistent with the other numerical simulation. This departure could
be consequence of the two dimensionality and symmetry imposed in our model. Note that Chua
produces a result slightly closer to the experiment without imposing symmetry. It is unclear if the
remaining deviation is consequence of the two dimensionality of the simulation or if it is due to the
low level of noise present in the numerical environment in comparison with that present in a real
experiment.

Figure 2.6 shows the drag coefficient for the three different free-stream conditions. This coefficient

is defined as follows:

D

Cp = 5——o—. 2.41

It is important to note that the drag coefficient is well defined for the impulsively started case only,
in the other cases, when m # 0, it is not possible to select a characteristic free-stream velocity. In

L i.e., the velocity reached by the plate after one unit of time.

these cases we selected Uy = 1 ms™
The forces acting on the plate for the purely impulsively started case cannot be measured ex-
perimentally. However, a comparison can be made with the results obtained by Chua [4] in his

numerical simulation, see Figure 2.8. The overall agreement is reasonably good. Figure 2.7 shows

that the recirculating bubble grows faster in Chua’s simulation than in our case and this explains
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the difference in drag at early times. At later times our model tends to underestimate the drag

probably because of the lack of distributed vorticity and imposed symmetry.

When the plate is constantly accelerated the forces can be measured experimentally. Results for
the drag are not available from the Taneda and Honji experiment, but recently Lisoski [13] measured
the forces acting on a flat towed at linearly increasing velocity. Figure 2.9 shows the comparison with
Lisoski [13] and Chua [4] results. The overall agreement is still reasonably good and the discrepancies
can be explained as for the impulsively started case. It is interesting that the experimental data are
within the two curves obtained numerically. Note that the drag coefficient, in this case, is based on

the final free-stream velocity.

2.5 Universality of the starting flow

In this section we derive a time dependent scaling that will allow us to nearly collapse all the results
obtained in the previous section. Clearly the classical scaling (2.13) introduced to make the problem
dimensionless fails this purpose. However, if we analyze the plots which describe the starting flow
presented in the previous section we can note few striking facts. First, the vortex pair seems to
move always on the same trajectory but with a different time law which depends on the free-stream
velocity (see Figure 2.3). Furthermore, from the comparison of the instantaneous streamlines taken
at two different times for two different free-stream conditions (see Figures 2.10- 2.15), it follows that
the geometry of the flow goes through the same states but at different times. Finally, the scaling

used by Taneda and Honji [23] seems to be more appropriate for the analysis of this flow.

Based on the above observations it follows that the appropriate choice of a representative time
scale would improve the quantitative and qualitative understanding of the phenomenon. One thing

which has not been taken into account is how the distance travelled by the plate relates with the
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evolution of the flow. Such a distance can be easily computed by integrating the free-stream velocity:

Vtm+1 u@e
- " g4t
zp = / U(t')dt / Vi'mdt = =T (2.42)

Then, the number of radii travelled by the plate is given by:

Tp U(t)
ag  ag(m+1)

(2.43)
Thus, if we choose the right hand side as the dimensionless time, then the motion of the plate is
synchronized in this new time frame. In other words, the plate travels an equal distance in time for
all possible free-stream conditions (i.e.¥m € [0, 00)).

Let us start the scaling of the equation (2.20) by observing that it can be made dimensionless

dividing it by U(¢). Similarly I'1 can be made dimensionless dividing by aoU(t) (see 2.21). Then, it

is natural to introduce the following dimensionless quantities:

*___f_ *_i
z “aOJ C —a07
) U(t)t
=
*_U(t)__ *....__‘i_.._
U—U(t)_l’ a_~a0 1,
«_ I
—U(t)ao.

A consequence of this time dependent scaling is that the quantities which involve time derivatives
have a nontrivial and rather unusual form. The rate of circulation production, for example, has the

following dimensionless form:

dr l(dF _77_11:) (2.45)

T U \dt 4
while, the forces acting on the plate, which can be computed taking the time derivative of the

impulse I, have the form:

ar 1 dI m]
Y e = e [ — = ] 2.46
X =iy dt*  pagl? (dt t ) (2.46)
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Note for m = 0 we are recovering the classical scaling (2.13). Rewriting the equation of motion

(2.20) in terms of dimensionless quantities and dropping the asterisks, we obtain:

[Q +1+(51:*‘5)2 £1+C12)(_1—'5f) ) }f’f—_l_
¢t G A+ NG -0 =¢)
_ [(51 +9? -+ ] ¢
G A+ G -G - Gh)

(2.47)
( 122) (1 1)_{_“‘1[ (1 ! C12}+51‘1 1
1+ ¢t -GG -G 1-¢ 27 Gi(1+¢3)
_(51 +3)2 m
G (m+
where
1+¢Ha+¢d ]
Ty = ~27:2 2.4
! [(C1 (1= G6) (2:48)
and the initial condition is
¢:1(0) = i. (2.49)

The dependency from the free-stream velocity is reduced to the factor (—r;'f_—l-) which appears in the
last term of the equation of motion. Note the boundness of this term:

m
<
0= (m+1)

<1, Vm € [0,00). (2.50)

Furthermore, such dependency is completely lost for large time because of the factor t=1. In other
words, the scaled equation reduces to the dimensionless equation of motion for the impulsively
started case plus a correction which dies out at large time. Consequently, varying the power of time
we produce a family of curves which can be compared with the impulsively started case as shown
by Figures 2.16-2.29. It is interesting to observe that as a consequence of the boundness of the

factor 7 all the curves are confined in a narrow strip in the plotting plane and are bounded by

m+l
the limiting cases m = 0,00. Furthermore, since the correction dies out as ¢!, the scaled system

captures the universality of the phenomenon at large times. Indication of universality is that at

large times the curves collapse all together, as in the case for the rate of circulation production and
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drag (see Figures 2.18 and 2.23), or they become parallel as in the case of total circulation, impulse
and bubble length (see Figures 2.19, 2.20 and 2.22).

In this time frame, it becomes meaningful to compare the time evolution of the geometrical
quantities which characterize the flow (see Figures 2.20-2.21). The bubble length, at any given
time, decreases as m increases. The merging process of the two small recirculating bubbles is
delayed also as m becomes larger. The diamond symbols in Figure 2.21 show at which time and
bubble length the merging process is completed. Note how this happens always at about the same
bubble length. From the comparison of the drag (see Figure 2.23), we can conclude that the optimal
way to put a plate in motion is through a smooth acceleration. Furthermore, once the plate is in
motion and the recirculating bubble is fully developed, the drag is independent of the free-stream
velocity. This universality at large times suggests that it should be possible to obtain excellent
aerodynamics performance from a bluff body if one is able to keep the wake symmetric.

As we have seen, the above results are able to capture the universality of the phenomenon at late
times. Since during the evolution of the flow we can identify two different trends, one at early time,
when there are two distinct recirculating bubbles, and another at large time when the bubble is fully
developed, then we should expect to find two different time scales. The time scale at early times is
suggested by Figure 2.21. If we synchronize the time when the two small recirculating bubbles meet
at the origin, we have to choose the dimensionless time as follows:

. U

- , 0 1, 2.51
ag(2m + 1 — em) ce< (251)

where ¢ is a parameter which has to be deduced empirically from the data of the unscaled simula-
tion. Note when € = 0 the previous expression reduces to the characteristic time of the first order
approximate solution. It is worth recalling that the leading order approximate solution for small

time can be written as:

) (1+z‘)[ U@t ]é_ (2.52)

() = =7 -
G ag 2a§ ap(2m + 1)
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As time increases, higher order terms should be included and the parameter € has been introduced
to account for these higher order corrections. The scaling of the equation of motion (2.20) is carried

out similarly to the previous case using the following dimensionless quantities:

e=Z =2,
ag ap
()
ap(2m + 1 — em) (2.53)
* U(t) —_ * _2.. -
U———U(t)—-l, a_ao.—l,
«_ T
= U(t)ag

As before, the quantities which involve time derivatives have a nontrivial and rather unusual expres-

sion. The rate of circulation production has the following dimensionless form:

o em—————————

dtr T U(m+1)

dl*  (2m+1—em) (cclilt‘ n:I‘) ’ (2.54)

while the forces acting on the plate have the form:

v A" _(2m+41l-—em) (dI ml
X" =g = pagU%(m + 1) ( t Tt > (2:55)

As before, for m=0 we are recovering the classical scaling (2.13). Rewriting the equation of motion

(2.20) in terms of dimensionless quantities and dropping the asterisks, we obtain:

szj“l + (51:%2')2 (1+¢H=¢) ] (m+1) df1+
¢t G (1+HG - =-6GG) @m+1—em) dt

_ [(51 +1)° - +¢P) ] (m+1) dG _

G A+OG-G)A-GG)] @m+1—em) dt

(2.56)

( ? ) <1w_{_)+gy_£[ G 1 G }Jrﬂn 1

1+ ¢? 2 2t (1-GG -G 1-¢E 2r (14 ¢F)
G+ m
G (@m+1l—em)t’
where

P EIEY TSR -
fy=—m [(cl-c‘l)(l—qlcl) ! (247)
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and the initial condition is

(o) =1 (2.58)

In this case, the dependency from the free-stream velocity is reduced to two factors: one which
multiplies the time derivatives and the other which appears in the last term of the equation of

motion. Note the boundness of these terms:

0< = <
“(2m+1l-—em) 2-~¢

Vm € [0, 0), (2.59)

and

1 m-+1
< S . .
T < Gmt1=em) <1, Ym € [0, o0) (2.60)

Figures 2.30-2.35 show the results of the scaled simulation up to time t* = 3. The overall effect of
the scaling is to collapse all the cases on the m = 0 curve for t* < 1. The plots of the free-stream
velocity and the trajectories of the top vortex have been omitted because they basically coincide
with the previous one (see Figure 2.16-2.17).

Figure 2.33 show the loci of the stagnation points on the back face of the plate and on the x-
axis. The merging of the two small recirculating bubble has been synchronized choosing ¢ = .09065.
The effect of this procedure is to produce the universality of the phenomenon at early times. It
is interesting to observe how the curves are generally indistinguishable up to about time t* =1
although the time scaling has been derived by the leading order of the approximate solution. Only

the rate of circulation production and drag show some sensitivity at earlier times (see Figures 2.30

and 2.35).

2.6 New vortex pair

In this section we will consider the problem of shedding a new pair of vortices when N —1 other pairs

are already present into the flow. We will use the shedding mechanism that has been introduced in
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Section 1.5, with the same limitations and constraints. We recall that, if £, is the shedding time,
then up to the time t] the vortex pair 1 has variable strength such that the Kutta condition is
satisfied. At time t = {, this pair has its strength frozen and, all the pairs renumbered. Finally at
t} a new vortex pair 1 is introduced into the flow to remove the square root singularity.

The equation of motion of this new pair is

[fffa2+(51~l:ia)2 (@+)@=¢f) }éé
¢ G (@2 + )G - )@ ~ i)

3 {(51%:2'&)2 (@® = ¢)a*+ ) ]g@l _
G (@D~ Q) = Gé)

2ada ¢ ) ( aZ) ﬂ‘l[ G 1 G ]
Cldt+(a2+C12 {Ul ¢t * 2—-Gh G-G et *

(az - Clz)(cn - C—ﬂ)(a’z - Cnc_n) }El a?
" Z 27 (G — Ca)(G1 — o) (@ — Gia)(@? — i) | 27 Caa? +<f)}

(2.61)
_ (51 -}_- ia)? | [(a® - C1C_1)2 - glgl(C1 + 51)2] 2a£i_‘}_+
G (a?+ )2+ (F)a? = u6r)  dt
AU SNl [ a2—¢2 den  a?—C2 di,
i [Q‘d‘t‘ - ET [w +GPdt T (a? +<‘z>2'&?] i
zI‘n {( 2 Cnfn)Q "‘ Cnc‘n(gn + 6’1)2] da
E G T g+ 2‘15}
-1
il (Ca "'Cﬂ (a - Cn(:n)
[ZU Z T (@@ ) } }
where
— (a + Cl)(a -+ Cl zI‘ (Cn - Cn (a - CnCn)
R TR TPy {QU Z P (@1 ) } ’ (262)
with the initial condition
Ga(t,) = ia. (2:63)

Note that this equation, although much more complicated in appearance, has exactly the same
structure of that for the starting pair. It is singular at t = ¢, also, except that up through time

t = t7 there is another vortex pair which satisfies the Kutta condition. Consequently it is reasonable
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to expect a different time behavior for (t~¢,) < 1. Once again it is necessary to find an approximate
analytical solution so that the numerical integration can start smoothly. Let us stretch the time

about ¢t = ¢, defining a new time

F=t ‘et’, (2.64)

and then set
Gi(t) = ia+ € (G, () + ¢, () + - ). (2.65)

All the other quantities which are depending on time can be expanded in Taylor’s series, i.e., we can
write:

f(0)+€_c_i£ i+

1) il

i

d -
f,+€.£ P (2.66)

i

Note we can expand in this way the positions of the other vortex pairs as well, as can be verified
substituting the above expansions into their equations of motion. Substituting these relationships

into the equation of motion (2.61), at the first order we have:

x i€1,C1, } 2a~14C1, [ iC3 ] 2a-19€1,
9 13 L2 - — =
{ ZCh + Cll — Cll ¢ dt Ch(‘:h - Clx) ‘ di
i G, +3) + &, (a2 +¢3)] da
i _saw,] . e tde, =+
2{ sUs 21 2 V(a2 4 02 s
(a2 +¢3,)(a2 +¢3,) bl (2.67)

N

2023 I (G - Gn)(@? = 6n.Gn) | [Gna(ad + @R +Gnn(ad + 2]
o @@ +G) (a2 + ¢ a3 +C2)

n=3
(G (@l +E)+ G, (a2 + G| _ i 2am
(a2 + ) e +33) t ’

4

with the initial condition

¢1,(0)=0. (2.68)

In this case, at contrary to what happened for the first pair, the leading order does not coincide with

the result obtained for the semi-infinite plate (see section 1.5), but it still has the same structure.
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When the plate has finite length the new small vortex which is very close to the tip of the plate
sees the plate as semi-infinite and the existing vortices as infinitely far away, instead, when the plate
is semi-infinite, the existing vortices appear to be located at finite distance from the new vortex.
Consequently, the difference between the above equation and equation (1.39) is in the contribution
due to the desingularized velocity. Hence, we can write down the approximate solution for this case

simply substituting the new contribution into the approximate solution (1.41). Then we have:

p2. (P, + a3)sin by, da

2U - —
ofhs al —2a2p} cos 20, +p5,  dt

Pl(t) =as + {%as

s

N 2 25 2 9y -
Tn  pn,pn, —a;)costn, pn, (i, +ai)sinby,
2,0 o
=3

— 2a2p3, cos 0., + p3, |a} —2a2p% cos20n, + pi, (2.69)

o+ ad)sinds,
at — Qafpg’ cos 205, + p‘éa

} Vit —1t)

61(t) =0,

where the quantity between square brackets is just the value of the desingularized velocity field at
the shedding time. Note the argument of the square root is not positive definite but its sign depends
on the history of the flow. This provides a test of the validity of the simulation, if the sign is negative

an error was made during the integration. We find that a solution exists if, at the shedding time,

da oU.a p2,(p3, + a?)sin by,
dt |, et~ 2a2p3 cos 204, + p3,
N .
12,3 Tn_ pn,(ph, = aF) cos by, pn, (P, +a3)sinby, (2.70)

2 4
= moag - 2alp}, cos20n, + pi, lat —2a2p2 cos20,, + pj,

3

p2,(p3, + aZ)sinbs,
at — Qafp%' cos 203, + p3,

i.e., if the rate of change of the span of the plate is less of the velocity with which the new vortex is

convected away.
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2.7 Start-stop flow

In this section we present the results obtained from the numerical simulation of a start-stop flow.
In other words, the flow generated by a free-stream velocity which starts from rest, then accelerates
reaching a maximum speed, and then decelerates in a symmetrical fashion to a final stop. The fluid
velocity, of course, will continue to be non zero even after the driving free-stream vanished and we
are interested in monitoring the evolution of the quantities which characterize the flow. The goal is
to validate our model when more than one vortex pair is present in the flow. As far as we know,
there are very few experimental and numerical data available for this type of flow. A qualitative

insight about the evolution of the flow can be obtained by the flow visualization of Pullin and Perry

[18].

Let us analyze the evolution of the flow when the free-stream velocity has the trend shown in
Figure 2.36. At the beginning, when the flow accelerates, a first pair of vortices is created and
convected down-stream (see Figures 2.37 and 2.42). This pair satisfies the Kutta condition, not only
during the acceleration (up to time ¢ = 1), but even at the beginning of the deceleration, due to
the balance between the growth of the vortices and their drifting motion away from the plate. This
balance fails as the free-stream velocity decreases and the existing pair reverses the flow around the
tips of the plate. In fact, at approximatively time ¢ = 1.1864, the rate of circulation production
changes sign (see Figure 2.38) and a new pair of vortices is introduced into the flow to satisfy the
Kutta condition. The strength of the new pair grows very quickly and by time ¢ = 2, when the plate
stops, it has reached about 69% of the strength of the other pair (see Figure 2.39). As the external
forcing stops, the interaction between the vortices drives the flow, and the top and bottom pairs
start to move away from the plate on a direction almost parallel to the imaginary axis (see Figure
2.37 and 2.43). This drifting motion continues unperturbed as time goes on (see Figures 2.44 and

2.45) and all the quantities go to zero rather quickly (see Figures 2.38-2.39 and Figure 2.41). Only
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the impulse, the time integral of the drag, is left nonzero (see Figure 2.40).
The overall behavior of the model it very reasonable, although, it cannot be compared with any
experiment or numerical simulation because of the lack of data. The qualitative agreement with the

flow visualization of Pullin and Perry [18] it is extremely encouraging.

2.8 Vortex merging scheme

In this section we present an application of our model to a case where many vortex pairs are produced
during the simulation. Furthermore, since one of our goals is to design a computationally fast model
able to capture the main features of the flow, we propose a new conservative merging scheme.

As noticed by Sarpkaya [22], the reasons to amalgamate two or more vortices are common to
many vortex method schemes. Often is necessary to reduce the unphysically large velocities induced
in each other, to limit their propensity to orbit about each other, to simulate more closely some
naturally occurring merging, and to reduce computer time. Sarpkaya [22] also underlines the fact
that it has been customary to combine two vortices of circulation T'p and T’y and position ¢, and (,

into a single vortex of strength

Iy =T,+7T,, (2.71)
placed at their center of vorticity, given by

e FPCP + I‘qu

= 2.72
e (272)

This process conserves total circulation and linear momentum only when the boundary of the prob-
lem can be mapped onto a straight line. The error introduced in the complex velocity field by
the amalgamation process decays as ~ ¢~3 far from the merging location. In the case of a finite
size body, the above scheme conserves only the total circulation while the linear momentum of the

system is not conserved in general. Consequently, the error induced on the velocity field decays only
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as ~ (2. This fact can be explained by mapping the finite body onto a circle, which in principle
can always be done, and considering the image vorticity. From the above formula it follows that the
image of the vortex I'r, is placed at:

@ _aTp+ Ty (2.73)
Cm TpG + TG

Now, if we actually compute the position of the image of 'y, merging the images of the vortices I'p

and T'; so that the circulation and linear impulse of the image system is conserved, we obtain:

@ (T8 4T,
o _aUpbt1le6) 2.74
A (S @74

which is different from the previous formula.

To conserve both total circulation and linear impulse and to produce an error ~ ¢~2 in the
complex velocity field when a body of finite size is present into the flow, it is necessary to consider
the contribution of vortices and their images. One way to achieve this result is to take the difference
of the expressions of the complex velocity field before and after the merging process and then expand
the result in powers of (1. Setting equal to zero the first two leading terms we obtain two equations
which predict strength and position of the new vortex. Finally, it is possible to check that the linear

impulse is conserved. The formula for the position (,, of the new vortex is simplified if we set:

a? a?
I, =T (Cp"c‘;)v Iq:rq(q Cq) (2.75)

Ly =1, +1,. (2.76)

and

Then the vortex resulting from the merging process has to have circulation
Ty =Tp 4T, (2.7

and has to be placed at

Cm =

= "w
2+

VIpgIpg +4a2(Tp +Tg)2 + \/Ipqlpq (2.78)
5(T, + T,) ‘
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where a is the radius of the circle on which the body has been mapped, and qu is the complex con-
jugate of I,,. To use this scheme effectively the amalgamation process has to take place sufficiently
far from the body so that it perturbs only slightly the velocity field near to the body, in particular
the velocity field close to the separation points. Unfortunately, because of the reasons stated at the
beginning of this section, the merging process has to take place even when the vortices are not that
far from the body, and consequently introduces a significant time dependent perturbation in the
velocity field near to the separation points. In other words, we find that the effect of the merging
process is instantaneously fed back to the body affecting the separation and making the shedding
process rather noisy.

To avoid this problem one could propose a completely different amalgamation scheme which does
not modify the rate of circulation production, i.e., %%‘-. Unfortunately, the mathematics involved
discourages any attempt to impose such a condition. A reasonable compromise is to impose the
condition that the velocity field at the separation point is not affected by the merging process. In
other words, the circulation of the vortex connected to the separation point should not be modified

by the amalgamation process. If ¢ = t,, is the time when the merging takes place, then it should be:
Iy(t) = Tu(t])). (2.79)

Let us assume that at ¢ = t,, we are merging two vortices, I', and Ty, then using (2.7) the above

condition translates into the following equation:

(Cm — Zm)(az = Cm(:m) =T (¢ — @;)(&2 . Cpép)

(6o = €o)(a® = Cy)
TR A@EG) @@+ T @ @ ¢ (280)

+ T, (az_*_cqz)(az_*_c“?) .

Because of the imposed symmetry, this equation is invariant under the complex conjugate operation,
hence we need another constraint to determine completely (,,. This condition is obtained imposing

the conservation of the total impulse of the system (2.19) during the merging process, i.e.:

I(t;) = I(t}). (2.81)
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From this constraint we obtained the second equation necessary to close the problem:

Fm (Cm - C—m)(‘f‘z — Cmc—m) =T (Cp - 6;))(‘32 - Cpc_p) (Cq - Eq)(‘i2 - Cqé:q)
CmCm F CPCP ch‘l

These two equations plus the conservation of the circulation permit to determine uniquely position

+T, . (2.82)

and strength of the new vortex.
A possible implementation of this scheme is sketched in Figure 2.46. Let us assume we want to
amalgamate two vortices of circulation I'; and I'y and position ¢, and (,, then the relative distance

between the vortices is:
rog = 16 — Gl (2.83)
and the average distance of the vortex pair from the center of the body is:

Tav = ICau! = —T—

It is reasonable to assume that the merging is a local process, hence the resulting vortex has to
be placed close to the generating pair, let us say within a circle of radius rp, centered in (4.
This assumption becomes important when we are merging two vortices of opposite sign because
the resulting vortex is in general placed outside the circle of diameter rp, which interpolates the

generating pair. This constraint translates in the following inequality:

[Cm = Cav| < 7pq. (2.85)

At the same time we do not want the amalgamation process to take place too close to the body,
hence the merging process has to take place outside some circular region centered at the center of
the body. If this circular area has radius a + arp,, then this region would not overlap the previous

one if the following inequality is satisfied:

Ty 1
Tay —a a-+1’

(2.86)

where « is a positive parameter. In this way, closer pairs are allowed to merge closer to the body

and vice versa. Since our final goal is to perturb only slightly the rate of circulation production
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and the pressure field acting on the body, we select between all the potential pairs of vortices which

satisfy the previous two constraints, those able to satisfy also the following inequalities:

%lt:t‘,‘; - %lt:t; (2.87)
ary < ﬁ;
dt lt=t;,
and
X)) - Xt
l—————-—-—-————( m) = X( "‘)I <1, (2.88)

X(tm)
where  and v are positive parameters.

To test the quality of this scheme we ran the same simulation involving the shedding of many
vortices twice, with and without the merging scheme activated, and the comparison of the results is
shown if Figures 2.47-2.56. In this simulation the free-stream velocity is initially zero, then increases
rapidly and finally oscillates about a unit mean (see Figure 2.47). The amplitude and frequency of
the oscillation is chosen so that the rate of circulation production changes sign twice for each period
(see Figure 2.49), and consequently, two new pairs of vortices are introduced into the flow at each
period. To test the scheme we created a ”worse scenario” by choosing a = .5 and g8 = v = .01
and allowing the merging when at least four vortex pairs are present in the flow. In this way,
the simulation with the merging activated reaches the final time ¢t = 10 with seven vortex pairs
when the simulation without amalgamation ends up with twenty pairs. Figures 2.48-2.50 show the
comparison for total circulation, rate of circulation production and drag coefficient measured during
the two simulations. The agreement is excellent, only a slight deviation at late times is noticeable.
The effect of the amalgamation is recognizable in the different streamline pattern as shown in Figures
2.51-2.56. Those figures are the instantaneous streamlines at times ¢ = 6,8,10 when the system
with the merging activated has 5, 6, 7 vortex pairs, while the one without amalgamation has 12, 16,20
pairs. It is interesting to observe that although the small structures are lost, the zero streamlines,
which separate the recirculating domain from the free-stream flow, have almost the same geometry.

Finally, we want to stress the fact that the simulation with the merging activated saved about 70%
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of computing time with respect to the other one.

2.9 Active shedding control

In section 1.6 we have seen that it is possible to actively control the rate of circulation production
by moving the semi-infinite plate. In particular we have shown that it is possible to inhibit further
production of circulation when a vortex is present in the flow. Furthermore, in sections 2.4 and 2.6
we have seen how the results obtained for the flow past a semi-infinite plate are manifested in the
behavior for early times of the flow past a finite plate. For these reasons, we expect to extend the
control strategy derived in section 1.6 to the finite plate case. In other words, once the starting
vortex pair has been shed, ie., t > {,, we want to determine how to change the length of the plate
so that the Kutta condition remains satisfied without requiring a new vortex pair.

Let us write the equations of motion in polar coordinates for the starting vortex pair in the

following compact form:

d dU da
'_’1 = R?J(pl)glaa)U + Rbﬂk’.(plsgl) Cl)'_" + Rh(pl,el,a)_
dit di dt dt dt
(2.89)
d&l _ b b dU b _(ig
gt— - @U(plyglxa)U + @%(phgl)a) di + e%(plagl)a) dt )
with the initial conditions:
p1(0) = iag
(2.90)
6,(0) = 6.

The super-script b indicates quantities which hold before the shedding time t,. Now if we assume,
as in section 1.5, that a reasonable criterion to shed a vortex pair is when the rate of circulation
production goes to zero, i.e., at t = {,, then is important to analyze the expression for %—}l. For this

purpose it is convenient to rewrite the Kutta condition (2.21) in polar form:

pt— 2a%ptcos 20y + a*
(p? — a?)p; cos b

1‘1 =7 U= G(pl,f)l,a,U). (291)
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Then, the rate of circulation production computed from the previous expression using the chain rule

has the following form:

dly _ dGdpy  dGdb, dGdU dG da

@i e Y d T d Tdadt (2.92)

Using the equations of motion (2.89) we can rewrite the right hand side of the above expression in

terms of U,4< and 1— Then equating it to zero and solving for —ﬁ we have:
dat & g

b
G, dG dc dG  dG]  dU
b b b = —_—
— {[RU ap, T O dﬁl],,t‘ Vet [R i POt dU]t:t' i

da
dt

‘=‘-} (2.93)

dG dG dG -t
b b
[Rdt dp1 @eu déy da]t_t

Hence for this choice of ¢ the rate of circulation production goes to zero. At this point then we
have a technique to stop feeding the starting vortex pair and to create a new one.

Let us assume for the moment that as long as one vortex pair is present in the flow it is possible
to move the plate in such a way that the Kutta condition is satisfied for all time. Then, from (2.8)
without the Brown and Michael correction, this vortex of fixed strength T';, moves in accordance

with the following equations:

d da
EPL _ Rey(p1,01,0)U + RE,, (p1,01,)T1, + Ris (p1,01,0)—
dt dt
(2.94)
d@l "
dt = (p1:61¢a)U+eF1 (Pl:gl,a)rl +6M(p1)gl)a)
with the initial conditions:
pilts) = p1,
(2.95)
61(t,) = 01,,
where py_, 81, and,
I-\1. = G(pl. )91, y Qg Us) (296)

are the values at the shedding time. The super-script a indicates quantities which hold after the

shedding time t,. The explicit form of the functions which appear in the above equations i1s given
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in the Appendix. From the Kutta condition or the requirement that the complex velocity be zero

at the origin, we obtain the relationship:
I‘l,—G(pl,Hl,a,U)z(). (297)

If this constraint on the trajectory of the vortex is satisfied for all time after the shedding time, ¢,,
then the Kutta condition is satisfied. Hence, to achieve the control of the system we must embed
this constraint into the equations of motion (2.94). As a first step, let us take the time derivative of

the above constraint, and obtain:

dlydpy  dlydf;  dlydU | dlida

dmdt T & T a T daa (2.98)

As before, using the equations of motion (2.94), we can rewrite the above expression in terms of U,

%’{— and, ‘fi‘t‘ Then solving for d“ we obtain:

da dG ., dG dG dU dG dG
7 {[RUd1+eUd91]U+Eﬁdt [RP"dp +@fhd0JF1-}
(2.99)
. dG . dG  dG17!
[Rdt dpy @di dby + da ] ’

This then is the rate of change of the plate length necessary to take advantage of the presence of the
starting pair and keep the Kutta condition satisfied without forming a new pair. Before verifying
this result let us check the compatability of the two parts of the argument (see equations 2.93 and
2.99) by computing the following limit:

da dal®
O —— = . 2.1
tlir?. dt dt 1=t ( 00)

The above statement is true because at time ¢ = t, the rate of circulation production is zero,
consequently the Brown and Michael correction vanishes and the equations of motion before and
after shedding coincide. Furthermore, this result guarantees the continuity of the rate of change of

the length of the plate. Substituting (2.99) in the equation of motion (2.94) we obtain the set of
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equation for the controlled system as follows:

: dU
-3’} = Ri(p1,01,0)U + BE, (o161, )1, + Rig (p1, 61,0) 2
i dU
X d_tl = Oy (p1,01,0)U + 0%, (p1,01,0)T'1, + Oy (p1, 61, 0)— (2.101)
da . dU
E{ = Af/(ﬂl,gl, G)U + Ai‘;l. (pl,ﬂl,a)l‘l‘ + Ad;&l(pl,gl;a)g,

\

with initial conditions:

pi(ts) = pa,
01(t,) = 01, (2.102)
a(ty) = ay,

and the circulation associated with the vortex pair is:

Fl, = G(pl,,é’l_,as,U,). (2103)

The super-script ¢ indicates quantities which hold for the controlled system. The explicit form of
the functions which appear in the above equation is given in the Appendix. These are the equations
of motion of the vortex pair in the controlled case. In essence, the trajectories of the vortices
are intelligently affected by the change in the plate length, keeping the Kutta condition satisfied.
Analyzing the denominator of the above equations we can see that in general they become singular

for:

_ _ 3(p? + a?)?
U=0, 6y = +arccos (\/4(;1‘} tagta ) (2.104)

These singularities are strictly related to those discovered in section 1.6 for the case of the semi-
infinite plate. As before, the constraint on U means that is not possible to reverse the direction
of the free-stream and at the same time maintain the Kutta condition without further production
of circulation. The singularity in 6,, instead, reduces to that presented in section 1.6 through an
expansion about the tip of the plate. Consequently the semi-plane y > 0 is divided into three sectors

and the top vortex is not allowed to move from one to the other without a singularity in the rate of
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change of the plate length. Because of the imposed symmetry, the same singularity would occur in
the negative semi-plane.

Because the equations (2.101) implicitly satisfy the constraint (2.97), we could theoretically use
such a relationship to reduce the equations of motion to a set of two. Unfortunately, the mathematics
is too involved to allow such a simplification. Nevertheless, this constraint becomes useful during

the numerical integration of the above equations.

2.10 Dynamical behavior of the controlled system

In the previous section we have been able to find a controller which inhibits the production of
circulation when a vortex pair is present in the flow. This section is devoted to the analysis of the
dynamical behavior of the controlled system.

We start this investigation by searching for the fixed points of the unperturbed and uncontrolled
system. The set of equations describing this case can be obtained imposing U(t) = U, and %—‘t‘- =0

on (2.94). The result is:

d
-—dptl = R?j(pl: 91 s G)Ug + R]?‘l‘ (Pl y 61! (Z)Fl‘
(2.105)
dby
— = 08(p1,01,0)U, +OF, (p1,61,0)T1,.

The above equations for the fixed points can be reduced to a constraint on the trajectory of the
vortex pair, known as the Foéppl curve, ie.:

(p} — a?)?

2
61 = , 2.106
T 4t~ ) (2109
and a constraint on the circulation associated with the vortex pair, i.e.:
2 _ a2V(pt + at)? — 4g4 2
r, 47U (p7 — a®)[(pT + a*) a*py cos® 20;] cos 0y (2.107)

* T p1[Ba%pi(pT — 20202 cos? 05 + a) cos? 0, + (p? — a2)4]
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It is possible to prove mathematically that there does not exist any vortex pair with the above
associated circulation which lies on the Foppl curve beside the pathological situations when the
circulation is zero or infinite. Figure 2.57 shows that for values of circulation up to 10 there is no
intersection between the loci of points where a vortex of fixed circulation can lie satisfying the Kutta
condition and the Fdppl curve. For higher values of the circulation the two curves intersect each
other identifying two points but there is a mismatch between the vortex circulation and that required
to lie at those points of the Foppl curve. Physically this means that, given any fixed free-stream
velocity U, it is not possible to find a vortex pair of any finite strength that simultaneously does not
move and satisfies the Kutta condition. This is an interesting result in that it predicts that for any
free-stream velocity a flow, which separates from the tips of a flat platé cénnot reach a steady-state
solution. As far as our knowledge there is not any experimental evidence which contradicts this
prediction. An analogous result which shows, instead, the existence of a steady-state solution as
been proved by Milne-Thomson [14] for a circular cylinder. Note for a circular cylinder the flow

separates from the back stagnation point.

Let us first analyze the restrictions that the trajectory constraint (2.97) imposes on the motion

of the vortex pair. It is convenient to rewrite the constraint as follows:

Ty, (pf — a®)py cos by — w(p} — 2a%pf cos 20, + a*)U
(p? — a?)py cos b; -

0. (2.108)

The numerator can be regarded as a biquadratic algebraic equation in @ which can be easily solved.
Then, we have to select from all the possible solutions those for which a € (0, p;). The result of this
analysis is to determine areas of the domain within which the vortex pair is allowed to move. If we
assume that U > 0, T';, > 0 and 6; € (0,%) then the following results hold in the z,y > 0 quadrant.

We have two real positive solutions if:

Fls cosfy F1'(1 + sin 61) T
N N T 0<bi<g (2.109)
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while, we have one real positive solution if:

T'y, cos by T
7 0<t < 5" (2.110)

a< p <
Figure 2.58 shows the regions within which one or two real positive roots exist when a vortex pair
of circulation I'y, = 410 is at p; = 145 and 6; = +%. As the vortex pair drifts downstream the
boundaries of these regions move also, depending on the position of the vortex pair, the magnitude
of the free-stream velocity and the plate length. When the vortex pair reaches the boundary of the
region where the roots are not real positive the length of the plate goes to zero. This possibility
represents a strong constraint on the controllability of the system which was not present in the
semi-infinite plate case.

The existence of a finite controllability region restricts the search for periodic orbits to the region
itself, but the lack of fixed points for the unperturbed system suggests the absence of such orbits.
Because of the remarkable similarity with the results obtained for the semi-infinite plate in sections
1.6 and 1.7 we proceed to investigate the global structure of the flow field in the same fashion. The
set equations of motion for the perturbed and controlled case (2.101) can be, in principle, decoupled
and reduced to a set of two equations by means of the trajectory constraint (2.97) but the complexity

of the equations discourages such attempts. Nevertheless, this constraint can be used to eliminate

'y, from the equations (2.101). Substituting and simplifying we obtain:

da du

-&; = Ag(pl,ﬁl,a)U + A%Icl(plselﬁa)gt—

R dU 2.111
21— Ry (o1, 00,0)0 + Rigg (o1, 00,0) S
d . v

= = O0(r1,01,0)U + Oy (p1,61,0)—-.

The super-script ¢ indicates quantities which hold for the controlled system. The size and complexity
of these equations together with the presence of moving boundaries makes the search of a Liapunov

like function extremely difficult. However, because the results obtained for the semi-infinite plate
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hold, at least at early times, around the tips of the plate, there is good reason to believe that
they might hold over the entire controllability region for larger times. The numerical simulations

presented in the next section adds credence to this conjecture.

2.11 Results

In section 2.8 we presented a simulation in which the free-stream at time zero suddenly rises and
then oscillates about a nonzero mean. In that case we kept the length of the plate constant and a
cloud of vortices was produced. Based on the results of the last two sections we can run the same
numerical experiment changing the length of the plate to inhibit the production of circulation.

We start with a quite simpler situation in which the free-stream velocity after an initial sharp
acceleration decelerates to a constant nonzero value (see Figure 2.59). Figures 2.60-2.66 illustrate
the growth of the starting pair and the evolution of the controlled system. Note the length of the
plate up to the shedding time has been chosen to position the vortices at some distance from the
sector dividers. Figures 2.61-2.62 show that up to time ¢, & .37 the starting pair grows. When the
rate of circulation production goes to zero the strength of the vortices is frozen, triggering the active
control for the rest of the simulation (;n41 & 2.5). From Figures 2.59 and 2.60 we can see that as the
vortex pair is convected downstream the plate length increases during the first half of the simulation
then decreases during the second part to maintain control and finally drops almost instantaneously
to zero. Figures 2.60 shows that the control is lost when the vortex reaches simultaneously the
sector divider (dotted line) and the border of the domain of controllability (dashed line). Figure
2.63 shows the trend of the drag coefficient which has been computed using the instantaneous length
of the plate. At early times we observe large oscillations due to the added mass term then, when
the free-stream acceleration go to zero, the drag coefficient decreases slowly as the recirculating

bubble becomes more streamlined. Figures 2.64-2.66 are the instantaneous streamlines during the
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controlled period. It is worth observing that at early times, when a strong free-stream acceleration
drives the flow, the plate changes length to delay the formation of a large recirculating bubble. At
later times however, when the free-stream velocity is constant, the plate allows the bubble to grow
and takes advantage of the streamlined shape to satisfy the Kutta condition.

In the second set of results we present the active shedding control of a flow similar to that used
in section 2.8. Figures 2.67-2.74 illustrate the growth of the starting pair and the evolution of the
controlled system. As before, the length of the plate up to the shedding time has been chosen to
locate the vortices away from the sector dividers. The starting pair grows up to time ¢, &~ .27 when
the rate of circulation production drops to zero (see Figures 2.69 and 2.70). Then, the controller
takes over and predicts the length of the plate for the rest of the simulation (tfinat = 1). As the
vortex pair drifts downstream the plate length increases during the first part of the simulation then
oscillates about a constant value and finally undergoes a sudden contraction. In this case the control
is lost because the vortex reaches the sector divider (dotted line in Figure 2.68) while still well inside
the domain of controllability (dashed line). The drag coefficient has large oscillations for the entire
simulation because of the added mass contribution while its mean value slowly goes to zero (see
Figure 2.71). Figures 2.72-2.74 are the instantaneous streamlines during the controlled period. In
this case the free-stream acceleration drives the entire simulation and the two small recirculating

bubbles never merge to create the larger one.

2.12 Conclusions

An irrotational model has been used to simulate the unsteady separated flow past a finite plate of
variable length. The analysis of the evolution of the system at early times recovers, at first order,
the result obtained for the semi-infinite plate. Consequently, this result validates the model for

small times and, furthermore, provides the approximate solutions necessary to start the numerical
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integration of the equations of motion. The simulation of the power-law starting flow when the plate
length is fixed provides further insight about the validity of the model. The length of the recirculating
bubble and the drag experienced by the plate compare well with the results obtained experimentally
and numerically by other researchers. Finally, a time-dependent scaling was proposed to make the
problem dimensionless. This approach unveils the universality hidden in the phenomenon and nearly

collapses the results for any power-law.

The irrotational model has been extended to the case where several vortices are present in the flow
by implementing the vortex shedding mechanism used for the semi-infinite plate. The separation
of the flow in the presence of other vortices was then analyzed. The approximate solution for
early times has the same structure of that obtained for the semi-infinite plate. Consequently, the
trajectory of the new vortex is always parallel to the plate but there exists a limiting value of the
rate of change of the plate length beyond which the separation is not allowed in the present model.
This result gives further mathematical evidence for Rott’s prediction of such a limiting value [20]
even for finite geometries. Finally, to further improve the computational time an highly conservative

merging scheme was presented and successfully tested.

Within this model we derived a control strategy which inhibits the production of additional
circulation when a vortex pair is present in the flow. Because of the mathematical simplicity of the
model we obtained the exact solution of the controller, for any time-dependent free-stream velocity,
in the form of a ordinary differential equation. Subsequently, the performance of the controller was
characterized with a dynamical system type of analysis. This investigation showed that the time
over which the system is controllable is finite as a consequence of the conflicting effects of the drifting
motion which convects the vortex downstream and the existence of a controllability region within
which the vortex should move. Nevertheless, this time can be maximized by an intelligent choice
of the separation conditions. Finally, we successfully tested the controller for two different types

of free-stream conditions. The robustness issue was not addressed in the present work because in
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general it is strictly related to the final application.

2.13 Recommendations for further investigations

The results of our investigation showed that the Brown and Michael [1] model is accurate enough to
capture the main features of the flow past a flat plate and simple enough to permit the analytical
derivation of a controller. For the particular control problem we chose, the controller performed
satisfactorily only over a finite lapse of time. The control was eventually lost because the vortices
were irreversibly convected down-stream. This fact is probably a direct consequence of the lack of
fixed points for the unperturbed flow.

The logical continuation of this research is to explore other geometries like cambered or v-shaped
plates, lens or diamond-shaped cylinders in both bounded an unbounded domains searching for the
fixed points of the unperturbed flow. The existence of such a critical points and their stability
properties should provide a criterion for selecting the preferred geometry and the desired control
strategy. Following the approach presented in our investigation, it should then be possible to derive a
controller able to stabilize the fixed points with respect to a perturbated free-stream velocity. If this
result can be achieved for infinite time then the robustness issue should be addressed. Robustness

is in fact a necessary condition for a possible use of the controller in a real situation.

The implementation of the derived controller to a real experiment will be difficult and has to be
carried out step by step. The first step would be to embed the controller into a more sophisticated
CFD code which can simulate the flow under investigation by integrating, for example, the full
Navier-Stokes equations. There are several advantages in undertaking this intermediate step. The
two codes, solver and controller, can be synchronized, all the necessary quantities computed and
robustness tested in a quite simple way. During this process, time series theory should produce

further information about the actual complexity of the associated dynamical system and provide
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an indication about the robustness required to maintain control. A success at this stage will open
possibilities for the active control of large-scale coherent turbulence.

There are at least three potential directions for the use of this work. First is the application of this
model to the unsteady, separated flow past a flat plate with a forward-facing dynamical flap (casper
wing) at high angles of attack. In this case, the control strategy has to predict the movement of the
flap so that a vortex is trapped and kept trapped above the wing increasing the lift and reducing the
drag. Eventual results can contribute to the advance of VSTOL technology and give good insight
as to how to handle dynamic stalls. The second possibility is the addition of some elasticity to the
plate to model the fluid structure interaction for basic motions such as flapping and pitching. The
solution of this problem can contribute to several areas of research such as: biofluidmechanics, flow
induced vibrations, structural engineering and material fatigue. The third possibility is to apply
this model to reacting flows, for example to study the dynamics of a simplified combustion chamber
by first developing a model to reproduce combustion instabilities and then determining a strategy

for control them.
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Appendix

The explicit form of the functions which appear in the equation of motion (2.94) is the following:

p2(p? — a*)sin b,
pt —2a%p? cos 26y + a*’

R (p1,01,a) =

P38a%pi(pt — 2a%p}sin® 01 + a*) cos? 6; — (p} — a*)?]sin b,
4x[(p? + a*)? — 4a*p} cos? 20,](p? — 2a2p? cos 20, + a*) cos b’

Rf‘l, (Pl) 61) a) =

2ap; (p? cos 20; — a?)
Pt —2a2p?cos 20y + a*’

R%%(plaglaa) =
pi(p + a?) cos b,
pt —2a2p? cos 20, + a*’

pi(pi + a®)[8a’p}(2a°p} cos® 01 — pif — a*) cos? 0y — (p — a®)f]
4m(p? — a?)[(p? + a)? — 4a*p? cos? 201](p} — 2a2p? cos 20, + a*)’

@aU(pbel:a) =

ef\, (pl)gl)a) -

2ap? sin 20,
Pt — 2a2p? cos 20y + a*’

@%(pl,alya) =

The explicit form for the functions which appear in the equation of motion for the controlled

system (2.101) is the following:

C o a c
Ry = Rag Agy,
dt dt di
4 — a a <
RPI: - Fla +R%%Ar\lt’
0y = 0 + 04,
< o
Ow = 0% Ay,
dt dt dt

Or

1g

— a a 4
=0f,, + 0% 4.,

. 4G . dG1[.. 4G ., dG dG17!
Ay =~ [RU;{;; + Udﬁl} {Ru dpy edt df } ’
. _ dG[,, dG ., dG  dG]™
A% T [Rd( dpy @di df, N da ] ’
. dG 4G [pa 4G | ga 4G 4G !
AI‘l, - [Rfl, dp: + 61—‘1. dé, ] [Rgg dp; edt d@l da ] ’



155

Bibliography

[1] Brown, C.E. & Michael, W.H. 1959
Effect of the leading-edge separation on the lift of a delta wing.

J. Aero. Sci. 21, 690-694.

[2] Butcher, J.C. 1987
The numerical analysis of ordinary differential equations
Runge-Kutta and general linear methods.

John Wiley & Sons

[3] Cheers, AY. 1979
A study of incompressible 2-d vortex flow past a circular cylinder.

Lawrence Berkeley Laboratory LBL-9950.

[4] Chua, K. 1990
Vortex simulation of separated flows in two and three dimensions.

Ph.D. Thesis, California Institute of Technology.

[6] Clements, R.R. 1973
An inviscid model of two-dimensional vortex shedding.

J. Fluid Mech. 57, 321-336.



156

[6] Doyle, J.C. Francis, B.A. & Tannenbaum, A.R. 1992

[12]

Feedback control theory.

The Macmillan Company, New York

Fan, M.K.H. Tits, A.L. & Doyle, J.C. 1961
Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics.

IEEE Auto. C. 36, 25-38.

Gad-el-Hak, M. & Bushnell, D.M. 1991
Separation control: review.

ASME J. Fluids Eng. 113, 5-30.

Graham, J.M.R. 1980
The forces on the sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenter numbers.

J. Fluid Mech. 97, 331-346.

Graham, J.M.R. 1983
The lift on an aerofoil in starting flow.

J. Fluid Mech. 133, 413-425.

Koochesfahani, M.M. & Dimotakis, P.E. 1988
A cancellation experiment in a forced turbulent shear layer.
First National Fluid Dynamics Congress July 25-28, 1988/ Cincinnati, Ohio

AIAA Paper No.88-3713-CP.

Lighthill, J. 1986
An informal introduction to theoretical fluid mechanics

Clarendon Press, Oxford



(13]

[16]

(17)

157

Lisoski, D.L. & Roshko, A. 1991
Private communication.

California Institute of Technology

Milne-Thomson, L.M. 1968
Theoretical hydrodynamics. 5** ed.

The Macmillan Company, New York

Ongoren A. & Rockwell, D. 1988
Flow structure from an oscillating cylinder
Part 1. Mechanisms of phase shift and recovery in the near wake.

J. Fluid Mech. 191, 197-223.

Ongoren A. & Rockwell, D. 1988
Flow structure from an oscillating cylinder
Part 2. Mode competition in the near wake.

J. Fluid Mech. 191, 225-245.

Pullin, D.I. 1978
The large-scale structure of unsteady self-similar rolled-up vortex-sheets.

J. Fluid Mech. 88, 401-430.

Pullin, D.I. & Perry, A.E. 1980
Some flow visualization experiments on the starting vortex.

J. Fluid Mech. 97, 239-255.

Rao D.M. 1987
Vortical flow management techniques.

Prog. Aerospace Sci. 24, 173-224.



158

[20] Rott, N. 1956
Diffraction of a weak shock with vortex generation.

J. Fluid Mech. 1, 111-128.

[21] Sarpkaya, T. & Isaacson, M. 1981
Mechanics of wave forces on offshore structures

Van Nostrand Reinhold Company, New York

[22] Sarpkaya, T. 1989
Computational methods with vortices — The 1988 Freeman Scholar Lecture.

ASME J. Fluids Fng. 111, 5-52.

[23] Taneda, S. & Honji, H. 1971
Unsteady flow past a flat plate normal to the direction of motion.

J. Phys. Soc. of Japan 30, 263-272.

[24] Tokumaru, P.T. & Dimotakis, P.E. 1991
Rotary oscillation control of a cylinder wake.

J. Fluid Mech. 224, T7-90.

[25] Van Dyke M. 1982
An album of fluid motion.

The Parabolic Press

[26] Wiggins, S. 1990
Introduction to applied nonlinear dynamical systems and chaos.

Springer-Verlag, New York



