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ABSTRACT

In this work the coaxial waveguide antenna is treated by the
wienér-Hopf technique and the transient radiation from a cylindrical
monbpo1e is developed in the Tight of the rigorous results obtained
from tﬁe Wiener-Hopf analysis. Analytic expressions are derived for
(1) the electromagnetic fields in the feed line and {2) the far zone
radiation fields of the coaxial waveguide antenna, with time harmonic
excitation voltage. Complete characterization of the transient beha-
vior is also found for (1) the fields interior to the feed line and
(2) the radiated fields for excitation voltages arbitrary in their
time dependence to the extent that kb,ka << 1 . This corresponds
to the case of a thin antenna and excitation voltage with a non-zero
rise time, specifically chosen so that frequencies violating the
restriction kb,ka << 1 are negTigib]e;

The transient radiation from the cylindrical monopole is
developed in a closed analytic form which is relatively easy to
interpret.and apply. The expressions found offer an alternative to
transient analysis by conventional methods requiring numerical tech-
niques involving eXtensive computer caicuiétions. They are also the
basis for an uncomplicated procedure to synthesize a desived behavior

df the transient radiation from cylindrical monopoie antennas.
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1. INTRODUCTION

THfs"dissertation présents an analysis of the coaxial waveguide
anfenna by tﬁé Wiener-Hopf technique and the determination of transient
radiétion from the cylindrical monopole antenna. This work is the
first successful treatment of a semi-infinite coaxial structure by the
method of Wiener-Hopf and the first rigorous determination of transient.
radiation eﬁanating from an open ended semi-infinite waveguiding struc-
ture. In addition, a new andisimp1e method for calculating the
transient electronfagnetic radiation of a cylindrical monopole antenna’
is presented.

The study of e]éctromagnetic boundary-value problehs by.the
Wiener-Hopf technique began in the early 1940's. Among the most notable
of the early workers were Schwinger [1] and Copson [2]. The early
applications of this powerful method were inthe rigorous solution for
the fields within a bifurcated parallel plate waveguide and diffraction
of plane waves by a conducting half-plane. The method was later used
to solve the problem of radiation impinging on or emerging from the
open end of an unflanged circular pipe and a pair of paraliel plates.

Much of the ear1y history of application of the Weiner-Hopf method is
detailed by BOkaamp [3] and an authoritative account of the method was
published in 1958 by Noble [4]. In this work the integral equation
approach of the early workers is not stressed. A more direct simple
method due to Jones [5] is énmhasized. It is éhe application of
Wiener-Hopf technique due to Jones that will be employed within this

report.
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There have been several recent investigations of the transient

behavior of antennas [6-15]. The focus of many af these investigations -
. is”dq the time behavior of the radiated electromagnetic field. Refer-
ences [6,8] and [14] present theoretical as well as experimental
results. In most of the prior résearch efforts, the problem is formu-
lated ih terms of circuit theory and the antenna is treated as a Tumped
circﬁit element. The feedline and the exciting sources are replaced by
- their Thevenin or Norton equivalents. The formulation of the problem
in terms of circuit theory yields complex frequency domain fields which
must be Fourier transformed if the time behavior is of interest. Such
calculations require numerical methods due to their extreme compiexity.

The work of Schmitt, Harrison and Williams [6] is a determina-

tion 6f the transient radiation and reception performance of a thin,
finite length cylindrical monopole over a perfectly conducting infinite
ground plane with a coaxial feed. In the c{rcuit analysis formulation
{frequency domain) the antenna was represented by an impedance and the
radiated field related to the voltage across the antenna impedance
through a'proportiona1ity facior,-ca11ed effective height. The time
dependent behavior is obtained by Fourier transforming the frequency
“domain field. A similar procedure was used to obtain the properties of
thé antenna in receptiony the induced voltage on the receiving antenna
was related to the incident electric field intensity through the effec-
tive height. The theoretical work of Schmitt, Harrison and Wi11iams
was subp]enented in 1971 by Abo-Zena and Beam [9] to include the time
behavior of near zone field intensities and in 1970 by Palciauskas and

Beam [10] to include the_far zone time behavior at latitudinal angles
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other than 90°, which was the only angle considered by Schmitt et al.

kiﬁg and Harrison [8] formulated a frequency averaged reflec-
tfqn coefficient to‘theoretica]1y obtain the reflected electromagnetic
fié1ds on>the coaxial feed line of an infinitely long cylindrical
antenna or for the time interval before the excit&tion pulse can
reach the tip of a finite length anténna. Use of frequency averaging
is necesSifated by the fact that the antenna input admittance is
frequency dependent, which constrains the conventional ltransm‘ission

Tine reflection toefficient to be frequency dependent.

The transient current on a circular tubular infinitely 1ong
antenna‘that is excited by a voltage which is a step function of
time was determined in 1961 by T. Wu. He Tater (1969) furnished a
corrected analysis for this current in Reference [11]. An earlier
work (1960) by Brundell [12] treated the more general problem of -
determining the sbace and time behavior of the electfomagnetic field
for such an antenna. This work was also suppiemented in 1970 by
Latham and Lee [13] who fbund the early and late time behavior of
the field radiation from a hollow infinite cylindrical antenna
excited by a yo1tage that is a step function of time.

Lameﬁsdorf [14] determined that the time behavior of the
coaxial cone antenna in reception is primarily a time derivative of
the incident electric field intensity fai]ing on the aperturé. This
work also contains a heuristic discussion of the time dependent elec-
tric field radiated by a cone antenna. Chang [15] analyzed the tran-

sient reception characteristics of the annular slot antenna using the
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circuit theory approach. References [14] and [15] are recent works,

1970 and 1971 respectively, and have application as part of a receiv-
ing system for measuring scattered impulse responses of various
‘objects or as a receiving antenna on an aircraft or guided missile.

Int he systematic study of radiation from the coaxial aperture
antenna which follows, analytic expressions for the electromagnetic
fié]ds of the coaxial aperture antenna are given. These expressions
account for waves traveling in both the forward and reverse directions
on the feedline gnd the radiation fields for harmnnic time dependent
excitation. Complete characterization of the transient behavior is
found for the fields interior to the feedline and the radiated fields,
for excitation voltages which are arbitrary to the extent that
kb,ka << 1 . This corresponds to the case of a thin antenna and
excitation voltages with non-zero rise times, specifically chosen so
that frequencies which violate the restriction kb,ka << 1 are neg-
ligible.

The annular slot antenna is considered to be a special case of
a cylindrical monopole antenna (h=0). The fields radiated from the
annular slot antenna are approximated by well known methods in which
~ the incident field on the aperture is considered to be the aperture
fie?d. The radiated fields so determined are interpreted in light of
the rigorous results obtnined from the coaxial waveguide antenna and
a model is obtained for a cylindrical monopole.antenna in which the
height of the radiating element is greater than zero (h > 0). The
transient radiation field intensities are obtained from this antenna

model. The determination of the transient radiation through the
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procedures developed in this research offer an alternative to comput-

ing transient behavior by numerical methods where extensive machine
‘ céTcu]ationS‘are requiréd. The procedures reported on herein can also
be dsed as the basis of an uncomplicated synthesis procedure io produce
a deéired time behavior in fields radiated from the coaxial waveguide
and the cy1indr1¢a1 monopole antenhas.

| The results of this research should prove to be very useful in
the areas of 1) determination of antenna properties (driving point
impedance and radiatibn pattern) through time domain measurements [16],
v2) identification of and discrimination between conducting bodies
through radiation scaftering from their surfaces and 3) the calibration
of equipment designed to measure the effectiveness of shields designed
to protect equipment or installations from intense, short rise time
electromagnetic pu]ses} In each of the above areas a precise knowledge
of the time-behavior of the radiated electromagnetic field is required.
Additionally the ability to synthesize a particular time behavior in

the radiated field is highly desirable and very important.



} . -6-
2. THE COAXIAL WAVEGUIDE: AN APPLICATION OF THE WIENER-HOPF TECHNIQUE

In this chapter the frequency (spatial) domain electromagnetic in-
tensities for an open ended coaxial waveguide will be derived. This will
be done using the methods of Wiener and Hopf [4]. Use of this technique
will provide a determination of transverse electromagnetic mode (TEM)
as well as‘higher order mode intensities within the structure.

We take the coaxial waveguide structure to be that of Figure 2-1.
The inner conductor is a hollow tube. Both outer and inner conductors
~are assumed to bé.semi-infinite in Tength, infinitesimally thin and
perfectly conducting. The cross section is circular providing for a
coaxial annular region between the cocnductors. We also assume that the
waveguide is embedded in a homogéneous, isotropic, dielectric medium

having the constitutive parameters of free space.

Specification of the Problem -

We begin the specification of the problem by listing the Maxweli

- equations:

R
VoD:p
VB = 0 o (2.1)

The fields which satisfy the above equations must also satisfy the con-

stitutive relations:
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Figure 2-1. The coaxial waveguide antenna
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B = uoH . D = eoE
" where
1 _
;2"“050

Under the assumption that the coaxial waveguide has béen excited in
TEM mode, there is a traveling electromagnetic disturbance proceeding
in the posifive z direction. The time origin is taken to be the |
point in time when the leading edge of the TEM mode exciting field is
~incident upon the'aperture located in the z = 0 plane.

The specific method used to initial]y excite the coaxial struc-
ture and the field distribution prior to the time origin are not of
interest in this work.

It is well known that the TEM mode field of a coaxial waveguide
is independent of angular variation [17, p.326] in the cylindrical
coordinate system; The coaxial structure also does not introduce any
boundary conditions which have angular dependence. From these observa-
tions we:conclude that the scattered field must also be characterized
by the same symmetry (i.e., independent of angular variation in cylin-
_drical coordinate system).

In cylindrical coordinates the field components can be written

as
-2 -»> > >
E = Epap + E¢a¢ + Ezaz
and
> > > -
H = Hpap + H¢a¢ + HzaZ

where 3p,3¢,32 is the triad of unit vectors along the coordinate axes .
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We now Fourier transform the Maxwell equations to change from a

. time domain to a frequency domain representation. The Fourier trans-

form pair [18] is defined as follows:

Flw) = == | #(t) 't at
0 ﬁFl ‘

| .1 [
£(t) ﬁFlFM)e du

>

When the first two Maxwell equations are multiplied by

operated on by the integral operator, the results are:

-—LJVxTE’e“”tdt --l—f%B-emtdt
/7w Zr
and
o . [++} >
L f vxH elut 4t L [ [J + %% 't 4t
vem 2 vem )

Interchanging the curl operator and the integral sign on the left hand

_side and 1ntégrating by parts on the right hand side yields equations

in the frequency domain. To form these results, use has been made of

the fact that the field intensities must be zero as [t]| » = .,

v x BE(w) =+ 1o B(w)

v x Blw) = J(w) - 1w D(w)

It similarly follows that
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7w = o
VeBw = 0

Blo) = ufiw) and  Blo) = e Blw)

When the fiéld components in cylindrical coordinates are substituted into
the frequency domaip Maxwell equatio'ns for a source free region (i.e.,
-5

J(w) is set to zero), we obtain the following relations between the

field components: -

iw Bp= -:’%EQ (2.1.1)
iw BZ= -2“:—¢+?;§ _ (2.1.2)
iw B¢ = g;g-- ;gz- (2.1.3)
and
-iw D = --g—zH¢ (2.1.4)
-iw D, = ;4’-+ ;-l:;i (2.1.5)
-iw D¢ = ggﬂ - g-:;l-z- | (2.1.6)

By using the constitutive relations and combining equations (2.1.3),

(2.7.4) and ©.1.5),we derive the scalar wave equation for Hy s

L}I“

H
s _ 9 1 - ___ __1___ _i
Twug Hy = 53 [me az ] [ Tue (p

)]

Q>

p

-This equations upon simplification, becomes:



_ W2 2
139 1 ) W
[8 +——--—-—+—-—2-+7]H(w) = 0 (2.2)
sz’ P 3p p2 92 ¢ ¢ ,

where pe = 1—2- . Similarly equations (2.1.1), (2:1.2) and.(2.1.6) -
| c

) 00
produce
2 2 2 : .
9 129 1 ) w
PR N R =
| [‘3:2‘ + .p 50 'p—z- 5—;2- + -c-z‘] E¢(w) 0 (2.3)

From the foregoing equations it 1’5 apparent that the solution of
(2.2) and (2.3) for H¢ and E¢ is’ enough to_completely -determine all field
components. The work incorporated in Appendix A shows that E¢ must
be zero for the coaxial waveguide, therefore the only field intensity
components present are H¢, Ep and E_ . The rest are identically
zero. The ana1ys1‘:~": has been reduced to solving the boundary value

problem
[§;+ %J’ 1 -,;-2-+.k2] Hy(oszs0) = 0 (2.4)
H¢(0,z,w) = 0 : : -0 < Z < (2.4.1)
| Ez(a,z,w) = EZ(b,z,w) = 0 z<0 (2.4.2)

The Sommerfeld radiation condition,

Tim (=2 - ik Hy) = O must also be satisfied.

kz-‘*’2 (2.4.3)
—_CE' o e
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is a scalar quantity and equation (2.1.5) can be written as
~iwef, = 13 [p H.] | (2.5)
: zZ podp ¢~

Thi§ wi11 be of use later.

The well known expressions for the TEM mode fields for the
coaxiaT waveguide [17] - will be given here to set the notation. We
take the field intensities incident on the aperture from the negative
z direction to be |

Ei' = _V(w) e1kz
P gnbsa P

. € ikz - ikz -
i ’ o vin) e _ e
Hq) 1-1—0-2’" b/a ——-5-— M(w) —p ' (2.7)

v(w) dis the frequency domain voltage between the inner and outer con-.

(2.6)

ductors.

The space containing the waveguide is divided into three regions,
portréyed in Figure 2-2. Equation (2.4) applies to each of these regions.
- The field satisfying this equation in region one is designated
H¢](p’sz) . Similarly we have H¢2(p,z,w) for region two and
>H¢3(p,z,w) for region three. The equation for ea;h of the regions is
a partial differential equation in the variables p and z . By
Fourier transforming in the spatial dimension z , an ordinary differen-
tial equation in the variable p s obtained.

Following the notation of [4] . the spétia] Fourier transform

pair is defined as follows:
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Region |
Region 27 7

iz rzr 7 720

_ Region 3

Region 1 b<op
Region 2 a<pxghb
Region 3 pga

Figure 2-2, Division of the space surrounding the coaxial waveguide
antenna into regions
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| _ ioz
Fla) = — |  f(z) e dz
¢ /'z‘fi
. oz
fa) = i Fla) e 1% gy

The "plus" and "minus" functions are defined as

F+(a) - f(z) eiaz dz
v2n
- ] 0 o
Fla) = - [ f(z) &' ez
vem _J
where
Fla) = F'(a) + F(a)
a =0+ i1t is compiex .

(2.8)

(2.8.1)

(2.8.2)

(2.8.3)

(2.8.4)

Using well known theorems involving Fourier transforms in the

complex plane [4], the regions of analyticity of F+(a) and F (a)

will be found. Suppose that we are given t_< 1 <1 , all real

numbers. In addition suppose that

o |f(2)] < A exp(r.z) as 7 > o

where A 1is a constant. Then

M o
J f(z) e'% dz

+ 1
Fla)|] < —

1

< (ia+1.)z
PR I (' M dz
n

L

where M < 1{s chosen large enough for the inequality to be valid.
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 The last integral of the above expression converges 1f and
only if
| * (fa+1 )z
e +0 as z >

or
(jo-t+1_)z
e +0 as 2>

This Tast expression is valid provided .

T>T

By similar reasoning, it can be shown that if |f(z)]| < B exp(r+z)

as z + -» (B constant) then |F (a)| 1is convergent provided

T<T+

Therefore F*(a) and F (a) are convergent‘in the strip

1_ <71 <71, of the o plane.

+
We aiso note that if lF+(a)| and |F (a)| are convergent

in a region of’the complex plane, then the magnitude of nth ordered
derivative (n < ©) of F+(a) and F (a) with respect to o also

exists in that region. .In fact such functions are nth order continu-

w

— ously differentiabTe in the region.

] 0]

| = ii)f-l z"f(z)«c-:io‘z dz
V2w

n .
4 (o) efel)
do

dn
< (F*(a))‘ -

do m

-2 (iattg )z
T L‘z"'e T dz
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" where M <& is properly chosen to ensure the inequality. Concen-

~ trating on the term of significance, we write

©o

00 . N
o (fa+1 )z n (iat1 )z
L Z e dz =2 e ¥4

T 4 (ia+1)z
y ot

After n 1integrations by parts, the above becomes

) + (-1° n(n-1)-..1 e(ia+"c_)z %

. n
M (fo+1) M

nv n!' (Z)P(-])r“-P e(iOﬁ"‘ T_)Z

P=1 PY (ot )™

which is finite for finite n provided

T>T

Again by a similar discussion, it can be shown that F (o) is nth
ordered continuously differentiable in the open region t <1, provided
| f(z)| < Be™Z% as z » -= .

Since all that is required for analyticity in a region of the
compiex plane is that the first derivative of the function exist in that
region, we are assured that F+(oc)} and F (o) are analytic in the

strip 1_ < 1 <1, of the a plane provided of course that

+

_ ' T 2z

[f(z)| <Ae z >
and 2

|f(z)] <Be Z +=

Upon multiplication of equation 2.4 by - e'%  and operat-

~ 0 2m _
ing with the integral I dz , the following equation in -

p  emerges.
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p

Tﬂ-ﬂ

2 2

1 f d ( faz 3
— ——-.2- P,Z w)e + [—- +
vém o ¢ apz

- L (o) = 0
0 $

Intégratihg by parts twice and imposing the conditions that H¢(p,z,w)
and %E-H¢(p,z,w) +0 as |z| >« , produces an ordinary differential

equation in p ,

2 :
e + 1d 1. v2] H (p,o,w) = 0 (2.8.5)
;;'2’ p do ;f ¢

¥2 = of - K (2.8.6)

*

It is noted at this point that the incident magnetic intensity does
not satisfy the differential equation (2.8.5)since if does not converge
in the 1imit as z - -= . This will be explored in detail a little

later.

For region 1:

) |
d 1d 1 24
[ P - ] H (psa’w) = ,0 (2-9)
Ef- pdo " 2 91

Hy (poasw) > 0  as poaw (2.9.1)

. ‘! .

[p H, (p,0,0)] = 0 . (2.9.2)

do =" e, - . .; |

~ Equation (2.9.1) follows from the Sommerfeld radiation condition and
equation (2.9.2) follows from equation (2.5) and the boundary condition

(2.4.2).
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For region 3:

2 . .

d 1'd ] 2 _
[d—y v EH T Y] H¢3(p.a,w) = 0 (2.10)
H(’) (0,(1,0))7 = 0 . (2.]0.1)
K

d -

W [p»H%(p,q.w)] - =0 (2.10.2)

Equation (2.10.1) and (2.10.2) result from imposing (2.4.1) and (2.4.2).

For region 2:

In this region the magnetic intensity will be written as a
Tinear combination of the incident TEM magnetic intensity and another

term w¢2(p,z,w) .

- oyl
H¢2(p,2,w) = Hy t w¢2(p,z,w) (2.11)

The term ¢¢ (p.z,w) represents obviously all of the reflected fields that
2

exist within the feedline, on 2z <0 . For the other extreme of

z>0, w¢ (p, ,) must account for the fields which exist in free space

from sources within the feedline. It must be representable as
w¢ (p,2Zsw) = (-Hi + other field terms) , z'> 0
2 : -

i
¢

lates required boundary conditions.

since H, cannot be present in the half space ' z > 0 because it vio-
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Since the intensity Hy (psz,w) must be a solution to the dif-
. .

ferentia1’équatibn (2.4) the terms H, and w¢2(p,z,w)' must satisfy

=Y

the following:

2° 2 : .

9 ) 19 1 2+ i

+ L2 _ 1, =
[;;2- -a-‘;z- > 30 pz kJH(P 0
and .
| ) |

3 o -, 123 1 2

[ + t—o— -+ k] Y, (pyz,w) = 0

22 9l PP 2 b

The incident field H1‘= Méw ekZ  jdentically satisfies the

first of the above equations. Therefore we only need to solve the
second equation. The magnétic field intensity for region 2 will be
completely known after this is done.

The above differential equation for w¢ (ps25w) will now be

tgpnsfonmed by mu]t1p]y1ng through by :/-%:;e'ﬂ oz

i)
, ! dz .

and operating with

T .2 ‘ o
1 I ) ioz 19 1 .,2 _
— | == ¥, (p,z,0)e dz+[~7+——- -+k"Jy, (p,0,2).= 0
/2n o 9z ¢2 p o p ¢2 g

Integrating by parts twice and requ1r1ng that w¢ (psz,w) and
d

rea ¢¢ (psz,w) +0 as [z| » = , we derive the d1fferent1a1 ‘equation
for region 2.
d 19 1 '
[Z*-5%-7- Y1 ¥ (p,a,w) =0 (2.12)
g;(p-w¢ (psasw)) =0 (2.12.1)
2 p=a,b
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~ The condition éxpressed in (2.72.1) follows when it is recognized that

d iy - | |
S Hy = o (2.12.2)

and'ﬁse is made of the boundary condition expressed in (2.4.2)and (2.11).
It was previously stated that the incident magnetic intensity'

does not sétisfy equation(2.8.5). In the derivation of (2.8.5) it is

essential that the function and its derivative vanish as |z| +

i

It is obvious for slightly lossy media that H, does not vanish as

, ¢
'z + - , therefore it cannot satisfy equation (2.8.5).
'Upog,mu1tiplication'of equation (2.11) by —-]----ei°‘Z and operat-
2m
ing with J dz , the following results:
‘ ] iy .oz :
H (pyasw) = - I(H ) &1 gz 4y (p,040) (2.12.3)
7 o L 7R |
Substituting the value of H; in the above integral produces:
® ikz | =
M(w) I € o192 4, (2.12.4)
2n P

This integral does not converge. If it is assumed that the
medi um is s]fghtly lossy, we can write the quantity k as a complex

number
k=kll+.ik2 9 k-a >> k2 ? k.ﬂ’k2>0 '
The loss term k2 will be allowed to go to zero later in the problem

to yield results for a lossless medium. The value k 1is specifically

chosen in this form to ensure convergence of the TEM magnetic intensity
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as z » +o ., This choice of k ensures convergence of (2.11.4)at the
upper limit (z = +2) . Therefore it is concluded that we should operate

on (2:11)with the "integral fwdz rather than [ dz . When this is

doné, theAfo110wingd6quatioﬁ, which will be uséd later, results :

Hy, (psctsw) = + S L) — Vg, (ps0,0) (2.12.5)
2 v2n plo+k) 2
In the differential equations for the various regions of the

problem we have made use of a quantity

The square root is

y = Jo° -k (2.13)

which is a mu1tiva1ued function of the complex variable o defined on
a two sheeted Riemann surface. The value of y must be uniquely
defined so that only the proper branch of this double valued function
is used. The branch cuts for this function are determined in Appendix
B and depicted in Figure 2-3.

‘The necessity of satisfying the Sommerfeld radiation condition
réquires‘that the asymptotic ffequency domain‘behavior of the magnetic
intensity for the space afbund the coaxial waveguide antenna (exclusive

of regions 2 and 3 with z < 0) be that of an.outward traveling or
evanescent, spherical wave.
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: Figufe 2-3. Branch cut for multivalued function



If the value of z s such that z > p the asymptotic behavior

specializes to

e1klz|
I-!q)](p’z’w) i lzl ; Z + tw
' ikz
w¢2(p.z,w) v 9—-2-—- H Z > too
. ikz
H¢ (pszsw) _e__z_ 5 Z > 4w
13 ,

In region 2 with z < 0 , the magnetic intensity is known [17,
p.327] to consist of the TEM mode and higher order Eon modes. Only

Eon'modes are present due to the symmetry requiring no variation with

the angle ¢ . The only field intensity components allowed are H¢ 5

Ee and EZ .

From equation (2.11) we have
C ef'ikZ
P

| 1P¢12(p sZ sw) =

-1ka:-(an)

nZT con {J] (YénP)YO(Y:ma) -Y](Y(‘mp)ao(Y:)na)}e
where ViZ- ()7 = 1 v )® 8L ne12,3,0

Yan is the nth ordered root of the auxiliary equation

JO(Y;mb) YO(Yéna) = YO(Y(')nb) JO(Y:)ﬂa)
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C and Con are constants relative to the spatial variables

p and z . Jy(z) and Yg(z) are the ordinary Bessel function of the
first and second kind, respectively of the Vth order. |
| In region 3 with z < 0 , the magnetic intensity is also known

[17, pf322] to be the EOn modes of a cylindrical waveguide.

. 2 ,Yon,2
P uon) -iz fk"- ()

| H¢3(p,z,m)'= nzl Con 91

a e
where JK2 - (mom2 . g fdmz 2o bl is a
| a a s 9l s Iy 2 ‘op

constant relative to p and z and u_ is the nth ordered root of

on
the auxiliary equation,

Jo(u) = 0

Given k = k.+ ikz , and the asymptotic behavior: of the field in

1
region 1,.it is apparent from the earlier discussions that 'H¢ (p,a,w)
’ 1

is analytic in the strip

" of the complex a plane.
For regions 2‘ and 3 we must consider two cases, the first case is
when the Eon modes within the region are evanescent and the second

case is when they are not.

Case 1: k < an | region 2
u
k < = region 3

a
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Case 2: k > Yén region 2
o
k > —égl region 3

For Case 1 the Eon modes in regions 2 and 3 are evanescent,
therefore the asymptotic value of the magnetic intensity as z + -»

is the TEM ‘mode portion of w¢ within region 2 and zero within region

3. “We- conclude that in the event of Case 1,

wéz(p,a,w) and H¢3(p,a.w)

are analytic with the strip -k2 <T< k2 of the a. plane.
For Case 2, the Eon modes are not cut off and the asymptotic

forms behave as

22 S 32
-izkf1 - 5 -iz(ke+ 1k,) [1 - 5
e k = e k 9 Z > =00

This behavior produces a strip of analyticity that is at least given by

-k, < T < ky Re(\/1 - (B)P)

~The symbol Re means the real part of the quantity that it precedes.
Although at this point there is no apparent difficulty with this result,

the inclusion of values of ka and kb such that

ka = Uon

and
kb

Uom

: : — Ay -
where Uom is the mth ordered root of Jo(u) JO(B-u) = 0 requires

special attention. It will be shown later, that the field intensity
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‘outside the wéveguiding structure is zero at these frequencies.
| In light of the above, we restrict ourselves to the fundamental
mode by imposing the conditions
kb << 1 and ka << 1

when we are considering a time variation other than harmonic time
dependence. Under this restriction Case 2 does not occur, and

the functions
H¢](psa.w) , w¢2(p.q,w) and H¢3(p.asw)

are analytic in the strip

of the compiex o plane, see Fig. 2-4.
When wevconsider harmonic time dependence, the strip of analy-

ticity is changed to

-k2 <T< k2 Re,/] - (EJZ

u
Yo, or -_gﬂ for region 2 or 3, respectively, n=1,2,3,¢--.

~ The value of 8 is the magnitude of the cutoff wave vector of the

where § =

highest order Eon mode which is non-evanescent in region 2 or 3, as
appropriate. Also ka # Uon and kb # Yom ©

To obtain a unique solution to the problem, it is necessary to
determine the algebraic behavior (as o + ») of the factors in the
completely factored and decomposed Wiener-Hopf equation [4, p.37].

This determination is made by considering the edge'conditions [19].
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+ik2
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Figure 2-4. Strip of analyticity for H (p,a.w),
° w¢ (pso,w) and H, (p.a.w)
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For the infinitesimally thin conductors utilized in this problem, the

edge conditions are

172

) o . +
Ez(p,z,w) « z as z+0 at p=aandb

Equation (2.5) states that

2

1
Ez(pﬁzbm) « -p— ap

[o Hylpsz,0)]
The point of interest is that
1/2

> [p.H¢(p,z,w)]« z (2.14)

as z 0" at p=aorb. z~» o' means that z = 0 1is approached

from the direction of positive values of =z .

‘Development of the Wiener-Hopf Equations

In this section the Wiener-Hopf equations will be developed. The
solution to these equations will Tead to the spatial transform of the
desired field intensities. |

Ne.begin by writing solutions to equations (2.9), (2.12) and

(2.10) in that order. |

o (0ss0) = Alayw) Ky (o) (2.15)
1 ‘
¥y (psa,w) = Blo,w) I;(ye) + Co,w) Ky (vl - (2.16)
2
Hy (psa,w) = D(a,w) I,(vp) (2.17)
93

The form of the solution to (2.9) expressed in (2.15) was chosen so

that the asymptotic behavior would satisfy (2.9.1), thereby satisfying



-29-
the Sommerfeld radiation condition.

The solution to (2;10) expressed in (2.17) does not include the
first order iodified Bessel function of the second kind since it
becbmes infinite as p+0 a condition that violates equation (2.10.1).
The function 11(Yp) +0 as p~>0, so H¢3(0,a,w)‘= 0 and (2.10.1)
is satisfied.

The coefficients A(a,w), B(o,w), Cla,w) and D{o,w) are un-
known at this point. It is the task of finding these coefficients
_which“]eads to the Wiener-Hopf equations. Each of the coefficients
will be eXpressed in termms of two heretofore unmentioned functions,
w+(a,w) and H+(a,w) , Which will be found by employing the Wiener-

Hopf procedure. To this end we will make use of the relationships
which exist among the magnetic intensities and their derivatives (with
respect to p ) -evaluated on the boundaries separating the three regions.

At p = a we have

H, (a,z,w) = H, {a,z,w) for z>0
% 037 7T

Therefore,

HE (a,a,w)

o

+

¢3(a9d9w) : ‘ (2.]8)

H

From the ana]ogous condition on the magnetic infensity at p=b for

z >0, we have

H;T(b,a,w) = H;2<b,a,w) | (2.19)

These equations relate the magnetic intensities at the bound-

aries and will be used at a later stage in the development which leads
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to the Niener—Hopf equations.

It was assumed earlier that the coaxial waveguide antenna struc-
ture was madé of a perfectly conducting material. Such material does |

not support a tangential electric field, therefore

1
(=]

Ez(a,z,w)
and

Ez(bszsw) 0 if 2<0

Ez(p,Z,w) is a continuous function of p , thus Ez(p,z,w) has the
same value at a given value of p regardless of the direction of
approach, whether from smaller or larger values of p .

Equation (2.5) states that

1
E, = 53 (PHy)

Qi
e

When this is combined with the preceding discussion about the tangen-

tial electric field, the results are

-g?[pHd)s(p,Z,w)] = g—p-[qu,z(p,Z.w)]

_at p=a. By a spatial Fourier transform (see equation (ZQB)) of

these equations, it is found that

d _d . v
HF [pHd)B(psasw)] = a; [pHd)z(psa:w)J

p:a p=a

When we consider that E_(a,z,w) =0 for z <0, this equation re-

duces to
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g;[puj;;p,a,wn (2.20)

d +
= = [oy. (p,a,w)]
p=a do ¢2

p=a
Note ‘that we have used equations (2.11) and (2.12.2) to obtain (2.20).

By very similar arguments with p=b we also find that

%;Iij;] (p20sw)] (2.21)

- d +
b = ab' [p‘pq)z(psasw)]

p= p=b

We now define w+(a,w) and H+(a,w) as follows

*

ue> -

W (o) & g Do} (osa,
Wiaw) = g Lo ¢3(p o) ]

H+(a,w)

d +
o [pH¢](p,a,w)] b

These functions of o are analytic in the upper half plane given by
> -kz . | |
Returning to the spatial frequency domain field solutions given

by (2.15), (2.16) and (2.17), we multiply each of the equations by p
and take the p derivative of the resuiting equations [20, p.376].

d ot 1. rum o o |
33'[‘?”;1] ' Loty 1 = 10 Aloso) Kylve) (2.22.0)
%a [pwj,z}'*- 3-5 [pw;zl = yo[B(a,w) I (vo) - &:n(afw) Ky(ve)l (2.22.1)

d +4.d - a_
35-[0H¢3] + 35-[9H¢3] = vp D(a,w) I {(vp) | (2.22.?)
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By taking the\last of the above equations and evaluating it at p=a ,
it 1s seen that

% [ij;BJ = W(aw) = va D(a,u) I (ya)

p=a
or
E w* Oy W '

Dla,w) = _Y-%T:(YLaT | (2.23)
Note that

d .

[eH, ] 0

d "o, o=a

since,

Ez(a,z,m) = 0 for z2<0

Recall that
9 Lo, (p,2,0)] = & [oH, (puzew)] = = [ow, (p,z,0)]
dp ¢3 dp. ¢2 ' dp ¢2 _
at p=a .- (This may be easily seen to stem from equation'

(2.12.2) and the continuity of the tangential electric field EZ).

~ Since the tahgentia1 electric field is zero at p=a or b for z <0,

d
Lov, (p,z,w)] = 0 for z<0
and
'g"p' [DlP'- (psasw)] =0
?2 p=a,b
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Combining this result with equation (2.20) and equation (2.22.1)

) evaluated'ét p=a leads to the following:

W' (a,0) = va[B(a,w) I (va) - Cla,u) K (va)]
or
W (a,0) - yaB(o,w) I,(va)

Ya Ko(Ya)

Cla,w) (2.24)
Substitution of the values of D(a,w) and C(a,w) given by equations

(2.23) and (2.24) -into equations (2.17) and (2.16), respectively, yields

- Wt RN
H¢3(p,a,w) = 73*%;(?%T I](YD)

and

W' (0,0) - B(a,o)ya I,(va)
va K,(ya)

¥, (0sa,0) = Blo,w) I3(yp) - 1 K, (yp)

s 1
Evaluation of the immediately preceding equations at p = a and use of
the Wronskian relationship produces the following intermediate expres-

sions:

W (o,w) 1q(va)
va I (va)

+ ' - -
H¢3(a,a,m) +.H¢3(a,a,w) =

+

W (a,w) Ky(ya)
+ - . _Bla,w) "% 1
\Pq)z(asa,w) + ‘Pq,z(a’a"”) - Ya_Ko(ya) ya Ko(Ya)

By subtracting the lower of the two equations immediately above from

the top equation, we find that
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+ gt - g -
. H¢3(,a,oz,w) ' 1P¢_2(a:asw) + H¢3(a,a,w) wd)z(a’a’w) ‘

it (0,0) _ _B(ow)
(ya)1 (va) Ko(ya) Y2 Kolr®

The Wronskian was used to achieve some simplification in the above _

equation .

If we evaluate (2.12.5) at p = a we find

HY (ay00w) = U (as0p0) = — M)
%2 o /2% a(atk)

But it is known from (2.18) that

+ F
H¢3(a,u,w) = H¢2(a,agw)

Therefore,

H+ (asasw) - ")+ (asusm) = M
b3 %2 /77 alok)

and it follows that

__;iMLQl_;.+ HS

W (o, 0) _ B(asw)

(a,o,w) - W;Z(asdsw) =

o7 alatk) 93

Evaluating (2.22.0) at p = b we see that

4
Maw) = - 580
. 0

(va)°I,(ya)K (ya) v K (ya)

(2.25)

(2.26)
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Note that the boundary condition Ez(b,z,w) =0 for z<0 was
> invoked. This allows substitution of
d -
[oH, 1] =0
do ¢1 p=b
into eduation (2.22.0).

When (2.22.1) is evaluated at p = b it becomes

K (00 = 1B[Bloys) I (1D) - C(ayu) K, (¥b)]

or
H (0s0) - B(asw) ¥b I (yb)

Yb K, (Yb)

Clo,w) = - (2.27)

If we replace the coefficients in (2.15) and (2.16) by the ex-
pressions given in (2.26) and (2.27) respectively,‘then it is apparent _
that

+
v . _H{low
H¢](p,0t;w) Y6 Koy Ky(ye)

and o

+
'w%ma@)=mmmxﬁw>-ﬁ‘%ﬂgﬁggwl“whmwm

By evaluation of the preceding equations at »p =‘b and simpiifying,
we get
H+(asw) K}(Yb)

Yb K, {yb)

H;](b,a,w) + H;1(b,a,m) = -

. H (o,w) Kq(yb)
+ - . Blo,w) ]
w¢2(bs°'-9“’) * %Z(b’“’m) - ¥b K (D) vb K (vb)
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Subtraction of’the latter from the former yields

* (b - “ (b i - _ _Blow
H¢_| (b:asw) wq)z(bsasw) +H¢](b ,0.,0)) w‘bz(b’a’w) ;E'&;ﬁg‘)‘

It is seen that

H+ (bsasw) - 1P+ (b,OL,LO) = 'M—
L % /27 blotk)

by evaluating (2.12.5) at p = b and using the equality given by
(2.19). Substitution of this result leads to

iM{w)
V2t b(atk)

B(a,w)

+ H;](bsasw) - w(;z(bsasw) = - I.Yb

(2.28)
Equation (2.28) is analogous to (2.25). These two equations are the
result of matching the tangential electric intensity (-~ < z < ») and
the magnetic intensity (z > 0) at the common boundaries between the
regions into which the space was earlier divided. These equations are
also combined to form one of the Wiener-Hopf equations by eliminating

B(o,w) between them. The resulting Wiener-Hopf equation involving

W+(u,m) is
M W (o,0)
E_TYT—LJL [K, (Ya) K (vb)] = ﬁ:—%(%y*- b K (vb)

x [H;1(b,a,w) - w;z(b,a,w)] -ya Ko(Ya)[H;s(a,u,w)-gw;z(a,a,w)]
(2.29)

Since C(o,w) in this problem is unique, the two values--one
given in expression (2.24) and the other given in (2.27) must be eqhi-

valent. When these expressions are equated the results relate the
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two variables \W+(a,w) and H+(a,w) R

(va) Lb) I (ya)
W asi) = mfb-y [# (007 - Bl [y - (:a,lva K (va)

The terms W+(a,w) and B(o,w) appearing in the above expression are
eliminated by using expressions (2.28) and (2.29), giving a Wiener-

Hopf equationinvo'l\l'ing the function H+(0L,w) ,

__JLIKEQ_.[I Jra) - I (yb)] = i (a,w)
SZi(atk) O Yb K (yb)

+ vb Io(Yb)[H;l(b,a,w) - w;z(b,a,w)}

- ya Io(Ya)[H;B(a,a,w) - w;z(a,oz,w)] (2.30)

In the coaxial waveguide antenna we usually have. b-a << E%Q

to ensure TEM mode excitation at microwave fkequencies. For this case
the field intensitiés wiTT be rapidly varying when;compared’to" p ,and
the fields in the annular region will approach those of a parallei p1éte
waveguide [17, p.329] of width (b-a).

| For the parallel plate waveguide it is well known from the pre-
servation of symmetry that for a TEM mode excitation the current dis-
tribution on the two parallel plates are equal in magnitude and oppo-
site in direction [21, p.126]. For excitation by Eon mode f1é1ds,
the currents on the two parallel plates will be equal in magnitude and

in the same direction for odd n, and in opposite directions for even n.
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Up to this point no approximations have been made and equa-

~ tions (2.29) and (2.30) are exact. It is recognized, though, that the
form of these equations is such that they cannot be decomposed into |
two expreSsions, one analytic in the upper half plane and the other
analytic in the lower half plane with an overlapping strip in which
both functions are analytic. This is made apparent by observing that
the coefficients multiplying the "minus" functions on the right hand
side of each equation are not identical. These same coefficients also
_confain‘ a branch point and arre’therefore not of the form where an
exact so1htion is possible [4, p.153].

We note, however, that if b-a << Q%Q- then the field inten-
sities approach those of a parallel plate waveguide and if TEM mode
excitation is impressed, the currents on the cylindrical waveguide
conductors are approximately equal in hagnitude and opposite in direc-

tion. The mathematical expression of this condition applicable to the

structure under consideration is
2nb[H, (b,z,w) - H, (b,z,w)] = 27a[H, (a,z,0) - H, (a,2z,w)]
¢1 ¢2 ¢3 . ¢2

-for z<0 . We now recall equations (2.11) and (2.7):

-yl ‘
H¢2(p929w) - H¢ + ‘p¢2(pszsm) v (2']1)
Hl = Mﬁ@l.eikz . . : (2.7)
p

Substitutions of these quantities in the above equations yields
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| M(w) _ikz
b[H¢1(b,Z,w) - ¢¢2(bs2,w) - “é”l'e ]

= a[H¢3(a,Z,w) - 1P¢2(a,2,w) - ﬂgﬂ)_e'ikZ] for z < 0

- Under the assumption that the approximation is very good, we

can equate the two currents and obtain

b[H¢](b,Z,w) : ¢¢2(b,2,w)] = a[H¢3(a,z,w) - w¢2(aszsw)]

for z<0

When this equation is spatially Fourier transformed the results are
precisely what is needed to allow decomposition of the two Wiener-Hopf

equations (2.29) and (2.30), i.e.,

’b[H;](bsusw) - w;Z(bsusw)] = a[H;3(a,m,w) - ¢;2(asu;w)] (2.31)

when

atb v
b-a <<~ (2.32)

It is also noted that the expression (2.31) is analytic in the
- lower half plane given by t <k, or sze(./l - (ﬁ/k)z) depending

on the excitation. It is convenient to define S (a) such that
$(a) = b[H; (bya,w) - \P; (b,a,w)] = a[H('b (a,0,w) -w; (a,a,0)]
1 2 3. 2
(2.33)

To derive decomposable Wiener-Hopf equations we substitute

(2.33) into (2.29) and (2.30). The resulting equations are:

!
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iMw) W' (0, 0)
(et K)  yCal (ya)[K (1b) - Ko(va)]

+S(a) =0 (2.34)

iMw) . H' ()
Zi(a+k) ¥R (o)1 (vb) - 1 (va)]

+ S (a)

0 (2.35)

It is interesting to note that if the radius of curvature is
large we may imagine the conductors in Figure 2-1 to be cut along the
z direction and flattened into parallel planes. Therefore it is
reasonable to expect that equations (2.34) and (2.35) will become the
Wiener-Hopf equations for two. parallel planes in the limit as radii a
and b approach infinity. The planes would be b-a distance apart and the
axis of‘symmetry would be displaced a distance a=b -+« from the |
coordinate z axis. By taking the limit as a and b - «» and using the
asymptotic forms for the modified Bessel function, equations (2.34)

and (2.35), respectively, become

iMw _ W(ow) v 1-57(a) =0
2 -y{b-a)
7Zn(at k) ve o . YLZ_‘ sinh Y(b-a
~and
iM(@) H+(dsw) Yb - S' = 0.
Zila+ k) * Yzb L _Y(b-a) L (o)

e z sinh XL%ZEI

It can also be shown from the definition of W*(a,w) and H+(a,w)
that for a parallel plate case H+(a,m) = - w+(a,w) . Therefore the
 equations (2.34) and (2.35) become identical in the limit as the radii
approach infinity and each is the Wiener-Hopf equatﬁon for the
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" yadiation from an open ended parallel plate waveguide with TEM mode

excitation [4, p.107 or 21, p.128].

The solution of equations (2.34) and (2.35) for w+(a,w) and
H+(&;w) allows a complete characterization of the magnetic intensity
in the spatial frequency domain. The foregoing work already contains
the eqhatiens relating A(o,w) “and D(a,w) to W+(a,é) and H+(a,w).
,These coefficients are given by (2.26) and (2.23), respectively. To
obtain the remaining coefficients C(a,w) and D(o,w) in terms of
W+(a,w) and H+(a,w) , we return to equation (2.22.1) and evaluate
it at p=a and b . When thesg results are considered with (2.20),

(2.21) and the relation

d -
= Dot (psa,w)] =0
do ¢2 p=a,b

we get

W' (,0) = valB(a,u)I (va) - Cla,wK (va)]
' (a,0) = ¥B[B(asw) I (vb) = Clasw)Ky(yb)]

The solutions to these simultaneous equations yieid: the coefficients

we seek,
H (o,0)K (va) W' (00K (¥b) 1

B{a,w) = B ° - : LT I Ko

Y va L ybIK (ya) - T (yalKy(vb)

| : | 2.3

H+(a,w)I (va) W+(Gsw)1 (vb) 1 ( )
Cloy) = —- : » ]

| Yb Ya I,(b)K (ya) - 1 (ya)K (vb)

ﬂ2.37)



To completé the list we add:

+
Mosw) = St (2.26)
0o
D(otyw) = g;%%ﬁ?%y | (2.23)

We return to the earlier discussion that certain values of

ka,kb are excluded. Namely

ka = uon
and
kb = uom
where Uon is the nth ordered root of Jo(u) =0
: - -3 (& ) =
and Uy 18 the mth ordered root of Jo(u) Jo(b u) = 0

There is an impoftant mathematical reason for ex¢1uding these particu-
1ar values of ka and kb that shows up in the factorization procedure
of Appendix D. The physical reaéon for their exclusion is that at
these frequencies the magnetic intensity everywhere outside the struc-
~ ture is zero. |

‘If ka = u,, » then the magnetic intensity in the region
p<a,z<0 must be zero. This value of ka corresponds to the
cutoff waveliength for the Eon mode of a circuiar waveguide of radius
a . Exactly at cutoff, the magnetic intensity for the Eon mode in
the circular waveguide is zero [17, p.322].

Now considering that b-a <« 2%2- the structure has fields that

behave approximately as those of a parallel plate waveguide. In this



-43-
1imit we have shown above that the field exterior to one of the plates
is zero. By symmetry the field that is on the exterior side of the
othgr plate must also vanish. By continuity it is concluded that the
fié]d is zero everywhere exterior to the waveguide channel.

For the other case, kb = uém » we examine the asymptotic

be'h»avi.or' of [u, | as m+e

Jou) - 9, (B ) ﬁ\/-%- cos(u - 7) - /—%—:‘- cos(gu - 7)

Th
2\/:27"_: (cos(u - %) - cos(% u- %))

.with "a andb of ‘the same order of magnitude as u -+ . Through

the trigonometric identity

COS X - COS y = = '251‘n(%1) sin %l
it is determined that the zeros are approximately located at

21Tb 2mb )

. ] -
luggl = (m-E) or mzH) o me1,2,3,0-

oml

-+ - 00
for uom or m .

7 “The asy'mpto_ﬁc values of Uom gi vén abm)e are recognized as
the asymptotic values of the cutoff frequencies as m + o for the
Eom modes of a circular waveguide of radius 9%3 and the even
ordered EQm modes of a parallel plate waveguide, with a channel
width of b-a , respectively. The second value of Uom also cor-
responds to the asymptotic value of the even ordered Eom modes of a

coaxial wavegui de [22]. In the event b-a << 3?, we may approximate
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thé structUre‘as a circular waveguide of mean radius 3%9- or a
para]lei‘pﬁate Waveguide,dépending on the excitation. At the cutoff
fhequencies‘for such structures, thevelectromagnetic fields are iden-
ticglly zéro. Therefore we have excluded the use of such frequencies,

since they invoke no response.

Solution of the Wiener-Hopf Equations

The two Wiener-Hopf equations (2.34) and (2.35) are solvable in
- the conventional Wiener-Hopf fashion. The various terms are factored
into the product of a "plus" and "minus" function, where required, and
the resulting equation is decomposed into the sum of "plus" and "minus"“
functions. [The "plus" ("minus") functions are regular in the entire
upber (Tower) half plane.] Analytic continuation arguments are then
invoked to yield the solution.

To preserve the continuity of the work, Appendix D was devoted

to the factorization [23] of the kernels

ne>

{1,(va)[K (yb) - K (va)1}™' & x(a) = x*(a) x™(a)
and

y(a) = y (o) y (o)

K )T () - T (ya)]}!

In this section we will use the expressions x (o), x"(a), y+(a). y (o).
Their specific functional form is found in Appendix D.
We rewrite (2.34) and (2.35) using the newly defined symbois

for the kernels that must be factored,
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. +
o Me) ‘.U%.:ﬂ)_ [xX'(a) X (0)]+5(a) =0  (2.38)
verm(a+k) Y a

iM(w) \ H+(0tsw) + - '5" = 0 2.39
= ) A V@@ S (2.39)

Recall that the value of Y2 is given as

When this value of YZ is substituted in the above equations, we can

vm@thmm

iMw)(a-k) W (aww) *(a) , ST(a){ask) _ 4
vZr{ork) x (o) ala+k) x (o)

and

iMw)(ork) , H'(0,0) y*(a) , $T(a)(ak) . 4
2m(otk) y (o) b{o+k) y (a)

Examination of the region of analyticity of the terms in the
above equations reveals that the middle term in each equation is
ana]yticlin the half plane T > -k2 and the last term in each equa-
tion is analytic in the half plane T < k2 . The first term in each
equation has a pole at a=-k . If this‘pole were not present it
would be analytic in the half plane 1 < k2 . By removal of the

residue of this pole, we obtain the completely decomposed equations:
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W (0,0) x'(a) _ g ¢5§ kM(w)
a(ok) T (k) xf(k)

o S (a)(a-k) + _iMw) ro-k 2k 240
{ x'('a) VZr(atk) I:x-(m) ' x+(k)]}( )

WY (a,0) ¥y () _ iy/z kM(w)
b(atk) ™ (o) ()

- = - {S'(?)(a-k) + 'iM((.U) [d.-k + Ek ]}(2.4])
y (a) Zr(atk) y (o) y (k)

In the above expression we have used the result from Appendix D, that

x (o) = x"(-a)
and
y () = ¥y (-a)

The terms in (2.40) and (2.41) are arranged so that the left hand side
is analytic in the half plane Ty > -k2 and the right hand side is
analytic in the half plane Ty < k2 or k, Re(’] - (§/k)z ) depend-
ing on the type and frequency of the excitation. The important point
in this discussion is that there is a strip of oyer?ap in the regions
of analyticity, that is, both sides of (2.40) and (2.41) are analytic
" in a common strip -

ky <T <k, Or Kk Re\fl - (§/k)2
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We thérefore conclude that each side of the expressions (2.40)
and (2.41)Arepresents the aha]ytic continuation of the other side.
Siﬁge these éxpressions are regular fhroughout the compIex plane they
ére'an entfre or integral function.

If we can show that each side of (2.40) and (2.41) is bounded
as |a] > & 1in the half plane for which that side of the expression
is regu1ar, then we can use Liouville's theorem to set each expression
equal to a constant. Liouville's theorem states that the only bounded
entire functions are constants.

To determine the limiting behavior as |a| + < for the terms
in (2.40) and (2.41), we examine the edge conditions given in (2.14)

as
%[qu,(p,Z.w)] « 27 1/2

as z+0" at p=aorb . Taking a slightly more general case, the

Fourier transforms

n eTGZ dZ

z
and

zn e1az dz

§1 —
=
e O O 8

31~

determine the Timiting behavior. In these integrals n <0 to have

absolute and uniform convergence of the improper integrals.

~kopz
It is also well known that if | f(z)| <e 2 as z -+ then

lim (z) = Tim faFf(a) = (lim 10)( Tim F*(a))

zZ>0t 0, oo R O+ o
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o : kzz
for t > -k, where o =o+it . Similarly, if |f(z)] < e as

Z > - ’then

“lim f(z) = (lim ia) (lim F (o))

z-0" O, =00 o >~
for T <k, . Thus the Timiting behavior as [al + o in the region
of regularity of the spatial transforms is determined by the behavior

of the space domain function in the limit as the origin is approached.

Using the gamma function [18, p.183]

[+

r{x) = l et tx']dt : Re x>0

~and contour integration, we find

. /en JZF ot °
and
0 s
1 J M oloz gy o o1 D(nt1) * 2{n*1)
o 2r ot

with -1 <n <0 1in both integrals. The Tower extremity on the
range of n - is sef at -1 to ensure the existence of the gamma
function.

From the edge condition we have n=- %-Aand determine

w+(a,w) " 0-1/2

and

1/2

H+(u,w) Voo as |a| +e with t.> -k2 .
b
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From the definition of S (a), it can be seen that it is the

spatial ‘transform on negative values of z of the current nomal to
the edgé at-z =0 on either the inner or outer conductor, exclusive
of that current contributed by the incident field. The magnetic in-
tehsity is continuous at all values of p for z =0, thus the
curwenf in. each conductor must approach zero as z -+ 0. This is
appérent from the fact that the current in each conductor is propor-
tional to the discontinuity in the magnetic intensity across the con-
ductor. The discontinuity disappears at z = 0 . Because the total
vcurrent approaches zero as z - 0 , the quantity which transforms to
S"(a) must approach that of a TEM mode field intensity traveling in
the minus z direction. This quantity should just cancel the incident

mode field intensity at z =0 . Thus

2wa[H¢3(a.z,w) - w¢2(a.z,w)] = 21rb[H¢1(b,z,w) - wq,z(b,z,w)]‘

ikz

= Mw) e’ as z-+0
The transform of this quantity is
.0 . N o
s~ (o) ~ —— J!M(w) o-ikz oz o :1M£2Q'(3£E9
T T

From this result we conclude that S (a) n (E;E& as |a| += with

T < +k2 .
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- Collecting some results from Appendix D, we write

x+(a) " |al1/2
and | ‘ |
| yHe) |0tl]/2 as |a] > = with T > -k,
Also,
S IR
and

y (@) ~ Jof '/

as |a] » with 71 < ky

An examination of (2.40) and (2.41) in the light of the
asymptotic behavior of the terms shows that each side of these ex-
pressions goes to zero as |o| -+« in their half plane of regularity.
‘Liouville's theorem is therefore applicable and each side of (2.40)

and (2.41) must be identically zero. The quantities of interest are

W (a0) X (a) s JE kM)

=0
alotk) mw (G*k) X+(k)
and
H' (o,0) y'(a) _ 2 kMw  _g
plotk) W (a+k) y*(K)
Therefore
Waw) = iJ2—kaMw)  (2.04)

T x (0) xF(k)

W (o,0) = f"—"b—ﬂ(ﬂ)—— | | (2.45)
Tyt (a) yT(K)
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and the coefficients Ao, w), B(ayw), Cla,w) and D(a,w) have been
determ1ned see equations (2 23), (2 26), (2.36), and (2.37). The
spat1a1 doma1n field intensities are now written:

Ky(yp)
H (p,0uw) = - 1 |2 —k Mw) ] | ) 2.46
B R E YK (1b) ¥ (k) ¥ (a) - e

- . I (vo)
H (pyopw) = 1 (2 KMw) 1 2.47
b3*" ) 1J[; vl (va) x (k) x*(a) (247

and .

- s [2 kM(w) 1
by, (ps00) R B RC LA T WCDI W EIE

L(o)Ky(va) + Kybvo)To(va)  Iq(ve)K,(yb) +K (oI (xb)
y (k) y'(a) x* (k) x"(a)

X

(2.48)
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. 3. Frequency Domain Descriptibn of Fields Interior to the Coaxial

Wavequide

In this chapter we shall derive the frequency domain fields
interior to the coaxial waveguide. We will completely characterize

the TEM mode as well as the E0 (q=1,2,3,--+) mode fields. As bhe-

q
viously stated no other modes are allowed due to the symmetry of the
structure. -

Let us begin by recalling equation (2.11)
H, (psz,0) = HL+ 3. (0,2,
»¢2(p z,w) o w¢2(p z,w)

The incident field is known to be
H‘i - Mw) e.Ikz
¢ o
Our task is to findf4w¢2(p,z,w) . From the definition of the spatial

transform we write

by (0rz,0) = L I b, (0s00) e~19Z 4y (3.1)
.12 T 2

=00

Before attempting this integration we will examine the integrand
and all singularities will be located. To do this we make use of the
relations [20, p.375] between the modified and ordinary Bessel func-

tions that follow:

1 . |
- % Vi i
Iv(z)=e\f Jv(zefﬂ‘); (-1r<argz_<_%)
] ;-\m'i (1) -;—m'f
.Kv(z) = f“i e" Hg, (z e ); (-w<argz 5%)
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We also make use of the analytic continuations [24, p.80]

mriy _ _momi
Iv(z e') =@ Iv(Z)

, oMmiy _  -mywi _ i Sin mvm
K\)(Z e ) =e K\)(Z) 1 L I\)(Z)

- By these formulas it can be shown that

1(yb)K,(va) = I (ya)K (yb) == 3{J, (v'b)Y (y'a) - J (v'a)Y (v'b)]

- where y = -i\/kz-uaz = -iy' .

It is clear that expression (2.48) does not have a branch point
at o = +k , since we may replace y by -y and not change the value
of the expression. However, (2.48) has a branch singularity at
a = ~k due to the presence of x+(a) and y+(a) . From the above,
we conclude that the only singularities of w¢2(p,a,w) which exist in

the upper half plane are poles, located at a =k and a= o

q
(q=]szs39"') with ,
- - ' = i L
o = /k (Yoq) 1‘/Yoq‘ k
~ where y(')q is the qth ordered root of
Jlr'Do(r'a) = Joly'alply'd) = 0 (3.2)

The Y6q determined by (3.2) are the eigenva1yes determining the cut

off frequencies of the Eo modes of a coaxial waveguide [22].

q
To evaluate the integral (3.1), we integrate along the closed

contour in the upper half plane as shown in Figure 3-1. On this
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Figure 3-1. Integration Contour

qV¥
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contour the integral converges for z < 0 and the contribution along

the semicircular path at |oa| -+« 1is easily seen to be zero by re-
: p]ac1ng the modified Bessel functions in w¢ (psa,w) by their
asymptot1c values and using Jordan's lemma to evaluate the resultant
integral over the portion of the contour at |o| + =.

| By.the residue theorem, we have

- o 1 oz
v, (p,2z,w) = 2wi residues of {— ¢, (p,o,w)e
b Z U Y, }

at the poles interior to contour

of Figure 3-1 (3.3)
The residue of the pole at k is

kM (w)e 192

. 1
tim{a-k) = =1 BT va) = T, (ra IR 7b )"

ek

f1(Yp)KO(Ya) +Kq(ve)I (va) ) I (re)K,(vb) +K,(vo)I (yb)

v (k) ¥ () x (k) x"(a) }
ik M(w)e™™2 LA
" o+ k Yot
DO e yarss) - I Roan b+ 1)
& b/a
=7 ;m g/a{[y (k)]-z - [X (k)]-z} e~ : (3.4)

where limiting forms of the Bessel functions have been used to charac-

terize their behavior for small arguments.
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The residue of the pole at o is

Tin (oma.) ikM(w) &1
ara T my{- LI, (y'b)Y (v'a) - 3 (y'a)y (v'b))1}
1K (va) + Ky(ye)d (va) I (yp)K (D) + Ky(yp) 3 (¥b)
¥ (k) yH{a) x (k) x"(a)

Using the L'H6pital rule this becomes
o ()112
. - kM(w)e
Tim [- ————7;—~—~—J

oo
q

o Ji(v'e) Y (v a) - Y (v'e)d (y'a)  Jy(v'e) Y (v'D) - ¥4(¥'p)J (y'D)
y v (k) y*(a) x' (k) x*(a)

& I (- Py Y (y'a) - I (v'a)Y (v'b))]

(3.5)

Observe that vy' = \/kz- a? and -Yaq =\/k2- uz . By invoking relation

(3.2) the derivative in the denominator of the above relation is readily
reduced to

'%a fY'[; %J[JO(Y'b)YO(Y'a) - 3, (y' )Y, (y'b) ]}

- I LI, (b)Y (vt a) = Gy a) Y (y*b))]

- 5 v IR (3, ('Y, (v'a) - Jo(y'a)Y(y'b)

+ ald (y'b)Y;(y'a) - 35 (y"a)Y,(y'b))]
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Putting this value in (3.5) yields the residue

iz JE- (v )

i "k‘M(m)' e

T k2 — L9 (rgqe) Yolvgqad = Yylvggeld,(vgqa)]
Yoq
’ . Jo(YoqP)
- J lyolqa)

y (k)y (/kz- (Yoq 2) X" (k) (i (Yoq) ") ?)

b(J](qub) Yo(Yoqa) - Jo(Yoqa) Y; (Yoqb)) a(Jo(Yoqb) Y; (Yoqa) - J1(Y5qa),Yo(Y;,qb))

X

(3.6)

Jo(vg b) YO(Y(') b)

The relation 3 (Y a) Yo(Yéqa)

was also used to'simplify'(B.G). This

relationship follows from (3.2).

w¢2(p,z,w) for z <0 1is found by substituting (3.4) and (3.6)
into (3.3). The result is

/kz- (Y('.,q )'2

M(w) %e'ikz 7 MR, (o)e

/] (.p ,z,w)
% =1

z<0

R = g (0T - DT @)
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R =2k

. . ‘
- , \/k - (Yéq)

1 Jo(YoqP)
Y Y W= ()2 Yooq®) (k) £ (Vi2-(v) )Z)
b(dq(vgqb) Yo vgqal =Jy(vgqa) Yy rggbl+ald, (yoeb) ¥y (vgoa) =9 (Ygq2) Yo(¥q))

X

(3.8)
R =. ' 1 - ] 1
.fq(p) J](Yqu)YO(Yoqa) Y](Yoqp)Jo(Yoqa) (3.9)
The magnetic intensity for the interior of the feedline is seen to be

ikz
H¢2(p,z,m>=”—‘ﬂ%——+w¢z(p,z,w>, z<0 (3.10)
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4. The Radiated Electromagnetic Field

To find the magnetic intensity in region 1, we must take the
inverse spatial Fourier transform of the spatial frequency domain mag-

netic intensity found in Chapter 2. The integral to be evaluated is

, 3 kM K -iaz
Hy (psz50) = =~ = f | (w) Ky(vo)e
".

d (4.7)
T 1) vk v ()

for p >b . This equation was obtained from equation (2.46).
Examination of the integrand of (4.1) using the analytic con-
tinuations of the Bessel functions and the value of y on both sides
of the branch cut reveals that the integrand has branch points at
o=tk. Any attempt to evaluate the above integral in closed form by
contour integration would have to account for integration along a path
alongside the branch cut. kIf the contour is closed in the upper half
plane (for z < 0) then the contribution from the path alongside the
branch cut in the upper half piane must be calculated. If the contour
is closed in the lower half b]ane (z > 0) , then the contribution from
the path alongside the branch cut in the Tower half plane must be
~calculated. ’In the special case of z = 0 the integration around the
branch cut in the lower half plane resulting from closing the contour
in a negative sense equals the integration around the branch cut in
the upper half plane which results from closing tﬁe contour iﬁ a posi-
tfve‘sense. There are no poles located inside the contours under

‘consideration.
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The integrations around the branch cuts are quite complicated

and are not evaluated in closed form. Since our primary interest is
in the radiated fields (i.e., those with 1/¢ behavior), it is sufficient
for our purposes to approximate the value of the integral (4.1) for

= o >

In the Timit as r -+« , we replace the Bessel function
dependent on p _by its asymptotic value for large arguments [20,
p.378]. Using Figure 4-1, we readily have

p=rcos y . and z=rsiny
where |x| < w/2 . Using the asymptotic value

| I [

the integral (4.1) becomes

_iM(w)k T e-(w cos X+ iar sin )

Hq,v(r,e,w) = ™ s
1 Zn y (k) ] vk (yb)y () [T cos x]

oo

(492)
as r>e, p>b .

The variable 6 has been introduced at this point since this
is the variable in which we wish to have the final expressions. It :

is obvious from Figure 4-1 that

o = F-X
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(r,8,¢)

Figure 4-1. Coordinate Axes

<Y
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Define a change of variable by introducing the transformation

o= k sin z (4.3)

z 1is the complex variable x+iy . Under this change, the function Y

becomes

Yy = \/kzsinzz - k2 = -ik cos z (4.3.1)

It is necessary to specify precisely the value of 2z , since it

is given by the multivalued function
= e
z = arc s1n(k)

which has infinitely many branches. The precise specification will
allow a one to one mapping from the compiex a piane to the complex

z plane. Since

o s -
K= smmzE Ty

we may write the equation

This quadratic is readily soived for z

z=-ian[i g+ [1- (5—}231/23

i

In this solution, the principal branch of the logarithm function has
been used and the plus sign has been used with the square root function

[25]. By the branch previously defined for v , the above equation
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simplifies to

z = -i an[i {&tY)y (4.4)

The equation just developed is useful in determining how the two-
sheeted o plane maps into the z plane.

Under the transformation (4.4) the numbered regions of Figure
4-2 map into the correspondingly numbered regions of Figure 4-3. The
path of integration for the integral of {4.2), depicted in Figure 4-2,
maps into the path shown in Figure 4-3,

As examples consider two points on the path of integration in
the o plane

1) o+-= with |7] +0"

2) o= +e with [t} -0
For case 1:

2
v = Vin [(-]o] +1]<))% k212 = tim [Jo] (1 - X) - i]<]]

g +oo g+ Gg
|t]-0* | ]-0*
and
- 2 *("EU] +.”T3 +Y} = % 11 ) "ik = - <]
Z = =i 1}m anfi X 1= n.z}m Lan 235{J 5+ 1
2 end g
[t]-07
For case 2:
vy = 1im [l -1]t))%- K¥1% = tim [lo] (1 - —~—-—Z“2 ) -i[l]
->00 | se0 i
o ol 2|o|
[T]|+0" |t|+ 0~

and



——————_— o—_ -~

s o —— - - 7>

A

N Imy >0
CdImy<O
//}

Rey <O
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z plane

roly

Figure 4-3,

N

Integration path in z plane
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z=-1 Tim zn[i(lgl = 1‘lTl’*‘i’)] = -i lim en[i glgig = . e
k k 2

| <]~0"

Upon substituting (4.3) and (4.3.1) into (4.2}, the integral

under examination becomes

exp(ikr(cos y cos z - sin x sin z)) d (4.5)
¥ . ) . z .
y (k sin z)KO(-1kb cos z) /-irk cos x cos z

X
g -8

-

The integral is in the form amenable to the saddle point method of
integration, since r >

Define the z dependent quantity in the exponent as

g(z) = i(cos x cos z - sin x sin z)
= i cos(z+y)
It follows that
A iov e e
5 9z} = -isin(z + x)

The saddle points z, are the points at which g{z) 1s a maximum.

Therefore from the above we know that

z, = nm - ¥ : n=0, +2 +4 <.
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Concentrating on the point z, = =X , we note that ,9(25) =1.
Since a steepest descent path is a path along which the imaginary part
of g(z) 1is constant, the steepest descent path through z, = -x fis
given by

Im g(z) = 1

Since g(z) = i cos(x+iy + %) = i(cos(x+X)ch y - { sin(x+x)sh y) ,

the steepest descent path through z, = =X is given by

cos(x+y)ch y = 1

This path is shown in Figure 4-4. We are assured that this is a path
of steepest descent rather than one of steepest ascent, since the
Re g(z) monotonically decreases along this path as we move away from
the saddle point.

By the residue theorem, we deform the path of integration of
Figure 4-3 into the steepest descent path. The major contributions to
an integral along a path of steepest descent come from points in the
neighborhood of the saddie point. The slowly varying terms of the
integral are replaced by their value at the saddle point and the func-
tion g(z)} 1is replaced by the leading terms of its Taylor series about

the saddle point.

g(z} = i-%(ﬁx)z

Mw)k e'KT jsop exp(-1 %E(Z**x)zi dz

2y (k)yt (-k sin x) /TR cos x K (=ikb cos x)

(4.5)
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A"

— — - — ————. —— op—— So—r oo— — o> xononl

Steepest descent path

Figure 4-4,
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g the steepest descent path

_ 1
chys= cos (x+Y)

and

dy _ tan(x+y)
dx * cos(x+x)sh y

As we approach the saddle point in the manner x--yx and
y - o* , the slope is
tim L = -1
X > =y
y ~0*%
As we approach the saddle point in the manner x--x and
y =0 , the siope is
Tim Q=
X=X
y »0-
Therefore the angle that the SDP makes with the real axis at the

saddlepoint is either

Examination of Figure 4-4 shows that at the saddie point the SDP and
the negative real axis form the angle 3n/4 in the second quadrant
and -7/4 in the third quadrant. This observation permits us to
express .

luf e" 3% ;. uesop and y >0

z+y=us= -
lu eV ™% 5 uesDP and y <0
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It is also observed that

g§~= Qg%l,e‘i m/4 at the saddle point

Since equal contributions to the integral of (4.5) are received as we
move away from the saddle point in the two directions of increasing u,
we write the integral which appears in (4.5) as

_krp 2 e
L (4.6)

exp(-i %;Xz+x)2)dz ~ 2 e

oo, 8

(
sp
Using the well known integral

o

2 2
g e @0 gy = IT
a
the value of (4.6) is seen to be

-i
Bodluj=e ¥ /& (4.7)

Equation (4.5) becomes

ikr ]

. N e L
g, (rs80) = M(a) £ | }(4.8)

4

y+(k)y+{-k sin X)Kg{-ikb cos ¥)cos ¥

To simplify the above expression we use the identity relating modified

Bessel functions with ordinary Bessel functions:

g 2 Yoo kil (-ﬁ)
Kﬁi-@kb cos x) = 1 75 Hy (kb cos y)
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From Appendix D, the expression

1
v =i 2D o) (x0) - solka ]
is formed, where K = +iy . In expression (4.8) we have

i %-Hg])(kb cos x) = 1 %‘Hg])(kb sin 6)

If in the expression y(a) , K is set equal to k sin & and o is

set equal to k cos 6 , which follows from the fact that Y2 =--K2 =

az- k2 , then

y(k cos 8) = y+(k cos 8) y (k cos 8)
-1
=[1' %Hf)”(kb sin e){Jo(kb sin 0) -Jo(ka sin 6)]]

When this equation is solved for i g-Hg])(kb sin 8) and the result

substituted into (4.8), the far zone magnetic intensity is seen to be

ikyr J (kb sin 8) - J _(ka sin 8)
(r,e,w) = M(w) = T { 0 0

(k 9
sin 6 ](y ;+(;§s ))
(4.10)

H¢1

The relation (4.10) has the restriction that p > b . In the
region z < 0 the eguation (4.10) is only valid in the region p > b;

however, for z >0 , the H can be analytically continued from

4
region 1 to 2 and from region 2 to 3. Therefore the restriction re-
qu{ring p > b can be removed in the region 2z > 0 and equation
(4.10) becomes an expression for the magnetic intensity for all values

of p in the far zone (r + =) exterior to the feedline.
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It is recognized that equation (4.10), except for the factor

MI£§~595—QL » exactly equals the results obtained from assuming that
thg gﬁgident field is the total aperture field and that no contribution
is made to the radiated fields by currents which flow on the waveguide
structure.

The new field factor contribution Xii%—59§~91 to the coaxial
waveguide antenna first obtained in this workymészfies the field pat-
tem obtained by the conventional solution to the problem of radiation
from this type of antenna [19,p.302]. It will be seen later that this
factor has a significant effect at high frequencies and modifies the
field pattem to direct the radiation in a more forward direction.

By equation {2.11) we expressed the magnetic intensity in ’
region 2 for all z as the sum of the incident field and another term
which represented the reflected and higher order mode fielid intensities.
By the radiation condition, we know that the incident field cannot
exist in region 2 for z > 0 .

To show that the incident field intensity is canceled in region

2 for z >0 , we evaluate the integral

-i0Z

1
1 {Qazs(ﬂ} B — Yy (paasW} e do , z >0 (4-1.”
% VY

w

g g

by using the contour of Figure 4-5, Yy {(p,a,w) 1is given by (2.48):

2 .
The value of the contour integral is calculated by the residue theorem.
The value of the integral (4.11) is. the negative of the contribution from

the path around the branch cut and -2xi times the summation of the
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i'r‘

Figure 4-5,

lal

Integration contour

v

-
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residues at the poles of the integrand located on the interior of the

contour c. The contribution along the semicircular arc at |a] = = is
zero.

The integral (4.11) is not evaluated in closed form due to the
complex integration on the path alongside the branch cut. However, we
shall show that the contribution to the value of the integral from the
circular path around the branch point (k) is just enough to cancel the
incident field intensity.

On the circular path around the branch point o = -k + eei8 .

e >0 and 0 <6 <27 . The integral of interest becomes

{p,a,w) e'ﬁaz da]
o

- - Yp}iﬂﬁ
e.»o\ﬁ w2l Ty et T

s 2T 1 i
jﬁ“ikM(w) elkz f -Yp &0 ya * oo -yp An Yot oo

. 2m
ik M(w) e p 11y f do
o\ TemE SRR 2

]
e
b
=

M(w) 1 1 ikz
e A T
a

p L

We have made use of the 1imiting forms of Bessel functions for small

arguments and the following:
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x(-k) = x (k) 5 x(k) x"(k) = x(k)

y(k) =y (k) 5 yT(k) y(K) = y(k)

To see that this is just enough to cancel the incident magnetic inten-
sity, note that
LS N
y(k) = x(k) a
which is easily found from the definition of y(k) and x(k) given

in Chapter 2 and the limiting forms of Bessel functions for small

arguments.
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5. Time Behavior of the Radiated and Reflected Electromagnetic Fields

The time behavior of the field intensities 1is found by comput-
ing the inverse time transform of the frequency domain expressions. To
find the time behavior of the racﬁ' ated magnetic intensity emanating
from the waveguide antenna, the inverse transform of equation (4.10)
must be obtained. Because of the complicated functional behavior of

+
the factor )L__(_E_,@_Q_S__@_)_ the computation of the integral

y (k)
7 ikr J (kb sin 8)-J (ka sin 8)
o e! 0 0
4 (r0,t) = —= [ M) &5 S ]
+ ,,
x i-ﬁ-————lf,(c‘;s 8L gmut g, (5.1)
y (k

is extremely difficuilt.
For harmonic time dependence the exciting voltage V(t) is

iwot
Re(A e ) (see equation (2.7)). Then

M) = Re[VZT |2 —A  s(w-u)]
w) = Relvem E;zn b/a °\@ ™Y

where &(x) 1is the Dirac delta function. Therefore, the case of

harmonic time dependence (5.1) reduces to

y+(—u—)9— cos 6) -1lwg(t-r/e)]
H (r,8,t) = Re‘[/—f’é A +Cw : ¥ sin 8 |
Yo an b/a vy (22) ‘

wOb ] . wga ) ‘
x EJO(——E« sin 6) = Jo(? sin 0)] (5.2}
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The value of k is w/c as given by (2.4.3). "

y+(~§- cos 8)
+,%

y ("&")

understood, and are not in need of further simplification.

The factors of equation (5.2) except are well

From Appendix D we transpose the function

k -
, 1+ g . (atb)k igbk
+(k cos 6) _ ; EN e1 ~—27‘1—L(1~cos 8) S sin ©
y+(k) =1 ]+§. cos 6
1| oy
1+ k .
' /2 2 k( )(cos 6-1)(1-C+4i
x € exp )[: K(Z}(u) n ————k-J-(-—:———"-L du Z
§-0 14X.C05 8
k’ - y-
exp(k(a b)cos e[—ﬁn(x(a+b)cos 9)+§Eb 2n(2 cos 8)

(5.3)

-k (a+b), —on k(a+b) 2b
iem T

2 tn2))

In this formula we have used the fact that if o =k cos 6 , then

+(a- _ -ik sin 6 + k(cos 6 - 1)4 _ e“i6—1 .
tn { e LA = s T 7 (o 9’“[]_6156]' -10

using the principal branch of the logarithm function. Additionally,

PSRN I Ry —
By =]y & (Ji(ubmg(ub)g
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It is also known from Appendix D that y+(a) N la]]/z

as
a > . From this asymptotic behavior we see for very high frequen-

cies (A << b-a) that

+
Tim Z~i§25?§~§l- n |cos 9] 1/? (5.4)
K > o y (k

In Chapter 2, there was imposed a restriction that kb,ka << 1
for non-harmonic time dependence. In keeping with this restriction,
equation (5.4) should only be used for the case of harmonic time

dependent excitation. For values of ka,kb << 1 the value of

¥, (k cos 6)

R is more complicated but instructive to determine. To
-+

determine the value of this field factor in the low frequency limit
{x >> b-a) we use the series expansion of the infinite product

k
T+ .(a+b)k
; 1{ami e1 = 1- cos 6)
=1 ]4,E cos 9
BRI

m

=1 - 1k( )(7- cos 9) mzl[] l - %ﬁﬂ + O(ka)Z

The infinite series is the difference of two divergent series but is

itself convergent [26, p.33]. This is apparent since

—t L . i 1 . Ly
ol = ™ e T em

oo

as m - o and the infinite series E wi is known to be absolutely
: ol om
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convergent. The following integral

. 14 —K
f +K(2)(u Vil
_,0

]+kcose

§
v k2~ u2

du

+

also appears in .Y__.(%S()ls__.el . This integral will now be shown to be
y (k

convergent and its approximate value will be determined in the limit

kb,ka << 1 .
Upon substitution of the value of K(Z)(u) and simplifying,

the above integral becomes

; b ry 2 1 \ [ 1 - cos 6 ]
by 3] an | 1+ du
T L wub" .2 2 i

Lot Jg(ub) - Y (ub) cos § +y1- (,{')

Introducing a change of variable, ub=2z , we get

S (NS W DU ST T, P
Jr ML J(Z)+Y(Z)J 2

To examine the behavior of (5.5) for smail values of z , we

consider

€
% +[1-———--———-—2;-—--—2-—J5m{ 41 -cos® sz
§-0 H'”Z"mz cos 6+v 1 + (&)
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€
This integral converges as £ [%{—-Ei-—§—0] dz converges.
1+-—5 n"z
2

Now

T 2% 4
iz = | —3F
i [H—g—7)] &z b i 2 m2(2)

This quantity is seen to be convergent for all e # 1 . We can also
remove the principal value sign and change the Tower limit to zero
without affecting the value of the integration.

At the other extreme for large vaiues of z , we consider

1 - cos 6 : dz

cos 0- i (%E 2 -1

1 { 2 1 :
- 1- —[ ]}xn Eiv
“£ 2 714 (2) 2

for M > 1 . The asymptotic value

2 X
W @72 P o for 2

is now substituted with the resuit

[1+0(5)] -

z cos 6 'E\/(%(-g)z-i
= %-{ G{%& zn?? 4 —1 2 C0S 8 | az
& - _ iZ 22 .

cos 6 -1 (kb) -1
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The logarithmic function &n(1+x) can be expanded

an(1+x) = x - oty s X215 x# -
When this expansion is considered along with the fact that

"5

I - COS O

cos 6 - i,/(ﬁg)z -1

as z-+o (with z vreal and |A| finite), then

A

%-£ 0(;0 en[ 1+ 1 - cos ® , Jdz =
. 7 \2
cos § - i (EE) -7

o0

i 1y (A
1 L o)) &) e

This integral converges.
The integrand of (5.5) has an integrabie singularity at z=kb
when 6 = m/2 . By the above we conclude that, for all values of 6
and k the integral of (5.5) is convergent.
| | . ¥, (K cos 9)
Since our interest is in the value of "'“?;(FF""’ for
ka,kb << 1 , we next endeavor to find the value of (5.5) in the limit

as kb -0 . We wili use this limiting value as an approximation for

the integral appearing in equation (5.3).
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(o]

Tim %»[ [1 - %%-( 5 1 5 )] an(1+ 1-cos® )dz
kb>0 "y Jo(2) * vy (2) coso+V1- (%)%
kb

= Tlim %ff [1-%# > ] 5 )]lno+ 1-cos 8 )dz

kb +0 0 Jo(z) +y0(z) cos 6 + /] j (%)2

N 2 1 1 - cos 6
+ Tim —-[ [1-= )] 4n{1+ )dz
T mzZ' .2 2
kb >0 b Jo(z)+Yo(Z) cos 6 - i‘/(%goz- 1

Note that the quantity

Tim [an(1+ =88 )1 g
kb >0 <m56-iv%EF—i

From the above work we conclude that as kb goes to zero, the integral
(5.5) goes to zero. Thus, for low frequencies, we approximate the

function

[
exp %i K(z)(u) an l-mw~jiilli—— du
8 * 1+

K cos 6
Vk2~ uz
appearing in equation (5.3) by unity.
If in (5.3) we make use of the limit thaii X x=x as x 0,

.§..
then the field factor (E(CTS 0) can be approximated as
y (k



T 2 LN ath T
y (k) =1 o | 55—
x exp,( i -%5-sin o + ik(%%gé[c(1 - cos 6)]- %%E{cose en(2 cos 6) - 2n 2])

for ka,kb << 1 (5.6)

The time behavior of the far zone radiated magnetic intensity
for a non-harmonic time dependent incident field intensity with
ka,kb << 1 1is given by (5.1) when equation (5.6) is used for
inﬁiEfimﬁl . In the far zone the value of r 1in equation (5.1) is
VGﬁ? éulh larger than b or Q%E‘, To the approximation used, the
exponential function in (5.6) is replaced by one and for that reason
it does not contribute to the phase factors in integral (5.1}. In
addition the term of (5.6) containing the infinite sum can be dropped.
This is apparent since ka,kb << 1 and the Fourier transform of this term

will be of order 1/C, which will make its contribution very much

smaller than the contribution from the remaining term. In view of this

+
fyma .
y (k)
and
1 = M(w)e—i (U)t" k?’}
o j r sin 6

H¢(v98,t) = [Jo(kb sin 9) - Jﬁ(k& sin 6)] dw

for ka,kb << 1 (5.7)
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When the incident magnetic intensity is harmonically time

- dependent, then the value of (5.7) is easily obtained. In this case

€0 A
M(w) = Re/2m [— S{w-w_)
Mo 2n b/a °

and for low frequencies (A >> b-a) the radiated fields are

€, cos(wo(t--%)) wob . wya
H¢(r,e,t) = A /a;- R b7a)s i 8 [JO( — sin 8) - JO(—E—~s1n 8)]

Ho
Ee(r,e,t) = 'E; Hdﬂr,ﬁ,t) , (5.8)

For non-harmonic time dependence the radiated fieid can be
found by direct integration of (5.7) or by a time domain convolution.
The integrand of equation (5.7) can be considered as the product of
the Fourier transforms of two time domain functions. Therefore this
integral can be evaluated by the convolution theorem and the impulse
response is readily identified from the resuilt.

In applying the convolution theorem, use is made of the fol-

iowing well known integral [27]:

{ /2]
- ; 0<|t] <z
o 2 -t
" f Joiaz}e'iat da =< w ; [t] = z
/Zn ! '
0 s otherwise (5.8.1)
\

Upon evaluation of equation (5.7) by the convolution theorem we get
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the result which follows:

tl
. ‘
Hy(r0,8) = b [ M(t0) £(0) e (5.9)
where f(t) fis
("~ b .
0 B T < = < sin 6
‘? ;-%sinef_rf_—%sine
J b . 2 2
(= sin g)°- 1
c
f(r)=< ! - ! ;-%sin ef_Ti-g-sine
J b . 2 2 V/a . 2 2
(E-sxn 6)°- 1 (E sin 8)°- 7
1 i %sinef_ri%sine
J b . 2 2
(= sin 8)°- 7
C
b .
L G 3 T > < sin 6
{5.9.1)
and
R :
v o= c
The response to an impulse of voitage excitation is therefore
g, ‘F(t--g-) .
H¢(r,e,t) Y, E;'wr sin 6 %n b/a (5.10)

From the character of the impulse response we see that at an
observation point in the far zone, the radiation lasts a total time of

(2b/c)sin 8 . By ignoring for the moment the frequency restriction of
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ka,kb << 1 and allowing an excitation with zero rise time, a step

function of voltage » then by integration of the impulse response we

obtain the step response,

P —

H¢(r,e,t>=/§-°—( ) x

) wrsinezn%

0 3 T < - 9»s1n 3]
- C
T ;-] TC b . a .
+ R, © - < & -
7SI =TS 5 c sin 81X c sin 0
sin'1 L& sin'} —t . _&sinp<t<dsine
bsin 8 asing ° c —- =
il . =1 TC a . b,
- e e o — < < -
2" Fsine boesmmesrsgsing
0 3y T > Q-s1n 6
[ - C B

. (5.11)

where 1=t - <

It is advantageous to have the step response for numerical cal-
cuiations since its magnitude is finite at all points and the far zone
fields can be found by the convolution of the time derivative of the
excitation and the step response. This procedure does not violate the
jow frequency restriction.

Because of the low frequency restriction the input excitation
should not contain any high frequency componenés. To render the high
frequency components in the excitation negligible, the rise time of

the excitation pulses must be long compared with the time b/c . If
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the input is of the form [] - e't/T] u(t) then the time constant T
must be chosen so that T >> b/c . This will preclude any violation of
the Tow frequency restriction,

For such inputs, equation (5.9) contains convolution integrals

of the type
t’ ) [t-1]
,{ 1-¢8 dt, with -%sinef_rg%sine
b . \/b . 2
- =sing V(= sin 8)°-
c c
and T < t/
, It
’ -[t"[’l - .
t t (1 -e ') dt

—-s1ne sin 8 ‘¢
ey b
+ € lti” j{ T dt
%s in 8 »/(—-sm 6)2 £
t’ ny
IRESE - tg T i
% sin ¢ \/(—- sin ) -1

0<it'] _g%siﬁﬁ

Since T >> b/c we neglect the second term and conclude that
the response to an input of finite rise time with time constant

T >> b/c approximately equals the step respon;e muitiplied by
;
('i - e-|tl / T} .
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Excitation

Voltage (vol ts) A / (a)
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Figure 5-1. Radiated magnetic intensity of the coaxial waveguide
antenna for (a) step function and (b) exponential excitation.
Ordinate: §¢ = H¢(¥E;7Eg r %—sén 5) {volts)

Time constant for (b) is <T/{(b sin 8) = .1
Antenna Dimensions: & = .8b
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A basic assumption used in Chapter 2 is that the total current

in the inner conductor is equal and opposite to that in the outer con-
ductor. This assumption implies that the contribution to the radiated
fields from all parts of the étructure outside of the aperture are neg-
ligible. Examination of the impulse response shows that the radiation
appears to originate from the edges of the open ended structure
located in the aperture plane. The outer edge gives a positive con-
tribution and the inner edge gives a negative contribution. The
radiation starts when the incident current reaches the edge and lasts
a time proportional to the time it takes Tight to traverse the diameter
of the conductor. The difference in sign of the contributions is due
to the difference in sign of the current on the conductors.

We now turn to the problem of determining the time behavior of
the field intensities for a <p <b; z <0 . The magnetic intensity
in this region is given by

<L ikz -ikz
! omiut M(w)[‘e _Re

L P e

-} RTffp)e

dw (5.12)
Q;qq “ ¢ /

W
For harmonic time dependent excitation voitage Re(Ae 0 Vs

M{w) = Re[ /27 &fﬁ_

and (5,12) becomes:

84

&m«
| -

w-us

P

£n—
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A rcos{wo(t - %J] ~,cos[w0(t.+<%qj Rl)
) o

@]

ot!o

H (pszst) = [N
¢2 n %

p
w
A2y (2% (r}g)°

+ fq(p) Rq(mo)e {5.13)

g=1
where R(wg), Rq(wo) and fq(p) are the functions (3.7), (3.8) and
{3.9) evaluated at w = Wy o if applicabie. W should not corres-
pond to the cut off frequency of one of the Eon modes of the coaxial
waveguide, since our formulation is not valid for these frequencies.
We also note that as wy e, R(wo) + 0 , thus the TEM mode reflected
field tends to vanish for very high frequency excitations. If
ka,kb << 1 , it is obvious that for large values of =z the higher
order Eon modes are negliglble since they are evanescent in this
frequency range. Since the time behavior of the incident field is
given, we shall only be concerned with evaluating the integral for

the reflected TEM mode fields or
. _ ] Mw) 5. -1kz =~ it
H¢7(p’z’t)ref?ected = j Re d
= TEM T o

2= D01 - [ (k)32 (5.14)

From the values of y+(k} and x+(k) determined in Appendix D, it

can be adduced that to the order of (ka)2 or {kb}zs @y+{k)}'£ = 0 and
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(0172 = -en 2po_(ka)] {1- 2ika Z (T”'T"' Ly

2ka
(1-C+2an2) .
x e e—1ka

x exp[2 (u) {an(1 + —~—lkl~—9}du] + 0(ka)2 (5.15)
6i; w/kz— uz

By examination of the integral in (5.15) at the extremes of very small

and very large values of u , it is shown that

K w) fan(1 + —5L 9}

K- u

VYot 8

4

§ >0

is convergent for all values of k . Additionally, the integrable
singularity at u = k presents no difficulty to evaluation. After

substitution and a change of variable the integral becomes:

A

T e 2y 1 (2 %096 - 3402 x0v 0T+ v, (03 x) = 3, (2 %) }
i (0,2 %) - 3,01 + [ (2 - v (0T ‘

x {an(1 + ————)} dx (5.16)

For small values of x s integral (5.16) can be approximated by



€ 4 b2 aq 1b._ 2 2 1.2, b
[11-2 alw bX) Tz g XXX
b.2
0 (2n~a—)
€ 1 b X b
o -;T{xﬂ,nx](-é-+1)—%—lné-
vio= )dX
(2 D)
a

This last integral is finite, thus the integral (5.15) is convergent as

u~+0 . For very large vaiues of x , (5.16) is proportional to

.i_'ITX a 4
%{[cos(%—x- -g—-)- cos(x-%) + 0(;](—)]?% [sin(%x- %) -sin(x-%) +0(31(-)]2}

o 4 b 7 b ) iti
l _.__+[__ sm(.é.x.. iﬁ)cos(x-g—) + 0(%—; + [additional terms]]%

x {an(1 + 1 )} dx
B
P 4
< §{1= X 1 {an(1 + ] 1} dx
- {1 i (2 + o(l)j X
} > X -1 )t -
® 4
= 0. ] () dx
- 4 1 X
L £ (1+0(1)

where we have used the expansion of Zn{l+z) with z = A/x ; z << 13

z # -1 . Additionally the convergence of

w0

i sin mx <§) dx and [ cos mx(é-) dx
M

has been utilized, We are now able to conclude that the integral

in (5.15) is convergent as u + » ,
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Combining all the foregoing, it is apparent that the integral

appearing in (5.15) is convergent for all values of k and it is appar-

ent from taking the 1imit as ka - 0 of (5.16) that

o]

Tim £ K(1)(u) {an(1 + -151——)} du =0

ka=+0 oy

Additionally, the term involving the summation in (5.15) is very much
smaller than one and therefore ignorable. The exponential factors are
also negligible when large values of 2z are concerned. Therefore

{x+(k)}°2 in the low frequency limit becomes
(0T = - an 2 [0 (ka)Je ™ for ka,kb << i (5.17)

The reflected TEM mode field is now evaluated by substituting (5.17)

into (5.14). The results are

Hy (0r2,8) = - - [ M) 5 (q) gik(Zra)-iut (5.18)
/Zn po
refiected TEM  "¢T Lo

By the convolution theorem and well known integral (5.8.1)

i

" SV
h@z {Qs?s?) = o
reflected TEM o

M(t'-1) glt) dr ; 2<0 (5.19)

e, p

b

where



e ————
/ a2 2
(’E')-T )
= oo 2,@_ >
g(t) = ¢ ;] =2 ~
\ 0 ; otherwise /
and
t'::‘t..j__z_i:-g
c c

If we again ignore for the moment the frequency restraints and allow a
unit step function voitage excitation, then the reflected field is
given by the integral of g{t) . Carrying out the integration produces

the following:

H@ {Qazst) =
pa
reflected TEM

a
0 s T 2-3 \
£ - -
C 1 T . =1 CT a a
PR JE.u . S—— gy 8 © - o & T L e
}ﬂ 5) > * sin 5 cSTXT

(—
0 Tp An 3 .
a - Z|_ 8
" poT2 g »TEt- T
and the electric field is
A ug Fr P Y
gp (i:’szst? = - E’" H¢ {Qszsti

Zreflected TEM ©  Zreflected TEM

In the case of a step input the reflected electric field is

: 2a
essentially the negative of the incident field for ¢ 3-E'+ l{?- )
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(see equation (2.6)). The current reflection coefficient is —Jo(ka) for

ka << 1 , which is consistent with transmission line theory. For

—t/T)

allowable inputs of the form (1 - e with T large enough so that

the low frequency restriction is not violated, the reflected

1t
fields are given by the above equations,mulitiplied by (1 - e |t/ T),
z a

i p~4 T we———— o —
tt =1 c c
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6. PRadiation from the Pulse Excited Cylindrical Monopole Antenna

The objective of this chapter is to examine the radiation from
a pulse excited cylindrical monopolie antenna in the light of results
obtained from the preceding study of a coaxial waveguide antenna. We
have determined that in the far zone the radiation appears to originate
from the edges of the open ended structure Tocated in the aperture
plane. The edge starts radiating when the leading edge of the incident
current pulse on the feed line impinges upon it. Radiation from the
inner edge is opposite in sign to radiation from the outer edge.

We begin by considering the approximate far zone fields from
the annular slot antenna. This antenna has been the subject of several
authors [28-32]. The structure of the annular slot antenna is that of
a coaxial Tine terminated in an infinite ground plane as shown in
Figure 6-1. Note that the center conductor is not hollow.

We will follow the approach of Ref. [32] and replace the elec-
tric field in the aperture by an equivalent magnetic current and
develop the fields in the half space z > 0 from this equivalent

source and image theory. The eguivalent magnetic current is

Since this source is just above a perfectly conducting ground plane,

the electric vector potential is given by
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Figure 6-1.

The annular slot antenna

~NY



2n b L2z, ikﬁ"?'l
N €5 2 0 ¢\e, o
F:.._zﬁ;. ff — pldpld(b:
0 a r-r'|
where
- >
€0E = - ¥ xF
and

[%-%1 = [o% 0'% - 200" cos(-0') +(z-2")2]"/2

Now it is clear that the electric vector potential and the fields are
independent of the coordinate ¢ , from the cylindrical symmetry of

the structure. Therefore we can set ¢ = 0 without Toss of generality.
We also know that the only nonzero component of F is the ¢ com-
ponent due to the symmetry of the equivalent magnetic source. From

geometry we find

> - .
¢ = ay cos ¢' - a_, sin ¢°

o] X
since ¢ =0 ; 3 =3, for this formulation. Therefore
y ¢
N €0 » 2m b eikR /
F= - ?E'a¢ [ j Epi cos ¢° T p'dé’dp’
0 a

with

(6% 0'% - 200" cos ¢' + (z-2")2)1/?

el
]

From Maxwell's equations and the Lorentz gauge it is an easy

matter to show that



.
ve«F =10
and
fue b 2 LikR
H¢ = jw F@ E - ~7%~*f Eé p'dp! f cos ¢’ TR do' (6.1)
\ a 0

Equation (6.1) is exact--no approximations have been imposed. If Ep',
the electric field intensity in the aperture, were known exactly, then
the integration could be carried out and the result would be exact.

If we approximate the aperture field as being that of the inci-

dent field in the aperture, i.e.,

i - V(w)
£ (p,0,u) = —Lal

o’ KN'g
then
. b 2% .
H - 1 [¢] V(U)) ae‘ikRé ada (r 2&
6" 2w b)) e TR ®E el
a a

In the far zone the distance R becomes

R= (p? + 0'% = 20p" cos ¢* + (z-2')2)}/2
= (r2+ p°z- 20'r singcos ¢' - 2rz“ces€3+—z‘2}?/2
= pr[1+ Giz - gﬁi—sin 8 cos ¢ -gZi-cos g+ ZLEJT/Z
&;2 r ¢ r r2
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R

i
r[1 - 9F~sin 8 cos ¢']
since r> p' and r>> z',

. » 1 2 1
o1kR . e?k(r - p'sin6cos ¢')

R r

We have retained more terms of the approximation to R in the phase
factor than in the amplitude factor, since small variations in R
cause targe changes in the value of the exponent,  The ampiitude
of the function is relatively insensitive toc variations in R as

r -« whereas the phase is not.

Upon incorporation of the well known expansion [28, p.230]

. § .2 i pd i Ai
e1kp sin&cos ¢ g (-jffan(kp‘sin e}eqné
g’i:—w

equation (6.2) becomes

iweo V(m)eékr T - n ing!
Hy = = == E f f cos ¢' ) (-1) Jn(kpisin 9)e do'do’
¥ - e e 4 ==
. b 2w
we ikr
= . 72 V(wg & = f { 2 cosz¢‘d¢° J](kp‘sin 9)do!
I LY a0
7, 2 %)
weaV\w; e;kr ‘ .
= - b - { Jiikg‘s1n 9)do"
in —aj a
we V(w) e-skr? d(3, (ko' sin 0))
N b r K sin §
g a

e ?(w)' olkr Jo(kb sin 8) - Jg(ka,s1n 6)

b r [ sin 6 (6.3)
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The approximate time behavior of the far zone field follows

directly from the inverse Fourier transform of (6.3)

1 /8_0 1 T “*w(t“{‘)v I (kb i
H@(r,e,t) = F ﬁ;( 5 fe (w)[ o sin 9)

7T n -é-)r sin 0

w0

- Jo(ka sin 6)]dw  (6.4)

When this integration is carried out by the convoiution theorem, the
impulse response of the annular siot antenna is found to be given by
equation (5.10) and the step response is found to be given by equation
(5.11).

From this result it is apparent that in the annular slot antenna
the radiation also appears to emanate from the edges in the aperture
plane. The radiation starts when the incident current on the conduct-
ing surface reaches the edge. One edge is Tocated at p =b and the
other at p = a . For an incident impulse of voltage the outer edge

contributes radiated magnetic intensity in the amount

/ 0 : T<~Esin9 )
-7
— f
2 5 < : » ~gsinesTsgsing)
o mr sin8en = J(p_ sin 6)%- -2
c
\ 0 s »gzgs%n@ /

(6.4.1)
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and the inner edge contributes radiated magnetic intensity in the

amount
/ a )
0 y Ts-csine
€
'{;9‘ -] b< -1 ; -%sinef_rf_%sine}
o mrsinesn — J(_g_ sin 8)2- 1
0 ;T2 2 sin o
-c
\ /

We make the assertion at this point that the tip and the base of
a cylindrical monopole antenna (Figure 6-2) give off radiation in a
manner identical to that of the annular slot antenna. In this
case, the radiation from the tip must be delayed in time by an amount
which equals ‘the time it takes light to travel the length of the
antenna, h/c . We further assume that the currents on the conductors
are reflected in the same manner as the currents on the conductors of
the open ended coaxial waveguide. That is, the total current must go
"to zero at the tip and the base.

In Appendix E we develop the radiated fields of a very long

nollow cyiindrical antenna. Transcribing those ?ESUTth we have that

the magnetic intensity of such an antenna is

H (r,0,w) == o V(w) eikr J (ka sin 6)
o br sin ©

Ho sin 6 £n~g

This result is identical to the frequency domain radiation from the
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Figure 6-2. The cylindrical monopole antenna
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tip of the center conductor of the annular slot antenna determined in
(6.3) above. Since ka << 1, the particular form of the end does not
"have a significant effect on the fieldintensities. We therefore take
these fesu1ts to be valid for all thin cylindrical antennas regardiess of
the end configuration (with the obvious exceptionof those with end loadirg.)
From the above discussion, it is clear that the contribution to

the radiation from the tip of the center conductor is identical for
h = g and for extremely large vailues of h. We assume this result to be

valid for all cyindrical monopoles with > 0 , Since the base of the

antenna is excited at t = 0 , when the incident excitation voltage
reaches the ground p1ane’appropriate mathematical factors must be in-
corporated into the field 1intensity equations to account for the
finite time h/c required for the excitation current to reach the
tip of the antenna. {c 1is the speed of light).

Since the electric fieid at the junction of the feedline and
the antenna must be continuous, when the flowing charges reflected
from the tip reach the junction, charges of opposite sign must travel
back along the antenna [8]. If we consider that the annular thickness
{b-a) << i , then image theory is applicable and it is readily seen
that the current relaunched ontc the antenna from the base is equal
in magnitude and opposite in sign to the current incident from the
antenna.

No radiation besides the initial radiation due to the current
incident from the feedline originates from the base of the antenna.
The current reflected from the antenna tip is cancelled by the image

current at the z =0 plane.
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To determine the total contributions to the far zone radiation,
use is made of Figure 6-3. Proper accounting must be made of the
radiation from the tip of the antenna and that reflected from the ground
plane. It is readily seen from this figure and the above discussion
that the radiated magnetic intensity in the frequency domain is

€ ikr

1
Ho(rs.0) = /=2 V(w) e [3,(kb sin 8) - J (ka sin 6)

Ho (2n —2——)}“ sin ©

eikhU - €OSs 9) + eikh('! + cos 6)
4 G2ikh

1

kn # (20+1) T ;  1n=0,1,2,3,--- (6.6)
2

The case for kh = (2n+1) g— will be treated later.

The time behavior follows from the inverse Fourier transform of

(6.6)

Ho(r,6,t) = —— |
¢ Jor

-O0

Ho(rs6,0) e 0t gy (6.7)

If the excitation voltage is harmonic time dependent, then
V(w) =-Re[/ZT A 8{w- woﬁ]

From (6.6} and {6.7), we have
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- —

Figure 6-3. Effect of image plane
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€ wb
H(b(r,e,t) = EQ- 5 A Re JO(-—%— sin 8)
o (2n E)r sin @
woh moh
wa "%——C-—(l- cos 8) i —E——(Hcos 9)
- J (-2 sin o) *® 18 ]
o c 2i 2
i+e e
-iw (t - )
x {e ©° }

Upon simplification this becomes

€ A cos w (t-5) w b
- /__q_ o' "~ ¢ Yoo .

o (2n -é—)r sin 6 0

woa ) woh
) {JO(—E- sin 6)][cos(——é—- cos 6)] ;

w_h
0
Cos —-E-'
wgh r
b#a; —7 (2nt]) 55 n30,1,2,3,--- (6.8)

This expression shows that the radiation pattern is

w h w_a

J (-0-3-9— sin 6)cos —— - [J (-2 sin e)]{c:as’gj—(-’i cos 8)]
Flo) = 0. ¢ c 0\ c ‘e

(6.9)
-sin 6

The radiation pattern given by (6.9) can be compared with the pattern

derived when the antenna is assumed to be very thin with a filamentary

sinusoidal current distribution [33]. For that case
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moh h
- C0s —— - ‘cos(wo-&- cos 6)

F(8) = (6.10)

sin 8

In the limit when the feedline diameters are "thin" (i.e., A >> a,b)»
the ' patterns given by (6.9) and (6.10) are identical. Equation (6.8)
shows that the radiation along 6 = 0 1is always zero, aé it must be.
To get expressions for the cases where kh = (2n+1) g—,

n=0,1,2,3,..., we must consider the fact that ohmic Tosses are present
in any real system allowing us to use a complex value of k or we can
take k to be complex for the sake of mathematical expediency and let
its imaginary part vanish at a later stage in the analysis. Thus,

Yo

With complex k the factor

gikn(1 - cos &) | ikn{1 + cos 0)  crip cos o]

1+ eZikh cos kh

cos[{ky+ iky)h cos 8]
T Teos TRy Tk, IR

aos(klh cos 8)cosh{k2h cos 9) - i sin(kah cos 6§s€nh(k2hcose§
coS k]h cosh(kzh) - 1 8in kgh sinnik,n;}

In the 1imit as k}h + (2n+1) %—, ﬁ=0,¥,2939°°°; this expression is
seen to be finite for kz # 0 and the magnitude is only limited by

the fact that the conductivity of the material is not infinite
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ki
1im (COS(kh cos 6)) s COS[(2"+?)§*COSVGJ>
kjh>(20+1)7 €% kh -ilsin(2n+1)Z]sinh(k,h)

n=0,1,2,3,--+ and k2 =g >0

The magnetic intensity becomes

A san(w t - ~9
H¢(r,8 t) //.ﬂ

Yo (an —)r sin 6

-Jo(m0 E-s1n 6)[cos((2 n+1)g~cos 8)]

s1n[(2n+]) 5] sanh(k h)

X

The input current to the antenna peaks at the values of kh
given by kh = {2n+1)§-, n=0,1,2,3,°** . The explanation for this is
that the monopole can be considered as a simple extension of the feed-
line. The tip of the antenna would correspond to the open end of a
transmission line. Any odd number of quarter wavelengthsfrom the
tip along the iine toward the source would correspond to a point where
the impedance is a minimum {a point of series resonance) and the cur-
rent is a maximum. When Kkh = {2n+!)§-9 the feed point is an odd
number of quarter waveiengths from the open end of the extended trans-
mission line.

Taking the inverse Fourier transform of (6.6), we find the

radiated magnetic intensity for a voltage impulse of excitation
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]

b _. 2 2
\/(—C—sm 8)"- 1

3 0<T_<_%s1'ne

€ )
Hy(ri0,t) = [ ‘ )
¢ Ho m(en —t-’—)r sin 6

impulse a 0 ; elsewhere
excitation « r
T = - -E
w n
) (-1) ; 0<a <Zsine
n=0 a . 2 2
) \/('c' sin 6)°- a
0 ; elsewhere
- +_r_hy o _ 2nh
Q= t-¢ E“ cos 6) .
© n
4 -
) (1) Og_'rp_«:_%sme
n=0 [/a .: & .2 '
\/(c sin 8)°- T

0 : elsewhere

- r_nh _ Znh
T, =t g -5(1 + cos 9) c (6.12)

For a unit step of voltage excitation the radiated magnetic

intensity is the integral of the preceding expression.
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AExc1tatmn Voltage
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0 6 ct
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IA- Hy \
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A
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AN i i i i i i .
0\\1 2 4 6 c(t-"/¢)
\! b sin ©
Figure 6-6.

Rad1ated magnetic intensity of annular slot antenna
Ordinate: H H (/u 730 roan gasan 8)(volts)
Antenna Simensxons h=20 and a=.8b
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The magnetic intensity for arbitrary time dependence can be ob-
tained by convolution of the input excitation voltage with the impulse
response (6.12) or by convolution of the time derivative of the input
voltage with the step response (6.13). As expected, the radiated field
for the infinite monopole is the same as that for the finite length
monopole for the time interval before the current puise reaches the tip
of the antenna. The results, equations (6.12) and (6.13), are easily
extended to the infinite cylindrical antenna by letting h -« , The
radiated fields for the annular slot are found by letting h -~ 0 in
expression (6.6). It is also worth observing fhat the results (6.12)
and (6.13) are based on the assumption of no ohmic losses as the cur-
rent pulse traveis back and forth between base and tip of the antenna.
The attenuation can be found using the conventional transmission line
approach for small attenuations on good conductors. The determination
of the time domain fields in the case of a lossy conductor is com-
plicated since the resistance per'unit length is proportional to the
square root of the frequency. The incident pulse supplies the total
of the radiated energy, ohmic losses, refiected energy and energy
stored in the induction fields. The stored energy of the induction
fields is the source of energy for the second and subseguent pulses
launched down the feedline toward the source, the energy radiated after
time 2h/c, and the ohmic losses which occur after time 2h/c .

The theoretical results obtained in thi; chapter are in good
agreement with the experimental and numerical work of‘Schmitt, et al
[6], Palciauskas and Beam [10], King and Harrison [8], Burrell [34],
and Lamensdorf [14].
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Figure 6-7 is a comparison of the theoretical results obtained in

this work with the experimental results of Schmitt, et al. [6]. Reference
[6] states that the second pulse measured in the experiment should be
moved .74 ns toward the origin and its amplitude should be about 3/2 as
much as observed. This is necessary to account for experimental devia-
tions associated with locating the receiving probe a finite distance from
the antenna. In Figure 6-7 these corrections are applied to the second
and subsequent pulses.

It is also constructive to include the foliowing observation.
When a cylindrical dipole antenna is infinitely thin and center fed, it
{s common to consider it as an open ended transmission line that has
been spread or opened out. A sinusoidal antenna current distribution
with current nodes at the ends is assumed and the radiated fields are
obtained on that basis. If it is further assumed that the current at
the antenna feed point is equal to the current existing at this point
on an equivalent length of open ended transmission line, then the field
expressions developed from the assumed sinusoidal current distribution
are identical to the field expressions obtained in this work in the
limit of very thin antennas.

To demonstrate this point, we first observe that the radiated
magnetic intensity created by a fi?amentany sinusoidal current distribu-
tion of I sin k(h - {z[}) 1is [33]

i1e'er
Hy = 2§;r§7ﬁ—§-{cos kh - cos(kh cos 8)]
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The driving point current is Iosin kh . The other symbols have the
usual meanings consistent with their previous use within this chapter.
It is also common knowledge that the input impedance of an

open ended ibssless transmission line of length h is

L= -120c0t kh

where Z0 is the characteristic impedance of the iine. If we drive
such a line by a perfect voltage source V(w), the source current is
readily obtained by Ohm's Taw. Since the antenna driving point cur-
rent is assumed to be equal to the current which would exist at the
input of an eguivalent length of open ended transmission line, we
equate the driving point current to the source current. Therefore,
Isin kh = —ul _
and °
S A (")

‘o aizﬁcos kh

By substituting this value of Io into the field intensity equation,

we derive the general result for very thin antennas,

-V{w) o KF [1 - cos{kh cos 8) 4
2TZ_ v sin © c0s Kh - (6.14)

Hq)(r’ésm} =

Qutside of a discrepancy in sign, it is an easy. matter to show that
this general result reduces to equation (6.6) when the Timiting form
for small arguments replaces the Bessel functions of equation (6.6)

and the characteristic impedance of a lossless coaxial line is
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substituted, i.e.,

A
o 27

m!ot

A
o
o

The discrepancy in sign is the result of not specifying a
voltage reference point and it is not significant relative to the
| resuits.

The approximate transient behavior of a very thin dipole
antenna fed by a transmission line with characteristic impedance
Z 1is found by taking the inverse Fourier transform of equation

0
{(6.14).
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7. Conclusions

The results presented in this report provide a comprehensive
analysis of the open ended coaxial transmission line or coaxial wave-
guide antenna. The fields radiated from such structures can be com-
puted without a priori assumption of the aperture field. The current
reflection cee%ficient for the fundamental mode is found to be
-JO(ka} for ka << 1.

The conventional approximation for the fields radiated from
the coaxial aperture antenna gives good agreement with the results ob-
tained through the Wiener-Hopf method for thin radii in the feedline
{kb,ka << 1).

When the excitation is sucn that X << b-a, the radiation
pattern obtained by the conventional analysis method is shown to be
valid for the predominantly forward direction only. We determine that
the classical radiation pattern obtained by conventional methods should
be multiplied by the factor |cos 6]7/% for A -0 . The resulting
pattern is one in which the radiation at high frequencies is confined
to the forward direction as expected from geometrical optics predic-
tions.

A model for the cylindrical monopole or dipole antenna is
developed based on the observation that radiation appears to emanate
only from the base and tip of the structure in pulse excitation. This
model is used to determine the radiated electromagnetic field of
cylindrical monopole antennas for both harmonic time dependent and

arbitrary time dependent excitation voltages.
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The mathematical techniques required to obtain results using
this model are extremely simple and in most cases hand calculations
are sufficient. The results obtained show good agreement with experi-
ment and are useful for both analysis of the radiation field when the
driving voltage is given and for synthesis of a driving voltage to
produce a specific radiation field.

Future research can be aimed at removing the restriction that
the width of the annular region of the coaxial waveguide antenna is
very much smaller than the wavelength of the exciting source. The
results could also be extended to the thick antenna case (i.e.,
kb,ka > 1). Additional research effort on the transient behavior of
the cylindrical monopole could be directed toward characterizing the
effect produced by different end cap configurations, determination of
frequency limitations, accounting for dispersion and describing the
effect of higher order mode components of the aperture field on

the transient radiation.
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Appendix A - Analytical Determination that H Modes are not Present
on Structure

In this appendix we will show that H modes are not present on
the coaxial waveguide antenna excited by a TEM mode.
It is obvious that symmetry precludes excitation of all H modes except
Hon {n=1,2,3,---) modes.

By the edge conditions [19] (see Figure 2-1)
we know that the longitudinal current must approach zero. Thus the
sun of the incident current and the reflected (longitudinal) current
must be zero. Therefore the refiected current on each conductor has a
longitudinal component equal and opposite to the incident current. All
of the reflected current is longitudinal as it must be to completely can-
cel the incident current. To have HOn modes, a c¢ircumferential com-
ponent of current should be present on the structure. Since no current
source is available to launch a circumferential current, the Hon modes
cannot be present.

The above paragraph notwithstanding, let ﬁs assume that some
current is launched in the circumferential direction upon reflection
of the incident current. It is shown in Chapter 2 that the longitudi-
nal current in each conductor is egual and opposite. In keeping with
this, we assume that the reflected currents on inner and outer conduc-
tors must also be equal in magnitude and directed in opposite circum-
ferential directions. It will now be shown tha£ Hon 20 (n=1,2,3,-°°).

The applicabie scalar Helmholtz equation for this problem is
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2

2
[§;?-+ 2;2-+ %—%5-+ ke - izﬂ E¢(p,2,w) = 0 (A.1)

E¢(p,z,w) =0 at p=ab; z<0
Eé(p,z,w) =0 at p=0 ; ~=<z<w

with edge condition:
+
E¢(p,z,m) +0 at p=ab; z-+0

Fourier transforming (A.1) gives:

2

9 1 2
[P+ =
apz P

vo- 3 Eyloaw) = 0 (A.2)
P

Qfas
3]

Using the regions of Figure 2-2, with H, replaced by E, and

¢ ¢
the asymptotic behavior of E¢{p,z,w) as z - = , we find that

E, (p,0w), E, {(p,0,0) and E, (p,o,0) are analytic in the strip
% % 93

shown in Figure 2-4. Solving equation (A.2) with E, = E r

b ] E $
0 Toyt Tep * °
E, respectively, yields

93
E. = A ) A.3)
. Ky {ve) {A.3)
B, = BIy{ye) + CKylyp) (A.4)
2 i
Fod - 7 . 4
t% = DI, {vp) | (A.5)

(A.3) satisfies the radiation condition and (A.5) goes to zero at

p=0. At p=2a,
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+4

%

E;; (a,a,w) = E (a9asw)
3

E¢3(a,u,w) = E¢2(a,a,w) =0

dr o+ | _dp o+
taﬁg{pﬁq)z(p,a,w)] ; = afa{pE%(Qsa,w)]

E;3(a,a,w) = BI}(ya) + CK}(Ya)

or

523(3&,&} - B(I;(ya))

o
L=

K'l (vya)

K (va)
d - 8 _ + o
55{0E¢2(psa’w)]ic=a K;F?ET Ya E@g(ps&,w)g;rygy

From {(A.5) we have
+
g—{ - ( )] £¢3(a,a,m) Io(Ya)
p Pl = ya

0 ¢3 lo=a I'!('Ya)

where use was made of

E* (a,0,w)
@3 9 L s 4

D= Tra—
e

Subtracting (A.11) from (A.10) and using (A.8), it follows that

(A.6)

(A.7)

(A.8)

(A.9)

{A.10)

(A.17)

(A.11.1)
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d - d -
HloE, (psasw)]l - leE, (py0,0)]
T 03 p=a ® % p=a

K (va) I (va)
_ B + 0 0
* Ry Y el mEy e

Define the left hand side of the above equation as G (a)

£ (a,0,w)
6 (a) = - orbe + ’3 (A.12)
&0l K aT Tra) ‘
At p=b :
EY (b,o,0) = E (b,asw) (A.13)
3 %
E {b’asw) = E| (b,a,w) z 0 (A']4)
9 %
dr o+ d - o+,
QE (psasw)] = —"iQE (psasw)] (A-}s)
R e o=b
E;E(b,a,wi = BI,{yb) + CK;(yb)
or EY (b,a,0) = BI, (vb)
c- (A.16)
K76 ’

GLoE, (p,0u0)]| = yDIBI (yb) - K (yb)]
Y ¢2 p=b 0 0

= B bE¥ (b Kle) A17
= K;T;B?‘" -y ¢}( ﬁaiw} K;T?ET ( o )



droE ] b EY (b,0,) ,10) A.18
3‘5{9 ¢1 D,OC,GJ) p::b = -y ¢_] s Oyl W . ( . )
where we have used
E. (b,a,w)
A = W (A.]g)

Subtracting (A.17) from (A.18) and using (A.15) it foliows that

B

d - d - | -
35[@t¢3(p,a,w)] b - 35{95¢2(p,a3w)] b )

Define the left hand side of the above as E (a) . Then

E (o) = %:%;57 (A.20)
]

If we substitute (A.20) into (A.12) we get

o) Epylerme)

T _ Sag
& le) - Bl ymar T A a) (h.21)

By equating the values of C given in (A.16) and (A.9), it follows that

4 K, (ya) o+ ‘ Ly} 1I,(ya)
t¢3(a:@,wl = ""‘(“T ¢ (a,0,w) - B[K}(Yb} % (Ya}} K (Ya}

Upon use of equation (A.20) the above relation reduces to

1(va)
E;g(a,d,w) "‘(IB'}‘ E¢ (a,a,w) = i-(a}EK](:‘fa)I%(Yb)‘ 11(”{6)?(1(72))].

Substitution of this equation into (A.21) gives the companion equation:
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+
N

6 () - E(o) rvay T KGRIT TR (h.22)

From the definition of G (o) we note that it is proportional to
H. (a,a,w) - H. (a,o,w), and E (a) is proportional to H_ (b,0,w)
%3 %2 4
- Hz (b,a,w) with the same proportionality factors. By well known
2
boundary conditions we know the surface currents on the outer conduc-

tors are, respectively:

1
+
|
wm

-apx[HZB(a,a,w) - sz(a,a,w)]az 6,%

1
1

Jro]

i

32 x[H. (b,a,0) - H, (byo,w)]a
P 22

Z4 z ¢b‘¢

In this problem we have assumed that b-a << E%Q- and therefore the
parallel plate case is approached. Under these conditions with TEM
excitation, the currents on the plates can be taken as equal in mag-
nitude and opposite in direction, with a great degree of reliability.
Therefore G {a) = -E (o) and equation (A.21) becomes

E;g{a,asw)

G {a) = (A.23)
I](Ya)[K} (yb} + K'; {(va)l

Simuitaneously {(A.22) becomes

g {b,a,w)
6 (o) = — (A.24)
GBI, () + 1 (va)]

We may factor the denominator of the right hand member in (A.23) and
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(A.24), using the techniques of Appendix D.

Ky (D) [11(vb) + 3;(va)] = N (a)N"(a)
with  N(a) =N (<)~ (Ja|)" % & o=

with [Im a| > -k,

Similariy

I, (ya)[Ky(yb) + Ky(ya)] = W' (a) M (a)
with  M(0) = M (=)~ ([a])" % as a-e

with |Im af > -k,

It is also necessary to point out that G (o) ~ M s a e

This is determinable from the edge condition that Hz(p,z,w) Nzl

as z~>+0 at p=a,b .

1/2

Substitution of these factored forms into (A.24) and (A.23)

and algebraic operation yield the entire or integral functions (A.25)

and (A.26)
E; (b,asw)
&7 (o) W (o) = —m—
M {a)
+ \
Eé (a,a,w}
6} N (o) = —%
N {a)

{A.25)

(A.26)

Fach side of (A.25) or (A.26) is the analytic continuation of the

other side. Both sides of (A.25) and {A.26) are analytic in the strip

-k2 < T < kz . Since each side of (A.25) and (A.26) is bounded for
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all o, they must also be constant (Liouville theorem). Examination
of the asymptotic behavior of the above expressions shows that each
side is identically zero. E; (a,a,w) >0 as |a] »« , since
3 ,
E (a,z,w) >0 as z ~ 0". Therefore E' (b,a,w) = et (a,a,w) = 0 .
¢ @ 1 ¢3
Each of the coefficients A,B,C,D can be expressed by a Tinear combina-

tion of E; (b,a,w) and E; (a,a,w). This conclusion is evident by
3

1
observation of equations (A.11.1), (A.19), and the simultaneous solu-

tion of

E;B(asa,w) = BI,(va) + CK;(ya)

E" (b,a,w) = BI,(yb) + CK,(yb)
¢ 1 1

Hence E, , E, and E. are identically zero and E (p,z,w) does not
$1° 9 Pq )

appear in any region of the coaxial antenna structure.
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Appendix B.  Determination of Branch Cuts for Y

In this appendix we will develop the branch cuts in the com-
piex o plane that define the region of analyticity of Y , a multi-

valued function of «
y = Ja -k

Our starting point for the work in this appendix will be equations

(2.9) and (2.9.1):

2

d 1d 1 2
(—+=-3=-—5-7)H (p,o,0) = 0 (2.9)
352' o do ;2' ¢4
H {(p,a,w) +0 a&as p =+ (2.9.1)
¥

The solution to equation (2.9) satisfying (2.9.1) was found in Chapter

2,

Hy. (ps0sw) = Ala) K,(yp) (2.15)
91

The asymptotic value of the modified Bessel function [20] is known to

be
! x [t g”¥P > o
Ky{ve) V75 © as o
Hence
H¢ (psz,0) = i f Ala) e 1P e—%az d
1 Ao L

as p + (B.1)
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From the Sommerfeld radiation condition we know that the field inten-
sity must be an outward traveling or evanescent wave for large
r=Jopt+ z
Following the manner of Reference [21, p.20], we note that if

we require that

Re y >0 (B.2)
Imy <0 (B.3)

then the radiation condition will be satisfied by H¢i(p,z,w) . This
may be verified by examination of (B.1). The branch cuts will be
chosen in & manner which ensures that the conditions (B.2) and (B.3)
are satisfied.

The o plane is viewed as a twb—sheeted Riemann surface with
the sheets connected along the branch cut. In each of the sheets the
function vy 1is single valued. The sign of the function on one sheet
is the negative of the sign on the other sheet. The value of v
becomes discontinuous only if & branch cut in the o« plane is crossed.

tet us define the branch cut of v such that Revy >0 in
the top sheet and Re v < 0 in the bottom sheet. Thus the two sheets
are joined together by the curve given by Re v =0 .

The branch point is obviousiy k and we will, for computa-

tional purposes, take k complex
K = ki + ikz . k3 >> kz s k!,kz > 0

We may therefore write
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2.2 ks (o4 in)? - (k; + ikz)z

-
i

(0 - 1%) - (K5 - K5) + 2i(o7 - kyk (B.4)

5)

Note that Re y > 0 1in the entire top sheet, therefore if we
specify yz = re?e and vy = rg/zeie/z with 0 <6 < 2n , then
Re v >0 only if || <m . Thus the branch cut must be given by

8] =m or Re yZ 20 and Im yz = 0 . The branch cuts which divide

the o plane can be easily identified by examination of Figure B-1

and are seen to be a portion of the curve OT= k]kz .

Since the branch cut is given by yz = re'm it foi]ow; that

1/2€$ﬂ/2

on the branch cut y=r or Rey =0 . The graph (B-2) depicts
the branch cuts for the top sheet.

For the branch cuts in the bottom sheet, it is only necessary
to use the opposite sign of vy everywhere in Figure 3-2.

It is also worthwhile to state that for this branch definition

v= /iy e®  where g = AN
12 2
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T
0 S
2 Imy~=
Re y™= 0 Y
i

f.-.- ~~~~~ ~~“"‘~~
| .. -
i ™ “[

\ \

\\ “\
I A\ S

| |+
[~k Q
=N \ *
LY \
s N
[ Re % > 0
,! By >o
DReyz and Imy2<0

Figure B-1.

Regions of complex o plane

qV
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ire B-2,

Branch cut for multivalued function v

Ay
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Appendix C. Useful Expressions and Expansions

In the main body of this work,extensive use is made of ordinary
and modified Bessel functions and Hankel functions. Listed below are
explicit expressions, asymptotic approximations and limiting forms for

some of these functions [20,24] of integer order.

(i) Relations between modified and ordinary Bessel functions:

N 1 . 1 .
_ --?:-vm 7m G m
Iv(z) = e Jv(z e ) I (-m < arg z 5.24
1 %‘Vﬂi (]) %‘ﬂi T
K,(z) = 5mie Hy '/ (ze® ) (-7 < arg z 5_24

Hg‘)(z) = 9,(2) + 1Y (2)

12 (z) = 3 (2)-1¥ (2)

(ii) Wronskians:

1,(2) Kpq(z) + 1 4(2) K (2) =

Joeq(2) Y, (2) = 9,(2) ¥ q(2) = ==

(iii) Series:

O
T e e e

5y - )

%_ 22 {% ZZ)Z {é_ Zf..}s

2 7
an® @t ey

= ] -
JO(Z) i



v (2) = 2{ (an Z) + C} 3,(2) + £

(iv)

{v)
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2
)2

1. 2,2
3 @7)

17
(1!

Limiting forms for small arguments (when v is fixed and

J,(z) v (%—Z)V/T(v+1) s v f =1,-2,-3, "
Yolz) v ’1Hé])(2) N ngz)(Z) ~ %-ﬁn z

v (2) v - (@) v i) v - B B Re(v) > 0

I v p2)Vrel) s v 2R

Kg(z) N =N Z

(,(2) v g TS ™

Asymptotic Expansions (when v 1is fixed and lz] + =}
JV(Z} 2\]%%-{ces(z - %—vw - %&} + 0(?§T§ ; {jarg z| < m)

?Q(ZE x_!%;i{siﬂ(z - %’VH - zﬁ} + G{TgTé ; (larg zl < m)

“ ez o i N - ?Tx
iv(Z} i s (garg Z! <5
/2nz

) et s Uarsz <)

z>0):
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(vi) Derivatives:

(=8

EE[ZVI\)(Z)] =z I,_1(2)

—g—z[z“’%(\)(z)] =-z’ KV_](Z)

{vii) Recurrence Relations:

(2) - 1 ,4(2) = 21 (2)

Iv-% V1

A
K\)~1(Z) - Kv-ﬂ(z) T Tz K\)(Z)
{viii) Other Relations:
1 (2) = 1 (2)

K (z) = K

(z)
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Appendix D.  Factorization Procedure

The purpose of this appendix is to furnish a factorization pro-
cedure for the Wiener-Hopf kernels which arise throughout this work.
The factorization procedure used extensively in this work and developed
in this appendix was originated by Bates and Mittra [23]. The mathe-
matical development of this procedure is first presented and then it is
applied to the specific expressions to be factored.

We begin this appendix with a factorization of e“Yh with

v =\/az- kz using the well known theorems of [4].

Theorem A: Let f(a) be an analytic function of o = otit regular

in the strip t©_ < T <7, , such that f(a) < 6!0§”P , P >0 for
lo| + e« , the inequality holding uniformly for all T in the strip.

Then f(a) can be decomposed such that

fla) = F{a) + £ (a)

with
wotiC
P | Mle s weecren
woo{:icéaa
ot+i g
SR I f(8) . o< o
fla) = - 5 { a dB s t o <T<d<T,
—ootq ¢

where f+(d) is analytic in the portion of the o plane defined by
t>1_ and f (o) is analytic in that portion of the o plane de-

fined by T <1, .
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Theorem B: If 2n g(o) satisfies the conditions of Theorem A, im-
plying that g{a) 1is an analytic function of a , which is regular

and nonzero in the strip 1_ <t <1, and g(a) -1 uniformly as

+
o + = in the strip, then g{a) can be factored such that

g(a) = g {a) g7(a)

with
otiC
g (a) = exp Zig f Q"B§§8) B ; T <C<r<
~oti C
otid
g (a) = exp --Qg-;J %lds;x_<x<d<'c+
~ootid

The function g+{u} is analytic in that portion of the o plane
defined by t > t_and g {(a) is analytic in that portion of the

plane defined by t < 1 The principal branch of the logarithmic

+ -
function is used throughout. It is aiso worthy to note that if
gla) ~ T%T’ and n g{a) ~ -2nja| as Ja| > = , Theorem B can still

be applied. The integrals are convergent in the sense

T+Hit
Tim g [ 1d8
PTE O LTHig

1f f(o)and g{a) are even functions of o then

flea) = F(a) or f+<¢; = £ (-0)

and
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g (-a) = g7(a) or g (a) = g°(-a)

The function e"Yh , which we wish to factor is interpreted as

e N Vo= KT o oZ5iE or LA A S o? . Examine

wn gla) = =yh = -h(o?- kz)(az- kz)'1/2

The first factor is an entire or integral function of o . Therefore
we only need to decompose the second factor 1/y . Since vy 1is mul-
tivalued, we will use the branch cuts for the top sheet of the two
sheeted Riemann surface of the o plane (see Appendix B).
From Theorem A, we have
otic
£ (a) = ?l,_ (

dg )
1 ?
e JB%- KE(8-0)

The integration path for equation (D.1) is diagrammed in Figure D-1.

-kg <Cc<T (D.1)

The integral (D.1) will be evaluated by integration along a contour in
the upper half plane, which does not cross the branch cut located in
that half plane (see Figure D-2). By Cauchy's theorem the value of
the integral (D.1) is

9 ?
o) = —— - 777 | & (D.2)

Jaof- k Pi* Py Jsz~ kz(e-a>

The contributions to the integral from the semicircular portions of

the path at |B|+® are zero by Jordan's lemma.
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i ImB A

B plane
ika k
A
<
S~ Ref3
e ) e e
~ \\\\ -IC °a =~ >~
- AN X - -
\\u"ikz
-k
ko= ky + ik,

Figure D-1 .
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Figure D-2.

iImB

Figure D-3.

Ref
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For the limiting case of no losses, k2 *’O+, the path P]+ P2
is adjacent to the coordinates as shown in Figure D-3. Under these
circunstances the remaining integral of (D.2) is expressed as the

five separate integrals which follow:

K

0
e il by
w iy + k& (iy-a) 0 i vk x° (x-a)

- ire'® do 0 dx

+ 1im - + {
r>0 5 Varke'® 4 e27e(k re'® _ o - -1 k%= x7 (x-a)

idy

\/yz*' K2 (iy=-a)

By reversing the Timits on the last two ihtegra?s and evaluation of

the third, we can reduce the above set of integrals to:

o)

1
m

dy
) (x-0) sz- x§ 0 Ny 8 (y+ia)

A further reduction is achieved by a change of variable. Let

H
=3 |-
CZD‘**—-—;?‘T

x=ksindé and y = ik sin 6 . Incorporation of this change yields:
'n'/Z -joo

1 ds . };[ ds
m o ki1 o
0 k sin 8§ ~a ) k sin § -¢

Note that use has been made of the identity, sin(-iy) = -i sinh y .
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From Reference [20, p.78] we have the following integral:

\
/ 2 [a tan % + b] ( 2)
5177 arctan ~— 5 T/ ; (a0 >b
(a2-p%)'/ (a%-b%) 1/
j dz - %
a+tb sin z : [a tan %*’b _(bz_az)l/zj ( 2)
min 3(b”>a
(b4-a%)1/2 7 "a tan ;f_—+b +(b%-a%) /2 /

Through this integrai we are able to compiete the evaluation as fol-

Tows:
-
i .
5 - atan —g—+k}"2. - o tan 'gf“*'k -1
- arctan - arctan 3
ﬂ(azx kz)'i/Z [(a?_ k?)i/i . [(az_ k2>'I/2 .
{ (Ot2 > kz)
s -0
1,
_o tan S +k - (kB-o?)%72 —o tan S+ k-(kB-o2)%
- 1 n z - n 2
'!T(kz- onz)-‘/2 -0 tan g—*f'k‘i' (kz—ocz);‘é 0 - O tan -%—-r k+(k2-0?)])§ 0
\ ‘ 2
(k2 > of)
Since tan{-iy) = =i tanhy and 1im tanhy = 1 , the above reiation
y>re
simplifies to:
[ o | )
22 5772 "arctaﬁ(M)J s (o > S(Z}
W(OL - k } L '&2__ 5(2
§ )
: via+k - (K-al)® } —a+ k- (kK2 o2)1/2
7 7172 in - - n H
m{k"=a") / I:+"ioa+%< + (kz-dz};é -a+k+(k2-a2)1/2 y,

(k% > o)
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The trigonometric identity

_l::_g_,J

arctan z] + arctan 22 = arctan[
1% 2,2
172

- was applied to the top expression.

Recognizing the relation [25, p.62]

tan']z ?-zn[«Tmiflg—J

and applying it, we are able to achieve great simplification

i - {a+k) . 2 2
—-—ﬂ?inl?m} i {a” > k%)

(Of.+ k)} aZ}

y+lavky ¢

- £n£

2 and k2 > az . When

Note that the same result is found for o > k
the above is reinserted into (D.2), the decomposition is completed

and

o) = L1+ Lo fatk)
(o) Y 1+ - Qn{%~;—zaqr§y33
:_i pard - {C%'g'k
'ﬂ'\f {'*'Tﬂ Q’n[.\{ -+ CZ"i'k ]]
(at+k) + -4 x + (a- k%
QNEW—XE e Qﬂ[ P ]

The factorization of g(a) = e can now be easily completed. From

it

i

the above we have
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+ i + (o=
on g'e) = + B e

Because g(a) 1is even in a , it follows that

i

n g+(-o¢) wn g {a)

and

ihy y - (a+k)
= Rn[Y 1

n g-(a) (e +K)

Finally ]
, iy

) =g () me T e[ {ET (0.3)

This result is consistent with that of Noble [4, pp.20-21], and is

shown to be correct by the following:
ihy o Y+ (oc-k% - {(atk)
e T {Qn[v'— o=k 1+ 2n[y + (a+k§)}}

& Mg
e il

[}

g(a) = g (a) g™(a)
= oY (0.3.1)

where wnoz= njz| +1i¢

“m< o

The only possible singularity of g+(a) in the upper half plane is a
branch point singularity. It is obvious that this singularity is not
present and that g+{a) is regular in the upper half plane, since

substitution of #i|y] for vy has the same result. Similarly, for

g (a) »
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+ihdl . +ih i-ﬂ{fén e i¢] -h¢ L
T +i|Y] + (o-k)q _ ™ B ﬂ
e L= Tk = © " e

Theorem C: [23] Let G(o) be an analytic function of o in the

region t1_<a <1, with the following conditions:

1. G(a) is regular in the region 1_< o < T, -

Gla) # 0 3 G(a) = G(-a) (even).
hlal

e

3. Gla) v ca’ e” as |Rea] » where v and h are

real constants.

Then G(a) can be represented within the strip by

6(a) = 6" (a) 6 (o)

where G'(a) 1is analytic and nonzero in the half plane t > T_ and
G (a) s analytic and nonzero in the half plane 1 < T, - The

expressions for 6 (a) and & (o) are given by

8" (o) = 67(-0) = {/GTOT (1+ YV/%)

(87 (0) exp L an L2ty - 1) (0.4)

Wwith
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(a) -id

+ 1 F

B (a) = exp[g:,;-;- j gé?a dﬁ] o |Imaf <fdls | | > [d|

-e-1d (D.4.1)

(b)

F(8) = n(g%- k812 - v an(8%- k%)% - an c + n 6(B) (D.4.2)
(c)

v = (ag- kz}%/z with branch of Appendix B.
(d)

k= kot ik, 5 Ky >> K5 5 Kyoky >0 and Il <k, 3 T, 2k

We will now show the validity of the above theorem. We begin by observ-

ing that

. : m['&d -OLF(S} ~
B {-a) = exp [m ) GB]

o

If 8 1s replaced by -3 and use is made of the fact that

F(B) = F(-8) then 8$(-a§ becomes :

=004 g
+ - 1 oF{B8)dB
B (~a) = exp [z.ﬂ J{o 31B-0 ]
and =¥id
B (-a) = 87(a)

We next find the product
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B%(a) B7(a) = exp [zfﬂ f 0‘;52)05‘8]
C

where ¢ is the contour shown in Figure D-4. Observe that the asymp-

totic behavior of the integrand can be used to show that there is no
contribution to the integral from the vertical segments of the contour

at |Re Bl => » , By Cauchy's theorem, the value of the integral

exponent in the above expression is

2mi § (residues of the integrand, from the poles at

B=0 and B =

= -F(0)} + F(a)

- h¥+1’hk+2n[ G(O‘?ZV?_]
; G(G)(?'”‘g)

Therefo*re

8%(01) B {a) = G(a) EXPDW + Tnk]
6(0)[1 - —-23

From (D.4), we formulate

+, 0 - o2 V12 .
G (a) 6 {a) = G(O)(T - _) {a) B7(a}

exp!:my !%n[Y z (g ;;] + ﬂw Ln EY 7 (QIBJ - ”(hJ

Substituting for B+(a} B™{(a) and using equation (D.3.1), we find
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K
< d | o - <
O—p A ReB
T = -
M\\ eq
> > >
S -id
-k

Figure D-4.
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G+(a) G (a) = G(a) , which establishes Theorem C.
Precise knowledge of the asymptotic behavior of G+(a) = G (-a)
as |a] < within 1 > 1_ is necessary for successful use of the B
Wiener-Hopf method. As our next task, we will determine this asymptotic
behavior. Notice that B+(a) is bounded as |[a] » = , therefore by
letting |a| -~ in (D.4), we find that

. vh + (0-k)
G (-a) ~ (lal)v/z 4TI'm e1 %-£niY"(g’k}!

6 ()

Lo, 2
(Jaf)V/2 e T .gni 3 (D.5)

1]

for |a| e« within <t > t_. In the manner of [23] the factoriza-
tion formula of Theorem C will now be converted to a form convenient
for numerical work. In this development, we concentrate on changing

toonid

8+(a) = @exp {?%?’ J g%é%%;-dﬁ}
~o0- 7 d

to a more tractable expression.

Taking the logarithm and integrating by parts yields

w0-id
+ 2 oy dB
an B {a) = T f F(8) (§339 T
-c0=1 d
w-id
- Fi8) (B3] Ale) (B e
wcomid

where
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8h Bv 1 dG(B)

= + +
2n(k2-82)1/2

A(B)
omi(k%-g%)  2mi 6(g) B

If we Tlet 8 » -B , then
~oot+i d
on B (a) = j A(-8) zn(§§9% dg
ootid
This integral will be evaluated on a closed contour in the upper half

plane by the residue theorem. Therefore

B of integrand inside
contour )

gan B (a) = - i A(-B) an(1 + &) dg - 2mi | (residues at the poles

The path p and the contour are given in Figure D-5. The contribu-
tion from the semicircular path at |[B| + = 1is zero.

We now assume that

(1) G{a) has at most one branch singularity in the upper half
plane located at o = +k 1in the form y = (az- kz)]/z.

{(2) G{a) has only simple poles in the upper half of the a
plane, located at o = +p. with [Im pn§ > 1, 5 n=1,2,3,0 .0

(3) G{a) has only simple zeros in the upper half of the «o
plane located at o = z_ with [ Im z | > Ty me,2,3,0e

Examination of A{8) shows that its only possible poles within

- 1 dG(B) . . .
the contour are those of T GB) & - The poles of this function

occur at the poles and the zeros of G(B} . The residue contribution
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Figure D-5.

Hmué

Figure D-6.
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from the poles of G(B8) is (5%%0 and from the zeros of G(B) it

is (E%TJ. Since G(B) is an even function, when B8 1is replaced by

(-B) the contributions from the poles and zeros become the negative

of the above. We may now write

- [ AC-8) an(1+ B - T anl1+E4] anli+E
o n=1 Pn” m=1 m

]

+
an B {a)

Set
= (k2_82)1/2 - 1.(82_1(2)1/2

where the branch on the upper Riemann sheet is used (see Appendix B)

2 2)?/2

8 = i(ve- & 2.2z

=(k
Using this substitution, we have

/ T = ( { & = 3 7 - o
in B (aj } A{ S} ?;ﬂ(} + B)dﬁ j{qC(Uj 2”[5 m}du
p D
where

R N 1 4 2 2172
Clu) = 50+ 75y = 77 g L0 GU(KT-uT)

] {(D.6)

(see Figure D-6).

From Appendix B we know that on the branch cut (82~ kz) =0,
therefore (62- kz} is pure imaginary and the variable u 1s pure
real. So the introduction of the variable change maps the contour p
into a contour along the real axis. The contour p' must be in-
dented around any poles of the integrand which appear on the real

axis. The indentations are consistent with pole movement from the
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real axis if the medium is assumed slightly lossy. Note also that we
have accounted for a negative sign by taking p' 1in the opposite
directiag to the path which p maps into under the variable change.

Examining C(u), we note that the second term has a pole at

the origin, and the third term

1 4

i 2 2.1/2
om) S 72y )7

G((k"-u

2 2
- e 4 Lan (k%) 1/%)] =
could possibly have a pole at the origin, and at other locations along
the real axis, which follows from the fact that u 1is reai. The
contribution to &n B+(a) from integrating over the semicircular path

around the origin is

:2]-— [Ry- v} an[1 + g—]

where RG is the

tim u $Len 6(k%-i)1/4)] (D.7)
u-20
1 N
The remaining poles will contribute + 5 2 Rn(a} s where
n=1

R (a) = lim (u-p) Sl a((kZ-i®)/H)] {anl1 + =2
n u+p n u 5
n k™= u
where Py is the nth ordered pole of C{u) on the real axis.
We may calculate the integral along the straight line portions

of the path as
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f K(u) 2n[1 + —2—17 du
.)0

s-0t kz—u
where
K(u) = 2 - o [L(w) + L(ue™)] (D.8)
and
. L(u) = & Lan G((K%-u®) /4] (D.9)

The integrai is interpreted as a principal value type, and it is
denoted by the bar on the integral sign. The principal value of the
Togarithmic function is understood to have been used throughout.

in summary, we have found that

on B (a) = { K(u) a1+ Tdu+ MR -v) n[1+2]

8 K==y

n £
+ 7 TR (o) - L£M?+§ﬂ+z w1+ 2]
n=i n m=1 m

‘ + . .
and the value of G (o) can be written as

q L R 2 = o -1 -
§(a) =Ve(0) 1+ % 1 [+ m [1+ ]

n=1 Pn m=1 il

8

exp Why an[LZE (a—k)} - kn % K{u) anf1 + % 7dy
v - o=k} 2 I 5
5+07 - k=~ u

1 It
X 2'2 Rn(q) (0.9.3)
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If we perform a similar derivation in which we use B (o)
instead of B'(a), as the starting point, the result would be:

o0

on B (o) = f K(u) n[1 +
5507

- ]du+%—(R0-v) R,n[]+%]
k"-u

[+ ]

§ Ry@) + I an[1 - _—3 -7 anli - &
n=1 m=1 m

ﬁqma

Similar to (D.9.1), it follows that

R/2 _ o
(@) = AT (1 +H O 1 -2 1Y
n=1 Pr m=1 m
'ﬂh, (oa+k ?kh
x exp[ !zn(Y = (a+k) + . K{u) an[1+ 1du
§-0 K =-u
? n
+ -2~ 2 %(G) (0.9.2)

From (D.9.1) and (D.9.2), and knowing that G+(a} = & (a) , we

recognize that the factorization is:

R /2 =

§"0) = 67(-a) = 6(0) (1+H° 1 1+
‘ n=1 'n
= ihy +(a-k)q _ ikh
L0 e e -

o0

f 1o
+ ](- K(u) Rn[”l-?--—-l——l-—~]du * s ERn a])] {(b.10)

6»0 k¥ &
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To complete the theoretical portion of this appendix, we cite a
theorem which provides for the expansion of a class of functions into

infinite products [26,p.136].

Theorem: Let (o) be a function with its only zeros at 8758y,85,° ¢

where Tim a s infinite and let f{a) De analytic for all o
N>
Then f(o) can be expressed
<1§ éO it o
fla) = f(0) e n {i- E-}e : a 70 (D.11)
n=1 n ,

If f(a) 1is both even and entire with its only zeros occurring at

T8y ,%ay,tag, 0 e and 1im +a =+ 2T  then f(a) can be written

n - o n ‘-é— ’
f'(0 oF) oa
~ %0 ® o nmr o o “nm
® fla) = f(0) e I {] - a"-} e I (1+ 5——-‘) e (D.12)
n=1 n n=1 n

The exponential factors for the infinite products ensure convergence
of the separate products.

Consider

Thus,

(o]
Because Z lg- converges as n +« , the infinite product alsc con-
ﬁ:

n
verges as n -+



-160- ~
We will now apply the foregoing factorization formulas to factor

the expressions:

(1,0va) [K(vb) - Ko(ya)1}
and

{k (¥0) [1,(yb) - 1 (va)] }™'

kTaking the top expression first, we define

ey = 1 (va) = 3 k- o)
6w = K (vb) - K (va) = 1 BT (b Vid-od)

- Hé])(a\/kz-az)]

where use has been made of the well known relation between the modified
and the ordinary Bessel functions [20,p.370].
It is readily seen from (D.12) that

ica + 104da

T onm nm

i (]'l"'r——'-—'e
n=1 1 ni

L o z .
where a = xila | ; fo | =,}(4§%2~ K% iz, fis the nth ordered zero

of Joiz) and z, " (n - %&w as n -+« ., The value of ka must
®

#1(a) = g_(ka) n (1 - ?T—~TJe

be restricted so that {ani # 0 , therefore take ka << 1 .
Theorem C is used to factor G( ) o). .From the asymptotic

value of the modified Bessel functions, we have
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(Vo) n I el [ gl

- -al 1 -
z g }/2 e a,oc[ Jr’g [(%)5/2 eb/a - (;}5)}/2] as o + o
Thus = -% and h=a . From (D.9),

L) = Stan 6((/E-A V)1 Goon 1 388 ) -1l (w13

b H%l)(ub) +a H%j)(ua)
HéT)(ub) - Hél)(ua)

=

From (D.7)

d

EE-L(E){U} =0 , L{u) has no other poles on

the real axis, so Rn = {

R = 1im 4y
0 u->0

for all n .

Bya(D.S) and the analytic continuation Héz){ze'W1) = .g'VM Héz)(z)

K(E){u) B %'“ 2m

1 {-ng])(ub} + aH%i)(ua)
() oy O
H0 (ub) - H0 {ua)

o) () + al?(ua) :
T T2

i
= |

HéZ}(ub} - Héz){ua}

-§%+-2b[Y](ub)Jo(ua)-Ji(ub)YO(ua}] + Za{Yo(ua)Jg(ub) -Jl(ua)Yo(ub)]
[,(ub) - Jo(ua)}* + LY (ub) - ¥ (ua)]"

X
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Factorization formula (D.10) gives

6 @) = {Z i (k) - #{V (ka) 112 expl 2t anpia—t

o0

(ke f KDy anpr+ —2l 74u (D.13)
50t k™= u

: -1
X(a) = X" (a) X™(a) = {1 (ya)[K () - K (va)] }

Thus
ox()

X (a) = (D.14)

ioa/nm

(1)+ > o
G (o) Vﬁ;(EET.n§1 (1+ ?TEETJe

[H]

eX(“) is introduced in the "plus" function and e'X(a) in the "minus
function to ensure algebraic behavior of each of these functions as
{a| =, Note also that x{-aj = -x{a) since x+(~a) =y (o) . We
determine the value of y(o) from the asymptotic behavior of the
denominator of equation (D.14).

By (D.5) we know the asymptotic behavior of 6(1)+{a) is

in the upper half plane. The asymptotic behavior of the infinite
product in the denominator of (D.14) can be found from the well known

property of the gamma function [4,p.41],
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b
safan _ Coja TGt 1)

00
Il

o4
n=1 e QR;EJ ¢

& T

Introduce Sterling's formula,

i
p( - u_?— J '] .
r{o) ve "o or {1+ (120)"" + ---} as a»=

|arg a] <7
Combining these two relations gives the useful resuit
w ..{.}.. T‘?.' _l.@_
lim T h-}‘“ﬂ%’"‘bie-a” LErY (ledy cA
|afe n=1 a v a

X exp {g{} -C-2an i%?ﬂ} {D.15)

%

In (D.15) € is Euler's constant (0.5772 - . . ). Applying this re-

sult we find the asymptotic behavior of the infinite product in (D.14)

to be
o ;02 _% 0
Tim 1 (1 + TTQLT%G LUV exp{2[1-C-2n % + 11}
larg af<nw

By collecting the above resulits, we determine that

20,

{ny = g’ﬁ - i - g_a. 4 ';T}' ¢ okl B .
, + - | 1 1/2 .
and that x (a) = x (-a) behaves as |al as |a| =« 1in the

region of the o plane with 1 > -kz .
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Turning to the other expression to be factored,

Ko(rb) I (vb) - T (va)]

we define
#2)(a) = 1_(yp) - 1_{va) = 3_(b ViP=o?) - 0 (a/iP-c?
6 a) =k (0) = 1 E (b /kP-o)]

Using (D.12), we have

o . i ath,
2 o mry 2
Yl a) = [J (kb) - J (ka)] @ (1 = = e
o ) =1 aiami
© Tocath,
x 1 (‘i + T___O_(-____)em'ﬂ' 2
m=1 o]
where a_ = xifo [ ,
P Im2 2
|oml = (3;% -k and z, is the mth ordered zerc

. ra
of JO{Z} - JO\B-Z)

The value of kb is restricted to kb << 1, so that |o | # 0 .

The asymptotic behavior of the zeros of ZJO(Z) - JO(§~2)3 are
determinabie by considering the asymptotic behavior of the Bessel
function for large arguments and considering that the difference be-
tween the values of @ and b does not affect the magnitude. Differ-

ences between the values of & and b , however, cannot be neglected
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in phase factors. Through these considerations and trigonometry, we

find that the most rapidly varying roots are those given by

1, 21b
z > (m - 7 315 as m--o 3
- m=1,2,3,
Since

1)
‘c bH{ 1 (ub)
2,y _ d T TP R
L {U/ = U [13’%(3 Z)HU {.Ub)j ”—m
o ‘U

. d (2)
R = T1im u 5 (u)
o us0 du

i

G

(1) (2)
K(Z)(uj i 2- b . H (ub) H] (ub)
2mi H(1){ub‘ H(Z)(ub}
o

T T mub 2 2,
JG(ub) + Yo(ub;
@ v o1 y(Dpy1V/ 1by Y+ (ak) 1
G (o) =Lz 1 Hj (kb) expr nf okt 1 -

i
+ f K\2)§u§ anf1 + ol - du}
ot

Collecting the resuits, we get

ikb
2

{0.17)
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V(o) = Y7 (a) Y7(0) = {K (o)1 (4b) = I (@)

where
) olo)
o) = i §a+b2
{2y JJ (kb) - I (ka) z-f (1+5 g ) e .
® 1 (D.18)
By (D.5), we know that
621 (a) v Ja /4 e' s as |of » e

in the upper half plane and from the asymptotic behavior of infinite

products (D.15), we know

& i ,ath
1im I, o . _ﬁ—g -1/4 m(a+b)
I l W%(i + W}E lag EXP{—TQTT——{ -C
larg alﬂf
- an 2&%%2). + i %J}
1 .
: -~ (m s E) as -+
Therefore
+ +b { Zb I
o(a) = "‘(a b) 11 - !————)—O‘(SW j + —gf- i (D.19)
V2 as Jaf +» in > ko

and Y+(a} =Y (~a) v |a
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Appendix E - Radiation from the Infinite Cylindrical Antenna

In this appendix we shall determine the radiation from a hollow
infinitéscyiindrical antenna. An integral equation for the current on
such an antenna wi]} be formulated and solved. The fields will then
be determined from the current. The integral equation considered in
this appendix was first formulated and solved by Hallén [35,36]. He
was interested in the reflected current on a cylindrical antenna, when
the incident current wave comes from a source that appears to be an
infinite distance from the end. Although the integral equation is the
same as that found by Hallén, the appliication used in this appendix is
novel.

Consider Figure E-i, which is an illustration of the actual
geometry and 1ts equivalent representation, which is amenable to
analysis. Since the antenna is made of perfectly conducting material,

its surface is an equipotential and

EZ(?,t) = -y(t) 8(z) when o = a, ~© < 2 < ®
In the frequency domain this becomes

EZ(?,m) = -v{w) &6(z)
In view of the rotational symmetry, ét can easily be shown that

, -> o -y ki 82AZ(«F‘) ; Y
Ezir,w) = +%w[Az(r; + ;?"";;2"”J = ~v(w) &(z)

e “is the vector from the origin to a point on the surface of the
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AZ y4
|
| (¢
P'(a,9',2")
! ""’l P(a,¢,Z)
' ¢
ri=
...... + V(t) Be»/p
2a 2a
|
- Sl
2b

Figure E-1. Infinite cylindrical antenna and equivalent repre-
sentation using gap generator as source
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antenna and AZ(?) is the well known vector magnetic potential, which

> -+

satisfies the relation B =V x A
The symmetry of the structure also requires that AZ(?) = Az(z).
thus the axial component of the vector magnetic potential satisfies the

differential equation

2
9 Az(z) 2

—y— + Kk
dZ

i

. 2
A (z) 'i--%-—v(w) §(z) (E.1)

We also have from symmetry that Az(z) = Az(-z).

* The solution to (E.1) obtained in a straightforward fashion is

ik|z|
_ o o kv{w)e™
Az(z) = Cicos kz + C251n kz + m

From the symmetry condition that A(z) = A{-z) and the requirement

for only outgoing waves on the infinite structure, C1 = C2 =0 and

ik
AZ(Z} - kv(w)e-iz(}:’2 (£.2)

The vector potential will now be determined by an alternative fashion,
whereby use is made of the free space Green's function and the surface

current. The general formula is:
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In the case of the infinite cylindrical antenna with the obser-

vation point on the cylindrical surface, this general formula becomes

) 2% .
u . ikr
_ "o I(z") e Vo
AZ(Z) = T f o J{ = d¢'dz (E.3)
-0 O

where

r= V/(z-z‘)2+ 4a25in2(%é)

and ¢ is taken as zero. Since the vector potential is independent
of ¢ , the particular choice of ¢ is immaterial. Since (E.2) and
(E.3) are both equivalent expressions for the vector potential, they

may be set equal to each other. The results are

o0 2n . .
ikr ik|zl
2n r W
00 0
e o
= o[22 v eklzl (E.4)

0

where - < Z < ®

The equation (E.4) is valid for all values of z , since it 1is
based on the mathematicail model of the actual antenna structure.
However, in the actual antenna we observe that the current on the
feedline after t = 0 , the time when the incident excitation reaches
the z =0 plane, is & TEM mode wave. The current wave can be ex-

pressed as:

I1(z) = 1{0) e 1K | z<0
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I(0) 1is the magnitude of the current at the plane z =0 . In view
of the above, it is justiﬁ'ed to represent the antenna feedline system

with the following set of equations:

€ .
kz
2r . 2m /-9- v(w)e' s z>0
j e’ikl" Ho
0

7%- f dz' 1(z")
‘ ~c0 g(z) ;. z2<0

I(z) = 1(0) e~ 1kZ . z<0 (E.5)

We restrict the analysis to the consideration of TEM mode feedline cur-
rent only. The function g(z) for z <0 is unknown. The soclution to the
integral equation (E.5) is the current on the infinite cylindrical

antenna when there is an outward (from the origin) travelling current

wave on the feedline.

The current is now expressed in terms of its spatial Fourier

inverse
1z') = — [ e 1(0) da
s/?}f_gg
I{a) = I+(a} + 1 {a)
with o
. r 2 p
o) = —— | 1{z') 1% gz
/7§
0 a
I(0) = —— | 1(z') % gz
Vo
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Note that |[I(z')| <Ae as z -+« and |I(z')] <Be as

z » - where k2 is the imaginary part of the propagation constant.
I(o) 1is obviously analytic in the strip —k2 <T< k2 of the
a =0+ it plane. I+(a) is analytic in the haif plane =t > -k2 and
I7(a) 1is analytic in the half plane 1 < ky .

From (E.5) it follows that

0 )
I"(a) = —— [ 1(0) etz gtioz gp - 3 _L1(0)
2n 2 /2r (o-k)

for T < k2 . Additionally,

¢ (o) =

e
- »fz o V(w) oL
= 0 TorkT for T > k2

Upon putting these results back into (E.5), we obtain

é 27 v(w) eikz oioz 4

-

& |

o0 Zn

" _ ikr - s
frj gzt —— [e7192" 1(q) da{ & dpt = — [ e §(0) do
g_w /2n 2 0 Zr 4
or equivaiently

0 o] 2'{? N

. _— . ke

e et ute - U | e

ol P s m {C"‘k) g ’

[ /o0 d¥e) s 6 (o)) (E-6)
0

=00
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We digress at this point to find an equivalent form for

2r .
ikr
f EF"“ d¢' . It is well known that the free space scalar Green func-
0
tion in spherical coordinates satisfies (V2+ k2) G(F,7") = -s(r-r'),
and
IS [ (A
: e
G(T,? ) = EE' pr——y
[r-r']

In ¢ylindrical coordinates the Green function satisfies

2 . : i ') ' ,
{V + kz) G(p,p s¢-¢',2-2 ) = - §i259“2‘6(¢-¢ ) ﬁ(zaz )
and
; 1 ® 2 ek
G(pspﬁs¢'¢'sz'zi) = —“i- z e?m(é ¢ )
4n m=me
x j{ eTio(z-2") I_{vo ) K (vp,) do
In the above equations vy = (az- kz)?/z and p. is the
>
lesser V ; . ] o
{greater} of p and p' . These two Green's functions are equiva

tent three-dimensional representations. Therefore,

KPP e b e
e ol o im(e-¢') ~ta{z-z")
S L® 3{ e I.(vo JK (yp,) da
Pr-r'| = —0 E
and
2T e g -+ ) .
ik|r=r*i o ;
e o ~ta(z-z')
_{ S 49" =2 }(e I(re ) K (ye,) do
0 i?““if' l o0
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We now evaluate the above equation at p = p' = a and sub-

stitute it into (E.6).

[e=]

1 J dz’ fe“'“z'{z“(a) - H0) 5 4, je'iﬁ(z‘z')xo(ya)Ko(ya)ds

2 v2m(o-k)
= j g-i0z [ ) iviw) 6 {(a)] do (E.7)
2 Hoo (otk)

Interchanging the order of the integrations on the Teft hand

side of the above equation, and recognizing that

fe-%(a—s)z“ dz' = 2m8{o~R)

equation (E.7) transforms into:

2 [ [ o) - O 1 pai (va) alat) @
2 2 /2m{ o=k}
- ? -ioz 2me o iviw
- | et k—}fr 67 ()] da

Integration over the 8 wvariable produces the result:

[s+]

2 [ do e {[17(e) - 22O 11 (va) & (va)]

J k)

O e = ERL IO
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Let Io(ya) KO(Ya) be factored into the product L+(a) L™ (a),
where L+(a) is analytic in the half plane 1 > -k, and L (a) is
anéiytic in the half plane 7 < k2 .

After substituting the factored form into (E.8) we derive the
following result:

00

2 dee 1 () {I17(a) - "Eiligl"a L (o)

B ve2m(a-k)
_ 1 . WEO v(w) + G = 0
L™ (a) 3 M5 (k) ()]}

The integrand is regular in the strip -kz <7 < kz of the plane.

Since it must vanish, it gives the resuit

o

{ﬁ(a) - --—:‘?-I—-LQE——»} LY (a) = 6 (o) . 5 /\Trg@ v{w)
/7 (0mk) 207(a) YV % (o)L (o)

Multiplication of both sides by o°- k% yields the integral or entire

function
%ﬁ(a} E+(a3(a2_k2} _ ?I(U)ia'i'ké %.+<06} 22G:§G.§ ((}’.2“'5(2}
V2T L (o)

€ viwj(a-k) _
2V ()

Pla) (E.9)

The left hand side is analytic in the upper haif plane (T > -kz)9
the right hand side is analytic in the Tower half plane (1 < kz} and

each side is the analytic continuation of the other. We divert our



~176-

attention from (E.9) for the moment to consider L (a), L (o)
in their respective half planes

and

their asymptotic behavior as o » «

of regularity.
Earlier, we defined the functions

L™ (0) L(@) = I (ya) K (va)

By the methods of Appendix D, this factorization can be carried out

iaa

with the results
G+(3)(oa) JJOZkai n (1+ 118 l) e———
LM (e)= L7 (-0) = e m
RICY
+ (ok)y _ ika
2

*(3) (4 = [ %Hé”(ka)lvz exp[iqa? =y

K(Z (u) an[1 + -—-—L—--—-} du]
ﬂ"T

5’*0? kK== u
A2), v _ a z 1
KM u) = = [1 - ]

m mua Ji(ua) + ¥4 (ua)

- Ol.a i - - Ota + 2 1]:

P(a) T (1 -C lnif;r—i + 2“! ! 23

. z.7 2 | .

;aﬂ,é = (-fé- - K where z_ 1is the mth ordered zero of

50(25
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L () ~ {al']/a as |a| < 1in half plane T > -k, .

L™(a) ~ [o] 12

as |a| »= in half plane Tt < k, .

Before returning to (E.9), we note from the edge conditions
[21] that the current goes to zero at the terminus of the hollow con-
ductor. As I+(u) and G (o) represent transforms of current we can
deduce the asymptotic behavior of these functions for o -+ « by
examining the behavior of the respective currents as we approach the
ends of the antenna. By considering the antenna length to be finite
and changing the variable to place the origin at the terminal ends,
it is easily shown that I'(a) and & (a) vanish as o] >« in
their respective half planes of analyticity.

Application of the asymptotic behavior of the various func-

tions to (E.9) shows that

@

(@) 17(0) (o2-k2) - il%[(ﬂima)} <lo] as o=
H YeTT H

and
G () (0 k) . . /™0 v(w)(ak)| 2
- >t i/ = | < lal® as o+ |
L (o) e L7(a)
T < kz

From the extended form of Liouville's theorem,.P(a) is a polynomial
of degree less than or equal to one [4, p.38]. We may therefore write
Pla) = €%+ €Z(a—k)9 where C.s and @2 are constants to be determined.

By setting o =k 1in the left side of equation (E.9), we get
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_i210)k L'(k)

1 V3
Additionally,
b, = U a) T (a)(oek) + 1O L (@) (k)
ak " 72 77 (oK)

By letting o » « 1in the above expression, we find Cz =0 . Thus

P(a) 1is a constant.

From (E.9) and the value of P(a) just determined, we have

*la) = - —1L0) _ i21(0)k L¥(k)
/27 (a-k)  /Zr(of k)L (o)

Recall that I(a) = I+(a} + I {a), so the transform of the current is

i21(0)k LT (k)
il kO) L ()

I{a) = -

_i21(0)k L7(k) L™{(a) (£.10)
/27 (o2 -k) 1 (va)K (va)

Inverse Fourier transformation of the above yields

iz(o)i (k) { e'% L"(a) dao (E.91)

{z) = - :
T A ra)k bra)

It is also clear that if we close the contour i{n the upper half plane,

the integration produces I(z) = I{G)e-]kzg z < 0, as required.
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The vector magnetic potential can now be found from the general

formula,

A = -
2 2

z & m 0 !
of "TCCZ —(G) i
2 (a k%) g olyalk (ya)

o>

N + %
. i 1(0)k L7 (k) J dz' J( dB[e"TB(Z-Z')IO(a\/sé-kz )

of e_mz L (a) da
BB (va)K (va)

o '{0(3 \/52—§<2}K0(p J Bz-ké)L'(u)e"iBZ

;
g
_,i (“-K4)1_(va) K (va)

]

in, 1(0)k LT (k) T

2772

K>

x 3{a-8)

do

iu 1{0)k L7(Kk) ? ez & {Yp> L™(a)
e

e (oa®-k%) K (va) .

-0

This equation is valid for p > a , z > 0 . Note that the magnetic

flux density is given by



therefore the magnetic intensity is

e}

i)k L) $ eioz Ky (vp) L™(a) da
Hlpazow) = - 2 [ v K (va) (E.12)

OO

Equation (E.12) is exact for an infinite Tength antenna. If we assume
that it also holds for an extremely long antenna and employ the
methods of steepest descent as was done in Chapter 4, the resulting
equation for the magnetic intensity is given by

}:(O)ETKY' Jo(ka sin 9) L+(k}

i
2nr sin 6 (£.13)

H¢(p,z,w) = - \
L (k cos a)
Earlier we assumed that I(0) was the incident current which is
refiected from the discontinuity at the z =0 plane [8]. The re-
flected current on the feedline from pulse excitation is known through
experiment to approximate a reflected incident current pulse. From
the edge conditions for this structure it is clear that the current
on the outer conductor vanishes at z =0 . If the current on the
outer and inner conductors are tc be equal in magnitude and opposite
in direction, then the current on the inner conductor must alsc vanish
at z =10 , the point of discontinuity. We therefore conciude that a
puise of current is Taunched ontc the antenna and an oppositely
traveling pulse is launched back upon the center conductor of the feed
1ine. The magnitude of this current is assumed to equal the magnitude

of the incident pulse.
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If the incident field is given by equation (2.7) of Chapter 2,

N o v(w)
I(O) = -27\'/;; m
a

The negative sign is required since the reflected current travels in a

then

direction opposite to that of the incident current. Incorporation of

the above into (£.13) gives the final form of the magnetic intensity,

" - 0 v(w) e1kr Jo(ka sin 6) L+(k) (E.14
¢p,z,w m2 T sin 9 - -14)
Ho 3 L (k cos 6)
if
+ Y
Tim bk L 1

ka0 L (k cos 8)

then (E.14) obviously reduces to

€ ikr J_(ka sin @)
L /o vin) e o
= e | . E.15
H${Q,Z,w} . ug n b p sin o ( )

for an antenna with kh >> 1 and ka << 1.
To show the validity of this Timit we rewrite it from the ex-

pressions for L"(k) and L (k cos 8} ,

?k
- e 3
. mI_IE (i -T—T G*{?’)(k} V(=& cos )
m o
ka>0 ; cos 0y (-ika cos 8}/ fum) eH3)k cos ) e¥(K)

(- ﬂ—B—-r—-i



1

This final limit was investigated in Chapter 5 where it was shown to be

unity.

Tim
ka-+0

Tim
ka -0

exp

[~ o

L.

-.(S=D
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K@) (4) a1 +

exp

exp

- o

j

L5507

Kz(u) an[1 + —5—59§—§~Jdu
k-u ‘J

8

1;

1

- Co0s O

g Kz(u) a1 +

B

cos 6 +1 - (u/k)2

] du
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