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ABSTRACT

Models are developed for both multi—degree-of—fre’edom aero-
dynamic galloping and vortex induced oscillation of bluff structures,
These models are useful in the analysis of elastic structures exposed
to a steady fluid flow, | |

An asymptotic method, based on the approximation of Bogoliubov
and Mitropolsky, is developed for the analysis of the autonomous,
internally resonant, nonlinear differential equations produced by the
models, It is shown that the solutions of these systems can be divided
into two classes by the nature of the secular terms arising in the
perturbation equations,

A model for multi-degree-o_f—freedom galloping is developed by
modeling the aerodynamic forces on the structure as dependent only on
the relative magnituae and velocity of the flow to the structure, A
simple criterion for the stability of_ the zero solution is presented.
Examples are made with a noninerfially coupled system with the torsion
and plunge degrees-of-freedom and a cubic curve fit to the aerodynamic
coefficients, Examples show that the system is dominated by either
a torsion or a plunge mode except when the natural frequencies of
these modes are in certain integer multiples. In these cases the two
modes intefact strongly and they achieve first order l‘vimit cycles
simultaneously.

A model for vortex induced vibration of elastic structures is
produced from a control volume approach to the vortex shedding process.

The model features both fluid and structural oscillators, The model
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parameters are determined from experimental data by matching the
model response to experimental observation for the cases of fixed

and forced cylinder motion, A frequency entrainment effect is produced
by the model for an elastically mounted cylinder resonating with vortex
shedding. The resonant amplitude of an elastically mounted cylinder

predicted by the model is in good agreement with experimental data,
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I. GENERAL INTRODUCTION

Vortex shedding and aerodynamic galloping can cause large
amplitude vibrations in an elastic structure exposed to a steady flow.
If the structure periodically sheds vortices at a frequency near a
harmonic of the natural frequency of the structure, vortex shedding may
couple with structural vibration and generate a synchronous oscillating
force on the structure [1]. Vortex shedding has produced destructive
vibrations in stacks [2], marine cables [3] and launch Vehicles (4],
If the vortex shedding frequency is much greater than the natural
frequency of the structure the vortex shedding does not couple with
structural oscillations, however, the structure may respond to aero-
dynamic forces generated by an oscillating relative flow field, If
the structure vibrates slightly then the flow relative to the structure
will oscillate, The aerodynamic forces produced by the oscillating
relative flow can cause the amplitude of vibration to increase until
l_imited by nonlinearities in the system, These flow induced vibrations
are called galloping or flutter, Aerodynamic galloping has caused
adjacent ice coated power lines to arc [5] and vibrated aircraft to
failure [6].

The two mechanisms of flow induced vibration are illustrat‘ed in
Figure 1. The amplitude of vibration of an elastically mounted
rectangular section constrained to move normal to the free stream
is expressed as a funcfion of reduced vélocity. The vortex shedding
frequency for most bluff structures is given by fs =SU/D where fs is

the shedding frequency in Hertz, U is the free stream velocity, D is-
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the maximum width normal to the free stream and the proportionality
constant S is ordinarily near .2, Hence resonance of a structure with
vortex shedding is e%:pected near U/fD=5 where f is the natural fre-
quency of the structure. This is the first peak in the amplitude in the
figure. As the free stream velocity is increased beyond this point the
vortex shedding frequency becomes greater than the natural frequency
of the structure. The structure no longer resonates with vortex shedding
and the amplitude drops sharply. The vibrafions which érise near
U/fD=11 are due to aerodynamic galloping, These oscillations
generally will persist with increasing flow velocity,

Both galioping and vortex induced oscillation are explored here.
In Chapter III multi-degree-of-freedom galloping is investigated by
modeling the aerodynamic forces on the structure as dependent only
on the relative angle of attack of the fluid to the structure and allowing
the structure to move both normal fo the flow and in torsion. The
aerodynamic forces couple the torsion and plunge modes of oscillation.

In Chapter IV a model for vortex induced oscillation of cylindrical
structures is developed based on a control volume approach to the
vortex shedding proéess, The model has both a fluid and structural
degree of freedom, The model parameters are determined from
experimental data for stationary and forced cylinders., The model
predictions are compared with experimental data for an elastically .
mounted cylinder,

Since the flow induced oscillation of bluff structures is inherently
nonlinear, asymptotic techniques are necessary to analyze both mathe-

matical models, A method for the asymptotic analysis of autonomous,



internally resonant oscillators is presented in Chapter II. The asymp-

totic method is applied to the multi-degree-of-freedom galloping in

Chapter III and the vortex model in Chapter IV,
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II. AN ASYMPTOTIC TECHNIQUE FOR INTERNALLY
RESONANT AUTONOMOUS NONLINEAR SYSTEMS

2.1 INTRODUCTION

An asymptotic method is here developed for the analysis of
oscillations in a system of weakly nonlinear autonomous second order
differéni_:ial equations which are internally resonant. The asymptotic
method is based on the approximation of Bogoliubov and Mitropolsky
C1]. Order one solutions are assumed to be nearly harmonic at the
natural frequency of the system but with slowly varying amplitude and
phase,

Autonomous system herein are called internally resonant if
secular terms arising in the asymptotic series expansions for the
system response couple the response of two or more oscillators,
Infernally resonant systems can be divided into two classes by the
nature of the secular coupling terms, First, if the frequency of any
secular terms generated in the series expansions for the response of
one oscillator are functions of the frequency of the order one response
of any other oscillator, the system is called harmonically internally
resonant, Small changes in the natural frequencies can greatly change
the response of harmonically resonant oscillators, Second, if the
frequency of all secular coupling terms arising in the series expansions
for the response of each oscillator are independent of the frequencies
of the order one response of the remaining oscillators then the system
is called combined internally resonant,

A first order approximationtothe amplitude and frequency of

oscillation is developed for both harmonically internally resonant



systems and combined internally resonant systems. Examples are
given for one and two degree-of-freedom systems, The asymptotic
method is then applied to problems of flow induced vibration in Chapters

IIT and IV,

2.2 TUNIQUENESS AND STABILITY OF THE ZERO SOLUTION
A wide variety of dynamic structural systems including galloping

systems may be placed in the principal coordinate form [2]:
B, 400D, = €f;(p), By, +* "D By By * By 2.2.1)
i iti ity rae N 12 N T
i=1,N
where P; is a generalized displacement, € is a small parameter and
the functions fi consist of linear and nonlinear terms. The vector {
is defined as the vector whose components are fi. From the theory of

differential equations it is known that if £ is Lipschitzian, that is if

there exists a constant m such that

If (2)-£(y) | < m|x-y]| (2.2.2)

for each x and y, then Equation (2.2. 1) possesses a unique solution for
a given set of initial conditions, f is separated into linear and non-
linear components £ =£L+£NL' If the nonlinear component satisfies

the condition

|£NL(x)| .

lim =0 (2.2.3)
|}:l"0 |X|

and if the linear terms in Equation (2, 2, 1) have stable zero solution,



the zero solution of Equation (2,2, 1) is stable, Conditions (2.2, 2) and
(2.2.3) are always satisfied if f is globally analytic as is the case when
f is a polynomial,

A simple stability criteria can be developed for the zero solution
of the s-ystem (2.2.1) if £ satisfies the nonlinearity condition of Equation
(2.2, 3) and the natural frequencies of the oscillators are well separated. -
The set of principal coorvdinate oscillators are linearized for small
oscillatio‘ﬁs by expanding fi in a power series about zero and
retaining only linear terms,. The linearized anaiog of (2,2.1) then

becomes

) N of, of, |
pi+wi pi: Sz ‘5-5— p.+ —3—[;: pj (2.2, 4)
. ) .J ]
j=1 p=p=0  “p=p=0 |

The linear system (2.2, 4) possesses the solution

At

p,=P; e (2.2.5)

where Ei and \ are constants, Substituting this solution form into the

linearized oscillator set yields the following eigenvalue problem:

[ of of of of 1 (
2 2 1.1 1 1 — )
A AW ~eN g€z~ €Az -~E€x— °*°° P
1 8p1 Bpl sz 892 : .1
3f Bf . ° .
-g)\—i - e-—_z. . L] . - O
Bpl apl . . .
BfN 8fN 2 2 BfN E)fN _
—e)\a—r—'—ﬁ——- see ATHW _~EAmr— -Ex— P
Py 8p1 N 8pN 3pN N
.
»

(2.2.6)



Only the diagonal terms contain order one components, Thus if the
natural frequencies are well separated so that wi;éwj + O(¢) for all

i#j then the values of \ are determined from

9f. | of,
[0(1) terms:":)\z S R 10 ] 0%y @.2.7
1 1
E:E:O R:E:O

The zero solution is stable only if the real part of X is negative. Hence,
the system .Wi].]. have a stable zero solution only if

8f :

—é-f)-i— +0(e)< 0 (2.2.8)

p=p=0

for each i, Thus if each oscillator in the system has a distinct natural
frequency well separated from other natural frequencies then the zero
_ solution of the system will be stable only if each oscillator possesses
sufficient damping so that Equation (2. 2, 8) holds, However, if the
natural frequeﬁcies afe close, w, :wj + O(e) for some i#j then the zero
solution stability criteria is more complex. Each root of the polynomial
generated by setting the determinant (2, 2,.6) to zero must be generélly

explored,

2.3 FORMULATION

Oscillatory solutions to the system

o 2 .. .
pi+wi Pi = Cfi(pI, pz, pN, pl, pz’ -pN) (2. 2. 1)

i=1,N



are sought of the form

pi(t)zAi(t)cosGi(t)-l—euil(Al,A AL 0,8, 008 ))

2’ N 12

2 2 'Ry o0 s 8 e
+eTul (A, Ay, AL, 8,65, 208 )
m m
+euy (Ag, Ay, c AN, 8y, 6y, 208y (2.3.1)
where
eizgi[t-\yl(t)-\yz(t)- . --‘i’i(t)] (2.3.2)

gizwi+ O(e)

The form of (2. 3.2) using time shifts, ‘Fi, instead of the ordinary phase
angles was chosen,since it allows any 91 to be represented as a linear

combination of any other ej and all time shifts excépt Ui This

1
form greatly simplifies the manipulations required in the solution of
the variational equations. The absence of terms explicitiy dependent
on time form the right side of Equation (2.2, 1) reflects the fact that
the system is autonomous, Clearly, the solution is a function of the
relative phase between oscillatoré.

The fundamental assumption of the asymptotic analysis is that
for a su‘fficientlyAsmall value of the parameter ¢ the solution of Equation
(2.2, 1) is nearly harmonic but with amplitude and phase which vary

slowly over one cycle of oscillation, Ai and \P’i are assumed to be

order € functions of Ai(t) and ‘l’.i(t). Thus Ai and ‘i’i are order €Z (31.
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2.4 PERTURBATION AND VARIATIONAL EQUATIONS

The first derivative of P; with respect to time is taken to be

. . .1 m,m
p; = - WA, sinf +el +e+e i, (2.4.1)

i

Equation (2, 4, 1) requires that the following terms have been set to

zero forming the first set of variational equations [41].
O:Ai cos ei+Ai%(‘i'l+‘1’2+”+‘l’i) sin ei (2.4.2)

If the nonlinear functions fi are expanded in a power series in ¢,

fo5] e ) (o w2 | * 3590 | )+-° (2. 4.3)
6:0:’:1 J =0 J e=0

then Equations (2.4.1) and (2. 4. 3) may be substituted into the system
differential Equation (2, 2. 1) and powers of € equated to generate the

perturbation equations., The first set of perturbation equations are:

"1 e 1 oe .o
e(ti; +w;u;) = efi(Al,Az, Ay 095 92, SN)

2 2
+(_Ug_i -w, ) Ai cos ei

L] . 2 * * *
+W. A, sin ei—_W_iAi(‘if1+‘i’2+ ~-+‘i’i)cos ei (2.4.4)

where gi:wi-'_r O(e). Secular terms in the right side of Equation (2. 4. 4)
have frequencies near the natural frequency w.. These secular terms
will cause resonance of the perturbation equation and produce a
solution of order 1/¢, This solution is greater than order one and so

not a proper member of the series expansion (2.3.1)., These secular
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terms are removed from the perturbation equatiori and form the second

set of variational equations:

. 2. e : 2 2 1
-%Ai sin 6i+Ai_(£i (Y1+Y2+ . -‘PN)cos 91 = (__uli -0, ) Ai cos ei+ E:Hi (2.4, 5)

27'..AN’ 61: 2°

which arise from fi 0" The perturbation equation (2, 4. 5) is now
e=

1
free of secular terms and may be solved for u (Al’ AZ’ AN’ 81, 62, . 'GN).

1
where ,Hi (Al’ A B,, * -GN) represents the secular terms

The solution process may be continued with the second set of per-
turbation equations. The secular terms are cast into the variational
equation (2. 4. 5) to generate a higher order approximation and investigate
higher order effects, Or the investigation may stop with the first set of
perturbation equation. This limits the accuracy of the solution but it
does avoid the necessity of defining a suitable parameter €, In any case,
the order one amplitude and phase must be found from the variational

equations,

2.5 RESONANCE

The resonance character of the differential equation system
(2,2.1) is determined by the nature of the secular terms arising in the
perturbation equations, If these secular terms couple two or more
oscillators then the system is said to be internally resonant, If the
frequency of secular coupling terms is a function of the detuning
(_g)_i/gj for i#j) between oscillators then the system is termed harmoni-
cally internally resonant. If the frequency of secular coupling terms
is independent of the detuning between oscillators then the system is

said to be combined resonant.
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An example will clarify the difference between a harmonically
internally resonant system and a combined resonant system, Consider

the following special form of oscillator from the system (2. 2. 1): .

2 ' 2
Pt¥ Py = €pyP;
where

1, .. _
p1:A1 cos 61+eu1+ el_gl(t—‘fl)

1
P, = A, cos 62+ eu,+ =W, (t-‘l’l-‘l’z)

e2
The first member of the family of perturbation equations which are

generated from the oscillator equation is:

2,2 .2
AIAZ AIA

1 2
u;=—% cos 61+ 7\ cos(262+91)

.1 2
u.l+w1

2

AA
2 2 2
cos (2 92—91)+(2J_1-w1)A1 cos 91

t—7

* B 2 o
+0, A, sin Gl-gJ_lAl‘l’l cos 8,

If

sziwl 4 w1+O(e)

then the first term on the right side of the perturbation equva.tion is
secular, The amplitude of this term is a function of both A1 and A2

so the order one response of the system is coupled and the system is
internally resonant., The frequency of this term is independent of the
frequency ratio w, /w1 s0 the secular term does not produce harmonic

resonance,
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» When

2w2 “w=w +»O(e)

1

the third term on the fight side of the perturbation equation is secular,
The amplitude of this term is a function of A1 and A2 and the frequency
of this term is a function of W, and w, so the system is harmonically
internally resonant,

Small shifts in the frequency ratio (,1)2/(,0.)1 can change the third
and fourth terms, on the right side of the perturbation equation, from
secular to nonsecular. Small shifts in the natural frequencies of har-
monically resonant systems can alter the resonance‘ of the perturbation
equations and so greatly change the response of the system,

A necessary condition for harmonic resonance is

iw +jw2+--+qw =0O(¢€) _ (2.5.1)

1 N

where i, j, +*+*q are integers., This is shown by expanding each term
in the power series expansion for fi (Egn. (2,4.3)) in a harmonic series,
The harmonic series can only contain terms whose frequencies are
integer linear combinations of the frequencies Wys oot W Since

W, = wi-l— O(e) secular coupling terms which produce harmonic resonance
can only arise if the natural frequencies of one oscillator is nearly

an integer linear combination of the natural frecuencies of two or more

of the oscillators., This implies Equation (2, 5. 1).
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The frequency of secular terms is defined independently of order
€ changes in detuning using the order € arbitrariness in the definition
of Qi so that all secular terms arising in each family of perturbation
equations (those perturbation equations which determine the higher
order solutions to an oscillator) have the same freduency. This allows
the variational equations to be solved by averaging them over one cycle
of the secular terms, Since the natural frequencies of harmonically

resonant systems satisfy Equation (2.5.1) one or more w, are defined

as
Wt e +jOy gt +my o+t +qWn = 0 ‘ (2.5.2)
@_J.:wj j=1, ¢k-1,k+1, «.N

so that all secular terms arising in each family of perturbation

equations have the same frequency, If the system is not harmonically
resonant then all secular terms arising in each family of perturbation
equations have the same frequency independently of detuning so the__@i

may be defined as

=W, (2.5.3)

2.6 SOLUTION OF THE VARIATIONAL EQUATIONS
Once the secular terms have been cast into the variational

equations, the variational equations become

A cos 6i+£iAi(‘i’l+‘l’2+--+‘i’i) sin Gi:O (2.6.1)
, m
-w . A, sin 9.+A.w2.(‘I’ +¥+ . +‘§’.) cos @, = (wz.-wz. >A. cos 6.+> ekHlf
-1 i i1t 2 i i1 i/ i L i
k=1



- 15 =~

If the rate of change of the amplitudes, Ai’ and time shifts, ‘i’i, with
time are sufficiently small then they can be considered constant over
one cycle of vibration, The variational equation is solved by averaging
the equation over one cycle of vibration while holding Ai and ‘I’i fixed.

The ith equation from the set (2. 6. 1) is multiplied by -W.cos ei
and the ith equation from the set (2,6.2) is multiplied by sin ei . These

equations are summed to give:

:Z MHE sin g+ (w2 -0%)A, sin 8, cos 6, (2.6.3)
1 1 -1 1 1 1 1

Averaging Equation (2.6, 3) over one cycle of the secular terms gives

A, =-S./w. (2.6.4)
1 1 -1 .
where
m
S.(A., +eA., ¥ se¥ )= ) ek _[‘TIHk' de 2.6.5
(A A Y i) =) i 8in 8, d8, (2.6.5)
k=1 * °

and T, is the period of the secular terms, The ith equation from
(2.6. 1) is multiplied by w, sin ei and the ith Equation from (2.6.2) is
multiplied by cos ei' The equations are added and averaged over one

cycle of the secular terms to give
o . 2 .
P et =C /AW H(, -0 ) /e, (2.6.6)

where
i

mo oy
e k
Cy(A,, Ay, by + Yy ZT‘I HNcos8,d0,  (2.6.7)
k-1
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Ci and Si are independent of the time shift ‘i‘l since any ei may be
expressed as a linear combination of any other ej and the time shifts

¥ Moreover if the system is not harmonically internally

5 through YN .

resonant then the integration eliminates all time shift dependence from
the right sides of Equations (2.6,4) and (2.6.6),

By successively subtracting the jth equation from the j+1st
equation of the set (2.6.6) a set of 2N-1 equatio:_ns' are formed in the

variables A,, **A_, ¥, , >, ‘i’N' plus an auxiliary equation which deter-

1’ N 2

mines ‘1’1. These averaged variational equations are:

A =S /o i=1,N | (2.6.7)
i-1

. 2 2 .

¥, = C/AW (W, -w; ) /w, -z [Cj/AJ.QJ. o, -, )/gj ] i=2,N (2.6.8)
k=1

: 2

¥, =C /W AW, -w, ) /w, (2.6.9)

1" -AN, ‘l’z, . 'YN can be found by simultaneous integration of Equations

(2.6.7) and (2, 6. 8) with appropriate initial conditions. If the system is

A

not harmonically resonant the right sides of Equations (2.6.7), (2.6, 8)
and (2. 6. 9) are independent of all time shifts and equation sets (2,6.7)
and (2.6, 8) uncouple,

The frequency of the order one displacement of the ith oscillator

-

correct to order € is:

(2.6.10)

Let

Ai:_-(gi(‘fl_wz_co-lyi) (2.6.11)
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Aiis the frequency correction to the order one approximation of' the
frequency of oscillation, w.. Greater accuracy may then be achieved
in the order one solution by incorporating the frequency correct to
order € in the approximate solution,

Simple harmonic solutions are sought by setting Al through AN
and ‘;'2 through ‘I’N to zero and seeking solutions of Equations (2.6.7)
and (2.6.8)., If ‘1’2 through ‘Z’N

the frequency corrections are in the same ratio as the order one

are set to zero, Equation (2,6,11) implies

approximation to the frequencies of oscillation. That is,

A w
T (2.6.11)
i =i
Equations (2. 5.2) and (2. 6. 10) imply.
de de e
it e N _
ldt +Jdt +'°+E—EE-—O (2.6.12)

for some integers i, j, <+4. That is if two or more oscillators are
harmonically internally resonant then for simple harmonic solutions
the first order solutions must oscillate at the same frequency or
harmonics of some frequency.

It is not always possible to find simple harmonic solutions for
resonant oscillators. Gilchrist [5] in experiments with multiple
pendulums in free vibration found that internal harmonic resonance

was characterized by a beating response,
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2.7 STABILITY
The stability of periodic solutions is determined by Equations
(2.6.7) and (2. 6. 8). The periodic amplitudes and time shifts are

perturbed by small quantities §i and ;- Let

Alt)= ‘A’i(t)+ E.(t) i=1,N 2.7.1)
¥ (t) ='*Fi(t)+ni i=2,N (2.7.2)

where Ki(t) and _K‘Ti(t) are periodic solutions to Equations (2. 6. 7) and

(2.6.8). The system is considered stable if all possible perturbations
§i and n diminish in time, Substituting Equations (2. 7. 1) and (2. 7. 2)
into Equations (2,6.7) and (2, 6. 8) and retaining only first order terms

in §i and m; gives

%‘ 9A, g dA,
A+ — ) i=1, 2,7.3
. EJ N e S
j=1 y§  I=2 v T
=A A=A
.o ok S o¥,
= . _— . i=2 . .4‘
T]i 'le '8—'%; gJ+z nj T]J 1 , N 2.7, 4)
= v 372 v_¥
A=A A

In the case of simple harmonic motion Ai =0 for each i and ‘I’j =0
for j=2, «+« N and Equations (2. 7. 3) and (2. 7. 4) have solutions of the form

At
gi: ie ) (2. 7. 5)

Uil

At

n. = ie (2. 7.6)

1

3
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where -gi and -ﬁi are constant, Substituting Equations (2, 7. 5) and (2. 7, 6)
into Equations‘ (2.7.3) and (2. 7. 4) produces an eigenvalue problem. For
nontrivial solutions the determinant of the coefficién’c matrix must be

zero, Hence,

5A DA 9A. BA., HA

___._];._)\ _..._..._1_ s 1 —_._1. .c———!’-

8%, 8%, %N omy, 9Ny

BAZ aAZ . .

agl 852 . hd

: . . . =0 (2.7.7)

¥, 82-x .

5% M :

aYN e ® @ o & 4 0 o o 0 i}ﬁ-}l_k

85 My

evaluating the determinant produces a polynomial of the form

ZN-1

2N-2
A +a1X + -+a2

N-1

Nz Mayy =0 (2.7.8)

If the polynomial has only negative or zero real parts the perturbations
will remain constant or die with time. The criterion of Hurwitz gives
necessary and sufficient conditions that Equation (2. 7, 8) have roots with

only negative real parts [6l.

Consider the finite array associated with Equation (2. 7, 8)

1
a3 a, 3 1 0O see

10.0 (2/7/9)
5 % %3 %
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where ay is taken to be zero for k>2N-1, Then a necessary and
sufficient condition that all the roots of (2.7, 7) have negative real

parts is that the sequence

\
2
a1 1
a3 3y
; (2.7.10)
a, 1 0 |
a3 8 2
a a a
5 & 23 )

formed from the array (2. 7. 9) be positive. ‘

2,8 ONE AND TWO DEGREES OF FREEDOM
For a single degree of freedom the Equations (2.6, 7), (2.6, 8)
and (2.6, 9) reduce to
A=-s(a)/w | (2.8.1)
¥ = cla)m (2. 8.2)
where A is the order one amplitude of the oscillator and Y is the
associated time shift., Equation (2. 8. 1) may be integrated directly from

time t=t
o

t t -t
dA o
[ S(A) =W (2., 8. 3)

with the initial value of A at t=t_. Equation (2, 8, 3) is integrated using

the resultant A(t). The amplitude of the solution is independent of the
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time shift ¥ since the system is autonomous, Simple harmonic solutions
to Equation (2. 8. 1) may be found graphically by plotting A against A
and seeking roots‘ A=0, If the slope of this curve is negative at a root
A =0 then perturbations will diminish in time and the root is stable.

For two degrees of freedom, Equations (2.6.7), (2.6.8) and

(2.6, 9) become

A=, /u, (2. 8. 5)
AZ = -Sz/gz (20‘8. 6)
¥ =-C /A wZ-C /A w2+(w ~-w, )/, - (W, -w.)/w (2.8.7)
277272 17 7l=1 2 20 =2 =1 1= T
; 2

If the system is not harmonically resonant Sl’ SZ’ C1 and C2 are inde-

pendent of both time shifts ¥, and ¥, so Equations (2. 8, 5) and (2. 8.6)

1 2
are decoupled from Equations (2.8, 7) and (2. 8, 8).

If the system is harmonically resonant then Equation (2. 5, 2)
implies

iw1+jw2 =0(e) (2.8.9)

where i and j are some integers, w,y and W, can be defined by

w :‘!—(.U
- 1

1 2

(2. 8,10)

2 =%

so that the period of secular terms are independent of small shifts in
the natural frequencies W, and w,. SI’SZ’ C, a.nd'C2 are function of

AI’AZ and ‘PZ so Equations (2. 8.5), (2.8.6) and (2. 8. 7) may be solved
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independently of Equation (2. 8, 8) by simultaneous integration with
appropriate initial conditions,

Setting Al = .2 = .2 =0 and seeking roots of Equations (2, 8. 5),
(2.8.6) and (2. 8, 7) may yield simple harmonic solutions, The stability
of simple harmonic solutions is determined by perturbing the steady
values of Al', A2 and ‘1’2 by the small quantities §1, §2 and mn, respec-
tively and linearizing equations (2, 8. 5), (2.8.6) and (2. 8. 7) for small

perturbations, Solutions of the form

= A )

g].:g].e

gz = Eze)\t ? (2. 87 11)
IR

m=Te

are sought by substituting the set (2, 8, 11) into Equations (2. 8. 5),

(2.8.6) and (2. 8. 7). Expressing the result in matrix form yields,

—~

— ™ ~ - } '

aA1 9A, 84, ¥ .

351 BEZ 8?12 1 1

A, 9 oA

2 2 2 =

- L £ E -\ I3 =0 (2. 8.12)
8%‘1 agz anz 2 2

oY, oY, oY, o 7

E) E‘l 5E BT, 2 2

This eigenvalue problem will have stable nontrivial solutions only if
the polynomial formed by setting the determinant of the matrix on the
left hand side of Equation (2, 8, 12) to zero has only roots with negative

real parts., Setting the determinant of this matrix to zero gives



-23 -

3,. .2
-V LN L M, = 0 (2. 8.13)

where Il’ I2 and 13 are the first, second and third invariants of the
first matrix on the left hand side of (2. 8. 12). For negative roots of the

polynomial (2, 8, 13) the Hurwitz criterion requires

—Il>0

-I3 >0 ' (2. 8. 14)

2.9 SUMMARY AND DISCUSSION

An asymptotic method has been developed for weakly nonlinear,
autonomous, internally resonant oscillator systems, The method is
based on the approximation of Bogoliubov and Mitrdpolsky. Two classes
of solutions have been developed for internally resonant systems. One
class is valid for harmonic fesonance. A necessary condition for
harmonic resonance is that two or more natural frequencies of the
oscillators be integer multiples of a third frequency. The éecond
class of solution, called combined resonancé, is valid only outside the
bands of natural frequencies which produce harmonic resonance, The
two classes of solution may not match as the system approaches harmonic
resonance, Indeed secular terms in the perturbation equations may
cause the higher order members of the combined resonant solution to
become infinite as the system approaches harmonic resonance. The
harmonic resonant solution may not produce a useful approximation out-

side the harmonic resonance frequency bands since the amplitude and
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phase of the first order solution may not be slowly varying in time.

A stability analysis is de\}eloped using standard linearization techniques
to generate a eigenvalue problem whose eigenvalues determine if

small perturbativons will grow in time, | The criterion of Hurwitz gives
conditions that the eigénvalues have only negative real parts and per-
turbations will die with time,

The asymptotic method is useful in the analysis of multi-degree-
of-freédom systems which arise in flow induced vibration. For many
structures the nonlinear aerodynamic forces are small, Unfortunately
in aerodynamic galloping the model for the aerodynamic coefficients |
can generate a large number of nonlinear terms so that no closed form
simple harmonic solutions exist, Any simple harmonic solutions are
sought by»either numerically searching for roots to the averaged
variation equations or by directly integrating these variational equations
until a steady solution is found, The principal advantage of the later
techni.qﬁe over direct numerical integration of the system differential
equations is that it is more efficient. Numerical integration over one
period of oscillation of the system differential equations may require
as many as 50 time steps for an accurate approximation. The varia-
tional equations with slowly varying amplitude and phase have been
averaged over one cycle of the associated secular terms, These
equations can be integrated with time steps of at least one period of the
secular terms, Thus numerically integrating the variational equation
can be one or two orders of magnitude more efficient than direct

numerical integration of the system differential equations.
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-IIL. MULTI—-DEGREE-OF-FREEDOM GALLOPING

3.1 INTRODUCTION

If an elastic structure oscillates in steady flow the flow field
re‘lative to the structure also oscillates. The oscillating rélative flow
field produces a fluctuating component of aerodynamic force on the
structure that may tend to increase the amplitude of vibration. The
limiting amplitude, if any, is determined by ehergy dissipation in the
strucfure and the nature of the aerodynamic force. For sufficiently
.small amplitudes the aerodynamic force can be modeled as a linear
function of angle of attack. The linear model has proven very useful
‘Wi‘ti’l airfoil type cross sections where the flow induced vibrations are
called flutter. A linear structure susceptible to linear flutter will
have either a stable zero solution or divergent vibrations. If the flow
separates from the cross section of the structure the aerodynamic
force is nonlinear in angle of attack and the structure.is termed bluff.
The flow induced vibra_.‘_l:ioﬁs of bluff structures are commonly called
stall flutter or galloping. Galloping vibrations normally have stable
finite limit cycles. The multi-deg_ree-of—-freedom galloping of bluff
structures is the subject of this section.

The classic example of galloping is the vibration of ice coated
power lines in Canada [17. Ice solidifying on power lines tends to
form aerodynamically unstable cross sections. The low structural
damping of the power lines and moderate wind velocities can produce

very large amplitude vibrations perpendicular to the flow causing
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adjacent power lines to arc. The stall flutter of turbine blades has also
been shown to produce large steady amplitude vibrations both in plunge
and in torsion [2]. New steel frame structures have bvecome' progres-
sively lighter and more slender, so that aerodynamic vibration has
become a design factor, Marine structures such as oil rigs and ter-
minals are also susceptable to galloping. The high density of water
can produce a large fluid force even at the flow velocities comparable
to those of marine currents,

At the heart of the analysis of galloping is the quasi-static
assumption, It is assumed that the aerodynamic force on the cross
section in a flow at any time is identical with the force on the same
cr;)ss section in a steady flow at the same relative angle of attack and
flow velocity. Essentially the fluid is assumed to have no memory of
structural motion., The assumption has been found to be a useful ap-
proﬁimation as long as the vortex shedding frequency is much higher
than the fr.eqﬁency of vibration,

Analysis of galloping in the literature has generally been limited
to single-degree-~of-freedom systems, A variety of cross sections
including square, rectangle, stalled airfoil and angle section are known
to be susceptible to galloping [3],[4], [5]. In every case elastically
mounted sections have been found to achieve a stable harmonic limit
cycle for flow velocities above a threshold velocity., Multiple limit
cycles are possible. While the one-degree-of-freedom models have
shown good agreement with experimental evidence, they are inadequate

for multi-degree-of-freedom structures of practical importance.
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In the following discussion a model for multi-degree-of-
freedom galloping system is developed., The model is analyzed by
the asymptotic technique discussed in Chapter II. Simple criteria
for the stability of the zero solution and the threshold velocity are
determined as well as an estimate of the maximum galloping amplitude,
Examples using a cubic approximation for the nonlinear aerodynamic
terms and a two-degree-of-freedom noninertially coupled system show
the asymptotic analysis provides a good approximation for the system
response, When the system is not harmonically resonant examples
show that the system response is generally dominated by either a
plunge or a torsion mode, As the system approaches harmonic
resonanée the plunge aﬁd torsional modes interact strongly, small
éhanges in frequency may gi'eatly change the amplitude of the system
and the two modes lock into a single frequency with simple harmonic

vibration.

3.2 GENERAL FORMULATION

It will he assumed in the following analysis that bending-torsion
galloping may be represented by a three dimensional model in Which
the structural resistance to vertical and lateral bending and torsion
is represented by springs and dampers as shown in Figure 1. Two
dimensional flow is assumed to hold. This is strictly applicable to
large aspect ratio structures but mavy hold for relatively short aspect
ratios if the end effects are minimal,

The absolute displacement of each point of the cross section

is, for small 9,
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07

Fig, 1. Structural Model (dampers parallel
to springs not shown),
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X=x+mn6+¢§
v (3.2.1)
Y=y-86+m

The corresponding velocities are

5(:).{"‘ ﬂé
. (3.2.2)
Y (-]

= y - ge
X and Y are the absolute displacements. The displacement of the
shear center is given by x and y. 8 is the rotation about the shear

center, The €, M coordinate system is fixed in the body (Figure 1).

The kinetic energy of the section is
2. .2 22

1P 52,42 1 .2,.2, 1 s, oo 2.
Tzz_J‘A(x +7%) 0dgdn =5 m(x"+y%) +5 18745 _8x-5 &y (3.2.3)

where

1= ] (rf)oasan

(3.2.4)

A
[ noagan

m=f odgdn
S =
Yy YA

SX = IA EodEdn

o is the density per unit length over the cross section A, The potential

energy of the structure per unit length is

k.0 (3.2.5)
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kx’ ky and ke are the spring constants per unit length, The

equations of motion are derived by Lagranges equations:

L=T-V (3.2.6)
d (9L\ oL
af(m§>'m_=Qi (3.2.7

Qi is the generalized forces with respect to the generalized coordinate

q; and is obtained from virtual work considerations,

N :
5W=) Q,8q (3.2.8)
n=1
thus
Q. =F_
Qy:Fy (3.2.9)
Qg=Fy,

Fx’ Fy’ and M are the sum of aerodynamic and damping forces along
x and y axes and in torsion respectively. Applying Lagrange's equations

to Equations (3.2, 3) and (3. 2, 5) gives:

mx+S _6+k_x=F (3.2, 10)
: y x b4 ,
#-S B+k y=F 3.2.11
my-5 btkoy=F ( )

Ie+sy>‘<-sxsf+kee= ¥ (3.2.12)

M

It is convenient to place these equations in matrix form,

MI{x}+ [K1{x}={F] (3.2.13)
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where _ - ' - -
m O +S k O
y x
M]=] O m -S_ K] = k
+S -S I O O k
e y x - . G.J
(3. 2. 14)
F
{x}={y {F} F
8 . FM

[M] and [K] are the mass and stiffness matricies respectively.

Principal coordinates are sought such that

{x]} = {_Ej}coswjt (3. 2. 15)

by formulating the eigenvalue proble‘m

[_ij MM+ [K]_]gj -0 (3.2.16)

Nontrivial solutions exist only if the determinate of the coefficient

matrix is zero, This gives

wé(l-Sz/Im-SZ /Im)—w4(w2+w2 2_y? 2/Im w s /Im)
x y Uy te TSy
2, 2 2 w2 wZrwiw? w2 2 2
w =
+ »(w y X e+uuyuue) Y 9 =0 (3.2.17)
where the natural frequencies w., wy and Wy are
2 2 2
wx_kx/m wy..ky/m we_ke/I (3.2.18)

Since the mass and stiffness matricies are symmetric, the character-
istic equation (3,2, 17) has three real eigenvalues wJ. corresponding to
three vectors E’_J of (3.2.16), For a given geometry wj and _13'] are

found numerically,
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The set of coordinates

1
(x} -['E%P*] Ib, (3. 2. 19)
P3

will diagonalize the mass and stiffness matrices producing the system

w w2 e |
pi+wi P; = fi (3. 2.20)

where . -1 g -
i~ ([2'22P] (m][2'2e’]) [2'F'e’] fe)
The proceeding analysis can be directly applied té a cdhtiﬁuous
system by assuming a single spanwise mode for each degree of freedom,
The kinetic and potential energies are found by integrating along the
span to produce the total energies of each mode, If the generalized
forces are summed along the span and Lagrange's equations are
applied, thena system with the same form as equation set (3. 2,20) is
gene_rated. If multiple spanwise modes are used in the structural
model then additional oscillator equations will be produced of the same
form as Equation (3.2, 20) provided the mode shapes are orthogonal

over the span,

3.3 FORCES

The generalized forces are the éum of the structural damping
and the aerodynamic forces on the structure. The aerodynamic forces
are assumed to depend only on the magnitude anci angle of attack of
the relative wind, The steady values of the aerodynamic force may be

found from wind tunnel measurements. This assumption breaks down
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if the periodicity of the near wake associated with vortex shedding
approaches the frequency of vibration. An approximate condition for
the vortex shedding frequency to be well above the natural frequency

of the structure is [6]:

(3.3.1)

E RIS

U
wd >

U is the free stream velocity, dis a characteristic dimension,
normally the maximum width of the cross section normal to the free
stream and W is the natural frequency of vibration,

The relative angle of attack and the magnitude of the relative
flow are fequired to compute the aerodynamic forces on the cfoss
section, For a cross section in plunge the components of relative
velocity depend only on ¥ and U and are pictured in Figure 23.. For a
cross section in toi‘sion the reiative velocity depends on both 8§ and 6
and the relative velocity varies over the surface of the cross section
(Figure 2b). Choosing a _single characteristic radius R and angle v
defines a characteristic relative velocity for the cross section which
may approximate the net flow field. This approximation has proven
useful in o.ne dimensional galloping [2]. The alternative is to perform
a full range of dynamic tests to characterize the forces on the rotating
cross section. The relative velocity and angle of attack for a cross
section in plunge and torsion, using a characteristic radius, are shown
in Figure 2c. For a section in plunge and torsion the square of

the relative velocity and relative angle of attack are:

2 2 .2 .2

U =U +x 4y +Ré2+2Ré§r siny -2%6R cos y+20UR cos v (3.3.2)
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Fig, 2A, Translation,

Urol

RO siny Urel .
o Récosy .
y - y
2 > & — X
v B

Fig., 2C,. Translation and Rotation,
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1 6R sin y+y
U-xtRgcos Y

a=8-tan (3.3.3)

Certain small amplitude assumptions are useful in simplifying

U and &, The condition for the validity of the quasi-static assump-

rel
tion (Eqn, 3.3.1) implies Wd<.2U so that the maximum velocity of
the surface of the structure is much less than the free stream velocity
for vibration amplitudes less than the characteristic dimension, d.

If the translational and rotational surface velocities of the cross section

are small compared to the free stream velocity, in particular if

y/U| <.3
|2/U] <. 02 | (3.3.4)
|IR§/U] <. 02

as is consistent with both experimental evidence [31, [4] and the quasi-

static assumption then the linearizing approximations

U_,=U (3. 3. 5)
o= 0-R,/U-§/U (3.3.6)
R]. =R sinY

are useful. These approximations involve a maximum error of leés

than 15% and a maximum error averaged over one cycle of oscillation

of less than 8% of the peak values of angle of attack and relative velocity,
With the above assumptions, the aerodynamic and damping forces

per unit length are
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1 .2 .

FX:Z pU dCX(oc)—ch (3.3.7)
F =+ oU%dC (0)-c 3 '(3 3. 8)
y 2 y yY T

1 .22 .
FM =i P d CM(G‘)'CGG (3. 3. 9)

p is the fluid density, Coo Cy and 4 are the viscous damping coefficients.
The aerodynamic coefficients Cx’ CY and CM determine the net aero-
dynamic forces on the cross section parallel to the x,y axes and the

torsional moment respectively. These coefficients are defined by

Cx = CD-HI,CL

CY: CL-G.CD

CM:CM

CL’ C and CM are the aerodynamic coefficients defined in the cus-

D,
tomary airfoil sense and are the coefficients of force perpendicular
and parallel to the free stream and in torsion respectively. CX, Cy

and CM‘ are ordinarily expressed as polynomials in the angle of attack.

3.4 STABILITY OF THE ZERO SOLUTION

Since the aerodynamic pressure on the cross section increases
with the s quare of free stream velocity and the structural damping is
independent of free stream velocity, a threshold velocity may exist
below which the damping exceeds the destabilizing aerodynamic force
and the zero solution is stable., The determination of the threshold
velocity is a linear problem analogous to finding the flutter speed in

classical aerodynamic theory.
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The aerodynamic forces are ordinarily analytic in angle of
attack so the stability of the zero solution is determined by the linear
terms in Eqn, (3.2.20). The single-degree-of-freedom case was
analyzed by Den Hartog [4] who produced a simple single stability -
criteria, The analysis is considerably more complex for multi-degree-
of-freedom systems, The Routh-Hurwitz criteria may be directly
applied to the eigenvalue problem produced by considering the linear
terms in Eqn. (3.2.20) to determine conditions for small oscillations
to grow. This approach has the advantage of directness but generally
requires exploring the roots of a six-order polynomial so physical
interpretation is difficult [57. A second approach is to place the
oscillator equations in normal coordinates and then apply the Routh-
Hurwitz criteria., If the natural frequencies of the normal modes are
well separated and the sum of the damping and aerodynamic forces is
small then this procedure produces a simple approximate stability cri-
terion which ‘is outlined in Section 2.2. This criterion can be expressed
simply in closed form if the system is limited to two-degrees-of-

freedom as will be shown in Section 3.6.

3.5 AN ESTIMATE OF THE MAXIMUM AMPLITUDE OF GALLOPING
If (1) the system response can be well approximated as simple
harmonic, (2) the velocify at the surface of the cross section remains
small in comparison to the free stream velocity, (3) the system
possesses some damping, then a simple estimate of the maximum
amplitude of galloping is easily produced. The aerodynamic lift, drag

and moment coefficients of bluff structures are bounded, while the
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viscous damping force increase with amplitude, Hence for fixed free
stream velocity there exists some amplitude above which the energy
input to each oscillator per cycle by the aerodynamic force is less than
the energy dissipated in damping. The oscillator cannot maintain
oscillations above this amplitude, An estimate of the maximum
amplitude is found by equating the energy expended in damping to the
maximum energy that may be input to an oscillator by the aerodynamic
force,

The principal part of the displacement of the normal coordinated

is assumed to be simple harmonic:
Piz Ai cos (wit—cpi) _ (3.5.1)

Ai is the amplitude of the normal mode and w, is the frequency of that

mode, The damping force is:

¥ -ciwiAi sin (wit-cpi) (3.5.2)

d:
<, is the viscous damping coefficient of the ith normal mode, The
energy extracted from the oscillator by viscous damping per cycle is:

2w /w.
o, 2
E,4= L F B,dt=mc.w. Al (3. 5. 3)

The maximum energy input to the system by the aerodynamic force is:

E :-Zl-pUzdf l(ci) 5, dt < pUZdAi(Ci) (3. 5. 4)
o max max

where (Ci)m is the maximum of the aérodynamic force coefficient
ax

for the mode of interest, For energy balance

E =E_ (3. 5. 5)
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(),
( )max e W, (3.5.6)
If the oscillator is limited to the plunge then:
Z /p=t%n (c ) /up (3.5.7)
y y y\ y/max "y

If the oscillator is limited to torsion then:

A, Un( )max/n'ﬁe (3. 5. 8)

Equations (3, 5. 7) and (3. 5. 8) have been nondimensionalized in
terms of the following dimensionless variables which have proven

useful in flow induced vibration:

U U C Ce

d W

y wy 8 wed, y mey 82T 0
2 4 R R.w A
_pd_ _pd_ __1 __1°78 x Y
e Zm PeT 2 i Ty = W Ay =g

ﬁe and ﬁy are the fractions of critical damping of plunge and torsion
and are called damping factors, UY and Ue are reduced velocities,
ny and n, are mass and inertia ratios.

The estimate for the maximum amplitude increases as the square
of the free stream velocity and decreases with damping and frequency,
If the damping goes to zero, the estimate goes to infinity., However,
investigations of single degree-of-fréedom systems have found the
solution is bounded reg#rdless of the presence or absence of damping

due to the nonlinearity of the aerodyhamic forces at large angles of

attack,
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3.6 SIMPLIFICATIONS DUE TO UNCOUPLING OF LATERAL
DISPLACEMENT FROM PLUNGE AND TORSION

Vibrations parallel to the free stream flow are decoupled from
torsion and vibration normal to the free stream flow if the lateral
position of the center of mass of the section coincides with the shear
center so Sy= 0 (Fig. 1). Setting Sy= 0 the torsional and plunge oscil-

lator equations become
as . 1 o
my—SXe+kyy:E oU dcy—cyy (3.6.1)

-8 §+10+k 0 =5 1 outdlc YN (3.6.2)

In order to place the left sides of these equations in principal coordinates

the associated eigenvalue problem must be solved:

2

2
T S {g} =0 (3.6.3)

+S wz k -Iw2
X 4]

The characteristic frequencies are:

1/2
28 2 rula{ (ol +we) 4w u(1-8% /1m) |

1 5 = (3.6.4)
Z(I-S /Im)
x
. The characteristic vectors are:
K1 1
_T_'l = __'I’l = (3.6.5)
1 1 2 K2
where 'Sx w% ‘Sx wg
K17 2.2 27T 2.2 (3.6.6)
y 1 B 2
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The principal coordinates are defined by

y K 1
l }: pI{ 1 +p, ] (3.6.7)
8 1 IKZ

|

The oscillator equations transformed to principal coordinates are -

2 : 0 o 2 2 o °
L2 Kl[. 5pU dcy—cy(K1p1+p2):|+ [ 5pU de-ce(p1+K2p2):|

p,+W. P, =
111 - mK3-25_K 41
. . (3.6.8)
50U2dC -c_(Kp,+6, WK, [.500%d2C_~c (8 +K,b,) |
Bytwppp = e S 22 (3.6.9)
: ' m-25_K_+IK
x 2 2
The net angle of attack is
a=p+K,Py-R (B +K,5,) /U-(K; B, +5,)/U (3.6.10)

For small oscillations about the equilibrium position
a=y=0=0, the aerodynamic forces are linearized :a terms of the

local tangent at =0,

oC. h
CY_ o | a
u,:O
? (3.6.11)
oC
C,, = M o4
M~ da I
o=0
./

Substituting these into Equations (3.6, 9) and (3.6, 10) produces a linear

problem which determines the stability of the zero solution, This

problem was treated in Section 2,2, If the natural frequencies of the

normal modes are well separated, the zero solution is stable as long
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as the net damping coefficient of each oscillator is sufficiently positive.
Assuming W, £ w, + O(e),where € is a small barameter discussed in the
following section,then the threshold velocity is determined to order ¢
by requiring that the sum of all coefficients of f)l in Equation (3.6, 8)
and the sum of all coefficients of [’)2 on the right hand side of Equation
(3.6.9) be zero, This gives two criteria. The threshold velocity for
the onset of galloping is the minimum c;f the individual thresholds,

The threshold velocity is the minimum of:

' 2
e -2Cy—2K2C9
‘ 8C, 5C
(pd Rle“) dKz'a_&_‘ * Ba
G.:O G,:O
Uihreshold = ™l < > (3.6.12)
’ -2K-c -2c¢
17y 8
5C 8C,
pd(R1+K1) K 52 , +d = ‘
\_ =0 =0

If the center of mass coincides with the shear center then
SX:Sy = 0 and the stability criteria reduce to the den Hartog relation,

The threshold velocity is the minimum of

( —ZCX da
pd 8C
Y lq=0
Uihreshola = ™in < (3.6.13)
-2cq da.
2 o
pa°R, "M 0
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3.7 ON APPLICATION OF ASYMPTOTIC NONLINEAR ANALYSIS
The accuracy of the asymptotic analysis is a function of the sum
of the magnitude of the aerodynamic and damping forces compared to
the linear inertia and spring force terms in the oscillator equation,k
While it is not necessary to define a small parameter ¢ if solutions are

limited to first order, nevertheless such a definition is useful,

The linear terms in the sum of the structural damping and aero-
dynamic forces are proportional to both the slope of the aerodynamic
coefficients and the damping factor, If the small parameter € is defined
as the minimum damping factor required to produce onset of galleping
then € is proportional to the linear terms in the aerodynamic force,
This definition of € is useful in stability analysis and in estimating the
bandwidth of frequencies containing the harmonic resonant frequency

 band, If the shear center coincides with the center of mass then

9C
n U 5o
Y Y a a:O
e:minJ (3.7.1)
9C
M
naUsT) 55
=0

€ increases with the ratio of the mass of the fluid displaced by the
structure to the mass of the structure and with increasing reduced
velocity., The density ratios and € are apt to be small for most bluff

civil engineering type structures oscillating in air. However, if
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the construction is sufficiently light as is the case with aircraft or
the fluid sufficiently dense as may be the case with marine structures,
then € can become large and the asymptotic method may not provide

a useful approximation,

3.8 EXAMPLES

The nonlinearity in the system and hence the complexity of
solution comes from the curve fits of the nonlinear aerodynamic coef-
ficients. Polynomials as high as 25th order in angle of attack have
been used to approximate the aerodynamic coefficients [8]. The
complexities introduced by the many nonlinear terms in a high order
polynomial curve fit forces numerical solution with a necessary loss
in physical understanding for the effect of various parameters on the
system, A low order (cubic) curve fit has been used in the examples
which allow some closed form approximate solutions, It is felt that
this simple approximation will predict the gross phenomena that
could be observed with higher order curve fits,

‘The prototype system used for the examples is the right angle
section shown in Figure 3. The aerodynamic properties of this section
have been determined by Slater [8]), and are shown in Figures 4 and
5 along with the cubic approximations., The shear center of the section
is located at the center of gravity so there is no inertial coupling.

The section is symmetric about 8=0, A cubic polynomial
curvefit composed of odd powers of the angle of attack was obtained
by the least squares technique, The polynomial fit is a good

approximation to the data points for angles of attack less
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Fig. 3. Right Angle Section Model (dampers
parallel to springs not shown),
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Coefficient of Right Angle Section,
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than .15 radians, The characteristic dimension, R sin vy, used

to approximate the effect of torsion on the flow field is taken to be one
half the width of the section normal to the free stream. A more precise
estimate would require dynamic tests. It can be shown that the

limiting amplitude of a one-degree-of-freedom torsion oscillator with
increasing flow velocity and a cubic fit of the aerodynamic coefficients
is independent of the characteristic radius, This indicates that the
imprecision of the estimate of this parameter should not greatly
effect.-the results,

The asymptotic technique outlined in the first section was used
in the solution of the simultaneous oscillator equations. The solution
is limited to first order, Examples are limited to two-degrees-of-
freedom with torsion and displacement normal to the free stream

velocity,

3.8.1 Exiample Formulation
Since the system is not inertially coupled the differential

oscillator equations are immediately in principal coordinates:

w 2 . . 2 3
Y+L0yy:—cyy/m+pU (-a1a+§1a )‘/Zm (3.8.1)
Brule-c é/I+pU2(-a atb &3)/21 (3. 8.2)
9°=Cp 2200, - 8.

a5 2,, b1 and b2 are the aerodynamic coefficient curve fit parameters,
cy and cg are the viscous damping coefficients, y and 6 are expressed

by asymptotic expansions to order e,

y:Aycos §y+€y1 (3.8.3)
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e:Aecos §e+€61 (3. 8. 4)
where

® = t-Y

v Qy( 1) (3. 8.°5)

So=wo(t-¥,-¥,) | (3.8.6)

The angle of attack to first order is

o= e-Rle/U-;‘r/UzAe cos §e+ngeAe sin @e/U+gJ_yAy sin @'y/U (3.8,7)

Ay’ A, Y. and ‘1’2 are slowly varying parameters, The perturbation

61

equations are generated by the technique outlined in Section III, The

perturbation equations are:
ey +ew2 = wzd[m sin® +m. cos ® +m_ sin® ,+m, cos @
e A D 2 N D ) y' g SinEgtmy 8
+mg sin 3 @y+m6 sin3 S§e+m.7 cos 3 Q)B
- @ - - -
+mg sin C Qy)+m9 cos (2@e @y)+rn10 sin (2§9+§y)
+m, cos (2§6+¢y)+m12 sin (2<§y—§e)+sml3 cos (Zéy-ée)
tmy sin(2§y+§e)+ml5cos (24>y+@e)] (3. 8. 8)
ed +€UJ26 —wz[n sin? 4n,cos? +n,sind +n, cos ¢
1 871 " —yL"1 y 2 y 3 8" 4 6
+ng s1n3‘§y+n6 sin 3@9-:—117 cos 3§>e+n8 sin (2@6-@Y)
+n9 cos (2@6-@y)+n10 sin (2@9+§y)+#1 ] €08 (2§e+§y)

+n,, sin (2<I>y-<§e)+n13 cos (2@y-§e)+n14 sin (2@y+§e)

+n) 5 cos (28 +8 e):\ (3. 8. 9)
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where .- . )

- —3 2 — .2
=28 A +n U | -a,A +b (3A /4U+3A A%/2
ﬁvy y yL 17y 71 y y Ye/

2— 2 .
+3r2AyAe/U§>]+Ay/ﬂy

2
mZ_A (—’Y y /w -A ‘1’1

} 3.3 A2
m3_nyUy[-a1r2Ae+b1(3r /4U +3r, e/4

—2 2)]
+3r2AyA6/2Uy

3 2.3 2, =2 2)]
4_n UZ[ aA +b (3A'9/4+3r2A9/4Uy+3Ay/2Uy

—

m,.=-n b, A /4

5 ny 1 Y/ UY

. a24)
mg = -n b U (r3a3/40743r,43/4

2 ( 3 2,3 2)
m, = nybel A'e/4+r2A6/4Uy

. g A2 2, ,2 2)
mg = nybel( 3AyA9/4+3rZAyA9/4UY
m.=3n b, r A AZ/Z

9™ "My 172%y"8
m10=nybel(3A A /4 3r Ui)

— 2
m,, = -3nyb1?2AyAe/2
m,. =-3n b r,A%A /4U
12 y 1727y8 v
m,, =-3n b AZA /4
13 y 17y76
=2
14_3n b1 2 A /4
m,.=-3n b KZA /4
15~ y 177y 6

} (3. 8. 10)
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and

N
_ —_— —3 2 — 2 2=~ 2 )]
n1 _ne Uy[—asz+b ('3Ay/4Uy+3AyA9/2+3n2AyA6/2Uy

2

np =0

2 2 ( 3,3 472 3
n3=23egeAe/gymeUy[-azrlAe+b2 3r2Ae/4Uy+3r2Ae/4

—_—2, 2 . 2
2 AyAG /2 Uy>]+EGA8 /Ey

+3r
_ 2 ( 3 2,3 /40243 K2 A 2)]

2 2 2 2 o 2
+Ae(ge-we)/gy-@_eA.e(Ylwz)/gy

3 .
ng = -nebsz/écUy

3.3 2 3
n, = -nebeZ(rer/4 y+3r2AG/4Uy)
2 3 2,3 2 :
n, = -nebe2 (A9/4+r2A9/4Uy> %(3. 8.11)

_ — 2 2— 2 2)
nS_nebez(-3AyAe/4+3r2AyA9/4Uy
n.=3n.b,r KZA /2

9 8727277y 0

- 2 2— 2 z)

n o= nebeZ (3AyA 9/4-31'2AYA6/UY

=-3n.b.r. A AZ/Z
B11= 7202 2y e

—2
n = 3n9b2r2AyAe/4Uy

' 2
n13 = -3neb2Ay/4
22,
Ny, = 3n9b2r2AyA6/4
n..=-3n.b.A%A /4
15 8727y '8
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The secular terms whose amplitudes are m, and m, and ng and n,

will cause resonance of the perturbation equations in Yy and 91
respectively regardless of the detuning between the oscillators, These
secular terms are functions of the amplitudes of both oscillators so the
system is always combined resonant, In addition the system will be

harmonically internally resonant if

(w

3w

W +0(e)= < (3. 8, 12)
y ZUUy:I:(.U ‘

LZUJe:l:UUy

or

q)
Yy

3wy
we+0(e): < (3. 8.13)
20 W
y B

l2w +w

L 6y

so that secular terms whose frequency depends on the detuning between
parameters arise in the perturbation equations, Two classes of
asymptotic solution may be developed. One class is valid only for
cases of harmonic resonance and the other class is valid outside the

harmonic resonance band of frequencies.

3.8.2 Combined Resonant Oscillations

In the absence of harmonic resonance _ogy :wy and _9_)6 :we,

Those terms in the perturbation equations whose amplitudes
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are m,;, m,, n3 and n, are cast into the variational equations,
Averaging the variational equations as outlined in the second
section produces the following system of first order differential

equations:

2K /u A =-2p +n_a U -n b (382/4U 43420 /2
y =y y y 1 y y 8y

y y 1Y
#3282 20 ) 3 8 14)
2 e y . .
: 2 2, 2 ( 3,22
ZEeAe/Aegy_ -ZBe_uie/gy+nea2r2Uy-neb2UY 3r2Ae/4UY
2 -2 2
+3r2A6/4+3r2Ay/2Uy) (3. 8. 15)
24 .2 2 3.2, 2 2.3, =2 )
20g ¥, /0’ = -nga, UCA sin b, (3A AU, /43T AL/443E A /2 ) (3.8.16)
¥ =0 (3. 8. 17)

The right sides of Equations (3. 8, 14) through (3. 8, 17) are independent
of the time shift ‘1’2 sinve the system is not harmonically resonant and

independent of ¥. as the system is autonomous, Equations (3. 8, 14)

1

and (3.8, 15) alone determine the amplitude of the solutions. Simple
harmonic solutions are sought by setting AY :Ae = 0 and seeking roots
of Equations (3, 8, 14) and (3. 8, 15)., There are four possible sets of
simple harmonic solutions which are listed in Table I with the corre-
sponding stability criteria found by requiring small perturbations to
diminish in time,

If

(3.8.18)

>
r 1b2 0
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as is required for bounded solutions then solution #4 where both plunge
and torsion participate to first order is never stable, Moreover at
least one of the firét three solutions must be stable, The solutions
will either be zero or dominated by plunge or torsion to first

order. The stability criteria of these solutions can be specified in
terms of the two variables U;k and UJe

U =n U a, /2
y vyl 7y
(3.8.19)
Uk=n,U /2
8= "9Ue%2"1/%Py
A two dimensional stability map is constructed in these variables using
the aerodynamic coefficients determined by the cubic fit of the right
angle section (Figs. 4 and 5) shown in Figure 6. There exists a range
of parameters where both the plunge dominated solution #2 and the
torsion dominated solution #3 are stable, Both solutions cannot simul-
taneously exist. The solution obtained in this region depends on the
initial conditions,
The order € terms in the asymptotic series for y and 0 are found
by substituting the order one solutions listed in Table 1 into the remaining
terms on the right hand sides of the perturbation equations and solving

for eyl and 661, Solution #2, correct to order ¢ terms, is

y/d=A cos® -m_sin3® /8
y y 5 y

. 2 2 - > 2 (3.8.20)
G:n1 sin ‘Py/<we/wy—l>+n5 sm3§y/(we/wy-9)

where n, hs and mg are given by equations sets (3, 8, 10) and (3. 8. 11)

and are evaluated at the amplitudes Ay and AG given by solution #2 of
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Table 1. Solution #3, correct to order € terms, is:

y/d= (m3 sin¢>e+rn4 cos @e)/(l-w%/wi)-{- (m6 sin 3@6 h
+m., cos 3§6>w5/w29(1_9w29/w?r) ? (3.8.21)
9=Aec0s‘§e—(n6 sin3@6+n7cos3@e)/8 J

where mgy, my,

amplitﬁ.des given by solution #3 in Table 1, The order € terms will

my, m,, n and n, are evaluated with the order one

remain small only if the system is not harmonically resonant so that
neither wy% we nor wyN 3UUe nor we% 3wy. As the system approaches
harmonic resonance these terms become large and the combined
resonant solution is no longer applicable.

Parkinson [3]has shown that the order one amplitude of a
viscously damped plunge oscillator may be expressed in terms of a
single variable as the angle of attack of a plunge oscillator only depends
on the single parameter y/U. The order one amplitude of a viscously
damped torsion galloping oscillator is determined by two variables as
the angle of attack of a torsion oscillator depends bothon 6 and 8.

Four variables are required to specify the first order behavior of
combined resonant torsion and plunge galloping oscillations since the
system angle of attack depends on y/U, 8, é/U and the frequency ratio
wy/we,
Bounds for the plunge dominated and torsion dominated, order

one, combined resonant solutions are obtained by taking the limit as

damping approaches zero. This gives
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1/2
(-A—y)rnax: Uy(4a1/3bl)

(Ae )rnax - [4U29a2r 1 /3b2(r?i+rlUg)]

As the flow velocity becomes large the angle of attack of the flow to the

1/2

structure approaches maximum limiting values, The increase with
<Ky>max with UY reflects the fact that the maximum angle of attack of
the plunge oscillator is proportional to Ay/U, The maximum order one

torsion amplitude becomes independent of flow velocity and character-

istic radius if Ug >3 ry.
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SOLUTION STABILITY CRITERIA
— 1
A =0 1- =<0
y
U
y
A.=0 1--L<o
I —U*
8
_ T4u 28 Y72 .
A =|—tla.Uu - l1-—%>0
y 3b1 1y n
¥ U
y
b,a
Ay=0 221 <1_L*>> 1L
2°1 U U
y e
- 1
Ay=o 1-—x>0
v 1/2
4:Ue azrer-ZBe/ne bla‘2 1 1
Ag=l3p 3 2 2\ =) =
L2 r1+r1Ue 271 UB_ Uy
y 5555545, 3hgtoghy /W<
5,5,-5,5,7 12
A, | -b.,b,r> 0
07[5555-5,5; 1°219
2,2
S1 = -2p Gwe/wy+a2n9r2Uy
Sz = —3b21'2ne/2UY
3
s3 = -3b2r2ne/4UY-3b2r2neUy/4 |
S, =-2B +a,n U R
4 BY My "y
85 = -3b1nY/4UY

2
56 = —3b1nyUy/2-3r2nyb1/2UY

TABLE 1 - COMBINED RESONANT SOLUTIONS
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3.8.3 Harmonically Resonant Example I

Consider the right angle section with the ratio of natural frequen-
cies near unity, ‘”y/‘”e: 1+0O(€). With this frequency ratio the terms
in the perturbation equations whose amplitudes are N, Ny, ng, n9, N5,

n, . and m,, m,, Mg, Mgy, M,,, M, 5 are now secular, The amplitude

and frequency of some of these secular terms are dependent on Ky,
AS and wy/we respectively so the system is harmonically resonant,

It is convenient to define

w oW (3.8.23)
=W (3. 8. 24)

The secular terms are cast into the variational equation and these
equations are averaged. The following set of equations is produced

by the technique of Chapter II.
-Zj‘: /n w U2=ZB A /n'UZ'-a (A sin (w Y )+A _ rcos(w Y,)/U
y Yy y Tyy o yy 1\V78 y 2778 y 27 Ty

3 -2 2+d A3

+Ay/Uy)+hl(d1llts_yJ_r<5112Ay+dl3AyAe 14 e) (3.8.25)

. 2. 2 N
-ZAe/neUywy-2[3eAe/neUy-az(rlAe/Uy+A,ycos(wy‘l'2)/Uy>

-3 -2 — 3) '
+b2 (dz 1Ay+d22AyA e+d23AyAe+d24Ae (3. 8.26)

2 2 ' —_—
v wy+ne[-a2 <A9+Ays1n (wy‘i’z)/Uy)

. \ 2
2?2 /nYU = Z(UJy-we)/nyUy

<3 <2 = A2 3):'
-l-b2 (d3 1Ay-!-d:,’szA 9+d33AyA 9+d34A 0 /nyA'G

_[-al (Aecos(wy‘l‘z)—-Aer sin(wy‘l’z)/Uy)

=3 —2 — 2 3)1 '
+b; (d41Ay+d42AyAe+d43AyA atdy Ay (3.8.27)
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3
d11:3/4UY
d,, =9sin(w Y )/4U2+9rcos w Y )/4U3.
12 y 2 y 1 y 2 y
. 3( Y2u?
d13_3(1~cos (Zwy’i'Z)IZ)/ZUy+3r1 l1+cos (Zwy‘i‘z)/z /2UY
2
i w ¥
+3rls1n(2 v 2)/2UY
s 3 3
d14 =3 sin (wY‘i’Z)/4+3rlcos (wy‘l’z)/4Uy+3r cos ((1)}"}’2)/4UY
2 . 2
+3r)sin (va‘f’z)/‘lU,y

3
d,, =3cos (waZ)MUy

e 2 ( ) 3
d22 =3 sin (ZL!)Y‘{‘Z)/ALUy+3r1 1+cos (ZUUYYZ)/Z /2 Uy

d

2 3 . 2
23 3 cos ( v 2)/4Uy+9r1cos‘((.uy’i’z)/4Uy+3r151n (uuy‘l’z)/ZUy

: 3 3
d24 = 3r1 /4Uy+3rl/4Uy

P 3
dg, = 3‘s1n (Lt)y_‘l’z)/4Uy

. 3
d;, = 3<l—cos (Zwy‘i’z)/Z)/ZU5+3rlsm (2(1)3"i’2)/4Uy

. 2 . 3 2
d;5 =9 sin (wY‘i’Z)/4Uy+3r1s1n (wy‘l’z)/4Uy+3rlcos (wy‘i'z)/ZUy

2 2
d34 = 3/4+3r1/4:Uy

d41:0

2 . 3
= Y - ¥
d42 3cos(UUy 2)/4Uy 31'151n(wy 2)/4Uy

7 (3,8.28)
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d

2 3 2
-3 si - ; ¥
43 =3 sin (Zwy‘i'z)/ll:UY 3r|sin (zwy -2)/4Uy+3rlcos (Z(JJY‘FZ)/ZUy

2, 3 .
d44 =3 cos (wY‘J’Z)/4—3r151n ((uy‘l’z)/4Uy-3rlsm (wy‘l’z)/Al:Uy

2 2
_+3r1cos ((!Jy‘l'z)/‘lUy | y

As noted earlier four parameters are required to specify the
steady first order solution if the sysfem is not harmonically resonant,
If the system is harmonically r esonant two additional parameters are
required to scale the small shifts in frequency produced by each
oscillator, - A total of six parameters such as ﬁy/ny, ﬁe/ne,wylwe,

U, ng andn_are required to specify the steady response of harmonically
resonant two-degree-~of-freedom galloping systems,

Equations (3. 8.25) through (3.8.27) are independent of the time
shift ‘Pl so thesev equations form an independent set which determine the
amplitude and relative phase 6f the two oscillators, Even though a
simple cubic curve fit was employed there are a total of 16 nonlinear
terms in these three equations, .No closed for solutions are known for
this set even in the case of simple harmonic motion, The large number
of parameters and the necessity of numerical solutions makes it
difficult to fully catalog the response of the system, For a limited
rangvev of parameters some insight may be gained into the behavior of
the solution. Indeed the form of the averaged variational equations
makes two observations immediafely apparent:

1. .No steady solutions corresponding to Ay =0, Ae finite

or AB: 0, AY finite are possible. Any steady solutions

will be characterized by both oscillators participatihg
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with order one solutions.
2. Small shifts in the ratio of natural frequencies, UJy/w o
may strongly affect the result,

Solutions to Equations (3, 8.25), (3.8.26) and (3. 8.27) were
obtained by directly integrating these equations numerically using a
Runge-Kutta scheme on an IBM 370/75 computer until a steady response
was obtained. In every case a simple harmonic limit cycle was obtained
corresponding to I&_y = AG = ‘1'2 - 0, although several hundred cycles were
generaliy required, In none of the cases was a first order beating
solution of the type observed in certain conseivative systems [9]
found,

In Figure 7 the harmonic resonant solution amplitudes as a function
of the detuning are compared with the combined resonant solution and
data points. obtained by direct integration of the nonlinear differential
équations. The harmonic resonant solution and the data points obtained
by direct integration are in good agreement for small values of detuning
(specifically IUJy/we-l |< 10ewhere € is defined by Equation (3.7, 1)).
For small detuning the changes in angle of attack produced by the torsion
and plunging oscillations are of the same order, The corﬁbined resonant
solution provides a good é.pproximation outside the frequency band that
contains the harmonic resonant effects, but the combined resonant
solution is not capable of predicting the complex interaction of the two
degrees of freedom that occurs at harmonic resonance,

Outside the harmonic resonant frequency band only one of the

oscillators will have a stable first order limit cycle.. The remaining
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oscillator has an order € limit cycle, As the two oscillators approach
harmonic resonance one oscillator will contribute forcing terms through
the aerodynamic coupling to the other oscillator which produce internal
resonance. The oscillators interact strongly. Both oscillators achieve
order one limit cycles, The resultant motion depends on the details
of each oscillator and the aerodynamic coupling.

In Figure 8 the density of the cross section is varied through a
range corresponding roughly to a hollowed out plastic shell, solid
aluminum and solid steel composition. The maximum amplitudes of
plunge and torsion are unchanged by varying the density since the
ratio of the maximumr éerodyna.mic forces in pha-se with velocity to
damping was held constant. Decreasing the density of the cross section
does increase the width of the harmonic resonance frequency band,

Figure 9 shows the effect of increasing the free stream velocity
on a system which has an order one torsion limit cycle and order ¢
plunge oscillation outside the harmonic resonance band of frequencies,
Increasing the free stream velocity has negligible effect on the torsion
amplitude outside the harmonic resonant frequency band since, as noted
earlier, the maximum amplitude of a purely torsional oscillator is
independent of free stream velocity. The plunge amplitude and torsion
amplitude within the harmonic resonant frequency band both increase
with increasing free stream velocity. All the order one harmonic
resonance effects are contained in the frequency band ll-wy/we|< 10e
where € defined from Equation (3, 7. 1) is nyU?BCylaa. The width of the
harmonic rESohant band increases with free stream velocity as the

dynamic pressure increases,
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Figure 10 shows the amplitude of plunge as a function of detuning
while increasing plunge damping and decreasing torsion damping. The
damping parameters were chosen from each of the three quadrants
of Figure 6 corresponding to nontrivial combined resonant solutions.

‘As the damping of plunge is progressively increased and the damping

of torsion is decreased, the system changes from plunge dominated
response to torsion dominated response, The small changes in damping,
less than 1'% of critical damping, greatly change the response of the

system,

3,8.4 Harmonic Resonant Example II

If we: 3wy+ O(€) the system is harmonically résonant-. The
secular terms in the perturbations are cast into the variational equations-
and these equations are averaged. This produces a system of the same
form as.Equations (3. 8. 25) through (3.8.27), Figuré 11 shows the
results of integrating the averaged variational equations until a steady -
solution is reached, The plunge amplitude predicted by the harmonically
resonant solution is compared with the combined resonant solution and
data points obtained by direct numerical integration of the differential
oscillator equations, Although the harmonic resonant solution does-
predict a sfable solution for a broad frequency band, the nume_rical
data points show it is a good approximatiqn only in the narrow band
where the combined resonant solution becomes order one. OQutside
this narrow frequency band the combined resonant solution provides

a good approximation,
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Fig, 10, Effect of Varying Damping on Plunge Amplitude,
ny= . 002975, ny=, 01952, Uy: 5.
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Experiments at the frequency ratio Wg /wy: 2,92 with the right
angle section and no inertial coupling were performed by Slater [8].
Comparison of predicted plunge amplitude and the experimental data
points (Fig. 12) show there is substantial agreement with the combined
resonant solution. A higher order curve fit of the aerodynamic force
coefficients should produce the hysteristic jump contained in the exper-
imental data. The amplitude of torsion, not shown, is order € and
contains much scatter due to vortex shedding effects. The reduced
velocity of torsion corresponding to Uy=4 is Ue =1.4, Ue is well
below the minimum reduced velocity required for validity of the quasi-

static assumption.

3.9 SUMMARY AND CONCLUSIONS

A model has been presented for multi dimensional galloping., The
aerodynamic forces on the cross section are assumed to be dependent
only on the relative flow velocity and angle of attack, The angle of
attack is approximated as a linear function of torsion anddisplacement,
A simple stability criteria for the zero solution and an estimate of the
" maximum galloping amplitude are developed,

Two-degree-of-freedom examples are made using a cubic curve
fit to the aerodynamic coefficients for the right angle section. The
example system has plunge and torsion degrees-of-freedom and is not
inertially coupled. The system is analyzed using asymptotic techniques,
Numerical solution is required in some cases due to the large number
of nonlinear terms, Two regimes of solution are shown to exist,

One solution regime, called combined resonance, is
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characterized by dominance of eit"her the torsion or the plunge degree-
of-freedom, The second solution regime, called harmonic resonance,
can occur only if the natural frequencies of the principal modes are
nearly integer multiples, Harmonic resonance is characterized by
the exchange of large amounts of energy between the torsion and plunge
degrees-of-freedom, Order one amplitudes arise both in torsion and
plunge degrees-of-freedom, The harmonic resonance solution amplitudes
are very sensitive to small changes in the natural frequency. In both
solution regimes the order one solutions were simple harmonic,
Examples show the width of the band of natural frequencies con-
taining thé harmonic resonance incfeases with free stream flow
velocity and decreases with the ratio of structure density to fluid
density, The amplitude of solution increased or remained constant
with increasing free stream velocity, The asymptotic solution is

found to be in good agreement with the available experimental data,
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IV. A MODEL FOR VORTEX INDUCED VIBRATION
OF CIRCULAR CYLINDERS

4.1 INTRODUCTION

- A circular cylinder in a subsonic flow experiences oscillating
lift and drag forces at Reynolds numbers greater than 100, These
forces are the result of fluctuating fluid pressure on the cylinder
surface generated by vortices shed alternately from each side of the
cylinder. The oscillating vortex forces arise both with stationary and
vibrating cylinders and they can cause an elastically mounted cylinder
to vibrate and emit aeolian tones, The large amplitude osciilafion
induced in elastic structures by vortex shedding are of great practical
‘importance because of the potentially destructive effect on bridges,
antennas, cables and launch vehicles, The objective of this section
is to develop a model for the interaction between a structure and the
vortex shedding which will be useful in the analysis of the response
of structural systems,

In 1878 Strouhal [1] found, with experifnents on a taut wire in
an air stream, that aeolian tones generated by the vibrating wire were
dependent only on the air stream velocity and the wire diameter. He
also observed that the sound greatly increased when the natural tones
of the Wire coincided with the aeolian tones, That is, when the
shedding frequency coincided with the natural frequency of an elastic
system the system resonated., In 1879, Lord Rayleigh [2] discovered
that a violin string vibrating in the wind oscillated in the plane perpen-

dicular to the wind indicating that the oscillating force component
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normal to the wind was far greater than the component parallel to thé
wind, | Landweber [3] noted that at certain speeds, the submarine
periscope undergoes such violent vibration that it beco_més utterly
useless. Since the periscope may be considered a cir‘culér cylinder
clamped at one end and free at the other, Landweber suspected that
the vibration might be due to a resonance between the eddy (vortex)
frequenbcy and the natural frequency of the periscope in its fundamental
mode, No oscillations were observed outside of the resonant condition,
This suggests that there is a strong coupling between the

vortex shedding and the structural response,

Given a structural system which incorporatés circular cylin-
ders exposed to fluid flow, one would like to calculate the amplitude -
and frequency of structural vibration as a function of the structural
and flow parameters. Unfortunately, the theory of vortex shedding,
especially the near wake region, is very complex with turbulent
oscillating boundary layer separation, An exact solution to the fluid
elastic.prOblem is not feasible. Therefore a model will be developed
which approxifnates the gross two dimensional behavior of the fluid,
The self excited vortex shedding and resonance behavior suggests
the fluid oscillations may be modeled by a nonlinear oscillator as
was first noted by Bishop and Hassan [4], Hartlen, Baines, and
Currie [5] have arbitrarily constructed a nonlinear representation
which shows some of this behavior. Skop and Griffin [6 ] have refined
the Hartlen, Baines ahd Currie model, The Skop and Griffin model
predictions for the response of an elastically mounted cylinder are

" in quantitative agreement with experimental data. Skop and Griffin
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provide a means for determining the model parameters as a function of
physical parameters. Unfortunately this model is not applied to the
case of forced cylinder motion.
These models for vortex induced vibfation have several weak-
nesses, among them:
(1) The models for the fluid béhavior are arbitrarily derived.
No systematic attempt is made to base the components
of the model on known fluid dynamic behavior. The model
behavior cannot be generally interpreted in terms of
fluid phenomena. The models are not useful for identify-
ing the relevant nondimensional variables,
(2) The model parameters are chosen to back fit the same
experimental data that the models are used to predict,
It is not sui'prising that the Skop and Griffin model shows
good quantitative agreement with experimental data since
the model parameters were chosen to produce this,
(3) Evidently no attempt has been made to apply these models
to continuous systems of practical importance.
Here a two-degree-of-freedom oscillator model will be developed by
consivd’ering a control volume approach to the vortex shedding prd..,ess
which allows the model response to be interpreted in terms of physical
behavior. The modei.parandeters are fixed by back fitting experimental
results for stationary and forced cylinder motion, The model is ‘hen
compared with experimental results for the elastically mounted cylinder,
The model is applied to a pivoted rod which approximates the fixed-free

bending cantilever in its first mode,



- 78 -

4.2 DIMENSIONAL ANALYSIS

The following nondimensional parameters have proven useful

in describing the vortex force on a cylinder in simple harmonic

motion:
UD/v - Reynolds number
U/fD -  Reduced velocity
Ay/D - Amplitude
L/D -  Aspect ratio

where U is the free stréam velocity, D is the cylinder diameter,
v is the kinematic viscosity, f is the frequency of vibration, AY is
the cylinder amplitude and L, is the spanwise length. For elas-
tiéally mounted cylinders the following additional parameters have

proven useful in analysis:

pDZ/m - Mass ratio

& - Logrithmic decrement of damping

where p is the fluid density and m is the mass per unit length of the
cylinder,

The Reynolds number of the flow governs the gross laminar or
turbulent flow behavior., Attention will be limited to the Reynolds
number range where there exists a well formed vortex street, The
reduced velocity is useful in describing the natural frequency of
vortex shedding relative to the frequency of structural motion,

Changes in the amplitude of the cylinder can produce large changes in
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the amplitude of the vortex force. The aspect ratio of the cylinder
can have a large effect on the vortex force due to end effects and the

spanwise correlation of vortex shedding which is discussed in the following

section,

4.3 SPANWISE CORRELATION AND AMPLITUDE DEPENDENCE
OF THE VORTEX LIFT FORCE:

A two dimensional flow model for the vortex shedding process
cannot approximate spanwise flow effects known to arise at low vibra-
tion amplitudes, For example, Figure 1 shows the spanwise flow
corr‘elation of a cylinder vibrating at resonance with vortex shedding
as a function of cylinder amplitude. The low spanwiée flow correla-
tion for a stationary cylinder may contribute to th‘e relatively large
scatter in experimental measurements of the amplitude of the vortex
lift .forceA on a vstationary cylinder shown in Figure 2. When a long
cyliﬁder is stationary, vortices shed along the span with no apparent
fixed phase relationship so the fluctuating lift force ‘generated by a
vortex shed at one location maybe nearly canceled by the force gener-
ated by another vortex at a different spanwise location, ‘However
as vibration amplitude increases the flow becomes correlated along
the span and the vortices shed in nearly two dimensional sheets. The
oscillating vdrtex forces generated at different spanwise locations
are in phase and the forces sum along the span to produce a large |
oscillating force on the cylinder,

The vortex force on the cylinder may be dependent on the ampli-

tude of vibration. In order to investigate quantatively the manner in
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which the vortex force varies with amplitude the vortex force is

modeled as harmonic,

F =F°sinwt ’ (4.3.1)
y y

Applying this vortex force to a viscously damped spring supported
cylinder constrained to move normal to the free stream (Fig. 3) gives

FO

§f+2§}'r+w3y:—n%sinwt (4.3.2)
m is the mass per unit length of the cylinder, § is the damping factor
and UJy is the natural frequency of the cylinder structure, For the near

resonant condition wy”:“w and
-2mew” A - (4. 3. 3)

where Xy is the resonant cylinder amplitude, An empirical least
squares curve fit to the experimental data of damping for each value
of aﬁlplitude of resonant cylinder vibration (Fig. 4) may be used to
express the resonant amplitude of the vortex force as a function of

cylinder amplitude, Figure 4 implies

g-. 15% (%})’65 (4.3.4)

&, the logarithmic decrement due to damping, is approximated by

27 € for the small values of damping used in this analysis. Equation
(4. 3. 4) is substituted into Equation (4. 3. 3) to express the amplitude
of the vortex force on a cylinder vibrating at resonance with vortex

shedding as a function of cylinder amplitude. This gives
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Fig. 3. Cylinder Support.
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~

A \.35
o 2
Fy=.47_(T)Z) oU“D (4. 3.5)

The Strouhal relationship, w= zns%, where S=, 2 has been incorpo-
rated into Equation (4, 3. 5). Equation (4. 3, 5) predicts that the magnitude
of the vortex force approaches zero as the amplitude of vibration
approaches zero even though it is known that vortex shedding persists,
While this is in agreement with force measurements made directly on
Iong vibrating cylinders at high Reynolds numbers [13] it is in conflict
with the two dimensional forces measured by integrated pressure tap
measurements, The discrepency is most likely explained by the
reduced spanwide correlation at low vibration amplitudes.

These results indicate that the vortex force on long cylinders
cannot well be approximated by a two dimensional flow model at small
vibration amplitudes, The correlated flow model will over predict
the result, But the two dimensional model should prove useful for
examining the effect of varying structural parameters at moderate

amplitudes where the flow is nearly two dimensional,

4.4 DERIVATION OF THE MODEL

A model will be developed for vortex induced transverse vibra-
tion of an elastically mounted circular cylinder by incorporating the
essential features of the gross flow behavior and relating these to the
dynamic motion of an oscillating cylinder, The resultant model can
only approximate the complex étructure-ﬂow interaction but is never-

theless useful for identifying relevant system parameters, correlating



- 86 -

one dimensional test data, and predicting the response of untested
systems,

The basic fluid mechanic' assumptions of the model are

1. Inviscid flow provides a good approximation for the flow
field outside the near wake,

2. Vorticity is generated only in the near wake of the
cylinder., The vortices grow uniformly to a maximum
strength and move down stream,

3. ‘Two dimensional flow, |

4, Force exerted on the cylinder by the flow depends only
on the velocity and acceleration of an averaged flow
relative to the cylinder,

The forces on the cylinder are evaluated from the momentum

equation in the y direction for the control volume shown in Figure 5,

dJ
P =—X1+S +F 4. 4.1
y dt y Ty ( )

where Fy is the fluid force on the cylinder, PY is the pressure force

on the control surface parallel to the y axis

P = —J.de cos (n, y):—J‘ de+J‘ Pdx _
vy AB DC (4.4.3)
and S_ is the momentum flow through the control surface. Hence

S, = | ovuds (4.4.3)
y S

where v and u are the vertical and horizontal components of fluid

velocity respectively. 0 is the fluid density. JY is the momentum
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within the control volume given by

T, = ”A pvdxdy (4. 4, 4)

The variable z is defined as

. o 2
Ty =2,P2D (4.4.5)

so that 2 is a weighted average of the transverse component of the flow
within the control volume, D is the cylinder diameter and a, is a
proportionality constant, .

| The fluci:uating component of the momentum within the control
-volume was rneglected by Chen [15] in order to relate the force on the
cylinder directly to the properties of the vortex streét, Unfortunately
this assumption neglects the fluctuating components of the near wake
which determine the forces on the section, Indeed neglecting JY
implies the lift force on the section is independent of the cross section
which produces the vo.tex street,

The: potential for the vortex street viewed from a reference

frame moving with the shed vortices is

o'}
3= ikz In (x-Zna+i(y-h)> -1ln <x¥2(n-1)a+i(y+h)> (4.4.6)
n=1 :

where k is the vortex strength [15], The vel’oc;ity induced by this flow

is
uw'+iv/ =73 (4.4.7)
(e o]
u'tivi=ik) (x-Zna-!l-i(y-h) - BTG (4.4.8)

n:l
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the flow induced by the vortex street diminishes as
u'+iv’=0(1/r) (4.4.9)

where r is the length of a vector from the vortex street to one of the
control surfaces AB or CD or AD, Application of the Bernoulli
equation to Equation (4. 4. 8) and integration of the fluid pressure along

the boundaries BC and CD in the limit as 1., approaches infinity while

1
holding L, finite gives

P =0 4.4.10
y ( )

SY evaluated by the line integral on the sides BC and AD., Chen
{14 ] has shown that for a line integral bisecting an infinite vortex
street |Sy| = putr where ' is the circulation of a vortex and u, is the

translational velocity of the vortex street., For the present model
transverse components of flow forward of the cylinder are assumed to

be small, Sy is taken o be:
lsyl = putT+correction terms (4.4.11)

where k1 is a dimensionless proportionality constant,

As a result of Equation (4. 4. 9) the circulation contained within

the control volume for infinite L1 and finite L2 is

r =I$-d'§=f vdy (4. 4. 12)
cv s AD -
BC

The circulation is a function only of the induced transverse compo-
nent of velocity onthe surfaces BC and AD, In light of this it is reason-
able to expect the circulation of a vortex to be nearly proportional to

the amplitude of the average transverse component of velcoity in the
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control volume, That is, it is assumed that
r=K|z|D (4. 4. 13)

where K is the proportioﬁality constant,

Since the vortex shedding process is cyclic, Sy and Z are
cyclic, Equations (4. 4, 11) and (4. 4. 13) relate the amplitude of
these variables., By postulating a model for the near wake behavior
it is -possible to determine the phase angle between Sy and z, Figure 6
shows_ a postulated model for the developme.nt of the vortex street as
related to the near wake boundary surface B'C’, It is convenient
to momentaﬁly consider B'C’ as the aft boundary of the control
volume, In the first diagram one fully developed vortex is forward
of the control surface. The up wash and down wash fore and aft
of this vortex approximately qancel when averaged over the control
volume so there is no net vertical component of flow within the
control volume and z = 0 but there is a strong momcntum flow
across B’C’ directed downward since BC’ separates two fully
developed vortices of opposite sign. One quarter of a cycle later a
new vortex is beginning to form at the bottom of the cylinder while
the fully formed vortex has moved down stream so that its center

intersects B'C’, At this time a fully
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formed vortex produces a net upward flow in the control volume while
the net momentum flow across B'C’ is near zero. Following this
development through a full cycle it is evident that SY lags z by a
quarter cycle, Shifting B'C' down stream does not change this result
as the flow of each vortex pair sums to zero over the control volume,

Equations (4, 4. 11) and (4. 4. 13) and Figure 6 imply that

SY = Kputz" (t-T/4)D+ correction terms (4. 4. 14)

T is the period of vortex shedding, Since SY is analytic and periodic
at the shedding frequency [15] it is reasonable to assume the correc-
tion terms can be expressed in a power series of odd powers of z and
Zz which also oscillate at the shedding frequency. For simplicity only
linear and cubic terms in 2 and a linear term in z are retained in Sy'

SY is assumed to have the form
o L] .3 »
SyzKputhzD— alpUDz+ a, pz D/U (4. 4. 15)

where a2, and ¥ are dimensionless constants and a4 and a, are
assumed to be small compared to K. w; is the circular vortex
shedding frequency.

The force exerted between the cylinder and the fluid is modeled
consistent with the following assumptions:

1. The force depends only on a weighted relative average

relative velocity and acceleration of the fluid to the flow,
2. The spectrum of frequencies known to be produced in the '

vortex shedding process can be approximated by a single

frequency component,
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Implicit in thesé assumptions is that there is no fundamental fluid
mechanic distinction between forced cylinder motion and elastically
mounted cylinder ﬁotion. The vortex shedding may produce a multi-
tude of frequencies intertwined with the basic shedding frequency, only
one of these frequencies can be represented by the present model,

The force on the cylinder which is dependent on the relative
acceleration of the fluid to the cylinder is assumed to be linear and

is represented as

Fy) - a,pD% (2-§) (4.4.16)

where a, is a dimensionless proportionality constant.

3
The force exerted on the cylinder by the relative fluid velocity

may be written in the form of a lift coefficient whose magnitude is
proportional to the relative angle between the free stream and the nor-
mal component of the incoming flow to the cylinder. For small dis-

placements this angle is (2-y)/U and the lift force takes the form
F;Z) - a, pDU(%-§) (4. 4.17)

where a4 is a dimensionless constant, The net force exerted on the

cylinder is the sum of F;l) and F;Z) or

2 ee a s o
Fyza3pD (z—y)+a4pDU(z-y) (4, 4,18)

The fluid oscillator is assembled by substituting the component
expressions, Equations (4.4.5), (4.4.10), (4.4.15) and (4. 4. 18) into

the momentum Equation (4.4.1). This gives
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Zu [o] - o3 2 °s 84 ] [3
a PD"Z+KpuW z=a, pUDZ - a,pZ D/U-a,3 oD™ (Z-y) - a, pDU(2-¥)
(4. 4.19)
or
u «3
=0 ' t U0 o] _ 4 4 H . I __Z__ AT 4 E o
z+K i -]j-wzz_(a1 —a4) D Z" 2y UD+a3y+a4D y
where
K':K/(a0+a3) a{:ai /(agtas) (4. 4., 20)

If the cylinder in the flow is elastically mounted it will respond to the
fluid forces on it. The motion of an elastically mounted viscously

damped cylinder (Fig. 3) is described by

(13 [ ] 2 ae L3 L 3 L]
my + ngwymy+ kyy = FY =a, pD™(Z-V)+ a, pDU(z-y) (4.4.21)

or
F+28 W srwlyoa’seals
y T YY YY— 3 4
where
" 2 2
a, = pD ai/(m+a3pD ) (4,4,.22)
’ET:§S+ gf
2 w°

g_a// pD” "z 1
f-°4° 2 w_ 2¢S

o

m is the mass of the cylinder per unit length and wy is the circular

natural frequency of the spring-cylinder system in vacuum. §T is

the total damping coefficient., It is composed of a component due to

structural viscous damping, §S, and a component due to viscous
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fluid damping, §f, which arise from the fluid forces that dissipate

energy of the cylinder,

The form of the fluid oscillator Equation (4. 4. 19) and the struc-

tural oscillator Equation (4. 4.21) suggests the following:

1.

The fluid and structural system has the form of two
coupled autonomous oscillators,
The natural frequency of the fluid oscillator is given by

o /ut
w =K' =

w/[a

(4. 4.23)

Since ut/U is approximately constant for a large range of
Reynolds numbers [8] the model predicts the natural
frequency of the fluid oscillator is proportional to the

ratio of free stream velocity to cylinder diameter,

°_,.5U
wy =218 15 (4. 4.24)

where S is the dimensionless Strouhal number. This is
a well known experimental fact, Experimental values
of the Strouhal number, which like ut/U is a function of
Reynolds number, determine the parameter K.

The spring constant like term in the fluid oscillator
arises from vortex feedback in the near wake. For the
fluid oscillator to have bounded amplitude the feedback
must be self limiting. That is, the feedback must be

nonlinear,
I.arge amplitude structural oscillations are expected only

if the shedding frequency is equal to or a multiple of the
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the natural frequency of the structure so that the two
oscillators are internally resonant,
To this point no restriction has been placed on the cross section
which produces the vortex street. The model parameters are fixed
by matching experimental data for a given cross section with the model

response as predicted by analysis,

4.5 ANALYSIS OF THE MODEL

Steady response for three cases will be analyzed:

1. Fixed Cylinder
2. Forced Cylinder Motion
3. Elastically Mounted Cylinder

The goal will be to determine the model parameter from experimental
data for the first two cases for comparison with experimental data

of elastically mounted cylinders,

4,5,1 Stationary Cylinder

If y=0 the fluid oscillator Equation (4, 4, 19) is:

. 02 14 '] 9 7/ .3
E+w z:(al-a4)Uz/D-azz /UD (4.5.1)

A solution of the form
2= A (t) cos(w;t—cp(t)) (4. 5.2)

is assumed where A; (t) and @(t) are slowly varying in time. A
straight forward application of asymptotic techniques gives the steady

state solution [16 1;
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1/2

o - -
AZ/D—(4(31 a4)/3a2) /2wS (4. 5. 3)

The solution is stable al-a4 >0 and a, > 0,

This solution can be used to determine the circulation of the
shed vortices and the lift force on a stationary cylinder,

From Equation (4.4, 23)
| K= (a0+a3)2-n-S U/ut

Equation (4. 4. 13) implies that the circulation of a shed vortex is

0 (o]
T=(agta,)2nSw> A2 DU/u,

but
w::Z‘nS U/D
SO
u AO
e £ = (a ta.)(27S) =2 (4. 5. 4)
TD U - 2ot23 D -2 %)

Equation (4. 5. 4) relates the circulation of a vortex shed from a station-
ary cylinder and the translational velocity of that vortex stréet to the
model parameters,

The lift force on a stationary cylinder is found by evaluating the
vortex force (Eqn, (4.4.18)) at y=0, The amplitude of the vorte‘x
force can be expressed as an oscillating lift coefficient. The amplitude
of the lift coefficient is:
2F (y:O)

1/2
_ A s - 45 (a2 (21TS)2+ai> A2/D (4.5.5)
V4 oU Dcos(wzt+cp)

H o
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If the lift force on a stationary cylinder, the vorticity of a shed vortex
and the translational velocity of the vortex street aft of a stationary
cylinder are measured experimentally, Equations (4. 5.4) and (4. 5. 5)

can be used to provide two relationships between the model parameters,

4.,5,2 Forced Cylinder Motion

One of the distinguishing characteristics of vortex shedding
from a cylinder in a forced harmonic motion is a range of synchroni-
zation, As the frequency of imposed cylinder motion approaches the
stationary shedding frequency, the fluid force on the cylinder changes
from complex beats to simple harmonic oscillation as the vortex
shedding locks onto the forcing frequency. The vortex shedding remains
synchrénized with the forcing frequency for a range of frequencies
near the forcing frequency. The bandwidth of the synchronization
range increases with increasing amplitude of forced vibration [4][17].
The vortex forces on the cylinder also increase.with increasing ampli-
tude of vibration perhaps due to increased strength of the shed vortices
[4]757, The vortex model predicts a range of synchronization for |
forced ;ylinder motion and the amplitude of the force on the cylinder
increases with the amplitude of forced cylinder motion, These traits
are used with experimental data to provide two additional relationships
between the model parameters and experimentai data.

If the cylinder is oscillated sinusoidally,

y=A sin( b9 ) (4.5.6)

The arbitrary phase angle ® v is chosen as
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-1 o]
cpy_tan (a4wZ/21rS a3wy) (4.5.7)
so that the fluid oscillation equation (4. 4. 19) becomes

2

#+0° z = (a
z

1-a4)Uz/D a °3/UD+dw cos wyt (4. 5. 8)

where

4. ( Ay ) 2)”2

wZS A
(2wS) v

Equation (4. 5. 8) is inthe form of the classic forced van der Pol
oscillation [18]. The solution of Equation (4, 5. 8) is well known [18]
and the solution will only be sketched here,

A solution of Equation (4, 5. 8) is assumed of the form

Z = bl(t) cos wyt+ bz(t) sinwyt (4. 5. 9)

where bl(t) and bz(t) are slowly varying parameters. Substituting
Equation (4. 5. 9) into *.quation (4. 5. 8) and retaining only first order
terms such as bl and ale’ and performing a harmonic balance pro-

duces the following variational equations:

0 2 2
W° -w®) , dw
2§+ x ——L - qy(1-r ):-5—% (4.5, 10)
Y AZwZ
2
2-u?) "
2%+ y ——— +ax(1-r7)= 0 (4.5.11)
y

where

oc=(a'1-a‘;)U/D
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0,0
X= blwy/Azwz

_ 0,0 \
y=byu /ANw] (4. 5. 12)

r2=x2+y2 /

The steady state solutions to Equations (4,5, 10) and (4. 5, ll)bl(t) = b_‘IJ
and b, (t) = bg ,» are found by setting l;l =0 and 1:;2 =0, This gives
2
0=x0-y(l-r")-F (4. 5.13)
' 2
O=zyo+x(1-r") (4. 5. 14)
which are easily solved for x and y,
2
x=+0r /F (4.5.15)
y=-12(1-r%)/F |  (4.5.16)

These equations can be combined to give

, |
P(oPr(1-1%)" )= 2 (4.5.17)
where 2
Z(d/D)wy
F- - (4.5.18)
3u(AQ/ D) a,Su0

2
(w; -wz)ZnS
o= O, 1 ?
wywz(al -a4)

The amplitude of the solution is found by solving the cubic equation

(4. 5. 17) numerically and substituting the result into Equations (4. 5. 15)

This simple harmonic solution

and (4, 5, 16) which determine b? and bg,
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becomes unstable if r2 <1/2 for F>8/27 as shown in Figure 7 and
complewiave forms result,

A relationship between the model parameters and experimental
data is produced by matching the bandwidth of the range of synchro-
nization with experimental data, If for a given amplitude of cylinder
oscillation the frequencies of onset and termination of the synchro-
nization range, w; and w; respectively, are known,then the bandwidth

can be defined by

B = (w;-w;)/w;’ (4.5.19)

w

Since experimental data [16 ] show the synchronization range is nearly
symmetric for small bandwidths,
+, 0
uvy/ouZ ~14B, (2
(4. 5.20)
= 0
wy/UUZ M1 /2

The bandwidth of the model is defined by the stability boundaries for
simple harmonic solution, If F> 8/27 the stability boundaries are
defined by substituting r° = 1/2 into Equation (4. 5. 17).

2

o + 1/4::2F2

(4.5.21)

If ¥ and ¢ in Equation (4, 5.21) are evaluated at the frequéncy corre-
sponding to either the onset or termination of the observed range of
synchronization at a given amplitude of forced oscillation then the
model bandwidth is matchéd with the experimentally observed band-
width and a relatvionship is produced between the model parameters

and experimental data. This relationship is produced by substituting
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Equations (4. 5. 18) and (4. 5.20) into Equation (4. 5.21).

2

0, 2 4
6TrSa2(AZ/D) |
2 2 2 2\ /2 2
Z[Z(Ale)(g3+a4/(1+BW/2) (2wS) ) (1+;3W/2) ] “ 5.22)
) 3nSa, (A2/D)%a o
z 0

The force on the oscillating cylinder of the model can be

expressed in terms of an oscillating life coefficient given by the

expression
ZFY
C =
Fy pUzD sin (wyt+c_p)
47SAW 2 1/2
2 2.2, 0 2
= D‘”z 3-3(21TS) wy/wz tay (4.5.23)

where

Asin (wyt+E5) =z-y

or from Equations (4. 5.6), (4.5.12), (4.5.15) and (4. 5. 16)

o 2 2. 0 2
i [(—Azr (1-r )u.)Z :3.4AY
=" - 172
D DFuy anD(a§+ai / (an)Z)
Aoo,rzwo a A 5. 1/2
zZ___ 2 3y 4.5.24
HWore —t 7232 AL (4. 5.24)
vy D a3+a4 (2wS) )

The fourth relationship between the model parameters and experi-

mental data is found by matching the rate of increase of lift force with
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~ increasing amplitude of forced vibration. The derivative 8CF /oA

y
is used to estimate the dependence of the lift force on the amplitude

of forced vibration since this derivative can be evaluated in closed
form as the amplitude of oscillation approaches zero at resonance

with vortex shedding,

3CFy BCFY -
lim = — lim (4.5, 25)
A -0 OA /D oA A -0 E)Ay D
c=0 YO’:O

As the amplitude of forced oscillation AY approaches zero, for o

equal to zero, r2 approaches 1 and b(l) approaches zero while bg

approaches A;) 50

- A° 2
lim AR 2 oy O
a~0 PAJD 2D, Lo BA/Dois(afia /(zwss)z)“2
%=0 | %=0
(4. 5.26)
Brz/aAy/D is evaluated from Equation (4, 5. 17) and (4. 5. 18)
or>  or? oF
Ir. I
5A /D - ZF BA_JD (4.5.27)
y y
From Equation (4.5, 17)
22 2. 2
im 5. um L) X Uerdo (4.5.28)
A =0 pr 2
v r -1
0=0
From Equation (4. 5. 18)
2 @3+l /ens)®)
a a ™
OF - 4 (4.5.29)

9A /D
y

3rS(A- / n)3 a,
o=0
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BCF _/aAy/D is evaluated in the limit as the forced cylinder amplitude

y
approaches zero at resonance with vortex shedding by substituting

Equations (4. 5. 26) through (4. 5.29) into Equation (4. 5.25). This gives

2
8C c.?
| F F,
lim = 4nS | - a, | (4. 5.30)
A -0 94 /D 6(A° /D)2 2ns)a 4
YO:O z 2

If ‘the amplification in the vortex force with increasing cylinder ampli-
tude at resonance with vortex shedding is known then Equation (4, 5. 30)
provides a fourth relationship between the model parameters and

experimental data, If one of the five model parameters 2y 21125, 33

and a, can be estimated then the remaining parameters can be found

from these relationships,

4,53 . Elastically Mounted Cylinder

The coupled oscillator equations for an elastically mounted

cylinder are

2 .3

Y o] _ ¥4 1 H . 1 Z 1 o0 7 _[l .

Zrw, Z"(al-at})D Z-a, Tp t23¥te p v (4. 5.31)
o o, 2 ne, U _u
y+2 §T+ wyy+wyy =agitga 2 (4. 5.32)

These equations are solved by first assuming a harmonic solution
form:

z :AZ cos B

(4. 5. 33)
B=0_(t-)
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for the fluid oscillator equation, The linear differential equation
describing the cylinder motion (4, 4. 19} is then solved for the cylinder
displacement in terms of the hafmonic fluid oscillations, The cylinder
displacement as a function of the fluid oscillations can then be substituted
back into the fluid oscillator equation to produce a single nonlinear
autonomous differential equation which may be solved by asymptotic

methods,

Equation (4. 5. 33) is substituted into Equation (4.4.21) to give:

o8 o 2 _ " 2 w0 .
y+2 §Twyy+wyy =-azA W cosf-a,0 A Ww sin 8/2wS (4. 5. 34)

Solving for y and incorporating Equation (4. 5. 33) gives
_ " 2 2 (o) ” ] 2
y= [_a‘3(wy —wz)+2wzwya4€T /2nS Aszz
‘ v,2 vw,0, 2 2 ] . :
+[2a3waY§T+a4wz(wy—UJz)/Z'rrS AF32 (4. 5. 35)
where the amplification factor is denoted by AF.
_ 2 22 22 2)
AF = 1/((wy—wz) +4§Twywz (4. 5. 36)
The amplitude of the cylinder displacement is:
a - stV 1o tedw o P ju sy ] R @531
y Tz 3V 2y 4 z 'y Tz y z

Equation (4. 5. 35) is substituted into the fluid oscillator Equation

(4. 4. 19) to produce the single nonlinear equation,
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2
'z'+wcz) z_[(a -a )w /21rS+a4{ 3(00 —w? )

+2E w O a /2wS waOAF/ZwS
T Z Z

: ]
-a3{ 3w 2§ wy+w 4:(w -wz)wZAF/ZwS} z

1.3 o2

-a,2 2t S/w

+[ 3{ 3(w -wZ)+200 A /211'5} 2

+a {zg a w? L0 +w° ”(uu - )/2 S}w /ZTTS]AF (4.5, 38)

This equation is of the form
s, 02 . 3,
z+UJZ zZ=0)2-0,27 0,2 (4. 5.39),

where the a; are independent of the amplitude of the solution but are
dependent on the frequency of solution, The solution is assumed to be
oscillatory

z-_-AZ cos wz(t—Cp) (4. 5. 33)

where Az(t) and ®(t) are slowing varying in time and the 0; are
assumed to be small parameters. The method of slowly varying

parameters gives the following variational equations:
2A W -
2A W =q,w A 3u2w A /4 (4. 5, 40)

cbwz=-a3wz/2 (4.5.41)
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' Az is set to zero for steady harmonic solutions, Az(t):A;l). Equation

(4. 5.40) therefore implies
AN 4a, 130,) 2 o, (4. 5. 42)

If the full expressions for a, and a, are substituted into Equation

1
(4. 5. 42) it may be shown that

2 2 :
(1) 2 2 o%,.2 2
E(Az ) = (al-a4)wz - wz (wy wz) L n, 1 n
2z 2
28w wlAF 5
T Z ¢t ., 0 2 n 2]
¥ ZnBay [34'&4‘”2 /(2wS)~ -a"a W’ (4. 5. 43)

The order one estimate of the frequency of oscillation is w;,
the stationary cylinder vortex shedding frequency. An order one
estimate of the amplitude of fluid oscillation may be obtained from
Equation (4. 5.43) by setting u_= wg. A higher order estimate of the
frequency of oscillation would be
w_=w(1-3) (4. 5, 44)
z 4

A

where cEl is assumed to be small, q.J is evaluated at w, in order to
achieve the maximum accuracy., If the full expression for a; from
Equation (4. 5. 38) is substituted into Equation (4. 5.41) to determine

cf) and the result substituted into Equation (4. 5. 44) then
2
_ 940 22(///0/ 2///2>
wz“wz-l—szF[(wy_wz) 2424%, (2nS) —a3a3wz

_ 2.0, t_u "ot /
28w wlul(a)alra)a 3)/21TS] 2 (4. 5. 45)
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Equation (4. 5. 45) determines the frequency of the cylinder and fluid
oscillation., This transcendental frequency équation is découpled from
Equation (4, 5. 43) which determines the amplitude ofvthe fluid oscillator,
If additional nonlinear terms in z were incorporated in the fluid oscil-
lator model then these tefms would couple the frequency and amplitude
equations,  The frequency equation can be solved numerically, The
resultant frequency, w_, is substituted into Equation (4, 5. 43) to
defermine the émplitude of the fluid oscillations, Az is then subst.ituted
into Equation (4. 5. 37) to determine the amplitude of the elastically
mounted cylinder displacement due to vortex shedding,

4.6 DETERMINATION OF THE MODEL PARAMETERS FOR A
CIRCULAR CYLINDER

Four relationships between the model parameters and experi-
mental data have been formulated, These are:
1. Circulation and translational velocity of a vortex shed
form a sfationary cylinder, Equation (4, 5, 4).
2. Lift force on a stationary cylinder, Equation (4. 5.5).
3. Bandwidth of synchronization of a forced cylinder,
Equation (4. 5, 22),
4, Rate of increase of lift force with increasing amplitude
of forced vibration, Equation (4, 5. 30).
There are five model parameters, If thé value of one parameter can
be estimated four of the parameters may be obtained in terms of the
fifth. The parameter as determines the magnitude of the fluid force
on the cylinder due to acceleration of the near wake relative to the

cylinder, It is felt this parameter can not exceed w/4 which is the
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theoretical value obtained by considering the total force on a cylinder
in an accelerating inviscid fluid. Setting ag equal to zero does not
imply that there is no added mass effect since the flow forward of the
separation point remains attached to the cylinder effectively increas-
ing the oscillating mass of the cylinder. Rather, ag equal to zero
implies that the acceleration of the near wake does not greatly affect
the fluid force on the cylinder,

The model parameters are determined by estimating a value for

a., then solving Equation (4. 5.4) for a, and Equation (4. 5. 5) for ay and

3
substitute these into Equation (4. 5.22) and (4. 5. 30) to produce two

'. equations in the variables a, and AZ which may be solved simulta-
neously numerically,

The input experimental data for vortex circulation and vortex
translational velocity is taken from results reported by Chen [14] which
are shown in Figure 8, # is the lateral spacing between vortices. The
measurements of the amplitude of the vortex lift force are either
estimates made by pressure tip integration or direct measurements
made on cylinder test sec.tions and are shown in Figure 2., ’i‘he rela-
tively large scatter in the results is at least partly the result of span-
wise correlation effects, The bandwidth- data shown in Figure 9 is
from Koopman [17], The rate of increasing_émplitude of vortex lift
force with increasing amplitude of vibration as the amplitude of

vibration approaches zero is extrapolated from data presented by

Bishop and Hassan and is given in Table 1,

Unfortunately the various bits of data available are taken over

a large range of Reynolds numbers, For example, Koopman's results
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were measured at a maximum Reynolds number of 500 while Bishop
and Hassan's results are for a Reynolds number of 100, 000, Although
the data are within the subcritical Reynolds number range they are
insufficient to establish any meaningful trends with Reynolds number,
Any such variations are neglected until they can be specified more
accurately,

The following approximate mean values of the experimental input
data were chosen for the subcritical Reynolds number range,

C. =.5 ~N

u
t T
i

B =.4 for A /D=2 [ (4.6.1)
w y
5C,

5A 7D - 168
g

wy:w: J

The following model parameters correspond to these data if ag is set

to zero,

a,=.20 > (4.6.2)




- 114 -

These imply with Equation (4. 5. 3) and S =, 2 that the amplitude of the

fluid oscillator for a stationary cylinder is A;/D: .53,

A /D .2 .3 .4 .5
v :

(Fy max/ F, 1.45 | 1.72 | 1.99 | 2.46

Tablev 1. Relation between lift force and

- amplitude of forced oscillation, CoF =.6, (From [4]),
y

4,7 NATURE OF THE SOLUTION

The fluid and structural oscillators become internally resonanﬁ
as the vortex shedding frequency approaches the natural frequency of
the cylinder structure, Large amplitude cylinder vibrations are excited,
The cylinder vibrationis fedback intd the fluid oscillator through the
fluid force terms, This feedback effect produces frequency entrainment
and affects the aimplitude of cylinder vibration at resonance with vortex

shedding.

4.7.1 Frequency Entrainment

The frequency equation (4.5.45) produces a frequency entrainment
effect if aza;/(ZTrS)z > aga;. The effect‘ is maximum for a; =0 as is
shown in Figure 10, For az = 0, the frequency of the fluid and cylinder
oscillation will be greater than the stationary cylinder shedding frequency

if the natural frequency of the cylinder structure is greater than the

stationary cylinder shedding frequency, and the frequency of cylinder

and fluid oscillations will be less than the stationary cylinder shedding
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frequency if the natural frequency of the cylinder structure is less than
the Stationary shedding ffequency. The frequency entrainment is pro-
duced by feedback from the structural oscillator to the fluid oscillator.
The entrainment effect is shown in Figures 11 and 12 in comparison
with the experimental results of Feng. Both the model and the experi-
mental results show a distinct frequency entrainment, However the
model under predicts the frequency entrainment. This suggests the
existence of an amplitude-frequency interaction term iﬁ the fluid
oscillator such as a cubic term in z, Possibly the finite band of
frequencies associated with the actual shedding process plays a large
role in the entrainment effect with different frequency components
being amplified as a range of detuning is transversed.

The frequency entrainment for an elastically mounted cylinder
is a function of the structural damping, §s, and the mass ratio,
pDZ /2m, for fixed model parameters. A simple measure of the fre-
quency entrainment c‘an be defined in order to e xplore the relationship
between frequency entrainment and these parameters. If € and A are

defined as

(.Uz .

m—-:l-e (4. 7. 1)
Yy

v,

==1-a (4. 7.2)
y

then the frequency of oscillation, w, will be within a band of ewy of
the natural frequency of the cylinder structure for the entrainment

band given by
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Experimental Results,
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ﬁezA(%=1+e)-A(%=l-e) (4.17.3)

Be is termed the entrainment band and is shown in Figure 13. For

oD?

a given §S, S and g, it is a measure of the entrainment effect, If
Equations (4. 7. 1) and (4. 7. 2) are substituted into the frequency
equation (4. 5. 45) and only first order terms are retained in €, A and
§s to produce a simple closed for expression for the entrainment band

then

B (e)=2(v+e)/(1-4v%) 4.7.4)

where

2
a4 D a4 e

Y=
4TrSao 4mnS [€2+(§+DD234/4mTrS)2]

(4.17.5)

Equation (4. 7.4) can be further simplified by noting the maximum value
of v is .2 with the model parameters defined by the set (4.6.2) so

4yz<< 1 and a useful approximation is

B, =2v+2e (4.7.6)

If there were no entrainment effect produced by the model then the
entrainment band would be 2€, The increase in entrainment band due
to the model entrainment effect is 2v.

The entrainment band is a function of both structural damping
and the ratio of the displaced fluid mass to the cylinder rﬁas s. The
change in the entrainment band with variations in these parameters

is shown in Figure 14 where the entrainment band for e=, 01 is plotted
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as a function of structural damping and the mass ratio, If the struc-
tural damping is reduced then the entrainment band increases, This
trend can be seen in the experimental results of Feng in Figures 11
and 12, Secondly if the structural damping factor is greater than the
damping factor, §f, due to viscous damping in the model fluid inter-
action, which is often the case since the damping due to the fluid forces
is ordinarily small, then the entrainment band will increase with the
ratio of displaced fluid mass to cylinder mass, This implies, for
example, that the entrainment effect for a structure oscillating in
water would be far greater than for the same structure oscillating

in air,

4.7.2 Cylinder Amplitude at Resonance

For a given set of model parameters amplitude of cylinder
vibration is a function of the structural damping factor, mass ratio andthe
ratio of vortex shedding frequency from a stationary cylinder to the
natural frequency of the cylinder structure, The peak amplitude of
cylinder oscillation for the rgsonaht condition can be found in terms
of a single variable called reduced damping by making the resonant

condition approximation

wyw wzwwcz) (4.7.7)

Incorporating the approximation in Equations (4, 5, 37) and (4. 5, 43)
makes it possible to express the approximate peak resonant cylinder

amplitude in closed form as
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/
_Kﬁz _ 27 (a§+a‘2:);(2-ns)2)1/2 [( ) < /(Z-rrS) -ai) :| 1 l‘ 7 8)
r 5,

The total reduced damping, f)rT , is the sum of structural and fluid

components:

T_ZmemEAE))

5t =
T pDZ

b.ta, /S (4.7.9)

where 6r is the reduced viscous structural damping, 2m(2w ES)/pDZ,

2 2_ 2
If ay /(21S)" > ag

terms in parenthesis on the right side of Equation (4. 7. 8) produce a

as has been previously postulated then the

reinforcement effect where the amplitude of vibration of the cylinder
increases more rapidly with decreasing damping than would a resonant
linear oscillator responding to a constant amplitude forcing function,
This arises because of feedback from the structural oscillator to the
fluid oscillator which increases the amplitude of the fluid forces on

the cylinder and the amplitude of both oscillators, The reinforcement
effect produces a rapid increase in the model amplitude with decreasing
damping as shown in Figure 15, Also shown is the experimental
evidence of Feng [11] at a Reynolds number of 104 and Scruton [12]

at a Reynolds number of 105. The amplitude of vibration as predicted
by Equation (4, 7. 8) with az= 0 and C;, =.5 shows good agreement with
experimental evidence except at low amplitudes where the lack of span-

wise correlation may account for the fact that the correlated flow

model over predicts the resonant cylinder amplitude,



.mwpm =Q ‘S8urdwe jo uoijoun,
' se opmyIfdwy JI9putfd) juruOosaYy ‘g1 "81d

209

qwe
ol 2l 8 b 0
I — _ T T _ I _ 0

- 124 -

._kq
ON34 0G'=750

NOLN¥OS  ©
J300N —




- 125 -

4.8 EFFECT OF VARYING INPUT EXPERIMENTAL PARAMETERS
ON MODEL RESPONSE

New experimental data can be used to generate a set of model
parameters which may have a significantly different model response.
Rather than construct large tables of parameters a set of approximate
partial derivatives have been numerically constructed to illustrate the
manner in which the model parameters change with the experimental
input data. If one experimental input varies slightly then the change

this produces in the model parameters may be approximated by:

-ai ~ ai(el’ e ei'HJ-ej: ce) _ai(el’ * ej'u-e-: coe)

de, 2
J e M

(4.8.1)

where e is the fundamental set of input experimental data and ( is é.
small paramter, A set of derivatives is constructed using Equation
(4.8.1) in Table 2 for u=.025 and in parenthesis for u=.25. The
partial derivatives of Ag are included for convenience, The partial
derivatives change only slightly with the ten fold increase in u, This
suggests that these derivatives should provide a good approximation
for the change in the model parameters with a change in input para-
meters as large as 25%. These derivatives are therefore useful for
estimating the change in response of the elastically mounted cylinder
for new input data.

The effect of varying the experimental inputs on the entrainment
band of the elastically mounted cylinder is estimated by taking the
partialk derivatives of the entrainment band, Equation (4, 7.6), with

respect to the model inputs and using the known changes in the model
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parameters with experimental inputs (Table 2), This gives:

1 B, 2 g 93, 2BE.  0a,
_2 1 i (4. 8.2)
e i 2 35 0e (c2ig2y 9o
4 T

This set of partial derivatives is evaluated at the input experimental

data given by the set (4.6.2) and is shown in Table 3,

da. da., da. da.
1 1 1 1
o oC u, T op
acFY a( F ) a( tz > w
aAle UD
A‘Z’ .92 0 -1.0 .38
D (. 92) (0) (-1.2) | (.48)
| -1.1 0o 2.8 | -.46
20
(-1.2) (0) (2. 8) |(-.46)
. 0 - 016 | 1.3 | -.44
Lo (-.016) | (1.3) |(-.44)
. -. 9% - 062 2.2 | -.74
2 -1 1) | (-.064) | (2.3) (- 58)
a3 0 0 0 0
0 0 1.1 | -.35
a4
(0) (0) (1.1) |(-.36)

Table 2, Change in Model Parameters

With Change in Experimental Input Data,
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Table 3. . Change in Entrainment Band

With Change in Experimental Input Data,

Increasing the lift coefficient on a stationary cylinder increases the
force exerted by the fluid oscillator on the structural oscillator and

so the entrainment band increases, The rate of increase of the ampli-
tude of the lift force on a cylinder in forced vibration with increasing
amplitude has little effect on the bandwidth, Increasing either the
circulation of the shed vortices from a stationary cylinder of the
translational velocity of the vortex street decreases the entrainment

band. Increasing the bandwidth of forced vibration increases the
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entrainment band of an elastically mounted cylinder only if the fluid
damping is large compared to the structural damping. |

The effect of varying experimental input data on the peak
amplitudes of resonant vibration of an elastically mounted cylinder is
estimated by taking the partial derivative of the peak resonant ampli-
tude (Eqn. (4. 7. 8)) and using the known change in the model parameters

with experimental inputs (Table 2). This gives

Ky de ) 4 6’];5 ae1 R
o o 2 '
(ﬁi 8A.Z/D+ 811-3.4 ) <—2__ 1 )83.4“_1“ Baz)
D de; 3(2178)33. T) \\ay 51 de; a, de,

z((A /D)? +8ra, /(21rS)3a T)
4. 8. 3)

The set of partial derivatives generated from Equation 4, 8, 3) is
listed in Table 4 where the derivatives are evaluated at the input
experimental data given by the set (4,6, 2).

The peak amplitude of the elastically mounted cylinder will
increase if any of the experimental inputs are increased with the
exception of the circulation and translational velocity of a vortex

shed from a stationary cylinder,
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D 9A /D
Ay de,
o 3CF ul
T CF t B
6r BAy D UZD w
2 2.0 .10 -1, 4 .52
4 2.0 . 092 -. 73 .33
8 2.0 .077 -, 24 .18
16 2.0 . 059 . 072 . 088

Table 4, Change in Resonant Amplitude of Elastically

Mounted Cylinder With Change in Input Experimental Data.

Reviewing Tables 2 through 4 it can be seen that while the
model parameters and model r-eéponse generally vary with changes in
the input experimental data there are apparently no jump effects where
a small change in tﬁe experimental data.inputs could produce a large

change in the model response,

4,9 PIVOTED ROD

The pivoted rod approximates the motion of a fixed free bending
cantilever in the first mode. The present model is applied to this
geometry using an assumed linear mode shape. The model response
is then compared with experimental data. |

The rod is spring supported and pivoted at the base and vibrates

transverse to the free stream as shown in Figure 16, A viscous
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Fig, 16, Pivoted Rod,
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damping force is applied at the base, The following spatial distri-

butions for the cylinder and fluid model are used.

Y(x,t)=y(t)x/L
(4.9. 1)
Z(x,t)=z(t)x/L

L is the length of the rod. x is the spanwise length measured from

the pivot., y(t) is the displacement of the cantilever tip, These rela-
tions are substituted into the system equations. The Galerkin technique
is applied by multiplying these equations by the assumed spatial distri-
butions andintegrating the equations over the span of the cylinder to produce
two ordinary differential equations, This procedure neglects all span-
wise flow effects, Applying the Galerkin technique to the oscillator
equations (4,4, 19) and (4. 4.21) and incorporating the spatial distribu-

tions of Equation (4.9, 1) produces the following integral equations:
IL[pD.Zi(x/L)2+ K'utw;(x/L)zz/D]dx
[o]

1
- L [(2,-2,)0DU(x/L)?2-a, 002> (x/L)*+a, pDU(x/L)? | dx

(4.9.2)
L 2 2 2
J‘ [mif(x/L) +2§Tm(x/L) v+k(x/L) y]dx
.-
L
= J a4pDU2(x/L)2dx (4.9.3)
o

The system differential equations are then:

2
.. O _ ' 1 - I 03 4 .
E+w z_(al—a4)Uz/D—3a2z /5UD+a4Uy/D (4.9.4)
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se i o 2 o o
y+2 §Twyy+wyy =a,2 (4. 9. 5)
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2 a.
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o

and M is the "equivalent' mass,

L

L
M-_-J‘O mxzdx/.fo xzdx (4.9.6)

Equations (4. 9.4) and (4. 9. 5) are identical to the basic fluid and
structural oscillator equations (4. 4. 19) and (4. 4.21) excebt for the factor
of 3/5 which multiplies the cubic term in the fluid osciliator equation
and the substitution of equivalent mass for mass per unit length. With
these changes all the previous results for the elastically mounted
cylinder apply. In particular the equation describing the peak resonant
amplitude asv a function of damping for a= 0 is:

1/2

a26r

Wi Vv

A a 5(a;-a,) 5a
=Y =- 4 [ 1 _4 (4.9.7)

+
2 .2 2
- 911'53.2 18n"s

Equation (4, 9. 7) is plotted in Figure 17 in comparison with the
experimental results of Vickery and Watkins [20] and Hartlen,
The present model provides a good approximation to the experi-
mental data for amplitudes between 10 and 60 percent of
cylinder diameter. Note that the three sets of experimental data
nearly fall on the same curve as is also the case for the 1 dimensional

oscillation peak amplitudes shown in Figure 3., This tends to confirm
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Fig., 17, Tip Amplitude of Pivoted Rod at

Resonance with Vortex Shedding,
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the model prediction that the peak resonant cylinder amplitude can be

expressed as a function of reduced damping alone,

4,10 SUMMARY AND CONCLUSIONS

A model has been developed for vortex induced vibration of a
circular cylinder, The model is based on a control volume approach
to the vortex shedding process and the von Karman idealization of the
vortex si:reet. ’I‘he two degree of freedom model is composed of fluid
like and structural oscillators which interact through the force exerted
bet’v&een the fluid and the cylinder. The model parameters are deter-
mined from experimental data by matching the model response to
experimental observation for the cases of a fixed cylinder and forced
cylinder motion. The model provides a basis for pfedicting the
response of untested structures,

If the cylinder j.s elastically mounted then the model pi‘edicts
the cyliﬁdef resonates with vortex shedding as the shedding frequency
approaches the natural frequency of the cylinder and large amplitude
oscillations will result. The model predicts that the response of the
cylinder is a function of the ratio of‘ natural shedding frequency to the
natural frequency of the cylinder structure, the structural viscous
damping and the ratio of displaced fluid mass to the mass of the
cylinder,

The model shows an entrainment effect, that is the frequency of
vortex shédding from the elastically mounted cylinder is entrained by
the natural frequency of structurél oscillation, The model predicts

that the entrainment effect will increase with decreasing structural
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damping and _this is confirmed by experimental results, ‘The model
also predicts the entrainment effect will increase with the ratio of
displaced fluid mass to cylinder mass except in the case of very small
values of s‘vtructural damping.

The peak resonant cyliﬁder amplitude of the model due to reson-
ance with vortex shedding can be expressed in terms of a single variable
called reduced damping. The peak resonant cylinder amplitude increases
sharply with decreasing damping due to a fluid feedback effect, The
model predictions ofbpeak resonant cylinder amplitude as a function of
reduced damping are in good agreement with experimental data both for
one dimensiohal cylinder motion and for the reéponse of a pivoted fod.
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V. GENERAL CONCLUSIONS

A bluff structure exposed to a fluid flow cén be excited to large
amplitude vibrations, Two mechanisms for the transfer of energy from
the fluid to the structuré are considered here, First the fluid force on
the structure is modeled as dependent only on the relative velocity and
angle of attack of the fluid to the structure. The reéultant vibrations
are called galloping., This galloping model is valid as long as the
frequency of vortex shedding from the bluff structure is much greater
than the natural frequency of the structure., If the frequency of vortex
shedding is near the natural frequency of the strugtulje then the vortex
shedding can lock onto structural oscillation. The vortex shedding
process is modeled as a single degree-of-freedom 6scillator which
interacts Qith the structure through fluid forces exerted between the
structure and the fluid, Both models for the interaction between the
| structure and the fluid generate autonomous nonlinear differential
_equations with oscillatory solutions. These equations are analyzed
by thev asymptotic method discussed in Chapter II,

The asymptotic téchnique is based on the approximation of
Bogoliub‘ov and Mitropolsky as applied to internally resonant, autonomous
systems. In Chapter II it is sthvn that:

(1) Internally resonant autonomous oécillators may be

divided into two classes,
(i) Harmonic internal resonance, A necessary con-
dition for harmonic internal resonance is that

natural frequencies of the principal coordinate
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oscillators be nearly harmonics of some frequency,
Harmonic resonance is characterized by the sen- '
sitivity of the solution to small changes in the
detuning between oscillators,

(ii) Combined internal resonance, 1In this case the
response of the oscillators is substantially
independent of small changes in detuning, Combined
internal resonance can only occur outside the band
of frequencies that contain harmonic resonance,

A model for multi-dimensional galloping is developed in Chapter

III. A sifnple approximate criteria for the stabilit;} of the zero solution
and an estimate for the maximum amplitude of galloping are produced,
Examples are made with a noninertially coupled structure having
plunge and torsion degrees of freedom, A cubic approximation to the
nonlinear aerodynamic coefficients is used, These exampies have
shown that:

(2) Simple harmonic solutions were found in every case,

(3) Outside the band of natural frequencies which produce
harmonic resonance the response is either zero,
dominated by plunge with no first order torsion, or
dominated by torsion with no first order plunge,

(4) As the system approaches harmonic resonance both the
torsion and plunge degrees of freedom achieve first
order limit cycles,

(5) The bandwidth of frequencies containing harmonic

resonance increases with free stream velocity and the
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ratio of fluid deﬁsity to structural density,

6) The response remains constant or increases with free
stream velocity,

A model is developed in Chapter IV for vortex induced vibration
of a circular cylinder, The model is based on a control volume
approach to the vortex shedding process and the von Karman idealization
of the vortex street. The model features both a fluid and structural
oscillator, The model parameters are determined from experimental
data by matching the model response to experimental observation for
the cases of fixed and forced cylinder motion, The model predictions
are then compared with experimental data for the elastically mounted
cylinder case. The model provides a basis for predicting the response
of untested structures, The model predicts: |

(7) The response of an elastically mounted cylinder is a
function of the ratio of the natural shedding frequency to
the natural frequency of the cylinder structure, the viscous
structural damping and the ratio of displaced fluid mass
to the mass of the cylinder.

(8) The entrainment effect, where the vortex shedding
frequency is entrained by the natural frequency of an
elasytically mounted cylinder, will increase with decreas-
ing structural damping, This is confirhled by experi-
mental results, The model also predicts the entrainment
effect will increase with the ratio of displaced fluid mass
to cylinder mass except for very small values of

structural damping.
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The peak resonant cylinder amplitude of an elastically
mounted cylinder at resonance with vortex shedding is

a function of a single variable called reduced damping.

The peak resonant amplitude of the cylinder increases
sharply with decreasing damping due to a fluid feedback
effect., The model predictions of resonant cylinder
amplitude as a function of reduced damping are in good
agreement with experimental data both for one dimensional

cylinder motion and for the response of a pivoted rod,



