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ABSTRACT

The mixing of two miscible fluides in motion in a saturated iso-
tropic porous medium and the stability of the density interface between
them has been studied. The density inberlace was Cormed Ly a line
source introducing a deunser fluid into a uniform confined horizontal
flow. Tt was shown that the half-body thus lormed may be approximsted
to within the density diflerence by ULhe shape when the densitiles are
equal. The mixing of the two fluids by lateral dispersion along such
an interfece was investigated experimentally and it was found that up
to dengily difflerences of at least 1 per cent there was no observable
effect on the lateral dispersion coefficient.

A theoreticel invegtigation has been made of the stability ot
the uniform two-dimensional horizomtal motion of two miscible fluids of
different density in a saturated, isctropic, homogeneous vorous meditm.
The [luia of higher density overlay the lower density fluid and voth
were moving with the same seepage velocity in the same direction. The
analytical solution for the stability was obtalned from the continuity
equation, Darcy's law and the dispersion equation by investigating the
stability of arbitrary sinusoidal perturbations to the velocity vector
and the densgity orofile prescribed by the lateral dispersion of one
fiuld into the other. A stability equation similar to the Orr-
Sommerfeld equation was obtained and a neutral stability curve in a
wave humber - Rayleigh number plane was found by two approximate

zmethods. The growth rates of instabilities were Investigated for a
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linear density profile and it hes been found that although the “low was

always unstable the growth rates of unstable waves could be so low as

to form a quasi-stable flow; examples of such flows have been demon-

strated experimertelly.
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CHAPTER ONE

INTRODUCTION

1.0 Irtroductory Note

It has long been recognized that water reservoirs such as lakes
and ocesans have natural density stratifications arising from differ-
ences in temperature or in dissolved or suspended material. The same
phenomenon also occurs in perous medie containing water or other [luic
as for example occurs in oll fields, in the Ghyben-EKerzberg lens below
some oceanic islands (Wentworth (1), Carrier (2), Wooding (3)) and in
geotnermal rields (Wooding (k)).

However, it ig only relatively recently that men hLeve begun to
exploit thig density stratification and even more recently to study the
consequencies of perturbing a natural stratification. The petroleum
industry i1s again one obvious example of the exploitation of thls phe-
nomenon. Another, somewhat less welcome, example 1s the intrusion of
gea water into coastal ground wabter aguifers when the natural ground
wabter outflow is intercepted by wells or catchments, (Harleman and
Rumer (5); Bear and Dagan (6)).

Similar density stratifications can occur when hot water or
water containing dissolved salts is artificielly injected by recharge
welle or infiltration ponds. ‘OFten when a Zluid of density diflerent
to the ambient flaid is introduced into a porous medium krowledge 1s
required of the process by which mixing of the alien and ambient fluids
occurs. In particular such information should include the role of the

density ditference in the mixing process. An application of this



knowledge is in the mixing of high salinibty reclaimed waste water with
relatively high quelity, low salinity ground water in order that availa-

ble water supplies may be extended.

1.1 Previcusg Work

The mixing of two or more fluids in motion in a porous medium
invoives a microscale molecular diffusion process within the interstices
or pores and a macroscale convective mixing from the arbitrary flow-di-
viding by the porcus medium. The process can be thought of as analogous
to turbulent mixing in fluid flow. Since the process involves more than
Just molecular diffusion and depends on the flow characteristics it is
more generally called hydrodynamic dispersion or simply dispersion.

Dispersion is characterized by being a much "'faster" process
than molecular diffusion, and so regardless of the fact that it is
carried on only orn the scale of geveral pore sizes the cumulative effect
can bte seern on a relatively large scale in a similar way Lo pure molecu-
lar diffugion. Research hag therefore been direcied at finding a dig-
persion equebtion as well as brying to understand the vasic mechanism.

Theoretical research has centered about finding a mathematical
model which will characterize the phenomenon and its behavior and numcr-
ous models have been proposcd. A random walk theory was presented by
Scheidegger (7); and Saffman (8) assumed that a porous medium was analo-
gous to a nelwork of capillaries in order to apply Taylor's (9) tneory
of diffusion in laminar flow in tubes. For ar appraisal of most of the

models that have been proposed the reader ils relferred to articles by



H. 0. Pfannkuck (10) and Bischoff and Levenspiel (11,12).

Scheidegger (13) and de Josselin de Jong (I4) give the equation

to describe the dispersion of & tracer in steady, saturated flow in a
homogeneous isotropic porous mecium, where Dik are the components of

the factor of dispersion and D 1s a symmetric second-order tensor, uy

are the components of the seepage velocity (defined later) and C :Is

(\
&)
[}
|

the relative concentration of the tracer (0 < C < 1) . Bear <15)
cludes from experiments that the factor of dispersion is an inner

product of two tensors: a geometrical dispersivity tensor, of

e

Sk om

the porcous medivm whick measures the tendency of the porous medium Lo
disperse the tracer, and the tensor uzum/lu] which expresses the
irZluence of the velocity on the dispersion.

When the direction of one axis coincides with a uniform flow

then Dik may be written

FaIu 0] 0
Dik = C aIIu 0
I 0] 0 aI1 u_

where aql = DL is the so-called longitudinal dispersion coefficient
and a_._u = Drl.1 5 Tthe lateral dispersion coefficient.

This result is apparently ressonsble, Pfannkuch (10), Harleman

and Rumer (16), for some ranges of the particle Reynolds rumber



(R = ud/v) where d 1is the average particle size; 1t Is obviously
untrue when the velocity is very small or zero as this result could
give digpersion factors smaller than the molecular diffusion rates.
Furthermore, it aséumes oubright thet the molecular diffusion nlays no
part in the dispersion vhenomenon at all, & point still in dispute. It
seems more plausible that Dik/Dm = (R, S, geometry) where D is the
molecular diffusivity, S the Schmidt number and R the particle
Reynolds numher.

There hag been little study of density induced flows in satu-
rated porous media and most is the work of one men.

Weoding (17,3) nas studied the mixing zone at the boundary of a
buoyant ovlume in a saturated porous medium and under the justifiable
assumption that the latersl dispersion coefficient is constant has found
these flows are governed by equations similar to those of laminar incom-
pressible flow for such cases as the Gortler half jet and the Schlichting
solutions for a momentum jet from a slit or point source. Mixing along
the fresh water sea water interface of the CGhyben-Herzberg lens dis also
considered by Wooding (3).

The stability of a vertically moviag interface between immisci-
ble fluids in =z porous medium was studied vy Baffman and Taylor (18) and
the work has oeen extended oy Wooding (19) to include the inlluence of
the longitudinal dispersgion across the interface of ftwo miscible fluids.
Tn addition Wooding (20,21,22) has investigated the gravitational Insta-
bility of a viscous fluid ir a vertical tube containing a porous materi-

al, and also the stability of a liquid of variable density in a vertical
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Hele-SBhaw cell.

The motion and micing of two fluids of differing density and in
horizontal motion one above the other has not been studied previously.
It will be the object of this dissertation to investigate the stability

gnd mixing of such a flow, when the heavier fluid is above the lighter.

1.2 The Problem

A flow such as above could be gencrated in the [ollowing way.
Consider a line source of strength 2Q2 ver unit length discharging half
of its total flow of density Ps into a homogeneous isotropic porous
medium of intrinsic permeability k and confined between two horizontal
paraliel planes distant a apart. The porous medium alsc has a uniform
flow of velccity U and density =5 and moving from left to right,
Figure 1.1. The two fluids are miscible and have kinematic viscosities
Vo vl respectively. The problem is to study the mixing of the two
fluids by dispersion across the interface, and to study the flow sta-

bility.

1.2 The Equations of Motion

In flow in porous media two velocities are generally spoken of.
The superficial velocity wvector .; is teken to be the flow rate dQ
through an area dS in a direction normel to the flow, i.e. the flow

in the direction normal to dS is given by

Y .mnds = a9 (1.1)
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where 1 is the normal to dS end where dS is assumed to be large
compared to the pore size but small compared to the cverall flow curva-
ture.

The seepage velocity wvector a is taken to be the flow rate
through & pore area dSO , tThat is

q -0 ds_ = a4 (1.2)

where again dSO ig large compared to <The individual pore sizes, small

compared to the flow curvature. The superficial porosity Is defined <o
be

das

0

—2 = m (1.3)

and is essentially the same as the volumetric porosity e (sce
Polubarincva-Kochina (23)). Thus rfrom (1.1), (1.2) and (1.3) it is seen
that

-
v = €q

Tne equations of motion for steady flow in a porous medium are known as
Darcy's _ew and have been shown to be, Reference (23), in Cartesian

coordinates,

- - )

vp + pegk + % ov = O (1.4)

where p 1is the pressurc, ¢ the fluld dersity, Vv <vhe [luid kine-

matic viscosity, k the intrinsic permeability, g the gravitational
g . . . - . .

congbant, ¥ & unit vector in the upward vertical direct orn.

Surprisingly, equation (1.4) is even wvalid for unsteady flow,



see Reference (23), provided that the changes in vp with time are

pounded. It is shown that for times T > k/v then the term B?/Bt
6

may be neglected. 8o, if for example k ~ 0{10 ) en” s

2y 2 - -
v ~0(10° ") em”/sec then 0v/0t may be ignored for T > 0(1C h)

seconds.

1.4 Equation of Continuity and Dispersion

The equation of continuity is
d - _
e +v - (pF) = O (1.5)

waen there is no diffusion or dispersion of digsolved material in the
fluid. However, when there is a dissolved substance present it becomes
necessary S0 add an additional mass transfer term to account Zor the
dispersion.

The net efflux of mass from a closed surface S due to dis-

persion is

_[e(Dvc)-'ﬁds
s

where D 1is the dispersion tensor as defined in section 1.1, C 1is
the concentration cf tracer per unit volume. Tals implies a dispersion

term must be added to equation (1.5)

e%fé+v-(p§?) = v - (e DVC)

—

And writing v o= €q



R4 (oD = 7 (D90) (1.6)

where D 1g defined guch that it reduces to the molecular diffusivity
» g - N J . I
in a porous medium wnen d becomes zero. The conservation equatior. for

the tracer (the dispersion equation) is (see section 1.1)

Lig-(Ge) = v - (0v0) (1.7)

Now for small differences in density and concentration the density and

concentration per unit volume are cornected by an equation of state
p-p = B(C-C)) (1.8)

where 01 and Cl are free strear reference quantities.

Equations (1.6) and (1.7) can be rewritten as

o4 pv .3 = (pve) (1.9)

at

ac L .

FTCvea =V (Dve) (1.10)
where

d > = r)

EE - S

Subtracting (1.1C) from (1.9) gives

v g = d(o dlp - ¢) lo _—

Buat from (2.8)
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d(p - ¢) ~ c(ap)
p-Cc ~ ofp)

go that 1f a characteristic velocity UO

and a characteristic length
s, are chosen so that & characteristic Lime is a/Ub then
U
- 0
\Y q O(_Ei_
a(p - ¢) , 1

dt

mlod
S

p -~ C ~ 0

Thus for Ap < p

v o+gq = 0

(1.11)

Furthermore, using (1.11) and (1.8) equation (1.7) can ve rewritten

DG v = v - (D)

To summarize, the equations of motion for a density stratified flow in a

saturated homogeneous porous medium can then ote written

7 +q = O (1.12)
vp + pgk + = 04 = O (1.13)
g o

g% +q - vp = v(DVp) (1.1h)

Now that the eguations of motion have been deduced a study may be made

of *he mixing process, and the flow stability, for the problem specified
in section 1.2.

In the following chapter a soluticn is developed for the mixing
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across the interface shown in Figure 1.1, and in Chapter 3 the stability
of the flow is investigated. Two methods are used to find a neutral
stebility curve in a Rayleigh-rumber wave-number plane, and the growth
rates of unstable waves are lnvestlgated also.

Chapter L outlines the experimental apparatus and procedure used
to confirm the theoretical results developed in Chapter 2, and Chapter 5
details the experimental results from the experimental investigation of
the mixing. The results obtained from the stebility study and the study
of +the mixing are discussed in Chapter 6; conclusions are drawn and

suggestions for further investigatiors are made.
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CHAPTER TWO

THE MIXING LAYER

2,0 Inbroduction

There are two major problems associated with the two-dimensioral
flow system depicted in Figure 1.1. The first is to determine how the
two fluids intermix. The approach to solving this problem is to first
assume the two fluids are immiscible and compute the shape of the
Interface between them. A solution of the dispersicr equation is then
sought in the system of coordinates formed by the streamlines and their
orthogonal trajectories.

The second problem is the question of overall stability of one
fluid flowing over another cf different density in a porous medium.
Since the stability behavior will be intimately connected with the
mixing characteristics the mixing problem will be studied first and the

gtability in the next chapter.

2.1 GShape of the Immiscible Interface

The shape ol the interface between two immisciole iluilds of
different density in motion in a homogeneous isotroplc porous medium
will not depend on the dispersior equation; consequently ~“he equations
of motion for eack fluid will be just the continuity equation (1.10)

and Darcy's Law, equation (1.11)

Vv, = O (2.1)



- k
voev,= 0 (2.3)
- k
where
vy = (upvy)

are the superficial velocity vectors and VysVs and ppsPy are the
constant kinematic viscosities and constant densitieg of tke two Tluids,
and where Zeft-handed Cartesian coordinate axes have peen chosen with
the source point ag origin and the y-axis pointing vertically down.

Now from equations (2.2) and (2.L) it is possible to define

velocity poteantials o, and P, such that

Vivyo= T (2.5a)

Vv, = v, (2.5¢)
where

®, = - X (o, - 0.ey) (2.62)

1 0y 1 1

. ']—,- 6

w, = - o, (o, - peY) (2.6D)
and



It will become evident later that if the potentials are defined
in this way then one solution can be written down for the entire flow
field wnen the densities, but not the .viscogities, are equal.

Since the flow is two-dimensional equations (2.1) and (2.3) im-

ply that there exist stream functions +¢. and ¢, such that

1
o, o,
\)iui = 8;{__ = 55‘“ (2.7&)
- ~ BO__ ~ a‘pl (2 W‘b)
it T 3y T T .

where u, and v, (i = 1,2) are the horizontal and vertical components
- . . . -
of the superficial velocity wvector V.o

Suppose that the interface can be represented by the equation

y = (x)

Then the twc boundary conditions cn the interface are
(1) That there is no flow across the interface; this can ve

written in terms of the potentials definea above as

a@i Bcpi

5 - (g =0 (2.8)
on

y = C(x)

where the prime denotes differentiation with respect to x .

(ii) Trhat the pressures on each side of the interface are equal.

From the definition, equation (2.6), of the potentials this can



=
i

be written as
o} Py ~ C
2 2 1 .
P -, = - (-—————} gk (x) (2.9)

The equations of moticn and the boundary conditions may all be
suitably non-dimensionalized by choosing appropriate characteristic
values of length, a , the depth of the porcus bed, and UO & veloclly,

defined below.

Then let
_ * .,
Ql - Qi Uod
v. = v.¥.U
i i 0

= * .
Pl Pi nga
1
np_‘ = Qpi* . gK >}

where the non-dimensional values are denoted by an asterisk which is

subsequently dropped. The equations of motion then become

1l

vy - v(pl -y) = vy (2.10a)

o = - (p - ) (2.11a)
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v p p
2 -—
N o, {27 by 2
o, ( Py ) ( )
0 = e = b, = =— ¥ 2.11b
2 P2 V= Py

9] D5 - P
2 2 1) - a
:p - —— @n - ( } .v(x) = -0 Q(X) (c.lE)
1 py 72 P1
and
3wy o9
5 ¢ (x) 5 = 0, at vy = C(x); (2.13a)
and
A,
T = 0 at vy = 0O andl (2.13b)
Sy
The boundary coadition upstream is obviously
écpl
= )Y
i (2.1k4)

since there is a uniform flow. The boundary condition at downstream
infinity can be investigated ir the fcllowing way. From equation (2.12)

we can write

Ao e, Op 3
‘1 2 o vy _
35 EIF = -%5 o ¥ = C(x) (2.15)

where s 1is the distance along y = {(x) from the stagnation point.
Now, suppose the interface has a horizontal tangent at infinity, wnich

indeed it must if continuity is to be preserved, then Oy/ds = C which



17

implies

o) P, 99, P

ul(m:Y) = 35

1l

\Y)

5 ug(m,y) (2.16)

i__.l
IR

f1
The velocity distribution will be uniform in each layer at infinity so
that it is possible to write

ul(m)Y> (1 -4da) = ¢

uy{=y) ©d = Q,

where

d = o) .

These equations imply that

0,V 4
: 222
d = (2.17)
P1V18y T 0oV
oVoly * 0-VQ vy 0%,
UQ(”;Y) = ( bV = G;'SE (,y) (2.18)
o.Vv.Q. + p.v.Q drp.
oVpto T PyYi o
ty (=,7) ( o, = 5 () (2.19)

In summary, finding the interface reduces to the following problem in

two-dimensional potential theory.
.2 R .
v $l(x,y) = 0 in Region I

0 in Region II

1l

)
v, (x,v)

with the following boundary conditions on the interface y = C(x)
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0
o, (2, 0(x)) -%c%(x,g(x)) = -8 ((x)
ard
a@i r éqE
55 () - 00 5 () = o
and with

5 (ov) =0 sty = 01
) ) - 4

Jx YT

vy 9% (oy) = PoVale * P11
v, 3 Poo

o9 (ory) = PoVas * PV

3% 2 ¥Y) oG plvj

This is an exceedingly difficult problem to solve since not
orly is the intcrface y = (x) unknown and to bc found as port of the
solution but the boundary condition at <The interface prescribes a Jjump
in the velocity potentials at the interface. The problem is therefore
the simultaneocus solution of two coupled free surface boundary value
problems and eince free surface boundary value problems are notoriously
difficult to solve the simultaneous solution of two coupled systems
would seem to be nearly impossible unless done nuerically. However,
it may be possible to develop an approximate solution which contains
a1l the esgsential characteristics of the cxact solution.

In the following section (2.2) 1t 1s showrn that an approximale

gsolution can be obtalned by developing regular perturbation series



gbout the solution when the densities are equal but the viscosities un-
equal. In Shis way the behavior of the exact solution can be approxi-
mated to within the order of the density difference by laking only the
Tiret terms of the perturbation series. In section 2.3 the solution
when the densities are equal is investigated and the shape of the inter-

face found; and in section 2.4 the mixing along the interfacc is

studied.

2.2 A Perturbation Solution

In view of the fact thal the density difference is small it
wotld seem that a regular perturbatior about the solution when the
dengities are equal wculd offer some simplification. Furthermore, since
& is small © ghould make an ideal parameter for expansion. Thus ex-
pansiong of the Tollowing form are scught for the Irterface shape anc

velocity potentials

2
f(x) = ¢ (x)+0C(x)+27 (x)+ . . .
P = aw . tdq. + 62 Q.. (2.20)
l O:LO ll 12 . . . . .
oW = by,, Tt dc + 82 C +
> o%20 Po1 Pop ™ v e

where y = Qo(x) is the solution for the shape of the interface when
the densities are equal} @lo(x,y), ¢20(x,y) are the corrcspoading
velocity potentials.

These expansions are first substituted into the dynamic boundary

condition equation (2.12) and the ®14(X’Y) expanded in Taylor series
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about ¥ = CO(X> . Collecting terms of equal order in B

%

0(8”) : a (2,0 (x)) - 3 PPagl Lo (1)) = 0 (2.21a)
p
o(8) + gy, (T (x)) - 5§-$21<x,go<x>> = - o (x) (2.21b)
2 Po
o)+ ot (5)) = 28 oyl ()
A, P, O
= s [t Gog () + E 50 Gt )] (e.210)

And from +the kinematic boundary condision (2.8)

”

o,
o) 55 (30, (x))

'
Il

op -
SR CINC)

oy
C(x) 57 (0 (=)

o
0(8) g5 (mCy (%)) - ¢
ete.

and

Aee
. 20
O(bo) F 3y (X;CO(X))

o
0 () 5,70 Gerg ()

Sm
Co(x) 527 (0 (%))

1
Il

See
o(s) 5;21 (x,C_ (%))

ete.

0 (2.22a)
L
o 0 (x) 5270 (x4 (x).
(2.22b)
0 (2.23a)
o
b Cix) 570 (5 (x)
(2.23b)

Now a_ and b are chosen in such a way that Qlo(x,y) and qéo(x,y)



are the analytic continuations of each other in Regions I and II
i.e. mlO(x,y) = mgo(x,y)

Thisg is pogsible, it

e

o
o)
il
|
= o

Using these “wo conditions we can eliminate gi(x) from eguations
(2.22b), (2.23b) and obtain a corndition relating the first derivatives

of 4, P,y 8CTOSS Y = QO(X) s
o 9
11 : 11, .
§§ (A:QO(A)) + QO(A) 3% (K)bo(ﬁ))

Py O op
) (Ef) [53}21 (6,0 (x)) - C2(x) 52 (x,co<x)ﬂ_ (2.24)

The boundary conditions at infinity on the first order pertur-
bations are now required. These are obiteined by expanding equations

(2.18) and (2.19) in vowers of & = pg/pl -1, and give

Sep
o(s°) : EE;O (=,y) = (v a, + lel)/vl (2.252a)
o P
o(sh) : 5= (=y) = - 52 Qy (2.25b)
1
o p
o(6%) + 577 (my) - = (2.25¢)



and similarly

9P, . .

o(s”) 5-}?20 (=,y) = ("QQQ + lel)/vl (2.262)
dep

o(87) : 7 (=y) = - (2.26b)
CII

o(s°) :&2‘ (w,y) = e (2.26¢)

Trhis completes the formulation of the problem Tor calculating the Iirst

order perturbations, and summarizing the first order quantities

V2m11 = C in Region T
2 . .
v Ppy = C in Region IT
Po
Py (6o () = 52 0y (T () = - ()

o %
G, + ) 5t

o [ 0¥ A,
= -f [g—y-gl (x,¢ (x)) - 1 (x) 5.;—1 (X,go(x))]

o, - p

1= B 2
3% (”:Y) = - O—l' Ql
o,

21
5% (0,5) = - Ql



55 (x,y) = © at y = 0,1
oy ;
5= (_OO) .V) = 0

Since Qo(x) is given by the solution of the zeroth order
problem when the densities are equal the first order potential pertur-
bations can then be calculated to within a constant since Neumann
boundary conditlions are given. Thls arbltrariness can be resolved by
placing mll(-h,o) = $21(-h,o) = 0 . (For definition of h see Fig. 2.1.)

Once @ll(x,y) and mgl(x,y) are known it then becomes possi-
ble to compute tThe first order perturbation to the interface shape, Ior

from equasion (2.22b)

op o,
55 (el () - b)) 5 (e (2) )
gi(x) = I (2.27)
o (5

and thus Qi(x) can be calculated. It should ve noted that at x = -h

o

10 1 = »
SE (—h,O) = C, Qo(fh) =

thus it would appear that Qi(—h) = © also. Hence to first order the
interface has a vertical tangent at x = -h .
From equation (2.17)

PpValp

(=) = 4 - —
PV F PVR,
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and this may be expanded in powers of & as follows

uy

(=)

It

HORFNO RN R

= 4 +(1-4a)a s+ (1-4a) a%8% + .
O C (e} O O
where
1 - Voo
o T v.Q. + v.Q
1% 2%

is the half body width when the densitics are equal. Hence it 1s seen
that

G (=) = (1-4) 4,

and that the correction to the interface from the first order term will
be of 0C(8)

It appears therefore that the zeroth order solution is at least
correct to within 0(6) and for all practical purposes there may be nc
need to compute the perturbations, especially as even the problem of
corputing the verturbationg is not an easy one.

The strategy will be to compute the zeroth order solution and
then compute the dispersion as if the zeroth order sciution were the
exact solubtion and check with experimental results; 1if good agreement

is reached then i% will not be necessary to compute the terms of 0(8)

£.3 The Zeroth Order Solution

It has been shown that a perturbation solution can be found to

the problem waen the densities are different provided that a solution
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is known for equal densities.
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This zeroth order solution can ve found

in a straightforward manner (using image methods or conformal mapping)

provided that ncun-dimensional velocity potentials and streem functions

are defined

as below

o %1 4 ~
1.7 X 7
. et
1 ~ Jy -
Vl 2 EE
Yo o _ a0
v, 2 T Jy

The problem is that defined in Figure 2.1.

10

4

~ 20
=T

The line source is represented by a logaritimic singularity of

strength 2v

2%/

the compiex velocity potential

. N2
v,.Q v,.Q (sinn = iV,.Q,
W) = oy 5 oo v e () - £
1 1 \sinh-:— 1
<
where the point 2z = -h has been arbitrarily chosen to have
Re w(z) = Oy = Wy = O

The shape of the interface is thea given by ¥

107 Y20

The solution for both ?1 0 and Pog is given by

(2.28)

=Im w(z)= 0



which gives
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Vv _Q v Q) . v_Q
272 22 - TX Ty 272
LQ1+ 5| v t == tan coth =5~ tan =] - —— =0 (2.29)
1 1 1
which can be rewritten as
-
e sinl Tty coth 24 }
y - (x) = 77 - —= = 0 (2.30)
© sin{ny coth m 1 1
where
- {2v.Q
-’329- = coth™ \)lQl +1 (2.31)
272

as determined by placing

g—:}f(-h,o) = 0,

The slcpe of the Tree gurface can easily e

il

g, (x)

tane — ]
o] LOO

cos(ny) - cos(my coth

Qo'l(y)}

determined and is given by

s (2.32)
2

sin(my) coth(%?) - sin(ny

coth %?)

A velocity discontinuity exists across the interfeace for since

there is a common pressure gradient on the dividing streamline it is

obvious that

NV = NV

1 1s 2 28
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where Vg and Vo, 8Te the respective velocities along the stream-

line. It can easily be chown that

AVERA] 2
" m ______2__2__... r 3 . . _TE}'E o e E_Yl—l
.= 5 sin 7y ;s1n(ﬂy) coth = - uln(ﬂy coth 2) ;
nk 12
+ rcos(ﬁy) - cos(ny coth 7?)1 (2.33)

These results are row used to investigate the mixing along the

interface.

2.4 Solution of the Dispersion Egquation

As s result of veing concerned cnly with steady flow the dis-

persion equation (1.13) can be written

g9 = v+ (DVC) (2.3L)

Now for two dimensional flow with streamline ccordinates

ecquation (2.34) can be written

oC a( ac} d oC
L) ¢ = + ID
LORE A At A - (2.35)
prcvided that the radius of curvature of the streamlines is large,
Wocding (3), Li (24).
_DL and DT’ the longitudinal and lateral coefZicients of dis-
version respectively,are functions of the seepage velocity ¢ provided

e
that the particie Reynolds nurber gd/v 1is large enough ( > 10 © ,

Pfannkuch (lO)) where d is the mean particle gize. DL and DT are
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constant at the molecular diffusion rate in a porous medium for very low
Reynolds numbcrs.

Near the stagnation point the velocity is small, for it may be
shown from equation (2.33) that g~ 0(s) nrear thie point; consequently
D, is almost constant and aDL/Bs *s approximately zero. Furshermore,
520/832 will be small compared %o BEC/GnE since the diffusion zone
will be wvery thin acrossg the interface. The term

9 (D 3C

ds "L Js
is therefore ignored near the stagnation voint.

Downstream, q(s) becomes almost constant since the flow be-
comes uniform, so again D; 1s constant ard BDL/BS is zero BQC/as2
is again small for the same reason above.

Hence in a first approximation the longitudinal dispersicn term

o . oC
S \DL s

is ignored compared to She leteral dispersion term

o D BC)

on ( T Sn

Since the transverse dispersion coefficient DT depends on ¢
and to a first approximation q is constant within the band of dis-
persion (i.e. independent of the coordinste n ), it is possible to

write
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2

a(s) & - p(s) £L (2.35)
- —

The bhoundary corditions are that

clo,n) = 1 (D < n <)

c(o,n) = O (-2 <n <0)

oC _ ~ o

e 0 (n = =+ for all s > 0)

The validity cf the approximations made in writing this equation
will become evident when the experimental results are presented later in
Chapter 5.

Equation (2.35) can be solved easily by assuming there exists a

function h(s) such that a similarity solution may be found,

(2.36)

1i

F(M)

Now substituting equation (2.36) into equation (2.35) it is seen that

(2.36) iz a solution of

I
O

(M) + M FM) (2.37)

provided that

il

h'(s) - h(s)
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z
TGT dJ (2.30)

Now with the given boundary conditions equation (2.37) is easily solved

to give ‘
w2,
T . 1,1 o_ﬂ) 2
Clem) = = [ e at = 543 erl(Jg (2.39)
-
where
n
n = . ‘é . (2.50)
2 )l —z——j—q S (083
From section 2.3 1t is possible to write
y - 5
- [ x4
s = f L1t (dy) dy (2.41)
o)

where
ax _ Sin my.coth = - sin(ay coth =) (2.42)
dy cos(ny) - cos(my coth %11)
and
v
1s
Cl(s) - e

where v, 1is given by equation (2.33) and the interface by equation
(2.29).
It has been skown in this chapter that the shape of the Znter-

face in the two fluid system depicted in Figure 1.1 can be approximated



4o within the order of the density differernce. Furthermore, the mixing
ol the two fluids along the interface has been investigated using this
approximate soluticn.

In Chapter 5 these results will be related to an expcrimental

study and the validity of the approximations confirmed.
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CHAPTER THREE

STABILITY OF THE INTERFACE

3.0 The Stability Equation

Experiments (see Chapter Five) have shcwn Shat it appears to oe
possible to have a more dense fluid in stable horizontal motion above a
less dense fluid, & situation which cannot occur if the two fluids are
at resl or in unilorm vertical mobion (Wooding, (19)). In other words,
the horizontal motion of the interface between the twoe fluids appears
to have a stabilizing effect.

In the previous chapter the mixing between two Iflulds when one
was injected into the other was investigated. It was seen that the flow
downstreamn tended to a uniform motion with one fluid on Top of the
other with a mixing layer between. Thus the stability of this systenm
will be governed by much the same mechanism as if the two fluids had
always been in parallel motior. The following system 1s therefore con-
gidered here.

A viscous fluid of density Ps is assumed to be in uniform
horizontsl motion, in & homogeneous porous medium of intrinsic perme-
gbility k and porosity e , with seepage velocity U in the positive
x-direction overlying a similar fluid of density pl(< pg), alsc in
uniform horizontal motion with the same velocity and in the same di-
rection. The two flows are assumed %o have been divided for -o <x <O
and nmixing begins to occur at the point x = 0 . A stability investi-

gation will be carried out by perturbing the equations of motion to
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obtain a linear fourth order vartial differential equation analogous to
the Orr-Scmmerfeld equation. The flow geometry is pictured in Figure
3-]_.

The equations of moiion are (see secticn 1.4)

vegq = 0 (3.1)
Ip + pgﬁ + %?.a = 0 (3.2)
dp , = .

+q-vp = v . (D7 p) (3.3)
ot

Now introduce the non-dimensional quantities denoted below by asterisks

and assuming ccnstant viscosity

p = p* (0, - p) gt (3.4a)

(,5) = (2,0%) & (3.k0)

po= o* (py - py) (3.4c)

4 = T U (3.4a)
gk (p, - o) ’

u = o (3.ke)

where £ 1is a characterigtic length yet to be defined and U = U/Uo
The couotions {3.11) are substituted into equations (3.3), (3.2),

and (3.1) to give, sz®ter dropping asterisks,
v .3 = 0 (3.5)

Vp + pk +q = O (3.6)



%5) (3.7)

and

gk £ (p, - p4)
Ny = = (3.8)

€ DTiJ

gk £ (o, - 04)
A= = 1 (3.9)
- € DL K

are the lateral anc longitudinal Rayleigh numbers respectively.
The density p , pressure p , and velocities are now per-
turbed by small amounts denoted by a prime which is subsequently dropped

wher the orders of 8 are collected.

p = P+ dp! (3.10a)
p = O+ 38" (3.10p)
u = 24+ du' (3.10c)
v = &v' (3.104)

As a first approximaticn it is assumed that the rate of growth
of the mixing layer car be taken to be very small over some length so
that it may be assumed that ® is a functicn of y alone. This is
tantamount to assuming the "sides" of the mixing zone are parallel and
is the normal assumpbion in consgidering the stability of jets. It will

be shown later that
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30 eV /%

ox ™ X‘372

which rapidly becomes small, compared to 0@ /dy .
Egaations (3.10) are substitused into equations (3.5), (3.6),

and (3.7) and the order of 3 collected to give

§§+%;’ = 0 (3.11)
g—%+u = 0 (3.12)
LWrorv = o (3.13)
U RRECERE ow

Since only two-dimensional disturbances are consgidered equation (3.11)

implies the existence or a stream function such that

ou oy
u = 6? v = - g-}-c-

Tlimination of p from (3.12) and (3.13) gives

du ov _ 08
3y “x C ¥x 7
ie. v = g% (3.15)

FEquations (S.lh) may be differentiated with respect to =x to give
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Now since U is assumed constant and 'XL and XT depend only ocn 2£ ,

equation (3.16) may be rewritten using (3.15) to give

2, 2o 9% . 38 _ 3% 1 2y 3% 1 e
v st Y 6—3; - 55 ° 7 (?\Lv \1;)+ay2 (thﬂ;) (3.17)

Now suppose that arbiltrary sinuscidal disturbances are represented by

¢ = ¢(y) ei(ax - act)

wnere ¢ 1ig the non-dimensional wave number

ench
L

and where L 1g the wavelength of the disturbance;

is the non-dimensional complex wave veloclity and x and t are non-
dimensional distance and time as defined previously. Then equation

(3.17) becomes

g

1 iv 2 1 1 ,
ot ) ey [ )+§‘—Lu<y>

Sl

(3.18)
- i (% - ) [4(y) - dPu(x)] + odFory(y)



Note that making the assumption that XL and XT are independent of
% 1s consistent with the approximation that @ is independent of x ,
and therefore Justifiable in a first approximaticn.

The equaticn (3.18) is rather similar to the Orr-Sommerfeld
equation: This is nod surprising, as it has already been mentioned
that Wooding (17,3) has found that the equations governing the motion
of a buoyart plume in a saturated porous medium are sgimilar to those of
a laminar momentum jet in incompressible flow. It would appear the dis-
persion plays a similar role with regard to mass transfer as viscosity
does to momentum transfer in iacompressible flow.

Equation (3.18) may be multiplied through hy J(y) , the
corplex conjugate of ¢(y) , and integrated from -= to = . The

boundary conditions on {(y) , ramely that

(3.19a)

]
O

(£ )

(3.190)

|
O

) =

arc equally true Zor ¥(y) ; hence when (3.18) is integrated, the re-

sult is
I, (2 L) ey s 2
JUEOL e 2 e 61® v@l?) o

-

2 ler |v()|® ay

= s (U- o) | (10 @)® + Pli))®] av+a

8

(3.20)
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A similar operation may be carried out on the conjugate operator for
$Ky) , multiplying through by U{(y) ,

(3.21)

and this leads to egquation

N
rr( I+ L 4 _]:_ ot 2 1 g._. 2
Ll ) el )

- v (% -9 [ {1 e)l

-0

F e Plim1?) ay + of fore)]® ay
(3.21)
Subtracting (3.20) from (3.21) implies

[ee]

2(% - e) [ [ 1@ +oPlsmI?] o = o
which implies that

U= c

xr
since the term under the integral is positive definite.

Taus any waves that might appear must have a phase velocity

equal to the velocity of “low. Furthermore, equation (3.18) can be re-

written

I
) 2. 1.1y .,a .
—_XE—_ - ampt(y) [XE'+ XEJ + X; i (y)

(3.22)

- ae, [ (y) - a0+ der(y)

This equation plus the boundary conditions (3.19) defines an
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eigenvalue problem which will now be investigated.

3.1 The Neutral Stability Curve

The equation (3.22) governing the stability can be rewritten

() - P+ )+ agare, W) + (@t + agade ()= agaf B (y) = O

(3.23)
and the boundary conditions
(=) = 0 (3.2ka)
11;’(:}:00) = 0 (3-2‘413)
where
L -z
XL

The neutral stability curve is the curve in the Rayleigh
number - wave number plane (XT,(X) which corresponds to disturbances
which neither grow nor decay with time. 8Since eguation (3.23) hag real
coefficients and has real boundary conditions then the neutral stability
curve will be generated by the solutions of (3.23) with c; =0 . In
other worde, the principle of exchange of stabilities is wvalid.
Equation (3.23) (with ¢y = 0) is o® fourth order and has four linearly
indeperdent solutions and
n
V) = DA W) (3.25)

i=

By substituting (3.25) into the boundary conditions (3.2L4) four
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homogeneous edquations in four unknowns (Ai) are gencrated. For these
four homogenescus equations to have non-trivial solutions for the Ai
the determinant of the coefficients must vanish. This is the so called
gecular determinent ard it generates the neutral stability curves in
the (hm , &) plane with ®  as a parameber.

However, it is generally not necessary to solve the equation
(3.23) to generate the neutral stability curve. A well-known variational

method due Lo 8. Chandrasekhnar (25) is now employed.

3.2 A Variational Method

Prior to proceeding with the development cf the Chandrasekhar
method consider ® which 1s the steady state density distribufion in

the interfacial zone (see section 2.4)

where D, X, and U are dimensional quantities, and X is the distance
from the start of the mixirg zone.

The two coordinates X and x can be regarded as a geographical
coordinate and a local coordinate respectively. The aim of the stability
analysis will be to investigate local stability in the region of the co-
ordinate X and the approximation made will be that while ® depends
on X it is independent of x . Thisg is equivalent to assuming the

mixing zone has parallel sides locally and is the usual approximation in



L3

considering the stability of laminar jets etbc.

Thus
()T
®'(y) - _______’?’_____% e 4DX
2(xDX/U)
Now choogse £ so that
1
@Y(O) = E 3
then
3
DX
4 = (” 5 ) (3.26)
and
2
1 "X
a'(y) = ze T (3.27)

It is seen that £ depends on the geographical coordinate X
bat is supposed to be independent of the local coordinate x .
The assumption that the mixing zonc has parallel sides can be

checked here

¥
g@wiii
X 3
X’Z

and thus ovecomes small when X becomes large, hence the larger X +the
better the agpproximation.
Thus for neutral stability (ci = 0) we have
.2
e LY

) - P ) ) ) -2 P u) - 0 (3.08)



where we have now

and

V(= =)

4! (:\: 00)

]

Lk

written

(3.29a)

(3.29b)

The essence of the Chandrasekhar method is to expand the functicn I (y)

in orthcgenal functions which satisfy the boundary conditions.

The

orthogonal functions on the doubly infirnite range implicit in (3.24)

are Hermite polynomials, Morse and Feshbach (26), thus we write

$(C) = e
wnere

¢ - -
ard

H () =
Then

¥ (C) =

(N

L aH (0

n=n n nt

(3.30)

(3.31)

(3.32)

Substituting (3.30), (3.31), (3.32) and (3.33) into equation {3.28)

leads to



oo 2 1H 2
-C nth (1 + n)
2o tae |\ (O - T i (©)
(3.34)
au% N%e -C2
t =3 (0) -—5e " E(Q))] =0
7 o5t

Now multiply equation (3.3%4) through by Hm(C) and use the orthogonality

integral for Hermite polynomials

< 2
. _5_1; _ n 1
Jr@ 0ot a =5 2" n
Tnig leads to
= ) T = . » . -2
n§o a A 0 n 0, 1, 2, (3.35)
and since
” o
-2¢ .
J e Hm(z;) IIn(C) ac
m-n mrn-1
2 2 m+n+ 1
= (-1) 2 F(”"‘z‘*‘*& X(m,n)
where
O if m + n is cdd
X(m1n>

L ifm + 0 is even

then
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. n+h . 2 . n+2
la | = Bnth 2 (n+ 4)! ) a (1 + %) B o 2 (n + 2)!
®mn! T 16 Ly
i o m-n mtn-1
Qs uem o, M N B ., 2 pmtantl
T2 8mn 2 a 3 (-1) = ( 2 ) X(m,n)
n el
27
(3.36)

where mn,n =0, 1, 2, . . .

Equation (3.35) can be regarded as an infinite number of homo-
geneous equations in en ianfinite number of unknowns An . TFor ncn-
trivial solutions for A , amnl = 0 ; thus equation (3.36) generates

the neutral stability curve.

3.3 Variatlional Theory Resulsts

In this section results are given from which a graph of Rayleigh
number

o= e D

T“’

can be drawn as a function of « , the non~dimensional wave number,
for neutrally steble disturbances.

To compubc this curve, leading minors of the determinant (3.36)
are successively put equal tc zero. This then defines an intrinsic re-
lation between A , ¢ and n . If values of % and & are given and
the lowest value of A found at waich the deberminent vanishes then
this gives a point on The neutral stability curve.

This Chandrasekhar process is often rapidly coavergent ir that

only & low order leading minor need be taken in order to get a fairly
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precise answer. However, in this case it was necessary to take the
leading minor of order 10 to get sufficient accuracy. Furthermore, as
the value of # decreased tThe convergence became even slower ag it also
did for A large.

The numerical calculations were carried out on the IBM 7094 in
the Booth Compulting Center at the California Institute of Technology.
The determinants were evaluated using a standard library subroutinc
available for this purpose. The results are given for u = C.5 and
® = 0.9 and are the dashed lines on Iigure 3.2.

Several interesting points are brought out by the resuits. The
most obvious result is that the flow is always utnstable when the
Raylelgh number is positive, that is wnen Po > pl . This is not sur-
priging as the analogous incompressible flow, a IZree shear lgyer, is
also always unstable, Tatsumi and Gotoh (27). However, there do exist
waves which are not unstable at a given Rayleigh number. Another
interesting result is that at a given Rayleigh number, an increase in
the longitudinal dispersion will be stabilizing, that is the spectrum
of unstable wave numbers is narrower. According to Harleman ard Rumer
(16) n = >LT/>\L = DL/DT~ 10 and D~ 0° T and since 4 ~u0?
the effect of increasing the flow velocity will be to decrease the
Rayleigh number and increase # . Thus increasing the flow veloclty
will reduce the spectrum of unstable wave numbers, cr have a stabilizing

effect. Thus the higher the velocity the longer the unstable waves.

3.4 An Approximate Solution

The density profile as specified by



Ay
2
e P
a(y) = L r et as + _l
J;[- - p? pl
can be approximated by the profile
P1
A3 = + >
O(j) 1 o - Ol 2 y=z1
y 1 Dl
ely) = - .yl =1
2 O, = D0
2 1
p
1
ely) = - y<-1
F/2 - pl
Then
o, ‘y] > 1
o' (y) ={, ] (3.37)
3 lyl <z

ard the equations of motion become

s ) - (@ )P + o ()

il

e [4"(y) - Fuly)l, |yl > 1

(3.38)

V) - @ e () + o ()

it

- 2 %ag
e L (y) - o4 ()] + = 4(y),
Iyl <1 (3.39)

and these equations are eagily solved. It will be noted that e, hasg
nob been vat equal to zerc Lhis Lime as 1L iIs desired to investlgabe

the growth rates of unstable waves. The boundary conditions are given
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in equationg (3.2L). However, these boundary conditions only apply to
the outer equations (3.38) and matching conditions must be determined
by which the solutions of the inner (3.39) and outer (3.38) equations
can ve related. These matching conditions are required at the points
y =+ 1 and are obtained by integrating equation (3.23) between _ - €
and 1+ ¢ and taking the limit as ¢ - 0 ; similarly between -1 - ¢

and -1+ ¢ (Esch, (28)). This gives, considering the first case

l+e
1" -1+ - r
)T e - 02+l (IFS + o' [ () oy
1-e
l+e 1+e
= %ozciill:(y)]i: - of F ¥(y) ay + xa” f e (yu(y) ay .
l-e 1-¢

Now suppose (y) is conmtinuous, then we can write

1+e 1+e
. [ o . . ite . .
lim | @' (y) dy = Ilim [@w(y)]l_e - lim | ©p'(y) dy
&0 | e-0 SACTR
1t+e 1+e
= -um [ep()ay = uma [y ay
€7 l-e =0 1-¢
ey (O
since ® —» A = constant at y =1 % e . Thus if {¢(y) is continuous

then ¥'(y) , ¥"(y) and ¢“{y) are continuous at y = 1 also. A

gimilar argument applies at v = -1
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The solutions of (3.38) can be writben down as

b)) = oap e e, e ea an My >0

where

B =‘\/oc2n + hoey (3.h0)

But the boundary conditions (3.2L) impliy that

b)) = A e e,y (3.41)

11

3
b)) = ay T ray e y<-1 (3.h2)

For \y‘ < 1 there are three solubions whichk must be considered

separately and they correspond to the three cases implied by
2 812%
2 1T - 2oc,
i
Cage I

Bxgn (3.43)

)\>l—2ac.
i

The solution of equation (3.39) can be written as

wI(y) = By el + B, eV 4 B3 e + B), e >yl <1 (3.44)

wnere
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2 2 %;Lé
a“(1 + ) + rac, Oﬁ(l )_mci) 2]
v o= 2 AR - 2 | 2 |
X
1
2 15 | ®
a™(1 + n) + e, 2 e, 0
(04 1 A
5 = | . L {-7? (L -un) - = =
Case IT1
When
NS
1 - 2xce.,
i
then
y = 0
ard equation (3.39) has a solution
() = B. +By+B, ¥ +B, & ¥
bW = B T BY T By 4
Cage 11X
When
2
R
1 - s
equation {3.39) has the solution
¢Izi(y) = Blcos Yy * B2c03h6y"+ Bysinyy + BusinhBy
where 1
LR 2
2 e, 2 o {1l + n} + A,
v = o (l - %) _ i + ie - i
2 2 2 2

(3.15)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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Tach one of these threc cases must be investigated separstely.
The Lour malebling cond liows al oy = 4 L will give eight homogeneous

equasions in 8 unknowns, the four A, and four Bi . For thesc elight

eguations To have nen-trivial szolutliorns the determinant of the coef-

Jlelents of Lhoe AL 3 Bi_ auslh ovaanish, This wlll gerneraue Lhe secular
equation and vhere will be three such secular equations, corresponding

To the three cases above Te iuvestigare. Each cf thesc will invoive

simplifylrg wn O x O delerminani, buw forlumabely the laber is nob cx-
cessive.
?
P
. - 2003
1) Case I A< A

T - e,

Tre determinant obtalred Zrom the matchirg conditions at y = %+ 1 is
1 - & £ cf e” e ¢
5 o 1 1 eV o o' _e”
- -B 0 C re! He re ¥ e
0 0 >4 B Ye—T Se_a reY ESCE : ~
2 2 -8 B v

3

j -8

’ 2
&7 T e

i
Ll
@
1
-

o 9 4

ﬁ
X
~
5

Tis determinant simplifies to (fre details arc given ir Appendix B),
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2 2 )
(r+a) (r+p)” Gra)® G+p)® (v - 0)

-~ ~

bre (87 - af) (87 - p°) (r° - 4P (r% - gF) e T B)

_e_;.rr (5 . Q’)P (5 s ) (T _ 3)2 (T _ rfs)? (T + 5)?

_4s . o, 2 2 2 2
(8 -a)” (38 -8)" (r+2) (v+3) (r+8) =

o

"hig intrinsic relstion for o, C.y Woo2H2 A was investigaied
numerically to cotcrmine LI any positive roots for A oxisted when
a, =, and W were given. The determirent appearcd “o be & positive
menotonlically increasing tunctior off o for all values of A, ¢y and

#, chosen and an intensive sc&rch ourd no roots on Ghe (k, a) plane,

It was concluded nc roots of any physical significance exist for Case T.

o
2

FEPIRN ~ - -
ii; Case 1I A —_—

- Jie,
1 = :

o

The Jeterminant carn easily be written dowr using ithe mabtching conditions

ané soluticns (3.58), (3.41) and (3.42)

1 1 0 C 1 1 es e“6
0 0 1 1 i -1 -0 o
< -3 0 O c 1 2" -50'5
3 o) o 2 C 1 a0 -6e6
o B° 0 0 o 5 ata® ool ?
0 O GE Eﬁ G o :20-6 ﬁnuu
L —ﬁ3 0 o O o} 530 5770
3 ; 3 -6 30
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The determinant can be simplified to

[e% +a) (6 +p) [8(op +a+p) -]

+ e (5 -a) (5 -8) [olap +a+p) +apl| .

[°G+0) (8+8) - (6 -a) (5-8)] = O (3.52)

and since ¥ =0 and X = 2052%/(1 - E{Ici)

B / %
p = a 1 - e,
1

48
- E TR L S
0 o jl 1 - Bxci

The behavior for ¢, = 1/2¢ is disregarded for the moment and will be
discussed later, (see page 56).

A simple investigation of the roots of (3.52) when cy

il
@]

shows that there are only negative values of A when ¢ and # are
real and pogitive. There is no indicetion of any positive roots for
even when c, £0 .

212%

iii) Case IIT A>T
1

The determinant is egain easily evaluasted using solution wIII(y)
(egquation (3.50)) and solutions (3.41) and (3.42) and the matching con-

ditiong at y ==+ 1 . The determinant is
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1 1 o . 0 - -cos Y -cosh © ~-3in v -ginh &
0 0] L 1 -C08 T -cogh & sin v sinh &
X -p O 0 Yy siny -5 ginh & -y cos ¥ -8 cosh B
0 0 o B - gin v S ginh 5 -y coe v -0 cosh B
= 0
ag BE O 0 Tecos T —SQCOSh o) Tgsin T -Bgsinh 3]
6 o o p° v%cosy -Bcosh & -rTsiny  Bosinh ©
413 -53 O 0 —Tssin T -63sinh 3] Tacos Y »ascosh 3!
C 0 QS 63 Tssin T 835inh 8) Yacos T -63005h o)
and can be simplified with some labor to two factors
. 2 2 2.2 2.2 2, 2 2
5 sin 1 [0B(r" + %) - (7" - &%) + P + 6°)
by cos 7 tem 8 [0B(r7 + 8°0) + (¥%° - of8%) + 87(o° + )]
. 2 2 2 2
+eginy btanh & » apla + B) (v* +87) +cosy » (+elyd(yr " +8") = ©

{3.53)

and
Y sin ¥ (OCB(TE +8°) 870" + 8%) + 18" - 06252'
-® cos v - tanh & [Oﬂﬁ(ra +8%) + Y aF + 8%) - (YT - agﬁg)]
. 2 = ; 2 2
+Ydsiny tanh & » (@+B) (¥ +87) —cosy - (a+p)op{y +8)= 0

(3.5
where ¥ is defined by equation (3.51), & by equation (3.46) and 8
by (3.40).

'he roots of these Two Tactors are investigated numerically and
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the resulls given in a Iaber section.

With the use of these approximate solutions that have been de-
veloped it is possible to détérmine not oﬁly the neutrsl stability
curves but curves of constant s in the (A, @) plane. These curves
determine the growth rate of any instability that occurs.

Considering again the case where

-,\__2.@3&__
T3 - e,
L
it appears that the growth rate may be bounded at dcy = % and since
Oc:t
the amplification of unstable disturbances, e + y depends on ae,

it appears that the amplification of unstable waves may be bounded.

3.5 Results from Appreximate Theory

In this section detailed compubed results are given for the
shape of the neutral stabiliity curve and the maximum growbh wafes of
. unstable waves. It has already been stated that there are no apparent

roots for Casge I or Case II when

2
- .
1 - 2xe,
i
For Case III,
j_e }\>ﬂ2_?§___
e 1- axci

there is one obvious root of equation (3.53) nemely v = 0 . However,

this is Case II for which the solution to the differential eguations



is different frcm Case ITI. It so happens that when v = 0 the de-
verminari in Case IT is not identically zero o 7y = ¢ isg an exiranecus
rooh of Case [IZ. The ccrroet roots are plcited in Figure 3.2 o show
the comparison with the results of the variatiornal theory., 1t 1s zeen
that wthe variational thecry gives somewhat mors gtable results. Since
it ig known that variaticnal methods of the Rayleligh«Rits family gener-
8l v coverestimate the stability of z given syster it wouwld seer that the
raegulite of linearizing The profile sre auvite reasonable.

e neutral stability curves for Ifcur walues of »  are also
plotted on logaritvikmic graph vaper on Figure 3.3, where it appears that

L]

tme meutral gtability curves arc asymptotic to A = A x when o Te-
comeg large. 1t will te recailed thatl

]
o= 2o

with oy = C correspends to v = 0 ., This result then explains the
gxirancouds zeob 1 = ©  in Case IIT; it ils acbtually an asymobote to She
correct result.

Curves ol constant arplificalticn rates can be computed Trom
ayuablions (3.33) asd (3.54) Ly cloosics e [lxed gosibive value of s
ir. the definitions ¢ v (eguation (3.31)), © , eguation (3.16) and
2, eoguation (3.40) and then oveluating She roote for A when @ and
# are given. The resulis of such @ compulaiion are showr in Flgures
3.k, 3.5 and 3.6 which gives curves cf conshant c, in the {n, o)
plane for valies ® o= 0.4, 0.9, 5.0 respeetively.

From these resulls 1% 1s possivle to drew curves ol 8 VQIsus

[s}
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oe, at constant Reyleigh number, X , and determine the maximum value
of aec, . The corresponding value of « {called amax) will be the
most unstahle or fastest growing wave, according to this approximate
linear theory. This most unstable wave will amplify with time according
to

(aci) t

max
= e .

The curves of «a versus aci for constant A and o are given in

Figures 3.7, 3.8, and 3.9. It is seen on these graphs that growth rate

factor oc, is bounded at Qey = 0.5 . The maximum velues cf oy

and « are plotted againgt the Rayleigh number in Figures 3.10 and 3.13.
Figure 3.10 gives the growth rate cof the fastest growing un-

stable wave. If L 18 the wavelength of such a wave then

2nd
@ =y

and thus the wavelength is easily determined.

From Figure 3.1C it 1g obgerved that the rate of growth de-
creages as the longitudinal dispersion coefficient increases (i.e. #
increasing). Thus not only is the spectrum of unstable wave mmbers
narrower with increasing velocity (see section 3.1) but the rate of
growth of unstable waves is decreased.

It should be emphasized here that this is only a lccal thecry
assuming that locally the width of the dispersion zone is not increasing
. with # , consequently the growth rates predicted are only lccal growth
rates. To determine the wave most likely To be seen at any peint is a

far more &¢ifficult problem. In order to solve this one would have to
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consider the variation with x of the dispersion zone and then solve an
initial value problem; that is give an arbitrary disturbance at x = 0O
and see how it grows or decays as it is sﬁept downstream. The wave most
likely toc be seen at any location isg then the wave having the maximum
growth rate. This problem is intended for later study.

However as an example of the local growth rates consider the
amplification of a disturbance in the time taken for the flow to travel

a distance 54. The non-dimensional time taken will be

g

X = © ., E&
€ 7T
Now
gklp, - py)
U _ T Tr———
0 €1

and for example suppose Ub’v O(lO_uL U~ 0(5 x 10_3) then t¥% = lO—l

l(aci) ] /10

and since according to this linear fTheory the upper bound for (aci)

max
is 0.5 the maximum amplification would be
0.0
5] 5 = 1.105 s
which is a 5% increase in amplitude.
Furthermore, since (aci) 18 bounded (Figure 3.10) there can

max
be o swdden growth of instabllity such as ovccurs when lamingr Clow be-

comes turbulent. This bounded growth rate of instability implies the

existence of a quasi-stable flow, that is & flow which will appear
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gtable but will ultimately display growing wavesg along the density
inberlface. - This resull ls borne out experimentally and will be de-

scribed in more detail in Chapters 5 and 6.
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CHAPTER PFOUR

APPARATUZS AND PROCEDURR

4.0 Introduction

An experimental investigation was undertaken to determine the
rates of dispersion and to observe the stability along a moving density
interface. The experimental setup was intended to model the fiow
pattern shown diagrammatically in Figure 1.1l. The experimental pro-
cedure will first be desecribed in an overall way and particular details
discussed later.

Horizontal flew through a sand bed was established in a closed
Tucite tank 250 cm long, 15 cm wide, and 35 cm deep. The tank was
filled with sand and a 1id screwed onto the top giving in effect a hox
full of sand through which a uniform flow of deaired distilled water
could be run. A flow of deaired saline water was introduced, through a
transverse slit in the top of the box, info the uniform flow of dis-
tilled water. The flow pabtbtern shown schematically in Figure 1.1 was
thereby generated.

Szlt concentraticns at points in the flow were detgrmined from
electrical conductiviiy measurements taken by conductivity probes which
were passed through the sand bed top to bottem. The probes were seéled
at the top and bottom of the tank ir such a way that they could be moved
up and down without fluid escaping from the tank. They were connected
to a recorder which measured the electrical cenductivity of the salt so-

lution introduced through the slit in the top. By moving the probes
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slowly through the tank it was posgegible to record a profile of electri-
cal con&uctivity nf the moving water in the tank and thug determine a
cbncentration profile by calibraticn curves relating electrical con-
duetivity to concentration_per unit mass. The shape of the concen-
tration profile across the fank wasg then used to determine dispersion

coefficients., The experimental setup ls shown schematically in Figure

4.1,

4.1 The Experimental Tank

A tank 250 cm long, 15 cm wide and 35 cm deep was constructed of
1/2 inch thick Lucite sccording to the diagrammatic plan shown in Figure
4.2 and shown photographically in Figure 4.3. The bottom of the tank
had six tapped holes 40 cms apart and located as shown in Figure 4.2,
Stainless steel "Swagelok" fittings (nominal size 1/L inch) were screwed
into the holes ané the conductivity probes passed up through the
fittings and located temporarily with straps across the top of the tank.
At each end were screens (65 mesheg per inch) to retain the sand and
help produce vniform flow of water through the sand. Three inlet pipes
fitted with diffusers (visible in Figure 4.3b) were placed in the up-
ptream end of the tank to help produce a uniform flow through the tank.

One thousand pounds of Otiaws Flint Shot sand were sieved to
give the gand used in the tank., This sieved sand had a grading curve
~as ghown in Figure L4t and a mean diameter of 0.530 mm and Cg = 1.10.
The tank, with the probes held in position by temporary siraps &cross

the top, was filled with sand by siphoning through a 5/8 inch diameter
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Figure 4.3b Debails of the apparatus.
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plastic tube. First the Tank was quarter filled with water and then a
glurry of sand and water siphoned in from a supply tank. In this way
the sand was placed under waler without any air bubbles being caught in
the sand. Approximately two incheg of sand would be placed and then the
gsand wag compacted by the vibration of the tank with an air hammer and
the process repeated until the gand, when levelled off with s specially
made screed, was 8_mm from the top edge of the tank. The locating
straps for the tops of the probes were then removed as the tightly com-
pacted sand now held them in place.

At this sbage a 1/8 inch thick soft "Neoprene" sheet 15 cm wide,
with hcleg cut for the probes and the slit in the 1id, was placed on
top of the sand (see Figure 4.2). When the 1id was placed on the tank
this compressed ontc the top of the sand and helped to prevent short
circuiting of the flow between the 1id and the top of the sand. The
sealing wag completed by placing a thin bead (1/8 inch in diameter) of
"Sealastic" on top of the rubber sheet and against each wall of the tank.
(When the 1id was screwed down the "Sealastic" filled any remaining gaps
between the neoprene, 1lid, and walls.) The 1id was now carefully placed
on the tank, and the tips of the probes projecting from the Neoprene
sheet guided into the fittings in the 1id. The 1id was then screwesd

down.

L.2 The Conductivity Probes and Recorder

The conductivity probes (Figure 4.5) were made by binding two

platinum wires 0.020 inches in diameter into two grooves cut 2.5 mm
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apart near one end of a 1/4 inch diameter phenclic resin tube approxi-
mabely 18 inches long. The wire was then pulled through small holes
drilled in the bottom of the grooves and led out the end through the
1/8 inch hoilow center of the tube. This tube was then spliced to
another of the same length by a slotted dowel rod 1/8 inch in dismeter,
the slots being necessary to allow the lead wires to pass up the tube.
The hollow tube so formed was pumped full of polyester resin to form a
solid rod with two platinum rings 2.5 mm apart near the center of the
rod. A microphone connector to which the lead wires were attached was
then glusd to the end of the rod, and the twe platinum rings polighed
flush with the surface of the rod. The construction is shown diagram-
matically in Figure 4.5, along with a photograph of the finished arti-
cle.

A Sanborn Four-Channel Recorder (Model ;54-100B) with 1100 AS
Carrier Amplifiers was used for the measurement of the conductivity. A
circuit diagram showing the half bridge elements uged in conjunction
with the conduclivity probes is given in Figure 4.6. Grounded screens
between each probe were necessary to prevent interactions. These were
provided by stainless sbeel screens {28 meshes per inch) of the same
cross-sectional area as the tank and placed midway between probes. The
probes were grounded by a machine screw connection up through the

bottom of the tank.

L,3 Measurement of Salinity Profiles

Preparatory to running each series of experiments it was
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3.175mm Slotted

To Recorder 6.350mm .508mm Platirum:

Wire

PROBE BEFORE ASSEMBLY

Figure 4.5 The conductivily probes.
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Figure L,5 The bridge circuit used in conjunction with the Sanborn
recorder for the measurement of the conductivity.
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necegsary to calibrate_the conductivity probes in situ. This was ac-
compliched by making up sgolutiong of godium chloride (Morton food grade
"99g") of known . concentration and passing approximately 5 gallons of
each through the apparatus and recording the relative conductivity. A
curve wae then drawn of concentration per unit mass againgt Sanborn
reading, the amplifiers having been balanced and the recorder zeroced to
deaired distilled water at the start of the calibration. Typical cali-
bration curves (D-series) for probeg are shown in Figure 4.7. With
curves like this for each of the probes in use for particular run to be
carried out 1t then became a simple matter fo measure the actual con-
centration profile.

Having calibrated the probes to be used by successive flushings
with known sclutions, the last calibration sclution would be flushed out
by running deaircd distillicd wober through the appoaratus untii the re-
corder had returned to a zerc reading. The approximate flow rate for
the main flow in the experiment would then be set by adjusting the height
of the inflow congstont hecad tank. The injected flow would then be
started and adjusted to the required value by operating the needle wvalve
above the entrance to the s1it. Both flows would then be permitted to
run unbtil a gtcady helf-body dghape could be obscrved. The injected flow
contained a very small amount of a nonconducting nonadsorbable dye
(Krieger, F1. 6.8 Pink concentrate Color No. B-3-G-6). At this point
the probes would be moved wup scquentielly until meegurcmenta indicated
the platinum rings were almost at the dye Iine and the distance betlween

the top of the tank and the end of the probe recorded. The probes
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would then be moved up approximately 1 mm each and the elevation noted
against the respective track on the recorder paper. The position of

the two rings with respect 'to.the top of the sand bed was determined in
the following manner. The probes had been congtructed so that it was
exactly 50 cm from the upper end (the end without the connector) of the
probe te the point midway between the rings. It was possible to measure
the distance from the snd of a probe Lo the top of the tank to within

+ 0.25 mm and the distance between the top of the sand bed and the top
of the tank was known to £ 0.5 mm. Thus the location of the rings with
respect to the top of the sand bed was known to £ 0.75 mm and the rels-
tive distance between pointeg on the conductivity profile to within

+ 0.5 mm. This accuracy is quite sufficient for even at a uniform
concentration of solution the sand grain packing about the probes caused
a fluctuation of approximately one half a division on the Sanborn re-
corder scale. At low concentrations this causes a high error, for
example, for 2% recorder divigions this is an error of 20%. Conse-
guently some scatter can be expected in the results especially at the

low concentration end of the profile.

b4t Measuring the Flow Rate

The main flow inlet, main flow outlet and the salt waber inlet
were all cormnected to constant head reservoirs (Figure h.l). The supply
of fresh water came from two five gallon glasgs Jars, on the wvery top of
the gpparatusg, which in turn were supplied by a Jabsco plastic impeller

purp from a 55 gallon reservoir. The salt-water supply to the constant
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head tank came from a voluwretric tank which in turn was supnlicd by

arotner Jaksco pump from gnother 55 gallon regervolr.

The saline flow rate was measured by recording the eleveilons in

<he salire volumetric fTank and measuring the overfiow rom the =saline
constant head tank for a given time lapsze “he maximum probable error

in this flow measurcront was approximately = 0.04% mf per scconé, givin

& maximur ner centage error cf + b%. However, it will be seen later

that tnls error could be as hign as = 10% and still not influence tre
results a8 the corputation involving the [low ratio depernds remargably
little ox the Tlow ratio.
The =mean total flow was measurec voruwnetrically at the overflow
from the outlet censtant head Gank. Tac estimated maximum absolute
error was within + C.0U ml/sec and Lthe maximur per centsge crror within
+ 0.4%, "Tae results guoted in Table 5.1 are the mean ¢ several rmeasure-

merts.

L.5 Delerzinirg the Concentration of Solusions

The scivtions uscd to calibrate the vrobes wers made up by
weighing oult the approximate emourt of sodium chloride which wzen cis-
solved in 5 gallons of distilled waler woutld glve aporoximately the
concentraticn of solution desired., AL the time of making the csli-
braticns for the experimental rur. a sample was taker from Lhe cali-
hrating sclution for later gravimetric analysis.

The gravimetric anaiysis consisted of carelully drying a 100 mi.

flask and rvkver stopper Tor approximately 24 hours in & silica gel
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dessicator. The dried bottle and stopper were then weighed to within
£ 0.00005 gm in a dried atmosphere on a "Right-a-weigh" single pan
palance marufactured oy Wn. Ainsworth end Sons. Aboul 20 mf of the
calibratior sclubion was then guaiexzly added to the flask and the stopper
repilacod ard weighed again. 'The slopper was then romoved to ths des-
slecator and the welgned solution transferrced to an cven at 9000. When
il appeared that all eveporation had Taken place, sbout 2L kours Later,
zhe flagsk wae then returned Zc the dessicator ler approximately four
heurs and then the stopper revlaced in the flask anc the flask and
stopper agalin welighed In a dried atmosphere. In this way bthe salt pre-
gsent in approximately 20 gms of golvticrn zewld bhe determined to within
+ 0.0002 gme on repetition. This gives & maximum per centage error of
a ©.01% scluiion of 10% and 2% on a C.05% concentration. These low
coneentretions were only used for the Z-series (see Chapter 5) and %he
error Ls comparable with the error that occurs with the Sarborr recorder
especially 2t low ccumeerntrations {sce section 4.3}, Furthermore, since
the per centage error decreascg at higher concentrations snd the cali-
sratlion curves are iinear at low concentrations this erver ig mwinimized,
The Sanborrn recorder hed a tendency to "drift'" in the time be-
twaen calibrotion snd on experiment. This was corrected feor by rezercing
before an experiment and checking the maxinmum deflection cof the reccrder

Curing ary coxperiment with the known concentrations being passed Lhrougn

the tari. Bmall corrections were oftexn necessuary.

4.5 Homogeneity of the Medium

Tne homogeneity of vacxing of the sand wae checked in two weys.
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The packing along the tank could be checked by the pressure loss re-

o

corded betwsen piezomelers (sce Figurc 4.2) pluced 'n voe side of Lhe
tank at mifedepth and lecated at five cquelly svaced positions alorg
the tank. I the vacking were longitudinslly homcgencous then the
pressure gradients recorded between egually spaced plewomelers should
be equal, and this is in fact so (see bpelow).

Te cheex the unilomity of packing with depth a vertical dye
Iront was run through the fank and the shavpe of the frons near Lhe clher
end of the tank recorded. Tae black curved Zine in the pvholographs cf
the *tank in Chapter PFive shows the shape of the dye frenz. It wouwld
appear shat the permesbility decreascs wilh helghl belng elightly higher

1

at the botiom. The curve appears smooth and it would scer bLhat this is

2 resuit ci the manner in which the sand is packed in the tank. The

maxinum percentage Glffercnce in uvermeablilliy can e eslimaled by iaking
the difierence in the distarce traveled at top and bottor diviied by the
overall distance. This is avoroximately 5% al the very werst.

The results of & determinabicn ol Lhie permesbllily ol Lhie sand

bed and 1ts longitudinal uriformity ere given below. For unllorm flow

DJarey's Law sbtates that Sho velocity of flow v lg given by

v = K 1

where K is bhe hycrazlic coaductivity

.
} Is
w
o
By
It

pressure heac gradicnt.
To measure K i3 is orly nccessary to measure the Lotal fiow rate and

the head losg AH vebween axy two stalions. IZf 4 is plotied gpgainst

ATl then the slope of the lire should be constant and egual 1o KA/T
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Figure 4.8 Confirmation of 1ongitudinal homogeneity and Darcy's

law for-the sand bed.
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where A is the cross sectional area of the tank, I the distance
between plezometere. The results arc given in Figure 4.8 below. From
Figure 4.8 it is very obvidus that Darcy's Law is true for the experi-
ment and £hat the permeability between plezometers ls quite uwniform for
the entire length of the sand bed. The hydraulic conduchbivity K was

found to be 0.098 cm/sec, at the temperature at the time of the deter-

mination, (21.4°C). The intrinsic permesbpility

koo B
()

= 0.97 x 10"4 cm? .

& direct determination of the porcsity was not possible. How-
ever an esStimate may be made Ly determining the average rate of advance
of a fluid front to give the seepage velocity within the tank; since

the superficial ITlow veloclbty ig known from volumetric measurement then

At
g = —
q

'he porosity was found to be 0.34 as a mean of eight trials with an

arror of + 0.006.
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CHAPTER FIVE"

EXPERTMENTAL RESULTS

5.0 Objectives

The basic objectives of the experiments were to observe if a
stable two layer flow could be developed with the denser fluid on top
and 1r such & stable flow dld exlist then to determine whether or not the
lateral dispersion coefficient was greatly influenced by the density
difference.

It was shown in Chapter 2 that the shape of the interface, a
free surface, could be approximated toc within the oxder of the density
difference. Furbthermore, it was shown how a golution for the mixing
along such an inbterface could be developed. Chapter 3 showed that al-
though the flow as zlways unstable the growth rate of unstable waves was
bounded and very low, thus leading te a duasi-stable flow. The experi-
ments will attempt fo confirm this and also to investigate the validity

of the mixing theory developed in Chapter 2.

5.1 Basic Experimental Parameters

The details of the experimental runs are given in Table 5.1; an
explanation of the data columng is as follows.
Column 1 gives the run number of the experiment. The letter reifers to
an experimental set of constant salt concenﬁ?ation and the number to a
constant filow ratio.

Column 2 gives the salt concentration in grams per gram of solution tor

the injected flow.
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Column 3 giveg the ratio of the saline flow to pure water Ifilow. It wiil
be noted that no flow ratios are given for the A and B series experi-
meﬁts. This is thé result of an experimenﬁal error invglidating the
saline flow measurements for these Two series.

Column 4 gives the mean superficizl f£low velocity in centimeters per
sccond through the sand bed and is the total flow rate through the tank
divided by the cross-sectional area of the tank normal to the direction
of flow (520 sgq. cm.).

Columns 5 through 9 give the locations at which conductivity profiles

were measured. The Roman numerals corregpond te the following distances
in centimeters downstream from the entrance slit:

PROBE : I 1T iz Iv Vv

DIBTANCE: 10 cm 50 ¢m 90 cm 130 cm 170 cm
Not all four channelg were in operabfion all the time due to intermitient
amplifier failures, and'probe breakages.
Column 10 gives the density difference in grams per milliliter of the
two solutions at the measured temperatures and concentrations. The
values are taken from The International Critical Tables, Volume IiI.

Columns 11 and 12 are the kinemstic viscosities (in centistokes) of pure

water and salt solutions at the measured temperatures. The values are

taken from the International Critical Tables, Volume ITI and The Handbook

of Chemistry and Physics, 42nd Edition.

5.2 Relating Experiment to Theory

In Chapter 2 the equation governing the mixing was shown to bve
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of the form
2
3C SIS
q. 58 - DT 2 (5'1)

in dimensional varlables, where g 1ig the seepage velocity, and C
the relative concentration in grams of salt per unit volume of solution.
However, thce concentration measured experimentally is concentration in

grams of tracer per gram of golution, and

where o ds the density of the solution and Cm and Cv are Tthe
concentrations per unit mass and unit volume respectively. It will be
within the experimental error to use these interchangeaﬁly, and this
will be done from now cn, and the concentration will be called C .

Iwo methods will be used to relate the experimental data to the
mizing theory. The first one, given in this section, will cover the
mixing from the stagnation point on downstreanm and will require a
knowledge of the flow ratios. The gecond method where the flow ratio
is not required is only applicable downsbtream of the salt water inlet
‘and will be given in a laber éection.

Now, it is generally accepted (see section 1.1) that the dis-
persion coefficient is proportional to the flow #elocity. However, as
with all exceedingly complex phenomencn this is only true in a broad

' sense, consequently abtempts have been made to describe the dispersion

by neans of a semlempirical law such as



ol

= 1R (5.2)

where r and « are constants

v 1s the superficial flow velociiy

d is the mean particle size.,
Such forﬁulas ignore any influence changes in the Schmidt number, v/Dm s
where Dm is the molecular diffusivity, may have on the dispersion

coefficlent.

Now, according Lo Harleman and Rumer {16)

0.0265

-
i

0.04 < R < 1,10
[44)

I}

0.7

and since thelr experiments were carried out with a constant density
salt solubtion the Schmidt number can be regarded as constant, although
no mention is made of constant temperatures and therefore constant vis-
cogity.

In congidering the mixing from the stagnation point oa down-
stream thé dispersion coefficient will be assumed tc be given by an
equation of the form of equation (5.2). This is not strictly true for
two reasons (apart from the general valldity of such a form).

First, it has slresdy been stated (see Chapter 1) that a formula
such as (5.2) can only be true for a particle Reynolds large encugh
(i.e. > 0(10—2)) since ag the wvelocity becomes low enough it will give
digpersion coefficients less than the meolecular diffusivity in a porous

medivm. However, this should not influernce the results too much as it
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can be shown from equations (2.33), (2.41) and (2.L42) that in the
neighborhood of the stagnation point the pupecrficisl velocity along the
streamline, v(s) is given by
v + v
1% “eQe) .

v(s) = 2x (4A
Vol

In these experiments
d = 0,033 cm
2
v o~ 0,01 cm /sec
and the maximum value of nge/lel used was 0.87. Thus for

vd

v

g > 0.0006

which ig a very short distance along the dividing streamline.

Second, since The density wvaristions in the experiments arise
both from temperature differences and differences in salt concentration
the Schmidt number will not be constant for all experiments; however,
the meximum variation is sufficiently small (10%) that it should not
.have an affect any larger than the normal experimental cscatter.

Tt is also to be remembered that in writing equation (5.1) for
the mixing along the streamline terms of order 1/R , where R is the
radius of curvature of the interface, have been neglected.

The procedure will now be to take Hafleman and Rumer's (5.2)
result and apply the mixing theory developed in Chapter 2 and use experi-

mental results obtained to find a wvalue of =z .
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When (5.2) is incorporated into (5.1) and lengths nondimension-
alized by bhe deplh of Lhe Lunk a , and veloclties by the mean up-

sﬁream flow velocity U then

2
l-a aC a°C
B v S5 C S_E' (5.3)
n
Whefe
1
Jd . Aa
B - (7 -1 (5.4)

It has already been shown in Chapter 2 Llhal Uhe solution to (5.3) 1s

n
2¢ -1 = erf - % (5.5)
ol 5
o B v
g0 That it is pozesible 1o write
n = E} F(s) ere™t (2¢ - 1) (5.6)
Re
where
ds
F(s) = {F ———*I:B) (507)
o v(s)
and erf_l = inversgse error function.

Following Harleman and Rumer (16) @ is chosen as 0.7 and r

- will be debermined experimentaliy.

In lhe experiments it is possible to measure the conductivity
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profile and hence the concentration profile by means of the probes and
equipmant. described in the previous chapher. Howaver, 3t will he
noticed that the probes actually measure the profile normal tc the top
and boﬁtom of the sand bed and not normal o the interface. Thus where
the inclination of the interface to the horizental is small at Probes

II, I1I, V, the error should te glight and it will be pcssible to write
n o~ -{y -7,)

where yo is the elevation of the interface. AL Probe I the error can

easlily be correclted for by taking

n = -(y - yo) cogh

where € 1is the inclination of the interface to the horizontal; how-
ever, the maximum computed sngle at Probe I is 11° (Rua E3) and the
correction is within the experimental errors and thus ignored. Thue
from the experimental observations it will be possible to plot curves
of v against erf™ (1 - 2C) and these showld be streight lines ac-
cording to equation (5.6). Furthermore the slope of these lines, § ,

is given by

s = 2I(s) (5.8)
BE

i
Hence an experimental determination of 2F(s)/B® is possible.
However, TF(s) depends only on the shape of the interface and

in Chapter 2 the shape of the interface wag found to within the order of

the density difference, so it becomes possible to compute F(s) from



equazion (5.7).

From Chapicr 2 eguabion (2.323) we have

onp
vis) = v;Qi - = l' : (sin (xy) » coth ==

3 o7
. LA Tl
- sin (my cotn =}| + (cos xy -~ cos (ry cotz —==) J
P [

where v, 8, ¥y, ¥, and 7 have been non-dimensionalized as previousliy
noted. {It will be recalled thal the visvosily and Geuslly dilfercoce
netween the Two [Muids impiies that therce is a wvelcciby Alscontiauity of

order

BoBs, T 1, G
o (CC’ :Y') - U, (m.! Y:’ = (U..L - U, ) == ' 17
[ - . > q__lnl_j_c

[

Thiz must conlrivute to the lateral dispersgion directly by forring a

nixing layer snd 1% also givesg rlige Lo the complication that T, wvarles
acroas the rixing fone. However, since this effect ig of the crder of
tne viscosity differenrce it should be small compared Lo the mixing nro-
duced by the mean conveclive veloczity U . That is BDT’Bn will be

- L 2. P . .
small compared with 7C/dn nd can be igrored.)

And

]
o}
W

5 = Z+ (—-— h's (5.20)

) -

wcre
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. ., Th . i
gin (o coth == - sin |my coth —
o F (zy) 5 ny coth -3
ay 2t
col Sy - cog wy coth —

(5.11)
z
and

(5.12)
27
The interface shape iz given by
- -
. wh
x sirl my {coth == + 1)
R —— G 5.13
|i"- N ' —l () «)
sic wy {cob = - i)!
"he method of comvuting F{s) 1is

(1)

as Icllows:

Comxpute Y pax (= Qo(m)) the maximom elevation ol the interface
VAL
2 e =
e (5.1k)
Ho 2% T 1%
cay o
(ii) Let

9V max
Yy T TEw

end compute the corresponding

s from formula (5.1%). The
(x., yj) dgefine the Iateriaciel shape.

Cemoute (dx/dy)J from (5.21) and %his

8 defines the 1

inverse
interiace.

; srom (5.975.

Cermute Sj “ron (5.10) by using a Simpson'e Rule numerical
integralisn process wilth a

step longth ymaX/BOO.C.



Tae function v{s) is then defined in terms of the discrete

w0

variabies vi and s, and thus it i
3

< o

possivle to compute t(s) using
{5.7) and integrating numcricelly. Two problems occur, howaver, since

the y. were taken in egual increments the s have unegual slep

(%}

Cie

langths anc

o= B, - m, L <AL,
J d J-x Jti

Wnis preblem is overcome by usirng a % volnt Lagrense interpclation

3 3 2 oad =t = 5 e 1 5 o . s ar
formula to find Jj+% et 51y nidway between 5 and st and
tnen using Sirpson's Rule cn the three ordinates V., V,,1 35V with

37 TitEt Ol
& step lengbh #(:

Bapq - Sj) . The accuracy of this process shouid be
LJ b .
good since the step ‘engbhs are very small where 1/v.”'-  is rapidly
.
. . . - . R O . s s i m
changing and get larger as 1/v, vends to its asympzctic limit of

o

3.3
v L -
2%2

v}_Q

1/'(1_ + N

The obtner problem L8 that when
8- 0 v(s} = ¢

walcn implles thal the numerical Integration process cannct boe used
wren J o= 1 . To circumvent this diZfizulty it is possihle to expand v
in powers of y in eguation (5.9) ard s in rowers of v fu (5.1C).

It 1s found tnat for sxell ¥y
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0.3
Vohs

ar (V18 v R,)

[#2]

O
.
-—J
———
LUH‘“

F(s) = (

Uging the methods described gbove a high speed digital compuler was
programued to compute the results and print them in the following

format

x ¥ 5 v(za) F(s)

The babulated results could then be used to determine F{s) at the

reguired probe location.
The next section gives the results of the experiments and compu-

tations.

5.3 Ezxperimental Resgults

The experimental resultfs are given first for experiments CL
through E5, runs Al through BL will be considered in the next section.

The experimentally determined concentration profiles across the
fluid inferface are plotted oh linear graph paper as curves of y (di-
mensional) versus ert™t (1 - 2C) . It was shown in the previous section

that these curves should be straight lines with slope

s = 22 w(s) (5.15)
B§

where
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0.3
& T2 (5.16)

v rd
(the & now occurs on the right hand side of (5.15) since dimensional

y is plotted)

and
a = depth of the sand bhed
U = dimensional upstream mean velocity
v = kinematic viscosity
£ = porogity of the sand bed
d = mean diameter of sand particles
r = g constant to be defermined

These concentration profiles are plotted on Figures 5.1 through
5.15. The straight lines have been Titted by eye and the agreesment is
geen to be very good in most casgses. There are some exceptions however,
notably at Probe I on runs E3, EN and E5 (Figures 5.13, 5.1k4, 5.15),
where the curve becomeg very steep at the upper part of the profile
i.e. close to the top of the tank., The reagon for this behavior is not
apparent. It is also seen con Figure 5.13 (run E3) that there is quite
a distinct bresk in the Iine &t all probes. This will be explained
later.

Equationg (5.15) and (5.16) can be combined to write

3

N 2

5]
Tad {F(s)} _ (5.17)

(I_{)g)o.

I =

and »r should be the same constant for all probes for all experiments.

The tebulafed values of 1 are glven in Table 5.3 below.
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Run Prcbe I Probe II Probe IIT Probe V
No. S F(s) S ¥(s) S F(s) S F(s)
Cl - - 0.600 | 1.210 | 0.925 [ 1.610 1.20 | 2.200
cz - - 0.765 | 1.220 | 0.900 | 1.610 1.15 | 2.190
c3 . - 0.765 | 1.235 | 0.951 | 1.610 1.31 | 2.165
ch - . 0.710 | 1.270 | 1.000 | 1.611 1.38 | 2.1bo
c5 - - 0.766 | 1.245 | 0.895 | 1.610 1.29 | 2.162
D1 0.4k | 0.6395 | 0.756 | 1.220 | 1.032 | 1.609 1.ho | 2.185
D2 - .0.7375 0.630 | 1.250 | 0.890 | 1.610 1.19 | 2.160
D3 0.577 | 0.677L | 0.808 | 1.234 | 1.02C | 1.609 1.47 | 2.175
DL 0.465 | 0.7320 | 0.740 | L.2k7 | 1.Chkc | 1.610 1.36 | 2.160
D5 0.417 | o.7048 | 0.752 | 1.240 | 0.990 | 1.609 1.31 | 2.1€5
E1 0.h12 | 0.6962 - - 0.946 | 1.609 1.332] 2.170
E2 0.7l 0.7980 - - - 1.611 | 1.310| 2.1ko
3 0.554 | 0.8275 - - 1.040 | 1.610 | 21.h10| 2.125
EL 0.300 | 0.60Lk4 - - 0.910 | 1.610 1.265 2.200
E5 0.L31 {0.7731 - - 1.08C | 1.61C 1.351] 2.147

Table 5.2 Experimentally determined slopes S and computed values of

F(s) .
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Run Cl oo C3 clh C5
U )
C.037h . 0351 .03 . .
in om/sec 0374 0.035 0.0312 0.0190 0.0252
T - - - - -
IT C.021k 0.0335 0.0316 0.0217 0.029C
T
IIT 0.0287 0.0267 0.0278 0.0270 0.0233
v 0.0259 0.0235 0.0283 0.0295 0.0272
Run DL D2 D3 Db D5
U A . -
: . 2 \) { . ‘)‘ Je ()l 7
ir cm/sec 0.0253 0.023 0.0134 ¢.0178 0227
T 0.0370 - 0.0464 C.0276 0.02€0
1T 0.0298 0.0191 0.0273 0.02k2 0.027h
T
IIT 0.0319 0.0233 0.0255 0.0285 0.0289
v 0.0316 0.0233 0.0292 0.0272 0.0272
Run L 2] oG EL 5
4) e i \ 20L 17
Ch em/sec 0.0265 0.0158 0.0C856 0.0304 0.0167
T 0.0273 0.0236 0.0248 0.0202 0.C210
IT - - - - -
v
IIT 0.0270C - 0.0232 0.0265 0.C302
\ 0.0294 C.0250 0.c2h43 0.027C 0.0267

Teble 5.3 Values of r

corputed from Equation (5.17).
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It is geen that the value of r ig indeed reasonably constant and

mear. valuc of =»

Il

0.0267
(5.18)
standard deviation = £ 0.0035
The range of particle Reyrolds numbers for which these results are valid
is ostensibly from 0(10’2) to 2 x 10T , ap the fluid is theoreti-
cally at rest at the stagnation point and reaches its maximum velocity

downstream.

This implies that Harleman and Rumer's result i.e.

e D 0.7
L 0.0265 (3\%@)

v

is reasonably valid. The result (5.18) is plotted on Tigure 5.16 along
with the experimental results from Harleman and Rumer's constant veloci-
ty, constant density experiments. The agreement is seen to be exception-
ally good; the points marked by small triangles will be expiained later.

In all these experiments stable half-bodies were observed, and
no sigr of any instability was present. The Rayleigh numbers for runs
C1l through E5 are given in Table 5.4 and they are seen to be quite low;
gsince the values of # , the ratio of the longitudinal dispersion coef-
ficient to the lateral dispersion coefficient, are quite high also, it
is not surprising the instability growth rates were low.

However, it is tc be noted that the run E3 which has the highest
Rayleigh number ard lowest value of # and therefore the highest growth
rate is also the run previously mentioned as having a distinct break in
the concentration profile (see Figure 5.13).

Some shapes of the half-bodies formed are shown in the photographs
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NRun r T - gm/ Raylgigh

umber| 4(cm)| Ap(gm/m4 ) [Dx10 (em™/sec)| pxl0 om. sec| Naber {u = DL/DT
Cl |%1.07 | 0.000k7 0.86 0.93 2.2 1k4.5
C2 | 1.02] 0.000k47 .88 0.93 2.1 1h.7
¢3 | 1.16 | 0.00042 ¢.83 0.96 2.0 14,7
c¢h | 1.22 | 0.00042 C.75 0.97 2.3 12.8
¢5 | 1.1k} 0.00042 c.81 0.9 2.2 13.5
D1 |[1.24 | ©.o043 ¢.71 0.92 29 12.8
D2 |[1.06 | 0.0048 0.75 0.87 27 13.7
D3 [1.30} c.o0k2 0.52 0.93 Ly 9.8
DL j1.21 | 0.0038 0.65 C.97 26 12.0
D5 |1.16 | 0.0039 0.73 C.96 23 12.7
E1l |1.18 | 0.010 0.81 C.96 53 13.5
E2 |1.16 | 0.010 0.66 C.9k 65 12.0
E3 {1.25 | 0.010 0.57 0.96 8¢ 8.9
EL |z.12 | 0.010 0.77 0.95 55 13.5
E5 |>.20 | 0.010 0.82 0.95 54 11.6

Table 5.4 Rayleigh numbers at Probe V for experiments C1 through E5.



Figurc 5.17a The hall body shape for run E2 (Ap = .01, Q_/Q. = 0.687).
(Flow from left to right.) 2’ L

rigure 5.17b The half body shape for run E5 (Ap = C.01, Qg/Ql = 0.584),
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Figure 5.19a The half body shape for run D5 (Ap = 0.004, Qg/Ql——- 0.355).

Figure 5.19h Run D5 after the flow had been stopped for 15 hours.
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in Figure 5.17 - 5.19. The cortrast in the photographs is not high
gince low dye concenbrations were used to avold complications with the
conductivity probes. The approximatbe theoretical shape of the front of
the half-body is superimposed on a photograph in Figure 5.18 and the
agreement is seen tc be quite good.

In Figure 3.19a is s photograph of the half-body for run D5
(Figure 5.19b) taken 15 hours after stopping the flow. The stationary

two Fluid syetem is seen to be quite unstable.

5.4 Alternative Computation

Under the assumptionsg that havc been made in writing equation
(5.1) for the mixing along a curved streamline it was possible to de-

scribe the mixing by an equation of the form

1

y-y, = f(s) * ert ~ (1 - 20)

where “(s) is purely a function of the shape of the streamline, the
velocity along it and the dispersion coerfficient.

Now between probegs III and V the velocity along the interface i1s
nearly constant since the interface is almost horizontal (see Figures
5.17 - 5.19). ‘'lhus it is possible to assume DT is constant between
IIT and V, in which case f(s) can easily be deduced to be

os) = 2nyls - s )/e)E
where

= ig some Tictitious origin.
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Hence it is possible to write

and from section 5.1

2 ) DT(s - so)

S
&) -

where S 1is the siope of the experimentally determined y versus
ers T (1 - 2C) curve. DNow since DT/q is consbant and the interface

is almost horizontal

and for These experiments

1 - = 3
L(Xv X 320 cm .

III)

It now becomes possible to determine DT/Q for the experimental runs
AT through Bb for which the ratio of flow of pure water to salt water is
not available.

The experimental curves of y versus erf-l(l - 2C) are
plotted in Figures 5.20 through 5.2C and the results tabulated in Table
5.5 along with similar resulté for experiments CL through E5.

The results are plotted or Figure 5.16 as the small triangles,
the small circles asre Harleman and Rumer's (16) constant density experi-

ments.
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Slope D/q ] eD/v

Run TIT v X 107 x 10° Re

Al o.879II 1.365 3.4 1.02 0.232
A2 - - - - -

A3 1.130 1.520 3.22 1.12 0.181
Bl 1.022 1.315 2.12 0.69 0.172
B2 1.160 1.h72 2.58 0.87 0.176
B3 - - - - -

Bk 1.145 1.375 1.84 0.18 0.136
CL 0.925 1.20 1.83 0.78 0.220
c2 0.900 1.15 1.59 C.70 0.227
C3 0.951 1.31 2.53 1.06 0.218
ch 1.000 1.38 2.82 0.93 0.171
C5 0.995 1.29 2.10 0.78 0.193
D1 1.032 1.40 2.79 0.86 0.171
D2 0.890 1.19 1.94 0.73 0.195
D3 1.020 1.h7 3.50 0.59 0.095
Dk 1.0k0 1.36 2.40 0.85 0.1k49
D5 0.990 1.31 2.3C 0.6k4 C.167
£l 0.946 1.33 2.78 1.c2 0.191
E2 - - - - -

E3 1.0k0 1.4 2.52 0.1 0.08k
Ek C.91 1.27 2. k2 ¢.89 0.19C
E5 1.08 1.35 2,06 C.57 0.145

Table 5.5 Velues of the dispersion coefficient and particle Reyrnolds
number.



Some experiments are omitted, namely A2, B3 and E2 as it was
impcssible to draw a single straight line through the vplctted points.
This could be a result of amplifier failure in the recorder or a discon-
tinuity in the fluid flow rates.

Tae accuracy of this methed is not good since the error in
DT/q ig twice the sum of the errors made in measuring the slopes of
the two streight linesg ard this can be large. Conscguently, there is a

spread of results on Figure 5.1€ but in general the agreement is fair.

5.5 Interface Instability

‘An experiment was undertaken to determine if an instability with
a repid growth rate could be generated in the experimental apparatus.
The approximate linear theory of Chapter 4 predicted that the growsh
rates of instabllities would be bounded; however, it seems possible
that if the Rayleigh number were large and the wratio of longitudinal to
latersl dispersion coefficients small enough (x small) ther a visible
instability could be developed.

It has elrcady bcen shown that the Rayleigh number can be in-
creased and o decreasgsed by reducing the flow velocity; thus an experi-
ment at a low flow velocity was attempted.

The difficulty with such an experiment is that it is nob possi-
ble to develop a half-body and then slow the flow down to find an insta-
bility because the Rayleigh number

gk tlo, - pp)
€D i




depends on the velocity and the time for whick the flow has been moving

at thalt velocity since

\ﬂD x)%
T
4 =

u
and DT depends on the wvelccity. Consequently the number £ which is
the characteristic length changes with the wvelocity. In other words
the dispersion region occurring at any given poiat is smaller than that
which would have occurred had the fluid been at the lower velocity all
the time; the Rayleigh number at any point is therefore larger than
that wkich occurred at the higher velocity, since DT decreases with
velocity. Congequently, the new flow will be mecre unstable immediately
after the flow is slowed. In TFigures 5.28 and 5.29 the flow has been
slowed to an average downstream supcerficisl velocity of Uﬁ = (C.0019
cm/scc and an instability can be seen in Figure 5.28a. The suosequent
photographs Figurcs 5.28b, 5.29a, 5.290 show the region of instability
being swept away from the upstream side and being replaced by a stable
flcw since the amplification decreases as £ gradually increases {sec
page 143).

It is also obviously impossible to have one fluid uporn the
other and then start the flow, consequently 2L 1s necessary to set thaes
main flow and introduce a saline flow through the slit and watch it
progress downstream. This introduces & "front" to the flow which again
distorts the overall flow vattern. It is difficult to observe Jjust
where the instability oceurs, see Figures 5.30 a - f.

A 3% ealt soiution wae made up which gave a density difference

of 2.1% and injected into a uniform Tlow through the sand bed. The
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Figure 5.28a An interface shape approximately 15 minutes after slowing
the flow to 0.004 cm/sec (Ap = 0.02).

Figure 5.28b The same interface 6 minutes later.
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Figure 5.29a The interface shown in Figure 5.28b taker 5 minutes later.
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Figure 5.29b The same interface as above 5 minutes later.
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1l

NB P EBeGeBC O
e GG Gse

Figure 5.30c¢



NP

.

oo

.
-
-
-

-
.
- -
. -
- ..

&
otaido'oq
e

-
-
.

.

_ -
- - o
-

sgemcoenis
e @cse ovse o

e S
- f». .
.

ﬁm .

-
.

-

Figure 5.30f



143

following parameters were recorded

€ = 0.34
gk = 11.9 x 10_4 cmz/sec
M = 0.009k gm/cm. sec
Um = 0.004 cm/sec
3
o, -p; = 0.021 gm/cm
D, = U8 x 10_6 e /sec
X ~ 40 em
1
Dx\%
4 = |5
m
= 1.23 cn
Thus
A = 200
U d 0.5
" = 51.5 ij—) , (Harleman and Rumer (16))
= L.5

It is of inberest to compute the amplification predicted bty the
linear theory for the time taken to travel 24 or about 2.4 cm. From

Chapter 3 with

A = 200
e = 5.0
-(aci) ~ 0,3
max
Thus the amplificatign TUO

aci L

”42 - e max £
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whers
i
T = gﬁi = 0.6 x 103 seconds
m
gklp, - p,)
U I -
c ep.
= 7.6 x 1077 cm/sec
giving

A R R

i

Thig implieg that the wave almost trebles in amplitude in moving
aboult 2.5 cm wnich is quite a high amplification, and the unstable

waves woild soon become visible, which in fact they did (see Figure

5.30f). The fTastest growing wave at this point has a wavelength given
by
21
o = =
m A
m
= 1.8

l.c. Km = L,0 cm

and thls looks reasonable from the photograpts in Figure 5.30f.
This 1s in comparison with the runs Cl through E5 where the
Rayleigh numbers and values of x are gilven in Table 5.4, Consider run

L2 for example

) = €5
4 =  1.16
U =  0.0267
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3.7 x 1077

st
It

n - 12
The time taker to travel 24 is
T = 80 seconds

hence the arplification

# _ e lmax
(aci) /b

- X
- e ma.

Since the Reyleilgh numper is less Tthe 200 and # = 12 The maximum
growbh rate will be much less than 0.3 (see Figure 3.10);consequenily
the amplification will be close to 1 , in sharp contrast to the previ-

ous example,
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CHAPTER SIX

DISCUSSION OF RESULIS AND CONCLUSIONS

6.0 Recapitulation

A gtudy ras been undertaken to investigate a two-fluid Ilow In
s homogerneous Isotropic saturated porous mediuvm. In Chapter 2 an
approximate theory was prcsented for the shape of the inbterface of two
Tluids of slightly different density in parallel motion in a confined
porous redium. It was shown that the solution where the densities of
the two fluids were egual could be taken as the zeroth order Term in a
regular perturbatlon expansion of the inleriace shape and lhe velocity
posentials. The mixing of the two fluids along the interface was in-
vestigated and an approximate solution obtained for the dispersion
equation along the irnterlace.

In Chapter 3 the stability of a horizontal interface was in-
vestigated ard the result cbteined that the interface is always unstable
and that the growbh rabes of unstable waves were bounded, lcading to a
quasi-stable Zlow.

Chapter 4 outlined the experimentsal apparatus and methods used
to study the intcrfecial mixing cxpcrimentallys; and the experimental
results were presented in Chapter 5.

In this concluding chapter the results of the analysis and

experiments will be discusged and a summary of conclusions given.

6.2 Stability Analysis

The stability analysis depends on the fact that it is possible
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to write down equations of motion which govern the motions of the fluid
particles averaged over several pore spaces, rather thar the motions

1

within the pores. Using these "average" equations it is possible to
congider the stability of perturbations to the density profile produccd
by +the lateral dispersion along the intertface. If tahese perturbations
to the density profile and velocity field are to have any meaning they
must of course be of the scale of several pore sizes themselves and the
linearized theory offered is therefore for perturbations which are not

infinitesimal in the usual sense. Numerous interesting points come out

of the analysig and these are enumerated below.

(1). The role of longitudingl disgpersion is rather surprising in
“hat slhough it plays a major role in the stabhility of the system it
does not influence The vasgic density profile. This arises from the
fact That to a zeroth order the concentration gradients in the longi-
tudinal direction are small compared to the lateral gracients. However,
to the perturbation order the concentration gradients are of equal
order.

(11). The analogy with viscous fluids polinbed out by Wooding (3)
again becomes evident when the stapility equation is found to be very
similar to the Orr-Sommerfeid equation of vigcous fluids. The major
simplification of thils problem over the viscous flow vroblem is Ulhal
the velocity ficld is uniform and as a result it is possible to prove
that arbitrary disturbances must have a phase velocity equal tc the
fluid velocity; this reduces the equation to a purely real equation

with real boundary conditions.
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(iii). The fact that some unstable waves always exist is not sur-
prising as the samc result appears in the viscous shear Jayer problem
(see Tatsumi and Gotoh (27)).

(iv). Local growth rates of instabilities are bounded according to
this linear theory. This means that there will be no sudden growth of
unstable waves such ag Benjamin (29) found for a thin layer of viscous
liguid running down a vertical flat surface. In that case it has been
shown by Benjamin that although unstable waves always exist their
growth rates do not become unbounded until a Reynolds number of about
4, whereupon there is a rapid growth of the most unstable wave.

No such behavior occcurs here according bto the local linear
theory wresented. Consequently there should be a gradual Lransition
involving slow wave growth giving in effect a quasi-stsble flow. How-
ever, the problem is somewhat complicated by the growth of the dis-
nerslon zone, as dlscussed below.

(v). The study presented in this work considers only loca’ stability
by assuming that the width of the dispersion zone does not increase

rapidly with position X . Tae Rayleigh number

eD

I3
Tli

assumed constant locally, actually increases with X Tfor

i
TED,T.X)E

U
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Consequently the arslysis given here can only be regarded as valid for
waves whose length is such that they do not extend over a length within
which the Rayleigh number changes significantly. This is equivalent tc
saying that the waves do not extend over a length for which the dis-
pergion zone widens significently. Obviously, the admissable wave-
lengths under this criterion are going to depend on the location since
the Rayleigh number changes legs rapidly as X increases.

From shove 1t ia easily showr that the changes in Rayleigh

number with X is given by

AL _ X
AT 2K
Now suppose that a 2%% change in the Rayleigh number over one wave-
length would be & tolerable approximation, then the allowable wave-

length L in terms of n-multiples of £ would be (AX = ng)

nf _
= = 0.025
%
i.e. n = .05 ( )
ﬂDT

A Jower bound on the valid wave numbers can then be given in terms of

X for
27h
@ = g
and
L = nf

Thus the results will tend “o become invalid for wave numbers less



than

wi-

7D
)40 T (_—[D%I.)

The problem of computing the rate of growth of any particular
wave ag it 1s swept dowastream is rot simple and will be the subject
of a later study.

(vi). As the longitudinal velocity U dincreases the growth rates of
unstable waves decreases. This is an expected result, for increasing
the velocity increases the rate of both the longitudinal and lateral
dispersion which will tend to overcome any excursions made by the
lighter fluid into the heavier or vice versa.

(vii). The exact solution for the linearized density profile and the
variational méetnod of Chandrasekhar for the error function density pro-
file give quite compatible results for the neutral stability curves,
Figure 3.2. While both methods are not exact they without doubt give

all the esgentiszl characterigtices of the golution.

(viii). The Rayleigh rumber

)

gk 2 (p, - p
A = = L

€ DTp

can be interpreted as the ratio of two velocities:

gk(e, - 0p)
o] M
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whichk is the verticsl velccity with which a column of fluid of density

o

Po would descend into a porous medium saturated with a fluid of densi-

ty Py 3 anc.

€ DT
J 2
whick can be regarded as the "veloecity of dispersion". For when D

T

is constant 1t can easily be shown that

2
2 =
LDTt cy
where
o0
2 .
2 = [ % cly) ay
v !
-0
and since
3
. ﬁDTIX
4 = T
_ ¥
= (x DTt)

]
Y
@]
3%

then

which is equivalent to the rate of increasc of the standard deviation
of the density profile or a "dispersion velocity".

A high Rayleigh nurber implies that the velocity of descent of
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the dense fluid is larger than the "dispersion velocity" and hence in-
stability growtn rates should be high, conversely a low Raylelgh number
implies that the dispersion velocilty is high and the flow will be more
stable,

(ix). The instability theory presented has been only for two-
dimensionsl disturbances. Since it has been shown that there always
exist two-dimensional disturbances waich are unstable an analogy with
Squire's theorem (Squire, (30)) need not be sought. It can easily be
shown (see Appendix A) that the neutral stability curves for three-
dimensional disturbances have exactly She same form as for two-
dimensgiocnal disturbances. A rigorous study of the relaltive maximum
growth rates of unsteble two-dimensional and three-dimensional dis-
turbances at a given Rayleigh nurber such as Watson (31) has done for
para’lel viscous flows has not veen attecmpted, and this may be of

interegt for further study.

6.2 Dispersion and Interfacial Mixing

A basic approximation in the study of the mixing along the
curved interface is that the shapc of the density icterface, a free
surface, can be described by the solution of the equel density prcblem
with both layers traveling at the same speed. Although it is not at
all evident a priori that the behavior of the solution for unequal
densitieé will be similar to that For equal densities it has been
Gemonstrated in Chapter 2 that it is possible te simplify the problem

in this way. If this simplification were not possible it would be
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necessary to solve the extremely difficult exact vroblem.

It is interesting to consider what would happen if instead of
a two-dimensional slit being used to introduce the seline flow a point
gource had been used. It is felt that in this case the quasi-stable
“low would nct develop since it would be pessible for the main flow to
travel around the source and thus form a convective plume of sinxing
fluid.

The results of the mixing theory depend on the asstmption that

the lateral dispersion coefficicat D dependsg or. the velocity ir the

T

Zollowing way

T vd @
r(—
v

where r and ® are constants
d Ls the nean particle size
v 1s The supcrficisl velocity
v 1g the kinematic viscosity

¢ 1ig the porosity

This semi-empirical result 1s confirmed in the present set of experi-
ments, and the value of r (0.0267) obtained when = 0.7 compares
very favorably witk the value 0.0265 obtained by Harleman and Rumer (16)
for constant-velccity constant-density experiments over a gimilar range
of partiéle Reynolds numbers. This empirical 7/10 power law should be
regarded in much the same way as the 1/7 power law for turbuient flow

in pipes. While there is a sound similitude reasoning for choosing the
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groups of variables as above there is no apparent reason for the 7/10
index apart from the fact that it fits the experimental resulus.

These experiments were carriea out with the heavier fluid cn
top. ZIf the densgity difference of the two fluids were to effect the
alspersion phenomenor at all 1t seems logical that the lafluence would
be grestest under these conditions. However, the experimental resulis
seem to indicabte that for the density differences used (up to 1%) there
is no observable influence on the dispersion. Lt seems likely that it
there is no influence with the denser fluid on top, then there would be
no influence with the denser fluid below.

An extensive study of laleral dispersion, such as Pfannkuch (1C)
hag carried out for longitudinal dispersion, should be undertsken for a
wide range of Schmidt and Reynolds numbers. The results of such & study
would be an extremely valtable contribution to the knowledge of lateral

dispersion.

6.3 Conclusions

The principal corclusiong of thls investigation arc erumerated
below.

1. Instability of Ilow

(i) It has been theoretically proven that horizontal two-
dimensional flows in a saturated porous medium with a
denser fluid on top are always unstable.

(ii) The wavelengths of the class of unstable waves are

bounded below by the wavelength of the neutrally stable

wave.
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The growth rates of two-dimensional unstable waves are
low and bounded avbove, and Lhe breskup ol a stable flow
ig never sudden.

Ar. increase in the wvelocity of such a flow systen de-
creases the growth rabe of unstable disturbances.

The two parametbers controlling the growth rate of in-

stabilities are the Rayleigh number

gx L (py - py)

€ DTH

o=

where

wl-

T

n D X
U

and the ratio of longitudinal and latersl dispersion

coelficients

The flow is stabilized by decreasing the Rayleigh number
or increasing ® .
Experimental observations show that it is possible for

steh a quasi-stable flow to exist.

Mixing Layers

(1)

The lateral dispersion coefficient of sodiur chloride
solutions in horizontal motion above pure water does not

appear to be influerced by the dersity difference of <he
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solutionsg for density differcences up to l%. It is the
opinion of this investigator that there will be no
influence when the heavier fluid is beclow.

The sole in”luence of the densgity difference is in de-
termining the spectrum ol admissable unstable waves at
the density inbterface and governing tholr growth rate.

Tt has ocen proved posgible to represent the mixing aleng
an interface developed by a two-dimensional half body as
i® She flow had always been in rectilirear motion and

mixing had begun at some virtual point.



157

APPENDIX A

The three-dimensional eguations cof motion of perturbation order

are
Lew -0
%§ + 0+ v = C

If arbitrary sinusoidel disturbances of the form

<U-;V:W;6)P> = {u(y))v(y>Jw(y)Je(Y)JP(y)} ei(OCX P2 - oct)

(where o and P are the horizontal wave numbers in the x and %
directions respectively) are substituted into the equatiors above and
u(y),w(y),8(y), and p(y) eliminated the following equation for v(y)

results
(0% - 6% - wd®I0D° - (@ + £°%)7 v(y)

= g0 + 85 0 (rIvly) + aage - D - (@F + BT V)
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and ag before for neutrally stable disturbances 2¢- ¢ = 0 . The

equaticn for neutral stability is

(0% - (82 + wa®)ID® - (&F + £3)1 viy)

2

=\, (@ + 8%) 0 (y) vly) .

T

Wnen # = 1 then it is obvious that neutrally stable three-dimensional
d: sturbarces with an equiValent wave number YE = a2 + 52 have the
game Rayleigh number as neutrally stable two-dimensional disturbances,
i.e., when £ = 0, gince the equation has the same form for both.
However, when # = _ <The equivalent three-dimensionel disturbance will
have a somewha? different Rayleigh number at neutral stsbility since
the # term multiplies ornly the az term in the first bracket above.
It is difficult to surmisge from the equation what the respective growth
rates of equivalent two and three-dimensional disturbances will be and
it has not been rigorcusly investigated. An investigation of the re-

spective growth rates may be & worthwhile study later.
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Cage T ¢ A <'i—jﬁ§igr

The determinant on page 52 can be gimplified by carrying out
the following sequence of operations.
(i) Multiply BRlL by « and add to R3, divide Rl by «.
(ii) Multiply RL by -ag and subtract from R5, divide Rl by ag.

(1ii) Multiply RL by o and add So R7, divide Rl Doy o,

(WS

(iv) Carry out a similar operation with respect to RZ2 and
R4, RS, RO.
{v) The determinant now has all zerog in Cl1 except for the first

term and ail zeros in C3 except for the second term and is
consequently reduced to a 6 x 6 determinant.

(vi) Muitiply RL by o + B8 and add to R3, divide R1L by o + fp .

(vii) Multiply Rl by a2-+aﬁ + SE and add to R5, divide R1 by

a2 +op + 52.

(viii) Carry out a similar operation with respect to R2 and R4 and T6.

(ix) The determinant tken has a factor o -8 in Cl and 3 -
in €2 and when “hese are lactored out becomes a 4 x U
determinant.

(<) Multiply Rl by v - (o + ) and subtract R3 [rom Rl.

(xi) Multiply R2 by y +a + B and subbtract R4 from it.

(xii) Interchange rows and columns.

(xiii) Add €1 to C3 ard C2 to Ch.



(xiv)

(xv)

(xvi)

Case II :

(1)
(i1)
(1ii)
(iv)
(v)

Case IIT :

manner.

(11)
(iii)
(iv)
(v)
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Divide C3 by v - (@+8) and C4 by y+a+p8

Multiply €G3 oy ¥ -8 and C4 by v - & and divide RL
ané R2 by (v -8) .

Tre determinant now has enough zeros to make expanding by co-
factors very simple.

~

L

2
n
xXie,
i

1

The determinant on page 53 1s simplified in the following

Repeat the same operationa as in Case T dowr to (ix).
Add R1 to R2 and subtract RE “rom R3.
Multiply R. and Rk by 2.

Subtrset R2 from RL and add R3 to RL.

Multiply cut by cofactors.

Zlgm

1 - 2oc,
i

A >

The determinant on page 55 i gimplified in the Tollowing

Divide C5 and C7 by cosy .

Divide 6 ard €8 hy coshd .

“Add Cl to C5 and C2 to Cé6.

Add C3 to C7 and Ch to (8.
Repest instructions (i) through (ix) as for Case I to reduce

0 a b4 x U determirans.
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Add RL to R2 and Rhk tc R3.
Multiply R1 by 2 end add R2 to RI1.
Multiply RE by 2 and add R3 +to RhL.
Maltiply through by cosy and czoshd.

Expand by cofactors to give equations (3.53) and (3.

=

2

L.
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