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ABSTRACT

‘The paper presents the solution of the p:.t'oblem of the Jet Flap
airfoil in a plané. inviscid flow in the presence of the ground,

The basic flow equations are derived and the non-linearity of
the boundary conditions are discussed. The problem is then linear-
ized as in thin airfoil theory., By a conformal transformation the flow
field is mapped into one having very simple geometry. The singular-
ities of the mapping are identified and the asymptotic character of the
flow fields derived. The basic integro-differential equation is devel-
oped; this has singular Hilbert type kernels and discontinuous
boundary conditions,

By considerations of the second order effects, significant
relationships between the lift slopes with angle of allack, with jet
angle and jet coefficient are developed, These are further simplified
by introduction of a new geometrical parameter developed from the
mapping.

The lift coefficient of the airfoil is expressed in three parts,
of which two may be evaluated in simple closed form. The remaining
part depends on the solution of the integro-differential equation.
‘This equation is then solved at N points by assuming a piecewise
smooth velocity distribution and generating an N x N matrix: nu-
merical results are obtained from an IBM 7094 computer. It is
proved that this approximation converges to the exact solution.

‘i'he limiting cases, when the height to chord ratio, h/c, or
jet coefficient, CJ, approach zero or infinity are developed, exploit-

ing the decomposition of the lifting components; and an asymptotic
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result for small G. is presentéd.

J
A linearized theory for wake blockage is given, which also
gives an indication of the restrictions on the various parameters
implied by the basic linear approach.
The results for h/c — ® correlate excellently with Spence's

solution for h/c = ©, For low values of h/c the results agree quite

well with the limited applicable test data.
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I. INTRODUGCTION

A, BASIC PRINCIPLES AND BACKGROUND

Although the concept of the Jet Flap is an old one, and was
mentioned in principle by Prandtl, it is only within the last decade
that it has been seriously studied: mainly because the gas turbine
has made readily available the high energy jet air required. The
earliest writers, fof example Davidson (Ref. 1}, commented on the
remarkable characteristics of the device., In essence, these consist
of an order of magnitude theoretical increase in maximum lift
coefficient {and lift slope) with zero additional power requirements
in the two-dimensional case. Expetrimental tests have shown that
both these effects are actually realized to a very high degree,

The lift increase occurs in principle from the fact that the
jet Wéke effectively extends the airfoil lifting surface. Alternately,
this may be regarded as an extra lifting component due to the down-
ward deflected jet, but it should be noted that in addition to this
direct momentum lift, there is an appreciable increment of pressure
lift, induced on the airfoil itself. Now the conventional airfoil is
prevented from achieving its maximum theoretical 1ift, which is
about 27, by boundary layer separation due to strong adverse pres-
sure gradients on the upper surface. In the case of the Jet Flap,
however, a favorable gradient is induced on the rear portion of the
airfoil (Fig. 1), which makes the airfoil behave very similarly to
the theoretical inviscid p.redictions, Thére ig still an area of

pnssible separafion near the airfoil leading edge but this is in a
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region where the Boundary layer is in a 'héalthj}' state, and separa-
tion mavy uéually be controlled either by geometrical means or by
suﬁace transpirétion, As an illustration of the correlation of theory -
and experiment, because of negligible viscous interaction, we note in
Ref. 2 that at a C of 6 the measured experimental value is within
5% of the inviscid prediction.

The fact that this lift requires no extra power, or more pre-
cisely that the jet momentul;n required to produce the jet lift effect
is completely recovered in thrust, has been the source of much
‘debate and is in fact known as the thrust hypothesis. This was [irsl
proposed by Davidson and Stratford {(Ref. 3), using arguments based
on momentum concepts and has been fully justified by more advanced
potential-theoretic methods by Spence (Ref, 2). Recent experiments
by Foley (Ref. 4) have shown that, within limits imposed by dissi-
pation due to real effects, the thrust hypothesis is realized even
for large angles of jet deflection.

It will be evident that the Jet Flap shows great potential for
all aerial vehicles requiring high lift coefficients in some portion
of their flight envelope. In particular, the fact that in theory there
is only a small thrust loss in the Jet Flap mass flow makes it pos-
sible to visualize the use. of extensive liit augmentation for takeofi
as well as landing. It may also be noted that Jet Flap principles
provide very powerful lift amplification for control surfaces; pro-
ducing higher control cffcctiveness than either pPlain reaction coatrul
nozzles or simple ﬂaps. This is particularly pertinent in the very

high and low speed flight regirnes.
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Thus the Jet Flap is directly applicable not only to V/STOL
devices, but also to sﬁbsonic and supersonic vehicles of the con-
ventional type. It has alsoc been proposed as a solution to the
meéhaniéal problems associated with cyclic and collective pitch
control on helicopter rotors; where the property that the 1ift may
be varied independently of angle of attack may be exploited, by
c:haﬁging either the jet momentum coefficient, CJ, or the jet angle,
8. The application of Jet Flap principles has made GEM and
Hovercraft vehicles possible,

Technologically, la theoretical prediction of Jet Flap per-
formance is of importance; For the case of an infinite fluid this
is well provided (at least in the linear inviscid case) by the papers
referred to in the next section. The influcncc of the ground plane,
however, has a large effect and this is still appreciable even when
the airfoil is fairly high above the ground., For example, from
the results of this paper we show that if we define a ground induced
increment in lift slope by ACL (= CL - CL ) we

o a'h/c=l.18 0'h/(_:=00

obtain without blowing:

AGy =.20 (C; =0)
a
while with blowing
ACL = .75 (CJ=1.0)

a
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B. THEORETICAL DEVELOPMENTS

The Jet Flap behaves unlike an ordinary airfoil in many
respécts. In particular, the Kutta Condition -- in the sense of
zero loading at the trailing edge -- no longer applies; nor does
thé other familiar airfoil characteristic, that of a constant lift
slope. In addition to the normal airfoil parameters of angle of
atlack, thickness and camber we must add the jel cuefficient
and the jet angle.

An analytical formulation of the problem leads one to an
integro-differential equation with singular kerneles and discon-
tinuous boundary conditions. The kernel, of the Hilbert type,
cauées no serious difficulty: but the boundary discontinuity
introduces logarithmic singularities which, althongh weak,
cannot be eliminated analytically, The physical reason for the
integro-differential quality of the governing equation is that
the shape of the jet wake is unknown in advance and both deter-
mines and is determined by the local pressure distribution.

Some theoretical approaches have been made assuming
a jet shape, which converts the problem to one of a potential
field with Neumann boundary conditions. By retaining only one
arbitrary constant, determined from experiment, Pivko (Ref,
5} has obtained good correlation with experiment, however this
has theoretical inadequacies in that this constant is intimately
related to the jet wake decay, which is the very heart of the
basic problem.,

An elegant solution of the full integro-differential equation,
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under the usual linearizations of thin airfoil théory has been given by
Spence {(Ref. 2), while the ﬁnsteady case has been treated by Erick-
son (Ref. 6). Bbth these theories are for the two-dimensional jet
flap in an inviscid fluid. A general theory for the three-dimensional
jet-flapped wing is given by Das (Ref, 7) in which he uses, as a
foundation, the basic Spence two-dimensional solutions.

Special cases pf the influence of ground effect are given by
Huggett (Ref. 8) and Williams (Ref. 9). These papers do not
consider the integro-differential character of the basic flow equa-~
tions, being directed prinéipally at predicting the phenomenon of
wake blockage, |

A preliminary approach to the exact solution of the problem
with ground effect is made by the writcr in Rcf. 10, The present
paper amplifies and extends this technique to provide an exact
solution to the problem. The procedure is outlined below.

Having linecarized the problem in the real » plane and
formulated the kinematic and dynamic boundary conditions there,
we map conformally into an auxiliary { plane, thus greatly sim-
plifying the geometry. In the ¢ plane we have the problem of
'determiﬁing an analytic function defined in the upper half plane
by boundary conditions on the line 3(;) = 0. The boundary con-
ditions are not given explicitly, but in the Riemann-Hilbert-

Poincare form, i.e., as

Riw(L) + if(L) %‘—g) =0 onC(L)

where w(L) is the complex conjugate velocity, f a known function
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and R, & represent the real and imaginary parts of an analytic
function. Muskhelishvili (Ref. 11) shows hpw to convert this to
an integro—.differe_ntial- equation; although in this case this does
not simplify the probiern. A further difficulty in pursuing ap-
préache's of Ref, 11 is that our boundary conditions do not
satisfy the H8lder condition.

By establishing some elementary superposition theorems
it is possible greatly to simplify the character of the integro-
differential equation. Of course this cannot eliminate the char-
acteristic difficulties described in the previous paragraph,
however, a basic case is developed and the solution of this case
provides much information on the more general situation.

From consideration of the global results and the second
order effects of the nose singularity some important relationships
are established. These enable us both to check the convergence
of the numerical solution and to extend the basic case solved to a
more general one. Further insight to the asymptotic behaviour
of the numerical solution in the { plane is obtained by considering
the flow at infinity in the real plane,

To solve the basic case we set up an arbitrary linear
interpolation for the unknown boundary v distribution and, with
the help of the singularities and the asymptotic behaviour,
develop a linear matrix equation which may be solved for the
unknown distribution, The solution is exact in the sense Lhal
any degree of accuracy may be obtained by reducing the step size

of the interpolation function, a proof of convergence being given.
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By decomposition of the lift coefficient into three parts, it
is possible to obtain in addition to the solntion in the general range
of parameters, ééymptotie results for various limiting cases of

the height to chord ratio, h/c, and the jet coefficient C Next we

I
obtain some insight into conditions which must be satisfied for the
 linear theory to be valid, as well as theoretical estimates of the
onset of wake blockage.

The analysis of the generalization of the problem for camber

and thickness is presented but in this case no numerical solutions

are made.
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II, ANALYSIS

A, BASIC CONSIDERATIONS AND EQUATIONS
We consider a two-dimensional airfoil in a steady, inviscid,
incompréssible ﬂow of uniform velocity at infinity, in the presence
of an infinite ground plane. A jet of fluid issues from the trailing
edge of the airfoil. The basic geometry is sketched in Fig. 1.
Defining a vélocity potential @ for the flow, the considera-
tions mentioned above give us a field equation of the simple Laplace

form:

We notice, however, that not only must boundary conditions be met
at the various solid surfaces and at infinity, as is the situation in
the c‘lassic case, but also that certain special flow conditions must
be met on the free boundaries of the jet.

We malke the assumption that the jet, of density Py issues
from the trailing edge at a high velocity VJ, and of vanishing thick-
ness BJ such that the mass flow M and the jet momentum J are

finite, i.e.,

M= pJ.SJ.V'J
7 2

AR
It can then be shown that within the assumptions (principally that

of zero viscosity) the jet may be considered as a curved line,

across which there is a discontinuity in both @ and in the velocity
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VS of the external flow parallel and adjacent to the jet., At the same
timne there .ca.n be no fow through the jet so the .eXternal flow has
zero velocity nofmal to the jet., The validity of this assumption is
shown by Spence (Ref. 2) and the mathematical justification is
further discussed at some length by Erickson (Ref. 6).

As a consequence of the simple kinematic conditions we have
the usual boundary condition that the flow must be locally parallel to
thc_a airfoil, the jet and the ground plane. If the shape of the jet were
known, this would be sufficient to define the problem as being one of
the classic Neumann type, i.e., finding a potential flow field given
the physical boundaries. However, because of the unknown jet
shape, we require an additional condition on the jet, This is pro-
vided by the dynamic boundary condition across the jet. To obtain
this we consider a small element of the jet and show that for it to
be in force equilibrium there must be a pressure differential across
it which can be related to the centrifugal force on the jet, Consid-

ering the element shown in Fig. 1 we see that

2
AR b _p
R "L U
where R is the radius of curvature of the jet and PL’ PU are the

static pressutres of the outer flow on the lower and upper surfaces

respectively. We now define a jet coefficient

2

PydsVs
Cr= 3
zpU%c

) .
where 3pU” is the dynamic pressure of the free stream flow and ¢
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the airfoil chord., We then obtain the condition (where CP is defined
P=P,

)
2
2pU

in the conventional fashinn as

C
=C_=C -C
R_. J P1, Py

Now, because the external flow is irrotational and of uniform
head at infinity we can apply Bernoulli's equation in its most simple

form to give

2
c =1-Y_ =1
P u? U

_(va)?
2

where V is the velocity at any point, which c¢an also be expressed as
the gradient of &, denoted V&,

Thus the problem can be formulated as follows: We require
a potcential 2, having a ficld cquation V2§ = 0 throughout the flow,

with the kinematic boundary conditions

V& =~ U
X,y @
o0s

55 = 0 on S{x,y), the body surface
on J(x, ¥}, the jet sheet

on G(x,y}, the ground plane

and the dynamic boundary conditions

cC U2

2 2 _ J .
(VQU) - (VQL) = m on .I(X, Y) the Jet sheet
where R{x,vy) is its local

radius of curvalure,



-11-

Now, although Laplace;s equation is linear, the problem be-
comes non-linear because of its boundary condi.tions, essentially the
dynamic condition. A further problem occurs in that the jet boundary
conditions must be applied on a curve which is not known in advance,
buf must be determined by the flow field itself. In this respect the
problem has certain similarities to that of gravity waves on a free
fluid surface with the jet coefficient playing a role analogous to that
of the Froude Number.

We linearize the equations in the customary thin airfoil man-
ner. While this involves assumptions that all flow angles are small,
it is known from experience that this gives highly satisfactory
results for representative airfoil shapes, except very near the nose.
We thus assume both that the vclocity perturbations are small, and
that the boundary conditions may be applied on some mean plane,
instead of the actual surface itself. This means that we now have
a linear equation and linear -boundary conditions but the boundary
condition on the jet sheet is still not explicitly defined but given as
a function of the derivative of the dependent variable,

The linearized problem is sketched in Fig, 2,

We now introduce a perturbation potential ¢ and normalize
the problem with respect to the free stream velocity. Thus we ob-

tain for the potential &
® = Ux + gS

with u, v the normalized perturbation velocities defined as
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e
0
=
o,

4]

i, .

=

Now on the airfoil and jet boundary we have the kinematic

condition

dy - v

dx l+u

y=h
1 .. 91 .
or, linearizing =y' = vy
y=h

while at infinity u,v — 0,

Then the linearized pressure coefficient becomes -2u, and the lin-
earized radius of curvature 1/y'' so that the dynamic jet boundary

condition may be written

G
+ - .
u -u = —2—-.y" on the jet sheet;

t . .
where u represents the perturbation velocity on the upper surface
of the sheet and u~ that on the lower. For § itself we again have the
. 2
Laplacian V¢ = 0,

Expressing these results more formally we have,

¢ = §(x,y), V3§ = 0 all x,y
sz:;' y=h+ 0, 0 <x<c
V:Y;i# y=h - 0, 0 <x<c¢
v=y£r- y =h, c<x
v=20 y =0, all x

u -u = CEJ y'! y = h, c<x
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v?here y;: is the slope of the airfoil upper surface, y;-_ that of the
lower, and y'J_the slope of the upper or lower surface of the jet.

This represents a potential problem which not only has mixed
boundary values but wheré these values are in part specified in terms
of the solution itself. We know v explicitly on the airfoil itself, in
terms of its prescribed geometry, but we do not have the corres-

ponding information for the jct shecot.
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B. TRANSFORMATION PLANE

Because of the difﬁculty of the discontinuous boundary con-
ditions on the airfoil and the jet we wish to confo rmally transform
the problem to 'open out' this slit in the plane, at the same time we
wish to incorporate the ground plane as part of one continucus simple
boundary. For this we use the Schwartz-Christoffel transformation
to convert our itow field into that above the half-plane, Defining
the transformation plane as the { plane where ¢ = £ + in we see that

the transformation derivative must be

dz {-a
=D

=

where D is a constant and a, -k are singular points in the ¢ plane
corresponding to nonconformalities of the mapping, namely the
leading edge z = ih, and the lower jet at z = ®© + ih,

The derivative can be immediately integrated to give

z = Al {¢- {(at+k) log (L+k)} + Bl

Now we can determine the arbitrary constants Al ’ B1 by specifying
that B, G the upper and lower Lrailing edge (shown in Fig, 2) should
transform to +1 and -1 in the { plane. Thus we may tabulate the

corresponding points below:

z Plane Point { Plane
ik A a
¢ + i{h+0) B +1

@]
i
—

c + ifh-0)
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These conditions provide us with the fully specified trans-
formation

h

z - ih =

f-a - (a+k) log Ejr—i:} (1)

Because A, B and C have been specified, the point K is not

arbitrary and is given implicitly by

ktl
k-

{at+k) log 2

where the point K is located at § = ~k in the § plane. In addition,

the chord of the airfoil in the real plane is expressed by

1+k }
atk

.

__h :
c = (a—-l-k_)? {1—& ~ {atk) log

We observe further that the transforination is multivalued
along the line z = ih + x, 0 < x., This implies that points on this line
in the z plane transform to a point pair in the £ plane. We define
then, the two values of € corresponding to a given peint on this line
as 7;+, £ . These values are both real, and we associate §+ with
the point corresponding to z = x + ib on the upper surface of the jet,
and t” the lower surface. Thus this transformation removes the
" flow discontinuity in the z plane and we may now speak of the upper
and lower jet sheet surfaces in much the same way as the upper
and lower airfoil surfaces.

The basic geometry of the transformation is shown in Fig. 3.
A consequence of this transformation is the non linear length scal‘ing
between the upper and lower surfaces. We find that the transformed

length AK becomes very small in the § plane as h/c reduces. This
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implies that the upper and lower surface cpndiﬁons become less
and less symmetric as the airfoil approaches the ground plane,
As an inc“tication of this effect the lengths £=k -1 and
b =1+ a are plotted on Fig. 4, with the appropriate h/c shown
parametrically. It will be see.n that values of £ less than 10_3 are
required for h/c less than unity. Th.is introduces numerical

complications which are discussed in a later section.
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C. BOUNDARY CONDITIONS IN THE { PLANE

In fhe real z piane, we define w = u - iv as the conjugate
complex velocit.yr. As is well-known, any analytic function of =z,
w = w(z} will define a conjugate complex velocity satisfying the
conditions of irrotationality and zero divergence. Now if we map
the z plane analytically to the { plane we observe that the conjugate
complex velocity is also an analytic function of &. Consequently
we define identical boundary conditions on w for corresponding points
in the z and £ planes, then after solving in the ¢ plane may trans-
forin tu Lhe real plane with the assurance that the perturbation poten-
tial ¢ in this plane is in fact Laplacian.

Thus the problem becomes that of determining the analytic
function w = u - iv = w{l) where w is defined for j (L)} > O with the

boundary conditions on J(L) =Q

v=20 £< -k

v:yj_— k<< -1

vzyg -1<E<a
L

—_ 1

v=y a<g<l1

VZY'J.+ 1<§

We now introduce the dynamic condition to develop an equa-

tion for v on the jet, This condition is -

C
u+—u-:c yY
Z I
dy! dy! dy!
Since y'' = YJ= YJ= Y‘T-EE‘- andu+=u(§+)
Y17 a&x Tax C dt " ax -

we get
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t
cCZJ d§+ . dyJ

alg’) -uig) =L S0 FL 1<t

We may now use Poisson's equation for solution of this type

of boundary condition giving
o0
| EEN
w(l) = - g e dt

-0

Then for J‘(g) =0+, § = § we get
o .
u(g) = = § tﬁ(—g at
~Q0

where § represents the Cauchy Principal Value, Hereafter we take
all integrals to be the Principal Value if their kernels are singular
and drop the special notation on the integral sign.

Thus we obtain an expression for the solution as

[+.0]

u(§)=?ﬂ_—15‘ :—fgdt all £
-0

+ -5 gy at

u - u ——z—gg.a"}z, 1<g

with v defined as previously.

The physical boundary conditions are now developed. If the
airfoil surface relative to its chord line is given by ¥, = V. L Ve with
Ve Ve the camber and thickness coordinates, while o is the angle of
attack measured positive in the conventional sense, and T the jet

angle measured relative to the ground plane and positive upwards,

then we obtain
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v=0 £< -k

v =T _ ‘~k<'§<ﬁ1
v=-at y;:-y;: -1<Eg<a
v=~a+y:3+y1‘; a<E<1
v="T 1<¢

Inserting these conditions inte the Poisson Equation, elimi-

nating U by means of the dynamic condition and rearranging we

obtain
-1
2 +
# £ +k dr 7(t)
IS¢ + —_— dt
2RI & Sk (t-£ )e-£7)
og
+g dt +g ________._______S.'“n“lft,a) dt =
(c-£" )(t £7) “o  (E-ET)(t-E7)
a
eyt ) ¥ (£)
S —_— gt 4+ ———— at
J (g ) e-g) 1 (-8 )(e-E)
Yy (1) =7
S a (2)
(t-£7)e-€7) T (0)= 0

Here S*(t,a) is an additional function which may be required
because of the mapping singularity at £ = a, S% is a [uaclion satis-

fying the conditions

S*(t,a) =0 t# a

S%(a,a) unbounded.

It will account for the singularity at the leading edge of the airfoil.
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Equation (2) is the basic integro-differential equation of the
jet fla;p in ground efféct. It is to be solved for §+ > 1 regarding §+
as the indepencient variable and 7 as the unknown with the additional
condition _'r(§+) =7(£"). Considered as a boundary value problem in

analytic functinns it is known as the Riemann-Hilbert-Poincare

Problem (Mushkelishvili Ref., 11},



-21-

D, SUPERPOSITION OF SOLUTIONS

Cuilsidering Eq, 2., we ubsecrve that the. right-hand side,
which is prescrlibed, may be regarded as the input function, together
with the jet slépe at the trailing edge, Because of the linearity we
mavy break the problem down into a set of superposable solutions as

is done in thin airfoil theory., We classify the cases as follows

1. Basic Jet Angle Case

Here we have v, = 0
y. =0

a=20

'Tl = Tb

and determine a solution ‘TT

2. Angle of Attack Case

Here we have v, = 0
Yo =0
a
'Tl = ~-a

and determine a solution Ta

3. Camber Case

Here we have ¥, = 0
Ve

a="0
T,
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4, Thickness Case

Here we have Yt
vy, =0
a=20
’Tl =0

and determine a solution 'TT .

If we define the left-hand side of Eq, 2 as J(T) where J is
a functional of the function T we get the following equations for the

basic cases

J(T,T)=Os T’T(l)sz
+1
dt

J'(T ) = - P (l) = -

. Sl (-€e-g7)  °
37 ) G at, (1)

T)= t, T =y e

Y e-the-gn c(%=1)

S»a yL(t) Sl yL(t) |

J(T) = —-*-*-—‘—*--——“-_-_—-dt- —*—*—-—-—-—-—_—dt, T(ly=20

b -6 J (et (e-87) t
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E, SINGULARITIES OF THE SOLUTION

In general We'experct singularities to occur either where the
t-:;ansformation"is singular or where the boundary conditions are
discontinuous. The former occurs at § = a, or at the leading edge
of the airfoil and the latter at £ <1 typically due to discontinuous
changes in v due to a flap on the airfoil or at the trailing edge due
to the jet flap angle itself, In addition, we must consider the nature
of the flow at infinity in both planes,

1. Leading Edge Singularity

Considering the flow in the « plane, we note that because
there is no net velocity flux in this plane (excluding the jet flux)

a circuit taken in the cut plane must give us the result

{zw(z}} = 0

Now considering the transformation, we nole that, for
example, far forward on the ground plane the mapping again be-

comes linear so that in this region

7 =~y L+ Ollog(k-1))

thus we see w(§) = O(—I-z—) implying that there must be no net source

——00
effect in the € plane.
We now consider the additional u term due to S*(€,a) and

see that it must be in the form of a simple pole

+ N
a(g) = - = =2
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and because of the above condition of no source terms, we can im-

mediately evaluate Né which is given by

0

NU = S' v({t)dt

~00
We refer to No as the nose sourcc and obtain further ingight on its
significance by considering the local flow in the real plane.
We assume the total flow near a is given by
N
u(g) = - TE-a) + O(§-2a)

Now the transformation derivative is given by

dx h £-a

T rRIw Btk

so that near the nose we have

x =

2
- h 5 (E~a) + o(g‘a)?’
(at+k)

2
Substituting this value into the velocity term we obtain

N ni o1
ulx) =+ ~73 577 * @ I
2 T xe -

This is the familiar square root singularity of thin airfoil
theory.
We see now that the term S¥*(£,a) may be written S*(§,a) =

No 8{£~a) or as the Dirac delta function of argument a.

2, Trailing Edge Singularity

At the trailing edge (§ = £1 in the [ plane) the transformation

itself is regular but there are in general discontinuities in the
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boundary conditions v and hence in u. For the Basic Jet Angle Case
this discontinuity is of magnitude Ty
It is easy to show that near £ = 1 we have
T
u(g) = = log [1-£1 ,

£ —1

While because of the mapping T(L) = 7(-1) we find that near £ = -1

b
w() = - Tlog I1+£ 1

If we now consider the differential equation

+ -y oar at
U -u =

2 df dx

which must be satisfied at £ =1 we note that because %}% is regular

near & =1 we must have a logarithmic singularity in % here, Ry

considering only the singular parts of the expression we get, near
£€=1,
2

™ {(L+k) ar
7 Btk T

e
T, log I1~§|—HC 2 T

J
This dictates the behaviour of T, near § = 1, namely
T (E) =T
£—1

dr
E& (£) = O(logl1-¢1) .

€1

Now near £ = -1 we note from the transformation
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ar ag’ _ar ag”
d§+ dx dg” dx

so that

dr dr 1+k -1-a

dg- d§+ 1-a -14+k

Thus

dg

It is of interest to analyze the physical significance of this

ie also logarithmically infinite near £ = -1,

behavior. We note in the real plane, that the flow turns through a
finite angle T, at the trailing edge, When analyzed by linear theory
this will give rise to logarithmically infinite u perturbation veloci-
ties. These velocities produce pressures being locally infinite to
‘the same order. Now we have the dynamic boundary condition which
essentially relates the curvature of the jet to the pressure differ-
ence it sustains; with the jet coefficient CJ serving as a scaling
factor., Thus the pressures near the trailing edge produce an infi-
nite curvature in the jet and this curvature, 'Eld"x’: » is of the same
order as the pressures causing it.

This singularity in the perturbation field presents difficul-
tieg in numerical solution of the differential equation near £ = 1.
Fortunately this is a very weak singularity and is readily integwrable

so that there are simple techniques for handling it,
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F. FLOW FIELDS AT INFINITY

It is useful to-inveétigate the order of the perturbation veloc-
ities at infinity; .particula,_rly in view of the fact that the point K,
corresponding to infinity downstream on the jet surface in the real
plane, becomes a finite point in the { plane, For this purpose we
consider the real flow field, adding an image singularity distribu-
tion to account for the ground plane,

We consider an unknown vorticity distribution y(x) defined

along the airfeil and its wake, then we obtain

wiz) = + 3= S‘Jig—dt

Q0
‘We note now, for finite lifts, that [ v(t)dt exists and assume that
o

for t large we may write y(t) as
vit) = k/t% t> Ax
1Then

Ak
iw(z)::+1‘§l-—)— S—i—dt.
0

2m te-z ¢ -
Ax L7B

Now considering the velocity near the wake for R(z) >> A% we

expand the first integral to write

A% Ak

yit) o, _ 1 S’ {t)
‘S‘ t-= dt z 1-t/z dt
0 0
Ak
:%S vie) {1+ t/z + t%/2%. .. }dt
0
Tk Tk
_I= 1 2 1
=< +- —~ + _Z-.g + O('Z)
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ads
S

A
where I‘T:S‘ y(t)tidt ; r'=r
: 0

-

o
For the second integral we consider the function
-iw(z) = ‘lﬁ“ log(A;"r—z) + g{z), where g(z)

=

is a rational polynomial which must remove any singularities in v

from w(z). By expanding -Lﬂ log(A%-z) near zero we obtain
Z

)_logA + 1 1

~iw(z) = = log (A" -z g e et
Z

Z zn A 1

(n-l)A*n_ z

We note that this gives the analytic function implied by the

second integral, namely

j(z)=0 u=0

R(z) < A"= v = - —% log(A-x) - g(x) .
X
while for
- _ T
j(z) =0 u = Y
x
R(z) >A" v = - '}E log A" -x] -g(x)
, x
Observing further that u+-u— = y{x) we see that we may write the

total w(z) as

A

E3 b b

. T 1 1,°1 2

IW(Z) - =z + *n_lz-l— Z + 3 + « & 8 @
2(n-1)A z z

We now consider the influence of an identical image vorticity

distribution, situated along a line displaced vertically by 2h, This



X : e 1 1 1 1
gives iw(z) - 1W(z-2_1h) = ’b0 [; - m] + b1 [_Z_ - u-—-—:.l_z]
R(z) o0 . _ z (z-21ih)
1 1
+ b [_'_ - ] "¥" - Y
3 z.3 (z—Z‘.'lh)3

To determine v on the wake we are concerned with the real part of
this expression and by expanding for h/x< 1 we obtain

@
o 3
X

v(x) = b + 0(-1-5—)
x

Now for the vorticity v(x) = u+ -u we consider the differential

cCl
. + - J dv ;
equation u -u = 75— = to obtain

vix) = O(1/x%)

sz —*00

which implies that in our original assumption yit) = kAT, 1> A"

that n = 4,

We now consider the mapping derivative to obtain v{(§) near

the infinities of the real plane. We have observed that for § > we

h

obtain the result =z = (a—ﬂ—(—FT——f + 0 (log(k-%)) .

' so that v(§) = O()
g

E’ —00
While near the point K we have

z= -

B 10g €+K) + O)

so that v(E} = O (-—-——l——-g—)
(log(Etk)})
£ «-k
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This result shows that the derivative %% is siﬁgular near € = -k,
A sketch, Fig. 5, of the boundary conditions for Case 1

shows the behaviour of the functions u,v,
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G. CONDITIONS AT ENDPOINTS OF WAKE

1. Flow at Trailing Edge

The combination of the velocity discontinuity, and the dynamic

boundary condition give us, for Ty = 1.

1+k dr

: 2
log(E-1) =4 C; - (atk) {5 g¢ near & =1

From this we can obtain the first term in the expansion near here

) |
(T(§)-1) £ O I (atk) To= = &€ - 1) {1og(E- 1) -1}

+ higher order terms.

2. Flow at Infinity

Considering the flow in the real z plane we see that by linear

theory, the lift coefficient may be expressed

o %0
CCL + _
3 =—‘§u(x)dx+5.u(x)dx
0 0
cC, >
5 — = SI vix)dx where y is the vorticity.
0
From this vorticity we obtain the v field at infinity on the wake as
ad 5
vix) = = ) S.y(x)dx-i- o(1/x”)
x>0 T x 0

Mapping this to the corresponding flow in the § plane we obtain

V(S%...,.Noo - % (a+k)3 Cq, E—lg

7 2 C 1
vi®) ~ -at<c
gk PN flog i}’
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H. SECOND ORDER EFFECTS

ngne important overall results ma;_y be obtained by consid-
ering second order effects near the leading and trailing edges. This
was exploited by Spence (Ref. 12) for the case with no ground plane,
it is extended in our case.

Considering the flow in the real plane for the flat plate air-
foil we obtain immediately, by considering momentum flux through
a large control surface enclosing the airfoil that there is a net
thrqst on the device given, in coefficient form, by CJ.. Now, re-
ferring to I'ig. 6 we write down the equations of equilibriuw for
the vertical and horizontal directions, defining Cz as the pressure
lift on the upper and lower surfaces of the airfoil and CT as the

nose thrust due to the nose singularity (this will be shown in the

following paragraphs to be parallel to the airfoil chord).

Con sina+ C

T ¢cos a+ C. sin (6+a) = C

J

H

L

CT cos a - CL sin a + CJ cos {0ta) = CJ
We now eliminate CI._, to obtain

CT =CL gina + CJ {cos a-cosacos (6+a) - sina sin (6+a)}

Expanding the trigonometric functions, while neglecting terms of

O(aa) and above, we get
2 2
CT =CLC{.+ CJ‘ {0 /2, - u./?.)

To express CT we note that if the flow ncar tho nosc in the
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real plane is expressed in velocity normalized terms as u(x) = N
, _ . X0 Xl;z
then by applying the theorem of Blasius to a vanishingly small
circle at the nose we obtain
C L Z.Ter
T c
Now by the linearity of the problem with respect to a, 0 we write
N = Naq, + Ny so that we get
2 g2 2 2 2
= —_— + +
CT = (Na a ZNG. Ne ab Ne 8"}
while writing C, = G a+ C. 8 we ohtain from the force equation
: L LCL LB

_ 2 2
Cr = (CLQ— cj/z)a + CLe ad + C; 0 /2.

By comparing the two expressions and noting that they are identities

in 8,a we obtain three equations

' 2T a2
Cy, 'CJ/Z‘—EN@

a

_ 4
CL “c_,NaNe

]

_ An 2
CJ—C NB

This is an important cquation, because it implies that we are able
to deduce Cj, from CLG, in other words it is necessary only to
a .

solve for the Basic Jet Angle Case (where a = 0) to infer the 1ift
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slope with z;espect to angle of attack, We noté also that CLB’ CLa
are functions of h/c and CJ..

Considelrring the Basic Jet Angle Case we observe that the
above result gives an exact expression for N,, the nose source.
In the discussion of the nose singularity we showed

() ~ /2

,i/2 3/2 (@K _1/2

so that
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I. GEOMETRICAL LINEARIZING TERM

It is clear that h/c. is a significant physical parameter of all
the solutions; hc-J{vever, because of the complicated implicit nature
of the transformation, it has been convenient to work also with a,k
which are also functions of h/c. At this point we introduce a funda-
mental geometrical term which while not readily identifiable physi-
calIy results in great analytical simplification both of subsequent
equations and of v arious limiting cases,

We recall the result

/b= a2 - Ligg MK
T ki T O8 Tk

and the auxiliary relationship hetween a and k

{atk) log -I—I:i:—}— =2

Then noting the limiting results:
k — o, a — o, c/h — o
2
k —1, aw-l—Z/log(-—E—_——l—) s c/h—-()

- We define a new parameter G as follows:

2 Itk

G PEuA

=27 c/h (a+k)2‘ = 2(atk){l-a) - 2.(a+k)2 log

Here we see

k - », c/h — w; G -1

k —1, c/h -~ 0; G—0
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Substituting this parameter into the expression for N0 for case 1
gives

N :_'Ji!"_ {}'\jc .
0 2 J
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J. CASE OF ZERO GROUND PLANE

When we put h/c — o we obtain the clas.sic case treated by
Spence (Ref, 2); His technique was different from that employed
here, in that the problem was handled in the real plane exploiting
various symmetries, anti-symmetries and inversions which are no
longer valid with a ground plane, It is of interest to treat the Spence
case using our techniques.

Here we have a = 0, k = « and the transformation given by
z = ctz. We see that we have the thickness solution T = 0 so that
thickness has no effect on the jet shape, as might be expected from

a linear theory. Again from the symmetry we obtain
+ -
u(€ ) = -ul§ )

with the dynamic condition given by

We now put a-y,_ = y; {noting that thickness does not affect the solu-
tion) and ¢ = 1 and derive, after some manipulation the integro-

differential equation in the § plane:

[se}

Cy ar _ -2k g ¥, (t) 2% 7 (t)
T (t
0
1

1
TECE )t D) ‘“w“i T &

oo
2 : 2
" ) Yaltldt - oF Lg”“dt
8] 1
Transforming to the z plane gives '
1

1 1 1 2 1 ® %

Cyar <2 (Y vyl <z Thin
Fax S dn - S

N-X ™ nN-x

[o N

|

X ™

jol]

0
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The integrals may be inverted by the general solution of the
linile range Hilbert Transform (sometimes called the airfoil equa-

tion); see for exémple Tricomi (Ref, 13}

1
A(g)r%gﬁ(_g_ 0<t<1
0
1 1 i

— ) dx + —————— , 0< £< 1
B (e(L-£)}3

If we now change the limits of these forms we obtain an al-

" ternative inversion

o]
ag=E( 20 & oy
1
N Alx) 1 dx Cg
B(£) = -£(6-1)° = P, 1<t
TeF mel)E P (e

Applying this inversion, with C in the homogeneous part

equal to zero we obtain, after further manipulation:

1 o 1
7(8) = (%1)2 LU ) (ﬁ)"‘ =
1 11 1
- LT 1;5; y;(n)(;]-’-}T)m,,fﬁ . 1<

where T7'(n) 9 « We notice that this corresponds to Spence's
dn P p

Eq. 69 in Ref. 2. We further notice that for Case 1 the result
N0 = ‘/_ VC. is given by Spence; this corresponds to G=1,

h/c = ® in our general expression for N .
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K. SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION

1, General

We wish to solve the eqguation
. C _
+ - _““7av  dé

u = — . —2 <
u -u ) E dx 2 1 5_5,

where v is specified for £2 < 1 and for & < -k. We consider first
Case 1 which contains all the essential characteristics of the solu-
tion and from which the general cases easily follow, We shall
approximate v(§), £ > 1 by a trapezoidal distribution defined at N
values of £ between £ =1 and £ = gN with a polynomial O(l/§3) for
£ > EN; the differential equation is then satisfied at points -En inter-
mediate to the locations at which v is specified. This is illustrated
in Fig, 7. We call §n the station points, 7g'-n the control points.

2. Basic Induction Function

Considering the elementary trapezoidal v distribution of
Fig., 7 we note that the analytic function Wn(g) = Un—iVn satisfies
the requirements enumerated below
W ()= - = v+;ﬁiéﬂaa)ug%%?
n T n ntl” *n n "%n

Vol Vn VaritVa gn+1 -gn
h ™ - 2 E-a
V)=V + "ot n ) <f<
a) V. €)=V [ (E-E), E_<E<E
b) Vn = 0 3 g < gn > g > gl’l‘]‘l

1
)W (£)=05) , & —~w

d) W_(6) = Oep) , £ —a
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We may write Un(g) as:

'n'Un(g) = _VnAn(é) + Vn+1 Bn+l (€)

. gn—l—i -€ !’;n—é gﬂ"‘l _g_....n
where An(g) = -log -—g;_-yé— 1+ ﬁnn{.n' + 14 2(£-a)
& - €,.176 .76
B _(£) =1 = Ao }' L - Sy
(€} = 1og e E '{gn-gn_l 2{€-a)

3, Total Induction Function

Due to the right-hand side trapezoidal v function only, we

obtain

N
wU(g)m:S C_(8) v
0

where C =z A + B and A =B__. =0,
n n n o N

Now we consider an elemental distribution on the left-hand

side (-k< £ < -1), We note that
v(E") = V(g")

so that if we denote the corresponding point to "g',i for E‘i >1 as gi' we

obtain for the u induction

TU(E) = VAT(E) + VB, (£)

£ 11-E £ -& £ L -
where A;(g) = log ..Ej_i__ I]_ + — n _t _q ..ot E"n
£,°6 & 415, 2(£-a)
- §—'§ é_-l j§ g—"l_é
B (§) = - log _n l ; ? . } +1 4 121( _ )n
L gn-lug gn - gn-l E a
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and hence for the left-hand side trapezoidal function we get
N

TU(E) = ) ()Y,
0

where C_(£) = A_(£) + B_(£) and B_(£) = AL(E) = 0

Thus for the total induction due to the trapezoidal portion we have
N

TU(E) =Z ('cn(g) + c;(g)) v,
0

We have still to éonsider the induction due to the v distribution
between E.,N and infinity, We do not intend satisfying the differential
equation in this region, so that the exact shape is not particularly
important, however, the convergence will be more rapid if the v

function is a good approximation. On the right-hand sidc we have

shown that

vig) = o(1/e%)

£~
Consequently here we use a form
- e 3 5
V(E) = a,/E” + b_/E

with the condition V(E’N) = VN’ V'(EN) = 0, This gives us for the

inducticn u,

_oflogli-e™ L1 1 1
~mUg (€} = a,r3 6:'53 + - + i 2(§—a)f
logll-£"] . 1 1 1 1 f
+ b - + — + ——  + rodi -
T ; £*3 g% w4t AEs8)
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where g*:l - §N+§

By suitable choice of a., b, we obtain a function linear in VN

TUR (£) = Vi RI£)

On the left-hand side we have near X

v(8) = 0(——~5—-—3)
£ .k (loglg-[-k])

We do not attempt to approximate this form too precisely, partly

because unlike the right-hand side the range is finite (equal to

-k + &&) so that errors here are small and of order 11\-Ik outside
the final segment, and partly because of the obvious algebraic
complexity of the function, We use a simple triangular distribution

haviﬁg the form

g"gN
V) =V T,

The induction is written in a form similar to that used for the ele-

mentary trapezoidal distributions to give us
UL (£) = Vi L(£)

Now we can write the total induction due to the entire v dis-

tribution as:

nU(E) = (cn(f;) + c;(f;)) v+ Vy (R(f;) + L(f;))

D (£} V,

é‘L\/TZCDL\/JZ
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4. Slope Terms
: cC

S I _dtdv .. di _ mlatk) Et+k
We have fhe basic slope term —5 T T A with - n ta-

If we consider some control point £ lying between §n and gn_l we get
' ' i ST (at Sk o 1 . -
for the above expression, 5o {atlk) CJ. E;Tn-l— (Vn Vn—l)

-a

which we define as S;(E)(Vn"vn_l)-

5. Fundamental Linear Set

We may now write the differential equation as

N
) D&Y -DEN V= 5) €N,V ), n=1 N
0

where §n_1 < E* < En

We now choose N points at which we wish to satisfy the equation de-

fining these points as E{ (with Ei" its left-hand transform). Now,

)
()

. + - oty . .
writing Di(f n) - Di@ n) = Ein and Sn(-é'n) = Sn we obtain the linear set
N
ZE. V.=8 (V.-V. ) n=1.,.. N
in 1 n" n n-l
0

Defining again the matrix Fij by

F. =8, i=j
i
= -S, j=i+1
j J

=0 otherwise
yields

n=1.,.. N

1
o

(E, +F. )V,
in  Tin’ i

oz
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Now we have the initial condition at the trailing edge V =1, hence

derive the sct of equations:

(E. +F.)V.=~(E _+F ) n=1....N
.'.'I.Il -1 1 fakal

0On

This is the final linear set of simultaneous equations which

must be solved for the set Vi’ being the solutions to the basic case,
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1IT. CONVERGENCE OF THE LINEAR INTERPOLATION

A, GENERAL

In the following scctions wo develop a proof of the convergence
of the linéar interpolation used in deriving the set of linear equations
which form the bésis of the numerical solution, We note first that
as we have assumed for Ez >1 a continuous approximate v distribu-
tion, having piecewise continuous derivatives, there will be no
singularities of u in the range 62 > 1, The only difficulties occur
at the extremities of the v range, gz =1, €= -k, £ = 0 and here
the present technique is still adequate. However, we can show,
through the convergence analysis, that refinements in the control
point spacing can increase the convergence rate,

As a prototype of the linear interpolation scheme we analyze
the case of h/c = w, and assume equidistant station and control
points, While this case was not actually done in the present paper,
because it would necessitate a modified program and is fully covered
by Spence's Theory, it providcs a valid basis for the convergence
proof with greatly simplified algebra. The extension to the case of

finite h/c with non-uniform station spacing follows guite readily.
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B. SYMMETRICAL CASE, h/c = «

1. Basic Integi‘o—differential Equation

Consideriﬁg the Basic-Jet Angle case we obtain the integro-

differential equé.tion from

% »
--T-;%I-lg%‘é- = Yg%dt-%gv(t)dt, £s 1
0 b
where wv(t) = v(-t)
v(t)= 0, 0<t2<1
v(l)=1
v(g)= o1 /&%)
g —

We then define, for brevity, a linear integral operator for the right-

hand side, L ,» where

-1 [+'0] o0
L {v(e)}= S_v(t) t—dg +§ vit) %% v{t)dt
-0 1 -00

2. Definition of Error Function

We define v(§) as the exact solution, and the continuous inter-
rpolation function V(£) as the approximate solution. We note that in

the interpeolation and polynomial ranges we have:

-t LI
V(E) = V(gn_z_l)i'g?%;z + V(gn)%gi:—ll_-qz y,yn=0,.,. N
VIE) = V(E )jﬁ— 2 % | > 1

Where§*=§+1~§
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For brevity we denote any function evaluated at §n as
f(gn) = fn. ‘We now define an error function in two parts, the first,
E(E), being an iﬁt'erpolatio:_n and polynomial having an identical
functional form to V{§), the second part being defined as e(§) (Fig.

7). Thus

v{€) = V() + E(€) + e(€)

with v. =V +E, e =0 n=0,,.. N
n n n n

Following the procedure of II.K,.3 we can write the equation

V-V

T 1 ntl 'n -/ V(E
].6 J- -é-n+1 En_l_l-fn { n-}-l}
as
N
V_-V
1 -1 - S — —
B i% CJ _E“ En—éz_l - Z{ci(gn)_ci(gn)}vi+vN{Rl(§n)+Ll(€n)}
n 0
N
= z D:.;n Vi
0

where Rl(g), Ll(g) correspond in form to the induction functions R(£),
L.(£) except that the former are derived for the polynomial 0(1/5_,2) on
both left- and right-hand sides.

We will regard the above eqnation as defining a linear set of
equations for Vi by substituting gn forn=1.....Nand Vo =1, As
before, E,n_l < En < En.

We now note that we may write thre mean slope of V in similar

form as



?(g)“——g—:{*'g(g )y n=1.... N

where g(£) is an error to be discussed in the next paragraph.

3. Interpolation and Polynomial Errors

At this point we assume the control points to be taken equi-
distant between the station points, and that these station points are
themselves equally ‘spaced; so that we may define an internal
Ag = gn - gn—l for n= lnououN-

From this we immediately have the result, in the region

where the derivatives of v exist, that

v~V 3
%‘é(gn) :wnAél"l t o(agz dg") n=2,..0. N
d

ITowever, for the first slalion we note from the asymptotic
analysis v{£) =1 + H(£-1) {log (£-1) - 1} + O(E-1). (Here H is a
bounded variable constant which will be used in further equations
without implying it has the same value in different contexts.) Thus
we get:

1-1

—E' (‘21) = —AE + O(1)

So we may write

i

ofl) n=l

fl

g(€)
o(ag?) =«

It

2 @9 %0 N

i

Again we show that where the required derivatives exist

2
e(g) = (Ag dgv) E4SE S By
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while for the first station, from the asymptotié analysis

o(£) = O(AE) 1S g<g,

To define e(£) for £> E’N we assume v to have the form

2+ B0y e3¢
§2 §3 §4 N

while in this range V and E are given by

¥ =

E 3 2 *

= 25 - —= &
NEN gz §3

s
T
Consequently, noting that e(gN) = 0 we have

e(§) = O(Vy/E™?) £ > £y

Thus we may write

e(g) - O(AE) 1sgsg
2 dzv
=O(A‘§ _cigi) TN
- o(v,_/&%) ENSE

4. Derivation of Error Matrix

If we now subtract the equations for v and V we obtain

N
-G E -E
J ntl o _ % _ _ ]
lf)E { AE + O(l)}_lenVi-!-L {e(gn_l_l)}! n-= 0 onoN 1
ntl Q

We note e{(§) = e(-£), and using the bounds derived above,

define e for £ =2 1 in two parts, defined for £ < and £ 2 £, Thus

gN
we have e = e; + ey with Iel | < A&f(8), 1<E< g Where £(1) = 0;
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f(€) = 0 for £ = "c_E,N and f(£) is continuous and bounded for 1 € § < E,N.
For ey, We use the inequality

le E\K:E({I,)-—K‘{ 1;2--%-?}
g g
wherce K'! is a constant, O(Vn)n

Now, applying the integral operator gives

-1

L{fT(g)}=S He) e+ Ss (65 - jﬂ
_gN g

where because {1} = f(i_‘,N) = 0 and £(£) is bounded we get
L{f(£)} = o(1) E>1.

For the outer portion, €9, WE consider

EN ¢ (t)
L{f (&)} = g e dt - &S. o (t)dt

o fo(t) _d
+ T dt - z SI fT(t)dt
E‘N E‘N

Forl ¢ < E‘N only the latter two terms of the expression are sig-

nificant and writing out these terms we get

2 & *

m-l-z—logll—«i*f +—%-:—‘-+£--1—- '{-73 log ll—gdﬁl——-—];*—z—%
€ € £ 2¢

11
1oL

This has a maximum near §=P = 1 which is bounded and O(1) so that

we may write
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L {e,} = O(K',) = O(Vy)

Thus we have the two results

O(AE)

i}

[ {e}}

0

L {e,} =0(V)

n

If we select £, such that v. = O(A£) we can assert L {e} =
N n

O(A£). However for this proof we can use a cruder bound and state
L{e} =0()

We now write the equations defining Ei as
N

B N
E in _ S * -
—AE—Ei'l—o(l) - _JDinEi+O(1), n—']- -nn.N
0 0

E =0,
0
Where B :——TT——-C -—]-‘-—-— i=
S 16 "T¥ J
j
=--]E"5ij j=1i-~1
=0 otherwise

5. Determination of the Order of Ei

Now because E = 0 we can drop the terms B _,, D", and
0 o} o]

thus obtain a linear set having N equations and N unknowns, For

conciseness we define the various elements in matrix form so

that
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"B has elements B, i j=levesoN
D has elements D1J i,j=l.....N

where i indicates the column suffix,

We define the column error vector, and column unit vector as

E has elements Ej j=lieesN

T has elementsljzl j=1l.....N

We then write the matrix equation
(B - A(D) E = AEHT

We now consider the.order of magnitude of the elements of
the two matrices. It is evident that the elements of B are O(1} and
that the determinant is non-zero so that an inverse exists, The
elements of this inverse are Of1),

For D we consider a typical element, given by

Dij = Ci(Ej) | C; (fj) for i < N, where Ci(fj) =

'-{1-1-—~————J—El }]Dg]l-]- Aé l+§1_1§3 logil-I-———--‘é-—g——--—’—---A—g

AE gi_“gj Ag gi_l-“g'. E.

j i
while Ci“ (gj) = O(A£) because J"g'ji 2 2, all j,

Now we observe that for the control points selected

Ci(gj):_{1+i-j+—;—}1og|1+—_ 1 ]

i-jt

[

+ {i-j+3} 1og[1 +
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This shows us that
Ci'(Ej):O(l) is=j,y j=ixl

Ci (§J) = O(AE) | otherwisc

Thus we may state that the elements of D are O(1},
We now assume E is expanded into a series of column vectors

of descending magnitude
= B4 aeBW 4 a2B@ L.

where E (1) represent column vectors having elements O(l).

Now substituting to the vector equation we get
B - aB)EC + atE W + ag28@ 1 )= aeaT

Then collecting terms of equal magnitude we get

BECLSED . xT

We note B -1 exists so that B (o) 2 0 and then from the second

)

‘equation obtain E (1 » having elements O(l).
This completes the proof that, for E‘N fixed and O}, as

AE — 0, we have the error vector

E = O(A£) T
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C. GENERAL CASE, h/c FINITE

For this case we generalize to the problem actually solved
by numerical techniques. Here we have the added generality of non-
uniform station spacing and unsymmetrical left- and right-hand v
distl"ibu.tion. The non-uniformity of station spacing is readily handled
by considering terms Of A’émax) where Agmax is the maximum spac-
ing. We choose control points by the condition Er; = %(E;I-F ’é;_l) so
that 'é;: is determined by the mapping §+ < £°, While this implies
‘that E_:; is no longer equidistant to its adjaacent control points,the fact
that d§+/d§_ is bounded for all §+> 1 gives us §;< E; < gjﬁl, so that
again all the elements of D are O(1).

For the continuous portion of the V curve we define

2 . .
vigr= L {576 5e™h s

k+&
k+§1\‘r

V(E) = Vy

While the appropriate linear integral operator becomes
0

-1 "
L{v(£)} = S\ v(t) _1-_3?_) dt + S. v(t) 1'—?_(;'—&1 dt—g—la—S.v(t)dt
-k 1 -k

Proceeding in a manner analogous to that for the symmetrical

case we can show E, = O(A£ |
i max
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D. IMPROVEMENT OF CONVERGENCE RATE

The above analysis shows clearly that the convergcnce of the
linear interpolafion technique is dominated by conditions at the ex-
tremities of the v distribution.

Near _Ez =1 the order of the error function e(£) is changed
from A§2 to A§ by the logarithmic term. This degradation in con-

vergence can be partly remedied by suitable choice of the first con-

‘g '1 &
trol point. In fact, if we choose El =1+ 7 (where e = e, the
e
exponential) we find
av Vi -1
T (El) = AL + O(A§ log AE)
and e(£) = O(AE? log At) 1<t<g,

The other major factor relating to convergence is the accu-
ra,cy.of the polynomial defined for §> E,N. This can be improved by
increasing EN, although this analysis indicates that the improvement
would not become significant until Vn = O(Aﬁmax), which condition
will occur when AEmaX = O(l/‘g’N3)° A more effective techniqgue
would be to relate this polynomial linearly to VN and VN—l by match-
ing both ordinate and slope to the linear interpolation at «‘;Ne
Evidently more terms can be added to the polynomial and it may
be thus linked to more of the preceding values of V,

An alternative iterative procedur.e is to evaluate CLE} by the
present method, to use this value to establish the constant in the
expression V(§) = A/§3 and hence to obté.in an excellent approxima-

£ ™
tion to the leading term of the polynomial for the second improved
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solution,
We note that an indication of optimnum station point spacing

in the linear intérpolation range is provided by the expression

2

2 d
e(f) = O(AL” —
more closely in the regions of high curvature, as is evident intui-

}): this shows that station points should be spaced

tive:l.y.

In practice the accuracy of the v distribution for large £ is
[>.e)

not of great significance. For the case of N, = [ v(t)dt where we
~0

might expect it to be important we already have the exact result
derived bi other means, and in the case of CLW which is propor-
tional to {n K(t) v({t) dt we have shown that the wakelift kernel decays
rapidly for £ >> 1 so that only the v behavior for small £ need be

accurately determined,
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IV, EVALUATION OF FORCE COEFFICIENTS

A, DECOMPOSITION OF LIFT INTEGRALS
| For the basic case we have u = 0 and need not thus consider
the contribution of the nose source to lift, By integrating the pres-

sure coefficient on the upper and lower surfaces in the real plane

we obtain

c c
-CCL = \S-l 2 u+(x)dx - S‘ 24 (x)dx
B % 0

for thc prcssure contribution to the lift, Now transforming to the

{ plane removes the ambiguity in u and we get

1 a
_ on £- oh ‘-
"CCLR = TarE) u(é)-g_%dﬁ " TatE) u(%)-gridg
: A /
1
5 ¢ (atk) Cp, = f u(e) £72 at
-1

We note that u(§) is singular at £ 1 and a and that we may

write it in two parts, separating the polar and logarithmic singu-

larities as

| No 1 - vit) ..
w0 = eyt b | W
-0
We call the u component due to NO the nose flow, and the 1lift asso-
clated with it the nose lif;while because v in the second integral is
zero everywhere except the wake,we define the force contribution

due to it as the wake lift. Then, callingA the nose lift CLN we get
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+1

N
T _ 0 1 (§-a)
ER S § o e
_ No 15 k+1
o g k1

o _4'%y
LN 1/1? G

a particularly simple expression which clearly illustrates the limit-

ing behaviour of C; as h/c varies,
N

For the wake lift, designated CLW we have the expression

9 +1 +w
T c _ vit)}{£-a)
5§ (atk) CLW = S S‘ TE-DETR) dtd§
-1 -~
+00
_ a-t t-1 2
-S vit) {m log &7 ~ ey 4
-0
We write this as
172 G2 +e0 =1 oo
4 iR CI"‘W :g vi{t)K(a.t)dt =S‘ vit)K{a,t)dt + S.v(t)K(a,t)dt
-0 -k 1

defining a lift kernel K(a,t),

The lift kernel has certain desirable properties; it contains
only logarithmic singularities, and these at the inner extremities
of its range and, morvre significantly, is integrable itself, which may

be seen by noting
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K(a,t) = O(3) and K (a, -k) = log =

¢ — o t

Because of this we are able to calculate the value of C;, as Cp—oo.
W
In this case we have v(t) — 1 and consequently

TG CL -1 o0

W

Lim (—4(*:"1:")-—) = S‘ K(a,t}dt + Sv K(a, t)dt
— artk }

Crmee “k 1

The evaluation of this integral is discussed in the following section,
From the above decomposition, and adding the jet momentum

lift, we obtain the result (for 8 =7, = 1),

bl

CL=CL +CL +C

N w3
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B, INTEGRATION OF LIFT KERNEL

We consider the left- and right-hand parts of the integral:
K :S‘ K(a,t}dt , Kg :5" K(a, t)dt

In the appendix we show
‘ -1
KL = {atk) [Bl(.kli:l-_f) —1':’:1 (l)] + 2 log 2 + (k-1)log (k-1)-(kt+l }log(ktl)

= (atk) [31(1) - Bl(%:})] - 21log 2+ 2+ 2 log (ktl)

where the function B1 (x) is defined in the appendix,

From this we show

2
G k-1
Lim (*rr ):Z-I-(Rl)log
CJ 4 +k) k1
_ 5 atl
= 2 atk
Lim c, - Slta)

= 8/% for G —1

For G — 0 we require the limit lta

= as G — 0,
GZ.
2 a,+k 1+k
/{l+a) = [ 2(1-a) -~ 2(atk) log a+k]
Now as G — 0, %—:%% — 1 so we have C‘rz/(i'i'a) - 4,
Consequently
Lim G, =2 for G—0
T

CJ-»oo W
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. On the other hand, for CJ finite but G — U we have another

limit which can be evaluated as follows:

-1 )
2 .
TG _ - -
AatR) CLW = § v(t)K(a, t}dt + gv(t)h(a,t)dt
-k 1
We note
-1
SI v{t)dt > 0 o
. and g vit)dt = N_
S‘ v{t)dt > 0 =%
1
% -1
Consequently g v(t)dt < NO . S vit)dt < N0
1 -k

Now considering the second integral defining CL

o0 W

I2 = S‘ v(t)K(a,t)dt
1

1+v o0
= S‘ Kvdt + X Kvdt
i 1+v
o0
where v = g vdt
1
1+v 1+v o0
12 Eg Kdt - g K{1 -+)dt +§ Kvdt
1 1 1+v
1+v 1+v &
12<S Kdt - K(a,1+v){g (L -v)dt - S. vdt}
1 1 itv

because K is monotonic decreasing. Thus
1+v

12 <S Kdt
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Similarly we show

-1 : -1
I1 <S‘ Kdt with o= S vdt
_1 ...H . __k
-1 1+v
. ﬂ'Gz . -
-1 -p 1
andv, p< No
Now No = g G \/CJ
and H%i—)— — 4
G—0
So finally
C — 0 for C._ finite
LW J

G —0



63~

C. LIFT CURVES FOR LOW Cy

We can utilize the relationship between CL and CL to derive
. . 8 qa
results for small CT' We have

where C; = C . (h/c, Gl

s

CZ
LS
Then Lim ———1=2C (h/c, Q).
C L

The values of CL as functions of h/c: are given by Tani (Ref,
a
14); using these as a hasis we construct the curves of Fig. 14; it

will be seen that the computed points fit excellently, even up to jet

coefficients of one half,
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V. NUMERICAL SOLUTION

A. GENERAL

The fundamental linear matrix developed in II,K.b was
generated and the equations solved on the IBM 7094 computer.
In additioﬁ, the various lift integrals were evaluated numerically,

The programming involved numerous difficulties, both in
retaining accuracy in developing the matrix elements, and in
accounting for the severe scaling difference between the right-
and left-hand side, These were overcome by various strategems
involved in grouping terms and redefining coordinates to preserve
comparative magnitudes. These techniques arc not of intcrcst
in this paper and so a broad discussion of procedures only is
given.

The final program, consisting of a 16 point solution for
the two parameter family with 10 values of ¢/h and 6 of CJ takes

about 120 seconds. The actual execution time for a c¢/h, C; pair

point is about .75 seconds.
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B. CHOICE OF CONTROL POINTS

We specifically avoid attempting to choose 2 control point at
either the trailiﬁg edge or infinity for obvious reasons. However, it
is desirable to space control points more closely in these areas be-
cause the curvature of the v function is more intense here., To this
end we define the station points at which Vi is determined on the left-

hand distribution by using the familiar circular mapping, i.e.,

- i-k mi .
gi_ﬂl-l-T(l_COS“m) 1""OocneN

We define the control points (at which the equation is to be

satisfied) by

Then g;“, _é,—:- are defined by the transcendental equation below,

developed from the basic mapping of Eq. 1.

§,+—a £ -a
atk atk
eE - &
§++k & +k

It was found necessary, for the low values of h/c and high CJ
to choose a few station points closer to K than given by the circular
mapping. This is easily accomplished by redefining the points

., & «ww 5 because the basic program is written for a com -
N N-1 prog

pletely arbitrary selection of station and control points,
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C. CONVERGENGCE CONTROL

The SqluFidns Vi to the linear eyuations generate a trapezoid
which a.p'proximétes the continuous V curve. However, from consid-
erations of the nose flow we have an exact result for N_ = Jvi(g)ae.
As a consequence of this, an excellent check of the convergence and
accuracy is the correlation of the computed No with the exact value,
Theée are shown on Fig. 8, It will be secen that the correlation is
excellent with some small discrepancies for the high jet coefficients,
the error here being due to the relatively slow rate of decay of V
with £ so that the numerical procedure does not accurately give the
V(E} curve for high §. In other words the station points do not extend
far enough. This can easily be remedied by reselecting points .
However, because of limitations on computer time, it was decided
to use a single station point layout for all CJ, h/c combinations;
which is evidently not optimum in the extreme cases of these param-
eters,

Some computer experiments were conducted, varying the
number of station points from 8 to 16 to 32, It was found that 16
represented an optimum of computer time and accuracy reguired,
although this is evidently an arbitrary criterion. As an indication
of the computer solutions generated, a few typical cases are shown

in Migs. 9 and 10.



~67-

VI. RESULTS: CORRELATION WITH THEORY AND EXPERIMENT

A, BASIC LIFT CURVES

In IV,A we show that the Lift coefficicnt for the Basic Case
may be written as three components, Evidently because of the lin-

earity, this is also the lift slope for this case, Thus

Of the three components, only CL need be calculated by
W
‘computer techniques; the other two having exact explicit represen-

tations, Thus our attention is focussed on CL which is shown in
W
Fig. 11, As discussed in the previous section numerical inaccura-

cies are introduced by poorly balanced station point selection. A
measure of the inaccuracy is given by the correlation of the exact
and computed nose source, In Fig., 11 an approximatc correction

(shown dashed) is made by scaling C;, inthe ratio of the two values
W
of the nose source; except for Cy =10 this is a very small correction.

It is evident from Figs, 8, 9, 10 that the station point selection for
CJJ =210 should be modified, although even with the existing arrange-

ment the percentage error is small because in this range CL <<

W

C , G
LN

Jﬁ
The corresponding CL for G=1 is extracted from Spence
w :

(Ref. 2) and shown; it will be seen that the correlation is excellent.
As a more direct representation C;, and CL for different
' e a
values of h/c and CJ are shown in Fig, 12 with Spence's curve

(Ref, 2) serving as a base linc. In Rcf. 2 the author discusses the
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good correlation with exp‘eriment for his linearized theory, so our
correspondence with ﬁis theoretical results may be interpreted as
an experimental. verification,
For the lower h/c values there is little experimental infor-
mation except for a set of results quoted by Huggett in a paper

(Ref. 8) in which he discusses wake blockage.
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B, LIFT CURVES AT LOW h/c: WAKE BLOCKAGE

1. General

At low véiues of h/c the results of Ref. 8 show an apparent
independence of G to h/c for low C-J followed by a lift behaviour
analogous to the stall, where the lift slope abruptly reduces, Ex-
perimental work in the above paper showed clearly that this occurred
when the jet impinged on the floor, causing part of the jet to flow
forward and over the leading edge of the airfoil. Beyond this point
the airfoil reached a plateau of its pressure lift, which then re-

.mained substantially constant for higher blowing coefficients, the
increase in total lift being essentially due only to the increased jet
momentum. This phenomenon is known as wake blockage.

Huggett observed that the maximum pressure lift achieved
appeared to be essentially independent of jet angle or coefficient
and to be related only to h/c. (It may be noted here that this obser-
vation is based only on the performance at two jet angles.) He
developed a simple theory, assuming a uniform vorticity on the
airfoil, and entirely neglecting wake vorticity, which gave good
experimental correlation with the limited test peints. However,
‘this agreement would seem somewhat fortuitous., In the first place,
completely neglecting the strong jet wake seems unacceptable}
secondly the assumption of uniform vorticity on the airfoil is evi-
dently impossible in an attached flow and assumptions that this
represents a separated flow with uniform pressure on the airfoil

make his inviscid potential analysis most questionable.
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A model proposed by Williams (Ref. 9) removes the objections
of unrealistic vorticity distribution. By an exact conformal mapping
technique he £1nds the pressure lift on the horizontal portion of an
airfoil with a deflected flap extending to the ground plane. Because
of mathematical complexity he computes the results only for a flap
angle of 90°, This may be expected to give an approximation of the
inviscid flow for G — ©, However, the tests referred to in Ref. 8
indicate blockage in some cases at CJ. = «8 and do not include jet co-
efficients above 10; while the theory of the present paper shows that
even for jet coefficients of 10 there is considerable jet curvature
which is neglected in Ref, 9. The blockage curve of Williams fits
the experiment about as well as Huggett's theory.,

It may be noted that any attempt to define blockage by con-
sidering experimental lift curves suffers the usual arbitrariness in
the decision of the point at which the blockage type flow commences
particularly if changes in lift coefficient are used as the only indi-
cator.

The theory developed in this paper is essentially linear, thus
it cannot be reasonably expected to make much sense for a non-linear
‘viscous 'phenornenona Nonetheless it is possible to develop an exten-
sion to the theory which gives:

{a) limits to the applicability of linear theory

(b) fairly good theoretical predictions of blockage and

reasonable correlation with observed results.

2. Wake Blockage Theory

We define wake blockage to occur when there is zero net mass
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flux between the lower surface of fhe airfoil an& the ground plane,
Evidently tilis occurs when the dividing streamline far forward js
depressed by an- amount h, or, what is the same thing, the jet
reaches a height h below the airfoil at infinity,.

We can write the deflection of the jet h_ for a finite angle

J
9,

00

T 0 S. vix)dx

1
o0

o § Vi) iy i a
1

=
[k}

1}

For low values of h/c

k=1+1

)
fl

-1 +1/log 2/2

so that

£ra 44 1 1 +O( 1 )
ETR Erl Tog 172 (Er1)2

Now we note for h/c = 1,18, £ = 10“2 and assume as an approxima-

tion %;—E ~ 1, so that

0

6h b
hJ ~ TR 5 v(E)dg
1

o0 -1

~1
Again we note f_k v(E)dE + { v(€)dE = N_ but that Ik v{£)dE = O(2) so

that we finally write
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_ ©h
hy = w{atk). No.

o, i‘/_CCJ -
h ~ ‘\/i h

This éxpression is of some interest, illustraling Lthe constraint
on 9? CJ, c/h for our linear theory to hold; which is implied by
hJ/h< 1. Again it shows that at low heights a proper jet coefficient
is one based on height, not chord; or that the conditions of validity

of the theory are

i VT, <1
V2 h
P.IVJz
where C.I = T 5.
h  1pU“h

We continue along these lines, assuming blockage to occur
when il VE C,; = B, , where B is a constant of order 1, Defining
53 h ~J h h

Cji, as the pressure lift on the airfoil (at a = 0) we get
P

CL :(CL +CL )6

! W N
) 4 VG o 1
=B l—= & TCL = =
v W VCJ

=B JEJ.’}. i 4, Cly ;
hle dowm  yo
We observe that this theoretical expression approximately
predicts the observations ol Huggetlt in that it is independent of jet

angle 0 and only weakly dependent on CJ {for low CJ we have

Ci, /\/CJ = constant).
W
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The three different blockage predic_tioné are plotted in Fig.
13, It should be p'oint‘ed oﬁt that the actual 'tneaning' of blockage is
somewhat diﬁeréht in the three theories. For those of Huggett and
Williams Cy, should represent the maximum pressure lift carried
by the airfnﬂp: For the present paper, it corresponds to the Cy
at which (according to linear theory) there is no net flow under tI;e
airfdil. Thus for our case it represents, in some sense, an upper
limit of applicability of the linear approach, assuming that the
inviscid approach still applies, i.e., that there has been no nose
.or trailing edge separation.

The test points as reported by Huggett are shown on the
figure. These points are open to some latitude in determination
from the experiments because while the tests show a fairly distinct
point of departure of CLP from the linear curves there is subse-
quently a rather slow increase of C;, until C occurs. In

P Pmax
other words, in airfoil terminology the jet flap airfoil tested behaves
rather like a thin airfoil, showing an early divergence from the theo-
retical lift curve occurring substantially before CLmax° Thus we
infer blockage to have occurred when the airfoil reaches its maxi-
‘mum CLP instead of by direct measurement of mass flow. A better
test of the linear predictions might be obtained. by actually integrat-
ing the velocity profile beneath the airfoil to determine the blockage
point, It should also be noted that some means of removing the wall
boundary layer, for example, a moving ground plane, might be

~ expected to give different experimental blockage levels.

In view of these factors, associated primarily with viscous
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and nonlinear effects, no close correlation can be expected between
the variou.s. blockage theories and the test resul£s. In the rangc of
h/c between .5 éhd 1.5 all theories are of approximately the same
order of magnitude. It will be seen from Fig. 13 that, in spite of
its theoretical weaknesses that of Huggett appears the best. However
a better judgment could be made if more tests, particularly in the
high'range of h/c and CJ’ were available and if a more direct meas-
urement of blockage were made.

Fig. 14 shows the tests reported by Huggett plotted in com-
parison with the present theory. It must immediately be pointed
out that these tests were conducted at large jet angles (31. 4° and
58,1°) so that the linear theory cannot be expected to fit very closely.
In addition the potential effects of [inite thickness are not considered,
We note that in general a reasonable correlation is obtained, although
there is an unaccounted inconsistency in the fact that the results for
8 = 31.4° fall below linear theory while those for 8 = 58,1% are
somewhat above the predicted values. We note here that there are
two potential effects: that of finite thickness and that of non-linear
jet theory, which were not taken into account. It is possible that
these might regularize the situation. We note, by consideration of
the case of a simple flap, that the linear theory for this case over-
estimates the lift evaluated by exact techniques. For the thickness
case we note two effects qualitatively, the thickness itself causing
a negative lift at zero lift but increasing the lift curve slope,

A striking effect is the reduction in lift with reduction in

h/c in the tests and the opposite behavior in the theory. This is
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evidently due to the early .b_lockage. in the experiments at low h/c.
These experim ents slu_l).w negligible difference in lift with h/c¢ for
low CJ, while the theory indicates that this difference is indeed
small, When blockage commences the lower h/c values are affected
first, thus causing the apparent anomaly. Blockage valucs predicted
by linear theory With Bh =1 are shown on the 6 = 58.1° curve. It
will be recalled that Bh = 1 implies an upper limit of the onset of
blockage and is not expected to predict the actual blockage CL" It
will be seen from Fig. 14 that there is however fairly good corre-
lation,

Blockage limits for the case 6 = 31,4° do not define the
Cy, as clearly as in the first case, as may be seen by inspec-

Pmax

tion of the blockage curve Fig. 13. However they provide an upper
bound again so d not introduce inconsistencies, but merely indicate
that this bound is rather a crude one, In any case it may be said
that the experiments are not precise enough and the linear Lheovry
extended too far beyond its range to rationally pursue the discussion

in any further detail.
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VII. THICKNESS AND CAMBER CASES

A. CAMBER.

1. Basic Solution

We consider as the basic solution the case of a simple flap-
like discoﬁtinuity in v at X on the airfoil. The leading portion of the
airfoil is at a = 0 and there is zero jet angle relative to the trailing
edge, Thus we obtain boundary conditions in the ¢ plane as shown in
Fig. 16.

We observe that those conditions are identical to those for
the basic case, with the addition of the v distributions on the airfoil
itself.

For the right-hand side we obtain the induction

e1 | L€

TU(§) = 1og( +) + Fa

£-¢,
and define M(£) as TU(E),

Similarly for the left-hand side we define
i
E-a

£+1
£-¢;

M‘@)=wU@)=h%‘ +

. . + -
Then we define the term corresponding tou -~ u as

=+ -t = - -z -
Ni:M(gi)+M (gj) —M(gi) -M(£.) i=1.... N

Now we add this to the final set of linear equations developed
in ILK5, to give the new set
N

z (E. +F. )V. = '(E +F +N ) 1’1=1 LI ] N
in in 1 [9.X¥] on n
i=l
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The solution of this set yields the required Vi

9. Lift Coefficient

Asg before the lift coefficient contains the terms CL and
N
CL which are evaluated exactly as previously, We have an addi-
W

tional term C;, given by
C

1 11
T & _ £-a E-a
zh O = § gt ¢ § i ot
-1 -1 &,
> !
:S K(a,t)dtJrS K(a,t)dt
+
-1 gf

This is integrated, as shown in the Appendix where I{A, B} is defined
B PP

to give
T C _ - +

Thus for flap deflection 6f we have

3. General Camber Distribution

We assume a general camber shape to be made up of a series
of flap-like elements, Then wo take J elements and evaluatc tho lift

coefficient for each, where CL& represents the lift for a flap located
p

at xf = XP.

We now define the slope of each element as V::o' Vl:l . s o e

and obtain for the lift coefficient due to camber



fl

&
J-1
ot ! _ ol
Yeo ~L +Z (Yc(i-o) Yci) L6
1 1
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B. THICKNESS

1. Basic Solution

The thickness case is considered in the same spirit as the
camber, by approximating the airfoil by a trapezoidal shape, For
the basic thickness case we have boundary conditions similar to
camber except that the left-hand v distribution is of opposite sign
and the jet angle at the trailing edge zero.

Thus the addition u+—u- term becomes
# + - =t - - .
Ni_:M(-g—i) - M (Ei) - M(E-i)+M (E i) 1:1 o000 N

while Vo = 0 so that the linear set is

]

N

Z(E_ +F.)V.=—N. n=1|.ooN
in in 1

i=1

1

2. Lift Coeificient

This follows exactly the same development as the camber case

with the thickness term CL given by
t

£ 1
5 t (atk) th = f K(a,t)dt - i K(a,t)dt
-1 ét

integrated to give

I

T C - +
T " (atk) CI"t I{£ t? -1) - I(1, & t)

3. General Thickness Distribution

We assume the distribution to consist of a number of flat-sided
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elements and obtain a summation for the total thickness 1ift slope

exactly analogous to that for the camber, using the appropriate

values of CLt °
i
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C. GENERAL OBSERVATIONS ON THICKNES-S AND CAMBER

T‘hé effects of -thickne.ss and camber on a jet-flapped airfoil
are of great sigﬁificance technologically. In the first place, the con-
sequences of a finite thickness in a real airfoil must be considered,
especially as in ground effect the thickness contributes to lift, Next
we note that the camber distribution is an important means of con-
troliing the airfoil pitching moments, which are large for jet flap
airfoils and present serious stabilizing problems for actual design
arrangements,

Finally, the ability to vary the pressure distribution on Lhe
airfoil by means of these two effects provides one with a means of
reducing or eliminating some of the adverse effects caused by bound-
ary layer separation due to unfavorable pressure gradients. In
particular, the strong adverse gradients on the upper surface near
the leading edge due to the nose flow frequently cause a nose sepa-
ration, which is most readily controlled by large local leading edge
camber (nose droop), which can move the stagnation point to the
leading edge —-. in this analysis this would correspond fo eliminating
the nose source. Additional control may be achieved by variation of
the airfoil nose radius.

Of course, this analysis cannot directly handle the non-linear
problem associated with a finite nose radius; in addition the airfoil
pressure distribution evaluated here will have logarithmic peaks at
each discontinuity in slope. However, it iz relatively easy to develop
local perturbation solutions for the flow around a finite nose radius

and to 'smooth' the airfoil pressure distribution by similar methods:
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this would be essential for any boundary 1é.yer-ca1cu1ations. Evi-
dently, these are developmental techniques so are not discussed
here.

The numerical solution of the thickness and camber cases
was not carried out, principally bhecause of the relatively long com-
puter time required. The solution for any particular point would
not ¥equire more time than a point for the basic case, but for suf-
ficient generality one would require solutions for 'kinks' on at least
10 stations on the airfoil for both thickness and carﬁber which would
have increased the computer time by a factor of 15 to 20, In any
case the actual numerical solutions are not essential to this paper
whic'h. is concerned with the development of the general theory.

‘We note that asymptotic solutions, valid for C, < » 5, can

J
be derived from the standard ground effect solutions for simple
airfoils with thickness (Tani, Ref., 14), These are developed on

identical lines to those for the flat plate airfoil using the results

for G (h/c, t/c). Similarly one may derive results for Cy; 0
a C

from the ground effect solution for the simple flapped airfoil, which

will be directly related to our camber solutions,
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Viil. SUGGESTIONS FOR YURTHER WORK

A. Linear Inviscid Theory

The preésent paper, being an exact solution, effectively ex-
hausts any further analytical work within this framework. From
the engineering aspect it would be useful to compute some standard
cases for thickness and camber. It would also be worthwhile, using
the computed values of CL (CJ, G), to derive an approximate closed
functional form for CL inwterms of its parameters, This would be
valuable for optimizati:)Vn studies,

We have already shown how the solutions for small CJ can

be obtained by perturbing about the known solutions for C =0, It

J
would be instructive to construct a similar perturbation about the
known Spence solutions (G = 1) for the case of G near 1. The fact
that h/c = 3 corresponds to G = .95 suggests that such a perturbation
might be valid down to relatively low h/c. This might be conducted
on the following lines:

Assume v(f) = v(o)(g) + (1-G)v(1)(g) + 0 ((1-)?), where
v(o)(g) is the solution for G =1 and v(l)(g) is a function O(1}, We
note that at £ = 1, the flap-type singularity dominates, and we can

(

immediately write v 1)(1) = 0 and also obtain an asymptotic result

(1)
for d_g'é_ near O,

Now we note

o0
'n'2 G2 .
7 GLW =.(a,-1-k)‘gv K(a,t}v(t)dt
-0

with
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2 Q0
%Cfl =S 'j“imo {(a+K)K(a, 1)} v{®(t)at
- 00
Thus we have
v’ C -S?O +k)K gy + o
4+ Cp =\ @, t) tv(t) + 1-G) v () + a0 F dt
W
[+.s} o0
~S (a+k)K(a,t)v(0)(t)dt + {(1-G) ‘Y (a+k)K(a,t)v(1)(1:)dt

Now K{a,t) has logarithmic singularities at tz =1 and then decays
quite rapidly. Thus we might expect that, of the two integrals, the
former, having v(o)(l) = 1 will be much more significant than the
latter with V(l)(l) =0,

In this case we might approximate CL by
W

2 [+.9]
WT CLW N S (a+k)K(a,t) v (e) at
-0

which is a direct quadrature, using the Spence result for v(o)(t).

The significance of investigating approximations of this type,
when the exact solution is known, is that a direct check on accuracy
of the approximation is obtained, which is very wvaluable if the same

technique is applied to a more complex situation where the exact

solution cannot be determined,
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B, NON-LINEAR INVISCID THEORY

The non-linear case has not been solved, with or without
ground plane. It is important to obtain either an exact or second
order theory, particularly for the jet immediately behind the trail-
ing edge, The non-linearities in the jet position and its curvature,
and in the dynamic boundary condition are essential to the problem,
but the airfoil may still be taken as of zero thickness. The present
asolution could probably be used as a basic solution to initiate some

perturbation scheme,



~86-
C. VISCOUS RFFECTS

It is of great iﬁtereét to study the entrainment effects if the
jet wake is considered to be turbulent, A first order approach to
this would be to consider the linear potential solution developed in
this paper with some additional sink distribution inthe wake, If
this aistribution were known a priori, it could readily be added to
the computer program as the start of an iterative process. Whether
this is convergent is not known, although the above procedure has

been shown to be successful in the case of jet flow along rigid walls.
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APPENDIX

EVALUATION OF THE KERNEL INTEGRAL

We consider

B

_ a-t t-1 2

A B> A

We note that the integrand is logarithmically singular at +1.
At t = -k however, because of the relationship (atk)log -—-I-T = 2, the
+
integrand equals log k—_]i, We consider three different ranges of

integration; and as a preliminary standard form introduce the inte-

gral:
1 - . <
\g -E-lug (1~-1) dL = B}-(b) - Bl(d.) a, b <1
a
[= o]
where B z Itl <1
i
daB 1 = e
since (t)—-%-z Y =—10g (1-1t)
1

and BI(O) = 0, while Bl(l) = 112/6 = ‘:rzBl where Bl is the first

Bernoulli Numbel: .

Casel: A,B=1
B

1 t-1 9
(B, A) = S !l‘“k’fﬁl':’g (57) - log (F7) - w5 } &
A : :

For the first term we write, by changing the variable,



B+k
1 o kil 1 . k-1
I = S. {;log (1-——X )-E log (1 - == )}dx
Atk
B+l B+k
kti k-1
_ 1 1 1 1
= S ;{-log(l-gc-)dx— g ;log(l—-—;c-)dx
Atk Atk
k1 k-1

Then by inverting the argument of the integrand and applying

the standard integral we get:

k+1 ) - k+1

I =By Gxz) - B 438! - By @Fx) T By Bip!

The remaining two terms of the integral ave integrated by

elementary methods to give

k+1 _B k-1

) - By Gox) * By (B+k)} (atk)

1B,4) = {B; 5 - B, (5

~1 Ao
B log (571) + log (B%-1) + A log (573) - log (A%-1)

Btk
2 log (z7x)

Then, taking the various limits, we get
I(0,1) = (a+k){B1(1) B (k-l-l)}i 21 2log (kll) - 2 log 2

Case 2: 1< A, B 1

Defining Il similarly, except with the moduli of the logarith-

mic arguments we write
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Btk B+k
k+l k-1 : .
1 1
Atk _ Atk
KL k-1
Btk B+k B+k
T T T
=S‘ -1—10g ll-xldx-g l-log ledx-~‘g' -1-10g n-Liax
X = X X
Atk Atk Atk
AL k1 k-1
Now, definingS‘ i—log'x dx = Li(b) - Li(a) a,b>0

and using the standard integral, we get

I(B, A) = { LKD) LB B L 8y s S5
- B, (55)+ B (ﬁs)}(aﬂt) - B log |71 +log (B
+ A log 1551 -log (A%-1) - 2 log IDEE|
Then, taking the various limils, we get
KED 1f<+gf

11, £7) = (atk) {Bl(l) - B, (Eﬁ_f) - Li(l) + L (g0

%
s
-B, () + B (51 )}+210g2+§10g—-—~—
+2 fet
- log (€, -1) - 2 log |- |
eir1

Case 3: ~1 < A,B<1

Using an analysis similar to Case 2 we get

-1)
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gf'+k k+§£
{a‘J’k);Bl(_l?E“") (k+].) Li (k+1) Li (k_+1 )

I(gf’ "1.) =
f k-l g— 1
-B 1)+ B -c‘; log ‘w—-——l-!log(g -1)
1 1 k+§— f f
I f
-210g2-210g ]”k |
f
Case 4: -k €£A,B = -1
We write Il as
Btk
__ 1 k+1
Il—S. (Elog(lwk_’_l)- log(l- l)+ lgkl)dx
Atk
Btk Btk
k+1 k-1 B
_ 1 1 2 dx
—S‘ glog (1-X)dX-S. Elog (1 -x) dx + ") BIR)
Atk Atk A
kt1 k-1

Obéerving first that the last expression cancels the third

term of I{B,A) we get

I(B,A) = { =

k+ B L+ A k+B k+A
1" k1

V- B G - B G Y B

B-1 2 A-1 2
-Blog[B—Hl-log(B -1)+Alog|-ml-log(A - 1)
Then, taking the various limits, we get
k-1 :
I(-1, -k} = (a-l-k){Bl(m-) - Bl(l)} + 2 log 2

+ (k-1) log (k-1) - (ktl) log (k+1)



-92-

LIST OF FIGURES

Fig. 1 Jet Flap Geometry

Fig. 2 Linearized Sketqh in Real Plane
Fig. 3 .Z <= § Mapping

Fig., 4 Scaling of Transformation

Fig. 5 Basic Jet Angle Boundary Condition
Fig. 6 Force System on Airfoil

Fig, 7 Approximate V Function

Fig. 8 Exact and Computed Nose Source
Fig., 9 Generated V Curves (R.H.S.)
Fig. 10  Generated V Curves (L.H.S.)
Fig. 11 Wake Lift Component

Fig, 12 Lift Curves in Ground Effect
Fig. 13 Blockage Curve

Fig, 14  Lift Curves for Low h/c

Fig, 15  Lift Curves for Low CJ

Fig. 16  Boundary Conditions for Basic Camber Case



-93-

JET FLAP GEOMETRY

PRESSURE COEFFICIENT
-Cp

JET ANGLE

FREE STREAM

VELOCITY i
-

IS S

FIG. I



. -94-

LINEARI_ZED SKETCH IN REAL PLANE
SHOWING BOUNDARY CONDITIONS

Z PLANE
T \
R e U
AIRFOIL
LEADING EDGE /JET
X L amd
K
AT ®
h
Ty Z=x+iy
: GROUND PLANE
|
| A

X

FIG.2



-95-

Z<=>! MAPPING
| Z PLANE
B L
Attt I PP Pt e ol
- N N e e
A c K
YT K
PPPP 2727272727277 V72 7727777777777 7777577777
—————
X
L PLANE
n
-1 a +|
A L

FIG.3



-96-

SCALING OF TRANSFORMATION

{ PLANE
-k -1 o 10 +1
TITTTIT7A : < ~ e W
F—— 1 e
—= b L‘—-
IC F
.O
7
ol
0.0l
Q.00 L
0.000I1 |
0.0000I
o

FIG. 4



~G7-

BASIC JET ANGLE BOUNDARY CONDITIONS

) T %-O(mq(a-n)
o /1 A
log& +)> * Ty [ v
i _ : . '.:..".f._ _l_
el et a l 1 0(63
- +1
v BOUNDARY
: CONDITION
NOSE DELTA
FUNCTION
N oliog(1-£))
ol 3! &)
£ £

u BOUNDARY
CONDITION

log(& +k)

oz

FIG.5



~98-

FORCE SYSTEM ON AIRFOIL

FIG.6



-99.

APPROXIMATE V FUNCTION

TRAPEZOIDAL

POLYNOMIAL

e en gm»l En-&-l

ELEMENTARY TRAPEZOIDAL
DRISTRIBUTION

FIG. 7



-100-

EXACT AND COMPUTED NOSE SOURCE

‘ |
3.0 =

FIG.8



-101-

GENERATED V CURVES (R.H.S)

Asymptotic




. -102-

GENERATED V CURVES (L.H.S.)
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