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ABSTRACT

An analysis is presented of perfectly-conducting cylindriecsasl
gtructures completely filled with cold, anisotropic plasmas. Major,
but not exclusive, consideration is directed to the circular wave-
gulide containing a lossless, longitudinally magnetized plasma. The
modes are generally a mixture of TE and ™ fields with the result
that the conventional orthogonality relations must be replaced by
appropriate generallzations. The orthogonality relations are used
to determine the fields excited in a longitudinally magnetized
plasmaguide®by a coaxial current loop. At cut-off, resonance, and
at limiting values of the system's pardmeters, the modes reduce to
simple TE or T™™ waves. The field configuration and dispersion are
examined at these limiting conditions as well as at intermediate
values of the parameters. Numerical results are provided for the

cut-off frequencies and dispersion relation.

*Plasmaguide is the generic name glven to any metallic waveguide
containing an anisotropic plasma. In this manusecript it will
refer tc the longitudinally-magnetized, plasma-filled waveguide.
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INTRODUCTION

Plane waves in anisotropic plasmas of infinite extent have been
treated exhaustively, but until now the bounded plasma has been studied
only under very restricted conditions in domains that hardly overlap.
The most common apbroximations usually concern the signal frequency,
the plasma density and the applied magnetic field strength. Other
assumptions involve the wave veloclty, the field configuration, the
relative magnitudes of the displacement snd conduction currents, or the
neglect of the electron to lon mass ratio.

The following menuscript presents a systematlc account of wave
excitation and propagation within perfectly conducting cylindrical
waveguides containing anisotropic plasmas. The circular waveguide
homogeneously filled with a longitudinally magnetized plasma is
emphasized, bubt often more general results are gilven. The plasma is
idealized as a cold, collisionless, electrically neutral gas consisting
of electrons and a single species of ions. By neglecting the finite
temperature of the plasma and the collision mechanism, lon-acoustic
waves and dissipation losses are excluded from the theory. The plasma
sheath formed at the wavegulide wall and the effect of Landau damping
are théreby also omitted.

The techniques developed by Kales (1), Suhl and Walker (2),

Gamo (3), Van Trier (4), and Epstein (5), for investigating wave
propagation in ferrites are employed in Chapt;r II, to solve Maxwell's
equations in anisotropic plasmas. As in an ordinary waveguide, the

transverse fields are derived from the longitudinal field components.



Now, however, the longitudinal electric and magnetic field components
are coupled, and the variety of geometries which support separable
wave solutions is substantially reduced. A careful investigation of
the conditions leading to scparable solutlone indicatee errore in
two well-known papers (6,7).

Various limiting situations for which the waves divide into TE
and T™M modes are studied and compared in Chapter IV to the existing
literature. For example, the validity of Trivelpiece's guasi-static
approach (8) is determined, and the theory of guided MHD waves
developed by Newcomb (9), Gajewski (10), Gould (11), Schmoys and
Mishkin (12), is verified and extended. In another case the presence
of an infinite magnetostatic field reduces the coupled waveguide
modes to the famlllar space-~charge waves of mlcrowave tube deslgn.
Finally, the fields of the lowest angular dependent modes are shown
to approach plane waves &s the wavegulde radius is made infinite.

Numerical results are presented in Chapters III and V for
various experimental observables such as the cut-off frequencies,
resonance, and wave dispersion. These results are computed as
functions of the waveguide radius, magnetostatic field strength and
plasma density.' Under suitable conditions the dispersion near plasma
resonance may involve backward or even complex waves. The backward
wave, first discussed by Trivelpiece and Gould (13), has oppositely
directed phase and group velécities. The complex wave, whose
existence was predicted by Chorney (14), has a propagation constant

which 1s complex even in the absence of losses.
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In the final chapter, several orthogonality relations are
derived and then used to study wavegulde excitation and power flow.
The technique for determining the fields excited by a current source
in an isotropic waveguide are well-known, however the same'problem
in a bounded anisotropic dielectric has not been solved until now.
Formulas are obtalned for evaluating the mode amplltudes excited by
a coaxial current loop within the longitudinally-magnetized, plasma-
fllled circular waveguide. The loop is of arbitrary size and the
plasma may bhe dissipative.

To recapitulate, this manuscript presents for the first time a
systematic analysis of plasmaguide propagation that is valid over the
entire frequency spectrum. As such, many of the existing purtial
theories are combined within the framevork of a simple anisotropilc
dielectric description of the plasma. Much of the published literature
consists of special limiting cases of our analysis. Walker's
orthogonality relations (31), which were later extended by Bressler
et al.(32) to include dissipative plasmas, are rederived here by a
different scheme. When these relations are interpreted in terms of
povwer flow, Chorney's results (1k) are recovered. However, perhaps the
most important contribution presented in this study is the technique by
which the orthogonality relations are used to determine the plasmaguide

fields excited by a given current source.



CHAPTER I. FUNDAMENTAL PRINCIPLES

The Physical Plasma Model

The dynamics of the plasma are complicated by the statistical
nature of the interactions that each particle experiences. By
restricting the analysis to an averaged or macroscopic description,
the basic wave phenomenon is brought to the foreground. The
macroscopic equations of motion, the so-called transfer equations of
kinetic theory, are obtained as the momente (15,18) of a particle
conservation law in phase space. The Boltzmann equation is the simpl-
est statement of this law.

The plamma to be considered will consist of electrons and ions
of a single species. The generalization to more than one lon species
is straightforward but will not be considered in thils text. On the
whole, the medium is electrically neutral. It is further assumed that
the particles are interpenetrable and that the only forces exerted on
the particles are through the electric and magnetic fields. The
presence of a neutral constituent is irrelevant when collisions are
neglected. The thermal velocities which appear superimposed upon the
collective motion of the plasma are alsoc ignored.

A Boltzmann equation exists for each type of charge carrier

present in the plasma. If one introduces the definiltions

p =ngqy - nge and J =nqv, -ne (z-1)

v
- i-i e —e

the "zeroth" moment of each Boltzmann equation may be combined to give

the continuity relation
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dp
V+Jd+ = 0 -
I+ % (1-2)

Jd,p, and n are respectively the averaged current, charge and number
densities at a point and time t for particles of charge w
and -e . Ei(ﬁ’t) and Xe(f’t) are the average velocities with
whieh the ions and electrons pass through r at the instant ¢t .
Because the continuity equation I-2 is already contained in Maxwell's

version of Ampere's and Gauss' laws:

VxH= J+5 and VD = p (1-3)

it need not appear in the explicit formulation of the plasma equations.

The first moment of the Boltzmann equation leads to a Newtonian

equation of motion modified by a pressure and a collision term

be)
nm (s +v -y = nF -V vB -

A similar equation exists for the electrons. The significance of the
assumptions defining the plasma behavior now becomes evident. The pres-
sure tensor li is a measure of the random deviations of the particle
velocities from the organized motion. When the thermal motion 1is neg-
lected, .li vanishes. gie is the momentum transferred per unit time
and volume from the ions to the electrons by collisions. The assumed
interpenetrability of particles eliminates this force. This leaves only

the Lorentz force

F, =q(E+y xB) .
Hence the equation which will describe the ion motion is

mi(gf +V, VY= (B4 x B) . (I-4)



The analogous expression for electrons is obtained by replacing the

ion mass mi by me ; the charge by -e , and the velocity Zi

4
by Xe .

The nonlinear nature of equations I-1l and I-4 accounts for the
dearth of exact solutions and the multipliclty of approximations.
Thus a final and very essentlal assumpiion regarding the magnitude of
the wave disturbance must be presented. The postulate known as the
"small signal approximation” implies such slight perturbations from
an otherwise steady condition that second-order product terms are neg-
ligible. In this fashion equetions I-1 and I-4 are linearized and the
princlple of superposition becomes applicable. If fhc perturbations
are then Fourier analyzed, each harmonic component will separately

satisfy the linearized set of equations.

To comply with this assumption, let

E(r,t) = E () + Ey(z,%)
B(z,t) = B_(x) + B (z,%)
n(r,t) = nc(;_) + 0, (x,t)
w(z,e) = v (2) + vy(z,%)
I(r,t) = I (x) +£l(:,,t) .

The zero subscripts denote the steady or d.c. components of the field
and plasma variables, while the subscript 1 refers to small time-

dependent perturbations from these averages. Accordingly, equations



I-1 and I-4 are decomposed into a self-consistent set of static and

small-signal equations:

g0 - qiniO’Y'lo - © neo’Y‘eo (I-5a)

3y =gy, vy ) -eln v, +0v ) (I-5b)
« % = -

mi(zio )Eio ql(Eo + zio £ Eo) (1-6a)

mi[(’a'i - Yy Vit Gy v)y‘lo] = q, B+ v, xB + ¥, xB) (I-6b)

The resultant staﬁic electric field within the plasma is zero,
since the induced field set up by the free charge cancels the applied
electric field. Tn the problem about to be considered, the plasma 1s at
rest and the drift velocities Yio and Xeo , together with the direct
current go , are therefore zero. As a result the static equations I-b5a

and I-6a vanish, whereas equations I-5b and I-6b reduce to

31 % YPioYin T € Begter (I-7)

avil

mo5em = 4By tyy xB) (1-6)

The analogous equation of motion for the electron is

ov

—el
mé.—sz— = - e(g:_l + Vo X go) . (1-9)
Although highly restrictive, the small signal assumption is of great
importance, for it exhibits the basic wave behavior. Within ifs limi-

tations, one can consider a variety of situations distinguished by

diverse stationary conditions. The static equations retain the
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nonlinearity of the original equations so that in general the assort-
ment of rigorous static solutions is meager. In our particular problem

the statlc equations conveniently vanish.

Derivation of the Conductivlity and Permittivity Tensors

The conductivity of the plasma is governed by the motion of the
t
charges through the applied field. If the stimulus has an e'juJ time
dependence the steady-state response of the linearized system must also

be sinusoidal. The equations of motion, I-8 and I-9, are therefore

jom;v, = qi(gs_ + ¥y X go) (I-10a)
Juom v = -e(E + Vo ¥ Eo) . (1I-10b)

Since all the plasma and fleld varlables except 3, are time-dependent
the subscript 1 has been deleted. By solving equations I-10 for the
velocities and substituting the result into I-7, a tensorial current-

fleld relution 1is ovbtained.

o o +Jo, 0 Er
JO = -JUE Ul 0 Eg
J, o] 0 a, E, (1-11)
with
2
o = ja)go 35 * 3 5 (I-12a)
W - m, = o
e i
ﬂi ®e Q? ®y
0'2 = jm GO ) ) ) > (I'lgb)
o(w, - ©) w(wi - »°)
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a2 + o2
03 = = Jweo — 5 . (I-12¢)

w

The z axis is slong the direction of the magnetostatic field Eo .

dl and 53 are the conductivities perpendicular and parallel to

eBg
the magnetostatic field and 95 is the Hall conductivity. W, =7
4B e
and w, = ; © are thg electron and ion cyclotron frequencies,
1 n, e 1/2 n, % 1/2
whereas Q, - ;: e ) and Qg = (—-vlji(—;:—e—oi) / are the corres-

ponding plasma frequencles.

The fields are determined in a self-consistent manner by
solving equations I-11 and I-12 simulbaneously with Maxwell's equa-
tlons:

VXE

[}

- Jop K (I-13)

VxH

I+ Jwe E . (T-14)

For convenlence the convection and displacement currents are combined

as one term by writing

a
I+ Jwe B = 3"’(5‘5 +€ 1) E=joc - E= Jud (1-15)
so that
VxH= Jjowe °E . (I-16)

D 0 0 E E (1-17)
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with
2@
Gl = €O 1 + 5 > + 5 > (I—l8a>
»n - o, -
e i
2 a2
e = ¢ ne e 9i ] 8
2 o (2_w2)’ (e_m) (I-18b)
wlo, Wy
ni + 8
€3 = €Q l - 032 L) (I"lBC)

Properties of the Dielectric Tensor and Its Relation to Plane Waves

The permittivity tensor of equation I-17 exhiblts the following

symmetries with respect to the magnetostatic fleld:
= ¢(-B -
e(+8) = E(-B) (1-19)

and

- *
€ = &y . (I~20)

Equation I-2g, descrilibing the Hermitian character of €, follows
directly from the conservation of energy (Poynting's theorem) in a
dissipatlionless plasma. However, while equation I-20 applies only to
a lossless plasma, Landau and Lifshitz (17,18) show that equation I-19
remgins valid even 1f the medium is dissipative. The tllde above the
permittivity tensor indicates that reversing the magnetic fleld trans-
poses the matrix representation of € . The subscripts 1,k designate
the positipn of an element in the matrix, and the asterisk implies
complex conjugation. The elements of the lossless permittivity tensor

are real along the main diagonal, while the elements symmetrically

disposed to the diagonal are complex conjugates.
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Combining equations I-19 and I-20 one concludes that in a loss-

less plasma

Re eik(+ go) = Re ¢ (+§0) = Re eik(-go) (1-21)
Im eik(+ go) = - Im eki(+ B)=-~-1Imc¢ k(- B) . (1-22)

The real part of € 1s a symmetric tensor and an even function of the

magnetic field. The imaginary part of € 1s an antisymmetric tensor
and an odd functlon of BO ,

Certain fundamental characteristics of the magneto-ionic plasma
end the anisotropy of ¢ are illustrated by plane wave propagation. For
this class of waves each field component contains the factor
ej(mt~—§-£)_ r is the radius vector from the origin to a polnt in
the field, and B 1s the propagation vector which determines the

direction and phase of the wave. Maxwell's equations I-13 and I-16 for

& plane monochromatic wave are simply

| (I-23)

[hed]
»
1=
i
=
=

™
"

[f=
il
1
€
o
il
13
€

. E . (I'rgll-)

1
Hm

The scalar product of B with equation I-23 shows B to be perpendi-
cular to H ,while equation I-24 guarantees that D, H and B form a
mutually orthogonal group. E 1is confined to lie in the plane deter-
mined by E_ and D .

If H is eliminated between equations I-23 and I-24 then

D=5 —[Bx(@xB)] =3 [FE-BE B = ¢ &
CHT ® Wy -
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H.B

Flgure I-1. The Component Vectors of a Plane Wave

This expression can be restated in the form

2

[ouc+BB-BL E =0 . (1-25)

For the electric fleld not identically zero, it is necessary that

2 2
det[m MoE +BB-~8 -_J_._] = 0 . (1-286)

This determinant relates the propagation wvector B to the existing

frequency . Consequently it is a statement of the wave dispersion.
Without loss of generality, a Cartesian reference system is

introduced which places _B_ in the yz coordinate planc at on angle

¢ with respect to the z axis.
B = B(sin g g, t+ cos ) Ez) . (1-27)

Substituting I-27 for B and equation I-17 for the elements of ¢

leads, upon expansion of I-26, to the customary Fresnel equation
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2 2 2 2
tan2¢ _ _63 [5 - W uo(el_ 62)] [ﬁ - m U-O(El"' 62)] ‘ (1"98)

2 2 2
[8%- 0 uges] (€85 o (e- €B)]

For propagation at a specified angle ¢ with respect to the magnetic
field, this is a quadratic equation for ﬁz with real coefficients.
Hence the magnitude of B assumes either of two values for each direc-
tion of wave transmission.

If the plane wave propagates parallel to the magnetostatic flux,

then ¢ = 0 and the disperesion relatione arc simply

€ =0 or w=/0 +Q7 = Q (1-29a)

and
2 2

B:t = |lo(€l + 62) . (T-29b)
Equation I-29a corresponds to an electrostatic oscillation of the plasma
vhich has, by equation I-25, E parallel to Eo and B ; and as a
result of equation I-23 has H equal to zero. Equation I-29a leaves
g indeterminate. Consequently the group velocity dm/dB = 0 and the
field remains local to the disturbance.

The wave polarizations associated with the factors of I-29b are

determined with ease. Substituting via I-17 for € and setting

B = wgpo(el + e;; e, » glves as the x component of I-25:
2
® My [elEX+ j€2Ey = (€l x GQ)EX] = 0 2

or simply, Ey =+ JE,
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The compatibility determinant I-26 requires the y component also to

reduce to the same result. However, the z component 6f I-25

2
® uO€3EZ = 0

demands in general that Ez =0 . Table I-1 summarizes the plane wave

behavior for propagation along the magnetostatic field, (B Afgo,V e,) -

Propagation Vector Electric Field Wave Polarization

Bi = m2u0(61+ 62) E = -JE E =0 Right circular polarized
TEM plane wave.

2 2 .
B =w u (e, - €,) = +JE E =0 Left circular polarized
- o' 1 2 By x z TEM plane wave

B indeterminate, E=-FE=0 E 40 Longitudinal electro-
®=0 X Ty z gstatic oscillation of the
P fleld

Table I-1l. Plane Wave Behavior for Propagation along §O

The simplicity of these dispersion relations suggests a review of
Figure I-1 along with equations I-17, I-23 and I-24. Notice that a plane
wave propagating along Bo having Ez =0 , or else EX = Ey = 0 , has

the electric vector parallel to the dielectric displacement. Three elec-

tric vectors that satisfy this requirement have the directions

E, = ﬁQ(gX + Jeg)
R

of the right and left circularly polarized plane waves and the
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longitudinal electrostatic field. The corresponding displacement

vectors, by equation I-17 are

D = (&) E
D, = (¢ - &) E,
D = € E .
=3 33

In other words, El’ EE and §3 are the eigenvectors of the permit-
tivity tensor; (el + 62), (el - €2) and €3 are its elgenvalues. In
the coordinate systmm defined by the two counter-rotating basis vec-

tors g; = (Ex - ng), &, = (Ex + ng) and the fixed basis vector

e, =8, the permittivity tensor is disgonal.

=3
A \ A
Dy (e1+ &) 0 0 By
~ A
D, = 0 (el- e2) 0 E,
D 0 0 £
€
3 3 3

These preferred directions for which E and D are parallel, are

known in crystal optics as the principal dielectric axes.

For reference purposes Figure I-2 summarizes the limiting forms
of plane wave propagation parallel and perpendicular to the magneto-
static field of an anisotropic plasma. Frames a and b refér to
propagation along the magnetostatic field Eo . PFrames ¢ and 4 cor-

respond to plane wave propagation normal to this preferred direction.

T
wien, 4o in Pramc

in framc a or ¢, the cleotr

2
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e L X
Ex I
1
LE+B . B
% Ey-iE, — z
B8, y B,
Y y
a) Longitudinal plasna oscille- b) Circularly polerized traasverse
tlon €3=0 1.e. e, :
’1F—‘i“_‘71 ’ N e R (e ney)
D o= 92 . 92 = 0 o Q 1 o4
e i P '
L X | X
EX

-E
o L — Z
;//// - ,/// -
e o
Y Y
¢) Linearly polarized itransverse d) Blliptieally polerized hysria
wayv WL
© 2 2 ve 2 2
Pr=w,®y 2 2 17 %2
R N O

Figure I-2. Limiting forums of plane wuve propagation
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magnetostatic bias B_ the latter has no effect on the wave; the

dielectric permittivity behaves as the simple scalar

9° + Qf
e=e=€o(l-—_.e__2__) .

3 ®
Note that the relatlve dielectric constant e/eO is always less than
one; for most materials the dielectric constant exceeds unity. Since
the phase velocity 1s 1lnversely proportional to the square root ol
the dielectric constant, the waves of frame c exceed the speed of
light and are known as "fast waves". On the other hand, the longi-
tudinal waves of frame a have a dispersion relation w = QP which is
independent of the wave number B . Iongitudinal waves therefore
have zero group velocity (%%’: 0), whereas thelr phase velocity (w/B)
is completely arbitrary. One concludes that the longitudinal waves
are stationary natural oscillations of the medium at the plasma fre-
guency. When the applied frequency of the linearly polarized trans-
verse wave, frame ¢, equals Qp , 1t too assumes the characterlstics
of the longitudinal wave. Further examination reveals that the medium
will not support transverse waves below the plasma frequency where 63
is negative.

Frames b an& d are more complicated forms of plane wave propaga-
tion. In each case an electric field EX normal to both the direction
of prdpagation B and the magnetization Eo is coupled by.means of a
conduction current dJ +to an electric field in the y direction. The
coupling orlginates when the plasma current Jx induced by field com-
ponent E_ 1is diverted by the magnetostatic force (gx x §o) into

the y direction. This nevw current component produces an electric field

Ey which is in phase quadrature with Ey .
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1T, as in frame b, p and §0 are parallel, then Ey is
transverse and two oppositely-polarized circular plane waves result.
Because these waves have different propagation constants, a linearly
polarized plane wave experiences Paradey rotation.

When £ and §o are perpendicular, Ey lies parallel to B
as in frame d. The electric field now has both a transverse and a
longitudinal component (2, E and B still remain mutually orthogo-
nal) hence it i1s called a "hybrid wave". When EO = 0 , the coupling
between the transverse wave and the longitudinal wave is removed and
one recovers the linearly polarized transverse wave of frame c and the
longitudinal oscillations of frame a.

The presence of the static magnetic field in frames b and d
extends the region of propagation down to zero frequency. At the very
lowast fregquencies thege waves reduce to the familiar Alfvén waves of
magnetohydrodynamic theory, for as €2A~O 2 B+ becomes equal to B .

The two oppositely-polarized circular waves combine to form a single

linearly polarized plane wave free of Faraday rotation.
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CHAPTER IT. THE WAVEGUIDE FORMULATION

Maxwell's Equations in a Cylindrical Geometry

This chapter establishes the conditions and relations for guided
propagation in a gyroelectrlc medium described by equation I-17 and
bounded by a longitudinally invariant, perfectly conducting wall. For
the moment the waveguide cross-section is arbitrary, but eventually
the results are specialized to a circular cylindric geometry. In every
case the magnetostatic field is applled parallel to the wavegulde axis.

The source-free modes of an infinite, longitudinally invariant
waveguide are orthogonal (c.f., Chapter VI) and so provide a basis for
expanding any source-induced field. The longitudinal invariance of the
gulde also insures that the axial and transverse dependence of a mode
are separabie. For an e-hz axial dependence, h =Q + jp , Maxwell's

eguations I-13 and I-16 become:

1
Et = quo [(EZ x V_b EZ) + h(EZ x _E__t)] (II-1a)
E - =X (v, xE) (II-1b)
2 Jop o BTTY 7z
[e]
. _ N ]
jwe -E-t+w€2(2z X Et) (gz x VtHZ) (Ez x gt) (1T-2a)
E = 1 (v P H) - a (II-Q’b)

The transverse part of the field is denoted by the subscript t . The
two-dimensional gradient operator is V, = v - (-h)gZ . Before

proceeding to simplify the above equations it will prove convenient to
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list certain sets of parameters that repeatedly appear. Ilet

2 2
T, = -(h"+ w p,OEl) and T, =@ uoe2 (IT-3)
also define
-3h - jh
o dh vy b_muorg . by,
2 _ .2 7 2 _ 2" S22 7
LT LAY 17 7%
- 2 € €
®H Ty hw e _oleyy +ery)
d. - 3 f b s g - .
2 _ T2 2 o 2 2
17 T2 T, - Y5 172
(IT-4)
The coefficients satisfy the following identisbles:
ab + cd =0 and fd - ac =0 (11-5)

To continue the derivation, multiply equation II-la vectorially by

e, and expand the resulting triple vector products.

-1
H) =-
=t Jou,

X

(

(V,E, +hE) .

2z =

Next, substitute this expression into II-2a and obtain

- JTIEt * Yé(E% * Et) - _(Duo(gz * vfﬂz) - Jb vaz ) (I1-6)

The vector product of gz with II-6 in turn leads to

- ToE, - jTl(-e-z x Et) =a)uOV_bHZ - Jh(EZ X VtEZ) . (TI-7)
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Multiplying equation IT-6 by Jrv

1 and adding ‘Té times equation II-7

yields

= jaVE + bV ' v . I-
E = JaVE, A c(gz x VtEZ) + jd(_c_a_z X tHz) (12-8)

The insertion of II-8 into equation II-la immediately provides

B = .fV%EZ + gaﬁ]tHZ + Jg(gz x V%EZ) + c(_e_Z X VkHZ) . (IT~9)

Equations II-8 and II-9 define the transverse fields in terms of the
longitudinal fields. Equations II-1b and II-Zb express the longitudi-
nal fields in terms of the transverse fields. To treat the transverse
vectors as fundamental (19) has purely formal merit; certainly from a
practical standpoint the scalar longitudinal fields are more wieldy.
The equatlons satisfied by the longitudinal fields are derived next.
Substituting equation II-8 into equation II-1b and using a

number of well-known vector ldentities, gives

2 2 :
¢cV,E +JdV.EH +JepH = 0 . (IT~10)

-In a slmilar way, the substitution of equation II-9 into II-Zb yields

2 2 .
cV HZ + ngt Ez - jwe

A 3Ez = 0 . (IT-11)

These differential equations couple EZ to HZ 3 1f either longitudinal
fleld is zero, the other also ﬁanishes. Under certain limiting condi-
tions discussed in Chapters ITIL and IV, the coupling coefficient ¢
vanishes and EZ becomes lndependent of HZ + Except for such situa-

tions, the TE or TM description of a mode is not applicable.
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As with any system of equations, there are several methods (1,2,
3,4,5) by which a solution may be attained. For example, by eliminating
either longitudinal field between relations IT~10 and IT-11 one finds
that Ez and Hz satisfy the same fourth order partial differentisl
equation.

2 H
5 B g - de 5 wu €
{Fv%) ol 23 Ve T —0 3 = 0 . (II-12)

gd + c2 gd + c2 Ez

Since EZ and HZ exhibit the same spatial behavior, take HZ = ¢ and
Ez =710 T is an admittance function which is independent of the coor-

dinates and time.

Bquation II-12 can be factored into:

(vﬁ + Ti)(vf + Ti)@ = 0 . (IT1-13)

Designating the two solutions of this equation by @l and @2

Hz = @l + @2 (IT-1ka)

E =T¢ + T

. 1% 25 . (IT-14b)

Comparing II-12 with IT-13 it is evident that T and T2 are the two

1

roots of

b g - de
TLL - a)(-fl——————i

gd + c2

o €
e . ( o 32) -0 . (1I-15)
gd + ¢

Substituting for c, d and g from IT-4 , we obtain

T2

o 2 2 2 2 2 2 2 ] B
[Ti S ] - [yi -+ T+ b (y+ )| = 0 (II-16)
® o€y
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and a factor (yf - yg) . Equatione II-8 and II-9 suggest that if
(ri - Yg) =0, then E, and H must vanish for E  and H  to
remain finite. Such TEM fields cannot exist within a waveguide whose
cross-section is simply connected unless 62 = 0 and the longitudinal
conductivity is infinite (e.g., Alfvén waves near = 0)

To determine how 7 and T are related, substitute HZ = ,

EZ= T7® in the coupled wave equations, and by equation II-13 replace

v% by -T° . Equation II-10 yields

O
o d
T = 3(“"'2 - _C.) (IT-17a)
cT

while equation II-11 gives

oo —d (1I-17b)

The equivalence of I-17a and II-17b is demonstrated at once by equating

these two expressions and obtaining as a result equation II-15.

Boundary Conditions and Separable Wavegulide Solutions

The pertinent relations for a longitudinally magnetized plasma-
guide of arbitrary cross section have been established in the last éec-
tion. In particular, the set of coupled equations for the longitudinal
fields have been replaced by a pair of two-dimensional Helmholtz equa-

tions
2 .
vet cbi + Ti @i =0 , i=1,2 . (1T-18)

The first step is to find all possible solutions to this equation; the

second step is to choose from among these solutions the particular
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combinations that satisfy the boundary conditions. The boundary con-
ditions are that the tangential electric field and the normal
magnetic vector vanish at the conducting waveguide wall. In terms of
® +this means, according to equations II-lka,b, II-8 and II-9, that

on the waveguide surface

. = 0 (I1-192)

-
1% 7 1%

2
j?;]_ {(CTi + jd)(x_x_-v_b@i) + (jaTi+ ©) (n £V, 2 ) " S-z} = 0

(ITI-19b)

l..h
&I“ﬂm

{(f-ri + ja) (E'th’i) - (jg'ri+ c)(ngt<1>i) . _e_Z} = 0

(TI-19c)

n is the unit vector normal to each element of wavegulide surface and

orthogdnal to e, - From Mexwell's equation
Vx_}_-}_=-aa)p.0§

it may be verified that equation IT-19c¢ is a consequence of II-19a and
II-19b, and not an independent condition.

A standard method for solving the Helmholtz equation is the
separation of varlables technique. The separation is different for
each coordinate system and the number of coordinate systems in which
separation can be accomplished is limited. The two-dimensional Helm~
holtz equation II-18 is separable in only four coordinate systems (20):

rectangular, polar, elliptic and parabolic. Boundary conditions II-19

regtrict the number of applicable systems still further.
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let uw and v De the orthogonal curvilinear coordinates appro-
priate to any one of these four separable systems. ITf zu and zv

are the corresponding metric coefficients, the element of length is

ds = M/%ﬂuéu)e + (zvdv)z‘ (1T-20)

and the gradient and Laplacian operators are respectively

1 9 1 93
T ST T TS T o (I1-21a)
u v
e__1 [3 & _a_ﬂu_a_} i
Vg T L2 [Bu A au) T (T Bv) ) (11-230)
w v u v

The separated solutions to the Helmholtz equation are then of the

variety

@i(u,v) = U, (u) Vi(v) , i1=12 .

For the boundary conditioncs te take thelr simplest forms, and for the
separation technique to be practical, it is necessary to have each
segment of wavegulde wsll congruous to a coordinate surface. If such
& segument coincides with the coordinate surface u = ub then, as
will be shown, the only function Vi(v) which satisfies the boundary

requirements at U is an exponential, viz.

Vl(v) = V2(V) = &Y (T1-22)

vhere K is independent of u,v and index i .
At the wavegulde wall corresponding to the coordinate surface

u , n equals e, and houndary conditions II-19a,b become
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TlUl(uO) Vl(V) + 72 U2(u0) V2(V) = 0 (11—233)
av, (u ) . av. (v)
: 1 i ) 1
12;1 {tCTi+ Jd)jza . ——35;9_.vi(v)+~(JaTi+ b) U, (u) 2; . ;V } -0.
(11-23b)

The left side of equation II-23s cannot vanish for all values of v

unless
(a) Ul(ub) = UE(ub) = 0 , orelse

(b) v, and V2 are proportional, i.e., Vl(v) = pV2(v) ,
and TiUl(ub) +p T2U2(ub) = 0 . The proportionality

factor p 18 independent of the coordinates u and v .

If, as in the first case Ul(ub) = Ue(“b) = 0 , then equation II-23b

reduces to

aUl(u'o) 0
(CTl+ ja) -—EE;—— Vl(v) + [(CT2+ jd) -Eﬁi:—-} V2(V) = 0
This relation cannot be fulfilled at every point unlesg ———— =

av,(u,)

5 = 0 . By means of the Helmholtz equation II-18 and its suc-
o]

cessive derivatives, it follows that every derivative of Ul(ub) and
U2(ub) vanlshes. As a result of Taylor's theorem, the functions
Ul(u) and, Ue(u) are identically zero, not only on the surface u = u_,

but everywhere. Therefore assumption (a) leads to non-existent fields.

On the other hand, if Vl = pVQ , equations IT-23 become:
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TiUl(ub) + pTgUg(ub) = 0 (II-24a)
au. (u ) du_(u_)
[(CT1+ Ja) —5=2= + pler,+ 34) -gail-] > v
O e} k3 1
110
+ [(jaTl+ b) Ul(ub) + p(3a72+ b)UE(ub)J é; %% =
¥ g (II-24b)

Equation IT-24b cannot be satisfied for all v on the surface u

unless
Z
av v _
& - f7 oo (12-25)
U.uo

where for any given physical condition

au, (u ) v, (u )7
kc71+ 3a) ——%agg- + p(c72+ jd) ——gagg-}

K =

(I1-28)
Bja11+ b) Ul(uo) + p(ja¢2+ b) Uz(ub)}

is a complex constant independent of v . 3By replacing the metric
coefficient la/fh with ifts functlon behavior and integrating equation
II-25 in each of the four separable coordinate frames, the functions
v{v) listed in‘Table II-1 are generated. These functions are compared
to the solutions obtained by separating variables in the Helmholtz
equation. When, for a given geometry, the functions obtained

by the two methods match, the boundary conditions cean be satisfiled

by separated wave solutions. Table II-1 shows that when the
conductors occupy any of the radial coordinate surfaces of a polar

cylindrical frame, or any of the parallel coordinate planes of

a rectangular system, separated wave solu:ions can be found.
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Furthermore, the functional behavior along any direction parallel to
the conductor must always be exponential. Thus only those configura-
tions 1llustrated in Flgure II-1 and thelr degenerations support

separated waves.

exponential

/ /Eo/éhz
el

exponential

Sinusoidal Bessel function

Figure II-1l. Geometrles for which separable wave solutions can be
found, and the behavior of the separated functions in

these systems.

Unlike the parallel plate transmission line, the fields of fhe
rectangular wavegulde require a sinusoidal behavior in each transverse
Airection ln vrder that EZ may vanish.on opposing pairs of conducting
walls. However, this requirement conflicts with boundary condition
II-19b, or equivalently II-25, which demands exponential functions of

both x and y . Consequently the longitudinally magnetized rcctangu-

lar waveguide does not support separated waves. In a similar manner,

the angular periodicity of the circular wavegulde requires behaviors

+ jn@
of the type e‘j " with n an integer. In contrast to the exponen-

tial, the frigonometric functions cos ne and sin ne do not satisfy
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the boundary condltions. Physically, the magnetostatic field removes

the degeneracy associated with the positive and negative exponents of
the transverse function. The waves corresponding to these exponents
have different transverse field configurations and different longi-
tudinal propagation factors.

Unaware of these special requirements, Wang and Hopson (6) chose
to describe propagation by a trigonometric anguiar dependence,
cos(n® + 6n),and erroneously concluded that angular dependent waves
do not propagate in a circular plasmaguide. Their error lies entirely
with thelr cholce of function. A valid dispersion relation for the
angular dependent modes will be derived in the next section.

Within the framework of the quasi-static approximation,
Laplace's equation is substituted for the coupled wave equations II-10
and II~11, and simpler relations feplace boundary conditions II-19.
Because the boundary conditions are relaxed, separated quasi-static
solutions can be found in sﬁructures which do not actually support
separated waves. Smullin and Chorney (7) obtaln a quasi-static dis-

persion relation for the longitudinally magnetized rectangular wave-

guide which they compare with equation II-16 using an assumed value of
T . The comparison is of yuestionable merit, even for non-separated

wave solutlions, hecause Tl and T2 are themselves functions of the

frequency which are determined by the boundary conditions.

The Circular Wavegulde

The geometry under consideration resembles the coaxial waveguide

ot Figure II-l without its internal conductor; i.e., r; is to be zero

According to the preceding discussion @l and @2 have the same
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exponential dependence. Therefore assume at the outset that

jlot - n6) - hz _
o, = R/(r) e ) , i=1,2 . (TT-27)

Substituting Qi into equation Ii{-18 and cancelling the common

exponential Tactor gives Bessel's equation in the variable v = Tir

dr 2
14d i n _
—;a—; (V—Eg) -}-(l-?) Ri— 0

Bessel's equation has solutions of the form
Ri(r) = AiJn(Tir) + BiYn(Tir) . (I1-28)

Tn a coaxial geometry both radial functions are required by the bound-

ary conditlons. However, 1n a clrcular wavegulde the axis r =0 1s

accessible and Bi must vanish if @i is to remain finite. Thus

3wt - n6) - ha

o, = AJ(T,T)e (II-29)
For convenience the foullowing vector function is defined:

¥(T,r) = L v, ® (1T-30)

RALS A A ej(mt-n@) -hz{ 't 1

i
- Ham nao e, - ma e e,] -

In accordance with equations II-14, the longitudinal fields are

ej(mt— ne) ~hz

B, = o) + 0y = [ AT (0)x) AT, (Tor) ] (II-31)
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j(wt ~ n8) - hz

E, = T;& + 1,9, = L AT (T r)+-A Jn(TEr)] e

(II-32)

Equations IT-8 and II-9 show that the transverse fields are

2
= i; A {(ja T, +0) W(T,r) + (er + Jd)e, XY.(TiI‘)} oJ(0t-n6)-hz
(11-33)

ped
Z {(f'r +Ja) y(T,r) + (Jgr; + c)e, xy(T r)} J(wt - n0) - bz
- (Tz-34)

The boundary conditions demand that the tangential electric field
vanish everywhere along the perfectly conducting waveguide wall. Using

equation TI-32 and the @ component of II-33 it follows that

AT, (T r ) + AT (Tzro) = 0 (1I-35a)

2
1{:1 Ay {n(aTi" db) g (T,x )+ (eT + Jd)(Tiro)Jx'l(Tiro)} - 0.
(II-35D)

Similar equations result from conditions II-19. For there to exist a
non-~trivial solution to these two homogeneous equations, the determi-
nant constructed from the coefficients of A; and A, must vanish.
Equations IT-4 and IT-17a permit the simplification of this determinant
which finally becomes the dispersion relation

2, (5775 o (Tx )31 (T x )

o - {op - 477) =
U =0 .
2
1 Jn(T2 o) o Jn(Tlro)

2 2
bn(Tl- Te) + (muo- ar

(II-36)
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This relation, together with equation II-16,

2 2 2 2 2 2 2 2
["1 - T "1'111] - [*’1 BRI oY +Ti)] -0
defines wave transmission in the circular plasmaguide. Replacing h
by -h does not alter either equation II-16 or equation II-368. Thic
property, known as "reflection symmetry", is the subject of the next
section. The simultanecus solution of II-~-16 and II-36 is postponed

until Chapter V.

Reflection Symmetry

The conditions for which a wave will travel in elther of two
opposite directions with the same propagation factor h are now
investigated. A configuration which exhibits this property is said
to display reflection symmetry.

For a wave with an emﬁt- hz

dependence propagating in a medium
described by a general second rank dielectric tensor, Maxwell's equa-

tions in component form are

OE
. Z
(5 +BE) = - Joud (11-37)
BEZ
(B, + =) =+ JouHy (11-38)
OE, OE_
(__5«‘/;. - _55) = - jouH, - (11-39)
: SHZ
("a? +hE) = Jo(e E, re B +e E) (1I-40)
OH, :
(hH, + %) = - J(D(GyXEX t e B eyZEZ) (II-41)
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OH,_ OH_
(_gz -5 - ,jm(eszX + €zyEy + eZZEZ) . (TI-h2)

Replacing h by -h in equation II-39 leaves E_, Ey and HZ

unaffected, whereas equations II-37 and IT-38 require E,» Hx and

Hy to change sign. These changes are consistent with equation II-40

if e =0, with equation II-b1 if €p = 0 , and lastly with equa-

tion II-42 dir € =€ =0 . One concludes, for € =€ = € =
zX zy Xz zZX Yz

ezy = 0 , that the transformation

(m

2 EZ’ —H-t’ HZ’ h) — (.’i‘. E‘t’ F EZJ T _I__{t: x HZ’ -h) (TI-43)

leaves Maxwell's equations invariant. Furthermore, any given frequency
which propagates in the positive z direction also propagates in the
negative z direction with the same velocity and a similar field con-
figuration.

A magneto-~active plasma exhibits reflection symmetry whenever
the static field Eo and the direction of propagation are aligned
(c.f. equation I-17). If the magnetostatic field parallels the x

axis, the permittivity tensor has the form

€
3 0 0
i = 0 € je2
4] -362 el

This tensor does not, in general, display reflection symmetry with
respect to a wave propagating In the z direction. A notable exception

is the plane wave which, by not possessing any transverse derivatives
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d 9 .

(5; = S; = 0) , is able to propagate symmetrically in either direction

along the z axis. The fields within a rectangular waveguide contain-

ing a transversely magnetized plasma are never reflection symmetric

unless E and go are parallel, in which case € behaves like the

scalar €_ .

3
The fields of the longitudinally magnetlzed plasmaguide always

comply with transformation II-U3. Consequently, if a wavegulde is
terminated in the plane 2z = 0 by a perfectly conducting wall, the
boundary conditions are satisfied by furnishing a reflected wave
having an h, Et and Hz of opposite sign to the incident wave. For
h = jB , the exponentials of the incident and reflected E % and HZ
components combine as sin Pz . A clrcular cylindrical cavity can
be constructed from a waveguide by inserting two such conducting
planes a distance I, apart. The boundary conditions at both ends
are satisfled when P = mn/L and m is an integer. The resonant
frequencies of this cavity are determined by placing B = mn/L in
equation II-16 and solvlng the radlal boundary condition II-36 for
T and w . The circular plesma resonator with an axial magnetic
field has been studied by Buchsbaum, Mower and Brown (21,22), In
contrast, the absence ol reflectlon symmetry 1in the transversely
magnetized rectangular waveguide requires, at a conducting termina-
tion, an infinite number of reflected waves for each incident wave.
Reflection symmetry will be very useful in Chapter VI. It is
the mesns for simplifying the mode orthogonality relations which

apply to waveguldes containing longitudinally magnetized plasmas.
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CHAPTER TIII. WAVE RESONANCE AND CUT-OFF IN THE CIRCULAR PLASMAGULIDE

At resonance the electromagnetic field experiences an intense
interaction with the plasma which causes the magnitude of the longi-
tudinal propagation factor h +to increase without bound. As a
result the group and phase velocities of the resonant wave vanish,
and the flelds are purely reactive. The resonant frequencies are
found to depend only upon the plasma variables and not upon the geom-
etry of the waveguide.

In contrast, waveguide cut-off coincides with a vanishing
longitudinal propagation factor. The phase velocity of the cut-off
wave is infinite, but agaln the fields are reactive. The cut-off
frequencies are transcendenfal functions of the plasma parameters and
the waveguide cross-secﬁion, thus making it more difficult to investi—
gate the behavior of é wavegulde cut-off than to study a wave
resonance.

The cut-off and resonant frequencies define the dispersion
limits for the propagating mode and, in so dolng, govern the conducﬁ
of the wave. Furthermore, the ease with which these critical fre-
gquencies are observed suggest that they may be useful to the experi-

mentalist for reference measurements.

Wave Resonance

The resonant frequencies can be determined directly'from

equation II-16. Making use of definitions II1-3, equation II-16 gives

€ [3 € N
2 11 1.2 2 2 2 2 > 2 1 2 I
h =[—2-(l+z—)T -® uoel] + \/(m b)) -~ (0T €)= T+ );(lw-é}-) T
3 3 3

(ITI-1)
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The singularities of h , which occur at the zero of 63 and at the

poles of € and €, , are the resonant frequencies of the system.

Equations I-18 for the permittivity tensor show that these resonances
occur at the pleasma frequency Qp and at the two cyclotron frequencies
i and By

Prior to investigating the fields near resonance, the behavior of

w

Ty and T, nust be understood. Since the ratio

2
T, - “062 h2 € -1
- T3 = -i—5 + = (111-2)
1 h+ow “oel W “062 2

has different limits at each resonance, the plasma and cyclotron fre-

guencies are discussed separately.

Cyclotron resonance. At the cyclotron frequencies

mmIFP
1

+1 (III-3)

the upper sign corresponds to electron cyclotron resonance, the lower

2

sign refers to ion cyclotron resonance. Because both €, and b

2
are infinite at cyclotron resonance, the quantity (h2/€2) appearing
in equation III-2 remains indeterminate until the relative orders of

the infinities are established. To this end let

2 2

h h

o= ————— -~ k (III-4)
2 mauoeg

at cyclobron resonance. AB yeb k 1s unknown; 1t may be zero,

infinite or finite. The value of k 1is fixed by the boundary
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conditions on the fields.

The resonant behavior of the electromagnetic field is obtained
from equ#tions IT-8 through IT-11 by examining the limiting forms of
the coefficients specified by equation II-4. Upon substituting III-3
and IIT-4, equation III-2 becomes

_‘fg -1

-

71 (kx 1)

(ITI-5)

As a result the field coefficients approach the following limits at

cyclotron resonance:

k+1 W
- 1 Q
a - +tj (k+2) b - (k+2);§
- k+1 1
T ¢ - o L
(x +2) k * n
f - Fg - —_— (III-8)
o (k +2)

The longitudinal fields remain coupled until resonance is reached and
coefficient ¢ vanishes. Neglecting terms of the order 1/h and

smaller in eguations II-10 and II-1ll leaves

H, = O (IIT-7a)

v‘i E +w p € (k _)EZ = 0 . (TII-7b)

Apparently the resonant fields are TM (transverse magnetic) with

-Jjne
B, - EJ,(Tr)e J (ITI1-8a)
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T2 = m2“o€3(k 1 2) K (ITT-8b)

golving equation TTT-8b for k and equating it to expression ITT-4 yields

the dispersion relation
(III-9)

Retaining only the lowest power of l/h the transverse field relations

IT-8 and II-9 reduce to

-1
E =——-—-——-—[(kil)\7E +Jje xVE] (I1I-10)
=t (k + 2)h tTz Z tz
H =——-—-—-—l, ,I-JV,,E”:;_e_,xVE,] . (111-11)
Yodep(kxe) b TETTEOEES

o}

All three boundary requirements, E = B \ = H = 0,
Zlr, Slr, rlr,

cannot be satisfied unless EO = 0 , in wvhich case the entire wave
vanishes; or else E -0 as k -+ 2 . For the latter situation, the
transverse fields remain non-zero and finite as E, vanishes. Using
several familiar recursion relations for the Bessel function and its
derivative

vth ET

(k+2) i 2(;-%2) [(Jn-l_ Jn+l)Er- J<Jn-l+'Jn+l)§GJ

e-jn@

Since equation III-8 shows that T -0 as k - + 2, and because

T,4200) = 8 -, , 1t follows that

V. E

tz A -Jno
=2 - S -

. lﬁma[( *-2)1 5 [(e Je ) o1 (e + jeE)Sn,-l] e

-1] e™9n8 (11I-12)
b4
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ET
where A= lim 2 :l . Accordingly, III-10 and III-11
become
Jw “O A ) _
B, = - — (_e_Z x gt) = T (g_x ¥ jgy) (IIT-13a)

for n =+ 1 respectively. Meanwhile, for T - 0 , dispersion relation

III-G becomes

2 2
-hTo= wugle xep) (III-13b)

Locally, the waveguide fields at cyclotron resonance resemble the circu-
larly polarlzed TEM waves that propagate along go in an unbounded
plasma., If T and h are regarded as the transverse and longitudinal
components of a propagation vector, then at cyclotron resonance where T
is negligible compared to h , the wavegulde propagation vector parallels
the magnetostatic field and the waveguide flelds have the same dispersion

and structure as the plane waves of equation I-2%b.

Plasma resonance. The condltions at plasma resonance are

obtained by allowing h to increase without bound while restraining

all other quantities to finite magnitudes. Again the 1limiting behavior

of the coefficilents in equation II-4 must be examined as |hl - 0 .

This leads to

-1 OU,To
B ——

~-h
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1o SN
c - —-'§ d - ——2
jn h
WweE €
12 12 : (ITI-1k)

Although only the third and higher powers of 1/h need be discarded
to decouple the longitudinal fields, & consistent plcture of plasma

resonance is obtalned if just the lowest power of l/h y l.e., coef-
ficlent a , is retained. In that case differential equations II-10

and IT-11 reduce to
Jop H = 0 (III-15a)
Jw €5 E, =0 (IIT-15Db)

while the resonant transverse fields approach

1

= v = - =Y -
E jaV, E, 5 Ve B, (III-16a)
H = javV. H =~ Iy . (III-16Db)
-t t z h t =z

Since Hz and §£ are already zero according to equations III-15a

and IIT-16b, the entire electromagnetic field vanishes unless

3

plasma frequency.

€ =0 in equation ITI-15b. This resonance occurs at w = Qp » the

To describe this resonant wave as TM would be a misnomer
because at the plasma frequency the entire magnetic field vanishes.

. ~hz
In fact, since E has an e axlal dependence, equation III-16a
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can be written in an altérnate form

(VxE) = 0 (I11-17)

which demonstrates that the electric field at plasma resonance may be
derived from a scalar potential. It is for this reason that the quasi-.
static approximation (described in the appendix) correctly predicts wave

solutions near the plasma frequency.

To obtain the asymptotic dispersion relation it is necessary to
retain the next larger power of l/h as 1t appears in the coefficient

g of equation II-11l. A TM wave equation 1is then obtained with

2 2 %53 %3 2
vf E, +TE, = 0 and T = - = EI h . (I1I-18)
The boundary conditions Eer = Egi = 0 , applied to the solution
0 o

E, = EOJH(Tr)e'JnQ of this equation, demand

Jn(Tr) = 0 with h™ = T . (ITI-19)

Exactly the same dispersion relation is obitalned by the quasi-static
approach.

Resonance takes place whenever the fields excite one of the natural
modes of the plasma. In the absence of the signal, the electrons and
ions gyrate at their respectivé cyclotron frequencies in smali circular
orbits about the magnetostatic lines of force. The plasma also enter-

tains a longitudinal mode of osclllation in which the particles vibrate

along B, at the rate Qp « If the local transverse field of an inci-

dent wave is resolved into two equal-amplitude, counter-rotating,
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clrcularly polarized waves, then the effect of each circular component
is to excite one of the transverse normal modes of the plasma. When
the signal frequency and the sense of rotation agree with the motion
of the particles, the interaction between the field and the chargeis
strongest and cyclotron rescnance results. The electromagnetic energy
of the wave then converts into the kinetic energy of the particles and
propagation ceases. Plasma resonance occurs when the longitudinal
component of the local electric vector excites an electrostatic oscil-
lation of the plasma by rhythmically displacing each particle from

its equilibrium position in synchronism with the plasma frequency.

The Cut-0ff Frequenciles

The signal frequencies at which propagation halts and h =0
are referred to as the cut-off frequencies. A knowledge of the cut-
off frequencies and their dependence upon the magnetostatic field
strength and plasma density includes valuable information about the
mode spectrum. Primarily it reveals which modes propagate for a par-
ticular condition; indeed this is essential if numerical calculations
of the phase constant are to be performed efficiently. Then again,
the cub-off frequency is  physically observable and therefore a useful
diagnostic for the experimentalist.

At cut-off the propagation constant h is zero and the coeffi-
cients a, c, and f of the field expressions vanlsh. The remaining

coefficients becone

€2 €
b = m—— a = L S S (I11-20)
w(e? - €2 w(e® - &2) ®
1™ % 1" % 0

With these substitutions equations II-8 and II-O for the transverse
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fields reduce to

[}

1 .
E;=—73 3 [Eéviﬁz e g, X V%Hz] (TI1-21)
m(el- e2) _

1
= e xV
-t Jou ~z 5

(1IT-22)

Furthermore, because the coupling coefficient ¢ vanishes at cut off,

the longitudinal field equations II-10 and TI-11 separate and reduce

to wave equations in H, and Ez .

2 2 2 ,2 2

vi H +8H =0 szap (e - )/ e (ITI-23)
2 2_ o 2 2,2

ViEZ +TEZ—O T = w “063 (0" - QP)/VC .

The solutions to these equations in cylindrical coordinates are respec-

tively
(I1I-25)

where Hb and EO are arbitrary constants determined by the field
sources.
The eigenvalues T and S are determlned Dy the boundary condl-

tions at the perfectly conducting wavegulde wall. There at r = T, s

Substituting III-25 into III-21 and ITI-22 and applying these boundary

conditions gives
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Ez’r = Ean(T?o) =0

o]

-J€. H
2o n 1
Z et | —— - € =

Eglr 2 2 [r EEJn(Sro) lS Jn(sro)} _ 0

o) m(el- 62)
2
o OH

i

g g(rr)= 0 .
o ‘o °n e
Obviously S8 and T satisfy independent relations. Since neither
the boundary conditions nor the wave equations couple Ez to HZ
the fields at cut off are characterized as TE (transverse electric)
and TM (transverse magnetic) mades.
The TM modes have HZ =0 ; due to equation III-21 the trans—
verse electric field also vanishes. Nevertheless, the transverse mag-
netlc fleld remains and 1t has a radial component which is proportional

to EZ’

H = -—-:l-—- E .
r (Duo Z

LR

If T 1is selected to satisfy the electric boundary condition

Ez r = 0 , the magnetic boundary condition is immediately insured.
o}

The characteristic cut-off relation is therefore

J(rr )= 0 with =)/(TV)2+QE .
o I,n c P

o (111-26)

The subsecript distinguishea ® from the thrcece TE cubt-off frequencies
which follow. Two observations regarding ®), , can be made at once:
: )

1) The ™ cut-off frequency for the empty waveguide has
been increased by the plasma frequency but is unaffected
by the magnetostatic field because the electric vector
and the particle motion are hoth parallel to Eo .
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2) Unlike the .TE cut-offs which follow, the positive and
negative angular dependent TM modes have the same cut-
off freyuency silnce J_n(TI‘O) = (-1)" Jn(Tro) =0 .

Next consider those modes with TE cut-offs. Taking EZ =0
guarantees that the transverse magnetic intensity is identically
zero; in particular that Hi vanishes at the boundary. The only re-
maining condition 1s that E9 must likewise have a null at the con-
ducting wall. This condition determines the eigenvalues for S and

the TE cut-off frequencies:
- ’ = —
[ezn 3 (sr) - ¢ (sr) Jn(Sro)] 0 (ITI-27)

vhere according to equation III-23

2 2 ,2 2
8% = w (e - e)/e; (II1-28)

The behavior of the TE cut-off frequencies is cobscured by the
transcendental nature and algebraic complexity of these cut-off rela-
tions. An obvious solution to this set of eguations is w = 0 , but
to understand the character of the other cut-off frequencies it is
helpful to inspect the asymptotic form of these equations. For a
neutral two-component plasma the number of independent variables are

®; 2

2
diminished twofold, once because a9 (charge neutrality) and

17w
e
then because miﬁme is fixed by the electron to ion mass ratio. Even
i3] m
for a hydrogen plasma fi =2 = - is exceedingly small. When
@, oy 1836

the permittivities involved in equation III-28 and explicitly defined

by equations I-18 are simplified by the neutrality assumption, one

obtains



47

@ af) (0"~ o)

€, = €
2 2
t ° (- mi) (o - mi).

¢ b 2 2
2 20 2 =) {CD - (CD + W
(CD = mi) (a) - ﬂ)e)

(I11-29)

"

| ad

2 2
+ 0, )w +mewi(mea)1+ Qp}

0f - o 00)

o(w
i 2 Z (III-30)
(LO - (Di)(u) - we)

2 o

((D + CDi)((.D ¥ me)

O

€

= f) o _ ) i )
© imi)(m :Fme) im * (o~ o)) - (0w + @ )} (III-31)
and
(0)2- 2) (032" 2)
(Ei- 62) =% Tz dz)L 2 (:R (1II-32)
(0= @) (w - »_)
- ‘o {mh_ 62 + a2 + 2002
(0)2- mi) (wg- a)2) € L P
+ (mecni + Qi)e}
where
Dy = {%@5 + “’f + Qi) - :aL )/(mi—mfmz—af)e + lmg 92 } (1II-33a)
@ = { (u) + 1+Q ) + = )/(w -mi Q -Qi) lmi Qi} (IIT-33b)
' o+ m 2
®r, = \/1 Ly 4 Q (III-34a)
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@O - » 4+ °
+ e2 i) + \/( e2 i)2 + ni (IIT-34D)

2 2
o )/ne+ni . (I1T-35)

The zeros of € are the cut-off frequencies @ and @ which

later appear in the quasi-static and narrow waveguide approximations.

of

be
i

It will also be shown that o and @~ are the upper bounds for the
cut-off frequencies in the first two passbands of the exact solution.

w. and ®p describe the lower bound to the second and third passbands.

L
Physically they are the cut-off frequencies of the left and right cir-

cularly polarized plane waves which propagate parallel to }_30 in an
infinite medium.

Substituting for e—:l and e2 » equation III-28 becomes:

{we— (SEVE + (ni + mi + EQS)LDA + [ngi(wg +m§+ Qf))
+ (memi+Q§)2]a>2 rwemisgvi(wewi-f Qg)} = 0 . (111-36)
BEquation III-27 is repeated here for reference
[egrx Jn(SrO) - el(SrO) Jl'l(Sro)} = 0 (I1T-37)

The limiting properties of these cut-off relations are studied in the

next slx cases.

w
' . 2 2
For an empty wavegulde Qe = ‘_J_J_e_ Qi - 0 . As the plasma becomes
1

increasingly %enuwous €, - €., €

° - 0 , and the above expressions

2

reduce to
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(7= o2) (0= of) (- szvi) -0 , Jisr) -0 . (II1-38)

Thus while the first two cut-off frequencies approach and cancel the
cyclotron resonances at @y and W, s the third factor describes the
usual TE cut-off condition for an empty waveguide.

In the magnetohydrodynamic (MAD) limit the plasma frequency QP
is so very much larger than either cyclotron frequency that equation

ITI-36 becomes
6 22 2, b 2, .22 2, 2 222
w- (8 vc+2gp)w +np(s v, +Qp)m fmemiapsgvc = 0 . (III-39)

When, as here, two of the cubic roots are much larger than the third,

the smallest root may be obtalned by neglecting the first two terms
of the cubic equation. Therefore the lowest TE cut-off frequency of

the MHD limit is very nearly

oy By 4
w= 8V, 3, = SV, — * = SVc . (TIT-40a)
- (8 c'*ﬂp) a e

The two larger roots are obtained by neglecting the last term of equa-

tion III-39, thus yielding the factors
2 2 2 2 2
(- a5) [o™- (8%, +a))] = o : (ITI-bob)

The first factor cancels the plasma resonance, while the last factor

yields the modlified TE waveguide cut-off. The transcendental equation

for 8 does not simplify unless the mode is circularly symmetric (n=0).
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If the static magnetic field is reduced, the plasmaguide bccomes
isotropic and the cyclotron resonances fall to zero fregquency. As a

- 0 vhereas equationsIII-36 and IIT-37 reduce to

1

result €, = e3 3 €2

we(ma— 95) [me- (s.2 Vi + gg)] = 0 and JI;(SrO) = 0 . (III-h1)

Note that the lowest TE cut off joins the TEM cut~off frequency at
@w =0 to cancel the two cyclotron resonances at the arigin. The
gsecond factor has a zero at QP to cancel the plasma resonance. The
final root indicates how the presence of an isotropic plasma raises
the TE cut-off frequency of an empty wavegulde.

In an intense magnetostatic field the plasma ls extremely aniso-
tropic and the shifted cut-off frequencies are obtained by neglecting
QP relative to mi and we . Again el - eo and 62 - 0 , leaving

5 2.2 2.2 2 2 '
- - - = = . -42
(w o) (@ me)(m s V,) 0 =and Jn(SrD) 0 (11T ﬁ )

The first two cut-off frequencies cancel the cyclotron resonances at
infinity. The remaining TE cut-off frequency ls exactly the same as
for an empty wavegulde, because in the presence of an infinite longi-
tudinal magnetic bias the partlcles are unable to respond to a trans-~
verse electric force.
The remaining two limits deal excluslvely with how the radial

extent of the waveguide affects the cut-off frequencies. In the limit
for which both T and 8 approach zero, the TM and TE cut-off rela-

tions, equations III-26, ITI-27 and III-28, become respectively
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(T™) o = Qg (III-43a)
and
(TE) w2(€§ - eg) =0 or we(me- wi) (wg- w§) = 0 .(III-43VL)

Thus the TM cut-off cancels the plasma resonance at QP and the TE
cut-offs become the planc wavc cut-off frequencies w = 0O , mL end
Wp - The transcendental relations are identically satisfied by
8 =T =0 . This implies that the plane wave limit, corresponding to
an infinite waveguide radius, is equivalent to letting S and T go
to zero.

Ietting S ©Dbecome infinite reduces dispersion relation III-28
or ITI-36 to

2 2 2
1=0 i.e. (w™ = wa)(w - mb) =0 and w=0w . (TII-4L)

1
__2_€
W
Transcendental equation III-37 is also satisfied because Bessel functions
of infinite real arguments are vanishingly small. Since w, and wy
are the narrow wavegulide cut-off frequencies, this indicates that let-

ting S Dbecome very large has the same effect as reducing the guide

radius.

The circularly symmetric cut-off frequencies. In this section

the cut-off frequencies of the circularly symmetric modes are investigated
gualitatively and numerically for intermediate values of the plasma
parameters. The number of independent variables is kept to a minimum

by introducing the following normalizations:
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and S =8r . (ITI-L5)

The character A should not be confused with the conventional symbol
for the wavelength which never appears here. Cut-off relations III-36

and ITI-37 for n = 0 therefore become

6 =2 .2 .2 2,4 r=2,.2 2 .2 2,27 .2
{x - (8" + Ay + A+ EAP)x +[}S (xe + A+ Ap)+-(xexia-Ap) J Py
- A 's‘g(xx +A2) = 0 (ITI-hs&)
e i e i D
where

3 (8) = o - (TTI-47)

To facilitate the evaluation of the two larger roots of equa-
tion III-L6, it is argued that for osclllations much faster than the
ion ecyclotron frequency, the ilons may be treated as a stationary hack-
ground charge which provides neutrality to the plasma. The validity
of this assumption 1s based on the large ion to electron mass ratio
which in practice always exceeds 1,836. Taking Xi =0 and

2 2

A
Ab = As (1 + i;) ~ A bicuble equationITI-46 acquires the form
e

2. % =2 2 2\.2 =2,.2 2 L
A {x - (85 + A +2Ae)x + [s (xe +Ae)+ Ae” = 0 . (IIT-48)

The two larger TE cut-off frequencies are therefore approximately
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1/2
(1L z2 .2 2 ;:\/—e 2,2 2 2
xe,o = {2 (8° + Ao+ EAE) -5 (8° - xe) + hxe Aé ? (ITI-49)
1/2
1l g2 2 2 1 /a2 2,2 2 2
Xg,o = {5 (s + xe + 2Aé) + E'V(S - xe) + hxe.Ae } . (I1I-50)

The first subscript distinguishes the cut-off frequency, the second
numeral denotes the angular dependence. A third subscript could also
be used to indicate the order of the radial dependence.

The lowest TE cut-off frequency can be determined approximately if
the two leading terms in equation III-U6 are neglected. When terms of

the order ki/ke are discarded relative to unity, we obtain

A h (A, + A?)
2 = 5 e i e i e

1,0 82( 2 + A7) + (A AL+ A?)g
e e e"1 e

To check the validity of the foregoing approximstions, some represen-
tative values of xe, _/\.e and S were chosen, and the above expressions
vere compared to the exact solutlions of the bicubic equation. The Table
III-1 summarizes the calculations and demonstrates that formulas III-L4O,
ITI-50 and III-51 may be used with complete confidence.

On the following pages the lowest circularly symmetriec TH and T
cut-off frequencles are illustrated as functions of the electron density
for various fixed values of the static magnetic field. The plasma under

examination is a completely ionized hydrogen gas.

Two transitions exist: the first occurs when )\,e=§ , @bl which time
. (Fig.III-2) and Xs o (Fig.ITI-3) interchange roles; the second
2 2

transition occurs at a much larger magnetic field xi =9 ;3 here
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and
M,0 2,0

and the plasma variables are of equal prominence; in other areas one

switch parts. At these points the waveguide geometry

factor or the other dominates.

Note how the curves (Fig. III-1) for 2 rise, crowd together,

1,0
and tend to flatten with increasing magnetic field Xe « First the

Mo = » 18 sought, but eventually X, exceeds S and
2

the traces saturate near xl 0= S for infinite megnetic fields. TFor
3

intermediate magnetic fields and decreasing plasma densities, the loci

asymptote

of xl 0 run into and cancel the ion cyclotron frequency. At large
’ A
values of A_, \ ., becomes the MHD cut-off frequency ];—i- s .
2
i
AN, o
Quite unlike the other cut-off frequencies, —SIL— is negative
e

when )é > 8 (Fig. III-2). As observed earlier, xe =5 marks the

spot where xp and A interchange roles., For A_ much less
2,0 3,0 e 5
— /=2
thi the loci of A and A\ approach A and S + A
an 8, 2,0 3,0 PP P b
respectively. For large magnetic flelds (xé >>8), My o first levels
J

off at S but then, as BO is increased beyond the transition Xi =8,

these curves crowd toward xi « Meanvwhile k3 0 approaches xe without
5
incident. In the MHD limit (large Aé) » the A, o ‘traces converge upon
2

' :/— 2
A.p whereas the k3 o curves have 82 + A.p as an asymptote. In a
2

tenuous plasma ) and A respectively approach either § and

2,0 3,0
he , Or xe and S depending on whether xe is greater or less than
S . In the empbty wavegulde one of these cub-off Crequencles cancels the

electron cyclotron resonance, the other becomes the TE waveguide cut-off.
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The behavior of the TM cut-off frequencles is not as involved

because they are independent of the magnetic field strength. However,
in certain respects the xu,n cut-offs are similar to XE,O or XB,O .
A sinusoidal signal propagating through a relaxing plasma can
produce & very peculiar output at the far end of the waveguide. The
continual reduction of the plasma density by recombination causes sonme
of the cut-off frequencies to pass (perhaps twice in the case of Xl,o)
through the signal frequency. With each pass the output signal is
turned off or on. The existence of several propagating modes would

account for the partial extinction of the wave. The occurrence of

higher order modes only complicates the situation.

The effect of the field's radial dependence upon the TE cut-off
frequencies is illustrated in Figures ITTI-5 and ITI~6 for the range
ki <8< Xe = 50 + In all cases the cut-off frequencies are raised as
§ is increased. S affects each of the three TE cut offs in a 4if-
ferent range of plasma density. For instance, xl,o varies like
xi/Ai S in the MHD limit, but equals ki in an empty waveguide
where XQ,O =8 . At larger plasma densities kz,o becomes indepen-
dent of 5 and tangent to the line A = A, . As & result the radial

dependence does not influence A at small plasma densities nor

1,0
XQ,O at large densities.
Cut-off frequency x3 o is bounded by the asymptotes Ay and
2
Ag + §? . For i >> S , the intersection of the asymptotes occurs

at approximateiy A.p = Xé >> 5 . Consequently the asymptotic depen-

dence of x3 o upon S is masked by the much larger values of ALP .
2

Calculations show that the maximum change in x3 0 between successive
2
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radial orders occurs at about AP = § , but that this difference is

always less than 0.1% of Mo
2

The angularly dependent cut-off frequencies. The critical fre-
quencies xa, xb, XL’ XR influence the values of the cut-off frequencies

and the latter--together with the resonant frequencies A\ Xe and

i)
Ap ~--determine the wave behavior and the stop bands of the dispersion
diagram. It is therefore useful toc have some notion as to the relative

sizes of the system's critical frequencies. CObserve that for all xe

and 'Ae the following inequalities are always obeyed in a neutral plasma

© >x>Ah > A >A >A > 0 . (I1I-52)

The behavior of the angularly dependent cut-off frequencies is
predicted by equations III-27 and III-28, viz.
an(S) €

= = (III-53a)
5 () €2

where, according to ITI-29 and III-32

(Xz_ 2)(x2- 2)
= A3 Xg 5 Xg . (III-53b)
(A= A0 (A= )

Expressed in this manner, whether § 4is positive real or imaginary,
the left hand side of the flrst equation is always real. Furthermore,

the tranccendental and algebraic terms are ceparated.
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The wave number of the hybrid transverse-longiltudinal wave (sum~
marized in Figure I-2d4) which propagates perpendicular to the magnetic

Lleld is

By writing S = 6ro we obtain the auxillary cut-off equation III-53b.
This indicates that as cut—off is approached, the propagation vector
within the guide becomes increasingly inclined to the static mag-
netization Eo until at cut-off it 1s normal to the z axis.

Taking heed of the inequalities which exist between the system's
critical frequencies, the variation of Ee with xg is readily
sketched in Figure IiI—7a. Alternatively, S may be plotted against
» as in Figure III-7b. In the second sketch S is parabolic in the
neighborhood of the zeros, e€.g., S ~ V{x - xL) gbout A Q:LL 3 and
— . — 1
S has a hyperbolic dependence at the poles, e.g., S ~ T;ijff=i:?

neat xa . Note that S is alternately real and imaginary with in-

tervals:
0 <AL ka vhere S is real
A, <M< A Where S is imaginary
XL <A< xb where S is real
xb < A< KR vhere § is imaginary
Mg < A <o vhere S 1is real.
nJ (S)
On the other hand, the function flﬂg) = ErE%zgy has the follow-
n

ing behavior:
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on

As 8 -0, Jn(S) -

and fl(g) - 1 ; whereas, if
2% ni
5 - 00 , then

3,8 ~ (Ep)? cos(s - LElx,
(2n-1)x

y .

- n _
and f(S)—-»—::_—ta.nS-
1 g ( 4

At Tinite real arguments fl(g) continues to resemble the trigonometric
tangent function because the zeros of Jn(g) and the zeros of Jg(g)
(i.e., the maxima snd minima of Jn(§)) are interlaced. The relative
amplitudes and phases of Jn(g) and Jé(g) change as S 1is
decreased, causing deviations from an actual trigonometric behavior.

S can also become purely imaginary, but never complex. In such
a region where 5 = J |§| = Js8 , the ordinary Bessel function Jn(g)
is replaced by the modified Bessel function In(s) acéording to the

following rules:
n = n=1
i = l ! =" ! -
J3.(38) = 37 1 (e) also  J1(5) = 5 T 1'(s)
Recall that for large arguments, i.e., 8 - @, all orders n of the
modified Bessel function approach the same limit, namely:

1.,1/2 s

1.,1/2 s ,
In(s) - (=) e hence In(s) er(EEE e .

2ns

Thus the transcendental function fl(s) for large imaginary'arguments

becomes nJ (js) nI (s)
f (—S-) - _....E_..-—_ - —_1:1____ — -1-1— = —-:_11— .
L is3'(3s)  sI!(s) s 5|
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For very small argumepts the modified Bessel function exhiblts the

same behavior as does the ordinary Bessel function. It is readily
demonstrated that fl(§) has zero slope in the vicinity of S=0

and that the function monotonically decreases with increasing imaginary
values of S . The function fl(g) therefore has the character
11lustrated in Figure III-8. The indicated singularities are for the
case n = +1 .

The right side of cut-off relation III-53a contains the func-

tion
2 2
€ -(3° - xi)(x - xi)
(M) = = = : (ITI-54)
2 € 5 P by 12
){A A (1 -2 ]
[<] e )\'2
e

now to be examined. f£,(\) obviously has zeros at A, and ) , and
poles at AL =0 and o . Several other points are easily located.

Thus at . and at A, , fg(h) = +1 ; while A, and X, are posi-

i
tions where f2(k) = -1 . The curve of fz(x) is traced in Figure
ITI-9.

To construct the graphical solution for the cut-off frequenciles,
it remains necessary to exhibit fl(g) as a function of A on the
same coordinate axes as fz(x) . This is readily accomplished by
evaluating S at each frequency A according to Figure ITI-7b and
then determining fl(_S-) from Figure ITI-8. The resulting function,
labeled fl(x) , is then superimposed upon Figure III-9. The equality
£,(0) ='f2(x) defines the cut-off condition for the wavegulde struc-

‘ture. Those frequencies for which the two functlons are equal, 1l.e.,

the points at which their respective curves ilntersect, denote the
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cut-off frequencies. The graphical solution.of the transcendental
cut-off relation is illustrated in Figures ITI-10a,b.

The solutions occur in three distinct bandg, each in a range where
3 is real. As 2 approaéhes A, A or infinity, the argument §
of the Bessel function becomes boundless (Figure ITII-7b) and the fre-
quency of fl(x) (Figure ITII-8) ©becomes increasingly rapid. The
density of solutions also increases (Figure ITI-10) until at la’xb
and oo the highest modes of each band result. The intersections at
xL and XR , Where S =0 ; are fhe plane wave cut-off frequencies for
‘a magnetized plasma of infinite transverse extent (co.f., Figure IV-k4)
and are to be discarded as extraneous. The solutions Jjust above XL
and ER are, hbwever, wavegulde solutions and indicate the effect of
the waveguide wall on the plane waves. The lowest n=+1 and n = -1
modes of each passband have field configurations that most nearly
resemble the left and right circularly polarized plane waves, respec-
“fively. Ooz;xscqucntly the cut-off frequencies of these modes may be

expected to occur closer to A =0 and, respectively, XL or XR than

the cut-off frequencies of any other mode.

When n = +1 ‘the lowest mode of the o,xa band or the AR,oo
band is situated ﬁetween the root of J i(-S-) at 8 = 1.8% and the
zero of Jl(g) at S = 3.83. .The next series of modal cut-offs
occurring in these bands falls between the pole of 'fl(§) at '§ = 5.33
and the zero st 8 = 7.0l . This information is essential if a digital
computer program is to converge upon a particular solution. For }gzgg

positive n , the location of the lowest modsl cut-off for the first
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and third bands (23) is defined by

(n + 0.808 %/E + +e0) £ § £ (n + 1.855 3\/‘n‘+ ees) . (III-55)

The left side of the inequality characterizes the first root of Jﬁ(g)
and the right side of the inequality specifies the first non-zero root
of Jn(S) .

The first mode in the XL’Xb band occurs between the zero of
Jl(g) at 8 =0 and the root of Ji(g) at S = 1.84 . The next mode

lies between 8 = 3.83 and 5.33. For large positive n the lowest mode

is always to be found in the range

0 < § ¢ (n+0.808 3—,/n +oee) (IT1-586)

Evidently as the mode number n 15 Increased the first solution of
each band recedes from the plane wave cut-off freguency at A =0, xL
or %R , and advances toward the guasi-static and narrow waveguilde
cut-off frequenciesg at A_ , Xb or oo .
: _. nd (8)
For a negative angular dependence (n < 0), fl(S) e
— g J'(8)
mast be replaced by -~ fl(S) because for integral n n

H

I (® =36 ma I 6 =(D"6

likewise,

1l

I_n(s) = In(s) and Iin(s) Ié(s) .

This inverts the transcendental curve as in Figure III-10b. The in-

tersections of the inverted curve with f_()\) = e /€, are the n= -1
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cut-off frequencies. The lowest mode of the O,Xa or xR,oo band
is positioned between S = 0 and the first root of Ji(g) at
S = 1.84 ., The primary mode of the xb’xL band occurs in the range

1.84 £ 8 £ 3.83 . TFor large negative n the corresponding values of

S fall in the range

0<F £ (|n] +0.808 >V[n| + ++*) (I11-57)

for the first and third bands, and hetween

(Jn] + 0.808 SW/THT £ .) € 5 £ (|n] +1.855 [a] + +-+)
(T11-58)

for the central band. As with the positive angular-dependent modes,
an increase in the mode number 'n 1s characterized by an attendant
departure of the wavegulde cut-off frequencles from those of the
plane wave.

The cut-oft Irequencies of each band correspond to different
modes, all of the same character, but shifted in their respective fre-
quencies. Special attention should be devoted to the solutions
closest to A =0, XL and xR as these cut-off frequencles display
the greatest latitude of variation. The solutions toward the upper
end of each band are increasingly cramped and therefore exhibit less
drastic variations.

It is of interest to investigate the relative positions of
A and A, . Since A =0 1is known to be a cut-off frequency, the

1,n i

occurrence of Xl n below the wave resonance at Xi would imply that
2

the dispersion is double valued. Double-valued dispersion is
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reminiscent of plane waves propagating along Eo (cf., Figure IV-4),
but not 6f quasi-static filelds which in 811 Instances have a single-
valued dispersion relation (cf., Appendix). Let us examine the

n = +1 case first. A glance at Figure III-1la convinces us that
1N may lie above or below A\

1,41 1
of the plasma density and the magnetostatic field strength. How-

subject to the relative values

ever, Figure ITI-11b illustrates that xi always exceeds xl’_l .

Hence dispersion in the lowest frequency range may be double or single
valued, depending upon the mode number and the plasma condition. The
variation of xl,-l and Xl,+l with plasma density, for fixed
values of the magnetic fleld, appears in Figures III-12 and III-13.
Cut-off frequency Xl,-l always remains less than ki and tends
toward the plane wave cut-off at A =0, vwhile Xl,+l assumes &a
character which typifies the higher positive and negative angular
dependent modes. Note the resemblance of Figure III-13 for Xl,+l
to Figure TTT-1 for the circularly symmetric cut-off frequency

1,0

Consider next the cut-off frequencies near XL + According to

Figure III-10, xe +1
bt

has its minimum value at S = 1.8k,

is always smaller than A Thus, while

2,-1 *

by igs free to descend

2,-1 X2,+1
from S = 1.84 to A vhere 8§=0. At 8§ =0 the vaveguide mode
has the same cut-off frequency as the left circular plane wave. How-

ever, according to equations IIT-21, ITII-22 and ITI-25, all components

of the cut-off TE field disappear.
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To follow the variation of )“2,+1 note that f£,(A) = el/e2

is equal to unity at XL and xe with a maximum between. If

, the root A appears W thin the interval 0> § £ 1.8k

)“e > )“L 2,+1
as in Figure ITI-lka. As xL and xe approach one another, the

maximum of f,(A) decreases and the root A, . moves closer to
- [_,

o When the slopes of fl(x) and fg(x) at XL are equal,

and XL will have coalesced. The condition for A to

M1 2,+1

equal xL is therefore

of ,(A) or_ (8) 3w
2 = [ = Eﬁi} or eguivalently, KL = A .
or A 3 ) e
L M
afl<§)
Since = 0 , the condition for xa 41 = XL reduceés to
XL ?
afe(x)
=0 or equivalently A = A . (111-59)
1578 A L e

When terms of the order xi/xn or smaller are neglected relative to

unity, either of expressions III-59 give ‘Ae = VGE xé . Thus for

is larger than A

L. ;3 for

N _
e<\/§xe, >0 and A,

A =23, S =0 and the fields of this mode vanish.

The numerical solutions to the cut-off relations IT1-53 for

x2,i1. are plotted in Figures III-15 and III-16. The family of
curves deplcting X2,+l are asymptotic to the plane wave limit xL ’
while the curves for x2,-l resemble the circularly symmetric cut-off
frequency XE,O of Figure III-2. The behavior of XE,-l is



 f o

f,(S), f,(A)

)
\
I & ;
o i
_/ P /J r N, b X
0 7 A AL A2fi N, \ —-
//’ \\
! A
/
>\L< A2,+l< Ae a
n=+1
f,(S) f5(A)
]
| /N
! {
o xq/x ', 77w Ap .
{S=0)
)\L= X2,+I>> )\e b

Figure I1I-1lka,v. Graphical solutlos ol A,
_g+l
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representative of all higher modal cut-off frequencies for positive
or negative n in the XL’xb band.

The situation at XR for n = -1 1is much simpler; cf. Figure
ITI-10b. The slope of fl(x) at ), , where S =0, is zero, but
becomes negative at larger S . The slope of fg(x) is negative

everywhere in this band and consequently fl(k) and f_(A) intersect

2
a second time before the pole of fl(x) at S = 1.84 is reached.

This root, designated A in Figure I1I1-10b, always exceeds XR .

3:'1
The loci of A and A are l1llustrated in Figures III1-17
3,-1 3,+l

and III-18. They deviate only slightly from one another and from the

circularly symmetric cut-off A of Figure III-3. Furthermore,

3,0
since equation III-53b is insensitive to S at large A , both curves

are asymptotic to the plane wave cut-off ER .
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CHAPTER IV. LIMITING FORMS OF WAVE PROPAGATION IN THE
CIRCULAR PLASMAGUIDE

The modes that propagate 1o the anisotroplic waveguide are
usually of a mixed variety, Pelng nelther TE nor TM. As demonstrated
in the previous chapter, the longitudinal flelds EZ and HZ
decouple in the viecinity cfirresonance and cut off, and thereby submit
to conventlonal wavegulde descriplions. Before pursuing the compli-
cations of coupled wave phenomena, it ig well to lnquire whether cther
liwmits exist for which simple propasgation can occur.

The coefflclent ¢ oOf eguation II—h,which 1s responsible for
coupling Ez and Hz through equations II-10 and II-11, vanishes
whenever the Hall permittivity ¢, can be made zerc. Thus for zero
or infinite magnetostatic fleids the waveguide supports slmple TE and
MM waves. The same occurs for arbitrary magnetostatic intensities at
the lowest frequencies of the MHD limit, or else when microwave fre-
quencies are Involved. The physical width of the wavegulde 1s another
factor that governs wave coupling. The very slender waveguide sup-
ports, 1n addition to TE fields, & TM wave which is related to the
quasi~static approximation. In the opposite extreme the mixed wave-
gulde flelds developy with increasing gulde radius, into circularly
rolarized plane waves.

Each of these situabions is subsequently Investigabted witk regard
to wave character, configuration and dispersion. Wherever possible,

the mathematics is supplemented with physlical insight.
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Limiting Magnetostasic Fields

No magnetic tias (EOZ 0). The gyroelectric properties of the

plasma result frow the transfer of charge across the magnetic flux. If
the transverse particle motion or the magnetostatic field is eliminated,
the conductivity and permittivity tensors are replsced by diagonal
matrices. The electrostatic plasma oscillations are an example of a
degenerate wave for which the particles vibrate paraliel to 20 . An
infinite magnetostatic field (next section) is also capable of restrain-
ing the transverse motion. The Hall effect also vanishes {02 =€, = 0)
if the magnetostatic fileld is removed entirely. For Eo = O eaquations

I-11, I-12, T-17 and I-18 show that the plasma is isotropic with

2
ng  n.g
g*fm (fle+ ii) = 0, (IV-1)
- e 1
a2
- 1-2) = ¢ V-2
€€y ({ me) 3 ( )

The conductivity of the plasma is a reactive scalar because the current
ic impeded only by the inertia of the charge.
In this same limit (§O = 0) the auxiliary parameters of equations

II-3 and II-4 approach

2 2
T = -{h"™ + #0€3) ; T, =0 and (IV-3)
2 w i
b=zec=f=0 ; a= 2+"}21 3 d=—3 g H
h+ w “ot3 h™+ w MOE3

- 63
g=—-§—-§-—-—— . (IV—J-{-)

r+wH.E

0 3
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By defining

s - 0° - (b5 m2poe3) (IV-5)

egquations II-10 and II-11 becoms

Jop
S ___(VHE +5%H)=0 (1V-5)
Lt o u0€3 t "z Z
-Jw €
3 (vi E, + T2E2) = 0 (TV-7)
h+ o p.oes

A consequence of removing the magnetic blas has been to diagonalize

the dielectric tensor and to decouple the wave eguations. As within

& conventional waveguide, E2 and HZ satlsfy independent equations
and any glven fleld may be resolved lnto a superposltdon of dlssoclated
TE and T partial waves.

For o # 0 , equation IV-8 has a solution

E = BJ (8r)e” 3 (TV-8)
and for e, # 0 , a solution of equation IV-7 is
-jne
EZ = EOJE(TI') e 9" (1v-9)

As shown in equation IIT-U1, the factor w = 0 1is a remnant of the
cyclotron wave which, when the magnetostatic field was present, had

a cut off at ml n and a resonance &t mp + Llkewlise the factor
F =

e3 = 0 , once the resonance of an electromagnetic wave, has in the
absence of §0 degenerated into an slectrostatlic osclliation at the

plasma frequency; (refer to dispersion disgrem TV-1).
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In view of relation IV-4, equations II-8 and II-9 for the trans-

verse fields beconme

1
E.= =3 [~h V.E + Jope, x VtHZ] (Iv-10)
h+ape
a3
H = S -h V,H - jwe.e X VE {1Iv-11)
-t h2 z + A 3—.z t = N \
+ & “0E3

For the THE modes, which already have EZ = 0 , the boundary con-

ditions &t the conducting cylinder = require

Jap Jop OH |
a o _ o 7
EQ B -h H.t‘ = arlr

r B4 €
o To @ Hy 3 c

Therefore according to IV-5 and IV-8, § = V’h2+ mLuOG3 is a root
of Jﬂ(Sro} = 0 . Replacing € by expression IV-2 reduces this
dispersion relation to

1 > D 5 ]
h =+ — -y -
td5yo 3 o with - I/QP + (svc)

and Jn(Sx‘O) = 0 . (Iv-12)

Tt is evident from equation III-k1l that o iz the limiting

3,0
behavior of the cut-off frequency dlscussed in Chapter ITI. Bince

h = o + JB , the propagating wave has a phase velocity

- e S : (1v-13)
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For transmission the operatlng frequency w must exceed the cut-off

3,n hence the phase velocity of each TE mode always
b
1

exceeds the veloclty ol llght V- .
¢ Jue
pOO

frequency, w

Consider next the TM wave solutions, subject to the boundary

conditions
E| = E[ = H =0 .
HES ®lr Tl
o o
Because H =0 and the fields have an assumed e J°° angular

Gependence, E_, Eg and Hr are proportional to one another, and

2 2
it suffices to reguire Jn(TqD) =0 . 8Bince T = V/£ + o poes the
T™ dispersion relation resembles eguation IV-12 for the TE modes;

vhence

1 e : 2 2
— - with =
o oy ®, 2+ ()

and Jn(Tro) = 0 . (Iv-1h)

The phase velocity of the TM waves

(Iv-15)

™e
¢§
]

also exceeds the speed of light in wvacuum.

The dispersive behavior of these waves is conveniently summarized
in the o-p diagram of Figure IV-1l. 1In addition to illustrating equa-
tions IV-12 and IV-14, this diagram displays the normalized phase

vedoeity %— ig and the normalized group velocity i-SL of each

¢ VC



/ lect atic oscillati
Ko e hp|mmn oo s _EleCtrOstatic osciliation

’ degenerate cyclotron waves

> T'=Br,

Flgure IV-1l. Dispersion equatioms IV-12 and IV-1h for thue
isotropiac plasmr-filled waveguide
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wave. The normalized phase velocity equals the slope of the line
drawn from the origin to the point of interest on the curve; the
normalized group velocity is the actual slope of the curve at that
point.

The isotropic plasma decreases the effective permititivity of
the waveguide, and consequently raises the cuk-off freguency and
thase veloeity of every mode. However, because the product of the
rhase and group veloclties i1s a constant, viz., %-%% = Vi y the group
veloeity is reduced. Aside from an inconsequentisl resonance at Qp,
the dAispersion is essentially the same as in an empty wavegulde. As

a result no slow waves propagate in either the plasma-filled or the

empty waveguide structures.

Infinite magnetic bias (B, -+ o) . As the axial megneto-

static fleld is made Infinite, the transverse motion of the particles

becomes increasingly constrained and all the elements of the conducti-

g
‘vity tensor except oy vanish. As a result g = Eo(i + J;;E } Dbe-
- - o)

comes diagonal, although the plasms remains highly anisotropic
because € £ e3 « Nevertheless, the longitudinal fields are no
longer coupled by €, -

For an infinite magnetostatic intensity

2 2
. ﬂi n':i. np
€ > e, € e ;(E - FK;)] =0 and €, = eo(l- -—-2-) )

(1v-18)
In an electrically neutral plasma Qi/me = niﬁmi , 80 that the rate

at which €, vanishes is determined by the neutrality of the plasma

and the magnitude of Eo" €] reduces to £, inverpely &5 the square of
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Bo , while 63 is unaffected by the magnetlzation.

The auxillary parameters of equetions II-3 and II-4 are rela-

ive imp. - :
tively simple for §0 oo

2 2
Tl = -+ @ H'OEO) 2 72 =0
vhile b=c¢={=0 , and

+3h W H - €
a = S a b d = —5—7— 2 gE = 2 2

2 2 e 2
€
h+ o pOEO h+ o “oeo h+wm uo o

o

4

(IV-17)

(Iv-18)

With these limiting values equations II-1C and IT-1l reduce to the

Helmholtz equations

> 2 2 2 2 2
Vi H +S8H = 0 8" = (1"+ o “oEo) (1v-19a,b)
2 2 a2
- = 2 -k
Vi E, + TEEZ - 0 ™ = (h + w poeo)(l mz), (IV-20a,b)
The transverse field expressions II-8 and II-9 are now
E -t -h g E + jope xVE (Iv-21)
=t e =2 t HoZe t7z
h+wpu e
0 0
H = —s—te—— [-h V,H -Jowe e xVE (Tv-22)
= 2 2 te 0 —z tTe]
h+wp €
0 0
Differential equation IV-19a for the TE modes has a seolution
-Jjne
B, = HOJn(Sr)e , E, =0 . (Iv-23)

Accordingly, the transverse flelds are
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ERACOEN (s2)a; (30)e, | 3% (zv-24)

-Jjn6

-h 1
= A{1v-25)

=t 2 2 o)

NI [(Sr)J;(Sr)gT - Jn Jn(Sr)gg.]e

If the angular component of the electric field and the radial com-
ponent of the magnetic field are to have nulls everywhere on the
conducting cylinder r =r_ , then Ja(SrO) = 0 . Thisg, and definition

Iv-.9b for 82 y describe TE wave dispersion as

. .1 [2 2
h = &3 — - . =2
2 d v \\‘/‘D ml,n (IV 6)
c
- The wave is cut off at ml L = SVC and propagetes with a phase velo-
SL
city

L - ‘o (Tv-27)
p

1 - (‘%3)2

exceeding the speed of light in vacuum, Vc

The physical effect of the Infinite magnetostatic blas is to
constrain the particies to longitudinal paths. However, without a
longitudinal electric field component to accelerate the charge, the
TE mode is unable to interact with the plasma. Consequently, the
plasma affects neither the fields nor the dispersion of the TE waves.

The T™ solutlons to equation IV-20a are even more interesting.
Ihe longitudinal fields for the ™™ wave areg

E, = E Jn(crr)e"Jng ; H =0 . (Tv.28)
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Consequently the transverse field components become

-k -Jjng
E = 55— B I[(sr)3(sr)e, - dn 3 (sr)ey | e ™ (1v-29)
h+wp €
o 0
~Ja €
0 1 ' -Jné
E, = ;§-~§T—z~ E, 3 [jn Jn(Sr)ET + (8r) Jn(Sr)gg] e . (Tv-30)
I+ W R

c o

Boundary couditlons requlre Lhe tangenllal eleclrle fleld and normzl
magnetic field components to vanish on the conducting wall r = T, -
These conditions are satisfied by taking Jn(Tro) = 0 . This, together

with equation VI-200 for T2 y leads to the dispersion relation

m /m = YY.n ,
b o= 7)) \I——% . {Iv-31)
c ®» - Qp

The T wave has a resonance at the plasma frequency Qp and is cut

off at @ =0 and at

mu’n = V/QE + (Tvc)2 . (1v-32)

These modes have a phase velocity

_ D -
= Vo 5 (Iv-33)

™iE
el
[A]

Between cut-off at w = 0 =nd the resonance st QP ; Blow waves

propegate whose terminal frequencies are independent of the wave-

gulde dimensions and the mode number. Fast T wavegulde modes are

also present; these propagate at frequencies above Wy L Figure
J

IV-2 11lustrates typical TE and T dispersion curves obtained fromn
relatlons IV-26 and IV-31.



=5 -

g [ = Bro

Fioure IV-2., Dispersion equatioas IV-26 and IV~-31
for the extremely ocnisotropic pluasma-filled
wavesulde
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The physical origin of the slow ™ wave can be traced to the
presence of the wavegulde wall and the infinite magnetostatic bias.
In thelr shsence the unbounded, isotropiec plasma has a natural fre-
quency of osclllation Qp'. If an infinite magnetic field is
imposed, the transverse motion of the charge is resisted by an
Infinite qv x Eo foree, while motion along §0 is unaffected.
The plasma now has bubt one degree of freedom in which 1t continues
to oscillate at frequency QP . However, confining the plaspa in a
conducting tube coaxlal with Eo , reduces the natural freguency of
the oscillation to an extent determined by the plasma reduction

r
factor R . R is & function of (ig) where T = i the radius of

the metallic boundary or waveguide, aid lg is the wavelength of the
plasma disturbance. The reduction factor is zero for infinitely long
disturbances, approaches unity at short wavelengths, and differs

from mode to mode. The reduction is ecaursed hy the induced image
charges present on the conducting wall. At larger wavelengths

more of the electrostatic flux from the plasma terminates on the
induced wall charge. This diminishes the restoring force experienced
by a dlsplaced particle, and hence the natural frequeney of 1lts oscil-
lation.

The T™ wave possesses an axial component of electric force
which is capable of inltiating s longltudinal disturbance in the
plaswa; the TE wave does not. As a result, oanly the TM wave
propagates below ﬂp R Sketches 1llustrating the plssma reduction
factor R , the dispersion relation for an unbounded plasma, and the
resultant waveguide dispersion {equal to the product of the two fore-

going finctions) are drewn on the next page.
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R
' __________
r
0 : 1—;:27<>‘G>
a) Reduction factor
AN
Ap —
r
0 -
b) Natural oscillations of an infinite plasma
d x=R\'
B o
r
0 —p

¢) Dispersion of a bounded plasma

Figure IV~-3. An explenation of the Ti space charge vave

of Figure IV-Z2.
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Fast waveguide modes occur at frequencies considerably higher
than the plasma osclllation. At these frequencies the individual
particles act as scabtering centers Lo the incldent wave. Because
of the rapidity of the fields, the particles are unable to follow
the field variation and unable to acquire a significant amplitude
of osclllatbtlon. The partlcles therefore behave more like polariza-

ion charges than free charges. The effective polarization vector,
however, 18 in phase opposition to the electric field, consequently
the susceptibility of the malerlal wlong the infinite axial
magnetic field 1s negative and sgual to -(S%)2 . The transverse
rermittivity €. remains equal to the vacuum dielectric constant

1

eo, and e2 =0 . A TE wave i3 therefore unaffected by this plasma.

The TM wave has a longitudinal electric field which samples the
reduced permittivity which in turn acts to ralse the modal diepersion
to higher frequencies.

As is decreased, transverse motion again becomes possible

B
_..0
until at Eo = 0 the transverse permittivity el has also been

4
reduced by (;?)2 GO to equal €_ and the plasma is isotropic. In

3
the isotroplc plasma both the TE and the TM wave dispersions are
shifted by equal amounts to higher frequencies. The TM space charge
wave vanishes as the magnetization 1s decreased, because with the
added transverse degree of freedom, the particles are ahble to respond
%o the disruptive force of the induced wall charge.

For an infinite magnetic field the cut-off frequencies wE,n

and w3 n of the coupled wave regime cancel the resonances wy and
b

@y et @ = co. As the magnitude of B, 18 lessened, the cancela-

tion becomes incomplete and these waves descend to lower frequencies.
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A numbér of involved transitions take place, but eventually Eo

vanishes and dlspersion diagram IV-l is regained.

Geometric Limits

Plane waves in an unbounded plasma. If one allows the radius of
fhe guide to increase without limit, the plasmaguide's fields and dis-
persion eventually approach the corresponding plane wave quantities for
propagation along Eo in an wnhounded plasma. The conditions for which
the plane wave approximation is valld are investigated using this pro-
cedure.

Diepersion in the plasmaguide is dictated'by ‘the simultaneous

solution of equations II-16 and II-36. If equation II-36 1s rewritten

as
P r )T (T.x )
EE”[ 2 . 2] _ 4 2] ( 20 n 20
r° (Brg)"= (Tr) | + [m“o 2 (%) e "
) s n‘"20
a 2y (TEIT (T r )
- [ 5 )] Tor ) - °
r Jn( 1%

and it is assumed that Tlro and Téro remain finite as the radius
T, becomes infinite, then correct to order 1/30 this expression

rcducce o

(Tlro)Jé(Tlro) _ (TZro)Jé(TQro)
| Jn(Tlro) i Jn(TEro)

The only solution of this equation consistent with the requirement that

Tlro and T2r0 be finite as r, oo is Tl = T2 = O,' "Betting T = O

in equation IT-16 gives
I S (V. oy +v,) = O (IV-34)
1 Te Tl Tg Tl Ta .



~100.-

Equation II-3 for Tl and Yo converts these factors into the dis-

persion relations of, equation I-26b, viz.

o= - meuo(el + €2) . (IV-35)

Since the postulated behavior of T.T, and. Tzro properly results in
the plene wave dispersion relations, the same assumptions are used to
expand the wavegulde fields.

For Tl = TE it follows from IT-17 that T, =T, and that
@l = @2 . Tae field componenits of egquations II-29, II-31, and IT-32

therefore become

1 =29 and E = 13 . (IV-36)

For fubure convenlence, the fcllowing notation is adopted:

ET
o] -3
0 == (—) J (Tr)e Jhe , (Iv-37)
wp TN
. ) Jot -hz | . .
the exponential dependence e is implicitly contained in

Eo(z,t). Equations IT-30, IT-33 and TII-34 for the transverse fields

are conseguently

-E T
8, - = {[Garem) @) +anler e a3 00)] e, +
+ [«jn(ja74-b)Jn(Tr)~+(c¢-+jd)(Tr)J£(Tr)] gy o7
/ (1v-38a)
-EOT
= wp F {[(f‘r +Ja) (Tr)d ] (Tr) + jn(Jgr+ C)Jn(Tr).;l S ¥

4.[_jn(fT_+ja)Jn(Tr)1-[ngi'c)(Tr)Jé(rr)] gg} e'JnQ.(IV_aab)
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The well-known recursion formulas for the Bessel functions

1 Tr
T = . < = =
In = 2(Jn-l _ Jn+l) - and =% (Jn-l * Jn+l)

permit ue to rewrite IV~38 as

2
-E_T
B mn ([sae)r + ©-0)] (g, - 1) 3,y (m)
- [Hame)r + (0+0)] (e, + deg) T, (70) }e”'ing (1V-39a)
-E_T°
H = - _ s
A {[e-0m v saral] (e sep) 3, @)+
-[(f+=g)'r + i(a- c)] (e + deg) 7 __,(Tr) }e’"‘in@ - (Tv-39p)
W
Subotituting IT-4 for coefficients a +to g oand placing '1'2 = °
d - jTe

according to equation IT~17a, after some labor, yields surprisingly

gimple expressions for the transverse fields.

E
_E 2 - R
27 oy {(T oyt Ty () epm deg) - (T = wp)d , (T0)
, -Jne
X (g + JEQ-)} e
(Iv-40a)
wp B 2 2\
B = “5%?§'{0[(7i' vt ) (rpr wp) ¢ (o 090° [, (e (e, 3gg) 4
5 .
+ [(T]_+ Tat he)(Tl- 7'2) + (Tl+ he)T ]Jnll('Tr) (Er-i- 359)} € I '
(Tv-Lob)

The lowest order fields result when T = 0 . anrl(Tr)'then has unit

magnitude for n = x1 respectively, and zero amplitude otherwise. It
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is practical to introduce the Kronecker delta abbreviation and write

Jn‘-Fl (Tr) = 611,'_17_71 *

The limiting bLransverse Lields are thus

E

..o . ' : -3n6
E = 5— - Je -(y.-
2t 272 {(Tl“‘ ‘(2)(31, Jgg)ﬁn’l (Tl ‘re)(g_r+ JE@)an,»-l}e
(TV=-hla)
“Eo 2
5 - 2% b B, {(Yi"'ré+'h ot plle,m degls, ot
b (vy+ Tt ) (1= 1o) (e, 4 Jey)d eI | (zv-h1b)
1" i2 V17 T/ ™ 95575, .
‘Because
J— -jn@ _ [ - - 5 = :|_
6n,£l(2r+ j_e_:_g)e = an_,il (g_rcos 6 - sin e)T j(g_rsm_ 6 wejcos @) =
= Bn’ilﬁgx T ng) (Tv-142)
the final expressions for the tranaverse fields are
EO
E = - 5 - - i -
" 2y, [(r1+ To)le - de) n,1 (v =7 ) (e + ng)anJ_l] (Iv-43a)
”Eo 2
LN T [(71' Tot ) (vt o) (e, - ng)an,l +
' o "2
_ 2
+ (rpt vt B (- vp) (et ng)an,_l} . {(Iv-43pb)

However, equation IV-34 de_-,monstrates that T=0 corresponds to 1ot iTE.

Accordingly, for n=+l choose Y= 1 and for n=-1 . take
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Ti = —Yé .+ Fquations IV-%3 then reduce td the-familiar plane wave
Tields:
-h+ | ,
—eq = op Et = EO(EX- J_e"y) with Tl= +T2 I i.e., _h*= ijml/‘@
(Tv-4kt)
+];L_
E, = — B = B (e+ J_?_y) with ¥)= -1, , d.ew, b= i joVu (e-c)
. T
(Tv-45)

while the longitudinal fields of equations Iv~358 and IV-37 vanish with
T .

As the wavegulde radius is made infinite, two circularly polarized
TEM plogle waves are founa to propagate along EO . The rlght circular
‘Wave h+ corresponds to the lowest n¥ +1 wavegulde mode, while the
left circular wave h .corresponds to the n=-1 waveguide mode. The
waves are occasiona.lly referred to as bthe extraordinary wave and the
ordinary wave, respectively.

The conditions under which the waveguide fields of the lowest
n=3l1 modes may be treated as plane waves are appralsed by reviewing

the steps leading from IV-40 to IV-kl. For small arguments

Tr, 2

JO(TI') :‘.‘:l—('—e- +oeee

Thus it is assumed that %;\ << 1 or, equivalently

() <
o}

. (Iv-46)

1 2
TrO
Equation IV-46 provides & criterion for estimasting the radius to which

the n=11 wavegulde fields approximate plane wavegs. Since the argument
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Tr, is basically a zero of Ji(x) or Jl(x) , the size of E%— is
: rr

slightly less than unity for the lowest mode.and becomes progressively
smaller fur Lhe higher Jmudes. The hlgher 't.he mode, the poorer the
pléne wave approximation at any given radius. Because the fleld con-
figuration.of'a coupled'mode will vary as the frequency and plasma are
changed, Uhe plane wave agpproximatlions are likely Lo be more sulbzble in
some frequency ranges than in others. The criteria which determine when
the plane wave approximations are appropriate can also be estimated from

equations IV-40 and IV-41. These expressions require

> 1 (Tv-47)

for n =11 respectively.
By means of egquation ITI-31 the plane wave propagatlon factors

contained in equations IV-ik and IV-45 may be expressed explicitly in

terms of the frequency

2 2
' 2 [ 9] Q 2
- R L {l _ e . i _ o (wtop) (0-ag)
L= uo(el+ 62) Vg m(m-me) cngn+mi) Vg Qnﬂbi)gb_me)
(Iv-48a)
‘ o 2 2
Vf ®&D+we) wﬁbﬂﬂi)d] Ve (0w, ) (0, )
(Iv-48b)
According to ITI-3h
® - o ©_+ m, _
o = - ( 92 Ly 4 \/(——e-~2-~-~-:-L—)2 + (ng + u?) (Tv-h9a)

»

w = 0, o + W
wp =+ (——=) + \/( =5 L2, (ni + xz‘z‘) (Tv-bob)
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extraordinary wave (8+) \

'
EM waves

ordinary wave (8-

~~~~~~~~~~~~~~ (electrostatic)
v
,
7
e
i
Ne,
s
We ~ .
/ o extraordinary wave (8+) §
/ pid o
/ // \ 3
Wi - L /7 ' o
Ry ordinary wave (8- -
/ =
/ y
0 = [3

Pigure IV-lk.

Plane wave dispersion for propagation along
the magnetosteatic fiecld
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A sketch. of these plane wave dispersion functions appears in Figure

IV-h,

Let us briefly examine the transition from waveguide dispersion

to plane wave propagation. As the wavegulde radius is increased and

-3 - 3 = f 2 2 - ; -
T, Tl 0, wh,n V(TVC) + QP ﬂp As wh,n drops, it over

takes the Wy cut-off frequency which is also. falling. Mode mixing

L
occursg and and w interchange roles; eventually

a,n l"’n l&"n
characterizes a longltudinal electrostatic oseiliation of the plasma at
frequency QP oy becomes the cut-off freguency of the left clr-

2
cularly polerized plane wave. Meanwhile w, and wS‘n also decrease
2 : 2

as r_ >0, to become the two remaining plane wave cut-off frequencies

w =0 and O respectively. The transition and mode miiing are

"gketched below.

0 -
B wyp—o0 B8

plasmaguide o — 00 unbounded plasma

Figure IV-5. Transition from waveguide modes to plane waves
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Except near ®), and Qﬁ , the flelds are TE at cut-off and

2

become TEM as resonance is approached. FPFor intermediate frequencies

Tlro remalins very uearly cygual Lo & zeru of Jﬁ(x) s a3 1L 1t

belonged to a TE mode of an'isbtropic waveguide. The magnitude of
Tr  is usually several orders larger than T,r, . If this is due to

a large real part, then the Bessel functions of T.r are very small

2o

indeed. In any case the coefficients that multiply Jn(Tero) are
generally much smaller than the corresponding coefficlents of Jn(Ter).
As a result fhe Bessel functious Wil argument Tar0 are of secondary

importance. Since the mode having a TM cut-off at 'wh n and resonabt-
3

ing at Qp transforms with increasing guide radius into an electrostatic

osclllation of no further Interest, the TEM plane waves are the outgrowth

of coupled waves which are predominantly TE. A sketch of the TEll Tields

in a circular isotroplc wavegulde is reproduced in Figure IV-6. HNote how

the flelds lu the cenlral porlion of {he gulde resemble a plune TEM wave.

It is not surprising then, that the n'=+ 1 = wavegulde modes reduce

to plane TEM waves.

r'-__-'___"“_'w rre-"-TTmmees M
| I(: ________ oW o« :r r- ________ 1 -: -
Vo o L
bs e Tl o e e T 1 -: Jo.
Py o vy ! i
i ) i ! |- U
- Y. *. Y 4 4 u+ x Aa fa ‘ Y .' .Y
| i . i
| ! ] | i |- : | i : X ,
cre el [ O T G4
: H e } i f : | o__.d i :
- : » L, ________ * § r: w :. L:_ _________ g_" »] .
b - ——— 4 e o e oo J

Figure IV-6. The TE 1 mode of an isotropic circular waveguide. The
'electr}c field is shown soliid, the magnetic field is
indicated by the broken line.



the linear non-dispersive range of the Alfvén wave and the parabolic
freqﬁency‘ dependence of the whistler mode. In the Alfvén region near
@ = 0 , the transverse components of the permittivity tensor as given

by equation I-18 reduce to

| nﬁ a; | |
€ =€, 1..4-E + ;E and €, =0 . (IVv-50)
e 1

Meanwhile both plane wave rropagation factors of equations IV-hl ana

IV-45 degenerate into

B =t ule £6) —s zo

xi’(g')—'); =20

Py
ool

_+
ol

@ >0 o &
(Iv-51)
where
[ 92 aZy1-1/2 B B_
V:p.é(——-l——-'} = = (TV~52)
a oo 2 2
P P4 \/uu(neme+ ni?li) Y HoPm
is known as the Alfvén veloclity, and
Pp = (neme + nimi) (Iv-53)

is the plasma mass density. Thus the plasma supports electromagnetic

waves that propagete with equal group and phase velocities, %(g = %

which do not depend upon the frequency until o nears mi . An

= Va,

interesting physical picture of this wave can be Pound in Alfvén's book
(24). By treating the magnetic induction as stressed elastic strings,

the wave can be described é.s an oscillation of these flux lines.
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In the frequenecy range o Ko K mé only the extraordinary wave

i
propagates, and this has a wave number {(cf. equation IV-h8a)

a = 0
+
o szz o, 95 )12 2 1/
Bo=v ita -7 D¢ =7 G rap (Tv-54)
c e Qe 2 e
w, Q% Wy
because in a neutrsl plasma raliby-Salrs << 1 . A frequency component
‘ . N

_ s :
® , belonging %o a group of such waves excited at +© = 0 , reaches the
observer at an instant

t(0) = f _ds (17-55)

Vg(m,s) '

The integral is evaluated along the path of propagation of which ds
is an element; Vg‘ is the group velocity‘of the wave as 1t passes
through the position s . Since the wave normal and the magnetization
are perallel, it is not necessary to &iétinguish between the ray direc-
tion (E x H) in which the energy flows, and the direction of the wave
normel (D x H) ; they are the same.

If it 1s sssumed that the lonization everywhere along the path

is sufficiently dense that the conditilon

O
_§ > eenl 1
me w Wy
prevails, then
2
] 4]
: o, ) 1/2 e /m
+ VC o ) V (De ( )

1]
(¢}

and



l — dﬁ.{. = l ne ) -:I.: E.i = ._—..—.—..:]—-.—..-...-.. (Iv_57)
1% aw ‘chmme 2 o wﬁm%

The arrival tire is thereiore

~1/2
oY

D

_ 1l } N (v-58)

e Vug(s)

The guantity T , defined by the bracket, is called the "dispersion" .

It is & measure of the spread experienced by a wave packet along a given
path of propagation. Equation IV-58 demonstrates that a transmitted
audio pulse will appear. to the observer as a whistling tone of descending
pliteh. For this reason the wave is often referred to as the whistler
mode . Lightning frequently excltes whistlers which enter the lonosphere
in the extraordinary MHD mode and propagate dispersively along the
earth's magnetic field to the opposite hemisphere (25). Recently attempts
have been made to excite the whistler mode lu waveguldes zod shock tubes
(26). The results obtained have beer superficially exglained by a plane
wave analysis. A later sectlon of this chapter, devosed to gulded MED
waves, provides the theory for adequately explaining the Alfven wave and

the whistier mode in & circular guide.

The narruw wavegulde llmitl and bhe gquasl-stalble approximation.

Wave dlspersion is examined next in plasmaguides having extremely
small ceross-sections. To satlsfy the boundary conditions at the wave-

gulde wall, it 1s necessary for Tl and T To become very large as

2
the wavegulde radius T 1s reduced. It is equally important that h
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be large, otherwise the wave would be substantially cut off.
Physically, fields are sought whose phase velocities % are very
much slower than the velocity of light through the medium. Such
waves are usually studled via a quasi-static analysis. However, by
examining the 1imit of a coupled wave in a narrovw waveguide, a more
versatile dispersion relation is obtained whkich, for very large values

of T , reduces to the quasi-static relation.

A useful spproximation based upon these considerations is
1ML v z

This lnequulity is fulfilled in the microwave range where Té =0 , and
in the Zow frequency MHD range waere 15 - 0 faster than either T, = 0
(torsional or TM mode) or (Yl+ Tg) - 0 (compressional or TE mode).
Inegquality IV-59 is also satlsfled at plasmu resvnance where LS s el
with h , and at cyclotron resonance where Tﬁ = rg so that IV-59
reduceg to \rlTEI >0 .

When approximation IV-59 1s valid, dlspersion relation II-16 for

the couplied wave becomes

T2

(1, %) - 5 (gt he)} =0
W €

0 3

or, because T = -h2— mgposl ; these factors are
(ry+ e &1
1 R T

Thus in the narrow wavegulde limit



-132-

2 2
8 T=-T ) T=-2v : (1v-60)

The most apprepriate form for equation II-36, relating T and h to

the boundary conditions at £y is

2 2 2
. - - - “~ l/ \
[2a(Tf - )7, (1,7) - (o, dmg)(%}g)JA(Ter)} 3 (e ) -

2 \
+ Gnuo- dTl)(TQro} J;(TQro) Jn(Tlro) =0 * (IV-bl)

According to IV-59 and IV-60 the coefficients of this equation are

- 1L 7T €
2 m2y o'L'2 _ 3
b(Tl Te) -] (a el}
L& R P
and
2
P Pl - v+ T v, {1+ )
(wn = ) = @H 5 | = o, = ’
T't - TQ ! Tl = T2

Substituting for Tl and TE s

e
&nuo— dEl} = C
wu 72 €
ey o'l _ _§
anon GTE) = 3 (1 El)
Y1 7o

whence equation IV-61 reduces to the product of two factors, viz.

a) [nTaJn(Tlro) + rl(Ter)J;(Tlro)]z C and k) Jn(Tgro) =0 .
(Iv-62)

Eguations IV-6C and IV-62 completely describe dispersion in the narrow

T - et

LT e A Tdon "~ tlhmd blrm T dwmd ded cn v vrmem e A
WAVORELWILUC 111l L. L 1o L v L b
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II-16 and II-36 into separate relations for T and T2 .

1
To uwnderstand the field structures tc whieh cquetions IV-60 and
IV-62 apply, these dispersion relations are now derived directly from
equations II-8 through II-11 for the waveguide fields. By invoking
inequality IV-59, s 1o effectively set egual 4o zero. According to

II-4 coefficient c also vanishes; whereupon equations II-10 and II-11

decouple into

2 2

= = - {Ty_z

Vi H, + 5 H 0 S = T (IV-63a)
2 <
Z z e. 'L
1
These equations have solutions

3 -Jne& - o
HZ = HOJn(Sr) e (IV-6ha)

= -Jne -
E, = EOJn(Tr) e . (IV-6kDb)

The transverse fields are specified in terms of EZ and HZ by egua-

tions II-8 and II-9. The boundary conditions which require Ez 3 EQ N

and Er to vanish at the waveguide radius », are therefore

E, = EOJn(TrO) = 0 (Iv-65a)
To
EO
Bl o= & [na T (Tr,) + ofTx,) Jr'l(Tﬁo)]
O O
1. {
a .\ - T = .™ -
- 'E;' Lnb Jn\SrO) d(SrO) Jn(SrD)] 0 (IV-65D)
EO
H, R -i_:{ng Jn{Tro) - f(TrO)Jn(TrO)] +
o]
HO
+ 3 5 [me a,ler) - a(er,) guisr )] = o (Tv-65¢)

o



-11h-

if Eo and Hb are eliminated hetween equations IV-65b and IV-E5e,

then using identity II-5

nlo
o e

the following transcendental equation results:

{%’[na Jn(Tr0)+ c(TrO)JA(TrO)] - [ng Jn(Tro) -f(Tro)Jﬂ(TTo)J} )

X [nb Jn(Sro) - d(Sro)Jn(Sro)] 0 . {IV-86)

Setting the second factor of equation IV-6€ equal to zero satisfies
boundary conditions 3V-65 only if EO =0 . Thlis corresponds to a TE

wave which, according to equations IT-8 and 1I-9, has

Jwp

_ D — — ( T-- >
Eb - -h (Ez XAEL) =D v%Hz = Jd g % v%Hz (Tv-67)

H, given by equation IV-6ka, and E, = 0 . The dispersion relation
which S, h and o satisfy is cbtained by substituting II-4 for b

and & intc the second factor of IV-66, ylelding

- -
I

o TéJﬁ(Sro) + yi(Sro)Jé(Sro);

Il
(@]

(1v-68)

o

) 2 2
where S = - Tl = h +w poe

l L]
Comparing IV-68 with IV~80a and IV-62a we conclude that the narrow wave-

gulde llmil assocluted wilh T, = 8 1s transverse electric (TE).

1

The first factor of equation IV-66 cannot vanish and at the same
time be consistent with boundary conditicn IV-65a unless Yo is suf-
Ziciently small that ¢ and f may be neglected., Then, if Ho = 0
or else equation IV-68 is satisfied, boundary conditions IV-65a,b,c are

Tulfilled. Consequently for Yo essentlally zero, the fields
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are ™ with E, defined by equation IV-6U4b , Hz =0, and as a
result of II~8 and TI-9

-h

=t ju)El (Ez

) = 2vg . (IV-69)

x H
=t Ti Ttz

Due to equation IV-65a, the boundary conditions are satisfied by choos-
ing
€ €
- me _ _é_ -3 2 2
Jn(Tro) = 0 with "= - =7 = (b+ “oel}

|

(TV-7C)

Reviewing equations IV-60b and IV-62b, it 1s immedisetely observed that
the dispersion relation for T2 corresponds to the TM Tields of equaw
tions IV-84b and IV-69.

Referring to the appendix, we note that the T™ narrow waveguide

limlt

€
2 2 1 2
-h =0 W& = T H Jn(Tro) =0 (Tv-71)}
and the quasi-statlic approximation
o 2 2
~-h =-—=T H J(Tr ) =0 (Iv-72)
€ n o
3
2 P2 .
are identical for T > @ u0|63| , 1.e.,
2 2
T° s —:-LE \m - nei . (Tv-73)
v P
c

The Inequality i1s satisfied in vefy glender waveguldes vwhere, in order
that the roots of Jn(Tro) remain different from zerc, T — oo as
r, > 0 . Inequality IV-73 is also fulfilled in the viecinity of the
plasms resonance. However, the guasi-static approximation fails at

frequencies much lower than QP where the TM narrow wavegnide 1imit
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correctly depicts the Alfven wave. As w > 0 ., eguation IV-71 approaches

2 2 2,1 1
-h e g - w (—E bR (1v-7k)
=0 Va VC

This dispersion limit should be compared with equations IV-51 through

IV-53 for the plane Alfvéh wave, and/or equation IV-91 for the guided
Alfvén wave. Tt may be parenthically remarked that as o and Yo
approach zero, the TE narrow-guide dispersion relation IV-68 reduces to

the dispersion réiation

- h =0pE -8 > (5+3) -8 with Jr‘l(SrO) =0 (IV-75)

_ for the compressional MHD wave (c.f., equation IV-85).
Introducing equations I-18 and ITI-29 into expressions IV-71l and

IV-72 permits us to rewrite the ™ narrow-guide dispersion relation as

2 2,,2 2 2 2
o «? (m - o) (0 - wb) (0 mh,n)
-h" = — (Iv-76)
V2 ( 2 2)( 2 2) ( 2 2)
c \®-og)le -, w - QP
while the guasl-statlic dispersion relation becomes
2 2,2 2,
o ' (w -03)(& = )
- B = - T° = ™ = (TV-77)

2) *

@2 0?) (@’ 02) (o~ ]

Frequencles w_ , @ and ®, are defined bj equations ITI-33 and
a _ ,n

TTI-26. The similarities between equations IV-76 and IV-77 are clear.

Certainly if iInequality IV-73 is followed, the two relations are iden-

tical, for then
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mn

1 2

LR o ) - (@B g2 - R 2

@ - g - v TE)%-T .
P ol

<"
0 N

c

As already polnted out, the quasi-static approximation Incorrectly

describes propagation at the lowest frequencles where mepoe is of

1
€
2
greater importance than - El T . The gquasi-static approximation also
fails to explain the existence of the fast wave whose cut-off pccurs at
ﬂ)h’n-
Thus each coupled mode is resolved in the narrow-guide limit into

a TE mode and 2 TM mode. Although neither the TE nor the TM narrow
wavegulde descriptions are valid near cut-off, it should be remarked
that the cut-off frequencles (xl,n, xg,n, ks’n) of the coupled wave
'approach, with increasing mode number S , the TM narrow-guide cut-off
freguencles (xa, Ay w) as upper bounds (gf., Figuwre ITI-10). The
gimplicity of the TM dispersion relation, its significance to the quasi-
statlc solution, and the nature of its cut-off frequencies, suggest that
this llmit may provide a useful foundation Tor understanding the exact
dispersion relation.

As is easily confirmed, the critical frequencles of the TM narrow-

gulde limit can be arranged in the following sense

® > > )Le > ).a > xi >0 also Ay M-l,n > Ap . {1v-78)

Hince both kh,n and A? are independent of the magneteostatic
field, the full range of dispersion characteristics can be observed by
varying the plasma density. At first the density is assumed so large
that lb and Xh,n become the highest critical frequencies of the

plasmaguide. BHubsequently the density is decreased until finally only
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m_7(2()) >\4n>>\b
Ap = Xe

9

m"7(1b) Ab >>\4’n
Ap> Xe

T-7(2b) Xy >X,,
Ap= )\e
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TZ-7 (4b) Ay ,>Ap
Ap = )\G

—

r

IL-7(3b) Ap >Ae >Agq
g n>Ap >N

>
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il

L -7(5b) Ay > )\e>)‘4,n
™V - 7(5q) X4,n Zkzx . >Ap>>\i
Ag > Lp i

=37

TV-7(6b) Ap> Ae > Aa
e e Ap= N\
Ap =X

ek |
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the empty waveguide structure remains. The possible dispersion curves
vwhich result are sketched in Figure IV-7.
In drawing these sketches the ineguality xh a” My, Vas employed.
?

The validity of this inequality rests upon the assumption that

2_,2 2 ' \
(Tro) > (Ai - Aé). Suppose that A = O, the lovest value Tr  assumes
1s 2.40L48, conseguently a value of A equal to 2.4000 sti1ll satisfies

1
the assumption and, in a hydrogen plasma, corresponds to x9= 1.8#6)»i

= 4400, Since this velue of A  is difficult to sttain in the
laboratory, Xh,n 1s.almost certainly greater than Ra . Secondly,
for a fixed magnetic field he and a given mode Tro ’ kh,n is either
always larger or smaller than xb » independent of the plasma density.
In the next section the MHD limit and the narrow wavegulde limit
are found to agree at low frequencies where hoth approximations involve

8low wave propagation.

Guided Megnetohydrodynamic Waves

At frequencies far below plasma resonance the plasma behaves like

an incompressible conducting fluid. Distinctive of this domain, known
as the magnetohydrodynamic (MHD) limit, are the Alfven and whistler

| modes of propagation. The principles of MED transmission have already
_been introduced in connection with the plane waves of an unbounded
magnetoactive plasma. The effect of the waveguide structure will now
be investigated.

The analysis is divided into three parts; in each division suitable
limiting expressions are chosen for the elements of the permiftivity
tensor. The Alfvén waves are the lowest frequency MHD modes to propa-

gate. They occur in the range 0O £ o << ®; where equations I-18a,b



2 2
o) 9
for & neutral plasma {Em = 5—) reduce to
e =
o~ 2
1Y) 2,
_ e . 1} 1L 1 1.1 70
El-— l-r-—-§+—§!€0 = L.LO(V2+ 2),..— v2 (IV 9)
Ve By a c ;.10 a
€, = 0 . (IV-79b)

o

P2
€ it \e (Iv-80s)
S - B U
W, - W
= 2
. Q Q7 m, .
e = =—{.&8_ L 1 1-_.%¢ . (Iv-80b)
27 oo 2 2 w; Lk
e W -w

For w << u)i these expressions agree with the Alfvén dielectric con~

stants, because in a neutral plasma

2
% (1v-01a)
me
e, =+ ;0‘9- e . (1v-81b)
2

The transition from expressions IV-80 to IV-81 occurs at the geometric
mean of cyclotron freguenciles, \/a:euai 3 there IV-80a and IV-8la are
equal.

Alfvén waves. Using the transverse permittivities defined by IV-73, the
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coupled wave equations IT-10 and II-11 immediately separate into

: 2 2 2 2.1 1
vaz*'SHz_ ° S=-7v.“bro(—g+3) (1v-82)
\']
a c
. [ £
= 2 : 2 2,1 1
VE +TE = 0 P PR | PSS
vz z 1 09 v ove
a e
{(IV-83)

A comperison of ithese relstions with IV-63a and IV-«63h confirms that
the MHD and narrow wavegulde approximations approach s common limit as
w0 .

The TE modes that arise as sclutions to equation IV-82 have

B, = HDJn(Sr)e“jng and E =0 . (Iv-8L)

The transverse flelds evaluated by means of equations II-8 and II~9 are

simply

-Jop - Jou
o= o =20 ; . -
2¢ = n (Ez x Et) 15 (Ez x V%Hz) (Tv-85)

For E@ = Hr = 0 on the conducting wall at rO y it is necessary to
chonse an S which satisfies Jﬁ{SrO) =0 . Then, according to equa-

tion IV-82, the TE Alfvén wave dispersion is

2 2, 1 : .

b= o (34 ~&#) - g% with Jg'(sr ) =0 . (Iv~-86)
v V2 n o

& C

This wave does not propagate at zero frequency but cuts off (b = 0)

when
g qf 5 w
1001 .-l/2 . e i,-1/¢ 1
o = 8(== + .....) =8V (L+ —= + —=) ~ —= 8V . (1v-87)
va V§ o] mg m% Qi a

This is the MHD behavier of cut-off frequency - n (cf. equations
it/
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III-39 and ITI-LO.)
The solutions to the TM wave equation IV-83 which are regular on

the wavegulde axis are
- Jnb .
E = EJ {Tr)e and E = 0 (Iv-88)
p on

Since HZ and ¢ are both zero, the transverse fields given by equa-

2
tions II-8 and II-9 become

sh +h

B, = =3 (e, x &) = - V,E, - (1v-39)
1 i
The boundary condiiloas Ez = Eg = H& = Q0 at ro are convenliently

satisfied if Jn(Tro) = C . BEquation IV-83 then yields the ™ Alfvén

wave dlspersion relation

2 2,1 2
a0 (5 +—) - =T  with g (Ir)=o0. (TV-90)
2 € 20
Va Va 3
In accordance with the approximation that €, = 0O a8 w— 0, note that
g2
3 —..._}i g -
€= (1 m2)€o oo
As a.result equation IV-90 reduces to
1.1/2
B = m(—£§ + __5) / " %%- , a=0 . (IV-91)
V& Vc a

The same expression also characterizes the dispersionless propagation of
a plane Alfvén wave in an infinite Flasma. Unllke the plane wave, the
displacement vector of the waveguide mode has a longitudinal component
Dz = E3EZ vhich, to remain finlte as €3 - -0, regqulres B, - {0 , The

transverse fields do not vanish with E, because by equation IVv-83,
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Gl 5 )
T == T , so that TV-89 reads.
3 .
=R -8
= . = . -2
=t w € (32 x Et) l 2 V%Dz (17-92)

Thus as @ nears zerb, both the electric and magnetic vectors of this
mode become trahsvefse to tﬁe guide axis; although the displacement
vector continues to retain a longitudinal component.

The gulded T Alfvén wave also differs from the plane wave by
having a transverse spatial dependence that satisfles certaln boundary

condltions, viz. ‘E , = Hr| =0 . The circular symmetric
T _

Bgl, ~
o _
‘mode, however, l1s an exception because according to equation IV-92 these

three field components are identically zero. The remaining flelds are

B D
i |

— OJl(Tr) (1v-93)

E
=T
1

where Db = €3Eo . T 1is determined entirely by the source currents. If

T=20

1
H_Q = ﬁ EI‘ = E(ja)DO)I‘ . (IV—QJ-I-)

The source for this field is 2 uniform axial current

| I=VxH= r 3_ (rH )e = (erg)gz . (IV-95)

I

Other studies of this MHD range have been conducted by R. W. Gould
(11) and by J. Schmoys and E. Mishkin (12).

The whistler mode of propagation. Above the Alfvén
range, the permittivity € is no leonger a constant and €, is
different from zero, although if np > W, 63 remains large

and negative. In fact, 63 will be asgumed infinite with the



-127-

Justification that it is generally much larger than €, and €, , and

i 2
that this assumption. results in a considerable simplification of the

problem.
For 53 = =00 tﬁe coupled equations II-1C and II-11 reduce to
E =0 and
2
o TE ~ T2
Z 2 : e "o L "2
T = h = = - . e
LB, T 5 ﬂz 0 wit 8 ) T (TV-56)

According to equations II-8 and II-9 the transverse fields produced by

H are
%
3o ) bv & V. E

Et ST {Ez ® Et - tHz v 2 Vg z) ' (1v-97)
The solutien

I - BJ {er)e 908 (1v-90)

2 on'

must satiefy the boundary condition

Juy -Jop H

_ o _ o o ' 'J -jne
Elr = m Hrlr T2 2r [Tén Jn(sro)+ Tl(sro)Jn(Sro) € =0
0 °© Y -¥, ©

Thus TE magnetohydrodynamic dispersion is defined by
Ton Jn(Sro) + rl(SrO) J;l(s:-o) = 0 (Iv-99a)

and by equation IV-96 for 82 which, when simplified using equation II-3

end the quadratic formule, becomes

-

2 2o o
o o ! 2 2
-7 = (w k€ - =) % \/(—Sg) + (mg.uoﬁe) . (IV-99b)

1 2
provides the TE dispersion relation IV-86, while the upper sign yields the

If ¢ and € are described by IV-7G, the lower sign of equation IV-9%b
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TEM dispersion relation IV-91 of the Alfveﬂ domain. This illustrates
that propagation of the principal (TEM) mode ( 9) near zero frequency
may be treated as the limit of either a M or a TR wave. Note further
that with €, = 0 the sign of n does not enter into equation IV-99a.
However, at higher frequencies where ¢, # 0 the first term produces a
shift in the TE wave dispersion which takes opposite dirsctions for
each sign of 2 .

Using the transverse permittivities of equation IV-80 for the

reglon Wy equation IV-59b becomes

! Q
- 87 |ty ]% \/( - @ (@92 (252 (2v-200)
e} (_ui - c i U)i

As - 0, this statement agrees with the Alfven dispersion relatiosns.

Near the ion cyclotron frequency the wave dispersion is approximately
a2

1
(_) el (TV-101)

As a vesult the prircipal mode (upper sign) rescnates at the ion ecyclotron
frequency; above resonance this mode 1s evanescent, since h 1is real. As

@ 18 increased from 0 to w the phase velocity of the prineipal

i 2
[$3)

wave decreases monotonically from the A fvén velocity Va.v 11 v o
+

zero at resonance.

The other TE wave (lower sign) does not resonate with the gyrating
ions but exhibits a cut-off at ml’n = g% SVc in accordance with equa-
tion IV-87 of the Alfvén limit. Above cub-off the wave propagates with
a phase velocity which has nearly & parabolic frequency behavior. This
is the waveguide equivalent of the whistler mode. In the range
mi < <K W whe re 82 is negligible relative to meuoeg ; equation

TV-100 can be gpproximated by



2 2 2
13 s r eV
o 2 ‘
~-h = [(%J"‘ 2 ----(-*—-j—'-—-——)- - %—} = % m-—e L(D - _le_Lg] (.TV—lOE)
¢ wyle + W Ve % @,
0?2 ql
because In a neutral plaesma Ei = EE" This wave has a phase velocity
i e
® e mi n
V. == =V 1 - == Iv-10
ph B e\ 27 [V T Bwa, ( 3)
and a group veloclty
o .
( / 1 - . (Tv-104)
\ g. &nwi

These expressions should be compared to equations IV-56 and IV-57. Note
that the product of the group and phase velocities for the guided whist-

ler modes and for the plane wave whistlers are equal.

(V_.v) = 2y° (cfw—e) - v ) . (IV-105)

h g’ waveguide ¢ HS Veh'g plane wave

Dellis and Weaver (26) have observed the whistler mede in a wave-~
guide. The results they report were analyzed only qualitatively on the
basis of a plane wave theory neglecting ion motlon. The theory developed
here should provide additional insight to the interpretation of their

experiment.

In the third fregquency range characterized by the permlbtivities

of equation IV-8l, equation IV-9Gb is

g2 2 2, ez
- @ty - S \//( )%+ (@)% @ (o -
e-w c w u%
(IV-108)

At o =\/wfme this and equation IV-100 are identical.
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It follows from IV-100 and IV-106 that the wave waich propagates at the
ion eyclotron frequency resonates at ®, - Above the electron cyclotron

frequency both thls wave and the principal mode are evanescent.

The MHD dispersilion curves. Tke fileid and dispersicn relaticons IV-97

through IV-9Yb are valid over the entire MHD range if the complete expres-
slons I-18 for the permittivities are used. Equations IV-99 can be

derived dlrectly [rom ihe exuct disperslon relutions IT-16 wnd IT-36:

2 2 2 T 2 2 2 .2 2,7 _
[Ti - ¥, 71T ] - =3 [Ti -Vt Ttk (Ti+ T )] =0 (II-16)
W €
03
(T,r )J'(T.r ) (T x )T {T.r )
2 2 2 20’ n'"Fo 2 1" n""1lo
ba(T, -~ T - d - - =
a(T) - T;) + (op - 4T7) T (T.r) (p - ar;) J (T.r ) 0
n-"2o n*"io
(I1-38)
through a limiting process. Evidently allowing 63 to become infinite
reduces II-16 to
2 2
I Sl S
1 1 a
2 2 ®Hg . ,
Substlituting Tl = 8% = - into equation II-36 and cancelling the

common &upotdmg) factor leavce

o (8r ) Jl(sr ) e
d J_(8r ) )
n o

Upon replacing b and 4 according to equations II-4, this becomes
egquation IV-9Qa.

Using equations IV-99, the dispersion curves for the lowest circu-
lar symmetric and the first angular dependent modes are sketched on the

following page. Indicated on the sketches are the critieal frequencies,



-131-

apoy
13[4SIUM

1°866-AT suorysnbe ‘qyurf uOTHISGSTP OHW OUL  *O~AL SmPtg

u 2 v
Ny



-132-

the domains of analysis, and the primary character of the fields.
Cbserve that according to equations ITI-4O0b and III-26 the cut-off
frequencies w2,n’ m3,n and mh,n are removed tc infinity along with
ﬂp in the MHD limit.

These diasgrams indicate that the TE branch which resonates at ki
blends at smaller frgquencies into a wave which may be exclted in
either the TH or ™ mode. At the lowest frequenciles, the longitudinal
electric and magnetic components of these modes vanish and TEM waves
result. A distinctive feature of the angular dependen®t waves is that
both the left {n = -1) and the right (n = +1) “circular" polarizations
of the fields resonate at each cyclotron frequency. This contrasts
with the plane wave limit for which only the left circuler polarized
.wave regonates with the ions, and only the right circular polarized
wave resonates with the electrons. The following physical explanation
is offered.

The transverse Tield configuration of the first angular dependent
TE mode may be resolved into two components, a uniform field and a cor-
rection field, Figure IV-9. Both field components are necessary in
order to fulfill the woundary conditions, but each resonstes with a
different type of charge. When the uniform fleld rotates in the same
gense and at the same rate as one of the charge species, the electro-
magnetic energy of the wave is converted into the cyelotron motion of
that species. Propagation halts and the wave is evanescent. The
details of this resonance sre exactly like the cyclotron interactlon
experienced by a plane wave. The snomslous cyclotron wave resonance is

explained by the correction pattern which accounts for the curvature of
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the TEll field. As the_correction pattern rotates, it periodically
reverses at each obsefvation point at the same rate at which the
uniform field rotates. The correction field is capable of accelerating
either.type of charge proﬁided that it has the proper phase and fre-
guency relative to the orbiting particle. .If'the guide radius is

increased, the correction field vanishes leaving only the selective

resonance ol a uniform plane wave.

|/

~—L

TE, Field Uniform Field Correction- Field

Figure IV-9. The reselution of the TE,; electric fleld into two
component fields.
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CHAPTER V. WAVE DISPERSION IN THE CIRCULAR PLASMAGUIDE

Varicus limiting conditions were introduced in Chapter IV for
which the dilspersion reduced to simple THE, TM, or plane wave propagation.
Ia this chapter these limitihg cases are compared numerically with
several representative solutions of the exact dispersion relation. Once

again the equations of primary interest are

- 2
2 2 2 T 2 2 2 2 ‘ 2} i
[Tl ol P Y ] - [Tl -V, + 7T +h (Tl+ ) = © (rr-1s)
w “oeq
bn{Tg—TE) (T.r ) J'(T.r) (p.r ) J' (T r.)
1 2 270 “n 9o 100 Ynt 1 a
5 o, ¥ 2 ;T 2 =0
(u.)po— dTl) (cup.o- dT},) (mpo- dTe)Jn(Tzro, (mp.o- dTl)Jn(Tlro)
(Ir-386)

Equation II-16 is biquadratic in T with coefficlents that are
either real or complex, depending upon the nature of h . If h is
real or purely imaginary, the coefficients are real and the two values
of TE are either real or complex conjugates. The T's are either both
real, both imaginary, one real and one imaginary, or else complex conJu-
gates of one another.

When both roots are reel, or else T, 1s real and T, is

imaginary, the magnitude of T2 is found to exceed T, . TFor the

s

ranges of propagsatlion considered in Chapter 1v, Tl 1s either very
nearly a solution of Jn(Tlro) = 0 or else of J;(Tro) = 0 . Accord-
ingly, the second root is many orders of magnitude larger than Tl .
If T, 1s large and real, Jn(Tzr) is small. If T, 1s imaginary,

@2 decays rapidly toward the plasma interilor until within the main

body of the plasma the fields have a spatial dependence characteristic
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Wi

ot T. . Whether T, is real or imagirary, 7.= ,j(-w—2 -4 is
1 2 2 cT2 c
2
conslderably smaller than 1, and the longitudinal electric field is

1

primarily determined by Tl y L.ed, EZ ~ T ¢l-m T Hz . Depending

1

upon whether T, is much smaller or much larger than unity, g, or

1
HZ may be neglected. The field configuration is then predominantly
TE or ™, although the finite size of T2 guarantees that the fislds
are always mixed.

The conditions under which Tl and T2 are both imaginary are
particularly restrictive. As an example, consider the circular sym-

metric modes. When both radial constants are imaginary end n =0 ,

equation IT-36 becomes

N 2
r(|T2r°|) S d[T2|

= (v-1)
F(ITlrol) wl-lo"" d|T1|2
“where ( )
x| I,(|x|
F(|x]) "——E—TT;TY— (v-2)
0

and I (]x]) is the modified Bessel function of the first kind. The
left hand side of disperslon relation V-1 is a monotonically ircreasing

function of the waveguide radius with unit initial value at r, = 0
T

.

and asymptotic limit at r = oo . The right hand side is

T, o
independent of the radius, so that unless:
2
Op+ a|T,; T,
i< J|— (v-3
wp+ efT, |2 Tl’ )

the two functions will not intersect and thc cquality demanded by V-1

cannot be satisfied. Since equation V-1 has at most one solution, the
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number of modes existing at each frequency is also limited to one. As
illustrated in Figures V-lc¢ and V-1f, this mode has a maximum amplitude
nearest the waveguidé wall. Burface waves of this sort are usually
aésociated with ripples oﬁ the plasma-air interface of =& partially
filled piasmaguide (8,27). This is the first indication that such a
wave might exist in a co_mpietely filled plasmaguide.

The condifions under which waves with complex conjugate T
values propagate are not as restrictive as one might suspect. Equation

II-36 for the circular symmetric mode having T, = Tz =T 1is

F(r¥r)  on - a(T¥) 2

F(1r ) B o - 4(1)2 (v-4)
with
' x Jl(x)
F(x) = ———— (V-5)
T (x)

The left hand side of V-4 varies from 1 to %; as r = ranges from
zero to infipity. Ac in cquotion V-1, the right hand sidc ie indcpen-

dent of 'ro . However, unlike V-1, the real part of T introduces
F(T*ro)

F(Tro)

numerous interocctionc now occur where formcrly (with Tl and T

damped oscillations inte the function with the result that

2
imaginary) only one solution existed. A necessary condition for the
existence of a palr of complex conjugate radial constants is obtained,

using equation II-3, by writing equation II-16 in standard form:

€ € [
el + D s, 2| e 202 -1 = 0, (v-6)
1 El 2 el el 1 2

and requiring the discriminant To be negative:
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. [ < - € r
3 2|2 3 2 P
I+ s, =T -2 (y]-7) <0 (v-7)
E[- 1 El 2 El] El 1 2

Sketches of the possitle radial variations of the longitudinal
electric field appear in Figure V-1 for the circular symmetric and
first angular dependent modes. In contrast to the TM and TE modes of
Ghapter IV whose boundary conditions require Jn(TrO) =0 or JA(TrO)=O,
respectively, the field distributions pictured in Figure V-1 are depen-
dent upon the frequency through equation II-36.

The contour of the dispersion surface defined by equation IT-16
and IT1-36 is in most cases very irregular and the roots are usually dis-
covered only by laborious effort. Wevertheless, by means of a
perturbation expansion about the MHD dispersion limit IV-G9a,b, D. G.
Swanson (28) has developed a FORTRAN program which calculates the cir-
cular symmetric (n = Q) wave dispersion for very dense plasmas in strong
magnetostatic fields. Figﬁres V-2a,b,c for A, =50 and A = 800 were
evaluated using this program on the IBM 7090 digital computer at 2.I.T.
For situations remote from the MHD limit this progrem fails and one is
forced to use less automated programs which reguire continual monitoring
during computation. The propagation characteristics summarized in
Figure V-3 for ke =1, A= 2 were evaluated in this manner. The
close correspondence between this diagram and the narrow waveguide
approximation, Figure V-4, suggests that a perturbation analysis of the
narrov wavegulde limit may yield the exact solutions more efficiently.
This flgure also compares the quasi-static approximation.

The normalized parameters X = 50 , A, = 80C are pertinent to

recent shock tube investigations here (28) and at other laboratories (26,
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29,30). The Alfvén wuve and the whistler mode uppear ai the lowest
frequencies of Figure V-2a as anticipated. The agreement between the
exact dispersion and the MHD limit is so good that to the scale of this
drawing the two are indiscernible. At the higher frequencles the inertia
of the particles acts to prevent the ions and electrons from following

the variation of the field. As a resuls, € = &y~ Eo and 62 -+ 0

-

as w —- o, and the dispersion becomes that of an empty waveguide., The
waves that occur near Ap are reminiscent of plane wave dispersion
(cf. Pigure IV-4). However, the effect of the wavegulide surface is to
couple the electrostatic plasma vsclllasion ag AF Lo the "urdinacy"
plane wave. The backward wave which resulbts betweesn lh’o and Ap bas
a complex propagation constant whose real and imaginsary parts are nearly
‘equal. Trhe existence of a complex vave at these frequencles was pre-
dicted by Chorney (14). In addition to the wave with propagation
constant L, the symmetry of € requires the existence of waves with
propagation constants +h and +Lk* . As will be shown in Chapter
VI, a single compliex wave cannot by ltself transmit power. However, 1f
a pair of complex modes corresponding to h and h¥ is present, power
may be transmitted. Sinece the structure is passive, the fields at in-
finlty must remain finite. Consequently the spatlally growing wave 1s
never excited within an infinite, unobstructed wa%eguide. Because the
plasma 1s lossless, the spatisliy attenuated complex wave is rot the
result of dissipation.

The dlspersion dlagram of FPlgure V-3 for le= I, A.e = 2 has &
completely diiferent nature. These values of the normalized parameters

are appropriate for mlcrowave tube design where smaller magnetic fields,
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lower densities, and narrower cross sectlons are usual. The Aifven wave
occurs near zero frequency and, somewhat higher, the whistler mode is
also present. At very large frequencies the plasmagulde again behaves

like an empty waveguide. Unlike Figure V-Za, nov exceeds ki and

kl,o
the dispersion is single valued. The occurrence of cut-off frequency
12’0 above plasma resonance results in & backward wave having a real
propegation constant. The transition from plane wave to backwsrd wave
is pictured in Figure IV-5. Meanwhile, the waves associated with Xg,c
and xh,o correspond quite well %o the TE and T modes of an isotropic
wavegulde. Although one recognizes many features of plane wave disper-
sion, the resemblance to the TM narrow waveguide limit illustrated in
Figure IV-7{la) 1s even more remarkable.

The dispersion of the angular dependent modes closely resenbles
the dispersioﬁ of the circular gymmetric modes. However, the magneto-
static field removes the degeneracy existing between the +n and -n
modes by splitting each dispersion curve in two as Eo is increased.
This is evident from equation IT-36, but it can also be observed from
Flgure TIT-10 that the right and left wave polarizations have different
cut-off frequencies. Since +n and -n modes of the same radial order
propagate with different velocities, thelr superposition results in a
wave vhilch exhibits Faraday rotation. Faraday rotation in gyrotropic
waveguides has been thoroughly investigated by several researchers (1,

2, 3, L, 5).
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CHAPTER VI. MODE ORTHOGONALITY, POWER FLOW, AND PLASMAGUIDE EXCITATION

This chapter deals with the crthogonal properties cof the waveguide
modee, thelr interpretation in terms of power flow, and finally, their
application. The ortnogonality relations are derived for a Lossless
plasma, then generalilized to incliude dissipation. A substitution is also
discovered which transforms the lossless description intc the dissipative
formulation. The orthogonality relation Ior a lossless plasma was first
obtained by Walker (31); later Bressler et al. (32) derived the
orthogonality relation for a dissipative plasma. Due to reflection sym-
metry these orthogonsllity relations can be stubstantially simplified. The
simplified relstions are used to study the fields excited by a coaxial

current loop Ir a circular plasmaguide.’

Notation

The modeé of an empity waveguide are specified by the character of
the field (whether ™ or TE) and by two integers which designate the
mode order. For a circular waveguide, the field character determines
whethker T is & root of Jn(TrO) =0 (™ mode) or of J;(Tru) =0
(TE mode). The angular integer n prescribes the order of the Bessel
functicn; the radial order determines which of the multiple T:O roots
should be chosen. Once the signal frequency, field character and mode

nurber are given, the axial propagation factor may be caleulated from
\ w2 2
h =213} \/(3—) - T
C

Alternatively, given @ and h , T can be calculated. The character
of the wave can be deduced unambiguously from T only if n i3 known.

It therefore takes all three quantities, n, w and h , to completely
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debermine a mode.

The anisotroplc waveguide modes asre likewise completely specified
by n, ® and h , after the waveguide radius, plasma parameters and
mapnetostalic Lleld lotensity are fixed. Since Ez and Ez wre coupled,
the waves are no longer TE or ™. Instead, two values of T need to be

considered now. Once n, w, and h are specified, T, and T2 are

1
determined by equation II-16.

To facilitate further study a notatlon must be adopted which
unambiguously distinguishes each mode. The notatlon must make the reader
avwarc of n, w and h .

Because the frequency is understood to be the same as that of the
source, only n and h need to appear explicitly. Therefore, let
E(hn) and ‘E(hn) correspond to the fields of angular mode order n ,

J{wt -ne) - h =

propagating as e ; due to a source frequency w .

Mede Orthogonality for a Lossless Plasma

Consider two coexisting modes g(hq), E(hn) and g(hm), E(hm)
excited at the same frequency w . At = source-free locatior within

the guide, the first mode satisfies Maxwell's equations

]

v x :E:_(hn) - Jo pog(hn) (VI-la)

v x H(hn} + joe - E(hn) (VI-1b)

The conjugate fields Eﬁ(hm), E¥(h ) satisfy the complex conjugate of

Maxwell's equatione, namely

Vo BX(h) - Ja>uoE*(hm) (Vi-2a)

Vx BHh) = - Jo € - E¥(n) . (VI-20)
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An integral of the fielés is formed using the 1dentity
V' h * = % - - bt -
[E()xp(n)] = B*(ny) - ¥ x B(w) - B(n) - ¥ x E¥(8)  (VI-3)
and substituting equations VI-la and VI-2a to yleld

v x B4 n)] = - Jo m B(B,) + BX () - B(ky) - €& - E*(hm)] (VI-4)

The complex conjugate of equation VI-4 with n and m inberchanged is

V.[E*(hm)xg{hn)] = 4 Jm{uo_flf*(hm)- E(hn) «-g*(hm). € - g(hn}]_(v:[ﬁ)
When losses are neglected £ is Hermitian, i.e.,
E(n) - € - B¥n) = E*(n)-< - E(h) (VI-6)

with the result that the permittivity tensor can be eliminated by adding

equations VI-4 and VI-5. Thus
v. [_E_:(hn)xg*(hm) + g*(hm) X g(hn)J = 0 . (vi-7)

Integrating VI-7 over a volume V surrounded by the suwrface 85 consist-
ing of the wavegulde cross sections at zl snd 22 plus the waveguide

wall belween {see Flgure VI-1l) we obbtain via Gauss' theorem:

JhV'[E(hn) x B¥(b ) + E¥(h)) X'E(hn)] v -

v

f [B(n,) x B(n,) + B*(n)) x E(m)] - a8 = O (VI-8)

s

Let n be s local vector normal to the waveguide wali. TIf the

electric field tangential to the perfectly conducting surface is to
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Figure VI-l. The surface of integration for equation VI-8

vanish, then (n x E) = O . As & result, products like (E x EX)-nas =
(n x E) » H*aS vanish along the vaveguide wall lesving behind, in VI-8,

cnly the surface integrations at Z) and z, . The flelds at zZq and
f

z2 are proportional because the z dependence of the wave can De separated

from the trensverse dependence as an exponential factor, viz.

o -hnz — -hnZ
E{n ) = E(h )e and B(h ) = H(h)e ‘

Jence equation VI-& becomes

_(]:n+ h;)zl] Jf {E(hﬂ)xﬁ*(hm).ki*(hm)x E{hn)} . EZdSZ= 0

-

[e-(hn+ EE)ZE

Cross
section (vz-9)

For hh # «‘; the first factor of VI-9 can never be zero; therefore
the integral must vanish. This condition is conveniently summarlzed by

writing

I[E_(hn)xg*(nmprg*(hm)xg(hﬂ)f ce, @8, - 0 for n f-it.

Z Z
cross
section (VI-10)
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The breve has been deleted from the field wveztors because the integra-
tion is independent of =z . Orthogonality relation VI-10, first obtained
by Walker (31),1s the basis for expanding arbitrary E and H fields
in terms of the waveguide modes.

Since the longitudinal fields do not contribute to the Integral,

orthogonality relation VI-10 can be restated as follows

Jr[gt(hn)xgi(hm)+§?é(hm)xgt(hn)] - g8 = l&P(hn) a_hn,h: . (v1-11)

section
The right side contasins the normalization constant P(hn) followed by

the Kronecker delta symbol which has unit velue when both subscripts are
alike (hn= -H;) and zero value otherwise. The subscript t refers to
the transverse components of the field.

A Tongitudinally ianvarisnt wavegulde filled with an axially magz-
netlzed plasma exhiblts reflecticn symmetry. Corresponding to each
modal solution with transverse fields Et(hn), E%(hn), longitudinal
field components Ez[hn), Hz(hn) and propagation constant ]:1.n , there

can exist a wave traveling iIn the opposite direction with propagation

constant —h.rl and field components

B, (-b) = -E-:-t(hn) Et(-hn) = -H-t(hn)
E (—hn) = - Ez(hn) HZ(-hn) = Hz(hn}

Reflection symmetry was discussed at the conclusion of Chapter II but
this property is also evident from equations II-8 through II-1l. By

substituting the rerlected wave variables {Et(r.n), -_H_t(hn), -nn} tor
the initial varisbles { E (b)), B(b), hn} in VI-1l, & new orthogon-

ality relation is obtained:
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. - _ . _
[ (Bt = B - Ein x 1, ()] - 28, = a8, e (1-22)
Cross
section
Q(hh) replaces P(hh) as the normalization constant for VI-12. Upon
adding expressicns VI-11 and VI-1Z a somewhai simpler orthogonality

relation results:

fgt(hn)x;—”ﬁu(hm% g5, =2 [P(hn)ﬁ-h gwetdalny) & e (v1-13)
cross n° m n° m
sectlion

Subtracting VI-12 from VI-1ll produces the following integral

'ﬁ"* s . - . - -} - .
Jnit(hﬁg:xghﬂhh) Ezdsz =2 LP(hn)B-h S % 3Q(hn) 6h ,h* | ° (v1-1b)
CIross n° m a1 m
section

Taken individually, these orthogonality relations fail to resolve
between the incldent and reflected (hn and -hh) waves of a field
expansion. Conseguently VI-13 and VI-1l4 are uwseful only 1f uo reflecled
waves are present, e.g., in an infinite, uncbstructed waveguide. In a
waveguide section containing obstacles or improper terminations both
waves are present and one ie foreed to usc c¢ither orthogonality rclation

VI-11 or VI-12 to uniquely evaluate the amplitudes of the modes.

Power Flow

In a lossless plasms, the orthbogonality integrals assume an added
importance when interpreted in terms of power flow. In this connection
note that because n and m are dummy variables, the integrals con=-
tained in VI-13 and VI-1Lh are complex conjugates. It therefore follows
that P(hn) and Q(h ) are real constants.

For hh= hmf n+ jﬁq , the orthogonality relations VI-1l and VI-12

can De wWritten as
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:L T 3 & -
Re 2 ’[[Et(hn) % E%(hn)] ) Szdsz - P(hn) 6a s0 (v1-15)
cross o
section
i \ ] . — \
In 3 jigk(hn’ % Et(hn) Ezdsz - Q(hn) 55 0 (vi-16)
cross 1,
gection
because
5. y= 0O = & (VI-17a)
-nh’hn -05 jﬁn’ah -jBn QE’O
and
B =53 = & (VI-17b)
1 h* . - » }
+o ,B¥ o+ JBh,an Jﬁn Sn;o

Since E x H¥ 1is the complex Poynting vector, P(hh} and Q(hn) are
immediately recognized as the real and reactive powers of the wave. Thre
rower transported by a propagating mode (GE: 0) 1s real; for aa evan-
escent mode (Bn= 0) 1t is reactive. A single mode having a complex
propagation constant (Qh % a, ﬁn % 0) carries neither a real nor a
reactlve power through any cross section of the guide.

If both merbers of a pair of modes having complex propagation
constants hn and hm = -h; are present, the right side of eguation
VI-11 eyuals uP(hn) vhile the delta functlon of eguation VI-12
vanlshes. Consequently, the power delivered by a pair of complex modes
is always real, if the pair consists of an exponentially increasing
wember (-uh+ Jﬁn) and an exponentially decreasing member (Q£+ jﬁn)

A

m

a, -0 , this pair degenerates into a single propagating mode whose

power fliow 1s real.

In contrast, for the palr of modes described by hn and Qm= +h*
n

the 1lntegral of equation VI-1l varishes while the integral of equation
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VI-12 equals th(hn). As a result, the power transported by the pair
of modes Q + jﬁn and ah- jﬁn is entirely reactive.
Finally, for the pair of modes consisting of an incident wave

having h = @+ jﬁn and & reflectéd wave having hm? «hn= - - jﬁn

(ah £ 0, B, # 0), the integrals in both VI~11l and VI-12 vanish. In
other words this pair of modes does not convey any real or reactive

power.

These deductions can be summarized by the following statements:

1) The total real power transmitted by the wavegulide equals the
algebraic sum of the real partial powers carried by each
propagating mode (a£= 0), plus the algebraic sum of the real
mutual powers carried by each pair hn’ hm-= -h; of complex
modes.

2) The total reactive power transmitted by the ﬁaveguide equals
the algebraic sum of the reactive.partial'powers carried by
each evanescent mode (Bn= 0), plus the algebraic sum of the
reactive mutual povers carried by each pair hn, hm= +h§ of

ehmplex modes.

Wave Excitation in the ILossless Plasma

—_
-~

im

\I/}I(e)ejw' \\ /

Filgure VI-2. A coaxial current loop in an infinite cireular
plasmagulide
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A clrcular wavegulde of Infinite extent is exclted at 2z =0 by
& coaxlal current loop. The loop, located at radius Ty, is of

infinitesimal thickness and carries a current I(Q)ejﬂt

The current
and magnetic field at thls plane are related by Ampere's law. Therefore
the discontinulty in the transverse magnetic field at the plane of

excltation squals the current flowing in that surface.
ale, "?ft)‘z EREEORCRENLH (VI-18a)

A more convenient form of this relation is

A"_}f_t = I(8) B(r-ry)e . (VI-18b)

L.
z=0

According to the principle of reflection symmetry, the transverse elec-

tric field is continuwus across the plane of excitation while

= - ge that
Z = =t 2y o

Z=+E

Aﬂt‘ =7, - X = 2%, as §->0 , (VI-19)
z2=0 Z:+§ Z-——g Z=0+
and VI-18b becomes
1(0) 8(r-x)a. = 2H, (VI-20)
2= O+

The excited flelds in the plane 2z = 0+ can be expressed in terms

of the following mode expansions
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For convenience the common e

compliance with equations II-29 and TI-3k

E,(n,)

i (r)

E (n)
5, (h)
E(Tir)

The quantity

-+

+

= {*1Jn(T1r) + koTeJn(Tzr)}

- _dn
- {TiJé(Tir)gT = Jn(Tir)gg}

L By = Y. A
“n nooo
= z: H(h) = 2; Ah)
nn n
2, E (b)) = 3 A(n)
h‘.ll h’ﬂ.
%; H (k) = %; Alb ) H ()

{(jaTl+ v) y(Tr) + k (Jar+ b) W(T,r) +

(e + Jd) e, x WTyr) + k {c7,+ Jd)e, x E(Tgr)}

{(le+ ja) W(Tyr) + k (£15+ ja) ¥(T,r) +

3 b
(Jng+ c)gz x,i(Tlr, + kéjg¢2+ c)_e_Z X E(Ter)}

{
{Jnler} + kUJn(TEr)j

(vI-21)

(VI-22)

(vi-23)

(VI-24)

dependence has been suppressed, and in

(Vi-25)

(VI-26)

(vI-27)

(VI-28)

(vI-29)
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T, T (?.r )
kK = - L o Lot n(Tl 0) (Vi-30)
T2 Jn 250

results from making Ez(hn) vanish on the conducting waveguide wall at
r, - Tue coefficients & through g are functlons of hn according
to equations IT-3 and II-k4,

The expansion coefficients A(hn) are determined by the source

currenits. Upon substituting vI-22 Zor Zi't in eguation VI-2C
- = VI-
1(8) 8(r rl)gr 2 %; E (n ) (vI-31)
n

and taking note of orthogonality relation VI-1li, the method for evalust-

ing A(hn) becomes clear. Vector multiplication by Ez(hm) and

integration over the cross sectlion yields

~

q
* . =
J[Et(hm) Xe . I{a) &(r - rl),’ e, rir 48

Cross
gection
— 2 3 - . -
Z}:L j [Et*(hm) K-Et(hn’] g, 35, (v1-32)
n CIO8s
section

By virtue of the triple scalar product and the Dirac delta function, only

the 6 component of the electrlc field evaluated at Ty remains on the

left side. The right side is determined by orthogonality relation VI-1h.

2x
* a e ; ;
-r A (hm)EQ(hm)|r_ Jr 1(6)e™ a0 = & ), [:P(hn)sﬂh Jne 8B )8, h*]_
1 hh n’m n, m

(VI-33)

Further simplification of equation VI-33 requires the introduction

of two boundary conditions:
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The fields at infinity must be btounded. This demands that

-(o+ JB, )z

waves with sn e axial dependence have an 20

in the region =z > 0 .

Power must always flow away from the source, l.e., the

group velocity %%L must be positive for =2 >0 .

n

Figure VI-3% illustrates various possibie types of propagation factors.

The diasgram is drawn symmetric asbout the w axls because the plasma-

guide exhibits reflection symmetry.

At o

At

\

two evanescent modes sppear having propagation factors
= U o A ;
hl = al >0 and hl al . These modes are not

mutually orthogonal because hi = -h* | Nevertheless,

by boundary conditioan 1, the spatially growing wave

(hi) ls eliminated from the positive z region. Con-
sequently the first mode (hl) becomes orthogonal to
all modes occurring at this frequency. It also follows
that @, # - ox for all evanescent modes in elther half

of an infinite plasmagulde.

the dispersion diasgram shows four propagsting modes

- & - =
with exponents hl = Jﬁl, hl = jﬁl R h2 + jﬁe

and hé = - JBE + The modes assoclated with hl and hi
are forward waves, whereas h2 and hé correspond to
backward waves. The forward wave at hi and the
backward wave at h2 carry power in the negative

direction (%% < 0) and therefore do not appear in

the reglon zZ >0 . The two rermaining modes are

mutually orthogonal since nj £+ hi . As a result

By # - By for all propagating modes in either
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half of an infinite plasmagulde.

At "' four complex modes are accommodated with hl =a+ JB ,

hi;-a-dﬁ,hg:—a-f—jﬁ and h'2=a-JB-ThB
waves belonging to h; and h, are rejected (for o > 0)
according to boundary condition 1. The remalning modes
corresponding to h.l and hé are not mutually ortho-

t = . -
gonal because h2 +h1 . However, hn £ h;; for all

complex modes in elther half of an infinite plasmaguide.

These observations permit the following simplifications. First,

because G o= @ ualess @ =@ =0 (propagating mode),

8., .. = & & = & B (VI-34a)
"hn’ a "0, PPy 0,0 By P
where @ =@ =q . Then, since B £ - B, unless § =p =0
{evanescen®t mode),
8 = B & = & d (VI-3hb)
h* -
hﬁ’ o Ohxam ﬁn: ﬁm £8,0 Gh,aﬁ

vhere B =p_ = ﬁm + Finally, for the complex modes, the inequality

h # -h; eliminates the delta function

Sp,px= O (VI-35)
n m

the other delta function Bh - remains unaltered.
EJ
n° M
The expansicn coefficients for the evanescent (an = 0) and propagat-

ing (Bn = 0) modes are evaluated by substituting VI-3ka,b into equation
VI-33. Thus
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2n
A Jme_
g Rgn) [ 1@ 00 - 1T (20,08 08 o - 90 08, g ]
"1 0

= =
bwf‘ﬂ bwf“]

P(h )& ~jq(h )8, . |8
[ n aﬁ,g n Bm’o] hh’hm

_ 4[;(%)5%} - Ry 8 o] (v2-30)

However, according to equations VI-15, VI-16, VI-21 and VI-22,

(e, o - dams, o] =[Bm)s, o+ dem) o

m,.! m,: . m,

ol

1 2 A
2ol [ (g0 +80p)] -2 m,
eross
section

Hence the expansion coefficient is

2x
N .
-r_ E*(h ) f 1(e) 7™ ag
1lI'e'  m rl 5

'A(hm) = (VI-38)

A A ]'

2 ,[‘ [E&(hm) X'gt(hm) S, dsz
Cross

section

when h2 is real.

- m

For complex modes, the substltution of VI-35 reduces equation
VI-33 to
2y
'I(Q)ejmgde =-j4> @qn)s = -3 bQ(hx)
0’ h ,h¥ m
1 hn m
(VI-39)

* Ax

r

vhere, according to equations VI-12, VI-21 and VI-22,
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Q(mx) = E];; A(h;)A*(hm)f [glt(h;)xﬁi(hm) B ) x B ()] - e as

z  Z
CTross :
scetion ' (VI-k0)
As a result,
2%
A% Jme
rlEG(hm) - f I(8) e de
‘ 1 0
A(h;) - . (vI-h1)
- o~ A ~ -~
* - 7% (h * J .
J[[gk(hm)ligz(hm) Et( m)"ﬁ%(hm) -Ezdsz
cross
section

Replacing hm by h; yields the expansion coeffielent corresponding

to the complex propagation constant h; .

21

rlﬁg(h;) r f 1(6) 9™ ag
Ah) = Lo . A{vI-k2)
f[ﬁt(hm) Xﬁi(hﬁ) B —E}E(hﬁ) Xﬁt(hm)] " 8,95,
section

To illustrate the use of these formulas for A(hm) , the input
impecdance of a uniform current loop is calculated next. The complex

VPOWer delivered by the loop to the plasms is

I«I=—§f§ -J*dvu-%figl*(g) a(r'_ rl) 8(z)dv

1
- -3 &, *(e) ra8 (VI-43)
0 I'=I‘l

z=0

For I(e)

I, (2 constant), and gg defined by VI-21
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2 . ,
v 5 Jne _ * &
% A(n ) Eg(hn)J e’ a6 = - xr T % Al E ()| .
n o s}

ry

(VI-4k)
If the frequency of operation lies in a range where complex waves do not
propagate, then equation VT-38 suffices. The expansinn coefPicients for

I(8) = I, s&re then

Ax
- ﬂrlIO Eg(ho) r
aln) = (VI-L5)
Ag A
f[gb(ho) x 8 (2)] + g ds,
cross
section
A(hm) = 0 for m £ 0 .
Whereupon
|£.(n) |2
o |2 0o |p
N = xr \IO, 3 (VI-b6)
' hO P A -
j[ -E-:t(ho) x Et(ho)] ' -?-zdsz
Cross
section
The input impedance of the loop 1s therefore
A 2
oN a N ‘EQ(hO)lrl
7 = = 2x 1, . (VI-47
‘I lE 1 h Ay A ]
o o [Et(hb)‘xgi(hb)j e,ds,
cross
section

Conslder the MHD range of propagation where h2 is always real.

Wi
For E3 -+ 0, equation II-16 shows that Ty 4-152 whlle T, »oo ; 1In
d

accordance with equation I1-17a it follows that T, ~ 0 and Ty rmd T

Hence by equation VI-30 ko —+ 0 a0 that equations ITI-25 and II-26 become
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Et(hb) bi(Tlr) +ide x E(Tl;)

4

-mp .
= ”é““““?‘z" (Yef-r - 3¥;8g) Ty Ty (T, 7) (vI-}4€a)
LR
Fay
Et(hb) = ja I(Tlr} +ce, X.E(Tlr)
hU
=g (vpey + Iy 2T (1) (VI-h8v)
-7

Obviously the dispersion reduces to Jl(Tl?o) = 0 in order that

E =0 . Yo distinguish between T

z = B = H

o ro - l I'c)
¢orresponding to different ho's the subseripts o8 will be appended

¥ 4
o '8 and vy, ‘s

r

to these variagbles. Thus

L™ Tog and Y1 7 Yios

the first letter corresponds to the anguwlar order n = 0, the 3 refers

to the radial order. Hence

2 tn ]2 DHTV108l2 o 2
E (2 = | ———r - _
‘ 9( 0) I, 2 TE Tos Jl Tos rl) (VI-49)
- T1os™ T2

and
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By =0 - e, 8

J z z
cross (1)
sectlion . 2 2 os*o
Jop b (v o+ 7o) 2

1

2
Y 25 j (Tosr)Jl(TOSr) d(Tosr)
Ti0s 7 T2 0

2 2
- ja)“oho(rlcs + T2) 2
= x (T r)=J
2 08 0

2 2
(rlos - 12)

2
O(T

r) . (VI-50)

os O

The impedance of the uniform current loop in the MHD frequency range is

obtained by substituting equations VI-49 and VI-50 into VI-47 . Hence

2 = Z2x

o
- Ol Tlos [rl Jl(Tosrl) ] 2 (VI-51)

~ih 2 2
s ~dB, (7105 + rg) r, JO(TOSrO)

The summatlon extends over all clrcularly symmetrlic modes. If the Hall
2
cffect is also negligible, i.e., 'rg << \TlOS‘ this reduces to the

result obtained by R. W. Gould (11) for the Alfven range, viz.

WU r, J{T )42
Z =20 § —2 "1 71081 ) (VI-52)
-jh
8 5]

Mode Orthogonality for a Dissipative Plasma

The orthogonality relations for a dissipative plasms are derived
by a ascheme analogous to thc one cmployed for the lossless case. Once
again consider two modes having fields E(hn), g(hn) and E(hm), E(hm)
exclted at the same frequency. The fields of the flrst mode propagate in

& medlum of permittivity & according to Maxwell's equations

VxE(h) = -Jou H(n) (VI-53a)
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VxHh) = doc-Eh) (VI-53b)

However, the fields of the second mode propagate in a medium whose per-

mittivity E is the transpose of € . This mode satisfies the equations
v x g(hm) = - Jou g(nm) (vi-54a)
vV X E(hm) = jog . ‘_E_{hm) . (VI-54b)
Evidently

It

vo[B) 2 Eep| = By - vxE@) - BE) -9 x Koy

+E(h )

- Jou B(h ) Hh) - jo E(b ) .

Hmy

(VI-55)

and

v [Eby) xE)! = Ba) - VxEn) - Ba) -V x Eb)

1l

- Jop H(n ) E(n) - jo E(b )+ € -E(h).

(VI-56)
By subtracting VI-56 from VI-55 the followlng is obtained
v o[ Em) xEn) - o) x HE)] -
- -jo[ BB € - Blny) -Em) - £ - E(n),
=-Jw§(hn)-[§—§]' ﬁ(hm) = 0 (VI-57)

Integrating this expression over the volume V contained within soms
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surface S , and then applying Gauss' theorem to the volume integral

on the left produces

i - B(r . = . -
{[_E_(hn) x H(n ) - Bn) x g(hn)] a8 = 0 (vI-58)
B
According to equation T-19, reversing the magnetostatic field gﬁ
transposes the perﬁittivity tensor of the dissipative plasma, i.e.,
:e__(-gO ) = é(-@o ) . Conmsequently, BE(h,) and H(h ) are the fields of
the plasmagulde mode having propagation constant hm(-go) = Em When
the magnetostatic fleld points in the negative z direction. An examina-
tion of equationsII-16 and II-36 reveals that reversing Eo has the

same =ffect as reversing the sign of the angular integer. Thus

n(-B) = &b (4B) (vI-59a)
or simply

h = Lk . (VI-59b)

FPhysically the polarlzatlon of the wave is relerred to Eo while the
positive © direction is defined relavive to the 2 axls by a right hand
relation (Eg =g, X ET) + As & result, reversing B changes the sign
of n which specifies the rotatlonal seunse of the field relutive Lo Lhe

z axls.

Since a wave traveling anti-parallel to Eo has the same propaga-
tion factor =as a wave traveling parallel to Eo with the opposite
eircular polarizsation, it follows that replacing a2 by -n , Bo by -BO
in VI-25 through VI-29 yields the proper expressions for Eﬂhn) and

E(h } . Thus
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o / Ea -~ M ! Q
E(n) = (-1 B (By)e, - Bl eg + B (n)e | &

I

)n+l [

i

o) = (07 [, - Ryin)eg + 8 (n)e ] o™
Use was made of the ldentity: J_ (Tr) = (-1)° J_(Tr) plus the fact
Tor b, ¢c,. £ and 71 change sign with §0 ; while Yy 8 d and g
remain Zixed.

The tilde can be thought of as an operator which replaces EO
by -@0 ir. the same respect that the asterisk, denoting complex conju-

gatlon, replaces J = \/-1 by =-j - For example,
c | = € -
€(+B_) &(-B)

or =lse, siuce

E(b) - E(h, (+B ), +B,) (Vi-eoa)

then

E(n,) = E(h (-B)), -B)) = E(a_(+8 ), B ) = B(h,-B)  (VI-60b)

it, as in the lossless case, the z dependence of the wave 1s separated

from 1ts transverse behavior according to

' -h z - =h 7
E(hn) = E(hn)e n E(hn) - E{hn)e n (VI—E;]_a)
then N
i ~ -h z ~ -h =z
o) = [En)e ™| - Ea)e ®
E(hm) = [i(hm)e-hmz] = :_f;(hm)e_h’mZ . (vi-slib)

=
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By ritting the surface of integration 5 1in equation VL-58 to the
surface illustrated in Figure VI-1 and using expressions VI-61 for the

fields, equation VI-58 reduces to

-(hn+-hm)z2 -(hn+hm)z

1 - 2 = -
e -e ] ‘[. [E(hn)xag(hm)- E(hm)xag(hn)1 .Ezdsz = Q
Cross
section (VI-82)

As earlier, only the end surfaces contribute to VI-61 because (E.x§)==0
on the perfectly conducting waveguide wali. For h.n # ;Em the first

factor of VI-6l1 can never be zero, and the integral must therefore venish.

f [E(hn) xE(n ) - E(n) xg(nn)] ced5 =0 for n # B .

T Qross (VI'63)
secsion

The breve has baen deleted becaunase the integration is independent of =
Pince the longitudinal fleld components do not enter into the triple

scalar product, this integral simplifies still further.

r " 5 o .
j [E‘t(hﬁ)x Et(hm) B E’G(hm) X-Il:t(hn)] ) ?—zdsz B ll-P(hn) 6-hn;3m . (VI-6h)
Cross
section

P(hﬁ) is the normalization for this orthogonality integral. A comple-
merntary orthogonality relation is immediately obtained from VI-64 by
introducing the principle of reflection symmetry. If the initial vari-

ables [Et(hn)’ Et(hh)’ hh} are replaced by the reflected variables

{E%(hn)’ «Et(hn),-hn} » equation VI-64 becomes
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Jr [Et(hn) xﬁt{hm)+gt(hm)x§t(hn)1 ted8 = ,jlra(hn)ahn,ﬂm (VI-65)

Cross
section

a(hn) replaces P(hn) as the normalization consiant for relatioa VI-865.
Upon adding VI-64 and VI-65, a somewhat simpler orthogonality integral

results.

A = . _ o~ " ~ » _
I [Et(hn,xgt(hm)] e ds = E[P(hn)b_h mt ja(hn)ah i ]_(vx 66)
n° m n’ m
Cross
section

Subtracting VI-6h4 from VI-65 produces

S 1GNNS

= -2[5(11 )8
n )
m n nu

f LEt{hm)XEt(hn)] " 845,

-h
n’

Cross
section

Orthogonality integrals VI-63 through VI-66 are generalizations of
similar relations obtained by Bressler et al (32), because through

f(hn) ~  we include the possibility of having reflected waves.

6
“Bohy

Wave Excltatlion in a Dissipative Plasma

Reconsider the coaxial current loop of Figure VI-2 now located
in 2 lossy plasma. Equations VI-18a through VI-31 are still valid. How-

ever, in place of VI-32 we now have

fiﬁt{hm)xgr 1{e) B(r- rl)] re Tdras =
section
-2 ). [ (B, ()% Bo(n)] - 2,88, . (vI-68)

hﬂ Cross

section
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The integral on the right is evaluated by means cf orthogonality reliation

. o ST - Jme
vI-67, while on the left gt(hm) is replaced by _ﬂ,(hm;gt(hm)e
according to equation VI-21. Hence
-~ {’n
Y pa ‘jm —_ i \_‘ [ﬂ P~ g Pd _;a
v BB |, | 100 a0 < a ] [Be, 5 -, 5
h n" m 7 m
0 n
(VI-69)

Because all modes are attenuated as they pass through the dissipative

plasma, it follows that 05 >0 for z >0 and that hn can never

eqgual -Em . PBquation VI-AG therefore reduces to
An )Q () - 0)e 3™ b)) Qn)e 4g(h )
=T = ~ = i
p MeBy(n) [ T(0)e™ a0 = gk ). Qn)E, ¢ = PG

(VI-70)
According to VI-65, VI-21, and VI-22

PEEY = aERE) | (B xE )+ B n)xE ()] - o,

cross
section (VI-71)
Consequently
A Efr 10
-, Eg(hm)lrl | I(6)e de
AlR) = Q . (vI-72)
I A a~ -—:‘-' ,-.':. sl o~
[[gt(ﬂm-)xgt(hm) * E-t(hm)xgt(hm)] ) Ezd“sz
Cross
section

Since two consecutive reversals of Eo leaves this magnetostatic field

unchanged, then ‘Em = hm . Substituting hm for Jﬁg in egquation VI-72
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the expansion coeifficlent: corresponding %o nm is obtained

A 2,‘
_ gl o N |2 I
T, Eg(hm) rlf 1(6) e )
o) -
A(hm)= " . (VI-73)

cross
section

In accordance with eguation VI-60b the tilde is an operator which

reverses B_; hence,
=

L o~ AR A .
E (k)= E(b,B) = gt(hn(ﬂgc),-go) (VI-74a)
AR . A

- _ - T o — iy
Et(hn) = H (h_, Bo) gt(hn(+§0), go) ) (VI-74D)

-~
&) S &
In other words Et( } and (I

) are constructed from E (k) end
n =t' n

Apd>

1
o i ; 1 i +h
gt(hn) by replacing go by _Eo in equations VI-25 and VI-26 and then

substituting the propagation factor hh(+§0) pertaining to the wave
whose excitation coefficient 1s sougkt. Note that E(En) and E(Eﬂ)

are not solutions to Maxwell's equations nor do they satisfy the boundary
conditions; rather, they are functlons constructed from the wave solu-
tlons.

QOace & particular mode 1is decided upon, n, h and w are given,
whereas Tl and T2 are fixed by equation II-16. In accordance with
equations II-3, II-4, and II-17, the coefficients Yo B, 2, £ and =
change sign with B_ while Ty 8 d, and g do not. Consequently,

replecing Eo by -B transforms equations II-2% and II-26 into

(o}
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L!‘_t’-j?
=
i

: .‘{_(ja T, +b) i(Tlr) - KO(Ja Tyt b) y(mr) +

+ (ery+ 30) e xy(Tr) + X (e1,+ Ja) g, x ¥(T,r) } (Vi-75a})

-3
gnt
P i)
!
B
R
|

= {(f'll-r Ja) ¥(mr) + K (fr+ Ja) y(T,r) +

- (Jg 1, + o)e_ x y(nyr) ~K (g1, +¢) g, x i(ﬁh;j‘} (VI~T750)

Coefficients & through g and T 1n VI-T5 are evalusled by means of
equations IT-3 and II-k using the sbsclute velue of B . The expansion
coefficients of equation VI-T3 for the modes excited by a coaxisal
current loop in & disslpative plasme are Llhereby defined ian terms of
equations VI-25, VI—ZG, VI-29 and VI-T5 for the fields and thelr derived
funetions.

Formila VI-T3 ilncludes lusses, but reduces to formala VI-4Z when
dissipative effects are removed. In & lossless plasma, the solutions to
Maxwell's equetions in ¢(-B ) = £I+BO) = g*{+B ) are just the complex
conjugates of the soluticas in ;_(+Bo) » In other words, if the quanti-

ties

e )
Iy
e
H
=
5
jah
fe}

are replaced by
A N
+ E¥, + %, 0, -1, hg and ¢g*

respectively, Maxwell's equations are satisfied and VI-T73 reduces to

VI-42.
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CONCLUSTON

The theory presented here does not pretend to be exhaustive;
mapy simplifications have been introduced to make the problem tractable.
Primarlly it is assumed that the plasma is cold, colliisionless and homo-
geneous; condéitions which are not mutually independent. A few of the
effects which have been neglected in the process of making these
assumptions are Landau damping, dissipational damping, ion-acoustic
waves and the plasma sheath which covers the inner surface of the gulde.
In splte of these simplifications the theory is still formidable.

This analysis presents several parsmeiters which the experimentalist

can easlly observe and use as dlagnostics for the plasma. These are
the resonance and cut-off frequencies, the velocity of propagation, and
the attenuation rate for evanescent modes when losses are negligible.
As a result these parameters determine the lon masses, componrent densi-
tles, magnetostatlic field intensity and mode number. Furthermore, they
can be used to predict the waveform received at any point in the plasma-
guide due to a given source.

A good teet of the theory is obtalned by measuring the wave
dispersion. Propagating, evanescent and complex waves may be expecied.
The phase velocity of the propagating wave may exceed the veloeity of
light by many orders of magnitude, or elee be very sglovw like that of
the Alfven wave. Near the plasma freguency a backward wave propagates
which under certain conditions (1) acquires a complex axial wave number.
The poscibllity of surfacc waves in a completely filled plasmaguide is
also pointed cut.

In order to measure the wave dispersion it is necessary to know

the phase and amplitude of a mode at two longitudinally displaced



-173-

pointe. Usually 1t ls convenienl tc choose ome of these two polnus at
the field source where the generated mode amplitudes and phases, 1.e.,
excitation coefficlents, ere known. Formulas giving the excltation
coefficients for a coaxlal circulor currant loop within an infinite
plasmaguide are derived for both iossy and lossless plasmas.

The theoretical disperéion characteristlics are difficult fto com-
pute because of theilr intrinsic transcendental nature. To improve our
understanding, and %o obtain some asymptotic approximations to the
dispersion relations, several limiting fcrms of wave propagation are
investigated. The dispersion and field configuration at zero and
irfinite magnetostatic field intensities are discussed, as are the MHD,
the plane wave and the narrow waveguide limits. The quasi-static
approximation is shown to be s very resitricted example of narrcw wave-
guide propagation.

Further investigations should consider hot, dissipative, inhomo-
geneous plaspns hoving radial denslty distributions (sheaths).

However, the dispersion relations for a hot, homogeneous rlasma {33)

are already so complex that their solution has bteen abandoned. The
inclusion of nonlinear terms is snother area which invites consideration.
The advantages of linearizing the dynamical equations by the small signal
assumption are numerous. The primary difficultles introduced by the
nonlinear terms: are in connection with the solution of the fleld equa-
tions and the inablllty to express an arbitrary field as & superposition

of source-free modes.
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APPENDIX. THE QUASI-STATIC APPROXIMATION

Whenever one of the following conditions ig patisfied, Maxwell's

equafions
ng:—jmpo_}; and VxH= Jjwe -E

can be reduced to static expressions.

1) The fields have & slow temporal variation, if.e., w -0

2) The spatial dimensions of the structure are small compared
to a wavelengih

3) The phase velocity of the wave is much less than the velocity
of light

4) The fields actually have an electrostatic configuration,
e.g., the longitudinal oscillations of an infinite plasma.

Then, if the magnetic field is neglected in the first Maxwell equation,
VxE= 0 or E=-Veg

Because the divergence of the curl of any vector is identically zero,

the divergence of the second Maxwell equation ylelds

V.-¢ . .E= 0 or V.e.Vp= 0

This is Laplace's eguation for an anisotropic medium. The magnetic field

1s determined by the second Maxwell equation, V x H=Jwe - K

For a clrcular cylindrical geometry and a permittivity tensor as

defined in equations I-17 and I-18, Laplace's equation assumes the form

13 .3 .1 3 “33% _
r 5 (r ar) * 2 3P + € 32 0.
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-
Defining ¢{ =\/——J-‘- z reduces thls to Laplace’'s equatlion for an

isotropic medium:

32 a

=

for which the solutions are well known.

1 . =
T 2

a(
B_ rDQ

o - [AJ‘H(TI) +BYn(Tr)] SHO AT

+ 400 ij\/él/e3 Tz

Y (Tr}) +BY (Tr)q' e+ e .
[T, 2

Obviously the propagation constant in the z direction is

€
h=4+3 \/;—]: T2 « The Doundary condltions require @ to remain

3
finite on the axis and to vanish cn the conducting surface r = ro
of the waveguide. Therefore B must be zerc and Jn(Tro) =0 . I%

follows that the gquasi-statlc dispersion relation is

2
- 2 oy = .
h =% where T satisfies I (Tro) 0
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LIST OF SYMBOLS

Those symbols which appear repeatedly throughout the manusecript
are listed below, together with their usual meanings. Symbols which
are used at isolated places, perhaps with different meanings from the

ones listed below, are defined at the points where they are introduced.

Al’AE Arbitrary constants

A(hn) Amplitude of the mode corresponding to propagation
factor h,

B Meagnetic induction

B =B ¢ Axial magnetostatic field

-0 ‘o=z

D Electric displacement

E Electric field intensity. A t or z subscript
denotes, respectively, the transverse or axial
component of the f£ield

2. Lorentz force on an electron, on an ion.

Magnetic field intensity. A t or =z subscript
denotes, respectlively, the transverse or axial
component of the field

I Electric curreat

J Electric current density

J (%) Bessel function of the first kind, of order n

g and ergument x

X Defired by equations II-25 and II-28

h) Complcx radiated power

P(hn) Real pover transmitted in a lossless plasma by the
modes whose propsgation factors arc h, and -h;

g(hn) The generalization of P(hn) to include dissipative
plasmas

Q(hn) Reactive power transmitted in a lossless plasma by

the modes whose propagation Psctore are hn and +hz

a(hn) The generalization of Q(hﬂ) to include dissipative
plasmas



Uy (W)U, (w)
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Plasma reduction factor

A closed surface and its z component (Chapter VI)
TE radial wave number and its normalization

™™ radizl wave number ani its normalization

Radial wave numbers, and thelir normalizations, for
the coupled flelds

SJeparabed Lfunctlons of the generallzed coordinate u

Separated functions of the generalized coordinate v

Alfvén velocity

Veloeclty of light in vacuum

Group velocity

Phase velocity

Coefficients of the fields defined by equation IT-k

Magnitude of the electronic charge
Unit coordinate vector in the z direction, ete.

Longltudinal propagation factor for modes of angular
order n

Propagation factor for {the right and left circularly
polarized plane waves

Imaginary unit
Defined by equation ITI-L
Defined by equation VI-30

Metric coefficients corresponding, respectively, to
generalized coordinates uw and v
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m_,m Mass of an electron, of an ion

n = ne+ n, Total particle density

ne,ni Density of electreons, of lons

n Unit normal vector at the wavegulde wall

9y Charge on an ion

T Radial coordingte of a cylindrical system

T Three~dimenslonal position vector

T, External radius of the plasmagulde

9= l§[ Magnltude of the nurmallzed TE radilal wave number
when S is imaginary

t Timc

u,v Generalized coordinates

Xe’xi Electron and ion veliocities

X,¥,% Rectilinear coordinates

an. Real part of propagation factor hn

Sn Imaginary part of propagation factor hn

BB Propagation factors for the right and left
circularly polarized plane waves

B Plane wave propagation vector

r= Bnro Normalized Bn

LR P Defined by equation ITI-3

€ Permittivity of vacuum

& Permittivity tensor of the magnetoactive plasma

Gl’€2’53 Elements of the permittivity tensor as described
by equations I-17 and I-18

B Polar ceoordinate

Ae’Ai’Ap Normalized electron, ion, and total plasma frequencies

wr

A=~ Normalized signal frequency



-182-

Normalized narrow wavegulde cut-off frequencies

Normalized electron and ion cyclotron frequenciles

Rormalized cut-off frequencies for the left and
right circularly polarized plane waves

Normalized TE waveguide cut-off frequencies

Normalized ™ waveguide cub-off frequency
Permeability of vacuum

= 3.14159 « - .

Total charge density

Total mass density

Conductivity tensor of the magnetoactive plasma

flements of the conductivity tensor as described
by equations I-11 and I-12

Defined by equations I-17a,D

Scalar potential funciions for Lhe coupled longi-
tudinal fields, cf. equations II~13 and IT-1h4

Aziwuthal angle between P

and B
—ﬂ
Quasi-static potential function (Appendix)

Vector potential functions of equaticn ITI-30 for
the transverse fields

Electron, ion and total plasma frequencles
Sigral frequencies

Narrow waveguide cut-off frequenciles

Electron and ion cyclotron freguencies

Cut~off frequencies for the left and right circu-
larliy polarized plane waves

TE waveguide cut-off frequencies



0
4,n

Punctuation

*
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™ wavegulde cut-off frequency

Trke asterisk denotes complex conjugation

Tie breve denobes a suppression of the exponential
z dependence of a field

The caret denotes a suppression of the exponentlial
6,z and t dependences of a {ield

The prime denotes diiferentiation of a function
with respect to 1ts srgument

The tiide denotes a reversed magnetostatic field



