Singular Perturbations of a Boundary-Value
Problem for a System of

Nonlinear Differential Equations

Thesis by

Jack William Macki

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1964
(Submitted April 1, 1964)



ii

Acknowledgements

I wish to express my appreciation to FProfessor
A. Erdélyi for his guidance and encouragement, and
for the patience and care which he exercised in
reading the manuscript. I thank the National Science
Foundation for contributing the major part of my
financial support; and my wife and parents, for
their encouragement and sacrifice. PFinally, I would
like to express my gratitude to Professors K. A. Bush,
H. Sagan, and A. E. lLabarre, for the inspiration and

training I received from them as an undergraduate.



111

Abstract

The nonlinear boundary-value problem

d

di = f(X3Y9ts€)s
dy

€dt = g(XSYStSE)S

alx(O,e) + azy(o,e) = a(e),
byx(l,e) + byy(l,e) = B(e),
1s examined, under the hypothesis that the degenerate

pProblem

Q .
gt = T(%g195%:0),
O = g(XOQyO:\tSO)Q

blxo(l) + bzyo(l) = g (0),

has a continuously differentiable solution. Under
a ceries of assumptions concerned, for the most
part, with the smoothness of the functions f and
g, 1t is proved that, for € restricted to a
small enough interval of the form 0 < € < €59 the
above boundary-value problem has a solution of the
form

x(t,e) = x_(t) + ep(t,e) + epolt,e),

y(t,e) = y (£) + eqlt,e) + 7(t,e),
where p and g are both 0(1) uniformly in t as ¢
goes to zero, while p and 7T exhibit a boundary-layer

type of behavior.



0. INTRODUCTION

| Perturbation methods have long been of im-
portance in treating boundsry-value problems
which involve a small parameter, that is, boundary-
value problems based on an equation of the form

@tc- == F(X,t,ﬁ),

with x and F vectors, and ¢ a small parameter. If
F depends regularly on ¢ near ¢ = 0, then one would
expect that, under relatively mild conditions, the
solution to a boundary-value problem based on the
above equation would converge, as ebgoes to zero,
to a solution of the degenerate (¢ = 0) boundary-
value problem. The requirement that F depend
regularly on ¢ near ¢ = 0, however, 1s not met for
a large clase of important equations. Of particular
interest are those problems in which one or more of
the components of F are of the form
P, (x:t,e)/e,

with Fk a regular function of ¢ near ¢ = 0. The kth
equation in the system can then be written

eXy = Fk(x,t,e),

so that the degenerate system is of lower order than



the given system. This means that no solution

to the degenerate system will in general satisfy

all of the boundary conditlons in the glven problem;
consequently, we cannot expect a solution to the
given problem to converge uniformly to some solution
of the depsesnerate system as ¢ goes to zZero. In the
type of problem with which we shall be concerned,
the solutlion does converge uniformly to a solution
of the degenerate system on every closed suhset of
the basic interval that does not contain a certain
point, to. This point of non-uniformity is deter-
mined by the structure of the given system. Because
of this non-uniform behavior, problems based on
systems of the type described above must be treated
by special means -~ the methods of the theory of
singular perturbations.

An extenslive literature has developed concern-
ing the existence of, and expansions for, solutions
of singular perturbations of ordinary linear differ-
entlal equations whose coefficients are analytic in
€ in some neighborhood of ¢ = 0. Formal series

solutions are constructed by substitution, setting



the coefficients of each power of ¢ to zero and
- recursively solving the resulting differential
equations for the coefficients appearing in the
formal series. True solutions are then construct-
- ed, and shown to be represented asymptotically by
the formal series. For rigorous expositions of
the theory, with extensive bibliographies, see
Turrittin (1) and Wasow (2).

In recent years, a great deal of attention

has been directed towards nonlinear problems.

-~ X~
w Wild il

ex" = g(x,x',t,¢), x(0) = a, x(1) = B3

or the slightly more genersl problem QE:

x' = fx,y,t,¢c)

ey = 8(x,¥75t5¢), x(0) = a, x(1) = 8.
Since Pe can be interpreted as the special case of
Q With f(x,y;t,e) =y, we shall use the notation
of Qe for discussing both problems. It is assumed
that the degenerate system has a solution, [;Z] ,

satisfying one of the two boundary conditions, with
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8y(xo(t)wyo(t),t,0) non-zero and of constant sign
on [0,1]. All investigations to date have indicated
that the function gy(xo(t),yo(t),t,o) determines

a single point of non-uniformity, t_ -~ if

O
0, while if

il

: gy(xo(t),yo(t),t,O) < 0, then t_
gy(xo(t),yo(t),t,o) > 0, then t_ = 1. Since we want
the solution to P€ or Q€ to converge to the hypothe-
sized degenerate solution at every polnt except to,

it is clear that if we assume gy(xo(t),yo(t),t,o) < 0,
then we must assume xo(l) = 83 while if we agsume

gy(Yo(t),yo(tJ,t,O) > 0, we must assume XO(O) = .

The question of the existence of solutions

to the problems Pe and Qe under even relatively

simple conditions is not a trivial one. For
example, Coddington and Levinson (3) have shown

that the problem Pe based on the equation

ex" = -x' - (x')3
will in general fail to have a solution for small
e. This has led most investigators to assume
that g(x,y,t,e) 1is linear in y.
The methods of attacking the problems P€
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and Q can be roughly classified into two groups.
In order to simplify the discussion, let us con-
sider the problem Pe, and suppose that X, gsatisfies
the boundary condition at t = 1 so that to = 0

i1s our point of non-uniformity.

The first method is characterized by the
assumption that g(x,y,t,e) is analytic in x and €,
linear in y, and differentiable to a certain degree
in t, 2all within a certain region of (x,y,t,c)-
space containing the curve‘{kxc(t),xo'(t),t,o):Ogtgl}.
The flrst step in this method is to construct a
solution, x*(t), to the equation in P_, which differs
little from X, and satisfies the boundary condition
at t = 1. The remaining boundary condition on x*
is taken so as to keep x* close to x (e.g.,

x#*'(0) = x_'(0)). To construct the functlon x*(t),
one "linearizes" the equation about X, by writing

x¥# = X, + @, and then solves the resulting nonlinear
‘problem in $. In solving the problem for &, use is
made of the results for linear equations with
analytic coefficients'as described above. The

function @, called the outer correction, is invariably



found to converge uniformly to zero as ¢ goes to
zero. This approach, because of the powerful
assumptions made, does 2 great deal more than
show that @ goes uniformly to zero - it gives an
asymptotic expansion in powers of ¢ for @, uni=-
formly valid for 0 < t < 1.

The next step is to again "linearize" the
equation, this time about x*, by writing the
solution to the problem Pe in the form

x = x* + 4.
The resulting nonlinear problem for ¥ is solved
by assuming that ¥ {(t,e) has a formal expansion
in powers of

w=a - x*(o),

and applying the same type of techniques used in
determining the outer correctlon. Then it is
shown that, for u sufficiently small, the formal
series actually represents a solution of the
problem for §. The function ¢§(t,e) is entirely
a boundary~layer type of function, being significant
only near t = 0, and converging exponentially to
zero, at every point except t = 0, ag ¢ goes to

ZEY 0.



Yasow (4) has given a complete constructional
procedure for obtaining the solution to Pé by the
above method, and Harris (5) has done the same for
Qe' It should be remarked that the technique of
linearization leads to the necessity of applying
the previously developed theory of singular per-
turbations of linear equations wlith analytic
coefficients.

The second method of attack - of which this
paper 1s an example - is typified by much more
limited assumptions on g, usually consisting of
differentiability to a certain order in t,x, and
¥, and continuity in ¢ at ¢ = 0. These compara-
tively weak assumptions, of course, give less
complete results - in general only one or two terms
of the expansion of the solution. For examples of
this approach, see Nagumo (6), von Mises (7),
Levinson (8), Coddington and Levinson (9), Bri#
(10), and Erdelyi (11, 12, 13). The specific
assumptions and techniques used by different investi-
gators are quite divefse, and the results are just

as much so. The investigations of Erdélyi are most



closely related to this paper, especially (12},
where he considers the problem Pe' One remarkable
result of his investigation is that the condltion
that g be linear in y may be replaced by the condi-
tion gyy = 0(e).

This paper is concerned with the problem Qe’
under the slightly more general boundary conditions:
a; (0 +ay(0) =ale),byx(1) + b,y(1) =8(e). The
technique of linearization described ahove is used,
which means that singular perturbations of linear
systems must be examined, since our assumptions are
not strong enough to allow us to use the theory of
linear equations with analytic coefficients. This
is done in sections 1, 2, and 3. In section 4, the
nonlinear boundary-value problem is stated, along
with the first assumptions on f and g, and the outer
correctlon is obtalned. In sectlon 5 we derlve Lhe
boundary-value problem for the inner correction,
state the additional assumptions that we require to
solve this problem, and obtain the inner correction.
The boundary-layer behavior of the inner correction
is clearly exhibited. In section 6 we summarize our.
results, diécuss some of their more important features,

and give explicit formulas for the leading terms in
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the expansions of the inner'and outer corrections.
Notation

The Independent variable t will always
range over [0,1]. If f£(t) is a bounded function

"of t on [0,1], we set lell = sup lr(e)l. 1r
0<t<l

A(t) = [aij(t)] is a matrix, we set ‘A(t)‘=§: Eij(t)‘,
1,)
HAH=§E:Haile This definition, of course, includes
i,]

column matrices, which we shall call vectors. A
column matrix of k elements wlll be called a
- k=vector. The transpose of a matrix A(t) will be
denoted by At(t). Any matrlx consisting solely
of zeros wlll be simply written 0. For any square
matrix, A(t), we will denote the determinant by
det A(t).

We shall say that the k-vector, p(t), is
integrable if each component of p(t) is integrable

b
on [0,1], andvj p(g)ds will denote that k-vector,
a

each of whose components 1is the integral from a to
b of the corresponding component of p(t). The

collection of integrable k-vectors will be denoted
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1
by Ij(k), and for peLl(k) we define’hﬂg=fo lo(s)las.

The parameter ¢ will always be restricted to
an open interval of the form 0 < € < €45° The
étatement m{t,e) = 0(a(e)), m(t,e) a matrix or
scalar, will mean that there exists a constant, K,
such that |m(t,e)] < Kale) for 0 < t < 1, 0 < ¢ < €0
For two scalars, f(t,e) and g(t,e), the statement
g{t,e)={[f(t,c)]] means that g(t,ec)=f(t,c)[1+0(c)].
Unless explicitly stated otherwise, z(t) and
h{t,e) will denote the 2-vectors {X i i}and
Fltye) y(t)-
J, respectively, and subscripted or super-
s%égii;d versions of z{t) and h(t,e) will denote the
same 2Z-vectors with the components sub- or super-

scripted. The symbols a and b will denote the

2 2 -1 0-
while A{e) will stand for the matrix L J.
0 ¢

1 Pq
constant 2-vectors ] andi “L respectively,
a il o)

In cases where it leads to no confusion,
variables of integration have not been written -
for example, jolh in place of j;lh(s,e)ds.

For the convenlence of the reader, a table of
the more important notations and formulas used in

this work follows.
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Symbol Formula (or Asymptotic Form)

Ae) [ <]
t
L(s,t,e) exp[fs(l+poco)]
P(s,t,€) exp[e_1(s-t) - Itp c ]
»V S o o
t
W(s,t,e) exp[j"sw»poco)]
_ 1
7 (t,¢) [co(t,e)}L(O,t,e) + 0(e)
-ep_(t,¢) + 0(e?)

z.(t,€) [epo 1 ) :O(Z):]Wﬁ,t,e)e-t/e
s |2,(x,(0),7,(0), 0, €)] " = 0(e™)
m 0, ir 8, £ 0; -1-s, if 8, = 0.
hz(z,t,s) fx(x;Y:tJE): fy(X:Y:t;e)

gx(x,y,t,e), gy(x}y’tJe)
H(X,t,€) n(zo(t) + X,t,€) = A(e)z(’)(t) - hz(zo(t),t,e)x
H*¥(X,t,€) n(z*(t) + X,t,e) - n(z*(t),t,e) - hz(z*(t),t,e)X
r(e) ale) - atz*(O)

: ) e /e i b, = 0,
b,t,

* ) e_t/e + e_1e_1/e if b, # 0.
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1. THE LINEAR SYSTEM

We are concerned with the existence and
asymptotic bhehavior of solutions to initial-
value and boundary-value problems connected with

the linear system

10 1(t,e), plt.,e)
[O eJ Ale)z® = c(t, 2) -?+ew (t,e) JZ' (1.1)

Assumption A

There exists €y > 0 such that, for 0 < e < €,

L(t,e), pl(t,e)] _
(a) [c(t,e), w(t,e)J = 0(1),

(b) 2(t,e) and w(t,e) are measurable,

e} {c(t e)] [ (t, e)] ‘e [ 1(t,e)

s and p, are differentiable functions of t,

], where

p{t,c) p,(t, €) 1 (ts€)

and pl,cl,po‘,co' are 0(1).
Assumption A will be assumed to hold throughout
sections 1, 2, and 3.

In order to convert the equation 1.1 into a
useful integral equation, we shall construct

matrices FP(t,e), G(t,e), and E(t,e), such that

F(t,e){a(e)z - [ ] z}= G(t,e)z | +E(t,¢ )z, (1.2)
C =
o)

with E(t,e) small in a sense which will become

apparent below. We introduce the notation
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L{s,t,¢e) = e::p‘:j‘t(.8+-poco)], P(s,t,e) = cxp[c-l(s—’c—.j:epoco)i\!.
8

If we take
L(tﬁo)e)) po(t,E)L(‘b,O,E)
F(t,e) = ’
-eco(t,e)P(t,O,e), P(t,0,€)
and note that we must have
G(t,e) = F(t,e)A(e),
then
0 » [-pi+p (2+p e )]1(t,0,¢€)

[Cg'*'co('e"'POCO)] P(t:O)E)) Y

E(t,e) = €

We take

-1
0 <e, <min {e., sup |lp (t,e)e (t,¢€)ll },
2 { 1ak@<k o) o
and restrict the number ¢ to 0 < € < ¢_, Since

2
detG(t,e) = eL(t,0,¢)P(t,0,e)(1 + epo(t,e)co(t,e)],
it is clear that G(t,e) is non-singular for
0<e<ey, 0<t<T.
If we now multiply equation 1.1 by F(t,e)
and use 1.2 to integrate the resulting equation,
o

we get - upon multiplication by G ~(t,e) - the

following integral equation for z:
1 2 Po(t)e) T.‘(Z)

co(t,e), -1/e Té(z)

z(t) = h{t,e) + ¢ , (1.3)
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where
) p(Oe)
h(t,e) = [1+€p (t, e)c t, e)]~1 ¢ (0,t,
{[c (t €), epn(O € (t e)}L )
' Lec (0,€)p (t,¢€),-ep_(t,€). ( N
+ 0,t, 0
-cO(O,e) , 1 JP e
Tl Poy ‘
Tl.[Z] = [1+epo(t,e)co(t,e)]- j ° z(s)L(s,t,e)ds,
0C95+P1+P0(W-1-Poco)
tletec.+c (L+p c_ ) L
'P?[ZZJ = [1+€po(t,e)co(t,e)]-1j 0™1™% ° O:] z(s)P(s,t,e)ds.
= of ec p-w

We shall presently show that our choice of F, G,

and E has given an integral equation which, for

given z(0), has a unique solution of

the formi

z(t) = h(t,e) + 0{e|n(t,e)l).

The following bounds are easily

for 0<t< 1, 0<e < €,

« t
(2 54 | |z(s)]ds, ¥

IT, (z)| < B, lizll,

]Tz(z)} < eBZHzH.

seen to hold

(1.4)
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Then, if we rewrite equation 1.3 as

(z)-

z(t) = hit,e) + LT z)J

the following bounds are immediate:

t
‘TA(Z)‘S_EAJ |z(s) lds,
o
£
ITy(2) | < BI lz(s) lds,
O

‘TB(Z)‘ = €CHZU9

for 0 g t g1, 0<e < € ot

In the lemma and corollary below, we make a
brief departure from our usual notation, in that
z(t) and h(t) will represent the k-vectors
LX (t)J {f L ()

k(t) £, (t)J respectively, and we shall use

the notation llzfl, = j |z(s)|ds. This lemma and
o

(1.5)

(1.6)

its corollary are consequences of well-known results

in the theory of integral equations, and are in-
cluded here to keep this work as self-contained

as possible.
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LEMMA 1.1

Let T be a linear mapping of Ll(k) into
L,(k), such that
t
[T(z)] < A*I lz(e)|ds.
o]

Then, given any finite-valued integrable
k-vector, h(t), the equation z(t) = h(t) + T{(z)
hag a unique solution zeLl(k), and

t
lz(t) = n(t)| <a*| "In(s) lexpla*(t-s) Ms.
o
Proof:

set z_,(t) = 0, Zo4q (B} = h(t) + T(z ).

It is clear that z eL,(k) for all n 2 -1. The
assuned bound on T, coupled with the linearity
of T, gives |zl - zol =< A*thl, and an easy in-
duction then shows that

ar(are)nll, (a0 |,
= <

Zag (82, (80| <

n! nt
Thus the sequence {zn(t)} is Cauchy for
fixed t, which implies that the pointwise limit,

z(t)= lim z,(t), exists for 0 < t < 1. Furthermore,

, o0 i ( )k+1
lz(t) - z (t)| < l}: (zy41-7 )| = Ml E: A*ki
a n
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so the convergence is uniform, and zeLl(k).
From the inequality

IT(Zn) - Tz)| < A*”zﬂ-zﬂ,

it is clear that lim T(zn) exists and is in fact
equal to T(lim zn). Taking the limit of the
relation Zypp = 0 * T(zn), we see that z satisfiles
the given equation.

A straightforward induction shows that

w\n+l t
2y (8) = 2, (0) | = S8 [ ¥ o) In(ophs,
0

which implies

i t
lz(t)=h(t)]< Z |2, 4172, 12a% [ In(s) lexpla%(t-s) Jas.
(o}

Finally, if z and z* are two solutions to
the equation, then
t
lz#(t) - z(t)] < A*J lz(s) - z*(s)lds.
o)

By induction one can now show that

+1l,. t
lz¥%(t)-z(t)) :}Aéfgg—-y (t-s)z#(s)~z(s) las <
: o

wyn+l
e T

for all n > 0. Hence z* = gz,
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COROLIARY 1.1

If, in addition to the hypotheses of the
lemma, we assume:?
(a) |n{t)] is bounded for 0 < t < 1,
(b) there exists 0 <B*<1, such that
|T(z)]| < B*|=zll,
then the solution to z = h + T(z) satisfies the

inequality

|z(t) - n(t)] < B*inll(1 - B*)~L,

Broof:

Since |T(z)| < A*qul, the solution is
bounded, its sup norm exists, and lzll< Il hikB*z |,
so that izl i|h“(1-B*)_1. Then |z-h| < B*lz|l <
< p#linl (1-B*)~L.

2. BASIC SOLUTIONS AND THE FUNDAMENTAL MATRIX
Using the bounds 1.6, and writing A¥ = B + eA,
B* = ¢e(A + C), we see that we can apply the above
lemma and corollary to equation 1.5. 1In order to
use the corollary, we must have €(A + C) < 1, so we
pick €5 < min {62,(A % C)'l}, and restrict € to

0< e < e,

3
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The Basic Regular Soclution

Setting z(0) = [ 1 J in 1.3 and applying
cO(O,e)

the lemma and corollary, we get the baslc regular

solution for the system 1.1, zp(t,e), where z

0
has the form:

zp(t,e) = [ JL(O t,e) + O(e),

e, (t €)

1 -
ZD(O’G) = [co(o,e)J’

The Basic Boundary-layer Solution

The transformation

_[eu(1-t)] _~-t/e
Z(t) = [elvl(l"t) e

3
coupled with the change of variable r = 1 - t,
transforms the system 1.1 into the system

dX _ -w{l-r,e), =-c(l-r,c)
ey = -p{l-r,e), -1 -e4(1 ~r,€)]X(r)’

where X = {X .

This system 1s of the same form as 1.1,
and its coefficients satisfy the assumptions
made above, so it can be transformed into an
integral équation of the form of 1.5 with bounds

of the form 1.6. We denote the constants appearing
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in these bounds by A', B', and C', respectively,
choose €y < min {63, (A + C’)-l}, and restrict ¢
to 0 < e « ea. Then it i1s clear that this system

has a baslic regular solution of the form:
_ 1 T
X(r,e) = [-po<1-r,e)]eXP[IO(Po(l"Soe)co(l“s’e’ -

- w(l-s,e)ds] + 0(e),

X(0,e) = [-po%l,e)]'

Expressing the above solution in terms of
z(t) and t, we get the basic boundary~layer
solution for the system 1.1, ZT(t,e), of the form:

1 2
z_(t,e) = -Epo(t,e} W(l,t,e)e"t/€+ 0e”) e—t/h’
" 1 O(e)

. (1,6) _ [—on(lse) e-l/€
T 1

3

where we have introduced the convenient notation

t
W(s,t,€) = exp Js(w-poco) .
From zp and z, we can form the fundamental

matrix

Ult,e) = [z (t,e), z (tye)] =

L(Oato€)+0(€)’[‘epo(t,€)W(l,t,e)+o(52)je‘t/€] -
B . (2.
co(tae)L(O,tse)*O(S),[W(l,t,e)+o(e)]f;t/e
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Noting that

detU(t,e) = [L{0,t,e)W(1l,t,c) =+ O(e)]e—t/e,
we take €% so that det U(t,e) # 0 for 0 < t £ 1,
0 < € < e*, then set €5 < min(eu,e*), and restrict
€ to 0< e < ¢e,_.
5
Ueging 2.1, it is easy to show that, for

0<s<1, 0t £1, 0<e < 35, the matrix
U(t,e)U 1 (s,¢) has the form:

I L CRIE IR S WY (R AERCIE

4{€p (t S)L §S e)’ P (tl’e)k[w(s,t,e)]]e(s't)/e: (2.2)

where, given a bounded function, f(s,t,c), we say
that a function gl(s,t,e) is of the form [[f(s,t,e]]
if g(s,t,e) = f(s,t,e)(1+0(e)) for 0 < € < €cs
0<s<1, 0<t< 1.

We point out that, if s(t,e) and w(t,e) can
be written

2(t,e) = ga(t,e) + 0(e), w(t,e) = wo(tge) + 0(e),

then in the formulas 2.1 and 2.2 we may replace £
and w by ﬂo and Woe

Henceforth, in order to obtain a certain
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amount of economy of expression, we shall simply

write U(t) for the matrix U(t,c).

3. INITIAL-VALUE AND BOUNDARY-VALUE PROBLENMS

The Initial-Value Problem

We consider the problem of obtaining solutions
to the system 1.1 with the inltial conditiouns
atz(O) =afe), btz(O) = B(e), where a and b are
gilven constant vectors, and o and B are given
functions of €. We assume that

at'
det{ 3t | # 0.

Then it is clear that, for 0 < ¢ < e5,

-1
z(t) = U(t)U—l(O)i %t} [g%i;]

solves the problem. Formula 2.2 can be used to

get agymptotic estimates for z.

The Homogeneous Boundary-Value Problem

We are now interested in solving the system

1.1 under the boundary conditions:

abz(0) = ale), bP2(1) = Ble),
with a,b,a(e) and B(e) as before, except that we

t.
do not require det L%tj # 0. Writing z(t) = U(t)c,
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with the 2-vector ¢ to be determined, and apply-
ing the boundary conditions, we get the follow-

ing equation:

a U(O)
ptu(1)]° LB

This equation has a unique solution for c if and

only if
U(o)
det] Tty (q)

= [[ealpo(o,e)—az]][[b1+bzco(1,e)]]L(O,l,e)W(l,o,e)
is non-zero.
Assumption B

There exists €' > 0 such that, for 0 < e < e':

(a) b, + bzco(l,e) # 0,

(b} ealpo(O,e) - a, # 0.

We remark that, since p(t,e) = 0(1), if a, £ 0
part (b) of the above acsumption can always be

satisfied by suitably restricting e. If a2 = 0,

then part (b) is equivalent to assuming that
p,(0,e) # 0 for e suitably restricted.

He set e, = min(e’,e_), Then it is clear

5
that, for 0 < e < €g the matrix
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a U(O)
voU(1)

is non-singular, so that

z(t) = U(t) It ggf)J [e

solves the problemn.

The Non-Homogeneous Boundary-Value Problem

We consider the problen

stedar = [(512], Plkinle o))z #nlee),
atz(O) =afe), b z(1) = B{e), (3.1)

under the hypothesis that assumption B holds.
We assume that heL1(2) for 0 < e < € e Using
the method of variation of parameters, we get the

following expression for =:
t -1
z(t) = Ultde + [U(e)U™ (s)a(1/e)n(s,e)ds,  (3.2)
o]

where the constant vector c is to be determined.
Here we have used the fact that A™ (e) = a(1/e).
From equation 3.2 we see that the vector
X(t) = z(t) - ij(t)U-l(s)A(l/e)h(sge)ds
o

is a solution of the homogeneous system, satisfying
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the boundary conditions:
at3d0) =afe),

vt x(1)

1
8(e) - [ vPu(1)u™ (s)a(1/e)n(s, e )as.
(o]

On the basis of assumption B, we can apply the
theory developed above for the homogencous problem.
The result is the following solution, for 0 < e < €gs

to the non-homogeneous problem:

t -1
z(8) = u(e) 3] vie) +

- j (£)U™ (s)a(1/¢ )h(s,e )ds, (3.3)

N (e)
v(e) = [B(e)_jiu(l)u'l%sgA(1/c)h(s,e)ds] )

It is easy to verify that 3.3 can also be
written in the form:

t -=1
= u(s)[250(0)
z(t) = u(e) Fegi) ] vrte) -
1
- [ s)a (1/6 )n(s,e)as, (3.4)
t

where
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1
(a)+j a®u(0)u™  (s)A(1/e)n(s,e)ds
y*(e) r ° }

B(e)
It will be useful later to have for reference

the formula:

Yu(0)]” btzT(l,e),-atzT(O,e)
= X
b (1) —btzp(l,e),atzp(o,e)
L(1,0,e)W(0,1,¢) .
X TTea, p.(0,c)-a )L b, +b,0 (1,617 (3.5)

Note that if b1+b200(1,e) 1s bounded away from zero
for € restricted to a small enough interval, then
the last factor is 0(1) for a, # 0, while it is

O(l/epo(o,e)) for a, = 0.

4. THE NONLINEAR BOUNDARY~-VALUE PROBLEM
We are interested in the existence of,

and asymptotic estimates for, solutions to the

problems
A(e)z' = hiz,t,e),
z(0) = ale), b z(1) = B(e)
when we are given a continuously differentiable
solution, zo(t), to the degenerate problem:
8(0)z* = n(z,t,0), bCz(1) = g(0). (4.2)

For simplicity, we shall assume a and b inde~
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pendent of €. We write

— f(X‘,y,t,e )
h(Z,t,C) - [S(X,y,t,(‘:)_j 9
and introduce the notation for the matrix of first

partial derivatlives:

h (z,t,e) = [f (xyy,t,e), T (x,y,t,e)J ]

z gi(xaf)”twe)a gg(xsyst9€)

Assumption 1

The degenerate problem 4.2 has a continuously
differentiable solution, zo(t), and hz(zo(t),t,e) =
= 0(1).

We assume that €, > 0 can be found so that

1
the following three assumptions hold.

Assumption 2
There exists a region Q = {(z,t,e):ogtil,
0<e<eylz -z (t)| < v}, with y > 0, in whichs
(a) £ and g, along with all of their first and
second partial derivatives with respect to
X and y, exist and are continuous functions
of x, v, and t3
(b) all of the second partials of f and g with

respect to x and y are 0(1).
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Assumption 3 -
‘ gy(xo(t),yo(t),t,e) = -1 + O{e), for 0 < t <1,

Assumption 4
£, (x(t),y,(t),t,¢) and g (x,(t),y (t),t,c)

can be written in the form:

(xo(t),yo(t),t,e) = f__(t,e) + 0(e),

fy yo

gx(xo(t),yo(t),t,e) = gxo(t,e) + 0{e},

where fyo and gxo are differentiable functions of t

for 0 < t<1, 0< e < €,> while f&o and g%o are

0(1).
On the basis of the results of sections 1 and
2, the above assumptions imply that there exists

32 > 0 such that the linear systen

Ale) z' = hz(zo(t),t,e)z (4.3)

has a non-singular fundamental matrix, U(t), for
0 <e< €5y 0<t< 1. The form of this matrix
1s given by equation 2.1, with the obvious identifi-

cation.

Assumption 5

There exist 63 > 0 and s > 0 such that, for
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0< e < €, We have:
-1
‘bl +b28xo(1’€)|' = 0(1)’

£5,5(0,e)17F = 0(e™%) .

y

Assumption 6

There exists €y, > 0, such that, for 0 < e < ¢,
0< t< 1, we have:
(a) B(e) =p(0) + 0O(e).

(b) h(zo(t),t,e) = h(zo(t),t,o) + 0(e),

Assumption 5 should be compared with Assumption
B. The outer correction, #(t,c), is defined by the

solution z*¥(t,e) = zo(t) + @(t,e) to the problem:

Ale)z#?

h(z#*,t,e),

(h.h)
o*z#(0) = o®z (0), bz*(1) = B(e),

where

Q
i

[gj if a, =0,

a if a5, # 0.

c
In order to be concise, we shall not continue to
explicitly denote the e-dependence of @, but shall

write @(t) for @(t,e). The above problem can be

written in terms of @ as follows:
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Ale)@?
¢*#( 0)

]

hz(zo(t),t,e)ﬂ + H(B(tht,e),

0 (4.5)
0, p"g(1) =8(e) - B(0O),

It

where

H(B(t),t,e) = h(z (t) + B(t),t,e) -
- h (z (t),t,e)8(t) - ale)z)(t).

We shall transform the problem 4.5 into an integral
equation and apply the method of successive approxi-
mations to show that the integral equation has a
solution,

On the basis of Assumptions 1 through 5, we
can, for € restricted to a small enough interval =
say 0 < e < es, apply the results of section 3
to obtaln an Iintegrating factor for the problem
b.5. Using formula 3.3, we get the following
integral equation for @:

g(tv) = 10 4], (4.6)

where
ot -1
M8 = [ v (e)a(1/6)H(B(s),5,¢)ds +
o

t —=1
. u(oy
+ U(t)[gtu(l)J X
: 0 i
% [B(e)-B(0)—fébtU(1)U_1(s)A(1/e)H(ﬁ(s),sge)dsj ’
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We remark that, on the basis of Assumption 5 and

formula 3.5, both of the matrices

c U(O) a U(O)
bUl) wtu1)

are non-singular for 0 < e < €5°
Using formulas 2.1, 2.2, and 3.5 (with the
fact that the second component of ¢ is non-zero),

we obtain, for 0 < € < ¢ 0 < t <1, the following

53
bounds:
t -1
” U(t)U™" (s)a(1/e)r(s)ds| < x,lzll,
8]
(4.7)
luco)] S0t} jbtumu Lisin(1/e)rts)as| < ki,

where r(t) is any measurable, bounded two-vector.
Since Assumption 6(b) implies that H(0,t,e) = 0Ofe),
the inequalities 4.7 may be applied to show that,
for 0£t<£1l, 0<e < e5,
| TTH(0,t,e)]] < Re . (4.8)

We now set

€g = min{es,Y/ZR,[BBR(Kl*KZ)]-l}s

and restrict £ to 0 < g < 66.
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We apply the method of successive approximations

to equation 4.6, setting #_,(t) = 0, £ ,,(t) = TZ].

From the inequality 4.8, we see that, for 0 < t < 1,
O’< € < €., we have

l8,(£)| < Be < v/2,

so that (z (t)+£(t),t,e) is in O for 0 < t < 1,
0<e < €4+ Henceforth, for simplicity, we shall
write "f is in Q" in place of "(f(t),t,e) is in Q
for 0< t< 1, 0<e< 66".

Before we can proceed, we must have an estimate
for H(X(t),t,e) - H(Y(t),t,c) when X and Y are
bounded, measurable vectors, wlth Zo + X and Zq + X
in Q. Applying the mean-value theorem twice, we get:

|H(X(t),t,6) = H(¥(t),t,e)] <
< B|X(t) - ¥(t)|maxl[|x(t)],|¥(£)]1, (4.9)
where B is the constant, which exists on the basis
of Assumption 2(b), bounding the second partials

of £ and 2 with respect to x and ¥y in 0. Then

|B(Py(t),t,e) = B(B_,(t),t,e)| < BR%EZ,
and so, using equations 4.6 and 4.7, we have:

18, (€) = B,(t)| < B*ge, |, (£)] < Re(1+B*),
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where we have set
B# = B( }{]_+K2)Re .
Since
B* < B(K,+K,)Rey < 1/3,

we have

(2]

1+ Z ()T < o,
o)

so that iﬁl(t)l <y for 0 < e < eg. This implies
that z  + @, is in Q, so we may continue. A

straighttorward induction now shows that
k k+
|8 pq (£) = B (£)] < 25(B*)*Re, |8, | < 2Re < v,
for all ¥ > 0, 0< e < €ge In exactly the same
way as with the lemma of section 1, we can argue

the uniform convergence of the sequence {ﬁk(t)j to

a'limit function, @(t), satisfying 4.6, with
|8(8)-2, (t)] < (1-2B%)"12%(30)**ge < (2/FEe,

| 8] < 2Re.
Since all of the functions in the matrix U(t) are
continuous functions of t (see formula 2.1) on the

basis of Assumption 2, it is evident from equation 4.6
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that & (t) is continuous for k > -1, hence ¥ is

continuous. 1In fact, it is not difficult to show,
using equations 2.1 and 4.6, along with Assumptions
2 and 4, that &(t) is differentiable on [0,1] for

0 < e < 66.

5. THE INNER CORRECTION

If X(t) is a two-vector, we define
H#(X,t,e) = h(z*+X,t,€)—h(z*,t,s)-hz(z*,t,e)X(t),
where z¥%* = Z, + @ is the solution to the problem
L.4 (the existence of z* for 0 < € < €¢ was proved
in the preceding section).

The inner correction, V(t,e), is defined by
writing the solution, z(t,c), to the nonlinear
boundary-value proklem 4.1 in the form z = z%* <+ {.

This results in the following problem for {:

Ale)y? = hz(z*(t,e),t,ﬁ)!b + H¥(¥,t,¢e),

: (5.1)

aty(0,e) = a(e) - abz*(0,e), Yy (1,6) = oO.
In order to be doncise, we shall - as we did with
the out er correction - cease referring explicitly

to the e¢-dependence of |y, and shall write ¥ (t)

for v (t,e). We choose to write ¥ (t) in the form:
_[ep(t)]
ve) = |70

and introduce the notation ufe) = a(e) - atZ*(O,e).
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Applying the mean-value theorem, we see that

hz(z*(t),t,e) = h (zo(t),t,e) + h*%{t,e),

A
where, by Assumption 2 and the fact that @(t) is
Ofe ) and continuous, h*(t,e) is O(e) and continuous.
Téking cognizance of the remark concerning the
functions #4(t,e) and w(t,e) that follows formula
2.2, we see that, on the basis of Assumptions 1
through 6 and the above expansion for hz(z*(t),t,e),
the system

Ale)z' = hz(z*(t),t,e)z (5.2)

has a non-singular fundamental matrix for e

sultably restricted, say 0 < e < € There will

7'
be no confusion if we call this matrix U(t). UWe
point out that U(t) 1s given by formula 2.1 with

the identification:

ﬁo(t,€),po(t,€) ) fx(xb(t))Yb(t))t)e)) fyo(t,€)

co(t,e),wo(t,e) gxo(t}e)l 5-1[1+gy(x*(t))y*(t)yt:€)] ’

where fyo and 8., BTE defined in Assumption 4.

Just as we did for the ocuter correction,
we can use the results of section 3 to restate
the problem 5.1 as an integral equatlon. Using

formula 3.4, we get the following equation for



the inner correction:

p(t) = zl(t,e) + T[HE*(¥,5,€)7, (5.3)
where
t -1
z,(t,¢) = U(t)[%tU(of} E‘(e] , (5.4)
b U(1) 0
atu(o)]” fl Ty o)U'l(s)A(l/e)z(S)ds
T z] = U(t) - -
b U(1) 0
(5.5)

1
- j U(t)U-l(s)A(l/b)z(s)ds.
t .

We again point out that the matrix

e

boU(1)

exists for 0 < e < 67, as a consequence of
Assumption 5 and formula 3.5.

We shall attempt to solve equation 5.3 by
the method of successive approximations, setting
b_q(t) = o0,

b (t) =z, (tye) + TLE#(0,s,e)] = 2z, (t,¢),

and in general,
ypq (B) =z (£,e) + TLE*(y,,s,¢)].
We define the number m as follows:
if a, = 0, m = -1 - g3
if a, £#0, m= 03

where the number s 1s defined in Assumption 5(b).
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Then, using formulas 2.1 and 3.5, we can show that

Ipo(t)\ = 6“11X1(ts€)| < €mu(e:)Mq(b,t,e),

(5.6)
T (o)l = |y (t,e)] < e (e )MeE/E
where M is a copstant, and we have introduced the
function:
al(b,t,e) = e-t/é if b, = 0,
a(b,t,e) = e~/ e'le—l/e if b, # 0.
The difference in the bound on po(t) for the cases
b, = 0 and b, # 0 is due to the term btzT(l,e)
occurring in the matrix on the right-hand side
of formula 3.5.
Assumption 7
There exists a region
QO = {(z,t,e): 0<e<egr, lx—xo(t)15236+Pe1+mq(b,t,e),

\Y"Yo(tHf_ZRe:-FPeme_t/e, 0<t < 1}.,

with P > 0, in which:
| (a) f, g, and all of their first and second
Partials with respect to x and y exist, with
fy 8, and their first partials continuous in

x and y.
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2 2

(b) The functions ¢ fegr € Bypyr €Ly €8,

y y?

T g are all 0(e™™@),

yy? Syy
We shall simply say z#* + wk is in Qo if
(z*{t) + ¢k(t),t,€) is in Q@ for 0 < t £ 1,

0 < e <e' and shall write:

H*(¥,t,e) = H*(y) = ”gigﬁgﬁ'

On the basis of the above assumption, if z¥* + wk
and z# + wk—l are in Qo, we can apply the mean-value
theorem twice to obtain:
% - | ~G# .
PPe (o, )-Foly, 0, le®(e )-G* (e, _ )] < aM(t),  (5.7)
where

™ (t)=max{ |5 (t)] 1o, (£)=p,(£) ], o (6D Ir, (£)=7 ()1,
176 1oy ()=, (8D, 1T (6| |7y (£)=7,(ED |}

with
[TCe)| = max (|7, (£)], | ()]0, [FC)] = max (Jo (£)], e (£)]).
If we write the transformation T[z] appearing

in equation 5.3 in the form
7.0 2]
z) =| T,
Tz[z]

then a very long calculation, using formulas 2.1,
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2.2, and 3.5, shows that, for any bounded, measurable
two-vector, z(t), the following bounds hold for

0<ts<l, 0<e€ < e,

7
|T1Fz(s)q2(b,s,e)]| < Kellzlla(b,t,e),
|7, 2(s)a?(b,s,e)]] < Klzle™/°.

(5.8)

We remark that K depends on b being in general

2,
considerably smaller for b, = 0 than for b, £ 0.

Assumption 8

There exists €g > 0 such that, for 0 < e < €gt

(a) wule)M < /2,

(b) 2u{e)AKM < 1/3.
We set €y = min[e7,68,e'] and restrict € to
0 < e < €o’ We define Qé to be the region obtained
from Qo by restricting € to 0 < ¢ < € and remark
that, since Qé is contained in Qo, the bound 5.7 is
wlid for z* + wk’ A ¢k~1 in Qé. We also point
out that assumption 9(b) implies that, for 0 < e < €.t

2]

Z 2% ou(e)akM]PT < 1,
o}

Under assumption 8(a), z%* + ¥, is in Qé, 50 we

may apply the bounds 5.6, 5.7, and 5.8 to obtain:
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lpy=p | <h¥e™u(e)ug(b,t,e),
by =10l < w%e B (e Ye™/°,
Lo | < e™(14M*)n(e)Mq(b,t,¢e),
I, 1 < em(1+M*)u(e)Me't/€,

for 0 < e < € g9 0 £t <1, where we have written
M* = 2u (e JAKM.

Assumption 8(b) implies that g# = wl ig in 06,

S0 we may continue. An easy induction now shows

that

T let/E < 2™(w) ™ eMu(e ),

-1
'pn+1-pn|[Q(b’t’€)] 4 !Tn+1— n

-1 t/e
o, q1lal,t,e)17, I'rn_”[e/ < 2e™(e)m.
It is now a straightforward matter to prove

that
t(t) = 1im v (t) = v,(t) + Z[\l!n;,,l(t)-mn(t)]
o

i1s a solution to equation 5.3, with

lo(t)1Talb,t,e)17L, |r(t)e®® < 26T (en;

lo(t)=p_(t)|[alb,t,e)]1™L, [r(t)=r _(£)]e™* <

< (1-2m#) LR () PR (e < (2/9PeT (€)M,

(5.9)
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6. CONCLUSIONS
We can summarize the results of sections

4 and 5 in the following theorem.

THEOREM 6.1

Under Assumptions 1 through 8, there exists
€ > 0 such that the nonlinear boundary-value

problem

A(C)Z' = h(Z,t,e)y
. . (6.1)
a’z(0) =ale), b z(1) = B(e),
has, for 0 < e < €ps @ solution of the form
Z(t) = Zo(t) + g(t¢€) * ‘i‘(tae)s
with

B({t,e) = 0(e),
and frriting v = [© P )

p(t,e) = 0(eMu(e))q(bstye), 7(t,e) = 0(cTu(e))e~t/e,

il

where

m=01if a, #0, m==1~38 if a, = 0,
ule) =ale) - a*z (0) + g(0,¢)7,
a(b,t,e) = e P/ ¢ b, = 0,

a(b,t,e) = e/ 4 e7le™l/e 44 b, # 0,

-1 -
|fyo(0,€)| = 0(c~%).
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Using the fact that

B(tye) = 8 (t,e) + 0(?), @_(t,e) = 0],
where T[z] is defined by equation 4.6, we can show
that

#(t,e) = I(t) + B(e) - B(0) - ¥°1(1) y

b1 + bggxo(1,e)

L(1,t,¢e)
X [ ( ) -t/e} + 0(62),

g, (t,€)L(1,t,e)-[r+g, (0,)1W(0,%,€)L(1,0,¢)e

where

t 1 1 | 1
I(t) = IO{;(S’t’e)[gxo(t,e)lifyo(t,E)]t[h(zo(s)’S’e)ﬁﬁ(e)zo(S)] +
-1 -t) 0
t € w(s,t,e)e(s /e[g(xo(s),yo(s),s,ﬁ)-eyé(S)]} as

L(s,t,e) = exp[ Jt{:x(xo(u),yo(u),u,e) + fyo(u,e)gxo(u,e)}du] s
s

t -
i(s,t,e) = expe”' [ {1vg (1 (), (w)we)-ez (we e, (we)jau | 5
s

Y = a1/a2 if a, # 0, vy = 0 if a, = 0.

Similarly, noting that
o) o) 0™ 2(eNa(b,t,e)
b{t,e) =4 (t,e) +
’ ° o(e™u?(e))e ®/E ]
‘l‘o(t,e) = Zl(tge)g

where zl(t,e) is defined by equation 5.4, we can show
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that:
v(t,e) = wle)ur(0.5,e)e™8/8 [ eTyo(tse) +
ealfyo(o,e)—az -1
H(G)L(l,t,s)W*(O,l,e)e-l/ef_bz—eblfyo(l,e)] 1
b
lea;£0,(0,e)-a, ][ +b g, (1,€]] Brolts€

0(eBu?(e)e~t/"

where L(s,t,€) is defined above and

‘:O(em+1u2(e))q(b,t,e)il
4‘ ’

o1 _
Wk (s,t,e) = exp{C 1] 11+sy(x*(u,e),y*(u,€),u,e) -
s

- efyo(u,e)gxo(u,e)}du R

z#(t,e) = z_(t) + B(t,e).

Note that the behavior of ¥ (t,e) is significantly
different in each of the four cases described by

the possibilities a, = 0, a, £ 03 b, = 0, b, # 0.

Our assumptions, for the most part, concern
the smoothness of f and g and the possibility of ex-
pansion of h(zo(t),t,e) about ¢ = Q0 to terms of order
€. Brlefly, we assume that f and g are twice con-
tinuvously differentiable with respect to x and vy,

that £ and g and their first and second partials
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are 0(1) in a region Q (seé Assumption 2) of
(z,t,e)-space about the curve {(zo(t),t,O):Ogtgl},
and that the second partials of f and g satisfy
certain inequalities in a region Qo (see Assumption
7) of (z,t,e)-space. The region Q, is designed to
contain the inner correction, and consequently is
unbounded. In addition, we require that
fy(xo(tkyo(t),t,s) and g (x (t),y (t),t,e) differ
by at most O(e) from differentiable functions with
uniformly bounded derivatives, and assume that
Sy(xo(t),yo(t),t,e) can be expanded about € = O
to order ¢, with leading term -1.

Although the requirement that gy(xo(t),yo(t),t,e)
have leading term -1 appears rather restrictive,
we can reduce a system of the form of 6.1 in which

g,(x,(s),7,(s)ys,¢) = k(s) + 0(e)

to one in which gy(xo(t),yo(t),t,e) has leading
term -1, if k(s) is different from zero and of
constant sign'on ([0,1]+ This reduction is accomplish=-

ed by the change of variable

J"Sk(u)du{ Jlk(u)du]-l if k < 0,
o] (o]

| 1 o=1
Jsk(u)du[jik(u)duj if k¥ > 0,

t

1

33
1l
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coupled with the replacement of € by
! = e[J |k (u)lduy™" .
o]

If, in addition, we assume that k(s) is continuously
- differentiable, then the integrability and differ-
entiability of the first and second partials of f
and g are unaffected by the transformation.

Of the remaining assumptions, one is especially
worth discussing. In Assumption 9, we required that
the quantity

e) = ale) - a®fz_(0) + B(0,¢)]
be sufficiently small. This means, roughly speaking,
that the boundary condition which we impose at
t =0 (a¥z(0) = a(e)) must be sufficiently close
to that satisfied by the degenerate solution. To
be more precise, the restrictions on u(e) are of
the form:

(a) u(e)M < P/2

(b) 2u(e)AKM < 1/3,

(6.2)

where (in Assumption 7) we had required that:

2‘ ~-m

€ fxxl,€2|gxx|,eifxyl,€|gxyl,|fyy!,|gyy| < Ae

in the region QO. It is clear that, though we can
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do little about the restriction 6.2(a), we could
reduce the severity of 6.2(b) by replacing the
constant A by a function of €,A(e), and reguiring
that A{e) = of1). We also remark that, since

‘m = ~1~g for a, = 0, while m = O for a, # 0, the

2
above bound on the second partials is much more
stringent - by a factor of €s+1_ if 2, = 0.

We can specialize the problem 6.1 to the
problem considered by Erdelyi (12) by taking

flx,y,t,e) = vy, a,=b, =0, m=-1.

2
A point by point comparison of assumptions reveals
that he has assumed all of the hypotheses of
Assumptions 2 and 7 hold in a single region D,
where D can be interpreted as the union of O and

QO. In D, he has assumed that

gXX = 0(1), Sxy = 0(1), gyy = 0(6)9

while we have assumed that, in O (a bounded region)

g = 0(1)

xx? Sxya 8yy
and in Q_ (an unbounded region)

¥ = 0(1), gyy = 0(e).
On the other hand, we have assumed (Assumption 4)

-1
Bry = o(e ), &

that gx(xo(t),yo(t),t,e) differs by at most O(e)
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from a differentiable function with uniformly
bounded derivative, which has no counferpart

in Erdélyi's hypotheses. Since this assumption

1s a direct consequence of our technique for con-
verting a linear system into an intsgral equation,
it is apparent that our methods are not a2g effective
as those of Erd€lyi for the particular case of a
second order equation with boundary conditions of
the form x(o) = afe), x(1) = B(e). With the
exception of these two relatively minor differences,
our assumptions and results are equivalent to those
of Erdélyi.

Harris (5) treats a problem of the form 6.1
with a, = b2 = 0, assuming that f and g are analytic
in x and ¢, linear in y, and c” in t. Ags far as
they can be compared, the only important difference
in our hypotheses is our replacement of linearity of

f and g in y by the requirement that f and g be

yy yy
O(e). Harris obtains a convergent expansion for
the solution, whereas, because of our less stringent
assumptions, we have obtained only the leading terms.
With the exception of the formula for the second

component of the outer correction, our expressions
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for the leading terms of the inner and outer

corrections can be reduced to his.



(1)

(3)

(4)
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