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ABSTRACT

A ring in which every subring is a two sideé icdeal is
called a v-ring. This dissertatiorn ie a classification of all
v-rings with periodic additive group. It is first shkown that a
ring is a v-ring with periodic additive group if and only if it
is the restricted ring direct sum of v-rings whose additive
groups are p-groups for different primes p. Such rings are
called p-v-rings. It is next shown that a p-v-ring must be nil,
or be isomeorphic to the ring of rational integers mod pn for
some n>1l, or be isomorphic to the direct sum of the prime field
of p elements and a nil p-v-ring.
| The classification of nil p-v-rings c¢onstitutes the major
part of this dissertation. Nil p-v-rings containing elements
of unbounded add;tive order are first characterised. Redei has
shown that for any element x of a nil p-v-ring either {(I) x2
is a natural multiple of x or (II) px2 is a natural multiple of
x although x2 is not & natural multiple of x. Because of this
result it is possible to study a ril p-v-ring possessing a bound
on the additive orders of its elements by decomposing the ring
into an additive group direct sum of cyclic groups. It is shown
that aside fror elements in the annihilator of the ring, there
is a decomposzition of the ring with at most two generators of
type (I) ané three of type (II). The possible defining relations

for these nil p«v«rings are enumerated.
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I. INTRODUCTIOK

A ring in which every subring is an ideal will be
called a v-ring (from the German Vollidealring). The prob-
lem of determining all v-rings--described by F. Szdsz [1]
as "ein schweres und bisher noch ungeliistes Problem der
Algebra--was first considered by 1. Redei [2} who exhibited
all v-rings generated by a single element as the homomorphs
of the ring of polynomials with constant term zero over
the rational integers determined by certair products of
certain specified ideals. Further work with v-rings has
been done by F. Szdsz and P. A. Freldman. Szasz's work is
with speecial cases which will not bhe diseunssed here. FreYd-
man's work ig directed toward a somewhat different problem
but leads in particular te a determination of semi-gimple
v-ringe and v-rings with torsion free additive group. The
following are some of Freidman's relevarnt results [3, Theorems
8, 9, 10]: The racdical of a v-ring is the set of nilyotent
elements of the ring. A ring is a semi-gimple v-ring if
and only if it is isomorphic to a direct sum (3 /M)@N 3
where 3} is the ring of raticnal integers and M is a square
free integer dividing N {(poseibly M=1 or N=0). A v-ring
with torsion free additive group is null or is a subring of
the ring of rational integers.

V-rings with periodic additive group will be characterized



here. Except for a few well known theorems all needed results
wil: be proved here in complete detail. 3By Theorem 1 the
problem is reduced to the consideration of rings whose additive
groups are p-groups (p-rings), and by Theorem 2 to the con-
sideration of nil p-rings. Theorem 3 isclates the v-rings
among the nil p-rings containing elements of unbounded char-
acterisiic. The remainder of the dissertation is a classifi-
cation ¢f thoge v-rings which are nil p-ringes containing

only elements of bounded characteristic.

it should first be noted that a necessary and sufficient
condition for a ring to be a v-ring is that every sudbring
generated by a single element be arn ideal, and that subrings
and homomorphs of v-rings are again v-rings.

Natural cxamples of v-rings are the null rings and the
ring of raticnal integers. It is not vossible for a v-ring
with periodic additive group to differ too much from these
examples. Theorem 2 shows that the non-nil part of & v-ring
with periodic additive group can te neothing more than a
homomorph of the rational integers. It will be shown that
a v-ring which is a nil p-ring must ke the direct sum of a
null ring and one of several very special rings listed ex-
plicitly in Theorems 4 - 9. These special rings have the
property that when (at most) cne subring generated by a
single element is removed, then the pth multiple of every

rroduct in the ring is zero.
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IT. NOTATICON ANE DEFINITIONS

A ring will be called a v-ring if every subring is an
ideal. The term "idealﬁ will always mean two sided ideal.

A ring will be called a p-ring if its additive group is a
p-group, and a ring which is both a v-ring and a p-ring will
be called a p-v-ring.

If A is a subset of elements of a ring let < d> denote
the subring generated by @&, and {a& the additive subgroup
generated by A, QA @ 8 or S ® @A, will denote a restricted
ring direct sum, while AL+ B or = + A, will denote a res-
tricted additive group direct gum.

An element y will be said to have exponent r=exp y if
7 =0, ¥l £0. The characteristic n=char & of a set of
elements 1 is the smallest pocitive integer n for which
px =0 for all x el if such an integer exists. Otherwise
char® =0, If Q=§x{ wé write char x = char & .

Seript letters @, R s =+» will dencte ringe, groupse,
or sets. 3 will denote the ring of rational integers. Capital
letters Ay B, C, ... will denote rational integers used as
coefficients; A, ..., Q structure conctants determined by
the ring; R, S, T coefficients which may be arbitrarily
specified; U, V, W, X unknowns in egquations. Small letters
a through d, g through n will be intcgers used as cxponents;

p and g will be primes; e, f, and u through =z willrbe elements

of a ring.



-4 -

III. REDUCTICN TO NIL p-RINGS

Theorem 1. A ring K is a v-ring with.periodic additive group
if and only if R is the restricted ring direct sum of p~v-rings
7Qp for different primes p.
Proof: If X is any ring with periodic additive group it
is well known that K is the restricted group direct sum of
its p-components 7€P. If x¢ %g has characteristic pn, then
pnxyzpnyx= G for all ye?z. 50 ‘RP is an ideal and thus K is
the restricted ring direct sum of the ‘RP. Since subrings
of v-rings are v-rings, if R is a v-ring then the ?Zp are
p~-v-rings.

Now assume that R is the restricted ring direct sum
of p-v-rings for different primes p. It will be sufficient
to show that each subring <y> generated by a single element
y is an ideal. Let y= 5_’::1] where x, € %p and Pis a finite
set of primes. Let char xp = np. If ge 7 let M be a solu-
tion to the congruences M=1 (mod nq), M=0 (mod np) ifpeP
P#q. Since each nP is a power of p such a solution exists
by the Chinese Remainder Theorem. Then My::xq 80 <y>=12p<xp>
is the union of ideals of direct summands and so is itself
an ideal in R .

We shall need the following classical result:
Leﬁma 1 (Koethe and Dicksorn): If the quotient ring K/n ’
where 7l is a pil ideal, contains an idempotent, then ® con-

tains an idempotent.
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Proof: 1If x is in an idempotent coset of the quotient ring
let x! =x2- x and let n(x) = exp x'. Choose e in the idempo-
tent coset so that n{e) ig minimal. We show that e' =0, so
that e.is an idempotent. For consider f=e+e' -2ee'. f is

2. f==1+e'3- 3e'2 would have

in the same coset as e, and f' = f
exponent strictly less than n(e) unless e' =0.

The following lemma is due to P. A. Freidman. The proof
is new.
Lemma 2, The radical of a p-v-ring is the set of nilpotent
elements of the ring. A semi-simple p-v-ring is isomorphic
to the field of p elements.
Froof: TLet R ve a p-v~ring and N the set of nilpotent ele-
ments of the ring. We first show that M is an ideal. If
xeN , yen then xy, yxe<x> C . 1f x, y€ N choose

)m+n—l

m, n so that xm=yn=0. Then each term of (x-y contains

at leagt m x's or n y's. Since xyke <x>, xky €e<y> it foliows

m"'n"l:()’ 80 X~y eN and N ie an ideal.

that (x-y)
Now suppose R ig a p-v-ring with no nilpotent elements.

If x ¢® let char x = p°. Then {px)" =0, so n=0,1. Suppose

x#0. Since <x2> is an ideal in <x>, it follows that x3=

K

We show that for some s x"€ <xs+l>. If A2=0 then 5 = 3.

Ir AE#O choose B so that BAEEZL (mwod p). Then :c2=Bx3 + e

xx2=A2x2 + Abrx]+ + as + A xk for some polynomial, O < Aj < p.

50 s=2. Let xS=B1x5+l+ ves + BmxS

+m . .
To obtain an idem-

potent one could formally divide both sides by x>, We shall
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in fact show that e = (le + eee + Bmxm)s is a non-zero idem-

5_6B

2
potent. Since ex" = x> A0 we have eZ0. Write e = B5%® +

1
£(x)x" where f(x) is a polynomial in x. Then (le+ veo ¥
mys+l 5_8 5 My _ 8. S 5 _
B x ) = (le + £{x)x )(BlXﬂz ...+Bmx ) = Bix~ + f(x)x" =
e. By dinduction ezzee.

If R contained another idempotent f, then either
<e> N <f>#0, from which it follows that <e>=<f> and e=f,
or else <e>N <f>=0, and gince e+ f is the only idempotent
in e+ f> it follows that e=e(e+f)=e+f, so £=0. Thus
R is isomorphic to the field of p elements, ané the lemma
is proved.

Theorem 2. & ring is a p-v~ring if and only if it is iso-
morphic to a ring X satisfying one of the following con-
ditions:

(1) R is a nil p-v-ring.

(2) R % @ 7N where F is the field of p eleuents and

H

M is a nil p-v-ring.
(3) R - 3./<pn> where 3 is the ring of rational integers
and n> 1.
Proof: Rings satisfying (1) and (3) are evidently p-v-rings.
To ghow that a ring R satisfying (2) is a p-v-ring consider
the subring <u+x> where u € 3 , x ¢ N . Let r= exp x. Then
(urx)¥ = 0¥ and <w> = <u™ s0 <u+x> = <u> U <x> is the join of
ideals of direct summands and so is itself an ideal in K.

Now assume that K is a p-v=ring which is not nil. TLet
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M be the radical of R, By Lemma 2 K /M contains an
idempotent, and then by Lemma 1 X contains an idempotent e.
The Pierce decomposition gives us K = <e> + N where % is
the two sided annihilator of e and for any y, y= (ey+ye-eye) +
(y-ey-yeteye). If 7 were not nil then as above it would
contain an idempotent. But then ® /M would not satisfy
Lemma 2.
R | i, B it orton o
Lel char e = p . If n=1 then satisfies condition
(2). If n>1 consider the ideal <pe+x> where x e 1L .
2 e t t
e(pe+x) =pe=Vl(pe+x) + VE(P E+X ) + vu. + Vt(p e+x ) so pe =
2 t 2
V,pe + V,p"e + ... + V.p'e 80 V1¢50 (mod p). Also Vix o+ VoxT e

ves + Vtxt = 0 so xe<x2> and since x is nilpotent we have

x=0, Thus M = 0 and so (3) holds.
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IV. NIL p-v-RINGS OF UNBOUNDED CHARACTERISTIC

Lemms 3: I1f y is an element of a nil p-v-ring then y3€ {323.

Proof: Let k be the minimal positive integer such that ykz

Myk'l for some M. Let exp y = r. Then yr'kyk=O=Myr'l S0 P

divides M. Since <y2> is an ideal in <y> we have y3= yya =

Aaya +A£}y1*+ R R cut SO ¢4 k<3 there is nothing to prove.

r-1
If k>4 then yk-&yﬁ - Aay +A‘+yk+ cee = A2 +(AL|_M+A6M5 )ykﬂl.

Since p divides M there is a B such that B(l-Al*M—...) =1 (mod

char y). But then yk_l=BAEyk-2, contradicting the minimality

of K.

Corollary: A ring is a nil p-v-rii‘lg only if for all x, y in the
Jring‘ there are U, V, U', V' gsuch that xy:Ux+Vx2=U'y+V'y2.
Lempa 4: Let R be a nil p-v-ring of unbounded characteristic.
If x « R then px2=0. If x,y€R then xy € {ngn {yag.

Proof: If x € R then x(px) = Upx + V]pax‘2 s0 (l-;;:ﬂf);px‘2 = Upx so

pxze §xy. Tet char x = pr and choose z € R so that char z =

P2r_ Tf §x3n §23=0 then x(px+p z)= pxa = U(px+prz)+Vp2x2 50

pr divides U so pxz =Vp2x2 and so an =0. On the other hand

r+j

suppose p z=Apjx for some j, & %0 (mod p). Then x(Apx-pr+lz)=

r+l

Apx2=U(Apx-}g 2) + V(A° p 2y =v(a p2 2y so again px2=0.

Now assume that x,y € R. Let char x = pr, char y = ps'

and t >max (r,s). Choose z € R so that char z = pZt. First

suppose §z{ N <x>=0. Then (x-i-ptz)y = xy = U(x+ t2) + ¥x% eo pv
rp P P

divides U and so xy ﬁf_xa {. Next suppose P2t+3-1“

2t=-r

z=Apj:x, Az#0(p).

Then (Ax-p z)y Axy = V(A 2%%) so again xy € ix $. Finally
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suppose pat"lz=ﬂpr'»1x+ BxZ, x°¢ {x3. If A=0 (p) then
(x+ptz);y=xy= (UB+V) %2 so xy € f_xag « If A0 (p) then
(i\x—pat'rz)y = AXy = (-UB-i-lV’Aa)x2 5O Xy ® {x‘a}. Thus in every
case we have shown that xye Exa 3. Similarly it can be shown
that xy «iy23 .

The following lemma is well known.
Lemma 5: If p#2 and P(S,T) is a quadratic polynomial in two
variakles which mod p is not constant in either variable, then
for some integers S, T we have P(S,T)= 0 (mod p).
Proof: We may assume that P(S,T) is in standard form P(S,T) =

ASa + BTb +C. Il a=1 or b=1 the result is immediate. Other-

wise write P(5,T) =0 as AS% = -BT® -C. The left hand side
takes on (p+l)/2 values--obtained from the (p-1)/2 gquadratic
r@sidues and zero--while the right hand side also takes on
(p+1)/2 values, so there is one in comrmon.
Theorem 5: A p-ring of unbounded characteristic is a nil
p-v-ring if and only if it is isomorphic to a ring K satisfying
one of the following conditions, .where N is a p-ring of unbound-
ed characteristic which annihilates R:
(1) R=m. |
(2) R=<x>uN, px, e , char x° = P.
(3) R=<x,y>UN, px, p¥: x° e . char x° = D y2= sz,

A F 0 (mod p), xy:FX.?, yac::F'xz, T +T(F+F' ) +A % 0 (mod p)

for any integer T.

Proof: Rings satisfying (1) are obviously v-rings. We show
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that rings satisfying (3) are verings. A trivial modification
of the argument slows that rings satisf.ying (2) are v-rings.
If is enough to show tha;t each subring 4= <Sx+Ty+u> , u € n,
is an ideal. If p divides S and p divides T then Sx+Ty+ué& 7l
and thus ¥ is an ideal. Otherwise x2e 3 since (Sx+Ty+u§ =
(82+ST(F+F')+T2A)x2 whick is not zero since T2+‘I‘(F+F‘)+A is
never zero. But all products are in ixaj 50 34 is an ideal.
Conversely suppose R is a nil p~v-ring of unbounded

characteristic. Let 7. be the two sided annihilator of R .
By Lemma 4 if w€ R then pw € N, and w € 7L if and only if
w2=0. If R=N then (1) holds. Otherwise there is an x& K,
x § N (so char x2=p). If K=<x>UN then (2) holds, so
assume there is some y& R , yf<x>U N, If xy#0 or yx#0

2

then since xy, yx € ixai n {Ya'i we have y =Ax2 for some A # 0

{(mod p). If xy=yx=0 then by Lemma 4 x(x+y) =x°e z(xﬂ,’)a} =
£x2+y23 S50 ya=Axa. Let xy:an, ¥x =F'x®. If for some T
‘I‘2+T(F+F‘)+AEO (mod p) then for that T (y+Tx)2=0, 50 y =
(«Tx) + (y+Tx) is in <> U N, a contradiction.

1f R =<x,v>UN then (3) holds. Suppose there were
some z € R , z¢<x,y>uUN., As above 52=Bx2.. B#0 (med v),
X7 + ZX = (H+H')x2, ¥z + 2y = (K+K')x2. By Lemma 5 (or directly
if p=2) for suitable § and T S +T°A+S(H+H' )+T(K+K ') +ST(R+F ")+
B =0 (mod p).I For this S and T it follows that (z+Sx+Ty)2 =0,

50 z€<x,y>UN,
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V. NIL p-v-RINGS OF BOUNDED CHARACTERISTIC

The determination of nil p~-v-rings of bounded character-
istic will proceed as foilows. It is first shown by Theorenm
b4 thét any element of a nil p-v-ring has some multiple which
generates the same additive subgroup and which satisfies one
of two specified conditions. Flements satisfying these con-
ditions will be called elements of types I and I1. A p-ring
of bounded characteristic may decompose as an additive group
direct sum of finite cyclic subgroups (see, e.g. [&], p. 17).
The generators of the cyclic direct summands can be taken to
be of types I and II, and rings which have decompositions with
/only a finite number of type II generators are first considered.
For convenience in the proofs the number of type Il generators
ig assumed to be minimal, but the proofs provide a proceedure
for obtaining a decomposition With the minimal number, start-
ing with any finite number. Lemma 7 shows that rings with
more than two type I generators with square not zero are not
v-rings. The number of type I generators with square not zero
is assumed to be minimal. By Theorems 5, 6, 7, and 8 nil
p-v-rings of bounded characteristic having O, 1, 2, and 3
generators of type II are in tﬁrn enumerated, Theorem 9 then
shows that there are no nil p-v-rings whose minimal decompo-
sitions involve more than three type II generators, and if a
nil p-v-ring has an infinite number of type 11 gernerators

Theorem 9 outlines a procedure for obtaining a decomposition
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with only a finite number.
The following fheorém is due to L. Redei {2]. The proof
given here is new.
Theorem 4. A ring <y> generated by one element will be a nil
p-v-ring if and only if there is some x €3y}, <x>=<y>, sat-

isfying one of the following conditions:

I. x2=pmx, pm+nx=0 for suitable integers m>0, n>0,

1I. px2=pmx, pm+nx___0 for suitable integers m> 0, hZO,

x°¢{x}. Ifm=1thenn=0 and x°=0. If m>1 then

x3 - p2m-2ﬁc

Proof: Suppose <y> is a nil p-v-ring. <py> is an ideal, so
- py2=Upy+Vp2y2 by the corollary to Lemma 3, and thus
p(1-pV)y® = pUy. Let M be the minimal positive integer such
that My2=Ny for some N. Since p2 does not divide p(l-pV)
either M=1 or M=p., Let N:me where p does not divide Q,

and let 5 be a solution to the congruence §S=1 (mod char y).

2

Let x=8y. Then either x -_-pmx or px2= pmx. Note that m> O,

for m=0 and x nilpotent implies x=0. Let char x = Pm+n. If

%2 = p®x then condition I holds, so assume px° = p¥x, x°¢ Ix3.

Suppose m=1., Let r = exp x. Then O=px¥ :—.ﬁ(pxa.)xr“2 =

pxr-l= .o =Ppx 80 n=0. Since x 7% i_xai and pxazO it follows
that x°=0. Thus II holds.

Suprose m> 1. Let r = exp x, and let x3=Kptx2. Multi-

plying by x*~° shows that t>0, so x> =Kp™ *"1x, Then
x(xa—pm—lx) = x3-p2m-2x = U(x%-p™ 1x) + v(x%-p™1x) . But
(x2_pm-—lx)2 - Kp2m+t—2x _ Kp2m+t—2x - p}m-}x . pjm-BX -0 and since
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£ ¢ Ix}3 it follows that p divides U, and p(f - 1x) =0, so
2;3 - pem-2x=0, and thus condition IT holds.

To show conversely'thét rings satisfying I and II are
verings it suffices to show Lhali ezch subring <Apa'x+Bx2> gen—
erated by one element is an ideal, where p does not divide A
and 0<B<p. Choose C so that AC=1 {(mod char x).

I. x(Apax+Bx2 ) =Ap T Rx 4 Bpmx2 =g (Apax+Bx2 Y.
II, m=1. If a>0 then x(AfPx+Bx¥)=0. If a=0 then x(Ap®x +
Bx?) = A% = C(Ax+Bx )2,

11, m>1. If a>0 then x{APx+B:L) = "L (AP x+Bx%). If a=0
then x(Ax+Bx2) = Ax2 + BP0 2y = CAx+Bx2 )2 - BCpE® 2 (Ax+Bo ).
Corollary. If x and y are elements of a nil p-v-ring then
p(xy)e {x3n Ly3 .

Some special notation and several special techniques will
be needed for the calculations to follow.

From now on whenever the symbol ia$ or < QJ>is used it
will be assumed that idi is the restricted direct sum of the
cyclic subgroups generated by the elements of a.

Let x and y be group direct sum generators, x#y. Since
$x3¥n {y3 =0, by the corollary to Theorem 4 we have plxy) =
p{yx) = 0. The elements of characteristic P in a p—ring together
with O form an algebra over the field of p elements. If u is

a+hel

of type I it is evident that p u is a basis for the ele-

2

ments of characteristic p in <u>, where u a+by = 0.

= p?u and p

1f x is of type II it is easy to show that xz-pj'lx and
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k=1 J+k

P X constitute a basis, where pxz =p‘jx and p =0. 1If

X
k=0 we shall often use the alternative basis x2, pj-lx.
Since praoducts of distiﬁct group direct sum generators are in
this algébra, almest all calculations will be done in the
field of p elements, and all relations among coefficients

are to be interpreted as congruences mod p unless stated other-
wise.

In what follows, in order to determine relations among
the generators, certain subrings, say <y>, will be considered.
By the corollary to Lemma 3 the statement xyé€<y> is equiv-
alent to showing that there are integerg U, V guch that xy =
Uy + Vya .

Another standard technique will he to replace a type II
generator x by a type I generator of the form x+Ty. When this
is done it must always be that char y < char x (and it will
always be assumed that Exi n §y3=0) so that f_x-i-Ty'S_n iyy=0.

Henceforth the symbols u, v, w will denote group direct
sum generators of type I, and x, y, z group direct sum gener-~
ators of type II. The following relations will hold:
uzzpau' pa+bu=0, v2=pcv, pc""dv:O, wzngw’ pg+hw==0
p = pix, pi*¥x=0, py¥ =y, ?*Py=0, pf =1z, p'*z=0.
The generators are named so that a>cz2g, j2m>r, and if
& =¢ then b>d, énd gimilarly for all pairc selected from a, c,
g or from j, m, r+ This leads to & naturzl division of the

calculations: one case is, say, a+b>c¢, the other a=c¢, b=d=0.
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The results to follow are stated in "if and only if"
terms, but the proofs are given in only one direction. The

converse proofs follow immediately from Theorem 10.
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VI. NIL p-v-RINGS WITH NO TYPE II GENERATORS

Lemma 6. The ring <u,v> is a nil p-v-ring if and only if
d=0or a>c¢, d=1.

+1

Proof: Suppose that d> 1. Then v(u+ pv) =ty =Ulu+py) +

V(p u+ pC+2 v) for suitable U, V. Then p divides U while pc*l
does not divide U and se c¢>a. By assumption aZc s0 a=c¢.

Then b>d>1. v{pu+pv)= pc+l-v =T(pu + pv) + V(p°+2u + pc+2v)

U and V must be chcsen to make (Up+Vp°+2)u=O. But then

(Up + Vp°+2)v =0, contradicting d> 1. Suppose now that d=1

and a=¢. Then b>d=1. v(u+v)= P v=U(u+v) +V(pCu+p®v).

U and V must be chosen to make (U+Vp®)u=0. But then

(s vp®)v=0, contradicting d=1. |

Lemma 7: A ring <uv,v,w> is a nil p-v-ring if and only if cne
of the following conditions holds:

(1) d4=h=0.

(2) d=1, h=0, a>c.

(3) d=0, h=1, c>g.

Proof: Since Lemma £ must hold for each of the subrings <u,v>,
<u,w>, and <v,w> we may assume that a>c¢>g and d=h=1.
But then w(u+v+w)=p8Bw=U(u+v+w) +V(p2u+p®v+pBw), Since
fugn fv,wl =0 it follows that p? divides U so pBw=V(pSv + pbw).
But p°v¢fwl so p divides V and so pBw=0, a contradiction.
Theorem 5. A nil p-v-ring generated with additive group direct
sum by elements of type I must be isomorphiec to a ring K satis-

fying one of the following conditions, where N is a null p-ring



- 17 -

and u2 _ pau, pa+bu -0, V2 - pcv,' pc«»d_‘-r - 0:

(1) R =N.
(2) R =<w> @ P . If b>1 then char N <p°.
(3) R=<w o< e, a>c, b>0, d=1, and char N <p°.

Proof: This follows directly from Lemmas 6 and 7.
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VII. NIL p-v-RINGS WITH ONE TYPE II GENERATOR
Throughout -this section we shall let ux=Fp  u and

a+b-1l '
xu=F'p u, where OKF,F'<p. If F#0 or F'#OQO then

<w> N <x>#0. Because the elements of characteristic p form an

-1
algebra it follows that <u>fi <x> is generated by pa*b u =

A(xz-pj_lx) + Bpj+k—l
wise fudn §xi#o.

In considering rings containing generators of both types

x for some A, B. Then A ZO0O, since other-

"I and II it will become apparent that dividing the calculations
inte two cases is advantageoué. If the generators are called

u and x the cases are a2 j and Jj>a. This leads to the
’grouping of Lemmas 8 and 9, Lemmas 11, 12, 13%,and Lemmas 14, 15.
Lemma. 8: Assume that a> j. Then <u,x> is a nil p-v-ring if
and only if k=0 and one of the following conditions holds:

(1) ux=xu=0.

b-1 a+b-1

(2) 2 a+b-1 u, xu=F'p a.

a+b>j, x =Ap u, A#£O0, ux:Fpaqp

(3} a=j, b=0, pa_1u=Ax2+BpJ-1x, A£0, ux:Fpa—lu, Xu =

Frp2tu, B+A(F+F')=0.

j+kel a+b-1
P u =

Proof: Suppose that k> 0. x(pkx-t-u) =P x+F!

j+k-1 +k-1

U(pkx«ru) + V(pkxﬂl)'2 =T'(p X + pj—lu) +Vp~u, since p?

divides the coefficient of x in the left side and in the V term,
so p‘]w:L exactly divides U. In fact U'=1 (mod p). From the
equation and from a> j it follows that a=j, b=0, and F' =1,

Similarly F=1. Then o2ty = a(xPopiTix) + ppdtEt

a-1

x, A £0.

Then u{Ax-u) = Ap u=U(Ax-u) + V(Ax-u)a = (Ap‘.]*lx-—pa—lu) +
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U"Apjﬂ:_lx + VA(Axa-apa-lu) where U= U'p.jf'1 + U"‘pj"'k“l. Since
the left member is in <u> the right member must be also, and
60 U' = <AV, U" =BV. Then Ap® Yu=va(1-2+1)p2 M =0, a contra-
diction. Thus k=0.

We may assume ux £ 0 or xufZ O or else (1) holds. To be

definite assume ux#0 (if xu#0 and ux = O reverse all products

in what follows). Then <u>n<x>#0 so pa+b"lu = Ax% + Bp‘]-lx

for some 4£0, B, If a+b>j then (2) holds or else B #O.

a+h-;ju_Bx) - -BFpaH)-lu - U(pa+b—1u _ Bpj"lx) +

so, for some X, V=AX, U= -B%X, so -BFp?® 0 f= X(B2-B%)u-=

But B# 0O implies ul(p

VBzx2

O, a contradiction. Thus if a+b> j then (2) holds. Assunme
that a=j, b=0, If B+A(F+F') £0 let T[B+A(F+F')] ==1. Then

u{x+Tu) = Fpa"lu = U(pa-lxﬂ'pa'lu) « V(x24T0 (F4F " )pa'lu) . Then

a-1

V=AX, U=BX so Fp~ ~u=X(1+T[B+A(F+F')] )pa'lu =0, a contra-

diction. Thus (3) holds.
Lemma 9: Assume that j>a. Then <u,x> is a nil p~v-ring if
and only if one of the following conditions holds:

(1) =0, ux=xu=0.

J+k-1

(2) b=1, pauzﬁ(xa—p‘]"lx) + Bp ¥, A£0, ux =Fp?u, xu=

+ 2
F'p?u, and 1+T[A(F+F‘)+(Bpk-—ﬁ)p3'a']] +T A is never O.
(3) b=2, j=a+l, k=0, p®lu=ax®, 440, ux, xu e{pa+lug,

Proof: Suppose first that b=0. Then (u+px)x=Fp? lu+ plx e

a~1

<u+px> and pJ_l(u+px) =p']x e<u+px> s0 Fp u €<u+px>. But

p(Fpanlu) =0 and since (u+px)2 = p3+1x = pj(u+px) the only elements
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j-n-}:::-2u ‘ p;j+k---lx

of characteristic p in <u+px> are multiples of p )

so F=0. Similarly F' =0, and so (1) holds.
Now assume that b>0, <u> N <x>#O0 since if that were
so then x{u+x) = £ = U{u+x) + VipZu + xa), which cannot be solved

for U and V. If j+k> a+l then Lemma 6 on <px,u> shows that b=1.

J+k=-1

IJf =1 let pau=A(x2-p3-lx) + Bp x, A£0. 8ince

(x+Tu)2 = [1+T(F+F +T)AJx" # [P(F+F'+T) (Bp5-a)Ipd~1x

1, 2

pj-l(x—rTu) = [Tﬁpj_a— J== + [l-erj_a-l(Bpk-A)]pj_lx

it follows that the generator x may be replaced by the type I
generator x+Tu if the determinant formed by the four coeffi-
cients is ever 0. Thus (2) holds.

Finally suppose b>1. We have shown that j=a+l, k=0.

a+b-1 2 J=1 a+b-1

Let p u=Ax“ +BpY "x, A#0. Consider <u,x>/<p

1 3-1

u>'
2

In the quotient ring x“= -A""BpY ~x so <X» is of type I. If
B#0 then Lemma 6 cannot hold for this quotient ring. Thus
B=0. Then u{pu+x)= (pa+l+Fpa+b"i)u = Upa"'au + V(pa+2+ﬁ'lpa+b'l)u
shows that b=2, and so (3) holds.

Lemma 10: Either <udb fi<x>=0 or <v>N<x>=0.

a*b"lu €<x> and Pc-t»d—l

Proof: If p v €<x> then {pa"'b'lu,
pcm'lv} = fxz-pj"lx, pj"'k']x} 80 pj"'k"lx % fu,vs, a contradic-
tion.

Lemma 11:. Assume that a>c> j. Then <u,v,x> is a nil p-v-ring
if and only if k=0 and one of the following cornditions holds:

(1) d4=0, ux=xu=vx=xv=0.

(2) d=0, a+b>c, <V>N<x> =0, x° = Ap®*P~Ly, A £0, ux=Fx?,
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xu:F'xa.

2

(3) d=1, a>c, <w>N<x>=0, x“=4p%, 440, xv =Fpy, vx=

F'pcv, and 1+T(F+F',)+T2A is never zero.
() p=2 or p=3, d=1, a=ze+l, b=0, <u>f <x>=<v> A <x> =0,
x% = 4p%u - p%v, A£O.

2

(5) p=2, d=1, a=c+l, b=0, <v>N<x>=0, x°=2%, ux, xu ¢{x?],

ux £ %u.
Proof: Lemma 6 on <u,v> shows that d=0 or else a>c, d=1.
Lemma 8 on <u,x> shows that k=0. TFirst suppose ux=xu=vx =

xv=0. If d=0 then (1) holds, so assume that a>de¢, d=1. Writ-

a+b-lu+ a-i-b-lv) +

14
ing U=U'p -paV one sees that v(u+v+x) = pSv=U'(p Y

V(p°v+x°), from which it follows that x2 = ApA*P~ly+ BpSy for

some A, B not both zero. Let RO, S40. Then v(Rp2*P-C-lyiSv+x)

a+b'lu+Spcv) +V(Apa+b“lu+(B+32)p°v). This is solv-

= Sp°v = U(Rp
able only if the determi_nant R(B+S‘2)-AS is never zero for R#0,
S#0. This implies either 4 =0, Bf-»-SZ is never O, which is case
(3), or else p=2 or p=3, B==1, A£0. Then v(u+v+x) is not in
<u+v+x> unless a+b=c+l. Thus (&) holds. If not all of ux, xu,
vX, Xv are zero then <ud N <x> £ 0 or <v>p <x>£0.

Suppose <u> N1 <x>#0. By Lemma 10 <v><x>=0. If a=c¢,
b=d=0 then x{u+v) =xu="U{u+v) s0 ux=xu=0 and so (1) holds.
Thus asgumec that a+b>e¢. We may assume that (2) of Lemma 8 holds

2 a+b-1_

in <u,x> so x° =Ap u, 4#0, If d=0 then (2) holds. Suppose

a>c and d=1. If it were true that a+b > ¢+l then it would

a+b-c-1

follow that v(Ap urvtx) = pv = U(Apa+b“lu+PCv). + V(gCv +
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, which is not solvable. Thus a=zc+l, b=z0, d=z1.

If there is an integer T for which T(F+F'+AT) #0 then for that
T  we have v'(u+T(F+F'+AT)v+Tx) = T(F+F'+AT)pcv = U[pcu+T(F+F'+AT)
vl +V[T.(F+F'+AT)][T(F+F'+AT)p°v+pGu] cannot be solved. Thus
p=2, A=F+F' =1, and so (5) holds.

Finally suppose <> N<x> =0, <v>N<x>#0. If d=0 then
x(u+v) = xv = U(u+v) +Vpau 50 pa divides U and since a> c it
follows that xv=vx=0 and so (1) holda. If d=1 then we may
assume that (2) of Lemma & holds in <v,x>, and then x2 = Ap°v,
A£0, vx=Fpv, xv ::F'pcv. But (v+Tx )a = [1+T(F+F! )+T2A]pcv
is never zero since the number of type T generatore with square
not zero is assumed to be minimal, and so (3) holds.

Lemma 12: Assume that a> j>c¢. Then <u,v,x> is a nil p-v-ring
if and only if k=0 and one of the following conditions holds:
(1) d4=0, xv=vx=0, <u,x> satisfies Lemma 8.

2, AZ£O, vx:chv, xv =F'py,

(2) d=1, <wn<x>=0, p°v=4ax
and l—a—'I'(F-a-F')'A-&-'I‘ZA is never =ero.

Proof: Lemma 6 on <u,v> shows that d=0 or d=1. Lemnma 8 on
<u,x> shows that kx=C. Lemma 9 on <v,x> shows that if d=0

then xv=vx=0 so (1) holdes, while if d=1 then pcv.-:Axa-c-Bpj"lx
for some A#£0, B, vx:chv, xv:F'pcv, and 1+T[A(F+F')+Bpj_c'lj
+T2A is never 0. Lemma 10 then asserts that <w>nA<x>=0. From
v{utx) = vx = Ulu+x) +V('pau+x2) we obtain (since pa divides U so

vx:sz) either F=F'=0Q or B=0. If B=0 then (2) holds. If

BZC, F=F' =0, then x{(u+v+x) is not in <u+tv+x>.
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Lemma i3: Assume that j>a>c. Then <u,v,x> is a nil p-v-ring
if and only if one of the following conditions holds:
(1) d=0, xv=vx=0, <u,x> satisfies Lemma §.
(2) d4=1, b=0, j>a>c, <> N<x>=0, and <v,x> satisfies
conéition (2} of Lemma 9.
Proof: By Lemma 6 d=0 or a>c¢c, d=1. If d=0 then by
Lemma 9 xv=vx=0 and so (1) helds. If d=1 then <v,x> satis-
fies (2) of Lemma 9 sc by Lemma 10 <u> n <x> =0 and thus {2) holds.
Lemma 1li4: Assume that a>c>gz 3. Then <u,v,w,x> is a nil
p~v-ring if and only if one of the following conditions holds:
(1} h=0, w annihilates <u,v,w,x>, and <u,v,x> satisfies
Lemma 11.
(2) h=1, d=0C, c>g, <WAKK =<v> N1 <x> =0, and <u,w,x>
satisfies condition (3) of Lemma 11.
Proof: If h=0C then Lemma 1l on <u,w,x> shows that w annihi-
latee <u,v,w,x> and so (1) holds. If h> O then Lemma 7 on
<u,v,w? shows that h=1, d=0, and ¢>g. Lemma 11 on <u,w,x>
shows that x> € Eu,wg and on <v,w,x> shows that xCe fv,wi s0
xaef_wg, and thus (3) of Lemma 11 holds in <u,w,x>. Thus {(2)
of the conclusion holds.
Lemma 15: Assume that j> g. Then <u,v,w,x> ig a nil p-v-ring
if arnd only if one of the followirng conditions holds:
(1) h=0, w annihilates <u,v,w,¥>, <u,v,x> satisfies Lemma
11, 12, or 13,

{(2) h=1, a>j, c>g, d=0, k=0, <> A <x>=<v>N<x> =0, and
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<u,w,X> satisfies condition (2) of Lemma 12.
(3} ji>a>e>g, h=1, b=0, d=0, W< =<v>N<x>=0 and
<u,w,x> satisfies (2) of Lemma 13%.
Proof: If h=0C then by Lemma 9 w annihilates x so (1) holds.
If h>0 then by Lemma 7 h=1, ¢>g, and d=0. If a> j then
(2) holds, while if j>a then (3) holds.
Theorem €: If a nil p-v-ring has an additive group direct sum
decomposition with a minimum of one generator of type II then
the ring is isomorphic to a ring R satisfying one of the
following conditions, where N is a (null) p-ring annihilating

R , x is of type II, px2=‘pr. pJ+kx=:O, u and v are of type

+b +d

I, uzzpau, pa u=0, vezpcv, pc v=0, and <...> is assumed
to be the additive group direct sum of the cyclic groups gener-
ated by the enclesed elements.

(1) R =¢fx3+7, xz—pj_lx is any element of R which aani-

3=14) = p. If k>0 then char TL<p9

hilates R , char (xa-p
(?) R ={ul £ x5 4N, bv>0, a>j, k=0, xa-pj-lx is any
elemert ¢f R not ir §x} whick annihiiates R,
char (xa—pj-lx) = p, ux=xu=0, char N < p°.
(3) R = <u,x>@® N, asb>j, k=0, x==-ap3*0"L, 140,

ux, xu Eixai. If b=0 then char ¥t <p®. If b>1 then

char M <p® . If b=1 let ux=Fx°, xu=F'x°. Then 1 +
P(F+F'+T)A ie never =zero.
) R =<u,x>® N, a=j, b=k=0, p> tu=zax®+Bpi~Ix, a#0,

ux = Fpa-lu, Xu = F'pa_lu, B+A(F+F') = O, and char N <pJ.
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(5) R =<u,x> 8, §>a, b=1, *u=Aa(xP-pi~tx) + BpdH1x

i ]
A#0, ux=FePu, xus=TF'p?u, L+TLA(F+F')+Bp-a)pi 2" 1]+17°%2
is never zero. FEither k=0, A=B or char 7L< pj.

Lu=4ax?, 440,

(6) R =<u,x>eN, j=a+l, b=2, k=0, p°
ux, xué{xag, and char 7Tl < pj.

(7) K=<we<v,xceMN, a>j, a>c, d=1, k=0, x2=Apcv,
A#0O, vx:chv, xv:F'pcv, 1+T(F+F‘)+T2A is never zero.
If b>0 then char % < p%.

(8) p=2 or p=3, R =<u,v,x>@ YL, a=c+1>j, b=0, d=1,
k=0, x2=Ap°u-pcv, AZ0, ux=xu=vx=xv=0, char N <p°.

(9) p=2, R=<vwveoe<ux>e ¥, a=zc+l>j, 0=0, d=1, k=0,
x2=2cu, ux, xu Gfxai, ux £ xu, and char'ﬂ_gzc .

Proof: This is just a summery of the results in the lemmas

of this section.
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VIII. NIL p-v-RINGS WITH TWO TYFE II GENERATORS

If x and y are type II generators then <x>N<y> 1s a
Zerc, one, or itwo dimensional algebra over the field of p
elemerts. Lemma 16 shows that a zero dimensional intersection
ig impossible, so the calculatlons tc follow are usually divided
inte two cases according to the dimensicn of the intersection.
lemma 16: If <x,y> is a nil p-v-ring ther <x>n<y>4#0.
Froof: If <x>N<y>=0 then xXy=yx=0 and s0 x(x+y) =x2=
Ul{x+y) +V(x2+y2), which cannot be sclved for U and V.
lLemma 17: Assume that <x> N <y> is one dimensicnal. Then <x,y>
is a nil p-v-ring if ard only if n=0 and one cf the following
conditions holids:

(1) y2=Bpj+k-lx, B£0Q, xy:Fya, yx:F‘ya. If j=m then k=1.

(2) yzzﬂ(xz-p‘j'lx)d-ﬁp:'“c-lx, AfO, xy:Fyz, yx:F'yz, and

1+T{F+F'+T)A 1is never zero. If j=mn then k=0 and A =B.

2

(3) p=2, j=m>1, k=0, xy=yx=0, and 2™ 'y =x%+23"x or

Zj-lx - y2+2m-ly.
2_ m=l 2
) X =£ y+Ay or
(4) p=2, j=m>1, k=0, xy:yx:{a j-1 2 A=0,1.
¥y =2 x+Ax

Note that replacing x or y by the generator x+y makes rings
of case (3) satisfy (4) and rings of case (&) satisfy (3).
Proof: 1If j+k>m applying Lemma 8 to <px,y> shows that n=0C.
If j=m, k=0 then by assumption n=0. ¥e are given that
<x> N <y> is one dimensional.

First suppose y2 ¢<x>ﬂ <y»>, so that <x> i <y> is gener-

2_3-1 itkel,

ated by w=pm-ly+032=ﬁ(x x) + Bp* for some A,B,C.
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iet Xy=Fw, yx =F'w. Ther x(Tx+y)= Tx2+1-“w = U[TpJ-lx + pJ—ly] +

VET2x2+ T(F+F')w+ y2]. Suppose that j>m. Then pj-ly-O s0
p divides V since y2¢ <x> Then ‘I'x2+Fw efpj-1x3 for all T#£0.
¥rom this it follows that p=2, F=A=1. 8Similarly F'=1. But
thern ={2x%+y) is not in <3x+y>. Thus we may sssume that j=m.
Congider (x+Ty)y=Fw+ Ty'2 = U[pj-lx + Tpm-ly] + V[x2+'I‘(F+F' Yw +
'I‘Zya:]. The left side is in <y» so the right side must he, so
for some X we have U=DX+pl', V=AX, where D:Bpk-A. Then
Fw+ '.[':,r2 = X([1+DT+AT(F+F')Jw + {_-DC‘I'+A'I’2]y2). Since w and 32 are
by assumption independent but the left side must be dependent
on the right side for all T#£0 it follows that the determinant
"I‘ [1+FDC}+T2L'D+AF'] is zero for all T. Thus one holds:

(L) 1+FDC = D+4AF' =0 (B) p=2, 1+FDC = D+AF' = 1.

One of these conditions must also hold with F and F' inter-
changed. It then follows that F=F'. If (A) holds ther F =
F' £0 and A£0O, and then T = -A"'F~' makes the w term on the
righl zero, whereas the w term on the left is not zeru. Thus
(B) holds. If D=0 thern A=F=F'=1 ané since o0=D=B2K-1 it
follows that k=0, B=1, and so (4) holde. Ascume that D=1.
If A=0O then k=0, B=1 and then C #C (otherwise Eyz n fxi #0)
sc F=F'=0 and thus (3) holds. If A=1 then F=F'=0; so if
C=0, k=0 then (3) holds, while if C =1 then (x+y)y § <x+y>,
and 1f ¢ =0, k> O then x(2x+y) § <@x+y>.

2

Now assume that y € <x>, =0 ya =A(x2—p‘]-lx) _,,Bpll"'k-l

x for

some A, B, xy=Fy2, yx=F':,r2. If j>m then pj-l(x-f'l‘y) =p3'1x
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and (x+Ty)" = [1+T(F+F ' +T)A]x" + [T(F+F' +T) (Bp*-4)]pd " x. Since
X cannot be replaced by a type I generator it follows that
1+T(F+¥'+T)A is never zero. Thus (1) or (2} kolds. If j=m,
k>0 thern from x{px+y)= pjx+ Fyz = Upj+1x + V(pj*lxaryz) one sees
that k=1, y2=Bpjx, and so (1) holds. Finally, if j=m and
k=0 then by interchangirg x ané y one sees by the abeove that
either x° € <y> or (3) or (&) holds. If x= e <y> then ya=Axas
4 #0, and since x cannot be replaced by a gererator of the
form x+Ty with square zero, it follows that 1+T(F+F'+T)4 is
never azero. Thus (2) holds.

Lepma 18: Assume that <x> N <y> is two dimensional. let & =

e -1 j+k=-1
_PJ i+

X x and @=p *. Then <x,y> is a nil p-v-ring if

and only if n=0, xy=F& +Gg , yx=F'a + G'g, yE=Aa+Bg,
pm‘1y=Cu+ De, C#C, AD#BC, and one of the following holds:
(1) j>m, A=C, F=F'=0.
(2) j>m, A£C, =xy, yx G{ya_?, , and 1+T(F+F')+T2A is never 0.
(%) j=m+l, =0, A=0, and F=-F' #C,.
(4) j=m, k>0, A#0, xy-pm'ly, yx-pm-:‘yefyai, and
1+T(F+F'-C)+T°A is never zero.
(5) j=m, k=1, 4=0, F+F'=C.
(6) 3=m, k=0, and 1+T[D-C+F+F‘]+T2[A+D(F+I"')-C(G+-G')3*
TZ’[AD-BC} is never zero.
Note that rings satisfying conditions (1) and (2) are
hemomorphs of rings satisfying (1) and (2) of Lemma 17.

Proof: If j+k>m applying Lemma & to <px,y> shows that n=0.
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If j=m and k=0 then by assumption r=0. C£OC follows from
{xin §fy}=0. AD#BC since y is not of type I. Consider

(x+Ty)2-pj'1(x+Ty) = {1+T(F+F'-ij-m)+T2A]4+ [T(G+G'-Dpj-m)+’l‘2B]\a
pj+k-l(x+Ty) = [TCp'jfk-m]ar + [l+‘I‘Dpj+k-m]‘s
Since x cannot be replaced by a type 1 generator of the form
*¥+Ty it follows that the determinant formed by the four coef-
ficients above must never be zeroc. This, together with the
relations on the exponents and on A implies the relations on
the coefficients irn conditions (2} through (6).

Firgt suppose j>m and 4 =C., If j=m+l ard k=0 then

(1) or (3) nolds. Otherwise x(px+y) =pjx+xy=Upjx+V(pj+lx+

j+k-1

Bp x) shows that xy € §x{, which means F = C. Similarly

F' =0, and thus (1) holds.

Next suppose j>m and A£Z0O. Then p‘]+kwlx = My2 + Npm_ly
3+k-lx

for some M#ZO, N#0. Then x(p']+k-mx-1*iy) = -Nxy = U(p -
Npm'ly) + V(Naye) = (UM+VP12)y2 s0 Xy, yX &{yzf, and so (2) holds.

-1

If j=m, k>0, and A£O then pd'° x =My~ +No® Ty for

1+ - 2
some M£ZO, N#0O. Then x(pkx-Ny) = 1:‘]+k 1x - Nxy = (UM+VN2)},' S0

XU*‘Pm ¥ YX-Pm_ly 52323, and so (4) holds.

If j==n, >0, and A=0 then by the relations on the

coefficients F+F' =C. Supvose k> 1. Then x(pk-1x+y) - p3+k-—2x+

j+k-2_ j+2kw3

xy=U(p + pm-ly) +V{p X+ yz) . Multiplying by p shows
that U=1+ pU' sc Xy = pm-ly + (.. .)y2 so F=C. Similarly F'=C.
But F+F' =C, so C =0, which is impossible. Thus k=1 and sc

condition (5) holds.
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If j=m and Xx=0 then conditiorn (6) holds.
Lemma 19: Assume that a> i>m and thaf <x>fl <y> is one dimen-
sional. Then <u,x,y> ié a nii p-v-ring if and only if k=n=0
and one of the following conditions holds:
(1) ux=xu=uy=yu=0, y2=Ax2, A#£O, xy.—.FxB, yx:F'xa, and
1+T(F+F')+T2A is never zero.
(2) xa, ux, Xu, uy, yu e{pa'+b_lu}, ya=Ax2, AZ£0, xy:an,
yx:—.F'xz, and 1+T(F+F')+T2A is never zerc. If a=j and

b =0 then uy=«yu and ux = -xu.

a-1 j-1

us= Gyz = C(AxZ + Bp
-1

(3) a=j>m, b=0, p x), ££0, B¥O,

C#0, ux:Hpa—lu, xu:H'pa u, B+A(H+H') =0, uy=-yus=

Kpa-lu, xyszZ, yx:F'yz, and 1+T(F+F'+T)A is never zero.

1

(4) p=2, a=j>m, b=0, 2% u=xa+23-lx, ux, qu{Ea-lu}

ux £ xu, XV, yxeiyai. xy £yx, <u> N <y>=0, and either

=x2 or y2=23-1x.

Replacing x by u+x in (4) interchanges the two subcases.
Proof: By Lemma & we have k=n=0. By Lemma 17 one of the
following conditions holds, where in (B) the original x and y
may have been interchanged or one replaced hy xX+y.

(8) y2=A12+Bpj-lx, xy:Fya, yx:F'ya, 1+T(F+F'+T)A is never
zero. I1f j=r then B=0.

(B) p=2, j=m>1, xy=¥x=0, and 2%y = x° + 2973,

By.Lemma 8 one of the following conditinns holds:

(C) ux=xu=0.

(D) a+b-1

a+b> j, P u=Cxa; C#£0, ux, xu Eipa"'b'lug .
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(E} a=3j, b=0, pa-lu=Cx2+Dp3-lx, ux:Hpa_lu, xu:B’pa-lu,

and D+ C(H+H') = O,

First suppose that <> N <x>=0 and j>m. Then yzé <x>
so0 by Lemma 8 uy=yu=0. If FZO then (u+x)y=Fy2=Vx2 50
y2 =Ax2 and so (1) holds. Simllarly it F.‘ #0 then {1) holds.
If F=F' =0 then (u+x+yly= 3’2 = V(x2+3,72) s0 agsin ya = ix" and
so (1) helds.

Second suppose U N <X>=<UurN<y>=0 and j=m. Condition
(A)} implies (1) of the conclusion, sc suppose (B) holds. Then
(u+x+yly = ya.-:V(x2+y2) cannot be soived for V.

Third suppose <u> il <y> =0 ané pa"'b_lu =0x + DpJ'l

x, C#C.
.‘Condition {(B) impiies pa+b-lu=0(pm-ly-pj_lx) + Dpj—lx. which
is impossible. Thus (A) holds. Alsc AD#£BC, If j=m then by
(A) y?' = Axa, and u(x+y) = ux= V(x2+(F+F‘+_L)AxP). But x2 E<y>,
pa+b-lu ¢<y> so ux=0. Similarly xu=0, and so (1) holds.

Trus we may assume that J> m.

Suppose D=0, Then BZU, C#O0, and(H+h")pa+b—‘1= 0, so (x+y+
-1 -1 -4 e - -1 -
B lc (A+1)pm']D ‘.ju)'2 = (ﬁu~1):¢:2+Bp3 'Lx, while p:' l(x+y+B lc 1

(A+l)pa+b—3u} = B'-:L((Pm-l):;c2 + Bpa_l

x). Thus x may be repliaced

by a type I generator. Suppose on the other hand that D#OC.
Then if either a+b> j or H+H' =0 it follows that (x=D Tp® o IyF
= xa and p‘j’l(x-l}-lpa+b_ju) =-CD~lx2, s0 again x may be re-
placed by a type I generator. Thus we may assume D#£0, D+
C{H+H') =0, a= j>m, and b=0. Consider

(x+Su+Ty)2=[1+sc(H+ﬂ')+T(F+F'+T)A]x2+£sn(ﬁ+ﬁ')+T(F+F'+T)B]p3'lx
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pj-l(x +8u+Ty) = [SC1x° + (8D + 1]pj"lx.

If the determinant S[(AD-BC)T(F+F'+T)] + [1+T(F+F'+T}A] is ever
zerc then x can be replaced by a type I generator. Since
AD-BC £0 this can be made zero for suitable S, T unless p=2,
F+F' = 1. Then (4) holds.

Fourth suppose <wN<x>=0, <wN<y>£0, and i=m. Inter-

¥

changing x and y (which is possible unless (B) holds) gives
<P N <X> £Q, <up<y>=0, j=m. This case has already been
considered. It was shown that such rings satisfy {1), which

is self-dual. DNow suppose (B) holds. We show that (*) a+v> j

and 2a+b-—lu = ya. First suprose uy #0., Then u(x+y) =uy= Ux2 +

V(x2+y2) s0 2a+b-—1u=32' If a+b> j then (*) holds so suprose

a=j, b=0. Then (u+x)y=uy=ﬂ(32+2‘]"lx) +Vx2 cannot be solved.

Second assume that uy=yu=0. If a+b> j then y(u+x+y) =y2 =

atb-1 a+b-1

u(a u)+V(x2+32) 50 2 u=y2 and (*) holds. If a=j

and b=0 then y(u+x+y) = y2 = U2 tuex®) + V(x2+y2) cannot be

a+b-ju)2 2 2

soived. ‘thus (*; always holds. Then (x+y+2 =% +y ,

23‘-1 a+b-j

{x+y+2 W) = x° ya and so x may be replaced by a type I

generator.

“lu=cy®=cax®, L£0, CAO. If atb> j

Fifth suppose pa+b
then (2) holds. If a=3j, b=0 then by (C) or (E) we Lave
ux = -xu. Let uy:Kxa, yu:K‘xe. Since (x+y+Su)2={l+A+(F+F')A+
S(K+K')Jx‘3x may be replaced by a type I generator unless ¥+X' =0.
Trus (2) holds.

Finally suppose pa+b“1u = Cy2 =c{ax® + Bp‘-"-lx) , A£0, B£O,
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a+b-1 &Hb-lu

C#£C. By (4) we have j>m. Let ux=Hp u, xu=H'p

L

a+b-1 a+‘o-lu

uy = Kp u, yu=K'p + Assume first that a+bh> j. Then

2.2 2

a+b-ju) = BCux = U(-ACxa) + V(B C™x")so ux =0. Similarly

u{BCx-p
Xu=yXx=xy=0. Then y(BCx+BCy-(A+l)pa+b'ju) = B(:y2 = U(-Apa+b'1u
-ACx") + V(B®C%x® + Bacaya) = (VB2C2-UAC) {x2+y2) cannct be solved,

o {SC(H+HR"+T(K+K" ) )+T(F+F')

Thus a=j and b=0. Since (x+8u+'.!}y)2=x
Te}ye anc pj'l(x+Su+Ty) B A (B"1+SC)y2 and x cannot pe
replaced by a type I generator, it follows that C+AB™YC(H4H ' +
T(K+K')) =0 for all T. Then B+A{(H+H') =0, K+K*' =0, ard so
conditior (3) holds.

Lemma 2C: Assume that a> j>m and <x>N <y> is two dimensional.
.Then <u,X,¥> is a nil p-vering if and only if k=n=0, i>mnm,

2, AZO, xy:an, yx:F'xe, and

<> N <> =< N <y>=0, y° = Ax
1+T(F+F' )+T°4 is never zero.

Proof: Lemma 8 shows that k=n=0. Lemma 10 shows that

j-1 J-1

2 2 2
furf<x>=<urN<y>»=0. Let y =4x +Bp %y xy=Fx +Gp X,

¥X = F'xe + G‘pj-lx. Since a> j it follows that (utx)y = an +
Gpj'lx - Vx° so G=0. Similarly G' =0. Then x(u+y) = Fx© = Vy2
s0 B=0 or F=F'=0., But if F=F' =0 then x(u+x+y)=x2=
V(x2+Ax2+Bpj-lx) so we always have B=0. Condition (2) of
Lerma 18 must hold, since condition (6) implies cubic =
[1+TD][1+T(F+F')+T2A] is never zero, so D=0, whiech contira-
dicts B=0, AD£ZBC. But condition (2) implies the conclusion

of the Lemma.

Lemma 21: Assume that j>a. Then <u,x,y> is a nil p-v-ring
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if and only if one of the following conditions holds:
(1) w annihilates <u,x,y> and <x,y> satisfies Lemma 17 or 18.
(2) p=2, b=1, a>m, n=0, j=a+2 and k=0 or j=a+l and k=1,

2 _ ikl

<wA<y>=0, 3 x+2au=xa+23-lx+B23+k-lx, XY 4

X é‘{yzg , ¥y £yx, ux= H2au, xu = H'2au, H+H' = 1+2j-a-l,

and <x> N <y> is one dimensional.

(3) b=2, j=m=a+l, k=n=0, P ru=Cy° =CAx", A£0, C#£O,
ux, xu, uy, yu;fxas, xy:an, yx:F‘xa, 1.+T(F+F‘)+T2A
is never gzero, and <x> 1 <y> is one dimensional.

Proof: First suppose <x> 0l <y> is two dimensional. Lemma 10

shows that <> N <> =<u> N <y> =0. Lemma 9 shows that b=0,

and thus (1) holds. From now on we assume that <x> 0 <y> is
one dimensional,

Suppese j» a>m. Lemma 11 on <px,u,y> shows that b=0 or
b=1l., If ©t=0 Lemma 9 shows that ux =xu =90 and Lemma 1l on
<px,u,y> shows that uy=yu=0, so (1) holds. Assume that
b=1. Case (5) of Lemma 11 on <px,u,y> implies (px)y#C or
y(px) #0, which is impossible, so either (3) or (&) holds.

Assume that (3) holds. Then pau=Cy2, uy:Kya, yuxK'ya,

1+T(K+K')+T20 is never gero, and j+k-1>a. By Lemma 17 y2=

3+k"1x, xy::FyE, yx:F'ya, I+T(F+F'+T)A is

A(xa-pa-_lx) + Bp
never zero, and A£O., By Lemma 9 ux = Hpou, xu:H'pau, and

1+T[AC(E+E! )+{Bpk~1\)0pj'a'1] ~1°

AC is never zero. But then
X can be replaced by a type I generator of the form x+Sy+Tu

for suitable §, T.
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j+le-1

Assume that (4) kolds. Then y2 = -.th X - pau, <ur N <y> =

J+k-1

2 2  j-
O, j+k=a+2, and by Lemma 17 y =A(x -p'] lx)+Bp x, A#0

(for A=0 implies ful n I{x§ £0C). Then pu= —A(xa-p‘]-lx) +
(tlmb)pj+k"]x. As above if p=3 x may be replaced by a type
I generator. If p=2 by Lemmas 17 and 9 xy, yx e{yai, Xy # ¥X,
ux = #12%u, xu=H'2%s, ReE? 21429781 gpye {2) holds.

Next suppose that j+k>m>a. If b=0 then by Lemma 9
condition (1) rolds. If b>C then Lemma 12 on <px,u,y> shows
that b=1, pu=Cy>, C#0. Then cases (1) and (3) of Lemma 17
are impossible, and we may by changing x and y assume that (&)
does not hold, so (2) holds. Tren as above x may be replaced
be a tyve I generator.

Suppose finally that j=m>a, k=n=0. By Lemma S we
have b=0, 1, or 2. If b=0 then (1) holds. If b=1 then
as above X may be replaced by a type 1 generator. If b=2
then by Lemmas 9 and 17 it follows that (3) holds.

Lemma 22: Assume that a>c¢> j>m. Ther <u,v,x,y> is a nil
p-v-ring if and only if k=n=20, y2=£1x2, xy=Fx2, yx=F'x2,
1+T(F+F') 4724 is never zero, and one of the following holds:
(1) d=0, u and v annihilate x and y.

(2) d=0, v£1l, <v>na<x,y> =0, xe, ux, xu, uy, yu eipa+b-lu}.

If =0 then a>c.

(3) p=2, d=1, b=0, a=c+l, u and v annihilate x and y,

xa = 2%+ 2%.

Proof: First assume d =0, Then one of (1) or (2), Lemma 11,
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holds in <u,v,x>, and these imply that Lemma 20 or (1) or (2)
of Lemma 19 helds in <u,x,y>. These conditions together imply
the relations on x and y, anc also imply that (1) or (2) of the
conclusion holds, except that (2) might hold with b=1. But
then for suwitable 8, T we would have (u+Sx+Ty)2=0, contrary
to the assumption that the number of type I generators with
square not zgero is minimal.

Now assume that d> 0. By Lemma 11 d=1. If <x>0 <y>
were two dimensional then by Lemma 10 <ud> 0 <x>=<v>N <x>=0,
so (4) of Lemma 11 would hold in <u,v,x>. But then p" 1y €
{u,v,x}, a cortradiction. Thus <x>N <y> is one dimensional.

Since d=1 it follows tkat a>c¢ so (3) and (4} of Lemma
19 do not neld in <u,x,y>. Suppose (2) holds. Then 32==Ax2£
{u3 go (5) of Lemma 11 holds in <u,v,x>, in <u,v,y>, and in
<u,V,x+y>. Then p=2, ux£xu, uy#yu, u(x+y) # (x+yJu. This
is impessible, and so (1) of Lemma 19 kolds in <u,x,y>. Then
{5} of Lemma 1l cannot hold in <u,v,x>. If (3) of Lemma 1l
holds ther v may be replaced by a generator with square zero,
which is assumed not to be possible., Thus (4) of Lemma 11
holds. TFirst suppose p= 3. Let ya - Ex® - E(a3%u-3%y), xy=Fx2,
yx==F'x2. Choose T so that 1+T(F+F')+T2E==-l. Then
v{v+Au+x+Ty) = 30 =0 (Az%u + 3%v) + V(-a3%u+ 2(3°v)) cannot be
solved. Thus p=2, and so (3) of the conclueion holds.

Lemma 23: Assume that j>c¢. Then <u,v,x,y> is a nil p-v-ring

if and only if one of the following conditions holds:
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(1} d=0, v annihilates x and y, <u,x,y> satisfies Lemma 19,
20, or 21.

(2) p=2, d=1, b=k=n=0, j=za+l=c+2, <u> Nl <v,x,y> =0,
and <v,x,y> satisfies condition (2), Lemma 21.

FProof: If d=0 then by Lemma Z1 on <v,x,y> it follows that

v annihilates x and y, sc (1) holds. If d>0 then by Lemma 6

d=1. First suppose a> j. By Lemma 12 on <u,v,x> we have

Q>N <> =0 and x° € jvi. 7Then <v,x,y> does not satisfy Lemna

21. On the other hand suppose j>a. By Lemma 1% we have

b=0, j>a>c. Then (2} of Lemma 21 must hold in <v,x,y>,

and so (2) of the conclusion holds.

-Theorem 7: If the group direct sum decompositions of a nil

p-v~ring involive a minimum of two type II generators, then

under the notation of section V the ring is isomorphic to a

ring R satisfying one of the following conditions, where TL

is a (null) p-ring annihilating R:

(1; R = {x,y} + N, j2m, n=0, y2=A(x2—pj_1xJ +Bpj+k—1x,
xy:F;ya, yx:F'ya, 1+T(F+F'+T)A is never zero, xa-pj'lx
is any element of R not in §x} with characteristic p
which annihilates R, char M < pj. If j>m then k£0
or BFA., If j=m then A=0, B¥0, and k=1.

(2) R =§ud + fx,y53+ N, k=n=0, a> j>m, x and y are as
in (1). If >0 then char N1 <p . Also A=B.

(3) R=<ux,y>o®MN, a>ji>m, k=n=C, b£1, y2=Axa, Xy =

an, yx:F'xa, 3_+T(F+F‘)+T2A is never zero, <x> 0N <y> is



(&)

(5)

(e)

(7)

(8)

(9)
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a+b-1u} .

ore dimensiocnal, x2, ux, xu, uy, yu é{p If a=j,

Lb=0 then uy = =-yu, ux=-xu. If b=0 then chrar ﬂ(pa. If

b> 1 then char ‘Nl spa.

R=<ux,y>aN, azj>m, b=k=n=0, pa—lu=Cy2=

clax? +Bpi=1x), A £0, BEO, C£0, ux=Hp? Tu, xu=H'p* Ly,

B+ A(H+E') =0, uy = -yu=Kp* Tu, xy=Fy°, yx =F'y", L+T(F+
F'+T)A is never zero, <x> N1 <y> is one dimensional, and
char N < pj.

R = <u,x,y>6n, ij=m=2a+l, b=2, k=n=0, pa+lu=Cy‘=

CAxa, A£O, C£0, ux, xu, uy, vu é[pa+1u1 xy:Fy?“, ¥X =
F’ya, 1L+T(F+F'+T)A is never zero, <x> {1 <y> is one dimen-
sional, and char Ml < pj.

r=2, R = [x,yg iN, j=uw>1l, k=n=0, xy=yx =0, ¥ =
2971y 4 2™=1y %2 55 any element of R with characteristic
2 which annihilates R , x° ¢ {x3, char N<2d.

p=2, R=<u,x, >N, a>n, b=i, n=0, j=a+2 and k=0
or j=a+l and k=1, <u>N<y>=0, y° =23k 1y, 2% =

2

x®+ 237 o B3t e 1wy yx €§y®}, xy £ yx, ux = H23,

xu=E'2%u, E+H' =1+ 23-'&-1, <x> A <y> is one dimensional,

and char N< 2j .

p=2, R=<ux,>@®MN, a=j>n, v=0, 23'1u=x2+2j-1x,

2 2 a-1 2
¥y =X 4 ux, xufja u; ux # xu, Xy, 3xéiy }a Xy # ¥yX,
<u> N <y> =0, ard c‘nar".(.?j.

p=2, R=<uv,x,y>@®MN, a-l=c>j>n, d=1, b=kx=n=0,

2

US> N <> = <u> N <y> = <> N <x> =<v> N <y>=0, x°=y>=2%+
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2cv, <x> N <y> is one dimensional, and char N« 2‘].

-1
In the following cases, K = <xX,¥y> @ 71, n=0, Y2=A(XE'PJ x) +

By

3+k«-1x me1

1 P ¥y= C(xz-}?a—lx} s X¥y = F(xz—p‘]-lx) + Gp3+k-lx

+

yx:F'(xa-pj_lx) +G'p3+k-lx, B£0O, C#£C, ard charN<p’.

(10)
(11)

{12)

(13)

Proof:

J=m+l, k=0, A=0, F+F' =0,

i=m, k=1, A=0C, F+F' =C.

j=m, k>0, A£C, 1+T(F+F'-C)+T°4 is never zero, and
xy-p" Ty, yx-p" 'y €5y,

i=zm, k=0, 1+T[F+F'-C_]+TEFA-C(G+G’)]—TEBC is never zero.

This ie essentially a summary of the results in the

iemmas of this section. In the last four cases above we have

taken the special case D=0, which is obtained from the general

ring <x,y> with itwo dimensional intersection by making the

y —m#k_

change of genmgrator y=y- Dp’ X.
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IX. RKIL p~-v-zINGS WITH THREE TYPE Ii GENERATOKS

Lemma 24: A ring <x,y,2> is a nil p-v-ring if and only if

n=gsg=0 and one of the following conditions holds:

(1)

(3}

(4>

j+k>m, z°=Ey° = EBpd*E-1ly EZ0, B£O, xy=Fy%, yx=F'y,
xz = Hzf, zx=H'2%, yz=Kz°, zy=K'z°, and 1+T(K+K'+T)E is
never zero. I1f j=m then k=1.

s-l=m>r, k=0, 22=5y2 = EBpd=lx, p®ly=cx®+ Dpi-ix,

BZO, C£0, E£O, xy=FxZ+ Gpi~ix, yx= -Fx+G'pI~ix, F#O,

2 2

xz = Hz®, zx =H'2°, yz=Kz°, zy=¥X'2%, and 1+T{(K+K'+T)E is

never zero.
i=g>r, k=1, z°= Eyz = EBpjx, pm‘ly= C(xa-pj“lx) + Dpix,

B£0O, CAO, E£0, xy=F(x%-pi=1x) + Gpix, yx =F'(x2opd=1x) +

G'pjx, F+F' =C, xz=Hz2, zx=H'z‘2, yz:Kzz, zy=K'z2, and

1+T(K+K'+T)E is rever zerc.

j=m>r, k=0, y°=4Ax®+Bpd~ix, pP iy =-cx?+bpi-Ix, c£0,

AD #£BC, 22=Ex2+E’pj"lx, xy:Fx2+Gpj'lx, yx:F'xe-r

G'pj'lx, xz:Hza, zx:H'zE, yz:Kzz, zy:K'za, 1+T(H+H'+T)E

ig never zero, [S+D}fSZ+A+T2E+S(F+F' J+TE(R+K ' }+STE(H+K )] £

2

CIB+T E"+S(G+G' )+TE' (K+K'" )+STE' (H+H')] for ary S, T.

Proof: We shall consider two major cases, one when j+k>nm

ard the other when j=m and k=0.

shows that n=8=0, zazEyZ, yz=Kza, zy =K'z

First suppose that j+k>m. Lemma 19 or 20 on <px,y,z>

2 EZ0, and

1+T{K+K'+P)E ig never zero. We now consider twe cases.

(A) <x>n<y> is one dimensional. By Lemma 17 32 =
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A(xa-pj-lx) +Bpj+k"lx, xy:FyE, yx:F'y2 y 1+T(F+F'+T)}A is never
zero, if A=0, j=m then k=1, and if A# 0 then j>r. Assume
that A#0. By Lemma 17 lor 18 on <x,z> we have xz—-—sz, ZX =
H'za., and 1+T(E+LE'+T)EA is never zero. It follows that for
suitable 3, T (x+Sy+Tz}2 G{x+5y+Tz} and 80 X may be replaced
by a type I generator. On the pther hand suppose that 4 =0.
Then (1) holds or else (3) or (5), Lemma 18, holds in <x,z>.
But if (3) holde then x(y+z) ¢ <x> N <y+z>, while if (5) holds
then (x+ylz f <>n <x+y>.

(B) <x>N<y> is two dimensicnal. By Lemma 10 <> N <z>=
<> n<z>= {273, Let y° =AGE-pihx) + By, Py
‘C(xa-pj'lx) + Dpj+k-lx, C#0, ADZBC, xy =F(x2-pj-1x) +
Gp'j"'k_lx, yx=F'(x2-pj_lx)+G'pj+k"'1x, xz:sz, zx:H‘za,
and 1+T(H+H'+T)EA is never zero. One of conditions (1) through
(5) cf Lemma 18 must hold in <x,y>. #We consider each in turn:
(1} This is condition (1) of the corclusion.

(2) Since j>m, A#0, it follows that for suitable S, T x

may be replaced by the type 1 generator x+Sy+Ta.

(%) Since pr_lz, § <x> ccnsidering x(y+z) € <x>n<y+z> shows
that m>r and so condition (2) of the conclusion holds.

(4) As in (3) m>r. Then for suitable 8, T x may be replaced
by the type I generator x+Sy+T=z.

{(5) As in (3) m>r. Then condition (3) of the conclusion holds..

Now for the. second major case suppose j=m and k=0. From

Lemma 17 or 18 n=s=0. We shall consider in turn several
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cases obtained by applying Lemmas 17 and 18 to <x,y>, and
show that none of Lhem can occur except (B), which leads to
(4) of the conclusion. For convenience if j=m=7 and k=n=
s=0 we shall rename x, ¥y, and z to insure that <x> 0N <z> and
<y> N <z> are one dimensional.

(A) Lemma 17, (2). ¥° =Ax%, AZ£0, xy=Fyo, yx=F'y°,
and 1+T(F+F'+T)A is never zerc. 1If 2.2, XZ, ZX, ¥Z, zye{xag
Lken for suitable S, T we have (x+5y+Tz)Z =0, and so x can
be replaced by a type I generator. Otherwise Lemma 17 or 18
on <x,2z”> and on <y,z> shows that j=m=r>1, so by assumption

- s . ; 2
all intersecticns are cne dimensionai, p=2, and Jnc'2 =y =

21'-1 b

z+Az", A=0,1, xy¥yx, xz:zx:yz:zy=x2. Then Zm-ly o
<x> s0 if xy =x° then x(x+y+z) ¢ <x+y+z> while if yx:xe then
(x+y+2)x ¢ <x+y+z>.

(B) Lemma 17, (3) or (4), m>r. Change x and y so that

m-1 2 m—ly 2 23-1

2 y=x2+23-1x, xy=yx=0. Then gz =2 =X + X, Xz,

7z .
ZX G{z i, %z # zx. To be definite assume xz = z‘?, zx =0, Let

2 2, x12™ Ly, wnere 1f <y> i <z> is one

yz=dy +K2m’ly, zy=J'y
dimensional ther J=J'=0, while if <y> N <z> is two dimensional
then either J=J'=0 or m=r+l, J=-J'. Then ({(x+y)z=dJy> +
(K+1) (x%+2371x) = Ux° + V(x2+32) . Since ya ¢ <x> we have V=J.
Since 2971x ¢{x2§ we have K=1. z(x+y)=d'y%+K'(x%+2371x)

se K'=0. z(x+y+z) = J'y2+x2+23'1x = Ux® + V(ya+2j'lx) so J=Jd"=
1. Tnen y(x+y+z) & <x+y+zd.

(C) Lemma 17, (3} or (4), m=r. By assumption all
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intersections are one dimensicnal. If there is m pair of
generators with sguares equal then we may rename the gener-
ators so that x2=y2. Then (A) holds, which was shown to be

impossible for m=r. Thus (3) or (4) of Lemma 17 holds in

<X,¥>, in <x,z>, and in <y,z>. Change x and y so that Em'1y=

x2+23-1x, xy=yx=0., Suppose <> N<Ky>n<z>#£0. Then za = Em_ly,

XZ=ZX=YZ =2y = 22. Then x(y+z) ¢ <y+z>. Thus <x> 0 <y> N <z>=

C and so by Lemma 17 on <y,z>» one of the following holds:

(a) 32=y2+2m_1y. Then (z.+y)2=2m-ly € <&X> s0 <X,¥y,2> =

<x,¥,z+y»> i not a v-ring.

(b) zo+25 tz= ya. Then (z+:,r)'-2 + ar_l(z+y) = Em"ly € <x> so0

<X ¥4,E> = <X,¥,2+y> is not a v-ring.

() 2571z € <y>.

Thus (¢} holds, and dually 2" 1, €<x>, 50 <x>N<y>A<z>£0

and so <x,y,z> is not a v-ring.

(D) m>r, <x>0<y> is iwoc dimensional. By Lemma 20

<x> N <z> ané <y> 1 <z> are one dimensional. Let y2 = Ax2 +

Bp‘]-lx, pm-1y=Cx2+DpJ—1x, C A0, ADZBEC, xy:Fx2+GpJ'1x,

2 -1 2
yx=F'x +G'p‘] X. 8Since jzm>r we have z € <x> 50 let

zngx2+E'pj_1x, xz:sz, zx:H'za, yz:Kzg, zy:K'za. By
Lemma 17 on <x,2z> we have 1+T{E+H'+T)E is never zero. Since
¥ cannot be replaced by a type I generator the determinant
formed by the four coefficients below must never be zero:

(y+Sx+'1‘z)2 = [A+82+T2E+S(F+F' J+TE(K+K' )} +STE(H+RK! ):]:c2 + [B+T2E’ +

S(G+G’)+TE'(K+K')+STE'(H+B‘)]p3_lx. pm"l(y+5x+'1*z) = [0332+
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[D+S]_pj_lx. Thus condition (&) of the conclusion holds.

(E) m=r, <>n<y> is two dimensional. Ry replacing y
by the generator y=y-Dx we may assume that D=0, so B£0. By
Lemma 10 <x> 0 <z> and <y> N <z> are one dimensional. If p#2
then 22 E{ng, zaﬁiyag, contradicting B£Z0O. Thus p=2. We

have Zm-ly =% . ya =ax e 2972

%x. The condition on the cubic in
Lemma 18 becomes (F+F')+(G+G')+A=1. We shall consider sev-
eral cases, showing that none af them is possible.

(a) z°=x°. Then za = Em—ly 50 ¥z = zZ¥ = 22, x%+2X = 2° B0 we

may assume Xz = za, zx =C. Suppose first that A =0. Then
x(y+z) = (F+l)x2+(}2j-1x = V(x2+2j-1x) since 21‘-12 ¢<x,y>. Thus
F+G=1l. Considering (y+z)x shows that F' =G'. Then x(X+y+z) =
Fx® + G297 e = V((1+F+F " )x° + (146+G' )29 % %) s0 F' =G' =1. Then
considering (x+y+z)x shows that F=0, 6=1. Ther (x+y+z)y €
<x+y+z>. Suppose on the other hand that A=1. x(y+2z)= (F+1)X2 +
g2d=1x 2 v29™1x ara (y+z)x=F'x2 +6'237Y show that F = 1, F' =0,
Since (F4+F')+(G+G')+A =1 we have G+8' =1. Then x(x+y+z) =x2 +

623 x=vx® s0 G=0, G' =1. Then y(x+y+z) § <x+y+z>.

(b) 22 = 23", Then xz = zx = 2°. Suppose first that A=0.
Then zzzya S0 we may assume ygm = 2.2, zy =0. x(y+z) - FxC +
(@+1)29 % = v(2971x) s0 F=0. Sizilarly ¥'=0. Then G+G' =1.
x(x+y+z) = %2+ (G+1)29 1 = V(x®) 80 G=1. Similarly G' =1,
contradicting G+G' =1. On the other hand assume that A=1.
Then z° = y2 + Em-ly 80 yz=2y. Then x(y+z} ZFx® + (G+1)2974x =

V(xa) so G=1. Similarly G'=21. Then F=F', Then (x+y+z)2=0
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80 X may be replaced by a type 1 generator.

{c) 2.2 =x2 +23“lx. Then xz = zx and S0 Z=z= z+X satisfies
-2 _j-1
z==29""x, which is (b).

(d) Zr'lz €<x>. By Lemma 10 this is impossible,

(e) 2%+20 tg=23"1y,

zZ +2 Then xz=zx=0. If A=1 then

2242ty 2 y2 + Em-ly, which is impossible. Thus 4 =0. Then

-1, . y2 =yz=azy. x(y+z)s= Fx® + 629 1k = o2 (y+z) + (y+2)°)]

since z2 +2r_lz 1s the only non-zeroc element in <z> 0 <xX,y~>.

2

z2 +2
Then Fx°+G2i ™ x=1x® so G=o0. Similarly G' =0. Then F+F'=1.
Then x(x+y+z) = (F+l)x2 = U(Ej-lxﬂcz) , 80 F=1, Similarly F'=1,
cortradicting F+F' =1,
(£) 32 +2r-lza x2. Then xz= zx, and 50 z=2z+x satisfies
(§)2+ ?_’r_l(E) = 23‘1';:, which is (e).

This completes the prcof of Lemma 24,
Theorem 8: If the group direct sum decompositicns of a nil
p-v-ring involve a minimum of three type Il generatcrs, then
under the notation of section V the ring is isomorphic to a
ring L satisfying one of the following conditions, where n
is a (null) ring annihilating R , and char n<pj.

(1) R = fx,y,21% N, <x,y,z> satisfies condition (1),

Lemma 24, and xa-p‘]—lx is any element of R not in {x%
which annihilates R , char (xz-pj-lx) = p.

(2} R = <x,v,z> & T, <x,y,z> satisfies one of conditions
(2), (3), (4), Lemma 2k.

Proof: Consider a ring <u,x,y,2z>. Assume first that a2z j.
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If <x>N <y> is one dimensional then Lemma 24 implies 'ya € {x3
8C <u,X,y”> does not satisfy Lemma 19, If <x>N<y> is two dimen-

sional then Lemma 20 on <u,x,y> implies j> m, 32 ..—.Ax2

y BO
<x,y,2> does not satisfy Lemma 24,

Thus a< j. If b>0 then Lemma 21 or <u,x,v> shows that
<x> N <y> is one dimensional and 324 {x3. Thus <x,y,z> does
nct satisfy Lemma 24, Thus b=0, and by Lemma 21 w annihi-
lates <u,x,v,2>.

The proof c¢f the Theorem is now immediate.
Theorem 9: If a nil p-v-ring has an additive group direct
sum decomposition, then it has a decomposition involving no
more than three type II generators.
Proof: we first show it is imrossible to have a nil p-vering
<X, ¥, 2, 2%*>, j2m2r>r*, n=s=s5*=0. For suppose such
existed. If <x>N <y> were one dimensional then by Lemma 24
on <x,y,z> and cn <x,y,2*> we would have {z*;‘i’:fza={ﬁ= {pj*’k'lx}.
Then <y,z,2*> does rot satisfy Lemma 24 (in (4), 8 = =D makes
the cubic zero). Thus <x> N <y> is two dimensioral, so <y> N <z>
is one dimensional, so Lemma 24 on <y,z,z*> implies m>r,
fz.* 2;= izaf*-:{pm"lyg. Also <x> A <2> is one dimensional ao Lemma
24 on <x,z,2z*> implies £223:&)j+k-1x}. Thus {pm-lyi={pj+k-lx§,
which is impossible.

To show that a nil p-v-ring need not have an infinite
nurmber of type 1l generators recall that in the proofs of the

preceding lemmas whenever a type II generator x was replaced
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by a type I generator of the form X + Sy + Tz where y and 2z
were of ftype II then it wns always the generator ef maximum
characteristic which was replaced. Thus if a nil p-vering
l.as more than three iype 1I generaters then by selecting
three of minimum characteristic and taking linear combinations
using only these three it follows that all other generators

of type 1I may be replaced by generators of type I.



- 48 -

X. SUFFICIENCY OF CONDITIONS

Theorem 10: A nil p-v-ring which may bc decomposed as an
additive group direct sum of cyclic groups must using the
notation of section V, be isomorphic to a homomorph of a
subring of one of the fellowing rings R. Conversely all
homomerphs of subrings of the following rings are nil p-v-
rings. N is a (null) p-ring which annihilates R.

(1) R = {ul + {x,y31M, a>j>m, k=n=0, ux=xu=uy=yu=0,

y2 = Axe, Xy =Fx2, ¥X = F'xa, 1+T(F+F? )+T2A is never zero,

xZ iz any element of R with characteristic p which anni-

hilates . If b> O then char M <p .

(2) R = <u,X> 8 n, j=a+l, b=1, pau=ﬂ(x2_p3-lx) +Bp3+k'lx

'
a a k .
AZO, ux=Hp u, xun=H'p u, 1+P[A(H+H'+T) + (Bp ~A)] is
never zero, and char N« pj.
(z) R = <u,x,y>¢‘ﬂ, as j>m, b=k=n=0, pa_lu=Cyz=C(Ax2+

3-lyy, AZ0, BAO, C£0, ux=8p>"tu, xu=a'p*""u, B+

2

Bp

A(H+H') =0, uy = =yu C{pa-lu}'— xy:Fya, yx =F'yS, 1+7

(F+F'+T)A is never zero, and char N <p’

(4) R satisfies Theorem 8.

(5) R satisfies (12) or (13) of Theorem 7.

(6) p=3, R satisfies (8), Thecrer 6.

{(7) p=2, R satisfies one of (9), Theorem 6, (6), (7), (8},
or {9), Theorem 7.

Proof: It is not difficult to show that rings satisfying

Theorems 5, 6, 7, and 8 satisfy the concliusion of the Theorem,
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Since subrings and homomorphs of v-rings are again v-rings
for the converse it is sufficient to show that rings satisfying
conditions (1) througk (7) are v-rings. To do this we need
only show that a subring generated by a single element w is
closed under multiplication by the generating elements u, v,

Xy, ¥y 2. OUnly multiplication on the left will be considered;
multiplication on the right is similar. We consider each of
conditions (1) through (7} ir turn.

(1) If =0 then by the proof of Theorem 3 R is a v-ring.
Assume that b> 0, so char ‘ngpa. Let w=Ru+Sx+Ty+n, neNn.
Then uw=paw. If p divides both 8 and T then xw=yw=0, so
<w> is an ideal. Otherwise, since 1+T(F+F')+T2A is never
zerc we have x°€ {(Sx+Ty)2} . (Sx+Ty)2==w2-paRw, and certainly
XW, yW E{xzj , 80 again <#> is an ideal.

(2) Let w=Ru+Sx+n, neN. If p divides $ it suffices
to show that Rp > u € <w> and Spj-lx €<w>. If p also divides
R then pj-lw=5pj'lx, and Rpou=0, so <¥> is an ideal. If p

does not divide R then w* - Spi~t

j=1
pJ

W= Rapau, 50 pau € <w>., Then

w:Rpau'rSpJ—lx, so it follows that <w> is an ideal. Now

surypose that p does not divide S. If » divides R it suffices

2‘ <w>. But wa =52x2.

to show that % Thus <w> is an ideal.

If p divides neither R nor S then 1+T[A(H+E'+T)+(Bpk-A)] never

2 _j-1
zero means that w is an element of type Il. Thus both x --p:J X

J+k-1

2
and p ¥ are in <w>. Then pau is in <w>. Then x is in <w>

2
since wa-.-s x2 +{...)p7u. Thus <w> is an ideal.
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(3) Let w= Ru+Sx+Ty+n, n € N, and suppose first that P

divides S, 1t suffices to show that Rpa_lu and Tya are in <w>.

2 u, so (since char 32 =p)

But pa-lw=Rpa'lu and wa =Ty +(---)Rpa‘1
Tya and Rpa—lu are ir. <w>, 50 <wW> is an ideal. Now suppose that
2 i=-1

P does not divide 5. Then Aw + BSp W= [82+S‘I‘(F+F'+T)A]y2;£0

since 1+T{F+F'+T)A is never zero, &0 y2 is in <w>». Then pa"lw_

RCy® = 5pi~Yx. Then x° is in <w>, and it follows that <w> is
an ideal.

(4) Let w=8x+Ty+Rz+n, n € B. First suppose that p does

not divide S. If (1) of Lemma 24 holds tren pd*¥~lyogpdte-1y

82%% 4+ (. ..)p“k"l

and w2= x, from which it follows that <w> is

an ideal. The conditions of Iemma 24% insure that x cannot be

replaced by a type I generator of the form x+Ty+Rz, and so w

jek-1

is of type II. Then x--p - x and p x are in <w>. The

only remaining verification to insure that <w> is an ideal is

to show that in (3) Jgis in <w>». But wd=82x2+(...)pjx, 50

x2 is in <w> and so0 <w> is an ideal. Nkow suppose that p divides

S. Suppose p also divides T. Then xw=8p3'1x=pj'lw, or else

(1) of Lemma 24 holds withk j=m, k=1, and p does not divide
R, m=r. In that case wo =J':1!2z2 =R2EBpjx, so again xw is in <w>.

To show that yw, zw are in <w> it suffices to show that Rz is

in <w>. But wo 3"1w=R22.2, so <w> is an ideal. We may row

_Sp
suppose that p divides S, p does not divide T. We consider the

cases of Lemma 2% separately. (1) we -Spa'l

y2 and thus yw, zw are in <w>»., If j=m then also xw is in <w>.

W= (Ty+Rz)2 S0
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‘ :_1 . .
If j>m then xw:SpJ x+(...)y2, and p w:SpJ ¥, S0 again

=]
P w =

<w> iz an ideal. (2), (3) As in (1) y° is in <.

j+k=- -1 -
d=* 2x+Tpm ¥y 80 both y2 and pm 1y are ir <wr. It follows

Sp

that <w> is an ideal. (4) Since z2 is in <y>, Ty+Rz is of

type II, and w2= (Ty+Rz.)2, _‘pm_lw‘z pm-l(Ty-i»Rz) :-'I‘pm-ly’ it foliows

that yz and pm'ly are in <w>, and from this that <w> is an ideal.
(5) This case is entirely similar to (4).

L

At
L

(
A

(42
~—

T y Shid Supposc

divides T. If 3 also divides S then w anpihilates R . Other-
wise vw:SBc\r:Swa. Thus <w> is an ideal. Xow suppcse 3
divides 8. Then uw=vw=0, and xw:'l‘xa = Twz. Thus <«> is an
ideal. Now suppose 3 divides R. Then uw=0, vw:SBcv=3cw,
and xw:Tx2=Tw2-T33cw, g0 <w> is an dideal. Finally suppose
that 3 divides ncne <of Ry 8, T. Then w2=3cv+x2 ==l=30u, 3cw=
R3%u +83%y, so 3%u, v, and x> are in <w>, so <w> is an ideal.
(7) Theorem 6: (9), Let w=Ru+8v+Tx. First suppose
that 2 divides 8. Since vw=0, uw=Tux, xw:qu+Tx2, anc
2% = R2%u, we need only show that Tx® is in <w>. If 2 does
not divide R then 2°w=x° so <w> is an ideal. If 2 divides
T then Tx“ =0 so <w> is an ideal. If 2 divides R but docs not
divide T then w2 = x° g0 <w> is an ideal. Now suppcse that
2 does not divide S. If 2 divides T then w2=acv, 2%w = R2%u +
2%, so 2%v and R2%u are in <w>, from which it follows that

<w> is an ideal., If 2 divides R then 2%w = 2%y and w‘a- 2%y =

Tx%, from which it follows that <w> is an iceal. Finally,
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. P c 2

if 2 divides none of R,S5,T then w =2 V+ X +tux+t xu:ch, and

c [+ C e [+ 2 . . .

2 W=2"u+2"y, s0 2°v and 2 u=x are in <w>, 50 <w> iz an ideal.

(?) Theorem 7: (6). let w=ZRx+Sy+n, neM¥. If 2 divides

R then XWw=0, yw :syz-__«wa, and s0 <wr is an ideal. If 2 divides:

S then yw=0, xw =-Rx2=w2, and so <w> is an ideal. If 2 divides
. - 2 j=1 2 i-1

reither R nor § then yw=Yy ‘_-2:1 W, Xw=x =w +2° w., Thus

<wr 1s an ideal.

(7) fTheorem 7: (7). Let w=Ru+Sx+Ty+n, ne M, 1t is

a a 2 2 2
sufficient to show that B2 u, 82 u, Sx , Sy , and Ty are in
<w>, If 2 divides R and § then “,’2= szz, s0 <w>- is an ideal.

If 2 divides R but not S then 23'1w=323"1x, w2 =52x2+(...)23"1x,

from which it follcws tkat all the above elements are in <w>.
If 2 divides § but not R then wo = 2%u+ T2y° and 2%w = 2%u + 52%x,
s0 <w> 1s an ideal unless j=a+2 and 4 dews nct divide S. Then
2aw=ya, 50 again <w> is an ideal. Suppose 2 divides neither
R nor 5. Then 239 Yyw=23"3¢, 2973, ane w@ =% + zj'lu, 50
%2297 % ana 291y are in <w>, 80 2°u is in <w>, s0 x° is in
<w> and <w> is an ideal.

(7) Theorem 7: (8). Let w=Ru+Sx+Ty+n, n€¥, It is

sufficient to show that RZa"lu, sz, and Tx® are in <w>. But

2 a-1

w = RS2 u+ (Sa+ST+‘I'2):-:2 and 2a-1

w=R2* Ty 5297ty o (res)22 tu s
sz. It 18 row an easy matter to check that the above elements
are ir <w>.

(7) Theorem 7: (9). This is similar to case (6) with

p=3 replacead by p=2.
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