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Abstract

The novel nonlinear thermoelastic behavior of shape-memory alloys (SMAs) makes

them increasingly desirable as components in many advanced technological applica-

tions. In order to incorporate these materials into engineering designs, it is important

to develop an understanding of their constitutive response. The purpose of this thesis

is to develop a constitutive model of shape-memory polycrystals that is faithful to the

underlying micromechanics while remaining simple enough for utility in engineering

analysis and design.

We present a model in which the material microstructure is represented macro-

scopically as a recoverable transformation strain that is constrained by the texture of

the polycrystal. The point of departure in this model is the recognition that the me-

chanics of the onset of martensitic transformation are fundamentally different from

those of its saturation. Consequently, the constraint on the set of recoverable strains

varies throughout the transformation process. The effects of constraint geometry

on the constitutive response of SMAs are studied. Several well known properties of

SMAs are demonstrated. Finally the model is simply implemented in a commercial

finite-element package as a proof of the concept.
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Chapter 1

Introduction

Shape-memory alloys (SMAs) exhibit special macroscopic phenomena including su-

perelasticity and the shape-memory effect. In superelasticity, strains on the order of

a few percent can be induced by loading and are completely recovered on unloading.

In shape-memory, a sample deformed apparently permanently by a few percent strain

below a particular critical temperature returns to its original shape upon heating.

SMAs have been employed in a large number of engineering applications in fields

ranging from medicine to telecommunications. Due to their importance in estab-

lished and developing engineering fields, a vast literature has risen to study these

materials. Volumes by Olson and Owen [45], Otsuka and Wayman [46], and Bhat-

tacharya [12] as well as the review of Saburi and Nenno [52] provide an accessible

introduction to the development of experiments and theories used to characterize

these important alloys.

The special phenomena arise as a result of the existence of two solid phases in a

shape-memory alloy. These phases, rearrangements of the alloy’s crystal lattice, are

characterized by the lattice symmetry group. The high symmetry phase, austenite,

is generally stable at high temperatures; with the lower symmetry phase, martensite,

stable at lower temperatures. As an example in NiTiNOL, the most celebrated of
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Figure 1.1: A schematic representation of superelasticity in a specimen above Af .

the SMAs, the austenite is cubic with monoclinic martensite. The change between

the two phases is a first-order diffusionless transformation that can be activated

by changes in either temperature or stress. At zero stress, the phase transition

is characterized by four temperature points: the Martensite start (Ms) at which

a sample that is completely austenite begins forming martensite, Martensite finish

(Mf ) is the temperature at which the austenite-martensite transformation saturates,

the Austenite start (As) at which a completely martensitic sample begins forming

austenite, and the Austenite finish (Af ) is the temperature at which the martensite-

austenite transformation reaches completion. The possibility of large atomic scale

displacement in the sample contributes to highly nonlinear thermoelastic behavior

on the macro scale.

Superelasticity is the ability of the sample to recover large strains elastically.

The magnitude of elastic strains recovered in superelastic SMAs is quite impressive.

Whereas a typical metal recovers strains on the order of 0.2 %, a sample of NiTiNOL

demonstrates recovery of somewhere between 6% and 8%. For a constant temper-

ature above the austenite finish (Af ) the stress-strain behavior of a superelastic

material is shown schematically in figure 1.1.

The initial branch of the hysteresis loop (between points 1 and 2) is the elastic
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response of the austenite. When a threshold stress is reached (point 2) the formation

of martensite is induced. The atomic displacement that accompanies the change in

phase allows for large strains to accumulate as the austenite-martensite transforma-

tion continues. At point 3 the martensitic transformation has saturated and the

martensite responds elastically to the extent that it can before failure (point 4). Un-

loading sees the formation of the lower branch of the hysteresis loop. The martensite

unloads elastically until point 5. At this point, the free energy is low enough that

the transformation back to the stable austenite begins. When the transformation

back to austenite finishes (point 6), unloading finishes elastically (back to point 1).

It is worth noting that the entire amount of strain is recovered during the loading-

unloading cycle because the phase transformation is an reversible distortion of the

crystal lattice, and no breaking of bonds has occured (in a lattice free of defects).

The second characteristic phenomenon resulting from the martensitic phase trans-

formation is the shape-memory effect. In order for the crystal to remain intact after

it has undergone a phase transformation, recall that it must satisfy the Hadamard-

Legendre conditions at each interface between martensite variants with each other or

with the austenite. These jump conditions lead to the formation of self-accommodating

(no change in volume) microstructure in the SMA crystal as different variants of

martensite must mix coherently in order to preserve the integrity of the crystal. It

is this formation of microstructure that is responsible for the shape-memory effect.

As can be seen in figure 1.2, the considered transformation begins with a com-

pletely austenite reference configuration in the high temperature regime. As the

specimen cools and martensitic variants become more energetically favorable a self-

accomodating microstructure forms. As the cooled specimen is deformed, the phase

fraction of martensitic variants is changed via stress-induced transformation and the

resulting microstructure is different in the deformed configuration. Upon heating of
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Figure 1.2: A schematic representation of the shape-memory effect

the sample, austenite once again becomes the energetically favorable phase, and as

a result the reference configuration is restored as the crystal returns to the austenite

lattice. The sample has recovered its reference configuration through the change in

phase, hence shape ”memory”.

Shape-memory alloys are used in many devices. Biomedical devices such as stents

and braided catheters take advantage of the superelasticity of SMAs. The ability of

the alloy to recover large strains elastically allows for expandable structures to be

compressed down to very small sizes and delivered into an obstructed passage. allows

for the obstructions to be circumvented without recourse to invasive surgeries. The

stent, shown in figure 1.3, is a cylindrical wire mesh structure that is compressed

to fit around an insertion tube or catheter. The compressed stent is inserted on

the catheter into an obstructed (by arterial plaque) blood vessel and expanded via



5

a) b)

Figure 1.3: A picture showing a) coronary stent (Nitinol Devices and Components
Inc.), b) schematic of a compressed stent inserted into a hollow structure and ex-
panded. (from http://openlearn.open.ac.uk).

balloon. Because the stent is able to recover the large strain required for insertion,

it is able to hold the blocked vessel open.

Shape-memory is applied in the aerospace field, particularly in deep-space actu-

ators such as latches where traditional moving parts would be a riskier method of

achieving the desired actuation than the thermomechanical capability of the SMA

([42], for example, shows one such example in the case of unfolding solar panels on the

Hubble Space Telescope). For further information on a wide variety of applications,

the reader is referred to [34] and the references within.

As the applications of SMAs grow more sophisticated, there is a real need to

develop a faithful yet easy-to-use constitutive model that can be used as a design

tool. This is the motivation for this thesis. The plan for the thesis is as follows:

In chapter 2, the existing literature in both mathematical theory and experiments

is examined. This literature review is undertaken with the purpose of underscoring

some of the important open issues in the understanding of shape-memory alloys. The

examination of these open issues results in the proposal of a heuristic that defines the

mechanics of onset and saturation of martensitic transformation in shape-memory
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polycrystals as distinctly different processes.

Chapter 3 contains the incorporation of this heuristic into a continuum model.

The onset and saturation heuristics are manifest in this model as a pair of constraints

on the set of admissible transformation strains resulting from the formation of mi-

crostructure in the polycrystal. These constraints are vital to the formulation of

a polycrystalline Helmholtz free energy that, along with an appropriate dissipation

potential, yields the proposed continuum model with few internal variables.

The ability of the proposed continuum model to duplicate the well-known charac-

teristics of SMAs is evaluated in chapter 4. The continuum model in the third chapter

is shown to reproduce superelasticity and the shape-memory effect. Experimental

observation of martensitic reorientation and retention of austenite are accounted for

as well.

The constraints that form the backbone of the proposed model undergo parameter

studies in numerical simulations in chapter 5. When the shape of the constraint sur-

faces is varied parametrically, a large variability in the resultant constitutive response

demonstrates the potential of the model to be fit to a large number of important

experiments. An explanation is offered for the curious observations of Jung [36] in

non proportional tension-torsion experiments on Nitinol tubes.

Finally, in chapter 6 the model is incorporated into a commercial finite element

package as an ABAQUS UMAT. This is done in order to demonstrate the relative ease

of implementation of this model as a feasible design tool for engineering applications.

Chapter 7 summarizes this thesis and provides a discussion of open issues and

future research.
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Chapter 2

Background

2.1 Review

2.1.1 Crystallography

The crystal lattice of a shape-memory alloy is assumed to undergo transformation

from a high symmetry austenite phase (stable at higher temperatures) to a lower

symmetry martensite (stable at lower temperatures). Mathematically the crystal is

described as a Bravais lattice with basis vectors {e1, e2, e3}. For simplicity’s sake, it

is assumed that these basis vectors coincide with the high symmetry austenite phase.

Assume that the martensite (low symmetry) phase is described by a different set of

basis vectors {f1, f2, f3}. The two bases are related by a matrix transformation A:

[f1, f2, f3] = A [e1, e2, e3] . (2.1)

Recalling that the matrix A can be decomposed by the Polar Decomposition Theo-

rem into a rotation Q and a symmetric positive definite matrix U such that A = QU.

The rotation is irrelevant to the energy landscape of the lattice due to the require-
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ment that it be materially frame indifferent. This being the case, the martensite is

characterized by the Bain or transformation matrix U. The variants of martensite

are then easily found by symmetry through application of point group of the austen-

ite phase (for example the cubic point group in nickel-titanium). For each rotation

Ri in the point group of the austenite, the transformation matrix for the martensitic

variant Ui is found by:

Ui = RT
i URi. (2.2)

It is worth noting that application of rotations Ri that are also in the point group of

the martensite (monoclinic in the case of NiTi) do not produce a new variant. The

number of unique variants then can be shown to be Pa

Pm
where Pa is the cardinality

of the point group of the austenite, and Pm that of the martensite.

The Helmholtz free energy for the crystal takes the form of a multiwell energy

with wells at the unique austenite (I) as well as each of the martensite Ui lattice

deformations. This multiwell structure goes back to Ericksen [29]. The relative

heights of the austenite and martensite wells change generally with temperature to

reflect the stability of each phase with respect to some critical temperature. The

transition is usually of first order in the language of Landau free energies.

The connection between the lattice picture and the continuum is made through

the Cauchy-Born hypothesis [9]. Matrix deformations of the bravais lattice basis

vectors are assumed to be written in the continuum as deformation gradients. The

austenite phase is represented as the deformation gradient I. The martensites are

represented by the corresponding deformation gradients Ui. The multiwell Helmholtz

free energy for the single crystal in the continuum can be represented schematically

as Wsc(F) in figure 2.1. In the small strain approximation, the austenite is at zero

strain (ε = 0), and the wells associated with each variant are εi = Ui − I.
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Figure 2.1: Austenite and variants of the low symmetry martensite in the continuum

2.1.2 Mathematical Background

The most striking feature of the multiwell Helmholtz Free Energy described above is

its nonconvexity. The nonconvexity of the energy introduces complications in under-

standing of the material’s macroscopic response. Ball and James [8] recognized that

microstructures form in these multiwell materials as a consequence of their noncon-

vex energies. This was independently concluded by Chipot and Kinderlehrer [24].

These microstructures, essentially mixtures of the low energy phases arranged in such

a way as to reduce the energy penalties associated with kinematic incompatability,

lead to overall ”relaxed” energies that are lower than the multiwell ones. However,

precise characterizations of these relaxed energies is a difficult analytical problem.

The proper analytical setting for the relaxation of energies is weak lower semi-

continuity. It has been known for some time [44] that a necessary and sufficient

condition for weak lower semi-continuity is quasiconvexity. Quasiconvexity is a non-
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local property. Consequently, it is in general difficult to calculate the quasiconvex

hulls of these multiwell free energies. It is possible to more easily bound the quasi-

convex hulls from above and below. Ball [6] developed the notion of polyconvexity,

and the polyconvex hull is an upper bound to the quasiconvex hull. From below,

the quasiconvex hull is bounded by the rank-one convex hull. The relation between

rank-one convexity and quasiconvexity is not completely understood. For functions

in space dimensions greater than two Sverak [63] has constructed a rank-one convex

function that is not quasiconvex. The problem of whether such a function exists in

the plane is still open.

It is worth mentioning that some special cases of quasiconvex hulls have been

found. The two-well problem has been fairly thoroughly examined. Ball and James

([9]) found the zero energy set of two nonlinear, compatible wells. Kohn addressed

the case of two linear wells [37] of equal modulus, as did Pipkin [49]. Chenchiah [23]

extended these results to the case of two linear wells of possibly unequal moduli.

Bhattacharya [10] found the hull of multiple, pairwise compatible, linear wells of

equal modulus. Govindjee et al. [33] estimated a lower bound in the case of many

wells by constructing a pairwise quasiconvex hull.

More difficulty arises in the case of the martensitic polycrystal. One has to

account for the relaxation of the multiwell energy within each of the grains as well as

intergrain compatablility problems that arise from the orientations of the different

grains. The work of Bruno et al.[21] focuses on the effects of this intergranular

interaction. By treating each grain as an isolated circular inclusion transforming

in an elastic medium, the elastic field of each transforming grain is found using

Eshelby [30] solutions. These solutions are easily superposed. The elastic response

of the ”polycrystal” is examined by finite dimensional minimization of the energy of

each grain. A similar line of inquiry that attempts to incorporate more of the grain
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?

Figure 2.2: Polycrystalline specimens have the added wrinkle of intergrain compata-
bility

geometry was conducted by Patoor and co-workers [47]. The grains in this model

are no longer treated as isolated from each other in their analysis. The analysis is

still conducted by using Eshelby inclusions. The elastic energy contrinuted by the

transforming inclusions is found by superposition. The result of these calculations is

a quadratic transformation energy that is easily incorporated into an FEM model.

These Eshelby-type calculations, though attractive for their relative computational

simplicity, serve only as a starting point for polycrystalline analysis. They generally

skirt the complex issues of microstructural formation and granular interactions.
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2.1.3 Experiments

The mathematical analysis of microstructures in shape-memory polycrystals is ma-

turing quickly. It remains, however, largely incapable of a precise characterization

of their macroscopic response in general. A parallel pursuit has been to attempt to

characterize the mechanisms of shape-memory and superelasticity experimentally. A

fairly thorough review of the historical development of this experimental literature

in single crystals is in the book of Otsuka and Wayman [46]. This thesis is more

interested in the recent systematic experimental examination of these phenomena in

polycrystals. Experimentally it has been known for some time that the texture of a

polycrystal drastically effects its elastic response. This was demonstrated in 1990 [31]

in the case of rolled sheets of nickel-titanium in uniaxial tension tests. The results of

Daly et al. [26] reinforce this strong textural dependence in thin sheets of NiTiNOL.

The failure of the resolved shear stress criterion for polycrystals, observed in their

experiments, indicates that the mechanics of onset of tranformation in polycrystals

is highly sensitive to load orientation with respect to the sample texture.

A systematic examination of the response of shape-memory polycrystals in mul-

tiple loading modes is required to completely explain the effect of texture. Lexcellent

et al. [41, 39] conducted a detailed investigation of the onset of transformation in

Nickel-Titanium, Cu-Zn-Al, Cu-Al-Ni and Cu-Al-Be alloys in biaxial proportional

loading. These investigations allowed for the formulation of yield surface for trans-

formation in the stress space. Sittner’s experiments [59] in 1995 similarly illuminated

the anisotropy of onset mechanics in combined loading. The experiments of Shaw

and Kyriakides [56] among others ([32],[26]) indicate that the onset of transforma-

tion is a local mechanism. The observed domains of martensite in thin sheets and

thin-walled tubes tend to nucleate in bands that widen and propagate throughout
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the sample until transformation saturates.

The experimental examination of the onset of transformation is interesting. An

understanding of the saturation of transformation is required to complete the story.

The experimental observations of Jung et al. ([36, 43]) on mixed-mode loading of

NiTiNOL tubes reveal that there are interesting mechanics still to be resolved after

the onset of transformation. The observation of secondary hysteresis loops in tension

after saturation of the transformation in tension indicated that the saturation process

was also anisotropic. In addition, the saturation does not proceed until the sample is

completely martensitic (unlike in the single crystal case); loading in torsion was able

to increase the total amount in martensite in the sample after the transformation

was saturated in tension.

The in situ microscopy experiments by Brinson et al. ([19, 55]) on polycrystalline

Nickel-Titanium lend some insight into the mechanics of phase transitions from on-

set all the way to saturations. These experiments confirm the local nature of the

initiation of transformation. Islands of martensite are seen nucleating in isolated

grains in the elastic austenite. The saturation of the transformation is arrested with

large interlocking ”fingers” of martensite oriented in the same direction. At satura-

tion these experiments clearly demonstrate that the intergranular constraints arrest

the transformation process before completion. The saturation occurs at martensitic

phase fractions between 60% and 70 % in these tests.

2.1.4 Homogenization Literature

The important class of ”yield surface” constitutive models were introduced purely

phenomenologically. An important question to ask when considering their connec-

tion to underlying micromechanics is whether they can be reconciled with existing
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a)

b)

Figure 2.3: Polarized Light Micrographs by Brinson et al. [19] at a) onset of trans-
formation and b) saturation
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ideas in the mathematical literature, and whether these ideas can be used to im-

prove the models. The total recoverable strain of a polycrystal is something that

has been examined in some detail in the homogenization literature. The work of

Kohn and Bhattacharya [13] attempted to determine the the total recoverable strain

of polycrystals with certain microstructures and textures. They demonstrate that

the Taylor (or constant strain) bound is usually a good approximation of the total

recoverable strain. This work was a novel use of the Taylor bound that has its origin

in the crystal plasticity literature (for example Kohn and Little [38] and the refer-

ences therein). Bhattacharya and Shu [58] expanded on the framework set out by

Kohn and Bhattacharya, examining the effect of polycrystalline texture, in the case

of compatible and incompatible martensitic variants, on shape-memory in multiaxial

loading cases. The importance of the Taylor and constant stress (Sachs) bound on

the response of polycrystal has led Schlömerkemper [54] and Schlömerkemper and

Bhattacharya [15] to characterize them in various cases. Among the interesting rev-

elations of these works was the striking difference in the shape of the Taylor and

Sachs bounds for a given microstructure in many cases.

An alternative to placing bounds on the total recoverable strain of the polycrystal

by determination of the Taylor set was proposed by Smyshlyaev and Willis [60]. The

formulation of a Hashin-Shtrikman variational principle is presented in terms of grain

statistics (particularly the two-point statistics of the polycrystal). An upper bound

of the total recoverable strain can be derived from the Hashin-Shtrikman variational

principle in the case of the statistically uniform polycrystal.
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2.1.5 Kinetics

The experimental observations of Shaw and Kyriakides [56] and Brinson et al. [19]

indicate that the martensitic transformation is a process that begins locally and

advances through the propogation of one or many phase boundaries. In order to close

a constitutive model in the sense of [3], a kinetic law(s) for the volume fraction of

martensite (or each variant of martensite) is required. In an attempt to understand

how such kinetic laws might be derived, the study of the advancement of phase

boundary in continuua has been a subject of keen interest. The propagation of

phase boundaries is thought to be due to a combination of metastability and pinning

([2, 11, 14]). The effect of pinning was investigated in some detail by Dondl ([28])

who found a universal power law between phase boundary speed and driving traction.

Dayal and Bhattacharya [27] had some success in numerically deriving a stick-slip

kinetics in a double well material through the use of peridynamics.

2.1.6 Constitutive Modelling

In order to incorporate these experimental observations into the design process, it is

necessary to derive constitutive model for their material response. Several attempts

have been made historically to incorporate the key mechanisms of shape-memory into

a constitutive framework. Abeyaratne and Knowles [4] developed a generic thermo-

mechanical model for a phase-transforming solid. This model featured a Helmholtz

free energy dependent on the martensitic phase fraction, a nucleation condition for

martensitic growth, and a kinetic law for the transformation process in one dimen-

sion. More continuum models followed in this general mold. Sun and Hwang [61]

developed a micromechanics inspired free energy to reproduce the superelasticity and

shape-memory effect under uniaxial loading. Boyd and Lagoudas [17] developed a
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Helmholtz free energy and dissipation potential for isotropic shape-memory alloys.

A final significant uniaxial, micromechanical model worthy of examination is that

of Huang and Brinson [35]. This uniaxial model in three dimensions considers the

formation of self-accomodating groups of martensite variants as a mode of energy

minimization. Tracking the formation of these energy-minimizing groups, the model

is able to accurately capture the uniaxial response of single crystals in uniaxial load-

ing. Brinson et al. [20] also developed a three-dimensional constitutive model based

on the notion of microplanes.

An alternative approach in the three-dimensional case was introduced by Auric-

chio and Taylor [5]. The model, incorporating an idea from the plasticity literature,

uses a ”yield surface” in the space of stress for the onset of phase transformation.

The yield surface is determined by fitting several uniaxial experiments in different

directions. As such it is not derived from a coherent micromechanics. However, it

has been quite successful in simplifying the computational implementation of SMA

response in commercial finite-element packages [1]. Lexcellent and his collaborators

([39, 41]) developed a micro-macro constitutive model in this vein. Their numeri-

cal and experimental determination of the onset yield surfaces is quite accurate for

CuAlBe, CuAlZn, and CuAlNi, but is not accurate for NiTi. Sadjadpour [53] ex-

amined the constitutive response in terms of the set of admissible transformation

strains. The key idea was to simplify the micromechanical considerations by treating

the transformation strain as an ensemble average of all of the variants appearing in

the microstructured sample. The definition of the set of transformation strains is the

convex dual of the onset stress surface incorporated by Auricchio and Lexcellent in

their models. Lexcellent and Laydi [40] examine this duality in detail. They describe

the surface transport between stress and strain spaces as well as the convexity condi-

tions for the class of surfaces they derived previously. It is important to notice that
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these single-surface models are not panacea. In each of the cases mentioned above,

the determination of the yield surfaces and their duals is accomplished through the

fitting of many uniaxial data points. This is natural as the definition of the yield

surface must have an associated normality rule. The downside of this in the polycrys-

talline case is that the polycrystal is replaced effectively with a single crystal. Many

of the important experimental observations in polycrystals cannot be incorporated

in this way. In particular, martensite reorientation and transformation saturation

are not incorporated in these models.

Some polycrystalline models attempt to reproduce the important characteristics

that are not accounted for in the yield surface models. Thamburaja and Anand [64]

model the polycrystalline sample by incorporating a single-crystal model on the grain

scale in a finite-element mesh. This model is able to capture the effects of texture

on several different types of load cycle. It is very computationally demanding as

the constitutive modelling is done on the level of the grain as opposed to true poly-

crystalline constitutive modelling. The computational model of Patoor et al. [47]

incorporates the grain structure of the sample through Eshelby solutions that are

ensemble averaged across the grains to determine a quadratic form for the energy

associated with the transformation strain. The modelling approach of Brinson and

her collaborators, that saw a good deal of success in the single crystal through the

incorporation of self-accomodating groups of martensite variants, was extended to

the polycrystal. Brinson and Panico [18] are able to capture the martensitic reori-

entation in three-dimensional polycrystals. The transformation strains associated

with each variant are tracked as internal variables as well as the strains associated

with the possible pairs of twinned martensitic variants in the polycrystal. Tracking

this (possibly large) roster of internal variables and the associated driving forces al-

lows for the microstructure in the sample to change during the loading cycle. This
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innovation shows one way of incorporating the heretofore elusive phenomenon of

martensitic reorientation.

2.2 Motivation

The objective of this thesis is to develop a constitutive relation for shape-memory

alloys that is simple and robust, but also capable of describing diverse phenomena

under complex thermomechanical loading so that it can be an effective tool in engi-

neering analysis and design.

The key heuristic and the point of departure of this work is the recognition that

the mechanics of initiation and saturation of the martensitic transformation in poly-

crystals are two essentially different processes. Consider a polycrystal completely

in the austenite state above its transformation temperature, and subject it to an

increasing stress. The initiation of transformation is governed by those grains that

are best oriented to the applied load. In particular, Brinson et al. [19] used in-

situ optical microscopy to observe that the first appearance of the martensite occurs

in the form of isolated regions in well-oriented grains. This is supported by the

mescoscale observations of Daly et al. [26] that deviations in linearity of the stress-

strain curve occurs well before the formation of macroscopic transformed regions.

Finally, Schlömerkemper and Bhattacharya [16] have recently proved in an idealized

setting with uniform modulus that the transformation begins in isolated grains, and

consequently the Sachs or Reuss constant stress bound accurately describes the ini-

tiation of the transformation. Thus, the essential mechanics of initiation is described

by treating the grains as essentially non interacting, isolated bodies in the elastic

austenite.

As the best oriented grains begin to transform, the grain boundary interactions



20

begin to increase in importance. The transformed regions lead to inhomogeneous

stress and this in turn causes other grains to transform. Gradually the driving force

is large enough for the poorly oriented grains to start transforming as well. However,

they have smaller transformation strain in the direction of loading, and thus they

begin to quickly saturate and ”lock” together eventually leading to a network of fully

transformed grains. Thus, the saturation of the transformation is governed by the

poorly oriented grains. Indeed, Brinson et al. [19] observed substantial regions of

untransformed austenite even when the macroscopic stress-strain curve had turned

around to indicate macroscopic saturation of the transformation. Further, various

theoretical and computational analysis have shown that the constant strain Taylor

or Voigt bound gives a good description of the overall effective strains. [13, 58, 62].

Thus, the essential physics of saturation is described by looking at the poorly oriented

grains, and one has retained austenite when the transformation has macroscopically

saturated.

Finally, an important implication of the fact that the initiation and saturation of

the martensitic transformation in polycrystals are two essentially different processes

is that the critically resolved shear stress criterion or the Clausius-Clapeyron relation

fails in a polycrystal (see [26]), though it is known to hold well in a single crystal

(for example, [57]).

The discussion above has focussed on stress-induced transformation. The situ-

ation is slightly different in thermally induced martensite. Consider a polycrystal

completely in the austenite state above the transformation temperature . As it is

cooled, it transforms to martensite with two characteristic features. First, it is self-

accommodating so that there is no macroscopic change in shape. In other words,

even though individual unit cells change shape as a result of the transformation, the

grains form such a microstructure of the different variant that there is no macroscopic
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change in shape. Second, the transformation proceeds to completion. In other words,

there is no retained austenite. Now deform this self-accommodated martensite. The

microstructure changes to the extent it can under intergranular constraints to accom-

modate the applied load. However, as before, this deformation is constrained by a

network of poorly oriented grains. Consequently the constant strain Taylor or Voigt

bound gives a good description of the available strain through martensitic reorien-

tation [13, 58, 62]. Finally, when the polycrystal in the deformed state is heated, it

transforms back to the austenite accompanied with strain recovery.
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Chapter 3

Continuum Model

3.1 Kinematics

We seek to incorporate the heuristics described in section 2.2 into a continuum model.

We do so taking a multi scale view so that each material point of our continuum cor-

responds to a representative volume of material with numerous grains with possible

fine-scale microstructure in each grain. We denote the strain as ε and the tempera-

ture as θ.

We then introduce two key kinematic or internal variables to incorporate the

heuristic considerations described above. The first is the volume fraction λ of the

martensite. The second is the nominal transformation strain of the martensite εm

which we define as follows. Consider the representative volume that is partially

transformed and average the transformation strain of every region of martensite in

every grain in this representative volume. This is the nominal transformation strain.

Note that this is not the overall or effective transformation strain which is given

by λεm. We refer the reader to Sadjadpour [53] for a detailed discussion of these

variables.

These kinematic variables are subject to some constraints. The constraint on λ
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is obvious:

λ ∈ [0, 1]. (3.1)

The constraint on the nominal transformation strains is also relatively simple: it has

be a possible average of microstructures of martensite average over grains:

εm ∈ Gi :=

{
ξ : ξ =

∑
i,n

µi,nQ
T
nεiQn, µi,n ≥ 0,

∑
i,n

µi,n = 1

}
(3.2)

where µi,n may be the volume fraction of the ith variant of martensite in the nth

grain and Qn is the rotation that describes the crystallographic orientation of the nth

grain. We call the set Gi the set of nominal transformation strains. Notice that this

set considers all possible arrangements of martensite with no regard to compatibility.

Therefore this set will play an important role when we consider initiation of trans-

formation. Finally consider the constraint on the effective transformation strain:

we require it be a value that one can obtain by making a kinematically compatible

microstructure of martensite:

λεm ∈ Gs := {ξ : ξ = average strain of a compatible microstructure of martensite.}

(3.3)

We call the set Gs the set of effective transformation strains. It is identical to the set

of recoverable strains defined by Bhattacharya and Kohn [13]. Notice that this set

limits itself to compatible microstructures and thus is limited by networks of poorly

oriented grains. Therefore this set will play an important role when we consider sat-

uration of the transformation. From the definitions it is clear that the set of nominal
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transformation strains is larger than the set of effective transformation strains:

Gi ⊃ Gs. (3.4)

Before we proceed, it is instructive to look at these constraints in a one-dimensional

situation. Here, εm is a scalar and the sets Gi and Gs are nested intervals:

Gi,s = [εci,s, ε
t
i,s], εci ≤ εcs ≤ 0εts ≤ εti. (3.5)

The three constraints are plotted in figure 3.1, Note that when the material is in

the austenite and λ = 0, εm can explore the entire interval Gi. This is consistent

with the physics that the initiation of stress-induced transformation is controlled

by the best oriented grains. However, when the material is in the martensite and

λ = 1, it can explore only a smaller interval Gs because of the constraint on the

effective transformation strain λεm. This is consistent with the observation that the

deformation of the thermally induced martensite is constrained by the compatibility

of the grains. Similarly, note that the volume fraction can range from zero to one

when we have a self-accommodated martensite (εm = 0) as during cooling. However,

it can only explore a smaller region when εm is large as in the stress-induced situation.

3.2 Balance Laws

We postulate the usual balance laws of continuum mechanics. In local form, the

balance of linear momentum and energy may be stated as

ρutt = div σ, (3.6)
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Figure 3.1: The volume fraction and the nominal effective strain are constrained to
lie in the identified set.

ε̇ = −∇q + r + σ : ε̇, (3.7)

where u is the displacement, ρ is the (referential) mass per unit length, σ is the

stress, ε is the internal energy density, q the heat flux and r the radiative heating.

We also use the local form of the second law of thermodynamics,

−Ẇ − ηθ̇ + σ : ε̇− q∇θ
θ
≥ 0 , (3.8)

where W = ε− θη is the Helmholtz free energy density, η the entropy density and θ

the (absolute) temperature.
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3.3 Energy

We assume that the Helmholtz free energy density of the system is given by

W (ε, εm, λ, θ) =
1

2
(ε− λεm) : C (ε− λεm)

+λω (θ)− cp θ ln

(
θ

θ0

)
(3.9)

+Gi (εm) +Gs (λεm) .

The first term on the right hand side is the elastic energy density. Here it is assumed

that the total strain ε is the summation of the elastic component and the effective

transformation strain λεm. The material is assumed to have a constant elastic mod-

ulus tensor C in both phases for the sake of simplicity. To make the modulus a

function of phase fraction would not unduly complicate matters. A simple C (λ)

could be chosen by simply taking a weighted average of the austenite and martensite

moduli as the phase fraction varies from 0 to 1. Another, more exotic variation of

the modulus tensor with the martensitic phase fraction can be chosen. As long as it

is monotone, it should not change the tenor of the calculations to be undertaken.

The second term in the energy represents the change in chemical energy density

between the austenite and martensite phase at the given transformation temperature,

and can be written in the form

ω(θ) = L(θ − θc)
θc

,

where L is the latent heat of transformation and θc is the thermodynamic transfor-

mation temperature (where the austenite and martensite phases are equally stable).

The third term is the contribution of heat capacity and cp is the specific heat which
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Figure 3.3: A schematic representation of the first two terms of W

is assumed to be equal in both the austenite and the martensite.

Finally the last two terms in the energy describe the increased energy with in-

creasing transformation strain due to inhomogeneous stresses and also enforce the

constraints (3.1), (3.2), and (3.3). We discuss these presently.
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3.4 Initiation and Saturation

We postulate that the energy contributions Gi and Gs simply enforce the constraints

and consequently have the simple form:

Gi,s(ξ) =

 0 ξ ∈ Gi,s,

+∞ else,
(3.10)

where

Gi,s = {ξ : tr ξ = 0 and
2

3
(ξ · ξ)3/2 + bi,s det (ξ) +

1

3
ci,s |êi,s · ξêi,s|3 − gi,s 5 0},(3.11)

and bi,s, ci,s, gi,s are material parameters. Here, we assume that the material is trans-

versely isotropic about a direction ê. Therefore, the set can be described as a function

of the three principle invariants of ξ and the elongation along ê. However, we have

assumed self-accommodation so that the trace of all transformation strains are zero.

Thus, the set can be described as functions of |ξ|2, det ξ and ê � ξê. We choose the

form above for ease and to have uniform powers of ξ.

The effect of the three parameters is as follows: gi,s determines the size of the

initiation and saturation surfaces respectively, bi,s determines the degree of tension

compression asymmetry in the sample response due to the determinant term (fig-

ure 3.4), and ci,s imbues the specimen with a degree of uniaxial eccentricity in the

direction êi,s (figures 3.5 and 3.6).

It is worth noting that the uniaxial eccentricities varied through the terms ci and

cs are certainly not the only anisotropies that could be feasibly incorporated into

this model. In theory the only restrictions imposed on the sets G〉 and G∫ are those

of convexity and energetic frame indifference. The intent of the uniaxial eccentricity
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is merely to account for circumstances, such as those previously mentioned experi-

ments on the effect of rolling direction on the response of thin sheets of NiTI, which

introduce a highly directional anisotropy in the material response.

The proposed functions for Gi and Gs are intentionally simple in their formula-

tion. In general, taken as they are, these functions may not be sufficient to fit a given

set of experiments. However, they should be able to incorporate the striking exper-

imental phenomena of tension-compression asymmetry and directional anisotropy.

An important example of this is in the isotropic but asymmetrical experiments of

Lexcellent et al. [39]. The surface of transformation onset stresses is determined

experimentally in the case of biaxial tension and compression. As the investigators

state, a yield surface that is a level set of the type of function that has been proposed

(a linear combination of norm and determinant terms) is inadequate to fit the given

experiments. They propose a surface of the type:

F(y) = {cos
(
arcos(1− a(1− y))

3

)
≤ f}, (3.12)

with a ∈ (-1,1) and y related to the determinant of the deviatoric stress.

y =
27

2

det (devσ)(
3
2
devσ : devσ

) 3
2

. (3.13)

The distinction is drawn between the stress yield surface F(σ) and its convex dual

Gi(εM) that is of interest to this model. On first observation it seems clear that the

dual of the type of surface described in 3.12 cannot be generally fit by those described

in 3.11. With a suitable choice of parameters, the general shape can be recovered.

Quantitatively the experimental data could, of course, be fitted in a least squares

manner. A more convenient choice is to select those values for the parameters bi
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and gi which allows for the incorporation of the key phenomenon presented. In this

case, since in the sequel we are concerned with tension-compression and tension-shear

tests, the choices of bi and gi are made to recover the tension-compression asymmetry

of the experiments. In figure 3.7 the parameters are set to bi = −1.85 and gi = 2.05

x 10−4 in order to meet this end. It is worth noting that the proposed F(σ) is convex

(and so must be its dual) and frame indifferent. It could be incorporated into the

model. This would be an excellent course of action if the biaxial load case was the

specific point of investigation of this thesis. The mathematical complexity that this

would add to the formulation might prove more cumbersome than it is worth in a

general investigation of how the nature of initiation and saturation surfaces effect

the macroscopic response of the alloy.

3.5 Driving Forces and Kinetics

With the free energy density specified, we can use the dissipation inequality and

arguments following Coleman and Noll [25] to obtain constitutive relations for the

stress and entropy:

σ = C(ε− λ εm), (3.14)

η = λ
L
θcr
− cp

(
1 + ln

(
θ

θ0

))
. (3.15)

We also obtain the following driving forces as the thermodynamic conjugates to the

internal variables λ and εm respectively:

dλ = −∂W
∂λ

= (ε− λεM) : (C)εM − ω (θ)− ∂Gs

∂ (λεM)
: εM (3.16)
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= = σ : εM − ω (θ)− ∂Gs

∂ (λεM)
: εM ,

dεm = − ∂W
∂εM

= λC (ε− λεM)− ∂Gi

∂εM
− λ ∂Gs

∂ (λεM)
(3.17)

= λσ − ∂Gi

∂εM
− λ ∂Gs

∂ (λεM)
.

In writing these relations, we have assumed that the functions Gi,s are smooth. In

the non-smooth situation (i.e., in the case in which the energies Gi,s are zero-infinity

wells), the differentiation that must be done in order to find the driving forces is

slightly more subtle. The tensorial derivatives ∂Gi
∂εM

and ∂Gs
∂(λεM )

must be understood as

subdifferentials, ∂εMGi and ∂λεMGs. This is a classical idea in the literature of convex

analysis (see for example [51]). Inside the set G, the subdifferential is identically 0.

On the boundary of G the subdifferential is multivalued (i.e., consisting of multiple

subgradients). The directional derivative of the constraint energy G on the boundary

of G is defined by the supremum:

G′(ε; δx) = sup
g∈∂G(ε)

g : δx. (3.18)

This convex program can be incorporated into a descent algorithm to minimize the

proposed energy numerically. However this can be an onerous process, amounting to

numerically solving constrained minimization problems with Lagrange multipliers.

Minimization is made much easier by a smoothing of the constraint energies. The

particular form of smoothing used in simulations is discussed in a later chapter.

We are now in a position to specify the evolution laws, or kinetic relations, for our

internal variables λ and εM . We assume that the martensitic variants can rearrange
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much more easily than the phase transformation can proceed, and thus εM has much

faster kinetics than λ. In fact, we take this to an extreme and insist on equilibriating

εM at each time. In the non-smooth case this reduces to:

εM = max
εM∈∂(Gi∩λGs)

σ : εM . (3.19)

We assume that the phase transformation evolves according to the kinetic rela-

tion:

i) Stick-Slip

λ̇ =


λ̇+

(
1 + 1

(dλ−d+λ )

)−1
p

dλ ≥ d+
λ and λ ≤ 1

λ̇−
(

1 + 1

(d−λ−dλ)

)−1
p

dλ ≤ d−λ and λ ≥ 0

0 else.

(3.20)

ii) Rate Independent Kinetics

λ̇ =


+∞ dλ ≥ d+

λ and λ ≤ 0

−∞ dλ ≤ d−λ and λ ≥ 0

0 else.

(3.21)

The rate-independent kinetic law reduces to a simultaneous equilibration of the vari-

ables λ and εM . When the driving force (σ : εM − ω(θ)) remains in (d−λ , d
+
λ ) no

change in λ occurs. When the driving force threshold is exceeded, the new value of

λ can be determined in the non-smooth case by finding the equilibrium value of εM
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for each value of λ as in 3.19. The equilibrium equation for λ is given by:

λ = min
σ:ε(λ)−ω(θ)∈(d−λ ,d

+
λ )
|λ− λ0| . (3.22)

It is important that the kinetic relation chosen incorporates some characteristics

observed in the experimental literature and the theory. Shaw and Kyriakides [56] ob-

served the stick-slip behavior of the martensite transformation. The growth of bands

of martensite was triggered when a critical tensile stress was exceeded and stopped

when the stress was relaxed below that level. Careful investigation of the hysteresis

associated with these transformation processes [7] showed that the energy under the

hysteresis loop did not change depending on the rate at which loading and unloading

occured. Traditionally, many microscopic models of phase transformations are mod-

eled with viscous kinetics which are linear near zero driving force. Chu, James and

Abeyaratne [2] and Bhattacharya [11] were able to reconcile the discrepancy between

the microscopically viscous kinetics and the stick-slip, rate-independent behavior ob-

served macroscopically. The defects present in a ”wiggly” energy landscape were

shown to locally arrest phase-boundary motion. The effect of this local pinning on

the microscopic viscous kinetics on the whole was a rate-independent stick-slip kinet-

ics. Dondl [28] extended this work to two- dimensional systems. Stick-slip behavior is

incorporated in both kinetic laws through the condition λ̇ = 0 for dλ ∈ (d−λ , d
+
λ ). The

rate independence, the indeterminate transformation speed when the critical driving

force is exceeded, is incorporated by requiring a vertical tangent in both curves at

the critical driving force.

The important difference between the two kinetic laws is in the regime of high

driving forces. The rate-independent model makes the simplifying assumption that

the phase fraction of martensite equilibrates essentially infinitely quickly. The stick-
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Figure 3.8: The kinetic relation governing the phase transition in the stick-slip case.
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slip condition makes an assumption, slightly more appealing to common sense, that

in the limit of high driving forces the rate of transformation must approach a limiting

speed asymptotically. This assumption of limiting speed, ostensibly the sound speed

of the material, follows the work of Purohit [50] for example. It is important to note

that the rationale for this assumption is a dynamic one. The setting of this problem

is quasistatic. Derivation of kinetic relations in the dynamic setting is still largely

an open issue.
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Chapter 4

Some Features of the Model

We now demonstrate a few features of the model.

4.1 One Dimension

We specialize the model to one dimension so that

W (ε, εm, λ, θ) =
1

2
C |ε− λεm|2 + λω (θ)− cp θ ln

(
θ

θ0

)
+Gi (εm) +Gs (λεm) , (4.1)

where the sets Gi,s are given by (3.5). We further assume that kinetics of εm is

extremely fast so that it minimizes the energy at each instant of time and that λ

follows a strict rate-independent stick-slip kinetics:

λ̇ = 0 for dλ ∈ (d−λ , d
+
λ ), dλ ∈ [d−λ , d

+
λ ], dλλ̇ ≥ 0. (4.2)

4.1.1 Stress-Induced Martensite

Consider an isothermal strain-controlled experiment where the temperature is held

constant at a value significantly higher than the transformation temperature so that
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Figure 4.1: Stress-induced martensite in one dimension shown in the volume fraction-
strain plane on the left and the stress-strain plane on the right. The constraints on
the volume fraction and nominal transformation strain are indicated on the shaded
set.

ω(θ) > −d−λ > 0. Consider the specimen at rest at zero stress so that it is in the

austenite state with λ = 0 and εm ∈ [εci , ε
t
i] indeterminate. Now subject the specimen

to a monotonically increasing overall strain tensile strain ε(t). For very small times,

the stress is given by σ(t) = Cε(t). Since this is positive, the nominal transformation

strain εm, takes its maximal tensile value εti and the driving force for transformation,

dλ = σεti − ω is too small begin transformation (i.e., in the range (d−λ , d
+
λ ) so that

λ̇ = 0). Thus the volume-fraction, stress and strain begin from zero and traverse

toward the point marked 1 in figure 4.1.

As the applied strain increases, so do the stress and the driving force dλ until we

reach the point marked 1 in the figure where dλ = Cε− ω = d+
λ and transformation

begins. At this point, the strain and stress are given as

εtMS =
d+
λ + ω

Cεti
, σtMS =

d+
λ + ω

εti
. (4.3)

At this point transformation begins and proceeds in such a manner to keep dλ and

consequently the stress σ constant so that we traverse from the point marked 1
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towards the point marked 2 in figure 4.1 as the applied load increases. As λ increases,

the overall transformation strain λεm eventually saturates the constraint λεm ≤ εts

at the value

λt =
εts
εti
. (4.4)

This is indicated by the point 2 in the figure, and we have

εtMF =
d+
λ + ω

Cεti
+ εts, σtMF =

d+
λ + ω

εti
. (4.5)

The transformation is now saturated, and further loading does not further lead to

any further transformation. Thus, the stress increases linearly to the applied strain

as indicated by the increasing branch of the stress-strain curve in figure 4.1.

Now start unloading the specimen by monotonically decreasing the applied tensile

strain. There is no transformation initially and we unload elastically (the stress

decreasing linearly with strain) until we reach the point marked 3 when the driving

force has reached a low enough value to start reverse transformation, dλ = σεti−ω =

d−λ so that

εtAS =
d−λ + ω

Cεti
+ εts, σtAS =

d−λ + ω

εti
. (4.6)

Reverse transformation now begins as λ begins to decrease as unloading proceeds.

The driving force and stress remain constant and we traverse from point 3 to point

4 on figure 4.1. The reverse transformation is complete at the point 4 when λ = 0,

and

εtAF =
d−λ + ω

Cεti
, σtAF =

d−λ + ω

εti
. (4.7)

The material responds elastically on further onloading and we return to the origin.

We have an analogous situation in a compressive loading cycle with the analogous

quantities obtained by replacing the superscript t with c in the formulae (4.3) to (4.7)
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above.

A series of comments are in order. First, note that the transformation from

austenite to martensite does not go to completion at a maximum volume fraction of

λt,c. This is consistent with the observations of Brinson et al. [19].

Second, tension and compression are different. This is consistent with various

observations going back to Burkart and Read [22].

Third, the value of stress at which the transformation begins and completes or the

reverse transformation begins and completes depend on temperature through ω. If

ω depends linearly in temperature as in most common models ω = L(θ−θc) where L

is the latent heat, then these stresses depend linearly on temperature consistent with

the Clausius-Clapeyron relation in a particular deformation mode. Further, we can

invert these relations to obtain the values of temperature where the transformation

begins etc at zero stress:

Ms = Mf = θc −
d+
λ

L
, As = Af = θc +

d−λ
L
. (4.8)

Fourth we can infer the values of transformation strain, the stress hysteresis and

mean-value of stress in the hysteresis to be

εt,ctrans :=
1

2
(εt,cMF − ε

t,c
MS + εt,cAS − ε

t,c
AF ) = εt,cs , (4.9)

σt,chyst :=
1

2
(σt,cMS + σt,cMF − σ

t,c
AF − σ

t,c
AS) =

d+
λ − d

−
λ

εt,ci
, (4.10)

σt,c :=
1

4
(σt,cMS + σt,cMF + σt,cAF + σt,cAS) =

1

2

d+
λ + d−λ + 2ω

εt,ci
. (4.11)

Note that each of them can be independently constitutively prescribed and that

there is no universal relation amongst them. This is a manifestation of the lack
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of any ”resolved stress” criterion or Clausius-Clapeyron relation across deformation

modes.

Fifth, we see above that σt,cMS = σt,cMF , σt,cAS = σt,cAF and Ms = Mf . These are

all manifestations of i) rate-independent or strictly stick-slip kinetics (3.21) and ii)

isothermal conditions. If we assume that the material has a rate-dependent kinetic

relation as in (3.20), then we would have σtMF > σtMS with the difference depending on

the loading rate. We would also have these if we assume non-isothermal situation. To

elaborate on this, let us assume rate-independent kinetics and adiabatic conditions.

Then, we have to solve (3.7) with q = r = 0. If we further assume that ω = L(θ−θc),

we can show that the contribution of the latent heat to the driving force will require

an increase in stress to sustain and saturate the martensitic transformation. Recall

that

dλ = σ : εt,ci − ω = σ : εt,ci − L(θ − θc). (4.12)

In order to initiate transformation, the driving force dλ must equal the critical driving

force d+
λ . The stress required to initiate transformation is written

σMS =
d+
λ

εt,ci
− L(θ0 − θc)

εt,ci
. (4.13)

In the isothermal case, the temperature remains constant at θ0 throughout the trans-

formation. In the adiabatic case, the constitutive assumption

cpθ̇ = θλ̇L (4.14)

must be integrated in order to yield the temperature change throughout the trans-

formation process.

θ(t) = θ0exp

(
L(λ(t)− λ(0))

cp

)
(4.15)
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Figure 4.2: Shape-memory effect in one dimension shown in the the volume fraction-
strain plane on the left and the stress-strain-temperature space on the right. The
constraints on the volume fraction and nominal transformation strain are indicated
on the shaded set.

The temperature at saturation is going to be θf = θ0exp
(
Lλsat
cp

)
. Plugging this into

the driving force equality yields the stress as the saturation of transformation

σMF =
d+
λ

εt,ci
− L(θf − θc)

εt,ci
, (4.16)

σMF − σMS =
Lθ0

εt,ci

(
exp

(
Lλsat
cp

)
− 1

)
; (4.17)

yields the extent of hardening in the adiabatic situation.

4.1.2 Shape-Memory Effect

We now subject our one dimensional specimen to a controlled (infinitely slow) temperature-

load cycle to explore the shape-memory effect. We begin, as before with an unloaded
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specimen at a temperature above Af . This is marked as the point 1 in figure 4.2. We

lower the temperature below Ms and Mf so that the material transforms to marten-

site and λ goes to 1 as we traverse from point 1 to point 2 in the figure. We now keep

the temperature constant and subject the material to a strain controlled loading un-

loading cycle. The moment the strain and consequently the stress becomes positive,

the nominal transformation strain εm takes the value εti to optimize the energy and

we traverse from point 2 to point 3 in the figure. Now the overall strain is the trans-

formation strain εts. Note that this happens at a value of stress equal to 0+ since we

assume that the kinetics of εm is infinitely fast. Further loading takes us to point 4,

and unloading brings us to 5 (with coincides with 3 in the stress-strain-temperature

space). We now keep the stress zero and heat the specimen. There is no change in

strain or transformation and traverse from point 5 to point 6 (which coincide on the

left) in the figure. At point 6, the temperature has reached As so that dλ = ω = d−λ ,

the reverse transformation begins and the volume fraction decreases. We traverse

from point 6 to point 7 (which happen to coincide on the right) on the figure. As the

volume fraction decreases at this fixed temperature, it eventually reaches the point

λt at which point the constraint on the effective transformation strain is activated.

Now, any further reduction in volume fraction can only occur with a reduction in

εm and strain recovery. Therefore we traverse from point 6 to point 7 in the figure.

Further heating brings us back to the starting point.

Note that in the thermal cycle, there is no restriction on the amount of transfor-

mation, and the specimen is able to transform fully to martensite. Once again, rate

and heat transfer effects would make the curves rounded.
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Figure 4.3: The different eccentricities of the set Gi and Gs can lead to a signifi-
cant reorientation of the martensite. The nominal transformation strain at different
extents of transformation is shown.
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4.2 Martensite Reorientation

An important aspect of the interaction that we seek to incorporate in our model is the

fact that initiation and saturation are controlled by different aspects in a polycrystal.

Therefore it is possible for the martensite to reoirent as the transformation proceeds,

i.e., the variants and proportions that are present at initiation may be quite different

from those present at saturation. We now demonstrate how this arises in our model

as a result of different eccentricities of the sets Gi and Gs. We note that the sets

Gi and Gs can have different eccentricities even when they have consistent material

symmetry since the ratios of the parameters ai, bi, ci can be different from those of

as, bs, cs. Indeed, Schlömerkemper [54] has recently pointed out that the eccentricities

of the Sachs and Taylor estimates of the set of recoverable strains of an isotropic

polycrystal made of a material undergoing cubic-orthorhombic transformation can

be quite different.

We now consider an idealized setting where the stress and strain are two dimen-

sional vectors. We assume that the set G〉 is elongated along the (εm)1 direction while

the set G∫ is elongated in the (εm)2 direction as noted in figure 4.3. We consider a

situation when the crystal is above Af , and subject it to a steady dead load in the

direction σ sufficiently large to eventually initiate and saturate the transformation.

As λ starts at zero and evolves until it eventually saturates at some value λmax,

the nominal transformation strain εm has to be optimized subject to the constraint

that it is restricted to the set Gi ∩ 1
λ
Gs. This is done by finding the point in the set

Gi ∩ 1
λ
Gs that has a maximum projection in the direction σ. This is demonstrated in

figure 4.3 for various values of λ. As λ changes, εm changes from a direction where it

is optimized in Gi to a direction where it is optimized in Gs. Due to the fact that the

initiation and saturation constraints have markedly different eccentricities, these di-
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rections are quite different resulting a significant reorientation as the transformation

proceeds.
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Chapter 5

Demonstration and Parameter
Study

We now turn to a systematic demonstration and parameter study of the model

presented in chapter 3.

For the sake of consistency we specify a set of base parameters which shall be

used in the absence of statements to the contrary. In order to replicate the tension-

compression asymmetry seen in the onset surface of Lexcellent [41], mentioned pre-

viously, the initiation parameters are set as bi = −1.85 and gi = 2.05 x 10−4. No

asymmetry is assumed in general for the saturation surface (bs = 0). As the satura-

tion surface must be contained within the initiation set, gs is set to 2.25 x 10−5. No

anisotropy is assumed as a base for either surface. The Young’s modulus is chosen

as 115GPa.

For the thermal parameters we utilize the same base set as Sadjadpour [53]. The

latent heat L = 79
(
MJ
m3

)
, the heat capacity cp = 5.4

(
MJ
m3K

)
, the Martensite start

Ms = 217.60K, and Austenite start As = 266.79K are chosen as base parameters.



52

These are used to select the kinetic parameters.

d+
λ = −d−λ = L

(
As −Ms

As +Ms

)
= 8x106

(
J

m3

)
(5.1)

Using the fact that the critical temperature, θcr = As+Ms

2
, the isothermal loading tests

are conducted at a temperature chosen to make ω(θ) a round number (θ = 333K):

ω(θ) =
L

θcr
(θ − θcr) = 1x107

(
J

m3

)
. (5.2)

Finally, the stick-slip exponent p is chosen to be 2.

It is assumed that the temperature is well above the transformation temperature.

In the absence of stress, the austenite is the stable phase.

This demonstration focuses on the interplay between the onset and saturation

constraints. Particularly we are concerned with how the geometry of each constraint

can give rise to some of the important features discussed in the previous chapter.

5.1 Uniaxial Tension and Compression

We consider the isotropic situation (ci = cs = 0) with strict rate-independent stick-

slip kinetics (3.21) for the volume fraction. We consider a specimen well above

transformation temperature so that λ = 0 and subject it to an uniaxial tension or

compression. The resulting stress-strain curve is as shown on the right-hand side of

figure 4.1 as we presently see. Assume that the applied load is along the e3 axis so

that the deviatoric stress is

σ̂ =
σ

3
diag{−1,−1, 2}.
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As the load increases from zero, the nominal effective strain εm takes the value that

optimizes its projection along the applied load (εm : σ̂) amongst all allowable values

in the set Gi. Since we are in the isotropic case, symmetry dictates that the optimal

strain will be of the form

εm =
x

3
diag{−1,−1, 2},

for some known x. Substituting this in the formula (3.11) for Gi, we conclude that

the optimal x satisfies,

2

3

(
2

3
x2
t,c

) 3
2

± bi
(

2

27
x3
t,c

)
= gi =⇒ xt,c = ±

 gi(
2
3

) 5
2 ± 2

27
bi

 1
3

, (5.3)

with the choice of positive sign for tension and negative for compression. We sub-

stitute this in the equation for the driving force, and find that the stress is initially

too small to induce any transformation. So the material responds elastically. The

transformation begins when the driving force it reaches its critical value d+
λ .

We conclude that transformation initiates at the following stress:

σt,cMS = ±3

2

(
ω (θ) + d+

c

g
1
3
i

)((
2

3

) 5
2

± 2

27
bi

) 1
3

, (5.4)

with the choice of positive sign for tension and negative for compression. Since the

response is linear up to this point, the onset strain is obtained by dividing these

with the Young’s modulus. Since we have a strict rate-independent kinetics, the

transformation proceeds at constant stress until we effective transformation strain

saturates the constraint λεm ∈ Gs. This leads to equations similar to (5.3) with

x replaced by λx, and bi, gi with bs, gs. We conclude that the saturation volume
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fractions of the martensite are given by

λt,csat =

(2
3

) 5
2 ± 2

27
bi(

2
3

) 5
2 ± 2

27
bs

 1
3 (

gs
gi

) 1
3

, (5.5)

with the choice of positive sign for tension and negative for compression. The associ-

ated transformation strain, the change in strain during the transformation, is given

by

εt,ctrans =

 gs(
2
3

) 5
2 ± 2

27
bs

 1
3

, (5.6)

with the choice of positive sign for tension and negative for compression.

The transformation is now saturated. Thus, as the load increases the material

responds elastically. Now start unloading. The driving force is too large to have any

reverse transformation. The reverse transformation begins when the driving force

reaches d−c and this corresponds to an applied stress of

σt,cAS = ±3

2

(
ω (θ) + d−c

g
1
3
i

)((
2

3

) 5
2

± 2

27
bi

) 1
3

, (5.7)

with the choice of positive sign for tension and negative for compression. The volume

fraction of martensite decreases at constant stress until it reaches zero, and the change

in strain during this process is identical to transformation strain (5.6). As the load

decreases further and to zero, the material unloads elastically to the origin.

Comparing (5.4) and (5.7), we find that the stress hysteresis during this cycle is
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given by

σt,chyst = ±3

2

(
d+
c + d−c

g
1
3
i

)((
2

3

) 5
2

± 2

27
bi

) 1
3

, (5.8)

with the choice of positive sign for tension and negative for compression.

We now make a series of comments about these results and the various parameters

of the model. We first consider the critical stress for transformation σt,cMS given in

(5.4). This stress depends on temperature through the function ω(θ). If this is linear

as is commonly assumed with the slope related to the latent heat, then the critical

stress for transformation will also change linearly with the temperature with the slope

related to the latent heat. This is consistent with various experimental observations

[48]. We also see that at any given temperature, the parameter gi controls the value

of this critical stress for transformation in both tension and compression, while the

parameter bi independently controls the difference in the value between tension and

compression. Thus, parameter bi is responsible for the asymmetry in stress between

tension and compression. We now turn to the transformation strain described in

(5.6). Note that this depends on the parameters gs and bs, and is thus completely

independent of the critical stress for transformation. The parameter gs controls the

magnitude of this strain in both tension and compression while the parameter bs

controls the difference between tension and compression. Finally, the parameters d±c

control the amount of stress hysteresis, see (5.8). In summary, the model has enough

freedom to assign the critical stress, the transformation strain, and stress hysteresis

independently, and independently in tension and compression.
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5.2 Simple Shear

We now turn to simple shear, and show that the parameters bi and bs have a more

subtle effect on the transformation strains and cause the transformation strain to be

nonparallel to the applied stress even in the isotropic setting. As before we work at

a constant temperature well above the transformation temperature and start with

λ = 0. We apply an increasing stress of the form

σ =


0 0 0

0 0 τ

0 τ 0

 .

As the stress increases, the nominal transformation strain increases to its optimal

value with the set of constraints. By symmetry, it has the general form

εm =


−x− z 0 0

0 z y

0 y x

 .

To find the specific value, we need to find the point where the normal to ∂Gi is

parallel to the applied stress, or ∂Gi/∂εm is parallel to σ. One has to be careful in

this differentiation since it has to be carried out an interpreted in the space of trace-

free matrices. Thus, if one differentiates these functions in the space of matrices, one

has to project the derivative on to the space of trace-free matrices, or

P
(
∂Gi

∂εm

)
|| σ,
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where P is the projection to the space of trace-free matrices. In our case, the deriva-

tive of the determinant in the space of matrices gives the cofactor, and the cofactor

of trace-free matrices need not be trace-free. Working through these details, we find

that this condition is satisfied if and only if the parameters x, y, z satisfy:

2Ez − 2

3
zx− 2

3
x2 +

1

3
y2 +

1

3
z2 = 0, (5.9)

2Ex− 2

3
zx+

1

3
x2 +

1

3
y2 − 2

3
z2 = 0.

where E = |εm| bi. Subtracting the second equation above from the first yields the

condition

2E(z − x)− x2 + z2 = 0 ⇐⇒ −2E(x− z) = (x+ z)(x− z).

This leaves two possibilities, (x− z) = 0 and (x + z) = −2E. The latter possibility

implies that ∂Gi/∂εm is identically zero and is hence rejected. We conclude that

x = z

εm =


−2x 0 0

0 x y

0 y x

 ,

Substituting it back into (5.9) and doing some manipulation yields

(
24

b2i
− 1

)
x4 +

(
8

b2i
+

2

3

)
x2y2 − 1

9
y4 = 0.

We have to solve this simultaneously with the condition that εm ∈ ∂Gi or

2

3

(
6x2 + 2y2

) 3
2 + bi

(
2xy2 − 2x3

)
− gi = 0,
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for x, y.

Unfortunately, we are unable to solve this in closed form. Yet, the above equations

reveal two important features. First, except in the case bi = 0, applied simple shear

gives rise to nontrivial normal components in the nominal transformation strain even

in the isotropic situation. This is akin to the Poynting effect, and implies that the

normal boundary constraint is critical in studying torsion. Second, notice that these

conditions are impervious to the change of sign of σ. This is true in all aspects, and

thus there is no asymmetry with respect to sign unlike in uniaxial extension.

Once we know the optimal nominal transformation strain ε0
m, we can use it to

determine driving force and in turn the stress at which the onset of transformation

begins. As the transformation proceeds and λ increases until the effective transfor-

mation strain λε0
m saturates the constraint Gs. However, depending on the values

bi and bs, λε
0
m may not be the matrix that is optimal in Gs for the applied load. If

it is not, the martensite reorients and begins the nominal transformation strain εm

changes until λεm is optimal in Gs for the applied load. Thus, a misorientation of Gi
and Gs can lead to realignment of martensite.

5.3 Combined Uniaxial Extension and Shear

We now turn to strain-controlled experiments combining uniaxial extension and

shear. This loading protocol is motivated by the combined tension-torsion of a

tube. As before we consider an isotropic situation well above the transformation

temperature and begin with a specimen completely in the austenite. We load it until

transformation begins and saturates, and then unload it completely.

The algebra becomes too difficult, and we therefore resort to numerical studies.

Since hard constraints are difficult to implement numerically, we replace the hard
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constraints, (3.10), (3.11) with the following high order polynomials:

Gi,s (ξ) =

(
2
3
(ξ · ξ)3/2 + bi,s det (ξ) + 1

3
ci,s |êi,s · ξêi,s|3

gi,s

)16

. (5.10)

We shall have a opportunity to evaluate the influence of this constraint presently

We begin in the isotropic situation (ci = cs = 0) with a strain-control test where

we apply a strain of the form

ε =


0 0 0

0 0 γ(t)

0 γ(t) ε(t)

 , (5.11)

with γ(t) = cε(t). In this case c is chosen to be equal to 1.

Figure 5.1(a) shows the resulting trajectory of the stress where σ denotes the

uniaxial (33) component and τ the shear (23) component. Note that the stress

components (σ-τ) are not proportional although the applied strain components (ε-γ)

are. This is consistent with the experimental observations of Anand and Thamburaja

and Jung [64], [43].

The underlying reason for this non-proportionality is the reorientation of marten-

site, and this is clear in the space of transformation strains shown in figure 5.1(b).

This figure shows the trajectory of the normal and shear components of the effective

transformation strain in blue bold line, the constraint Gion the nominal transforma-

tion strain as the dashed black arc and the constraint Gs on the effective transforma-

tion strain as the dotted red arc. It also shows the imposed strain direction as the

purple dashed line. The effective transformation strain starts out at zero and grad-

ually increases in a direction that is optimal for the applied load. Thus the original
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Figure 5.1: A proportional strain-controlled extension-shear test of an isotropic ma-
terial. (a) The resulting stress, (b) the resulting transformation strain along with a
verification of the numerical method, (c) uniaxial stress vs. uniaxial strain (d) shear
stress vs. shear strain and (e) equivalent stress vs. equivalent strain.
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direction depends on the nominal transformation strain and thus on the shape of the

set Gi. Therefore it can be-and is so in this case-different from the direction of the

applied total strain. The effective transformation strain increases along this direc-

tion as the transformation proceeds until it encounters the boundary of the set Gs.

It then tries to optimize itself within this latter set and this results in reorientation

of the martensite, and this is clearly visible in this case. It also causes the observed

reorientation in the direction of stress.

Note that we have reorientation of martensite in this case even though it is

isotropic. The determinant-dependant terms (those with the coefficients bi,s) that

were responsible for the tension-compression asymmetry enable the initiation and

the saturation surfaces to be eccentric.

Figure 5.1(c-e) show the stress-strain curve in components and in equivalent form.

Note that these curves can look quite different in the normal and the shear directions.

In particular, the shear curve appears to have a negative slope. This is because the

reorientation of martensite gives rise to a significant change in the shear component

of the transformation strain. However, the negative slope does not necessarily signal

an instability.

We conclude with a comment on the softened polynomial constraint (5.10). Fig-

ure 5.1(b) plots the surfaces according to the hard constraint, and we see that the

trajectory computed with the soft constraint tracks is quite closely. We also see a

little overshoot in the stress-strain curves due to the numerical method.

5.4 Anisotropic Materials

The discussion has until now focused on isotropic materials. We now consider uni-

axial or transversely isotropic materials subjected to combined extension along the
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Figure 5.2: Anisotropy of the initiation surface. Combined extension and shear of
an uniaxial material under strain control for various values of ci ranging from 0.3-
1.5. (a) The effective transformation strain trajectory. The applied strain trajectory
is indicated by the dashed line. (b) The stress trajectory, (c) equivalent stress vs.
equivalent strain (d) volume fraction vs. equivalent strain.

axis of symmetry and shear. In other words, we set ei = es = e3 with ci, cs possibly

non-zero and apply a strain of the form (5.11).

Figure 5.2 shows the results for increasing anisotropy of the initiation surface

or various values of ci ranging from 0.3 to 1.5 (by equally spaced increments) for

cs = bi = bs = 0. When ci = 0, the initiation and saturation surfaces are coaxial

and aligned. Thus there is no reorientation of martensite and the transformation

strain and stress are proportional and is close to the direction of applied strain (the

small difference depends on the elastic modulus). When ci is non-zero, the initiation
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surface is eccentric. Therefore the optimal nominal transformation strain deviates in

direction from that of the applied strain. Thus, the effective strain trajectory starts

out on a different direction, though the stress appears to maintain the same direction.

Further, the initiation and saturation surfaces are no longer aligned. Thus, when the

effective transformation strain is large enough, we see reorientation of the martensite,

and consequently non-proportional transformation strain and stress. Further, for

high values of ci, we see that the equivalent stress-equivalent strain curve shows a

downward slope. However, this does not indicate any instability. Finally, we see that

the transformation is not complete even for large stresses.

Figure 5.3 shows the results of anisotropy in the saturation surface various values

of cs ranging from 0.3 to 1.5 in equal increments for ci = bi = bs = 0. Since the

initiation surface is held fixed, each trajectory of the effective transformation strain

starts out in the same direction. However, the saturation and reorientation depends

on the value of cs. The amount or reorientation happens to be less dramatic than in

the previous situation.

Figure 5.4 shows the results of anisotropy in both the initiation and saturation

surfaces. It proportionally varies the parameters ci, cs in the range 0.3 to 1.5. The

trajectory of the effective transformation strain shows features of the earlier cases,

the directions start out differently and the reorientation is quite significant.

5.5 Proportional Loading in Different Directions

In the previous set of simulations, we saw that the geometry of initiation and sat-

uration surfaces have an significant effect on the overall hysteretic behavior of the

material as well as the reorientation of martensitic transformation strain. We now

examine the role of loading direction. We fix the initiation surface by fitting it to the
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Figure 5.3: Anisotropy of the saturation surface. Combined extension and shear of
an uniaxial material under strain control for various values of cs ranging from 0.3 to
1.5. (a) The effective transformation strain trajectory. The applied strain trajectory
is indicated by the dashed line. (b) The stress trajectory, (c) equivalent stress vs.
equivalent strain, (d) volume fraction vs. equivalent strain.
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1.5 (in equal increments). (a) The effective transformation strain trajectory. The
applied strain trajectory is indicated by the dashed line. (b) The stress trajectory,
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Figure 5.5: Variation of direction applied strain. (a) The effective transformation
strain trajectory. The applied strain trajectories are indicated by the dashed lines.
(b) The stress trajectory, (c) equivalent stress vs. equivalent strain, (d) volume
fraction vs. equivalent strain.

experimental results of Lexcellent and the saturation surface. Specifically, bi = −1.8,

gs = 2.05 x 10−4. A slight eccentricity (coaxial) and asymmetry have been added to

the saturation surface to underscore the effect of these parameters on the martensitic

reorientation: bs = 1.0, cs = 1.5, and gs = 2.25 x 10−5).

Figure 5.5 shows the response of the material for proportional applied strain with

different ratios of extension and shear. The direction of applied strain in the various

cases are indicated by the dashed lines, and the resulting trajectory of the effective

transformation strain is shown in the continuous line of the same color in figure

5.5(a). The two surfaces as well as the trajectory of the effective transformation
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Figure 5.6: Variation of direction applied stress. (a) The effective transformation
strain trajectory. (b) The stress trajectory, (c) equivalent stress vs. equivalent
strain, (d) volume fraction vs. equivalent strain.

strain are also shown. We see that the amount of deviation between the direction

of the applied strain and the initial direction of the transformation strain (which

arises due to the large distortion of the initiation surface normal vectors due to

the considerable determinant term added to incorporate the tension-compression

asymmetry) as well as the amount of reorientation of martensite varies considerably

with loading direction. The resulting equivalent strain-equivalent stress curves also

vary significantly. Importantly, the amount of transformation or the volume fraction

of martensite on saturation depends significantly on the loading direction. This will

turn out to be very important when we consider nonproportional tests.
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Figure 5.7: The experimental observations of Jung [36] show the emergence of sec-
ondary hysteresis in nonproportional tension-torsion.

Figure 5.6 shows the corresponding response in stress control. The observed

features are similar.

5.6 Nonproportional Loading

The fact that the response of the material can be different in different directions mo-

tivates us to study nonproportional loads. An interesting case are the experimental

observations of Jung [36] reproduced in figure 5.7. They were studying the combined

tension and torsion of thin walled tubes, and observed a dual plateau for when they

applied a uniaxial extension followed by torsion. Thin-walled NiTi tubes (0.37 mm

wall thickness) were loaded slowly (10−5s−1 to 10−4s−1) avoid rate effects. The load-

ing program followed was to load to tensile strain of 6% followed by a torsional strain
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Figure 5.8: Dual plateau in nonproportional loading. (a) The effective transformation
strain trajectory. The applied strain trajectories are indicated by the dashed lines.
(b) The stress trajectory, (c) equivalent stress vs. equivalent strain, (d) volume
fraction vs. equivalent strain.
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of 2%. The unloading was in the reverse order (torsion unloads before tension). Un-

fortunately, they do not provide enough details for us to fit our model completely.

Thus, we are left to examine the situation qualitatively. Figure 5.8 shows the results

of a simulation that reproduces this dual plateau. The initiation and saturation

surfaces are chosen to display marked asymmetry. As the applied strain increases

in the normal direction, the transformation begins and saturates. Thus the stress

shows a plateau and then begins to increase. Now, we apply shear. The martensite

begins to reorient with the stress at a more or less constant volume fraction until

it reaches a highly curved section. Sufficient reorientation now makes it possible to

have additional transformation, and thus gives rise to the second plateau.

This reasoning also indicated why, when the thin tubes were loaded in torsion

first and then tension, dual plateaus were not observed. In the shear direction, the

transformation saturates at a higher value of λ. When the tensile strain is applied, the

headroom in the phase fraction that was available in the previous loading program

is not available. No more stress relief can take place due to transformation. A

secondary plateau is unable to emerge.

We conclude the parameter study by displaying the results of a circular and square

loading path in figures 5.9 and 5.10 respectively. In these results, the initiation and

saturation surfaces are set to be those in the previous subsection.
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Figure 5.9: Circular Loading Path. (a) The effective transformation strain trajec-
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stress trajectory, (c) equivalent stress vs. equivalent strain, (d) volume fraction vs.
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Chapter 6

Numerical Implementation and
Example

In the bigger picture, in order for the model to be of use in an engineering context,

it should be implementable in a finite-element package. To utilize the model on the

scale of engineering applications, an UMAT for the ABAQUS package was developed.

Given the strain control field εt, the fields εtM and λt are found by the implicit

minimization scheme at each time step and node:

λt+1, εt+1
M = arg min

εt+1
M ∈Gi,λt+1εt+1

M ∈Gs
{1

2

(
εt+1 − λt+1εt+1

M

)
: C
(
εt+1 − λt+1εt+1

M

)
+ (6.1)

λt+1ω(θ) +Gi

(
εt+1
M

)
+Gs

(
λt+1εt+1

M

)
+ ∆tϕ∗

(
λt+1 − λt

∆t

)
}.

Here the function ϕ∗(λ̇) is the Legendre transform of the dissipation potential asso-

ciated with each kinetic law (i.e., λ̇ = ∂ϕ(dλ)
∂dλ

). Examples of these potentials can be

written in the stick-slip case and the rate-independent one.
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i) Stick-slip (the case p = 2)

ϕ∗
(
λ̇
)

=



λ̇d+
c + λ̇3λ̇+

λ̇2
+−λ̇2 + λ̇+

2
ln

(
λ̇2

λ̇2
+−λ̇2 + 1

2
+

√(
λ̇2

λ̇2
+−λ̇2

)2

+
(

λ̇2

λ̇2
+−λ̇2

))
−λ̇+

√(
λ̇2

λ̇2
+−λ̇2

)2

+
(

λ̇2

λ̇2
+−λ̇2

)
λ̇ ≥ 0

−λ̇d−c + −λ̇3λ̇−
λ̇2
−−λ̇2 + −λ̇−

2
ln

(
λ̇2

λ̇2
−−λ̇2 + 1

2
+

√(
λ̇2

λ̇2
−−λ̇2

)2

+
(

λ̇2

λ̇2
−−λ̇2

))
+λ̇−

√(
λ̇2

λ̇2
−−λ̇2

)2

+
(

λ̇2

λ̇2
−−λ̇2

)
λ̇ ≤ 0

(6.2)

ii) Rate-independent kinetics

ϕ∗
(
λ̇
)

=

 d+
c λ̇ λ̇ ≥ 0

d−c λ̇ λ̇ ≤ 0
(6.3)

These potentials can be seen in figure 6.1. Here, for the sake of convenience, the

simplifying assumption that d−c = −d+
c has been made.

In order to make the constraints differentiable, they are implemented using stan-

dard penalties:

Gi =

(
2
3
(εM · εM)3/2 + bi det (εM) + 1

3
ci |êi · εM êi|3

gi

)N

, (6.4)

Gs =

(
2
3
(λεM · λεM)3/2 + bs det (λεM) + 1

3
cs |ês · λεM ês|3

gs

)N

, (6.5)

where N is some large, positive, even exponent; in this case taken to be 16.

The effect of this smoothing constraint is to generally overestimate the set of

admissible transformation strains. As is seen in the figure 6.2, the intersection of the

polynomial constraint and the quadratic elastic energy is shifted slightly outward
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Figure 6.1: The Legendre transform of the dissipation potentials are shown in the
stick-slip case (black) for p = 2 and in the rate-independent case (red).
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Figure 6.2: The effect of the polynomial constraint is seen. The intersection of the
16th degree polynomial shifts the intersection point with the quadratic elastic energy
slightly to the right of the hard (dashed) constraint.

from the hard constraint (dashed well). Naturally, increasing the degree N of the

constraining polynomial will make the value of strain at which this intersection occurs

closer to that of the hard constraint. The trade-off is that the derivative of the

constraint polynomial becomes increasingly steep with N, making it harder to deal

with in a conjugate gradient scheme.

The result of this softening can be seen in terms of the total transformation strain

in the polycrystal in figure 6.3. The dashed green set represents the ideal saturation

constraint Gs. The red dashed curve is the scaled constraint set at λsat. The solid

red set represents the softened (N = 16) constraint for 10% strain applied in each
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Figure 6.3: The smoothed constraint set is calculated at 10% applied strain. The
green dashed constraint is Gs, the red dashed constraint is the scaled Gs at λ = λsat
and the red solid set is the softened polynomial (N = 16) constraint at λsat.

direction in the tension-shear plane. Even at large values of applied strain, the error

introduced by softening the constraint does not seem very significant.

With each component in the energy smoothed, the implicit minimization of the

nodal energy is conducted using a nested conjugate gradient scheme in the (λ, εM)

space. With the transformation strain and volume fraction fields attained through

minimization, the nodal stress values (σ = C : (ε− λεM)) are computed trivially.

The linearized strain assumption also allows for simple computation of the tangent

modulus
(
∂σ
∂ε

)
. It should be noted that the contribution of the initiation and satu-

ration surfaces is incorporated into the tangent modulus through the ∂ε
∂εM

term, the

value of which is calculated by exploiting the fact that the energy density is at a

stationary point (δW = 0) and implicitly differentiating.

Because one of the current areas of interest in the application of shape memory

alloys for engineering is in the biomedical field, this area was selected as a suffi-

ciently fashionable one for a demonstration of the finite-element implementation of
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Minimize:  W(ε,εM,λ)
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t+1t+1
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Tangent Modulus:  "σ
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Figure 6.4: A flowchart of the numerical implementation
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the model. A beam element of a NiTiNOL stent was examined in an ABAQUS

simulation in pure bending with symmetry boundary conditions as shown below.

Figure 6.5: An example of the finite-element implementation on a stent element.
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Chapter 7

Conclusions and Future Directions

Shape-memory alloys demonstrate interesting nonlinear thermoelastic behaviors in-

cluding superelasticity and the shape-memory effect. These behaviors find their

origin in the formation of microstructure. We have proposed a constitutive model of

these materials in which the strain associated with microstructural formation (εM)

is constrained to lie within two interacting sets. The two constraint sets arise from

the fundamental difference in mechanics between the initiation of martensitic trans-

formation and its saturation: the initiation constraint being a Sachs (or Reuss) type

constant stress bound on the set of admissible transformation strains, and the satu-

ration constraint a Taylor (or Voigt) constant strain bound. The interaction of these

two constraints in the model have been shown to result in several well-known features

of SMAs including superelasticity, shape-memory, reorientation of martensite, and

retention of austenite.

The geometry of the constraint sets has a great effect on the response of the SMA

polycrystal. This was examined in detail in parameter studies in proportional and

nonproportional loading, in stress and strain controlled simulations. Varying the

constraint shapes had a large effect on the tension-compression asymmetry, reorien-

tation of the martensite, and the amount of retained austenite. In nonproportional
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loading, the geometry of the constraints could be manipulated to give rise to the

curious secondary stress plateau observed experimentally. The parameter studies

indicate that, as an alternative to deriving the Sachs and Taylor bounds of the poly-

crystal, they can be recovered by fitting an appropriate set of functions to known

experiments.

The development of the model with only one constrained deviatoric tensorial

variable (εM) for recoverable strain, and one scalar (λ) for martensitic phase frac-

tion, results in a low-dimensional numerical implementation which can be easily

incorporated into commercial finite-element packages (in this case ABAQUS). The

development of a UMAT for the proposed model serves as a proof of the concept in

a currently relevant design software.

Although this constitutive model reproduces many experimental characteristics

of SMAs in a compact and robust way, it is unable to reproduce the well-known phe-

nomena of localization or the formation of martensite transformation bands. Initially

it was hoped that banding phenomena could be reproduced in sets of sufficiently dif-

ferent eccentricity; rapid reorientation giving rise to macroscopic instability. This no

longer seems to be a fruitful direction for inquiry as all numerical investigations have

failed to yet yield such an instability. Instead a possible future pursuit would be

to attempt to explain banding as a mesoscale process; for instance as a grain-scale

percolation phenomenon.

Another limitation of the current model is that it is not easily extended to the

regime of finite deformation. The general notion of interacting constraint sets can

be incorporated in a finite deformation framework. The meaning of the Sachs and

Taylor bounds are no longer as clear cut however. The constant strain bound es-

pecially no longer serves as a good approximation of the total recoverable strain of

the polycrystal. The further complication that the strains are no longer additive
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(ε = εelast + λεM), but multiplicative in their composition (F = FeFM) means that

the effect of λ on the transformation strain can no longer be assumed to be linear.

Future investigation of these bounds on the nonlinear polycrystal is an obvious av-

enue of future interest. In addition a more ad hoc extension of the model to finite

deformations might be useful for design purposes in regimes where experimental data

exists.
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