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Abstract

Broadly responsive vapor sensor arrays, or so-called “electronic noses,” have been explored
and/or used for many years as a means to detect the vapors present in the headspace of a variety
of targets, such as coffees, wines, vinegars, oils, explosives, and nerve agents, and for disease
diagnosis. Electronic nose sensing modalities often exhibit a response that is linear with
concentration, and additive with respect to multiple vapors. Ideally, one could simply train an
array towards the pure vapors of interest, and use that pure vapor training to identify either pure
vapors or vapor mixtures during field-testing. This, however, has proven difficult, and has
limited the utility of this vapor detection approach for a number of applications.

This thesis utilized a low-cost, low-power sensing modality, insulator — carbon black
composite chemiresistors, and exploited their linear response properties to enhance the
classification rates of both pure vapors and vapor mixtures, based on pure vapor training. Sensors
utilizing non-polymeric, small organic molecules as the insulating component were demonstrated
to offer enhanced separation between pure vapor response clusters, and lower detection limits,
relative to the traditional use of polymers as the insulating phase. These sensors were then used
in a sensing geometry that induced a space- and time, or spatiotemporal (ST) dependence, to the
sensor response, which increased the amount of chemical information extracted from the sensor
response. This ST response information allowed for the correct classification of vapor mixtures
consisting of up to 5 components, with training on only pure vapors.

A mass uptake model for the ST response of the sensors was developed, and vapor detection
and mixture analysis was simulated for chamber geometries and vapor delivery flow rates
spanning several orders of magnitude. The data were first used to define an optimized ST sensing
regime for mixture analysis, based on two dimensionless Peclet number analogs. The data were
then used to identify the inherent properties of the pure vapor training data that allowed for
mixture analysis to be performed at high levels, specifically that the minimum resolution factor
between all binary vapor combinations in the training library was sufficiently high.

Finally, the utility of the ST response was demonstrated to offer enhanced pure-vapor
classification rates, relative to the traditional steady state approach typically employed with
broadly responsive array-based sensing. These enhanced classification rates were demonstrated
using a number of classification algorithms, including a bioinspired algorithm based on Fisher’s
Linear Discriminant. In summary, the results demonstrated herein quantify, in different ways,
what is required for classification optimization, and in doing so increase the utility of this

approach to vapor detection for a number of applications.
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Chapter 1

Introduction: Electronic Noses and Polymer-
Carbon Black Composite Vapor Sensors

1.1. Electronic Nose Introduction

No man-made sensor system combines the sensitivity, low power, rapid response, selectivity, and
ability to track an odorant to its source that is characteristic of the olfactory system of a canine.
In mammals, G-protein-coupled receptors (GPCRs) are a broad class of trans-membrane
receptors that are used in many physiological processes, such as visual transduction, hormonal
regulation, and stimulation and inhibition of various processes. The mammalian genome possess
at least 1,000 olfactory receptor genes’ that are part of the broader GPCRs class. Hence,
olfactory receptors constitute the largest family of GPCRs in mammals. These ~1,000 genes can
potentially encode up to ~1,000 different functional odor receptors. However, mammals are able
to detect over 10,000 different odors. Thus, the receptors must be broadly responsive in their
response properties. In this architecture, a given receptor will be triggered by more than one
odorant, and an odorant, in turn, will produce a response from more than one receptor.” Olfactory
receptors are triggered in the olfactory epithelium, and then send a response through the olfactory
bulb to the brain, for processing and odorant identification.

This biological process of olfaction lays the foundation for artificially created “electronic
noses.” Electronic noses began to develop into their modern form in the mid-1980s. Prior to this,
broadly responsive sensor arrays had been investigated to a limited extent; however, bottlenecks
in electronics and computational capability limited progress.*> New technologies have been
developed, and implementations of various pattern recognition algorithms, the workhorse of any
electronic nose configuration, have flourished in the past 15 years.

Figure 1.1 schematically depicts a generic electronic nose architecture. In an electronic nose,
an array of multiple sensors is used. Each sensor is broadly responsive, responding to many

odorants, as is the case in the mammalian olfactory system. In practice, a gaseous odorant is
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exposed to the sensor array, generating a time-varying sensor signal, S;;(t). Each of these sensor
signals is then processed, and a single metric response descriptor is generated for each sensor,
creating an array response. During a training phase, the array is exposed numerous times to
odorants that will be used later to challenge the array in identification tasks. The training process
creates an odorant database. During subsequent testing of unidentified odorants, the array
response is compared against the training library, and a prediction is made as to the identity and
concentration of the odorant. Various levels of processing are required, and ultimately some form
of pattern recognition is used to identify the odorant, mimicking the steps involved in odor
identification in the mammalian olfactory system.

Electronic noses implement this generic architecture in various ways. Surface acoustic wave

10,11

devices,*” tin oxide sensors,*’ conducting organic polymers, polymer-coated quartz crystal

213 polymer-coated micromachined cantilevers,'* dye-impregnated polymers

17,18

microbalances,

15.1 . . I .
>!1® and polymer composite chemically sensitive resistors

coated onto optical fibers or beads,
comprise only a few of the broadly responsive sensors that have been employed in the
construction of electronic noses. Pattern recognition algorithms that have been used include
linear, statistically based methods such as partial least squares, principal components analysis
(PCA), Fisher’s linear discriminant (FLD), k-nearest neighbors, and soft independent modeling of
class analogy; as well as non-linear, non-statistical methods that include various implementations

8,19-21

of artificial neural networks. This thesis will detail the recent developments of one sensing

modality that has been developed at Caltech: insulator-carbon back composite chemiresistors.

1.2. Vapor Sensing With Insulator — Conductor Composites
1.2.1. Phase Equilibrium

When two phases come into contact, equilibrium will eventually be established for all species

present. This is true regardless of the types of phases involved. The equilibration process

between a vapor and a solid sorption based material forms the basis of sorption-based sensors.
Consider a vapor in equilibrium with an ideal solution of the vapor in a solid sorbent. In ideal

solutions at equilibrium, Raoult’s law is followed for all components.”*** Thus:
P, =x,Py{, (D
where P, is the pressure exerted by species A in the vapor phase, x; is the mole fraction of the

vapor in the solid sorbent, and P; is the vapor pressure of the pure liquid at the same

temperature. Rearranging eq (1) gives:
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The mole fraction, and consequently, the molarity, molality or weight percent of the vapor in
the solid is a function of the ratio of the pressure exerted on the solid by species 4 divided by the
vapor pressure of pure 4. Therefore, for an ideal solution, the solubility of a vapor in any sensor
material is a function only of the properties of the vapor, and not the solid.

For non-ideal solutions, eq (1) can be written in terms of activities:****

Py=a,,P]=yxPy, 3)
where a4 is the activity of vapor species 4 in the solid, y; is the activity coefficient of species 4

in the solid, and the vapor is assumed to be an ideal gas at ambient pressure. For real solutions,

Henry’s law is a better approximation for the solute then Raoult’s law, hence:

P, =kyx,, 4)
where ky is the Henry’s law constant, equal to y4 P (eq (3)). Combining eq (3) - (4) yields:
1 P P
x = oa L 5)
Y4 P{ ky

The interactions between the solid and vapor that are responsible for the differences in solubilities
of a given gas in different solids, and the differences in Henry’s law constants, or more generally
the non-ideality, are therefore taken into account by differences in the activity coefficient for each
gas/solid combination. The equilibrium mole fraction of the species in the solid is therefore
dictated by the ratio of the pressure exerted by the species on the solid to the vapor pressure of the

species, divided by the activity coefficient (eq (5)).

1.2.2. Insulator — Conductor Systems and Percolation Theory

When a non-conducting substance (i.e., an electrical insulator) is mixed with a conductive
substance, the electrical properties of the resulting blend will exhibit several regimes of electrical
conductivity as the mass fraction of the insulator (conductor) is varied. At high fractions of
insulator, the composite is an insulator with a resistance near that of the pure insulator. At high
fractions of conductor, the composite is a conductor. In both regimes, the resistance is
approximately a linear function of the mass fraction of the conductor. The regime at which the
composite begins to change from an insulator to a conductor is known as the percolation regime.
In this regime, the conductance has a highly non-linear dependence on the mass fraction of
conductor. At the percolation threshold, the first continuous conducting pathway occurs within

the composite. At this point, the resistance of the composite depends exponentially on the
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loading of the conductor, and small increases in the loading of the conductor will then produce
large increases in the conductivity of the composite.

Quantitatively, the resistance, R, of an insulator-conductor composite can be expressed as:

(z=2)R.R,,

= , 6
B, +B, +[(B,+B,)* +2(z—2)R.R, 1""* ©
where
By =R [-1+(z/2)(1~-v./ f)] (7)
and
B, =R, [(zv. /(2/))-1]. (8)

Here, R. and R,, are the resistances of the pure conducting and insulating substances, respectively;
z is the coordination number for the conducting particles in the insulating matrix (which takes
into account how the two substances pack); v, is the volume fraction of conducting material in
the composite; and fis the total packing fraction of the composite (f < 1).*** Figure 1.2 plots R
vs. v, for a hypothetical insulator-conductor composite with R, = 10" Q-cm, Ry, = 10" Q-cm, z =
4, and a total packing fraction of /= 0.5. The percolation threshold, v,, is denoted by the sharp
drop in the resistance at a conducting volume fraction v, = v, = 0.25, i.e., the volume fraction of

conducting material at the percolation threshold v, = 2f/z.

1.2.3. Sensing Due to Phase Equilibration Using Percolative
Chemiresistor Sensors

When an insulator-conductor composite is exposed to various vapor environments, the composite

will come to equilibrium with each species (odorant) in the vapor phase. Assuming that the

analyte diffuses throughout the composite, its volume will increase to accommodate the presence

of the analyte (Figure 1.3). This increase in volume will decrease v.. Assuming that the sorbed

material is non-conducting, the resistance of the composite will therefore increase.

The resistance across such an insulator-conductor composite will thus normally increase upon
exposure to an odorant (although if exposure to an analyte causes contraction, or if the analyte is
conductive, a decrease in resistance is predicted). A generic sensor mechanism is thus illustrated
in Figure 1.3. Upon exposure to an odorant, the odorant partitions into the sensor material,
causing a swelling and a concomitant increase in resistance. When the odorant is removed from
the vapor phase, the odorant partitions out of the sensor, the sensor shrinks, and the electrical
resistance therefore decreases. Using composites of various conductors and insulators, and
monitoring the resistance across these composites, provides a low-power method for transducing

chemical sensory information into an electrical signal.
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Various materials have been used for the insulating and conducting phases of such sensors.
The insulating phase is typically a low glass-transition temperature polymer or polymer blend,

18,24
k.1

and the conducting phase is typically carbon blac However, insulating phases have included

ligands chemically attached to conductive gold nanoparticle cores,”® and the conductive phase has

17,27,28

included gold nanoparticles,”® conductive polymeric materials, and could include other

materials such as colloidal Ag, colloidal Au, or colloidal TiOs.

1.2.4. Polymer-Carbon Black Composite Chemiresistor Properties:
Response Linearity and Additivity

The ability to adjust the relative amount of the conducting material in the insulator — conductor
composites allow choice of the regime in which the sensor will operate: close to the percolation
threshold, or in the linear regime having a high concentration of the conductive component.
Operation in the linear regime, while less sensitive, is generally preferred. In this regime, the
response is directly proportional to the concentration of analyte vapor. This relationship results in
a linear correlation between the sensor response and the concentration of individual components
of the vapor mixtures. This linear relationship can, of course, break down at high odorant
concentrations.

Figure 1.4 shows the equilibrium sensor response for a poly(butadiene)-carbon black
composite vapor sensor (20% mass fraction of carbon black) upon exposure to various odorants at
different fractions of their vapor pressures.”” The sensor exhibits a linear response with
increasing concentration, until either the percolation threshold is reached for the sensor (not
normally possible for high carbon black loadings) or until the sorption isotherm becomes
nonlinear with vapor concentration.*

In the linear response regime, the sensor response to a mixture of odorants is simply the sum
of the individual responses to the odorants that comprise the mixture. For example, Figure 1.5
displays the response of a prototypical sensor upon exposure to some test mixtures of odorants.
In this experiment, benzene and chloroform were each exposed to the sensor at 2% of each of
their vapor pressures (4600 ppm for chloroform and 2200 ppm for benzene) separately, and then

in combination.”’

For each odorant at the given concentration, the sensor exhibited a
characteristic increase in resistance, regardless of the other odorants present. The sensor response

was both additive and independent of the order of exposure.

1.3. OQOutline of This Thesis

The goal of any electronic nose array-based arrangement is to robustly determine the identity and

concentration of unknown vapors. Ideally, due to the linearity and additivity displayed in Figures
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1.4 and 1.5, respectively, regardless of whether the unknown vapors are present in the pure form
or as vapor mixtures, the array will only require training on the pure vapor components. This
work addresses this task using a number of different approaches. Non-polymeric — carbon black
composite chemiresistor sensors are introduced and demonstrated as a promising alternative to
the traditional polymer — carbon black composite approach, wherein a higher concentration of
functional groups present in the sorptive component of the sensor composite allows for enhanced
vapor — sensor interactions, and an enhanced ability to discriminate between chemically similar
vapors (Chapter 2) This work was started by a post-doc in our laboratory and left unfinished —
my contribution was everything except the initial fabrication and analysis of the non polymer —
carbon black composites (20% CB): this included the development of all figures, tables, analyses
and discussions presented. Further, a means of increasing the amount of information extracted
from sensor arrays is demonstrated by invoking a space- and time-, or spatiotemporal (ST)
dependency, of the array’s response. This ST approach takes advantage of the linear and additive
response properties of the sensors, and is demonstrated to significantly improve the ability of the
sensors to identify and quantify vapor mixtures with training on only the pure vapor components
(Chapter 3). A model for the ST response of sensor arrays is developed and implemented to
define an optimized ST mixture analysis regime, defined by two dimensionless numbers
characterizing the competing mass transport processes across various dimensions of the linear
sensor array vapor channel (Chapter 4). This same modeled response data is then analyzed in
terms of various inherent properties of the pure vapor response data, and a method for predicting
the ability to analyze vapor mixtures with only pure vapor training is introduced (Chapter 5).
Finally, an increased ability to classify pure vapors, using the ST vapor detection approach, is
demonstrated (Chapter 6). Various pattern recognition and classification techniques are
introduced and implemented, and their benefits and downfalls are discussed. The results of this
work should increase the practicality and usability of broadly responsive array-based vapor

sensing.
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Figure 1.1: Generic electronic nose architecture.” An unknown analyte, j, interacts with each
sensor in the array (comprised of # total sensors), causing a change in some time-varying signal,
Sij(t). The signal is processed to create a single metric response descriptor for each sensor, Xjj;.
The array response is then put through a pattern recognition algorithm, which compares the
unknown array response to a library of responses. The algorithm predicts if analyte j is one of the

analytes within the libray.
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Figure 1.2: Resistance vs. the volume fraction of conducting material for a hypothetical
insulator-conductor composite with R.= 10° Q-cm, R, = 10" Q-cm, a coordination number (z) of
4, and a total packing fraction (f) of 0.5 (eq (6)). The volume fraction at which the sharp drop in

resistance occurs is the percolation threshold for this hypothetical composite.
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Figure 1.3: A schematic representation of the response mechanism of an insulator — conductor
composite chemiresistor vapor sensor. In pure background air, current is passed through the
material with some resistance, R. When an analyte is added to the background air, the analyte
partitions into the sensor material, causing a swelling. This swelling, in turn, causes a decrease in
L. (eq (6)), and an increase in the dc electrical resistance between the two electrical leads (Figure
1.2). When the analyte is removed from the background air, the analyte partitions out of the

sensor, and the sensor returns to its initial state.
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Figure 1.4: Average relative differential equilibrium resistance responses of a poly(butadiene)-

carbon black composite vapor sensor (20% by weight carbon black) upon exposure to various

analytes, as a function of analyte concentration.”
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Figure 1.5: Differential resistance response for a poly(ethyelene-co-vinyl acetate)-carbon black
composite vapor sensor (20% carbon black). A) Exposure to benzene at P/P° = 0.020, followed
by a simultaneous exposure to benzene at P/P° =0.020 and chloroform at P/P° = 0.020. B)
Exposure to chloroform at P/P° = 0.020 followed by a simultaneous exposure to chloroform at
P/P° =0.020 and benzene at P/P° = 0.020. C) Simultaneous exposure to benzene at P/P° = 0.020
and chloroform at P/P° = 0.020.
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Chapter 2

Chemiresistors for Array-Based Vapor
Sensing Using Composites of Carbon Black
with Low Volatility Organic Molecules

2.1. Abstract

Chemically sensitive resistors have been fabricated from composites of carbon black and low
volatility, non-polymeric, organic molecules such as propyl gallate, lauric acid, and dioctyl
phthalate. Sorption of organic vapors into the non-conductive phase of such composites produced
rapid and reversible changes in the relative differential resistance response of the sensing films.
Arrays of these sensors, in which each sensing film was comprised of carbon black and a
chemically distinct non-polymeric organic molecule or blend of organic molecules, produced
characteristic response patterns upon exposure to a series of different organic test vapors. The
use of non-polymeric sorption phases allowed fabrication of sensors having a high density of
randomly oriented functional groups and provided excellent discrimination between analytes. By
comparison to polymer — carbon black composite vapor sensors and sensor arrays, such sensors
provided lower detection limits as well as enhanced clustering and enhanced resolution ability

between test analytes.

2.2. Introduction

Array-based vapor sensing has attracted significant interest for its ability to detect and

discriminate between various analyte vapors.' Surface acoustic wave devices,”™ tin oxide

5-7 8-10 11-13

sensors,”’ conducting organic polymers,” " polymer-coated quartz crystal microbalances,

" This chapter is reproduced according to American Chemical Society copyright guidelines, from
“Chemiresistors for Array-Based Vapor Sensing Using Composites of Carbon Black with Low Volatility
Organic Molecules” by Ting Gao, Marc D. Woodka, Bruce S. Brunschwig, and Nathan S. Lewis,
Chemistry of Materials, 18, (22), 5193-5202, 2006. Copyright 2006, American Chemical Society.
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polymer-coated micromachined cantilevers,'* thin film capacitors,'> dye-impregnated polymers

i 19,2 :
16-18 %20 and polymer-composite

coated onto optical fibers or beads, transition metal based dyes,
chemically sensitive resistors®’* have all been explored in array-based sensing approaches. In
this architecture, each sensor is not designed to respond selectively to a single analyte, but instead
each analyte produces a distinct fingerprint response pattern from the array of broadly responsive
sensors. Pattern recognition algorithms can then be used to obtain information on the identity,
properties and concentration of the vapor exposed to the sensor array.>**’

One especially attractive signal transduction mode involves the use of chemically sensitive

- . 28,29
213 Such sensors are inherently low power,™* are

resistors as the sensor array elements.
compatible with VLSI processing,””" can be deposited onto a variety of substrates including
interdigitated electrodes,’’ glass,32 ceramic,” or other insulating materials, and can be fabricated
in a wide variety of form factors to optimize signal/noise ratios and produce desired physical
sensor and sensor array configurations.*> Significant attention in our laboratory has been devoted
to the investigation of chemiresistive vapor detectors fabricated from composites of carbon black

2122323435 15 which the carbon black serves as the electrically

and insulating organic polymers,
conductive phase and the organic polymeric phase absorbs the organic vapor into the sensor.

The sensitivity of sorption-based detectors depends on the interactions between the analyte
and the sorption material.*® Vapor sensors with enhanced sensitivity to analytes having specific
functional groups, such as amines or carboxylic acids, can be obtained through fabrication of

3738 Increasing the

sorption materials which target functional groups of the analyte of interest.
density of the functional groups in the sorption material could further increase the amount of
vapor sorption and therefore produce an additional increase in the sensitivity of such chemically
resistive vapor detectors. In this work, we describe the properties of chemiresistive vapor sensors
that are comprised of composites of conductive carbon black particles and an insulating organic
material, wherein the sorption phase consists of simple, non-polymeric, low vapor pressure
organic materials. Such sorption films have a relatively high density of functional groups and
thereby could provide very effective sorption of organic analyte vapors. The random
arrangement of the organic molecules in the sorption phase should produce a high vapor
permeability and therefore lead to rapid sensor response times, and could produce highly
reversible responses that show relatively little history effects or hysteresis in response to a wide
range of organic analyte vapors. The use of non-polymeric materials opens up a wide range of
sorption phases having desirable chemical functionality and physical properties that are in general

not readily accessible in polymeric materials.
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2.3. Experimental

2.3.1. Materials

The insulating materials used in fabricating the sensor films (Figure 2.1) and the plasticizer
dioctyl phthalate, were used as received from either Aldrich Chemical Co. or Acros Organics Co.
Reagent grade toluene, n-hexane, tetrahydrofuran (THF), ethanol, ethyl acetate, cyclohexane, n-
heptane, n-octane, and isooctane were used as received from Aldrich Chemical Co. Black Pearls
2000 (BP 2000), a furnace carbon black material, was donated by Cabot Co. (Billerica, MA) and

was used as received.

2.3.2. Detectors

Detector substrates were fabricated by evaporating 30 nm of chromium and 70 nm of gold onto
glass microscope slides using 0.2 cm wide drafting tape as a mask. After evaporation, the mask
was removed and the glass slides were cut into 1.0 cm x 2.5 cm pieces.

Sensor films consisted of suspensions of various amounts of carbon black and either pure
organic material or mixtures thereof in 20 mL of either toluene or THF. Typically, the desired
mass of organic sorption material was dissolved in 20 mL of solvent, and sufficient carbon black
was then suspended in this solution to produce the desired mass fraction of organic material and
carbon black, by weight of solids (Table 2.1). Prior to fabrication of the sensor films, the casting
suspension was sonicated for > 30 min at room temperature. An airbrush (Iwata, Inc.) was used®
to spray these suspensions across the 0.2 cm gap on the detector substrates until the resistance
between the two leads was 10-100 kQ, as measured by a Keithley model 2002 multimeter. After
fabrication, all sensors were placed in a stream of dry air for at least 24 h prior to exposure to the

test analytes.

2.3.3. Measurements

The instrumentation and apparatus for resistance measurements and for delivery of analyte vapors
has been described previously.>**** The array of sensors was housed in an aluminum assembly
that was connected by Teflon tubing to a computer-controlled, calibrated vapor generation and
delivery system. To initiate an experiment, the detectors were placed into a flow chamber and an
air flow of 5 L min™ containing 1.10 + 0.15 parts per thousand (ppth) of water vapor was
introduced until the resistance of the detectors stabilized. An individual analyte exposure to the
detectors consisted of a three-step process that was initiated with 70 s of airflow to achieve a
smooth baseline resistance. Analyte vapor at a controlled concentration in flowing air was then
introduced to the detectors for 80 s, followed by 60 s of airflow to insure that the baseline

resistance value was restored before the next exposure.
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Analytes consisted of five nonpolar hydrocarbons (cyclohexane, n-hexane, n-heptane, n-
octane, and isooctane) as well as ethanol and ethyl acetate. In the primary set of data collection
for composite sensors having high carbon black loadings, these seven analytes were presented in
random order 200 times each to the detector array during a single run over 4 days, at a partial
pressure in air such that P/P° = 0.0050, where P is the partial pressure and P’ is the vapor
pressure of the analyte at room temperature. In a separate run to evaluate the concentration
dependence of the sensor response, concentrations of n-hexane and ethanol were varied at ten
different values of P/P° within the range 0.00020 < P/P° < 0.00625, with five exposures to each
analyte/concentration combination, in randomized order. Each exposure consisted of 100 s of
laboratory air, followed by 100 s of analyte, followed by 100 s of laboratory air, at a flow rate of
5L min™.

An identical data run was used to evaluate the performance of the sensors with low carbon
black loadings, with the seven analytes presented in random order 200 times each to the detector
array during a single run over 4 days. Additionally, subsequent runs which were identical in their
randomized analyte exposure order, exposure times and protocols were performed to assess the
long term drift and stability of the sensors. The second run was initiated 2 days after the
completion of the first run; the third run was initiated 2 days after the completion of the second
run, and the fourth run was initiated 6 months after the completion of the third run. In these
experiments, analytes were presented to the detector array at concentrations corresponding to

P/P° =0.0050.

2.3.4. Data Processing

The response of a sensor to a particular analyte was expressed as AR,./R,, where R, is the
baseline resistance of the sensor and AR, is the steady-state resistance change upon exposing the
sensor to analyte (after correcting for baseline drift). The value of AR, was obtained from R,
R,, where R, is the maximum resistance value observed during the analyte exposure, calculated
by averaging over at least 3 consecutive resistance measurements (in most cases 4 or 5) in the
steady-state portion of the response signal. The value of R, was calculated by averaging over 5
resistance measurements before the exposure initiated. The ratiometric quantity AR,./R, was
used as the response descriptor because it has been shown in similar detector films to be both
relatively insensitive to the vapor introduction technique and to increase linearly with analyte
concentration.”?* All data processing was performed using Matlab (The Mathworks, Natick,
MA).
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2.3.5. Quantification of Classification Performance
For quantification of the analyte classification performance, the responses from each of the

datasets were sum-normalized. This process was performed using eq (1):

S,
S =— (1)

ij n ’
2.5,
-1

where Sj; refers to the AR,,.,/R; sensor response signal of the jth detector (out of n total detectors)

to the /™ analyte exposure, and S'; represents the sum-normalized analog of S,. For sensors
exhibiting a response that is linear with analyte concentration, this normalization procedure
produces a unit vector in n -dimensional space defining a location in this space characteristic of
each test analyte, regardless of analyte concentration.

The Fisher Linear Discriminant (FLD) algorithm was used on sum-normalized sensor
response data to analyze the classification performance of the sensors. In the FLD approach, the
responses of a training set were used to calculate a vector which projected response data onto the
one-dimensional space that maximized the separation between two sets of data clusters.” For
normalized data (eq (1)) produced by the responses of an n-detector array, this projection has the
form:

o
D; = EICJS i @)

where ¢; represents one of the n — 1 weighting factors from the hyperplane determined by the
FLD algorithm. The value of D; (hereafter referred to as the D-value) is a single, scalar metric
that characterizes the position, along a vector normal to the hyperplane decision boundary, of the
detector array data produced by an individual analyte exposure. The chosen hyperplane decision
boundary is defined as the point in one-dimensional projected space for which a data point lying
on this plane has an equal probability of belonging to either of the two data clusters.

The FLD algorithm maximizes the separation, or clustering, of the two distinct populations of
D-values that arise from a single binary separation task. This clustering is measured by the
resolution factor (rf) characteristic of a separation task, as given in eq (3):*’

o
(CET ¥
where 0 is the difference in the population means of the D-values, and o, and o, are the standard
deviations of the two populations of D-values that correspond to the two analytes of the
separation task. The FLD algorithm was used to evaluate the separation between each possible

pairwise combination of analytes in the data set.
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Because a supervised algorithm inherently introduces some bias into the analysis, a train/test
scheme was employed. For each pair of analytes that comprised a single separation task, the first
100 exposures to each analyte (exposures 1-100, data set 1) were used to generate a training set
and a set of coefficients (comprising a classification model) as described in eq (2). A decision
boundary was then developed by defining the hyperplane at which an unknown analyte exposure
would have an equal probability of belonging to either analyte population of the given binary
separation task. All subsequent data were treated as test data, projected onto the optimized
dimension for separation, and analyte identities were classified according to their positions
relative to the fixed FLD decision boundary.

The signal to noise ratio (SNR) of a sensor for a given exposure was calculated as:

SNR — AIemax , (4)

O-baseline

where Opuseiine Tepresents the standard deviation in baseline resistance before analyte delivery,
calculated using at least 5 data points.

The same analytes at P/P° = 0.0050 have been previously exposed to carbon black-polymer
composite chemiresistors. Such data have been analyzed in the same manner as that for the
sensors under study, and is given for comparison.”'******** Specifically, resolution factors and
signal to noise ratios were compared for both types of sensors from previously recorded and
reported data. For detection limit determination, carbon black — polymer composite sensors were
also exposed simultaneously with carbon black — non polymer composite sensors to ensure equal

vapor deliveries and representative analyses.

2.4. Results

2.4.1. Vapor Response Characteristics and Reproducibility

Carbon black loadings of = 10, 25, 50, and 75% by weight were investigated, and 75% loadings
exhibited a higher SNR, lower detection limit, and enhanced clustering relative to other loadings.
Thus, results on sensor films made from 75% carbon black loadings are primarily reported herein.
Additional results are described for a 6-month stability and drift study that was performed on
sensors having various, lower carbon black loading levels. In each case, the carbon black loading
was sufficient to insure that the chemiresistors were above their percolation threshold, i.e., in the
highly conductive state of the composite in which the films displayed simple, ohmic resistance
behavior between two electrically conductive contacting leads. Such composites consist of
highly interconnected networks of conductive particles in a matrix of insulating organic material,

but the structure of the organic material is difficult to elucidate directly from scanning electron
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microscopy, X-ray photoelectron spectroscopy or other spectroscopic methods due to the high
mole fraction of carbon black in the composites.

Table 2.1 presents information on the high (75%) and low (25%) carbon black loaded
polymer- and non polymer-based sensor arrays. The first exposure in Figure 2.2 shows the
baseline-corrected resistance response of a non polymer- and polymer-carbon black composite
sensor on exposure to n-hexane at P/P° = 0.0050. Shown are tetracosanoic acid/dioctyl phthalate
(75% carbon black, sensor A4) and poly(ethylene-co-vinyl acetate) (40% carbon black, sensor
C2) films, which both exhibited the highest signal to noise for each of their respective sensor
array types investigated. The resistance of the films increased when analyte vapor was present
but rapidly (i.e., within seconds) returned to its original baseline resistance value after the vapor
exposure had been discontinued. Non polymer-carbon black composite sensors consistently
displayed signal to noise ratios and response magnitudes comparable to those obtained with the
well-studied polymer-carbon black composite sensors evaluated in this work.

Figure 2.2 also displays the sensor response repeatability, showing six sensor responses, with
1, 35, 44, 62, and 71 hr, as well as random continuous exposure cycles to the test analytes,
occurring between the second, third, fourth, fifth, and sixth displayed sensor response and the first
displayed sensor response, respectively. As observed in Figure 2.2, in all cases, the sensor fully
returned to the same response on exposure to n-hexane at P/P’ = 0.0050, as well as returned to the
same baseline resistance on exposure to laboratory air. This was the case for the majority of
exposures ( > 95%), however hysteresis did occur randomly in a small percentage of exposures.
Therefore, sensor responses were baseline corrected, forcing sensor readings to fully return to
their initial baseline resistance; this ensured that AR,,./R, was due solely to the sensor/analyte
interaction and not due to sensor drift.

Table 2.2 presents the sensitivities and standard deviations of the responses measured for the
different carbon black composite sensors exposed to the 7 test analytes studied in this work at
P/P° = 0.0050 in air. Sensitivities varied significantly across the analytes tested, and a given
analyte produced different responses on different sensor films.

Different levels of variability were observed in the response of each of the sensors. Part of
this variability in the response amplitude can be ascribed to sensor noise, which is inherent and
unique to each of the sensors, as well as to variation in room temperature during the exposures.
For example, a 1 °C change in room temperature produces a 4.5% change in the vapor pressure of
n-hexane (the vapor pressures of n-hexane at 20 and 21 °C are 119.9 and 125.3 Torr,
respectively).”  Additionally, slight (though significant) drift was observed for several of the
sensors, though this did not affect the ability to accurately model and predict based on sensor

array response patterns.
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Signal to noise ratios were calculated for each sensor on exposure to each of the test analytes.
Table 2.3 details the means and standard deviations of the SNRs for each carbon black — non
polymer composite sensor on exposure to the various test analytes each presented 200 times in
random order at P/P° = 0.0050 (sensors A1-A7). For comparison, Table 2.3 also presents the
SNRs of the carbon black-polymer composite sensors on exposure to these analytes at the same
partial pressure of P/P° = 0.0050 (sensors C1-C9). The two sensor types exhibited similar SNR

values, with different sensors performing better in different cases.

2.4.2. Concentration Dependence of Sensor Response

Figures 2.3a and 2.3b display the responses of several typical carbon black — non polymer
composites as a function of the vapor phase concentration of n-hexane and ethanol, respectively.
For the relatively low analyte concentrations used in this study, the sensor responses were well-
described by a linear dependence on P/P°, indicating operation above the percolation threshold.
This relationship has been observed for carbon black-polymer composite sensors operating above
the percolation threshold.”

Table 2.4a presents the limits of detection based on the AR,./R, vs. concentration data
presented in Figure 2.3. Signal to noise ratios were calculated (eq (4)) for each of the sensors on
exposure to hexane and ethanol at various fractions of their vapor pressure (0.00020 < P/P° <
0.00625), and detection was taken to be the partial pressure at which SNR = 3. Limits of
detection ranged from P/P° = 0.0002 to P/P° = 0.00075, with most values near 0.00035 or
0.0005. These thresholds were converted to parts per million for display. For comparison, Table
2.4b gives detection limits for several carbon black — polymer composites, exposed
simultaneously with optimized carbon black — non polymer composite sensors to ensure a
representative comparison. The limits of detection for the carbon black — polymer composite
sensors were in accord with values reported previously.” The carbon black — non polymer
composite sensors exhibited approximately comparable detection limits when compared to these

well-studied and developed carbon black — polymer composite sensors.

2.4.3. Sensor Specificity

Figure 2.4 presents the mean responses, averaged over 200 randomly ordered exposures to each
analyte, for each of the carbon black — non polymer composite films to the seven test analyte
vapors at P/P° = 0.0050. Large differences in sensitivity were observed between the responses of
a given sensor upon exposure to the various test analytes. For example, quinacrine
dihydrochloride dihydrate (sensor A2) displayed a strong positive response on exposure to a
prototypical polar analyte, ethanol, while displaying a strong negative response to a prototypical

nonpolar analyte, n-hexane. This can be attributed to insolubility of the latter compound with
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nonpolar solvents resulting from dielectric constant differences and molecular size. Additionally,
a tetracosanoic acid/dioctyl phthalate — carbon black composite (sensor A7) exhibited an n-
hexane/ethanol response ratio of 22, while a quinacrine dihydrochloride dihydrate/dioctyl
phthalate — carbon black composite (sensor A6) displayed an n-hexane/ethanol response ratio of
0.3. For comparison, of the polymer — carbon black composite sensors investigated, the greatest
response ratio of ethanol to n-hexane was produced by poly(ethylene-co-vinyl acetate) (sensor
C2), with a ratio of 4, and the smallest ratio was achieved by poly(vinyl butyral) (sensor C8), with
a ratio of 0.4 (Table 2.2). Clearly, the use of organic molecular sorption phases having a high
density of hydrophilic or hydrophobic functional groups can produce sensor arrays that display

large discrimination power between differing test pairs of analytes.

2.4.4. Sensor Array Response to Various Analytes

Principal components analysis®” was used to visualize the differences in normalized autoscaled
response patterns of a 7 element carbon black composite sensor array (Table 2.1, sensors A1-A7)
exposed randomly 200 times to each of the seven test analytes at P/P’ = 0.0050. The points
plotted in Figure 2.5 represent unique response patterns of the sensor array to each of the analytes
presented. The response vectors are displayed with respect to the first three principal components
of the data set, which contained 99% of the variance in detector response. Several major clusters
are observed: ethanol, ethyl acetate, and c-hexane, as well as a clustering of the remaining
alkanes. This remaining cluster of alkanes also displays a distinct pattern, which is shown inset
in Figure 2.5. Even at the relatively low analyte concentrations used in this study, the sensor
array readily distinguished extremely well between chemically similar analytes.

The classification performance of the sensor array was quantified by use of the Fisher Linear
Discriminant algorithm for pairwise analyte classification. The figure of merit to determine the
effectiveness of the FLD model is the resolution factor, 7/ (eq (3)), which quantifies the statistical
separation between the two data clusters of interest. The first 100 normalized exposures to each
analyte were used as a training set and the remaining 100 normalized exposures to each analyte,
from the same set of data collection, was used as a test set. This train/test scheme was adopted to
avoid bias resulting from possible overfitting of data.

Table 2.5a presents resolution factors for the carbon black — non polymer composite sensor
array (sensors A1-A7). For comparison, Table 2.5b presents resolution factors for an array of
carbon black — polymer composite sensors consisting of 9 sensor types (sensors C1-C9). This 9-
sensor carbon black — polymer composite array was chosen from a non-exhaustive search seeking
the best 9-sensor array that maximized the lowest resolution factors reported ( > 15 9-sensor array

combinations were investigated, and the “best” sensors based on experience, polycaprolactone,
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poly(ethylene-co-vinyl acetate), and poly(ethylene oxide), were always included). In terms of the
ability to resolve between various analytes, the non-polymeric composite sensor array performed
highly favorably relative to the well-developed and well-studied polymer-based sensor array, with
significant increases in resolution in many previously difficult classification tasks. For example,
in classifying n-hexane from c-hexane, n-heptane, n-octane, or i-octane, resolution factors of 2.5,
1.2, 1.7, and 3.5, respectively, were observed for the polymer composite-based sensor array. The
use of a carbon black-non polymer composite sensor array increased these resolution factors to
6.1, 6.4, 9.9, and 6.2, respectively. A resolution factor of 1 implies 72% correct classification, 2
implies 92% correct classification, and 3 implies 98% correct classification. This new sensor
type thus takes previous classification tasks, which performed at levels slightly above chance, and

provided the ability to consistently and confidently correctly classify analytes.

2.4.5. Stability and Drift

A FLD model for each binary separation task, consisting of projection weights and a decision
boundary, was constructed from sensor responses in the first data set of the first 100 exposures to
each analyte. This model was then applied to 700 subsequent exposures spread over 4 sets that
spanned six months of data collection. The exposures for each binary classification task were
then projected onto the FLD vector characteristic for the given classification task, placing data
into the one-dimensional space which initially maximized the resolution factor between the two
analytes of interest. These analyte projections were compared to the originally modeled decision
boundary for the given binary separation, and thereby assigned to be in one of the two analyte
clusters. The classification rate was defined as the number of correct classifications divided by
the number of classification attempts. Table 2.6 lists the performance factors for all combinations
of binary separations for each set of data collection.

Binary classification rates were comparable throughout the first 3 data sets, which spanned
one month. However, the fourth data set, collected 6 months after the initially trained model,
yielded extremely low classification rates in many situations. In terms of the Fisher model, two
explanations of this performance loss exist: 1) a new dimension for each binary analyte separation
captures maximum resolution between analyte clusters, so that a new model, with different
projection weights for each analyte, and a new decision boundary, needs to be created; or 2) the
same model approximately captures maximum resolution between analyte clusters, but the
clusters have drifted with respect to the original decision boundary. In the latter case, a
calibration scheme has proven capable of restoring the classification performance of carbon
black-polymeric composite sensors.”> To reduce this type of drift, sensor responses were adjusted

by a multiplicative calibration factor:
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S
S, =8,

a,t c,t
Sc,O

; )

where S,; and S indicate the AR/R, response signals for an analyte a and calibrant c,
respectively, at some time ¢ after training, and S, and S, are the initial responses to analyte a
and calibrant ¢.*

Table 2.7 presents the classification rates for each binary separation, using each analyte as a
calibrant, when the initial model (based on exposures 1-100, data set 1) was used on the final data
set (200 exposures, recorded 6 months after the initial data set). The first three exposures from
the final data set were used to calibrate the model according to eq (5), and were then followed by
47 test exposures. This cycle of calibrate/test was repeated 3 additional times, accounting for all
200 exposures of the final data set. Cases where reasonable performances were attained are
shown in bold text. Of the 21 combinations of binary analyte classification tasks, 17 yielded
classification rates of > 0.90.

For binary classifications with low classification rates, the sensor array was still capable of
resolving between analyte pairs in the dataset; however, a rigorous training period was again
required to construct a new model for effective analyte separation. For example, the binary
classification of n-hexane and n-heptane yielded a performance of 0.51 and had a resolution
factor of 0.02 when the initial model was applied to the final data set. However, if the first 100
exposures of data set 4 were used to construct a new model, a resolution factor of 1.5 and a
classification rate of 0.88 was achieved for the final 100 exposures of data set 4. These values
were comparable to those obtained from training on the first 100 exposures and testing on the
final 100 exposures of data set 1, with a classification rate of 0.82 (Table 2.6a). Thus, no sensor
performance was lost, but the initial model describing the sensor response behavior changed
significantly, resulting in the loss of predictive ability.

Figure 2.6a shows projections of 700 exposures, spread over 4 sets of data collection, for a
FLD model constructed from the first 100 exposures in data set 1. Figure 2.6b shows these same
projections, when a calibration scheme was adopted in which 3 exposures were first used as
calibrant runs, followed by 47 test exposures, with the process repeated throughout the remaining
700 exposures of the data set. The projected dimension clearly maintained a reasonable level of
separation between the two analytes (although this was no longer the optimal one dimensional
space for resolution), however the analyte clusters drifted relative to the decision boundary. The
calibration process shifted these projections back to the decision boundary, and classification

performance was restored.
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2.5. Discussion

The vapor sensing properties of the carbon black — non polymeric composite sensors and sensor
arrays compared favorably in all aspects to the well-investigated carbon black — polymer
composite sensing films. The non-polymer sensors provided improved analyte clustering and
analyte resolution/classification capability, as well as a high level of signal to noise and low
detection limit thresholds.

A measure of the performance of a sensor array is the resolution factor, which is a measure of
the ability of a given sensor array to distinguish between and discriminate among various
analytes. In this respect, the carbon black — non polymer composite sensors surpassed the
performance of previous sensor classes, including our well-studied carbon black — polymer
composite sensors (Table 2.5a,b). Significant improvements were observed, in particular, in the
ability of the sensor array to distinguish between chemically similar alkanes, namely n-hexane,
cyclohexane, n-heptane, n-octane, and isooctane.

The non-polymer sensors are well-suited to detect and exploit subtle differences between
analytes, owing to a higher density and random arrangement of functional groups, as well as an
enhanced signal to noise ratio for analyte detection. In typical carbon black — polymer composite
sensors, functional groups are present at certain repeat units along the polymer backbone, and this
structural motif places a limit on the functional group density as well as a limit on possible
analyte-polymer interactions, due to steric hindrance. With the carbon black — non polymer
composite sensor array, a higher functional group density, as well as random packing, can
provide more specific sensor-analyte interactions which are able to better capture subtle
differences in analyte properties. High signal to noise ratios provide the means of detecting and
describing these subtle differences, which would likely be lost in the noise of other sensor types.
These combinations allow carbon black — non polymer composite sensors to more precisely
define the position of extremely similar analytes in sensor response space, which translates into
enhanced clustering and resolution ability.

The carbon black — non polymer composite sensors also exhibited lower detection limits
relative to typical carbon black — polymer composite sensors (Table 2.4a-b). Thus, carbon black
— non polymer composite sensors are more suitable for trace vapor detection, which broadens the
potential areas of application of these sensors.

The low mass fraction carbon black — non polymer sensor array showed relatively little long-
term drift over extended time periods. Specifically, for most binary separation tasks, the non-
polymeric composite sensors provided good analyte classification levels for at least 6 months

after an initial training phase. When the sensors were used 6 months after an initial training
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period, 11 of the 21 binary separation tasks were performed with correct classification rates of >
90% (Tables 2.6-7). When a simple calibration scheme, which involved only 3 calibration
exposures per 50 exposures, was performed, the number of binary separation tasks with > 90%
correct classification after six months increased to 17. The cases where performance was
unacceptable even after calibration were the same as those reported for carbon black-polymer
composite sensors, for example n-hexane vs. n-heptane or n-heptane vs. n-octane.*

Plasticizers such as dioctyl phthalate (a viscous liquid) have been added to polymers to lower
their glass transition temperature and decrease the sensor response time to various vapors. The
sensors studied herein showed response times that were rapid, both with and without the presence
of dioctyl phthalate or similar plasticizers (Figure 2.2). This rapid time response is characteristic
of the use of low molecular weight non-polymeric organic molecules as the sorbent phase.

For many diseases, specific volatile organic compounds such as amines and fatty acids are
found in the breath and urine of infected individuals. For bio-sensing applications, it is desirable
to have sensors with a high sensitivity to these species. A key feature of using molecularly based
sorbent phases is the ability to tune the sensitivity towards different classes of chemicals. The
ratio of the AR,./R, responses of two carbon black — non polymer composite sensors,
tetracosanoic acid/dioctyl phthalate and quinacrine dihydrochloride dihydrate/dioctyl phthalate,
on exposure to n-hexane and to ethanol, was 22 and 0.3, respectively. Additionally, the sensor
consisting of pure quinacrine dihydrochloride dihydrate exhibited a strong positive response on
exposure to polar analytes, and a strong negative response on exposure to nonpolar analytes.
Such large differences for various other analytes could likely be produced by further development

of this class of sensors.

2.6. Conclusions

Composites made from homogeneous or blended organic molecules and carbon black showed fast
response times, good reversibility, high stability, and an excellent ability to discriminate and
classify between both similar and dissimilar types of analytes. This type of composite sensor
offers a higher density of functional groups, as well as a random orientation and random exposure
of these functional groups within the sensing material due to the lack of a restricting polymer
backbone. A 7-sensor array robustly resolved even extremely similar test analytes, such as n-
hexane and n-heptane. Excellent signal-to-noise ratios were achieved with these carbon black —
non polymer composite sensors, which provided lower limits of detection relative to the evaluated

carbon black — polymer composite sensors.
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Table 2.1: Sorption material used in carbon black-non-polymeric composite sensors for (A1-A7)
75% and (B1-B9) 25%, by mass, CB loadings. 20 ml of either THF or toluene was added to
sorption and plasticizer materials, followed by addition of CB, followed by sonication for > 30
min. (C1-C9) Sorption material used in CB — polymer composite sensors, as reported
previously.”  Where noted, the plasticizers dioctyl phthalate (DP) and di(ethylene glycol)
dibenzoate (DEGB) were used.

amount (mg)

sensor sorption material sorption  plasticizer CB
Al propyl gallate 50 0 150
A2 quinacrine dihydrochloride dihydrate 50 0 150
A3 lauric acid / DP 35 15 150
A4 tetracosane / DP 35 15 150
AS tetracosanoic acid 50 0 150
A6 quinacrine dihydrochloride dihydrate / DP 35 15 150
AT tetracosanoic acid / DP 35 15 150
Bl tetraoctylammonium bromide / DP 80 80 20
B2 Jauric acid / DP 80 70 20
B3 tetracosanoic acid 80 0 30
B4 tetracosanoic acid / DP 80 50 20
B5 tetracosanoic acid / DP 100 60 40
B6 propyl gallate 160 0 40
B7 1,2,5,6,9,10-hexabromocyclododecane / DP 100 60 40
B8 quinacrine dihydrochloride dihydrate 160 0 40
B9 quinacrine dihydrochloride dihydrate / DP 100 60 40
C1 polycaprolactone / DEBG 80 80 40
C2 poly(ethylene-co-vinyl acetate) / DEBG 80 80 40
C3 poly(ethylene oxide) / DEBG 80 80 40
C4 poly(ethylene glycol) / DEBG 80 80 40
C5 poly(methyl vinyl ether-co-maleic anhydride) / DEBG 80 80 40
Co6 poly(4-vinyl phenol) / DEBG 80 80 40
C7 polycarbonate / DEBG 80 80 40
C8 poly(vinyl butyral) / DEBG 80 80 40

Cc9 polystyrene (PVS) / DEBG 80 80 40
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Table 2.2: Sensor response, AR/R;, (x10,000), of carbon black — non polymer composite and

carbon black — polymer composite sensors (Table 2.1) to seven test analytes presented at a

concentration of P/P° = 0.0050. The sensors were subjected to 200 randomly ordered exposures

to each analyte; means and standard deviations are given for each sensor (mean + standard

deviation).
ethyl c-

sensor n-hexane ethanol  acetate = hexane n-heptane n-octane i-octane
Al 42409  64+0.8 8.0£0.7 1.740.3  4.4+1.0 6.3£1.0 3.1+£1.3
A2 -12.547.2  15.0£29 2.6+-5.1 -5.1£29 -14.7493 -16.6+94 -21.3+10.8
A3 21.7£29 1.3+0.2 83+0.8 8.9+0.7 25.1+45 38.0+7.4 27.4+4.1
A4 11.9£2.1 1.0£0.2 4.5+0.7 5.6+1.6 13.2+3.8 19.9+6.1 15.9+4.0
A5 18.0£0.9  0.9+03 6.1£0.5 5.2+0.5 232409 36.5+1.4 24.2+0.8
A6 24403  6.9+£1.0 24+04 1.6+0.2 2.2+04 2.7+0.5 2.7+0.4
A7 18.7£1.0 0.8+0.2 5.8+0.3 6.841.0 23.1£1.5 35.6£2.6 24.8+1.2
Cl 32402  6.1£0.2 13.3x0.3 4.9+0.2  2.8+£0.2 2.8+0.1 3.3+0.1
C2 18.2+0.5 12.0+0.5 48.4+1.3 27.9+0.6 16.6+0.5 17.9+0.4 19.7+0.5
C3 42404 32404 5.8+0.2 5.6£0.2  4.2+0.2 4.7+0.2 5.24+0.2
C4 2.1£0.2 27402 12.3204  3.4+2 1.7+0.2 1.6£0.2 1.8+0.2
C5 20.2+0.6  6.6+0.3 37.8+1.1 31.0+1.0 18.5+0.6  20.1+0.5 22.4+0.5
Co6 18.7£0.6  11.9+0.5 49.6+1.9 28.7+1.1 16.9+0.6  18.2+0.5 20.0+0.5
Cc7 14.7£0.5  7.5£0.3 55.342.0 23.840.9 12.9+0.5 13.5+04 14.5+0.3
C8 0.6+0.1 1.5£0.1  5.7£0.2  0.5+0.1 0.5+0.1 0.4+0.1 0.2+0.1
C9 6.8+0.5 12.2+0.5 34.6+0.9 6.1£0.4  5.7+0.4 5.2+0.3 2.3+0.3
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Table 2.3: Signal to noise ratios (SNR) of carbon black — non polymer composite and carbon
black — polymer composite sensors (Table 2.1) to seven test analytes presented at a concentration
of P/P° = 0.0050. The sensors were subjected to 200 randomly ordered exposures to each

analyte; means and standard deviations are given for each sensor (mean + standard deviation).

ethyl

n-hexane ethanol acetZte c-hexane n-heptane  n-octane i-octane
Al 90+62 142+89 99+49 45+31 73+41 65+31 38+32
A2 -136x£109  109+65 25422 -52445  -151+£145 -97£79  -230+£172
A3 152462 167 81433 86+33 150+41 164+36 155+46
A4 100+49 13+6 46+19 54430 97451 131444 10140
AS 55+19 544 25+14 22+15 64423 73+18 75+36
A6 25+10 68+34 24+11 18£8 23+10 27+10 29+13
A7 99426 1448 61427 82438 08423 90+17 112424

Cl 102+40 102+40 505£190 215+81 134+54 138+46 143+58
C2  465+211  211+£102 763+187 809+276  586+220 636+240  746+313

C3 32+12 30+10 107+45 61+22 39+14 43+16 56+23
C4 20+12 62+23 190+87 60422 32+11 35+14 42420
Cs5 104+45 53421 193+76 182+75 13351 146+56 198+84
Co6 46421 311+124 585+278 68+32 54420 46+18 38+15
Cc7 238£77 146+57 1355+654 526217  295+181 304+111  320+123
C8 30+12 87+38 206+80 2448 34415 33+13 1548

C9 65430 54423 326111 49+13 77+32 70+22 29+11
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Table 2.4: Approximate limits of detection of (a) carbon black — non polymer composite sensors

and (b) carbon black — polymer composite sensors (Table 2.1) for the detection of n-hexane and

ethanol. The limit of detection is defined as the vapor concentration at which the SNR = 3.

a) limit of detection (ppm)

Al A2 A3 A4 AS A6 A7
n-hexane 110 100 100 100 100 60 140
ethanol 50 50 50 40 40 40 40
b) limit of detection (ppm)

Cl C2 C3 C8
n-hexane 160 140 140 120

ethanol

80 50 50 70
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Table 2.5: Resolution factors displaying the ability of a) the carbon black — non polymer
composite sensor array (sensors A1-A7), and b) the carbon black — polymer composite sensor
array (sensors C1-C9) to distinguish between test analytes presented at P/P°= 0.0050. In each
case, for a given separation task, a Fisher linear discriminant model was trained on exposures 1-
100, and exposures 101-200 were then tested using the model. Reported values are for testing

exposures 101-200.

n- ethyl c- n- n- i-
a) hexane ethanol acetate hexane heptane octane octane
n-hexane N/A 44.6 13.3 6.1 6.4 9.9 6.2
ethanol N/A 27 36.5 47.5 51.7 50
ethyl acetate N/A 14.3 15.4 20.6 14.5
c-hexane N/A 8.2 10.1 6.9
n-heptane N/A 4.2 3.7
n-octane N/A 4.8
i-octane N/A
n- ethyl c- n- n- i-
b) hexane ethanol acetate hexane heptane octane octane
n-hexane N/A 10.7 6.1 2.5 1.2 1.7 3
ethanol N/A 24.2 29.1 23.3 25.2 25.9
ethyl acetate N/A 30.4 15.5 27.1 32.1
c-hexane N/A 3.9 4.4 10.2
n-heptane N/A 1.7 6.8
n-octane N/A 6.7
i-octane N/A
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Table 2.6: Binary classification rates of an array comprised of sensors B1-B9 (Table 2.1) using
FLD with a statistical decision boundary for classification, with binary models trained on the first
100 exposures to data set 1, and applied to data testing exposures from data set one and data sets
collected at later times. Classification rates shown are for testing exposures collected from a)
data set 1, b) data set 2, b) data set 3, and d) data set 4, where data sets 2, 3 and 4 were collected

two days, six days, and six months, respectively, after the initial training data was collected for

data set 1.

n- ethyl c- n- n- i-
a) hexane ethanol acetate hexane heptane octane octane
n-hexane N/A 1 1 1 0.82 0.95 1
ethanol N/A 1 1 1 1 1
ethyl acetate N/A 1 1 1 1
c-hexane N/A 1 1 0.92
n-heptane N/A 0.84 1
n-octane N/A 1
1-octane N/A

n- ethyl c- n- n- i-
b) hexane ethanol acetate hexane heptane octane octane
n-hexane N/A 1 1 1 0.73 0.79 1
ethanol N/A 1 1 1 1 1
ethyl acetate N/A 1 1 1 1
c-hexane N/A 1 1 0.56
n-heptane N/A 0.59 1
n-octane N/A 1
1-octane N/A




Table 2.6 (continued):

n- ethyl c- n- n- i-
c) hexane ethanol acetate hexane heptane octane octane
n-hexane N/A 1 1 0.99 0.66 0.79 1
ethanol N/A 1 1 1 1 1
ethyl acetate N/A 1 1 0.99 1
c-hexane N/A 0.99 0.99 0.54
n-heptane N/A 0.64 1
n-octane N/A 1
1-octane N/A

n- ethyl c- n- n- i-
d) hexane ethanol acetate hexane heptane octane octane
n-hexane N/A 0.94 0.98 0.51 0.51 0.5 0.59
ethanol N/A 1 0.88 0.95 0.91 0.98
ethyl acetate N/A 0.99 0.98 0.99 0.9
c-hexane N/A 0.52 0.51 0.5
n-heptane N/A 0.5 0.59
n-octane N/A 0.62
1-octane N/A

34
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Table 2.7: Classification rates of an array of sensors B1-B9 when a FLD model was trained on

100 exposures from data set 1, and tested on 200 exposures from data set 4, six months later, with

the use of various calibrations. Binary classification tasks capable of high performances ( > 90%

correct classification) with a 6 month period between the train and test phase are shown in bold.

calibrant
n- ethyl c- n- n-
task hexane ethanol acetate = hexane heptane  octane  i-octane
n-hexane / ethanol 0.58 0.98 1 0.82 0.86 0.96 0.95
n-hexane / ethyl acetate 0.57 0.96 0.98 0.7 0.85 0.73 0.84
n-hexane / c-hexane 0.86 0.52 0.51 0.83 0.88 0.9 0.74
n-hexane / n-heptane 0.5 0.56 0.55 0.5 0.53 0.5 0.49
n-hexane / n-octane 0.49 0.57 0.56 0.51 0.53 0.55 0.51
n-hexane / i-octane 0.91 0.59 0.6 0.88 0.95 0.97 0.86
ethanol / ethyl acetate 0.51 1 1 0.75 0.84 0.86 0.76
ethanol / c-hexane 0.58 0.95 0.99 0.83 0.85 0.98 0.95
ethanol / n-heptane 0.59 0.9 0.99 0.83 0.86 0.98 0.97
ethanol / n-octane 0.57 0.89 0.99 0.84 0.85 0.97 0.96
ethanol / i-octane 0.57 0.99 1 0.85 0.86 0.99 0.98
ethyl acetate / c-hexane 0.57 0.86 0.98 0.73 0.84 0.73 0.83
ethyl acetate / n-heptane 0.58 0.76 0.97 0.71 0.85 0.74 0.85
ethyl acetate / n-octane 0.57 0.97 0.99 0.72 0.85 0.74 0.85
ethyl acetate / i-octane 0.53 0.53 0.89 0.72 0.81 0.72 0.82
c-hexane / n-heptane 0.86 0.7 0.68 0.82 0.86 0.91 0.78
c-hexane / n-octane 0.9 0.91 0.79 0.82 0.91 0.95 0.83
c-hexane / i-octane 0.48 0.5 0.5 0.58 0.48 0.54 0.57
n-heptane / n-octane 0.49 0.52 0.51 0.5 0.51 0.54 0.51
n-heptane / i-octane 0.89 0.89 0.8 0.88 0.93 0.97 0.9
n-octane / i-octane 0.89 0.9 0.88 0.87 0.91 0.96 0.91



36

Figure 2.1: Structures of materials used in this study. All of these materials, except dioctyl

phthalate (liquid), are solids at room temperature.
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Figure 2.2: Response of sensor A4 (75% CB, non polymer, Table 2.1) sensor C2 (40% CB,
polymer, Table 2.1) on exposure to n-hexane at P/P’° = 0.0050. A single exposure of sensor C2,
and six exposures of sensor A4, are shown. Continuous random exposures to each of the test
analytes occurred, with 1, 35, 44, 62, and 71 h occuring between the first response shown and the

second, third, fourth, fifth, and sixth responses, respectively.
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Figure 2.3: Responses of several non polymer-carbon black composite sensors (Table 2.1) to a)

n-hexane and b) ethanol at various concentrations.
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Figure 2.4: 3-D pattern depicting the average responses (Table 2.1) to the 7 test analytes at a
concentration of P/P’= 0.0050 in air.
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Figure 2.5: Principal components analysis showing principal components 1, 2 and 3 from
normalized sensor array response data to all analytes on exposure to sensors A1-A7. The sub-plot
details a second PCA performed on only the overlapping alkane clusters (highlighted). For

visualization ease, only the first 50 exposures to each of the test analytes are analyzed and shown.
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Figure 2.6: “Waterfall” plots detailing drift of FLD D-values (the single dimensional projection
of the sensor array response which initially maximized the resolution factor for the classification
task at hand) vs. exposure number for the n-hexane/i-octane binary separation task using an array
of sensors B1-B9. The first 100 exposures of data were used to train the model. A decision
boundary (solid line) based on these first 100 exposures is shown. Results are shown for a) no

calibration and b) calibration using n-octane.
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Chapter 3

Use of Spatiotemporal Response Information
from Sorption-Based Sensor Arrays to
Identify and Quantify the Composition of
Analyte Mixtures

3.1. Abstract

Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in
a low headspace volume chamber, with vapor delivered at low flow rates, allowed for the
extraction of chemical information that significantly increased the ability of the sensor arrays to
identify vapor mixture components and to quantify their concentrations. Each sensor sorbed
vapors from the gas stream, and thereby, as in gas chromatography, separated species having high
vapor pressures from species having low vapor pressures. Instead of producing steady state (SS)
sensor responses that were representative of the thermodynamic equilibrium partitioning of
analyte between each sensor and the initial vapor phase, the sensor responses varied depending on
the position of the sensor in the chamber and the time since the beginning of the analyte exposure.
The concomitant spatiotemporal (ST) sensor array response therefore provided information that
was a function of time as well as of the position of the sensor in the chamber. The responses to
pure analytes and to multi-component analyte mixtures comprised of hexane, decane, ethyl
acetate, chlorobenzene, ethanol, and/or butanol, were recorded along each of the sensor arrays.
Use of a non-negative least squares (NNLSQ) method for analysis of the ST data enabled the

correct identification and quantification of the composition of 2-, 3-, 4- and S-component

" This chapter is reproduced according to American Chemical Society copyright guidelines, from “Use of
Spatiotemporal Response Information from Sorption-Based Sensor Arrays to Identify and Quantify the
Composition of Analyte Mixtures” by Marc D. Woodka, Bruce S. Brunschwig, and Nathan S. Lewis,
Langmuir, 23, (26), 13232-13241, 2007. Copyright 2007, American Chemical Society.
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mixtures from arrays using only 4 chemically different sorbent films. In contrast, when
traditional time- and position-independent SS sensor response information was used, these same
mixtures could not be identified or quantified robustly. The work has also demonstrated that for
ST data, NNLSQ yielded significantly better results than analyses using extended disjoint
principal components regression (EDPCR). The ability to correctly identify and quantify
constituent components of vapor mixtures through the use of such ST information significantly

expands the capabilities of such broadly cross-responsive arrays of sensors.

3.2. Introduction

Cross-responsive array-based vapor sensors have received significant attention in the recent
literature. Such sensors include coated surface acoustic wave devices,'” tin oxide sensors,*”

0

conducting organic polymers,”® coated quartz crystal microbalances,”'® polymer-coated

micromachined cantilevers,'"'* dye-impregnated polymers coated onto optical fibers or beads,"

polymer/carbon black composite chemiresistors,'*"°

and low volatility small molecule/carbon
black composite chemiresistors.'” Sensor arrays made from a variety of composite materials
encompass a broad range of collective vapor/sensor interactions, producing a diversity of
response values upon exposure to a given analyte. Arrays of such sensors, coupled with various
pattern recognition approaches, are able to discriminate between different vapors."* Such
arrangements have been termed “artificial” or “electronic” noses, due to their similarities to
mammalian olfactory processes.”'**

Most reports dealing with cross-responsive sensor arrays have investigated the response of
such arrays toward single analytes.'>*** Alternatively, responses to complex mixtures have been
used to “fingerprint” vapor mixtures rather than identify their constituents. Under this
implementation, electronic noses have distinguished between different types of beers,” hops,*®
wines,”’ Vinegars,28 coffees,”’ and teas.’® Zellers and co-workers have claimed that responses
from an array consisting of 10 unique polymer-coated surface acoustic wave devices could, at
best, provide robust information on simulated 3-component mixtures, where the simulated
mixture responses assumed perfect additivity of pure vapor responses with superimposed
Gaussian error as noise.”'

Typical sensor array studies have placed each detector of the array in a nominally equivalent
position relative to the analyte flow.'"'’"? In this mode of operation, the partition coefficient
between each sensor and vapor, K¢, and the pressure of the vapor in the flow stream, determine
the differences in sensor response. Di Francesco and co-workers have argued that an effective

chamber design should assure that the transient time necessary to reach a stationary and uniform
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vapor concentration is much shorter than the sensor response time, so that all sensors are exposed
at the same time to the same concentration of analyte. These workers have accordingly
performed computational fluid dynamics (CFD) modeling studies in search of an optimal sensor

geometry for this purpose.”

Ali and co-workers have also sought to ensure that the entire
incoming sample stream was distributed rapidly, simultaneously, and evenly over all of the
sensors in an array. They have modeled vapor delivery in sensor geometries via CFD, and
verified their results with flow visualization and measured sensor responses.”* These studies are
reflective of the dominant mode of sensor array implementation, in which each sensor is exposed,
to the extent possible, to an identical, time-independent, stream of analyte vapor for the extraction
of steady-state (SS) response information.

Exploitation of the spatiotemporal (ST) aspects of a non-uniform flow system may, however,
yield additional information on the composition of analyte mixtures. For example, the flow
dynamics of sniffing, as well as differences in the binding affinities of different odor receptors,
are important for odor perception in mammalian olfaction. In humans, the vapor flow rate is
different through the two nostrils of a given individual, because blood flow-induced occlusions in
the nostrils cause the flow rate to vary with time and therefore vary which nostril has the higher
flow rate. These varying flow patterns have been shown to affect odor perception.®
Consistently, a sensor chamber modeled after a canine nasal cavity, having sensors placed
throughout the cavity, has been shown to provide enhanced discrimination in various
classification tasks relative to a single sensor array placed solely at the inlet of the cavity.*
Additionally, the implementation of an olfactory microsystem which mimics the mammalian
mucous layer with a polymeric layer has been shown to enhance discrimination between simple
and complex odors.”’

To measure the composition of certain vapor mixtures, metal-oxide semiconductor field-
effect transistor (MOSFET) sensors have been placed along a sensor chamber that also contained
thin films of palladium or platinum. These films catalytically partially decomposed certain
vapors, so when mixtures of hydrogen, ammonia, acetylene, and/or ethanol were introduced into
the sensor chamber, some of the constituents of the mixtures reacted, forming compounds not
readily detected by the MOSFET sensors. For example, hydrogen flowing over the Pd catalyst
reacted to form water, to which the sensors were insensitive. The initial sensors responded to the
original vapors in the sampled stream, while later sensors responded to reduced concentrations of
certain species. Using this approach, significant improvements were obtained in the identification
of binary mixtures.”®*’ This method, however, is limited to mixtures having components that
react at expensive catalytic surfaces to form products not easily detected at the sensors in the

array.
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More recently, arrays of polymer/carbon black composite sensors have been emplaced in a
chamber with a low headspace volume while the analyte vapor was sampled at various flow rates.
Depending on the vapor flow rate, pure test vapors and test vapor mixtures showed a

concentration profile along the array as a function of time.*'"*

In this approach, the sensor
material acted similarly to a stationary phase in a gas chromatographic (GC) column, with vapors
partitioning into the sensor material as dictated by their solid/gas partition coefficient, K.. In this
arrangement, the vapor species are not physically changed, unlike the situation involving the use
of catalytic surfaces. Instead, the vapors are simply sorbed and retained by the sensor material.
The progress of each vapor front down the sensor array is dictated by the flow rate, chamber
geometry, and mass uptake by the upstream sensor films.

In this work, arrays of low volatility organic molecule/carbon black composite vapor
sensors'’ have been exposed to various vapor mixtures in a low headspace volume chamber. In
this configuration, the sensor material acts to separate the analyte to produce a space- and time-
dependent signal response from the sensors in the array. A collection of such sensor arrays were
first exposed to, and trained against, pure vapor species, each exposed at 5% of their saturated
vapor pressure, P/P° = 0.050, where P is the partial pressure and P’ is the saturated vapor
pressure of the analyte of interest.* The sensor arrays were then challenged by exposures to
various mixtures of these test vapors. Two linear, statistically based chemometric methods, non-
negative least squares (NNLSQ)* and extended disjoint principal components regression
(EDPCR),* were evaluated for their utility in analysis of the data. In each case, no a priori
information was used regarding which vapors in the training set were present in the challenge
mixtures. The performance of the ST array arrangement in speciation of mixtures was then
compared to the performance of an SS array having an equal number of sensor response
descriptors. The strengths and weaknesses of each data analysis approach employed for ST data

were then compared.

3.3. Experimental
3.3.1. Materials

The insulating materials for fabrication of the sensor films consisted of tetracosane (99%,), lauric
acid (99.5%), and dioctyl phthalate (99%), purchased from Aldrich; as well as propyl gallate
(98%) and quinacrine dihydrochloride dihydrate (97%), purchased from Acros Organics.
Reagent grade toluene, tetrahydrofuran (THF), and chloroform, received from Aldrich, were used
as solvents in the sensor suspensions. Hexane (95%), decane (99%), ethanol (95%), n-butanol
(99.9%), ethyl acetate (99.5%) and chlorobenzene (99%), purchased from Aldrich, were used to
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generate vapors for delivery to the sensor arrays. Black Pearls 2000 (BP 2000), a furnace carbon
black material donated by Cabot Co. (Billerica, MA), was used as the conductive phase in the

sensor composites. All materials were used as received.

3.3.2. Detectors

Four suspensions, each comprised of a non-conductive sorption phase and a conductive carbon-
black phase (Table 3.1), were used to fabricate the sensors evaluated in this work. First, the non-
conductive (non carbon-black) sensor material(s) were placed in ~ 60 mL of solvent and the
suspension was sonicated for > 10 min. Carbon black was added to the suspension, and the
resulting mixture was sonicated for > 30 min to produce a well-dispersed suspension. Dioctyl
phthalate was used as a component of some of the sensor films to serve as a plasticizer and to add
chemical diversity to the films.

Detector array substrates were fabricated by evaporating 30 nm of Cr and then 70 nm of Au
onto glass microscope slides. A custom-made mask was used to produce the electrode pattern
shown in Figure 3.1. The slide was masked with Teflon tape and sprayed with a single sensor
solution using an airbrush (Iwata, Inc.). Several pairs of electrodes were monitored with an
ohmmeter, and spraying was continued until the resistance across the 0.4 mm sensor electrode
gaps was 500 - 1500 Q. This created an overall sensor film of 75 x 5 mm in length and width,
having a film thickness of ~ 1-3 um as measured with a Dektak 3030 profilometer (Sloan
Technology Corp., Santa Barbara, CA). Four such detector substrates were made. Each glass
slide had 15 identical sensors made of a thin film of one of the four suspensions listed in Table
3.1.

Four arrays were then placed into the custom-made aluminum sensor chamber depicted in
Figure 3.2. The chamber was 110 mm long and 25 mm wide. In this study, only one side of the
glass slide was coated with sensor material, so a total of 60 sensors were available for monitoring.
A symmetric Teflon gasket (Figure 3.2a) was used to divide the incoming flow evenly among
each of the eight vapor flow pathways. Additionally, for each of the vapor flow pathways, the
inside of the aluminum chamber was covered with a film of Teflon tape (Figure 3.2c). Two

weeks passed between the spraying of the sensor films and the initiation of the train/test phase.

3.3.3. Vapor Generation and Delivery

An automated flow system, controlled by LabVIEW 5.0 software, was used to deliver pulses of
diluted streams of solvent vapor to the detectors.*’ The carrier gas (background stream) was oil-
free air obtained from the house compressed air source (1.10 £ 0.15 parts per thousand of water
vapor) controlled with a mass-flow controller (MFC) (UNIT) that could vary the flow from 6 to

625 mL min". For generation of analyte vapors, a foreground stream of carrier gas was passed
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through a 220 mL bubbler filled with the desired solvent, controlled by a MFC that could vary the

flow from 1 to 60 mL min™. The height of solvent in the bubblers was the same before and after
each set of exposures.

Pure analyte vapors were presented to the sensor arrays at P/P° = 0.010, 0.030, and 0.050 (1,
3, and 5 parts of foreground saturated vapor flow combined with 99, 97, and 95 parts of
background air, respectively). Eight exposures were performed at each analyte concentration, for
a total of 24 exposures per vapor. These pure analyte exposures were randomly delivered over all
analytes and concentrations, and served as the “training” exposures. Exposures for the training
period occurred over a 16-hour period.

Analyte vapor mixtures were generated by mixing equal volumes of each component.
Background air bubbled through these mixtures was presented to the sensor arrays at P, /P’ =
0.050, where P,,;, is the sum of the partial pressure of the analytes and P’,,;, is the vapor pressure
of the mixture. Twenty exposures of each of the mixtures were presented to the sensor arrays.
These mixture exposures served as the “testing” exposures. Three exposure periods occurred
over 13 h each, randomly exposing 2- and 3-component mixtures, 3- and 4- component mixtures,
and 4- and 5- component mixtures. All training and testing data were collected during a five day
period.

A total flow rate of 150 £ 5 mL min"' (19 mL min™' per chamber vapor flow pathway) was
provided to the sensor chamber during the flow of either background or analyte vapor (Figure
3.2). Higher flow rates would provide more rapid sensor responses and can decrease the required
exposure times.* However, hardware limitations of the sensor multiplexing speed and the
resulting 3 s cycling frequency per sensor required longer exposure times to ensure the extraction
of the desired transient response. To achieve flows with minimal variance in the rates of both the
background and foreground streams, the mixtures were first generated at flow rates of 400 mL
min”. A small Teflon-lined sampling pump (Science Pump Corporation) was used to withdraw
vapor from the 400 mL min™ stream and to present it to the sensor chamber at 150 + 5 mL min™".
Flow meters (Gilmont) were used to monitor the flow rates of the background and undiluted
vapor streams, as well as to monitor the flow rate immediately prior to the entrance to the sensor
chamber.

Gas chromatography-mass spectrometry (GC-MS) (Hewlett Packard 6890 GC system;
Hewlett Packard 5973 Mass Selective Detector) was used to independently validate the
compositions of the vapor mixtures. For each of the pure test analytes, the vapor stream delivered
at a setting of P/P° = 0.050 to the sensor chamber was sampled and manually injected into the
GC. The GC-MS spectral peaks were then integrated to provide a calibration for that analyte at

the specified fractional vapor pressure. Streams of the various mixtures were then also sampled
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and injected into the GC, and the GC-MS spectral peaks of each individually eluted analyte were

integrated. The fractional vapor pressure of each species i in the mixture was calculated with eq

(1):

A.
(;j = x0.050. (0

where A; was the integrated area of species 7 in the mixture and Af”l was the integrated area of
species i in the calibration performed at P/P° = 0.050. For all mixtures, a standard error
propagation was performed on eq (1).** For the calibration of pure analyte vapors, at least six
measurements were taken, while for mixtures, at least three measurements were taken. Mixtures

consisting of 2, 3, 4, and 5 components were generated from the six test analyte vapors.

3.3.4. Measurements and Data Pre-Processing

Sensor film resistances were measured using a Keithley 2002 multimeter and a Keithley 7001
multiplexer. Each sensor substrate was connected to the multiplexer through shielded, twisted
pair cables and a rotary ZIF connector (Tyco Electronics). To increase the overall sampling
frequency, two Keithley 2002/7001 combinations were used to record the sensor response data.
Each Keithley 2002/7001 combination recorded the responses from two of the four arrays, or 30
of the 60 total sensors. Sensor films were intentionally sprayed to produce film resistances within
the same resistance range, 1000500 €, to increase the multiplexing speed. Each sensor was
sampled approximately every 3 s. Train and test exposures consisted of 70 s of pure background
flow over the sensor arrays to establish a baseline resistance, followed by 150 s of analyte vapor
flow at the desired fractional vapor pressure (P/P° = 0.010, 0.030, or 0.050), followed by a stream
of pure background flow for 230 s to restore the sensors to their initial states. Due to the 3 s
cycling frequency, any exposure could experience up to a 3 s delay for vapor exposure initiation.
For example, the pure background flow window prior to analyte exposure could range from 70 to
73 s. Prior to data collection, the sensors were subjected to 24 h of randomized exposures to all
of the test vapors.*” Pure vapors were first used to train the sensor arrays, followed by testing of
the array with exposures to mixtures. Each set of exposures was randomized.

The response of each vapor detector for each analyte exposure was expressed as S(t) =
AR()/Ry(t), where Rp(?) is the baseline corrected resistance of the detector in the absence of
analyte and 4AR(?) is the time-varying, baseline-corrected, resistance change upon exposure to the
analyte. The baseline resistance, Rj(?), was obtained by fitting a straight line to the data obtained
during the pre-exposure period. The slope of this line was then used to extrapolate the resistance
recorded immediately prior to exposure to any time ¢. AR(?) was calculated by subtracting Ry(?)

from the measured sensor resistance at time 7. The actual times at which the sensor resistances
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were recorded varied with each exposure, and were different for each sensor in the array. The
responses at the times used in the data analysis were calculated by interpolating between the
measured data points.

In a control study, only the first, middle, and last sensor in each array (i.e., detectors 1, 8 and
15 in Figure 3.1) were sampled. This data set also captured ST sensor response information,
albeit with fewer data points. These data were then compared to traditional SS data obtained
from the responses of the first three sensors in each array. SS data was acquired when all sensors
were in equilibrium with the initial vapor stream, near the end of the 150 s vapor exposure period.
To facilitate comparisons between the two methods, the same total number of S(z) values were
extracted in both cases. This procedure produced an equal number of total response descriptors

from the three-sensor subarrays used to compare the ST and traditional SS sensing approaches.

3.3.5. Vapor Classification

The responses of these chemiresistive composite vapor sensors have been shown to be linear with
the concentration of analyte, over the range of concentrations of interest in this work.'>"
Statistical, linear-based pattern recognition techniques were therefore used to determine the
identity and relative amounts of each analyte present in the vapor mixtures. Non-linear, neural
network-based pattern recognition implementations may potentially provide enhanced
performance in such tasks, but linear-based algorithms provide a more objective measure of
performance. Hence, non-negative least squares (NNLSQ), as well as extended disjoint principal
components regression (EDPCR) methods, were used to analyze the ST array responses of

analyte mixtures.

3.3.5.1. Nonnegative Least Squares (NNLSQ)

For NNLSQ, training data collected at P/P° = 0.050 were used to generate a vapor response
library. Averaged baseline-corrected responses to the six vapors, S(?), extracted at four times (¢ =
80, 90, 130 and 150 s) for each of the fifteen sensors along each of the four arrays, were used to
create a 240 x 6 library, A, of responses to the six pure analyte vapors. NNLSQ finds the linear
combination of each of the pure response vectors that best matches, in a least squares sense, the
mixture response vector. NNLSQ minimizes ||Ax-b||, where b is the 240 X 1 measured sensor
response vector to the mixture, and x is a 6 X 1 vector of concentrations of the analytes that
minimizes the objective function, subject to x; > 0.* NNLSQ was performed in MATLAB using

a pre-programmed function.

3.3.5.2. Extended Disjoint Principal Components Regression (EDPCR)
EDPCR has been applied to determine the individual components of simulated vapor mixtures

based on the linear addition of pure vapor exposures to an array of polymer-coated SAW sensors,
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with superimposed Gaussian error.’’  Briefly, EDPCR involves modeling, via Principal
Components (PCs), the responses to each of the pure vapors, with a different set of PCs generated
for each pure analyte. In principal, if there were no noise and if all of the sensors were perfectly
linear, only a single PC would be required for each pure vapor. The direction of this PC in sensor
response space would then be different for each pure vapor. All training data (P/P° = 0.010,
0.030, 0.050) were used to generate EDPCR models for each of the pure vapors. These models
describe the sensor response during exposure to a pure vapor, as a function of the vapor
concentration. A leave-one-out cross-validation scheme, based on the residual squared variance
between the actual and modeled array response as a function of the number of PCs employed,
was used to determine the optimal number of PCs required to accurately describe the array
response toward each pure vapor. The responses to analyte mixtures were then fit to all
combinations of pure vapors for the 6 analytes of interest, ranging from single pure component
models to the 6-component mixture model, thus encompassing 63 total possible vapor
combinations.

Fitting the unknown array response to each of the 63 models consisted of projecting the
response spectrum onto the PC-space of each model. A reconstructed response spectrum was
obtained by projecting the PC-space data back on the transformation vectors for the model. If the
model was incorrect, the reconstructed response differed significantly from the original response.
A residual squared variance between the original response spectrum and the reconstructed
response spectrum gave a measure of goodness of fit. The model with the lowest residual
squared variance was then selected as the proper analyte combination. The analyte concentration
was then determined based on the position of each analyte along the first PC for each of the
vapors.

This algorithm is essentially equivalent to the more general soft independent modeling of
class analogy (SIMCA) method, except that in SIMCA, each model that well-describes the data is
accepted as a possibility, and more than one possibility may exist.*" Hence, it is not necessary
in SIMCA to obtain a single, unique solution. In contrast, in EDPCR, only the single model that
provides the lowest residual squared error between an actual response vector and a modeled

response vector is chosen for use. EDPCR was performed in Matlab, using custom-written code.

3.4. Results

3.4.1. Sensor Response
Figure 3.3 shows the baseline-corrected response of a sensor array made from propyl gallate and

carbon black (sensor material 3, Table 3.1) to a) pure hexane and b) pure decane, each presented
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at P/P° = 0.050, as a function of time. Responses were observed on two times scales: an
immediate rapid response, and a slower drifting response. The latter was due to diffusive
broadening of the vapor front as it progressed, through tubing, to the inlet of the sensor chamber.
For visualization, the responses have been normalized by the response of each of the sensors at ¢
= 220 s. The experimental setup produced a delay of ~ 7 s between the initiation of analyte
delivery and the response of the first sensor in the array. On exposure to hexane (P’ = 130 mm
Hg), the vapor concentration rapidly became uniform over all sensors in the array, as evidenced
by the similar response profiles vs. time for all 15 sensors. In contrast, on exposure to decane (P’
= 1 mm Hg), the response across the array varied significantly. The first sensor exhibited a fairly
rapid response. However, decane has a partition coefficient into the sensor film that is roughly
100 times that of hexane,"' hence, sorption of decane into the first sensor depleted the vapor
sampling stream of the analyte. The sorption of analyte vapor by the earlier sensors therefore
produced an altered, and delayed, arrival of the vapor front to the subsequent sensors along the
array. In essence, the sensor material acted as a GC stationary phase, taking up and establishing
equilibrium with the components of the vapor phase flow stream.

Figure 3.4 depicts the baseline-corrected response of the first and ninth sensors in an array of
lauric acid/carbon black chemiresistive sensors (sensor type 2, Table 3.1) upon exposure to pure
ethyl acetate, pure decane, or a mixture of ethyl acetate and decane, all delivered at P/P° (or
P,i/P’ i) = 0.050. The first sensor in the array was exposed to a vapor stream that contained
either ethyl acetate (P° = 80 mm Hg), decane, or a mixture of both, at their original
concentrations. For each vapor stream, this sensor exhibited a response that rapidly became
nearly independent of time. In contrast, the ninth sensor exhibited a rapid response upon
exposure to pure ethyl acetate, due to ethyl acetate having a relatively high vapor pressure and
low partition coefficient into the sensor film in the array. However, consistent with Figure 3.3,
this sensor exhibited a delayed response upon exposure to pure decane. Exposure to the mixture
of ethyl acetate and decane showed a two-step sensor response, with one step occurring when the
ethyl acetate arrived at the sensor, at ~ 80 s, and with the other step occurring when the decane
arrived at the sensor, at ~ 130 s. The slow rise-time of the ninth sensor on exposure to decane
and the mixture of decane and ethyl acetate is indicative of the slow increase in concentration of
decane in the gas phase at the ninth sensor.

Figure 3.3 and Figure 3.4 each show differences in response profiles along the sensor array
on exposure to decane. This is likely due to pulse broadening along the vapor flow pathway.*
Pulse broadening could be minimized by operation at higher flow rates, which would provide
sharper response profiles and greater analyte discrimination (assuming the hardware in place is

able to capture these faster transient responses). However, pulse broadening is well-defined for a
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given geometry-flowrate-sensor-vapor combination, and therefore introduces response

differences that are repeatable across repeated exposures.

3.4.2. Analysis of Mixtures

A series of fourteen mixtures was analyzed using the ST response data produced on the sensor
array. For all exposures, the observed S(?) values were interpolated to fixed times having 10 s
intervals, to produce 15 array responses in the time interval of # = 80 to 220 s. Subsets of these
data, comprised of S(?) responses extracted at various times, ranging from single time-response
descriptions to multiple time-response descriptions (including up to 7 different times), were then
subjected to analysis using either NNLSQ or EDPCR.

The sum of the squared residual variance, S°, was calculated between the mean mixture
composition calculated by either NNLSQ or EDPCR, and the mixture composition indicated by
GC-MS measurements (Table 3.2). The cross validation procedure for the EDPCR method
yielded 3-7 PCs to describe each pure vapor response model. For all time combinations, NNLSQ
was the better-performing algorithm. The optimal time combination was chosen as the
combination of times that provided the lowest S° (best fit) between the deduced sensor array
mixture composition and the mixture composition indicated by GC-MS. The optimal time
combination was four times, at # = 80, 90, 130 and 150 s. The S(?) values extracted at ¢t = 80 and
90 s (i.e., immediately after vapor delivery) provided information about the movement of higher-
vapor pressure (lower-partitioning) analytes such as hexane, ethyl acetate and ethanol (P’ = 130,
80 and 50 mm Hg, respectively) down each array. The S(#) values at £ = 130 and 150 s provided
information on the progress of lower-vapor pressure (higher-partitioning) analytes, such as
chlorobenzene, butanol and decane (P’ = 10, 5 and 1 mm Hg, respectively) down each array.
Although this combination of analysis times provided the lowest S° between the sensor array and
the GC-MS results, many combinations using 2-7 times (instead of 4), spanning approximately
the same range of overall analysis times, provided comparable overall performance to that of the
optimal 4-time data set.

For exposure of the sensor arrays to 2-, 3-, 4-, and 5-component mixtures, Figures 3.5-8,
respectively, show the identified analytes and their estimated concentrations (®) in the analyte
mixtures, as obtained from analysis of the response data using various sensor/pattern recognition
combinations. These figures also display the concentrations of analytes as revealed by GC-MS
analysis (). Figures 3.5a-8a display these analyses using ST responses from all 15 sensors in
each array, with responses at ¢ = 80, 90, 130 and 150 s, and NNLSQ to identify the vapor

constituents and reveal their respective concentrations.
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The cross-validation for EDPCR yielded 3-7 PCs as optimal for each of the pure vapors. No

clear-cut choice was available to determine the “best” fit, in that the model offering the lowest
residual variance was chosen, but only because the residual error obtained with the selected
model was marginally lower than that produced by the second-best fit. Figures 3.5b-8b display
analyses that used all 15 sensors per array and EDPCR, using the optimal number of PCs to
identify and quantify the constituents of each analyte mixture. In each case, analysis using
NNLSQ more closely matched the results obtained with GC-MS. The use of NNLSQ also
yielded smaller variances than were obtained through the use of EDPCR.

For exposures to all fourteen mixtures investigated in this work, Tables 3.3 and 3.4 list the
estimated concentrations and standard deviations for each vapor, as well as the error (9,
produced by using the various data analysis methods. Analysis of the data using NNLSQ
generally produced smaller residual errors than were obtained from analysis using EDPCR. This
measure of the residual variance was calculated using the mean concentration estimations for
each of the mixtures, and therefore contains no information regarding the variance for individual
components. The standard deviations however, showed a significantly larger variance in mixture
analyses for the EDPCR method (Table 3.4) than for the NNLSQ method (Table 3.3).

Analyses were also performed using the responses produced by a limited number of sensors
along each array. In this approach, the responses from the first, middle and last sensor along each
array (detector positions 1, 8 and 15 in Figure 3.1) were sampled at = 80, 90, 130 and 150 s, thus
providing a data set that contained ST information from only three sensors per array. The twelve
sensors that were not sampled provided a GC stationary phase equivalent that acted to separate
vapors as they progressed along the length of each array. To compare ST and traditional data, SS
data was measured using the first three sensors in each array, sampled at ¢ = 205, 210, 215 and
220 s. Of the vapors present in the sampled mixtures, decane possessed the lowest vapor
pressure. Vapor partitioning into sorption-based sensor films is inversely correlated with the
vapor pressure of the analyte,”' thus decane progressed most slowly along each sensor array.
Figure 3.3b shows the response of such a sensor array upon exposure to decane, indicating that
the first three sensors showed a fairly rapid response, and by ¢ = 205 s essentially came to a
steady-state equilibrium response. For the ST and SS method, responses were calculated at four
separate times, to provide each method with an equal number of total response descriptors.

NNLSQ was used to identify and quantify the partial pressure of each vapor in the analyte,
for ST and SS analysis using three-sensor arrays. Figures 3.3c-6¢ display the results obtained
using ST detection with only three sensors per array on exposure to 2-, 3-, 4-, and 5- component
mixtures, respectively. Comparing these results with those presented in Figures 3.3a-6a indicates

that approximately the same results were obtained using this limited ST data set as were obtained
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using the ST response information from the full 15-sensor data set. In contrast, Figures 3.3d-6d
display the results obtained using the traditional SS approach produced using the data from only
the first three sensors in each array. SS analysis produced a marked decrease in the ability of the
sensor array to correctly identify and quantify the presence of vapors in the tested mixtures.

Tables 3.5 and 3.6 list the estimated concentrations for each vapor obtained from exposures
to each of the fourteen mixtures investigated in this work, using three sensors per array, with ST
or SS data, respectively. These tables also present the sum of the squared residual error (x1000)
between the estimated analyte concentrations obtained with each of the pattern recognition
approaches, and the actual analyte concentration values obtained using GC-MS. For every
situation investigated, the use of the ST aspects of the array response produced significantly
better performance in the identification and quantification of the components of the vapor
mixtures than the results obtained using traditional SS response information.

Figure 3.9 displays the sum of the squared residual error for each of the fourteen mixtures
analyzed in this work. The results are presented for data analyzed with (1) NNLSQ using ST
detection with the full 15 sensors per array, (2) EDPCR using ST detection with the full 15
sensors per array, (3) NNLSQ using ST detection with only 3 sensors per array, and (4) NNLSQ
using SS detection (first three sensors). Vapor detection using NNLSQ on the ST response data,
whether employed with the full 15 sensors per array or the limited 3 sensors per array, yielded
approximately equal errors for each of the mixtures, as well as approximately the same variance
in vapor estimation (Tables 3.3 and 3.5). ST vapor detection analyzed with EDPCR, using all 15
sensors per array, generally yielded a higher error as well as a much larger variance in vapor
estimation (Table 3.4). The largest error in each of the mixture analyses was obtained using only

the SS response information provided by the first three sensors in each array.

3.5. Discussion

Sorption-based sensors such as these have been shown to be linear with respect to pure analyte
vapors over relatively low concentration ranges, as well as linear with respect to multiple
vapors.>'”** The development of the ST approach described here is predicated on this response
linearity. Sensor response is essentially a dual-step process. First, chemical thermodynamics
cause a given vapor to partition into the sensor film which causes it to volumetrically expand.
This expansion causes an immediate change in the conductive properties of the film, which is
linear when operating beyond the percolation regime of the composite film and over small
volumetric changes.'®* The simplest model for the sorption behavior is given by the Langmuir

adsorption isotherm, which predicts linear sorption at low concentrations over all species
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adsorbed. **** This model assumes no interaction between any sorbed species and for all sorption
sites to be energetically uniform.”*>* At high concentrations, or in situations where interactions
exist between adsorbed species (which alters the energetics of sorption), this linearity breaks
down. Figures 3.3-6 show an unprecedented ability to identify mixtures, however deviations are
evident between actual mixtures presented and sensor array perception. For example, Figure 3.6a
shows an over-estimation of ethanol. This over-perception is likely due to a change in the
adsorption energy of ethanol caused by the adsorption of ethyl acetate and chlorobenzene in the
sensor film. These energy differences will vary to different degrees depending on species
adsorbed, occasionally causing the sensor to wrongly perceive any given mixture.

The use of ST response data for vapor detection allowed for the extraction of important
chemical information not available using traditional SS data. In this work, unnormalized
baseline-corrected response data were used, to preserve information regarding the concentrations

of the vapors in the test analytes. However, often sensor data is normalized:

T2 Si(t)

S.(0) = : ©)

ns nt

PIAG)

i=1 1=
where S;(2) is the response extracted from sensor i at time ¢, ns is the number of sensors used, and
nt is the number of times used to extract a response S;(?). This normalization procedure creates a
unit feature vector response for each exposure, largely independent of concentration, that can be
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used as a fingerprint for an individual analyte. Performing principal components analysis

(PCA) on normalized response data often reveals that the vast majority of the array response
variance is contained in only a few principal component (PC) vectors.'™**7

Performing PCA on normalized ST pure vapor training data consisting of 15 sensors per
array indicated that the first five PCs contained 85% of the total response variance (35, 22, 15, 9
and 4%, respectively). Performing the same PCA using the normalized 3 sensors per array ST
vapor training data similarly revealed that 86% of the total response variance was contained in the
first 5 PCs (37, 21, 14, 8 and 6 %, respectively). The similarities in the PC eigenvalues for the
two cases suggests that no significant additional information was extracted by using the data from
the full 15 sensors in the array.

These findings are reflected in Figures 3.5-9, which show approximately equal performance
for mixture identification for the two approaches. When PCA was performed on pure vapor
training exposures for the normalized SS data set using the first three sensors in each array, the
first five PCs contained 98% of the total response variance (65, 20, 9, 2 and 2%, respectively).
While 85% of the variance is contained in only the first 2 PCs, 5 PCs were required for the ST
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data (note that both data sets have an equal number of response descriptors). The differences in
mixture analysis performance reflect the limited amount of information obtained using the
traditional SS sensing approach (Figures 3.5-9). Spreading out the variance over more PCs
translates into more unique information, and an increased ability to analyze vapor mixtures, in
accord with the results and conclusions reported herein.

NNLSQ yielded better mixture analysis than that obtained using EDPCR. EDPCR models
the response of a sensor array toward pure vapors by loading the total response variance into a
few chosen PCs, and truncates the data set by eliminating what is hopefully mostly noise. The
EDPCR algorithm requires a response that is linear with concentration, and additive with respect
to multiple vapors, to correctly identify analyte mixtures. Given the results obtained with
NNLSQ, the sensors appear to be largely linear in their response. For responses perfectly linear
with concentration, in the EDPCR method, only a single PC would be required to accurately
model each pure vapor. This has been observed for polymer-coated QCM responses on exposure
to pure vapors at varying concentrations.”’ The cross-validation used here to determine the
optimal number of PCs yielded 3-7 PCs for each pure vapor, indicating the non-linearity in the
data. The non-linear sensor responses cause EDPCR to incorrectly determine the components of
analyte mixtures because of the lack of a perfect fit.

Whereas EDPCR condenses the dominant modes of the data variance into a few PCs,
NNLSQ averages out relevant chemical information, and noise, over each of the individual
response descriptors, and does not require an exact fit. Given the relatively large number of
response descriptors in the data sets (48 for 3-sensor ST, 240 15-sensor ST), this averaging effect
appears to aid the identification of the constituents of the vapor mixtures. Thus, EDPCR may be
better-suited to simply describe possible fits, as in the SIMCA algorithm, rather than forcing the
algorithm to decide on the single model that offers the lowest residual variance.

PCA is well-documented to be useful for displaying differences in the equilibrium response
properties of an array exposed to various pure vapors. !>’ However, when modeling the sensor
responses of pure vapors collected using the ST method, some of the information important for
mixture analysis may only be present in the lower PCs. Thus, a cross-validation procedure was
used to determine the optimal number of PCs needed to model the pure vapors that yielded
relatively poor results (Figures 3.5-9). For a more thorough analysis of the ability of EDPCR to
identify and quantify mixture components, pure analytes were each modeled using different
number of PCs ranging from 1 to 12. However, no combination of PCs offered a significant
increase in array performance. The poor performance across all combinations of PCs suggests

that EDPCR performed poorly due to non-perfectly linear sensor responses.
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A single flow rate was employed in this study. The six pure analyte vapors chosen
represented various chemistries and additionally spanned two orders of magnitude in vapor
pressure. Hence, the given sensor arrangement and implementation proved sufficient to identify
and quantify mixtures of the chosen vapors. However, as shown in Figure 3.3, for some analytes
the latter sensors may never reach equilibrium with the concentration in the initial vapor stream.
Thus, additional response information, including finer resolution of the progression of the analyte
vapor down each array, could be extracted by using longer length arrays or through the use of
multiple vapor flow rates. The limit of implementation of this approach would involve the use of
either a flow rate slow enough that all sensors are in equilibrium with the vapor stream they are in
contact with, limited by the rate of diffusion of vapors down the array; or the use of an infinitely
long sensor array, which would be the equivalent of a GC column with sensors located along its
length. An improved geometric implementation maximizing the information extracted per sensor
employed would involve an exponentially spaced array of sensors, to better capture the ST
response differences for analyte vapors having a large range of partition coefficients with the
sensor films. Because approximately the same results were obtained when the ST responses were
described by 3 or 15 sensors per array, only a limited number of sensor response descriptors were
required for the vapors evaluated, to capture the necessary information to perform mixture
decompositions down each array. Hence, when the chosen vapors possessed sufficient
differences in chemistries and vapor pressures, only a fraction of the total sensors were required.
Alternatively, had the vapors been more similar chemically, greater detail may have been
required for mixture identification, and differences between the analysis of the ST response set
containing the full 15 sensors per array and the limited set containing only 3 sensors per array
would be observed.

In this work, the sensor material was a sorption-based composite comprised of small organic
molecules and carbon black. Such films not only performed the vapor sensing function, but also
served as the stationary phase into which the vapors partitioned and separated. The
chemiresistive sensor films can be deposited and remain functional in most any form factor,
making them especially attractive for use in the ST array response implementation. Many
sorption-based sensors, however, are restricted in terms of the forms in which they can be
fabricated. Coated quartz crystal microbalances, for instance, are restricted to the shape of the
underlying quartz substrate. In situations such as these, in which one can not assemble the
sensors in the type of array used here, ST mixture analysis could be applied by maintaining a low
vapor headspace volume, and coating the walls of the chamber with various stationary phases. In
this case, the only restriction would be that the stationary phases and sensors must exhibit mass

uptake and sensor response, respectively, that is linear with concentration and additive in their
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response with respect to multiple vapors. If these criteria are met, the ST approach could be used
with a wide variety of sensor types.

The ST data reported herein were obtained in a controlled laboratory setting. The flowrate to
the sensor chamber was set at 150 mL min™, and ranged from 145 to 155 mL min"' with random
fluctuations throughout the training and testing periods. These fluctuations were accounted for
during the training phase of the sensors. Had higher flowrate precision been achieved, the
sensors would exhibit less variance in their responses, providing enhanced ability to correctly
identify mixtures. Additionally, if the flowrate exhibited a systematic drift, the fingerprint
response of each of the vapors could change significantly, causing degradation in the ability to
correctly identify mixtures. To better understand how well this ST approach would perform in
the real world, further work should be done to investigate how sensitive and/or robust this
approach is to changes in exposure flowrate, as well as fluctuations/changes in temperature,
humidity, and sensor response (drift). Furthermore, previous work has shown the ST method can
readily detect low concentrations (ppb) of low vapor pressure analytes in the presence of higher
concentrations (ppm) of high vapor pressure analytes.* Additional studies should be performed
to better understand to what extent the ST method is able to identify a vapor present at low

concentration in the presence of vapor(s) present at higher concentrations.

3.6. Conclusions

Use of ST data has been shown to provide enhanced performance in analysis of vapor mixtures
relative to the traditional SS response of an array of broadly cross-responsive vapor sensors. In a
low-volume headspace chamber that allows each sensor to be exposed to a well-defined, time-
varying vapor stream, the sensor material acted as a chromatographic stationary phase, causing
vapors to be retarded in progression along the array. The retardation was proportional to the
sensor/vapor partition coefficient. The resulting sensor responses at long times and/or at
positions close to the inlet captured the traditional SS sensor response differences to an
unchanging vapor stream, but at shorter times and positions further from the inlet, also measured
the progress of each vapor down the sensor array. Under such conditions, significantly more
information was obtained on analyte mixtures relative to the information obtained using
traditional sensor responses alone. The observed behavior was in accord with the physics of the
time-varying convection-diffusion equation, with the flux dictated by the concentration of vapor
in each of the phases and the vapor/sensor partition coefficient.”® Modeling of the ST method to
better understand its limitations, as well as explore its potential in microfluidic application, is

currently underway.’®
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Previous reports using cross-responsive sensor arrays have addressed pure vapor

identification, or the identification of complex mixtures as a whole, but the identification and

analysis of mixtures containing more than three components has not been previously achieved.

The ability of an ST sensor array consisting of only four sensor types to correctly identify and

quantify 2-, 3-, 4- and 5-component mixtures, using a library consisting of responses to six pure

analyte vapors, demonstrates the importance of the use of ST information. The implementation

of the ST method thus clearly increases the possible application space of such sensor arrays for

analysis of analyte mixtures, as well as for analysis of pure analytes.
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Table 3.1: Sensor suspensions used to spray sensor films. For each suspension, non-carbon
black components were combined with ~ 60 mL of the listed solvent and the suspension was
sonicated for > 10 min. Carbon black (CB) was then added to the solution, which was then
sonicated for > 30 min to obtain a well-dispersed suspension. Each suspension was 75% carbon

black by weight. DP = dioctyl phthalate.

suspension sensor materials solvent
1 35 mg tetracosane, 15 mg DP, 150 mg CB toluene
2 35 mg lauric acid, 15 mg DP, 150 mg CB tetrahydrofuran
3 50 mg propyl gallate, 150 mg CB tetrahydrofuran
4 50 mg quinacrine dihydrochloride, 150 mg CB chloroform
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Table 3.2: Fractional vapor pressures (x1000) of analyte vapors present in each of the mixtures,

as determined by GC-MS sampling (calculated by eq (1)) immediately prior to entry into the

sensor chamber.

ethyl chloro-

mixture | hexane decane acetate benzene ethanol  butanol
1 0 23+11  27+15 0 0 0
2 0 0 13£2 2441 0 0
3 0 0 0 23+1 0 22+1
4 0 20+1 0 0 0 312
5 0 113 8+7 20+4 0 0
6 2342 0 0 0 29+8 44416
7 2748 14+8 0 0 0 44413
8 0 0 441 12+1 23+6 0
9 22+7 0 0 28+11 45+9 0
10 18+4 12+4 0 0 27+4 11+3
11 9+8 1442 0 2246 0 69427
12 13+8 11+4 8+2 0 31+6 20+5
13 12+0 0 4+0 8+1 2342 1342
14 8+0 5+0 4+0 8+0 2742 0
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Table 3.3: Fractional vapor pressures (x1000) of analyte vapors present in each of the mixtures,

as determined by NNLSQ, using all 15 sensors per sensor array with S(z) extracted at ¢ = 80, 90,

130 and 150 s. Mean and standard deviations are given, calculated over 20 exposures to each

mixture. Squared residual error (S°) for each mixture, calculated between the listed means and

those obtained with GC-MS (Table 3.2), are given in the final column.

ethyl chloro-
mixture | hexane decane acetate benzene ethanol  butanol s°
1 442 18+8 3443 242 7+10 242 0.15
2 0 443 17+4 26+2 8+6 6+5 0.14
3 0 344 0 29+8 344 31+6 0.14
4 0 31+3 0 1+£1 1£2 3544 0.14
5 1£2 11£3 1843 2242 8+5 312 0.18
6 3243 1+1 343 0+1 20+14 11+9 1.18
7 30+5 3+3 1+£2 1+£2 37+10 8+8 2.80
8 1+1 243 10+£2 1744 4449 3+6 0.52
9 30+6 1£2 1+£2 164 36+6 243 0.30
10 26+2 8+3 242 0 24+9 1543 0.11
11 19+3 442 243 17+3 15+4 2244 2.66
12 22+2 5+3 132 0+1 22+8 14+6 0.26
13 26+3 0 10+£3 7£3 24+8 13+4 0.23
14 1643 3+2 542 10+£3 31+10 10+5 0.19
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Table 3.4: Fractional vapor pressures (x1000) of analyte vapors present in each of the mixtures,
as determined by EDPCR, using all 15 sensors per sensor array with S(?) extracted at ¢ = 80, 90,
130 and 150 s. Mean and standard deviations are given, calculated over 20 exposures to each
mixture. Squared residual error (S°) for each mixture, calculated between the listed means and

those obtained with GC-MS (Table 3.2), are given in the final column.

ethyl  chloro-
mixture | hexane decane acetate benzene ethanol butanol s’
1 0+2 7+10 4447 143 1£2 0+2 0.55
2 7+9 1+4 19+7 14+11 245 0 0.19
3 548 5+15 0 30+£23 0 15+£22 0.15
4 0 21+14 0 2+7 0 3614 | 0.03
5 8+17 5+10  21+13  10+£10 3+12 0 0.38
6 2748 0 4+9 0 13+13 11+16 | 1.38
7 29+12 0 4+7 1+4 0+23 28+17 | 0.47
8 8+6 245 30+10 0 16+23 0 0.94
9 35+10 1+£3 20+7 0 5+12 0 2.95
10 29+18 345 549 0 19+22 0 0.41
11 28+7 0 3+7 5+10 1+4 21+£20 | 3.16
12 17+16 0 23+11 0 13422 0 1.09
13 2348 0 24+8 145 8+20 0 0.96
14 20+8 1+4 18£11 145 9+19 0 0.73
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Table 3.5: Fractional vapor pressures (x1000) of analyte vapors present in each of the mixtures,
as determined by NNLSQ, using the first, middle and last sensor in each array with S(?) extracted
at ¢t = 80, 90, 130 and 150 s. Mean and standard deviations are given, calculated over 20
exposures to each mixture. Squared residual error (S°) for each mixture, calculated between the

listed means and those obtained with GC-MS (Table 3.2), are given in the final column.

ethyl  chloro-
mixture | hexane decane acetate benzene ethanol butanol s’
1 32 20+8 3642 1£2 7£10 343 0.16
2 0 5+5 1544 25+3 11+7 7£5 0.20
3 0 5+5 0 29+8 343 32+6 0.17
4 0 30+3 0 0+ 1£2 38+3 0.15
5 0+1 13+4 1742 2142 9+5 543 0.19
6 2943 0+l 444 1+1 33+13 10+7 1.23
7 28+4 244 1+2 3+4 3749 10+8 2.68
8 0+£1 243 6+4 18+4 51+10 3+5 0.84
9 27+5 1+£2 1£2 174 42+6 1£2 0.16
10 24+3 5+4 242 0 30+9 13+5 0.10
11 20+5 32 1+£2 15+4 15+5 24+2 2.54
12 18+3 443 1542 0 28+8 11£5 0.21
13 27+5 0 1042 444 2849 1443 0.30
14 16+4 343 542 8+4 35+10 1045 0.23
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Table 3.6: Fractional vapor pressures (x1000) of analyte vapors present in each of the mixtures,

as determined by NNLSQ, using the first three sensors in each array with S(z) extracted at r =205,

210, 215 and 220 s. Mean and standard deviations are given, calculated over 20 exposures to

each mixture. Squared residual error (S°) for each mixture, calculated between the listed means

and those obtained with GC-MS (Table 3.2), are given in the final column.

ethyl  chloro-
mixture | hexane decane acetate benzene ethanol butanol 57
1 35821 549 4+7 5+6 3749 0 347
2 6+7 1+£3 8+13 2544 25+15 1£2 0.69
3 11+10 0 0+1 20+6 33+12 9+12 1.39
4 42+17 3+8 243 6+6 25+5 0 3.68
5 21+11 245 3+8 24+7 2248 0 1.05
6 15£12 3+5 243 5+8 47+15 3+3 2.11
7 15+£15  10+10 1£2 3+6 52411 1+1 4.72
8 244 344 4+6 7+7 72+10 0 2.44
9 7£11 11+11 243 1513 48«14 0+l 0.53
10 40+8 0 0 749 27+8 0+l 0.80
11 3749 0 0 11+£9 35+4 0 7.09
12 31+7 0 0 9+7 39+5 0 1.05
13 3148 0 0 5+7 49+9 0+1 1.23
14 24+11 245 0 12+10  40+11 0 0.47
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Figure 3.1: Sensor substrate layout for a single constant-composition sensor array. The sensor
solution was sprayed using an airbrush to generate a 5 mm X 75 mm thin film array 1-3 pm in
thickness. 15 pairs of underlying Au electrodes allowed for the monitoring of 15 sensors along

the array.

I~ 75 mm | "_25 mm

-~

detectornumber|1 2 3 4 5 6 7 8 9101112131415 £5mm

vapor vapor
tow > | = ;..

detector film {

[«—le—5 mm




69

Figure 3.2: Chamber design used to accommodate multiple vapor flow pathways and sensor
multiplexing: (a) three-dimensional chamber geometry with dimensions shown; b) head-on view
of (a), showing all four sensor arrays as well as the vapor flow pathways, with the dashed section
shown in detail in (c), which shows individual vapor flow pathways and dimensions, as well as a
sensor film (not to scale).

sensor substrates (electrodes exposed)

sensor substrates
1

Teflon

C) aluminum housin coating sensor film

sensor substrate vapor flow

pathways 3.5 mm



70

Figure 3.3: Response of a 15-sensor array of propyl gallate/carbon black (sensor composition 3,
Table 3.1) to a) pure hexane and b) pure decane, each delivered at P/P° = 0.050. S, and S;s
denote the 1 and 15" sensor in the array, respectively. To put all sensors on the same scale, for

visualization, each sensor response was scaled by its response at ¢ =220 s.
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Figure 3.4: Response of the first and ninth sensors (detectors 1 and 9, Figure 3.1) along a lauric
acid/dioctyl phthalate/carbon black sensor array (sensor type 2, Table 3.1) to pure ethyl acetate
delivered at P/P° = 0.050, pure decane delivered at P/P° = 0.050 and a mixture of ethyl acetate
and decane exposed at P,,;,/P’,i = 0.050.
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Figure 3.5: Comparison between various sensor/pattern recognition configurations in their
analysis of 2-component mixture 3 (Tables 3.2-6): a) 15 sensors along each array, responses
sampled at t = 80, 90, 130 and 150 s, analyzed with NNLSQ; b) 15 sensors along each array,
responses sampled at t = 80, 90, 130 and 150 s, analyzed with EDPCR; c) first middle and last
sensor along each array (detector numbers 1, 8 and 15, Figure 3.1), responses sampled at t =80,
90, 130 and 150 s, analyzed with NNLSQ); and d) first three sensors along each array (detector
numbers 1-3, Figure 3.1), responses sampled at t =205, 210, 215 and 220 s, analyzed with
NNLSQ. Results obtained with each sensor/pattern recognition configuration (®) and GC-MS
(O) are given, with error bars. Al — A6 denote hexane, decane, ethyl acetate, chlorobenzene,

ethanol, and butanol, respectively.
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Figure 3.6: Comparison between various sensor/pattern recognition configurations in their

analysis of 3-component mixture 8 (Tables 3.2-6). See Figure 3.5 caption for descriptions.
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Figure 3.7: Comparison between various sensor/pattern recognition configurations in their

analysis of 4-component mixture 10 (Tables 3.2-6). See Figure 3.5 caption for descriptions.
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Figure 3.8: Comparison between various sensor/pattern recognition configurations in their

analysis of 5-component mixture 12 (Tables 3.2-6). See Figure 3.5 caption for descriptions.
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Figure 3.9: Residual squared error (S°) observed between mean analyte estimation using various
sensor/pattern recognition configurations and mean analyte estimation using GC-MS for each of

the fourteen mixtures attempted in this work (last columns of Tables 3.3-6).
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Chapter 4

Modeling of Spatiotemporal Response and
the Definition of an Optimal Operational
Regime for Mixture Analysis

4.1. Abstract

A model of the mass flow in a small volume chamber with small molecule/carbon black
composite (SMCBC) chemiresistor sensors has been developed. The model was used to predict
the spatiotemporal (ST) response of the sensors. The model used the convection-diffusion
equation in the vapor space above each sensor film, the diffusion equation in the sensor film, and
boundary conditions that forced analyte flow across the gas/sensor interface. Four SMCBC films
were fabricated using 75% (wt) CB, consisting of lauric acid, propyl gallate, quinacrine
dihydrochloride dihydrate, tetracosane, and dioctyl phthalate. Partition coefficients and sensor
response slopes were measured for these films in response to hexane, benzene, octane, decane,
methanol, ethanol, propanol, butanol, chloroform, ethyl acetate, and chlorobenzene, and the
modeled responses were in good agreement with experimental responses. Pure vapors and vapor
mixtures were modeled for a wide range of chamber geometries and vapor delivery flow rates.
Pure vapor responses were then used to train the sensors. A set of 16 vapor mixtures that
consisted of 2, 3, 4, and 5 components were then modeled assuming response additivity, and used
to challenge the sensors. Using nonnegative least squares, the sensor arrays were tasked with the
identification of each of the modeled mixtures. The sum of the squared residual between the
modeled and calculated analyte components for all mixtures, S°, was calculated and used to
characterize the mixture analysis performance of the array. Two dimensionless Peclet number
analogs, Pe,. and Pe..', were used to characterize the sensor response. Pe,. was the ratio of the
diffusion time from the top to bottom of the vapor channel (perpendicular to vapor flow) vs. the
convection time in the direction of vapor flow. When the Pe,. was large, vapor in the space

overhead of the sensors was not well mixed and desired analyte depletion effects were not
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observed. Pe..' was the ratio of the convection time vs. the diffusion time in the direction of
vapor flow. When Pe..' was large, significant mass transport in the vapor space was due to
diffusion rather than convection, and the sharp progression of the vapor front along the arrays was
diminished. Chambers with values of the Peclet parameters below certain critical values were
predicted to be optimum for ST sensor operation, and can be used to design a sensor cavity

optimized for the analysis of mixtures.

4.2. Introduction

The widespread use of broadly responsive sensor arrays to identify and quantify vapors in the real
world has been frustrated by their inability to correctly identify vapor mixtures. Sensor types
include tin oxide sensors,”” coated surface acoustic wave devices,"’ conducting organic

polymers,*'® coated micromachined cantilevers,'"'? dye-impregnated polymers coated onto

13,14 15-17

optical fibers or beads, " polymer/carbon black composite chemiresistors, and low-volatility
small molecule/carbon black composite (SMCBC) chemiresistors.'™"  For each of these sensor
architectures, different materials, which each uniquely interact with the vapor phase, are
employed to create a sensor array. Rather than using a traditional “lock-and-key” approach
wherein a single sensor is required for each vapor, such array-based sensors are broadly
responsive to many vapors. Each vapor creates a unique response pattern across the sensor array.
Various forms of pattern recognition are then used to match the array response from an unknown
to the responses from known vapors. These arrangements have been termed “artificial” or
“electronic” noses due to their similarities to mammalian olfactory processes.***!

Typical sensor studies to date have focused on obtaining rapid, steady-state responses

between each sensor and the vapor stream being sampled,”"*'°

through the use of relatively large-
volume sensor chambers and exposure of the vapors to the sensors at high flow rates. Large-
volume sensor chambers ensure that the partitioning of the vapor into the sensor array does not
significantly change the concentration of analyte in the sampling stream. The high flow rate
ensures that all sensors along the array are exposed to the sampling stream at essentially the same
time. Studies utilizing computational fluid dynamics have sought to determine sensor/chamber
designs and operating conditions which best provide this evenly distributed rapid response.”**’
The ability of a broadly responsive vapor sensor array to identify and/or discriminate between
pure vapor species is critical. In this mode of operation, the array is first trained and then tested
against the pure species of interest.>'""'*!®** An alternative mode of sensor array implementation
seeks to discriminate between different, complex mixtures. In this mode of operation, the array is

trained for and then tested against different mixtures, however, decomposition of the mixture into
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constituent components is not performed. For example, sensor arrays are able to detect subtle

differences in odors generated from different types of coffees,”>?® beers,'*’ hops,28 wines, >

3132 and teas.”” Under this traditional implementation, whether the array is tasked with

vinegars,
pure specie or complex mixture identification, the array must first be trained against what it will
encounter during testing. Many types of cross-responsive sensor types are highly capable under
this mode of operation.

However, when the number of analytes or mixtures that need to be classified becomes large,
extensive prior training is required. Whereas predictable and reproducible vapor presentations
are easily obtainable in the laboratory, field operation presents the possibility of encountering a
large number of mixtures, with the number growing exponentially as the pure specie sampling
pool increases. The number of potential mixture types grows according to 7,, = 2" —1, where
n, is the number of pure species present in the sampling library, and 7, is the number of mixture
types comprised of unique analyte combinations, irrespective of analyte concentration. The
number of mixture types one could encounter in the field based on a library containing only 20
pure vapor species is 10°! These numbers are relevant only for the determination of whether a
given component is present in a mixture. When a variable concentration is allowed for each
vapor and its concentration must be determined, the number of vapor mixtures one may encounter
effectively becomes infinite and beyond the means of any reasonable training protocol.

Broadly responsive sensor arrays often exhibit a response that is linear with vapor

41834 This behavior should allow for

concentration, and additive with respect to multiple vapors.
training on only 7, pure components, and thereafter the sensor array should be able to identify
combinations of the pure components at various concentrations. However, utilizing traditional
rapid steady state responses, broadly responsive sensor arrays have failed to correctly identify

multi-component mixtures.*>*°

On exposure to vapor mixtures, the arrays are quickly
overwhelmed and unable to correctly assign analyte identity. Modeling of polymer-coated
surface acoustic wave (SAW) sensor responses that were assumed to be linear with concentration
and additive with respect to multiple vapors has exhibited difficulty in the correct identification of
3-component mixtures.”’

The use of a flow stream that generates a time-dependent response profile may provide an
additional dimensionality to each vapor’s sensory response space. This approach could thus
provide a method to improve the ability of broadly responsive sensor arrays to identify complex
vapor mixtures. In mammals, the flow dynamics of sniffing, combined with differences in odor
receptor binding affinities, are important for odor perception.”’* In humans, for example, each

individual has a low- and high-flow rate nostril. This difference is caused by blood flow-induced

nostril occlusions, which vary periodically with time. These varying flow patterns have been
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shown to affect odor perception.® A sensor chamber modeled after a canine nasal cavity, with
sensors placed throughout the cavity, has been shown to provide enhanced discrimination in
various classification tasks relative to sensors located only at the cavity inlet.*

To measure the composition of vapor mixtures, distributed chemical sensing has been
employed with metal-oxide-semiconductor field-effect transistor (MOSFET) sensors. In this
design, a metal catalyst was deposited along the interior of a sensor chamber, in the proximity of
several MOSFET sensors. As select vapors progressed through the chamber, the vapors reacted
to form other analytes that were not easily detected by the sensors. While the first sensor along
the array responded to the original vapor stream, the last sensor along the array responded to an
altered vapor stream. Significant improvements in the identification of binary mixtures were
observed, and moderate levels of 3- and 4-component mixture identification were achieved for a

library consisting of 4 pure vapors.**

However, this approach was limited to vapors that
selectively reacted at a catalyst to form vapors that were not readily detectable at the downstream
Sensors.

A more widely applicable approach has been employed with carbon black-based composite
chemiresistive sensors. Using a low volume sensor chamber with linearly arranged sensor arrays,
the sensor material has been shown to act similarly to a chromatographic stationary phase.'”"
Vapors partitioned into the sensor material as dictated by the partition coefficient, K,,, between
the sensor and vapor phases. Strongly partitioning analyte vapors were significantly sorbed by
the sensor phase, slowing the progression of analyte along each sensor array. While initial
sensors along the array responded to the concentrations of the incoming vapor stream, latter
sensors exhibited delayed responses due to significant analyte uptake.'”"

The progress of each vapor along the sensor array was dictated to first order by the flow rate,
chamber geometry, and mass uptake capacity of the sensor film. This behavior created a space
and time dependent, or spatiotemporal (ST), sensor response. This ST response increased the
dimensionality of response space. Recent work has shown that the training of such sensor arrays
toward pure vapors allowed robust identification of mixtures containing up to 5 components.'’

This work defines an optimized operational regime for capturing an ST response using
SMCBC sensors. A model for the ST sensor response was generated and was implemented for
sensor geometries and vapor flow rates spanning several orders of magnitude. Simu