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Abstract 
 
Broadly responsive vapor sensor arrays, or so-called “electronic noses,” have been explored 
and/or used for many years as a means to detect the vapors present in the headspace of a variety 
of targets, such as coffees, wines, vinegars, oils, explosives, and nerve agents, and for disease 
diagnosis.  Electronic nose sensing modalities often exhibit a response that is linear with 
concentration, and additive with respect to multiple vapors.  Ideally, one could simply train an 
array towards the pure vapors of interest, and use that pure vapor training to identify either pure 
vapors or vapor mixtures during field-testing.  This, however, has proven difficult, and has 
limited the utility of this vapor detection approach for a number of applications. 
 This thesis utilized a low-cost, low-power sensing modality, insulator – carbon black 
composite chemiresistors, and exploited their linear response properties to enhance the 
classification rates of both pure vapors and vapor mixtures, based on pure vapor training.  Sensors 
utilizing non-polymeric, small organic molecules as the insulating component were demonstrated 
to offer enhanced separation between pure vapor response clusters, and lower detection limits, 
relative to the traditional use of polymers as the insulating phase.  These sensors were then used 
in a sensing geometry that induced a space- and time, or spatiotemporal (ST) dependence, to the 
sensor response, which increased the amount of chemical information extracted from the sensor 
response.  This ST response information allowed for the correct classification of vapor mixtures 
consisting of up to 5 components, with training on only pure vapors.   
 A mass uptake model for the ST response of the sensors was developed, and vapor detection 
and mixture analysis was simulated for chamber geometries and vapor delivery flow rates 
spanning several orders of magnitude.  The data were first used to define an optimized ST sensing 
regime for mixture analysis, based on two dimensionless Peclet number analogs.  The data were 
then used to identify the inherent properties of the pure vapor training data that allowed for 
mixture analysis to be performed at high levels, specifically that the minimum resolution factor 
between all binary vapor combinations in the training library was sufficiently high.   
 Finally, the utility of the ST response was demonstrated to offer enhanced pure-vapor 
classification rates, relative to the traditional steady state approach typically employed with 
broadly responsive array-based sensing.  These enhanced classification rates were demonstrated 
using a number of classification algorithms, including a bioinspired algorithm based on Fisher’s 
Linear Discriminant.  In summary, the results demonstrated herein quantify, in different ways, 
what is required for classification optimization, and in doing so increase the utility of this 
approach to vapor detection for a number of applications.   
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Chapter 1 
 
 
Introduction: Electronic Noses and Polymer-
Carbon Black Composite Vapor Sensors 
 
 
1.1. Electronic Nose Introduction 
 

No man-made sensor system combines the sensitivity, low power, rapid response, selectivity, and 
ability to track an odorant to its source that is characteristic of the olfactory system of a canine.  
In mammals, G-protein-coupled receptors (GPCRs) are a broad class of trans-membrane 
receptors that are used in many physiological processes, such as visual transduction, hormonal 
regulation, and stimulation and inhibition of various processes.1  The mammalian genome possess 
at least 1,000 olfactory receptor genes2 that are part of the broader GPCRs class.  Hence, 
olfactory receptors constitute the largest family of GPCRs in mammals.  These º1,000 genes can 
potentially encode up to º1,000 different functional odor receptors.  However, mammals are able 
to detect over 10,000 different odors.  Thus, the receptors must be broadly responsive in their 
response properties.  In this architecture, a given receptor will be triggered by more than one 
odorant, and an odorant, in turn, will produce a response from more than one receptor.3  Olfactory 
receptors are triggered in the olfactory epithelium, and then send a response through the olfactory 
bulb to the brain, for processing and odorant identification.   

This biological process of olfaction lays the foundation for artificially created “electronic 
noses.”  Electronic noses began to develop into their modern form in the mid-1980s.  Prior to this, 
broadly responsive sensor arrays had been investigated to a limited extent; however, bottlenecks 
in electronics and computational capability limited progress.4,5 New technologies have been 
developed, and implementations of various pattern recognition algorithms, the workhorse of any 
electronic nose configuration, have flourished in the past 15 years.  

Figure 1.1 schematically depicts a generic electronic nose architecture. In an electronic nose, 
an array of multiple sensors is used.  Each sensor is broadly responsive, responding to many 
odorants, as is the case in the mammalian olfactory system.  In practice, a gaseous odorant is 
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exposed to the sensor array, generating a time-varying sensor signal, Si,j(t).  Each of these sensor 
signals is then processed, and a single metric response descriptor is generated for each sensor, 
creating an array response.  During a training phase, the array is exposed numerous times to 
odorants that will be used later to challenge the array in identification tasks.  The training process 
creates an odorant database.  During subsequent testing of unidentified odorants, the array 
response is compared against the training library, and a prediction is made as to the identity and 
concentration of the odorant.  Various levels of processing are required, and ultimately some form 
of pattern recognition is used to identify the odorant, mimicking the steps involved in odor 
identification in the mammalian olfactory system. 

Electronic noses implement this generic architecture in various ways.  Surface acoustic wave 
devices,6,7 tin oxide sensors,8,9 conducting organic polymers,10,11 polymer-coated quartz crystal 
microbalances,12,13 polymer-coated micromachined cantilevers,14 dye-impregnated polymers 
coated onto optical fibers or beads,15,16 and polymer composite chemically sensitive resistors17,18 
comprise only a few of the broadly responsive sensors that have been employed in the 
construction of electronic noses.  Pattern recognition algorithms that have been used include 
linear, statistically based methods such as partial least squares, principal components analysis 
(PCA), Fisher’s linear discriminant (FLD), k-nearest neighbors, and soft independent modeling of 
class analogy; as well as non-linear, non-statistical methods that include various implementations 
of  artificial neural networks.8,19-21  This thesis will detail the recent developments of one sensing 
modality that has been developed at Caltech: insulator-carbon back composite chemiresistors.   
 
1.2. Vapor Sensing With Insulator – Conductor Composites 
 

1.2.1. Phase Equilibrium 
 

When two phases come into contact, equilibrium will eventually be established for all species 
present.  This is true regardless of the types of phases involved.  The equilibration process 
between a vapor and a solid sorption based material forms the basis of sorption-based sensors.   

Consider a vapor in equilibrium with an ideal solution of the vapor in a solid sorbent.  In ideal 
solutions at equilibrium, Raoult’s law is followed for all components.22,23  Thus: 

 

  o
AsA PxP = ,        (1) 

where PA is the pressure exerted by species A  in the vapor phase, xs is the mole fraction of the 
vapor in the solid sorbent, and o

AP  is the vapor pressure of the pure liquid at the same 
temperature.  Rearranging eq (1) gives: 
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  o
A

A
s P

Px = .        (2) 

The mole fraction, and consequently, the molarity, molality or weight percent of the vapor in 
the solid is a function of the ratio of the pressure exerted on the solid by species A divided by the 
vapor pressure of pure A.  Therefore, for an ideal solution, the solubility of a vapor in any sensor 
material is a function only of the properties of the vapor, and not the solid.   

For non-ideal solutions, eq (1) can be written in terms of activities:22,23 
 

  o
AsA

o
AsAA PxPaP γ== , ,      (3) 

where aA,s is the activity of vapor species A in the solid, γA is the activity coefficient of species A 
in the solid, and the vapor is assumed to be an ideal gas at ambient pressure.  For real solutions, 
Henry’s law is a better approximation for the solute then Raoult’s law, hence: 

 

  sHA xkP ≈ ,        (4) 

where kH  is the Henry’s law constant, equal to γA
o
AP  (eq (3)).  Combining eq (3) - (4) yields:  

 

  
H

A
o
A

A

A
s k

P
P
Px ==

γ
1 .       (5) 

The interactions between the solid and vapor that are responsible for the differences in solubilities 
of a given gas in different solids, and the differences in Henry’s law constants, or more generally 
the non-ideality, are therefore taken into account by differences in the activity coefficient for each 
gas/solid combination.  The equilibrium mole fraction of the species in the solid is therefore 
dictated by the ratio of the pressure exerted by the species on the solid to the vapor pressure of the 
species, divided by the activity coefficient (eq (5)).  
 

1.2.2. Insulator – Conductor Systems and Percolation Theory 
When a non-conducting substance (i.e., an electrical insulator) is mixed with a conductive 
substance, the electrical properties of the resulting blend will exhibit several regimes of electrical 
conductivity as the mass fraction of the insulator (conductor) is varied.  At high fractions of 
insulator, the composite is an insulator with a resistance near that of the pure insulator.  At high 
fractions of conductor, the composite is a conductor.  In both regimes, the resistance is 
approximately a linear function of the mass fraction of the conductor.  The regime at which the 
composite begins to change from an insulator to a conductor is known as the percolation regime.  
In this regime, the conductance has a highly non-linear dependence on the mass fraction of 
conductor.  At the percolation threshold, the first continuous conducting pathway occurs within 
the composite.  At this point, the resistance of the composite depends exponentially on the 
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loading of the conductor, and small increases in the loading of the conductor will then produce 
large increases in the conductivity of the composite.   

Quantitatively, the resistance, R, of an insulator-conductor composite can be expressed as: 
 

  2/12
2121 ])2(2)[(

)2(

mc

mc

RRzBBBB
RRzR

−++++
−

= ,   (6) 

where 
 

  )]/1)(2/(1[1 fzRB cc υ−+−=      (7) 

and 
 

  ]1))2/([(2 −= fzRB cm υ .      (8) 

Here, Rc and Rm are the resistances of the pure conducting and insulating substances, respectively; 
z is the coordination number for the conducting particles in the insulating matrix (which takes 
into account how the two substances pack); υc is the volume fraction of conducting material in 
the composite; and f is the total packing fraction of the composite (f ≤ 1).24,25  Figure 1.2 plots R 
vs. υc for a hypothetical insulator-conductor composite with Rc = 10-5 Ω-cm, Rm = 1010 Ω-cm, z = 
4, and a total packing fraction of f = 0.5.  The percolation threshold, υp, is denoted by the sharp 
drop in the resistance at a conducting volume fraction υc = υp = 0.25, i.e., the volume fraction of 
conducting material at the percolation threshold υp = 2f/z.    
 

1.2.3. Sensing Due to Phase Equilibration Using Percolative 
Chemiresistor Sensors 

When an insulator-conductor composite is exposed to various vapor environments, the composite 
will come to equilibrium with each species (odorant) in the vapor phase. Assuming that the 
analyte diffuses throughout the composite, its volume will increase to accommodate the presence 
of the analyte (Figure 1.3).  This increase in volume will decrease υc.  Assuming that the sorbed 
material is non-conducting, the resistance of the composite will therefore increase.  

The resistance across such an insulator-conductor composite will thus normally increase upon 
exposure to an odorant (although if exposure to an analyte causes contraction, or if the analyte is 
conductive, a decrease in resistance is predicted).  A generic sensor mechanism is thus illustrated 
in Figure 1.3.  Upon exposure to an odorant, the odorant partitions into the sensor material, 
causing a swelling and a concomitant increase in resistance.  When the odorant is removed from 
the vapor phase, the odorant partitions out of the sensor, the sensor shrinks, and the electrical 
resistance therefore decreases.  Using composites of various conductors and insulators, and 
monitoring the resistance across these composites, provides a low-power method for transducing 
chemical sensory information into an electrical signal.   
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Various materials have been used for the insulating and conducting phases of such sensors.  
The insulating phase is typically a low glass-transition temperature polymer or polymer blend, 
and the conducting phase is typically carbon black.18,24  However, insulating phases have included 
ligands chemically attached to conductive gold nanoparticle cores,26 and the conductive phase has 
included gold nanoparticles,26 conductive polymeric materials,17,27,28 and could include other 
materials such as colloidal Ag, colloidal Au, or colloidal TiO2.  
 

1.2.4. Polymer-Carbon Black Composite Chemiresistor Properties: 
Response Linearity and Additivity 

The ability to adjust the relative amount of the conducting material in the insulator – conductor 
composites allow choice of the regime in which the sensor will operate: close to the percolation 
threshold, or in the linear regime having a high concentration of the conductive component.  
Operation in the linear regime, while less sensitive, is generally preferred.  In this regime, the 
response is directly proportional to the concentration of analyte vapor.  This relationship results in 
a linear correlation between the sensor response and the concentration of individual components 
of the vapor mixtures.  This linear relationship can, of course, break down at high odorant 
concentrations.  

Figure 1.4 shows the equilibrium sensor response for a poly(butadiene)-carbon black 
composite vapor sensor (20% mass fraction of carbon black) upon exposure to various odorants at 
different fractions of their vapor pressures.29  The sensor exhibits a linear response with 
increasing concentration, until either the percolation threshold is reached for the sensor (not 
normally possible for high carbon black loadings) or until the sorption isotherm becomes 
nonlinear with vapor concentration.4   

In the linear response regime, the sensor response to a mixture of odorants is simply the sum 
of the individual responses to the odorants that comprise the mixture.  For example, Figure 1.5 
displays the response of a prototypical sensor upon exposure to some test mixtures of odorants.  
In this experiment, benzene and chloroform were each exposed to the sensor at 2% of each of 
their vapor pressures (4600 ppm for chloroform and 2200 ppm for benzene) separately, and then 
in combination.29  For each odorant at the given concentration, the sensor exhibited a 
characteristic increase in resistance, regardless of the other odorants present.  The sensor response 
was both additive and independent of the order of exposure. 
 
1.3. Outline of This Thesis 
The goal of any electronic nose array-based arrangement is to robustly determine the identity and 
concentration of unknown vapors.  Ideally, due to the linearity and additivity displayed in Figures 
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1.4 and 1.5, respectively, regardless of whether the unknown vapors are present in the pure form 
or as vapor mixtures, the array will only require training on the pure vapor components.  This 
work addresses this task using a number of different approaches.  Non-polymeric – carbon black 
composite chemiresistor sensors are introduced and demonstrated as a promising alternative to 
the traditional polymer – carbon black composite approach, wherein a higher concentration of 
functional groups present in the sorptive component of the sensor composite allows for enhanced 
vapor – sensor interactions, and an enhanced ability to discriminate between chemically similar 
vapors (Chapter 2)  This work was started by a post-doc in our laboratory and left unfinished – 
my contribution was everything except the initial fabrication and analysis of the non polymer – 
carbon black composites (20% CB): this included the development of all figures, tables, analyses 
and discussions presented.  Further, a means of increasing the amount of information extracted 
from sensor arrays is demonstrated by invoking a space- and time-, or spatiotemporal (ST) 
dependency, of the array’s response.  This ST approach takes advantage of the linear and additive 
response properties of the sensors, and is demonstrated to significantly improve the ability of the 
sensors to identify and quantify vapor mixtures with training on only the pure vapor components 
(Chapter 3).  A model for the ST response of sensor arrays is developed and implemented to 
define an optimized ST mixture analysis regime, defined by two dimensionless numbers 
characterizing the competing mass transport processes across various dimensions of the linear 
sensor array vapor channel (Chapter 4).  This same modeled response data is then analyzed in 
terms of various inherent properties of the pure vapor response data, and a method for predicting 
the ability to analyze vapor mixtures with only pure vapor training is introduced (Chapter 5).  
Finally, an increased ability to classify pure vapors, using the ST vapor detection approach, is 
demonstrated (Chapter 6).  Various pattern recognition and classification techniques are 
introduced and implemented, and their benefits and downfalls are discussed.  The results of this 
work should increase the practicality and usability of broadly responsive array-based vapor 
sensing.  
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Figure 1.1: Generic electronic nose architecture.5  An unknown analyte, j, interacts with each 
sensor in the array (comprised of n total sensors), causing a change in some time-varying signal, 
Si,j(t).  The signal is processed to create a single metric response descriptor for each sensor, Xi,j. 
The array response is then put through a pattern recognition algorithm, which compares the 
unknown array response to a library of responses.  The algorithm predicts if analyte j is one of the 
analytes within the libray. 
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Figure 1.2: Resistance vs. the volume fraction of conducting material for a hypothetical 
insulator-conductor composite with Rc = 10-5 Ω-cm, Rm = 1010 Ω-cm, a coordination number (z) of 
4, and a total packing fraction (f) of 0.5 (eq (6)).  The volume fraction at which the sharp drop in 
resistance occurs is the percolation threshold for this hypothetical composite.   
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Figure 1.3:  A schematic representation of the response mechanism of an insulator – conductor 
composite chemiresistor vapor sensor.  In pure background air, current is passed through the 
material with some resistance, R.  When an analyte is added to the background air, the analyte 
partitions into the sensor material, causing a swelling.  This swelling, in turn, causes a decrease in 
υc (eq (6)), and an increase in the dc electrical resistance between the two electrical leads (Figure 
1.2).  When the analyte is removed from the background air, the analyte partitions out of the 
sensor, and the sensor returns to its initial state. 
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Figure 1.4:  Average relative differential equilibrium resistance responses of a poly(butadiene)-
carbon black composite vapor sensor (20% by weight carbon black) upon exposure to various 
analytes, as a function of analyte concentration.29 
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Figure 1.5: Differential resistance response for a poly(ethyelene-co-vinyl acetate)-carbon black 
composite vapor sensor (20% carbon black).  A) Exposure to benzene at P/Po = 0.020, followed 
by a simultaneous exposure to benzene at P/Po =0.020 and chloroform at P/Po = 0.020.  B) 
Exposure to chloroform at P/Po = 0.020 followed by a simultaneous exposure to chloroform at 
P/Po = 0.020 and benzene at P/Po = 0.020.  C) Simultaneous exposure to benzene at P/Po = 0.020 
and chloroform at P/Po = 0.020.29 
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Chapter 2 
 
 
Chemiresistors for Array-Based Vapor 
Sensing Using Composites of Carbon Black 
with Low Volatility Organic Molecules* 
 
 
2.1. Abstract 
 

Chemically sensitive resistors have been fabricated from composites of carbon black and low 
volatility, non-polymeric, organic molecules such as propyl gallate, lauric acid, and dioctyl 
phthalate.  Sorption of organic vapors into the non-conductive phase of such composites produced 
rapid and reversible changes in the relative differential resistance response of the sensing films.  
Arrays of these sensors, in which each sensing film was comprised of carbon black and a 
chemically distinct non-polymeric organic molecule or blend of organic molecules, produced 
characteristic response patterns upon exposure to a series of different organic test vapors.  The 
use of non-polymeric sorption phases allowed fabrication of sensors having a high density of 
randomly oriented functional groups and provided excellent discrimination between analytes.  By 
comparison to polymer – carbon black composite vapor sensors and sensor arrays, such sensors 
provided lower detection limits as well as enhanced clustering and enhanced resolution ability 
between test analytes. 
 
2.2. Introduction 
 

Array-based vapor sensing has attracted significant interest for its ability to detect and 
discriminate between various analyte vapors.1  Surface acoustic wave devices,2-4 tin oxide 
sensors,5-7 conducting organic polymers,8-10 polymer-coated quartz crystal microbalances,11-13 

                                                 
* This chapter is reproduced according to American Chemical Society copyright guidelines, from 
“Chemiresistors for Array-Based Vapor Sensing Using Composites of Carbon Black with Low Volatility 
Organic Molecules” by Ting Gao, Marc D. Woodka, Bruce S. Brunschwig, and Nathan S. Lewis, 
Chemistry of Materials, 18, (22), 5193-5202, 2006.  Copyright 2006, American Chemical Society. 
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polymer-coated micromachined cantilevers,14 thin film capacitors,15 dye-impregnated polymers 
coated onto optical fibers or beads,16-18 transition metal based dyes,19,20 and polymer-composite 
chemically sensitive resistors21-23 have all been explored in array-based sensing approaches.  In 
this architecture, each sensor is not designed to respond selectively to a single analyte, but instead 
each analyte produces a distinct fingerprint response pattern from the array of broadly responsive 
sensors.  Pattern recognition algorithms can then be used to obtain information on the identity, 
properties and concentration of the vapor exposed to the sensor array.24-27 

One especially attractive signal transduction mode involves the use of chemically sensitive 
resistors as the sensor array elements.21-23  Such sensors are inherently low power,28,29 are 
compatible with VLSI processing,7,30 can be deposited onto a variety of substrates including 
interdigitated electrodes,31 glass,32 ceramic,33 or other insulating materials, and can be fabricated 
in a wide variety of form factors to optimize signal/noise ratios and produce desired physical 
sensor and sensor array configurations.32  Significant attention in our laboratory has been devoted 
to the investigation of chemiresistive vapor detectors fabricated from composites of carbon black 
and insulating organic polymers,21,22,32,34,35 in which the carbon black serves as the electrically 
conductive phase and the organic polymeric phase absorbs the organic vapor into the sensor.  

The sensitivity of sorption-based detectors depends on the interactions between the analyte 
and the sorption material.36  Vapor sensors with enhanced sensitivity to analytes having specific 
functional groups, such as amines or carboxylic acids, can be obtained through fabrication of 
sorption materials which target functional groups of the analyte of interest.37,38  Increasing the 
density of the functional groups in the sorption material could further increase the amount of 
vapor sorption and therefore produce an additional increase in the sensitivity of such chemically 
resistive vapor detectors.  In this work, we describe the properties of chemiresistive vapor sensors 
that are comprised of composites of conductive carbon black particles and an insulating organic 
material, wherein the sorption phase consists of simple, non-polymeric, low vapor pressure 
organic materials.  Such sorption films have a relatively high density of functional groups and 
thereby could provide very effective sorption of organic analyte vapors.  The random 
arrangement of the organic molecules in the sorption phase should produce a high vapor 
permeability and therefore lead to rapid sensor response times, and could produce highly 
reversible responses that show relatively little history effects or hysteresis in response to a wide 
range of organic analyte vapors.  The use of non-polymeric materials opens up a wide range of 
sorption phases having desirable chemical functionality and physical properties that are in general 
not readily accessible in polymeric materials. 
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2.3. Experimental 
 

2.3.1. Materials 
The insulating materials used in fabricating the sensor films (Figure 2.1) and the plasticizer 
dioctyl phthalate, were used as received from either Aldrich Chemical Co. or Acros Organics Co.  
Reagent grade toluene, n-hexane, tetrahydrofuran (THF), ethanol, ethyl acetate, cyclohexane, n-
heptane, n-octane, and isooctane were used as received from Aldrich Chemical Co.  Black Pearls 
2000 (BP 2000), a furnace carbon black material, was donated by Cabot Co. (Billerica, MA) and 
was used as received.   
 

2.3.2. Detectors 
Detector substrates were fabricated by evaporating 30 nm of chromium and 70 nm of gold onto 
glass microscope slides using 0.2 cm wide drafting tape as a mask.  After evaporation, the mask 
was removed and the glass slides were cut into 1.0 cm × 2.5 cm pieces.  

Sensor films consisted of suspensions of various amounts of carbon black and either pure 
organic material or mixtures thereof in 20 mL of either toluene or THF.  Typically, the desired 
mass of organic sorption material was dissolved in 20 mL of solvent, and sufficient carbon black 
was then suspended in this solution to produce the desired mass fraction of organic material and 
carbon black, by weight of solids (Table 2.1).  Prior to fabrication of the sensor films, the casting 
suspension was sonicated for > 30 min at room temperature.  An airbrush (Iwata, Inc.) was used39 
to spray these suspensions across the 0.2 cm gap on the detector substrates until the resistance 
between the two leads was 10-100 kΩ, as measured by a Keithley model 2002 multimeter.  After 
fabrication, all sensors were placed in a stream of dry air for at least 24 h prior to exposure to the 
test analytes. 
 

2.3.3. Measurements 
The instrumentation and apparatus for resistance measurements and for delivery of analyte vapors 
has been described previously.23,34,35 The array of sensors was housed in an aluminum assembly 
that was connected by Teflon tubing to a computer-controlled, calibrated vapor generation and 
delivery system.  To initiate an experiment, the detectors were placed into a flow chamber and an 
air flow of 5 L min-1 containing 1.10 ± 0.15 parts per thousand (ppth) of water vapor was 
introduced until the resistance of the detectors stabilized.  An individual analyte exposure to the 
detectors consisted of a three-step process that was initiated with 70 s of airflow to achieve a 
smooth baseline resistance.  Analyte vapor at a controlled concentration in flowing air was then 
introduced to the detectors for 80 s, followed by 60 s of airflow to insure that the baseline 
resistance value was restored before the next exposure. 
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Analytes consisted of five nonpolar hydrocarbons (cyclohexane, n-hexane, n-heptane, n-
octane, and isooctane) as well as ethanol and ethyl acetate.  In the primary set of data collection 
for composite sensors having high carbon black loadings, these seven analytes were presented in 
random order 200 times each to the detector array during a single run over 4 days, at a partial 
pressure in air such that P/Po = 0.0050, where P is the partial pressure and Po is the vapor 
pressure of the analyte at room temperature. In a separate run to evaluate the concentration 
dependence of the sensor response, concentrations of n-hexane and ethanol were varied at ten 
different values of P/Po within the range 0.00020 < P/Po < 0.00625, with five exposures to each 
analyte/concentration combination, in randomized order.  Each exposure consisted of 100 s of 
laboratory air, followed by 100 s of analyte, followed by 100 s of laboratory air, at a flow rate of 
5 L min-1.  

An identical data run was used to evaluate the performance of the sensors with low carbon 
black loadings, with the seven analytes presented in random order 200 times each to the detector 
array during a single run over 4 days.  Additionally, subsequent runs which were identical in their 
randomized analyte exposure order, exposure times and protocols were performed to assess the 
long term drift and stability of the sensors.  The second run was initiated 2 days after the 
completion of the first run; the third run was initiated 2 days after the completion of the second 
run, and the fourth run was initiated 6 months after the completion of the third run.  In these 
experiments, analytes were presented to the detector array at concentrations corresponding to 
P/Po = 0.0050. 
 

2.3.4. Data Processing 
The response of a sensor to a particular analyte was expressed as ΔRmax/Rb, where Rb is the 
baseline resistance of the sensor and ΔRmax is the steady-state resistance change upon exposing the 
sensor to analyte (after correcting for baseline drift).  The value of ΔRmax was obtained from Rmax-
Rb, where Rmax is the maximum resistance value observed during the analyte exposure, calculated 
by averaging over at least 3 consecutive resistance measurements (in most cases 4 or 5) in the 
steady-state portion of the response signal.  The value of Rb was calculated by averaging over 5 
resistance measurements before the exposure initiated.  The ratiometric quantity ΔRmax/Rb was 
used as the response descriptor because it has been shown in similar detector films to be both 
relatively insensitive to the vapor introduction technique and to increase linearly with analyte 
concentration.23,35 All data processing was performed using Matlab (The Mathworks, Natick, 
MA).  
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2.3.5. Quantification of Classification Performance 
For quantification of the analyte classification performance, the responses from each of the 
datasets were sum-normalized.  This process was performed using eq (1): 
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where Sij refers to the ΔRmax/Rb sensor response signal of the jth detector (out of n total detectors) 
to the ith analyte exposure, and S'ij represents the sum-normalized analog of Sij.  For sensors 
exhibiting a response that is linear with analyte concentration, this normalization procedure 
produces a unit vector in n -dimensional space defining a location in this space characteristic of 
each test analyte, regardless of analyte concentration. 

The Fisher Linear Discriminant (FLD) algorithm was used on sum-normalized sensor 
response data to analyze the classification performance of the sensors.  In the FLD approach, the 
responses of a training set were used to calculate a vector which projected response data onto the 
one-dimensional space that maximized the separation between two sets of data clusters.40  For 
normalized data (eq (1)) produced by the responses of an n-detector array, this projection has the 
form:  
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where cj represents one of the n – 1 weighting factors from the hyperplane determined by the 
FLD algorithm.  The value of Di (hereafter referred to as the D-value) is a single, scalar metric 
that characterizes the position, along a vector normal to the hyperplane decision boundary, of the 
detector array data produced by an individual analyte exposure.  The chosen hyperplane decision 
boundary is defined as the point in one-dimensional projected space for which a data point lying 
on this plane has an equal probability of belonging to either of the two data clusters. 

The FLD algorithm maximizes the separation, or clustering, of the two distinct populations of 
D-values that arise from a single binary separation task.  This clustering is measured by the 
resolution factor (rf) characteristic of a separation task, as given in eq (3):27 

 

 rf = δ
(σ1

2 +σ 2
2)0.5 ,       (3) 

where δ is the difference in the population means of the D-values, and σ1 and σ2 are the standard 
deviations of the two populations of D-values that correspond to the two analytes of the 
separation task.  The FLD algorithm was used to evaluate the separation between each possible 
pairwise combination of analytes in the data set.   
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Because a supervised algorithm inherently introduces some bias into the analysis, a train/test 
scheme was employed.  For each pair of analytes that comprised a single separation task, the first 
100 exposures to each analyte (exposures 1-100, data set 1) were used to generate a training set 
and a set of coefficients (comprising a classification model) as described in eq (2).  A decision 
boundary was then developed by defining the hyperplane at which an unknown analyte exposure 
would have an equal probability of belonging to either analyte population of the given binary 
separation task.  All subsequent data were treated as test data, projected onto the optimized 
dimension for separation, and analyte identities were classified according to their positions 
relative to the fixed FLD decision boundary. 

The signal to noise ratio (SNR) of a sensor for a given exposure was calculated as: 
 

SNR =
ΔRmax

σ baseline

 ,       (4) 

where σbaseline represents the standard deviation in baseline resistance before analyte delivery, 
calculated using at least 5 data points.  

The same analytes at P/Po = 0.0050 have been previously exposed to carbon black-polymer 
composite chemiresistors.  Such data have been analyzed in the same manner as that for the 
sensors under study, and is given for comparison.21,22,32,34,35  Specifically, resolution factors and 
signal to noise ratios were compared for both types of sensors from previously recorded and 
reported data.  For detection limit determination, carbon black – polymer composite sensors were 
also exposed simultaneously with carbon black – non polymer composite sensors to ensure equal 
vapor deliveries and representative analyses.   
 
2.4. Results 
 

2.4.1. Vapor Response Characteristics and Reproducibility 
Carbon black loadings of ≈ 10, 25, 50, and 75% by weight were investigated, and 75% loadings 
exhibited a higher SNR, lower detection limit, and enhanced clustering relative to other loadings.  
Thus, results on sensor films made from 75% carbon black loadings are primarily reported herein.  
Additional results are described for a 6-month stability and drift study that was performed on 
sensors having various, lower carbon black loading levels.  In each case, the carbon black loading 
was sufficient to insure that the chemiresistors were above their percolation threshold, i.e., in the 
highly conductive state of the composite in which the films displayed simple, ohmic resistance 
behavior between two electrically conductive contacting leads.  Such composites consist of 
highly interconnected networks of conductive particles in a matrix of insulating organic material, 
but the structure of the organic material is difficult to elucidate directly from scanning electron 
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microscopy, X-ray photoelectron spectroscopy or other spectroscopic methods due to the high 
mole fraction of carbon black in the composites. 

Table 2.1 presents information on the high (75%) and low (25%) carbon black loaded 
polymer- and non polymer-based sensor arrays.  The first exposure in Figure 2.2 shows the 
baseline-corrected resistance response of a non polymer- and polymer-carbon black composite 
sensor on exposure to n-hexane at P/Po = 0.0050.  Shown are tetracosanoic acid/dioctyl phthalate 
(75% carbon black, sensor A4) and poly(ethylene-co-vinyl acetate) (40% carbon black, sensor 
C2) films, which both exhibited the highest signal to noise for each of their respective sensor 
array types investigated.  The resistance of the films increased when analyte vapor was present 
but rapidly (i.e., within seconds) returned to its original baseline resistance value after the vapor 
exposure had been discontinued.  Non polymer-carbon black composite sensors consistently 
displayed signal to noise ratios and response magnitudes comparable to those obtained with the 
well-studied polymer-carbon black composite sensors evaluated in this work.  

Figure 2.2 also displays the sensor response repeatability, showing six sensor responses, with 
1, 35, 44, 62, and 71 hr, as well as random continuous exposure cycles to the test analytes, 
occurring between the second, third, fourth, fifth, and sixth displayed sensor response and the first 
displayed sensor response, respectively.  As observed in Figure 2.2, in all cases, the sensor fully 
returned to the same response on exposure to n-hexane at P/Po = 0.0050, as well as returned to the 
same baseline resistance on exposure to laboratory air.  This was the case for the majority of 
exposures ( > 95%), however hysteresis did occur randomly in a small percentage of exposures.  
Therefore, sensor responses were baseline corrected, forcing sensor readings to fully return to 
their initial baseline resistance; this ensured that ΔRmax/Rb was due solely to the sensor/analyte 
interaction and not due to sensor drift.   

Table 2.2 presents the sensitivities and standard deviations of the responses measured for the 
different carbon black composite sensors exposed to the 7 test analytes studied in this work at 
P/Po = 0.0050 in air.  Sensitivities varied significantly across the analytes tested, and a given 
analyte produced different responses on different sensor films.   

Different levels of variability were observed in the response of each of the sensors.  Part of 
this variability in the response amplitude can be ascribed to sensor noise, which is inherent and 
unique to each of the sensors, as well as to variation in room temperature during the exposures.  
For example, a 1 oC change in room temperature produces a 4.5% change in the vapor pressure of 
n-hexane (the vapor pressures of n-hexane at 20 and 21 oC are 119.9 and 125.3 Torr, 
respectively).41  Additionally, slight (though significant) drift was observed for several of the 
sensors, though this did not affect the ability to accurately model and predict based on sensor 
array response patterns.   
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Signal to noise ratios were calculated for each sensor on exposure to each of the test analytes. 
Table 2.3 details the means and standard deviations of the SNRs for each carbon black – non 
polymer composite sensor on exposure to the various test analytes each presented 200 times in 
random order at P/Po = 0.0050 (sensors A1-A7).  For comparison, Table 2.3 also presents the 
SNRs of the carbon black-polymer composite sensors on exposure to these analytes at the same 
partial pressure of P/Po = 0.0050 (sensors C1-C9).  The two sensor types exhibited similar SNR 
values, with different sensors performing better in different cases.  
 

2.4.2. Concentration Dependence of Sensor Response 
Figures 2.3a and 2.3b display the responses of several typical carbon black – non polymer 
composites as a function of the vapor phase concentration of n-hexane and ethanol, respectively.  
For the relatively low analyte concentrations used in this study, the sensor responses were well-
described by a linear dependence on P/Po, indicating operation above the percolation threshold.  
This relationship has been observed for carbon black-polymer composite sensors operating above 
the percolation threshold.35 

Table 2.4a presents the limits of detection based on the ΔRmax/Rb vs. concentration data 
presented in Figure 2.3.  Signal to noise ratios were calculated (eq (4)) for each of the sensors on 
exposure to hexane and ethanol at various fractions of their vapor pressure (0.00020 < P/Po < 
0.00625), and detection was taken to be the partial pressure at which SNR = 3.  Limits of 
detection ranged from P/Po = 0.0002 to P/Po  = 0.00075, with most values near 0.00035 or 
0.0005.  These thresholds were converted to parts per million for display.  For comparison, Table 
2.4b gives detection limits for several carbon black – polymer composites, exposed 
simultaneously with optimized carbon black – non polymer composite sensors to ensure a 
representative comparison.  The limits of detection for the carbon black – polymer composite 
sensors were in accord with values reported previously.42  The carbon black – non polymer 
composite sensors exhibited approximately comparable detection limits when compared to these 
well-studied and developed carbon black – polymer composite sensors.  
 

2.4.3. Sensor Specificity 
Figure 2.4 presents the mean responses, averaged over 200 randomly ordered exposures to each 
analyte, for each of the carbon black – non polymer composite films to the seven test analyte 
vapors at P/Po = 0.0050.  Large differences in sensitivity were observed between the responses of 
a given sensor upon exposure to the various test analytes.  For example, quinacrine 
dihydrochloride dihydrate (sensor A2) displayed a strong positive response on exposure to a 
prototypical polar analyte, ethanol, while displaying a strong negative response to a prototypical 
nonpolar analyte, n-hexane.  This can be attributed to insolubility of the latter compound with 
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nonpolar solvents resulting from dielectric constant differences and molecular size.  Additionally, 
a tetracosanoic acid/dioctyl phthalate – carbon black composite (sensor A7) exhibited an n-
hexane/ethanol response ratio of 22, while a quinacrine dihydrochloride dihydrate/dioctyl 
phthalate – carbon black composite (sensor A6) displayed an n-hexane/ethanol response ratio of 
0.3.  For comparison, of the polymer – carbon black composite sensors investigated, the greatest 
response ratio of ethanol to n-hexane was produced by poly(ethylene-co-vinyl acetate) (sensor 
C2), with a ratio of 4, and the smallest ratio was achieved by poly(vinyl butyral) (sensor C8), with 
a ratio of 0.4 (Table 2.2).  Clearly, the use of organic molecular sorption phases having a high 
density of hydrophilic or hydrophobic functional groups can produce sensor arrays that display 
large discrimination power between differing test pairs of analytes.   
 

2.4.4. Sensor Array Response to Various Analytes 
Principal components analysis27 was used to visualize the differences in normalized autoscaled 
response patterns of a 7 element carbon black composite sensor array (Table 2.1, sensors A1-A7) 
exposed randomly 200 times to each of the seven test analytes at P/Po = 0.0050.  The points 
plotted in Figure 2.5 represent unique response patterns of the sensor array to each of the analytes 
presented.  The response vectors are displayed with respect to the first three principal components 
of the data set, which contained 99% of the variance in detector response.  Several major clusters 
are observed: ethanol, ethyl acetate, and c-hexane, as well as a clustering of the remaining 
alkanes.  This remaining cluster of alkanes also displays a distinct pattern, which is shown inset 
in Figure 2.5.  Even at the relatively low analyte concentrations used in this study, the sensor 
array readily distinguished extremely well between chemically similar analytes.   

The classification performance of the sensor array was quantified by use of the Fisher Linear 
Discriminant algorithm for pairwise analyte classification.  The figure of merit to determine the 
effectiveness of the FLD model is the resolution factor, rf (eq (3)), which quantifies the statistical 
separation between the two data clusters of interest.  The first 100 normalized exposures to each 
analyte were used as a training set and the remaining 100 normalized exposures to each analyte, 
from the same set of data collection, was used as a test set.  This train/test scheme was adopted to 
avoid bias resulting from possible overfitting of data.   

Table 2.5a presents resolution factors for the carbon black – non polymer composite sensor 
array (sensors A1-A7).  For comparison, Table 2.5b presents resolution factors for an array of 
carbon black – polymer composite sensors consisting of 9 sensor types (sensors C1-C9).  This 9-
sensor carbon black – polymer composite array was chosen from a non-exhaustive search seeking 
the best 9-sensor array that maximized the lowest resolution factors reported ( > 15 9-sensor array 
combinations were investigated, and the “best” sensors based on experience, polycaprolactone, 
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poly(ethylene-co-vinyl acetate), and poly(ethylene oxide), were always included).  In terms of the 
ability to resolve between various analytes, the non-polymeric composite sensor array performed 
highly favorably relative to the well-developed and well-studied polymer-based sensor array, with 
significant increases in resolution in many previously difficult classification tasks.  For example, 
in classifying n-hexane from c-hexane, n-heptane, n-octane, or i-octane, resolution factors of 2.5, 
1.2, 1.7, and 3.5, respectively, were observed for the polymer composite-based sensor array.  The 
use of a carbon black-non polymer composite sensor array increased these resolution factors to 
6.1, 6.4, 9.9, and 6.2, respectively.  A resolution factor of 1 implies 72% correct classification, 2 
implies 92% correct classification, and 3 implies 98% correct classification.  This new sensor 
type thus takes previous classification tasks, which performed at levels slightly above chance, and 
provided the ability to consistently and confidently correctly classify analytes.   
 

2.4.5. Stability and Drift 
A FLD model for each binary separation task, consisting of projection weights and a decision 
boundary, was constructed from sensor responses in the first data set of the first 100 exposures to 
each analyte.  This model was then applied to 700 subsequent exposures spread over 4 sets that 
spanned six months of data collection.  The exposures for each binary classification task were 
then projected onto the FLD vector characteristic for the given classification task, placing data 
into the one-dimensional space which initially maximized the resolution factor between the two 
analytes of interest.  These analyte projections were compared to the originally modeled decision 
boundary for the given binary separation, and thereby assigned to be in one of the two analyte 
clusters.  The classification rate was defined as the number of correct classifications divided by 
the number of classification attempts.  Table 2.6 lists the performance factors for all combinations 
of binary separations for each set of data collection.   

Binary classification rates were comparable throughout the first 3 data sets, which spanned 
one month.  However, the fourth data set, collected 6 months after the initially trained model, 
yielded extremely low classification rates in many situations.  In terms of the Fisher model, two 
explanations of this performance loss exist: 1) a new dimension for each binary analyte separation 
captures maximum resolution between analyte clusters, so that a new model, with different 
projection weights for each analyte, and a new decision boundary, needs to be created; or 2) the 
same model approximately captures maximum resolution between analyte clusters, but the 
clusters have drifted with respect to the original decision boundary.  In the latter case, a 
calibration scheme has proven capable of restoring the classification performance of carbon 
black-polymeric composite sensors.43  To reduce this type of drift, sensor responses were adjusted 
by a multiplicative calibration factor: 
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where Sa,t and Sc,t indicate the ΔR/Rb response signals for an analyte a and calibrant c, 
respectively, at some time t after training, and Sa,0 and Sc,0 are the initial responses to analyte a 
and calibrant c.43   

Table 2.7 presents the classification rates for each binary separation, using each analyte as a 
calibrant, when the initial model (based on exposures 1-100, data set 1) was used on the final data 
set (200 exposures, recorded 6 months after the initial data set).  The first three exposures from 
the final data set were used to calibrate the model according to eq (5), and were then followed by 
47 test exposures.  This cycle of calibrate/test was repeated 3 additional times, accounting for all 
200 exposures of the final data set.  Cases where reasonable performances were attained are 
shown in bold text.  Of the 21 combinations of binary analyte classification tasks, 17 yielded 
classification rates of ≥ 0.90.  

For binary classifications with low classification rates, the sensor array was still capable of 
resolving between analyte pairs in the dataset; however, a rigorous training period was again 
required to construct a new model for effective analyte separation.  For example, the binary 
classification of n-hexane and n-heptane yielded a performance of 0.51 and had a resolution 
factor of 0.02 when the initial model was applied to the final data set.  However, if the first 100 
exposures of data set 4 were used to construct a new model, a resolution factor of 1.5 and a 
classification rate of 0.88 was achieved for the final 100 exposures of data set 4.  These values 
were comparable to those obtained from training on the first 100 exposures and testing on the 
final 100 exposures of data set 1, with a classification rate of 0.82 (Table 2.6a).  Thus, no sensor 
performance was lost, but the initial model describing the sensor response behavior changed 
significantly, resulting in the loss of predictive ability.      

Figure 2.6a shows projections of 700 exposures, spread over 4 sets of data collection, for a 
FLD model constructed from the first 100 exposures in data set 1.  Figure 2.6b shows these same 
projections, when a calibration scheme was adopted in which 3 exposures were first used as 
calibrant runs, followed by 47 test exposures, with the process repeated throughout the remaining 
700 exposures of the data set.  The projected dimension clearly maintained a reasonable level of 
separation between the two analytes (although this was no longer the optimal one dimensional 
space for resolution), however the analyte clusters drifted relative to the decision boundary.  The 
calibration process shifted these projections back to the decision boundary, and classification 
performance was restored.  
 
 



 24

2.5. Discussion  
 

The vapor sensing properties of the carbon black – non polymeric composite sensors and sensor 
arrays compared favorably in all aspects to the well-investigated carbon black – polymer 
composite sensing films.  The non-polymer sensors provided improved analyte clustering and 
analyte resolution/classification capability, as well as a high level of signal to noise and low 
detection limit thresholds.   

A measure of the performance of a sensor array is the resolution factor, which is a measure of 
the ability of a given sensor array to distinguish between and discriminate among various 
analytes.   In this respect, the carbon black – non polymer composite sensors surpassed the 
performance of previous sensor classes, including our well-studied carbon black – polymer 
composite sensors (Table 2.5a,b).  Significant improvements were observed, in particular, in the 
ability of the sensor array to distinguish between chemically similar alkanes, namely n-hexane, 
cyclohexane, n-heptane, n-octane, and isooctane. 

The non-polymer sensors are well-suited to detect and exploit subtle differences between 
analytes, owing to a higher density and random arrangement of functional groups, as well as an 
enhanced signal to noise ratio for analyte detection.  In typical carbon black – polymer composite 
sensors, functional groups are present at certain repeat units along the polymer backbone, and this 
structural motif places a limit on the functional group density as well as a limit on possible 
analyte-polymer interactions, due to steric hindrance.  With the carbon black – non polymer 
composite sensor array, a higher functional group density, as well as random packing, can 
provide more specific sensor-analyte interactions which are able to better capture subtle 
differences in analyte properties.  High signal to noise ratios provide the means of detecting and 
describing these subtle differences, which would likely be lost in the noise of other sensor types.  
These combinations allow carbon black – non polymer composite sensors to more precisely 
define the position of extremely similar analytes in sensor response space, which translates into 
enhanced clustering and resolution ability.   

The carbon black – non polymer composite sensors also exhibited lower detection limits 
relative to typical carbon black – polymer composite sensors (Table 2.4a-b).  Thus, carbon black 
– non polymer composite sensors are more suitable for trace vapor detection, which broadens the 
potential areas of application of these sensors.   

The low mass fraction carbon black – non polymer sensor array showed relatively little long-
term drift over extended time periods.  Specifically, for most binary separation tasks, the non-
polymeric composite sensors provided good analyte classification levels for at least 6 months 
after an initial training phase.  When the sensors were used 6 months after an initial training 
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period, 11 of the 21 binary separation tasks were performed with correct classification rates of > 
90% (Tables 2.6-7).  When a simple calibration scheme, which involved only 3 calibration 
exposures per 50 exposures, was performed, the number of binary separation tasks with > 90% 
correct classification after six months increased to 17.  The cases where performance was 
unacceptable even after calibration were the same as those reported for carbon black-polymer 
composite sensors, for example n-hexane vs. n-heptane or n-heptane vs. n-octane.43 

Plasticizers such as dioctyl phthalate (a viscous liquid) have been added to polymers to lower 
their glass transition temperature and decrease the sensor response time to various vapors.  The 
sensors studied herein showed response times that were rapid, both with and without the presence 
of dioctyl phthalate or similar plasticizers (Figure 2.2).  This rapid time response is characteristic 
of the use of low molecular weight non-polymeric organic molecules as the sorbent phase. 

For many diseases, specific volatile organic compounds such as amines and fatty acids are 
found in the breath and urine of infected individuals.  For bio-sensing applications, it is desirable 
to have sensors with a high sensitivity to these species.  A key feature of using molecularly based 
sorbent phases is the ability to tune the sensitivity towards different classes of chemicals.  The 
ratio of the ΔRmax/Rb responses of two carbon black – non polymer composite sensors, 
tetracosanoic acid/dioctyl phthalate and quinacrine dihydrochloride dihydrate/dioctyl phthalate, 
on exposure to n-hexane and to ethanol, was 22 and 0.3, respectively.  Additionally, the sensor 
consisting of pure quinacrine dihydrochloride dihydrate exhibited a strong positive response on 
exposure to polar analytes, and a strong negative response on exposure to nonpolar analytes.  
Such large differences for various other analytes could likely be produced by further development 
of this class of sensors.  
 
2.6. Conclusions  
 

Composites made from homogeneous or blended organic molecules and carbon black showed fast 
response times, good reversibility, high stability, and an excellent ability to discriminate and 
classify between both similar and dissimilar types of analytes.  This type of composite sensor 
offers a higher density of functional groups, as well as a random orientation and random exposure 
of these functional groups within the sensing material due to the lack of a restricting polymer 
backbone.  A 7-sensor array robustly resolved even extremely similar test analytes, such as n-
hexane and n-heptane.  Excellent signal-to-noise ratios were achieved with these carbon black – 
non polymer composite sensors, which provided lower limits of detection relative to the evaluated 
carbon black – polymer composite sensors.  
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Table 2.1:  Sorption material used in carbon black-non-polymeric composite sensors for (A1-A7) 
75% and (B1-B9) 25%, by mass, CB loadings.  20 ml of either THF or toluene was added to 
sorption and plasticizer materials, followed by addition of CB, followed by sonication for > 30 
min.  (C1-C9) Sorption material used in CB – polymer composite sensors, as reported 
previously.43  Where noted, the plasticizers dioctyl phthalate (DP) and di(ethylene glycol) 
dibenzoate (DEGB) were used.   

 
    amount (mg) 
sensor sorption material sorption plasticizer CB 
A1 propyl gallate 50 0 150
A2 quinacrine dihydrochloride dihydrate 50 0 150
A3 lauric acid / DP 35 15 150
A4 tetracosane / DP 35 15 150
A5 tetracosanoic acid 50 0 150
A6 quinacrine dihydrochloride dihydrate / DP 35 15 150
A7 tetracosanoic acid / DP 35 15 150
B1 tetraoctylammonium bromide / DP 80 80 20 
B2 lauric acid / DP 80 70 20 
B3 tetracosanoic acid 80 0 30 
B4 tetracosanoic acid / DP 80 50 20 
B5 tetracosanoic acid / DP 100 60 40 
B6 propyl gallate 160 0 40 
B7 1,2,5,6,9,10-hexabromocyclododecane / DP 100 60 40 
B8 quinacrine dihydrochloride dihydrate 160 0 40 
B9 quinacrine dihydrochloride dihydrate / DP 100 60 40 
C1 polycaprolactone / DEBG 80 80 40 
C2 poly(ethylene-co-vinyl acetate) / DEBG 80 80 40 
C3 poly(ethylene oxide) / DEBG 80 80 40 
C4 poly(ethylene glycol) / DEBG 80 80 40 
C5 poly(methyl vinyl ether-co-maleic anhydride) / DEBG 80 80 40 
C6 poly(4-vinyl phenol) / DEBG 80 80 40 
C7 polycarbonate / DEBG 80 80 40 
C8 poly(vinyl butyral) / DEBG 80 80 40 
C9 polystyrene (PVS) / DEBG 80 80 40 
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Table 2.2:  Sensor response, ΔR/Rb (×10,000), of carbon black – non polymer composite and 
carbon black – polymer composite sensors (Table 2.1) to seven test analytes presented at a 
concentration of P/Po = 0.0050.  The sensors were subjected to 200 randomly ordered exposures 
to each analyte; means and standard deviations are given for each sensor (mean ± standard 
deviation).   

 

sensor n-hexane ethanol 
ethyl 

acetate 
c-

hexane n-heptane n-octane i-octane 
A1 4.2±0.9 6.4±0.8 8.0±0.7 1.7±0.3 4.4±1.0 6.3±1.0 3.1±1.3 
A2 -12.5±7.2 15.0±2.9 2.6±-5.1 -5.1±2.9 -14.7±9.3 -16.6±9.4 -21.3±10.8 
A3 21.7±2.9 1.3±0.2 8.3±0.8 8.9±0.7 25.1±4.5 38.0±7.4 27.4±4.1 
A4 11.9±2.1 1.0±0.2 4.5±0.7 5.6±1.6 13.2±3.8 19.9±6.1 15.9±4.0 
A5 18.0±0.9 0.9±0.3 6.1±0.5 5.2±0.5 23.2±0.9 36.5±1.4 24.2±0.8 
A6 2.4±0.3 6.9±1.0 2.4±0.4 1.6±0.2 2.2±0.4 2.7±0.5 2.7±0.4 
A7 18.7±1.0 0.8±0.2 5.8±0.3 6.8±1.0 23.1±1.5 35.6±2.6 24.8±1.2 
C1 3.2±0.2 6.1±0.2 13.3±0.3 4.9±0.2 2.8±0.2 2.8±0.1 3.3±0.1 
C2 18.2±0.5 12.0±0.5 48.4±1.3 27.9±0.6 16.6±0.5 17.9±0.4 19.7±0.5 
C3 4.2±0.4 3.2±0.4 5.8±0.2 5.6±0.2 4.2±0.2 4.7±0.2 5.2±0.2 
C4 2.1±0.2 2.7±0.2 12.3±0.4 3.4±.2 1.7±0.2 1.6±0.2 1.8±0.2 
C5 20.2±0.6 6.6±0.3 37.8±1.1 31.0±1.0 18.5±0.6 20.1±0.5 22.4±0.5 
C6 18.7±0.6 11.9±0.5 49.6±1.9 28.7±1.1 16.9±0.6 18.2±0.5 20.0±0.5 
C7 14.7±0.5 7.5±0.3 55.3±2.0 23.8±0.9 12.9±0.5 13.5±0.4 14.5±0.3 
C8 0.6±0.1 1.5±0.1 5.7±0.2 0.5±0.1 0.5±0.1 0.4±0.1 0.2±0.1 
C9 6.8±0.5 12.2±0.5 34.6±0.9 6.1±0.4 5.7±0.4 5.2±0.3 2.3±0.3 
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Table 2.3:  Signal to noise ratios (SNR) of carbon black – non polymer composite and carbon 
black – polymer composite sensors (Table 2.1) to seven test analytes presented at a concentration 
of P/Po = 0.0050.  The sensors were subjected to 200 randomly ordered exposures to each 
analyte; means and standard deviations are given for each sensor (mean ± standard deviation).   
 

 n-hexane ethanol 
ethyl 

acetate c-hexane n-heptane n-octane i-octane 
A1 90±62 142±89 99±49 45±31 73±41 65±31 38±32 
A2 -136±109 109±65 25±22 -52±45 -151±145 -97±79 -230±172 
A3 152±62 16±7 81±33 86±33 150±41 164±36 155±46 
A4 100±49 13±6 46±19 54±30 97±51 131±44 101±40 
A5 55±19 5±4 25±14 22±15 64±23 73±18 75±36 
A6 25±10 68±34 24±11 18±8 23±10 27±10 29±13 
A7 99±26 14±8 61±27 82±38 98±23 90±17 112±24 
C1 102±40 102±40 505±190 215±81 134±54 138±46 143±58 
C2 465±211 211±102 763±187 809±276 586±220 636±240 746±313 
C3 32±12 30±10 107±45 61±22 39±14 43±16 56±23 
C4 29±12 62±23 190±87 60±22 32±11 35±14 42±20 
C5 104±45 53±21 193±76 182±75 133±51 146±56 198±84 
C6 46±21 311±124 585±278 68±32 54±20 46±18 38±15 
C7 238±77 146±57 1355±654 526±217 295±181 304±111 320±123 
C8 30±12 87±38 206±80 24±8 34±15 33±13 15±8 
C9 65±30 54±23 326±111 49±13 77±32 70±22 29±11 

 



 31

Table 2.4:  Approximate limits of detection of (a) carbon black – non polymer composite sensors 
and (b) carbon black – polymer composite sensors (Table 2.1) for the detection of n-hexane and 
ethanol.  The limit of detection is defined as the vapor concentration at which the SNR = 3. 
 

a) limit of detection (ppm) 
  A1 A2 A3 A4 A5 A6 A7 
n-hexane 110 100 100 100 100 60 140 
ethanol 50 50 50 40 40 40 40 

 

 
b) limit of detection (ppm) 
  C1 C2 C3 C8 
n-hexane 160 140 140 120 
ethanol 80 50 50 70 
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Table 2.5:  Resolution factors displaying the ability of a) the carbon black – non polymer 
composite sensor array (sensors A1-A7), and b) the carbon black – polymer composite sensor 
array (sensors C1-C9) to distinguish between test analytes presented at P/Po= 0.0050.  In each 
case, for a given separation task, a Fisher linear discriminant model was trained on exposures 1-
100, and exposures 101-200 were then tested using the model.  Reported values are for testing 
exposures 101-200.   
 

a) 
n-

hexane ethanol 
ethyl 

acetate 
c-

hexane 
n-

heptane 
n-

octane 
i-

octane 
n-hexane N/A 44.6 13.3 6.1 6.4 9.9 6.2 
ethanol  N/A 27 36.5 47.5 51.7 50 

ethyl acetate   N/A 14.3 15.4 20.6 14.5 
c-hexane    N/A 8.2 10.1 6.9 
n-heptane     N/A 4.2 3.7 
n-octane      N/A 4.8 
i-octane       N/A 

        
        
        

b) 
n-

hexane ethanol 
ethyl 

acetate 
c-

hexane 
n-

heptane 
n-

octane 
i-

octane 
n-hexane N/A 10.7 6.1 2.5 1.2 1.7 3 
ethanol  N/A 24.2 29.1 23.3 25.2 25.9 

ethyl acetate   N/A 30.4 15.5 27.1 32.1 
c-hexane    N/A 3.9 4.4 10.2 
n-heptane     N/A 1.7 6.8 
n-octane      N/A 6.7 
i-octane       N/A 
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Table 2.6:  Binary classification rates of an array comprised of sensors B1-B9 (Table 2.1) using 
FLD with a statistical decision boundary for classification, with binary models trained on the first 
100 exposures to data set 1, and applied to data testing exposures from data set one and data sets 
collected at later times.  Classification rates shown are for testing exposures collected from a) 
data set 1, b) data set 2, b) data set 3, and d) data set 4, where data sets 2, 3 and 4 were collected 
two days, six days, and six months, respectively, after the initial training data was collected for 
data set 1.   

 

a) 
n-

hexane ethanol
ethyl 

acetate 
c-

hexane 
n-

heptane 
n-

octane 
i-

octane 
n-hexane N/A 1 1 1 0.82 0.95 1 
ethanol  N/A 1 1 1 1 1 
ethyl acetate   N/A 1 1 1 1 
c-hexane    N/A 1 1 0.92 
n-heptane     N/A 0.84 1 
n-octane      N/A 1 
i-octane       N/A 

 

 

b) 
n-

hexane ethanol
ethyl 

acetate 
c-

hexane 
n-

heptane 
n-

octane 
i-

octane 
n-hexane N/A 1 1 1 0.73 0.79 1 
ethanol  N/A 1 1 1 1 1 
ethyl acetate   N/A 1 1 1 1 
c-hexane    N/A 1 1 0.56 
n-heptane     N/A 0.59 1 
n-octane      N/A 1 
i-octane       N/A 
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Table 2.6 (continued):   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

c) 
n-

hexane ethanol
ethyl 

acetate 
c-

hexane 
n-

heptane 
n-

octane 
i-

octane 
n-hexane N/A 1 1 0.99 0.66 0.79 1 
ethanol  N/A 1 1 1 1 1 
ethyl acetate   N/A 1 1 0.99 1 
c-hexane    N/A 0.99 0.99 0.54 
n-heptane     N/A 0.64 1 
n-octane      N/A 1 
i-octane       N/A 

 

 

d) 
n-

hexane ethanol
ethyl 

acetate 
c-

hexane 
n-

heptane 
n-

octane 
i-

octane 
n-hexane N/A 0.94 0.98 0.51 0.51 0.5 0.59 
ethanol  N/A 1 0.88 0.95 0.91 0.98 
ethyl acetate   N/A 0.99 0.98 0.99 0.9 
c-hexane    N/A 0.52 0.51 0.5 
n-heptane     N/A 0.5 0.59 
n-octane      N/A 0.62 
i-octane       N/A 
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Table 2.7:  Classification rates of an array of sensors B1-B9 when a FLD model was trained on 
100 exposures from data set 1, and tested on 200 exposures from data set 4, six months later, with 
the use of various calibrations.  Binary classification tasks capable of high performances ( > 90% 
correct classification) with a 6 month period between the train and test phase are shown in bold. 

 
  calibrant 

task 
n-

hexane ethanol 
ethyl 

acetate 
c-

hexane 
n-

heptane 
n-

octane i-octane 
n-hexane / ethanol 0.58 0.98 1 0.82 0.86 0.96 0.95 
n-hexane / ethyl acetate 0.57 0.96 0.98 0.7 0.85 0.73 0.84 
n-hexane / c-hexane 0.86 0.52 0.51 0.83 0.88 0.9 0.74 
n-hexane / n-heptane 0.5 0.56 0.55 0.5 0.53 0.5 0.49 
n-hexane / n-octane 0.49 0.57 0.56 0.51 0.53 0.55 0.51 
n-hexane / i-octane 0.91 0.59 0.6 0.88 0.95 0.97 0.86 
ethanol / ethyl acetate 0.51 1 1 0.75 0.84 0.86 0.76 
ethanol / c-hexane 0.58 0.95 0.99 0.83 0.85 0.98 0.95 
ethanol / n-heptane 0.59 0.9 0.99 0.83 0.86 0.98 0.97 
ethanol / n-octane 0.57 0.89 0.99 0.84 0.85 0.97 0.96 
ethanol / i-octane 0.57 0.99 1 0.85 0.86 0.99 0.98 
ethyl acetate / c-hexane 0.57 0.86 0.98 0.73 0.84 0.73 0.83 
ethyl acetate / n-heptane 0.58 0.76 0.97 0.71 0.85 0.74 0.85 
ethyl acetate / n-octane 0.57 0.97 0.99 0.72 0.85 0.74 0.85 
ethyl acetate / i-octane 0.53 0.53 0.89 0.72 0.81 0.72 0.82 
c-hexane / n-heptane 0.86 0.7 0.68 0.82 0.86 0.91 0.78 
c-hexane / n-octane 0.9 0.91 0.79 0.82 0.91 0.95 0.83 
c-hexane / i-octane 0.48 0.5 0.5 0.58 0.48 0.54 0.57 
n-heptane / n-octane 0.49 0.52 0.51 0.5 0.51 0.54 0.51 
n-heptane / i-octane 0.89 0.89 0.8 0.88 0.93 0.97 0.9 
n-octane / i-octane 0.89 0.9 0.88 0.87 0.91 0.96 0.91 
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Figure 2.1: Structures of materials used in this study.  All of these materials, except dioctyl 
phthalate (liquid), are solids at room temperature. 
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Figure 2.2:  Response of sensor A4 (75% CB, non polymer, Table 2.1) sensor C2 (40% CB, 
polymer, Table 2.1) on exposure to n-hexane at P/Po = 0.0050.  A single exposure of sensor C2, 
and six exposures of  sensor A4, are shown.  Continuous random exposures to each of the test 
analytes occurred, with 1, 35, 44, 62, and 71 h occuring between the first response shown and the 
second, third, fourth, fifth, and sixth responses, respectively. 
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Figure 2.3: Responses of several non polymer-carbon black composite sensors (Table 2.1) to a) 
n-hexane and b) ethanol at various concentrations.   
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Figure 2.4:  3-D pattern depicting the average responses (Table 2.1) to the 7 test analytes at a 
concentration of P/Po = 0.0050 in air. 
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Figure 2.5:  Principal components analysis showing principal components 1, 2 and 3 from 
normalized sensor array response data to all analytes on exposure to sensors A1-A7.  The sub-plot 
details a second PCA performed on only the overlapping alkane clusters (highlighted).  For 
visualization ease, only the first 50 exposures to each of the test analytes are analyzed and shown.   
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Figure 2.6:  “Waterfall” plots detailing drift of FLD D-values (the single dimensional projection 
of the sensor array response which initially maximized the resolution factor for the classification 
task at hand) vs. exposure number for the n-hexane/i-octane binary separation task using an array 
of sensors B1-B9.  The first 100 exposures of data were used to train the model.  A decision 
boundary (solid line) based on these first 100 exposures is shown.  Results are shown for a) no 
calibration and b) calibration using n-octane. 
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Chapter 3 
 
 
Use of Spatiotemporal Response Information 
from Sorption-Based Sensor Arrays to 
Identify and Quantify the Composition of 
Analyte Mixtures* 
 
 
3.1. Abstract 
 

Linear sensor arrays made from small molecule/carbon black composite chemiresistors placed in 
a low headspace volume chamber, with vapor delivered at low flow rates, allowed for the 
extraction of chemical information that significantly increased the ability of the sensor arrays to 
identify vapor mixture components and to quantify their concentrations.  Each sensor sorbed 
vapors from the gas stream, and thereby, as in gas chromatography, separated species having high 
vapor pressures from species having low vapor pressures.  Instead of producing steady state (SS) 
sensor responses that were representative of the thermodynamic equilibrium partitioning of 
analyte between each sensor and the initial vapor phase, the sensor responses varied depending on 
the position of the sensor in the chamber and the time since the beginning of the analyte exposure.  
The concomitant spatiotemporal (ST) sensor array response therefore provided information that 
was a function of time as well as of the position of the sensor in the chamber.  The responses to 
pure analytes and to multi-component analyte mixtures comprised of hexane, decane, ethyl 
acetate, chlorobenzene, ethanol, and/or butanol, were recorded along each of the sensor arrays.  
Use of a non-negative least squares (NNLSQ) method for analysis of the ST data enabled the 
correct identification and quantification of the composition of 2-, 3-, 4- and 5-component 

                                                 
* This chapter is reproduced according to American Chemical Society copyright guidelines, from “Use of 
Spatiotemporal Response Information from Sorption-Based Sensor Arrays to Identify and Quantify the 
Composition of Analyte Mixtures” by Marc D. Woodka, Bruce S. Brunschwig, and Nathan S. Lewis, 
Langmuir, 23, (26), 13232-13241, 2007.  Copyright 2007, American Chemical Society. 
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mixtures from arrays using only 4 chemically different sorbent films.  In contrast, when 
traditional time- and position-independent SS sensor response information was used, these same 
mixtures could not be identified or quantified robustly.  The work has also demonstrated that for 
ST data, NNLSQ yielded significantly better results than analyses using extended disjoint 
principal components regression (EDPCR).  The ability to correctly identify and quantify 
constituent components of vapor mixtures through the use of such ST information significantly 
expands the capabilities of such broadly cross-responsive arrays of sensors.  
 
3.2. Introduction 
 

Cross-responsive array-based vapor sensors have received significant attention in the recent 
literature.  Such sensors include coated surface acoustic wave devices,1-3 tin oxide sensors,4,5 
conducting organic polymers,6-8 coated quartz crystal microbalances,9,10 polymer-coated 
micromachined cantilevers,11,12 dye-impregnated polymers coated onto optical fibers or beads,13 
polymer/carbon black composite chemiresistors,14-16 and low volatility small molecule/carbon 
black composite chemiresistors.17  Sensor arrays made from a variety of composite materials 
encompass a broad range of collective vapor/sensor interactions, producing a diversity of 
response values upon exposure to a given analyte.  Arrays of such sensors, coupled with various 
pattern recognition approaches, are able to discriminate between different vapors.18-20 Such 
arrangements have been termed “artificial” or “electronic” noses, due to their similarities to 
mammalian olfactory processes.21,22 

Most reports dealing with cross-responsive sensor arrays have investigated the response of 
such arrays toward single analytes.17,23,24  Alternatively, responses to complex mixtures have been 
used to “fingerprint” vapor mixtures rather than identify their constituents.  Under this 
implementation, electronic noses have distinguished between different types of beers,25 hops,26 
wines,27 vinegars,28 coffees,29 and teas.30  Zellers and co-workers have claimed that responses 
from an array consisting of 10 unique polymer-coated surface acoustic wave devices could, at 
best, provide robust information on simulated 3-component mixtures, where the simulated 
mixture responses assumed perfect additivity of pure vapor responses with superimposed 
Gaussian error as noise.31   

Typical sensor array studies have placed each detector of the array in a nominally equivalent 
position relative to the analyte flow.11,17,32 In this mode of operation, the partition coefficient 
between each sensor and vapor, Keq, and the pressure of the vapor in the flow stream, determine 
the differences in sensor response.  Di Francesco and co-workers have argued that an effective 
chamber design should assure that the transient time necessary to reach a stationary and uniform 
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vapor concentration is much shorter than the sensor response time, so that all sensors are exposed 
at the same time to the same concentration of analyte.  These workers have accordingly 
performed computational fluid dynamics (CFD) modeling studies in search of an optimal sensor 
geometry for this purpose.33  Ali and co-workers have also sought to ensure that the entire 
incoming sample stream was distributed rapidly, simultaneously, and evenly over all of the 
sensors in an array.  They have modeled vapor delivery in sensor geometries via CFD, and 
verified their results with flow visualization and measured sensor responses.34  These studies are 
reflective of the dominant mode of sensor array implementation, in which each sensor is exposed, 
to the extent possible, to an identical, time-independent, stream of analyte vapor for the extraction 
of steady-state (SS) response information.  

Exploitation of the spatiotemporal (ST) aspects of a non-uniform flow system may, however, 
yield additional information on the composition of analyte mixtures.  For example, the flow 
dynamics of sniffing, as well as differences in the binding affinities of different odor receptors, 
are important for odor perception in mammalian olfaction.  In humans, the vapor flow rate is 
different through the two nostrils of a given individual, because blood flow-induced occlusions in 
the nostrils cause the flow rate to vary with time and therefore vary which nostril has the higher 
flow rate.  These varying flow patterns have been shown to affect odor perception.35  
Consistently, a sensor chamber modeled after a canine nasal cavity, having sensors placed 
throughout the cavity, has been shown to provide enhanced discrimination in various 
classification tasks relative to a single sensor array placed solely at the inlet of the cavity.36 
Additionally, the implementation of an olfactory microsystem which mimics the mammalian 
mucous layer with a polymeric layer has been shown to enhance discrimination between simple 
and complex odors.37 

To measure the composition of certain vapor mixtures, metal-oxide semiconductor field-
effect transistor (MOSFET) sensors have been placed along a sensor chamber that also contained 
thin films of palladium or platinum.  These films catalytically partially decomposed certain 
vapors, so when mixtures of hydrogen, ammonia, acetylene, and/or ethanol were introduced into 
the sensor chamber, some of the constituents of the mixtures reacted, forming compounds not 
readily detected by the MOSFET sensors.  For example, hydrogen flowing over the Pd catalyst 
reacted to form water, to which the sensors were insensitive.  The initial sensors responded to the 
original vapors in the sampled stream, while later sensors responded to reduced concentrations of 
certain species.  Using this approach, significant improvements were obtained in the identification 
of binary mixtures.38-40  This method, however, is limited to mixtures having components that 
react at expensive catalytic surfaces to form products not easily detected at the sensors in the 
array.   
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More recently, arrays of polymer/carbon black composite sensors have been emplaced in a 
chamber with a low headspace volume while the analyte vapor was sampled at various flow rates.  
Depending on the vapor flow rate, pure test vapors and test vapor mixtures showed a 
concentration profile along the array as a function of time.41,42  In this approach, the sensor 
material acted similarly to a stationary phase in a gas chromatographic (GC) column, with vapors 
partitioning into the sensor material as dictated by their solid/gas partition coefficient, Keq.  In this 
arrangement, the vapor species are not physically changed, unlike the situation involving the use 
of catalytic surfaces.  Instead, the vapors are simply sorbed and retained by the sensor material.  
The progress of each vapor front down the sensor array is dictated by the flow rate, chamber 
geometry, and mass uptake by the upstream sensor films.  

In this work, arrays of low volatility organic molecule/carbon black composite vapor 
sensors17 have been exposed to various vapor mixtures in a low headspace volume chamber.  In 
this configuration, the sensor material acts to separate the analyte to produce a space- and time-
dependent signal response from the sensors in the array.  A collection of such sensor arrays were 
first exposed to, and trained against, pure vapor species, each exposed at 5% of their saturated 
vapor pressure, P/Po = 0.050, where P is the partial pressure and Po is the saturated vapor 
pressure of the analyte of interest.43  The sensor arrays were then challenged by exposures to 
various mixtures of these test vapors.  Two linear, statistically based chemometric methods, non-
negative least squares (NNLSQ)44 and extended disjoint principal components regression 
(EDPCR),31 were evaluated for their utility in analysis of the data.  In each case, no a priori 
information was used regarding which vapors in the training set were present in the challenge 
mixtures.  The performance of the ST array arrangement in speciation of mixtures was then 
compared to the performance of an SS array having an equal number of sensor response 
descriptors.  The strengths and weaknesses of each data analysis approach employed for ST data 
were then compared.   
 
3.3. Experimental  
 

3.3.1. Materials 
The insulating materials for fabrication of the sensor films consisted of tetracosane (99%), lauric 
acid (99.5%), and dioctyl phthalate (99%), purchased from Aldrich; as well as propyl gallate 
(98%) and quinacrine dihydrochloride dihydrate (97%), purchased from Acros Organics.  
Reagent grade toluene, tetrahydrofuran (THF), and chloroform, received from Aldrich, were used 
as solvents in the sensor suspensions.  Hexane (95%), decane (99%), ethanol (95%), n-butanol 
(99.9%), ethyl acetate (99.5%) and chlorobenzene (99%), purchased from Aldrich, were used to 
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generate vapors for delivery to the sensor arrays.  Black Pearls 2000 (BP 2000), a furnace carbon 
black material donated by Cabot Co. (Billerica, MA), was used as the conductive phase in the 
sensor composites.  All materials were used as received.   
 

3.3.2. Detectors 
Four suspensions, each comprised of a non-conductive sorption phase and a conductive carbon-
black phase (Table 3.1), were used to fabricate the sensors evaluated in this work.  First, the non-
conductive (non carbon-black) sensor material(s) were placed in º 60 mL of solvent and the 
suspension was sonicated for > 10 min.  Carbon black was added to the suspension, and the 
resulting mixture was sonicated for > 30 min to produce a well-dispersed suspension.   Dioctyl 
phthalate was used as a component of some of the sensor films to serve as a plasticizer and to add 
chemical diversity to the films. 

Detector array substrates were fabricated by evaporating 30 nm of Cr and then 70 nm of Au 
onto glass microscope slides.   A custom-made mask was used to produce the electrode pattern 
shown in Figure 3.1. The slide was masked with Teflon tape and sprayed with a single sensor 
solution using an airbrush (Iwata, Inc.).  Several pairs of electrodes were monitored with an 
ohmmeter, and spraying was continued until the resistance across the 0.4 mm sensor electrode 
gaps was 500 - 1500 Ω.  This created an overall sensor film of 75 x 5 mm in length and width, 
having a film thickness of º 1-3 μm as measured with a Dektak 3030 profilometer (Sloan 
Technology Corp., Santa Barbara, CA).  Four such detector substrates were made.   Each glass 
slide had 15 identical sensors made of a thin film of one of the four suspensions listed in Table 
3.1. 

Four arrays were then placed into the custom-made aluminum sensor chamber depicted in 
Figure 3.2.  The chamber was 110 mm long and 25 mm wide.  In this study, only one side of the 
glass slide was coated with sensor material, so a total of 60 sensors were available for monitoring.  
A symmetric Teflon gasket (Figure 3.2a) was used to divide the incoming flow evenly among 
each of the eight vapor flow pathways.  Additionally, for each of the vapor flow pathways, the 
inside of the aluminum chamber was covered with a film of Teflon tape (Figure 3.2c).  Two 
weeks passed between the spraying of the sensor films and the initiation of the train/test phase.  
 

3.3.3. Vapor Generation and Delivery 
An automated flow system, controlled by LabVIEW 5.0 software, was used to deliver pulses of 
diluted streams of solvent vapor to the detectors.41  The carrier gas (background stream) was oil-
free air obtained from the house compressed air source (1.10 ± 0.15 parts per thousand of water 
vapor) controlled with a mass-flow controller (MFC) (UNIT) that could vary the flow from 6 to 
625 mL min-1.  For generation of analyte vapors, a foreground stream of carrier gas was passed 
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through a 220 mL bubbler filled with the desired solvent, controlled by a MFC that could vary the 
flow from 1 to 60 mL min-1.  The height of solvent in the bubblers was the same before and after 
each set of exposures. 

Pure analyte vapors were presented to the sensor arrays at P/Po = 0.010, 0.030, and 0.050 (1, 
3, and 5 parts of foreground saturated vapor flow combined with 99, 97, and 95 parts of 
background air, respectively).  Eight exposures were performed at each analyte concentration, for 
a total of 24 exposures per vapor.  These pure analyte exposures were randomly delivered over all 
analytes and concentrations, and served as the “training” exposures.  Exposures for the training 
period occurred over a 16-hour period. 

Analyte vapor mixtures were generated by mixing equal volumes of each component.  
Background air bubbled through these mixtures was presented to the sensor arrays at Pmix/Po

mix = 
0.050, where Pmix is the sum of the partial pressure of the analytes and Po

mix is the vapor pressure 
of the mixture.  Twenty exposures of each of the mixtures were presented to the sensor arrays.  
These mixture exposures served as the “testing” exposures.  Three exposure periods occurred 
over 13 h each, randomly exposing 2- and 3-component mixtures, 3- and 4- component mixtures, 
and 4- and 5- component mixtures.  All training and testing data were collected during a five day 
period.   

A total flow rate of 150 ± 5 mL min-1 (19 mL min-1 per chamber vapor flow pathway) was 
provided to the sensor chamber during the flow of either background or analyte vapor (Figure 
3.2).  Higher flow rates would provide more rapid sensor responses and can decrease the required 
exposure times.45  However, hardware limitations of the sensor multiplexing speed and the 
resulting 3 s cycling frequency per sensor required longer exposure times to ensure the extraction 
of the desired transient response.  To achieve flows with minimal variance in the rates of both the 
background and foreground streams, the mixtures were first generated at flow rates of 400 mL 
min-1.  A small Teflon-lined sampling pump (Science Pump Corporation) was used to withdraw 
vapor from the 400 mL min-1 stream and to present it to the sensor chamber at 150 ± 5 mL min-1.  
Flow meters (Gilmont) were used to monitor the flow rates of the background and undiluted 
vapor streams, as well as to monitor the flow rate immediately prior to the entrance to the sensor 
chamber.   

Gas chromatography-mass spectrometry (GC-MS) (Hewlett Packard 6890 GC system; 
Hewlett Packard 5973 Mass Selective Detector) was used to independently validate the 
compositions of the vapor mixtures.  For each of the pure test analytes, the vapor stream delivered 
at a setting of P/Po = 0.050 to the sensor chamber was sampled and manually injected into the 
GC.  The GC-MS spectral peaks were then integrated to provide a calibration for that analyte at 
the specified fractional vapor pressure. Streams of the various mixtures were then also sampled 
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and injected into the GC, and the GC-MS spectral peaks of each individually eluted analyte were 
integrated.  The fractional vapor pressure of each species i in the mixture was calculated with eq 
(1): 
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where iA  was the integrated area of species i in the mixture and cal
iA  was the integrated area of 

species i in the calibration performed at P/Po = 0.050.  For all mixtures, a standard error 
propagation was performed on eq (1).46  For the calibration of pure analyte vapors, at least six 
measurements were taken, while for mixtures, at least three measurements were taken.  Mixtures 
consisting of 2, 3, 4, and 5 components were generated from the six test analyte vapors.  
 

3.3.4. Measurements and Data Pre-Processing 
Sensor film resistances were measured using a Keithley 2002 multimeter and a Keithley 7001 
multiplexer.  Each sensor substrate was connected to the multiplexer through shielded, twisted 
pair cables and a rotary ZIF connector (Tyco Electronics).  To increase the overall sampling 
frequency, two Keithley 2002/7001 combinations were used to record the sensor response data.  
Each Keithley 2002/7001 combination recorded the responses from two of the four arrays, or 30 
of the 60 total sensors.  Sensor films were intentionally sprayed to produce film resistances within 
the same resistance range, 1000±500 Ω, to increase the multiplexing speed.  Each sensor was 
sampled approximately every 3 s.  Train and test exposures consisted of 70 s of pure background 
flow over the sensor arrays to establish a baseline resistance, followed by 150 s of analyte vapor 
flow at the desired fractional vapor pressure (P/Po = 0.010, 0.030, or 0.050), followed by a stream 
of pure background flow for 230 s to restore the sensors to their initial states.  Due to the 3 s 
cycling frequency, any exposure could experience up to a 3 s delay for vapor exposure initiation.  
For example, the pure background flow window prior to analyte exposure could range from 70 to 
73 s.  Prior to data collection, the sensors were subjected to 24 h of randomized exposures to all 
of the test vapors.47  Pure vapors were first used to train the sensor arrays, followed by testing of 
the array with exposures to mixtures.  Each set of exposures was randomized.  

The response of each vapor detector for each analyte exposure was expressed as S(t) = 
ΔR(t)/Rb(t), where Rb(t) is the baseline corrected resistance of the detector in the absence of 
analyte and ΔR(t) is the time-varying, baseline-corrected, resistance change upon exposure to the 
analyte.  The baseline resistance, Rb(t), was obtained by fitting a straight line to the data obtained 
during the pre-exposure period.  The slope of this line was then used to extrapolate the resistance 
recorded immediately prior to exposure to any time t.  ΔR(t) was calculated by subtracting Rb(t) 
from the measured sensor resistance at time t.  The actual times at which the sensor resistances 
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were recorded varied with each exposure, and were different for each sensor in the array.  The 
responses at the times used in the data analysis were calculated by interpolating between the 
measured data points.   

In a control study, only the first, middle, and last sensor in each array (i.e., detectors 1, 8 and 
15 in Figure 3.1) were sampled.  This data set also captured ST sensor response information, 
albeit with fewer data points.  These data were then compared to traditional SS data obtained 
from the responses of the first three sensors in each array.  SS data was acquired when all sensors 
were in equilibrium with the initial vapor stream, near the end of the 150 s vapor exposure period.  
To facilitate comparisons between the two methods, the same total number of S(t) values were 
extracted in both cases.  This procedure produced an equal number of total response descriptors 
from the three-sensor subarrays used to compare the ST and traditional SS sensing approaches.   
 

3.3.5. Vapor Classification 
The responses of these chemiresistive composite vapor sensors have been shown to be linear with 
the concentration of analyte, over the range of concentrations of interest in this work.15,17  
Statistical, linear-based pattern recognition techniques were therefore used to determine the 
identity and relative amounts of each analyte present in the vapor mixtures.  Non-linear, neural 
network-based pattern recognition implementations may potentially provide enhanced 
performance in such tasks, but linear-based algorithms provide a more objective measure of 
performance.  Hence, non-negative least squares (NNLSQ), as well as extended disjoint principal 
components regression (EDPCR) methods, were used to analyze the ST array responses of 
analyte mixtures. 
 

3.3.5.1.  Nonnegative Least Squares (NNLSQ) 
For NNLSQ, training data collected at P/Po = 0.050 were used to generate a vapor response 
library.  Averaged baseline-corrected responses to the six vapors, S(t), extracted at four times (t = 
80, 90, 130 and 150 s) for each of the fifteen sensors along each of the four arrays, were used to 
create a 240 μ 6 library, A, of responses to the six pure analyte vapors. NNLSQ finds the linear 
combination of each of the pure response vectors that best matches, in a least squares sense, the 
mixture response vector.  NNLSQ minimizes ||Ax-b||, where b is the 240 μ 1 measured sensor 
response vector to the mixture, and x is a 6 μ 1 vector of concentrations of the analytes that 
minimizes the objective function, subject to xi ≥  0.44  NNLSQ was performed in MATLAB using 
a pre-programmed function. 
 

3.3.5.2.  Extended Disjoint Principal Components Regression (EDPCR) 
EDPCR has been applied to determine the individual components of simulated vapor mixtures 
based on the linear addition of pure vapor exposures to an array of polymer-coated SAW sensors, 
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with superimposed Gaussian error.31  Briefly, EDPCR involves modeling, via Principal 
Components (PCs), the responses to each of the pure vapors, with a different set of PCs generated 
for each pure analyte.  In principal, if there were no noise and if all of the sensors were perfectly 
linear, only a single PC would be required for each pure vapor.  The direction of this PC in sensor 
response space would then be different for each pure vapor.  All training data (P/Po = 0.010, 
0.030, 0.050) were used to generate EDPCR models for each of the pure vapors.  These models 
describe the sensor response during exposure to a pure vapor, as a function of the vapor 
concentration.  A leave-one-out cross-validation scheme, based on the residual squared variance 
between the actual and modeled array response as a function of the number of PCs employed, 
was used to determine the optimal number of PCs required to accurately describe the array 
response toward each pure vapor.  The responses to analyte mixtures were then fit to all 
combinations of pure vapors for the 6 analytes of interest, ranging from single pure component 
models to the 6-component mixture model, thus encompassing 63 total possible vapor 
combinations.  

 Fitting the unknown array response to each of the 63 models consisted of projecting the 
response spectrum onto the PC-space of each model.  A reconstructed response spectrum was 
obtained by projecting the PC-space data back on the transformation vectors for the model.  If the 
model was incorrect, the reconstructed response differed significantly from the original response.  
A residual squared variance between the original response spectrum and the reconstructed 
response spectrum gave a measure of goodness of fit.  The model with the lowest residual 
squared variance was then selected as the proper analyte combination.  The analyte concentration 
was then determined based on the position of each analyte along the first PC for each of the 
vapors.   

This algorithm is essentially equivalent to the more general soft independent modeling of 
class analogy (SIMCA) method, except that in SIMCA, each model that well-describes the data is 
accepted as a possibility, and more than one possibility may exist.48-50  Hence, it is not necessary 
in SIMCA to obtain a single, unique solution.  In contrast, in EDPCR, only the single model that 
provides the lowest residual squared error between an actual response vector and a modeled 
response vector is chosen for use.  EDPCR was performed in Matlab, using custom-written code.   
 
3.4. Results 
 

3.4.1. Sensor Response 
Figure 3.3 shows the baseline-corrected response of a sensor array made from propyl gallate and 
carbon black (sensor material 3, Table 3.1) to a) pure hexane and b) pure decane, each presented 
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at P/Po = 0.050, as a function of time.  Responses were observed on two times scales: an 
immediate rapid response, and a slower drifting response.  The latter was due to diffusive 
broadening of the vapor front as it progressed, through tubing, to the inlet of the sensor chamber.  
For visualization, the responses have been normalized by the response of each of the sensors at t 
= 220 s.  The experimental setup produced a delay of º 7 s between the initiation of analyte 
delivery and the response of the first sensor in the array.  On exposure to hexane (Po = 130 mm 
Hg), the vapor concentration rapidly became uniform over all sensors in the array, as evidenced 
by the similar response profiles vs. time for all 15 sensors.  In contrast, on exposure to decane (Po 
= 1 mm Hg), the response across the array varied significantly.  The first sensor exhibited a fairly 
rapid response.  However, decane has a partition coefficient into the sensor film that is roughly 
100 times that of hexane,41  hence, sorption of decane into the first sensor depleted the vapor 
sampling stream of the analyte.  The sorption of analyte vapor by the earlier sensors therefore 
produced an altered, and delayed, arrival of the vapor front to the subsequent sensors along the 
array.  In essence, the sensor material acted as a GC stationary phase, taking up and establishing 
equilibrium with the components of the vapor phase flow stream.   

Figure 3.4 depicts the baseline-corrected response of the first and ninth sensors in an array of 
lauric acid/carbon black chemiresistive sensors (sensor type 2, Table 3.1) upon exposure to pure 
ethyl acetate, pure decane, or a mixture of ethyl acetate and decane, all delivered at P/Po

 (or 
Pmix/Po

mix) = 0.050.  The first sensor in the array was exposed to a vapor stream that contained 
either ethyl acetate (Po = 80 mm Hg), decane, or a mixture of both, at their original 
concentrations. For each vapor stream, this sensor exhibited a response that rapidly became 
nearly independent of time.  In contrast, the ninth sensor exhibited a rapid response upon 
exposure to pure ethyl acetate, due to ethyl acetate having a relatively high vapor pressure and 
low partition coefficient into the sensor film in the array.  However, consistent with Figure 3.3, 
this sensor exhibited a delayed response upon exposure to pure decane.  Exposure to the mixture 
of ethyl acetate and decane showed a two-step sensor response, with one step occurring when the 
ethyl acetate arrived at the sensor, at º 80 s, and with the other step occurring when the decane 
arrived at the sensor, at º 130 s.  The slow rise-time of the ninth sensor on exposure to decane 
and the mixture of decane and ethyl acetate is indicative of the slow increase in concentration of 
decane in the gas phase at the ninth sensor.   

Figure 3.3 and Figure 3.4 each show differences in response profiles along the sensor array 
on exposure to decane.  This is likely due to pulse broadening along the vapor flow pathway.45  
Pulse broadening could be minimized by operation at higher flow rates, which would provide 
sharper response profiles and greater analyte discrimination (assuming the hardware in place is 
able to capture these faster transient responses).  However, pulse broadening is well-defined for a 
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given geometry-flowrate-sensor-vapor combination, and therefore introduces response 
differences that are repeatable across repeated exposures.   
 

3.4.2. Analysis of Mixtures 
A series of fourteen mixtures was analyzed using the ST response data produced on the sensor 
array.  For all exposures, the observed S(t) values were interpolated to fixed times having 10 s 
intervals, to produce 15 array responses in the time interval of t = 80 to 220 s.  Subsets of these 
data, comprised of S(t) responses extracted at various times, ranging from single time-response 
descriptions to multiple time-response descriptions (including up to 7 different times), were then 
subjected to analysis using either NNLSQ or EDPCR.   

The sum of the squared residual variance, S2, was calculated between the mean mixture 
composition calculated by either NNLSQ or EDPCR, and the mixture composition indicated by 
GC-MS measurements (Table 3.2).  The cross validation procedure for the EDPCR method 
yielded 3-7 PCs to describe each pure vapor response model.  For all time combinations, NNLSQ 
was the better-performing algorithm.  The optimal time combination was chosen as the 
combination of times that provided the lowest S2 (best fit) between the deduced sensor array 
mixture composition and the mixture composition indicated by GC-MS.  The optimal time 
combination was four times, at t = 80, 90, 130 and 150 s.  The S(t) values extracted at t = 80 and 
90 s (i.e., immediately after vapor delivery) provided information about the movement of higher-
vapor pressure (lower-partitioning) analytes such as hexane, ethyl acetate and ethanol (Po = 130, 
80 and 50 mm Hg, respectively) down each array.  The S(t) values at t = 130 and 150 s provided 
information on the progress of lower-vapor pressure (higher-partitioning) analytes, such as 
chlorobenzene, butanol and decane (Po = 10, 5 and 1 mm Hg, respectively) down each array.  
Although this combination of analysis times provided the lowest S2  between the sensor array and 
the GC-MS results, many combinations using 2-7 times (instead of 4), spanning approximately 
the same range of overall analysis times, provided comparable overall performance to that of the 
optimal 4-time data set. 

For exposure of the sensor arrays to 2-, 3-, 4-, and 5-component mixtures, Figures 3.5-8, 
respectively, show the identified analytes and their estimated concentrations ( ) in the analyte 
mixtures, as obtained from analysis of the response data using various sensor/pattern recognition 
combinations.  These figures also display the concentrations of analytes as revealed by GC-MS 
analysis ( ).  Figures 3.5a-8a display these analyses using ST responses from all 15 sensors in 
each array, with responses at t = 80, 90, 130 and 150 s, and NNLSQ to identify the vapor 
constituents and reveal their respective concentrations.   
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The cross-validation for EDPCR yielded 3-7 PCs as optimal for each of the pure vapors.  No 
clear-cut choice was available to determine the “best” fit, in that the model offering the lowest 
residual variance was chosen, but only because the residual error obtained with the selected 
model was marginally lower than that produced by the second-best fit.  Figures 3.5b-8b display 
analyses that used all 15 sensors per array and EDPCR, using the optimal number of PCs to 
identify and quantify the constituents of each analyte mixture.  In each case, analysis using 
NNLSQ more closely matched the results obtained with GC-MS.  The use of NNLSQ also 
yielded smaller variances than were obtained through the use of EDPCR.   

For exposures to all fourteen mixtures investigated in this work, Tables 3.3 and 3.4 list the 
estimated concentrations and standard deviations for each vapor, as well as the error (S2), 
produced by using the various data analysis methods.  Analysis of the data using NNLSQ 
generally produced smaller residual errors than were obtained from analysis using EDPCR.  This 
measure of the residual variance was calculated using the mean concentration estimations for 
each of the mixtures, and therefore contains no information regarding the variance for individual 
components.  The standard deviations however, showed a significantly larger variance in mixture 
analyses for the EDPCR method (Table 3.4) than for the NNLSQ method (Table 3.3).   

Analyses were also performed using the responses produced by a limited number of sensors 
along each array.  In this approach, the responses from the first, middle and last sensor along each 
array (detector positions 1, 8 and 15 in Figure 3.1) were sampled at t = 80, 90, 130 and 150 s, thus 
providing a data set that contained ST information from only three sensors per array.  The twelve 
sensors that were not sampled provided a GC stationary phase equivalent that acted to separate 
vapors as they progressed along the length of each array.  To compare ST and traditional data, SS 
data was measured using the first three sensors in each array, sampled at t = 205, 210, 215 and 
220 s.  Of the vapors present in the sampled mixtures, decane possessed the lowest vapor 
pressure.  Vapor partitioning into sorption-based sensor films is inversely correlated with the 
vapor pressure of the analyte,51 thus decane progressed most slowly along each sensor array.  
Figure 3.3b shows the response of such a sensor array upon exposure to decane, indicating that 
the first three sensors showed a fairly rapid response, and by t = 205 s essentially came to a 
steady-state equilibrium response.  For the ST and SS method, responses were calculated at four 
separate times, to provide each method with an equal number of total response descriptors.   

NNLSQ was used to identify and quantify the partial pressure of each vapor in the analyte, 
for ST and SS analysis using three-sensor arrays.  Figures 3.3c-6c display the results obtained 
using ST detection with only three sensors per array on exposure to 2-, 3-, 4-, and 5- component 
mixtures, respectively.  Comparing these results with those presented in Figures 3.3a-6a indicates 
that approximately the same results were obtained using this limited ST data set as were obtained 
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using the ST response information from the full 15-sensor data set.  In contrast, Figures 3.3d-6d 
display the results obtained using the traditional SS approach produced using the data from only 
the first three sensors in each array.  SS analysis produced a marked decrease in the ability of the 
sensor array to correctly identify and quantify the presence of vapors in the tested mixtures.   

Tables 3.5 and 3.6 list the estimated concentrations for each vapor obtained from exposures 
to each of the fourteen mixtures investigated in this work, using three sensors per array, with ST 
or SS data, respectively.  These tables also present the sum of the squared residual error (x1000) 
between the estimated analyte concentrations obtained with each of the pattern recognition 
approaches, and the actual analyte concentration values obtained using GC-MS.  For every 
situation investigated, the use of the ST aspects of the array response produced significantly 
better performance in the identification and quantification of the components of the vapor 
mixtures than the results obtained using traditional SS response information.  

Figure 3.9 displays the sum of the squared residual error for each of the fourteen mixtures 
analyzed in this work.  The results are presented for data analyzed with (1) NNLSQ using ST 
detection with the full 15 sensors per array, (2) EDPCR using ST detection with the full 15 
sensors per array, (3) NNLSQ using ST detection with only 3 sensors per array, and (4) NNLSQ 
using SS detection (first three sensors).  Vapor detection using NNLSQ on the ST response data, 
whether employed with the full 15 sensors per array or the limited 3 sensors per array, yielded 
approximately equal errors for each of the mixtures, as well as approximately the same variance 
in vapor estimation (Tables 3.3 and 3.5).  ST vapor detection analyzed with EDPCR, using all 15 
sensors per array, generally yielded a higher error as well as a much larger variance in vapor 
estimation (Table 3.4).  The largest error in each of the mixture analyses was obtained using only 
the SS response information provided by the first three sensors in each array. 
 
3.5. Discussion  
 

Sorption-based sensors such as these have been shown to be linear with respect to pure analyte 
vapors over relatively low concentration ranges, as well as linear with respect to multiple 
vapors.15,17,24  The development of the ST approach described here is predicated on this response 
linearity.  Sensor response is essentially a dual-step process.  First, chemical thermodynamics 
cause a given vapor to partition into the sensor film which causes it to volumetrically expand.  
This expansion causes an immediate change in the conductive properties of the film, which is 
linear when operating beyond the percolation regime of the composite film and over small 
volumetric changes.16,52  The simplest model for the sorption behavior is given by the Langmuir 
adsorption isotherm, which predicts linear sorption at low concentrations over all species 
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adsorbed. 53,54  This model assumes no interaction between any sorbed species and for all sorption 
sites to be energetically uniform.53,54  At high concentrations, or in situations where interactions 
exist between adsorbed species (which alters the energetics of sorption), this linearity breaks 
down.  Figures 3.3-6 show an unprecedented ability to identify mixtures, however deviations are 
evident between actual mixtures presented and sensor array perception.  For example, Figure 3.6a 
shows an over-estimation of ethanol.  This over-perception is likely due to a change in the 
adsorption energy of ethanol caused by the adsorption of ethyl acetate and chlorobenzene in the 
sensor film.  These energy differences will vary to different degrees depending on species 
adsorbed, occasionally causing the sensor to wrongly perceive any given mixture.   

The use of ST response data for vapor detection allowed for the extraction of important 
chemical information not available using traditional SS data.  In this work, unnormalized 
baseline-corrected response data were used, to preserve information regarding the concentrations 
of the vapors in the test analytes.  However, often sensor data is normalized: 
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where Si(t)  is the response extracted from sensor i at time t, ns is the number of sensors used, and 
nt is the number of times used to extract a response Si(t).  This normalization procedure creates a 
unit feature vector response for each exposure, largely independent of concentration, that can be 
used as a fingerprint for an individual analyte.55,56  Performing principal components analysis 
(PCA) on normalized response data often reveals that the vast majority of the array response 
variance is contained in only a few principal component (PC) vectors.17,24,57   

Performing PCA on normalized ST pure vapor training data consisting of 15 sensors per 
array indicated that the first five PCs contained 85% of the total response variance (35, 22, 15, 9 
and 4%, respectively).  Performing the same PCA using the normalized 3 sensors per array ST 
vapor training data similarly revealed that 86% of the total response variance was contained in the 
first 5 PCs (37, 21, 14, 8 and 6 %, respectively).  The similarities in the PC eigenvalues for the 
two cases suggests that no significant additional information was extracted by using the data from 
the full 15 sensors in the array.   

These findings are reflected in Figures 3.5-9, which show approximately equal performance 
for mixture identification for the two approaches.  When PCA was performed on pure vapor 
training exposures for the normalized SS data set using the first three sensors in each array, the 
first five PCs contained 98% of the total response variance (65, 20, 9, 2 and 2%, respectively).  
While 85% of the variance is contained in only the first 2 PCs, 5 PCs were required for the ST 
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data (note that both data sets have an equal number of response descriptors).  The differences in 
mixture analysis performance reflect the limited amount of information obtained using the 
traditional SS sensing approach (Figures 3.5-9).  Spreading out the variance over more PCs 
translates into more unique information, and an increased ability to analyze vapor mixtures, in 
accord with the results and conclusions reported herein.  

NNLSQ yielded better mixture analysis than that obtained using EDPCR.  EDPCR models 
the response of a sensor array toward pure vapors by loading the total response variance into a 
few chosen PCs, and truncates the data set by eliminating what is hopefully mostly noise.  The 
EDPCR algorithm requires a response that is linear with concentration, and additive with respect 
to multiple vapors, to correctly identify analyte mixtures.  Given the results obtained with 
NNLSQ, the sensors appear to be largely linear in their response.  For responses perfectly linear 
with concentration, in the EDPCR method, only a single PC would be required to accurately 
model each pure vapor.  This has been observed for polymer-coated QCM responses on exposure 
to pure vapors at varying concentrations.31  The cross-validation used here to determine the 
optimal number of PCs yielded 3-7 PCs for each pure vapor, indicating the non-linearity in the 
data.  The non-linear sensor responses cause EDPCR to incorrectly determine the components of 
analyte mixtures because of the lack of a perfect fit.   

Whereas EDPCR condenses the dominant modes of the data variance into a few PCs, 
NNLSQ averages out relevant chemical information, and noise, over each of the individual 
response descriptors, and does not require an exact fit.  Given the relatively large number of 
response descriptors in the data sets (48 for 3-sensor ST, 240 15-sensor ST), this averaging effect 
appears to aid the identification of the constituents of the vapor mixtures.   Thus, EDPCR may be 
better-suited to simply describe possible fits, as in the SIMCA algorithm, rather than forcing the 
algorithm to decide on the single model that offers the lowest residual variance.   

PCA is well-documented to be useful for displaying differences in the equilibrium response 
properties of an array exposed to various pure vapors.15,17,57 However, when modeling the sensor 
responses of pure vapors collected using the ST method, some of the information important for 
mixture analysis may only be present in the lower PCs.  Thus, a cross-validation procedure was 
used to determine the optimal number of PCs needed to model the pure vapors that yielded 
relatively poor results (Figures 3.5-9).  For a more thorough analysis of the ability of EDPCR to 
identify and quantify mixture components, pure analytes were each modeled using different 
number of PCs ranging from 1 to 12.  However, no combination of PCs offered a significant 
increase in array performance.  The poor performance across all combinations of PCs suggests 
that EDPCR performed poorly due to non-perfectly linear sensor responses.   
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A single flow rate was employed in this study.  The six pure analyte vapors chosen 
represented various chemistries and additionally spanned two orders of magnitude in vapor 
pressure.  Hence, the given sensor arrangement and implementation proved sufficient to identify 
and quantify mixtures of the chosen vapors.  However, as shown in Figure 3.3, for some analytes 
the latter sensors may never reach equilibrium with the concentration in the initial vapor stream.  
Thus, additional response information, including finer resolution of the progression of the analyte 
vapor down each array, could be extracted by using longer length arrays or through the use of 
multiple vapor flow rates.  The limit of implementation of this approach would involve the use of 
either a flow rate slow enough that all sensors are in equilibrium with the vapor stream they are in 
contact with, limited by the rate of diffusion of vapors down the array; or the use of an infinitely 
long sensor array, which would be the equivalent of a GC column with sensors located along its 
length.  An improved geometric implementation maximizing the information extracted per sensor 
employed would involve an exponentially spaced array of sensors, to better capture the ST 
response differences for analyte vapors having a large range of partition coefficients with the 
sensor films.  Because approximately the same results were obtained when the ST responses were 
described by 3 or 15 sensors per array, only a limited number of sensor response descriptors were 
required for the vapors evaluated, to capture the necessary information to perform mixture 
decompositions down each array.  Hence, when the chosen vapors possessed sufficient 
differences in chemistries and vapor pressures, only a fraction of the total sensors were required.  
Alternatively, had the vapors been more similar chemically, greater detail may have been 
required for mixture identification, and differences between the analysis of the ST response set 
containing the full 15 sensors per array and the limited set containing only 3 sensors per array 
would be observed.  

In this work, the sensor material was a sorption-based composite comprised of small organic 
molecules and carbon black.  Such films not only performed the vapor sensing function, but also 
served as the stationary phase into which the vapors partitioned and separated.  The 
chemiresistive sensor films can be deposited and remain functional in most any form factor, 
making them especially attractive for use in the ST array response implementation.  Many 
sorption-based sensors, however, are restricted in terms of the forms in which they can be 
fabricated.  Coated quartz crystal microbalances, for instance, are restricted to the shape of the 
underlying quartz substrate.  In situations such as these, in which one can not assemble the 
sensors in the type of array used here, ST mixture analysis could be applied by maintaining a low 
vapor headspace volume, and coating the walls of the chamber with various stationary phases.  In 
this case, the only restriction would be that the stationary phases and sensors must exhibit mass 
uptake and sensor response, respectively, that is linear with concentration and additive in their 
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response with respect to multiple vapors.  If these criteria are met, the ST approach could be used 
with a wide variety of sensor types.   

The ST data reported herein were obtained in a controlled laboratory setting.  The flowrate to 
the sensor chamber was set at 150 mL min-1, and ranged from 145 to 155 mL min-1 with random 
fluctuations throughout the training and testing periods.  These fluctuations were accounted for 
during the training phase of the sensors.  Had higher flowrate precision been achieved, the 
sensors would exhibit less variance in their responses, providing enhanced ability to correctly 
identify mixtures.  Additionally, if the flowrate exhibited a systematic drift, the fingerprint 
response of each of the vapors could change significantly, causing degradation in the ability to 
correctly identify mixtures.  To better understand how well this ST approach would perform in 
the real world, further work should be done to investigate how sensitive and/or robust this 
approach is to changes in exposure flowrate, as well as fluctuations/changes in temperature, 
humidity, and sensor response (drift).  Furthermore, previous work has shown the ST method can 
readily detect low concentrations (ppb) of low vapor pressure analytes in the presence of higher 
concentrations (ppm) of high vapor pressure analytes.41  Additional studies should be performed 
to better understand to what extent the ST method is able to identify a vapor present at low 
concentration in the presence of vapor(s) present at higher concentrations.    
 
3.6. Conclusions  
 

Use of ST data has been shown to provide enhanced performance in analysis of vapor mixtures 
relative to the traditional SS response of an array of broadly cross-responsive vapor sensors.  In a 
low-volume headspace chamber that allows each sensor to be exposed to a well-defined, time-
varying vapor stream, the sensor material acted as a chromatographic stationary phase, causing 
vapors to be retarded in progression along the array.   The retardation was proportional to the 
sensor/vapor partition coefficient.  The resulting sensor responses at long times and/or at 
positions close to the inlet captured the traditional SS sensor response differences to an 
unchanging vapor stream, but at shorter times and positions further from the inlet, also measured 
the progress of each vapor down the sensor array.  Under such conditions, significantly more 
information was obtained on analyte mixtures relative to the information obtained using 
traditional sensor responses alone.  The observed behavior was in accord with the physics of the 
time-varying convection-diffusion equation, with the flux dictated by the concentration of vapor 
in each of the phases and the vapor/sensor partition coefficient.58  Modeling of the ST method to 
better understand its limitations, as well as explore its potential in microfluidic application, is 
currently underway.58   
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Previous reports using cross-responsive sensor arrays have addressed pure vapor 
identification, or the identification of complex mixtures as a whole, but the identification and 
analysis of mixtures containing more than three components has not been previously achieved.  
The ability of an ST sensor array consisting of only four sensor types to correctly identify and 
quantify 2-, 3-, 4- and 5-component mixtures, using a library consisting of responses to six pure 
analyte vapors, demonstrates the importance of the use of ST information.  The implementation 
of the ST method thus clearly increases the possible application space of such sensor arrays for 
analysis of analyte mixtures, as well as for analysis of pure analytes.  
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Table 3.1:  Sensor suspensions used to spray sensor films.  For each suspension, non-carbon 
black components were combined with º 60 mL of the listed solvent and the suspension was 
sonicated for > 10 min.  Carbon black (CB) was then added to the solution, which was then 
sonicated for > 30 min to obtain a well-dispersed suspension. Each suspension was 75% carbon 
black by weight.  DP = dioctyl phthalate.  

 
suspension sensor materials  solvent  

1 35 mg tetracosane, 15 mg DP, 150 mg CB toluene 
2 35 mg lauric acid, 15 mg DP, 150 mg CB tetrahydrofuran 
3 50 mg propyl gallate, 150 mg CB tetrahydrofuran 
4 50 mg quinacrine dihydrochloride, 150 mg CB chloroform 
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Table 3.2:  Fractional vapor pressures (x1000) of analyte vapors present in each of the mixtures, 
as determined by GC-MS sampling (calculated by eq (1)) immediately prior to entry into the 
sensor chamber. 

 

mixture hexane decane 
ethyl 

acetate 
chloro-
benzene ethanol butanol 

1 0 23±11 27±15 0 0 0 
2 0 0 13±2 24±1 0 0 
3 0 0 0 23±1 0 22±1 
4 0 20±1 0 0 0 31±2 
5 0 11±3 8±7 20±4 0 0 
6 23±2 0 0 0 29±8 44±16 
7 27±8 14±8 0 0 0 44±13 
8 0 0 4±1 12±1 23±6 0 
9 22±7 0 0 28±11 45±9 0 

10 18±4 12±4 0 0 27±4 11±3 
11 9±8 14±2 0 22±6 0 69±27 
12 13±8 11±4 8±2 0 31±6 20±5 
13 12±0 0 4±0 8±1 23±2 13±2 
14 8±0 5±0 4±0 8±0 27±2 0 
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Table 3.3:  Fractional vapor pressures (μ1000) of analyte vapors present in each of the mixtures, 
as determined by NNLSQ, using all 15 sensors per sensor array with S(t) extracted at t = 80, 90, 
130 and 150 s.  Mean and standard deviations are given, calculated over 20 exposures to each 
mixture.  Squared residual error (S2) for each mixture, calculated between the listed means and 
those obtained with GC-MS (Table 3.2), are given in the final column.  

 

mixture hexane decane 
ethyl 

acetate 
chloro-
benzene ethanol butanol S2 

1 4±2 18±8 34±3 2±2 7±10 2±2 0.15 
2 0 4±3 17±4 26±2 8±6 6±5 0.14 
3 0 3±4 0 29±8 3±4 31±6 0.14 
4 0 31±3 0 1±1 1±2 35±4 0.14 
5 1±2 11±3 18±3 22±2 8±5 3±2 0.18 
6 32±3 1±1 3±3 0±1 29±14 11±9 1.18 
7 30±5 3±3 1±2 1±2 37±10 8±8 2.80 
8 1±1 2±3 10±2 17±4 44±9 3±6 0.52 
9 30±6 1±2 1±2 16±4 36±6 2±3 0.30 

10 26±2 8±3 2±2 0 24±9 15±3 0.11 
11 19±3 4±2 2±3 17±3 15±4 22±4 2.66 
12 22±2 5±3 13±2 0±1 22±8 14±6 0.26 
13 26±3 0 10±3 7±3 24±8 13±4 0.23 
14 16±3 3±2 5±2 10±3 31±10 10±5 0.19 
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Table 3.4:  Fractional vapor pressures (μ1000) of analyte vapors present in each of the mixtures, 
as determined by EDPCR, using all 15 sensors per sensor array with S(t) extracted at t = 80, 90, 
130 and 150 s.  Mean and standard deviations are given, calculated over 20 exposures to each 
mixture.  Squared residual error (S2) for each mixture, calculated between the listed means and 
those obtained with GC-MS (Table 3.2), are given in the final column. 

 

mixture hexane decane 
ethyl 

acetate 
chloro-
benzene ethanol butanol S2 

1 0±2 7±10 44±7 1±3 1±2 0±2 0.55 
2 7±9 1±4 19±7 14±11 2±5 0 0.19 
3 5±8 5±15 0 30±23 0 15±22 0.15 
4 0 21±14 0 2±7 0 36±14 0.03 
5 8±17 5±10 21±13 10±10 3±12 0 0.38 
6 27±8 0 4±9 0 13±13 11±16 1.38 
7 29±12 0 4±7 1±4 0±23 28±17 0.47 
8 8±6 2±5 30±10 0 16±23 0 0.94 
9 35±10 1±3 20±7 0 5±12 0 2.95 

10 29±18 3±5 5±9 0 19±22 0 0.41 
11 28±7 0 3±7 5±10 1±4 21±20 3.16 
12 17±16 0 23±11 0 13±22 0 1.09 
13 23±8 0 24±8 1±5 8±20 0 0.96 
14 20±8 1±4 18±11 1±5 9±19 0 0.73 
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Table 3.5:  Fractional vapor pressures (μ1000) of analyte vapors present in each of the mixtures, 
as determined by NNLSQ, using the first, middle and last sensor in each array with S(t) extracted 
at t = 80, 90, 130 and 150 s.  Mean and standard deviations are given, calculated over 20 
exposures to each mixture.  Squared residual error (S2) for each mixture, calculated between the 
listed means and those obtained with GC-MS (Table 3.2), are given in the final column. 

 

mixture hexane decane 
ethyl 

acetate 
chloro-
benzene ethanol butanol S2 

1 3±2 20±8 36±2 1±2 7±10 3±3 0.16 
2 0 5±5 15±4 25±3 11±7 7±5 0.20 
3 0 5±5 0 29±8 3±3 32±6 0.17 
4 0 30±3 0 0± 1±2 38±3 0.15 
5 0±1 13±4 17±2 21±2 9±5 5±3 0.19 
6 29±3 0±1 4±4 1±1 33±13 10±7 1.23 
7 28±4 2±4 1±2 3±4 37±9 10±8 2.68 
8 0±1 2±3 6±4 18±4 51±10 3±5 0.84 
9 27±5 1±2 1±2 17±4 42±6 1±2 0.16 

10 24±3 5±4 2±2 0 30±9 13±5 0.10 
11 20±5 3±2 1±2 15±4 15±5 24±2 2.54 
12 18±3 4±3 15±2 0 28±8 11±5 0.21 
13 27±5 0 10±2 4±4 28±9 14±3 0.30 
14 16±4 3±3 5±2 8±4 35±10 10±5 0.23 
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Table 3.6:  Fractional vapor pressures (μ1000) of analyte vapors present in each of the mixtures, 
as determined by NNLSQ, using the first three sensors in each array with S(t) extracted at t = 205, 
210, 215 and 220 s.  Mean and standard deviations are given, calculated over 20 exposures to 
each mixture.  Squared residual error (S2) for each mixture, calculated between the listed means 
and those obtained with GC-MS (Table 3.2), are given in the final column. 

 

mixture hexane decane 
ethyl 

acetate 
chloro-
benzene ethanol butanol S2 

1 35±21 5±9 4±7 5±6 37±9 0 3.47 
2 6±7 1±3 8±13 25±4 25±15 1±2 0.69 
3 11±10 0 0±1 20±6 33±12 9±12 1.39 
4 42±17 3±8 2±3 6±6 25±5 0 3.68 
5 21±11 2±5 3±8 24±7 22±8 0 1.05 
6 15±12 3±5 2±3 5±8 47±15 3±3 2.11 
7 15±15 10±10 1±2 3±6 52±11 1±1 4.72 
8 2±4 3±4 4±6 7±7 72±10 0 2.44 
9 7±11 11±11 2±3 15±13 48±14 0±1 0.53 

10 40±8 0 0 7±9 27±8 0±1 0.80 
11 37±9 0 0 11±9 35±4 0 7.09 
12 31±7 0 0 9±7 39±5 0 1.05 
13 31±8 0 0 5±7 49±9 0±1 1.23 
14 24±11 2±5 0 12±10 40±11 0 0.47 
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Figure 3.1:  Sensor substrate layout for a single constant-composition sensor array. The sensor 
solution was sprayed using an airbrush to generate a 5 mm μ 75 mm thin film array 1-3 μm in 
thickness. 15 pairs of underlying Au electrodes allowed for the monitoring of 15 sensors along 
the array.   
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Figure 3.2:  Chamber design used to accommodate multiple vapor flow pathways and sensor 
multiplexing:  (a) three-dimensional chamber geometry with dimensions shown;  b) head-on view 
of (a), showing all four sensor arrays as well as the vapor flow pathways, with the dashed section 
shown in detail in (c), which shows individual vapor flow pathways and dimensions, as well as a 
sensor film (not to scale).   

 

b) 

a) 

c) 

sensor substrates 

vapor  
flow in 

sensor substrates (electrodes exposed) 

110 mm 

25 mm 

Teflon  
gasket 

sensor film 

sensor substrate 

aluminum housing 

vapor flow  
pathways 

340 μm 

Teflon  
coating 

3.5 mm 



 70

Figure 3.3:  Response of a 15-sensor array of propyl gallate/carbon black (sensor composition 3, 
Table 3.1) to a) pure hexane and b) pure decane, each delivered at P/Po = 0.050.  S1 and S15 
denote the 1st and 15th sensor in the array, respectively.  To put all sensors on the same scale, for 
visualization, each sensor response was scaled by its response at t = 220 s.   
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Figure 3.4:  Response of the first and ninth sensors (detectors 1 and 9, Figure 3.1) along a lauric 
acid/dioctyl phthalate/carbon black sensor array (sensor type 2, Table 3.1) to pure ethyl acetate 
delivered at P/Po = 0.050, pure decane delivered at P/Po = 0.050 and a mixture of ethyl acetate 
and decane exposed at Pmix/Po

mix = 0.050.   
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Figure 3.5: Comparison between various sensor/pattern recognition configurations in their 
analysis of 2-component mixture 3 (Tables 3.2-6): a) 15 sensors along each array, responses 
sampled at t = 80, 90, 130 and 150 s, analyzed with NNLSQ; b) 15 sensors along each array, 
responses sampled at t = 80, 90, 130 and 150 s, analyzed with EDPCR; c) first middle and last 
sensor along each array (detector numbers 1, 8 and 15, Figure 3.1), responses sampled at t =80, 
90, 130 and 150 s, analyzed with NNLSQ; and d) first three sensors along each array (detector 
numbers 1-3, Figure 3.1), responses sampled at t =205, 210, 215 and 220 s, analyzed with 
NNLSQ.  Results obtained with each sensor/pattern recognition configuration ( ) and GC-MS 
( ) are given, with error bars.   A1 – A6 denote hexane, decane, ethyl acetate, chlorobenzene, 
ethanol, and butanol, respectively.  
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Figure 3.6: Comparison between various sensor/pattern recognition configurations in their 
analysis of 3-component mixture 8 (Tables 3.2-6).  See Figure 3.5 caption for descriptions. 
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Figure 3.7: Comparison between various sensor/pattern recognition configurations in their 
analysis of 4-component mixture 10 (Tables 3.2-6).  See Figure 3.5 caption for descriptions. 
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Figure 3.8: Comparison between various sensor/pattern recognition configurations in their 
analysis of 5-component mixture 12 (Tables 3.2-6).  See Figure 3.5 caption for descriptions. 
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Figure 3.9:  Residual squared error (S2) observed between mean analyte estimation using various 
sensor/pattern recognition configurations and mean analyte estimation using GC-MS for each of 
the fourteen mixtures attempted in this work (last columns of Tables 3.3-6).   
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Chapter 4 
 
 
Modeling of Spatiotemporal Response and 
the Definition of an Optimal Operational 
Regime for Mixture Analysis 
 
 
4.1. Abstract 
 

A model of the mass flow in a small volume chamber with small molecule/carbon black 
composite (SMCBC) chemiresistor sensors has been developed.  The model was used to predict 
the spatiotemporal (ST) response of the sensors.  The model used the convection-diffusion 
equation in the vapor space above each sensor film, the diffusion equation in the sensor film, and 
boundary conditions that forced analyte flow across the gas/sensor interface.  Four SMCBC films 
were fabricated using 75% (wt) CB, consisting of lauric acid, propyl gallate, quinacrine 
dihydrochloride dihydrate, tetracosane, and dioctyl phthalate.  Partition coefficients and sensor 
response slopes were measured for these films in response to hexane, benzene, octane, decane, 
methanol, ethanol, propanol, butanol, chloroform, ethyl acetate, and chlorobenzene, and the 
modeled responses were in good agreement with experimental responses.  Pure vapors and vapor 
mixtures were modeled for a wide range of chamber geometries and vapor delivery flow rates.  
Pure vapor responses were then used to train the sensors.  A set of 16 vapor mixtures that 
consisted of 2, 3, 4, and 5 components were then modeled assuming response additivity, and used 
to challenge the sensors.  Using nonnegative least squares, the sensor arrays were tasked with the 
identification of each of the modeled mixtures.  The sum of the squared residual between the 
modeled and calculated analyte components for all mixtures, S2, was calculated and used to 
characterize the mixture analysis performance of the array.  Two dimensionless Peclet number 
analogs, Peyz and Pezz

-1, were used to characterize the sensor response.  Peyz was the ratio of the 
diffusion time from the top to bottom of the vapor channel (perpendicular to vapor flow) vs. the 
convection time in the direction of vapor flow.  When the Peyz was large, vapor in the space 
overhead of the sensors was not well mixed and desired analyte depletion effects were not 
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observed.  Pezz
-1 was the ratio of the convection time vs. the diffusion time in the direction of 

vapor flow.  When Pezz
-1 was large, significant mass transport in the vapor space was due to 

diffusion rather than convection, and the sharp progression of the vapor front along the arrays was 
diminished.  Chambers with values of the Peclet parameters below certain critical values were 
predicted to be optimum for ST sensor operation, and can be used to design a sensor cavity 
optimized for the analysis of mixtures.   
 
4.2. Introduction 
 

The widespread use of broadly responsive sensor arrays to identify and quantify vapors in the real 
world has been frustrated by their inability to correctly identify vapor mixtures.  Sensor types 
include tin oxide sensors,1-3 coated surface acoustic wave devices,4-7 conducting organic 
polymers,8-10 coated micromachined cantilevers,11,12 dye-impregnated polymers coated onto 
optical fibers or beads,13,14 polymer/carbon black composite chemiresistors,15-17 and low-volatility 
small molecule/carbon black composite (SMCBC) chemiresistors.18,19  For each of these sensor 
architectures, different materials, which each uniquely interact with the vapor phase, are 
employed to create a sensor array.  Rather than using a traditional “lock-and-key” approach 
wherein a single sensor is required for each vapor, such array-based sensors are broadly 
responsive to many vapors.  Each vapor creates a unique response pattern across the sensor array.  
Various forms of pattern recognition are then used to match the array response from an unknown 
to the responses from known vapors.  These arrangements have been termed “artificial” or 
“electronic” noses due to their similarities to mammalian olfactory processes.20,21 

Typical sensor studies to date have focused on obtaining rapid, steady-state responses 
between each sensor and the vapor stream being sampled,2,13,16 through the use of relatively large-
volume sensor chambers and exposure of the vapors to the sensors at high flow rates.  Large-
volume sensor chambers ensure that the partitioning of the vapor into the sensor array does not 
significantly change the concentration of analyte in the sampling stream.  The high flow rate 
ensures that all sensors along the array are exposed to the sampling stream at essentially the same 
time.  Studies utilizing computational fluid dynamics have sought to determine sensor/chamber 
designs and operating conditions which best provide this evenly distributed rapid response.22,23   

The ability of a broadly responsive vapor sensor array to identify and/or discriminate between 
pure vapor species is critical.  In this mode of operation, the array is first trained and then tested 
against the pure species of interest.6,11,16,18,24  An alternative mode of sensor array implementation 
seeks to discriminate between different, complex mixtures.  In this mode of operation, the array is 
trained for and then tested against different mixtures, however, decomposition of the mixture into 
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constituent components is not performed.  For example, sensor arrays are able to detect subtle 
differences in odors generated from different types of coffees,25,26 beers,10,27 hops,28 wines,29,30 
vinegars,31,32 and teas.2,33  Under this traditional implementation, whether the array is tasked with 
pure specie or complex mixture identification, the array must first be trained against what it will 
encounter during testing.  Many types of cross-responsive sensor types are highly capable under 
this mode of operation.   

However, when the number of analytes or mixtures that need to be classified becomes large, 
extensive prior training is required.  Whereas predictable and reproducible vapor presentations 
are easily obtainable in the laboratory, field operation presents the possibility of encountering a 
large number of mixtures, with the number growing exponentially as the pure specie sampling 
pool increases.  The number of potential mixture types grows according to 12 −= pn

mn , where 
np is the number of pure species present in the sampling library, and nm is the number of mixture 
types comprised of unique analyte combinations, irrespective of analyte concentration.  The 
number of mixture types one could encounter in the field based on a library containing only 20 
pure vapor species is 106!  These numbers are relevant only for the determination of whether a 
given component is present in a mixture.  When a variable concentration is allowed for each 
vapor and its concentration must be determined, the number of vapor mixtures one may encounter 
effectively becomes infinite and beyond the means of any reasonable training protocol.   

Broadly responsive sensor arrays often exhibit a response that is linear with vapor 
concentration, and additive with respect to multiple vapors.4,18,34  This behavior should allow for 
training on only np pure components, and thereafter the sensor array should be able to identify 
combinations of the pure components at various concentrations.  However, utilizing traditional 
rapid steady state responses, broadly responsive sensor arrays have failed to correctly identify 
multi-component mixtures.35,36  On exposure to vapor mixtures, the arrays are quickly 
overwhelmed and unable to correctly assign analyte identity.  Modeling of polymer-coated 
surface acoustic wave (SAW) sensor responses that were assumed to be linear with concentration 
and additive with respect to multiple vapors has exhibited difficulty in the correct identification of 
3-component mixtures.35   

The use of a flow stream that generates a time-dependent response profile may provide an 
additional dimensionality to each vapor’s sensory response space.  This approach could thus 
provide a method to improve the ability of broadly responsive sensor arrays to identify complex 
vapor mixtures.  In mammals, the flow dynamics of sniffing, combined with differences in odor 
receptor binding affinities, are important for odor perception.37,38  In humans, for example, each 
individual has a low- and high-flow rate nostril.  This difference is caused by blood flow-induced 
nostril occlusions, which vary periodically with time.  These varying flow patterns have been 
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shown to affect odor perception.38  A sensor chamber modeled after a canine nasal cavity, with 
sensors placed throughout the cavity, has been shown to provide enhanced discrimination in 
various classification tasks relative to sensors located only at the cavity inlet.39  
 To measure the composition of vapor mixtures, distributed chemical sensing has been 
employed with metal-oxide-semiconductor field-effect transistor (MOSFET) sensors.  In this 
design, a metal catalyst was deposited along the interior of a sensor chamber, in the proximity of 
several MOSFET sensors.  As select vapors progressed through the chamber, the vapors reacted 
to form other analytes that were not easily detected by the sensors.  While the first sensor along 
the array responded to the original vapor stream, the last sensor along the array responded to an 
altered vapor stream.  Significant improvements in the identification of binary mixtures were 
observed, and moderate levels of 3- and 4-component mixture identification were achieved for a 
library consisting of 4 pure vapors.40-42  However, this approach was limited to vapors that 
selectively reacted at a catalyst to form vapors that were not readily detectable at the downstream 
sensors.   
 A more widely applicable approach has been employed with carbon black-based composite 
chemiresistive sensors.  Using a low volume sensor chamber with linearly arranged sensor arrays, 
the sensor material has been shown to act similarly to a chromatographic stationary phase.17,19  
Vapors partitioned into the sensor material as dictated by the partition coefficient, Keq, between 
the sensor and vapor phases.  Strongly partitioning analyte vapors were significantly sorbed by 
the sensor phase, slowing the progression of analyte along each sensor array.  While initial 
sensors along the array responded to the concentrations of the incoming vapor stream, latter 
sensors exhibited delayed responses due to significant analyte uptake.17,19   
 The progress of each vapor along the sensor array was dictated to first order by the flow rate, 
chamber geometry, and mass uptake capacity of the sensor film.  This behavior created a space 
and time dependent, or spatiotemporal (ST), sensor response.  This ST response increased the 
dimensionality of response space.  Recent work has shown that the training of such sensor arrays 
toward pure vapors allowed robust identification of mixtures containing up to 5 components.19 
 This work defines an optimized operational regime for capturing an ST response using 
SMCBC sensors.  A model for the ST sensor response was generated and was implemented for 
sensor geometries and vapor flow rates spanning several orders of magnitude.  Simulating the 
exposure and identification of several vapor mixtures for the various modeled conditions, two 
dimensionless numbers were used to correlate the mixture analysis ability to relationships that 
involved the sensor chamber geometry, vapor delivery flow rate, and appropriate physical 
properties.  These dimensionless numbers allow for the definition and fabrication of sensor arrays 
optimized for ST analysis and vapor mixture identification.   
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4.3. Experimental 
 

4.3.1. Materials 
The insulating materials for the fabrication of the sensor films consisted of tetracosane (99%), 
lauric acid (99.5%), and dioctyl phthalate (DP), purchased from Aldrich; as well as propyl gallate 
(98%) and quinacrine dihydrochloride dihydrate (97%), purchased from Acros Organics.  
Reagent grade toluene, tetrahydrofuran, and chloroform, received from Aldrich, were used as 
solvents in the sensor suspensions.  Hexane (Hx, 95%), benzene (Bz, 99%), octane (Oc, 98%), 
decane (Dc, 99%), methanol (MeOH, 99.8%), ethanol (EtOH, 95%), 1-propanol (PrOH, 99.5%), 
1-butanol (BuOH, 99.9%), chloroform (Cf, 99.8%), ethyl acetate (EA, 99.5%), chlorobenzene 
(Cb, 99%), and acetone (99.9%) were purchased from Aldrich and used to generate vapors for 
delivery to the sensor arrays.  Black Pearls 2000, a furnace carbon black (CB) material donated 
by Cabot Co. (Billerica, MA), was used as the conductive phase in the sensor composites.  All 
materials were used as received.  
 

4.3.2. Detector Fabrication: Chemiresistive and Quartz-Crystal 
Microbalance Vapor Detectors 

Table 4.1 lists the four suspensions, each comprised of a non-conductive sorption phase and a 
conductive CB phase, used to fabricate the different linear sensor arrays (LSA) used in this work.  
First, the non-conductive (non-CB) sensor material(s) were placed in ~ 60 mL of solvent and 
sonicated for > 10 min. CB was added to this solution and sonicated for > 30 min to produce a 
well-dispersed suspension.18,19  Dioctyl phthalate was used as a component in two of the sensor 
films, to serve as a plasticizer (Table 4.1).  These four sensor materials, when employed under ST 
conditions, have demonstrated the ability to correctly identify complex vapor mixtures containing 
up to 5 components with training on only the pure vapors.19  

Standard 7.5 cm μ 2.5 cm microscope slides were cleaned with acetone and methanol, and 
7.5 cm of 0.1 cm wide drafting tape was placed along the center of the length of each slide.  
Detector substrates were fabricated by evaporating 30 nm of Cr followed by 70 nm of Au onto 
the microscope slides.  After evaporation, the tape was removed and the glass slides were cut into 
1.0 cm μ 2.5 cm substrates.  An airbrush (Iwata, Inc.) was used to spray16,24 one of the sensor 
suspensions across the 0.1 cm substrate gap until the resistance across the electrode measured 1-3 
kΩ.  This process was performed for each of the four sensor suspensions listed in Table 4.1 to 
generate the four chemiresistive vapor sensors used.   

Quartz Crystal Microbalance (QCM) crystals (10 MHz, blank diameter 13.6 mm) were 
obtained from International Crystal Manufacturing (ICM, Oklahoma City, OK).  For each sensor 
type, the resonant frequency of the uncoated substrate, funcoated, was recorded prior to sensor 
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deposition.  The resonant frequency of the coated substrate, fcoated, was recorded after the sensor 
film was sprayed using an airbrush onto one side of the QCM substrate.  The frequency shift due 
to sensor deposition, which gave a measure of film mass deposited, was calculated as 

uncoatedcoatedsens fff −=Δ .17,43 
These sensors often experience their most significant sensor drift immediately after 

fabrication.44 Thus, before the calculation of sensor partition coefficients Keq and sensor response 
slopes MR, both the chemiresistive and QCM vapor detectors were continuously and randomly 
exposed, over a 24-hour period, to the test analytes listed in Table 4.2. After this period, fcoated  
was recorded and Δfsens calculated.  Two weeks elapsed between the initial spraying of the 
chemiresistive and QCM detectors and their exposures to the test analytes for the calculation of 
partition coefficients and sensor response slopes. 
 

4.3.3. Vapor Generation and Delivery 
An automated flow system,16,24 controlled with LabVIEW software, was used to deliver pulses of 
diluted streams of solvent vapor to the chemiresistive and QCM vapor detectors. The carrier gas 
(background stream) was obtained from the house compressed air source controlled with a mass 
flow controller (MFC) (UNIT) that could vary the flow from 0.3 to 28 L min-1.    For generation 
of saturated analyte vapors, a foreground stream of carrier gas was bubbled via a porous glass frit 
through a 220 mL bubbler filled with the desired analyte, controlled by a MFC that could vary the 
flow from 3 to 280 mL min-1.  The height of the analyte in the bubblers before and after each set 
of exposures did not change (bubbler solvent height ~ 35 cm).  Teflon tubing and stainless steel 
Swagelok fittings were used throughout the system. 

Analyte exposures consisted of a 70 s pre-exposure of background air, followed by 80 s of 
exposure to a test analyte, followed by a 70 s exposure to background air.  Exposures were 
generated by combining saturated analyte vapor with background air at the volumetric flow rates 
needed to provide a total flow of 4 L min-1 and the desired fractional vapor pressure.  Volumetric 
flow rates of background, saturated, and mixed vapor streams were all monitored with flow 
meters (Gilmont) to ensure accuracy in the delivered concentrations and flow rates.  

The vapor concentrations for these types of sensors are typically reported in terms of the 
fractional vapor pressure, P/Po, where P is the partial pressure and Po is the saturated vapor 
pressure of the analyte of interest.34,45  Analytes were exposed to the chemiresistor/QCM sensor 
pair at P/Po = 0.010, 0.030, 0.050 and 0.080.  These values corresponded to 1, 3, 5 and 8 parts of 
saturated analyte vapor combined with 99, 97, 95 and 92 parts of background air, respectively.  
Each vapor was exposed a total of 20 times, consisting of 5 exposures at each of the four chosen 
concentrations. 
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A chemiresistive sensor and QCM substrate coated with one of the four sensor materials 
(Table 4.1) were placed in an aluminum chamber with internal dimensions of 8.0 x 5.0 x 4.0 cm 
and exposed to one set of analyte vapors: Hx, Oc, Dc and EtOH (Table 4.2).  This process was 
repeated for each of the four sensor materials listed in Table 4.1.  Each of the sensors were then 
similarly exposed to a second and third set of analyte vapors: Bz, MeOH, PrOH and BuOH; 
followed by Cf, EA and Cb, respectively (Table 4.2).  Five repetitions per sensor were performed 
for each vapor exposed at a given concentration.  Each set of analyte exposures lasted roughly 6 
h, with two or three exposure sets occurring each day.  Exposures were presented in random order 
with respect to analyte identity and the delivered analyte concentration.  All response data were 
collected within a 2 week period. 
 

4.3.4. Measurements and Data Processing 
The direct current resistances of the chemiresistors were measured using a Keithley 2002 
multimeter and a Keithley 7001 multiplexer.  The sensor substrate was connected to the 
multiplexer through a shielded, twister pair cable.  QCM resonant frequencies were obtained 
using a Hewlett Packard 53181A frequency counter.  While recording data, measurements 
alternated between resistance measurements of the chemiresistor and frequency measurements of 
the coated QCM.  5 s passed between each resistance/frequency measurement cycle.  

Raw response data for both the chemiresistor and QCM detectors were first baseline-
corrected to account for sensor drift during an exposure.  A line of slope m was fit to > 6 points, 
spanning > 30 s, immediately prior to each vapor delivery and detector response.  If the 
confidence intervals of the calculated slope m did not include zero at the 95% confidence level, a 
line of slope m was extrapolated from the point immediately prior to vapor arrival and subtracted 
from the measured resistance readings.  Roughly 10% of the measured responses required this 
baseline drift correction. 

The shift in the resonant frequency of a QCM on exposure to a vapor was required for the 
calculation of partition coefficients.17,43  This shift was calculated as coatedvaporvapor fff −=Δ , 
where fvapor was the steady state resonant frequency of the QCM on exposure to a given vapor.  
The value of fvapor was obtained as the average of ≥ 3 data points starting 30 s after the vapor 
exposure was initiated.  The value of fcoated was obtained as the average of the 6 points recorded 
immediately prior to vapor delivery.   

The typical response descriptor for these types of chemiresistive vapor sensors is ΔRss/Rb, 
where Rb is the pre-exposure baseline resistance as described above and ΔRss is the difference 
between the steady state response resistance and the baseline resistance, Rss – Rb.  For the 
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calculation of the chemiresistive sensor responses to each of the vapors, Rss was taken to be the 
resistance averaged over ≥ 3 data points starting 30 s after the vapor exposure was initiated.  
 

4.3.5. Partition Coefficient and Sensor Response Slope Calculation 
For each set of QCM/vapor exposures, the changes in frequency during analyte exposure, Δfvapor, 
were plotted against the concentration (in parts per thousand, ppth) of the presented vapor.  For 
example, methanol presented at P/Po = 0.080, with Po = 108 mmHg at room temperature (T = 
22oC), corresponded to 1000 ppth x (0.080 x 108 mmHg) / 760 mmHg, or 11.4 ppth methanol.  
The QCM response slope mQCM (Hz/ppth) was calculated from the 20 Δfvapor data points using a 
linear least-squares fit with a zero intercept.  This slope was converted into a partition coefficient 
using the Sauerbrey equation:17,43 
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where Cs and Cv were the concentrations of analyte in the sensor film and vapor phases, 
respectively, ρ was the weight-averaged density (g ml-1) of the sensor, R was the ideal gas 
constant (L atm mol-1 K-1), T was the temperature (K), Mw was the molecular weight of the 
analyte (g mol-1), Δfsens was the frequency shift due to the sensor film deposition, Patm was the 
atmospheric pressure (1 atm), and 106 was a conversion factor (ppth cm3 L-1).   
 The chemiresistive sensor response slopes MR were calculated by plotting the sensor 
response, ΔRss/Rb, vs vapor concentrations (ppth) for each set of chemiresitor/vapor exposures.  
The slope was calculated using a linear least-squares fit with a zero intercept.  
 

4.3.6. Optical Determination of the Vapor Delivery Profile 
To determine the profile of the delivered vapor front during experimental ST analysis, the vapor 
stream was monitored by observing its optical absorbance in the UV.  The vapor delivery 
configuration used in previous experimental ST work was employed, to the extent possible, to 
determine the vapor front profile.19  The flow-splitting gasket to the sensor array chambers19 was 
removed and the flow was allowed to pass through a rectangular quartz cuvette (model 3-3.45-Q-
3, Starna, Atascadero, CA) that had the bottom removed, shown in Figure 4.1.46  The vapor 
delivery end cap was connected to the quartz cuvette with Teflon tubing, and sealed with Teflon 
tape.  The cuvette wall thickness was 0.125 cm, with internal dimensions of 0.3 μ 0.3 μ 2.5 cm 
(W μ H μ L) and an internal cross-sectional area of 9 mm2.  The cuvette was housed in an 
aluminum body, which contained a 1.0 cm μ 0.3 cm hole cut perpendicular to the cuvette, 
allowing for the optical path to be monitored in a direction perpendicular to the vapor flow.46  The 
cross-sectional area of delivery tubing was 2 mm2.  The cross-sectional area in the sensor array 
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delivery chamber, prior to splitting a single vapor stream into two, was 6 mm2.19  The cross-
sectional area of the vapor pathway over each sensor array was 1 mm2. 
 A low-pressure Hg lamp (model UVG-4, UVP Inc., Upland, CA) with a low-pass filter (λ < 
253.7 nm) was used.  To minimize the lamp output drift, the lamp was powered by 5 lantern 
batteries wired in parallel.  The lamp was mounted against one side of the hole in the aluminum 
housing.  On the opposite side, a UV-sensitive silicon photodiode (UV50, UDT Inc.) was pressed 
against the exit hole. The unbiased photodiode was connected with a BNC cable to a Hewlett 
Packard data acquisition unit, model HP 34970A (1 μ 106 Ω input impedance), to monitor the 
voltage.  The photodiode voltage was recorded every 0.7 s.    

Analyte vapor was generated at P/Po = 0.050 with a flow rate of 150 ml min-1 and delivered 
to the optical monitoring system.19  The analytes listed in Table 4.2 were delivered under these 
conditions, however their optical absorbance yielded a photodiode response with a low signal-to-
noise ratio.  Because of its strong UV absorbance, acetone was thus used to generate the analyte 
vapor.  The diffusivity of acetone in air (Dv = 0.083 cm2 s-1) was within the range of the analytes 
used in this work, such as hexane (Dv = 0.068 cm2 s-1) and methanol (Dv = 0.115 cm2 s-1).47  

The voltage response of the photodiode was baseline-corrected to subtract drift.  The adjusted 
voltage was converted to an absorbance using )/log( oVVA −= , where Vo and V are the voltages 
produced in the absence of analyte vapor, and at time t, respectively.  The absorbance was 
proportional to the concentration of analyte present in the quartz cuvette.  The vapor response 
section of the absorbance was fit to: 
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where a1 was the saturation absorbance of the vapor delivery front, a2 allowed for a time offset 
due to the vapor delivery delay, and kt was the vapor delivery rate constant (s-1).  
 
4.4. Results 
 

4.4.1. Partition Coefficient and Sensor Response Slope Calculation 
Figure 4.2 displays representative steady-state chemiresistive responses and QCM resonant 
frequency shifts for thin films of LSATC/DP (Table 4.1).  The analytes represent distinct alkane, 
alcohol, and ester chemical classes, thus encompassing a variety of sensor/analyte interactions.  
Sensor responses for these types of sensors are typically linear at low concentrations, with 
deviations from linearity at higher concentrations.15,34  The responses to each of the vapors were 
well-grouped and generally well-fit by a straight line.  The partition coefficients Keq and the 
chemiresistive response slopes MR, as well as the R2 values for each of the respective slope 
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calculations, are given in Table 4.3 for all of the sensors and analytes studied. The standard 
deviation in the ΔRss/Rb  responses was calculated to be respσ  = 2 μ 10-5. 
 

4.4.2. Optical Determination of the Vapor Delivery Profile 
Figure 4.3 displays the data obtained in the various steps employed to determine the vapor 
delivery profile.  Figure 4.3a shows the raw photodiode voltage response recorded while acetone 
progressed through the modified sensor chamber, with the highlighted points used to perform the 
baseline correction.  Figures 4.3b-c show the baseline-corrected voltage response and the 
absorbance response, respectively.  The arrival profile of acetone to the modified chamber was 
well fit to eq (2) with values of a1 = 0.00041, a2 = -0.076 s, and kt = 0.32 s-1 (Figure 4.3c). 
 
4.5. Modeling Formulation 
 

4.5.1. Chamber and Sensor Mass Uptake Modeling 
 

4.5.1.1.   Model Description 
Figure 4.4 depicts the sensor chamber and the main equations used for chamber modeling.  For all 
modeled cases, W >> Hv, so the chamber was modeled in 2 dimensions, y and z, with edge effects 
along the width of the vapor channel (x-direction, Figure 4.4) neglected.  Appendix 4.9.1 
describes the detailed development of the mass uptake model that was used.   

Briefly, in the bulk vapor phase, a transient two-dimensional convection-diffusion equation 
was employed:47-49  
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where Cv(y,z,t) was the vapor-phase concentration of the analyte of interest, Vz(y) was the laminar 
velocity profile as a function of chamber height (Appendix 4.9.1), and Dv was the diffusivity of 
the analyte vapor of interest in air.  For all modeled geometry/flow rate combinations, the 
Reynolds number, Re, was < 100, well below the Re value of 2000 that marks the transition from 
laminar to turbulent flow (Appendix 4.9.1).47,48   

In the bulk sensor phase, a transient two-dimensional diffusion equation was used:47-49  
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where Cs(y,z,t) was the concentration of analyte in the vapor and Ds the diffusivity of analyte in 
the sensor material.  For each of the sensor/vapor combinations, the value of Ds used was 10-7 cm2 
s-1.  This value fell between experimental diffusivities of gases diffusing through liquid and solid 
states, and was of the same order of magnitude of gases diffusing through polymers.48  Increases 
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or decreases in Ds by an order of magnitude did not change the observed mass uptake profiles.  
Thus, the model was mass-transfer limited by transport through the vapor phase, rather than by 
the rate of diffusion through the sensor film. 

Appropriate boundary conditions were implemented at all phase boundaries, and are 
discussed in Appendix 4.9.1.  Additionally, the model was scaled to place all important lengths 
(Hv, Hs, and L) on the same scale (Appendix 4.9.2).  The concentrations of test analyte in the 
vapor and sensor material, Cv(y,z,t) and Cs(y,z,t), respectively, were calculated using COMSOL 
Multiphysics, a commercial finite-element analysis software package, coupled with MATLAB. 
 

4.5.1.2.   Model Validation Implementation 
Mass uptake profiles were generated for previously reported experimental conditions: long, thin 
vapor flow pathways of dimensions 75 μ 3.5 μ 0.34 mm (L μ W μ Hv), and sensor films having  
Hs = 1-3 μm, and vapor delivered at 19 ml min-1.19  The optically determined absorbance delivery 
front (Figure 4.3) was used to generate an analyte concentration profile at the inlet of the 
chamber: 
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where Cv,o is the vapor concentration for the given exposure being modeled, kt is the vapor 
delivery rate constant described in eq (2), and Cv,inlet(t) is the time-dependent concentration 
delivery profile for t ≥  0.  
 

4.5.1.3.   Optimization Implementation 
For chamber optimization, mass uptake profiles were generated with a wide range of modeled 
conditions.  Tables 4.4 and 4.5 list L-W-Hv geometry combinations and flow rates modeled for 
various macro- and micro-dimensioned ST chamber conditions, respectively.  Each of the L-W-Hv 
geometries was combined with each of the within-table flow rates.  Thus, a total of 54 (9 
geometries μ 6 flow rates) and 78 (13 geometries μ 6 flow rates) modeled conditions were 
possible from Table 4.4 and 4.5, respectively.  Of these possibilities, only those that generated 
negligible pressure drops along the array were modeled (Appendix 4.9.1).  For optimization 
modeling, a step function was used for the inlet boundary condition such that ( ) 0tC inletv, =  for t < 
0 and ( ) ov,inletv, CtC =  for t ≥  0.  

ST analysis required the use of the array response to a vapor phase changing with time.  To 
ensure that ST analysis consistently focused in on this transient regime for all modeled 
conditions, a balance was performed on the number of moles of analyte required to bring the 
sensor film to equilibrium with the sampled vapor phase (Appendix 4.9.1).  This mole balance 
provided tsat,median, the median time required to saturate the sensor arrays with the vapors for each 
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modeled condition.  The model was solved for 200 evenly spaced time steps between t = 0 and t = 
2.4 μ tsat,median.   
 

4.5.2. Sensor Response Modeling 
 

4.5.2.1.   Sensor Response Generation 
Sensor responses were generated by converting modeled sensor concentrations to sensor signals, 
S(t).  It has been shown that when probing the response of polymer-carbon black composite 
sensors on the time scale of diffusion through the sensor film, the resistance can be approximated 
by the sum of the resistances, wired in parallel, across the thickness of the film.46  For all cases 
modeled herein, the time scale of the array response was several orders of magnitude slower than 
the time scale for diffusion through the sensor film (Appendix 4.9.1).  This caused the analyte 
concentration in the sensor film, at any point along the z-direction, to be consistent across all 
sensor depths in the y-direction (Figure 4.4), which in turn caused the sum of the parallel 
resistances to be equal to each of the individual resistances.  Thus, the analyte concentrations at 
the bottom layer of the sensor film, i.e. the bottom node of the chamber Cs(t, y = 0, z) (Figure 
4.4), were converted to response signals S(t,z) according to ( ) ( ) Rs Mz0,yt,Czt,S ×== , where 
MR was the sensor response slope for the analyte of interest given in Table 4.3.  For each sensor 
array, S(t) responses were collected from 15 nodes that were evenly distributed along the 200 
node length.   

To generate representative pure-vapor responses, Gaussian noise with an amplitude 
proportional to the standard deviation in the ΔRss/Rb responses, respσ , was superimposed on the 
modeled pure-vapor responses.  To generate responses to vapor mixtures, responses were 
generated for each of the pure vapor constituents at their representative concentration and were 
summed, with the addition of noise proportional to respσ .   
 

4.5.2.2.   Response Extraction 
To fully capture the transient response at various times along the array, S(t,z) was extracted at 
four different times for each sensor.19  These times were chosen as txt = (0.3, 0.6, 1.8 and 2.4) μ 
tsat,median.  To describe the total sensor array response to a single analyte, responses from all four 
sensor arrays were used (Table 4.1).  Each modeled exposure was described by 4 arrays μ 15 
sensors/array μ 4 times/sensor, or 240 response descriptors.   
 

4.5.3. Mixture Analysis 
 

4.5.3.1.  Mixture Generation 
Table 4.6 lists the simulated mixtures, in terms of the fractional vapor pressure of each analyte.  
16 different mixtures were used, ranging from 2 to 5 vapors per mixture.  For each mixture, 
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o

mixmix PP /  was less than 0.060, where Pmix was the total pressure of the mixture presented and 
o

mixP  was the saturated vapor pressure exerted by the mixture.  This value was within the range 
where response linearity and additivity are typically observed15,34  Mixture identification using the 
ST approach has been demonstrated under these circumstances.19 

The training data were generated by simulating ten responses to each of the pure vapors.  The 
testing data were generated by simulating twenty responses to each of the 16 modeled mixtures.  
For each pure vapor, the 10 training responses were averaged to create an analyte signature 
library.  Each testing response was then fit to the training library using the nonnegative least-
squares algorithm.50  This approach produced estimates for the analyte concentration (fractional 
vapor pressure) of each of the test analytes.  
 

4.5.3.2.  Chamber Performance 
For each single exposure, the difference between the estimated and actual analyte concentrations 
was squared and summed across all analytes to provide a measure of the residual error, 2

singleS .  
2
singleS  was summed across all twenty repetitions per mixture, and across all 16 mixtures, to give 

a single measure of mixture performance, S2, for each of the modeled flow and geometric 
conditions.  For each geometry/flow rate combination, response modeling and the calculation of 
S2 was repeated 8 times to test the model reproducibility. 
 
4.6. Modeling Results 
 

4.6.1. Model Validation 
Figure 4.5 displays the experimental19 and modeled responses of all of the sensors along a 15-
sensor array LSAPG (Table 4.1) during exposure to pure hexane at P/Po = 0.050.  Experimental 
responses were obtained with sensor arrays ranging from 1-3 μm in thickness.19   For validation, 
Hs was varied within this range: modeled results were obtained for various Hs = 1 – 3 μm and 
compared against experimental results, and reasonable agreement was found at Hs = 2.6 μm in 
thickness.  For visualization, the responses were normalized to each sensor’s response at t = 140 
s.  In both cases, hexane was not depleted, and all 15 sensors rapidly responded to the vapor 
stream. 

Figure 4.6 displays the experimental19 and modeled (Hs = 2.6 μm) responses of the same 15-
sensor array made from LSAPG (Table 4.1) during exposure to decane at P/Po = 0.050.  Decane, 
with a vapor pressure two orders of magnitude lower than hexane, possessed a partition 
coefficient approximately two orders of magnitude greater then hexane (Table 4.3).  For both 
analyses, the response of the first sensor along the 15-sensor array rose rapidly upon exposure to 
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the delivered vapor stream.  In contrast, subsequent sensors along the array showed a significantly 
delayed response to decane, as it slowly progressed along the array.   

Differences between experimental and modeled responses of LSAPG to decane were evident 
for the 3rd sensor along the array, and became more significant for sensors positioned further 
downstream on the vapor flow path.  Experimentally, all 15 of the sensors showed a sharp, near-
vertical response to the decane vapor front.  In contrast, the modeled sensor responses rose 
progressively more gradually toward the end of the array.  This behavior was indicative of the 
modeled laminar flow.  Experimentally, roughness along the sensor films and channel walls 
would produce localized eddies that would enhance the diffusion of analyte vapor.  This would 
provide better mixing in the y-direction (Figure 4.4), leading to more complete vapor stream 
depletion, and correspondingly sharper response curves.   

Figure 4.7 displays experimental19 and modeled responses for exposure of LSATC/DP to pure 
ethyl acetate, pure decane, and a mixture of the two, respectively.  Only the responses of sensor 1 
and 9 are displayed.  The black points depict the experimental response data, and the dark solid 
lines depict the modeled responses for a film of thickness Hs = 1.5 μm and for the optically 
observed vapor delivery profile (kt = 0.32 s-1).  Using the optically observed vapor delivery 
profile, the modeled results for the 1st sensor exhibited a more rapid response than that observed 
experimentally.  This behavior suggested that the modifications made to the vapor delivery path 
for optical detection affected the vapor delivery properties of the chamber. 

To better model the response of the first sensor to the analyte delivery profile, the value of kt 
was modified to 0.18 s-1.  This procedure produced a more gradual vapor delivery front in the 
modeled response (Figure 4.3c).  Figures 4.7a-c show the modeled responses for this altered 
delivery profile.  Figures 4.5c and 4.6c display the modeled responses of LSAPG (Table 4.1) to 
hexane and decane, respectively, using this modified vapor delivery rate constant. In all cases, 
better agreement was obtained with the altered vapor delivery profile.  Thus, vapor delivery to the 
sensor chamber exhibited a slower rise time to the final concentration than the chamber modified 
for optical detection.  In Figures 4.7b-c, sensor 9 again displayed a near vertical initial response 
shape, indicative of a well-mixed turbulent flow stream that allowed for more analyte depletion as 
the front progressed along the array.   
 

4.6.2. Chamber Characterization 
Parameters that characterized the channel in terms of dimensions and flow rate were needed to 
summarize the modeling.  The Peclet number, Pe, is a ratio of the rate of transport due to 
convection relative to the transport due to diffusion.48  The standard Peclet number captures the 
competition between these processes along the same direction of flow.  To fully describe 
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transport within the channel, an additional, alternative Peclet number was needed to address 
diffusion in the direction perpendicular to the direction of flow.  Hence, two Peclet numbers were 
defined in the modeling. 
 

4.6.2.1. Peyz: Latitudinal Diffusion vs. Longitudinal Convection 
Peyz was the ratio of the time for material to diffuse vertically (y-direction, top to bottom, Figure 
4.4) to the time to convect horizontally (z-direction, inlet to outlet, Figure 4.4) along the vapor 
channel: 
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A large value of Peyz indicated that the vapor stream did not significantly mix vertically and the 
concentration at the top of the stream became different from that at the bottom, as the front 
progressed along the channel.  As a result, the analyte concentration at the bottom of the vapor 
stream was determined primarily by the slow vertical diffusion, which was approximately 
constant.  The vapor stream would not get significantly depleted, and only small ST differences 
should be observed between the various sensors along the array.   

A small value of Peyz indicated that analyte diffused quickly from the top to bottom of the 
chamber.  This situation provided a well-mixed vapor front with negligible concentration 
differences in the y-direction, and allowed for significant depletion of the vapor stream and hence 
should produce a large ST response.  
 

4.6.2.2. Pezz
-1: Longitudinal Convection vs. Longitudinal Diffusion 

Pezz denotes the traditional Peclet number, and is the ratio of the diffusion vs. convection time in 
the direction of vapor flow.  Its inverse is given by: 
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When this ratio was unity, material progressed from the inlet to the outlet due to equal 
contributions from convection and diffusion.  This situation still allowed for mass depletion along 
the sensor array, assuming Peyz was sufficiently small.  However, the sharp, well-separated 
responses of individual sensors would give way to more gradual sensor responses with significant 
overlap.  A small Pezz

-1 value indicated that convection dominated vapor transport.  Hence, a 
sharp vapor front was maintained as analyte progressed along the chamber, and well-separated 
responses should be observed along the array. 
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4.6.3. Chamber Optimization 
Figure 4.8 displays log-log plots for simulated film thicknesses of 0.1 μm.  The residual error, S2, 
was plotted against Peyz, with various thresholds chosen to display Pezz

-1 effects: Pezz
-1 values 

above the chosen threshold were displayed as “¥.”  The “macro” and “micro” labeled points 
designate the modeled results from Tables 4.4 and 4.5, respectively.  Figure 4.8a displays the 
residual error vs. Peyz with a Pezz

-1 threshold of 0.1.  Only a single modeled condition fell outside 
of the Pezz

-1 threshold.  Figures 4.8b and 4.8c display results for Pezz
-1 thresholds of 10-2 and 5μ10-

3, respectively.  As the threshold value decreased, more modeled conditions fell outside of the 
threshold and were therefore disqualified.     

From these figures, a region can be described that provides an optimal ST mixture analysis.  
For sensor film thicknesses of 0.1 μm, optimal performance was achieved when Peyz < 10-3 and 
Pezz

-1 < 5μ10-3.  At the critical value of Peyz = 10-3, sufficient mass uptake was achieved for 
optimal mixture analysis.  Beyond this value, for Peyz < 10-3, additional mass uptake did not serve 
to improve the ST analysis of mixtures.   

The above criteria were obtained for sensor film thicknesses of 0.1 μm.  Peyz, Pezz
-1, and their 

associated criteria do not, however, directly take into account varying film thickness.  Thicker 
films would provide more mass uptake and accordingly longer response times.  These longer 
times may cause enhanced vapor front broadening effects, which could inhibit the ability of the 
sensor arrays to correctly identify mixtures.  The same analysis was therefore performed for a 
modeled film thickness of 1 μm.  As shown in Figures 4.9a-c, the region of optimal ST 
performance was not significantly different from that defined for 0.1 μm films, Peyz < 10-3 and 
Pezz

-1 < 5μ10-3.   
 
4.7. Discussion 
 

4.7.1. General Features of the Modeling 
This work has identified an optimized ST operational regime for small molecule/carbon black 
composite vapor sensors of various thicknesses.  This defined region allows for the design of 
sensor cavities that are optimized for ST detection.  Two dimensionless numbers were used to 
define this regime: the ratio of the latitudinal diffusion time to the longitudinal convection time, 
Peyz; as well as the ratio of the longitudinal convection time to the diffusion time, Pezz

-1.  The Peyz 
and Pezz

-1 values required for optimal ST performance and the optimal mixture analysis appear to 
be consistent for the two sensor film thicknesses modeled, 0.1 and 1 μm.  For both cases, optimal 
mixture analysis was achieved when Peyz < 10-3 and Pezz

-1 < 5μ10-3.  This behavior suggests that 
the given criteria also define a region of optimal ST mixture analysis for similar polymer/carbon 
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black composite sensors (20-40% CB), or other sorption-based cross-responsive sensor modality, 
as long as their sorptive capactities are not too different (i.e., several orders of magnitude) from 
those observed here.  The only requirement is that the partition coefficients of the sensor and 
vapors are known, so that the time frame required to capture the ST response can correctly be 
calculated (Appendix 4.9.1).  Additionally, the diffusion time through the sensor material must be 
much less than the transient time frame needed to capture the ST response.  
 

4.7.2. Film Thickness 
Films of two thicknesses, encompassing the range of film thickness typically employed for these 
sensor types, were modeled.  Thinner films (0.1 μm) are useful due to their more rapid response 
times.  Alternatively, thicker films (1 μm or thicker) produce slower response times, that can be 
more easily captured with slower data acquisition systems.  Previous ST experimental work has 
employed films in the 1-3 μm range to ensure that the transient responses were sufficiently 
captured with the available data acquisition hardware.19  It is important that the data acquisition 
instrumentation be able to respond significantly faster than the transient sensor response time.  
For sensors of a given film thickness, the vapor delivery flow rate could be modulated to generate 
faster or slower responses, as desired.  The only requirement would be that Peyz and Pezz

-1 should 
have values for the system of interest below their respective optimization thresholds. 
 

4.7.3. Macro- vs. Micro- Scaled Chambers 
Two sets of sensor chambers were modeled: one with macroscopic dimensions, and one with 
microscopic dimensions (except in length).  In most cases, micro-scaled chambers fit within the 
desired Peyz region, and were therefore favorable (Figures 4.7-9).  This was due to the smaller 
height, relative to the sensor array length of the vapor channel.  For these chambers, lower flow 
rates were required due to the higher pressure drops generated during flow along the channel 
(Appendix 4.9.1).  Because of the lower flow rates used, the Pezz

-1 criterion became more critical 
(eq (7)).  

For micro-scaled chamber fabrication, the process must not include elastomeric-based 
materials (e.g., polymers) typically used in microfabrication processes.51  Such materials readily 
sorb vapors and thus could significantly deplete the vapor stream of analyte.  Instead, hard, non-
sorbing materials are required.  One such approach would include an etched-silicon flow 
pathway, bound to a glass surface via anodic bonding.52   
 

4.7.4. Major Assumptions 
The ST optimization criteria described herein are entirely dependent on the validity of the model.  
Major assumptions in the model include: 1) sensor responses linear with analyte concentration, 
and additive with respect to multiple vapors; 2) smoothly sprayed sensor films of uniform 
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thickness; and 3) laminar flow in the vapor phase above the sensor films.  Additionally, sensor 
response drift due to aging, temperature and humidity fluctuations, etc. was not taken into 
account. Further testing of the effects of aging on the ST-based performance of mixture analysis 
is needed for a thorough analysis of the ST method. 
 

4.7.4.1. Response Linearity 
Previous work has demonstrated response linearity and additivity for these sensor types during 
exposure to pure and 2-component mixtures.18,34 Additionally, previous work has demonstrated 
that response additivity is a reasonable approximation, for most complex mixtures.19  For cases in 
which the sensor responses are highly nonlinear and non-additive, mixture analysis from sensor 
training on pure vapors would be problematic. Additional training would be needed to train the 
sensors for this nonlinearity.  However, the advantage of ST analysis, relative to traditional steady 
state analysis, would still be evident.   
 

4.7.4.2. Smooth Sensor Films 
Sensor fabrication typically does not produce smooth sensor films.53,54  When looking at the 
sensor films with the naked eye, agglomerations were apparent.  Sensor thickness profiles have 
similarly been observed to be uneven.19  Black Pearls 2000 CB typically exists in particles 
ranging from 8 to 20 nm in diameter, but also forms aggregates ranging from 50 to 200 nm in 
diameter.55  When spray depositing sensor films, larger aggregates tend to temporarily clog the 
airbrush outlet.  The various particle/aggregate sizes, coupled with occasional airbrush outlet 
clogging, create the rough sensor films typically observed.  For previous ST work using these 
sensor types, films were observed to range between 1-3 μm in thickness.19  Film thicknesses were 
therefore varied within these bounds for model validation (Figures 4.5-7).  While actual films are 
not of uniform thickness, the modeled responses should be representative of an average sensor 
film thickness, which captures the average sorption capacity of the experimentally sprayed films.  
 

4.7.4.3. Laminar Flow 
The assumption of laminar flow is reasonable for all geometry/flow rate combinations modeled in 
these works (Tables 4.4-5).  For all cases, the Reynolds number, Re, was < 100, well below the 
transitional regime from laminar to turbulent flow (Appendix 4.9.1).  Model validation as shown 
in Figures 4.5-7 displayed excellent agreement between experimental and modeled responses for 
the first sensors along each array.  All 15 sensors along the array exhibited identical response 
curves for a high vapor pressure, low-partitioning analyte such as hexane (Figure 4.5).  In this 
case, analyte progressed so rapidly down the sensor array that differences in response due to 
turbulent rather than laminar flow were not observable on the timescale used.  The progression 
along an array of a low vapor pressure, high-partitioning analyte, like decane (Figures 4.6 and 



 95

4.7), showed differences between the experimental and modeled responses.  These differences 
can be attributed to non-perfectly laminar flow in the vapor stream. 

The transition from laminar to turbulent flow occurs in the neighborhood of Re ~ 2000.47,48  
This transition is for flow through smooth, flat surfaces.  The sensor film, with thickness ranging 
from 1-3 μm, has aggregates on the order of microns due to carbon black aggregation and sensor 
deposition.  All other exposed walls were coated with Teflon tape, which possessed small lumps 
produced by the formation of air pockets between the Teflon tape and the aluminum chamber 
housing.  Additionally, the experimental design involved constantly changing the cross-sectional 
area of flow as vapor was delivered to the sensor arrays, going from 2 mm2 in the delivery tubing, 
to 6 mm2 prior to delivery to the arrays, to 1 mm2 in the area overhead the arrays.19  The 
unsmooth chamber surfaces, combined with the experimental design, appeared to create, and 
maintain, some level of turbulent flow in the vapor channels.  
 

4.7.5. Effect of Turbulence 
The goal of ST analysis was to time-separate the responses of sensors along an array.  Figures 
4.6-7 show that a perfect laminar flow assumption lessens the degree of separation between 
sensors in an array by making individual response fronts more gradual relative to those observed 
experimentally.   Thus, for these experimental conditions, some turbulence results in better ST 
based implementation, by increasing the effective diffusivity of the vapor.  For these 
experimental conditions,19 Peyz and Pezz

-1 were calculated to be 5μ10-2 and 4μ10-4, respectively.  
If the turbulence caused the effective vapor diffusivity to increase by a factor of 10, the effective 
Peyz and Pezz

-1 would become 5μ10-3 and 4μ10-3, respectively (eq (6) and eq (7)).  Thus, under 
these conditions, such turbulence was favorable for ST sensor response. Under certain conditions, 
however, turbulence could act to lessen the desired ST response, by causing longitudinal diffusive 
transport to become significant and increasing Pezz

-1 beyond the critical value.  One could attempt 
to model individual flow rate/geometry cases and take into account various levels of turbulence.  
However, the fact that the laminar-turbulent transition slowly occurs over a wide range of 
Reynolds numbers, coupled with the varying degrees of roughness present on the walls of the 
sensor chamber, would make this a difficult task.   
 
4.8. Conclusions 
A model of ST sensor response has been developed and implemented to define an optimized ST 
regime which provides sorption-based broadly responsive sensor arrays with the ability to analyze 
vapor mixtures to the fullest extent possible.  Two dimensionless parameters were employed.  
The first, Peyz, was a ratio of the time required for analyte to diffuse from the top to bottom of the 
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vapor channel, relative to the time required for analyte to convect from the inlet to outlet of the 
vapor channel. If this ratio was too large, the vapor front was not well-mixed as it progressed 
along each array, and analyte depletion effects were not observed.  The second, Pezz

-1, was a ratio 
of the time required for an analyte to convect, relative to the time required for analyte to diffuse, 
from the inlet to outlet of the vapor channel. If this ratio was too large, significant mass transport 
of material along the array was due to diffusion, and vapor front progression along the arrays was 
broadened, causing sensor responses to overlap.  As turbulence is introduced, enhanced vapor 
diffusivities are generated, which act to relax (increase) the Peyz criterion, while further restricting 
(decreasing) the Pezz

-1 criterion.     
For modeled sensor film thicknesses of 0.1 μm and 1 μm, a regime was defined based on Peyz 

and Pezz
-1 which provided the sensor arrays with the ability to analyze vapor mixtures to the 

fullest extent possible, given training on only pure vapor species.  The critical values of Peyz and 
Pezz

-1 denote maximum values which allow for optimum ST analysis, assuming laminar flow.  
The critical values of Peyz and Pezz

-1 were the same for the two film thicknesses, < 10-3 and < 
5μ10-3, respectively. This suggests that these same critical values can be used to define regions of 
optimal ST response for other sensor types of similar (i.e. within a few orders of magnitude) 
sorption capacities, as long as the sorptive capacities of the films towards the vapors of interest, 
given by the partition coefficients Keq, are known. 
 
4.9. Appendix 
 

4.9.1. Model Details 
In the bulk vapor phase, a transient two-dimensional convection-diffusion equation was 
employed,47-49  
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where Cv(y,z,t) was the vapor-phase concentration of the analyte of interest, Vz(y) was the velocity 
profile as a function of chamber height, and Dv was the diffusivity of the analyte vapor of interest 
in air.  For each of the analytes listed in Table 4.2, vapor-air diffusivities were estimated using the 
Chapman-Enskog equation for diffusivity.47,48  From all sensor-analyte combinations, the average 
value of Dv used was 0.08 cm2 s-1, and all vapor diffusivities fell within a factor of 2 of this value. 

The Reynolds number is a dimensionless number representing a ratio of the inertial to viscous 
forces acting on a fluid.47-49  This was calculated as ( ) μρ= UHRe v , where ( )vWHQU /=  was 
the mean linear flow velocity (cm s-1), Q was the volumetric flow rate of vapor delivery (cm3 s-1), 
and ρ and μ are the density (g cm-3) and viscosity (g cm-1 s-1) of air, respectively.  The value of Re 
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is important in determining the transition from laminar to turbulent flow, which occurs when 
inertial forces significantly overpower viscous forces.  This transitional regime occurs at Re ~ 
2000.47,48  Below this value, laminar flow is typical.  For all modeled geometry/flow rate 
combinations, Re < 100.  Thus, laminar flow was assumed and the Navier-Stokes equation was 
solved for the problem of plane Poiseuille flow between parallel plates.49  For a coordinate system 
that begins at the sensor/vapor boundary, the equation of this parabolic velocity profile is:49 

 

( ) ( )( )vvz HyHyUyV //6)( 2 −−= .     (A2) 
Flow through the sensor chamber is pressure-driven. For certain geometry/flow rate 

combinations, the pressure drop generated along a sensor array could become significant.  A 
significant pressure drop along a sensor chamber makes it difficult and/or impractical to generate 
these flow rates in practice due to the high pressure required at the chamber inlet.  A significant 
pressure drop also creates a density and concentration gradient along a chamber, according to the 
ideal gas relation ( ) ( ) RT/zPzCv = , where P(z) was the pressure of the analyte of interest at 
position z.  Tables 4.4 and 4.5 allow for a total of 54 (9 geometries μ 6 flow rates) and 78 (13 
geometries μ 6 flow rates) geometry/flow rate combinations for the macro- and micro- 
dimensioned models, respectively.  The relationship between the linear flow velocity and the 
pressure drop was 212 vHULP μ−=Δ .49  Only geometry/flow rate combinations that generated < 
10% change in pressure along an array, i.e., |ΔP| < 0.1 atm, were considered.  

In the bulk sensor phase, a transient two-dimensional diffusion equation was used,47-49 
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where Cs(y,z,t) was the concentration of analyte in the vapor and Ds the diffusivity of analyte in 
the sensor material.  The initial condition for the sensor and vapor phase was Cs(y,z,t = 0) = 0.  
For each of the sensor/vapor combinations, the value of Ds used was 10-7 cm2 s-1.  This value falls 
between the experimental diffusivities of gases diffusing through liquid and solid states, and was 
of the same order of magnitude for gases diffusing through polymers.48  To determine the 
sensitivity of the model to the value chosen for Ds, the value of Ds was varied for many 
sensor/analyte arrangements.  The same mass uptake responses were observed for Ds = 10-6

 – 10-8 
cm2 s-1.  For a diffusivity of 10-7 cm2 s-1, the time scales for diffusion through a 0.1 and 1.0 
micron film are 10-3 and 10-1 s, respectively.  Responses of similar polymer/carbon black 
composite sensor films of these thicknesses have been shown to occur on these time scales.46  
Comparatively, for the various geometries and flow conditions modeled, most (> 90%) exposure 
times ranged from 10 to 1000 s.  Thus, for the film thicknesses used, the mass uptake and the 
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diffusion through the sensor film was not limited by diffusivity, but rather was limited by the rate 
of mass transfer from the vapor phase to the sensor surface.   

At the top vapor/wall boundary of the vapor flow pathway, an impermeable boundary 
condition (BC) of the form of 0=∂∂ yCv  was employed.  At the bottom sensor/wall boundary of 
the sensor film, an impermeable BC of the form 0=∂∂ yCs  was employed (Figure 4.4).  
Additionally, at the sensor/inlet and sensor/outlet boundary, an impermeable BC of the form 

0=∂∂ zCs  was used.  This BC implies that analyte can only access the sensor film by depleting 
the vapor phase. 

For model validation, a time-dependent concentration profile Cv,inlet(t) was used at the vapor 
inlet, to simulate the vapor delivery profile encountered experimentally.  For all other modeled 
situations, a step function was used for vapor introduction, such that for t > 0, Cv = Cv,o, where 
Cv,o was the concentration of vapor exposure.  Cv,o was converted from a fractional vapor pressure 
to concentration units of mol m-3 using the ideal gas law. At the vapor outlet, a convective flux 
BC was used, which is useful in convection-dominated situations in which the outlet 
concentrations are unknown.  This sets the diffusive component of flux across the boundary to 
zero, ( ) 022 =∂∂ zCD vv , forcing material to pass through the boundary only via convection.    

The flux across the vapor/sensor boundary was driven by the difference between the 
conditions of the sensor and vapor phase; that is, the difference between the concentration of the 
vapor phase and the concentration in the sensor that would be at equilibrium with the 
concentration in the vapor.  This flux was dictated by the instantaneous values of Cv and Cs, as 
well as the partition coefficient Keq that defined equilibrium between the two phases. On the 
vapor side of the boundary, ( ) )( veqsmvv CKCKyCD −=∂∂ , while on the sensor side of the 
boundary, ( ) )( veqsmss CKCKyCD −−=∂∂ , where Km is the mass-transfer coefficient at the surface.49 
These BCs maintained a continuity of flux across the surface, in addition to forcing the 
sensor/vapor equilibrium condition.   

The mass-transfer coefficient Km was estimated for each geometry/flow rate combination 
using a Sherwood (Sh) number correlation for laminar, forced flow along a flat plate.47  This 
correlation was given by vvm /HDShK ×= , where the Sherwood number 3121 Sc0.323ReSh = , 
and vDSc ρμ=  was the Schmidt number, the ratio of momentum diffusivity to mass 
diffusivity.47  This relationship took into account various competing transport processes for each 
of the modeled conditions.47  To determine the sensitivity to the value of Km chosen, the value of 
Km was allowed to vary by several orders of magnitude larger and smaller from that estimated for 
many geometric arrangements.  In all cases tested, the same mass uptake responses were obtained 
from the modeling results. This again suggested that mass uptake by the sensor film was limited 
by the rate of mass transfer to the surface via the bulk vapor phase.  
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Modeling of the transient concentration profiles was required for modeling of the ST sensor 
responses.  Given the wide range of geometries and flow rates, the time frame for capturing this 
transient response varied widely.  For example, in situations where all sensors rapidly come to 
equilibrium with the sampled vapor stream, due to a high flow rate, the appropriate time frame 
would be relatively short.  In situations where a long time is required for all sensors to come to 
equilibrium with the sampled vapor stream, due to a low flow rate, the time frame would be 
orders of magnitude longer.  To assure that all of the modeled geometry/flow rate combinations 
captured the transient response, the time required to saturate each sensor array with an analyte 
vapor of interest was calculated.  For this calculation, the molar flow rate, Qm, of analyte through 
the vapor entrance was calculated as ov,m QCQ = , where Q is the volumetric flow rate defined as 

vUWHQ = .  The number of moles required to bring the entire length of the linear sensor array to 
equilibrium with the sampled stream was calculated as nsat = Cv,oWL(KeqHs+Hv), which accounts 
for saturation of the sensor and vapor phase (first and second part within the brackets, 
respectively), given the experimental conditions.  For a sensor array responding to a test analyte, 
the time required for the sensor array to establish equilibrium with the vapor phase was calculated 
as: 

 
( )

Q
HHKWL

Q
n

t vseq

m

sat
sat

+
== .     (A4) 

This approach assumed that analyte would not reach the outlet of the vapor channel until the 
entire length of the sensor film was in equilibrium with the sampled concentration of analyte.  If 
this assumption was invalid due to chamber geometry, for example if Hs were of the same order 
as L, analyte vapor would not be depleted and would rapidly distribute along the length of the 
sensor array.  Under such cases, the observed response time scale would not allow for saturated 
sensor responses; however, the desired ST responses would be lost due to Peyz being large.  For a 
given geometry/flow rate combination, the maximum time the model solved for, tmax, was 
calculated as tmax = 2.4 × tsat ,median , where tsat,median is the median time, out of 44 total times (4 
sensors x 11 analytes), required to saturate the sensor arrays towards the analytes of interest.   

For all modeled geometries, the length (L) and height (Hv and Hs) dimensions were different 
by several orders of magnitude.  Thus, each problem required three length scales of interest: L, 
Hv, and Hs.  To obtain accurate modeled responses in a timely manner, scaled geometries were 
introduced for the governing equations and appropriate boundary conditions.  Appendix 4.9.2 
offers a detailed description of the scaling approach employed.  Additionally, all concentrations 
were made dimensionless with respect to the inlet concentration Cv,o and were scaled to have 
values between 0 and 1.48,49   
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The concentrations of test analytes in the sensor material, Cs(y,z,t)s,  were solved for using 
COMSOL Multiphysics, a commercial finite element analysis software package, coupled with 
MATLAB.  Because the equations were made dimensionless with respect to Cv,o, for a given 
geometry/flow rate/sensor/analyte combination, the response profile was calculated once for an 
inlet concentration of 1.  Thereafter, the responses for different inlet concentrations were obtained 
by scaling this response profile accordingly with respect to the inlet vapor concentration.  A 
rectangular mesh, with 10 nodes along the sensor thickness, 20 nodes along the vapor channel 
(both in the y-direction, Figure 4.4), and 200 nodes along the vapor flow pathway (z-direction, 
Figure 4.4), was used. Concentrations were solved for 200 times that were evenly spaced in time 
between t = 0 and t = tmax.  
 

4.9.2. Model Scaling 
For the modeled geometries, three length scales of interest were present: the chamber length, L; 
the vapor channel thickness, Hv; and the sensor film thickness, Hs.  Re-scaling will be 
demonstrated for a single hypothetical case, however the approach and implementation was 
identical for all modeled cases.  Assume one wants to model a sensor chamber of length L = 1000 
au, vapor channel height Hv = 1 au, and sensor thickness Hs = 0.01 au, where au is some arbitrary 
length unit (Figure 4.A1). 
  

 
Figure 4.A1: To-scale representation of hypothetical chamber of L = 1000 au, Hv = 1 au, and 
Hs = 0.01 au.   
 

From Figure 4.A1, it is clear that the length L is the dominant length scale for the problem.  The 
use of the finite element method requires the generation of a mesh with individual nodes present 
throughout the boundaries of interest.  To capture the resolution required to successfully solve the 
problem in the y-direction (Figure 4.4), which includes the vapor channel thickness and sensor 
film thickness, an excessive number of nodes would be required in the z-direction.  This 
excessive number of nodes would require an excessive time to solve the problem.  A scaled 
geometry was therefore introduced. 

The problem was scaled so that the three length scales (L, Hv, and Hs) were approximately on 
the same scale.  To do this, the vapor channel height, Hv, was used as a reference point for the 
scaling of the other two dimensions.  The goal was to introduce new scaled geometries, L  vH  
and sH , so that excessive nodes and solution times were not required for each of the modeled 
conditions.  The equations were scaled so that in all cases, L  = 10 vH  and sH  = 0.5 vH , while 
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vH  = Hv.  Under this scaling, the geometry shown in Figure 4.A2 (to scale) was modeled each 
time.  In this scaled geometry, nodes were evenly spaced along each of the dimensions.  

 

 
Figure 4.A2:  To-scale representation of scaled chamber geometries, where vH  = Hv, L  = 
10 vH , and sH  = 0.5 vH . 
 

The original equations governing mass transfer in the vapor and sensor phases are given by 
eq (A1) and eq (A3), respectively.  Under these conditions, with original geometries in place, z 
scales with L, and y scales with Hv and Hs in the vapor and sensor phase, respectively.  To 
transfer the geometry to the desired relationships shown in Figure 4.A2, new scaling factors were 
introduced: Lscale and Hscale for the length and height scales, respectively.  Desiring that 

10=vHL , Lscale was defined as ( ) 10vscale HLL = , and was calculated to be Lscale = 100.  
Similarly, desiring that 5.0=vs HH , Hscale was defined as vsscale HHH 2= , and was 
calculated to be Hscale = 0.02.  Using these scaling factors, the new scaled dimensions are given in 
eq (A5)-(A7): 
 

  10
100
1000

===
scaleL
LL       (A5) 

 

  5.0
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===
scale

s
s H

HH       (A6) 

 

  1== vv HH .        (A7) 

Using the scaled dimensions, eq (A1) and (A3) were adjusted accordingly.  In eq (A1) (vapor 
phase), z scales with the new length scale Lscale.  The y dimension scales with 1 and thus remained 
unchanged, because Hv was the reference dimension for all other dimensions.  Introducing these 
scalings, eq (A1) became eq (A8): 
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Here, ( ) ( ) scalezz LyVyV =  was the scaled velocity, and  
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was a scaled diffusivity vector.  Because y was not scaled,  
 

 
  vy,v DD =          (A10) 
and the relationship  
 

  2
, scalevzv LDD =          (A11) 

accounted for the new z-coordinate scaling. Note that the dot product was used for the 
distribution of the scaled vapor diffusivities. 

In eq (A3) (sensor phase), z scaled with the new length scale Lscale, while y scaled with the 
height scale Hscale.  Introducing these scalings, eq (A3) transformed to eq (A12): 
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Here,  
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is a scaled diffusivity vector, where  
 

  2
, scalevys HDD =         (A14) 

 and  
 

  2
, scalevzs LDD = .        (A15) 

Again note the use of the dot product for the distribution of the scaled sensor diffusivities.   
In addition to scaling the main governing equations (eq (A1) and eq (A3)), the vapor/sensor 

boundary condition was scaled.  Effectively, scaling Hs to sH increases the volume in the sensor 
phase by 1/Hscale.  Thus, the partition coefficient between the two phases was adjusted 
accordingly: 

 

   eqscaleeq KHK = .        (A16) 

For the current geometry being evaluated, Hscale = 0.02, and the sensor thickness (and volume) 
increased by 1/0.02 = 50 to place it on the same scale as the vapor channel thickness.  To account 
for this, the partition coefficient was scaled, decreased by multiplication by 0.02, to keep the 
problem consistent.   
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Table 4.1:   Organic molecule/carbon black composite linear sensor arrays used in this study.  CB 
= carbon black; DP = dioctyl phthalate; THF = tetrahydrofuran. 
 

suspension sensor materials solvent 
LSALA/DP 35 mg lauric acid, 15 mg DP, 150 mg CB THF 
LSAPG 50 mg propyl gallate, 150 mg CB THF 
LSAQDD 50 mg quinacrine dihydrochloride dihydrate, 150 mg CB chloroform 
LSATC/DP 35 mg tetracosane, 15 mg DP, 150 mg CB toluene 
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Table 4.2:  Analytes and abbreviations used in this work. 

 
Analyte 

Hx hexane 
Bz benzene 
Oc octane 
Dc decane 

MeOH methanol 
EtOH ethanol 
PrOH 1-propanol 
BuOH 1-butanol 

Cf chloroform 
EA ethyl acetate 
Cb chlorobenzene 
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Table 4.3:  Partition coefficients Keq (μ10-3) and sensor response slopes MR (μ104) with respect to 
part per thousand (ppth) of each of the analyte vapors and linear sensor arrays.  Below Keq and MR 
the R2 values are displayed for each respective slope fit. 
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Table 4.4:  Geometry combinations and flow rates used for macro-dimensioned modeling.  

 
L (mm) W (mm) Hv (mm) Q (mL min-1) 

75 3.5 0.34 1 
75 8 0.34 2 
75 35 0.34 4 
75 3.5 0.1 10 
75 3.5 0.8 19 
30 3.5 0.034 30 

750 3.5 0.034  
7.5 3.5 0.034  
2 3.5 0.034  
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Table 4.5:  Geometry combinations and flow rates used for micro-dimensioned modeling.    

 
L (mm) W (mm) Hv (mm) Q (μL min-1) 

50 0.2 0.01 1 
25 0.2 0.01 5 
10 0.2 0.01 10 
5 0.2 0.01 25 

100 0.2 0.01 50 
50 0.1 0.01 100 
50 0.05 0.005  
50 0.4 0.01  
50 0.8 0.01  
50 0.2 0.006  
50 0.2 0.003  
50 0.2 0.02  
50 0.2 0.04  
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Table 4.6: Modeled mixtures (P/Poμ100) used for the determination of an optimal ST operational 
regime. 

 
mix # Hx Bz Oc Dc MeOH EtOH PrOH BuOH Cf EA Cb 

1 3 0 0 0 0 0 2 0 0 0 0 
2 0 0 0 4 0 0 0 1 0 0 0 
3 0 0 0 0 2 0 0 0 0 0 1 
4 0 0 3 0 0 0 0 0 2 0 0 
5 0 1 0 0 0 1 0 0 0 4 0 
6 1 0 0 0 2 0 0 0 0 2 0 
7 0 0 1 0 0 0 1 0 0 0 3 
8 0 1 0 0 0 1 0 3 0 0 0 
9 1 0 0 1 0 0 2 0 2 0 0 

10 0 1 0 3 0 0 0 1 0 0 1 
11 0 0 0 0 2 1 0 0 1 2 0 
12 0 1 0 0 1 0 1 0 0 0 2 
13 1 0 1 2 1 0 1 0 0 0 0 
14 0 1 0 1 0 2 0 1 0 1 0 
15 1 1 1 0 0 0 0 2 1 0 0 
16 0 0 1 0 0 1 0 0 1 2 1 
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Figure 4.1:  Arrangement used to optically monitor the delivery of analyte vapor to the sensor 
chamber.  The vapor delivery arrangement used to deliver vapor to the sensor chamber was 
modified to deliver vapor to the quartz cuvette, as shown.   
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Figure 4.2: a) Sensor response and b) QCM frequency shifts as a function of concentration of 
various analyte vapors presented to LSATC/DP (Table 4.1).  See Table 4.2 for analyte identity. 
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Figure 4.3: a) Raw photodiode voltage response during delivery of acetone vapor. b) Baseline-
corrected photodiode voltage response during delivery of acetone vapor.  c) Absorbance response 
profile of the acetone front arrival.  Raw data are shown as points.  The fitting in c) yielded a1 = 
0.00041, a2 = -0.076 s, and kt = 0.32 s-1.  
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Figure 4.4: Modeling scheme, not to scale.  Main equations employed are shown.  See Appendix 
4.9.1 for details on boundary conditions not shown in the figure.   
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Figure 4.5:  a) Experimental,  b) modeled (Hs = 2.6 μm, kt = 0.32 s-1), and c) modeled (Hs = 2.6 
μm, kt = 0.18 s-1) responses of all 15 of the sensors in a LSAPG array to hexane.  All responses 
were scaled to the response value obtained at t = 140 s. 
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Figure 4.6:  a) Experimental,  b) modeled (Hs = 2.6 μm, kt = 0.32 s-1), and c) modeled (Hs = 2.6 
μm, kt = 0.18 s-1) responses of LSAPG to decane.  All responses were scaled to the response value 
obtained at t = 140 s. 
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Figure 4.7:  Exposure to a) pure ethyl acetate, b) pure decane, and c) ethyl acetate / decane 
mixture.  Experimental (points) and modeled (lines) responses of first and ninth sensor along a 
15-sensor LSATC/DP array.  Modeled sensor film thickness were 1.5 μm.  All responses were 
scaled by the individual sensor response at t = 140 s.  
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Figure 4.8: Residual error of mixture analyses for the modeling of 0.1 μm films, with various 
Pezz

-1 cutoff points.   
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Figure 4.9: Residual error of mixture analyses for the modeling of 1 μm films, with various Pezz
-1 

cutoff points.   
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Chapter 5 
 
 
Evaluation of Pattern Recognition 
Techniques for Analysis of Vapor Mixtures 
Using Spatiotemporal Response 
 
 
5.1. Abstract 
 

Modeled responses of pure vapors to small molecule/carbon black composite vapor sensors were 
characterized to determine the most useful features for analysis of vapor mixtures.  
Characterization techniques included the number of principal components (nPC) in response space 
and the minimum resolution factor (min rf) among all vapor combinations in the pure vapor 
training library.  Across libraries that contained different numbers of analytes and responses with 
varying levels of noise, calculation of nPC did not provide a robust correlation with the ability to 
analyze mixtures.  In contrast, the min rf value did produce consistent correlations with mixture 
analysis performance.  For typical levels of noise, excellent mixture analysis performance was 
obtained when the min rf was ≥ 15.  The responses were analyzed using nonnegative least squares 
(NNLSQ) and extended disjoint principal component regression (EDPCR).  In all cases, NNLSQ 
was superior for mixture analysis, with a drawback of EDPCR resulting from the increased 
number of vapor response models required as the number of analytes in the library increased.  An 
alternative method of EDPCR implementation, in which only a single fit to all vapors in the 
analyte library (PCR-SF), was also evaluated.  PCR-SF provided significant improvements 
relative to EDPCR, and significantly decreased the computational time for the classification 
algorithm.  NNLSQ still, however, provided optimal mixture classification results.   
 
5.2. Introduction 
 

Array-based sensing employing broadly responsive vapor sensor arrays has received significant 
attention in the recent literature.  Sensing modalities include tin oxide sensors,1,2 metal-oxide-
semiconductor field-effect transistors,3,4 coated optical fibers5 and optical beads,6 coated acoustic 
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wave devices,7,8 coated microcantilevers,9,10 intrinsically conductive polymer chemiresistors,11,12 
and polymer/carbon black and small molecule/carbon black composite chemiresistors.13,14  In this 
approach, in contrast to the traditional “lock and key” approach in which a single sensor responds 
to a single vapor, each sensor responds to a broad array of vapors and the response pattern across 
the array determines the identity of the vapor.  Such arrays have been termed “electronic noses” 
due to similarities to mammalian olfaction,15,16 in which the olfactory receptor proteins are 
broadly responsive and the collective response pattern dictates the identity of the vapor.17 

Broadly responsive arrays have two typical modes of operation: discriminating between pure 
species or discriminating between complex mixtures.  In each case, a training period is required 
in which multiple responses are generated toward each target vapor class.  For identification of 
pure vapors, target classes include vapors generated from alkanes and alcohols,5,7,11,13 thiols,18 
explosives,19 and nerve agent simulants.7,20  For analysis of complex mixtures, target classes 
include vapors from different coffees,21 teas,1 vinegars,2 beers,6,12 hops,22 and wines;23 as well as 
freshness monitoring of meats,24 fish,25 and produce.26,27  In either case, during the training phase, 
the array is exposed to each vapor (or mixture) it will encounter during later testing phases.  
During testing, the response for an unknown is compared against the training vapor response 
library, using various pattern recognition algorithms.  The vapor identity is then determined by 
the best fit from the training library. 

A benefit of this approach is that a broadly responsive array can generally generate a unique 
response pattern for any vapor (pure or mixture) that may be encountered,6,8,12,13,28 assuming the 
vapor is present at a reasonable concentration.  This property obviates the need to develop a new 
sensor specifically for the target of interest.  A downside to this approach, compared to lock-and-
key sensors, is that mixtures are difficult to analyze in terms of their pure components.  Thus, for 
any anticipated mixture of species, the array requires prior training on the anticipated vapors. 

For real-world applications, multiple vapors will generally be present in a sampled vapor 
stream.  Training for all possibilities of mixtures is an unreasonable burden, due to the extensive 
time required.  The ideal situation is to train an array on pure vapors only, and to use these pure 
response signatures to identify mixtures of the pure species.  The response of such sensors is 
often linear with vapor concentration,28,29 and additive with respect to multiple vapors.30  While 
this should allow for facile mixture analysis with training on only pure vapors, sensor arrays in 
their typical implementation can only analyze mixtures containing less than four species.31  

Most reports dealing with sensor arrays extract a time-independent response for each sensor, 
to the vapor stream, along the array.1,6,8,12,13  This time-independent response describes the 
partitioning of the analyte into each sensor along the array, in equilibrium with an unchanged 
vapor stream.  The use of time-dependent response descriptors, including analysis of the kinetic 
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response information from slow responding sensors,2 or incorporation of a means for vapor 
stream modification to introduce a time-dependence to the analyte concentration in the vapor 
stream,3,4,14 has been demonstrated to enhance the ability of sensor arrays to analyze vapor 
mixtures.3,4,14  Presumably, the time dependence increases the sensor response space, and the 
amount of unique or meaningful information for analysis.   

We have recently generated a mathematical model for the response to various vapors of small 
molecule/carbon black composite chemiresistor arrays operated in the spatiotemporal (ST), or 
space- and time-dependent, regime.32  Under ST operation, the sensors were arranged into linear 
arrays, with low headspace volume and low vapor flow rates.14,32,33  As vapor flowed over a 
sensor array, the analyte partitioned into the sensor film and a time-dependent response profile for 
all sensors along the array was observed.33  When multiple vapors flowed over an array, the 
responses along the array were separated for each vapor, based on the differences in analyte 
partitioning into the film.14,32,33  This additional dimension of sensor response data was shown to 
provide an enhanced ability to correctly analyze mixtures in terms of their pure components.14,32  

ST responses were generated for a large number of geometric and vapor delivery flow rate 
combinations.32  In the sensors, vapor concentration vs. time profiles were generated for pure 
vapors for particular flow rate and cavity dimensions.  Sensor responses vs. time signatures were 
generated from the concentration vs. time profiles using measured sensor sensitivities to a 
particular analyte.  Responses for pure vapors and vapor mixtures were then generated by adding 
Gaussian noise to the response vs. time signatures, and extracting the response at chosen times.  
The pure vapor response signatures were then used to analyze vapor mixture signatures.  For each 
modeled geometry and flow rate, a single measure of the sum of the squared residual error 
between the modeled and estimated vapor concentrations, S2, was calculated, to provide a metric 
for ranking mixture analysis performance.  Using all modeled geometries and flow rates, an 
optimal region for ST mixture analysis was defined, based on two dimensionless Peclet number 
analogs that incorporated the chamber geometry and vapor delivery flow rate of the system of 
interest.32  

In this work, we have evaluated the relative performance of various data characterization 
methods, on ST sensor response data to pure vapors, with respect to the ability to robustly predict 
the utility of pure vapor training for the determination of the components in vapor mixtures.  Pure 
vapor response data was generated for a variety of modeled conditions.  Principal components 
analysis (PCA) was first used with four different methods to determine the number of principal 
components (nPC) in the pure vapor training library.34  Fisher’s linear discriminant analysis 
(FLDA) was used to calculate the resolution factor (rf) along an optimally separated dimension in 
response space between each of the pure vapors in the training library.35  These tools were used to 
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characterize the response space of pure training responses from each of the modeled 
geometry/flow rate combinations, which was compared to the ability of the modeled conditions to 
correctly identify the vapor mixtures.  By simulating vapor libraries with different numbers of 
analytes and with different levels of superimposed noise, a method best suited to be a predictor 
for mixture analysis ability was introduced.  Additionally, the performance of two different 
pattern recognition approaches, non-negative least squares (NNLSQ) and extended disjoint 
principal components regression (EDPCR), were evaluated for use in mixture analysis.   
 
5.3. Experimental 
 

5.3.1.   Sensor Mass Uptake Model Development and Implementation 
The model for the ST response of linear arrays of small molecule/carbon black composite vapor 
sensors used a time-dependent convection-diffusion equation with a laminar velocity profile to 
model the flow of vapor through the chamber and over the linear sensor arrays, with a time-
dependent diffusion equation to model analyte transport in the sensor film.32  Appropriate 
boundary conditions were implemented, and the equations were solved using COMSOL 
Multiphysics, a commercial finite element solver package, for the time-dependent mass uptake 
profile in the sensor films. 
 Tables 5.1 and 5.2 list all sensor materials and analytes used, respectively, for the modeling 
of responses in this work.  Sensor fabrication has been described elsewhere.14,28,32  Partition 
coefficients and response sensitivities for all sensor/analyte combinations have previously been 
reported.32   
 ST responses for 0.1 μm sensor films were generated for > 100 chamber geometries/vapor 
flow rate combinations, as previously reported.32  These modeled responses constituted all 
generated data sets used in this study, and included optimized and non-optimized ST operational 
conditions.  Additionally, for comparison against traditional, time-independent, steady state (SS) 
vapor sensing, this same model was used, with the responses sampled at times after each sensor 
had reached equilibrium with the unmodified vapor stream.   
 The initial modeling study used 4 linear arrays with 15 sensor nodes per array and with each 
sensor sampled at 4 different times.  NNLSQ was used to match modeled “unknown” exposures 
to the known analyte library.  Thus, a total of 240 (4 sensor arrays μ 15 sensors/array μ 4 
times/sensor) response descriptors, ndesc, were available.  To ensure that the data was not over-
trained or over-fit, only a subset of the response descriptors were used.  Responses from only 
three sensors along each array and at only three times were considered, to give 36 response 
descriptors (4 arrays μ 3 sensors/array μ 3 times/sensor).   
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 For ST analysis, responses from the first, middle, and last sensor along each array were used 
and extracted at three response times, t = (0.3, 1.0, and 2.4) μ tsat,median, where tsat,median was the 
median time required to saturate each of the vapor/sensor combinations.32  Previous work has 
demonstrated that use of this limited number of sensors captured the same ST response as that of 
the full array.14 
 For SS analysis, the same model was employed with a chamber geometry of 0.075 μ 3.5μ10-3 
μ 3.4μ10-4 m (L μ W μ H).14  The responses from the first three sensors were used and sampled 
at three times each: t = (9.8, 9.9, and 10) μ tsat,max, where tsat,max was the largest of the times 
required to establish vapor-sensor equilibrium for all vapor/sensor combinations.  Sampling at 
these later times, combined with sampling only the first three sensors, ensured that only responses 
in equilibrium with the undepleted vapor stream were used.  For ST and SS analysis, ndesc = 36, 
where ndesc is the number of response descriptors, which allowed a direct comparison of the two 
approaches. 
 

5.3.2. Response Generation 
 

5.3.2.1. Pure vapors  
Pure vapor responses for 11 analytes were generated as described previously.32  The pure vapor 
responses were assumed to be linear with analyte concentration.28,30  Vapor concentrations were 
denoted as the fractional vapor pressure of an analyte, P/Po, where P and Po were the partial 
pressure and the vapor pressure of the analyte of interest, respectively.15  Sensor mass uptake 
profiles were converted into sensor responses using previously reported sensitivities, and the 
modeled responses were representative of experimentally obtained ( ) bb RRtRtS −= )()(  
responses.14,32  Unless otherwise noted, Gaussian noise representative of the noise typically 
observed in ΔR/Rb responses from small molecule/carbon black composites ST responses, 

respσ =2μ10-4, was superimposed onto each simulated analyte exposure.32 
 For each modeled geometry and flow rate, a subset of vapors from Table 5.2 was used to 
generate a pure vapor data set.  For pure vapor response characterization, for each pure vapor in 
the training library, 200 responses were modeled at P/Po = 0.050.  These same 200 modeled 
responses per vapor were separately averaged and used as pure vapor response signatures for 
mixture analysis using NNLSQ.  For EDPCR mixture analysis, concentration-dependent training 
responses were required.31  Responses for each vapor were generated at P/Po = 0.0050, 0.030 and 
0.050, with twenty repetitions generated at each concentration.  
 

5.3.2.2. Vapor Mixtures  
Responses for vapor mixtures were generated as described previously.32  Response additivity was 
assumed for multiple vapors,30  and vapor mixture responses were generated by the addition of 
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pure vapor responses.  Data sets employing 5 to 10 analytes in the training library were generated 
for analysis.  For each geometry/flow rate, 10 unique n-analyte libraries were chosen.  For 
example, for 5 analyte libraries, Hx/Oc/MeOH/PrOH/Cf was used in one analysis, and 
Bz/Dc/EtOH/BuOH/EA was used in another analysis (Table 5.2).  Eight additional analyte 
combinations were used to complete the 5 analyte library study.  For each of the different 5-
analyte libraries, 12 different mixtures were simulated: mixture 1 consisted of [0 2 0 3 0] parts of 
components 1-5, respectively, regardless of their identity.  For example, if the analytes were 
Bz/Dc/EtOH/BuOH/EA, a mixture of 2 parts Dc and 3 parts BuOH was modeled; if the analytes 
were Hx/Oc/MeOH/PrOH/Cf, a mixture of 2 parts Oc and 3 parts PrOH was modeled.  Eleven 
additional analyte mixtures were modeled, or 12 total analyte mixtures.  This protocol allowed 
analysis of vapor libraries with different degrees of similarity present amongst the vapors.  
Additionally, because the same concentrations were used for each set of mixtures, regardless of 
analyte identity, the generated S2 error, indicative of how well a given data set performed in terms 
of mixture analysis, was on the same scale across all modeled nan-component analyte libraries. 
 For analyses using 5 analytes in the training library, 12 different vapor mixtures were 
simulated and analyzed: 4 binary, 4 ternary, and 4 quaternary mixtures.  For analyses using > 5 
analytes in the training library, 4 additional 5-component mixtures were simulated to make a total 
of 16 different vapor mixtures.  For each simulated mixture, 50 exposure repetitions were 
generated.  All response generations were performed with COMSOL multiphysics in conjunction 
with MATLAB. 
 

5.3.3. Pure Vapor Response Data Set Characterization  
A complete set of mixture analyses were performed for each of the over 100 modeled 
geometry/flow rate combinations.  Some modeled conditions offered enhanced mixture analysis 
due to optimized ST conditions, defined by the relationships between the chamber geometry and 
the flow rate of vapor delivery.32  Some situations offered enhanced mixture analysis due to the 
presence of dissimilar analytes in the training library.  This work aimed to determine what was 
contained in pure vapor response data that allowed for higher levels of mixture analyses.  PCA 
and FLDA were used to characterize the pure vapor response data sets generated for each of the 
modeled geometry/flow rate combinations.  For a given set of modeled conditions, the 200 
modeled pure exposures delivered at P/Po = 0.05 were used for each pure vapor in the analyte 
library to characterize the properties of the nan-analyte library.  These same responses were used 
as training data for analysis using NNLSQ.   
 For analysis using PCA and FLDA, all responses were first concentration normalized by the 
sum of all response descriptors according to eq (1): 
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where )(tSi  was the original modeled response, i was the response descriptor number, and )(tSi  
the normalized response.  Normalization ensured that differences in responses generated by the 
different vapors were due to differences in the response fingerprints, rather than differences in the 
response magnitudes.36  These characterization techniques were evaluated as a function of the 
number of vapors in the training library, and for various levels of superimposed noise.  All 
analyses, including PCA and FLDA, were performed in MATLAB. 
 

5.3.3.1. PCA and Determination of the Number of PCs  
PCA allows for compression of ndesc-dimensional data by reorganization into nPC-dimensional 
data, where nPC << ndesc and the nPC dimensional data set contains most of the information in the 
original data set.  PCA rotates the natural array response space from one where each dimension is 
the response of a single sensor, onto a space in which the first dimension, or PC, lies along the 
direction that contains the largest variance in the data set.34,35,37  The second PC is along the 
direction that captures the second largest variance in the data set, and is orthogonal to the first 
PC.34,35,37  This process is repeated for all ndesc dimensions in the original data set.  From this 
rotated space, the first nPC PCs ideally contain all (or most) of the useful information in the 
original data set, while the remaining dimensions, nPC + 1 to ndesc, primarily contain noise.34,35,37  
The dimensionality of any data set is expected to be indicative of the amount of unique 
information present in the data and is defined by the number of PCs in the data set, nPC.34  The 
challenge is to determine the proper number of PCs to use.  To calculate nPC, the eigenvalue 
criterion and explained variance schemes were used.34,37,38  Other schemes, such as the Scree-test, 
were avoided due to their higher degrees of subjectivity.34,37,38 
 A 2D data set of size nexp μ ndesc was the starting point, where nexp was the total number of 
modeled exposures present in the data set.  The nexp was given by nan μ nrep where nan was the 
number of analytes in the library and nrep was the number of training repetitions per analyte.  
Depending on the size of the training analyte library, nan = 5, 7, 9 or 10, while ndesc = 36.   
 To perform PCA on this nexp μ ndesc data set, the data was mean-centered and autoscaled,35  
from which the correlation matrix was calculated.  The eigenvectors and eigenvalues of this 
correlation matrix represented the new dimensions of maximized variance and the amounts of 
variance captured in each of these dimensions, respectively.34,35,37  The autoscaled data were then 
projected onto the eigenvectors to create the PC-transformed data set.  The eigenvalues describe 
the amount of variance captured along each PC.    
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5.3.3.1.1. Eigenvalue Criterion  
For autoscaled data, the average eigenvalue is 1, and the sum of the eigenvalues is equal to ndesc.37  
For an array of specific lock-and-key sensors, where each sensor responded only to a single 
analyte, all the eigenvalues would equal 1.  For cross-responsive sensor arrays, the eigenvalues 
instead decrease monotonically.  Thus the initial eigenvalues were significantly larger than the 
last few.   
 The number of PCs to retain can be set using a cutoff value for the eigenvalues.  The classical 
cutoff value is 1, known as “Kaiser’s rule.”34,35,37,39  According to Kaiser’s rule, PCs are retained 
only if they contain more information than the average component.  Kaiser’s rule will 
underestimate nPC in cases in which the descriptors are mainly independent of one another.34,40  
Conversely, when descriptors are highly collinear, the value of nPC will be overestimated.34  To 
adjust for the former and latter cases, eigenvalues cutoffs of 0.7 and 2.0, respectively, have been 
used.38  For this work, nPC  was defined as the number of components possessing eigenvalues ≥ 1 
and ≥ 2.  The two methods will be denoted as eigenvalue ( ≥ 1) and eigenvalue ( ≥ 2), 
respectively. 
 

5.3.3.1.1. Explained Variance 
Alternatively, the value of nPC can be defined as the number of PCs required to explain a given 
fraction of the total variance.34,35,37  The fraction of the total variance captured in a component is 
equal to that component’s eigenvalue divided by ndesc.  Starting with the 1st PC, this method used 
as many components as were required to explain a set fraction of the total variance in the 
data.34,35,37    
 Most implementations use sufficient PCs to describe 70% to 90% of the total variance.34,38  
These values can be adjusted for particular data sets.  For example, when only one or two PCs 
explain most of the variation, the percentage could be increased to 95% to insure that less 
dominant, though significant, components are captured.34  For this work, the value of nPC was 
defined as the number of PCs required to explain 60% and 80% of the cumulative response 
variance.  The two methods will be denoted as variance (60%) and variance (80%), respectively.   
 

5.3.3.2. Fisher’s LDA and Calculation of the rf Between Analytes 
Fisher’s linear discriminant analysis (FLDA) takes two clusters of data in n-dimensional space, 
and projects them onto a single dimension that maximally separates the clusters.35,41  The optimal 
separation vector can be identified by finding the direction that maximizes the resolution factor, 
rf: 
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where 1y  and 2y are the means, and 1σ  and 2σ  the standard deviations, respectively, of clusters 
1 and 2 along this optimized dimension.41,42  Assuming Gaussian distributions of cluster 
projections along the optimized dimension, resolution factors of 1, 2, and 3 correspond to correct 
classifications between the two clusters of 72, 92, and 98%, respectively.   
 The rf value was calculated between all binary combinations of analytes present in the 
training library.  For a lock-and-key sensor array in which each sensor responded only to a single 
analyte, and when responses are concentration-normalized according to eq (1), all vapor 
combinations would report infinite rf’s.43  For a broadly responsive sensor array, the rf will be 
some finite value, this providing a measure of how distinct the response patterns of various 
vapors are in sensor response space.   
 For FLDA, a train-test scheme was employed to insure that the reported rf’s were not 
artificially large due to overfitting of the response data.  For each binary vapor combination, 150 
of the 200 generated responses for each pure vapor were used to generate a FLDA model.  The 
remaining 50 exposures were then projected onto the optimized dimension that maximized the rf 
among training data, and the resolution factor was calculated from these projections according to 
eq (2).  All reported rf’s were from testing data analyses.  For each of the modeled conditions, the 
minimum testing rf of all binary vapor combinations, min rf, was used to describe the situation for 
which confusion of the analytes would most likely occur.   
 

5.3.4. Mixture Analysis  
Responses were generated based on the assumption of linearity with concentration and additivity 
with respect to multiple vapors.  Two linear, statistically based methods, NNLSQ44 and EDPCR,31 
were therefore chosen for mixture identification.  NNLSQ has been applied successfully to 
experimental mixture analyses using ST response information,14 while EDPCR has been applied 
successfully to modeled low-order mixture analyses using SS response information.31,45,46  
Alternate, nonlinear forms of pattern recognition, such as neural network-based implementations, 
could provide enhanced performance in mixture analysis.  However, such methods often require 
long training times and depend on the method of user implementation.47  Statistically based 
methods provide a more objective measure of performance and are thus favored for an objective 
analysis of response data.  For both NNLSQ and EDPCR, raw non-normalized response vectors 
were used to retain concentration information.   
 NNLSQ and EDPCR were used to determine the vapor concentration in each of the unknown 
mixture data.  In cases using 5 analyte libraries, 12 vapor mixtures with 50 repetitions per 
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mixture, or 600 mixture repetitions, were attempted.  In cases using more than 5 analyte libraries, 
16 vapor mixtures with 50 repetitions per mixture, or 800 mixture repetitions, were attempted.  
To generate a single metric that described how well each modeled geometry/flow rate/analyte 
combination performed in mixture analysis, the sum of the squared residual error, S2, was 
calculated.  This was the sum of the squares between the deduced and known vapor 
concentrations for individual mixture identifications, summed over all 600 or 800 mixture 
repetitions: 
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where nmix was 12 or 16 for libraries with 5 or > 5 analytes, respectively; nrep = 50 the number of 
repetitions per mixture; nan the number of analytes in the vapor library; and Cest and Cinput the 
estimated and input vapor concentrations, respectively.  Lower values of S2 denoted lower 
estimation errors and thus indicated better performing mixture analyses. 
 

5.3.4.1. Non-Negative Least Squares  
For each pure vapor in the training library, the 200 modeled pure-vapor responses, used for PCA 
and FLDA, were averaged to generate a response signature for exposure at P/Po = 0.050.  This 
process created a pure vapor signature library A of size ndesc μ nan.  For an array response to an 
unknown mixture b of size ndesc μ 1, NNLSQ found the linear combination of the pure vapor 
response vectors that best matched the mixture response vector, such that all contributions from 
each pure vapor were ≥ 0.44  NNLSQ was performed using a MATLAB function.  
 

5.3.4.1. Extended Disjoint Principal Components Regression  
The method of implementation for EDPCR has been well-described in the literature.31  The 
approach is similar to the more general soft independent modeling of class analogy (SIMCA) 
method, except that in SIMCA each model that well-describes the data is accepted as a 
possibility, and more than one possibility may exist.35,37,48  Briefly, EDPCR involves individually 
modeling, via PCs, the responses to each of the pure vapors.  For each pure vapor, PCA was 
performed on mean-centered pure vapor response data: twenty repetitions per vapor at each of 
three concentrations, P/Po = 0.0050, 0.030 and 0.050.  The first m dimensions in PC space, where 
m was the number of relevant PCs, would traditionally serve as the model for the given pure 
vapor.  Because responses were generated with an assumption of linearity with respect to 
concentration and Gaussian noise, a single PC model, or m = 1, was chosen for each pure vapor.31  
For training data, the position along this single PC was correlated with the training concentration, 
and used to calculate vapor concentrations of testing data.   
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 Mixture response signatures were fit to all pure vapor models, and all higher-order models 
consisting of up to five different pure vapor models, which represented vapor mixtures.  For 
multi-component models, the degree of overlap between the different analyte models was taken 
into account by the dot product between their respective PC dimensions.31  For each model, the 
PC-transformed data was used to re-construct the original mixture response vector.  The correct 
model, which established mixture component analyte identities, was chosen as the model that was 
best able to reconstruct the original mixture response vector, or the model offering the lowest 
squared residual between the original and reconstructed mixture response vector.31   After analyte 
identities were established, analyte concentrations were calculated based on the projected distance 
along each of the pure-vapor PC models.31    
 EDPCR works because PCA ideally conserves all relevant response information.  For a 
response to any pure vapor, if the response were projected onto the correct vapor PC model, no 
relevant response information would be lost, and the original response vector could be perfectly 
re-constructed from the projected data.  If the vapor were, however, projected onto the wrong 
vapor PC model, information would be lost on re-construction. 
 2- 3- 4- and 5-component mixtures were simulated for data sets containing 5, 7, 9 and 10 
vapors in the library.  For mixture analysis of each of the unknown response vectors, this required 
fitting to all possible 1-, 2-, 3-, 4-, and 5-component combinations of the vapors in the library.  
For 5, 7, 9 and 10 vapors in the library, this process corresponded to a total of 31, 119, 381 and 
637 mixture fittings, respectively.  EDPCR was performed in MATLAB. 
 
5.4. Results 
 

5.4.1. Initial Screening of Methods 
Figures 5.1a-e display S2 values obtained from mixture analyses for simulated 10 analyte libraries 
using NNLSQ on ST and SS response data, and EDPCR on ST response data, as a function of the 
data set classification method.  The same mixture sets were classified using ST and SS data in 
each case.  ST results analyzed with NNLSQ demonstrated lower S2 values that varied widely 
depending on chamber dimensions and flow rate.  SS results analyzed with NNLSQ showed 
higher and more consistent error levels, due to a consistent means of extracting the steady-state 
sensor response information.  For all modeled ST conditions, NNLSQ provided lower error 
identification rates than EDPCR.   
 Figures 5.1a-d display plots of S2 vs. nPC based on the variance (60%) and (80%) methods, 
and the eigenvalue ( ≥ 1) and ( ≥ 2) methods, respectively.  All figures demonstrate that nPC was 
larger for the ST data than the SS data, regardless of how the nPC were calculated.  In Figures 
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5.1a-c, aside from the initial benefit obtained from using ST rather than SS data, no clear trend 
was evident between nPC and S2.  For example, Figure 5.1b shows that the error in mixture 
analysis was the same despite nPC ranging from 3-8.  In contrast, Figure 5.1d shows that as nPC 
increased, S2 in general decreased.  Figure 5.1e displays S2 vs. the min rf from all binary vapor 
combinations in the modeled libraries, showing that as the min rf of all binary vapor combinations 
increased, the modeled sensor array was better able to analyze vapor mixtures.   
 With 10 analytes in the vapor library, a maximum of 10 PCs can be present in any data set.  
However, fewer PCs might have relevant data in a 10-element broadly responsive array.  The 
eigenvalue ( ≥ 1) method resulted in nPC spanning a range from 5 to 10 for ST data (Figure 5.1c), 
likely an overestimation due to the high collinearity of the sensor response.  Using the variance 
(60%) rule likely underestimated the value of nPC with 1-3 reported for the various cases (Figure 
5.1a).   
 

5.4.2. Different Sized Analyte Libraries 
We now analyze how the characterization techniques changed for libraries that contained 
different numbers of analytes, and for response data that was generated with different levels of 
noise.  Calculation of nPC was performed with two methods: variance (80%) and eigenvalue ( ≥ 
2).  Additionally, the min rf method was used.  NNLSQ rather than EDPCR was used for mixture 
analysis due to its low S2 values.   
 Figures 5.2a-c display S2 vs. nPC for 5, 7 and 9 analyte training libraries, respectively, where 
nPC was defined using the variance (80%) method.  Both ST and SS analyses are displayed.  In all 
cases, the nPC were larger and S2 lower for ST data.  Analysis of 5 analyte libraries (Figure 5.2a) 
yielded nPC generally ranging from 2 to 10, despite the fact that no more than 5 PCs were 
possible.  Additionally, for the 5, 7 and 9 analyte library cases, no trend was observed between 
increased nPC and S2 for ST analyzed data.   
 Figures 5.3a-c display S2 for NNLSQ analysis vs. nPC for the same 5, 7 and 9 analyte mixture 
analyses, using the eigenvalue ( ≥ 2) method.  In all cases, nPC was less than the number of 
analytes in the library.  As more analytes were introduced to the library, nPC slowly increased.  
Thus this method correctly responded to the increase in response information possible due to 
larger analyte libraries.  Additionally, as nPC increased, mixture analyses improved.  However, 
higher nPC values were not required to optimally analyze mixtures.  For example, Figure 5.3c 
shows that mixture analysis error was consistently the lowest when 5 PCs were in the data set, but 
the same level of mixture error was achievable with only 3 PCs in many data sets.   
 Figures 5.4a-c display S2 for NNLSQ anlaysis vs. the min rf in the analyte library for the 
same 5, 7 and 9 analyte mixture analyses.  In all cases, S2 decreased as the min rf increased.  At rf 
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~ 15, the lowest errors and optimal mixture identifications were achievable, but were not 
guaranteed. A region of optimal mixture analysis became better defined for rf > 15.  The min rf’s 
reported for SS analyses were representative of the minimums reported for similar pure-vapor 
analyses using a 7 sensor array of small molecule/carbon black composite sensors.28    
 

5.4.3. Different Levels of Noise 
Figure 5.5 displays S2 for NNLSQ analysis of simulated 10 analyte libraries vs. the 
characterization techniques discussed in Figures 5.2-4, with superimposed noise of respσ = (1, 4, 
and 16) μ 10-4.  Figure 5.5a displays S2 vs. nPC using the variance (80%) method.  As the response 
noise increased, nPC and S2 increased.  When the noise was set to 16μ10-4, the nPC were routinely 
overestimated, ranging from 1 to 20.  As the noise increased, more and more of the response 
information (variance) was due to noise; thus the explained variance method ultimately resulted 
in the inclusion of noise-dominated dimensions.   

Figure 5.5b displays S2 vs. nPC based on the eigenvalue criterion ( ≥ 2).  With increased noise, 
the nPC remained approximately constant while S2 increased.  When the noise was 16μ10-4, nPC 
exhibited a range of 1 to 6.  While nPC fell within the required range of § 10 for the simulated 10 
analyte libraries, this definition of nPC offered no clear correlation with the ability to analyze 
vapor mixtures.  

Figure 5.5c displays S2 vs. the min rf in the analyte library.  For ST data, as the noise was 
increased, the min rf decreased and S2 increased.  Thus, for SS and ST broadly responsive array 
response data, the min rf calculated from all pure vapors in the analyte library can be used as an 
indicator for the ability of the array to correctly analyze mixtures.   
 
5.5. Discussion  
 

5.5.1. Broadly Responsive Array Mixture Analysis Prediction 
An attempt was made to characterize the pure vapor response data of a broadly responsive array 
in terms of the array’s ability to analyze mixtures.  Two approaches were used: calculation of nPC, 
and calculation of the min rf amongst all vapors in a training library.  For the calculation of nPC, 
two methods were used: how many PCs were required to explain a certain amount of the 
variance, and the number of PCs with eigenvalues above a chosen value.   
 The methods for calculating nPC sought to determine the number of dimensions needed to 
capture class-specific non-noise response information.  The explained variance method in many 
cases produced more dimensions than analytes (Figure 5.2c; Figure 5.5a).  The eigenvalue 
method performed better in terms of providing realistic results for nPC (Figures 5.3a-c; Figure 
5.5b), however no trend was consistently observed between nPC and the ability of an array to 
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analyze vapor mixtures (Figure 5.5b).  These findings suggest that as noise increased, the nPC of 
the response space remained unchanged.  However, signatures of the pure vapors overlapped to 
higher degrees.  This increased overlap caused higher levels of analysis error.   
 The min rf gave a relative measure of the level of separation between pure vapors in response 
space, which accounted for response noise with σ1 and σ2 (eq (2)).  As the rf between two vapors 
increased, the response signature for the two vapors became increasingly different, and the 
likelihood that the two vapors would be confused decreased.  Across various library sizes and 
levels of noise, the min rf value was consistently correlated with the ability to successfully 
analyze mixtures.  While higher nPC values may allow for a lower min rf, this is not the rule.  
Rather, it is the number of unique pure vapor response clusters that can fit within those nPC that is 
important for mixture analysis.  
 

5.5.2. NNLSQ vs. EDPCR  
In previous experimental work, NNLSQ consistently outperformed EDPCR for mixture analysis, 
offering lower variability and greater accuracy in mixture analysis.14  It was concluded that 
EDPCR broke down due to nonlinearities exhibited in the observed response to multiple vapors.14  
Figure 5.1 gives a comparison of EDPCR and NNLSQ applied to identical data for the analysis of 
mixtures from their pure vapor signatures.  In all cases, NNLSQ outperformed EDPCR.  These 
data were generated with an assumption of linear and additive responses and Gaussian noise.  
Thus, even with linear data, NNLSQ outperformed EDPCR.    
 In this work, EDPCR was implemented by fitting the response of each unknown mixture to 
the full complement of all 5-component and lower order mixtures possible from the nan-
component training library.  For the modeled cases using nan = 5, 7, 9 and 10 vapors in the 
library, this corresponded to 31, 119, 381 and 637 mixture fittings, respectively.  The usual 
method of EDPCR implementation has limited the number of allowed vapor combinations based 
on user information about the unknown exposure.   For an m-component mixture chosen from an 
nan component library, two implementations have been used: full fitting to all mixtures of m 
components or fewer possible from the nan component analyte library,31 and a limited fitting to 
the m-component mixture and all lower-order mixtures composed of only the m components 
(EDPCR-limited).45,46,49  For example, under the former method, a binary mixture chosen from a 
5 component library would be fit to all binary mixtures and all pure vapors possible from the 
analyte library, for a total of 15 different combinations.31  Under the EDPCR-limited method, the 
binary mixture would be fit to the single 2-component mixture, and only the two pure vapors, for 
a total of 3 different combinations.45,46,49  In this study, and the previous experimental study where 
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NNLSQ proved superior to EDPCR,14 each unknown mixture response was fully fit to all 
mixtures that consisted of ≤ 5 components, comprised of all analytes in the training library.   
 Figure 5.6 offers a comparison between the performance of NNLSQ and EDPCR for a 
modeled 3-component vapor mixture with ST response information, using a 6 component vapor 
library.  Responses for the vapor mixture were generated twenty times, and mean and standard 
deviations of analysis using various methods are shown.  Responses were generated and analyzed 
for three levels of noise: the noise typically observed in these sensor’s ST responses (2μ10-4) as 
well as noise one and two orders of magnitude less than that observed.  
 Figure 5.6a shows analysis using NNLSQ, and displays the modeled concentrations of all 6 
vapors, as well as analysis results for the three levels of noise.  In this case, no a priori 
information about the vapor mixture was known – the algorithm freely fit to all vapors in the 
library.  For all three levels of noise simulated, NNLSQ correctly identified mixture components 
at their correct concentrations.  Figure 5.6b shows analysis using EDPCR-limited, the most 
typically implemented method: allowing the modeled array to fit to the one 3-component mixture, 
the three 2-component mixtures, and the three pure vapors.  In this case, the algorithm knew 
beforehand that the mixture consisted of Oc, Cf and PrOH (Table 5.2).  For the level of noise 
representative of sensor responses, the algorithm was able to roughly pick out the correct 
concentrations of the components, with higher levels of error and more variance exhibited than 
NNLSQ analysis.  Responses generated with one and two orders of magnitude less noise 
performed much better, consistently picking the correct concentrations with little analysis 
variance.  Based on the user input of which three analytes were present in the mixture, this 
method required fitting to 7 different vapor models. 
 Figure 5.6c shows the analysis using the full EDPCR fitting method (EDPCR-full), with fits 
allowed to all 1-, 2-, 3-, 4-, 5- and 6-component models, or a total of 63 models.  In this 
implementation, only the modeled responses with two orders of magnitude lower noise were able 
to pick out the correct vapors and concentrations.  The two higher levels of noise were not able to 
correctly identify or quantify the components in the mixtures.  This method is indicative of the 
implementation of EDPCR in this work and in a previous experimental ST analysis.14   
 NNLSQ allowed for a single simultaneous fit to all vapors in the library.  EDPCR required a 
fit to all combinations of vapors in the library, and chose vapor concentrations based on the 
modeled vapor(s) that provided the lowest residual.  Differences in analyses observed in Figures 
5.6b-c suggest that EDPCR performed poorly due to the increased number of models fit to the 
unknown exposure.  Implementation of EDPCR in a manner similar to NNLSQ, offering a single 
fit to a model composed of all vapors in the library (PCR-SF), might provide enhanced mixture 
analysis.  For PCR-SF, the unknown mixture response vector was projected onto a single model 
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comprised of all individual pure vapor models from the analyte library, and analyte 
concentrations were calculated based on the distance along each of the pure-vapor PC models.  
This is in contrast to EDPCR-limited or EDPCR-full, where analyte identity was first calculated 
by the vapor model offering the best ability to reconstruct the original mixture vector, and 
concentrations were then calculated based on the distance along the PCs of the model 
constituents.31  Such an analysis was therefore performed, fitting each unknown exposure to only 
the collective 6 analyte model.  Figure 5.6d shows that using PCR-SF, mixture analysis was 
greatly enhanced relative to EDPCR. 
 Figure 5.7 shows the same analyses performed in Figure 5.6, with a simulated 4-component 
mixture chosen from a 6-component library.  NNLSQ again estimated vapor concentrations 
correctly (Figure 5.7a).  EDPCR-limited now had to fit to one 4-component, four 3-component, 
and six 2-component mixtures, and four pure vapors, or 15 different vapor models, compared to 7 
different vapor models for the 3-component mixture.  Only the lowest level of noise was able to 
consistently identify the correct vapors and concentrations (Figure 5.7b).  Extra model fittings 
required for higher-order mixtures appear to limit the performance of mixture analysis using 
EDPCR, rather than the true ability of an array to analyze a mixture.  EDPCR-full (Figure 5.7c) 
yielded approximately the same results as EDPCR-limited.  PCR-SF again performed 
significantly better (Figure 5.7d) than the other implementations of EDPCR.  
 The breakdown in the ability of EDPCR to analyze mixtures when going from 3- to 4- 
component mixtures (Figure 5.6b and 5.7b, respectively) was consistent with the breakdown 
point of EDPCR observed previously, where it was concluded that using EDPCR, lower-order 
mixtures (up to 2 or 3 components) could be successfully identified, but higher order mixtures 
(containing 4 or 5 components) could not.45,46,49  Figures 5.6-7 suggest that these conclusions are 
algorithm-dependent, and are not true for alternative algorithms such as NNLSQ (Figures 5.6a-
7a) or PCR-SF (Figures 5.6d-7d).  Additionally, PCR-SF was much more computationally 
efficient than EDPCR, which would require over 1000 and 30,000 model fittings for a 10- and 
15-analyte library, respectively, compared to a single fit for PCR-SF.   
 Figure 5.8 shows the ST response data from Figure 5.1, analyzed with EDPCR, PCR-SF, and 
NNLSQ.  Using PCR-SF, significant improvements were observed relative to the traditional 
EDPCR approach.  NNLSQ, however, still reported the lowest mixture analysis error.  The 
differences in mixture analysis ability arose from differences in how the algorithms handled 
response noise: whereas NNLSQ retained all dimensions, PCR-SF found the single dimension 
that described the array response toward each pure vapor.  For Gaussian noise, all ndesc 
dimensions in NNLSQ, and the single dimension defining each of the PCR-SF pure-vapor 
models, contain the same level of noise.  Whereas NNLSQ was able to average out the effects of 
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noise over ndesc dimensions and minimize its effect on mixture analysis, PCR-SF retained only a 
single dimension per pure vapor and mixture analysis was therefore more easily troubled by 
response noise.   
 The results shown in Figures 5.6-8 suggest that the traditional implementation of EDPCR is 
well-suited for pure vapors only.  Operation in this manner has been proven to work,31,45,46,49,50 
and the computational time required for an n analyte library grows linearly as n and is therefore 
managable.  However, for mixture analysis, EDPCR performs poorly, due to the large number of 
fits required, and becomes computationally inefficient because the computational time grows as 
2n.  For mixture analysis using EDPCR, the alternative single fit method introduced here, PCR-
SF, is advantageous.   
 
5.6 Conclusions  
 

Modeled sensor responses were used to determine the most useful features for the analysis of 
vapor mixtures.  Characterization techniques were used to find a predictor, which worked across 
different sized analyte libraries and for different levels of response noise, for the ability of 
broadly responsive array pure-vapor training to analyze vapor mixtures.  Characterization 
techniques included calculation of min rf among all vapor combinations in the pure vapor training 
library, and different means to calculate the nPC in the pure-vapor response space.  Calculation of 
nPC did not provide a robust correlation with the ability to analyze vapor mixtures, whereas the 
min rf provided a correlation consistent across different sized analyte libraries, and responses 
generated with different levels of noise.  For response noise typical of small molecule – carbon 
black composite chemiresistors, analysis of mixtures with pure vapor training became feasible 
when min rf > 15.  Mixtures were analyzed using NNLSQ and EDPCR.  A comparison between 
these two algorithms was presented for analysis of a 3- and 4-component mixture generated from 
a vapor library consisting of 6 components.  In cases where EDPCR required fitting to a limited 
number of vapor models, correct mixture analysis was obtained.  As the number of vapor models 
increased, the ability of EDPCR to correctly identify mixtures decreased.  In all cases, NNLSQ 
was able to correctly identify the mixtures.  An alternative single fit method for EDPCR 
implementation was tested, PCR-SF.  This method offered significant improvements in mixture 
analysis ability, and a significant decrease in the required computational time for vapor 
classification.  
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Table 5.1:  Organic molecule/carbon black composite sensors used in this study.  CB = carbon 
black; DP = dioctyl phthalate; THF = tetrahydrofuran. 

 
suspension sensor materials solvent 

1 35 mg lauric acid, 15 mg DP, 150 mg CB THF 
2 50 mg propyl gallate, 150 mg CB THF 
3 50 mg quinacrine dihydrochloride dihydrate, 150 mg CB chloroform 
4 35 mg tetracosane, 15 mg DP, 150 mg CB toluene 
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Table 5.2:  Analytes and their abbreviations used in this work. 

 
Analyte 

Hx hexane 
Bz benzene 
Oc octane 
Dc decane 

MeOH methanol 
EtOH ethanol 
PrOH 1-propanol 
BuOH 1-butanol 

Cf chloroform 
EA ethyl acetate 
Cb chlorobenzene 
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Figure 5.1:  a-d: S2 vs. nPC for various 10 analyte training libraries based on the a) variance 
(60%), b) variance (80%), c) eigenvalue ( ≥ 1), and d) eigenvalue ( ≥ 2) methods.  e) S2 vs. the 
minimum rf in the data set.  SS analysis using NNLSQ (SS, LSQ), ST analysis using NNLSQ 
(ST, LSQ) and ST analysis using EDPCR (ST, PCR), are indicated by a black ×, red *, and blue 
∇, respectively. 
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Figure 5.2:  NNLSQ S2 values vs. nPC using the variance (80%) method for 5, 7, and 9-analyte 
training libraries for a-c, respectively.  SS and ST data are indicated by a black × and red *, 
respectively. 
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Figure 5.3:  NNLSQ S2 values vs. nPC using the eigenvalue ( ≥ 2) method for 5, 7 and 9-analyte 
training libraries for a-c, respectively.  SS and ST data are indicated by a black × and red *, 
respectively. 
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Figure 5.4:  NNLSQ S2 values vs. the minimum rf amongst pure analyte vapors in 5, 7 and 9-
analyte training libraries for a-c, respectively.  SS and ST data are indicated by a black × and red 
*, respectively. 
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Figure 5.5: NNLSQ S2 values vs. a) nPC using the variance (80%) method; b) nPC using the 
eigenvalue ( ≥ 2) method; and c) the minimum rf in the vapor library.  Noise levels added to data 
of 1×10-4, 4×10-4, and 16×10-4 are indicated by , ∇, and , respectively.  Vapor libraries 
consisted of 10 analytes, with three different levels of noised superimposed on sensor responses.3 
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Figure 5.6:  Analysis of a 3-component mixture simulated from a 6-component analyte library, 
with three levels of Gaussian noise superimposed to generate training and testing responses, 
analyzed using a) NNLSQ; b) EDPCR analysis allowing for a fit to all combinations of the 
modeled mixture; c) EDPCR analysis allowing a fit to all combinations of the 6 analyte library; d) 
PCR-SF.  Means and standard deviations were calculated from 20 mixture analysis repetitions. 
Noise levels of 2×10-6, 2×10-5, and 2×10-4 were used.   
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Figure 5.7:  Analysis of a 4-component mixture simulated from a 6-component analyte library.  
See Figure 5.6 for descriptions. 
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Figure 5.8:  S2 analyzed using NNLSQ (LSQ), EDPCR, and PCR-SF, vs. the minimum rf 
amongst analyte vapors in various 10-analyte training libraries.  Analysis using the NNLSQ, 
EDPCR-full, and PCR-SF methods are indicated by the black ×, red , and blue , respectively.   
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Chapter 6 
 
 
Enhancement of Pure Vapor Classification 
Rates Using Spatiotemporal Response 
 
 
6.1. Abstract 
 

Spatially linear sensor arrays made from small molecule/carbon black composite thin film 
chemiresistors were used to discriminate between and classify among the vapor classes of 
alcohols (methanol, ethanol, 1-propanol, 1-butanol, and 1-hexanol), alkanes (hexane, heptane, 
octane, nonane, and decane), chloromethanes (dichloromethane, trichloromethane, and 
tetrachloromethane), and xylenes (m-xylene, p-xylene, and o-xylene).  Traditional steady-state 
(SS) sensor responses, and space- and time- dependent spatiotemporal (ST) sensor responses, 
were extracted from the same sensor arrays, and their ability to discriminate and classify among 
the vapors was compared.  Using Fisher’s linear discriminant (FLD) and ST response 
information, for 109 of the 120 binary pure vapor combinations, an increased ability to 
discriminate between the vapors, denoted by the testing resolution factor (rftest), was observed.  
Three classification techniques were used: k nearest neighbors (kNN), a feed-forward back-
propagation neural network (FFBNN), and a bioinspired hierarchical classification (HC) scheme 
based on FLD, FLD-HC.  FLD-HC exhibited equal or better classification rates than kNN for 14 
out of 16 and 15 out of 16 of the vapors when SS and ST response information was used, 
respectively.  FLD-HC yielded zero misclassifications of a target vapor as belonging to a 
different chemical class, for example classifying hexane as an alcohol, while kNN and NN 
analyses yielded 4 out of 800 and 9 out of 800 wrong-class misclassifications, respectively.  Non-
Gaussian response distributions for ST response data caused the two linear methods, kNN and 
FLD-HC, to exhibit equal or better correct classification rates for 15 out of 16 and 13 out of 16 of 
the vapors, respectively, when ST response information was used.  In contrast, for all 16 vapors, 
increased classification rates were observed when ST response information was used with the 
non-linear FFBNN.  Classification rates were well-correlated with the FLD rftest value.  When the 
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minimum rftest between a target vapor and all other vapors in the library was > 8.5, > 95% correct 
classification rates were achieved for the target vapor.  Alternatively, when the rftest between the 
target vapor and an alternate vapor was < 6, the likelihood of the alternate vapor being wrongly 
classified as the target vapor increased significantly. 
 
6.2. Introduction 
 

Broadly responsive array-based vapor sensing has received significant attention due to its ability 
to detect and discriminate between various analyte vapors.  Array-based sensing has been 
explored using chemoresponsive dyes,1,2 tin oxides,3,4 gold nanoparticles,5,6 metal-oxide-
semiconductor field-effect transistors,7,8 optical fibers or beads coated with thin polymer films,9,10 
polymer-coated surface acoustic wave devices,11,12 polymer-coated micro-machined 
cantilevers,13,14 intrinsically conductive polymers,15,16 and conductive polymer composite 
chemiresistors.17,18  In all cases, each sensor responds to a large number of vapors, and the 
individual sensors possess essentially no classification ability.  The array response captures the 
relative response magnitudes of all sensors in the array, and when array training is combined with 
appropriate pattern recognition techniques, the sensor arrays can provide vapor classification and 
identification. Due to similarities to mammalian olfactory processes, such architectures have been 
termed “electronic” or “artificial” noses.19,20   
 One attractive signal transduction mode incorporates the use of chemically sensitive resistors, 
or chemiresistors.  Such sensors are inherently low power,17  compact,20 compatible with very 
large-scale integration (VLSI) processes,4 can be deposited onto a variety of substrates including 
glass,21 ceramics,17 or interdigitated electrodes,5 and can be fabricated in a variety of form factors 
for the optimization of the sensor response.22,23   
 One chemiresistive sensing approach employs carbon black composites (CBC), where carbon 
black (CB) serves as the conductive phase, and either polymers or small, non-polymeric, organic 
materials serve as the insulating phase.17,18,20-22,24  In these CBC sensors, the insulating material in 
each sensor determines the sensor/vapor selectivity and sensitivity, while the CB offers an 
inexpensive method for transducing the chemical response information into an electrical resistive 
response signal.  When several insulating materials are used across an array of sensors, the array 
is able to discriminate between different vapors or vapor mixtures.17,18,20-22,24 
 Recent work has shown that by employing CBC vapor sensors in a linear spatial arrangement, 
with small volumes overhead of the sensor arrays and with low vapor flow rates, the sensor films 
act similar to packed columns in gas chromatography, serving to time-separate responses at 
different sensors along the array.22  This arrangement thus creates a space- and time- dependent, 
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or spatiotemporal (ST), response pattern across each sensor array.  The use of multiple sensor 
arrays in ST mode has produced an increased ability to analyze vapor mixtures, with training on 
only the pure vapor components.24  ST responses have also been modeled, and optimized 
operational conditions for mixture analysis have been defined based on two dimensionless 
numbers that relate the chamber geometries, vapor delivery flow rate, and physical properties of 
the vapors.23   
 While the benefits of the ST approach to vapor sensing have been clearly demonstrated for 
the analysis of vapor mixtures, they have not yet been demonstrated for classification of pure 
vapors.  In this work we have recorded the ST responses from linear sensor arrays, to evaluate 
whether enhanced recognition rates of pure vapors are produced using this method relative to the 
same sensors exposed simultaneously to the vapor stream using traditional, steady-state (SS) 
response information.  Arrays were exposed to vapors in four vapor classes: alcohols (methanol, 
ethanol, 1-propanol, 1-butanol, and 1-hexanol), alkanes (hexane, heptane, octane, nonane, and 
decane), chloromethanes (dichloromethane, trichloromethane, and tetrachloromethane), and 
xylenes (o-xylene, m-xylene, and p-xylene).  Within these sets, the vapors possess the same 
chemical functionalities.  Discriminating vapors from within such classes is among the most 
difficult pure vapor classification tasks,21,25 and the utility of ST response information for pure 
vapor classification was evaluated on such a set of tasks.  A biologically inspired hierarchical 
classification scheme based on Fisher’s Linear Discriminant (FLD), FLD-HC, is introduced, and 
its advantages and disadvantages are discussed, relative to the alternative k-nearest neighbors 
(kNN) and feed-forward back-propagation neural network (FFBNN) classification algorithms.  
Additionally, this work demonstrates the utility of the FLD resolution factor (rf) for predicting 
where analyte misclassification errors will be made.   
 
6.3. Experimental 
 

6.3.1.   Materials 
The insulating materials for the fabrication of the sensor films consisted of tetracosane (99%), 
tetracosanoic acid (99%) and dioctyl phthalate (DP, 99%), purchased from Aldrich; and propyl 
gallate (98%) purchased from Acros Organics.  Reagent grade toluene and tetrahydrofuran, 
received from Aldrich, were used as solvents in the sensor suspensions.  n-hexane (Hx, 95%), n-
heptane (Hp, 99%), n-octane (Oc, 98%), n-nonane (Nn, 99%), n-decane (Dc, 99%), methanol 
(MeOH, 99.8%), ethanol (EtOH, 95%), 1-propanol (PrOH, 99.5%), 1-butanol (BuOH, 99.9%), 1-
hexanol (HxOH, 99%), and tetrachloromethane (CCl4, 99.9%) were purchased from Aldrich, and 
dichloromethane (CH2Cl2, 99%), trichloromethane (CHCl3, 99.5%), m-xylene (m-xyl, 99%), p-
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xylene (p-xyl, 99%), and o-xylene (o-xyl, 99%) were purchased from Fluka.  These pure solvents 
were used to generate the vapors for delivery to the sensor arrays.  Black Pearls 2000, a furnace 
carbon black material donated by Cabot Co. (Billerica, MA), was used as the conductive phase in 
the sensor composites.  All materials were used as received 
 

6.3.2.  Detector Fabrication 
Four suspensions, each composed of a nonconductive sorption phase and a conductive CB phase 
(Table 6.1), were used to fabricate the sensors used in this work.  Each sensor suspension 
consisted of 50 mg of sensor material supported in 20 ml of solvent.  12.5 mg of the 
nonconductive sorption phase was added to 20 ml of either tetrahydrofuran or toluene and 
sonicated for > 10 min.  Next, 37.5 mg of CB was added to each solution and the suspension was 
sonicated for > 30 min.   
 Four sensor array substrates were fabricated and arranged as described previously.24  Briefly, 
30 nm of chromium and then 70 nm of gold were evaporated onto glass microscope slides (75 μ 
25 mm) using a custom-made mask to create an array of 15 pairs of sensor electrodes along the 
length of the slide.24  Each sensor pair was evenly spaced every 5 mm, with a gap of 0.4 mm 
present between each pair of electrodes forming the basis for each individual sensor.   
 Each sensor array substrate was masked with Teflon tape and sprayed along the entire 15 
electrode pair length with a single sensor suspension, until the resistance of all 15 sensors was 
between 1 and 3 kΩ.  This process created a sensor film area of 75 mm μ 5 mm.  The procedure 
was repeated for each of the four sensor materials listed in Table 6.1, providing a total of four 
different linear sensor arrays.  These arrays were placed into a custom-made aluminum sensor 
chamber that has been described previously,24 with the vapor flow channels coated with Teflon 
tape.  After sensor spraying and chamber assembly, the arrays were randomly exposed to the 
alkanes for a 24 h period.26  One week passed between the initial sensor spraying and the 
collection of train/test sensor response data.   
 

6.3.3. Vapor Generation and Delivery 
An automated flow system controlled by LabVIEW 5.0 software was used to deliver pulses of 
diluted streams of solvent vapor to the detectors.18,24  The carrier gas was obtained from the house 
compressed air source and controlled with a mass flow controller (MFC) (UNIT) that could vary 
the flow from 6 to 625 ml min-1.  To generate analyte vapors, a foreground stream of carrier gas 
was passed through a porous glass frit and bubbled through a 220 ml bubbler filled with the 
desired solvent.  The foreground stream was controlled by another MFC (UNIT) that could vary 
the flow from 6 to 625 ml min-1.  The height of solvent was essentially the same (42 cm) before 
and after each set of exposures.   
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 The analytes used to generate vapors, and abbreviations used in the remainder of this work, 
are listed in Table 6.2.  Four sets of analyte exposures were performed: alkanes (Hx, Hp, Oc, Nn, 
Dc), alcohols (MeOH, EtOH, PrOH, BuOH, HxOH), xylenes (m-xyl, p-xyl, o-xyl), and 
chloromethanes (CH2Cl2, CHCl3, CCl4).  Vapor concentrations were denoted as P/Po, where P is 
the partial pressure of the analyte and Po is the vapor pressure of the analyte.27  Vapors were 
delivered to the sensor arrays at P/Po = 0.050, or 5 parts of saturated vapor flow combined with 
95 parts of background air.  During each set of analyte exposures, each vapor was delivered to the 
sensor chamber 150 times; this corresponded to 750 total exposures for the alkanes and alcohol 
exposures, and 450 total exposures for the chloromethane and xylene exposures.  Within each set 
of exposures, the vapors were delivered in random order.  Each set of exposures occurred within a 
72 h period.  All sets of analyte exposures occurred within a 5 week period. 
 A total flow rate of 85 ± 3 ml min-1 was delivered to the collective sensor chamber, which 
was divided into 8 symmetric flow channels.27  This produced a flow rate of 11 ml min-1 for each 
linear sensor array channel (note: only four of the eight individual flow channels contained a 
sensor film).  To more reproducibly deliver vapors, vapors were initially generated at a flow rate 
of 260 ml min-1, and a small Teflon-lined sampling pump (Science Pump Corporation) was used 
to withdraw 175 ml min-1 from this flow stream.   Flow meters (Gilmont) were used to calibrate 
the vapor delivery system.   
 Each vapor exposure consisted of four steps: 1) 20 s of background air flow at 85 ml min-1, 
with no data collection, to re-establish flow dynamics throughout the vapor channels; 2) 50 s of 
background air flow at 85 ml min-1, with data collection, to define the pre-exposure sensor 
resistances; 3) 120 s of vapor delivery at P/Po = 0.050 and a flow rate of 85 ml min-1, with data 
collection, to capture the sensor response; and 4) 150 s of background air flow at 350 ml min-1, 
with no data collection, to ensure the removal of all analyte from the sensor films.   
 

6.3.4.  Measurements and Data Processing 
The data collection arrangement has been described previously.27  Sensor film resistances were 
measured using a Keithley 2002 multimeter and a Keithley 7001 multiplexer.  Each sensor 
substrate was connected to the multiplexer through shielded, twisted pair cables and a rotary ZIF 
connector (Tyco Electronics).  Two Keithley 7001/2002 combinations, controlled with 
LabVIEW, were used to increase the sensor sampling frequency.  Each 7001/2002 combination 
recorded sensor resistances from two of the four arrays.  Each sensor was sampled approximately 
every 3 s.   
 The sensor response was expressed as ( ) ( )tRtR)t(S bΔ= , where ΔR(t) is the time-varying, 
baseline-corrected, resistance change upon exposure to the analyte, and Rb(t) is the baseline-



 154

corrected resistance of the sensor in the absence of analyte.24  To perform the baseline correction, 
a line was fit to resistance values obtained during the 50 s prior to analyte delivery.  The slope of 
the line was calculated and extrapolated from the point immediately prior to vapor delivery, to 
calculate the baseline drift-adjusted resistance at any time t, ΔRb(t).  ΔR(t) was calculated by 
subtracting Rb(t) from the measured sensor resistance at time t.24   
 The sensor responses using ST and SS information were then used to compare the two 
approaches for their respective ability to correctly classify pure vapors.  For ST response 
information, the responses from the first, middle, and last sensors (positions 1, 8 and 15) along 
each 15 sensor array were used and sampled at 10 s and 105 s into the vapor delivery.24  For SS 
response information, the responses from the first, second, and third sensors (positions 1, 2 and 3) 
along each 15 sensor array were used and were sampled 100 s and 105 s into the vapor delivery.24  
This approach provided each of the two methods with 24 total response descriptors (4 arrays μ 3 
sensors/array μ 2 times/sensor), allowing for a direct comparison between the two methods.  The 
actual times that the resistances were recorded varied between all exposures and along the sensors 
in the array.  The responses at the times used in the data analysis were therefore calculated by 
linearly interpolating between the measured data points.  
 To ensure that the sensor arrays discriminated between vapors because of differences in 
response patterns, rather than perceived concentration, a normalization procedure was used for 
each vapor exposure.21,24,26  This procedure divided each response descriptor by the sum of the 
array response descriptors for that exposure: 
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where S(t)j is response descriptor j, and n = 24 is the total number of response descriptors.21,24,26  
This normalization procedure takes advantage of the sensor’s linear response,21 creating a 
concentration-independent feature vector for each pure vapor.  Array responses for all exposures 
were normalized according to eq (1).  All response manipulation was performed in MATLAB.  
 

6.3.5. Cluster Analysis: Fisher’s Linear Discriminant 
Fisher’s linear discriminant (FLD) was used on response data normalized by eq (1) to find the 
dimension of optimal separation between the clusters of all of the binary combinations of vapors.  
The dimension of optimal separation is defined as the direction that maximizes the resolution 
factor, rf, between the two response clusters: 
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where 1y  and 2y are the means, and 1σ  and 2σ  the standard deviations, respectively, of the 
projected values of vapor clusters 1 and 2 onto the optimal dimension.28,29  Identification of this 
optimal dimension produces a projection vector that transforms the original 24-dimensional data 
onto a single dimension.  A train/test scheme was employed for all binary combinations, to ensure 
that results were not subject to overfitting of the data.  The first 100 randomized exposures for 
each analyte served as training data.  For each binary vapor combination, training data were used 
to calculate the optimized projection vectors based on eq (2).  These projection vectors were then 
used to project the testing data (the last 50 randomized exposures to each analyte) for the same 
two vapors onto the dimension of optimal separation.  The population statistics of projected 
testing clusters were then calculated for the two classes of data: the projection means 1y  and 2y , 
and the projection standard deviations 1σ  and 2σ , for vapors 1 and 2, respectively.  The 
population statistics of the test data were then used to calculate the testing rf metric, rftest.  This 
procedure was repeated for all combinations of pure vapors.  All of the reported rf’s were 
calculated from testing data.  FLD was performed in MATLAB using a custom-written code. 
 

6.3.6. Vapor Classification 
To gauge the ability of the sensor arrays to correctly identify vapors, three classification 
techniques were used.  Two linear methods, k-nearest neighbors (kNN) and a FLD hierarchical 
classification (FLD-HC) scheme, as well as a nonlinear feed-forward back-propagation neural 
network (FFBNN), were used.  In all cases, the first 100 exposures to each vapor served as 
training data to generate a model, while the last 50 exposures to each vapor served as testing data 
for the model validation.  All classification schemes were performed in MATLAB.   
 

6.3.6.1. k Nearest Neighbors (kNN) 
The kNN algorithm calculates the distance between the response of a single test analyte and the 
responses from all of the training data from all of the vapors.  The algorithm classifies unknown 
vapors based on which vapor class makes up the majority of the k closest training points, or the k 
nearest neighbors.30,31  The Euclidean distance was used, which in two or three dimensions is the 
linear distance between two points.  When choosing from more than two classes, ties are possible 
for any integer value of k > 1.  Additionally, regardless of sample distribution type, no integer 
value of k > 1 performs better than the single neighbor situation of k = 1.31  For these reasons, k = 
1 was used.  Training responses were normalized according to eq (1), and provided a 24 
dimensional map in response space.  Each normalized testing response was placed within this 
map, and was classified as belonging to the closest vapor. 
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6.3.6.2. FLD Hierarchical Classification (FLD-HC) 
The signals generated from the olfactory bulb evolve with time.32  Specifically, response patterns 
generated from the olfactory receptor proteins are continuous throughout vapor exposures and 
responses, while their expression to the brain is modulated in a vapor-specific way by the mitral 
cells, with the initial mitral cell expressions providing information optimal for initial class 
groupings, and the evolved mitral cell expressions providing finer information optimal for 
identification within classes.32,33  The FLD-HC approach applies these principals to the 
hierarchical classification of vapors.   
 A series of binary classification steps was employed until an unknown vapor was classified.  
Each step used a different FLD model that weighed the sensor responses according to their ability 
to optimally separate between the classes.  Each of these FLD models allowed for an optimal 
expression of the sensor array response for each step of vapor classification. The different sensor 
weightings were captured in the different Fisher projection vectors at each binary step, which 
projected the 24 dimensional array response onto a single optimized dimension for each cluster 
separation. The evolution of the projection vector used at each binary step, which continually 
altered and optimized the expression of different sensors along the array, is analogous to the 
evolution of olfactory receptor protein expression performed via mitral cells for subsequent steps 
of vapor classification. 
 The first binary classification step was to break down the four-class classification problem 
into 2 two-class classification problems.  A model was generated using normalized training data, 
in which class 1 consisted of all alcohols and chloromethanes, and class 2 consisted of all alkanes 
and xylenes (800 total training exposures each class).  Class 2 included all vapors that consisted 
of only carbons and hydrogens, while class 1 included vapors that possessed additional 
functionality.  From the training data, a decision boundary was generated: 
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where rf and all other variables were calculated from the training projections and are defined in 
eq (2).  For clusters with Gaussian distributions, this decision boundary was the point along the 
one-dimensional optimized separation direction at which a response had an equal likelihood of 
belonging to either class 1 or class 2.  For classification, normalized test exposures were then 
projected onto this optimized dimension.  Exposures were classified according to which side of 
the D-boundary they were projected onto. 
 Once classified as either an alcohol/chloromethane or an alkane/xylene, a series of tests were 
then performed to further classify exposures within the group designation.  For the former case, 
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classification proceeded with class 1 defined as alcohols and class 2 defined as chloromethanes; 
for the latter case, class 1 was defined as alkanes and class 2 as xylenes.  For both cases, a model 
was generated in which class 1 and class 2 used 500 and 300 training exposures, respectively.  
The unknown exposure was projected onto the optimal dimension for separation, and was 
classified as belonging to one of the four vapor classes. 
 When the vapor class of the unknown was determined, the final classification scheme 
grouped the lightest member (lowest molecular weight) within each class against all other heavier 
within-class members.  For alkane classification, a model was generated in which class 1 initially 
consisted of 100 training exposures to hexane, and class 2 initially consisted of 100 training 
exposures to each of heptane, octane, nonane and decane (400 total exposures).  A new projection 
vector was calculated by finding the dimension that maximized eq (2) for these training 
exposures.  The unknown alkane was then projected onto this new separation dimension.  If the 
projection fell on the hexane side (class 1) of the newly calculated D-boundary (eq (3)), 
classification was complete.  If the projection fell on the class 2 side of the D-boundary, 
classification continued, and a new model was constructed in which all heptane training 
exposures (100 exposures, the new class 1) were compared against all octane/nonane/decane 
training exposures (300 exposures, the new class 2).  If necessary, classifications were continued 
in this manner until a single binary classification task of nonane vs. decane was achieved, and a 
decision was made.  Alcohols, chloromethanes, and xylenes were classified in an analogous 
manner.   
 

6.3.6.3. Feed-Forward Back-Propagation Neural Networks (FFBNN) 
Artificial neural networks, modeled after their biological counterparts, are constructed by 
connecting and training artificial neurons, or nodes.34,35  The user chooses the number and nature 
of the hidden nodal transfer functions, for example linear, sigmoidal, etc.  Training data are then 
used to adjust the transfer functions, and force the desired outputs for different classes of interest.  
Once the model is developed, it can be applied to unknown testing data that is classified 
according to the neural network output.   
 A feed-forward back-propagation neural network (FFBNN) was used.34,35  One input was 
used for each sensor, for a total of 24 input neurons.  Two hidden layers were used.  The first 
hidden layer consisted of 24 nodes, with each node utilizing a tangent-sigmoidal transfer 
function.  The second hidden layer consisted of a single node that employed a linear transfer 
function.  Normalized training exposures for each of the analytes, and their respective class 
identities, were input to the neural network for training.  Transfer functions were optimized over 
500 training iterations, decreasing the classification error rate for the training data in each 
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iteration.  Testing exposures were then fed to the FFBNN, and the data were classified according 
to the network output. 
 
6.4. Results 
 

6.4.1. Sensor Response 
Figure 6.1 shows responses from sensors 1, 2, 3, 8 and 15 along a 15 sensor array of 
tetracosane/CB composite (sensor 3, Table 6.1) during exposure to a series of alkanes at P/Po = 
0.050.  The responses of the individual sensors were scaled by their respective responses at t = 
100 s to aid in visual comparison.  The time scale was adjusted so that the first sensor along the 
array exhibited its first response at t ~ 0 s.  Different response patterns were clearly observed for 
each of the five alkanes.  
  As alkane chain length increased, the analyte vapor pressure decreased, and the 
sensor/analyte partition coefficients increased.22,36  The increased partition coefficient caused an 
increase in the analyte uptake by the sensor array.  This in turn caused an analyte-dependent time 
delay in the response along the sensors in the array, generating the desired ST response effects.  
For example, on exposure to hexane, having the highest vapor pressure and lowest partition 
coefficient of the alkanes studied, no response separation was observed between the first three 
sensors along the array.  In contrast, as the alkane chain length and partition coefficient increased, 
the responses from the first three sensors along the array become more separated.   
 The ST response analysis utilized sensors 1, 8 and 15, and their responses were calculated at t 
= 10 s and 105 s to describe the array response.  The SS response analysis utilized sensors 1, 2 
and 3, and calculated their responses at t = 100 s and 105 s.  The SS analysis clearly sampled the 
steady-state response from the sensors.  In contrast, the ST analysis sampled a transient response 
in addition to the steady-state response.  From the figures, without any information on sensor 
response magnitude, one is clearly able to discriminate between the different alkanes to various 
degrees.  Similar, time-dependent, ST response profiles were observed for the alcohols, 
chloromethanes, and xylenes.   
 

6.4.2. Analyte Discrimination: FLD 
Table 6.3 lists the rftest values for all binary vapor combinations.  The within-class combinations 
for the four vapor classes are highlighted along the diagonal.  In all cases, the bottom number in 
parenthesis lists the rftest value obtained using SS response information, whereas the top number 
lists the rftest value obtained using ST response information.  For Gaussian projection clusters, 
rftest’s of 1, 2 and 3 correlate with the ability to correctly classify class A from class B 72, 92 and 
98% of the time, respectively, along the optimized dimension of separation.18   
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 In 109 of the 120 binary combinations, the rftest value increased when ST rather than SS 
response information was used.  The average percentage decrease in rftest values for the remaining 
11 cases was 8%, ranging from a decrease of 0.8% to 25%.  In contrast, the average percentage 
increase for the 109 cases was 60%, ranging from an increase of 5% to 232%.  The decreased rftest 
values can be attributed to non-Gaussian projections along the optimized dimension for the ST 
response data.  The SS analyses sampled the steady-state response of each sensor, which 
exhibited a Gaussian distribution.  In contrast, the ST analyses sampled a transient response, 
which exhibited a non-linear rise profile at different stages of the response (Figure 6.1), thus 
leading to a non-Gaussian distribution of sensor responses.  These non-Gaussian distributions 
caused 1σ  and 2σ  in eq (2) to increase, leading to a reduction in the reported rftest values for 
some of the cases.  Importantly, the increases in rftest values that resulted from the use of the ST 
response information greatly outweighed the decreases in rftest values that resulted from 
difficulties encountered in extraction of the ST response data.     
 When ST rather than SS data was used, marked increases were observed for discrimination 
between EtOH and PrOH (rftest increased 232% from 2.2 to 7.3), Hp and Oc (rftest increased 110% 
from 2.8 to 5.9), and Oc and Nn (rftest increased 130% from 1.4 to 3.2).  These three cases 
represented discrimination between extremely similar analytes, for which the only difference was 
the presence of an extra carbon along the alkane’s length.  Extremely similar chemistries were 
present, and use of the SS response information produces rftest values < 3, indicating a rapid 
degradation in the ability to classify between the two response clusters.  In contrast, the use of ST 
response information produced rftest values > 3 for all cases, yielding > 98% classification ability 
along the optimized dimension for these Gaussian distributed clusters.  These increases in rftest 
offer the potential for significant improvements in classification rates for many of the difficult 
tasks shown in Table 6.3.   

 

6.4.3. Analyte Classification: kNN, FLD-HC, and FFBNN 
Tables 6.4-6 show the confusion matrices for all of the classification analyses.  For each 
confusion matrix, the row heading designates the actual vapor exposed to the array, whereas the 
number in each column designates the fraction of testing exposures (out of 50) that were 
predicted to belong to the respective vapor.  Hence, perfect classification would produce an 
identity matrix in this representation of the data.  The sum of each row equals 1, accounting for 
all 50 testing exposure classifications.  The bottom (parenthesis) and top number denote the 
analyses using SS and ST response information, respectively.  The within-class confusion 
matrices are highlighted, shown along the diagonal.  The instances in which vapors were 
misclassified as belonging to the wrong vapor class are shown in bold.   
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6.4.3.1.  kNN 
Table 6.4 shows the confusion matrix for vapor classification using the kNN method with k = 1.  
For 15 of the 16 vapors, increased classification rates were observed when ST rather than SS 
response data was used.  The exception was hexane, which demonstrated one extra 
misclassification for the ST analysis, or a decrease of 0.02 in classification rate.  Significant 
increases in vapor identification rates were observed using ST rather than SS analyses for ethanol 
(1.00 vs. 0.82), propanol (0.96 vs. 0.70), octane (0.82 vs. 0.52), and m-xylene (0.84 vs. 0.64).  In 
most cases, classification errors were due to misclassifications within the same vapor class, the 
few exceptions being chloromethane classifications that were wrongly classified as alcohols, 
alkanes, or xylenes.   
 

6.4.3.2. FLD-HC  
Table 6.5 shows the confusion matrix for vapor classification using the FLD-HC method.  For 13 
of the 16 vapors, increased classification rates were observed using ST rather than SS analysis.  
Exceptions were hexane, tetrachloromethane, and p-xylene, each of which exhibited one extra 
misclassification when ST data was used, or a decrease of 0.02 in classification rate.  These 
decreases in classification performance were insignificant compared to some of the increases.  
For example, comparing SS and ST analyses, correct classification rates increased from 0.72 to 
1.00 for propanol, from 0.86 to 1.00 for ethanol, and from 0.70 to 0.94 for nonane. 
 In contrast to kNN, in no cases were vapors misclassified by FLD-HC as belonging to the 
incorrect vapor class.  Figures 6.2a-c show the projection of all testing exposures onto the initial 
FLD models used to determine class identity.  This approach clearly correctly classified all 
testing vapors as belonging to their proper vapor class.  Figure 6.2a shows the initial classification 
of the testing vapor responses, setting alkanes/xylenes against alcohols/chloromethanes.   The 50 
testing exposures to each vapor are shown and labeled, as well as the Fisher decision boundary 
based on training data (eq (3)).  Figures 6.2b-c depict the classification of all testing alcohols vs. 
chloromethanes, and alkanes vs. xylenes, respectively.  In all cases, vapors were projected onto 
the correct side of the decision boundary, and were always classified as belonging to their correct 
class.  Figure 6.2d details the first classification step of testing alkanes, once they were properly 
classified as alkanes.  Four misclassifications of hexane as heptane, and one misclassification of 
heptane as hexane, were observed.  The ST rftest values for the classification steps detailed in 
Figures 6.2a-d were 7.4, 9.5, 25, and 3.1, respectively.  SS analyses similarly yielded no class 
misclassifications, and rftest’s for the four situations detailed in Figures 6.2a-d were 5.2, 6.3, 14.9, 
and 2.9, respectively.   
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6.4.3.3.  FFBNN 
Table 6.6 shows the confusion matrix for vapor classification using a FFBNN approach.  In all 16 
cases, increased classification rates were observed using ST rather than SS data.  Use of ST rather 
than SS data, respectively, increased the correct classification rates from 0.80 to 1.00 for heptane, 
0.80 to 0.96 for heptane, 0.86 to 1.00 for propanol, and 0.80 to 0.98 for m-xylene.  ST-based 
FFBNN alcohol classifications were performed at the same high rates achieved by the ST-based 
kNN and FLD-HC methods, while the SS-based FFBNN alcohol classification rates were lower 
than those obtained using the SS-based FLD-HC method.  In several cases, chloromethanes were 
misclassified as alcohols, alkanes, or xylenes, and in one case butanol was misclassified as p-
xylene.   
 
6.5. Discussion  
 

6.5.1. SS vs. ST Data Extraction 
The decreased rftest values observed when ST rather than SS response data was used were due to 
the presence of non-Gaussian sensor response distributions.  The measurements of the ST 
response information required linear interpolation during the transient non-linear section of each 
sensor’s response.  Additionally, due to the time required to complete each cycle of resistance 
measurements, there was a ± 1.5 second window during which the vapor delivery was actually 
initiated.  These complications produced non-Gaussian response distributions and FLD 
projections, increasing 1σ  and 2σ from eq (2), and decreasing the reported rftest’s using FLD.  
These non-Gaussian projections can be seen to some extent in Figure 6.2 for CCl4 (Figures 6.2a-
b), and octane, nonane and decane (Figure 6.2d).   
 kNN and FLD-HC, two linear classification algorithms, depend on linear relationships and 
Gaussian distributions amongst the response data.  Accordingly, the kNN and FFBNN method 
yielded decreased classification rates for 1 out of 16 and 3 out of 16 vapors, respectively, when 
ST rather than SS data was used.  In contrast, neural networks are much better suited for dealing 
with non-linear data.37  The ability of the FFBNN to model non-Gaussian responses yielded 
improved classification rates for all cases when the ST response information was used.  In an 
overwhelming majority of the cases, the benefit of using the ST response information far 
outweighed the difficulties encountered due to non-Gaussian response distributions.   
 

6.5.2. FLD-HC 
The use of the biologically inspired FLD-HC decision tree classification scheme is interesting 
because typical decision trees form seemingly random branches,38 but the FLD-HC approach 
instead requires the user to implement logical branches.  The first branch separated the vapors 
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that contained only carbon and hydrogen from the vapors that had additional functionalities, 
while subsequent branches better defined the vapor class and ultimately defined the unknown 
vapor.  In 14 out of 16 and 15 out of 16 of the SS and ST classification tasks evaluated, the FLD-
HC algorithm worked as well or better than the kNN method (Tables 6.4-5).  In 12 out of 16 and 
11 out of 16 of the SS and ST classification tasks, respectively, the FLD-HC algorithm worked as 
well or better than the FFBNN approach (Tables 6.5-6).  Additionally, in contrast to analysis 
using the kNN or FFBNN approaches (Tables 6.4, 6.6), the FLD-HC method yielded no 
misclassifications of a vapor as belonging to the incorrect vapor class (Table 6.5).  This is 
important for field applications, decreasing the number of false positives for target vapor classes 
(such as explosives), and has the potential to allow for an unknown vapor to be correctly 
classified within its respective vapor class.   
 At each FLD-HC step, FLD was used to find the optimal single dimension, among the 24 
dimensional array response space, for cluster separation.  If a sensor were extremely useful for 
classification at a certain step, its dimension in response space would be heavily weighted in the 
calculation of the optimal FLD dimension.  Alternatively, if a sensor were not useful for 
classification, its dimension in response space would be ignored in the calculation of the optimal 
FLD dimension. 
 An issue with the FLD-HC algorithm was the formation of non-Gaussian clusters for the 
multi-vapor classes when discriminating between the different vapor classes.  For example, if an 
unknown was determined to belong to the alkane group, the exposure was then projected onto a 
dimension optimized by setting 100 hexane training exposures against 100 training exposures 
each of heptane, octane, nonane and decane.  The individual vapor projections were mostly 
Gaussian.  However, when heptane, octane, nonane and decane were grouped into one class, the 
heptane projection was distinct from the octane/nonane/decane cluster, creating further non-
Gaussian clustering amongst the group (Figure 6.2d).  For within-class classification, an 
alternative approach was thus attempted to address this highly non-Gaussian class clustering.  
Specificallly, heavy alkanes (or alcohols, xylenes, or chloromethanes) were set against light 
alkanes (or alcohols, xylenes, or chloromethanes).  In this approach, for alkane classification, 
class 1 was hexane/heptane, and class 2 was octane/nonane/decane.  Further classifications were 
performed accordingly.  Using this alternative approach, non-Gaussian projections were still 
obtained in some cases, and approximately the same classification performances were obtained as 
in Table 6.5.  An alternative decision boundary to eq (3) that accounts for the extent of non-
Gaussian distribution experienced in each of the clusters would address these difficulties with the 
production of non-Gaussian data clusters, and increase the correct classification rates of the pure 
vapors.  
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 There has been some debate in the literature on whether a large or small number of sensors in 
an array are required for optimal vapor discrimination and classification.39-41  Differences can 
clearly arise from the different algorithms that have been used to assess the classification 
performance in each case.  For example, using extended disjoint principal components 
regression,41,42 a noisy sensor may contribute largely to the dimension that describes the 
concentration-dependent array response to different vapors.  With the noisy sensor heavily 
weighted, poorer classification performance may occur due to the inclusion of such a sensor 
response in the array.  Using FLD to quantitate the discriminating ability of an array, the noisy 
sensor would be naturally excluded from the projection vector, because its incorporation would 
generate a non-optimal dimension with a lower rf.40  Due to the optimal dimension selection 
process, FLD-HC classification can only benefit, or at worst maintain the same level of 
classification, when more sensors are included in an array.  This conclusion of course assumes 
that heavily weighted sensors do not exhibit more significant response drift than do the other 
sensors along the array.   
 

6.5.3. rf Value As a Predictor of Classification Performance 
Significant increases in vapor classification rates were observed for data obtained using ST rather 
than SS approaches.  These increases, and the analytes that were confused in each case, correlated 
well with the rftest values (Table 6.3).  For example, using kNN, the ethanol classification rate 
increased from 0.82 to 1.00 when ST response information was used (Table 6.4).  The 0.18 (or 9 
out of 50) SS misclassifications of ethanol were as propanol.  The lowest SS rftest value exhibited 
by ethanol was towards propanol, which increased from 2.2 to 7.3 when ST response information 
was used.  Generally, for all vapors, when analytes were misclassified, they tended to be 
misclassified as the analytes that had low rftest values with respect to the analyte of interest.  
 Figures 6.3a-b summarize these rftest-classification rate relationships for all data from Tables 
6.3-6.  Figure 6.3a uses all identity matrix positions from Tables 6.4-6, and displays the fraction 
of each target vapor that was correctly classified against the minimum rftest value that was 
exhibited by that vapor toward its other within-class analytes.  For example, for hexane 
classification, the minimum rftest value was 3.2 and 5.5 for SS and ST analysis, respectively 
(Table 6.3).  For SS and ST analysis using kNN, hexane was correctly classified 96% and 94% of 
the time, respectively (Table 6.4).  These points were plotted as (3.2, 0.96) and (5.5, 0.94) on 
Figure 6.3a.  The plot includes all vapor classifications, analyzed with SS and ST response 
information using the kNN, FLD-HC, or FFBNN methods.   
 Alternatively, Figure 6.3b displays all non-identity matrix positions from Tables 6.4-6, and 
details the cases in which misclassifications could be made.  For example, hexane could be 
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misclassified as the 15 alternative vapors shown in Table 6.2.  The fractions that were 
misclassified as each of these were plotted against their respective rftest values toward hexane.  
For hexane analyzed with ST response information using kNN, alkane misclassifications were 
plotted as (5.5, 0.06), (10.3, 0), (8.8, 0) and (12.5, 0) for heptane, octane, nonane and decane, 
respectively (Tables 6.3-4).  All vapors are shown in Figure 6.3b, analyzed with ST and SS 
response information, using the three classification methods.  Because of the wide range of rftest 
values, only the region from rftest  = 0 to 14 is shown.  
 Figure 6.3a shows that the use of the SS response information generally yielded lower 
minimum rftest values, and lower classification rates, than when ST response information was 
used.  Additionally, the kNN method generally exhibited the poorest classification rates.  Beyond 
a minimum rftest value of ~ 7, excellent correct classification rates were observed whether ST or 
SS response information was used, regardless of the classification method.  Thus, as long as the 
responses of the different vapors in a library were unique enough, it did not matter what method 
was used for classification.  The exception was tetrachloromethane (CCl4) classification, which 
yielded poor classification rates with a minimum rftest value of 8.4 towards m-xylene (Table 6.3).  
CCl4 exhibited the most widely-varying, non-Gaussian response clusters (Figures 6.2a-b).  Figure 
6.3a demonstrates that the minimum rftest between a target vapor and all other vapors in the 
analyte library can be used to predict the likelihood of vapor misclassifications occuring. 
 Figure 6.3b shows that use of only the SS response information produced many more low 
rftest instances than when ST data was used.  These instances of low rftest values were much more 
likely to be incorrectly classified as the correct target vapor.  As the rftest of an analyte increased 
toward the target vapor, the analyte was significantly less likely to be misclassified as the target 
vapor, whether ST or SS responses were used.  Again, beyond an rftest of approximately 7, 
analytes were rarely misclassified as the correct target vapors, the exception again being CCl4.   
Figure 6.3b demonstrates that the rftest between a target vapor and an alternative analyte in the 
signature library is an excellent predictor for the likelihood that the target will be misclassified as 
the alternative analyte.  
 
6.6. Conclusions  
 

Four linear sensor arrays made from small molecule/carbon black composite chemiresistors with 
low headspace volumes were tasked with discriminating and classifying among four vapor 
classes.  ST and SS response information was used, and direct comparisons were made for pure 
vapor classification.  Three linear algorithms (FLD, kNN, FLD-HC) and one nonlinear algorithm 
(FFBNN) were used to assess array performance: FLD was used to describe the relative distance 
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between response clusters in response space, while the kNN, FLD-HC and FFBNN algorithms 
were used to assess the ability of the arrays to classify vapors.  In 109/120, 15/16, and 13/16 of 
the vapor classification cases, the linear methods (FLD, kNN, and FLD-HC, respectively) 
exhibited equal or increased performances when ST rather than SS response information was 
used.  The non-linear FFBNN exhibited increased classification rates in all cases when ST 
response information was used.  The difficulties exhibited by the linear methods when ST rather 
than SS data was used were due to non-Gaussian ST response clusters.     
 The bioinspired classification algorithm FLD-HC compared favorably to the kNN and 
FFBNN methods.  In 14 out of 16 and 15 out of 16 of the SS and ST pure vapor classification 
tasks evaluated, respectively, the FLD-HC algorithm worked as well or better than the kNN 
method.  In 12 out of 16 and 11 out of 16 of the SS and ST classification tasks, respectively, the 
FLD-HC algorithm worked as well or better than the FFBNN method.  When vapor 
misclassifications were made using the FLD-HC method, they were always made for vapors 
belonging to the same respective chemical class, while the kNN and FFBNN methods 
occasionally misclassified vapors as belonging to the incorrect chemical class. 
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Table 6.1: Sensor films used in this work.  Materials were sonicated in 20 ml of solvent to obtain 
a well-dispersed suspension.  CB = carbon black; DP = dioctyl phthalate.   

 
sensor # materials solvent 

1 25% tetracosanoic acid, 75% CB tetrahydrofuran 
2 25% propyl gallate, 75% CB tetrahydrofuran 
3 25% tetracosane, 75% CB toluene 
4 17.5% tetracosane, 7.5% DP, 75% CB toluene 
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Table 6.2: Analyte abbreviations. 

 
analyte 

Hx hexane 
Hp heptane 
Oc octane 
Nn nonane 
Dc decane 

MeOH methanol 
EtOH ethanol 
PrOH 1-propanol 
BuOH 1-butanol 
HxOH 1-hexanol 
m-xyl m-xylene 
p-xyl p-xylene 
o-xyl o-xylene 

CH2Cl2 dichloromethane 
CHCl3 trichloromethane 
CCl4 tetrachloromethane 



 169

Table 6.3:  rftest values obtained for all binary vapor combinations using the FLD algorithm.  The 
bottom number (parenthesis) and top number were obtained using SS and ST response data, 
respectively.  Within-class combinations are highlighted. 
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Table 6.4:  Testing confusion matrix for vapor classification using the kNN, k = 1 method.  The 
bottom (parenthesis) and top numbers were obtained using SS and ST response data, respectively.  
Within-class matrices are highlighted.  Misclassifications as the wrong vapor class are shown in 
bold.    
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Table 6.5:  Testing confusion matrix for vapor classification using the FLD-HC method.  The 
bottom (parenthesis) and top numbers were obtained using SS and ST response data, respectively.  
Within-class matrices are highlighted.   
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Table 6.6:  Testing confusion matrix for vapor classification using the FFBNN method.  The 
bottom (parenthesis) and top numbers were obtained using SS and ST response data, respectively.  
Within-class matrices are highlighted.  Misclassifications as the wrong vapor class are shown in 
bold.    
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Figure 6.1:  Responses of sensors 1, 2, 3, 8 and 15 along an array of tetracosane/dioctyl 
phthalate/carbon black composite (sensor 4, Table 6.1) to the alkanes.  For visualization, sensor 
responses are scaled by their response at 100 s.   
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Figure 6.2:  Waterfall plots for FLD-HC classification at various steps: a) alcohols / 
chloromethanes vs. alkanes / xylenes, b) alcohols vs. chloromethanes, c) alkanes vs. xylenes, and 
d) hexane vs. heptane-decane.  For all cases, the FLD decision boundary (eq (3)) based on 
training data is shown.   
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Figure 6.2: 
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Figure 6.3:  Fraction of the 50 testing exposures a) correctly identified vs. the minimum rftest for 
the target vapor, and b) misclassified vs. the target vapor – confusing vapor rftest, for alkane and 
alcohol identification, analyzed using SS and ST response information and kNN, FLD-HC, or a 
FFBNN for classification.   
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Chapter 7 
 
 
Thesis Summary 
 
 
7.1 Summary of Thesis  
 

Carbon black composite thin film chemiresistors implemented in an electronic nose arrangement 
offer a low-cost, low-power means to detect a variety of vapors in a number of environments.  A 
major difficulty with this approach has been the inability to utilize the linear and additive 
response properties of the sensors, for the analysis of vapor mixtures with training on only the 
pure response signatures.  These difficulties arise due to response signatures that are similar in 
nature for chemically similar analytes.  When responses towards these similar analytes are 
observed in mixtures, the subtle differences between them become overrun by noise, and pure 
vapor training becomes incapable of mixture analysis.  Because the number of different vapor 
mixtures one could encounter in field-testing grows exponentially with the number of vapors one 
could encounter in the field, the training protocol required for the sensors rapidly becomes 
infeasible when only a limited number of vapors could potentially be present.  For field-practical 
implementation, the linear and additive response properties must be exploited for mixture 
analysis.   
 This thesis addressed these issues with two approaches.  A novel class of carbon black 
composites, where the insulating phase consisted of small organic molecules, was demonstrated 
to provide enhanced pure-vapor discrimination rates due to higher function group densities, and 
enhanced sensor-vapor interactions.  These new sensor types were then implemented in a fashion 
that created a strong space- and time-, or ST dependency of the sensor response.  This ST data 
further enhanced array-vapor response differences, leading to higher pure-vapor classification 
rates.  These enhanced array response differences, coupled with the sensors linear and additive 
response properties, were utilized to perform vapor mixture analyses based on only pure vapor 
training.  With these capabilities, the utility of carbon black composite vapor sensors for field use, 
and electronic noses in general, is increased significantly.   
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 In addition to demonstrating an enhanced ability to analyze vapor mixtures with pure vapor 
training and ST analysis, the requirements for obtaining optimized mixture analysis using pure 
vapor training were defined.  Two dimensionless numbers, Peyz and Pezz, were used to define an 
optimized sensing regime based on relationships between the sensor chamber geometries, vapor 
delivery flow rates, and physical properties of the sensor and vapor phase.  With these Peyz and 
Pezz definitions, a chamber optimized for ST analysis that maximally separates different vapors 
can be fabricated.   
 Pure vapor response signatures were analyzed to determine their most useful features for their 
use in mixture analysis.  Calculation of the resolution factor between each of the pure vapor 
response signature provided a measure of how separated the signatures were in response space.  
The minimum resolution factor of all binary combinations of pure vapor response signatures 
provided a measure of where misclassifications were most likely to occur.  Accordingly, the 
minimum resolution factor was an excellent predictor for where vapor misclassification would 
most likely occur, and for the ability to analyze vapor mixtures with only pure vapor training.  
These definitions defined what is needed in terms of pure-vapor response signatures for mixture 
analysis, and apply to all sensor modalities implementation in electronic nose fashion.   
 The developments presented in this thesis allow for the exploitation of the linear and additive 
response properties of these sensors, providing an enhanced ability to analyze pure vapors and 
vapor mixtures.  With the ability to robustly identify pure vapors or vapor mixtures with only 
pure-vapor training, the required training protocol is decreased significantly.  This, combined 
with the ability of these sensors to continually re-establish a new sensor baseline under different 
background conditions such as drifting background humidity, makes these sensors increasingly 
attractive for field use.   
 
7.2 Future Directions 
 

The definitions of Peyz and Pezz in Chapter 4 should be used to design and fabricate an optimized 
chamber for mixture analysis.  The experimental ST conditions used in this thesis allow for 
further optimization, with respect to Peyz, by a factor of 10.  An optimized chamber will likely 
require microfabrication to ensure that the Peyz requirement is met.  The microfabricated chamber 
must be made from a non-sorption material to ensure that the chamber body does not act to sorb 
and deplete the vapor stream of analyte.  Alternative nonsorbing materials would be required, 
such as an etched-silicon flow pathway bound to a glass surface via anodic bonding.   
 Due to hardware limitations, all experimental ST work performed in this thesis employed a 
sampling frequency for each sensor of ~ 3 s-1.  The ST chamber and sensors were therefore 



 179

designed to assure that the transient response of the sensors occurred on time scales of up to 80 s.  
This assured that the 3 s-1 sampling frequency sufficiently captured the transient response of the 
vapors.  Sampling times of 80 s are impractical for field application, however: ideally, vapor 
sampling would take place on the order of seconds.  This would allow for a more continuous 
sampling of the vapor phase.  The optimal Peyz and Pezz definitions can be used to design sensor 
chambers that occur on this rapid timescale.  The requirement is that the sensor sampling 
hardware occurs on a much more rapid timescale, which is easily obtainable with alternative 
methods for resistance measurement.   
 To take advantage of this rapid sampling, a reproducible method for vapor delivery and 
sampling must be developed for these timescales.  One approach would employ a piston-type 
sampling arrangement forcing vapor flow along the sensor arrays.  The piston intake would 
initially draw outside vapor onto the sensor arrays to elicit a response, and subsequently push the 
vapor away from the sensor arrays to purge the sensors.  In this arrangement, the sensors would 
not necessarily deplete the vapor stream.  To ensure that the outflowing vapor stream is analyte-
free, a high-capacity denuder-type sorption unit would be placed past the sensors along each array 
on the piston side of each array.  Each intake of the piston would indicate the beginning of a 
measurement, and sensor response extraction could be synced accordingly to reproducibly extract 
the time-dependent response information.  The piston could continuously cycle, which would 
provide continuous real-time vapor sample measurements. 
 Finally, an alternative sensor array implementation, where the sensors are distributed 
exponentially along each array, would maximize the amount of unique information extracted per 
sensor.  This would allow for efficient analysis of analytes with vapor pressures ranging several 
orders of magnitude.  The first few exponentially spaced sensors along each array would capture 
the progression of the most strongly partitioning analytes with the lowest vapor pressures, while 
the last sensors along each array would capture the progression of the most weakly partitioning 
analytes with the highest vapor pressures.  An alternative implementation that would similarly 
maximize the amount of unique information extracted per sensor would distribute sensors linearly 
along each array, but employ a height above the sensor film that increases exponentially as 
distance along the array increases.  Due to the initial low height (and small cross-sectional area) 
above the sensor film, the first linearly spaced sensors would provide detailed information for the 
progression of strongly partitioning vapors along the array, while the last linearly spaced sensors 
would provide detailed information of weakly partitioning vapors along the array.  The two 
methods listed above would allow a detailed measure of the decomposition of vapors, spanning 
several orders of magnitude in vapor pressure, along each of the sensor arrays.   
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 The suggestions listed above take advantage of the linear and additive response properties of 
the sensors, and the definition of an optimized ST regime for mixture analysis, for the design and 
fabrication of a device well-suited for field application.  Ideally, a field-portable unit will provide 
rapid analysis times and the ability to analyze vapors spanning several orders of magnitude in 
vapor pressure.  These suggestions detail various aspects of sensor response that could be 
exploited to fabricate such a device, and methods for their implementation, for the generation of a 
field-portable and field-practical device.  Such a device would allow these sensors to be used in a 
variety of fields, such as military vapor detection tasks, space shuttle air quality monitoring, 
breath test-based medical disease diagnostics, and food quality/spoilage monitoring.  
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