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Abstract

Part ]

Generalized Valence~Bond descriptions for the low-lying 2q, Z2A,
and 43 gtates of CH are pre'sénted. These ywavefunctions are
found to behave properly ét- all internuclear v‘distances, givihg a
clear and consistent physical picture'of'formation of the.se moleculés‘j‘f'

from their constituent atoms.

!

Part I

A proceduré for calculating Spin-Eigenfunction Cdnfiguration
Interaction matrices utilizing the U matrices which form the irreduc -
gi_.b/'le _repres‘entations'of Jﬁd is presented. In addition, an improved
determinant method is summarized. B$r combining both of these |
U-matrix and Determinant methods, it has been possible to formulate

a practical and yet highly efficient procedure for generating such CI

matrices.

Part 11
Even for relatively simple Hartree-Fock (HF) or Perfect-
Pairing Generalized Valence-Bond (PPGVB) many-electron wave-

- functions, self-consistent calculations can be prohibitively expensive

for. niany chemically interesting systems.. Considerable effort has
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been devoted toward developing highly efficient computationail techniques
for solving for such wavefunctions. The fesults of this research as

embodied in the GVBTWO program, have made such calculatmns on

relatively large systems a practical reahty.

Part IV

The Generalized Valence-Bond (GVB) wavefunction has had con-
‘siderable success in describing chemical reactions and molecular
structure. Unforturiafely,‘ this method can only be applied to. systems
involving a few electrons. The Perfect- -Pairing approximation to GVB
(PPGVB) greatly simplifies the 51tuat10n and is found to adequately
’descnbe the low-lying states of many molecules. However, in des-
cribing chémical reactions the restrictions of PPGVB are quite ser~
ious. The Strongly Orthogonal apprbximation (SOGVB) described here

fqﬁr'ercomeé‘,this problem bi allowing the orbitals to recouple while still
‘retaining the simplifying orbital. réstriétions of PPGVB. 'This inter-
mediate method correctly describes manj chemical regctions and is

practical for treating relatively large systems.
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PART ONE

Generalized Valence-Bond Descriptions For Formation of
. the Low-Lying.vStates' of CH |

Abstract

Generalized Valence-Bond descriptions for the low-lying 27, 2 A, |
and 4T states of CH are presented. These wavefunctions are
found to behave properly at all internuclear distances, giving a
¢1éar and consistent physical picture of formation of these molecules

,fi'om their constituent atoms.
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I, INTRODUCTION

One of th_e major goals of theoretical chemistry is to develop
a coherent physical model for explaining molecular stfucture and chemical
reactivity. We attempt to do this through ab-initio calculatio“ns of L
wavefunctions and energies for relatively simple chemical systems.
By interpreting the results obtained for these prototypes, general
physical concepts can be developed thch épply to whole classés of
molecules and reactions. ‘ R

In order to do this , the wavefunctions used must not only give
good descriptions of the energetics involved, but must also be physically
interpretable. The simplest approximation to the exact many-electron
waveifunction is the well-known Hartree-Fock wavefunction. Hartree-
Fock has had considerable success in qualitatively describing the eiec-
tronic structures of atoms and many simple molecules. However, since
Hartree-Fock describes a chemical bond by a single doubly-occupied
orbital, it is incapable of even qualitatively describing the simplest
reactions involving bond formation and/or dissociation. This deficiency
is removed while still retaining a simple orbital description by the
Generalized Valence-Bond (GVB) method. "

In the GVB wavefunction, each orbital is allowed its own orbital

while still preserving the proper spin symmetry:

V=a3%X
£ Thw
S2X= S(s+) X
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where A is the antisymmetrizér (determinant operatbr), ®is a product |
of singly-occupied orbitals, andX is the associated Spin function which
we require to be a spin-eigenstate. The spin function’ is ‘usually
multidimensional. That is, it can be composed'of'several linearly
independent Spin-eigenfunctions {x}, all of which correspond t!o the

same spin multiplicity (S). Therefore, we can rewrite (1) as:

% a ¢ ;&-7@'
Zj&[.dsz,]

where each of the linearly independent spin-eigenfunction configurations

{a,l/} corresponds to coupling the orbitals in a different Way.2 Hence,
Solution of a GVB wavefunction involves unrestricted optimization B
of both the orbitals {¢} and the coupling between them {£}.

We will now present the GVB descriptions for formation of the
low-lying 21r, ‘Aand ‘¥ states of the CH molecule. As will be shown,
the obsérved orbital and orbital-coupling changes involved in these
wavefunctions form a clear and consistent physical picture for forma-

tion of these molecules from their constituent atoms.
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II. PROCEDURE

Since the carbon 1s electrons are known to be irery tight'ly’
bound, it can be safely assumed that this core W111 bé vi:rtually
unaffected by molecule formation. Therefore, the problem was
effectively reduced to one involving only five electrons by fixing
this core as the doubly-;occupied 1s orbital obtained from a symmetry- -
restricted Hartree-Fock calculation on the °P state of carbon using - |
a (48, 3P) contracted gaussian basis set (the 1s2 orbital for the :
1D state is essentially the same). As 5-electron GVB calculations
are quite expensive even for modestly sized basis sets, SCF orbitals
were first obtained using the computationally simpler Perfect-Pairing
GVB (PPGVB)sapproximation with a (3S, 2P, 1D/2S, 27) contracted
gaussian basis set, In this approximation the 5-&lectron. doublet

and quartet wavefunctions are simply:

¢ ¢
N s B R TTY VST BE

i
o

% = e = L4468 ((f-pe)au

where all orbitals other than the two within a given singlet pair
(i.e. those two orbitals associated with the same aB-Ba spin term)
are taken to be orthogonal: GVB solutions were then obtained through

‘inexpensive minimum basis set calculations using the PPGVB
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orbitals, For each state of CH investigated,"the validity of tpis
procedure was verified through complete (3S, ZP;. 1D/2S, 2Z) GVB

calculations at two or three points of interest,



6

3 1

I, THE °P AND D STATES OF CARBON

Before discussing the CH molecule, the GVB wavefunctions
for the ground 3P and low-lying !D states of carbon must be consideréd‘ '
since they differ from the usual Hartree-Fock descriptions. "The
valence orbitals obtained fron‘n'GVB calculations using é fixed
1s2 core (obtained from Hartree-Fock calculations) are essentially
the same for both states;' They consist of two _singly-occupied' -, |
p-orbitals along two axes and two highly overla'p‘ping singl'etrp'aired
orbitals hybridized in opposite directions allong the remaining
axis (Fig. 1). In the 3P state the p -orbitals are triplet coupled ,~
whereas in the 1D state they are singlet coupled. This orbital
description differs from Hartree-Fock in that Hartree-Fock cannot
allew for hybridization but, rather, replaces this singlet pair by
a doubly-occupied 2s orbital.

The energies obtained for the 3P and !D states are -37.7035 a.w,
and -37.6462 a.w. as compared to experimental values of -37. 8558 a.w,
and -37. 8093 a. u. reSpectivelyf}1 These energies are 0. 015 a.w.

lower than Hartree-Fock results using comparable basis set.s. i

The energy difference between these states is 0. 0573 a. . , while
the experimental value is 0,0456 a,u. This error of 0.0108 a.u. is
about the same as obtained with Hartree-Fock, |

The GVB wavefunction for the 3P state is:
83*35

U= Al = A 553 ppy wpfe)as

Py
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(In this and all subsequent wavefunctions the doubly -occupied
Carbon 1s orbital is omitted) . In discussing the C-H‘moAlecule we

will find it convenient to pictorially represent this st_ate as:
(%) |

\é;’

&

(x)

where the double arrow connecting orbitals s, and 8- (répresenféd |
as lobes) indicates that these two orbitals are singlet péired [i.e. are
associated with an (a3-Ba) spin term]. The (o) designations assigned
to orbitals p, and p . (represented siinply by their cartesian axes)
serve only to indicate that these two orbitals are triplet coupled

and do not necessarily imply that these orbitals are associated

with a spins. The uséfulineSs of such designations will become more
apparent when discussing molecule formation. The GVB wavefunction

for the’ 1D state can be taken to be:

Sa 55
%o = P = d 5, 53 PRy (e/ﬂ—,dd)(o//@-/fd)

which we will represent as:

o
>

where the double arrow connecting orbitals o and py indicates that

A

- these f,WO orbitals are singlet paired as are orbitals S,
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At first, it might appear that the presence of these hybrid
orbitals might seriously contaminate the Spati'allsymmetry of these

wavefunctions. However, since we can rewrite these orbitals as:

t

S: ¢ S+Ap G S-ap

where %=0.38 (i.e. these orbitals are dominantly 2s-like, having
an overlap of about ().“75);~ :"Hence.., these wa.vefunétions can 'be :

rewritten as:
V=A s*ppapx - ¥ A gl ppy=px

where x }- od for the 3P state and x = of - Ba for the 1D state. The

first term is the dominant one and is obviously of the proper symmetry.
The second term will also have Ehe proper spatial symmetry if |

pz' ap, (i.e. is radiaily the same as p, and py). Although this

is not strictly the case, the differences are so small that for all
practical purposes this minor defect can be ignored. Hence, these

GVB wavefunctions can be taken to be of proper spatial symmetry.
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IV.” PRELIMINARY DISCUSSION

Since molecular binding energies are uéually smaller than or
comparable with the excitation energies of the constituent atoms,”
a reasonable starting point in examining moleculér binding is fo
assume that the wavefunctions for the low-lying states olf molecules
will resemble the atomic configuration near each at_om. This being
the case, we can expect that the low lying-states of CH can be quali-
tatively described using a simple Valence-Bond model based oﬁ lthe
GVB descriptions of the 3P and !D states of carbon.’ Within such a
model, each state can be envisioned to result from simply bonding‘
a 28 hydrogen atom to either a 3P or D carbon atom through a specific
carbon orbital, with all orbitals remaining atomiclike (i.e. distorted
owing to their molecular environment;. but with their atomic identities
easily discernible). Thus; bonding through one of the P'-orbitals of
a 3P carbon atom results in the X%r state (Fig. 2). On thé other hand,
bonding through one of the hybrid orbitals of a C3P atom can lead to
the f’z;state or the B2X state (Fig.12.). The A2A state also results
from bonding through a hybrid orbital, but with the carbon atom
being in its 1D state (Fig. 8).

Above, we used the term 'bonding’ rather loosely,ﬂ as if to
imply that high overlap between an orbital of eaﬁh atom is all that
is required. Actually, the interaction between two highly overlapping
orbitals is favorable only when they are singlet paired and is quite

unfavorable when they are triplet coupled. As a consequence; it is
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safe to assume that formation ef C-H bond in these'molecules involves
singlet pairing of these two orbitals as well. 'Ae we shali see,
however, singlet pairing between the bonding orbitals is incompatible
with the coupling which must prevail between the carbon 'orbitals
prior to formation of the bond, Thus, there is little hope that a
simple Valence-Bond model which preserves this atomic coupling
can be used to describe molecule formation. On the' other ha.nvd, :
a model preserving the expected molecularcoupling at equilibri‘{i'm
cannot possibly describe the correct separated-atomilimit. Therefore,
in order to even qualitatively describe formation of these molecules
we must use a model which not only allows for changes in the orbitals
themselves, but also allows these orbitals to recouple as the
internuclear separation is varied.

In the following eections we will attempt to develop such a
model based upon GVB calculations on the 2w, 2Aand ¢Z~ states.
In doing so, we will rely heavily upon the fact that significant
overldp: between .two orbitals is' favorable only when . o
these orbitals are symmetrically coupled (more singlet than triplet
coupled) and that ‘small cverlap between two proximate orbitals
is favorable cwhen thede:orbitalssare. -~ - o ol
antisymmetr‘ically coupled (more triplet than singlet coupled).
In an effort to demonstrate the general applicability of the concepts
being developed,' we will consider one state at a time; with initial
Qualitative considerations being based upon those‘ideas developed

vfrom results obtained for preced .ing states.
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2

V. THE “m STATE

Qualitative Considerations

The ground state of CH(?r) can be eénvisioned to result when a
hydrogen 2S atom approaches a éarbon P atonﬁ_ along a p-drbital
axis (Fig. 2). At infinite C-H'_sepération, the carbon orbitals must
‘be coupled as in C*P, That is, orbitals.s, and sz must be singlet

paired and orbitals Py and p, must be triplet coupled:

Sx 5% | -

% ol 3 G A s, 5% /3 [y Su (4P-/ ) (26 B~ & -t )
rl :

This atomic coupling at infinite separation is pictorially represented

in Fig. 2a by assignment of a (8) coupling Iabel to orbital sy in

contrast to the (@) designations of the triplet coupled carbon p-orbité.ls.
Again we emphasize that these symbols are not orbital spin labels,

What these designations signify is that orbitals Py pzand Sy are

coupled into a doublet such that thr—; (8) labeled Sy orbital is symmetrically
coupled to both of the () labeled p, and Py (triplet coupled) orbitals.

(This implies that ¥ /,can be written in terms of the two configurations

in which Sy is singlet paired to either py or p, such that the wave-
function changes sign upon interchange of p, and py).

At the equilibrium distance however, we expect the C-H bond

to be described by singlet pairing of the bonding orbitals P, and Syt

Sx %%

W s = Assipsuh (AJPL)A

B
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This mqlecular coupling is indicated in Fig. 2c by. the double arrow

connecting the singlet paired p, and sy orbitals. Since the original
(@) and (B) coupling designations assigned to these two orbitals

implied that the vwavefunction could only be partially written in

terms of |p, Sy singlet pairing,; these labels are dropped.

Hence, the simplest wavefunction capable of describing formation
of this molecule from its constituent atoms is a lineér combination

of the atomic and molecular couplings:

SX Si 5, 37
.‘,g” = £ (R3] + & |&S«

where, as the C-H distance decreases from infinity, & mis expected

to decrease from unity to zero as £ o gradually increases in magn ifude
from zero to approacﬁ unity at equilibrium. The coupling in inter-
mediate regions is represented in Fig. 2b by the broken double

arrow connecting orbitals P, and SH which we use to indicate singlet
pair formation or dissolution. The (@) and (B) orbital coupling labels
are retained to indicate how orbitals p_, P, and Sy tend to be coupled

y
prior to complete formation of the P, Sy singlet pair.

GVB Results

GVB solutions obtained at several internuclear distances ranging
from 6.0 a. to 1.9 a. are summarized in Table 1. The resulting
potential energy curve (Fig3a) behaves properly at all internuclear

distances, giving a binding energy of 0.110 a.u . at 2,150 a.. This
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is in good agreement with the experimental value of 0.134 a.u". at
2.124 a.. As shown in Figs. 4 and 5 , the drbitals change in a straight-
forward manner as the internuclear distance is decreased. The carbon. :
P, orbital (¢§) gradually hybridizes into the interriuclear reg’iqn.-,;r : |
The hydroge;l 1s orbital (¢,) polarizes slightly toward éarbori; but
remains essentially atdmiclike through{out (the spike forming about

the carbon nucleus is due to orthogonalization to the carbon 1s -core.).'

In order to minimize unfavorable interactions between the sxs}-'(

pair and the developing bonding pair,v orbitals ¢ and ¢, (only one |
of which is shown) gradually bend back away from the internuclear
region so as to remain essentially orthogonal to the bonding orbitals.
At equilibrium these orbitals are at an angle of 128° to the C-H bond.
The non-bonding py 01"bita1 (not shown) remains virtually unchanged
throughout. The final set of orbitals at the equilibrium distance is
shown in Fig. 6.

Oifbital s recoupling - - - is also straightforward. Of the
five linearly independent couplings posSible for this 5-electron
doublet system, only the atomié and molecular couplings have nonzero
coefficients. This is because all other possibilities involve unfavorable
triplet coupling between the highly overlap'p:i,n,g--.-.‘_s-X and SZ orbitals.
As shown in.Fig. 7, the orbitals recoupie as expected, with molecular
coupling being of increasing importance relative to atomic coupling

as the C-H distanée was decreased.
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Discussion '

With regard to changes in the orbitals the’méelves, the bending

back of the original orbital pair is the most intéresting feature.

S~
SX X

Due to the antisymmetric form of the total wavefunction (i.e. ,Paﬁuli"s
Principle) there are repulsive: i‘nte‘ractio'ns between orbitals in different
singlet pairs. Since these orbitals are antisymmetrically coupled,

these repulsive interactions decrease if the overlap'betwe'en these

orbitals decreases. Therefore, as the C-H bond forms, the 5.5z

pair bends back away from this bonding pair. The 128° angle achieved

at equilibrium serves to. explain the presumed ~C-H' fﬁipble"gf
this molecule.® Focusing attention solely on the bonding orbitals

would, of course, lead to a "C-H~ prediction. In addition, envisioning
the 3B, state of CH, to result by simply bonding another hydrogen |
atom to carbon through one of these orbitals leads directly to a
H-C-H bond angle prediction of 128°. This is in good agreement
with the observed value of 136°. *

Referring to Table 1, we sée that coupling coefficients always
differ in sigh. The wavefunction is, of course, capable of going
from atomic to molecular coupling regardless of whether or npt
these coefficients differ in sign. However, in GVB wavefunctions
the relative signs of the coupling coefficients are nonetheless of
great importance in that they tell us how the orbitals recouple in
going from one coupling to another; This being the case, we would
expect_that such signs should be consistent with that path which avoids

passing through (or tending toward) highly unfavorable and unlikely
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intermediate couplings. That this is presently the case can be

clearly seen by reexpressing a,l/w in terms of the P, Sy and pysH

singlet pairs:

Sx Sz Sx Sy Sx Sk ‘
W, = %s” = 25;4-//;35” ’
Hence,v we can rewrite our wavefunction as
| 5x Sz
%/1": €s Q’SH t (&~ E.) %
2

Therefore, in order for the wavefunction to monotohically change
from atomic to melecular coupling as the internuclear separation
decreases from infinity and yet avoid passing through the highly
unfavorable coupling in which orbitals py and Sy are singlet paired,
800 and Ee should be opposite in‘sign. Moreover," this result is
compatible with the physically intuitive notion that symmefric
(singlet) coupling between ¢, and ¢, should continually be of greater
importance with decreasing internuclear separation owing to the
increasing overlap between these two orbitals. The coupling designa-
tions in Fig, 2 are meant to imply this continuity of the recoupling
process by never picturing formation of any other singlet pair other

than the one between orbitals P, and Sy
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TABLE 1: 27 RESULTS

Distance
R(bohr)

6.00
5. 00
4.00
3.50
3.00
2.40
| 2.124
1.90

Energy
-E(a.u.)

38.
38.
38.
38.
38.
38.
38.
38.

Complete GVB:

6. 00.
2.124
HF:,f?
2.124
CL."®
2.124
EXp?
2.124

38.
. 31402

38

38.
38.43990

38.

20432
20753
22338
24252
27064
30716

31376 - -

30281

20442

27935

4898

Binding
Energy
B.E.(a.u.)

0.
0.

o © o ©o o o

00072
00393

. 01979
. 03892
. 06704
,10357
.11017
. 09921

. 0008
.1104

. 0907

.134

Coupling Coefficients

€2

- 0511

-. 2040
-.5216
- 6645
-. 7588

--. 8270

-. 8488
~. 8630

~. 0489
-. 8372

€1 .
.9489 -
. 71960
. 41787

.3355.

.2412
.1730
.1512

. 1370

. 9511

.1628

i

:E'

;'9- “‘@- :e‘
be =

¢ ¢

% ¢
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CH ‘N FORMATION

a. Infinite Separation

b. Int‘ermediaﬂ:é Separation -

(3
h

c. Equilibrium

{4

FIG. 2
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‘CH DOUBLET PI STATE
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VI: THE %A STATE

Qualitative Considerations

The 2A state of CH can be énvisioned to form when a hydrogen
2S atom approaches a carbon D atom along the axis of hybridi’za?:ion
(Fig. 8). At infinite separatidn' (Fig. 8a), the carbon orbitals must
be coupled as in CD, That 1s orbitals Py and py must be smglet

paired as must be orbitals s, and 52

- 1A A ‘
Vo= 15232 = pp 555, (vp-pe(<pfe)

Su

However,' in terms of atomiclike orbitals , molecular coupling should
correspond to having orbitals s, and SH singlet paired in order to
describe the C~H bond (Fig. 8c). Therefore, at equilibrium the

wavefunction is expected to be:

A Py |
% = Sz Swj < d oy Sz 5n 35 (“’/ﬁ)(q//g—/gd-)a(

S5

Hence, the simplest localized orbital wavefunction capable of describing
formation of this molecule should be a linear combination of the atomic

and molecular couplings:

APy A Py
%A = € [%2%] +g |54
Su 5

where, as the C-H separation decreases from infinity, &, is expected
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to decrease from unity as &, g'radually increases in magnitude from
zero to approach unity at equilibrium. That none of the yxl‘e_maining
linearly independent couplings between these ofbitals can contribute
to the wavefunction even in intermediate regions is expected ginge
they all involve triplet coupling between orbitals Py and py’ and are
therefore all incorrect Z)..__symmetry. Thus, the localizedbrbital
description of formation of this molecule simply involves dissolution
of the original_s—zgg singlet pair with simultaneous formation of the
bonding _s;Eﬁ singlet pair (as is indicated by the broken double
arrows in Fig. 8b); :

Oof course; this wavefunction can monotonically go from atomic
to molecular coupling in one of two ways depending on the sign of €,
relative to £,. Since the orbitals can be expec(ﬁed to recouple via |
the path which avoids the most unfavorable intermediate couplings,
it should be possible to predict this sign a priori. If £, and £,

have the same sign, the path from atomic to molecular coupling is:

v Pe Py A Py Fx Fy
% ~> |5|9| ™ |5ZSk| — 5 |Su| — % (A)
54 i.l 55

whereas the negative sign path is:

Py Py

%——» ?Si -—4% (B)

At intermediate internuclear separations, orbital s, should overlap

“substantially with both sy and s;. However, these two orbitals should
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still have small overlap with each other. Therefore, the intermediate
of the pathway B (in which orbital s, i symmetrically coupled to the
triplet coupled s; and Sy orbitals) is preferabie to the intermediates,
of pathway A (in which orbital s, is at best antisymmetrically coupled
to orbitals s and SH). B |

Recoupling via pathway B is also consistent with the notion that
symmetric (singlet) coupling between orbitals s, and Sy should steadily;
increase in going from atomic to molecular conpling. rI"he inter'meciiateé_‘ .("
of the positive sign path; especially the first one in which orbitals s, arfd'éH
are actually triplet coup_led; are obviously incompatable with this idea..
This co.ntinuity of the recoupling process can be quite effectively repre-
sented pictorially using the (@) and (8) coupling designations introduced
previously by requiring that the two orbitals between which a singlet
pair is either forming" or dissolving (i.e. are connected by a broken
double arrow) have different coupling designations. As in the core of
the 21r state, this notation is meant to imply continually increasing
symmetric coupling between those two orbitals which are to become
unpaired. In doing so (Fig. 8b), we find that this ifnplies that the wave-
function represented tends to triplet couple orbitals S; and SH since

these two orbitals must be assigned the same designation.

GVB Results

GVB results obtained at several internuclear distances ranging
from 6.0a. to 1.9a. are summarized in Table 2. The resulting potential
énergy curve (Fig.3b) behaves properly at all internuclear distances,

giving a binding energy of 0.040 au. at 2.09a, as compared to the
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experimental value of 0. 076 a.ﬁ. at 2,08 a.. The vertical 7—A
excitation energy is 0.128 a.u. compared to fhe observed value of
0.105 a.u". This error of 0,023 a.uw. not only reflects the added 0. 013 a. u,
correlation error of the 2A state over the 21r state, but also the carbon '
3P-*1D correlation error of 0.011 a.u. An interesting feature of this
curve is the potential barrier of 0.002 a.u. found at 3.5 a.. This
result is consistent with previous studies which have indicated that the P
required singlet-pair transfer is in itself an endothermic proceéé. e 1? :

As might have been expécted, the singlet paired Py and p‘y orbital“s‘
remain essentially unchanged during molecule formation. However,
of the sigma orbitals shown in Figs. 9 and 10, only the carbon S,
bonding orbital (¢, ) remainé localized throughout. Beginning at
around 3.5 ao, the initial carbon s; orbital (¢,) gradually delocalizes
over both centers and }finally relocalizes to become the hydrogen
centered bonding orbital. Simuitaneously, orbital ¢, which is initially
the hydrogen 1s orbital, also delocalizes and finally relocalizes as
the CH nonbonding sigma orbital; Comparing the initial and final
sets of orbitals, the only indication that this spatial migration had taken
place is that the nonbonding orbital differs in phase from the original
carbon S5 orbital. |

Looking at these orbitals it is tempting to believe that orbital
recoupling is of no importance and that the required singlet-pair

transfer is accomplished solely by spatial migration of a fixed ¢1¢>2|

singlet pair. That this is not the case is clear from the coupling



29 o ' .
coefficients plotted in Fig. 11. At large internuclear distances, when
the orbitals are still atomiclike, recoupling proceeds as expected;
with €, decreasing as - £, steadily increases (negative sign path).

This trend continues even as the orbitals delocalize, reaching a point
of maximal change at about 2.9 a.. With subsequent relocaliéation
of ¢, and ¢, (which effectively interchanges their original identities),
£, steadily increases back.toward unity as this coefficient now Imeasui'e’s
molecular coupling. | |
Discussion

Because of the observed orbital delocalization-relocalization,
our initiai concept of formation of this molecule must be modified
somewhat. We will now show that there is no contradiction involved,
but rather, that the orbital coupling changes predicted on the basis
of localized orbitals abtually favor the observed orbital spatial migration.
At large internuclear distances, recoupling of the atomiclike orbitals
proceecis as expected. In response to increasing overlap between
¢>1(s.z) and ¢3(SH), these two orbitals become increasingly symmetrically
(singlet) coupled. As we have seen, this recoupling also implies =~ -
decreasing singlet coupling between ¢; and ¢2(S£) and increasing anti-
symmetric (triplet) coupling between ¢, and ¢,. That this process is |
initially endothermic is not too surprising since there is no way for
recoupling to fully compensate for increasing overlap between ¢,
and ¢, while still maintaining favorably high singlet coupling between
¢1 and ¢,. For atomiclike oi'bitals, this situatioh would become

increasingly worse at smaller internuclear distances. However, these
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mounting repulsive interactioﬁs can be relieved while still utilizing _
the space of these orbitals through delocalization of ¢, and @,. This is
accomplished by allowing ¢, (SE) to develop p'oéitive Sy character as -
¢5(syy) develops negative s; character. In this way, ¢, can move into |
the internuclear region while ,maihtaining high overlap with ¢, (to which .
it is still largely singlet coupled) as ¢; moves in the oppééite direction,
achieving favorable small overlap With'both b, anyd‘ ¢2. However, while
initial delocalization does serve to minimize increasingly repuléive" “
interactions, it cannot continue to any significant ‘extent and still lead
to an attractive potential until ¢, and ¢; have become largely triplet
coupled; with this coupling becoming even more pronounced during
delocalization. The reason for this is that increasing delocalization
of ¢, and ¢, into each other’s space would otherwise cause the wavé-
function to develop siénificant ionic character ("C-H™ and “C-H").
Qualitatively, this can be clearly seen by rewriting the wavefunction

in terms of singlet and triplet. coupling between ¢, and ¢,:

/. ¢ & 414,
(,”_ ¢y . 2 +’A&¢3

where X; = €; + €;and A, = €, - €, (for simplicity we have omitted
the p xp‘y singlet pair). Expressing .c/bz and ¢, in terms of localized
. orbital s; and Sy and expanding we obtain: |

¢ ¢ Sz +16|Sy 5 d ok Sy-1hlS;

e (e tint) B, e | 2 [lmdsf,ﬁap«-(y,ms;‘f,«ﬁ(]

covalent jonic
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Hence, ionic character can Qniy_develop totheextent to which ¢, and
¢, are singlet coupled. Therefore, through iricreased triplet cdupling
between ¢, and ¢, delocalization can continue'tb be favorable since
this coupling prevents what would otherwise be an excessive gmgunt
of ionic character from developing. Thus we see that the observed
delocalization occurring in this singlet-pair transfer proéess is quite
compatible with the recoupling path pre‘di'cted for idéalized orbitals
in that the expeéted increasing triplet coupling between ¢, and b |
actually aids in their delocalization. Of course, once full delocalizatioﬁ
has been achieved and ¢, relocalizés to become the hydrogen centered
bonding orbital as ¢, becomes the nonbonding sigma orbital, this -
recoupling trend reverses itself since it is now singlet pairing between

¢, and ¢, which describes molecular coupling.
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TABLE 2: ARESULTS

Distance Energy g;l%ilgnf Coup'}ing Coetlicients

R(bohr) = -Efa.u.) B.E.(a.u.) £y €,

6. 00 38.14619  -0.00010 .9966  -.0034

5. 00 38.14547 -0, 00081 .9812  -.0188

4.00 38.14359  -0. 00270 L9055  -.0944

3.50 38.14322  .-0.00308  .8042  -.1958
13.00 38. 14772 0. 00142 6559  -.3441

2.40 38.17094 0. 02464 .7894  -.2106

2.124 38.18294  0.03664 .8620  -.1380

1.90 38.17059 0. 02426 .8959  -.1041

Complete GVB:

3.50 38,14388  -0.00242 .7892 -, 2107

3. 00 38,1510 0. 00473 .6212  -.3788

2.124 38,1854 0. 03911 .8095  -.1905

HF: 13

2. 05 38.17957 0. 0484

CI: 1«

2. 07 38. 28973 0. 06948

EXP: 10

2.08 38.3093 0. 076

A A A Ay

‘MVA:& b bl E (8
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CH 2A FORMATION

I/’ a. Infinite Separation -

T/ c. Equilibrium

FIG. 8
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42‘ STATE

VII, THE

Qualitative Considerations

4 , - :
The X state of CH can be envisioned to result when a hydrogen .
2 .
S atom approaches a carbon 3P atom along the axis of hybridization

(Fig. 12). At infinite separation, atomic coupling must prevail.

This corresponds to singlet pairing of orbitals s, and S5, 'and quartet

coupling between orbitals pX; Py and sHi(i. e. o(rbité.ls p, and b, are . _
triplet coupled): '

32 5%

Su

Y%= 2 :49,35;5,,&@(::(,5-,54)40(«
A

If the orbitals remain localized during molecule formation, the C-H

bond should be described by singlet pairing of orbitals S, and Sy

Sa Sn
S-

Y - | ‘ :dsisﬁfz‘ﬁz/’y(q/ﬂ-ﬁd)dq«

Fy

Thus, the simplest localized orbital wavefunction needed to describe
formation of this molecule would be a linear combination of these atomic
and molecular couplings.

However, this is analogous to formation of the ZA state in that
all that is essentially involved is singlet-pair transfer. The only difference
is that now orbitals Py and py are triplet coupled whereas they are singlet

2

paired in the A state. Therefore, we can expect that orbitals S5 and Sy
Will not remain localized, but will gradually deloealize (as triplet

coupling between them becomes more pronounced) and then relocalize
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so as to effectively exchange ériginal identities. Therefore, we expect

the general wavefunction to be:

%% Y

4 Y -
#. = sl gl -8l s .
Iy py A o

where ¢, and ¢, are initially the carbon s> and hydrogenlls orbitals

respectively.

$

GVB Results:

Results of GVB calculations are summarizevd in Table 3. From |
the potential energy curve in Fig.3a, we obtain a binding energy of
0.. 095 a.u'. at 2.09 a.. 'While this state has not been observed experi-
mentally, these results are in good agreement with other studies
which have placed it somewhat above the 7 ground state. Also, we
see that the potential barrier which would have been expected by our
analogy to the 2A state never materializes.

As plots of the sigma orbitals in Figs. 13 and 14 show, these‘
orbitals behave just as in formation of the Astate. Orbital ¢,
remains essentially localized throughout. Orbital ¢; (SE) gradually
delocalizes into the internuclear region while maintaining highl overlap
with ¢, and then relocalizes as the hydrogen centered bonding orbital.
Simultaneously, ¢, moves in the other direction‘, achieving small
| overlap with ¢, and ¢, through formation of a nodal plane. As expected,
orbitals Py and py (not shown) remain virtually unchanged during
molecule formation. The only significant difference between these

orbital changes and those found for the “Astate is that incijeased
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delocalization of orbitals ¢, and ¢; occurs at larger internuclear
distances. |

Plots of the coupling coefficients in Fig. ,15 'are.al'sn analogous .
to those for the 2A state with the exception that antisymmetricv (triplet)
coupling between ¢, and ¢, is now more pronounced at }large inter-
nuclear separations. In addition, howeyer, we see that a third coupling
develops which was not considered previously. Th1s corresponds ’
to quintet coupling between orbitals p,, py, 6, and ¢,. That this cnupling:;
contributes to the wavefunction is not too surprising since it allows
for very favorable exchange interactions between these orbitals.(Note that
the orbital coupling designations in Fig. 14b are compatible with develop-
ment of this coupling since all four of these orbitals have (@) labels){
However, the simultaneously required symmetric coupling of ¢,
with P, and py is highiy unfavorable. As a consequence, this coupling
is never of any great significance.

Discussion

The GVB description of formation of the 42' state is qualitatively
the same as that for formation of the 2A state. However, while both
involve the same singlet-pair transfer mechanism, the 2A state has
a potential barrier while the 42)' state does not. Obviously, this must
be due to favorable interactions that can develop between the sigma orbitals
and the triplet coupled p-orbitals which are not possible in the A state
since these p-orbitals are singlet paired. In forrnation of the 2A state
we saw that the barrier could be qualitatively attributed to repulsive

interactions developing between the atomiclike sigma orbitals as the
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internuclear separation decreésed. In response to these increasingly
unfavorable interactions, orbitals ¢,(s;) and ¢3' (sg) beéan to delocalize.
However, owing to the excessive ionic character which would have other-.
wise increasingly developed; this delocalization ‘c'ould not cor}tigue to |
any significant extent and still lead to binding unless these two orbitals
became increasingly triplet coupled. As we have seen, 1n formation
of the "% state, orbital delocalization occurs before the atomig orbitals
come close enough to repulsively interact. In addition, ¢, and ¢3 |
are also significantly triplet coupled at these disfances. Therefore,
the potential can remain attractive at all distances.

The reason why orbital delocalization and enhanced recoupling
occur at larger distances than in the 2A state can be attributed mainly
to the favorable exchange interactions which can develop by having
three orthogonal quarfet coupled orbitals centergd about the carbon
nucleus. This, of course, is the same reason for the fairly large binding
energy of this molecule at equilibrium. Even ignoring the question
of orbital recoupling, the system can take on some of this character
at large distances through delocalization, as this allows ¢, (quartet
coupled to Py and py) to develop character on carbon. The extent to
which this can occur is naturally limited by the attendant increase
in ionic character. Enhanced orbital recoupling can also achieve this
effect since increased quartet coupling between orbitals Py py and
¢2(s£) results when symmetric (singlet) coupling between ¢, and ¢,
‘is increased. In addition, increased triplet coupiing between ¢,

and ¢, is favored on the whole since this can lead to favorable exchange
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interactions between all four orbitals Py Py ¢, and ¢g. Thus, ﬁaking
all of these factors into account, it is not surpr‘ising that we do not
find a potential barrier for this State; despite th"‘e fact that the singlet- . .

pair transfer involved is in itself an endothermic process.
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TABLE 3: 42‘ RESULTS
Distance 'Energy Eﬁﬁ?ﬁ Coupiing Coeff'ic'ients
B(bohr) -E(a.u.) B.E.(a.u.) €, €, €,
6. 00 38.20364  0.00003 0.9823  0.0145  0.0032
5. 00 38.20353  0.0001 . 0.9172 0. 0688 0.0140
4.00 38.20547 0.0019 . 0.6908  0.2583  0.0509
3.50 38,21275 0.0091: 0.5489 0.3787 0. 0724 .
3.00 38.23469 0. 0311 0.6628  0.2606. 0.0766
2.40 38.28064 0, 0770 0.7543  0.1669  0.0788
2.124 38.29620 0.0926 0.7893  0.1343  0.0763
1.90 '38.28659  0.0830 0.8061  0.1193  0.0746
| Complete GVB
6.00 38.20364  0.00003 0.9928 0.1436  0.0028
3.50 38.21518  0.01158 0.5280  0.3998  0.0722
2.124 38.29818 0.09458 0.7474  0.1595 = 0.0940
HF:1
2. 00 38.28967 0.10119
CI:4
2. 00 38.38058 0.10524

£, ¢ ¢ % 49|

‘7%.‘: 5. f’: - &, j: t €, 7::
R Fy fy
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CH ¢3 FORMATION

¢. Equilibrium

FIG. 12
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VIII, CONCLUSION ,

GVB descriptions for the formation of the low- 1y1ng 1r, A, and
42' states of the CH molecule have been presented.v, These GVB
wavefunctions have been found to behave properly at all interpuqlear _
distances and lead to a clear physical picture of these simple molecule- |
formation reactions. The observed orbital and orb1ta1 couphng changes
have been found to be conS1stent with S1mp1e Valence Bond arguments ‘

once they have been modified to allow for orbital optimization as well.



48
References

1) R. Ladner and W.A. Goddard I, J. Chem. Phys. 51, 1073 (1969)
2) Part 4 Sec. I C, this work B

3) W.H. Hunt, P.J. Hay and W.A. Goddard III, J. Chem. Phys. 57,
738 (1972) | |

4) Slater, Quantum Theory of Atomic Structure, iMcGraw;-Hill Book Co.
(1960) " | - .

5) S. Huzinaga and Y. Sakai, J. Chem. Phys. 50, 1371 (1969)

6) D.H. Phelps and F.W. Dalby, Phys. Rev. Lett. 16, 3 (1966)

7) E. Wasserman, W.A. Yager and V. Kuck, Chem. Phys. Lett. 7,
409 (1970)

8) P. Cade and W. Huo, J. Chem. Phys. 47, 614 (1967)

9) C. Bender and E. Davdison, Phys. Rev. 183, 23 (1969)

10) Herzberg, Spectra of Diatomic Molecules, D. Van No gstrand Co.
(1967)

11) W.A. Goddard and R.C. Ladner, J. Amer. Chem. Soc. 93,
6750 (1971)

12) R.J. Blint and W. A. Goddard III, to be published

13) W. Huo, J. Chem. Phys. 49, 1482 (1968)

14) G.C. Lie and J. Hinze, J. Chem. Phys. 57, 625 (1972)



49
PART TWO

Evaluation of 'Spin~Eigenfunctionf »

Configuration Interaction Matrices

Abstract

A procedure for calculating Spvin-Eigen’function Conﬁguratiori
Interaction matrices utilizing the U mafrices which form the irredu-
‘cible representations of )J; is presented. In addition, an improved
determinant method is summarized. By combining both of 'these
U-matrix and Determinant methods, it has been possible to formulate

a practical and yet highly efficient procedure for generating such CI

matrices.
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I. INTRODUCTION

Calculation of spin-eigenstate Configuration Interaction (CI)
wavefunctions can be facilitated by using conﬁgurat’:i’ons; which are

themselves eigenstates of spin. The simplest such basic unit is an

orbital-product wavefunction of the‘form:

()U N d Céarej é(u)xuv)

P~

('OfC= -I,Yr ﬁio(/a
(n) N
5 44
_X(rﬂ': ;d;‘ﬂ‘}(%ﬂ“')

where AL is the antisymmetrizer (determinant operator). Core con-
sists of a set of doubly occupied (closed-shell) orbitals {#}, each of
which is associated with an af spin term. <I;(N) is a product of the
N singly- occupied (open-shell) orbitals with which the spin function
’X(N) is associated. X (N) is.a linear combination of appropriate N-
electron spin (aB) products and is required to be an eigenfunction of
spin:

()

§27(, . S(s"l)X(N)

For N electrons, there are generally sevéral linearly independent
spin-eigenfunctions of multiplicity S. Hence, corresponding to each
spatial configuration (defined simply as a set of doubly-and singly-
occupied orbitals) there are usually several independent Spin-Eigenfunction

Configurations (SECs):
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- [eore, §" 7

(NT) contain the closed- and open-shell orlﬁ,ita.ls

th

where (core)I and @I
of spatial configuration I and'X (M)'is the i linearly ind€pendent spin-
eigenfunction (SEF) of multiplicity S for NI electrons A ednvenient
set of orthonormal SEF's for N electrons can be obtamed from the

appropriate SEFs for (N-1) electrons using the recursion relat1onsh1ps:
If Sm> S.M -1] : 7(r~l ,Xuv-l)a(
-1 1) ) i
If »S‘(u)( S.(N )_' , ,X(n/l_ 3 Suv (N [S X(u )]o(

N=}

where’X(N'l) is an (N-1)-electron SEF of multiplicity s(N-1) and

SI:I 1 is the spin lowering operator for (N-1) electrons. If in 1]/1

the orbitals of &, are arranged in increasing order and Xi is one .

I
of these standard orthogonal SEFs, then 1[/ is said to be a standard SEG’,‘
In terms of standard SECs, an Ne—electron CI wavefunction

of mulfiplicity S constructed from a set of NF spatial configurations

is:
NF NST r
- I
G- )y k¥
I=t IR di

where each of the NSI SECs of multiplicity S for spatial configuration I
contain the same NI open-shell orbitals and NDI = 3(N_-NI) closed-

shell orbitals. Assuming all orbitals are orthonormal, the energy is:

£- 55 ey /lez"jz:cn

>|(See Appendix 2
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Hence, the solutions of this wavefunction are obtained by simply diag-"
.o.nalizing the CI matrix Hwhere: -

Hf;‘ff <5P;I f H) %T>

!

The remaining sections of this paper will be devoted to develop-
ment of a practical yet highly efficient procedure for generating these
SEC CI matrices. First, evaluation of such nflatri}{elements by expressing
each SEC as a linear combination of Slater determinants will be‘ discussed.
This method is the basis of the procedure employed by R. Ladner in “
which CI matrix elements between all réquired determinants of all

spatial configurations are independently calculated and transformed

to give the desired results! Next, a method based upon the irreducible
representations of ,J N which permits direct evaluation of SEC CI
matrix elements will be derived. Finally it will be shown that .

using both this labter approach avnd a more refined determinant method,
in which unnecessary and redundant computations are eliminated,

leads to a procedure which has typically been found to generate SEC

CI matrices an order of magnitude more rapidly than the previously

employed independent-determinant procedure.
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I, THE DETERMINANT METHOD OF EVALUATING SEC CI MATRIX

ELEMENTS

CI matrix elements between the SECs of multiplicity § for .
a set of spatial conﬁguratio’ns involving orthonormé.i'orbitals ean |
straightforwardly be evaluated by éxpressing each SEC aé, a linear
combination of Slater determinants. If {DI} are the NDE TI determinants

needed to construct all SECs of multiplicity S for spatial configiration I,

then the mt? SEC is:

NDETL

Wos i D;

th

where, for given S, Cﬂ}l is the coefficient of the i determinant in the

mth SEC of a spatial configuration containing NI singly occupied
orbitals. Choosing the SECs to be the standard couplings, these

| éoefficients can readily be obtained from the standard orthonormal
spin-eigenfunctions for NI electrons of multiplicity S, {')(}, by simply

expanding:

in terms of these determinants. Hence, the CI matrix element between

th th

the m " SEC of configuration I and the n™" SEC of configuration J

is simply:
: NDETL NOETY

CUa [H107)= 32) cinegr (OFIH10])
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A. Determinant Definitions:

If configuration I consists of NI singly occupied o'r'b.itals, | the
required NDETI determinants having spin proje"ction .Sz' '=‘ S correspond .
to the unique number of ways these ‘orbitals can be asslvociatevd 'wi:th
NA = 3(NI + 25) & spins and NB = (NI-NA)@spins. Thus, the i" deter-

minant can be written as:
~I - I I . o
Q = d @{d} Q (8) '_

where 6% (@) is a product of the NA « Spiﬁ orbitals (written in increasing’
order) in the i determinant. ©}(8) is defined analogously. For
example,‘ if configuration I consists of orbitals ¢, ¢, ¢, and ¢,

then the six SZ = 0 determinants are defined by:

Q'w) G 8) = b 4,448
Gl B; 8 = babo 4,894
Blw G = Pady« 4844
Giw Ot = $oda %A
O &y = $ebt 4540
Glar Glu) = b= 4840

If configuration I also contains NDI closed-shell (doubly-occupied)

orbitals, the ith determinant can be written as: -

z I
D = A Q' 8% &t GF o)
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where ©L is a product of the NDI closed shell orbitals in increasing
order. In Gi(a) , these orbitals are associated' with & spins and in
ei(ﬁ) they are associated with g spins. Finally, if tI)%(q) is the product

th

of all & spin orbitals in the i~ determinant written in increasing order

and & (8) is the product of all 8 spin orbitals also in incréasing order:

T ’ |

3:5 @) = T Ble B
r

d.8) = 1L Ol O

R

then:

Di- ¢f A & w &

where Z] is the parity of permutation 7} a'r%ﬁ.

Defining the determinants in this manner is not only computationally
convenient, but, more 'importantly, gives rise to compatible determinants
for all spatial configurafions. Thus, all the standard couplings for these
configurations can be constructed using a single set of coefficients
:ﬁhich',' for givern‘multiplicity,. depend only upon:the pumber of
singly occupied orbitals involved,

B. Evaluation of Determinant Matrix Elements:

Since all spatial configurations are for the same number of
electrons and since all determinants have the same Sz, all determinants
have the same number of @ spin orbitals and 8 spin orbitals. Therefore,
if all orbitals are orthonormal, the CI matrix element between the ith

determinant of configuration I and the jth determinant of configuration J
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can be nonzero only when:
1) Q'%(-y) and <I>‘].] (y) differ by no more than a doub'lvé'-excitation
and @{(e) = Q‘g (€), where p(€) = a(8) or B (@) |
or , hE ,
2) cI) (@) and @J(a) differ by a single exc1tat1on as does ol (B)
and @7 (B)
_Thesé give rise to the four possibilities: | B
| 1) a (or B) single .excitations | | |
2) aa (or BB) double excitations
3) ap double excitations
4) Zero excitations
1. a (or B) Single Excitations:

Assume @} (o) and d)'jj(cz) differ by orbitals ¢ and ¢; which

occupy positions I; and J; in their respective lists. Rearranging

@%(a) via the cyclic permutation which positions ¢ before all other

orbitals:
I I
4?1'« §L (d) = ,r(,';l...l") éa‘: (‘()
gives: I . ” r
]
rren” A b Eiw S
Similarly:

{(l) " A b §<ﬂ§rw
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Since q>i111 @) = qf% (@) and (8) = <1>‘§ 8):
<D [HID; )= g’g‘ A fwf'w/ HIA 4+ mf )
= 7 7yt [<¢ s @ [H [9“ 3'?«; X
+ Z',, 4 [K,[¢ >_J

Hence: m
CDIIHID)Y= 777 0 [ gy }: <LlaT;- /@/7)

CTlBITy- ) <IIK»IT>]

+
beor 4 € &

where 61 = ei(a)eg(ﬁ) andy =«

hry = <TIhlTd = (o [ Avmn|ds)
<I-}TVIT> <¢I¢ylnz’¢'¢>
'(Ill’(u17> = <¢r4'»lnz!4)»‘t’v>

Had the excitation been within the g8 list, this same equation would apply,
but with y = 8.
2. oo (or gB) Double Excitations:

Assume @:(0) differs from <1>J (@) by orbitals ¢ and ¢4 which

occupy pOS1t1ons L and I, (I)L;) reSpectwely in &, (a) and <I>J(a) dlffers
from ol (a) by orbitals ¢ and ¢ 3 " which occupy positions J; and J,
(J2) J;) in CD‘JT(a). Rearranging CI‘%(a) via the two cyclic permutations

which position ¢I and ¢£ before all other orbitals:

. [ ‘ I
qb£o< 4_‘}." @A (l) = Ar{:,zu;;,l) 7’(,,1..:,) .@4{"()
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gives:

Di= 2ien™™ ' Adadia 8t &ty

Similarly: | o
bv A e : ’ ! "
D= 7 0" A b2t Beo B

/ vl . .
Since &} (a) = <1>']I (@) and %1(8) = qf:; 8):

I+ 654347,

COFHIG) = 277 en™ (@ betie Eo 8500 [ H|
a ¢'a'“’4’;,' éf(a’) ff(,e) >
_ f,f!;’(")lnb'z'ra(d b e I H, a 4):« ¢;~>

AP AT R AT A LT PR TIPSy

Had the excitation been in the list,v the same result would have been
obtained.
3._¢B D_oﬁble Excitations:

Assume ®! (@) and @‘% (e differ by orbitals ¢ and ¢; which
occupy positions I o and J o in their respective lists and, <I>iI(,B) and

<I>‘§ (8) differ by orbitals qbi and ¢»J' which occupy positions I 8 and J 8
in their respective lists. Rearranging ®}(@) and ®}(8) by the cyclic

permutations such that:

1/ . 7L ' I :
CPZO( §,; («) ‘t_’rﬂ é (6) = ’7’(‘12_.:[“) @4(«) 7;1'2_,1'0) §f{ﬂ)

gives:

Df = jo;:r (_,)Iq‘Iﬂd ¢I°( éj}u} CE_I)G §f'(ﬁ)
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Similarly:

D;= g‘;,” (-')J;”J’ad P« j;i;(«) 4’;,’,;6‘5.’5;(;9)4 |

Since @% /(a) = @‘]T /(a) and @5?{3) = ﬁli,(ﬁ):

Ty+Ipt Tyt

@ b Bl 0 Fier |
Hla dadiedpdim )
I.('IJ*J:H.% (¢’I¢.{, /7"',';,‘#7 q5;>

CHENPEN A

= g

4. Zero Excitation:

Since @}(a) ='q>‘§(qg) and [(8) = cIflT(ﬁ),' pl-= D‘]T |

COEIHIDEY = (A & |H|A ) 8w )
= < @Im s IH |85 $5m )

Lm0 Ky,

4' Weéxu $>¢, € Bloa

Hence:

<Df’HID;T>= Zzh»p*z hpy+Z. (Jj;w"K,&w)

L€

"‘Z Jow +2 Z (23,;» K/w) E K,u

-
$o8,€ 67 § € &7 467 WIB €S 454 €Sk

K

where 6! = o1 (@el(®)

J;w% (ol T4 |40)
K,u,y;: (?«-I K4’yl¢ﬂ—>



60
I, THE U-MATRIX METHOD OF EVALUATING SEC CI MATRIX
| ELEMENTS -

quiations ‘which permit direct evaluation of vtlie CI r'hatr‘ix elements
petween the standard SECs of two Nefelectron spatial 'co‘nfiguration§ will
now be derived., It will be assumed that all SECs correspond to the same
spin multiplicity and involve only reﬁa}lmggthcj.pormal_ 9rbi_ta1s. |

It is convenient to partitionvthe two sﬁatial conﬁgtirations Iand J into
orbital products as follows: -All orbitals Which are doubly occupied 1n both

configurations are placed in <I_>£ and <I>':cr . <I>£

and @) are then filled equally |
with femaining doubly occupied orbitals which are not singly occupied in the
other conf1gurat10n untll th1s 1s no longer poss1ble Remaining orbitals are

J with doubly occupied orbitals in 1ncrea.s1ng order pre-

placed in <I>I and @
-ceding the singly occupied orbitals also in increasing order.
Example: |

I= ¢12¢22¢4¢5¢28¢9¢11 ‘I’CI = 6,0, ‘I’I = $g"$sb:50901
J= ¢22¢4¢52¢62¢7¢112 | @‘g = ¢22¢62 & = ¢52¢112¢4¢7

th

‘The m'" SEC of configuration I can then be written as:

L= Aal o_ax

Ito

where ﬂ,is the antisymmetrizer, em is an operator which acts on &
generate its mth linearly independent orthonormal SEC, and X is an appropriate

Product spin function (e.g. aBap:--)
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th th

The CI matrix element between the m™ SEC of I and n

1, ol S A
_ Az, o, @ x|H|A87 0, 8" x) | |
a6 a'x|asl o &0 2 asg 0, & x |4z 6 870 2

Wy [H 19

I I, J J
) (8.6, & |H|NdNB<I>C..0n<I> y |
N I al L3,2d J | J J\ 3
(@ 0,8 [N NBg 0,8 2(8 6,8 [N No&ic, @ )
where N a(NB) is the antisyrhmetric sum of all permutations involving

electrons associated with &(g8) spins in X.

Since:
I, .I I, .1 _ .1 I I L _ 4.
(@ 0, [N N@o 6, 8) = (& [N N2y (0, & [N N &) = 1:
we obtain
I J I, I T o od
<¢mlH|¢,n> = (@0, ® IHINaNﬁtbclencb )

Letting H = H,c + H,O + Hc.o _

where H..é operates on the 2M electrons of P, -

H o operates on the N electrons of &, and

2M N,
.
H'.Co = Z Z r.. s
i=1 oM M

we find

I J 1 J
(@t o_atH, !NaNB@g 0,8 = (& |BIN N8 (6, @ NN, 8

@) IryNaNB@'g) 5 Bglsd

i

SEC of J is:
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(@g,em&lHo\!NaNBq:gen&) = (2. NN g2 S8YC @IIHINaNBean’)

ol o (0, ® IHOINQNBB &)

@ 1

1, .1 J SoMo
(@l o o'|H ]Na Ng®; 6,87) = 6¢I¢J(6 D) 23 K )(I)IN 6.&)
| _ r
: =1 ¢ye q)c
CIf: - : |
N - N
W= B rogl gl (7 B Z‘[ZJk(l) L0+ Yy LY
- L=t ¢kf’c__ i> =1 4

S Y 3
where E = (@cchlNdNBd) )

then the CI matrix elements are:

<wm|le> = (0, & x[H [N Ngo 87 x)

I J
(ﬂemcb lu’ | 4o &)
which is effectively a matrix element only over N electrons.
I J .
o, + &,

E.=K 0 I'-J'
c = Fo o

where ¢, and d)j are orbitals not held in common by <I>£ and @'g

1 J’ . I J
‘I’c and ‘I’c are what is left of <I>c and @c

respectively and
after removal of these orbitals.

Therefore, if @, =7

|HI¢>_ ¢¢51’J 2 9 g T
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Since all matrix elements will be zero if thé. configuration‘s differ by

more than a double excitation, all other cases to be/coh'sidered must have

(I% = <I>Jc in which case the core energy is:

1

M M

E, = (3g [H|N N80 = (2 by + Y (P Ky )
- He? B> P €

Choosing the set of SECs to correspond to the standard GI

couplings, we obtain

L-#-@ix'

2T i™vi

ﬂeméx— —— —
(A x| A M%)

~where 74{ i is the Group operator generating the ith standard SEC for a
- system containing N electrons with spin multiplicity S and Li is an

I

arbitrary phase factor? Since & can contain doubly occupied orbitals,i can

only take on certain values (the others either vanish or are redundant).

__Hence the Amth SEC:of conﬁgura_,t'ivgpwl corre§ggnds toth§ i_t,h. standard |

SEC for the N electrons of <I>I where i 2 m. Likewise, the nth SEC of con-

figuration J corresponds to the jth standard SEC for the N electrons of <I>J.

Therefore:
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L;L; <)é/ o'x |0 Y. c1>Jx>

#@xlé/@x) <,zfd>xl¢/ @J 2

Wy B =

- GGG, 7)

IfO.1s a spin-independent hermitian operatbr:

P

W @'x o, 148" = f@ [0, l0; <I>><x|w

where O, ; and w—— are the usual Wigner projeci:ion operators.?
1}
Thus
LL . (@ | {0 @ ><x|wﬁx>

GG(, §) =—1 . 1
[ (a']o, 8" (& lo; <I>>(x| wX (X|wFx]?

ij
that Ly, = + 1) leads to:

Letting L.. = Lile {x |wﬁx)/[(x |w--x) {(x |w XD ]3, (it can be shown

Ly (® Ia o, <1>>

GG, ) =
[ <a'|o; <I>><<b o812

Since
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where {Uij(T)} are the well-known U matrix elements forming the irreducible

representations of P N We obtain:s

L. <¢I: |H' IZ U, (T)TCD y

GG, ) = — '
IE Un(f)fm @ |} u; (T)Tq) SE
T
, D S
If <I>J contains DJ double occupations, there are 2 J permutations {'fs}

J

which do not alter . By definition, j can only take on values such that

U..(r.) = 6... Therefore:

ij*'s ij
D
2 J 5
@ |y Ujj(¢)7¢J> =Y Uyrg =2 J
T _ Ty
Thus, ,
-(Dy + Dy)/2
go,=2 1 T Ly st |} uynre))
T
Factoring the sum over 7 as
D
o J
Z T’ Tg = E T
T’ Ty, T
and not1ng the T does not affect <I>J we obtain
( )/ 27
-(D; +D.)/2 : '
. I J
GGG,j)=2 L 9 Ly (@ 1|} ¥ Uylr' 17 7%
T’ Tg
o J
-(D +DJ)/2

=2 1 ‘ L(‘PIH'IE[EU(TT]T‘I”

S
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Since - - ,
Uij(T’ TS) = Z Ult(T, )Ut](TS) and Ut](TS) = atj
t o

for all allowed values of j,we obtain
Uij(T, T = Uij(T').

Hence:

GG =27 5 Ly« B IE,Uij(T’)'r’rb )

T

I

D
If { Ts’} are the 2 © permutations which leave &' unchanged and if it is

assumed fhat DI < DJ. Then

Z" T = Z ™ 4 Z‘ Z ‘ Ts’T”
T e T TSI

where {r”'} are those permutations in {7’} which leave a double occupation of

J I

& in coincidence with a double occupation of . By the definitions of ¢I>I and

@J it follows that:

(@ u’ [r &ty = 0

Thus
2DI |
(D,-D,)/2 I . 5
GG(i,]) = 2 ‘J ' Lij<q) IH' IZ Z Uij(TS‘:T")TS,T"CI-")
™ 7

SI
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 Since (& [B |7, 778"y = (&' |H’ |77 &) and U, (r,) = b, for all allowed
values of i, we obtain R | |

+DJ)/2

(D _,
GGG, j) =2 I Ly(@ Ha |y Uij(f"_)r"an->

T”

- Ifo_ isapermutation which brings & into maximum coincidence with

&' (all common orbitals have the same position numbers):

(D +-D ) / '2

Ga, =2 1 T Ly e |y v, e )
T”
(D+D.)/2
_ oIy I, J
= 2 Ly (@ [H' |} Uy(T o) TS
T _,

where ¢>‘; = cmth and {T} = {'r”om,'l}.

I J

Since @ and &) are in maximum coincidence, the only permutations

in {T} which can possibly give rise to nonzero terms are the identity and

the allowed transpositions {Tkﬁ}’ (the allowed transpositions in {T} are those

which do not interchange identical orbitals in either ot or @‘i), hence

(Dy+D4)/2

Gai =2 © 7 pyle|n e >U1](om)

I I
+ ) UglTyg0 ) (@ [H 7y 9y 0]
Tkt
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- At this point, the various possible types of excitations ‘must be_ considered:

1. One .Orbital Double Excitation:

If the configurations differ by a double excitatiOn]‘ianhich the mis-
matched orbitals of one configuration (J) are identical (¢J), only the
identity survives:

(D.+D.)/2

Gol,i) =2 17 Ly, Ule) oy IK¢ |¢12

where <I>IJl and ¢>12 are the mismatched orbitals of configuration I with cle

coming before ¢12 in @1,

II. Two Orbital Double Excitation:

If the configurations._differ by a double excitation in which the mis-

matched orbitals of both configurations are different (d)I and ¢12 for con-

figuration I; d)J and qu for configuration J) only the identity and the trans-

position interchanging qu and quz in <I>I survive
1

(D+D )/2
GG, D =2 1 T Ly (Vo)< 6y 65650

, \ 1
* Uiy oy g, Tm) @01, 57 10, ¢J )]

N - SN |
where ¢_,11 comes before ¢lzfn & and ¢ Ji‘comes_ before_ ¢ Jz,m o
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ITII. Single Excitation

If configurations Iand J differ by orbitals ¢; and ¢ the _oniy sur-
viving transpositions are those which interchange ¢>'I w'itlll ’another orbital
other than ¢I (double occupatioh) or .;qSJ(d)J doubly occupied in _‘CI>J) in' @",
These other orbitals are of course singly occupied: | "

+DJ)/ 3

( ’ .
G =2 1 T Ly [U(oy)cat B oy )

ij‘\"m

+ Z U.. (T¢ ¢ om)<¢1 |K¢ |¢J)
4 <@Ly, 6

where:

<I>I]H' |<I>'{ Y= <¢Ilh+ D (2J¢;:-K¢é)|¢J)
C

) <¢IIJ¢ [
Gpe@'epy

where {¢" } are- all the doubly occupied orbitals of configuration I.

IV. %Zero Excitations:

Since @I = cI)J:
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Therefore:

GG(,j) = Ly; [(® lH'[fb Y+ ) U1]<r¢ (,,ﬂ) K¢k¢ ]
¢>¢l€¢1 !

where:
III @I I :'

¢y Kop)
¢£e<I>I ¢k>¢£ 1A ¢£e<1>1 ¢ ea! e ¢l¢)
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IV. COMPUTATIONAL CONSIDERATIONS °

Comparing the U-matrix and Determinanf m'efho,ds for generating
standard SEC CI matrices for sets of spatial 'corr,lfigu'x"ations invblving o
orthonormal orbitals, the former method is obviousily' more efficient
since all matrix elements involvihg two conﬁguration‘s c!an. simultaneously
be directly evaluated using the same subset of U matrices. The Deter-
minant method is generall& mtich more time consuming Since lérge
numbers of determinant CI matrix elements must first be calculated
- and then transformed to give the desired SEC CI matrix elements.

Unfortunately, however, it has not been possible to design a
practical program for generating SEC CI matrices bésed soiely upon
the U-matrix method. This is because of the huge number of U matrix
elements which must generally be available. If &l and &’ are orbital
products of what is left of spatial configurations I and J after deletion
of all common closed-shell orbitals and if in CI>I and &’ all doubly occupied
orbitals (in increasing order) precede the singly occupied orbitals

(in increasing order), then U matrices must generally be available

for all the ‘P ermutations:
T = ’Z; 4 Szr

where Tig is that transposition interchanging the kth ahd 'ﬂth orbitals
of <I>I and o1y is that permutation which brings '<I>J into maximum coin-

cidence with <I>I (common orbitals are in the same positions in <I>I and

@J). In general, the set of oUs needed to align all possible pairs

o
1J
of configurations which differ by no more than a double excitation can be
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quite large. Moreover, if opy =€) @I and <I>J can'contaftip up to N+4
orbitals, where N is the maximﬁm number of smgly 0c_cupied orbitals
allowed in any spatial configuration. Thereforé‘, even for relatively
small values of N, the numbex: of generally required U matrix elements
is horrendous. | R

However, the number of elements comprising the (Symmetric)
transposition U matrices for N electrons (matrices for less electrons
are subsets of these) falls well within the bounds of préc'ticality even
for reasonably large values of N (e.g. N=8). Accepting the limitation
fhat only these U matrices can be available during CI matrix generation,
CI matrix elements involving aligned configurations (ojy =€) can still -
be evaluated using the rapid U-matrix method since only these U matrices
are needed. CI matrix elements involving misaligned configurations
(0H¢ e), for which the required U rhatrices are not available, can be
evaluated using the Determinant method, for which only a small number
of transformation coefficients need be known.

Hence, by using both the U-matrix and Determinant methods
during SEC CI matrix generation a practical program can be designed
which strikes a reasonable compromise between optimal efficiency
in the generation of the CI matrix and minimal storage requirements

« for the U matrices.
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V. COMPUTATIONAL SUMMARY

The currently employed approach for generating SEC CI matrices
will now be summarized. If: | "

I= the ith Ne-electron spatial configuratidn consisting of a éet
of NDI closed-shell orbitéls in increasing order ‘,fol,llowed by a
set of NI singly occupied orbitals also in increasing order

I%Ir;]n = CI matrij( element between the'mth standard SEC of Spa;tial

th

configuration I and the n™ standard SEC of Spatial configuration J |

Dy = CImatrix element between the i™ determinant of configuration T
‘and the jth determinant of configuration J- (SZ =S') ignoring
¢j and ¢

Ol = the product of all closed-shell orbitals in configuration I in
increasing order (each orbital appears only once in ei whereas
it appears twice in I)

GI =  the product of all singly occupied orbitals in configuration I

" in increasing order ‘
6%(7)= the product of all y-spin (y = a@,8) singly occupied orbitals in
the i determinant of configuration I in increasing order
@!(y)= the product of all y-spin (y = @, 8) orbitals in the ith determinant
of configuration I in increasing order
U..(r)=the known U-matrix element for transposition 7 bétween the ith

h

and jt standard SECs of multiplicity S for NI singly occupied

orbitals

T ¢k ¢, = the transposition interchanging orbitals ¢k and ¢l in GI
ﬂ .
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Cim = the known coefficient of D in ¢} o

¢, = the parity of the permutation T.I, where:
&(0) @} (8) =71 ol @ol(a) 0] ()0} «s)

Oy = the permutation whlchf, brlngs configuration J 1nt_o maximum
coincidence with configuration I after deleting co'ri‘n'mon. closed
- shell orbitals |
the CI matrix elements involving spatial configurations T and J,
where NI=NJ, are evaiuated as follows: -

A. Zero Excitation (NEX=0)

IHI=4J:
Hi: = Smn VI[_‘ :MJZ: Umn (%é“) K¢,¢A
VH'-'éZ'ev'lhcﬁqﬁ"‘Z h¢¢+z (‘23_4’ /(tﬁ#)
+¢..=Z'e¢§;e (23}9;, K'M“)gs%]er%é‘

B. Single Excitation (NEX = 1)

Assume I and J differ by orbitals gbI and ¢ 3

1. Tand J are aligned (crIJ =e):

Hom = 2% [0 Ves 2 20 Uy (4 (51K, 1 8,)

q.f ¢, da,

Vs = hg% +¢};ef,<¢z 12 Jo.” s Mj) +¢y;91#é<¢r ]J;y %2

»

where j is the n'® allowed NI-electron standard SEC for con-
figuration J:

If NI = NJ, j=n
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If NI>NJ, this corresponds to thé n™® standard SEC
for which Uj ].('1’2‘) =1 |

2, Iand J are misaligned (orIJ #e):

NOETL NOETT

- . '
= ZZK&P‘;{ c.«mc,—/n D"J R

where nonzero DIJ elements are either y smgle excitations
(y = a,B) or @&f exc1tat10ns

a) y_Excitations

- § [va- Z Ry Kmﬂ

¢ + ¢.r
where

= (= 1)11+J1

I1 = pOS1t1on of ¢ in <I’ (')')
J; = position of ¢; in <I’j )
b) @B Excitation

ijj: ‘(4/@ (4).1: l K¢_& !¢J>

where qbkeel but ¢>k¢¢1, ¢ I ¢k appears in CD% (y):
I +I +J +J

g = (D7
I_y = position of ¢k in @%(Y)
J = position of ¢ in qf; (€)
I, = position of ¢; in d)% (e)
J . = position of ¢z in @‘g ('}’)
“where y(€) = a(8),8 (@)
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C. Double Excitation (NEX = 2):

1. One Orbital Double

Assume I differs from J by orbitals ¢; and ér (it is possible
1 2
that ¢y = ¢ ) and that J differs from U by doubly occupied
1 2 ' .
orbital ¢y | |

a) Tand J are aligned (075 =€)

Tl (I, | ¢r,>
where j is the nth allowed NI-electron standard SEC for
configuration J :
If NI = NJ, j=n ,
If NI>NJ, this corresponds to the n* standard SEC
for which U (1 2) =1

b) Tand J are m1sa11gned (orIJ;ze)

NOETE NOETT
124 IJ'
Z‘ Z f g; Ca.m /n 4‘/

IJ

where all nonzero Dij elements are @f excitations:

D;.T iy 1)32*3,—4+I:+Ie (4&' “{% ’ 4)1:>

Iyt JB = number of singly occupied orbitals in J less
than ¢ J
If 4)1 in the mismatched orbital of <I> (-y)
1

I, = position of ¢ in <I>i(7’)
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R T
I, = pOS1t1oq of ¢>I2 in <I>i (§)
where y(€) = a(8),B(a)
2. Two Orbital Double

Assume I differs from J by orbitals ¢y and ¢ where ¢
S T :
comes before ¢>I inI and that J differs from I by orbitals
2 : .
d ¢, where ¢. c bef ind
¢ J, an quz ?Jz omes before ¢ g, n
a) Iand J are aligned (UIJ =e):

IT  (NoT-NoD)fa [

Hmn= d mj (4}1 I; tz“).J; (7;2{») r,. 4’>]

where j is the n® allowed NI-electron standard SEC for

- configuration J:

If NI = NJ, j=n

IfNI- NJ =2, this corresponds to the n' standard
| SEC for which U;(12) = 1

If NI - NJ = 4 this corresponds to the n' standard

SEC for which U (12) = U (34) =1

b) Iand J are misaligned (OIJ #e):

NDETL NDETT
Nf NT ITJ
Z' Z f 3; im /n D.c;/

pld

where all nonzero ij elements are either ¥ double excita-

tions (¥ =a,B) or are a3 excitations

1) yy Excitations

D= & <ttt lttd-chal &8 ]



6; = number of orbitals between ¢I and ¢I in <I> @)
€;=0if qu preceeds ¢>I in <I> @). If not, € = 1
) J= number of orbitals between ¢ 3, and [0) 3, in <I> )

€5=0if ¢J preceeds ¢>J in <I> (y) If not,. €5 = 1

2) ap Excitations .

o <t 114, 6.
If ¢>I and qb J are the mismatched y Spin orbitals and

qu and ¢ 3, are the mismatched € spin orbitals where

r(€) = a(ﬁ),B(a) and ¢J (¢J€) = ¢J1(¢J2)‘: ¢J2(¢J1):

o T
Iy = position of qul in ‘Pi(Y)
o T
I = position of ¢Iz in <I>i(€)
J_ = position of ¢. in d)J.(-y)
Y J,V i

. g
J . = position of ¢J€ in <I)j(e,)

D. Higher Excitations (NEX > 2):

If I and J differ by more than a double excitation, all matrix
elements are zero.

N. B.

The U-matrix method phase factors (¢ ) are omitted since a
compat1b1e set of SECs can still be obtamed by S1mp1y redefining the

Determinant method transformation coefficient {c}. At most, these
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7

SECs differ only in sign from the standard couplings.
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VI, PROGRAMMING |

The px%gram is currently capable of geher'a‘ting rhbderately
sized singlet, doublet and triplet SEC CI matrices for spatial configura-
tions containing up to six singiy occupied orbitals. Input 1- and 2-
electron integrals are assumed to already be for tbé desired orthonormal
orbital basis. Only modestly sized bases can ]oe accommodated
(around 20 orbitals) as the full canonical 2-électron integral list
is required fo be in core during matrix generation.
| Prior'to matrix generation, the determinant transformation
coefficients and triangular tranSposition U matrices corresponding
to the desired spin multiplicity are defined. In addition, determinant
lists giving the a- and B~ spin orbitals in each determinant of each
input spatial conﬁgurai&ion are constructed based upon the spin multi-
plicity and the number of singly occupied orbitals involved. Initially,

Iei(a);ef: 6% )} form. However,

these are conveniently generated in {© .

prior to actual usage, these lists are converted to the more useful
{t3; 9; @); @] @)} form.

The triangular CI matrix is generated considering two spatial
configurations at a time taken in triangular order. Once the SEC
CI matrix elements for a pair have been evaluated, they are stored on
disc for later retrieval and reorganization priqr to diagonalization.
The following flow chart outlines the essentials of the procedure used
in evaluating the CI matrix elements between spatial configurations

Iand J, where it is assumed that NI>NJ. The notation used in this
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chart is the same as above. In addition:

NEX({y) = y-spiny =a, 8) excifation number bétween t'wQ vdetérminants

MK = sum of occupation numbers of the miér’naifchéd orbitals in each

configuration + NJ-NI ' - -

IE1,IE2= open-shell pOsition humbers of ¢I; and ¢Iz‘(Wh§q approprigte)
in configuration I ,

JE1,JE2= open-shell position numbers of ¢ 7, and ¢ 3, ‘(When appropriéte)
in configuration J

I0k) = Kth open-shell orbital in configurafion I

NSI, NSJ= number of SECs from configuration I and J
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VII. = CONCLUSION

Computational details for calculating Spin-Eigenfunction
Configuration Interaction CI matrices via a method ufiiizing the U
matrices which form the irreducible representations of f hav,e ,
been presented. When combined with an improved 'Determinant
method, a practical and yet highly efficient proced'ilre for generyating ‘
CI matrices can be formulated. This approach is emplo&ed in our
current CI program; being much more rapid than the préviously

employed independent-determinant method.
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APPENDIX 1

Definition of the CI Program Spin-Couplings Used

in Terms of the Standard Couplings
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When constructing Spin-Eigenfunction Configuratién" (SEC)' CI matrix
elements via the determinant method, it is most convenient fo have all

alpha spin orbitals preceding all beta spin orbitals in each‘ determinant.

Thus, the ]th SEC for a given spat1a1 configuration for N electrons is:

NDET
(’[{’ Z C*‘/ A 6. G Gt E.pr

(1) o€

) ¢ ATl T.I0T4,] [W%]

where ¢y = ¢£a and ¢£ﬁ = ¢,QB' {¢n} are the ND.doubly-pccupled orbitals,
o S ‘

"

]

{¢Illi} are the NA singly occupied orbitals having -alpha spins in determinant i
and {¢ .} are theNB=(N-NA) singly occupied beta spin orbitals.

However, it is more consistent to express ap. as:

G

AR ACAT RIS A

NPET

'{wﬂ [C‘or‘eJNU Z C',‘j 9(4) @(ﬂ)

3]

"

Therefore, the phase factor { must be evaluated:

(a) First rearrange (1) to:
CAd Gw el Gwb

This is done by performing the permutation:

ND
T (h23L) on E:&) S )
,(.':)
Since this permutation has a parity of [(- 1)L 1] and L = NA + ND:

/ NA<ND + ND(ND-1) [VA ND
$= ) AR
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(b) Reorder doubly-occupied orbitals:

No-1 T
T 5‘,’; (2:, .?,ul,---/vpu) e, E),(p) = g(”[cércjﬂo

Azt

ND-L
and & = (-1) =

‘.L,— (no-2) NP (ND-1)[a

f”.— (-1)" = (-1)

Thus: :
WAIND + ND(ND-1)[q

¥= 0y o

Explicit dependence upon the number of doubly-occupied orbitals

can be removed as follows:

ND = Ne- (NA+NG) ; NG NA-3S
2

Therefore:

NO = NU‘Qi— ANA _ Dm-NA
where D, = -29 + S is a constant which depends upon the number of electrons
(N e) and the spin multiplicity (S).
Hence:
NA* ND+ ND(ND-1)/2 = D (Om-1)/2 - NA (NA-1) /2
Thus:

a 7=

Since Dm is a constant for a given CI wavefunction, Cm isirrelevant so. that:

Om (Om=1)/2 MA (VA-1)/2

(-1) = S L

NDET

Na (VA-1)/2 ‘
W= 0" A feorely 2 ¢ty G s
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In terms of the standard couplings, the various
NOET

i N
A Z C, G« E.p)
" (in which the orbitals of ©; (a) and @,(8) are arranged in increasing order)

t

allowed in our now current CI program are (/See Appéndixv2):
(I) Singlets:
2 open shells: Gl
4 open shells: -Gl, GZ
6 open shells: —Gi, G2, G3, -G4, G5
(1) Doublets: |
1 open shell: Gl
3 open shells:\ -Gl1l, G2
5 open shells: -G1, G2, G3, -G4, G5
~ (III) Triplets:
2 open shells: Gl
4 open shells: G1, -G2, G3
Gl, G2, G3, -G4, G5, -G6, GT7, -G8, G9

6 open shells:

For a given multiplicity, all open shell SECs can be made consistent
with each other by multiplying by ¢ (if necessary, subsequent readjustment
is made so that the SEC for the smallest number of 6pen shells is always

- +G1):
(I) Singlets:
2 open shells: Gl
4 open shells: G1, -G2

6 opén shells: G1, -G2, -G3, G4, -Gb




(II) Doublets:

1 open shell:

3 open shells:
5 open shells:

(IIf) Triplets:

2 dpen shells:
4 open shells:
6 open shells:

Thus, for a given mu_ltiplicif:y, the SECs of our CI program can be B

taken to be:

Gl

Gl,
G1,

Gl
Gl,
Gl,

88

-G2
-G2, -G3, G4, -G5

-G2, G3

-G2, -G3, G4, -G5, G6, -G7, G8, -G9

Ve g A Leored 0y

' N
where the phase Cj is given above (coefficient of G

j for a given N). aN

is the product of the N singly occupied orbitals in increasing order and

xJ;N is the jth

standard SEF of multiplicity S for N electrons.
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APPENDIX 2

Spin-Eigenfunctions and SEF Diagrams
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For an N-electron system having mu ltiplicity SN where N > 2 and
SN # SN(MAX), there are several linearly independent,spin-eigenfunctions ,
(SEFs). A convenient set of orthogonal SEF s can be'gener‘ated from the

appropriate (N-1)-electron functions using the recursion relationships:

1) If Sy > Spy_q: |
N~ °N-1 Xy = Xpgq @

2) If Sy < Sy 4° . »
N N-1 _ N
XN = 2 Syo1 Xn-18 ~ Ono1Xn-D@

A wn

where XN-1 is the parent-SEF. whose multiplicity numbef is SN-l‘ SN-l is
the spin lowering operator for (N-1) electrons.

If two horizontally contiguous electron numbers inscribed within a
rectangle implies singlet coupling and vertically contigu.ous electron num-
bers inscribed within a rectangle signifies multiplet coupling, the 2-electron-

singlet and triplet SEFs are:

1 2= 5 (B - pe)

1

From these, two independent 3~electron doublet SEFs are obtained:

_ 1 - ‘
= 5 (aB - Ba)a 4G1

O | =
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As the representations imply, the G, function preserves the (1 2) s1ng1et
couple and the G, function preserves the 1,2) tr1p1et couple. |
| As the number of electrons increases, the resultlng. spin eigenfunctions
soon become too complicated to write down. Howevef, the SEF diagrams,"
which convey all the pertinent 'informat‘idn about the fun(:_tiohs,"are easy to
construct:-4 - ‘
1) If the multiplicity inci'eaSes, add an electron number to the
bottom of the left hand column of the appropriate (N-1)-electron
diagram.- |
2) If the multiplicity decreases, the electron number is added to
the bottom of the right~hand column.
3) Extend rectangles to inscribe all vertically or horizOntaily con-
~ tig wous numbers. |
The resultant diagrams are interpreted as follows:
1) Horizontally contiguous positions are singlet coupled.
2) Vertically contigiuous positions are multiplet coupled.
3) Positions 1 to (N~1) remain coupled just as in the parent function.
These diagrams can also be used to represent product orbital wave-
functions having these SEF spin functions by simply placing orbitals in the

,dve‘sired positions. For example, the 3-electron doublet in which orbitals

¢, and ¢, are singlet coupled is:

¢, &,
s

e, (2552)




92

Notice that this coupling is distinctly different from:

o2 s o
= (1 62050, (2E=B%) o
N | 7z

in which orbitals ¢, and ¢, are singlet coupled rather ;han ¢, and ¢,.
The standard SEF s for up through six- -elecfcrons are given.inthe follow-
ing:table.. The corresponding SEF diagrams are also given. In the spin
terms, a1 is used for @ spins and a 0 is used for B spins. A (**) pre-
:ceding a normalization coefficient indicates that our CI program employs
the negative qf that SEF. These functions were obtained using the gen-.

erating program SEFGEN.



"1E DOUBLET

93

COEFFICIENT
1
NORMALIZATION

- 2E SINGLET

COEFFICIENT
1
-1

NORMALIZATION

2E TRIPLET
COEFFICIENT
1
NORMAL IZATION

3E DOUBLET Gl
COEFFICIENT
1 :
-1
NORMALIZATION

- 3E DOUBLET G2

COEFFICIENT
2
-1
-1
*% NORMALIZATION

. 3E QUARTET

COEFFICIENT
1
NORMAL I ZATION

4 SINGLET 61
COEFFICIENT
1
-1
-1
1
NORMALIZATION

4E SINGLET G2
COEFFICIENT

-1 _
%% NORMALIZATION

Spifi- Eigenfunction Lisfing_ |

SPIN TERM
1 :
COEF IS 1/SQRT{

SPIN TERM
10
01
COEF IS 1/SQRT{

'SPIN TERM
11

COEF IS 1/SQRTH |

SPIN TERM
101
011
COEF IS 1/S5QRT{

SPIN TERM
110
011
101
COEF IS 1/S5QRTH

SPIN TERM
111
COEF IS 1/SQRT{

SPIN TER#M
1010
1001
0110
0101
COEF 1S 1/SQRTH

SPIN TERM
11060
0101
1001
iGlo
0011
0110
COEF IS 1/5QRT{

12

[EV) Bt

=[P

+ W




'4E TRIPLET 61

4E

 4E

4E

5E

5E

COEFFICIENT
1
-1
NORMALIZATION

TRIPLET G2
COEFFICIENT
2
-1
-1
*% NORMAL IZATION

TRIPLET G3
COEFFICIENT
3
-1
-1
-1
NORMAL I ZATION

QUINTET
COEFFICIENT
1
NORMAL I ZATION

DOUBLET 61
COEFFICIENT
1
-1
-1
1
NORMAL 1 ZATION

DOUBLET G2
COEFFICIENT

%% NORMAL IZATION

94

SPIN TERM
1011
0111

COEF IS 1/SQRT(

SPIN TERM
1101
1011
0111
COEF IS 1/SQRT{

SPIN TERM
1110
0111
1011
1101
COEF IS 1/SQRT{

SPIN TERM.
illl
COEF IS 1/S5QRTI

SPIN TERM
10101
10011
01101
01011
COEF IS 1/SQRT{

SPIN TERM
11001
01011
10011
10101
00111
01101
COEF IS 1/SQRTH(

12

w o —

fwp —

|

]~

L=

w
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5 DOUBLET 63

COEFFICIENT SPIN TERM
2 10110
-1 10011
-1 , 10101
-2 01110
1 01011
1 01101

*% NORMAL IZATION COEF IS 1/S5QRTH

5E DOUBLET G4

COEFFICIENT SPIN TERM
4 . 11010
-1 01011
-1 , 10011
-2 11001
-2 10110
2 00111
1 _ _ 10101
-2 ‘ 01110
1 01101

NORMALIZATION COEF IS 1/SQRTH

5E DOUBLET G5

COEFFICIENT SPIN TERM
6 ' 11100
-2 o110l
-2 10101
-2 . 11001
-2 01110
2 00111
2 01011
-2 . 10110
2 10011
-2 11010

*¥ NORMAL IZATION COEF IS 1/SQRT(

5E QUARTET 61

COEFFICIENT SPIN TiRM
1 10111
-1 01111

NORMALIZATION COEF IS 1/SQRTH

5E QUARTET G2

COEFFICIENT SPIN TERM
2 11011
-1 10111
-1 01111

NORMALIZATION CGEF IS 1/SQRTH{

36

72

2

o

),

)

)

)

P =

wls

£

[N S I

G

GE W

GoEle-




SE QUARTET G3
COEFFICIENT

96

SPIN TERM
11101
01111
10111
11011

NORMALIZATION COEF IS 1/SQRT( 12

SE QUARTET G4

COEFFICIENT SPIN TERM
4 11110
-1 01111
-1 10111
-1 11011
-1 11101 o
NORMALIZATION COEF IS 1/SQRT( 20
SE HEXTET |
COEFFICIENT SPIN TERM
1 11111
NORMALIZATION COEF IS 1/SQRT{ 1
6E SINGLET 61 _
COEFFICIENT SPIN TERM
1 101010
-1 101001
-1 100110
1 100101
-1 011010
1 011001
1 010110
-1 010101
 NORMALIZATION COEF IS 1/SQRTH 8
6E SINGLET 62
COEFFICIENT SPIN TERM
2 110010
-2 110001
-1 010110
1 010101
-1 100110
1 100101
-1 101010
1 101001
2 001110
-2 001101
-1 011010
1 011001

*¥* NORMALIZATION COEF IS 1/5QRTH{

24_

.

)

)

i

I

oy ey

Fwo -

A~

alwl=

L B

LN ISR
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6E SINGLET G3 '
COEFFICIENT SPIN TERM

2 101100
-1 - 100101
-1 101001
-1 , 100110

2 A 100011
-1 101010
-2 011100

1 010101

1 ' - 011001l

1 010110
=2 010011

1 011010

*%NDRMAL IZATION COEF IS 1/7S5QRTH 24 )

6E SINGLET G4

COEFFICIENT SPIN TERM
4 110100
-1 010101
-1 100101
-2 110001
-1 010110
2 010011
-1 100110
2 100011
-2 110010
-2 101100
2 001101
1 101001
2 001110
-4 001011
1 101010
-2 011100
1 011001
1 011010

NORMALIZATION COEF IS 1/SQRTH 72 )

£ Wl—
~ G|

on Uy|w
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6E SINGLET G5

COEFFICIENT SPIN TERM

: 6 111000
-2 011001
-2 101001
-2 110001
-2 011010
2 001011
2 010011
-2 101010
2 100011
-2 110010
-2 011100
2 001101
2 010101
2 001110
-6 000111
2 010110
-2 101100
2 100101
2 100110
-2 110100

%% NORMALIZATION CCEF IS 1/5QRTH{

6E TRIPLET Gl
COEFFICIENT

1
-1
-1

1

NORMAL IZATION COEF 1S 1/5QRTH

6E TRIPLET 62
COEFFICIENT

*% NORMALIZATION COEF IS 1/S5QRTH

6E TRIPLET 63
COEFFICIENT

%% NORMALIZATION COEF IS 1/75QRTH{

SPIN

SPIN

SPIN

101011
100111
011011
010111

110011
010111
100111
101011
001111
011011

101101
100111
101011
011101
010111
011011

TERM

TERM

TERM

144 )

12 )

i2.)

o~ Ol

|0

N Gyjw|—

oy |~

o~ |F Wi
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. "6E TRIPLET G4

-COEFFICIENT SPIN 'TERM
4 110101
-1 010111
-1 100111
-2 A 116011
-2 . 101101
2 001111
1 101011
-2 011101
1 011011 '

__NORMALIZATIGN COEF IS 1/SQRT(

6E TRIPLET G5

COEFFICIENT ‘ SPIN TERM
6 111001
-2 011011
-2 ' 101011
-2 110011
-2 011101
2 001111
2 010111
-2 - 101101
2 ' 100111
-2 1i0101

% NORMALIZATION COEF IS 1/SQRT{

6E TRIPLET G6

COEFFICIENT SPIN TERM
3 101110
-1 ' 100111
-1 101011
-1 - 101101
-3 011110
1 010111
1 011011
1 011101

NORMALIZATION COEF IS 1/SQRT{

6E TRIPLET 67

COEFFICIENT SPIN TERM
6 1101190
-1 010111
-1 100111
-2 110011
=2 110101
-3 101110
2 001111
1 1010i1
1 101101
-3 011110
1 011011
1 011101

%% NORMAL1ZATION CGEF IS L1/SQRT(

36 )

12 )

24 )

72 )

]

EEE=

e
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o\'uu

Oy W=
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6E TRIPLET 68

COEFFICIENT SPIN TERM
’ 9 111010
=2 : 011011
-2 101011
=2 110011 -
-3 111001
-3 011110
2 - 001111
2 , 010111
1 Olliiol
-3 101110
2 © 100111
1 101101
-3 ' 110110
1 110101

NORMAL IZATION COEF IS 1/S5QRT(

6E TRIPLET 69

COEFFICIENT SPIN TERM
12 111100
-3 011101
-3 101101
-3 110101
-3 111001
-3 ' 011110

2 001111
2 010111
2 011011
-3 101110
2 100111
2 101011
-3 110110
2 110011
-3 111010

** NORMALIZATION COEF IS 1/3QRTH

6E QUINTET Gl

COEFFICIENT SPIN TERM
1 101111
-1 011111l

NORMALIZATION COEF IS 1/5QRTH{

6E QUINTET G2

COEFFICIENT SPIN TERM
2 110111
-1 10111i1
-1 011111

NORMALIZATION CGEF 1S 1/SQRT(

144

240

2

6
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6F

6E

6F

QUINTET &3
COEFFICIENT

NORMAL I ZATIGN

QUINTET 064

COEFFICIENT

4
-1
-1
-1
~-1
NORMALT ZATiON

QUINTET G5
COEFFICIENT

NORMAL I ZATION

HEPTET
COEFFICIENT
1
NORMALIZATION

101

SPIN TeRM
tiloil
Oillll
101111
110111
CUEF IS 1/354RTH

SPIN TZRM
111ii01
OLiill
101111
110111l
11i011
COEF IS 1/5QRTH

SPIN TERM
111110
O11111
i0ilil
110111
111011
111101

CUEF IS 1/7S5QRTH

SPIN TERM.
1illll
COEF IS 1/5QRTH

1<

20

30

)

[vaujj o R~

[olxw > —
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PART THREE

The GVBTWO SCF Program

Abstract

Even for relatively simple Hartree-Fock (HF) or Perfect-
Pairing Generalized Valence-Bond (PPGVB) many-electron wave-
funétions, self-consistent calculations can be prohibitively expensive
for many chemically interesting systems. Considerable effort has
been devoted toward developing highly efficient computational techniques
for solving for such wavefunctions. The results of this research, as
embodied in the GVBTWO program, have made such calculations on

relatively large systems a practical reality,
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I. INTRODUCTION

GVBTWO is a fully optimized program written by F. Bobrowicz
and W. R. Wadt for performing PPGVB ]calculations. It can also
handle open- and closed~shell Hartree~Fock calculations, among
others. This program has brought PPGVB calculations of relatively
large systems into the realm of practicality as it is well over an order
of mdgnitude faster than its predecessor (GVBONE) written by J.

Hay and W. Hunt (1971). Moreover, GVBTWO converges more

rapidly and has a much wider radius of convergence than GVBONE.

o
o=t
O
D
|d
1‘D
wn
o,
-
1
[
Q
=
@
n
=t
®
=
==
o

The prograr

:3

ig gnecificallv degione
18 specilically designed

for wavefunctions involving N real orthonormal orbitals of the form:

V= 2 [T8e][F (i) 13X @
where 4 is the antisymmetrizer (determinant operator). {¢} is a set
of closed-shell orbitals. The PPGVB pair:

(Mot~ M, )«
is the natural orbital representation for two nonorthogonal singlet
vcoupled orbitals ¢1’nl and ¢ I’nz
A -l Japr = Ao da bl (4p-Po) -

where:

4‘;, N'( ‘A., w * 'A..‘ 4',,‘)
b = N (T b - T, th,)
(14 = (A Am)/ (Gt )
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& is a fixed function of the remaining orbitals having the general

form: :
$- 'IT[;);J}:]'/T

and X is the fixed spin function associated with these orbitals.
The energy of this wavefunction involves only diagonal 1~
electron integrals and the usual coulomb and exchange 2-electron

integrals:
N ..
E- Z [-'lﬁ h;;.*’ . 3:;] * 2-‘; [4'9‘ Jij + by K,,] ()

where:

= K& hle)= (hltem]d)
:r AP TAERCIUALI YRR Y
K, COALATNERCE N AL N CTIT

The coefficients {f,a’,b’} are functions of the pair coefficients {}
and the forms of ® and X. The coefficients associated with closed
shell orbital ¢ , are ‘always:
fy=n=1
= af;
b:'v =" '&
Wheréas those associated with paired orbitals ¢m1 and ¢m2 are

always:
{ am‘n‘. 1!’, /(1n, 10. ) L =42

a—p,n,= o
- 1n.1n¢/(ﬂ:,* :v,) 3 Az0,2
JGTIM,:: - btj.m; g4 #Ma

b m, M‘

Ljm;



106

Definitions of the remaining coefficients depend upon the form -
of &X.

Actually, GVBTWO is capable of solving for the orbitals
involved in (2) for any arbitrary set of {f, a’,b’} coefficients, even
if they do hot define a wavefunction of form (1). However, for wave-
functions of this form, it can optimize for the pair coefficients
{\} as well as for the orbitals themselves.

Casting (2) in terms of the more computationally convenient

operators:

Q-

L g

% -
" ”
E = Z [Jﬁhxz*'a-ugxi] "1‘; [4‘3'934"6'9 2'/".1]

<k »-
~
S
-

KA

_ B aer .
where a;; = 43‘{1’ afij = Za{j and bij = 4bij + 2a{j, the coefficients

associated with closed shell orbital ¢ ” become:

Agy * ‘hs ;i bp=0 f=LN

and for paired orbitals qu and cpm they are:
1 2

Lemm, = J'Fm' Axn2

Amm, = O

Dmm, = =4 Ry /(T * Ay )

a-/'m.‘ = ‘*Gfu; g 4742

b/'m.- = 0 2% m, My

Applying the Variational Principle to this expression yields the usual

variational condition for the optimum orbitals:
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"
O = 2; <S.lH‘|4'.>
where the orbital variations {6} are constrained so as to maintain

orbital orthogonality at least through first order. The one-particle

hamiltonians are:

H. fh v a: Qs *ig [a'; gf t bj..' }-;]
'ﬂ [h* Aug.;‘/g; (A';ﬂ;* B'xﬂ-;)]

where Aji = aji/fi and Bji = bji/fi“ Since for closed-shell orbital
¢,

Aj,= A”:..:‘y"» } B’-y: Byjta
if

b hed )59,

4§83
then:

H:= £ [ 4 +,§J (A;: 9, +BJ-;13)]
In terms of these hamiltonians, the energy is:

Ex 00 [ £ huv (4 [H|2)]

These equations form the basis from which the self-consistent set of

orbitals and pair coefficients are found.
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II DISCUSSION

GVBTWO is a Fortran program written for the IBM 370-155
system. It is linearly dimensioned and takes full advantage of zero
chefficients whenever possible. Maximum efficiency is attained through
elimination of virtually all redundant computations. All symmetric
matrices are stored and used in triangular form with diagonal elements
3 'va:lhe. The iterative cycle is optimized as thoroughly as possible through
liberal use of initially defined indexing arrays and by initial preparation
of input infegrals.

The program requires a POLYPAIR preprocessed integral input

(see Appendix) in which the usual 2-electron integrals are replaced

pairs:
VK(ITKL) = + [ (zKITL) + (rl7K) ]
VI(zTKL) = (ITIKL) - VK (ITKL)

ITKL= IT=(XT-1)/a + KL  IX¥ykL
IT= Is(X-1)]l2a+7T I»T

where (IJ IKL) is a 2-electron integral written in (11| 22) form. Use of
these quantities makes possible much more rapid generation of the
required JL.,Q and X matrices than is possible using raw integrals.

The hamiltonian coefficients {f, A, B} for the most common forms

of wavefunction (1) in which:
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gX-=o0

K= didy(ap-pa) HF open-shell singlet
3

are preprogrammed. For all other possibilities, these coefficients must

LEACKID) HF open-shell multiplet

be read in. Since several orbifals can have the same hamiltonian, the
orbitals are grouped into shells. Thus, only the {f, A, B} coefficients
which define each shell are required. The program makes full use of
the fact that mixing between orbitals of the same shell does not affect
the energy.

.The orbitals are defined in terms of a set of primitive basis
functions {x}:

; Ciw %

subject to the constraint that (¢, |¢ ) =98, Hence, orbital optimi-
zation cons1sts of self-consistently determlmng the optimal {c}
within the constraint of orbital orthogonality. Symmetry restrictions
cah be placéd upon these orbitals by initially partitioning the space
scanned by {x} into the desired symmetry types. Each orbital is
optimized only with respect to the space having the proper symmetry.
The program takes full advantage of these restrictions and of the
construction of the symmetry partitioned space in terms of the
primitive bases.

For purposes of discussion, the program can be partitioned

into the following sections:
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Initialization:
» A) Input - Read in data and set initial parameters
B) Formation of the initial MO transformation matrix
and determination of symmetry type basis set
information
C) Preparation of input integrals and generation of

initialh, § and % matrices

The Iterative Cycle:

D) Hamiltonian Optimization -
Optimization of pair coefficients
E) Orbital mixing -
Optimization of orbitals with respect to each
other through independent rotations
F) OCBSE orbital optimization -
Optimization of orbitals with respect to the

space orthogonal to them (the virtual space)

Termination:

‘G) Output - print and punch final results
The individual tasks involved in each of these sections will
now be discussed in detdil. Whenever appropriate, an outline

of the computational procedure employed will be given.
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A. INPUT

GVBTWO requires the following input data:

TITLE

FORMAT (10A8)

- TITLE =  case description (molecule,
basis, etc.g)

NBF, NPAIR, MAXIT, ITERO, IWRITE, IPUNCH, IPRINT,
IOVLP, IVIRT, IEXTRP, IELOW
FORMAT (1615)

NBF = number of basis functiohs
(maximum is 50)

NPAIR = nut{léo)er of PPGVB pairs (maximum
is

MAXIT = maximum number of SCF iterations

to be permitted in calculating the
new pair coefficients for the PPGVB
pairs. (If zero is read in , ITERO =
1.) A reasonable choice for ITERO
is 5.

no intermediate print out
intermediate print out

rotation matrix and MO transformation
matrix after orbital rotations are
also printed

(IWRITE.EQ.1) > _A, 0 and Z matrices over
primitives and orbitals are printed
out for each iteration. (Make sure
the PRT parameter on your SET
card is large, e.g., PRT = 20.)

(IWRITE. LT. 0)
(IWRITE. EQ. 0)
(IWRITE.EQ. 1)

\AAY

éIPUNCH. LT. 0; >  no punch

IPUNCH.EQ. 0O > MO transformation matrix punched
: : out

(IPUNCH.EQ.1) > MO transformation matrix and

- occupied orbitals are punched out

§IPUNCH .EQ.2) > occupied orbitals are punched out

IPRINT.LT. 0) >  extra final output printed out

(see IPRINT . LT. 0). Program
fries to read basis set information
off the integrals tape and tle n prints
it out. If basis set information is
not there, the program continues,
but gives an IHC213 error.



(IovLP.LT.0) >

(IOVLP.EW.0) >

(IOVLP.GT.0) >

(IVIRT.EQ.0) >

(IVIRT.NE. 0) >

(IEXTRP.GT.0) ->»

(IEXTRP.LT.0) >

(IELOW.NE.0) >

3. CONVG, ZERO, SKIP, ROTT
FORMAT (5D15. 8)
CONVG -
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after dia:gonalization of a hamiltenian,
the OCBSE transformation matrix
is ordered by overlap with previous
orbitals. Good for trying to solve
for excited states that are not the
lowest energy states of that symmetry.
It is also good when ordering by
eigenvalue leads to wild oscillation
of the energy (a bad guess), where
virtual and occupied orbitals switch
positions from iteration to iteration.
after diagonalization of a hamiltonian,
the OCBSE transformation matrix is
ordered by eigenvalue
after diagonalization of a hamiltonian,
the OCBSE transformation matrix is
ordered by eigenvalue for the first
IOVLP iterations and then by overlap
with the previous orbitals for the
remaining iterations. Good for bad
starting guesses.
virtuals are obtained from Schmidt
orthogonalization to the occupied orbitals
obtained from diagonalization of the
hamiltonian matrix. These virtuals,
therefore, have no physical meaning
and their orbital energies are set
equal to zero. .
virtuals are obtained from
diagonalization of the hamiltonian
matrix. This procedure is, of course,
used when the orbitals are ordered
by overlap.
2-point extrapolation of the transformation
matrix is performed every IEXTRP
iterations starting with the first
iteration.
2-point extrapolationof the transformation
matrix is performed on iteration I+1
whenever the condition I(SQCDF(I)—SQCDF
(+IEXTRP))/SQCDF(I) | <(0.7)**|IEXTRP|
is met. (N.B. Extrapolation is also
performed on the first iteration.)
orbital rotation coefficients selected by
gigenvalue rather than overlap.

T

convergence criterion, which is compared
with the sum of the squares of the
differences (SQCDF) between all the
occupied orbital coefficients for the past
iteration and the current one. (If zero is
read in, 1.D-8 is used.)



ZERO

SKIP

RO'I‘TST

NSYTYP
FORMAT (1615)
NSYTYP

DO 5 I-l,

NSYTYP SYM(I),

NOCC (I) FORMAT

(A8, 2X, 215)
SYM(I)

NTOT(I)

NOCC(I)

ASPIN, IOPEN, INHAM
FORMAT (A8, 2X. 215)

ASPIN
IOPEN
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coefficient criterion, i.e., all
coefficients in the transformation
matrix LT ZERO are set equal to

0.D0. (If zero is read in. 1.D-8 is
used.)

orbital skip criterion, i.e., if the sum
of the squares of the differences
between an occupied orbitals coeificients
for the past and present iterations is

LT SKIP then the primitive J and K
matrices for this orbital are not
regenerated. This does not apply for
closed~shell orbitals (If zero is read in,
CONVG/NBF is used.)

rotations shut-off parameter. If SQCDF
from the previous iteration is greater
than ROTTST, then the rotations of the
occupied orbitals belonging to different

h - i .
hamiltonians are shut off. N.B, If zero is

read in for ROTTST then ROTTST is set
equal to 1. D6, so that the rotations are
always performed. On the other hand,
by setting ROTTST to a value less than
zero, the rotations will be shut off
entirely.

number of irreducible representations
of the point group to be used in the
calculation, i.e., number of symmetry
types (maximum is 15).

symmetry name for the I symmetry

type, e.g., Al1G or SIGMA.

number of I symmetry functions, i.e.,
mber of independent functions of the

I symmetry type that can be formed

from the basis set.

number of occupied orbitals for the th

symmetry type.

spin name, e.g., singlet, doublet, triplet,
etc., left-adjusted

number of open-shell HF orbitals, if
INHAM = 0. If INHAM 30, shell for

which the hamiltonian is to be read in
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11.
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(INHAM.EQ.0) > no hamiltonians are to be read in
(INHAM.NE.0) > INHAM hamiltonians will be
read in (NB. The closed shell
hamiltonians, #1, is not read in)
IF (IOPEN. EQ. 0) GO TO
10 IF(INHAM. NE. 0) GO
TO 8 (IORB(I),I=1, IOP EN)
FORMAT (1615)
GO TO 10
IORB(I) = list of occupied orbitals appearing in

the HF open shell.

(F(I),1=2,INHAM+1

FORMAT(5D15 8)

F(I) occupation number for shell I (i.e. fi)
DO 9 J=2, INHAM+1
(JORB(I, J ), I=1, IOPEN)
FORMAT (1615)
(AJ (I J) I=2 INHAM+1)

FORMAT (5D1:> 8)
AK(1,J),I=2, INHAM+1)

FORMAT (5D15. 8)

JORB(, J) ith §>rbita1 of Jth shell (0 signals end of
list
AJ (I,J ) = shell J@ operator coefficient for orbitals

in shell I ie. Aij).

AK (I,J) shell J % operator coefficient for orbitals
in shell I(i.e. B j).

IF(NPAIR.EQ. 0) GO TO

11 DO 10 1=1, NPAIR

K1(I), K2(1), C1(I) C2(D)

FORMAT (215 5X 2D15, 8)

a0

K2(1 = the two occupied orbitals involved

( in the Itﬁ_P'P%V'B pair.

Ci(I

C2(I;} = pair coefficients for the occupied orbitals

K1(I) and K2(I), respectively, that form
the Ith PPGVB pair. (i.e.%s+ %)

NIN

FORMAT (1615) :

NIN = number of starting vector to be read in.
If NIN= NSOS (the number of occupied
orbitals plus virtuals), then no symmetry
vectors are read in. If NIN=0, then the
symmetry vectors are used as starting
guesses. If NIN=NORB (numbered orbitals)
NIN set to NORB, but symmetry vectors
are still read in.



12.

13.

14,

15.

16.
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N.B. Vectors are to be read in by symmetry

IF(NIN. EQ. 0) GO TO 14

FMT
FORMAT (10A8)

FMT -
DO 13 J=1,NIN
TRLAB(J)

FORMAT (10A8)
TRANS(I, J),I1=1, NBF)
FORMAT (FMT)

TRLAB(J) =

TRANS(I, J),

I1=1, NBF) -
IIF(N"IN.EQ.NSOS) GO TO

6

NREAD,IDENT
FORMAT (1615)

ATTIT A TN

NILALD =

(IDENT. NE. 0) =

Il}é‘(IDENT. NE. 0) GO TO
DO 15 J=1,NSOS

(KX(I,d),KY (I
FORMAT (1615}

KX(I,J;
KY(I,J

1GO

FORMAT (1615)

IF(IGO.NE. 0) GO TO 1
(IGO.NE. 0) >

J),1=1, NREAD)

type. Within each symmetry type,

the orbitals (with closed-shell orbitals
prece & ing the others) preced a. the
virtuals (if NIN=NSOS).

format for reading in starting vectors

label for the Jth starting vector.

Jth starting vector

largest number of basis functions
with nonzero coefficients for any one
sy mmetry vector

the unit matrix will be used as the
symmetry matrix. (Normally used
when there is no symmetry. )

Jth symmetry vector defined by pairs
of numbers, the first (KX) being the
number of a basis function that has a
nonzero coefficient in this symmetry
orbital, while the second (KY) is the
value of that coetfficient. (If KY is
zero, KY is set equal to 1.) N.B.:
If KY.GT. 4, then the coefficient is
treated as sin KY, where KY is in
degrees. This is convenient for
molecules with C; or higher axes of
symmetry.

program starts over reading a new
data set, but using the same integral
set
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In addition to these variables and initialization of hamiltonian

coefficients, the following indexing arrays are established:

ISNX(I)

NCONF ()
NHORB(J)
MSYMPR (1)

IDIAG(I)

IORB

Ix(I-1)/2, I =NBF+1

position prior to beginning of the I
triangular array row

shell number of orbital I

number of orbitals in shell I
linear position in the MO transformation
matrix prior to the beginning of the
column defining orbital I

position of the diagonal element of the Ith
orbital in a symmetry packed triangular
array over the orbitals

sequential list of nonclosed-shell orbital
number by shell number

th
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B. The Initial MO Transformation Matrix and Symmetry Type

Basis Set Information

The initial MO transformation matrix is constructed from
the inputed initial orbitals, the primitive overlap integrals, and
the symmetry vectors. This matrix defines the orthonormal
occupied  orbitals and virfuals (defined simply as those functions
which scan the available space orthogohal to the orbitals) in terms
of the primitive basis set {x}. The matrix is partitioned into
symmetry blocks, with the occupied orbitals pregading the
virtuals in each block. The orbitals of each symmetry type are
arranged with closed-shell orbitals preceding; all others. Throughout
the iterative cycle, this matrix will continually be revised so as to
define the current MO basis (orbitals plus virtuals) in terms of the
primitive basis.

The primitive basis functions used by each symmetry type are
determined, as this information can significantly reduce the
operation count for computations involving the MO transformation
matrix. Since primitive operator matrices are always transformed
to an MO basis in symmetry blocks prior to use, primitive fnatrix
elements between basis functions I and J need only be calculated
and stored if I and J are simultaneously used by some symmetry
type. Therefore, the triangular indices:

IJ=1x(1-1)/2+J I1=1J
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of the needed primitive matrix elements are determined. Using
this information, operations involving these matrices can be
'performed on packed (unneeded elements deleted) matrices.
Moreover, this information permits deletion of unneeded VJK
pairs from the input POLYPAIR integral list

Procedure:

After Schmidt orthogonalizing the input symmetry vectors,
the initial MO transformation matrix is constructed a symmetry
block at a time. Before doing so, however, the M input orbitals
of a given symmetry type are first purged of any possible
symmetry contamination by projecting each orbital into the N
symmetry vectors (orthogonalized) of that symmetry type { w}
on the basis of overlap:

AL

4=

Since: nOE ' nOF

4‘; : Z C:»T; ) W,w= ;diuxi

ant

the symmetry-pure orbital is:
w8F

¢y = Z Ciy T‘

ani

where: NOF

Ciy = Z (¥ ’W:>¢J£{
"'

nee ® [ ]
(#;,w‘) = ,'Z’ [ C‘vdju ff.‘/.vdid] S;:.

Siy= (HalZy) /(1% 854)
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While doing so, the M symmetry vectors having maximal overlap
with these orbitals are noted. The symmetry block is then
constructed by Schmidt orthogonalization of the resulting orbitals
and the (N-M) symmetry vectors of that type having minimal overlap
with these orbitals.

After the matrix has been constructed, each symmetry block
is scanned to determine the primitive basis functions used by that
symmetry type. The :triangular indices associated with these basis
functions are also determined. Once all blocks have been scanned,
a list of the unique required triangular indices is constructed in
increasing order.

N.B.

1) If a complete MO transformation matrix was inputed, this
matrix is simply Schmidt orthogonalized unless these are
no virtuals. In this case the input orbitals may be purged
of symmetry contamination using input symmetry vectors
if desired.

2) If no initial orbitals were inputed, the initial MO trans-
formation matrix consists of the orthogonalized >sym’metry

vectors.
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C. Input Integral Preparation and Initial Matrix Generation

The input POLYPAIR VJK pair list is in packed IJKL canonical

order (zero pairs deleted) where:

VK(ITKL) =+ [ (zx170) +(z01TK) ]

VI(TKe) = (ITIKL)=VK(ZTKL)

ITKL= ITx (ZT-1)/2 ¢+ KL IT) KL
IT = Is(L-t)/2+ T Iy J

Packed into the lower two bytes of the VK element of a pair is the
KL (column) number. A separate array indicates the number of
pairs having the same I J (row) value. A detailed description of
this input list is given in Appendix 2,

As explained in Appendix 1, a pair whose row or column number
corresponds to an unneeded primitive matrix triangular index is of
ho value. Consequently, such pairs are deleted from the list at the
onset, Since the number of operations involved in generation of
primitive.A,0), and X matrices is directly proportional to the
number of VJK pairs, this can reduce iteration times significantly.
To further increase the efficiency of matrix generation, the list
of needed pairs is stored on disc in packed canonical order in
records of the form:

IST, IEND, VJ, VK
where VJ(LTH) and VK(LTH) are REAL * 8 arrays containing the
pairs. IST and IEND are the number of the first and last occupied
rows for which there are pairs in the record. A separate array

holds the actual 1J values of each occupied row. Packed into the
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lower two bytes of the first VJ element of a row in the record is
the number of the last pair of that row in the record. The column
(KL) number of each pair is packed into the lower two bytes of the
VK element. Finally, the input T (kinetic energy) and V (nuclear
potential energy) 1-electron integrals are added to form the
primitive h matrix, This is also stored on disc after dividing
diagonal elements by two

The initial primitive ) and % matrices for all but closed-shell
orbitals are then generated and stored on disc (with unneeded elements
deleted and diagonal elements 3 value). While efficient generation
of such matrices using row 2-electron integrals is rather complicated,

it is straightforward using VJK pairs: |

CUNEAE Z,' Dyp VT (ig42) + )'j D} VT (4dig)

)41

CIAEAEE Z;‘ Dy VK(ig30) s 3 O UK (4ig)
UL FY Yy
where: g

v
Ois= CawCrn [(1+842) ; #= E Cav Xy

In addition, these matrices are transformed over the orbitals in

symmetry blocks which are then stored on another disc unit.

Generation of the primitive A matrix is also straightforward:

CiLesgo

(LAl = (Llnlt) 4 3 (1 [ $1%)
= (2 |hl%)+ 1o D, VT (ighd)

l\(.c.j

+ 2:‘ DJI VT(JJAJ)

1741
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where: (C103€0)

4 H
Q‘J_ lfs‘l vzc*)cly

This matrix is also transformed over the orbitals in symmetry blocks

and both the packed primitive and orbital transformed matrices are

stored on disc.
Procedure:

From the list of required primitive matrix triangular indices
an array indicating which indices correspond to needed and unneeded
VJK pairs is constructed. Using fhis array, the input pair list is
processed a row at a time, storing only the needed pairs in arrays
VJ and VK sequentially. Since the input list is in packed canonical
order, this can be done with only one input record at a time being
held in core. Upon encountering the first needed pair for row IJ
(there can, of course, be none), the number of 'occupied' rows is
incremented by one and the IJ value is recorded (i.e. the kth
occupied row has an actual row number of 1IJ). Once LTH pairs
have been accumulated or the input list is exhausted, they are
written on disc (IDISC) in records of the form described above..

In order to do this, as the pairs for a given record are accumulated,
the occupied row number of the first pair is noted (IST) as is the
occupied row number of the last pair (IEND). In addition, once an
occupied row has been processed, the number‘ of the last pair of

the row in this record is recorded. This information is automatically
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packed into the first VJ element of that row in this record through
use of suitably equivalenced arrays. Since the input VK elements
already have the pair column numbers packed into them, this
information is automatically passed on. Finally, the number of such
records is noted. Once the lé.st pair record has been placed on disc,
the primitive h matrix (diagonal elements 3 value) which was formed
from the input T and V integrals prior to processing the pair list is
written twice on the same disc unit,

The initial primitive 9 and X matrices for the nonclosed-shell
orbitals are then generated sequentially from this integral list
using the algorithm given in Appendix 1. These matrices are purged
of unnecessary (and meaningless) elements and stored on disc
(JUNIT). Each record consists of the ﬂ and L matrices of a particular
orbital along with the orbital number. In addition, these matrices
are transformed over the orbitals in symmetry blocks and are likewise
stored on another disc unit (IUNIT). Finally, the primitive 4 matrix
is generated in an analogous fashion using the density matrix Qc.
This matrix is packed and stored on JUNIT along with the primitive
$and & matrices. It is also transformed over orbitals and stored on

IUNIT.
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D. Hamiltonian Optimization

The energy contribution of the Mth PPGVB pairs:

(lAm‘ 4’:; - xn‘ 4’:, )dﬁ
is:
Em = d {;n. hn.m. L fm‘hn,n,, * Amm, g‘n,m. + Qopym, g‘n,n.

+d G m 9""’ +d b"""‘ 2'/""& +2 E [ aj""p/""“ ¢ é';'a‘ ﬂ;ﬁ; ]

L*h2
/f LT

since:
an.ﬂ; : O
bﬂ,ﬂ; 2 -4 10"10'3 /(1:1‘ M 1:; )

b:'n, =0 L3102
aj,,‘ s ‘H“‘;fm,‘ F#m,m
Omm, + 4w

6,,, (1:1.‘]:13) = ‘Z‘; 7‘:‘ [-‘l; h"'."".’ * -."l': 9““""3 * E &ﬂjm‘]

Pl
= DAy Emg
where €, =3 E . Thus if: |
e b 4L _ .
Xm.' T 0k hmm. v ﬂn.m. ;*;'.‘ 1‘;19,.,‘-:

"lr')"mnu *:ZLpﬁ.'m ! z: {’.9""7‘

Tim,m,lecee0]

£m s jn‘v,/ﬁn. #
€, [ Xt 63 K- Xou 1/ 14631
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€
Requiring € =~ to be stationary with respect to £ ( Jen D 3 =0)
gives: "
X )} . .
€m = -;-(f'i [H (75) ] i YmrO @ £
where:

X.. = Xn. - Xm,,
Ym = Zn,mk

Since ‘%, ,, =0, the minimum € invariably corresponds to.the

root for which E‘fn =0, Hence:

U
X 2
Em = 'VX{“" ['*(75) ] : Yazo # £,20

rm

Thus by solving this simple equation, the optimum pair coefficient
“and {f,A, B} coefficients for the MR PPGVB pair can be obtained.
However, since X.m depends upon the f values of the other pair,
{‘8} must be determined sequentially. Moreover, since these
coefficients define the hamiltonians used in orbital optimization,
their degree of validity within each iteration can have a significant
effect upon overall convergence. Consequently, these parameters
are continually evaluated through {X} updating until self-consistency

is attained.
Procedure:

Initial {X Y} values are calculated simultaneously from the

orbltal transformed,L Q- and A’ matrices stored on disc (one pass)
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using the current f values { f °}. In addition, the quantities:

w:‘ = g'n.m B Qn.n..
(d:‘ ® gn,n.- 900.0,, ngm

are also calculated for all pairs. Once 8m is determined from X,

and Yhi . the other Xs are updated before calculating the next £:
Xo= Xo + (faofn ) Wa's (- fu ) W

where £, = Emfm,* €n/(1t€m)

This extremely rapid process of £ evaluation and X updating is

continued until self-consistency is achieved “Finally, new pair and

hamiltonian coefficients are calculated from the results.
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E. Orbital Mixing

Optimizing the orbitals with respect to each other is most
easily accomplished by considering only two orbitals at a time. If
only orbitals ¢y and ¢, are allowed to change, the variational
condition is:

0= (SwlH|®)+ (S IHUBY 5 ¢hibd=0
where ¢y + 6w and ¢p + 6 p must be orthogonal at least through
- first order. Since optimization is to be with respect to occupied
space, a quadmtically convergent ‘solution is required. 2
If:
¢, N(botau) ; 4= N(d,+4,)
where { 3 } are the current guesses for the orbitals, the energy

dependence upon these new orbitals is:

= (w|Hylw)+ + (V[ Hylv)+ (AUMH...IW. (A»IAH»I%){»

where AHy (AH ) is the first-order change in Hw (H ) owing to the

changes Ay and Ay :
HN:: I-Iw."' AHN*"
Hy = H))' * A HD +

Since these orbitals are to be optimized only with respect to each
other :
Bu= Eu 4’”. 5 Be = Euy b, ;5 N=Ns= (1 tEuy) va
where the rotation coefficient is an adjustable parameter. Assuming
wy Will be small, it can be obtained in a quadratically convergent

&
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manner by solving:
€, (14E68) = (Wit b [Hu[w0r €0 00)
s Ve oo | Hu | Vo= by )
v Euy {We | AHy-OHy [ Vo)
Since Hp = {y hy + Ay 93 ",;: (amcyﬂ.o' + ba:v 2:) .

Hy.'-’ 'fu ['A-"' Z (Aai»g,.:,* 8. *A‘.)]

At [ewsan]
and
AH, = a»»-AQ» * Qo 49,.4 t by, & T
Hence:
Ve IAHw‘AHbe%) = (Vs , (2o~ %us) 8 Jo + (Qsw-2w) 8 Y
+ byw (8%, -0 %) [we )

= Ewn [ X pw.v. tY K ]

where:

X = ‘Fw(ﬂyw’ﬁyw)';{' (fwgaw ¢ f»ﬁw)
z "E (£ Auw t ho ”».v)‘ st Avw -3 0 Bow
Thus:
€y (l*f y) (thHw."Wo>f(yolH%ch> "2£m <J)¢ IHN.’H)’.IM)
€&y [ I 19y + Cwo [Hig |00 ) ¢ X D+ Y T ]

e . . €,
Requiring €y to be stationary with respect to &, ( Y€msfe, =0 )

gives:
(1) E = _CL‘!-! + [ C"”) ]’/’. . D 80’?&0&-0
wy 2 Dwy 20w ! v
where:

= <V | Huy= Hoy 1Y) = (i | Hup Hy, | + Xﬂm 'Y 2:6»
DM,- (.V.,[Hw_, - Hy, 1Y)
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As is required, this equation satisfies the variational condition
(Dwv =0 = Swv)" Since €y, is independent of £y, if ¢ and ¢,
are in the same shell (H'“‘, =H 1)’ such coefficients can always be
taken to be zero. This, of course, simply reflects the fact that the
total energy is invariant with respect to mixing between orbitals in
the same shell. Since (1) is valid only for the root corresponding
to |Ingf |<1 (teast change), this is the root normally selected.
Whenever this root does not differ in sign from Dwv’ it is
indicative that convergence is toward high-energy orbitals. Hence,
if lowest-energy orbitals are desired, the root which differs in sign

from Dvs)v may be more appropriate even if it corresponds to

Ingl| >_1'

In theory, these 'rotations' should be performed sequentially,
using updated orbitals based upon the results of the preceding
rotations. However, this is not practical since newd and X or.A

matrices would have to be calculated after each rotation (simple

transformations such as <wo| ﬂ w [ve>><w|(,, |v>are insufficient).
Instéad, the rotations are performed independently. That is, the
same set of original orbitals is used to calculate each rotation
coefficient. Thus, while each coefficient is obtained quadratically,
this procedure can approach an overall linearly convergent limit.
This is compounded by the fact that the new orbitals defined by all

of these coefficients are generally nonorthogonal. These nonorthogon-

alities could be removed by (arbitrary) Schmidt orthogonalization.
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However, a more logical way of obtaining orthogonal orbitals is to
apply the rotations defined by these coefficients sequentially to the
original orbitals according to increasing coefficient magnitude. In
doing so, high-order terms are kept to a minimum since they depend
upon the smaller coefficients. Moreover, this approximates, as
closely as possible, vigorous sequential rotations since if va is
small, subsequent rotation coefficients should be almost the same
with or without orbital updating. However, if ng is large, this

need not be the case.

Procedure:

The Coefficients:
C:,w. = (a).lH».lwo)s* (VOIHMIy‘) tX gw.y.' )4 2/“
Du,v, = (W ,Hwo'HVo ‘y’>

for orbitals ¢, > ¢, which are of the same symmetry but are in
different shells ai'e all calculated simultaneously from the orbital
transformed.4 , '0, and Z matrices stored on disc (one pass) using

the {f,A, B} hamiltonian coefficients. In addition, the quantities:

RN

are determined for all orbitals. At this point, the current electronic

energy is evaluated after first calculating the 1-electron energies
hy,v, = (Ve ,h ,y°>

from the primitive 1-electron integrals. stored.on disc:

E-= Z: [£ h;.z. + € ]
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Working with one symmetry type at a time, the rotation
coefficients are found using (1) and the desired root selection criteria,

where:

Cuw, = C:;.u. = €Cww, = Eu,
The rotations defined by these coefficients are then performed
sequentially according to increasing coefficient magnitude on an
initial unit matrix. The resulting orthonormal orbital transformation
matrix is then used to revise the appropriate columns of the MO
 transformation matrix, In addition, the change in each orbital and the
total change in all orbitals (SQCDF) is evaluated.
| Once a complete set of new orbitals has been so determined,

-control is passed to the next step (OCBSE) without generating new

primitive.k,(, and Z matrices.
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F. OCBSE Orbital Optimization

If only orbital ¢, is allowed to change, the variational condition
is:
0=<6, |Hy | ¢,> (1)
~ where the variation 6y is orthogonal to all the orbitals and:
H,,'-‘ 'Ev h + 0»»»9,; + Jg [ a—zugs + b..‘uﬁ]
s [he T (A,9: 480 %) ]

43 tesgo
]
= *; LJy

Therefore, the linearly convergent solution for ¢, is obtained by

solving: 3

'
€y= <M Hv.”’v>/(¢v,'ﬁ'>

where H;; - is constructed using the current orbitals {¢, }. Letting:
¢y= Co 4‘0.* ‘:c",«"

where {X } are the NV virtuals (functions orthogonal to the current

orbitals) having the same synimetry as ¢, . Hence:

€y = E CJ.C:{ %}/g C:E

4, q%0

where:

“;o': <¢v.l“1».“’v.)
#,; > <¢»IHL."X;> = H,
g (%) Hil %e)
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Thus, ¢, is obtained by solving (in matrix notation):

Hec=£¢C (2)

This equation, of course,satisfies the variational condition (1).

If several orbitals have the same hamiltonian (are in the same
shell), all such orbitals having the same symmetry can be obtained
simultaneously in a linearly convergent manner by solving (2) in
which the orbital expansion includes the current guesses for all
these orbitals in addition to the virtuals. Each new orbital
corresponds to a different (orthogonal ) root of (2).

The choice of which root (s) corresponds to the orbital (s)
can be made on the basis of overlap with the initial orbital(s)

(least change) or on the basis of eigenvalue (lowest energy). If
lowest-energy orbitals are desired, selection by eigenvalue is
'preferable. When conveying toward high-energy orbitals, selection
by overlap is required.

The shells are optimized sequentially, using the new orbitals
defined from optimization of prece d ing shells, This procedure,
whereby orbitals are always optimized in the field of current orbitals,
differs from the usual approach in which original orbitals are used

in all hamiltonians. This method of 'continual updating' is no more .
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time consuming and, in general, has been found to lead to more
rapid overall convergence.

Procedure:

The orbitals are optimized a shell at a time in the following
manner. The primitive hamiltonian matrix (H ) is constructed from
the packed primitive.k, 9 and 2’ matrices stored on disc using that
shells {A,B} coefficients. Initially, these matrices are on a single
disc unit (JUNIT) with the.A matrix in the last record. Each other
record contains the number and theg and X matrices of a particular
orbital. For subsequent shelis, revised ﬁ and X matrices (if any),
which are to be used in place of the originals, are found on another
disc unit (IUNIT) in records of the same form. Once completed,
the hamiltonian matrix is transformed to MO basis for each symmetry
type containing an orbital of that shell. For each symmetry type the
basis consistsof the current orbitals of the shell plus the virtuals (i.e.
orbitals not of this shell are excluded). Each symmetry block is
separately diagonalized to give the desired number of roots. This
can be either the number of orbitals or the rank of the matrix. If
the new orbitals are to be taken to be the lowest-energy eigenvectors,
only the former number of roots are really needed. New virtuals are
then rapidly obtained by simply Schmidt orthogonalizing to the new

orbitals the NV original MOs having minimal overlap with them.
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If the new orbitals are to be taken to correspond to the eigenvectors
having maximal overlap with the original orbitals, all roots are
obtained. The resulting eigenvector and eigenvalue arrays are then
recorded with orbitals coming first. If desired, a 2-point extropolation
of these results is performed (MO changes essentially cut in half).
The total and relative (energy dependent) changes in each orbital are
then determined and the SQCDF for the iteration is updated. Finally,
the MO transformation matrix is revised for these new MOs.

Once the new orbitals of a shell have been determined,
new primitive matrices associated with these orbitals are generated,
if necessary, before continuing. After new closed-shell orbitals are
obtained, a new primitiveJi. matrix is always generated to replace
the original on JUNIT. For other shells, new ¢ and & matrices for
an orbital are calculated only if the total change in the orbital since
last matrix revision exceeds some ( small) value. These new § and 4’
matrices are packed and cumulatively stored on disc (LUNIT) in the
usual form. When constructing
subsequent hamiltonian matrices, these new matrices are used
rather than the corresponding originals on JUNIT.

After a complete set of new orbitals has been obtained, §) and /<
matrices for orbitals for which new matrices were not generated are
transferred from JUNIT to IUNIT along with the currentj.!- matrix
(last record). These matrices are then transformed over orbitals
in symmetry blocks and stored on JUNIT in preparation for the next

iteration (i.e. Hamiltonian Optimization)
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G. Output

The iterative cycle is terminated after OCBSE whenever any
one of the following is true:

1) Convergence is achieved
2) The maximum number of iterations hag been performed
3) Insufficient compute time remains for another iteration.

Complete GVBTWO output consists of:

1) The case title
2) Energy summary
a) electronic energy
b) input nuclear repulsion energy
c) total energy
d) kinetic energy
e) virial ratio (V/2T)
3) The energy and SQCDF for each iteration
4) The orbitals:
a) primitive basis function coefficients
b) symmetry type
¢) shell number
d) orbital energy
e) occupation number
5) The final MO transformation matrix
6) For each PPGVB pair:

a) pair coefficients

b) the nonorthogonal singlet coupled orbitals
c) ionization potential

d) energy splitting

e) triplet and singlet excifation energies
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oI. CONCLUSION

Computational details for the GVBTWO SCF program have been
presented. This program is capable of solving self-consistently
for the orbitals of any wavefunction (actual or contrived) whose energy
expression involves only diagonal 1-electron integrals and the usual
coulomb and exchange 2-electron integrals. The program is speci-
fically adapted to solving for PPGVB wavefunctions through provisions
for optimizing the pair coefficients involved in such wavefunctions as
well. This program has extended the practical limits of such calculations
to include relatively large systems as it is more versatile and very much

more rapid than its predecessors.
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APPENDIX 1

Use of Preprocessed Integrals in SCF Calculations
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Preprocessing 2-electron integrals to form the pairs:

VK (ITKL) = % [ (xxize) + (211TK) ]
VT (ZTKL) = (ZT|Kt)- VK(ZTHL)
ITKl= TTx(xT-1)/2 % KL IT) kL
IJ= L=(z-1)/2+ 7T I>T

has been shown by Raffenettiito allow for rapid generation of primitive

matrices of the form:

(1% (T g Ka)r $KnlT)= L3 O Pla7ms) + 1 Do« Plzgk)

P(ITKL)= a-VT(zTKL) + bNK(ZTKL)
D;- = C:M'CJ'"/(I* &,,—)

- ~ . i P T o s .- s a1
with (1, Delng the coeliliclent o1 Pasls 1unction 1 in orbital m.

Since generation of such matrices is the most time consuming
step in most SCF calculations, they must be constructed as efficiently as
possible from these pairs. This is accomplished in two ways. First of all,
all pairs which aren't needed for a particular calculgtion are purged from
the list at the onset. Secondly, the edited list is stored in a way that
minimizes decision making during matrix construction and allows for

optimization with respect to zero density matrix (D) elements.

(1) Deletion of Unneeded Pairs

The primitive matrices are invariably transformed to an MO-basis.
For exaniple, in the GVB program these matrices (or primitive Hamiltonian
matrices constructed from them) are transformed to an MO basis in symmetry
blocks. Therefore, if basis functions I and J are never simultaneously used
in any occupied symmetry type, the 15t element of all primitive matrices

is never required. Hence, there is no need to calculate these elements.
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Moreover, the corresponding density matrix elements are always zero.

Consequently, a pair is not needed if either its row number (1J) or its
column number (KL) corresponds to two basis functions not appearing
simultaneously in any symmetry type. In other programs, such as SOGVB,
analogous deletion criteria prevail. Thus, before beginning the iterative
cycle, the input pair list is purged of any pairs not needed for the particular

calculation at hand.

(2) Optimizing Matrix Construction

The input pair list is required to be in packed canonical 1IJKL order.
This order is of course unaffected by deletion of unneeded pairs with sub-
sequent repacking. Having the pairs arranged in this manner allows matrices
to be constructed with partial optimization for zero density matrix elements
and decreases the number of array element lookups. In order to keep
decision making to a minimum, as the input list is edited, it is stored on

disc in records of the form
IST, LAST, VJ, VK

VJ and VK are REAL*8 arrays. IST is the occupied row number of the first
pair in the record and LAST is the occupied row number of the last pair.
The actual row numbers (IJ) of the occupied rows are stored in an array
(I1J) held in core. Packed into the lower two bytes of the first VJ element
of a row in a record is the number of the last pair of the row in that record.
The column number (KL) of a pair is packed into the lower two bytes of the
VK element. Finally the number of such records is recorded (NBLK). As
the following algorithm demonstrates, this formulation allows’ for very

efficient matrix generation:
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SUBROUTINE JKMTRX{DJyDK+DyTORBy11J)

IMPLICIT REAL%*8{A~H,0-1)

OIMENSION TORB(1)9D{1),DJ(1),DK{1),VIK(128])

INTEGER*2 JUN(4)»KN(4) yKSTOP KL ,I1J441)

COMMON/ INTS/IST,LAST,VJ(640)yVK(640)
COMMON/ISTUF/EE s SQCOF o EOLDySKIPy ZERUYNURB NBF ¢ NBLK¢MXSIZE
EQUIVALENCE (IST,VJK(1))

EQUIVALENCE (JUN(1)eV1)sUKSTOPsJIN(4)) o {KN(L1)yV2)s{KLsKN{4))

GENERATE A (J-K/2)/2 & A K/4 MATRIX OVER TORB WITH DIAGS 1/2

00 10 I=1,MXSIZE
DJ(1)=0.00 00
DK(1)=0.0D 0O

10 D{I)=0.0D 00
I1J=0
DO 20 I=1,.NBF
DIJ=TORB(I)
IFt DIJ .EQ. 0.0D 00 ) GO TO 20
TORB(I)=D1J*0.50 00
DO 30 K=1,1

30 DUIJ+K)=DIJ*TORBIK)
TORB(I)=DI1J

20 IJd=1lJdrl

REWIND 11
DO 200 KBLK=1:NBLK
READ(11) VJK
KSTOP=0
DO 100 1i=IST,LAST
1d=11J{11)
DI1J=D(14J)
DJILJ=DJI(1J)
DKIJ=DK(1J)
KST=KSTGP+1
V1=VJ(KST)
IF( DIJ .EQ. 0.0D 00 ) GO 71O 5
DO 2 K=KST,KSTOP
V2=VKI(K) '
DKL=D(KL )
DKIJ=DKI J#V2%¥DKL
DK{KL)=DKI{KL)+V2%D]J
VT=VJ{K)
DJ1J=DJ1J+VT*DKL

2 DILKL)=DJIKL)+VT*D]J
GO TO 101

5 DO 3 K=KST,KSTOP
V2=VK{K)
DKL=D{(KL)
DKIJ=DKI J+VZ%DKL

3 DJIJ=DJII#VI(K)*DKL
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DJU1J)=DJIJ
DK( I1J)=DKIJ
CONTINUE

I1J4=0

DO 400 I=]1,.NBF
li=1J+1
DJ(1IJ)=DJ(1J)%0.5D 00
DK{IJ)=DK(1J4)*0.5D 00
RETURN

END
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APPENDIX 2

POLYPAIR Integral Preprocessing
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The computing time required for many SCF calculations can

be significantly reduced if the primitive basis 2-electron integrals
are first preprocessed to form the pairs:
VK (ITKL)= + [ (rk|7L)+ (x17r) ]
VI (ZTKL) = (ZT|KL)- VK (TTKL)
TTKL= IT» (ET-1)/2 + KL IT) mL
IT= Ix(x~)/a+T Z» 7
where (I J|K L) is a 2-electron integral written in (11|22) form.
Using these quantities, primitive coulomb-and exchange-type matrices
can be generated much more rapidly than is possible using raw
integrals. However , if preprocessing requires an inordinate amount
of compute time or IO operations, overall savings may not be
significant. Therefore, it is imperative that these pairs be generated
as efficiently as possible.

Two-electron integrals are most efficiently generated in a
random fashion. However, preprocessing of a random list is
practical only if random access peripheral storage devices are
available. This is because central storage must be partitioned so as
to permit construction of both elements of a pair at the same time
(so they can be outputed together) and three integrals must usually
be simultaneously available in order to construct any one pair. If
only sequential access peripheral storage is available, as in the
case for the IBM 370/155 system, preprocessing of a random integral

list must be done using highly inefficient multi-pass techniques
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(DEFINE FILE is just as bad). Hence, overall savings are greatly
decreased.

However; if the input list is ordered with all nonzero integrals
from (Z![i)4o (IT|L) grouped together, preprocessing can be performed
quite rapidly even without random access devices. This is because
all pairs I 111 to II II involve only this relatively small number of
integrals,

A POLYIJLK list in which the 2-electron integrals are in packed
IJLK order (zeroed integrals deleted) fulfills this requirement. Thus,
by using POLYIJLK integral input, prepgoceésing can be 'accomplished
quite efficiently. Of course, formation of POLYIJLK involves sorting
of the initial random (POLYATOM) 2-electron integral list. However this
simple sorting can be done fairly rapidly via multi-pass techniques.
Moreover, POLYIJLK is required input for our integral transformation
program (FYBTRAN). Since integral transformations are invariably
required before pérforming inevitable CI calculations on SCF results,
this conversion would normally be done anyway.

The POLYPAIR program preprocesses an IJLK integral input
list in the following manner. Integrals (I1]|11) to (II|II) are preprocessed
at the same time. As this group is read in, the integrals are stored
on disc (IUNIT) along with their KL numbers. A separate array records
the number of integrals having the same row (IJ) number (these are

contiguous). The VK element indices associated with each integral
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are then calculated. As this is done, the first M (central storage
allocation) VK x 4 elements are constructed from the appropriate
integrals. Those integrals needed to construct elements Nx M + 1 to
(N + 1) M are gathered according to N value (category number) and

are written on disc (JUNIT) along with the corresponding index
numbers (if an integral is used twice in a given VK element, it is
doubled before storing under that VK index) every time LTH integrals
for a given category have been accumulated. The category number

for this group is also written on the record and the number of records
so far written for that category is noted. Once all these integrals
have been so processed, the in core VK x 4 elements are scanned

one row (IJ number) at a time and the nonzero elements are divided

by -4. From these and the original integrals for this row read in
from IUNIT, the VJ elements for the row are calculated. The nonzero
pairs (VK # 0 and/or VJ # 0) are gathered and written on the output
unit everytime KTH pairs are accumulated. Packed into the lower
two bytes of the VK element is the KL number for the pair. A separate
array records the number of pairs in a given row. Once these VK x 4
elements have been exhausted, the next group is constructed from
those integrals stored on KUNIT belonging to the first category (N = 1).
- Since each record on KUNIT is labeled by category and since the
number of records in each category is known, this retrieval can be
accomplished with minimal effort. This process is then repeated until
all categories have been processed and all pairs for this group of

input integrals have been calculated.



147

Descrigtion of POLYPAIR Integral List

REAL*8 V(500), vJ(500), VK(500), REPNRG
INTEGER ITITLE (18)

INTEGER*2 1A(500), IB(500), IC(500), ID(500), IMU(500), IF(500),

NLJ(N*(N+1)/2)

where N = number of basis functions

ITITLE (title with ITITLE(18) = 'JKPR")
Next three records either contain the usual basis set information or are dummy.
REPNRG, ....(nuclear repulsion energy and more basis set information)
Overlap integrals: ,
1 NINT, LAST, IA, IB, V
IF(LLAST.EQ.0) Go to 1
Kinetic energy integrals:
2 NINT, LAST, IA, IB, V
IF(LAST.EQ. 0) Go to 2
Potential energy integrals:
3 NINT, LAST, IA, IB, V
IF(LAST.EQ.0) Go to 3
Pair List: :
4 LAST, VJ, VK*
IF(LAST.EQ.0) Go to 4

NI
NINT = number of integrals in a given record.
(LAST.NE. 0) = signals end of that particular list.
IA, IB = 1-electron integral indexing numbers.

VJ and VK are in packed [IJ] > [KL] order with [KL ] packed into the lower
~ two gytes of VK. NIJ ([IJ]) +1 is the number of pairs having the same [1J]
number,

2-electron integral IJLK list (Optional):
5 NINT, LAST, IA, IB, IC, ID, IMU, IF, V
IF(LLAST. EQ. 0) Go to 5.
These records are the same as in POLYIJLK
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PART FOUR

The Strongly Orthogonal Generalized

Valence~-Bond Wavefunction

Abstract

The Generalized Valence-Bond (GVB) wavefunction has had con-
siderable success in describing chemical reactions and molecular
structure. Unfortunately, this method can only be applied to. systems
involving a few electrons. The Perfect-Pairing approximation to GVB
(PPGVB) greatly simplifies the situation and is found to adequately
describe the low-lying states of many molecules. However, in des-
cribing chemical reactiqns the restrictions of PPGVB are qﬁite ser-
ious. The Strongly Orthogonal approximation (SOGVB) described here
overcomesthis problem by allowing the orbitals to recouple while still
retaining the simplifying orbital: restrictions of PPGVB. This inter-
mediate method correctly describes many chemical reactions and is

practical for treating relatively large systems.
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I. INTRODUCTION .

In recent years several methods have been developed which
solve self-consistently for the orbitals of correlated wavefunctions.
The primary objective of some procedures, such as MC-SCF, is to
obtain orbitals that allow for construction of high quality, yet reasonably
sized, Configuration: Interaction wavefunctions. The aim of other
approaches is to obtain wavefunctions that can be physically interpreted.
From these, concepts explaining the nature of chemical bonding and
the mechanisms of reactions can be developed. This is the objective
of the Generalized Valence-Bond (GVB) 1\/Ietl1_1r.\da1 The GVB wavefunction
is an orbital product wavefunction in which each electron is allowed
to have a different orbital. All orbitals are solved for self-consistently

with no restrictions placed upon them or upon the coupling between them:

?"' d, [‘irﬁﬁl] X(:,:--n) (1)

where X is the optimal spin function for the system and Q. is the
antisymmetrizer (determinant operator), The wavefunction is taken
to be aneigenstate of é\z . As a result, X is required to be an eigen-
function of spin.

Unfortunately, this approach leads to an N! dependence upon the
number of electrons and is impractical for large systems. However,
it was found that in many instances the accuracy of the wavefunction
was not significantly affected by placing simplifying restrictions on (1).

2
This led to the Perfect-Pairing GVB (PPGVB) Method. In this
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procedure, the spin function X is taken to be a fixed perfectly paired

valence-bond function such as:
(df- P )(vp-POCp-fu ), (vp-fu)(vp-pe)vm, ere

In addition, only those two orbitals associated with an (o8 - Bo) spin term
are allowed to be nonorthogonal; Expressing the orbitals of each
singlet pair in terms of natural orbitals leads to a total wavefunction
that is a sum of closed-shell determinants and hence to very simple
variational equations involving the same operators as in Hartree-Fock.

It was found that the restrictions of PPGVB are not significant
for the grourd and low-lying states of many molecules. However, it
was found that the restriction placed upon the spin function X is
particularly serious for describing react}ions.3 During a reaction,
the spin-coupling (optimal form of X) changes significantly and is
typically very different from a simple valence-bond coupling. A method
intermediate between GVB and PPGVB will now be’ presented which
overcomes this problem. In this approach, the orbitals are still
grouped into nonorthogonal pairs (Strong Orthogonality). However, the
coupling between the orbitals is optimized. That is, restrictions on X
are relaxed. This method, denoted as SOGVB (SO for Strong Orthogonality)
is found to lead toproper descriptions of reactions while retaining

most of the computational simplifications of PPGVB.
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II. DISCUSSION

A. THE GVB WAVEFUNCTION

The GVB wavefunction for N electrons can be written as an

antisymmetrized product of a spatial function and a spin function

g"" d équx

where: §“ . frﬁ(z) D ; Cs Xy (13-)

O.is the antisymmetrizer which guarantees that Pauli's Principle is
obeyed. @, is a product of N spatial orbitals { ¢}, Xgyis a linear
combination of appropriate spin function (@,B) products {X}. Since
we will be dealing with hamiltonians which are independent of spin,

the wavefunction is required to be an eigenstate of §2 As a result,

}XSN_ must satisfy"

§1Xsu = S(S'H)XSN

With this one exception, no other restrictions are placed upon either

the spatial orbitals or the spin function.
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B. THE PPGVB WAVEFUNCTION

In the Perfect-Pairing approximation to GVB, restrictions
are placed upon both the orbitals and the spin function. The orbitals
are partitioned into singlet pairs whenever possible. That is, each such
pair is required to be associated with an (¢p-A) spin term:

O= A [T o di, («pope)] Boce

where & pertains to those remaining orbitals which cannot be singlet
paired. The orbitals within a given pair can be nonorthogonal.
This constraint whereby all orbitals, other than the two within a

given pair, are orthogonal will be referred to as the Strong Ortho-

gonality Restriction.

Expressing these pairs in terms of their orthogonal natural

orbitals:
[ [
¢m,= N [ 4)m.* 2’" 4)0’4] ; 4’»’ : N[ 4'»',‘ ?‘n 4"'!.;-]
where (¢m‘ | ¢mp. = 0, allows ¥to be written in terms of orthogonal
orbitals:

P= Q[T (4208 )ap | E o

where the pair coefficients{ A} are adjustable parameters. Setting
all these coefficients to zero leads to the closed-shell Hartree-Fock
wavefunction.

Upon expansion; ¥ consists of a set of determinant configurations
involving orthonormal orbitals. Since these determinants differ

by excitation of 'doubly occupied orbitals, the energy can be written
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in terms of diagonal 1-electron integrals and the usual coulomb and

exchange 2-electron integrals:

E-= Ziﬁ E[ b,z,'K,;/‘]

where: 7
hii = <%lhldd = (b [rewnld)
L= T4 (hylhlbd) = (blby)
K;/= (4'”(“‘) (4’¢In,f‘{’;4i)=(4u4‘j!4'zf1)

'f;n. = Amm = '/{H'A:.)

fm, = Qmm = A/ (1t %) m < NP
~ D /(1+7m)

°~
3
1,

bum = bmm, = Amm, = O

£ = 1
* * ; A NP
Adii= b, <0

d;/: Rﬂf/ j ¢JI¢J not n same F&l""
bij = -ff

au./ = a/.c

The one-particle hamiltonians obtained by applying the variational

principle therefore only involve the 1-electron operator h and the

coulomb and exchange operators:

fihe Z[a‘ T+ bsi K, ] ieyw
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These equations are of the same form as for a general open-shell
Hartree-Fock wavefunction. The only difference is that the coefficients
{ f, a, b} are functions of the pair coefficients whereas in Hartree-
Foék they are fixed.‘ Since these coefficients can easily be found
by diagonalizing trivial 2 x 2 matrices, it is almost as easy to
calculate a PPGVB wavefunction as it is to obtain a Hartree-Fock solu-
tionf1 Since all closed-shell orbitals have the same hamiltonian,
calculation of PPGVB wavefunction is more time consuming as
there are more hamiltonians to construct and diagonalize than in
Hartree-Fock.

Since PPGVB removes the Double Occupancy. Restriction of
Hartree-Fock; it alldws the singlet paired orbitals to correlate.
This ot only leads to better energies , but also gives a more satis-
fying orbital description as is evidenced by its ability to allow for
bond dissociation. In Hartree-Fock this is generally not possible
since a chemical bond must be described by a single doubly occupied

orbital.
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C. Spin Coupling

In PPGVB the spin function XS N is fixed so as to allow for the
maximum number of permissible singlet pairs. However, for systems
not in maximum spin multiplicity which contain more than two electrons,
this function is multidimensional. That is, there are several
lihearly independent spin eigenfunctions (SEFs.) from which to choose.
For example, a six electron singlet has five such SEFs . In instances
where there are clearly defined chemical bonds; the optimal spin
eoupling usually corresponds closely to the PPGVB spin function.
However; when this is not the case, XSN must be allowed fo be a
general linear combination of these SEFs.

A convenient set of orthogonal SEFs . for N electrons can be
generated from the appropriate N-1 electron functions using two

simple recursion relationships:
If SN >‘SN'| : XN = XN-] 4 .
AL 3
If SwSwt © Xw® A Suu XN-I B - [ Sp-i Xﬂ-l ]"

where X _, is the parent N-1 electron SEF (highest S, projection)
whose multiplicity number is Sn-l and gl’-l-l is the spin lowering
operator for N-1 electrons.

In discussing spin eigenfunctions it is useful to use a pictorial
representation illustrating the specific spin-coupling involved.
To illustrate this, consider generation of the three electron doublet

SEFs. The spins of two electrons can be coupled into either a
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singlet (@B -Ba) or a triplet (@ @, af+Ba, BB). Adopting the con-
vention that two horizontally contigwous electron numbers inscribed
within a rectangle implies a singlet (antisymmetric) spin couple and
that vertically contiguous electron numbers inscribed within a
rectangle signifies multiplet (symmetric) spin coupling, these functions

can be represented as*

| o«
12 |= g (ap-B) Nk {-,';- (wf+6u)
4
From these, two 3-electron doublet SEFs are obtained:
I | 113
12| ~ -
3 2 d
6, 2 (o) e i (20~ af o)

As the diagrams imply, the G, function preserves the (1,2) singlet
couple and the G, function preserves the (1;2) triplet couple.

As the number of electrons increases, the actual SEFs soon
become too cumbersome to write down. However, the representations,
which convey all the pertinent information about the functions, are
easy to construct using the following rules:

1) If the multiplicity increases, an electron nﬁmber is added

to the bottom of the left-hand column of the appropriate

N-1 electron diagrams.
2) If the multiplicity decreases, an electron number is added
to the bottom of the right-hand column of the appropriate

N-1 electron diagrams.
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3) Rectangles are extended to inscribe all vertically or
horizontally contigu ous numbers.
(A listing of all the standard SEF's and their corresponding diagrams
for up through six electrons is given in Appendix 2 of Part Two, this thesis)
These same diagrams can also be used to represent orbital
product wavefunctions having standard spin functions by simply
placing orbitals in the desired positions. Because of Pauli's
Principle, there is a direct relationship between the spin coupling
and spatial coupling of the orbitals.u As a consequence; the resulting
spin coupling schemes (SECs) can be interpreted as follows:
1) The two orbitals inscribed within the same horizontal
rectangle are singlet coupled. That is, they are anti-
symmetrically spin coupled and symmetrically spatially

coupled so that:

4““ ‘p/' = 4:1 ¢f«

2) Orbitals inscribed within the sime verticil rectangle are
multiplet coupled. That is, they are symmetrically spin

coupled and antisymmetricilly spatially coupled so that:

£loo |4
4 ﬁ-
3) The orbitals occupying the first N-1 positions (of the SEF

diagram) are coupled just as in the parent N-1 electron
wavefunction. For example, the coupling between orbitals

¢~i, ¢j and ¢1{ is the same in the two wavefunctions*

) t

and

Al o

Bl o
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Hence, the 3-electron doublet wavefunction in which orbitals ¢ and

¢, are singlet coupled is:

% ¢
%

< L Q4 ppo = L (B 448 4

Notice that this is distinctly different from:

t, ¢,

¢

£ A K (p-p)a= e A b4y w(aprfoe)

in which orbitals ¢ and ¢, are singlet coupled rather than ¢ and ¢,.

Using these SECs, a GVB wavefunction can be written in a

very concise form;‘ For example, the 3-electron doublet wavefunction

can be written as

T

€,

4 4

)

+ £,

¢

¢

6]

While it is computationally convenient to express a GVB wave-

function in terms of the orthogonal SEFs and a specific orbital

sequence (standard SECs) as above, any linearly independent set of

SECs will do. In fact, it is often the case that alternative sets lead

to simpler and more physical interpretations of systems under

investigation. To illustrate this and show kinds of circumstances in

which spin coupling optimization is important,a few eXamples will

now be presented.
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D. The H2 + D& H + HD Reaction

Consider the localized orbital description of the H, + D exchange
reaction shown in Fig. 1. Initially the system consists of a
hydrogen molecule and a dewerium atominfinitely serarated. There-
fore ,' the initial wavefunction must have orbitals H and H' singlet
coupled. However, at the end of the reaction; orbitals H and D
must be singlet paired in order to describe the HD molecule. Hence,
the coupling between the orbitals must change significantly during
the reaction. The wavefunction which allows for the required orbital
recoupling and at the same time shows clearly the extent to which

either singlet pair is present is"

| HH HD
= € 7 + .
AR cra

where €, decreases from 1 to 0 while€; increases in magnitude from
0 to 1 as the reaction proceeds. ,

This analysis of the reaction in terms of localized orbitals
has been given mainly for pedagogical reasons. In actual GVB
calculations the orbitals delocalize drastically as shown in Fig. 2
Only ¢H remains localized at all times, ¢H' gradually delocalizes
over the entire system and finally relocalizes about the dedterium
center. Simul taneously,v ¢ delocalizes so as to remain orthogonal
to the other two orbitals and finally becomes associated with the

exiting hydrogen center. Upon looking only at these orbitals it is
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tempting to think that spin-coupling optimization is of no qualitative
importance and that the reaction can be adequately described by a
PPGVB wavefunction in which a fixed singlet pair simply moves from
one region of space to another via orbital optimization. That this is
not the case is shown in Fig. 3  in which the dominant coupling
coefficient is plotted along the reaction coordinate. Also shown are
the localized orbital and PPGVB curves;

| At large molecule-atom separations , where the orbitals are
still localized, the coupling change is as expected for localized
orbitals. At shorter distances, the curve deviates from the localized
plot owing to orbital delocalization; After reaching a minimum at
the saddle point, the coefficient increases as expected as the orbitals
relocalize. Clearly, the qualitative description of the feaction still
involves orbital recoupling rather than just a movement of a fixed
singlet pair. Moreover, at the saddle point,' where the orbitals
are conipletely delocalized, the PPGVB energy is about 0.6 ev higher
than the GVB energy of -1.624 hartrees. Optimizing the coupling
between the PPGVB orbitals gives an energy which is still 0.2 ev
higher since these orbitals are inappropriate for the correct coupling.

Hence, as this example has served to demonstrate, spin coupling

optimization is usually required in order to correctly describe
chemical reactions in even a qualitative sense. Additional examples of

this will be given in a later section.
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E. Conjugated Systems

Spin coupling optimization can also be used to describe
resonating systems. For example, the GVB wavefunction for the
6
ground triplet state of trans-butadiene quantifies this molecule in

terms of the usual resonance structures:

¥= omn I“”‘ I* 0-”-.—:/=

where the double bond indicates which two essentially localized pi-
orbitals are singlet paired.w The energy of this wavefunction is over
0.3 ev lower than a Perfect-Pairing description. Likewise, the

GVB wavefunction for the ground state of allyl radical can also be

-3

written in terms of the textbook resonance structures:

¥/ - 4



166
I, THE SOGVB METHOD

As the above examples have illustrated, many chemically
interesting systems require a more general spin coupling than is
allowed for in PPGVB. Inthe SOGVB Method this situation is
remedied by optimizing this coupling. However; the orbitals are
still required to be strongly orthogonal just as in PPGVB. Thus, the

first 2 x NP orbitals are grouped into nonorthogonal pairs:
e .,
P=A [T 4 ]2 X
£
X su = E & X:
£

where the spin function XSN is now a general linear combination
of the standard SEFs for N electrons having the desired spin multi-
plicity. Upon expressing the paired orbitals in terms of their

orthogonal natural orbitals

¢M}= 2 (¢”:+1M¢AJ) )' ¢"’h: 2 (4"0!.- ]'l¢”1) Where (¢ﬂ'l¢‘4 ) =o
the wavefunction can be written in terms of orthonormal orbitals:
- AP NP
P e T80 ot (Bt 480 ] $ X
Pauli's Principle requires that the wavefunction be antisymmetric
with respect to the interchange of any two electrons. Therefore,
if two electrons occupy the same orbital (symmetric spatial coupling),
they must be antisymmetrically (singlet) spin coupled. Likewise,
if two orbitals are spatially antisymmetrically coupled (¢ ¢,-hd),

they must be symmetrically (triplet) spin coupled. The antisymmetrizer,
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which embodies Pauli's Principle, projects away any disallowed
combinations. Therefore, the SOGVB wavefunction can be written
in terms of a set of SEF configurations involving orthonormal
orbitals such that each configuration either contains only one orbital
of a pair, with that orbital being doubly occupied or it contains
both orbitals of a pair triplet coupled. The exact form of an SOGVB
wavefunction written in this manner depends upon the number of
electrons involved and the spin multiplicity. For exa.mplé, the

3-electron doublet wavefunctionis:

_LP = A, ¢u¢'u + A-‘L b Su + A3 4’“ ¢3

| % 4 %
whereas the 4-electron triplet wavefunction is:
‘?,, ‘bn ‘Pa: 4‘314 ‘ {’az' 4’/3 4‘.14 ¢.u 4’,, 413. 1‘,' ﬁ,‘
g’ A 18| +A iﬁ + Ay 8] A 9] ¢ A E— % +F;_— ¢,
Al b2 4 4, % ¢

where the last term corresponds to having the orbitals of both pairs
simultaneously triplet coupled. Since the coefficients {A} are
functions of the pair coefficients {1} and the spin coupﬁng coeffi-
cients {¢}, they are called Spin-pair coefficients.

Because the configurations are occupied in this manner,
the SOGVB energy expression has a relatively simple form:

Eealifhee D[y b, 10 DL o (1K 1)

Lpmmy
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b 2 [ lun (8 B [0t + Come (Y, ) |

myn

-where {a, b, ¢, d, e, f} are functions of the spin-pair coefficients,
Applying the Variational Principle to this equation, the variational

condition for the optimum (real) orbitals is:

N
o= 3o [ ¢s ey eesiry]
“ .
subject to the constraint that the orbital variations {6} preserve

orbital orthogonality at least through first order. The field terms

H and R have the general form:

)

N
v

Hewihe Dlang gl g 2w o,

If «y2NP, R=0. If i=my :

Erﬂj’ T'f' [ z' Comy Ku t il Con Knyen, ]'I.¢m3'/> |

yEmy,my ngEMm
b D (Sl g

H;requires the same kinds of operators needed to construct PPGVB

hamiltonians, The difference is that now there is & new exchange

operator for each pair (K ; n=1, NP), If ¢ is an unpaired
n,+n, w

orbital, Rw=0. For paired orbitals, R uses the same exchange

operators as H. In addition, the new operators:

fﬁd& 4342 NPY MHyn
s
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are required. However, since only a relatively few of these new
operators are needed and since they are quite easy to construct,
matrices over these terms are almost as easy to construct as in
PPGVB once the spin-pair coefficients have been found by diagonalizing
small CI matrices. If we symbolically define the one-particle hamil-

fonian:

= H + R (8|

the variational condition can be cast in its usual form:

0= ZN: (5 |4k [4:)

and the energy can be written as:
. N |
E=2 (% |Eh-#]d)

These equations can easily be extended to include NSG strongly
orthogonal singlet pairs as well. The hamiltonians for the orbitals
involved ;in spin-coupling optimization need only be revised by

including a (2J-K)-type core:
Nr ANSE

Moo #oof 20 (25K

The hamiltonians for the singlet paired (core) orbitals are defined

just as in PPGVB:

N+ ANSE

Moo foho 20 [ Gobye k]

Since inclusion of closed-shell orbitals and singlet pairs does not
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require any new types of operators, SOGVB is formally defined to
include these as well so that the wavefunction in terms of strongly

orthogonal orbitals is:

@< A [T #ee] [ Tl o] [ T4 T[THIX,

Thereforé, just as for PPGVB, SOGVB can handle relatively
large numbers of electrons. This is done by partitioning the orbitals
into closed, singlet paired, and spin coupling optimized shells.

Since many chemical systems can be partitioned in this way with
relatively few orbitals being involved in spin coupling optimization,
SOGVB represents a practical approach toward treating large systems
self-consistently without missing out on any important independent-
particle effects.

If the strong orthogonality restriction of SOGVB is removed,
the result is GVB. Obviously, a GVB wavefunction is inherently
superior. However, the energy of a GVB wavefunction involves
all one and two electron integrals. In addition, the associated density
matrices are functions of orbital overlap. As a consequence, the
one-particle hamiltonians are very complicated and, for this reason,
GVB calculations are practical only for small numbers of electrons
using relatively small basis sets. In systems where strong orthog-

o nality is not a restriction owing to orbital symmetries, the compu-
tationally simpler SOGVB wavefunction gives the same results.

Moreover, as was seen for the H,+D reaction, orbitals tend to remain
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strongly orthogonal even when not so required. This is a consequnce
of Pauli's Principle and, hence, is expected to be rather general.

Therefore, in many cases SOGVB is essentially equivalent to GVB,
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IV. COMPUTATIONAL DETAILS

A. SOGVB Energy and Variational Equations
The GVB wavefunction for N electrons is:

N
v=Alm ¢lxey
i=1
where the spin term X SN is required to be an eigenfunction of spin but
is otherwise unrestricted. The spatial orbitals { ¢} are also unrestricted.
In the SOGVB approximation to GVB, the orbitals are grouped
into NP nonorthogonal pairs, with ¢i\/[1 and ¢i\/[2 comprising the mth
pair. All orbitals other than the two within a given pair are taken to be

orthogonal (Strong Orthogonality Restriction)
(o300 )=0 M<L<NP;ij=1,2
1 J
(dpp. | By =0 M< NPandi=1,2;k> 2NP
i
<¢k|¢ﬂ>:0 2NP < k< ¢
where we also allow for N - 2NP additional orbitals that are not in any

pair. These will be referred to as the unpaired orbitals. The SOGVB

wavefunction thus has the form:

NP N
v=Al moey eyl T e Xgy
M=1 k>2NP

The SOGVB wavefunction can be reexpressed in terms of

orthogonal orbitals by reexpressing the orbitals of each pair as:
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4 = . 4 = -
¢M1 ) kml ¢m1 ¥ xmz ¢m2’ ¢Mz Aml ¢m1 m, ¢m2

where hml and hmz are chosen so that (tl)m1 |¢>m2) = 0. Interms of

these orthogonal orbitals, the SOGVB wavefunction becomes:

V= A [T [RETE -t it LT 43 X

The orthogonal orbitals of each pair will be referred to as natural
orbitals. In order to help keep it clear which set of 6rbitals is being
discussed, we will use ¢ with lower case subscripts when referring
to the orthogonal orbitals (e. g., gbmi and ¢k are orthogonal to all
orbitals) and ¢’ with upper case subscripts when referring to the
SOGVB orbitals (e. g.,qbl’wl and ¢1'VIZ can be nonorthogonal, but are
orthogonal to all other orbitals).

A general energy expression for this wavefunction will be
derived by starting with the energy of the corresponding GVB wave-
function. From the result, the variational equations needed to obtain
the optimum orbitals will be derived. Finally, these equations will
be modified to allow for inclusion of a core consisting of NDB closed

shell orbitals and NSG strongly orthogonal singlet pairs as well:

= [ Sewed ST TSt bt ]} (T4
NOB —

core= [ TS ] T 8-0,8]p | wor-a

W ﬂf“

The wavefunction in terms of strongly orthogonal orbitals is then:
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§m “ﬂﬁzf?@:%:‘”ﬂﬂ‘) {77' M M‘}{ Ly2NP 4} Xs”

where:
$I 'é' %
= . .+ oy .
I, =7 %1, * % 9y

_ 1 1
, = 02 - - 02 -
¢12 ')’11 $ i, '}’12 -‘-?S i,
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1. SOGVB Energy Expression

Since an SOGVB wavefunction differs from a GVB wavefunction
only by strong orthogonality, the most rigorous derivation of the
SOGVB energy expression is obtained by starting with the general
GVB energy expression. Strong orthogonality is imposed by grouping
the first 2 x NP orbitals into nonorthogonal pairs. All orbitals other
than the two within a given pair are then taken to be orthogonal.
Finally, these pairs are reexpressed in terms of their corresponding
orthogonal natural orbitals so that the final energy expression is for
an SOGVB wavefunction written in terms of N orthogonal orbitals. In

th

the following, the nonorthogonal orbitals of the m™" pair will be

denoted as ¢1'V11 and ¢I'VIZ or simply as M, and M, (upper case) whereas
the natural orbitals for that pair will be denoted by qul and ¢m2 or
simply m, and m, (lower case). For convenience, only real wave-
functions will be considered (extension to complex orbitals is trivial).

The GVB wavefunction for N electrons can be written as:

v =4 (0 o)x
where
N
®= 1 ¢,(i), X=opap:-
i=1 ~
and

ol - Z‘ UL(T) T
TGJN
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OL

is a Wigner projection operator which guarantees that ¢ is an
eigenfunction of spin.8 A is the usual antisymmetrizer. The energy

of this wavefunction is:

E= [ 5 <ilnidyp; e Z [ (hlf) Di3 ] /<310'8)
i 44?,#/
= [E+£1/<2|0E)
where:
dlnfyy = hij = the usual 1-electron integral involving ¢, and ¢j

(ik [j ) = a 2~electron integral involving bss ¢j, ¢, and
¢1 written in (11 |22) form.
D]i = coefficient of ¢} (i)¢;() in f & oladx.
+*
Dyl= coefficient of ¢’;(1)¢’j‘ ()6, () ,(0) in [ g0V Xy

a. Evaluation of E,:

. i i,
Since Dj = Di'

N » N L]
E,=2 ) (i|n[pDy+ Y (ifn]d D
i>] i

Because of the strong orthogonality restriction, D]i = 0 unless i and j

refer to orbitals of the same pair (d)M and ¢M2) and Dﬁl = D%,
1 1

Thus:

NP N
- M M v
E, = ) [(hMlMl + thMz)DMi +2 hMleDMi] + ) h, D,

M=1 v > 2xNP
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Expressing the pairs in terms of their corresponding orthogonal

natural orbitals:

¢M1 - hml ¢m1 * xmz ¢m2 j ¢1l\/I2 + lml ¢m1 B >tm2 ¢m2 (1)

where (m, |m,) = 0 and lml + linz =1
hyp o, = xinl by m, * xjnz By m, * 2 2m Mm, Py,
hyr g, = S T xinz By m, = 2 *m m, Bmom,
by, = Ai’nl hm, - )‘inz bn,m,
Thus "
E = 225 [ 4 (00 0n) how + 12 (002 by w ]

3
4

+ & E '.zL.'Dy/?yy

Yy NP

b. Evaluation of E,:

E, = Z (ik)j8) Di

&
,uf;, AL

Since Dl?ﬂ = D'J!;lk Dklﬂ we have:

N  J - y
E=+ 2. [Al)DF Grizd)gf [+2) 1 [T 0%k, 07
3y s
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where J ij + Kij are the usual c.oulomb and exchange integrals:

3y = Gilip) = <ilg; o
Ky = 1) = G (o
and ij is the pair index:

i(i=1)/2+j if 1>
j=1)/2+ if §>1i

i

Owing to strong orthogonality, if i or j refer to an orbital of a pair,

k or £ must also refer tc an orbital of that pair in order for Dli{j2 and
Dizjk to be nonzero. Also, if i or j refer to an unpaired orbital either

k or £ must refer to that orbital in order for Dk 0 and Digk to be nonzero.

Therefore:
F,= 4 f'((le N, :a:‘* Je ::r::z K~. nm::‘* ﬂ,, ’M/ >
b (e | T, Omat e Ty Doint+ Koo, D+ K D | )
» [0+ D ”’,‘J’;] (MM [, N, )
+ ,;',“:',f (Ml [ M N ) + Da,,,‘ (M;N,z/M.N.)f
DA HRINE j’,”,"fm O | M)

M-u V)aNP

+ 24%; [ “J t K.«./ D
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Due to strong orthogonality:
ma N m n
D Dmaj J Dminf = mfﬂ;
Hence:
NP
n mn, n
£y = % 21 (| (50 ) DRele K D+ Ky DOt [ M)
my s Ny Mg,
+ (N.z I (3;1,*3;14) Dm,n, + Km, Dn,m, k Km,L Dn, ”y 1 N,')
+ 2 D,,,,,,, (MM [NN,) + Dtk (M0 [ ,)
t D,f",',’,', (Mg Ny | ML N ) g

S SR CNE" Dy v K, Dt | M, )

m WI2NP
ra Z; [ % 02 v K, 07

Converting to natural orbital pairs (1) :

(le }M'>' Zﬂm(') {m: |G |m:)
Z}m In, +(A)’Jj\,,]mzj

t’ 2 '"4. t ( ‘); ‘ ﬂm 1'".1. [[”"m"mwf”hﬂf‘}ﬂ"]
(M W) = ) o bty (0 T,
437=1

(M N, [ M) Z; Bny () Ky, + 2000 A0k, [t Imen)

= (min, (mgny) ]
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2
( Mg Ny [, 1;) = 2; Yo g 07 K,

-~ 2 A, ﬂmzﬂ.a, 7;43 [("71'71- [mat)- (mn, /'":”z)]

Therefore:
M ) Fid m
= 4 E Z Z 2,‘1,,4 [2. (D,:m mm ‘(1) ¢ D”?m
mn A7=|

myha o A mn
+ (")‘“J Om,n.) J;un;' t (i- [Dn,m.‘ D;:am; Dn;ﬂa.
m A2 Y m maa 7 n,,m, ﬂ.:"!z]
D 1+ G [+ DR ]+ (4™ [ D < 0,2
L At T mnz man, 1\
") 7 D mm t "z"”::l’ Nm; n‘,J

mn n, mn, mp
+ E [jmﬁn.jﬂz (Dm‘m‘ * Do, - Dﬂ,,m.~ "a":\

AT

—‘.

~

-

b (02 [0 - Om ] ) <0l omg 103 + Ao Tt (D

. DR D - DR ¢ 0™ [022-D3]) ¢ 1) |

m manz _ AN n,ﬂz "& 2
+ /}\mnj"’z/)ﬂj”a [ (Dmrm g My D""’; nam [I A

mn mahy my

m n ma"x
na‘m‘l ]) (m'n“lman‘ ¥ (D’h'"a na My D’h"’l Dﬂg”'l

-2 [One-Dmn 1) (mafmns) ¢
N NP P
1‘”2 Z é 27\;“[(0,.,, Ml 5:'41)7.\) 2 (Dym,
YHYaNP m=i =

+ vm f(l) ,70:,"" (my:( 7{»'.'}#4 (Dym
pm,,) (Ml Ky m2>§
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X ml‘"z mm,
a3 A (03 0 IONE) T

- /Am. Jm; »:‘.’:42 Km, mg g
"12 [_.«; AJ*Mjpaj

i3222NP
Thus, E, has the general form:

NP A
. E.:a »«;7=' [d"j *b‘of l(,.', ] ;Iy;'im (mt [ Ky ”’.z)
t Z [ Ima (P11, lma.”a.) t €ma (m:".?lm.zﬂa)‘]

mih

Hence, the total energy expression is:

(E+E)/<LE|0'E)
227‘ i Z [ay t/*b‘.f’( I
D (m.ll"u/%) Z [ (19303t .y (1 )]

m y#”u”&

E

11

where 1/ (& |OL<I>) has been absorbed into {f, a, b, ¢, d, e}. Also
note that Ay = A bwv = bvw’ dmn = dnm and €nn = €am- Since

(rmon | Maha )+ (mng [man,) = {m ’ K’h“‘a‘K”:‘K”a lMg)
the energy can also be written as:

E :LZf hey + }: [d‘/ijb‘y Key 1
f:l Cmu (m'/k [m) + Zcmn (mb“(n,mglm:>

” n,m, mn

Z- dmn (mt”'lmanz)

-'.

'S
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2. Evaluation of SOGVB Energy Coefficients

The preceding derivation of the SOGVB energy expression
has sérved to give a general equation and to enumerate the kinds of
1- and 2-~electron integrals required. However, the definitions of
the coefficients {f, a,b, c,d, e} given there are of little practical
value. In actual practice, these coefficients can be defined most

efficiently by starting with the wavefunction itself:

NP N
v=00 T [0 9 ~ X %m) “*m *m, @m, B, ~%m, G JH T 6,1 Xgy
m=1 y>2XNP
(1)
F
XSN - z 81 X
i=1

where {x} are the standard orthogonal spin-eigenfunctions (SEEs )

for N electrons having the desired spin multiplicity. The spin coupling
coefficients {¢} are adjustable parameters. This wavefunction can

be rewritten in terms of a set of orthogonal SEF configurations {6}

involving orthonormal orbitals:
V=0 A6 (2)

where each configuration in (2) either contains only one orbital of a
pair, with that orbital being doubly occupied, or it contains both

orbitals of a pair triplet coupled. This is due to Pauli's Principle
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and the fact that in (1) the orbitals of a pair are either doubly-
occupied or are spatially antisymmetrically coupled (d)mlcbmz' ¢mz¢m1)‘
The number and form of these configurations { §} depends upon the
number of electrons involved (N), the number of pairs (NP) and the
spin multiplicity. The spin-pair coefficients {A} are functions of

the spin coupling coefficients {€} and the pair coefficients {A}. In

general, this set of coefficients is not linearly independent.

The energy expression:

.Z A (6 |H ;)

E =1l

Y A
i

can be expanded directly into the desired form:
N N '
E- allh + Sleynnn,]

N2 N NP
+ ZZ Comy (m, {Kﬂlm-!> *Z [C‘mn (M o) + Cppyy (M1, | 1, na)]

m Vim,m, min

with {f,a,b,c,d, e} as functions of {A}. The exact functional
dependence of these parameters on {A} depends upon N, NP and the

spin multiplicity.
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3. SOGVB Variational Equations

The energy of an SOGVB wavefunction can be written as:

N

E= Z [21[ hx./. raﬁ& A.J--] 22[441 4; ";7‘(‘477

0D Cur TN [ I (M, 1W313) + Eup (Mot [myn,) ]

m vEm,m mn

where there are N orthogonal orbitals. The first 2xNP of them are
paired, with ¢m1 and ¢m2 comprising the mth pair. The remaining
orbitals are unpaired. Starting with this equation, the variational
equations for the optimum orbitals will be derived. For convenience,
thé orbitals will be taken to be real.

Allowing the orbitals to vary in an orthogonal manner:
_ 1 -
%, N (¢, + 6,) where ($, '5,2 =6,

so that the above equation remains valid for the new orbitals {¢—> }, we

obtain the usual expression for the first-order change in energy:

N
SE = ) (5 |H o, +R)
v=1

Letting §E = 0 then gives the variational condition for the optimum

orbitals subject to maintenance of orbital orthonormality:

N
=) ¢, |H6 +R)

v=1
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We must now evaluate the field terms Hv and RV.

a. Paired Orbitals:

Isolating the terms in E which depend on orbital ¢ (paired
i

with o, ):
~1

E .= 077[;1,, Pomi + Am:m; In,m,. t o Z [dm Lom; t bum; /(Muj

Y CAALNY, Lcm (n [ K In2)

1‘4’/”:'%

+ Z' !:Clmn (MA.nA- mj_gn?;.)'* emn (m nj* mg,«n.«.)j

n¥Em

The first~order change in E__ for a change in ¢__ is
m, m;

‘SE*: "ht 2 m, ‘hlm*> t 4 Amme < om. le;}M;)
L (%JZ’ (a»m,, tbam; Ku) | m >

yEm,
+ E Cm, (5»:,.‘ l/(u l’”a-.«:)
VEm,my
;ﬂ Cam; [(Jm,: nmng) t (min (sm ) ]

+ ! Ldnm (ém,, n: [m.. i’)3-,.) t Cwn (5;», N3-i | M3 N )]

Nn¥
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If d’m. is optimum, then ﬁEm. = 0:
i i

O= (Sm I m; h+ Aotom; Im; + Z (ﬂ»m‘ t bum,; )IIM...>

+ 1Lf- 2 C”ML [(SMA" n; m.(,ﬂ‘?){. (Sm,.”.z l’m”;)]
i
4

i Cry < Smi [ Ky | M5}
Vim,m

NP
t [dmn (8m. N | #s..: N3-i) t Con (Smi N30 | M3i 1) ]

3
X

. +
Since:

(sm: nalm; ”2) ' (gm‘ ”3/’”‘”‘) RC /K”t*ﬂfk"t./(”ﬂ I i )

(51"?; n; 1”"3-42 N3 ) ¢ (/5@- '"’3',&]'?”3-,;"7&) = \/5»1; ]’/rn,mjl‘\’m‘ Kn, I"?’Ju:)

(gm‘_ /fm h f‘d;”m t ("-ym,. + bmn Ky)

PEML

Z'l cmn‘ (/(n,m, l(n. Knl) 'M..

_!L,
ty VZ_;‘J SMV (SMA “(’ ‘mJ’*> * E [(dmn Con (Jm mIM:...”a-A.)

&
t Cmn < Sm.: Ik’h*"a K”: /(ﬂa !Mg 4) ]
Thus:

O=¢(¢_ |H m. +R_)

where:

N
H,.,,= fm,- h + 2-4 Aym; v ‘L' Z [ Cami Knyea,

ﬂfm
+ Z, (‘* bnjm‘- ‘Cnm;) Kﬂ; ] t bm,m_., Km,_,_‘

s byms Ko

Yrawe
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2
] —1

R”’»= i g [CMn nonz + %—-‘ m, EM") -]
nm FAL

+ t’, Cy K»} ( 4’m3.,;> +I‘;n§ (Jm,,'f,,,,,)[f%‘;t‘lﬁ,)

V)ane

b. Unpaired Orbitals

Isolating terms in E which depend on unpaired orbital ¢ “:
N wp
Ep= 24 b + A Ty + .2}};: (@, T+ by k) + Z_:'pw ATAD)

The first~order change in E M for a change in ¢“ is

§EN f (5,«/ ﬂ)*"fﬂw,d (S.w ul’w>
+ U E (g,allﬂmuo:/*byu/é/’w>

SR

b G [(Bmbom) ¢ (omigm)]

m

If ¢# is optimum‘ﬁEu =0:

N
0= (54,,l?p,ohfdw,u\—);*;(auu%*bumkﬂ)
prE Y]

[
+ Jq' ';;l cm,w (Km,;»m,‘/(;.n,'Kma) IMJ}

Thus:
O=(5,|H [u
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where:

Ho= fuhs 2 2w, 4Z[cm,,/r,,,m, Z’(mw - Cuw) Koy ]
+Z' b.yu Ky

Vranp

In summary, the variational condition for the optimum
orbitals is:
N
) @, [H, v+R)
v=1
where the orbital variations {6V} are constrained so as to maintain
orbital orthogonality.

If v < 2xNP so that ¢ ¢
m;’

N
m,- h *;ﬂﬂm y *‘L Z [cmn,. Kn,m;
2 N
+ Z (‘f bﬂ/m"cnm‘ Kn/] + m,m_, /(m,_,; t E éwu /CJ

7! AVPINE
T.lr- g %;: [fma neng 7—: (cmnj "’Mﬂ)/("; ]
+M§’ C.m» Km/ 3 , ¢MJ-- >
2:; (dma - bna ) /m“ng., l ¢n,,>
If v > 2xNP: "
H 7Cu h Eﬂw ‘f Z.' [Cm: KM,#M; Z (‘1‘ b‘,y CMU)/(MJ]
t 21 buy K,w

AWraNP
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As is usual, the total energy can be written as:

N
E= ) [f,h ,+ @H |+ @[R)]
v=1
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4. Inclusion of Core Orbitals In SOGVB

The SOGVB energy and variational equations derived previously
consider only those N orbitals involved in spin coupling optimization
(henceforth referred to as noncore orbitals). If the wave-
function is defined to also include a set of NC orthogonal core orbitals

partitioned into NSP separated pairs such that:

. NSP
C°"‘°-"‘:"T[;éw43ﬂ“ﬁ j ;zglw

- these equations require only minor modification. Since each core
orbital is doubly-occupied and is orthogbnal to all other orbitals, the

contribution of these orbitals to the total energy is:
N3P

E.= ) Z ’9; (2/“/*“"7%;'4)*221221*// (27 Ji a0

A=l A)h
N3P 4

@»4/)*22.7:/‘. ,A,;,r.?fLZ,‘ £ (2T
Kj},v )
Thus, the total energy is obtained by adding E, to the previously

derived energy expression to givethe general equation:
N
E=J~Z ' u. Z’[dﬁrg*bgk.«/]
+ 2 Z le m. | Ky MJ) Z’[Cnm {m (K neng /M;}

m yiwm,m, mn

+ din (mn, [myny) J
where there are N’ orbitals. The first N of them are the noncore
orbitals. The remaining NC = N’~N are core orbitals. Of the noncore
orbitals, the first 2 x NP of them are paired, with orbitals ¢ml and

¢m cbmprising the mth pair.
2
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The variational condition for the optimum orbitals is as

usual:

[

o= )i (S [HyweR) |

where the orbital variations{ GW} are constrained so as to maintain
orbital orthogonality. For the various types of orbitals, Hw and RW

are as follows:

a. Paired Orbitals

If w< 2x NP sothat ¢ ,(i=1,2):

Nl

Hn, = 7CM,J'I Z Qym‘ _L ij [cmm Kn,m; t Z' (‘f b;z,u,,

n¥m

‘Cmn 7 b”’/”’; Kma <t Z’ bym, Ky

Ru # { z} [ Gon Kove E(C»m, ) oy T EcM,K]/¢m,.,>
b Z (dmn-e,,,,,)fﬂ-g_a@;f l¢m> |

n¥m

b. Unpaired Orbit als

If N)yw) axNP:

N P 2
= -th + Z): Ay Jy t ‘,i"i[:'[c'nw/(m,rma *;__Zl’("qu,u

= C'mw) ij] *f);m bya) KV
K,=o0
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¢. Core Orbitals

Ifw> N:

Hy= 1,
l?w =0
N.B.
1)

2)

3)

4)

N
*;[ﬂyw *Awau]

The total energy can be written as:

E= 20 [ 4 bt COIIRY CBIR) ]

The definitions of {f, a,b,c, d, e} are unaffected by

noncore
the presence of core orbitals.

In practice, the core is restricted to be:
nog
Core = [77'4‘ o ]Tr[,.,, ,‘M‘& ] 7

so as to describe a set of NDB closed shell orbitals (¥=1)
and a set of NSG strongly orthogonal singlet pairs.

If q')w is a core orbital
_ 2
fW “VYw
Ay = 2y or agy, = iy
bWw = -fw orbWW =0

- If qbu is not in the same pair as ¢W'
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If qbv is in the same pair as t.bW:

Ay = 0
by = Iyl
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B. Ogtimization Procedure

An SOGVB wavefunction can be written as:
F

g: ﬂ [C’orcj ;Aj 9;
cores [ g 1T [0, 47 0,4, Jop

As explained previously, {8} are orthogonal SEF configurations
involving the N orthonormal noncore orbitals. The first 2 x NP
noncore orbitals are grouped into pairs. Aside from the common
property that each configuration either contains only one orbital of é.
pair (doubly occupied) or it contains both orbitals of a pair triplet
coupled, the form and number of these configurations depends upon
the number of electrons, the number of pairs and the spin multiplicity.
The spin-pair coefficients {A}, which are usually not linearly
independent, are used to define the energy coefficients needed to
construct the field terms {H, R} appearing in the orbital variational
equations derived previously. The pair coefficients {A} and spin-
coupling coefficient {£} needed to express Y in terms of strongly
orthogonal orbitals and standard spin~couplings are also functions of
{A}. The functional relationships between all these coefficients also
depend upon the number of noncore electrons, the number of pairs and
the spin multiplicity.

Thus, solving for an SOGVB wavefunction involves an iterative
process in which the spin-pair coefficient {A}, the core pair coefficients
{¥} and the orbitals { ¢} are solved for self-consistency. As is

usual, the orbitals are expressed in terms of a finite basis set :
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¢v B ?{' civxi

Therefore, orbital optimization is accomplished by self-consistently
determining {C}. In practice, the iterative cycle is divided into four
main sections:

1. MBSSEQ: The optimum spin-pair coefficients and
optimum (orthogonal) mixing of the noncore orbitals with each other
are determined.

2. OCBSE: The orbitals are sequentially optimized with
respect to the space orthogonal to the current orbitals.

3. PAIRCI: The core orbital pair coefficients are optimized.

4, MIXORB: The core orbitals are optimally mixed with each
other and with the noncore orbitals in an orthogonal manner. (Mixing

of noncore orbitals with each other is accomplished in I).

In each of these sections, parameters not being optimized
are frozen at their current values. This cycle is repeated as many
times as necessary until self~consistency is achieved. Detailed

general descriptions of each of these sections will now be given.
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1. MBSSEQ

Ignoring the presence of a core, the SOGVB wavefunction in
terms of orthogonal SEF configurations {6} involving N orthonormal
orbitals is:

V=0 A
]
In this section the equations for determining the optimum spin~pair

coefficients {A} are derived. In addition, the orbitals are optimized

with respect to each other such that:

o
¢, = ch;» 4{ A=LN (ﬁ/é,)-‘&,
where {¢°} are the initial guesses for the orbitals and {C} are the
adjustable mixing coefficients. This is all done using iterative con-~
figuration interaction techniques. Since the number and form of the
configurations involved, as well as the nature of the dependencies
within { A}, depend upon the number of electrons, the number of
orbital pairs, and the spin multiplicity, only a general outline of the
method used will be presented here. Specific details for cases al-

ready programmed are given in the Appendix.

The General Method

The wavefunction can always be written in terms of independent

parameters {a} such that:
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Fl
Y= A TLLa:6u]+2a b

where F’ depends upon the number of orbital pairs and the spin
multiplicity. If the two orbitals of a pair are allowed to mix orthogonally:

¢m = % [ ¢';l *C"o“'z 4)’;3] i ¢"'J.= ﬁ [4";3- c"‘”‘ ¢":‘]

it can be shown that:

C-AT[Dh8:] Tnea o

where the coefficients {b} are linearly independent. Hence, the
optimum spin-pair coefficients and intrapair mixing coefficients can
be found by solving for {b} through a series of sequential configuration

interaction calculations:

U= Db [ 2 6T (D5 Gu) ]+ Bug
wherevb;i is a fixed (current value) parameter.

Keeping {b} fixed, the remaining (interpair) mixing coefficients
can be determined. In doing so, orbital orthogonality must be
preserved. However, intrapair orthogonality need not be explicitly
maintained since the energy of (1) is unaffected by reorthogonalization
of these orbitals with subsequent redefinition of {b}. Thus, the
orbitals of two pairs may be optimized with respect to each other by
letting: |

¢m1 - le["b;al * Cnlml ¢I°11 + Cn2m1¢:12]

=Nmz[qbl°nz+C $° +C___ ¢°]

¢m2 n,m, 'nm, nm, " n,
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¢n =N, [¢ - Cnlmld’ml B Cnlmz(p;nz]

¢n2 n2[¢n2 n2m1¢m1 Cn2m2¢ ]

An unpaired orbital may be mixed with a pair by letting:

¢, =NJo,+Cp bp +Cprp 05 1

m, ~“myr’m,

¢

m,

<bmz - Nmz[ ¢r°nz m, vl

- le[qbr‘;a1 - Cm u¢;]

whereas mixing of two unpaired orbitals is accomplished through a

simple rotation:

=N, +C, o]
=N[¢;-C, 9]

By successively expanding the orbitals in terms of these three
possibilities, one can express all the orbitals in terms of {4>°} and
{C} while maintaining the required orthogonalities. Upon substituting

{¢} in (1) and expanding, the wavefunction takes the general form:

+ . 4 PRI
Do See Yo
where it is assumed that ICiI « 1. Since optimization is with respect
to occupied space, a quadratically convergent solution for {C} is

required. This is accomplished by expressing the energy through

second-order in {C}:
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Hoo + 2 ;’f‘u‘/a* ECHC}[H.',* e (1# 8i5)
So¢+2 ;:("ASGA"" ga[}[\i‘/ f.S:,(_"/j (If'(j,‘;_)]

where H;; = (zpillej) and §;; = (zpilzpj). Letting :

‘Pl-ao = ,—’“ ;J“ = Su
Hoj_ = }'/a.‘.' ,494. "Soi-
H“/ = H“D/+He(‘/) ("l’év) MJ.J?SAJ 4 g(‘.’)(lffsly) A'ija

and C; = C,C_:
E= 2 cicy bty /

Thus, {C} is found by solving for the lowest energy root of (in matrix

i ee, iy

4‘1’70

notation):

Paired orbitals can then be reorthogonalized with subsequent redefinition

of {b}.

N.B.

1) Since the procedure described here is rapid compared to
the initial construction of 1- and 2-electron integrals over
{#°} from the primitive basis integrals, it is advantageous
to iterate until {b} and {C! are self-consistent. In order to
do this a CI matrix over the basic SEF configurations9 must
be generated using the new orbitals defined by the mixing
coefficients. For cases already programmed, the most

efficient way found to do this is to transform the current (full)

CI matrix using a transformation matrix D.
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2) Since all core orbitals are doubly-occupied and each is
orthogonal to all other orbitals, the presence of a fixed

core can easily be taken into account by using a hcore

integral matrix during CI matrix construction instead of

the usual 1-electron integral h matrix:
codte

heere = h+ Z:: £ [-?.QI'_LQY
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10
2. OCBSE

In this section, the orbitals are sequentially optimized with
respect to the space orthogonal to the current orbitals. If only
orbital p is optimized while keeping all other orbitals fixed, the

variational condition is:
0-= (GMIH” |y + (tsan“)

where 6“ must be orthogonal to all orbitals. For convenience, all
orbitals are taken to be real.
If p is expanded in terms of its current value (u,) and a set

of NV orthonormal 'virtuals' {x} which are orthogonal to all orbitals:
w 1 U2
,a=—~'~[14.,+ Z(L?C:] N= (”Z&)

then the linearly convergent solution for p is obtained by solving:

Eu (MUY = (ulHa, |4)+2 (et |Ru)

Therefore:

Eq (1+330)= (s Do | Ho e Doty an (up i1 (R )
Assuming 2 €} (<1

(v D)= My |4+ 2l IR

+ d Z(';_ I('X;,Hﬂ./ﬂ.>+(x¢}/?4¢>]

b I eg [Hlbalt)e g, uife ]
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Therefore, if:

Koo

(it [Hy, | a,) + 2 (| R

Xoi = (X |Hu |ty + <X | R ) iyo
Kag = <K [ Hu % )+ &y (IR, g0
C. = C; C,’

i is obtained by solving (in matrix notation):
XC'=¢eC’

There are, of course, NV+1 solutions of this equation. The
choice of which eigenvector to use for orbital p is usually made in

one of two ways. Orbital u is either taken to be the eigenvector
having the most negative eigenvalue or it is taken to be the eigenvector

having the highest overlap with p, (least change). Selection by eigen-
value is generally suitable for obtaining 'ground state' orbitals
whereas selection by overlap is usually required to obtain 'excited
state' orbitals. In many instances, both criteria lead to the same
result. In the final analysis, the proper choice usually depends upon
the particular problem at hand.
N.B.

Since the closed shell core orbitals all have the same H and R
(R=0) terms, these orbitals can be simultaneously optimized by
expanding each orbital in terms of each other and {x}. Mixing of these
orbitals amongst themselves does not affect the energy. The eigen-

vectors obtained by diagonalization of X are, of course, orthogonal.
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3. PAIRCI

In this section, the core pair coefficients {'y} are optimized
while keeping all other parameters fixed. Since

Core = [7T¢ ﬁ]_T(A. )/5 Pt

these coefficients must be optimized iteratively one pair at a time
The energy contribution of the nth core pair is:

E, - Z’ Yy [2hyn+ Tyt zyg (2T, Kon,) | = 2800y K,

7=

Letting:
H// hn,n + J;’,oj y;,:j\ (2 j;n;‘ /(y,yj) 7-43

HI: T - F Kn,,;z
€En= 7 Ep ,

Un, = 1/ (1+7%)
o= A/ (14 1¥)

[Hu + 273 Hi+ 12 sz‘]/(-”;lz)
0€

Requiring € to be stationary with respect to A (T = 0) gives:

0= 7\2le = AMHp, - Hy) - Hy,

Therefore:

. Hyg-H T R
Ch 2:.2%1” [H :m:‘)] j M=o -0

where the root corresponding to the most negative €_ is the desired

one (since K, n, =z 0, this root always gives A = 0).
. 1s
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Before solving for the coefficients of the next pair, f and
1
f e redefined:
n, ar

£ =y %1 =42
n1'yn1nz n,

This process is continued until the {y} are self-consistent. Once this

is achieved, the {f, a, b} coefficients involving the core pairs are
redefined:

2

'Fp = JD

Ay = 7[»

2% 2&1[)’ ; AL,V et in Same core pair
buy ® - {a?ov

bn,nf ) xn,. n=1N5¢
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4. MIXORB

So far, we have considered optimizing the orbitals with
respect to the space orthogonal to the orbitals and optimizing the
noncore orbitals with respect to each other. There now remains the
task of optimally mixing the core orbitals with each other and with
the noncore orbitals. This,of course, must be done while maintaining
orbital orthogonality. Moreover, since optimization is with respect
to occupied space, a quadratically convergent solution is required.“
Both of these requirements can be most easily metby considering only
two orbitals at a time. As usual, all orbitals will be taken to be real.

If orbitals p and v are allowed to change simultaneously, the

Var_iational condition is:
0 =8, [H [w+ 0, IR) + 6 [H, ) + @, [R)

subject to the constraint that (u+ Gulv +8) =0.
If:
7]
az L b,] o vt [uea] ;o N= (118)"

where p, and y, are the current guesses for orbitals p and v
respectively, these orbitals can be obtained in a quadratically con-

vergent manner by solving:

€y = SUlHu L)+ 2 Cat|RuY+ (v Hy V) +a (v R
t (A [AH )+ (A, [0H, |1 + (buldfy ) t (A»M@>
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provided A* « 1. The first-order field time changes AH and AR
are defined such that:
H, =H'“o +AH, + ¢-°

R/U. =R,a,0 +AR/Q+ se e

Choosing 4 to always be a core orbital, R, = 0. While R, may be

nonzero, Ru does not depend on & or v. Therefore:

€uv ™ alHu )+ LRIV 2+ 20NRY + (a0 |OHL L) + (4, 10K, 13

Since M, and y, are being optimized only with respect to each other:
Ay =y, and Ay = - A4,

where the rotation coefficient A is an adjustable parameter which is

assumed to be small. Therefore:

Eup = (At Huy [0 e (I Hulv)ea ¢vifa)+ A (44 ]0He B My |54)
Since:
(e |OHo= AH (00D = Ctt [(0pu ) AT + (Busba) DK
t (Apu ) BTy + (b= b ) A Ky [ 20 )
= 4 [x Ky tY Juows ]
where:
Y= buut by, - bxw ~bou

X= d(Gun fﬂyy“dﬂy'ﬂy,w)*

Hence:

€y = (el Hu 10Dt CUIRL V) + 2 (IR + T [x Kyt Y ]
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Expanding .« and v and retaining terms through second order in A:

Epp (1+#8) = Ctta [Hao [ ) # ¢Ya lHn [30) + 2 (% | Rt )
+ 272 [(Aa [ Hu,~Hu 1V ) = (ate | Rund ]
+ A [(M,/I-/y,,/%%(%/#/‘./%}r/%//?y,}fXKA,»*YJL,y,j

aew

Requiring €  to be stationary with respect to A( = 0) gives:
2wy oA

0 =C,(1-2%)+2rC,

where:
Q= el Huom Ho 1% ) = (e | B
Co= <VulHag=Hog 90} = ([ Ha- Hyy 143 = <01 RD + X Ko #Y T,
If C, = 0, » = 0 as is required by the variational condition. If

C, # O: ‘ ’
/3
A= go [10(2)]

Since it was assumed that A% « 1, only the smallest root is valid.

In theory, these rotations should be performed sequentially,
using revised orbitals based on previous rotations. However, this
is not practical. Instead, the orbitals are mixed through independent
rotations. This, of course, can lead to nonorthogonalities which
must be removed before continuing. The most satisfying way found
to accomplish this is to orthogonalize sequentially based on increasing

rotation coefficient magnitudes.
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V. Ilustrative Examgles

Being only recently developed, the SOGVB method has been applied
to only a few chemical systems. For the most part, the aim of these
calculations has been to compare SOGVB results with previously ob-
tained PPGVB and GVB solutions. As such, the following examples
are presented simply to illustrate the general applicability of the

SOGVB wavefunction.

A. CH Bond Formation 12

1, The X 2y State

Formation of the ground state of CH ( 27) provides a clear ex-
ample of a reaction for which spin coupling optimization is essential.
Ignoring the 1s carbon core electrons, the GVB orbitals for the ground
3P state of carbon atom consist of two triplet coupled p-orbitals point-
ing along different axis and an sp hybridized singlet pair pointing in
opposite directions along the remaining axes (Fig. 4). The 2y state
of CH can be envisioned to result when a 2S hydrogen atom approaches
a 3P carbon atom along a p-orbital axis (Fig. 5). At infinite separ-
ation, the carbon orbitals must be coupled as in the atom. That is,

orbitals py and P, must be triplet coupled:

Sx Sx

¥ = [z] (A)

4
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However, at equililrium the C~H bond is expected to be described by
singlet pairing between orbitals p, and SH (we retain atomic desig-

nations, realizing that orbitals do in fact change during molecular

formation): Py
X X

Llje-.- % Su

) (B)

Therefore, the simplest wavefunction capable of deseribing forma-

tion of this molecule frbm its constituent atoms is a linear combi-

nation of the atomic and molecular couplings:

Sx 5% B EET
Y= e, |20 +¢, |BSH l611€e=1
i A

where £ is expectéd to decrease from unity as £, increases in mag-
nitude from zero to approach unity as the internuclear distance de-

creases from infinity.

In going from infinite to equilibrium C-H separation the changes
in the orbitals themselves are straightforward (Fig. 6). The carbon
P, orbital (qg_ ) gradually hybridizes into the internuclear region. The
hydrogen orbital ((&) polarizes somewhat toward carbon, but remains
essentially atomiclike. The E;S'i singlet pair (only one of which is
shown) gradually bends back away from the internuclear region, re-
maining orthogonal to the bonding pair. The carbon py orbital (not

shown) remains virtually unchanged throughout.

The coupling between orbitals p v’ P, and Sy also changes as the
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intermiclear separation is decreased. In Fig. 7 we see that, as expected,
molecular coupling (B) becomes of increasing importance as the inter-
nuclear distance decreases and the overlap between orbitals ¢, (pz) and

¢5 (sH) increases. At equilibrium, this coupling vastly dominﬁtes over

residual atomic coupling (A).

The SOGVB and GVB descriptions for formation of this molecule
are essentially identical since minimization of repulsive interactions
favors keeping the 'é';é"-x : pair orthogonal to the bonding pair. Com-
paring this spin coupling optimized description to the PPGVB wave-
function (Fig, 8), we see that while the former behaves properly at
all internuclear distances, the PPGVB wavefunction dissociates incor-

rectly to a carbon 3P-!D mixture.

2. The A 2A State

The GVB description of the D state of carbon atom differs from
that of the 3P state only in that the singly-occupied p-orbitals are singlet
paired. The low-lying 2A state of CH can be envisioned to result
when a 2S hydrogen atom approaches a !D carbon atom along the axis
of hybridization (Fig. 9). At infinite separation, the carbon orbitals
must be coupled as in the atom. That is, orbitals s, and s-, must be

singlet paired as must orbitals P, and py:

Ry

% = 52 S5

SH
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Assuming orbitals remain localized, at equilibrium we can expect the

C-H bond to be described by singlet pairing between orbitals s 2 and Sy
A hy

’./é =z 3@ 5w
%

Therefore, the simplest localized orbital wavefunction capable of des-

cribing formation of this molecule is a linear combination of these

atomic and molecular couplings:

APy G Py
Y=, (98] +¢, [44
4 %

However, just as in the case of the H2 + D exchange reaction, the
sigma orbitals do not remain localized (Fig. 10). Only the carbon s,
orbital (¢) remains localized. The s, orbital (dfz,) gradually delocal-
izes, while maintaining high overlap with ¢1’ and finally relocalizes as
the hydrogen centered bonding orbital. Simultaneously, orbital . Sy
(¢ ) also delocalizes so as to remain orthogonal to ¢} and ¢, . This
orbital finally relocalizes as the nonbonding sigma orbital. As ex-
pected, the singlet paired Py and py orbitals (not shown) remain vir-

tually unchanged throughout.

Orbital recoupling is also analogous to that observed for the H2 +D
reaction. As shown in Fig. 11, at large internuclear distances the
atomiclike orbitals recouple as expected, with £ ;2 decreasing as £ s
increases in magnitude. However, owing to delocalization and sub-

sequent relocalization of ¢ and ¢ ,, this change deviates from the
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localized orbital idealization with £,, reaching its minimum value at
full delocalization. As ¢ and ¢, relocalize, this trend reverses since

singlet pairing between ¢, and ¢ now corresponds to molecular coupling.

Since orbitals ¢, and ¢, always remain highly overlapping while ¢,
always remains virtually orthogonal to these two orbitals even when
strong orthogonality is not imposed, the SOGVB description for forma-
tion of this molecule is essentially the same as the GVB description.
However, while the PPGVB wavefunction behaves correctly both near
equilibrium and at large distances, it is discontinuous in intermediate
regions (Fig. 12). Thus, even in cases where the PPGVB wavefunction
adequately describes both the initial and final sfates, it can be incap-

able of continuously describing transition regions.

B. Formation of The Low-Lying 7y and 35 States
of Boron Hydride 3/ '

The GVB valence orbitals for the ground state of boron atom are
analogous to those of carbon. That is, the valence shell consists of
an sp hybridized singlet pair and a lone p-orbital (Fig. 12). Pi states
can be envisioned to result when a hydrogen atom approaches a boron
atom along the hybridization axis (Fig. 13). Considering a localized

orbital description for formation of the 7 and 37 states, the initial
S_S..

z H
pair to form. Therefore, the wavefunctions for these molecules caa

boron s,S%, singlet pair must break in order for the bonding
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be expected to be linear combinatons of the atomic and molecular

couplings:
¢ 42 $ &
L//sn = €, % t £, 4
R A

., [Fe - [4
(H"' € 4, P t & $, A

~where ¢,, ¢,, and ¢, are initially orbitals S, 5% and Sy respec-

tively (for simplicity, we have omitted the 1s2 core orbital).

However, just as with formation of CH (2 a), the sigma orbitals
do not remain localized. As line plots for the 3  state show (Fig.15),
only ¢ remains localized. Orbitals ¢, and ¢, gradually delocalize
and reiocalize to effectively exchange initial identities. As in the
H, + D reaction and CH ( 2 A) formation, this occurs in such a way so
as to maintain high overlap between ¢, and ¢, while ¢, remains or-

thogonal to both of these orbitals.

Owing to these orbital changes, récoupling between .them devi-
ates from the localized orbital idealization in which £ ;, continually
decreases from unity as | £ [ increases from zero to approach
unity at equilibrium (Figs. 16 and 17). In addition, for the 31I state
we see that a third allowed coupling in which orbitals ¢, and p, are

singlet paired contributes at smaller internuclear distances. The
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net effect of this is to allow for favorable quartet coupling between
orbitals ¢, , ¢, , and p y" However, because of the simultaneously
required unfavorable ¢, p < singlet pairing, this coupling is always

only of minor importance.

Comparing the SOGVB, GVB, and PPGVB results at 3.5 a ., we
find for the 3y state that the SOGVB energy differs from the GVB
energy of -3.8167 a. u. by only 107° a'. u. . However, the PPGVB
energy of -3.8042 a. u. is 0.3 ev higher. Optimizing the spincoupling

between these PPGVB orbitals lowers this energy by less than
0.1 ev. For the !y state at 3.5 a - , the SOGVB energy is 0.002 a. u.
higher than the GVB energy of -3.8060 a. u.. This difference, which
is due to strong orthogonality, is easily eliminated through a minimum
basis set CI. As with the triplet state, the PPGVB energy is over a
quarter of an ev higher and is little changed by optimization of the

coupling between the PPGVB orbitals.

C. Formation of Oxygen Molecule 15

Since GVB solutions can only be obtained for small numbers of
electrons, GVB calculations of many chemically interesting systems
cannot be obtained despite the fact the spin coupling optimization
only involves a few orbitals. This is because changes in other or-
bitals which are not involved in orbital recoupling must also be taken

into account. The SOGVB method overcomes this problem by allowing
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for inclusion of doubly-occupied and strongly orthogonal singlet
paired orbitals as well. To demonstrate this, let's consider for-

mation of the low~lying singlet and triplet states of O,,.

The GVB description of the ground state of oxygen atom (3 P)
is essentially identical to the Hartree-Fock description. That is,
aside from the 1s? core orbital, the valence shell consists of a
doubly~occupied 2s orbital, a doubly-occupied p-orbital and two
singly-occupied p-orbitals which are triplet coupled ( Fig. 18).
Keeping orbital occupations fixed, the SOGVB wavefunctions for
the low-lying states of O, consist of six doubly-occupied (core)

orbitals and four singly-occupied orbitals.

The lowest triplet and singlet states of O, can be envisioned to
result when two 3 P oxygen atoms approach each other along a singly-
occupied p-orbital axis, with the remaining two singly occupied p-
orbitals being in different molecular planes (Fig.19). At infinite
separation, these p-orbitals must be coupled as in the atoms. That
is, each of the singly-occupied p-orbital pairs on each center must

be triplet coupled:

Core CoRe B 7
‘#M E B % JF B, J P - 2. | %
. EY = ore | . .
Ty B s L fe| (B
Pltr &" L o T
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) Core

(0

(K ‘ - &[ P‘I‘
44 By | e

(where we have identified these as being the 32"g and A e states
even though the wavefunctions - actually represent only one component

of the proper symmetry functions).

However, at equilibrium, the O-O bond is expected to be des-

cribed by singlet pairing between orbitals p. 24 and pz r

core
L}} (¢) Fél E?r
yor =
5 7
e
Qore
(e
k}}'d ) = /%I fér
J FY.I plr

Therefore, just as in the case of CH (24) formation, the simpléest
wavefunctions capable of describing formation of these molecules

from the constituent atoms is a linear combination of the atomic and

molecular couplings:

¢ core B 7
- . b, f2 A |2
3 = £ 22 '2r +£‘p core | 2y . Zr
» Z” © /;I FYI ’pxr
b | JdT
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Core Core
: £ Py f. + £ FZI /3,
%; ¢ % & * %A

As seen from the potential energy curves in Fig; 20, the SOGVB
wavefunctions for these states behave properly at all internuclear
distances. This is in contrast to the PPGVB wavefunctions which, df
course, cannot dissociate correctly. Moreover, at large distances
the PPGVB wavefunctions actually order these states incorrectly. For
example, at 4.0 a o the PPGVB energies of ~149, 5717 and -149. 5712

for the triplet and singlet states, respectively, are not only too high,

o= v 7

but also order the triplet loWer than the singlet.

The orbital changes during molecule formation are straightforward.
As would be expected, the 1s core orbitals remain essentially unchanged
The 2s orbitals hybridize somewhat away from the internuclear region
as the bonding orbitals hybridize somewhat into the internuclear re-
gion. The doubly-occupied p-orbitals delocalize onto the adjacent
cent er while the singly-occupied p-orbitals do likewise. The final
set of orbitals for the 3 Eg— state are shown in Fig. 21. Thus, we see
that there are significant changes in all of the oxygen atom valence
orbitals during molecule formation and that this is why a wavefunction
in which doubly-occupied orbitals are frozen as atomic orbitals (which

is what would have to be done in GVB calculations) cannot adequately

describe these molecules.
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As the internuclear distance is decreased and the orbitals readjust,
the coupling between these orbitals also changes. As expected, as
the O-0O separation decreases and the overlap between the bonding
orbitals increases, molecular coupling becomes of increasing im-
portance. At equilibrium, this coupling vastly dominates over resid-
ual atomic coupling. These changes are perfectly analogous to that

observed during formation of the 2y state of CH.
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CH I FORMATION
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CH 2 A FORMATION
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BH PI FORMATION
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OXYGEN MOLECULE FORMATION
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VI. Conclusion

A detailed description of the SOGVB wavefunction has been pre-
sented. This method is intermediate between the GVB and PPGVB
methods. It retains most of the simplifying features of the PPGVB
approximation and is capable of correctly describing many chemical
reactions. Since the Strong Orthogonality Restriction of SOGVB does
not appear to affect the accuracy of the wavefunction to any great
extent, this method represents a practical approach toward treating
large systems self-consistently without missing out on any impor-

tant independent-particle effects.
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APPENDIX

Specific Case MBSSEQ

Details
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Detailed MBSSEQ equations and energy coefficient definitions
will now be presented for those cases already programmed. These
are (excluding}core orbitals) the three-electron doublet, the four-
electron singlef and the four electron triplet. From the pattern set
by these cases, extension to larger numbers of electrons will be
obvious. In each case, equations are derived for a variable number
of orbital pairs rather than just for the maximum number possible.

In the abstract, this is of course not necessary. There are, however,
two practical reasons for doing so. If two orbitals which would
normally be reexpressed in terms of a pair, are orthogonal by
symmetry, these symmetries would be destroyed in the natural orbital
pair representation. Since imposition of symmetry constraints
increases computational efficiency and can also permit calculation of
excited states, this lack of symmetry is highly undesirable. Moreover,
being able to control the number of pairs, and hence, the number of

meaningful orthogonalities, represents yet another way of obtaining

excited states which would normally collapse (computationally

speaking) into ground states if these constraints were not imposed.
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A. The Three~Electron Doublet

The wavefunction in terms of strongly orthogonal orbitals and

the standard spin couplings is:

¢! ¢>§! ve, ¢, | &,

Y= ,
"o, A

1, Basic SEF Configuration Definitions and Relationships

Definitions:
(123 = F A 444 (v6-p)4
| (1213 = ~7= 2 9 4t (2a0f-ofu-fo)
[112| = A 444 afx
Unigue Relationships:
[3)2| = -z |a3]+ & [1a73 ]
[[ela] = & Jangle £ 213
[ ()| = g7 |ua
| G2yt ] = & (nal
| [ian | = Z jnal

2. The 0-Pair Wavefunction
Since all orbitals are taken to be orthogonal:

w=A,[(12)3] +A,|[12]3] ; A, = andA, =-¢,



241

Allowing ¢, and ¢, to mix orthogonally:

¢, =* N(¢, + C)
¢z =? N(@ - C12¢1)

04/= A, [(I'C‘fz) (2)3] - VT Cx (1w31-1223) ] + Ay (10e2) | [1273])
= b [Inzl-1a23] ] + b, |(12)3] ¢ by | [12]3]
Hence, C,, and {A} are found by solving a 3 x 3 CI for {b}:

Ya
Ciz = }'bi,"Ti [-'* (325,{)2]
A|: bJ/(l-cl?l)

b,=0 = c’_z"fo

; A.zzb#/(/*ﬂg)

3. The 1-Pair Wavefunction

1y =6|@2)3] - g, l[17213].

Since (¢,’ |¢2’) # 0, let:

‘b.{ = N(¢1 + ‘[{ ¢2)
¢h = N(@, - VA ¢,)

where (qb1,|qb2) = 0. Thus:

W= e [lusl-Alasl] e 277 € | D3]

A, 3| ¢ Ay Jazs| + Ay | Liads|
Allowing ¢, and ¢, to mix:

¢, ® N(¢, + Cy, $,)
4’2':? N(¢, - Cyz )
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'Wa (ArAich) 3] v (Ayeh,ed) l223] + ZCa (R-4) | (12)3)
tAy (1+e3) | L1223

1!

by In3|+ by [223]) + by | (12)3) + by | [1213]

Hence, C,, and {A} are found by solving a 4 x 4 CI for {b}:
2
C'l:’ b.z b'_t [,f(.éa__.l_) ] ; b_,=D=PC,2=0

‘A3= b“/(/fc',z) } A2= (b;z_ba@la)/(l-c';)J /71’ b,‘ﬂ;(’;i

4, Determination of Interpair Mixing Coefficients

W =b;’| 113 + b [223] + by’ [(12)3] + b’ |[12]3 |

Substituting:
¢, =N, (¢, + C, &)
%= N, (¢, + C, )
¢ =N, (¢ - C, b, ~ C, $,)

where it is assumed lCi'[<1
b! = b,N,;’N

b = b,N,’N,
b! =b,N,N,N,
b = b,N;N,N,

where {b} are the current values of these parameters

in ¢ and expanding through second-order in {C} gives:

V= 0,306+ Y ce G
L)//

where:
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G, = by [13]+ by 1223+ by [ (12)3] + by | [1213]

G =~ b )931]- by Jaa1]+ G (Fbabs) [[13321-1n2] ]

6, = ~h |na|- b, [352]+ 5 (Fhyths) [ 1ani- a3l |

5,, = b w3+ 3 (J.}'b.nb,) [(2)3] + % (Fba~by) | L1213/
B, o (Fourhy) [223] - f (Bby-by) [13] + g ( birks) [(13)3]

-G (b-ba) 12T |
Bz = be 12231 =% (Foy-bs) | (2)3) - & (V7 by+by) | [1213]

After solving for C, and C, quadratically to give the new orbitals, ¢, is
orthogonalized to ¢,. Assuming {b} is to be optimized for these
orbitals, there is no need to redefine these coefficients at this point.
For the 0-pair wavefunction, orthogonalization introduces only a high-

order error owing to the b, = ~ b, constraint.

5. _The Basic SEF Configuration Transformation Matrix
If ¢

@w: E Cow Xi :

| Cama = 23 Cou | 2001 = T L Cuniy 144714 ) B | ]
A 4 A >4

Lo Cilop lisgl 2O Xy | g2 4]

wy wy .. N wi .
L e -CF e ] 11 42 C5eu |Gasl

-

-

WV Avid
where: Ciy = Ciw G ¢ GruCiv
. . wyy . _ Ay wyl wyy
Since: t Cﬁ/& l("'d)‘” - E{L E_Q CM? = Clg: - Cg;: ] ’(”)3/

. k,<»y

Arar AT [emtoop?] | Dials|

(w2)Y (wa)¥r ) .
(Condtl = 1o D 1eagl + 1 [ D7 laut + Df5z 10ig141 ]
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(.uw))’_ A [
(w)/ ) \f- M' '” C;,]
_ Gor~ 2 [-?C CJ[ 4.4 C:ﬂ C/A c.c,l]
DET;?} 2 [ij’,’ e~ Cod ey 1
Thus:
_ e .. e _ e .
= 21 Dugy lisgl+ q;l [ D4 16kl + Dy 157141

where:

WY (.uw)f wi]
Do’ LD Dl-' / 1 D(mu)' O ()

B. The Four-Electron Singlet

The wavefunction in terms of strongly orthogonal orbitals and

standard spin couplings is:

¢ 7 (p A (4 :;
PP A D 6! | o
YR Y, o; | o

1, Basic SEF Configuration Definitions and Relationships

Definitions:
|2 (3| = L2 44t (v6-Be) (wp-pu)
| 21 [34] = -~ A ity by [2(aopB1pbm) - (wpefe) (0Brbe) |
[ 1 @3)] = &2 4444 46 («B-5v)
|naa | = A ¢44kafel
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Relationships:

[n@n] = -+ 1o2Ge)) v 2] [a1fse] |
| (312l = (GG ]« £ | L121[ 347 |
| (@3l = - F luasl
| pagpsll = [F |nasz|
RO R
| (w)@ul = 2 luaz|

2. The 0 ~Pair Wavefunction

Since all orbitals are assumed to be orthogonal in the first

place, {9’} ={¢}:
w=A(12)34) | + A |[12][34]] ; A =& and A, =-8,
Allowing for ¢, & &, and ¢, & ¢, mixing:

¢1$ N(¢1 + C12¢2)
¢’z = N(‘Pa - C12¢1)
b3 => N(¢; + Cgyb,)

/

b, =» N(¢p, - C;.0;) |
o‘//= l [-FZCo N, Ju-23] ¢ (1-¢3) [ ol [ [~ Gy W, | 33-441 +(:-£-,z)/(s¢)1 /
b Ay (1ved)(ives) |Liadraeaf
where A, = N;N,. Thus:
DL'U i } [ by 10-221 + by [ (12)] ] [ by [33~4d|+ by | (34)] [
+ by | D121c347
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Hence, C,,, C,, and {A} are obtained by solving for {b} through two
sequential 3 x 3 CIs:
('/./ = b, [ by (}cml - udy)- 12233|+(mwl>+ byy (110039} |
- |a2(3m) I)] + by, [b‘:z ({ 3301al)| - I‘Hf(m)})f bfn | (12)(34) ] ]

t by | [127[34]]
W s b [ b (1133] - [uwe]-2233) + |2204() *b;'(’”"”l'f‘“‘(”)l)]
+bs, [l”a" (1new]-[2360]) + by, I(‘?)(W,] +b, | [12][341]

where
_bal_ b z
C2= Fpn )" *(r—i‘ i busos =0
- 532 b32 . =0 = =
C3e= by [’ \f—bu ] ;o baT? = CGyso
A. = by 532 /(l‘c,;')(l‘cgi,)
A= by /(1re)(1#Cse)

3. _The 1-Pair Wavefunction

'W=E|(1727)(34) | - £, |[1727][34] |
Letting:
4"0” 92- [‘t‘."ﬂ‘d’aji ¢.1l=%£¢{"ﬁ¢27 (‘ﬁoI&z):O

Ja € [ | ngse)|-2 lzz{aw]f XA E, | D1a1Ls4] |
A vyl + Ay [2aGe |+ Ay | [121[34]]

['4

i

Allowing for ¢, e ¢, and ¢, ¢, mixing:
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¢,= N(¢p; + C1,9,)
®,=> N(¢, - C139,)
Py => N’ (@5 + Cyy0,)
$,=> N’ (¢, -~ Cyy0,)

= l[bu llll +b21|22I +b31[(12)’.|[b12I33'44l + bgp |(34) ” I +
b, |[ 12][34] | where :

by, = (A, + AZCI:)/N”

21 = (Ap + A,C,3)/N”
by, = V2 Cpp(A, ~ Ap)/N”
by = =V2 CyuN” |
by = (1-C,Z)N”
b, =A;(1+C2)(1+C2)

Hence, {A}, C,, and Cs, are obtained by solving for {b} through two
sequential CIs.

- by [ b I
__a/____ + 2 i
>,.C \}"baa)i f (\r‘bu)] J by=0 = (=0
/a
Ceu = bay + b.H ] . - -
. V2 b2 J'bu) i bat? ™ Oy=0
A= by /(”"Jt)(/”‘fa)

Ag= bsa (ba-buCa)/(1-032)(1- %})
Az= ~ A 03 + by baa /(I‘C'aff)

4. The 2-Pair Wavefunction

Pw=6]1r27)3%4")| - £,([12][34] |
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Letting:
b= (e h) 5 W= (4-5h)  (dl18)-0
4 =% (htmad) i H%=2 (-7 %) (¥s|0ud=0

"Woe g [ fussl-agfuee] -4 g [[122331- Ay [aaue] ]

- 2535, | [121L347 |
= A Inss| + Ay Juwd| + Ay [2233] + Ay [aawd] + Ay | [121L34] |

where AJA, = A,A;. Thus:

24/: I(au‘lll + 321I22|)(a12|33| + azz|44|)| + a3|[12][34] I

or ¢« ¢, and ¢+ ¢, mixing:
=% (4tlah) ; 4= % (4-cad)
$» X (htont) o b= A (u-cnds)
aw = l [bu )”l”b:u [22]+ b3 I(ml][bm 133]+ by, I‘*‘f"rb&, I(J'I)I]/

+ by | [21L34]]
Thus, by solving for {b} through two sequential CIs, {A}, C,, and

=ty

Allowing
%

C,, can be obtained:

1/2
- ba-b ber- b -"] . ch =
C, = AL + _il___i'.) bu=0 = €30
3 &b [ ’ (my ;s "
baa-b baa-baf ] _
0., = 23 %2 [ + _E_.j] ‘b, 0 = C34=0
34 V3 bza £ ) U:i"baa) ) e M

As = by (I'C'ai)(i-cgﬁ)

(bu ~bauCi) (b biat)
( ba -4 C3) (baa- baCu)
( by~ b;gc';u) (b.;q ~ by 03)

Aq = AJI-\.; /A.

s>
1 [i [l
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5. Determination of Interpair Mixing Coefficients

('U = b:‘ b’m ' HSB’ + b:. b;: I“‘”/ t bl’t 6.;.? I “(34)/ + b;; b;a ‘2233‘ *ymgggl”"”
b obybya [22(3] ¢ by by |3303)] ¢ by by %4 ()] + by bl [(2) 0]+ B, L] [34]]

Letting:

612 NJ3(d, + Cy0, + Cyb,)
0= N;2(¢, + g, + C,0,)
b3= NJ3(8, - C,9; - Cyb,)
Ba= N 20, - C,, - C,0,)

. 1
bf; =b,;N;, by, =byN, befl = b31(N1N2)2

i L
b{, = b12N3 bz, = byN, b:;z = bsz (N3N4)2 b1'1 = b4(N1N2N3N4)2

Bjj = b1 by2

and expanding  through second-order in {C} gives:

N
Y=g+ EC’L& *;:’QC'/@Z

where the definitions of the configuration {9} are given in Table 1.
After determining the new orbitals by solving quadratically for {C},

¢, is orthogonalized to ¢, and ¢, is orthogonalized to ¢,. If {b} is to
be reoptimized for fhese orbitals only b,,, b,, and b,, need be redefined

at this point:

' 1
by, = b, N, + by, N,S;% + V2 by58;,(N;N,) 2
b,z = by NN, ’
1 1 1
by, =2 [Ny 2 + V2 Ss4bzzN42] (N,N,)?
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where:
N, = (1 +C2+C;%
N, = (1+C;2+CJ%
, 1
Ssq = (C,C; + C3C4)/ (N,N,)?
N; =1- 8y
(If it is required that b, = - b21 and/or b,, = - by, rebrthogonalization

introduces only high order errors).

6. The Basic SEF Configuration Transformation Matrix
It ¢/L = Z Ciu X;
i

|wire)|= & 20 CLF | 4itae)]+ Ecj;"/(z/)(/s)/
= IE Ci"f,'f gf 1 ¥ rZ (Clt Cops ) iian)]

I#J!
+u§ s (a1 k)|
where:
C' = Cowlppt Guwliv  j C’%- CoCr
Since:
44%(163‘? G| = z ‘;ﬂf [4477] W}; C‘/M [icst)]
- 41744

L (Cisty o Clre) [4iian
Adxgid
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| (wu)(1€)| = Z ( Croy + Chee -2 Civy ) 14457

,w»a'g wy/e .uyle’ AVIE ..
- L) [ L4 (44
H; A.'H j,u .«;-«I A-/A; , (7 ) /
J-#.?/

y «;:w ( C'i}”ﬁ I’}if) | (ig)cht)|
f‘)j#)-o‘j

Since: , 42244

[(3)aw] = ~ 1wyl + L | [21[347]
](23)(:4) |= -4 |02064]- ‘E- | [13713¢] |

AWVTE VI _ WVFE A JE MIIE
”" (C&,u + /,/) I (“1)(4”J = [Q(Cm:w 3#/2) C/;?t/
"-rj’f" /
<p > A7 L MVIE AW'f VI | %«
Cams ~ Case = Clazs ] [2)(34) | + J: [ Claag t .7‘:,::
wITE VIE
= Cang - ::.23 J | [12][3¢] ’
Hence:
AVIE AUWE . ( wr)IE
;344 e ‘ (1( “ (wu)(¥e)
whe;f;“ f Dwzrm ||
pan(re) AVEE wIEE wrE /.mc MVIE WIE
D (+4) (J!) [2 (c"/-” CN 7 ) C»‘i'd ;I;,A C/Ad A?/A

(mo)(m T MVIE wWYIE ,my;a wWE
ﬂml T l: 4/4..6 t C-t.l/( 744! ,L//A 7

Therefore if:

( wi)(3E ) wYE wwt MWITE
“"5’7 [c""“/ﬂ / Ld 2. C .6/4"1

_ (wlre) wadE WIE MVIE WITE
D 4‘.1;/ 5 [- CA'-LJ/ + C’/ﬁ'i - C.«‘;II - Ci/i/



252

[ (uv)(re)| = el (el |
, § D,uyy' IA-#;/JI i/% DA:A:(‘;{IJ /.(.4.(//)}
L3

(7€) W)
t'<.«Z-&(|! [ D":"”“” [¢9) ('U)/ t DL-'/][JI] I [4z]] 411 }]
Since:

lwa(re)] = & | (waitre) |

[ww sy | = & | (s ()
[ [wllrel| = g | (m2) (7€) [ + 2= | (wora(ve) |

A (TE)
0 (wVI(FE)
De - £Dg
DMW n () (45}

& = Fl (=]
(olle] ) N (w(E) (w7)(E)
e = T D e ¢ é'-" De

_ e .
G = 20 Dugy 144071 + 2 Dy lidg]
atd

© .
+ 1 | Diay 16600+ Dy 10a01] ]

“lpch(d
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C. The Four-Electron Triglet

The wavefunction in terms of strongly orthogonal orbitals and

standard spin couplings is:

b, & b’ 4‘,,' b, ¢
v=£, ¢ +E&, |0, +& |9y’
¢, b, ¢s'

1. Basic SEF Configuration Definitions and Relationships

Definitions: :
{Caitsdd| = ¢ A 44,44, wp-Pulux = g
[[313% | = ~72 4 b dydy (2eafu-Poasa-afaa) = -G
[L123]4 ]| = - A4 hb &y (Jef- avfa-afan- Bada) =-g,
|11 L341] = A 44¢%d oBuav
J Llf3e] |, = f_—? | [12234 ] + j—; }[/43]4’
Relationships:
[ Ll| = -g& |ur3d]
[2liz [ = F [ [a3]]
|£i3123 | = &= |33 [u]]
| L2133 | = & (33[n]]
|nesls| = -& | 33 [13]]
[00al| = & | [rlsk]~ J& | 12074 ]
(B)[]] = % | Q)Tad| + & | [1a]94]
| (W EB]| = 4 | ea)L3vl|-Fz [[i2dae| ~ JF | asls|
| 43| = -5 | [2J34[- L& | [123]4 |
|f3vdia] = @ | ea02|-F [Loadse| - B | [12304 |
| 03av| = Z {onDse]] + + [ [a]se]
J[#132] = & [l - £ [ Tiadse] » & | L2l u |
|Da413) = -2 [ [a33¢[+ | [123]4 |
| [i3e]2| = -2 [ (I34]] - E{ragsef- 4+ [/:3]4‘
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2, _The 0-Pair Wavefunction

~ Since all orbitals are taken to be orthogonal in the first
place {9’} = {¢}:
@ =A,|(12)[34] | + A, [[12]34] + A, [[123]4]

where A, =&,, A, =~ £, and A, = - £,. Allowing for ¢, & ¢, and

¢, ¢, orthogonal mixing:

¢1=§ N(‘Pl + C12¢2); ¢2E) N((Pz - C12¢1)
¢3"—‘> N (¢z + Cs4¢4); ¢4=> N'(¢4 - C34¢3)

W= A, (1-e3) | Ga) Ll - ro,z,q,({n[m ]:z[u][)
- (el o su [E (Ay-074;) (1331n1] - | Wi Li21])

(1r0f)

-+ (IH‘,a) [A1°--C‘3u @.}_gﬁ’-)} ‘[/213q‘

b Orey) [A e 4F o} GrER] | iasaf

04('
= b (Vngs])- |aapsa]) + by [ Ourse] |+ by (13300231 - |44 a1 )
+ by [[RIs4] + by ) [1a3] 4|

Thus, solving a 5 x 5 CI for b gives {A}, C,, and C,,:

21
Ca = rb + [l ) ] J b0 (y=0
. bo~ITh by JT ]"‘ - -
¢ 20, ¢ "1) 1 by=0 D (3,0
3d Ve bu [ b ) ¢ iy

A = b3 /(1-¢5)
(be- JEbyCae) /(14C])
(by+ Ebycn)/(1403)
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3. The 1-Pair Wavefunction

since (¢,’ |¢,’) # O only, let ;' = ¢;, ¢,’ = ¢, and:
=% (4+054) i =2 (4-77%) (4ld)-0

Hence:

"W- g, ({u[au?l-] J2af3u]]) ¢ Vi3 €, [[1213¢] + BT €, {[1a314]
= A, [tlsel] + Ay [22[3¢]| + Az [ [1a13¢[ + Ay [ L1237 4|
Allowing for ¢, « ¢, and ¢« $, orthogonal mixing:
b= 2 (41cad) 1 h® A (4-cadl)
4’3=7 %1(4’3“'3‘44‘) ] ¢q = 2 (¢’u‘%¥4’a)

'Wg (A ey ) | nrsal + (Aafﬁ.f’.’a) [22 [l [ ¥ 7 (A-4,) g | G2) L1wd |
= Cau (1) (VE Ay 24y) ( 133123]- | Cal] )

T (1tedy)
bo(ees) [As- 3_"32477(;”_‘_3_1@] | sy |
: + ER gy (A aHel
+ (“("z [/44 3‘;"' c") ] 1[423]#,

= b, |uLsel]|t by |22[3%] [+ by |O10I34]
+ by (13301 - | w¢ [12]] )
¢ b, | [R13¢| + by | [123]4]

By solving for {b} through a 6 x 6 CI, {A}, C,, and C,, can be

obtained:

bz‘b: [ b b ]
= i I + a2 ‘ T = =
C’R V7 b3 V"‘ba ) J 53 0 = (=0

Q34 = bl [; ¢ brﬂn) ]
V¢ bu JC bu

; by=02 G40
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'4lf= (‘64”@(3#54)/(“0:)
A= (bs v E O bu)/ (1+0})
A= (ba=bich)/(1-¢}

A ’01'/420:’5

it

.4. The 2-Pair Wavefunction
Since (¢,’ |¢,’) # 0 and (@, |9,’) # 0, let:

$'= R (deVih) j 4R (4-7Ab)  (hihd-0
‘k’l=7zl(¢3‘m¢"‘) J 41}’: %'(‘I’g_‘m%) (‘/, [‘/.,)-‘0

Thus:

‘W T g (1ntwa]-, 12atel] )~ [5G (er@g) (133102
- |warial) ) + 2 ik (FE0&) (VT | Tialae] ¢ [[/23]4!)

= A (nssed|+ 4y Jaz134]] + Ay [32[0a] [+ Ay (44 Di2d[t Ay | D134,

Allowing for ¢,« ¢, and ¢, ¢, orthogonal mixing:

=% ($+Cdy) ; G=% (4-Ct)
4> 2 ($:+Cut) ; 4@’?2'(4'4“'”‘#3)

W= b, |ursed| e by [2aDsel] v by |Ga)Loul] + by |33 L1l
+ bs Jua Li2]| + by [ [1213%[ + by [[123]4%]

where:
b= (ArhAci)/(1vas)
b= (AatAei)/(1sel)
by = VT Ca (AA2) /(1+C3)
by= (As+AsCse )/ (1405%)
by = (Ay+A305%)/ (1+C54)
b= & [ A+ Culris-Au)/ (1105 ]
b, =t [ As =30 (Ar-A)/ (1+65) |
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Upon solving a 7 x 7 CI for {b}:

b b b

Clz': ! 3 [, (U"ba ] y 5330 = (=0
br-bv “

7 ) [ \f,i-'(brﬁbz)) i bEho = G0

/q;'-‘ (\554 *b7)/\/_3-

Ay= (bs~byCs)/(1-y)

Az = by (146%) = by O3

14;_‘ (bz“'b:c:‘z)/(l'(‘::)

A= bi(itel) - ok V

5. Determination of Interpair Mixing Coefficients

Y= b [uIal] by (220347 [+ by | (1201397 ] ¢ by | 33 [12] |
+ by |wHLial) ¢ be [[iad34] ¢ by | [ia3]4]

Letting:
¢, = N.I'z(‘f’ tC ¢ “('.zd‘u
&= N" (4 +o 43 F O W)
42 N (4 a4 -0 %)
W= N (4t -0 ds)
b= b Mo (NsM)™ 5 by e b N, (Myme)™ ,

ba= by Ns (NW)™ 5 blq= by Ny (W)™
by = b (KN NN )® = 3,41

expanding i through second order in {c} gives
¢ u -
A+ LicE f%::(l'(;f@w
A A2y

where the definitions of the configurations {6} are given in Table 2.

After determining the new orbitals by quadratically solving for {c},



259

¢, is orthogonalized to ¢, and ¢, is orthogonalized to ¢,. If {b} is
to be redetermined for these new orbitals, these coefficients need not
be redefined at this point. (If it is required that b, = -b, and/or

b, = - b, reorthogonalization introduces only high-order errors).

6. The Basic SEF Configuration Transformation Matrix

e, = 2 Cip X
i

[Comyred|= o Lo €I ol ¢ )1 Cl e

4(;'
S wITE
= ;["' Z’ CL u ’-"'[“’]‘ ‘“E C'.q./,u /(*JJHI’]I
4#1! s14
o
whe?e c C._w/y tCuly c.:;u = Cq (C'ﬂ,/: -(r ,45)
Since:
o .wvfé 4""’
) gj o Jewratt] Z [ Coo |t & E orlorwi |
,..,M/ 4.#7.
u
.wwe Wyl #TE AOVIE woiE
; ol .:}jj {(J)“j] [‘?me ,qa,; + (';m,; = Caaa“
LCp b
gt 4,4 M »7E WV wPTE I JE
.‘?sm ] {(!2)[3'0[ t T [3C,,;., -3 C:am +2 Cam
e Vg
* C::Ia ) C::aa ] | [12]3¢]
") b ¢ 7E
p B LOWE - Cus-Can | 1 Tias14]
. (w2)10€] WYIE vIE
It: D it = [C'ff;j +Ciny ~Cigis ]
(wo) [€] 4 s g wIYE uvrs PrE
D(A;)Dl] [2 CI-JAI ‘?C‘ I/l IAA CWI{ c:ul
(o [¥E] _ L wolE e Ve w: Y€
D[Lj]Jl [30‘*/'/ '3 AA.I JCJIA-; J)L: .:};'A

(u») flt] wPre .«wt& wVIE
[444]/ J—- [ c;/Ab ’A‘ C.‘/44 J
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| (wo)Lren| = Y\ DGP(Ne) les 7411

“, ¢4
4t 4
(wy)[7E] )
+ ) [ D eyipan i) 141l
£kt

(wr) [¥E] . (w¥)Lre]
+ D[;,]JJ [[4,-{]1” 3 [4;415 I'["/‘”/]

Therefore if:

ww LFe]l )~ (wsllE]
Dg TR Dg (wd) [V€]

[#v]eE L (wv) IIEJ Iy
D = VI D@ ug' DQ

,_ww.'li L4 [wy)te (¥e) [aw]
De =~ 50l  -ED

Then;

E Du-r;u [<itza] *‘Z [ (,m’u] [Gniad]

,c#JaJ
o @
+ Opggag 167401+ Qg |1 “W!]
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D. Energy Coefficients
The general 3~electron doublet, 4-~electron singlet and 4~
electron triplet wavefunctions are:
Bo= A \n3|+ fy |223] + Ay | (a3 ] + Ay | D213

where

/q: = /4) = 0 for o‘lep J /43 =0 for ,%p

‘/fs = A [nssf+ Ay [nwe| + A |2233] + Ay |aaue]
+ As |Dan|+ Ay [uG ] v Ay 2au] + Ay | (20634 |

where . P
A= PazAs=Hi=H;=Ar=0 for ,%s
A,=A2=A3=A#=A[ =0 for ‘1[}/”
A= Ar= A= o0  for Wi

W= A [ursn]+ Ay |aafsad|+ Az 33021 ] + Ay |#¢ 121 |
+ As | D1zl A [Dnsle [+ A, | ()[4l ] + Ay | ie]rsel

where o
A,=,4,2=A3=/4=,43=0 'ltor %r
A3: A" = A? = Az = 0 ‘/‘Of lLk"T
As= A=A =0 for W,;

 Calculating the energies of these wavefunctions, omitting necessarily
zero terms and casting these equations in the general form:

E= Z [Qﬁ h;;*dxAJ;;]*zz[de;I;* 4',1/(*;1']

33

+ ZE Coy (m.lld;l%) t+ Z[Jm (mn, |mn,) $ Con (M0 M1 |13 /),)]

m yim,m, nm
gives the definitions of the coefficients {f, a,b,c,d, e} in terms of the

spin-pair coefficients { A} shown in Table 3, where it is assumed that

{A} is normalized to ? A12 =1,
i
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Table 3a
Three-Electron Doublet Energy
Coefficients
£ AR kAl
£ ARk (AAY
fs ES
an A’
02y ﬂ:
/K] 0
Qi + (45+ A1)
Ay | f
An fa
by ARy (45-A)

}f b3 i ‘llf_ (ﬂ:- HJA' -?ﬂoa) = L;_E A Ay
f b2 -b(ﬂ;-ﬂ;-;ﬂf)4 [%-Aaﬂl,t
L_Cs Ve A (RA-Aa)
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Table 3b

Four-Electron Singlet and Triplet Energy Coefficients

COEF‘

f,
fa
s
Fu
Ay
O-2n
A3

i
i
{
-
i

CsweeT . Tmeer
AXe A+ AL H4 (A5 +AY) 4 (1+A}- A2/
A PP AT L (A5 +Ag) _ + (HH;-HH
AL AT+ (R AL ATIAT) L (14 43-4%)
AL F AL L (AR AL AT ) L (1+Ai-A3)

A+ A} + A | A

AL+ A +AT A

ALt As As
A+ Al Ai

3 (As+A) L+ (i- AR A2)
AR AL rE (AFAT) L (e AR-AR A -AL)
A AL E (A EAT) L (e pt-A- AT AL)
QA3 +A v (AErA) L (1-A*+ Al +AS-AL)
QAVEATHE(ASHAT) L k(- AMeAE- A3 1 AT) ’

?(A}*Ai"Ai*Ai) 3 (I-/ﬂa' v)

Adsr Ay Ayt AAEISA) A AR -k (1A AT)

T (R5-A} )AL A HE?A,Af b (A2-AR) & (Al RS AL+ TT A, /47)

b (AYR3) P bR - T ARy A (AR 5AE 4 ASAL)- l(ﬂ,fﬂ..fjﬂ,’ LYYy
1-‘3 (ﬂ, /'71) A:",%‘Al ;A>A: i -‘-(ﬂr"ﬂv )-% ('4: + /43 +AC - rﬂ;—ﬂ-,)

4 (A;‘A:) A 1 *-‘Eﬂﬂq, 7 (28 s A2 + 4 JTAsA)- i-(ﬂnﬂ.,ﬂ-ﬂ,‘)f (As13J4)
 MAg A /4,,+3L(,4‘m,m, A,) Ashe- 4 (A AL ATIAY ) + - (AZ-A2- W"ﬂ,&)

VT As (Ac-Ar) (JT A+ Ay ) (A 4s)
- 1T Ay (Ae-47) (A Assdg Ae) (A Fi)
0 2A (Ae-As)

o

2 Ay (44'43)
25 As (Az+As) -2 (AAgt AR
-?J'_/qs‘ (ﬂl*”‘f) 2 (ﬂ;ﬁu*ﬂ;/];)
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1.

Ordering of Two-Electron Integrals For

Configuration Interaction Caleculations

Abatract

Through use of a new 2-slectron integral or-
dering sequence, it is proposed that CI matrices can be
evaluated muech more efficiently than is possible with
the usual canonical ordering,
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I. INTRODUCTIONR

Development of an efficient method for generating
CI matrices over sets of general antisymmetrized orbital-
produet configurations (AOPs)% involving reasonably large
numbers of orthogonal orbitals has been made very difficult
owing to the horrendous number of 2-electron integrals in-
vqlvéd. Since there are %(ME(M+1)2/2 +M(M+1) ) such inte-
grals for M orbitals, their number easily exceeds any cen-
tral storage computer capabilities for all but small values
of M (e.g., M<{25), As a consequence, these integrals must
usually be held in peripheral storage during CI matrix
construction, with only a fraction being available in core
at any one time, However, when dealing with moderately
large numbers of configurations, practical considerations
require that a given matrix element, or a small group of
them, be completely evaluated and stored peripherally be-
fore calculating other elements, Therefore, all integrals
needed to calculate a given matrix element must be readily
avallable at the same time., Because of this, all prdped-

ures which start with an integral list in the usual can-

*An AOP has the general form:

A2 X

where /A 1is the antisymmetrizer (determinant operator), ¢
is a product of doubly- and singly-occupied orbitals, and
X is any compatible spin function,
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onical®order must, in one way or another, involve highly
inefficient multi-pass methods in which those integrals
currently needed are first identified and then brought
into central storage after scanning the peripherally
stored integral list for them, When dealing with large
numbers of orbitals and configurations, such procedures
can be extremely time consuming and expensive, A pro-
cedure which can avoid this problem will now be proposed,
This approach involves abandoning the customary canonical
integral ordering., Instead, the integrals are ordered
in a different, but nontheless general, way which permits
complete evaluation of all matrix elements requiring any

integral currently in central storage.,

*Pne IJKL canonical index for the 2-electron integral
(17| XL) written in (11 | 22) form is:

IJXL = IJ (IJ-1)/2 + KI. IJ )KL
IT=1I(I-1)/2 +J )7
KL = X (K=1)/2 + L KYL
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ITI. DISCUSSION

If we define a spatial configuration as simply
being some set of doubly- and singly-occupied orthogonal
orbitals from which one or more AOPs are to be constructed,
then all CI matrix elements between all possible AOPs for
spatial configurations j,;: 4 &nd §3 can, of course, be
evaluated using only those 2-electron integrals which
involve only those orbitals appearing in §A and éa .
Moreevexn Since all orbitals are orthogonal, of these, only
certain specific integrals are actually ever required., The
number and type of these integrals depends upon how @,

and §3 differ from each other: )

A) Zero Excitation:

It é‘ = §,3 » only the coulomb and exchange integrals
involving the orbitals of ;{ A wWill ever be needed to

calculate any matrix elements:

Tiy= GG = it 4144
Kij= <4 IK1<)= <tdylildi &)

where ¢ 4 € §A
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Single Excitation:

¢)

If §,4 and ég differ by orbitals 4’4_ and ?‘b re-
spectively, the only 2-electron integrals ever needed

are of the form:
Ca [T 16}, (a|Kulb)
where ¢, € £, and b€ 8, ¢+ ¢, 4,

Double Excitation:

Ir j.zfA differs from §3 by orbitals 4‘0,. and ‘f’a,,_
while $, differs from ®. by orbitals %, and %,
the following subclassifications are possible:

1) Core Excitation:

If ¢a. = Sbal and 43,, = T, s only the exchange integral
/(a,, p, Will ever be required,

2) 1-Integral Double:

ir ¢ = ¢.,, but 9, + ‘P‘,a, all possible matrix el-
ements can be calculated using only the inbtegral:
(b | Ko, | b2
3) 2-Integral Double:

If ¢, % 4’42 and 9",,. ¥ ‘f'b,, , the only two integrals

ever needed are:
(4.‘7.’42‘71)’ <¢“t¢4z I#z’éhﬂg}
(aibg|abi) = (ba, ba, | )%, %)
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D) Higher Excitations:

Sinee all orbitals are orthogonal, 1f fA and f 8
differ by more than a double excltation, all matrix

elements must be zero,

Thus, we see that in evaluating all possible AOP CI matrix
elements between pairs of spatial configurations differing
by specific types of excitations, only specific types of

2-electron integrals need be available:

A) Pype 1 - All integrals involving just one or two or-
bitals:
Juio, Jig Kz: &'(,151'\
With these, all zero and core spatial excitations can

be handled,

B) Typa 2 = All integrals involving three different or-
bitals:
ATy, GlKls)  scgem  agm  viizem
With these, all single and 1-integral double spatial

excitations can be handled,

C) Type 3 - All integrals involving four different orbiﬁals:

(iglhd), (ik[17), (< 2ij4) Jehkesesd ¢ m
With these, all 2-integral double spatial excitations

can be handled,
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Hence, if central storage could accommodate each one of
these three groups separately, CI matrices could be gen-
erated by simply caleulating all matrix elements result-
ing from those spatial excitations requiring integrals
of the particular type currently at hand,

2 type 1 integrals, it

Since there are only M
is safe to assume that these can all be held in central
storage simultaneously., Unfortunately, this cannot be
presumed to be the case for the much more numerous type 2
and type 3 integrals, This problem, however, can easily

be solved by ordering these integrals in a specific man-

ner,

Any spatial excitation requiring type 2 inte-
grals really only needs integrals from a subset of the

form:

il Tulgd, (4lKulg) dgM V7 M

where < and 4 (4)7) are fixed, Thus, if type 2 inte-
grals are grouped into such subsets, all matrix elements
which require any integrals in those complete subsets

currently held in core can be evaluated completely.
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Any spatial excitation requiring type 3 inte-
grals can really only need integrals from & triad of the

form:

(i |A2), (ihl7L), (ill7h)

where M) <) >A> . Thus, if type 3 integrals are
grouped into such triads, all matrix elements requiring
any integrals in those complete triads currently in core

can be evaluated completely.

Thus, we find that if the 2-electron integral

list is arranged in the order:
Tl STy F S Kyl § i Tuls), (< 1Kulz) § § (ig149),
(ihl74), (id144) §
where
Myirg Ayt ; agm ; vigszE&M
" then all CI matrix elements involving an integral held
in central storage at any one time can be completely
evaluated since all other integrals which might be re-
quired can also be present., Rearranging a random 2-elec-
tron integral list into this order is relatively easy
and requires no more effort than is needed to obtain the

customary canonical ordering,

Efficient use of this integral order is, of
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course, contigent upon knowing all the pairs of spatial
configurations between which matrix elements require in-
tegrals of that group currently held in central storage,
This can be best accomplished by first checking all pairs
of spatial configurations and categorizing them according
to which integral group they will require (Type 1?7 Which
type 2 group? Which type 3 group?). These pair numbers,
plus other essential information obtained during the cat-
egorization process, can be stored peripherally by cate-
gory fbr later retrieval as each group of integrals be-

comes available,
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ITI. CONCLUSION

A method making possible efficient generation
of AOP CI matrices for spatial configurations constructed
from reasonably large sets of orthogonal orbitals has
been outlined, This procedure involves ordering of the
2=-electron integrals in such a2 way that when taken to~
gether with prior sﬁatial configuration palr categorization,
it becomes possible to completely evaluate all matrix el-
ements involving that fraction of 2-electron integrals

currently in central storage,
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2,

Investigation Of a Localized Orbital Model

For Singlet~Pair Transfer Processes

Abstract

Despite initial appearances to the contrary,
it is proposed that the Generalized Valence-Bond des-
eription of singlet-pair transfer processes may distill

into a simple localized orbital model,



279
I. INTRODUCTION

In any attempt to uncover those key factors
essential to the development of a theoretically based
model of chemical reactivity, studies of reactions in-
valving basicly three electrons are of fundamental impor-
tance, This is because such reaéfions represent the
simplest examples of processes involving disruption of
one chemical bond and formation of a new bond, This oc-
curs in colinear exchange reactions such as:

H,* D& H* HD

LiH+H & Lo+ Hy
Also fitting into this category are simple molecule for-
mation reactions such as:

Be+tH — BeH (*5')

Bt H — BH ('m°m)

cv H = CcH (3,57 )

in which the initial 'bond! involves two electrons of the
same atom, As all of these reactions involve low-lying
atomie and l(covalent) molecular states, an orbital des-
cription of each (with each electron having its own or-
bital) begins and ends with two highly overlapping sing-
let paired orbitals such that if the original pair is to
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the left of center, then the product pair is to the right

of centeri

@ O=0®

For this reason, we will categorize these reactions as
being singlet-pair transfer (or bond transfer) processes,
‘CQnsidering the three T ~orbitals of‘allyl radical to be
trapped midway through such a process also provides us
with an opvortunity to investigate the phenomena of res-

onance stabilization as well,

Since these processes are of such basic impor-
tance, it is essential that any physical concepts ad-
vanced to explain them be based upon theoretical cal-
culations (i.e. a wavefunction) capable of describing
the energetics involved in at least a semiquantitative
manner, Obviously, such a wavefunction must also be
physically interpretable. Since the ultimate goal is
to develop a physical modsl capable of predicting chem=-
ical mechanisms without detailed calculations, it is
equally important to extract from such a wavefunction
those key factors leading to a definitive description

of the processes involved,

¥ phe presence of additional nonparticipating electrons

is ignored,
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It has been known for some time that General-
izedealence-Bond (GvVB) wavefunctionsiare capable of
adequately describing singlet-pair transfer processes,
However, there has been some confusion regarding the
most useful interpretation of these results, Based upon
gqualitative arguments presented in the following section,
it is proposed to investigate the possibility that these
GVB results distill easentially into a simple localized-
orbital model, despite initial apvrearances to the con-~

trary,
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II. DISCUSSION

Since singlet-pair transfer processes begin and
end with singlet coupling between two highly overlapping
orbitals, let us first consider the simple wavefunction

in which singlet pairing is preserved throughout:

X
Y, = ) = A 944 (4p-p4)d (1)

where no restrictions are placed on any of the orbitals
(Note that if ¢ = ¢, this reduces to the Harisee-Fock
wavefunction), As is 1llustrated in Fig., 1 =nd 2, sing-
let-pair migration ¢an be accomplished in a straighte-
forward manner through delocalization and subsequent re-
localization of ¢, and ¢, , As these two orbitals move
in opposite directions, 95_1 can alweys maintain high
overlap with S{’, , While 4’3 can always remain essentially
orthogonal to both of these orbitals, Since ¢ and ¢,
are always singlet paired gpd highly overlapping, while
¢f; 18 always nearly orthogonal to this palr (to which
it is antisymmetrically coupled), repulsive interactions
between these orbitals are always kept to a minimum,
Thus, this wavefunction provides us with a physical model
for singlet-pair transfer which is not only simple, but

quite reasonable as well,
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Within this model, the original singlet-pair
simply moves intact from one region of space to another,
The unpaired orbital simultaneously moves in the other
direction, developing antibonding character (i.e. a nodal
plane) as it readjusts to achieve favorable small overlap
with this pair, Hence, in simple exchange reactions, we
are‘led to the notion that instead of one bond breaking
as another 1s formed, what actually occurs is that the
original bond is simply transferred intact from reactants
to products, Assuming that the JT -orbitals of ground
state allyl radical are trapped midway through such a
process, the resonance energy of this molecule can bhe
attributed to delocalization of a bonding ( no nodes)
singlet-palr over the entire system, with the unpaired
orbital exhibiting typical antibonding character ( a

central nodal plane),

Thus, we have the makings of a simple model for
describing chemical reactions and resonating systems,
However, upon closer scrubtiny it is found that there are
serious problems with the Perfect-Pairing (PP) wavefunc-
tions upon which this model 18 based, While wavefunctions
(1) adequately describe both reactants and products, they
typically give energies much higher than would be pre-
ferred in intermediate regions, Of much greater impor-

tance, however, is the simple fact that, in general, PP
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wavefunctions cannot continuously describe singlet-pair
transfer, Thias was revealed in PP calculations for
formation of the A and ) states of CH, where it was
found that it was not possible to go smoothly from re-
sctants to produects (Fig, 3) . The reason for these
inadequacies will be discussed later, For now, it suf-
fices to say that since any physical model we develop
rmst be based upon a wavefunction which af least behaves
properly, we must look for another wavefunction from

which to extract physical concepts,

Above, we let the orbitals themselves change,
but kept the coupling between them fixed, Therefore,
the logical thing to do next is to unrestrict this coup-
ling as well, Wavefunctions in which both the orbitals
themselves and the coupling between them are unrestrice
ted are Generalized V¥alence-Bond (GVB) wavefunctions,
For the three electron doublets considered here, this
wavefunction can be written as a linear combination of
any two linearly independent couplings between these
orbitals, For later convenience, let us choose these

to be the fﬁ?ﬁ‘gand(afﬁr]singlet pair couplings:

et e

4 ¢ X
q{'vs:& P =+ £, y (2)
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where 4} and 4’1 comprise the reactant singlet-pair, In
all cases investigated thus far, GVB wavefunctions have
been found to behave properlya(i.e. go smoothly from
reactants to products) and always give much better in-
termediate energies than PP wavefunctions, Typically,
the orbitals change as shown in Pig. 1 and 2, That is,
they behave qualitatively the same as in PP wavefunctions
(The differences involve relative degrees of delocali-
zation), Thus, ¢ and ¢, still effectively exchange
original identities through delocalization-re-local-
ization, with 4’2_ maintaining high overlap with ¢ and

4?; remaining nearly orthogonsl to these two orbitals,
However, while this is going on, the coupling between
these orbitals also changes significantly (Fig, L4 & 5).
Upon analysis of these coupling changes, it is always
found that during delocalization, ¢, and QS,_ become ine
creasingly less symmetrically (singlet) coupled as ¢,
and 95, become increasingly more symmetrically (singlet)
coupléd (This is not only because 6| decreases as |&,|
inereases, but also because these coefficients are opposite
in sigzn) Once S{; and 4}, have become fully delocalized
and begin to relocalize, this trend (which is toward

triplet coupling between d; and ¢, ) reverses itself as

4

pairing corresponds to product coupling,
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Thus, we have found that singlet-pair transfer
can always be deseribed by a GVB wavefunction, but not
by a PP wavefunction, We have found that this GVB de-
scrinvtion involves both the orbital changes expected for
a PP description and significant orbital recoupling in
intermadiate regions, There is, in fact, only one prob-
lem, During delocalization, the overlap between orbitals

% and 45 does not decrease, but the symmetric coupling
between them does decrease, loreover, while ¢ and 9,
remain nearly orthogonal during delocalization, the sym-
metric coupling between them increases, Hence, it would
seem that repulsive interactions between orbitals are
greater in the GVB wavefunction than they are in the in-
adequate PP wavefunction, Upon what bases then can we
extract generally applicable physical concepts from these
GVB results? |

In both the PP and GVB descriptions of singlet-
pair transfer, ;# remainsg essentially localized through-
out, If # and @ are initially localized to the left
and right of ¢ respectively, with 4? and ¢, comprising
the reactant singlet-pair, then during delocalization=-
relocalization of ‘fi and 4} R 4’,, develops more and more
right-hand character as ‘/’3 develops more and more left-

hand cheracter, Therefore, let's assume that these two
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orbitals can always be expressed as:

B= b D ds A T e 2940 (4IbY  d4dg o

b= b I i 1m Tae Ao DA hesdhlb) 5 As4,,00
where ﬂ and # are localized orbitals allowed full
variational freedom within their respective regions, That
is, ¢ decays to the right of ¢ , changing smoothly
from @ (initisl) to ¢; (final) and @ decays to the
left of 4’, s, changing from 4’3 (initial) to ‘ﬁz (final),
Renaming ¢, as ¢c to indicate its regional localization,
the PP wavefunction in terms of these localized orbitals

is:

%
Y= T4
r——l (3)
= /A];)‘" :‘ - N ’A/s/’\rl :‘ e t 1]11/: d #‘ﬁe"ﬂ‘( = 1&1"&4’:%“’/‘9"
r %
L ¥ e - ~—— »
covalent ' ionic

whereas the GVB wavefunction is:

Wevs

x> 7%
ry SRR

€,

[44] fe v
(&’A!a rJ"Ez’)\laAra) ;:_I + (E:z]lﬂra“ Elllijfl) %
\___/-'\/—\__,/
covalent

v (8res) [ Aide A ' 0be - Al d s |y

MmN,
jonic £E,X0
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Examining the covalent part of each wavefunction which

can be written as:

) X )
q/t'wuiu'f - X, ¢r * yl é’ (5 )

we find that in going from reactants, in which 4’c and

4} are singlet paired, tq the products, in which ﬁ,
and # are singlet paired, |%| decremses from unity as
))inncreases from zero to finally approach unity., More-
over, these coefficients always differ in sign, Therefore,
as 4’¢ and 4%. overlaep more and mbre, they also become
inereasingly singlet coupled, In addition, as ‘% end
: ‘I?, overlap less and less, the singlet 0bupling between
them decreases, Thus, as far as the covalent part of
each wavefunction goes, the changes in the (localized)
orbitals and the changes in the coupling between these
orbitals are consistent with minimizing repulsive inter-

actions betweén then,

Considering the lowelying atomic states we are
dealing with, in and}of themselves the ionie configura-
tions appeering in each wavefunction obviously have high
- energies, Therefore, it is safe to assume that these
ionie terms should never contribute greatly to the wave-
function, However, in the PP wavefunction (3) there are

only two independent parameters to control the relative
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contributions of the four configurations involved, Hence,
the extensive delocalization needed to go from reactants
to products necessarily forces the wavefunction to take
on an inordinant amount of ionie character, For example,
‘thé PP deseription of allyl radical considered earlier
would correspond to equal amounts of covalent and ioniec

character:

e = ::*’ | i’:‘” v A Y bofy - A G bpa

/N N TN\ L\

It is not surprising then that PP wavefunctions give en=

ergies too high in intermediate regions, This enforced
jonic character also explains why PP wavefunctions do

not continuously describe singlet-pair transfer, Initial
delocalization occurs so as to keep excessive lonic con-
tributions to a minimum, The mode of delocalization,
however, depends upon whether we start from reactants or
products, As a consequence, continual change in this
initial mode (least change path) need not lead to the
desired limit,

In the GVB wavefunction (ly), each one of these
four configurations can contribute indevendently. More-
over, we know that the common coefficient for each ionic

term, ( €,+ €, ), continually decreases as delocalization
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increases, Thus, desplte increasing delocalization, it
would seem that these ionic éontributions (which are
really the only consequence of delocalization) do remain
relatively small at all times, For example, in the GVB
desceription of allyl radical, covalent terms account for

over B80% of the wavefunctions 5

g BB - BB o |d bt dihon]

IN N e AN e LN

Thus, by partitioning these wavefunctions into

covalent and ionic parts in terms of localized orbitals
(able to distort, but always retaining their initial i-
dentities) we have found that in GVB wavefunctions the
relative covalent and ionic contributions can vary inde~
vendently. Since the sole effect of the observed orbital
delocalization is to impart ionic character to these GVB
wavefunctions and since the simultaneously occurring
orbital recoupling appears to keep ionic contributions
small despite extensive delocalization, it is quite pos-
sible that the overall result of these drastic orbital
changes is only to offset to a minor extent unfavorable
interactions developing within the covalent wavefunction
(5)e If this assumption is correct, it would seenm only

logical to base any physical model of singlet-pair trans-
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fer (reactions and resonance in general?) upon the local-
ized-orbital GVB wavefunction (5), As mentioned pre-
viously, this wavefunction describes singlet-pailr transfer
as involving dissolution of the reactant bond with simul-
taneous formation of the product bond, The changes in
both the orbitals and the coupling between them in going
from reactants to products are consistent with those basic
premises which have had great success in analyzing the

GVB descriptions of the low-lying states of many molecules

(equilibriuwnm geometries):u

1) Orbitals remain largely atomiclike, distorting some-
what owing to their molecular environment.‘
2) Repulsive interaction between orbitals are minimized
by:
A) Symmetrie coupling between orbitals having high
overlap:
B) Antisymmetric coupling between orbitals having

small overlap

Hence, by suitably modifying this localized-orbital des-
eription to account for ionic pefturbations (if necessary),
it may be possible to distill from raw GVB results the

essential elemehts needed to develop a generally appli-

cable model for chemical reactions and resonating systems,
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Therefore, it is proposed to make a thorough

*investigation of singlet-pair transfer processes in

terms of these covalent and ilonic contributions to de~

termine if the assumptions which have been made are valid,

and if so, to what extent the localized-orbital model

needs to be modified, In order to do this, several essen-

tial questions must be answered:

1)

2)

3)

i)

5)

Can a localized-orbital description of singlet-pair
tranafer go continuously from reactants to products?
How much worse would a localized-orbital description
be? Are the essential features of the potential en-
ergy curves preserved or severely distorted?

How does ioniec character change during delocalization?
Is it more important at full delocalization or just
after delocalization begins?

How system-dependent is the degree of ionic character
which develops?

If ionic contributions are essential, is there a sin-
ple way to account for them within a localized-orbital

model?

Analysis of existing GVB results may help answer some of

these questions, However, new calculations designed to

get to the heart of the matter will also be required. CI
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calculations using frozen atomic orbitals mey be helpful,
provided they can adequately describe both reactants and
products, Most likely, calculations in which the orbitals
are allowed to vary between their initial and finel local-
ized forms will also be required, This can be done by
restricting the space available to each orbital in actual
GVB calculations or through use of simple iterative CI
techniques in which each orbitsl is expressed as a linear

combination of its initial and final forms,
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IIT, CONCLUSION

Based upon qualitative arguments, it would ap-
pear likely that the well-behaved GVB description of
3-0orbital singlet-pair transfer processes is best des-
eribed by a simple localized-orbital model, despite the
extensive orbital delocalizations observed. This is
because the simulbtaneous orbital coupling changes tend
to minimize the net effect of these drastic orbital
changes., Within such a model, which may require modi-
fication to account for ionic perturbations, the re-
actant bond gradually breasks as the product bond forms,
It has been shown that this model is consistent with
minimization of repulsive interactions between atomic-
like orbitals; ﬁhe very concept upon which the GVB des-
cription of many low-lying molecular states have been
successfully based., This is in contrast to the incor-
rect model one would arrive at based solely on the ob-
served orbital changes, in which the reactant bond (i.e.
two highly overlappring singlet paired orbitals) is sim-
ply transferred intact to the products, It has been
proposed to verify the assumptlons made throﬁgh local-

1zed orbital calculations from which the relative cow
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valent and ionic contributions to the wavefunction can
be easily ascertained, It is felt that through such a
representation, the basic essentials involved in these
processes will become apparent and may help 1eéd toward
the development of a generally applicable physical model

for chemical reactions and resonating systems,
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3.

Generalized Orthogonal-Orbital Variational

Equations

Abstract

The orbitel varistional equations for any many-
eiactron wavefunction involving orthogonal orbitals are
rigorously derived, Based upon the resulting quadra-
tically convergent orbital optimizabion equation, it may
be possible to devise a practical computational method
which will be more rapidly convergent than those pro-

cedures currently employed,
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I. INTRODUCTION

Starting with an energy expression valid for
any mgny-electron wavefunction, a set of general orthog-
onal~-orbitsal vafiational equations are derived, In so
doing, the variational condition (the equation satisfied
by the optimal orbltals) is rigorously obtained, without
resorting to use of Lagrange Mnlti?liersl by implieitly
requiring that all orbital variations must preserve over-
all orbital orthogonality. In addition, this aporoach
permits derivation of a quadratically-convergent equation
for orbital optimization which cannot be obtalned from
the variational condition alone, Finally, using this
result, the equation which couples optimization of a
single orbital with simultaneously required changes in
all other orbitals is derived through second-order,

Baged upon. this equation = ., it may be possible to de-
vise a practicalvcomputational method for orbital opti-
mization which wiil be more rapidly convergent than those

procedures currently employed.2
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II. DERIVATIONS

The energy of any many-electron wavefunction
{(actual or contrived) involving N orthonormal orbitals

§43 can always be written as:

N

E - Z: [17[,:; h.. +5L,;,.-Icz]
+ 2 [’-f)c h,,;* 1(&,’{ J—j‘* bz.j/ﬂj)*‘/‘i <“‘ ct; "'d"ofkj />]

4.), WYY
+"|ZC/ (AIT{;,) t+ i Z;; x‘/ (A]IA‘/) (1)
‘*j 4;’)43’
‘;‘;a‘.l#./
where:

(*'1)- (#&‘&;) 54.
‘9': {4.“!//) (#..,ffﬂ;,l*’)

Ir (4 jbu) is a 2-electron integral involving orbitsals
4., 4;, 44 and ¢ written in (11(22) form:
i lTalg) = (47 |44
o Kalg) = (ikl74)
T«-j z {4 | Tj I“
Kips <4 1KG14)
The coefficients {a, b, ¢, 4, e, f,7{ depend upon the
form of the wavefunction we are dealing with, These may
be fixed or may depend upon optimizstion of adjustable
parameters within the wavefunction, Since we will not be
concerned with such matters here, these coefficients will

"~ simply be regarded as being fixed parameters, Starting
with equation (1), the equations needed to variationally
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optimize the orthonormal orbitals will be derived, For
simplicity, all orbitals will be taken to be real (exten-
sion to complex orbitals is trivial).,

A, The Variational Condition

The optimum orbitals are those for which the
energy iAs stationary with respect to their allowed changes
(i,e. orbital orthogonality preservation), To see what
this implies,. let's allow each orbital to vary outside

its current space in such a way so as to preserve orbital

orthonormality:
e (Ges)/ (e (sa15))"
(#:ls:)=0
(U 14)= 54
Upon substitubing these orbitals in (1) LNote that we

can do this since §¢{ are orthonomal] and expanding,

we obtain an equation having the general form:
(2)

X
E‘=E+ZL(SLIH;I¢;>*(5;II?L)J+ 5
where O?' contains terms second-order and high in the
orbital variations §5§ , Hence, the first-order change
“in the energy owing ‘t':o orbital variations is:
6E = Z [ {8 |H &)+ (&H?z)]
If §¢{ are the optimal orbitals, this energy change must
be zero, Therefore, the variational condition for the

optimkl orbitals is:
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N

0= Z [(&ll-k!fk)*(m/?.-)] (2)
where the varistions §§{ in the orthonormal orbitals
must be such 80 as to preserve orbital orthonormallity at
least through first-order (second-order and higher non-
orthonormalities cannot contribute to first-order energy
changes)., Since this equation tells us when the optimal
orbitals have been obtained, any equation we derive for
orbital optimization must be capable of converging to a

get of orbitals satisfying (2).

B, Definition of the Field Terms H and R

We will now define the fiéld terms {H, R§ ap-
pearing in (2)., Isolating from (1) those terms which
depend upon orbital ﬁ,, we obtain:

Ey" J'Fy»hyy + Ay D:I.U 4'22 [a/y J;y”b/” K/'y +‘_2;§“(":‘C:'/ J;* ;&‘1)
: .
12 Ol g5 rel 5 3 (G T Kl L W any

& 115
where <¥|[f4l[g) = (vj|AL) . Substituting % =(+5)/(i5)"

in the above and expanding, the first-order change in £,

owing to §, 4is:
T = <5”"F.n»"l+aw-) "Z[a.w +b,.»/(7*-?zf'a;f*dl”>
+E J;J[(s“/v/)f(wlfuy)] E(&hﬁy rel el (Beak)

»?j#!

e (e T edp ke Z 7,’[»”[1)

S 4,11@»
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Ir 95,, is optimal, £, is stationary with respect to vari-
ations in 4?, (which preserve overall orbital orthogenality).
Therefore, the variational condition for orbital 4, 1is:

0= (80 |fw hs aw Ty + 52 (2isTv bi ki) ¥ E [2¢, fir+dsy (i ki) 0D

+ 2 (S lfpheed T +c,(a+:n)+2(c,» iy k) D 3L

7%v 1; kg
where we have used the relationship:
(§,ilvs) + (vilug)= {8 | My K- K7 l2)
From (2), we have:
0= (wlHo V) + {85 IR

Therefore, we cen define H, and R, as:

Hyz foyhe 2m T+ E [aw t (biy - Z:&,)/Q] [‘7‘:‘;]7*"7 .u;] (3)

L34
y=jg [ £ heel ) (Toam) + gjy (i Trdi k) L5 4 ]l7) )
A,Iff,x

C, The Energy in Terms of the H and R Operators

Now that fH, R; have been defined in terms of
the parsmeters of the energy expression (1), let's re-

write (1) using these field terms:

Z: [<’*l“~|‘)* (<1 ‘?)] Z[f“hua“au JL-]

"'E(a*JJ:j*bA/KAJ)*zL <7 IC}A *c{;AK.,J)

A¥S

;,;’ [ﬁ, haig * e? («IJ}I/)+3¢, (elzlss ]

+ 2 <G 4 K | *)*z; v (25142)

agtd iyt At
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Z[‘f h,u. +d.u.7:,4]+ 22(44.4 ‘/fb.lﬂ,)f‘fz (j t;,_‘.

+a,4ku>rzZ h,,wEe, o/.r/,wr}: v &5
- E- Zﬁth“-.zzﬂ;hﬁg
Therefore:

E= 5o [GlHelide 1) e Dby ] 1)

D, The Orbital Optimization Equation

We must now derive an equation capable of lead-
ing from some set of orthonormal orbitals §¢°{ to a set
for which the enérgy is stationary [i.e. gatisfies the
variational condition (2)] . If {¢7 are the desired or-
thogonal orbitals, then the proper orbital changes §d4]
are given by:

b= ($v0:)/(1+a2)"
(a;14.)=0
(B |7 ) +{8y19.0¢ (bildy)=0 ity
Substituting these orbitals in (1) and expanding in terms
of field terms involving §#°( , we obtain after deletling
terms which involve only §#°f and dividing by 2:
Z [QIH‘.I D+ IGIRD ] + ] Z A (8id |8 4s)
+2 “L {5 hasay + 225 (iusilfiny) ¢ big [ Coplosty) s Gunjiz )]
*, Zi[ cg, §2(ietilhaa)e2(s:plhoa)t (0i07] 0 h,)$
+ .4‘] § (B:he | A, 87) F (0 A|geti) + (0i0411.4) t (ioduldsh,)

+ (AL’A,‘(AA, ;J} 2 4»21 CJ g.? [(A:.di IA;].)f-(A,;L.J‘-oAJ}]
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t (hago]0:02) + (hgkds|0.8,) 8 +.z}:', i ! [ (0:87)h2)
A)l,
A]?Jl-(

&f’f&#’
t(Bigeload)e (Dig.|hos)e (iubylay L)+ (4otiy| b dp)t (z.y./am,)]
) |
where O:: contains terms third-order and higher in §a} .

This equation was obtained using the relationships:

Ij: 3:.;'*3::,,‘3},,, + 4(4',4‘,7‘41),0...
Ka‘;= Kx.j + Kz;. - /(4‘.'1. + 2(.«:.;.]41‘0,)42 (—5.4_1//-0;):---

CGAQIEP= il Talgedr (ol T 17y ¢ (4l Ta]7.)
- AL | T l2d ¢ 2 (J..A,/J» d4) t 2 (A 70 1A 04)
F (D0 | b))t

Cillkal2)= CElKalpd+ ChlKalz) + (o lKalzed -2 ¢4 IKL(2)
v (B Ka 8Dt (BiM[7:04) ¢ (084 ]2.4)
¢ (Lo bxlbjhs) + (Lo, /AJ-A,) P

(i {3;;,)- Ll Tualgd v il T lge )t 2 (£a | 4sge ) - Cial Tislze )
+ 2 (40821844 ) 4204 8, [a: ) + (407 . [Ac m)f(t.x JA: A{,)f
C(igl )= (hapi | AS) ¢ (g | AL) (4.7/4.1) (<7, |4 4)
-3 (heglhh) v (8l )b L)+ (Bige |O4A)
b big b as) v (doaglaud) v (4,48,]4 Ar)
+ (iage [84824) 4

hz.’/ = h,.‘,; + h,.:/ + hm ;T /74."1. ¢

Zj [(,«. //'/ /’-)* 2 (s /lﬂo>] )_n [f“ hii v deg J:,Y
+ZJ[44./ "'J "b;/ ]*JZ,(’LOIC«;:DL

Iy 4+ L4
4 F43
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tdg Kalgd v 2 5[5 hiy v e <1120

177

A . . 4
+ Cj (4| T, 0 a ke [2:) +k§;} (/-/('4; I&.*d:, /ﬁ,//o)]
va 2, XM (cqlht)

S FIE .-
kAt 4,7

If AH, (y~4;) and AR, (/+4,) are the first-order changes
in H; and R; owing to the change in orbital J :

He-Hios D3 AHGoae o = A
Ri- R - ;A/\’ (72870+ - = AR+
then:

Z {A: |AH: [£.) = -?Z'a“ (b: 40| B2 L)

L + E [,?av (Bedalgiby)t biy (87 [£:47) + by (4. A;/Aa/)]
4.#1

I vl GURS N L]a: 20t oz blz )+d /_(Auuzl,)
tLd (Y 4/LlA*l“o'"'* /4
4,407

Yt (b4t lhig) v (A |Aedy)t (48] Oa 1§

and:
Z (AJ: IAIPA.) = ‘;: {f‘] hﬂﬁ-aj + CZ' [J(A“/‘/J. Af)

+ (4.4, /,4.,1.)] + 2 e; [(A;;.}A;,c'.) # (A_;,e;/A,_-x‘,)
t (Db lfda) b (0 40 lgeb2) 4 T (8: 8] 4aks) ]
v (k[ aay1ah)e 2007 14an) ] vd3 [0 hlhay)

Aty

+ (b:da[h 2 )+ (di ke /AA;/.)]) Z [(A,Ajl.l.,/.)

J')I 4 I:f.c,l

+ (Bido|du )t (i folbe ds) ] }
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Therefore, the equation for E, becomes:

E,= Z [(,:IIJ;.Ii)»f.?(x I1R:.) +;,’ ( €a. | QH: (roaj) i)
v (s AR (7240 ) + O

o S (8] [ il bty 2 i i) e 2L 1M 122)
t (AR ]+ (O Ha[8.) + 82 (holRes
+ ;’ [0 10H: ¢roa0)40Y ¥ ¢a; A g: (7244)) ])? t Oam

where we note that this equation ias consistent with the
variational condition (2) since the first-order change
in B, 1s:

JE,= 2 Z [(A; JHe |40) + (/_\;I/?,;.)]
Assuming an iterative procedure, if §¢'f are at all a
reasonsble starting guess for the final orbitals it is

. (3)
safe to assume that 04 can be deleted:
E, = Y (1 eat)” Z CiulHa o)t 2 (halRD v 2 [402 WM [40) ¢ (AL IR:,)]
t (8: | Ha ) # 82 Ciolfls, )4 ; [<a: /ML‘(I”M/»‘Q + . /A'EGM,))]j? (6)

In theory, this equation can be used to obtain the de-
sired orbitals through second-order provided the initial
orbitals §¢°/ are reasonable starting guesses and the
orbital changes §A{ are constrained to preserve orbital

orthogonality at least through second-order.
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E, Application of the Optimization Equation to a Single

Orbital

Finally, let's consider optimization of orbital
VY with respect to the entire space available, If this
space is defined by the orthonormal functions §4{, with
the first N of them being the current orbitals §¢°f:
&= [ L]/ D™
Since orbital orthogenality must be preserved, the change
in this orbital must be accompanied by changes in all the
other orbitals as well. Orthogonality can be maintained

through second-order if we take these changes to bes

q&: [4{:" 1;#’;"'; 1;11 ¢‘;f-..]/[l+ ﬂf+...]l’a ey

<,04¥

Therefore:
Ay = ’Z.;’ 1‘1 yj
VIR A PRIV I U SR
gL
S, 29V

Substituting these orbital changes in (6) and expanding
to give a normalization-scaled equation for E, valid
through second-order we obtain:

E, - LAk By /DA

4:11
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where:
ﬂ:, = q,' ;L:
H'w = Z:: €.

Fh, = (v Hp-H:li) + (AlR,) -<vIR:)

LN
Hho = (Y IH 4>+ <o) R) LN
B ([ Hola) e (o [Halv) t wIR)+ (4IRS )
t OV IAH, (B340 + Gi | AR (233)7
- (V]8R (273)) 32 &5 PN
Fhoz (A THu[a) ¢ @o[R) + (o | BH (55 |v)
b L AR (v ) +’§ & LN

M= CalHHeld) - G ReY o g [ il aH ()
FAp DMy (222) [v) + 6 [BR (252))
e 471AR (233)) - (v AR (22) 88, (250 ]  jeien
P, = (ilHulz) + % [l at, (2220 1)+ ilor, (272))
+ (jM/-/».J- (Vi) |w) + (G 18Ry (V=4 ) ] AN, g SN
phy = (illlz) v 4 [¢i |AHy (v21) |9) + {7 ) BH (0201 (V)

b (4 AR (v D (g | BRe (win) ] LN
€. (iJHila)+r ada )

AH...; = AI’L - A /—l;
A r\’j-j = Am - A ,?j

AN
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Thus, by solving (in matrix notation):
¢ ]
EA»2_= .ﬁ‘—-l
for the desired root, orbital » can be optimized with
respsct to the entire space available subject to si-

multaneously required changes in sll other orbitals,

In general, construction of the H matrix would
be quite difficult, However, it may be possible to make
some simplifying approximations which will not adversely
affect overall convergence, For example, orbital opti-
mization with respect to the space orthogonal to the
current orbitals, f X L )N},is generally rapid using only
lihearly convergent procedures.3 Therefore, it should
be possible to ignore field term corrections {AH, AR §
involving these basis functioﬁs during H construction,
While optimization with respect to occupied space usually
- requires a guadratically convergent solution,# it may be
possible to ignore off-diagonal H element correction
terms not involving orbital since these are of less
impoitance than the H and H elements, Moreover, for

simple wavefunctions such as Hartree-Fock or Perfect -
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Pairing GVB, only the diagonal 1~-electron integrels and

the coulomb and éxchange 2-electron integrals have non-
zero coefficients in (1). As a consequence, construction
of the H matriz for such wavefunetions is much easier than

in the general case since many terms vanish,
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LII, CONCLUSION

The orbital variational equations for any
many~electron wavefunction involving orthonormal or-
bitals have been derived by starting with a general
energy expression., A guadratically convergent equa=-
tion for optimization of a single orbital with respect
to the entire space available subject to simultaneously
required changes in all other orbitals has been given,
This equation can be solved through simple matrix di-
agonalization, The extent to which simplifying approx-
imetions to thia equation can be made requires inves-

tigation,
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.

Investigations of Reactions of Atomic, Diatomic

and Tristomic Carbon

Abstract

Despite extensive experimental studies, little is
conclusively known concerning reactions of Cn species, For
the most part, this is due to unsupported assumptions con-
cerning reaction conditions and the nature of the precursors
involved, These weak points are discussed and possible ex-
perimental procedures which may clarify the situation are

proposed,
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I. INTRODUCTION

Mechanisms of reactions involving highly reactive
species such as carbon atom, diatomiec carbon, and triatomic
carbon are only poorly understood, Aside from being inter-
esting in themselves, a thorough knowledge of these reac-
tions may shed some light on the correlation between
electronic structure and chemical reactivity of highly
excited states in general, The reactions of C;, C, ,and
Cs with various organic substrates have been extensively
studied by Skell et al and others using carbon vapor as
a source of these species, Reactions of atomic carbon have
aldo been studied using carbon-11 generated by nuclear
~ processes, However, even though much experimental data
" hes been accumulated, little of it has led to firmly es=-
t#blished reactlion medhanisma. For the most part, this
has been due to an inability to firmly establish the pre-'.
cise nature of the reacting species involved and a lack
of clear evidence im support of proposed mechanisms, AIt
is the purpose here to uncover these weak points and pro-
pose possible experiments which would eliminate them,

The results of these experiments could either support
hypotheses already proposed or indicate the need to re-

evaluate previous work, In an effort to expand upon
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studies already done, areas which have not yet been fully
eXxplored will also be discussed, In a few instances, re-
sults will be reinterpreted in the light of what is now

known about the electronic structure of these species.
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ITI. DISCUSSION

Reactions of carbon atoms, diatomic carbon, and
triatomic carbon with various substrates have been inves-
tigated using carbon vapor generated from a 16-volt (a.c.)
carbon arce, These ql species are produced simultaneously
in both their ground and metastable electronic states,

The C, distribution of this vapor is deduced from yields

of C, CL,,products obtained upon reaction with chlorine,

On this basis the vapor was determined to be J0% C, , 30% C,,
and 14% 03.u’ 4 4 material balance was not obtained and
no G,,; CLy products were observed although C, and C, are
surely present, This analysis is based on the assﬁmption
that all species in all electronic states are reactive and
that no combination and/or fragmentation of intermediates
occurs, None of these assumptions have been verified, It
is interesting to note that the C;%>C,% is contrary to
reliable mass spectroscopic results obtained for thermally
generated vapors at a varisty of temperatures.1 The

claim that reaction of chlorine with thermally generated
vapor (temperature unspecified) gives practically the

same results is thus somewhat disturbing, In view of

these results and the assumptions upon whieh they are based,

a mass spectroscopic determination should be made, A
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discrepancy may even demonstrate the invalidity of the ba-
sic assumption made in all studies: namely, that if a

product contains n arc atoms it must be derived from Cn.

Spectroscopic studies heve shown that in ther-
mally generated carbon vapor essentially all species are
present in‘their ground electronic state.z No such stu-
dies have been made on 16-volt arc generated vapor. It
has been assumed that C, is present largely in its 1S and
' D metastable states (ratio unknown) and that C, and Cj;
are present in their lowest singlet and triplet states.
Other metastable states such as the °S state of carbon
atom have been completely ignored, Since rationalizations
of product formation are solidly based on these assump=-
tions, a spectroscoplc study of thelVapor is of utmost
importance, This can be accomplished by first imbedding
the vapor in an inert matrix, To assign C.n in a given
electronic state as the sole precursor of a product it
should at least first be established that this species
is present in $ufficient guantities to account for this

product,

No attempts have been made to willfully vafy

vapor composition although it is well known that its Cn
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distribution depends upon the temperature of vaporization
and whether or not equilibrium is established, In addition,
variation of the arc voltage should affect the population
of the various electronic states. Obviously, changes in
product distribution following known changes in vapor com-
position would provide much needed information conceraning

the nature of the precursors of these products,

Carbon vapor is not the only source of atomic
carbon, Carbon-11 and carbon-1lL generated by nuclear pras-
cesses have also been used.3 However, owing to the very
high kinetic energy of these species, extensive fragmen-
tation/rearrangement occurs; thus making meaningful mech-
anistic studies extremely difficult, %The situation is
further complicated by radiation-induced side reactions,
Because of the method of generation, prior thermalization
of these atoms has not been possible., For the same reason
it has not been possible to determine the electronic
staﬁe (s) of these species., In fact, it has not even been
conclusively proven that neutral atoms, and not ions, are
the actual reacting species, Hence, although this source
is not contaminated with higher C, species, conclusions
based solely on results using this source cannot be ac-

cepted without reservation.
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The most desirable approach would be to exclude
all vapor species other than the one chosem for study.
This can be accomplished by ionizing the vapor and sep-
arating the ions prior to neutralization. This technique
was once explored as a potential source of high energy
carbon atoms but was abandoned owing to loss of kinetic
energy during neutralization.3 Since high kinetic en-
ergy sSpecies are not wanted here, this aspect presents no
problem, This approach requires considerable instru-
mentation and would pfobably present many technical dif-
ficulties, However, its use on even a limited scale would
resolve many of the ambiguities inherent with use of the

mixed vapor,

Once generated, the carbon vapor is always re-
acted with a larye excess of substrate via codeposition
on the reactor walls held at -196° ¢, Thermalization is
assumed to be rapid and sll reactions have been presumed
to occur in the solid phase at or near this temperature,
The carbon electrodes are usuélly enriched with carbon-il
and from the molar activity of a product, its Qn precur-
sor is inferred, That is, the possibility of combination
‘and/or fragmentation of intermediates is discounted .
Yields are based on the C distribution deduced from re-

n
action with chlorine, Questions concerning the validity
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of these assumptions have already been raised,

Mechanisms which have been proposed for formation
of a product from a presumed Cn precursor are generally
quite straightforward. However, in most cases, no labeling
studies have been preformed, Until such studiés are car-
ried out, these mechanisms, for the most part, must be

regarded as being unsupported,

No reactions under different experimental con-
ditions have been carried out, Confinement to liquid ni-
trogen temperatures is based on the assumption that all
reactions require little or no activation energy and that
this temperature serves only to prevent fragmentation/
rearrangement of initial products, This presumption is
questionable, especially in cases where little or no pro-
ducts are observed, In such instances the heed to change

reaction conditions is evident,

It has also been assumed that product distri-
butions are phase independent, While this may be true for
carbon-11 reactions, extension to carbon vapor reactions
is unlikely since such phase independence is presumed to be

indicative of high energy reactions; a situation which the
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carbon vaporAsource was intended to e}iminate. Hence,
product distributions may very well be phase dependent,
in comnection with relative rate studies this has become
apparent, Such studies conducted in the solid phase of-
ten give amblguous results, presumably because the phys-
ical charactefistics of the matrices cloud true chemical

reactivity.

In all studies so far reported, yields based on
the total amount of carbon vaporized are quite low, How-
ever, no attempt nas been made to obtain a material bal-
ance through recovery of unreacted earbon, Hence, 1% has
nhever been conclusivély demonstrated that all the products
in a given reaction have been accounted for, Since it is
not unusual for over sixty percent of the vaporized carbon
to be unaccounted for , this point, as a check on isolation

and identification techniques, deserves special attention.

Carbon vapor has been reacted with olefins, al-
kanes, alcohols, carbonyl compounds, and other oxygenated
organic substrates., The results of these studies will be
briefly summarized with the aim towardsnot cnly recapit-
ulating what is already known, but also to enumerate the

areas which require further Study. The need for verifi-
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cation of the assumptions made will also be pointed out,
For convenience of discussion, the assumption that no
combination and/or fragmentation of intermediates occurs
will not be questioned {n each instance, realizing, how-
ever, that this assumption has in no way been verified

and is a eritical point,
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A, Resactions with Olefins b, 5

Arc vapor has been reacted with simple olefins,
0f the variety of products observed, most contain only
one arc¢ atom and are therefore presumed to have atomic
carbon as their sole precursor. These products are al-
lenes, dienes and small amounts of alkynes, For example,
resction with proplene gives:

N +C = [T =—=— ez v 2y —=—
‘ 1A 247 37 7 7
where yields are based upon a pfesumed 40% C, vapor con-

tent,

The dienes are assumed to be formed by hydrogen

migration after aﬁ initial allylic C-H insertion:
s ah *
RiC=CR-CH + G RC=CR-CH-C-H— RC=CR-CH=CH,

Allenes are assumed to result from direct double bond

insertion: +

*

N / D L *_/
S b EadZ e

No labeling studies have been performed to demonstrate
that these are the only mechanisms involved despite the
fact that some of these products can also be formed via

initial vinylic C-H insertion; a mechanism which appears
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to be operative in carbon-11 studies, Also, with regard
to allene formation, it has been maintained that cy-
clopropylidene intermediates are not formed per se owing
to the inability to trap such intermediates., However,
considering the simple olefins used, this is not surpri-
sing, %o establish whether or not this C; precursor can
react t6 initially give cyclopropylidenes, an olefin
such as diphenylethylene should be used so that the cor-
responding cyclopropylidene, if formed, would be stable
enough to permit trapping.

As use of thermally generated carbon vapor gave
no C, products under identical experimental conditions,
it is assumed that a metastable carbon atom is the solely
reactive species. On the basis of highly susvect time=-
delay studies in which the vapor was 'aged! on a neopentene
surface prior to substrate addition, it was concluded that
the 1S state was solely responsible for allene formation
(Dienes not mentioned in this study).6 Conclusions based
on these studles, however, are of questionable validity
for reasons which will be discussed below, Hence, the
gstates responsible for these products remain unknown, A4
spectral determination of the !S/!D content of the vapor
would be most helpful, Also, variation of the arc voltage

to alter the population of these states would shed light
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on this matter, While the -P (ground) state of carbon is
apparently unreactive under the expefimental conditions
employed, this does not imply that it would be unreszctive
under other conditions, This is one example of where an
investigation under different conditioms of temperature

and/or phase is warranted,

Formation of spiropentanes has been reported
only in connection with the above mentioned time-delay
studies, After 'aging' the vapor longer than two minutes,
the only C products observed were spiropentanes formed

in a nonstereospecific manner.

C (agatoame) + 3 |=] — A@ M

'When aging was decreased to less than two minutes, the
stereospecific product I predominated., Hence, it was
concluded that while the !S state was responsible for
allenes, the !'D state reacted with olefins to give a
stereospecific spiropentane and the 3P state reacted to
give the nonstereospecifically derived product.8 - However,
although arc vapor surely contains 'p atoms, no trace of
spiropentanes were found when there was no aging and, as

3

mentioned above, “P atoms generated thermally failed to

react with olefins at all, ‘nerefore, tnese tvime-delay
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studies involve more than just the electronic state of the
atoms, Surface effects and/or complex formation might
prevent collapse of an initially formed cyclopropylidene.
In the absence of such effects, allenes might be formed.
Such effects would also retard C-H insertion reactions,
Hence, no definite conclusions concerning the differences
in reactivity between the 'S and D states can be reached
from these studies, However, a nonstereospecific product
after long aging strongly indicates that the 3P state is
the precursor despite the unreactivity of thermally pro-
duced vapor, While surface catelysis is possible, it is
more likely that this is due to different reaction con-
ditions (e.g. temperéture, due to rapid addition of a
large excess of olefin), Reacting thermally generated
vapor under different conditions of temperature and phase
should establish this point, It would also be interesting
to react arc‘vapor with an olefin which is unlikely to
give an allene, such as cyclopentene, to see if spiropen-

tanes would be formed instead.,

Other C,+ 2 olefin products which have not been

generally observed might also be formed. For example:

Y= ra =)=~ /\"-‘“—-& F )=,
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Product IIT has been observed in reactions with isobu-
tylene, but this mechanism was not considered. Product
IV has not been observed, Analogous products derived from

other olefins have likewise not yet been reported,

The only obther observed products in carbon va-
por-olefin reactions are bisethanocallenes, which are pre-
sumed to have C; as their sole precursor.9 No relieble
yields are available, Early reported yields of LO-L45%
based on the total carbon vaporized are inconsistent with
the presumed 14% C, vapor content, This matter, of
course, requires clarification, Some nonstereospecif-
ieity was noted in the reactions of c¢is- and trans-2-
butenes:

Gt 2 |=]— > =c= + Amﬂ-q
77 -

PB7%

-

Since thermally generated vapor, which presumably contains
only ground state C; , gave only the stereospecific pro-
duct, the nonstereospecific product was attributed to the
lowest triplet state of C;, If these states have the el-

ectronlic structures:

r ,-j [ |
1 0 L
3 indicates the two
. "__* orbitals are singlet
\ . 3
1' - . 1 Tr; coupled
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then formation of these products can be envisioned as:

- ‘__’
‘-l

< N7 .
(A

No C; derived products have as yet been observed

despite the fact that C, preportedly comprises 30% of the

arc vapor and should be present in both its ground state

(*z7) and lowest triplet state (37 _)., If the ground state
g - u

has the electronic structure:

it is difficult to imagine formation of any products.

O=0
R

The

triplet state, however, should have the structure:

5555):::2:)1

and it ¢an be speculated that bisethanoethylenes might be

formed in a nonstereospecific manner:

5o~ DG

g DD
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Hence, it would be of interest to identify any G, derived

products which are formed,

Although C, and C; are ususlly present in carbon
vapor, no products containing this many arc atoms have
ever been isolated, The fate of these species remains

unknown,
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B, Reactions with Alkanes10’1

Are vapor reportedly reacts with simple alkanes
to give products containing an additional carbon atom,
Since thermally generated vapor is apparently unreactive,
it is likely that metastable carbon atoms are the reactive
species, Whether these are 's and/or !D_atoms is not
known, The products observed are typically alkanes, cy-
clopropanes and olefins., Yields based on a J0% C; vapor
content are quite good., For example, reaction with
n-butane gives:

NG = O Mt M+ AN NN

4% a7 4B A 3% 142,
These products have been proposed to be formed via hy-

‘drogen sbstraction, internal C-H insertion, and hydrogen
migration mechanisms involving an initially formed mono-
alkylcarbene, Labeling studies have not been reported in
support of these simple mechanisms, Formation of satur-
ated hydrocarbons is contrary to all other monoalkyl-
carbene investigations. While it is possible that inibti-
ally formed methylene may be responsible for this, it is
curious that this is the only carbon vapor reaction study
in which products having a possible methylene precursor
have been observed, In any event, reasons for this pe-

culiarity warrant further study.
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As with olefins, no variations in reaction con-
ditions have been carried out to determine any phase de-
pendence or to determine the conditions under which other

vapor components are reactive,
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C, BReactions with Alcohols "

In carbon vapor-alcoaol reactions several C,
derived products are observed, The products are presumed
to result from either initial C-H or 0-H insertion re-
actions, The major products formed via O-H insertion are
dialkoxymethanes. The products formed from C-H insertion

are methyl ketones or alkene-~ols depending on the site of

insertion:
H H ~ 4
R-¢-oH ¢, = R-¢-oH 4 R-cscl, = R-¢-me
H He: o '
" =2“ N G Ha
R-S-au,omc,,-? R-H-c%oH-a R-¢-CH,0H
These same products have also been observed in carbon-11
studies.12 The major product in both cases, however, is

carbon monoxide, The mechanism involved in this deoxy-
‘genation is unknown, Identification of products derived
from the alkyl residues should shed light on this matter.
Here again, the reactive species is presumed to be a

metastable electronic state of unclear nature.

The C, products observed are propargyl alde-
hyde acetals, allene, propylene, propyne, and propane.13
Use of thermally generated vapor gives only propargyl

aldehyde acetals, Hence, this product is assumed to
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have ground state C; as its vprecursor, The other products
are derived from an excited state via as yet unknown hy-
drogen ebstraction mechanisms, While it has been proposed
that propargyl aldehyde acetal formation involves both a
1, 1~ and 1,3-addition, a more likely mechanism would be
a rearrangement following an initial 1, 1-addition prior

to another 1, 1-addition:

R-0 - b*“%z‘-’ RO-Ezc M
‘S%‘eca(ﬁ ' J RoM
(Ro),CH-c2eH
Althﬁugh they have not been observed, 1, 3-dialkoxyal-
lenes might also be found:

Ro ~ i Ro )
e8Pt Duent
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D, Reactions with Aldehyde and Xetones 14

Monoalkylcarbenes are also posited to be formed
in reactions of arc vapor with aldehydes in which carbon

monoxide (arc carbon) is liberated:
' 29 * . »
R-cly 16"~ R-EH +e

A metastable carbon atom ('S andfor ! D) is the assumed
sole'precursor for carbon monoxide liberation. For the
aldehydes studied, the products observed are generally
the same as those found when monoalkylcarbenes are gen-
erated in more conventional ways, Namely, these products
are cyclopropanes and olefins, No alkanes are observed
whatsoever, For example:

-Co
/L 0 — AN+ D
fo "M 1 2

LY A ;
/\gw,;f—;: I O~ v D
17 4 2%

When carbon arc vapor 1is reacted with ketones,
carbon monoxide is also liberated, Cyclopropanes and
olefins consistent with initial dialkylcarbene formetion
are the observed products, Also noted in these reactions
are some allene, propyiene, propyne, and propane, These
products contain three arc atoms and are therefore as-
signed a C, precursor, The details concerning the for-

mation of these products have not been explored,
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In reactions of all oxygenated organic substrates
acetylene, which contains two arc atoms, has been observed,
These are the only instances in which a C2 product has ever
been observed., A detailed study was made using acetone and

15

acetyldehyde as substrates, Results from studies employ-
ing a mixture of deuterated and undeuterated substrate seem
to indicate that two mechanisms are operative; one which is
intramolecular and the other intermolecular, The intra -
molecular product generally accounta for over 70% of the
acetylene, It was assumed that ground state C, (1E; ) was
responsible for the intramolecular reaction and the lowest

triplet state (%ﬂx) was responsible for the intermolecular

reaction, The structures of these states were assumed to

be: ' ‘
f—-—’@ O=0
9 T

And the mechanisms to be (using acetone):

@ M .
Me-G-0;1) — me-C-CH + HC=cD
. W ~ ~

0 Me-CH=Co HexeH
1 4 e .,
m-ﬁ-é'-uﬂozo -» Me-c'."-cu, + Hezo O
W W mecome

HezeH
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However, there are several problems with these conclusions,
In the first place, the proposed structure for the 31ru state

3
corresponds to a"EE state., The actual structure of the T

etate ia most likely to be:
19=lo’
+

Secondly, theoretical calculations indicate the "Eg is not
as given above, but corresponds to:

R
It is therefore difficult to imagine how the 12; state can
participate in the intramolecular reaction. If anything,
it might be expected to react in an intermolecular manner.
It is, rather, the *7  state which would most likely re-

move two protons from the same molecule:

e u e~ .
Mme- &-e-H QOO - Me-cg-c}l,-, + He=CDO
H ‘L meCome
Hes=oH
0 H q 4
i .
'”!"’é"?;"{' — I"E!'ér‘(ZlJ r fﬁ;(‘=1?<539
H A L ~
S, J

HeseH

Which of these hypotheses is correct might be determined by
using thermally generated vapor, which should contain a vast

+
predominance of the lzg state.
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" III. CONCLUSION

Despite the fact that carbon vapor reactions
have been actively studied for several years, a great
many questions remain unanswered. One of the biggest
- problems involves the assumptions made concerning the com-
position of this vapor., Mass spectroscopic and spectral
investigations would help resolve these ambiguities. Ques-
tions have also arisen concerning the assumption that no
combination and/or fragmentation of intermediates oc¢curs,
Ways of varying the vapor composition (up to complete re-
moval of all but one C, species) have been suggested as a
means of determining this, The need for supporting evi-
dence for proposed mechanisms has been demonstrated, Ques-
tions have alsé been raised about possible phase dependence

' of product distribution,

Howe#er, even if all the assumptions which have
previously been made are shown to be valid, many areas are
still open to study. Although all atomic carbon reactions
appear to involve a metastable electronic state (s), the
differences in reactivity between the 'S and 'D states are
unclear. Studies using vapors having different 13/1D con-

tents could shed light on this matter. It would be of
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interest to know whether the 'S state undergoes reactions
different from the !'D state only because of the higher
energy of the 's state or if these species undergo uniquely
different reactions owing to their @ifferent electronic
structures., No reactions involving ground state carbon
atoms ( *P ) have yet been definitély observed., Hence,
questions concerning the conditions required for and the
products formed in these reactions are unanswered, The
seme is true for G , for which only one reaction has been
observed, The interpretation of this reaction itself has
also been questioned. The fate of the higher polymers, C,

and C; are as yet completely unknown,
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5.

Avoiding Complete Integral Transformations in

Iterative Configuration Interaction MC-SCPF

Procedures

Abstract

One of the major obstacles preventing practical
spplication of iterative Cunfiguration Interaction pro-
cedures for solving for multiconfigurational wavefunctions
is the presumed need to transform all 1- and 2-electron in-
tegrals aftér every iteration, It is shown that such trans-
formations are not really necessary and a simple procedure

for avoiding this problem is presented,
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I, INTRODUCTION

Consider some multiconfigurational wavefunction

invo]_.vihg N orthonormal orbitals having the form:

P-) e ta (1)
where § 4§ is a set of orthogonal configurations and £

is the CI coefficient of the Mt

h configuration., If §¢7%
are the optimal orbitals for (1) and §#°{ are our current
gueases for them, then the required changes fA§ needed to
go from §¢° to {%3 are given by:
¢ - (ﬁ’fA;,)/(uAﬂ)lk L=l N

(B 1D2) = B

(8.14°) <0

(A8 )+ (A718) D4 Bilb b0 ity
Substituting these orbitals in (1) and expanding in terms
of §¢° A3 , we obtain:

$- L LE 08
.LP@ = ; Em ‘71;/’10
f A-'A;: Z: é‘ni L//J-'A‘:
4] A‘:
where g, is the wavefunction in terms of §¢°F. "2 is the

first-order change in the wavefurction in going from ¢: to

?5,; which 1s composed of those wavefunctions involving

° (2)
orbital i in which ‘f’; is singly replaced by A, A
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contains all terms second-order and higher in §AZ ,

If we assume that § ¥§ is complete with respect
to the orbitals, the orbital changes need only involve
expansion into the space orthogonal to the current or-
bitals, If this space is defined by the orthonormal
' virtuals ' §X§, then:

o 2 e
Be (40 Dapt) /0 T 430)
(/XA- I¢j ) =0 ‘
(Xl AgD = big

Thus, (2) becomes: )

f: %4-;';1{‘:_‘2:1/* 1{.@)
Ir §¢°% are reasonable guesses for the optimal orbitals,
it should be possible to determine the orbital changes

iteratively in & linearly convergent manner by simply ig-

noring high~order terms and solving:

,f=£*z};7ﬁ?ﬁ (3)

for §43% , Hence, we can obtain §43 and therefore new
orbitals for the next iteration (after removal of high-

order nonorthogonalities) by solving (in matrix notation):

HA-E AL ()

where:
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44“ C (BIHIRY = Sets (LIHIN) = Dot H

SEe (@ RIBED - ZEM, O IH | D
= 22 f‘mfn.v :,:;

B (f”*/HIWO 20 2 s b (L IH] Yo
Z',Ze’,,,,sm Ho il

A= (D= 2iemet
/6{::‘:‘_' (—‘Fo }-q/y«;> = Q0 .
%4‘1 = 5&‘/ ¢ ‘:Pyﬂl%am>= 6&‘; Z;”Z Env Emu ("/{w‘.{ “Il’mj )

Thus, we can solve for the optimum orbitals and CI coef=-
ficients of (1) using a very simple iterative Configura-
tion Interaction (CI) procedure whereby we alternately

solve (1) to obtain §€3 for a given set of orbitals and
then solve (3) for given £€§ to obtain new orbitals until

convergence is achieved,

Even if §#{ is incomplete so that orthogonal
mixing between orbitals must also be éonsidered, this
method provides us with a very simple and straightforward
way of solving for genéral multiconfigurational wave -
functions. However, despite the almost trivial formalism
involved, this approach nas only recently begun to re-
ceive much attention.1 The reason for this is that gen-

eration of primitive H matrix elements needed to construct
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the #f matrix of (L) is practical only if all configura-
tions of (3) involve orthonormal basis functions. It has
therefore been generally supposed that after every iter-
ation all 1-and 2-electron integrals must be transformed
to & new basis consisting of the new-found orbitals §¢°f
and their corresponding ' virtuals ' §%{. Since complete
transformation of all 2-electron integrals can be extremely
time consuming even for moderately sized basis sets, iter-
etive CI procedures would apnear to be too costly to be of

practical value,

However, it will now be shown that it is really
only necessary to redéfine these integrals for just the
new orbitals after every iteration and not for the entire
basis set, Thus, by using the proposed procedure outlined
in the following section, one of the major stumbling blocks
coward practical application of iterative CI techniques for
solﬁing for multiconfigurational wavefunctions can be re-

moved,
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II, DISCUSSION

Assume one current set of NB basis functions §y{
for which we have 1- and 2- electron integrals consists of
the N current orthonormal orbitals §¢’{ and NB-N original
normselized basis funct'ions which are neither orthogonal to
each other nor to the orbitels, Since the ith orthonormal

virtual 7(1- can always be written in terms of this basis:
g
i} Z: Cir e

(X l#:;)" o
<’XI"XJ> = 61:’

%
then configuration (/fw is:
% ¥
tE E CJI l)V”y
v - 1r %7
Thus, the CI matrix element between w, and %u is:
’Xz L 73 b
n)‘,,,'“ Z:[ C&I CJ'T < IH‘ %’4 > s ‘;'('4:1 C/'J' H"”:M/‘
‘Since we can write an;zf as: |

Hf;,:; = < nf‘ IH’ > H:Z "'Aav,m,., (4-54:/‘) (yil%’)
P By (K lar) ¢ LGy (4il4)
b 30 Dy (9:140<00 1942

where:

/‘/,,{ f": is the value of the matrix el-
ement assuming Y and ¢,' are
orthonormal
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Any,,m is that linear combination of
integrals involving only J¢°f
having (94.1¥:) (i4f) as its co~
efficient

Gyi(Bu;) is that linear combination of
integrals involving {4 and
# (497) having <)l4) ((uid)) as
its coefficient
Diww  is that linear combination of
integrals involving §¢‘¢ having

(919> b5 gcy  as its
coefficient

Hence:

Xz Xy ) i
Y-y,
H"";"'ﬂ. = Z Czrc":r Hny,«;«. * Anv,m,a. g C,-,C/, (y4/y/>

4.7
#2020 BuiCun Laye il
t ; Z; B«;/ Csr ZC‘I CHLD)
f oLt Do X (9:190) Tigr (4rlyr)

/4
Z;, Cirx C’;/':f ngm;. * Anv,»w- § Cz Gy (V‘-'Iy/‘>

¢ 2 Busc <EIN) 2018 o (HIH)
b 00 Duwr <8 1% )<Ko 1 85)

@ u

Since (X |¢9") = 0:
Nk 45
Hhv,nw- = Z C:Cis Hupmp + Anyma ‘Z_; Cuz Gy (144D

“rq
Letting:

O Cas Cild = CAel1e) > D1y = By~ L sr Do

s y<ds
an,n.«. F Z;ll Ciz G5 Hngm L DI.TAnv,m,a.
“
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We are, however, not really interested in these matrix el-
ements per se, but rather in the #/ elements constructed

from them:

LI Z %ty
va © L ;""'ﬂ»fnw H s, mae

Z C.x C}: :L:l; Eny Emu an:fi + 0_1-3 Z ;’ Eny Emp Anu,m.u-

<4
32
DML AR 2%
4;;

By applying similar arguments, we find that the desired

o Xr
#.y elements are:

#::Jxr - ZC‘I ijnZ' é'M Fn.v /L/"i?:'
Z Ciz .s |

Thus, the desired matrix elements needed to construct the

11

¢ matrix of (L) are:
#H,, = ;'%:' £mn Han
I 23 Cr Z 4:' b Ens Hom |
| 2 L
Mol ;; 1l 2 ”Ef,,,,r,.,, Ho ¢ D 202 6ty Py

n
= Z}C’..:C}; #5:,{: + DLT %,,w
“:

Therefore, we can construct the desired ¥ matrix
needed For orbii‘.al optimization from integrals over the
nonorthogonal basis § 4% in the following manner:

1) Assuming an orthonormal basis consisting of {4fand §¥7 ,

generate an #f matrix in the usual manner,
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2) Transform the matrix over to 4§ using §¢f .
3) Calculate the A mz values needed by evaluating
% 2
(Y, //'// %z> where 3. and 3, are 'durmmy! func-
tions, all of whose integrals are zero, FPro=-
ceeding just as in 1) generate the required #
matrix,
h) Calculate the D matrix,
A4

5) Correct the transformed H matrix elements 75/,,,,

by adding Oz Ay, e to each element.

Since the # and D 'correction' matrices are easily con-
structed and since transformation of the primitive #
matrix ¢an be accomplished as each H element is being
calculated, the above procedure can be quite rapid and
‘should prove to be 'much more efficient than transfor-
ming all 1- and 2- electron integrals after every it-
efation. Thus, by utilizing this simple procedure, it
becomes only necessary to update only those integrals

involving the orbitals themselves,
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ITI. GONCLUSION

It has been shown that spplication of iterative
CI techiiiques in solving for multiconfigurational wave-
functions does not have to involve complete transformation
of a1l 1- and 2-electron integrals after every iteration,
Since the need for such transformations has been one of
the major problems associated with this potentially pow-
erful approach, the simple procedure outlined here may
be of ald in developing a practical computational method

within this framework,
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