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ABSTRACT

The method of matched singular perturbation expansions is
used to solve the problem of a steady two-dimensional flow of a
perfect fluid with a free surface under the influence of gravity.
A flat pla;:e of length £ is inclined at an angle « to the horizontal
and its trailing edge is immersed to a depth h below the surface of
an otherwise uniform stream of infinite depth, the velocity at upstream
infinity being U. A parameter B = gﬂ/U2 (Froude number F = {3_1/2)
is assumed small so that the flow separates smoothly at the leading
and trailing edges, giving rise to an upward jet and gravity waves in
the downstream. An inner solution for the velocity field is obtained
which is valid near the plate and an outer solution which holds far
away. These are determined through the orders 1, PlogB, B,
8%10g%R, p2logp up to order A%, and are matched with ane another
to these orders. In contrast with linearized planing theory, the depth
of submergence can be prescribed as a parameter, The lift coefficient
is calculated for several values of ¢, h/f and B. The results

reduce to known ones in certain limits,
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1. INTRODUCTION

Even with the simplifying assumptions usually introduced for
irrotational flows of incompressible, inviescid fluide, the exact
treatment of free surface flows with gravity is quite difficult.
Although ;hese simplifications reduce the governing differential
equation to Laplace's, there remain in the problem two fundamental
non-linearities. The first concerns the fact that the free surface
boundary conditions are given on a surface which itself is to be
determined from the solution of the problem. The second non-
linearity arises from non-linear terms in the boundary conditions
themselves.

Treatment of non-linear free surface flow problems has been
limited to a relatively small number of cases. Sautreaux(l) has con-
structed a relationship by means of which a free surface can be
found corresponding to some solution of the exact problem. This
is an inverse method, in that the problem to be solved cannot be
chosen a priori, but where the boundary is found from the solution
instead of vice versa. Examples of flows constructed by this method
are given by Richardson(z) and‘VitOuSek(?)). An interesting example
of an exact, though rotational, solution is that of Gerstner's
trochoidal wave. In addition a number of general theorems on

exact waves, including soine existence theoremns, have been proved.
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Stokes and Rayleigh considered the problem of progressive and
standing waves hy expanding in terms of a small parameter. This
expansion has been carried out as far as the fifth order. One result
is that the crests are raised and sharpened while the troughs are
raised and broadened, compared with . first-order linear theory.

If gravity is excluded from the problem and the flow is two-
dimensional, the powerful methods of free-streamline and complex
variable theory can be used, as for example in cavity flows. One
problem of this type which has particular relevance has been solved

(4) (5)

by Wagner and Green'”’. This is the problem of a jet, bounded
below by an infinite straight line, impinging on a flat plate held at
an angle to the stream. This may be regarded also as the flow due
to a plate immersed in a moving stream of finite or infinite depth.
When gravity enters, recourse is usually made to one of two
approximate theories. Shallow water theory deals with problems
where the depth of the water is small compared with some character-
istic length. This has little relevance to the problem at hand and will
not be considcrcd furthcer.
The linearized theory of infinitesimal waves is obtained as
a perturbation of a known flow. The flow quantities are formally
expanded in terms of a small pafameter. The boundary conditions
are linear to each order and can be applied on the undisturbed free
surface, thus removing the non-linearities which were mentioned

above. A large variety of problems of practical interest has been

solved using this approximation. Among them are infinitesimal
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"standing and progressing waves in re.gions of bounded and unbounded
extent, initial value problems, waves on beaches, waves due to
moving disturbances, ship theory, etc. Most of the results of
classical surface wave theory have been obtained by use of the
linearized theory.

One such problem is that of a thin lamina planing on the
surface of an infinite fluid, The steady state two-dimensional case
has been treated by a number of authors, Sr.etenskii(é), Sedov(7),
Chaplygin(8), Maruo(g), Cumberbatch(lo). Due to the limitations
of linearized theory only small angleé of attack could be considered.
The present work removes this restriction and also allows the depth
of submersion of the plate to be used as a parameter. This has not
been possible in linearized theory.

In essence, the approach of the linearized theory has been
to find first the flow due to a moving point pressure on the surface
of the ocean. The plate is replaced by a distribution of such pressure
points with the condition that the flow at the plate be tangential to its
surface. This gives rise to an integral equation, which, for high
speeds, is similar to the airfoil equation. This integral equation
has been solved in a number of ways. Cumberbatch, for example,
uses an iterative approximation for large Froude number. Such
linearized sclutions give a good approximation to the expected
physical behavior, except in the neighborhood of the plate, where,
for example, the flow near the stagnation point and the spray sheet

cannot be regarded as small perturbations of the uniform stream.
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On the other hand, Green's free—streémline solution gives the
expected behavior near the body but breaks down at large distance,
where the free surface drops away as the logarithm of the distance
from the plate. The two solutions can be regarded as limiting cases
of the exact solution which is supposed to exist, A method might be
found by which these two solutions can be joined together.

A somewhat similar situation occurs in viscous flow theory.
Examples are the Oseen and Stokes solutions for flow past a sphere
for small Reynolds numbers, and the existence of boundary layers
for large Reynolds numbers. To deal with such problems the idea of
matched singular perturbation expansions has been introduced by

(11)

Kaplun , Kaplun and Lagerstrom(lz), and Lagerstrom and

Cole(l3). It has since found wide applications in viscous flow theory
and in airfoil theory.

The need for a singular perturbation expansion is suggested
when two or more physical processes are at work in a given flow.
In boundary layer theory, for example, the outer flow can be taken
to be inviscid and solved by potential theory. However, no matter
how small the viscosity is, it cannot be neglected in the neighborhood
of the wall. Thus the initial approximation of zero viscosity cannot
be uniformly valid since the no-slip condition at the wall would then
be absent. Thus there are two regions, in one of which viscosity can
be neglecied Lo a firsl approximalion and in the other it dominates.,
Two expansions of the exact solution must be used: one in the

potential or outer region, the other in the viscous or inner region.
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Being expansions of the assumed exact solution, they must merge
into one another in some sense. This will be accomplished by the
matching principle which is mainly due to Kaplun(ll). In some cases
more than two regions exist and extra expansions must be used.

In the present case, gravity takes the place of viscosity in an
analogous manner. For high speeds inertial effects are much greater
than those due to gravity in the neighborhood of the body. But for any
gravitational effect, no matter how small, a gravity wave region exists
where the main physical mechanism lies in the interchange of kinetic
and potential energy and where inertia and gravity have effects of
equal importance. Therefore analogy with the viscous case suggests
that near the body an inner expansion, somehow based on Green's
solution, exists while far away gravity waves will be represented by
an outer expansion, Such, indeed, will be found to be the case, no
intermediate expansion being necessary.

The problem is stated in mathematical form in sections 2 and
3. By use of potential theory and conformal mapping the problem is
transferred to the lower half of a parametric {-plane. The unknown
free surface is thus replaced by the part of the real {-axis outside the
segment (-1, 1), while the remainder of the axis represents the plate.
The direct approach is to use the length of the plate, angle of attack
and depth of submergence as primary parameters. However if this
is done the solution becomes quite complicated since, for example,
the stagnation point on the plate would change with each added order
in the solution. A semi-inverse method which allows the direct

parameters to specify the solution indirectly is outlined in section 5.



The selection of appropriate inner and outer expansions is next dealt
with. The corresponding solutions are then found and matched to
order 3. The expected behavior is found: the inner solution is the
free streamline flow together with a correction due to gravity. The
outer solution represents a uniform flow disturbed by a point singular-
ity on the surface. The depth of submergence is found to have a
leading ter;n of order log B. The length, angle of attack and depth

of submergence are found in terms of the new parameters so that
inversion of the relations allows the calculation of the thrust on the
plate in terms of £, aand h. The results are then extended to

order BZ and are followed by a description of a scheme for calculating
the thrust.

When the flow as shown in Figure 1 exists the Froude number
must be relatively large since otherwise, for example, the fluid
might not rise to the leading edge or separate clearly from the
trailing edge. Thus P must be taken to be small. The condition is
necessary, but may not be sufficient for the convergence of the result-
ing series. Another condition that seems to be required is that the
depth of submergence be not too large. This is implied by the neglect
of detailed study of the jet region.

The analysis is greatly facilitated by the restriction to two-
dimensional [low which allows use of complex variable theory. A

reasonably clear view of the principles used to solve the problem

is obtained by the choice of a flat plate and an infinitely deep ocean.
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Extension to finite depth and a cambered plate would not change the
general outline of the method, but would only complicate the details

of calculation.



2., STATEMENT OF PROBLEM

The problem treated here is that of the two-dimensional flow
produced by a flat plate held at an arbitrary angle on the free surface
of an othefwise uniform stream of an infinitely deep liquid under
gravity (see Figure 1). The flow is assumed to be incompressible,
inviscid and irrotational. The plate is of length £ and the trailing
edge B is. at a depth h below the free surface at upstream infinity.
There is no angular or vertical motion of the plate so that the flow is
steady. Then far upstream and at large depths the flow tends towards
a uniform stream of velocity U. The plate AB is inclined at an
angle a to the upstream horizontal. The flow comes from upstream
infinity and divides along the stagnation streamline which branches off
at the stagnation point C. Above this streamline the flow shoots off
as a jet or bow plume J if, as assumed here, the Froude number is
sufficiently large. This spray sheet may return to the main flow
either upstream or downstream depending on U and e but can be
appropriately removed from the flow. Hence its possible interaction
with the main flow, such as rejoining the stream, will be neglected.

The trailing edge B is taken to be the origin of the z-plane,
with y vertically upwards. Thus y = h on the free surface at
upstream infinity. For sufficiently large Froude number the flow is
assumed to detach smoothly from the leading and trailing edges.
Downstream, the inertial effects due to the presence of the plate

gradually become less dominant and the effect of gravity begins to
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play an equally important role in producing a train of gravity waves,

assumed to be in a permanent form, at large distances.

3. BOUNDARY VALUE PROBLEM

Let u(x,y), v(x,y) be the components of the velocity field
in the x, y directions respectively. Since the flow is assumed to be
irrotational and the fluid perfect, a potential function ¢(x,y) exists
in the fluid. ¢(x,y) is harmonic and its conjugate ¥(x,y) is the
stream function,.

The analytic function f(z) is called the complex potential

f(z) = @x,y) + W(x,y) (1)

df . .

Tz - T 1I'DX = P - l(Py = w(z) ()
The analytic function w(z) = u - iv is the complex velocity.

Let p and p be the pressure and density respectively.

Since the flow is steady and irrotational

1 2
plpt+ 5@ +v3)+gy = C (3)

where C is a constant throughout and is found as follows. Sf is the

free surface

p=0 on S (4)

u=0U, v=20 at x= -0, y=h (5)
since

yo =h at X = -00 (6)
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‘Hence

U2 - (uz + vz) = 2g (ys - h) (7)

where y, is the value of y on the free surface Sf .
This is one of the conditions which holds on the free surface.

The other is the kinematic condition which states that once located on

the surface a fluid particle always rcmains there

—ax— = ":11 = pr/(PX (8)

Conditions (7) and (8) can be combined to give

2 2
0Pt Zcpxwywxy OOt gl = 0 on S, (9)

The boundary condition on the plate is
utane + v=20 (10)
These are the full non-linear conditions for steady flow, to which

must be added conditions at infinity.

4. NON-DIMENSIONAL PROBLEM
The characteristic velocity is taken to be U, the velocity of
the undisturbed stream. The wetted length of the plate f is used as

the characteristic length, The governing parameter is then

p:U%_ - 1/F% (11)

and is assumed small enough to make the previous assumptions valid.

Here F denotes the Froude number of the flow.
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Let the non-dimensional variables be

e ale
£ b

2 =2t w o=w/U po=plpU’ (12)

As a consequence 90* = ¢/tU . In this way w"-‘(z) — 1 at upstream

infinity and the following conditions are obtained.

In the fluid:

- e afs

w (z ) is an analytic function of z

(13)
ﬁ”zl‘\(X*, yx) is harmonic.
On the free surface
>}<2 >}<2' * ¥
1 - (@ +v )= 2ply -h) (14)
sk ES dy )
Vet T8 (15)
dx
":2 ES sk sk sk B 2 3k %
. @ R @ b3 >‘,:4 + ZfP :‘,:(P :‘,:¢ xR +t @ ES @ B + (3(0 B = 0 (]‘6)
X X X X y XY y yy y
On the plate
utana+ v = O (17)
The behavior far upstream and at great depths should be that of
a uniform stream
w o~ 1 x = -00 or yﬂc — -0 (18)

This condition on the velocity al upsiream infinity may be referred

to as the 'Radiation Condition'. Far downstream gravity waves are
expected to form on the free surface. In what follows the (%) on the
dimensionless quantities will be omitted for simplicity, a reversion

to physical quantities being understood at the end.
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It will be convenient to solve the problem using alternately

two different dependent variables w and Q.

Let Q= 7+i = -logw (19)
i. e, T+ 10 = log o iargw (20)
= ]_Og -(]:-l- + ip _

Then on the free surface

1 - e ®T = 28 (y - h) on S, 21)
And on the plate

8 = -a on CB

(22)

6 = m-a on AC

Another way of writing the free surface condition (16) is
2 - |
Rew w = BImw (23)

where the prime denotes differentiation with respect to z.

| Consider next the potential plane or f-plane. 1J is the
upstream free surface on which ¥ = a, JA the other side of the leading
edge jet. The plate is represented by ACB with the stagnation point C
as the origin of the f-plane. BI is the downstream free surface. On
1J, ¥=a represents‘the amount of fluid going into the jet per unit
time per unit width perpendicular to the flow plane.

This polygon in the f-plane is now mapped onto the lower half
of the auxiliary ¢-plane. The transformed problem will be solved in
this ¢-plane and then transformed back to the physical z-plane. The
plate is represented by the segment |£] < 1 on the real axis n= 0.

Let the point J map onto 7 = -b and the stagnation point onto 7, = c.
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Since the points at infinity in the two planes correspond and since the
leading and trailing edges map onto ¢ = -1, 1 the transformation is
determined and the real constants b and ¢ are as yet unknown aside
from
b > 1, el < 1., (24)
The mapping is given by

df a -cC
I = TEFT %+b = H() (25)

Integration gives

T - C + b
ZEL) = g - logggT -

The boundary conditions will now be transformed to the ¢ -plane in
which they are given on the known curve n=0.

The velocity w(z) = w(z(¢)) = w(¢) is taken to be invariant
under the transformation. w will be written as w(¢) as the problem
is to be solved in the t-plane. Only when inversion is made to the

z-plane will the distinction between w (z(¢)) and w(g) be required.

Now
_df dg . df
W =43z T az Elz
d
= H(g) q= »
therefore

dz = %‘%d; : (26)

also



dz dz dg
- yiLl Q) w (¢) , (27)
where
w (g) = a% w(z(t) = a%w(g).

Integrating equation (26) gives

4
z=f_%{.8d§ 28)
1

The two forms of the free surface conditions equations (21) and (23)

can thus be written

(i) 1_e‘27(§)=zp{1mfg%d;-h}
1

(n=20 1€ > 1) (29a)
(i) W W (W v—v)’ = 2B H(¢) Im w
(n=0 & > 1) (29b)

where the prime denotes differentiation with respect to ¢

The condition on the plate is now
-a (n=0, c<t <1)

6(¢) = ’ (30)
T-a (n=0, -1<¢<c) '

An appropriate radiation condition must be added to complete the

formulation of the problem in the ¢-plane., Of course since H(¢) is

analytic, so are Q(¢) and wi(g).
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It may be noted from equation (28) that since

_ a t - ¢

H(g) = TbFc) T+ b A as { — w (31)
where

a
A= —mETer (32)
and since
. wig) ~ 1 as g — o ,

hence

z ~ At as zZ, { —- 00 . (33)
Thus to within a real scale-factor the z- and ¢-planes correspond at
infinity and there is a linear relationship between the flow pictures
in the two planes for large z,{ except in the flow region of the jet.
The problem has now been fully reduced in the ¢-plane and
the inversion integral (28) written down. The solution will now be

found using a singular perturbation expansion for small B.

é. THE INDIRECT PROBLEM

If ¢ and h are given in the physical problem the parameters
a, b, ¢ must be found as functions of B, since for example the position
of the stagnation point will change with velocity, Only two of the para-
meters a, b, ¢ are independent since integration of equation (28) for

= -1 will give a interms of b and c on noting that the length of

the plate has been normalized to unity.

Let the complete solution of the direct problem, where ¢ and

h are given, be represented symbolically by
P (¢;a, h;B)
An indirect approach is to take the parameters b and c as

fixxed and then determine the ¢ and h to which they correspond. Thus
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e and h are regarded as functions of B . The complete solution of
this indirect problem can be represented by
3 (¢; b, c; B)
An advantage of using the indirect method is that the mapping
function H(¢) becomes independent of § . Also the stagnation point
will not change in the ¢-plane as higher order expansions are intro-

duced. The direct solution can be recovered from the indirect

solution as will be shown later.

6. SINGULAR PERTURBATION EXPANSION
If, as a first approximation, f is set to zero the problem
becomes that of a gravity-free jet impinging on a plate. This has

6).

been solved by Green This free-streamline solution does not
satisfy the conditions at infinity., Instead of a uniform flow far up-
sércam the free-streamline solution has a logarithmic singularity at
infinity where Vg ~ - log Ixl . But when the gravity effect enters,
for any value of § > 0, no matter how small, |z| can be chosen large
enough so that gravity waves can occur downstream. Setting =0
gives a gobd approxirﬁation near the plate but is completely incorrect
far away.

The situation is similar to the one which occurs for viscous 7
flow past a finite body at a small Reynolds number. For the viscous

case the method of matched singular perturbation expansions has been

developed by Kaplun(llz See also Kaplun and Lagerstrom(lz),
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Lagerstrom and Cole'(1 3 )

A similar type of approach is used here,
except that the singularity of the problem comes from the boundary
conditions on the free surface.

The singular perturbation technique (11-13, 14)

consists of
choosing two or more perturbation expansions each valid in a certain
region, These regions of validity do not completely overlap, other-
wise at le;st one expansion would be redundant., However, each
expansion represents the full solution within its valid region and has
therefore definite relationships with its neighboring expansion. These
relationships are expressed by the mét;ching principle. In this
problem only two expansions are necessary, the inner holding near
the plate and the outer holding far away from it,

The simplest choice for an inner expansion is to retain the
non-dimensional variables and hold them fixed as $ —> 0, This

gives rise to the Inner Limit, for example

lim
p—>0

w(g; B) with ¢ fixed . (34)
The outer variables are chosen so as to characterize the flow

at infinity. The outer solution is expected to have gravity waves

downstream. Such waves normally contain terms like e_lﬁz and

since for large |z| the two variables z and ¢ correspond to within

a real scale factor, a favorable choice of independent outer variable is

z = ﬁ é . (35)
Note that there is no relative distortion, simply a magnification.

The independent variable is still
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wig; B) = W(T 3). (36)
The outer limit is given by

lim
B—=0

w(z; B) with T fixed . - (37)
This essentially is an expansion for large ¢ . The Z and Pz planes
correspond except in the neighborhood of the origin of the 'Z-plane
which represents the finite part of the z and ¢ planes.

The condition at infinity affects the inner solution through the

matching principle. This is also the means by which the conditions at

the plate help determine the outer solution.

7. INNER EXPANSION
The variables are ¢ and Q(g; B) ; the inner limit is to let

B tend to zero for fixed ¢ . The inner problem is

Q) = 7+ 1o ( < 0) (19)
1-e™ =28 (y_-h) (n=0, 1&gl >1) (29a)
- a (n=0, c < £<1) (30)
g =
T-C (n=0, -1 < E<c)

The radiation condition is now replaced by the requirement that the
inner solution match with the outer solution, while the lattcr retains
the radiation condition.

Let the inner expansion be

(g; B) = Qo(é) t+ € l(p)ﬂl (t) + ez(p)az(g) LI (38)
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The €. are functions of B, which form an asymptotic series in such

a way that

lim

pUm g¢ip1fe; = 0 ey =1 (39)

The exact form of the e« ; will be determined by matching requirements.

The parameters o, h, £ must also be expanded for the

indirect solution.

a = ao+61a1+€2a2+...

h = ¢ h +h, +eh +e

17 2 h, +e,h +.., (40)

3 174 275
f =£o+e1£1+52£2+...
The form for h will be dictated by the matching principle.

Upon substitution of equation (38) and equation (40) into

equation (28)

& 2,), » . = 2
% = f e l1+ %Ek9k+ 2—(?61{91{) + oene }H(Q)dé (41a)

which may be regrouped to yield the form

Z(C:B) = ZO(€)+5121(§)+5222(§)+ s ene (41b)

Inner Solution of Zeroth Order;
It will be found later that e _1 = log B. Hence on substitution
of the inner expansion of £ into the inner problem and taking the inner

limit, the zeroth order problem becomes

1 -e =0 (n=0 1&g > 1) (42)



‘-ao (n=0, c <t <1)

-1 < ¢ <c)

-3 .
I
o

From equation (42) it follows that

7, =0 (n=0, 1€ >1) (44)
Let .
Q. (g) = -logw (¢) , (45)
then
Wy o= 1 (n=10, g1 >1) , (46)
a, (n=0, c<¢g <1)
arg w_ = (47)
‘ao—'IT (n=0, -1 < ¢ <c) ,
w {c) = 0 . (48)

This represents a semi-circle in the Wo—plane which can be mapped
onto the lower half of the ¢-plane to give as a solution

ia

wolg) = e ° =

C.—
(1- )+ - %41 -c°

_ oMo -1t 8
= e Q-C

1
\}1 - gz is defined as the branch of (1 - 42)’5 with its branch cut on

(49)

the real ¢-axis between ¢ = +1, the arguments of ¢ + 1, ¢ -1

lying between -7 and . e, will be found by matching with the
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outer solution.

8. OUTER EXPANSION

The variables are Z and W (Z, B); the outer limit is to let B
tend to zero for fixed Z . Transformation of equation (29b) ta outer
variables gives

~ N

S @ W=2mEEER F= 0 (50)
where the prime denotes differentiation with respect to g The
boundary corresponding to the plate shrinks to the origin in the
Z-plane. Thus W is an analytic function of Z with a possible

singularity at the origin,

Let the outer expansion be
F(Tp) = R (L) +5,8) T @)+ 5,0 F@ ... (5D)

where the 51([3) form an asymptotic series such that

g B2 g 65,1785 = 0, 6o = 1 (52)

To find %O(Z) , consider the outer limit of the flow field as P = gﬂ/U2

tends to zero. One way of doing this is to let the characteristic
length £ tend to zero for fixed g and U, 'lhe plate shrinks to a
point singularity on an otherwise undisturbed uniform stream. In the
limit as B — 0 it is obvious that the uniform stream is recovered;
therefore

w (L) = 1 (53)
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This can also be seen by noting that the equation for %’o(?;) is

® F)F V) = 2AIm& (%= 0) (54)

~ . . poud . i~
where W, can have a singularity at { = 0. Since w, ~ 1 as

~
{ — o0, an expansion of the form

~

%0():1+ > c /tT

can be substituted into equation (54) and relationships can be found
for the constants - By use of the matching process, it turns out

that Cn = 0 for all n .
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9. MATCHING

The inner and outcr solutions are the inner and outer
expansions of the total exact solution. The resulting correspondence
between the two solutions is expressed by the matching principle,
The following statemment of it is most useful in the present case.,

"The n-th order inner expansion of the n-term

outer solution, and the n-Lth order outer expansion

of the n-term inner solution should match when

written in the same coordinates."
The original work on this principle is due to Kaplun(ll). A general

statement and discussion is given by Van Dyke(lé).

Outer Expansion of Zeroth Order Inner Solution

From equation (49)

ia ) 2 2
ey g ey -iVef o1V -
w (L) = e —

is the one term inner solution., The outer limit is now applied to it.

6o @-Te) - iNTA-p2 V1 - P

w (L) ~ e -

"'BC

(i

iao 2
= -e (c+iqyJ1 -c7 ) + 0B)

The one term outer expression of the one term inner solution is thus

iao >
wo(ﬁ,) ~ - e (c+inf 1 - c ) (55)
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Note that no terms in 1/f occur in this one term expansion and hence
for the coefficients in wo(?;)

c1=0

c

> 0

Hcnce

~o

wo( ) = 1 .
The one term inner expansion of the one term outer solution given
in equation (51) is therefore
€ty ~ 1 (56)
Matching equations (55) and (56) gives the first matching condition
c = -cosa
o}

or (57)

-1
e = cos (-c)

It is more convenient to use a, rather than ¢ from now on.

Hence
. 2 .
ic (1 +f cosa ) - 1 -0" sina
w L) = e o o) o
o §+cosao
ia L + cos a
= e © o)

7
1+§'cosao+ \/l-é sin ¢

Selection of Expansion Parameters:

To select the « i 9 consider the inner equation

1-e™7 = 2 (y_ - h) (29)
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Care has to be exercised in the choice of singular
perturbation expansions due to the possible occurrence of
logarithmic terms (cf,, Van Dyke(l4,) p. 29). This is hinted

at here since Green's solution, which is the limiting case of

B = 0, gives a draft which is logarithmically singular, This

indicates that ¢ in the expansion (40) for h should be log B.

-1

It turns out that this is indeed required to allow matching with

the outer flow.

Then, expanding equation (29), one obtains

5171+€272+... = ﬁyos - BlogB h 1 -ﬁh2+...

The choice is thus indicated to be

¢, = plogp, €, = By +ene

The outer solution must be matched with the inner and hence

similar terms will appear indicating that

6 ]_ = plogp, 6 2 = ﬁ’ LR AN

Then, together with €y = logp, the terms are

(58)
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¢, = PlogPp = 55, €, = B = 5, (59)
This turns out to be the correct choice, no other terms being required
for matching to 0(B) and for matching to higher orders, the choice of

€ becomes straightforward.

3, 64, « o

Therefore

Q. B) = Q () +PlogPp L) +PpRR{(L)+. ..  (60)

W@, B) = L+Blogp® (D+BW,00)+. .. (61)

Inner Boundary Conditions:
Noting T = 0, one substitutes equation (60) into equation (29a)
and compares terms, giving
™) = —h_1
(n=0, 181 > 1) (62)

T2 YO(E) - hZ

Substitution into equation (31) gives

'ak k=1, 2, ..., n= 0, 1§1 < 1) (63)

The apparent angle of attack for the free streamline solution
is @ which gives c¢ as the stagnation point. When the free stream-
line solution is perturbed to match with the outer solutions the
apparent angle of attack changes so as to retain c as the stagnation

point (indirect approach).



27

Outer Boundary Conditions:

Substitution of equation (61) into equation (50) gives

<L Re® = AIm W, (3= 0)
dg

4 Re®, = AImw (7= 0)
d'g 2 2

These equations can be written
~ ! . ~ ~ _ _
Re (Wk +1Awk)_ 0 (=0 k=1,2) (64)

where the prime indicates differentiation with respect to g .

Remark on Inner Problem:

The general form of the boundary value problem for Qn(ﬁ,) is

T, = f,(E) {n=0, 181 > 1)

0, = -, (=10, &1 < 1)

This mixed-type boundary problem can be expressed in terms of a
Riemann-Hilbert problem, the solution of which can be readily

obtained (cf, Muskhelishvili(IS)), and may be written

N - £ (t)
2.(¢) = -ie - Yho at (65)
L \Jtz -1 (t-¢)

where L is the real axis, & > 1.

This is the form required when Qn has no singularities at ¢ = £ 1.
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Inner Problem of Order B log 3:
Tl = —h1
91 = -a

Hence from equation (65)

@, = -(h ; +iap) (66)

Inner Problem of Order J:

T, = Yo - By (n=0, g >1)
6, = -a, (=0, lef<1)
Hence
"2 y . (t)
2,(t) = -h, -ig, - & -1 / 2 dt (67)
2 ¢ ™ ye - LE-o)
L
where
. re
s & 1+ ¢cosa +iv1; -lsinao
vy () = AIme ‘% j ° ag (68)
o {+ b

1

from equations (28) and (49). After some manipulation the solution
is found to be

+ b
b +

sinaOcosaO(?;—ng-l -1) + Bllog(4,+ Z.Z-l)
2 7 . g‘rz
+ B, log Lt éb+vb—lvé ! 4 L sina cosaf t -1
17 (o) o t+ b
1

L+ b

[T

QZ(‘V:) -(h2+ iaz) + A{sin ao(b cosao—l)log

—

log +¥1 dt} (69)



29

where
B1 = _-besina_ cosa_ + i(b - cosa _ 1 gin 2a )
O (o] (o] ™ (o]
BZ = sina_ cosa bZ—l - i{(bcosa - 1) cosa
o o o) o
.2 r2 1 . b+1
+ sin aovb -1 - = sina_cos ao"b - 1 log o—
(70)

It may be noted that from equation (19)

- 82
w = e

e o (1 -Blog B2 - PR, +. . . ).
Hence if

w =W0(1+§310g§'3wl+£3w

2+...) (71)
then
-2
o
W= e -
o]
Wi < "":21 (72)
w., = —Qz

The parameters as Gy hz are yet to be found by matching with the

outer solution.

10. HIGHER ORDER OUTER SOLUTIONS

From equation (64)

1 ~ ~
Re(Wk+1AWk)=0 on M = 0
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except for g: 0 which corresponds to the plate in outer variables,

Let

~ ! ~

w, F iAv’?;k = ig, (€} (73)

~

Then gk(g) is analytic in the lower half plane and takes on real
values on the real axis. Hence by Schwarz's principle of reflection
gk(é) can be continued analytically into the upper half Z—plane by

e~

defining a function g"( ) such that

™

g, € = g @ (F < 0)

=

g, ©) = g @ (F > 0)

Consequently, the function >‘<('Z) is analytic and regular everywhere
y 81 y g y

except possibly at the origin. Once gk(é) is determined, wk(Z) can

be found by integration of equation (73).

T
W (8) = ie_lAgf elAtgk(t) dt (74)

a2

A particular solution for W, is obtained when g = 0. Then

k

%k(z,') = a real constant . (75)

From the conditions on gk(é) it can be expanded as

~ [0 0]
gk( ) = nzl

(c, real) (76)

'Zn kn

There are no terms for n < 0 since g is regular at infinity.

n= 0 gives a real constant already considered in equation (75).
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The radiation condition requires that no waves propagate to
upstream infinity, This indicates that the lower limit in equation (74)

should be - . Therefore the general solution for w, is

k
N ¢'s) Z iAt
~ . _~1A
.0 = 1w 2 o [ c _a (77)
n=1 t
-
where the Cppn are real constants, The path of integration is

taken always to be in the lower half'Z—plane.

Consideration of the integrals in equation (77) shows the
following. FEach term contains the integral for n =1 together with
a polynomial in l/Z of degree n - 1 having complex coefficients.
This is easily seen from integration by parts. The integral gives
the wave behavior on the downstream side with no waves upstream.
The other terms, as well as parts of the integral, give the local
behavior which decreases at least like l/z as Z — 0 .

This general feature of Wk can be seen clearly, for example,

from the case n = 2,

[4 N T
f JiAt dt _éelA§+iA./' elAt%E ’
-0 t 5 -
with
é - 2 - ~
f elAt%f ~ - '—1: elAé + 0(1/2:2) as { =—»-00 ,
At
- ~00
~ im - e 01/T2) as T —+ .

AL
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Therefore ~
~ pb
ie-lAg’ f elAt % ~ ()(l/zz) as Z—> -0,
-0 t
~ - e AL + 0(1/ ZZ) as Z“* + oo,

as noted above. This satisfies the radiation condition and gives a
wave at downstream infinity.
It may be noted that equation (33) gives
b o Bz, infinity.
The outer solution will be completed to order B when the coefficients

¢, ... which give the strength of the singularity at the origin, are found

from matching with the inner solution.

11. MATCHING TO ORDER B

To carry out the matching to order f, one expands the inner
solution up to the B-order in outer variables to order B; and expands
the outer solution up to the B-order in inner variables, also to order B.
The matching principle says that these two procedures give the same
result when written in the same variables.

After some algebra the inner solution gives

~

w(l, B) ~ 1 + Blogp (h l-f-ial)—A{ sinao-i(b- cosao)} B log B

sinaO ~
+ip ——=— +AB {sine_ -i( -cosa )} logt

+ B {h, +ia, - AB;} +... (78)
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where

B, = sin @ cos a_ - sin ao(b cosa - 1) log (b + 1) + Bllog 2

l’z a i
+ 52 log (b + b™ - 1 )+ — sine cos aoMo(b)

1
1 - 1+t dt
f 1+tb 1°g1_t'2t}t_2— (79)
o)
and Bl’ B2 are given by equation (70) as functions of b and c.

Note that the highest term in 1/{ 1is of order B/{. The

remarks following equation (77) therefore indicate that

~

g

~ .-iAZf iAt | 21 S22
Wz = 1€ e

(— + —— ) dt (80)

-Q0

No term in Blogf is required for matching.

Let
P t—, . [
®(T,p) = 1+ ipe 86 f oHAt (2L 22 g (81)
t

By using the asymptotic expansion

[ iABL

f S g f ™" L= Ei(-iABL) ~ v + log(iABL) + 0(B) (82)

-0 (o8]

where Y 1is Euler's Constant, 0,577215, the outer solution (equation

(81) ) can be written in inner variables and expanded to order B, giving

c
~ . 22 .
w o~ 1- IT - BlogP ( icyy - ACZZ) +
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+iBley) + 1Acy,) log L+ iBlc,) + iAc,,) (Y + logA + is).

Rewriting in outer variables to match with the outer expansion of

wit, P)

C ~
w~ 1 -iB 52 + ip (021 + LACZZ) log & + Bc
g

"where
. . . T
c = 1(c21+1Ac22)(Y+10gA+1~2-).
Matching of the 1/{ term gives Crp = = sin a.e
Matching of the log { term gives Cpry = ~-A(b - cos czo).

The Blogp term from the inner solution is

h 1+'1¢11-Asinao+iA(b—cosao),

while the B log p term from the outer solution is - Since only real

constants arise from the outer solution, the matching gives

e = - A(b - cos ao) = Chyo

h1 = Asinaga

Finally, matching the constant terms gives
h, +ic, = A{B; - iBR}
where B3 is given by equation (79) and

B = b-e %

Q

it

Y +logA + i

(85)

(86)

(87)

Therefore Gs @y Qo h 1 and h., have been found in terms of

2

a, b, and c. The values of El’ !2, £3 can be found by integration of

equation (28) along the plate. The values of h3 and h4 cannot

be found from the order B theory, since being of order Blogf and

B respectively they enter the problem through the terms of
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order ﬁz logp and 62 as can be seen from equations (21) and (28).

The complete solution to order P can now be written.

Inner Solution:
ia
o
e

w(t,B) = 'C—_’_—COS—-EO—{(].-I-CCOS ao) —isinao ?;2-1} .

{ 1 +BlogPw (L) +Pw,(L)+ }

w1(§)=h1+ial =Asinao—iA(b-cosao)= - iAB
wo{€) = h_+ie, - A {sina (bcosa_ -1)lo L+b
2 ) 2 o o & PF1I
- 8in ¢ _cos a (L—V§2—1—1)+Blog(é+ Qz—l)
o o 1
2 2
1+C,b+Vb-l "Q -1 i
+B210g T+ D t — sine _cosa
C
‘/Z
tT -1 t+ 1
f e log P dt} (88)
1
where
a
A = (b + c
a, = cos ~(-c)

b_, a, given by cquation (87) .
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Quter Solution:

—~ i~ .AZ ke it sin a, (b - cos ao)
w(t,p) = 1 - ipAe™" e’ —+ . L dt (89)
t
-0
This can also be written
o~ sin a, —iAZ
wi{l,B) = 1+ i ——— - iABe Ei(-iABg) (90)

where

12, LENGTH OF PLATE
In the indirect problem the length of the plate is not a primary

parameter but is obtained as an expansion
[} =£O+Elﬁlog6+llzﬁ+.... (40)

As shown below Ili can be found in terms of a, b, ¢. For
a given b, c, the condition that
£ =1 (91)
(in non-dimensional variables), allows a to be determined.
Let Zys Ziep be the positions of the leading and trailing edges
of the plate in the physical plane., From equation (28),



2 -z, = HLe 1
T L
Therefore
1
? _ ia H(g)
= e / de (92)
-1
Expanding

1
0 - emf Wl—'{ L - (BlogB)w, - Bw, + ...} H(E)dL
71 °

1
- / v_vl_ {1-(h | +ic))BlogP - ia,B + Pry(L) + ... JH{E)AL
-1

1

ia
o H i H

= e __m_(g) - BlogBh lem/ —“—,:%—;—dé

-1 -1

1
ia H(C)
+ Pe T, {)dt + ...
A wolgi 2
The a;, a, terms are absorbed by the e % term. Hence
{ —A{(bcosa -1)1lo b—1+2cosa
o = o € 5F1 o
+ msina_ (b - ‘)bz- ) } (93)
(5)

This is the result found by Green ' and given in Section 12,26 of

Milne-Thoms on(l())

£, = -Asine ! (94)
(0] (o]
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—

1 1+ ¢ cos a + sin aovl - ;2
0, = A o rp )L (95)

From equation (88) T, can be found for ¢l < 1 and !ZZ can be
written as a function of a, b, ¢, which can be tabulated.
The parameter a is found by applying condition (91) using

equations (93), (94), and (95) for a given value of .

LIFT AND DRAG ON THE PLATE

Let p(z) be the pressure in the fluid, then from equation (3)

p = 3 (- 1w - py (96)

The force on the plate is given by

N =z i fp dz (97)

where the integral is taken along the plate. This force is normal to
the plate and can thus be written

¥ —ia

N = iN e (98)
where N* is real.

Let L, D be the lift and drag respectively, then

L = N cosa , D = N sina . (99)

Cumbining equations (96) and (97} gives
1

N = %—lf {1 - ;W|2} %-E—df;-ipf y dz (100)
-1 P
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Hence

1
LS 1

N = 2 el _/ {1 |W|2}%§%—))_dg-peiaf y dz
-1 P

o

1
= L e f {1- |wi2}i;%— dt - 3B L(Lsinc - 2h)
-1

Expanding in terms of B and using the boundary conditions for w({)

N" = mAsina, (b2 yb° - D+ B(h- 5 sina)
b+1
- plugpAzsin ao{ 2 cos a, - (b cos a, - 1) logF—'l_'—-l—}
1
1+¢ cos a,
+ PA f " T, (L) dt (101)

-1

upon using equation (91). The first term agrees with Green's solution.

The final integral can be evaluated and tabulated as a function

of b and c .
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14, INNER SOLUTION TO ORDER p°
Continuing the inner expansion as given in equation (60) the

inner expansion can be written

Q)g) = () + BlogBe (r) + BX,(r) + 7log”B 2, (y)

+ ﬁzlogﬁﬂ4(g) + 6295(4) Foeres (102)

h = h logh+h,+hplog’p+h plogh+h p...

2

Substitution of equation (102) into equation (29a) gives the

following boundary conditions for Q3, £, and Qg

2
Ty = h1 -h3 (103)
(n=0, 181 > 1}
- - - T
Ty = V3 h4 2h 172 (104)
2
Tg = YotV - thyo + hZ -h (105)
with
0, = -q k=1, 2, ...., n=0, g <1) (63)
Order ﬁzlogzﬁ;
The particular solution is easily seen to be
. 2 . 2
93(§) = - (h3+ 1a3) + A7sin ¢, (106)
2
Order B logB;
Let
() = - (b, +iay) + 94"‘(@ - 3A sin ¢ _2,(t) - Asin ao(hz + 3ia,)

Then
T, = f(§) (n=0, &l > 1)

94" = 0 (T'} = 05 |§I < 1) ,
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where from equations (66) and (41)

£
f(g) = - a Re f W_H%. dg (107)
o 1 0]

From which it can be found that

94(4) = - (h4+ ia4) + A2 (b - cos ao) { ¢ coszaO

+‘}§2 -1 sinzao - cos ao(b cos a_ - l)log—%—i—-]la— - coszao

2 2
+ Blog (g+"/g2—1)+351og(1+bt+gf‘i’3 1Y -1y
L2 i '/‘thz-l t+1 }
+ sin a, — dt

o T b 1°8F T

1

- 3A sin aoQZ(é) - A sin e, (hz + 3ia {108)

2)
where

. 2 .. 2 .
B4 = - b sin ‘10‘15“'1“0(';;51““0"' 1)

5 Vbz-lsin2a0+isinao{-11;4b2-llog};fi sinao
- ® _‘} b2 - 1) cos agt 1} (109)

The asymptotic expansion as ¢ — o is

td
n

() ~ A%(b - cosa ) - A%B (B + 2i sin a ) log

-(h, +iay) + A% (b - cos ¢ ) B, (110)

LAl . . .
- 31A"BQ sin a, - A sin a, (h2+ 3 1a2) s
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2
B, = cos a, (b cos e, - 1) log(b+ 1) - cos a,

6

1 1)

i .2
+ —sin aOMO(b) + B4log 2+ B5log {b +vb -

. Order [32;

From equation (105), on n =0

2 2
Ts = Ypt ¥, - 2hyly, - hy) - by - hy & > 1
05 = -ag g < 1
Therefore let
95(,;) = - (h5 + 1 a5) - hz(h2+21a2) - ZhZQZ(g) + 95 (7;) (111)
where, on n =0,
* s + 2 g > 1
T = Y3 Yo g
(112)
6, = 0 g <1

yo(g) is given by equation (68) and

£
y, (&) = Imf S:C) 2,(¢) dg (113)
- 1
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The complexity of Qz(é) makes solution of the boundary value
problem for Q5>:<(t;) difficult, although an integral solution may be
written down as in equation (65). However the order 52 inner and
outer expansions can be matched to within an imaginary constant if
the asymptotic behavior of 525:::(;), as ¢ Lleads to iofinity, is known

to 0(1). In particular hy and hg can be found.

Let ge) = y2E) + v,(8)
As § —> oo it is found that

glg) — AzRe{Bglogg +B(R-1)¢ - B (%—B+isinao) logzg

2 . . 2 . 2
- (B°Q+iD, - in IBI° - 2iBD,) logt +D2}

+ Cy 40 (igg-é—) (114)
where
D1 = %sin a _cos a - b sin 0o+ i (bZ - 1) sinzao
+ i b2 1 (b cos -1l)cosa
! h %o o
i ] 2 b+ 1
+ — sina_cos aO{Zb-(b - 1) log p— | (115)
D2 = ReB3

C is given in Appendix I,

D1 is the term in 3 in the expansion of Qz(g) for large ¢ .
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I
=

Thus QE‘: (t) can be written, as { — o

2 2 2 . 2
2. (t) ~ A°Bglogr + A°B(Q - 1)y - A°B(2 B +i sina) log’t

2
- A%B%0+ iD, - im {Bl - 2iBD))log ¢ + AZDZZ
+Cg+icf+m(§)+0(li§—tn-) ) (116)

where Cf is an arbitrary real constant.

This result can be combined with equation (111) to give the
expansion of 525(;) for large ¢ . This is enough to allow matching
to order [32. Note that only the real constant term is found by this
method. The imaginary term ia5 cannot be determined unless the

full solution is known.

The Inner Velocity w(¢, B) ;
By continuing the procedure used to find the relations given
in equation (72) the following results are obtained for the relationship

between the Qi and the Wi

1 2

Wy = —Q4+vv1w2 (118)
1 2

S (119)

Therefore w through w, are known exactly while wg is known
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to order 1 as ¢ — oo . This allows the outer expansion of w(g, B)

to order 52' so as to match the outer solution.
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15. OUTER SOLUTION TO ORDER p°

The outer expansion can be written
F() = 1+ Blogh ¥ () + B &,(g) + B log™B &, (1)
2 ~ o~ 2 ~ ~
+ B logpB W4(;;) + B w5(§) ceen (120)

Substitution of equation(120) into equation (50) gives the boundary

value problems for Wiy Wy, W5.

On n =0,
N' ~S
u; - Av3 = 0 (121)
~~ ! AN 3~ ~ ! 0
u, - Av, = -3uu, = (122)
N' ~ ~ e~ ~ o~ Nb-COS(ZO
ug - Av5 = - 3u2u2 - VoV, - sz——-——;—-———— (123)
2
except for 'g = 0, and where the prime denotes differentiation with

respect to g .

The homogeneous solutions are of the form given in equation (77).

Particular Solution for \?75(‘2) ;

After rearranging the right hand side of equation (123) the

following result can be obtained.

~

A~ L _
§5(Z) = %—\;’.‘22 + iA (b - cos ao)e_lA‘t—. f V'?/"z(t)elAt %t_

-0
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;
+ %iAe'lAé f w. 2 (1) e tat (124)
o)
To this must be added the appropriate homogeneous solutions with
their as yet undetermined coefficients. These will be determined

from matching to order [32 with the inner solution. To do this the

asymptotic expansion of the outer solution is required for small ¢ .

Expansion of Particular Outer Solution;

The inner expansion of the outer solution to order [32 is carried
out as in section 11, except that terms up to order BZ are now required.
The outer expansion up to and including v'?'fs(Z), but excluding the

~

homogeneous terms in W,, W,, W ives the following when rewritten
g 3 ®y Wi, g g

in outer variables.

~ o sin a ~ 2~ ~
wlg) ~ 1+ 1B __'.:_9_ - iBABQ - iBAB log ¢ - PA™B ¢ log ¢

[ pa

sinza
2 o

2 ~ 1
-pATB(Q-1)g- 5P —ZT—

+ BZAB sin a, Er%—g— + [32AB (Q+ 1) sin aoi—
g g
1..2 . 2 1 AN . 2 ~
+Zlﬁ Asmaoz+ 1BABs1naolog ¢

2,2 . . 1 . ~
+ BA s1nao{ 2iB (Q - 1) + -2-sma0$ log ¢
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- p2a% {B%Q% 1 %Qsinzao - ZBZqi

+ iBsina (1 -2Q+2q))} + 0(>102°p)

where 9 is the constant term in the expansion, for small ¢, of

(125)

(126)
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The Homogeneous Solutions;

Appropriate homogencous solutions must be added to W

~

the form given in equation (77). It will be found that

w3(§) = 0
w0 =0
~ ~ -iAY : €53 €52 €51 iAt
w5(§)=ie 4 {3+2+t}e dt
t t
~oo

where the cSj are real constants.

~
The inner expansion, to order 1, of we is

i 1 1 . 1
T 7 C53 —Q—g t+ (7AC53‘1C52)§

g
”
2

. . 1,2 ~ . . 1
+ 1(c51 + 1Ac52 -2-A c53)log§+ 1Q(c‘51 + 1A052 --2-A

when rewritten in outer variables.

w, and %5 to allow matching with the inner solution. These are of

(127)

C53)

(128)
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16, MATCHING TO ORDER pz.

Matching is done as in section 11 except that all expansions
are carried out to order ﬁz. It is found that in addition to the
particular solutions already obtained the following homogeneous

terms are required.

Inner Solution;
No additional term is required of order ﬁzlogzﬁ. For order
leogﬁ a term which behaves as —iAzsin .t is needed. This

indicates that

wt) = -ia%sina ¢ -1 (129)
is the required homogeneous solution which must be included in Wye
No homogeneous solution of order 2 1 is needed for W
QOuter Solution;

No homogeneous solutions are required for \?7'3, %4. The
coefficients for v'\v'5 are

u53 = sin a, Lusa (130)

3 .2
Cgp = A{—2-51n a0+Ilel (131)
Cpy = A%{2 mB%Q - niB 2} . (132)

The Constant Term;
The above particular and homogeneous solutions allow the

. 2 .
inner and outer solutions to be matched to order . In particular the
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constant terms can be matched as in equation (87). Therefore h3,
h,h, e, and ¢, can be found. As noted in section 14, «_. cannot
4’ g’ 73 4 5
be determined if the asymptotic solution of QB'P is used. The

expressions for these constants are somewhat lengthy and are given

in Appendix I.

17. CALCULATION SCHEME

The flow as shown in Figure 1 requires the Froude number to
be large. The method used to solve the problem assumed that the
interaction of the jet with the mainstream is small. Thus B must be
small and/or b be close to unity, otherwise difficulty with the con-
vergence of solutions will exist. For a deeply submerged plate a
separate expansion to account for the large jet would be required.
This will be discussed in the concluding section.

Suppose that o, h and B are given. The first step is to
assume some values for b and c. From equation (57) ¢ = -cos Qg
and @, should be close to a for small B. Therefore a range of @

near @, and a suitable range of b should be chosen. These values,

together with that of P, are substituted into

1=2L(a,b,c,B) . (133)

The resulting root for a, if it exists, is then substituted into

similar equations for h and «. Thus, for example, tables of h and

Pty

o can be obtained for the values of b and ¢ fo

2]
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can then be substituted into the expression for the thrust. Therefore

for example the lift coefficient

%k
CL =2N cosa , (134)

can be found as CL(a,h, B).

This can only be done, of course, if equation (133) possesses a
root to the order of [ taken. Ilf P is too large, then more terms are
required since a root must always exist in the exact solution. The
accuracy of a particular solution depends very much on the accuracy
of the root for a. Hence the results will be most accurate for £

small and b near to unity.
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18. CONCLUSIONS

A problem in the nonlinear theory of water waves has been
solved using the method of singular perturbation expansions for large
Froude number. By using a parametric {-plane the problem was
reduced to the solution of Laplaces equation in a half plane with non-
linear boundary conditions. The inner and outer expansions have been
matched to order Bz and expressions obtained for the length, physical
angle of attack and depth of submergence of the plate in terms of the
parameters b, ¢ and (. The thrust on the plate has also been cal-
culated and a method outlined for obtaining it as a function of o, h and
B.

The inner solution of order unity turns out to be the well known
iree streamline solution for the impingement of a semi-infinite jet on
an inclined flat plate. The force on the plate is, to the first approxima-
tion, the same as for this case. The first outer solution is a uniform
flow \;o = 1. It is found that due to the logarithmic nature of the first
inner solution a simple expansion in terms of powers of $ will not
suffice. The expansion parameters are combinations of powers of P
and of log B. Due to the occurrence of logarithmic terms in the inner
and outer solutions matching must be carried out for specified groups

of terms. These are

order (1)
order (1,Blog B, B)

order (1,plogp, B, B’log’P, B’log B, B)

or in general 1, BlogP, B, . . .Bnlognﬁ, .. .ﬁnlog ﬁ,ﬁn.
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The inner solution up to order f contains a constant term of

order Plogf and a more complicated term of order B. A notable
feature of these terms is the presence of the depth of submergence.

It has not been possible in the linearized theory to prescribe this depth
in formulating the problem. Since the present method is not restricted
to small angles of attack and small disturbances the depth of sub-
mergence can now be taken as arbitrary, within certain limits to be
noted below. The outer solution up to order B’Z does not require
terms containing logf and it seems likely that they do not occur in
the outer solution at all. When equation {89) is compared with the
solution obtained from linearized theory for a moving source and vortex
on the surface of an infinitely deep fluid, the outer solution is seen to
be that for a sink of strength wA(b - cos ao) and a vortex of strength

(16), equation (13.43)). From

-7TA sin @ (Wehausen and Laitone
equations (32) and (57), the sink is seen to be of strength a as required.
When carried to order 62 the outer solution gives higher order
singularities as well as non-linear terms which are corrections to the
sinusoidal waves found in the order f solution. Thus for the case f
equal to zero and the case §{, and hence z, large the theory re-
produces known limiting cases.

One of-the main results is that the depth of submergence of the

trailing edge of the plate can now be taken into account in prescribing

the problem. The only restriction is that it not be too large unless B

1s very small. This is due to neglect of the jet interaction with the

main flow, To take this into account a 'jet variable"

£ = p(L+b) = L +pb
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should be used in the region containing the jet in the {-plane. Thus
the validity of the results obtained above depends on @b being small.
Subject to this condition the depth of submergence can be prescribed,
a rcsult which is not found using linearized theory. Of course h can-
not be an arbitrarily large negative number since the energy of the
flow would not be enough to support the plate.

The method of singular perturbation has worked well in this
case to bridge the gap between the extreme solutions of a free-stream-
line flow and a moving point singularity. It should be noted that the
basic singularity of the solution comes in this case not from the
differential equation, as in viscous flow theory, but from the boundary
conditions. No fundamental difficulties are hinted at which would pre-
vent extension of the solutions to higher order, the main difficulty being
the tedious algebra involved. Since the boundary conditions, beyond
the first order, are linear the solutions can be written down in
principle., Even for the case of a flat plate the terms of order P~ are
difficult to obtain. The problem for flow past a curved body of
arbitrary profile with fixed separation points can be treated in a way
similar to the present problem except that the details of the calculation
would be somewhat more involved. When the flow is such that it
separates at some undetermined point on a smooth curved body, for
example a circular cylinder, the problem is much more difficult due

to the unknown position of the separation points,
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APPENDIX I

MATCHING OF ORDER p%log®p;

2
1,2 . . 2
3 -ZA { (b - cos ao) - sin ao}

[ap
i

1]

aq ZAzsin a. (b - cos ao)

MATGHING OF ORDER g°log f;

A2 { (b - cos ao)(ReB6 - ReBQ) - 3 sin aOImBQ

. . 2
+ sin aoReB3 - Ile + sin ao}

1]

AZ { (b - cos ao)(ImB6 + ImBQ) + 3 sin aOReBQ

2
- sin ¢ ImB, + ReD, - 7 IB/! }
o 3 1

MATCHING OF ORDER ﬁz;

h

a

5

5

= C +A2 { sinza - sin ¢ ImBQ
g o o

+ %ReBZQZ + (ImBQ)Z}

cannot be found by the asymptotic method

(I.1)

(I.2)

(1. 3)

(I.4)
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THE CONSTANT Cg ;

(For conciseness, e will be written as ¢ in this section.)

C =T sin4a + Tzsin3a cos a + T'3sin3a + T4sin2a cos a

g 1
+ T sin2a+T sine cosa + Tosina + T,cos e + T
6ot @ 7 gros ¢@ 9

5

where the Ti are functions of b, given by

2
T, = b(b-1)- %bz {log2(b+ 1)} - b(b - Jbzvl)log(bJrl)—le

2 2 2
+ b7 - 1)Mg + b M9+(b-zdb - 1)(BM; o - Myy + M5)

nT, = blog 2 - 3+ b(l - log2)(2 - M_) +Jlo2 - 1 log (b +‘}b2 - 1M

2 2 2
+M3-bM4—(b —1)M5— b —1M7—2(b —1)1\/18—2.ng

- (blogZ - 1) log (b + 1) + b(1 + 5 log2) log2

,2
-M1+2(b— b -l)Mlo-M11+M12,
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T, = s+2b - b7y (2b% + b + 1) log2 + %(b2+1)1og2(b+ 1)

+ (log2 - 1)b%log (b+ 1) - (b - 1)log (b + 1)

+{@b+ 3) bz-l—b}log(b+4b2-l)—b b2 -1

2
log(b+4Db” -1)+ le + M9 - M10 - b(2leO - ZM11 + Mlz)

2

+ b7 -1 (3BM - 3M;; + M

12) ?

_ 2.1 b+ 1 !‘“—‘z
1TT6—2b+2- b —llog———Ib_ log (b + b -1)—M3+bM4
) b+l 1
¥ Zng—Jb - 1 log g {leO-M“,
[.2 b+ 1

“log (b + Y b% - 1)

0

Tl = - M

&
1

8 ZbM9 - Zleo + M

. 2 2 2
9 blog(b-}—\/’o - 1) - (0 + Mg + (b + 1) My ¢ - BMy,

11

H
1l

with the I\/I.1 being the constant terms in the expansion for large ¢ of

the integrals from 1 to ¢ of the following functions.

!
MO; T log {t + b)
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1 2
Ml, mlog(t‘l‘ t -1)
2
, N o1, e+l
M; EF b °8 T
2
‘ £ -1 t+ 1 ,
M4, T 1ogt_1log(t+b)
_ 1 E+ 1
My; 5 108 T
tz-l t+ 1 2
Mg T 1ogt_11ug(t+‘/t - 1)
z 2 2
_ % -1 t+ 1 1+tb+{b—1{t-1
M. log (t + tZ—l) 1
8 t1 b 02 - 1
! 21
Mo Trp sty -
!
v 1 10(1+tb+\b2-1 tz—l)
10’ t+ b 8 TT b
2 2
. 1+tb+Jb -1Jt -1
Myys teg | T+ b )
o #tz-llo (1+tb+\/b2-1\,t2-1)
12° t+ b 8 T+ b

0 >
a Vt -1 t+ 1 2
€. L., Mo = / { - logt_1 - -t—} dt .



