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ABBSTRACT

The properties of p-n junction fleld-effeet trensistors (FET's)
are formulated on a general basis, in terms of an arbltrary doping
profile (i.e. arbitrary gate-channel impurity distriwution). 'The
external behavior 1z shown to be quite insensitive to the doping pro-
Tfile, provided that the profile satisfles ceriain wesk resirictions.
Essentially all practical structures are lncluded 1n the restricted
theory. A theoretical basis is thus provided for the much-uzed
empirical conclusion Luat widely dilfferent types of IET's exhibit
similar functional behavior., More specifilcally, upper and lower
bounds are obtained on the normalized trensconductance, drain current,
input caspacitance, and bias polrt for zero temperaturc cocfficlient of
the drzin current, and on the voltage-dependent parts of various
figures cof merit. T2 each case the bounds represent the solutions of
two analyticaliy simple structures, a step-junction ¥T and a delta-
Junction IET. Meny practical implications stem from these results.

Finally, a complete, small-signal, low-frecuency equivalent
circult for an arbitrarily doped FET is developed by considering the
capacitive current thet flows between the channel and the gate. Be-
youd pinch-off a "new” element, the fcrward transfer capacitance, is
present in the circuit. Below pinch-off the theory predicts that the
output capacitance 022 and the reverse transfer capacitance ClE
differ, zrd 1o fact that (622 - 012) < 0, whereas ezrlier theories

and intuition indicate that (022 - Clz) = 0. Measurements on a
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wide variety of FEW's substantiate these theoretical results. The
Trequency limitations of the equivalent circuit and, indeed, of all
the results obtained are shown to arise from the breakdown of the

gradual approximgtion.
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CHAFTER I

INTRODUCTICHN

The fundamental prineiple underiying the operation of field-
effect devices, namely, the mcdulation of the current flow between two
electrodes by the application of sn electric field, was conceived as
early as 1928 [1]. B8Since then, and especially in recent years, these
sericonductor devices Lave aroused much interest because of their
singular propertles and diverse potentialities. In this work we shall
restrict our aitention to field-cffect trancistors (TET's), which ave
three-terminal structures whose external characteristics are similar
to those of vacuum pentodes, and which therefore complement in scme
aapects the characteristics of '"econventional” transistors.

Iz 1948 Shockley and Pearson [2] built & prototype FET by using
& thin layer of semlconductor as one plate of a parallel-piate cepaci-
tor. A potentizl applied to the other (metal) plate controiled the
longitudinal conductivity of the semlconductor by irducing charges in
it. 7The degree of control was much less than that predicted theoret-
ically, the difference telng attributed to the presence of surface
states [3] which immobilized many of the induced charges. In the
first practical FET's, deleteriocus surface effects were avoided bDe-
cause the free surface was replaced by & p-r junction. More recently,

*
insulated-gate FET's (thin-filr devices equivalent to Shockley's

* These FET's are scmetimes referred tc as metal-oxide-semiconductor
(MOS) transistors or simply as thin-#1lm tronsistorsc (TPT'c).



prototype) have been fabricated. At presert, however, most commer-
ciadly manufactured FET's contain p-n junctions because some surface
problems are still extarnt in the Insulated-gate types.

The essentlal features of FET operation may be apprehended from
lhe represenlative model of Fig. 1l.l,1n whick = two~dimensional,
planar device with a high-conductivity p-reglion is shown. If the

Pp-n junction is reverse~blased by a voltage V

1 between termirsls

i and 3, the resulting space-charge (or charge-depletion) reglon pene-
trates preferentiaily irto the lower conductivity n-region. When a
longitudinel field is applied by means cf a voltage VE between
terminzgls 1 and 2, a current flows through the channel - the unde-
. pleted portioﬂ of the n-reglon. The current carriers flow into the
channel from terminal 1, which is therefcre called the source. The
carriers fiow out of the channel at terminel 2, the drain. Terminal
3 is the control electrode and is called the gate. Now, because of the
pctential drop in the direction of current flow, the space-charge
region does not have uniform widih, but has the general shape shown.
There are effectively ro free carriers in the space-charge region, so
that the (statle) drain-source conductance is determined whclly by
the shape of the neuiral channel znd, consequently, depends upon the
gate-source bilas Vi. Therefore, the potential applied to the gate
modulates the current flow between the drain and the source.

The presence of an insulating layer vetween the gate and the
channel in irsulated-gate FET's permits the blasing of these devices

wWith gate-gource vcltages of either polsrity. However, in this
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Kepresentative model of FET. Shaded area denotes
space~charge reglon. The arrow indicates the
direction of conventional current flow; current
carriers (electrons, in this case) always flow
fyom source to drain.
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report we shall consider only the mode of operation corresponding to
charge depletion within the channel. Thus, tne FET's we shall
investigatle possess a current flow that is controlled by conductance
modulation (via alteratior of the shepe of a conduciing path), rather
than by cenductivity mcdulation.

The drain characteristics of an FET are similar to the plate
characteristics of a vacuum pentode (cf. Fig. 2.7). For a given gate
valtage the drain current at {irst increases with the drain voltage,
and then, In the so-called pinch-off vange, the drain current is
Practically independent cf the drain volitage. The finite incremental
output conductance that is present ir the pinch-off range in an actusl
. FET 1s small and 1s neglected in this work. Also, the gate-channel
Junction pehaves like a reverse-biased diode, so thal the input con-
ductance is extremely small snd is alsc neglected.

An important feature of FET's is that they are unipolar, i.e.
only one type of carrier, the majority carrier, is involved in the
domingnt current flow mechanlsms. This is in marked contrasst to ccn-
ventional transistors, in which both minority ard majority carriers
are essential to the total current flow in normal operation. The
unipoiar rature of the FET endows this device with several Gesirable
properties. Most important, the current carriers travel by Grift
culy. Hence, gocd frequency response, and, in particuisr, better
frequency response than that of conventional transistors is expected.
(Also, there will be no effect analogous to the minorlity carrier
storage of the ordimary transistor.) Sluce recumblnatlion 1s not an

fmportant factor, technologically inferior materials can be



tolerated in the structure of an FET.

Although FEI's have beer commerclally avallable for only a few
Years, many companies now produce these devices. The essential
differences between various FET's are in the type of gate-channel
Junction, i.e. in the doping profile (impurity distribution), 2nd in
the geometry. It is easy to show that most FET geometries (exeluding
cylindrical) can be reduced with excellent accuracy to a single,
simple, ideal struciure (cf. Section 3.1). In other words, geometri-
cal variations affect only the magnitudes of FET parameters, not their
functional behavior. Doping-profile variations, however, are of a
more fundamental nature. Morecver, exigting profiles are almost as
numercus and disparate as the manufacturing companies themselves;
Some FET's contain alloy junctions; some are epitaxislly grown; some
contaln g single diffused Junction: others are double-diftused; =nd
some contaln an insulated gate. Yet, desplte these very basle inter-
nal differences, the external properties of the FET's are strikingly
gimilar. For exampie, particular transistors from different manufzc-
turers may have output currents that differ by orders of magnitude st
the same normalized gate bizs; however, 1f the currents are normaslized
to their respective maximum values, then at any normalized gate bias
these rormalized currente can be S0 close as to be experimentally
Lodistinguishable. “he empirical results Thus belle intuition:
variations in the doping profile have in fact only a slight effect on

the Dmnetional benhavior of FET parameters.



In this werk we shall sttempt to estsblish a theoretical basis
for the empiricsl observation that diverse types of FET's benave
similarly. The problem is dealt with in Chapters 17 through V.

The first two of these chapters previde background material. Chapter
IT conalsts in large part of & rederivetion of temiliar results for a
gtep- cr gbrupt-junction FET; Chapter IIT comprises an evalustion ol
Lhe approximations used in the step-junction analysis. Before the
deslred goal can be spproached, the cquations describing the operation
cf an FET must be written Iin a general form, in terms of an arbitrary
doping profile. This is done in Chapier IV. Ther, in Chapter V it is
proved that most FET's do indecd have very similar characieristics.
This result justifies certain simple approximaticns 1o the couatilons
gescribing the operation of FET's, and, egualiy important, allows us
to sppreciate the range of validity of these spproximstions.

As another major problem in this work we investigete the equiva-
tent circuit for an FET. UHeretofore, equivelent circuits were
generally semi-cmpirical, and if the capacitive elcmerts were trezted
theoretically, they were defined in terms of voltage raies of change
ol the chargce in transit. 1In Chapter VI we derive, for an arbitrery
FET, the actual equivalent clreuit, i.e. with capacitive as well as
conductive elements expressed as ratics cf a-c¢ components of current
and voltage. Two previously unpredicted capacitive elements are

Ineluded in the complete circuii, and the presence c¢f these elements



is confirmed by measurements on a wide variety cf FET's. Tinally,
by revealing a shortcoming in ore of the key approximations that is
almost universally employed, the treatmert of Chapter VI points out

the frequency limitations of the results obtained from this and many

other snalyses.



CHAPTER TIX

ANATLYSIS OF A STEP-JUNCTION FIEID-ZFFECT TRANSISTOR

In this chapter we shall analyze the step-junction FET in some
detail, because the thysical insight gained from the solution of this
specific doping profile will be helpful when we consider the general
protite iIn Chapter IV. Ia fact, most of the conclusions regarding
the operation of a step-junciion FET may ve directly applied - in a
qualitative manner - to an arbitrarily doped FET.

We beglp din the [irst two sectluns by setting up a general model
and summarizing the assumptions to be applied to this model. Then, in
the remaining sections, we restrict our attention to the step-junction

device and derive and interpret the equatione deeeribing ite operation.

.1 Model

N

Figure 2.1 shows the model we shall use for the FET throughout
this report. As mentioned in Chapter I, the principle of operation cf
an FET 1s thet the potential applied <o one electrode - the gate -
cortrols the current flowing between two other electrodes - the
source and the drain - by altering the shape of a space-charge or
depletlion region. The potential of the gate (with respecs to circuit
ground) is denoted by Vg. The source end the drain are separsted by

the distance L; the source is grounded, snd the drain is blased at
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Fig. 8.1, Model of FET used in the analysie.

The device has depth A perpendicular

to the X~y

plana. Bhaded area denotes

space~charge region.
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v

q° Tke subsczipt s, 4, or g on any guaatity Irdizates thail

the quantity pertaine ¢ the source, dralin, or gate, respeciively.
The corigin of the ccordinate system is at <he source electrode, with
X nmeasured Irn the direction of the drain and ¥y measured in the
direction 27 the gute. Our model 15 two-dimensional: we assume z
uniform depth A pverpendievlar to the x~y plare.

"hme applieé potentials set up a space-charge region of width
(¢ - b). Of zourse, (2 - b) 1is a function of the bias vcltages,
and, in general, is also a [unction of x. We assume that there are
no free carrlers in tne depiezion reglon, s¢ that current flows
between the source and drain oaly within the charge-veutral channel;
the wicth of the channel is dencted by bix).

Ihe excess density of donors over acceptors, myltiplied by the

nagnituie of +*he electronic sharge, is called the doping or impurity

¢ensity (or prcfile} and iz denoved by p. Practical devices have
one-dimersional dopling profiles, s¢ that ¢ = p(y). Tt n-Lype
semiconductor p > 0, while In p-type o < 0. {(The sign of p Iz
the same as the sigr of the charges In the depletion region.} The
gete material and the channel materiel are separated by a junction at
vy =a. 'That is, ¢(2) = C. We assume that ail impurities are Iionized
st normal operating temperatures. Then the mobile charge density,

denuled Ly Pr? Is seunl Lo ~-p in the casrge-reulrzl chianoel.

* Our model is symmetrical and hence Is unaffected by an irverchange
of scurce and drain. Aclual devices may nave scme non-symmetries,
go that an intercnange of socurce and <rain will modify the numeri-
cal values of device parazeiers.



11

2.2, Assumptions

Tu this section we list carefully bhe assumptions and approxima-
ticns used in the subsequent analysis. The validity of these
assumptions is discussed fully in <he next chapter. The following
list is very roughly in order of decrcasing validity. The first two
hypotheses will be entirely removed in subsequent chapters: the next
two are generally well justilfied; the last three require some analy-
sis for thelr justification.

Our Zirst assumptlon arises because at present we are considering
a step-junction FET.

(1) The doping profile is glven by

TP O =y <a
p(y) = (2.1)

'BDO: a <y

vhere p. aad B ere positive constants. We heve chosen an n-channel
device. ¥For simplicity, we assume that £ >> 1, so that the conduc-
tivity of the gate material is much greater than that of the channel
material. When the p-n junction is reverse bilased, essentially all

of the space-charge reglon appears in the channel material, and
c(x) = a = constant (z.2)
(2) The built-in potential is negligible compared with the

gate~channel potentlal. The difference bhetween the Fermi levele of

the p- and n-regions produces a contact or built-in potential across
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the gate-channel junction. For silicon, this potential is of the
order of 0.5v.

{3) The drain current is carriec only by majority carriers
(electrons, for the doping profile glven in Eq. 2.1).

(k) Direcs gate current is negligible. This current,
which comnsists of *the normsl saturation current of & reverse-bilased
Junction and possibly of recombination-generation current produced in
the space-clhurge region, s small io compemrison with the drain
current.

(5) e carrier mobllity is constant.

(6) The boundary between the depletion region and the
channel is sharp. This assumption enables us to define accurately
the enannel, and to assert that the dralrn current flows entirely
within this chanmnel (eince in this case n, = 0 1in the depletion
region}.

The foregolng assumptions zre not uncommon in the consideration
cf many devices invelving p-n Junctions. The following two spproxi-
mations, however, are peculisr to FET's and are necessary for an
analytically simple solutiom.

(70 (a) In the channel the magnitude of the y-component of
the electric fileld = is muck smaller than the msgnitude of i{he

X=component ;

B < g,] » osy=x (2.3)



13

(b) If € is the permittivity of the semiconductor

material, then in the space~charge region

émx
ox

<< s bsy<e {2.4)

Assumption (7) constitutes the "gradual approximation™ [I7] since 1t
lmplies that the channel width does not change raridly. The motiva-
tion for thio assumption arises when an FET Ls analyzed wlth Vd;a .
In this case b(x) ~ constant, and the graduszl spproximation is well
Jjustified beczuse the channel field is essentlially cne-dimensicnsl in
the x-direction, while the field in the spasce-charge reglon ie almost
- wholly in the y-direction. In order 1o maintzain a cne-dimensional
problem, the gradual aprroximation is applied even when Vi is not
small.

In Seeticn 2.4, one adéitional assumption will be made. It is
not included here vecause some preliminary analysis is nccessary

Defore it can be oproperly understood.

2«3« D~C and A~C Analysis Below Filnch-CfT

Now that the mcdel has been explained and the sssumpticns set
dowr, we are ready to derive the equationg governing tae operstion of
the step-junction FET, The principal results of the dé-c solution
are the expressions for the drain curreni and for the channel bound-
ary; the a~c solubtion yields the small-signal eguivalenl clrouit.
Except for the capacitances, the formuiae obtained ir this sgection zre

given by Shockley [4], so that most of the actual analysis performed



1k

here will be brief.

Z.3.1. D-C Analysis: Drain Current and Channel Curves

Implieitly, the method we shall use here comgists of solving
both the gpace-charge region and the channel for two relations
between the channel widih and the potential zlong the channel boundg-
ary, and tnen nmatching the two relations to obtain a consistent result.
Actually, we proceed by immediztely incorporating the space-charge-
reglon regult into the equations describing the channei. Then the
solution of the latter equations ylelds the gquantities of interest
directly.

et v(x,y) Dbe the potential et the point (x,y}. In the spoce-
. charge region, V oObeys Poisson's equation. Because ol the gradual

approximation - in particular, ®g. 2.4 - we have

a‘(\;":__L(Zl, b(x) = v < c(x) (2.3)
oy €

At the channel edge of the depletion region the electric field is

zerc [because of assumption (6)],
E === =0 at v = b{x) (2.6)
and lhe potential along the gate edge of the depleticn region is Vg’

vix,c{x}] = Ve (2.7)
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Equations 2.6 znd 2.7 are the boundary conditions on 2.5. Using the
step-junction profile Eg. 2.2 deflned 1a the previous section, we
easlly integrate 2.5 to get for the potential in the space-charge
reglion
e a o
Vy) ~ Vo o+ g [(a-0)" - (y-1)%), px)sys<a
(2.8)

gince c(x} == & TDecause c¢f the high conductivity of the gaie
material. Agaln because of the gradusl approximation - this time
Tig. 2.2 - the currert from the drain to the source flows parallel to
the x-axio, and hence the potentlal ait any point (x,y) within the

- channel is egual <o the potential at the point [x,b(x)]:

- Po a
V{x,n) = Vg + EEEH - n(x}]
2
; b(x . P
- Vg " ﬂo[ - Hé_l] , 0=y <b(x}) (2.9
where
F 32
, 0
W, = = (2.10)
rFrom kEq. Z.9 we see that if vy - Vg = Wy ThET b(x) = 0. lhat 1s,

Wo is the magnitude of *the reverse bias on the gate-channel ‘unction
waich causes the channel widtk to become zero; or, more descriptively,

the potential W o ceuses the channel o become "pinched-off." Tor
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this reason, WO is rcferred to as fhe pinch-off voltage.

In order to simplify many of the formulae that we shall derive,

we define several normalized parameters:

u(x) = b(}a{) the rractional width of the channel
naterial occcupied by “he channel
(2.11)
v |
s = Ng : the magnlitude of the rauioc of the source-
o gate potential to the pinch-off voltage
(2.12)
IVU - Vg
ad= _HE_G_M__ : the magritude oI the ratio of the draing
"o gate potentiel <o the pinch-cff voltage
(2.132)

Thus, s and d are normalized potentials that are measured with
respect Lo the gate; pelow pinch-off their values 1lie in the range

0 < g,d = 1. With this nectation Eq. 2.9 becomes

—n—-———‘v‘-(?{.,b) o o=3 4 (:i_ - U)B (2'1“")
ﬂrO

*  The bullt-in pciential is ircluded ir the more accurate definitions
of & and d given in Fgs. 3.6 and 3.7.
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because Vg <0 ZIn en n-channel device. This equatlion, and most of
the equations that follow, is valid for both n- and p-channel FET's
17 the approprizste sign of V is used.

Consider now the cifferential elemert of channel pictured in

Flg. 2.2. The resistance beuween the x- and (x+dx)-planes is

e o Gx 1l dx
upObA upoaA u

where p 1g the meobility of majority carriers in the chammel. 1he
veltage drep across the element is ~dV, which, by 2.1% may be

exXxpressed as

-3V = 2wo(1 ~ u) du

Hence, the magnitude of the current flowing through any section of

channel is (since du/dx < Q)

_adu

v
T = ﬁ = -._,GOLWOU.(J. - J}ﬁ (2‘15)
in which
upcaA
GO = _T ((Jclé)

is the conductance of the chammel in +he absence of blases.



|f b+db -
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Fige 22, Differential elament of channel.
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Because no current flcws through tone space-charge region, I is
not a function of x, and Eq. 2.15 may easily te integrated. Also,
the drain current and the source current are idertical and may be
unanbiguously ldentified by the same symbol I. ZFor convenience in
later discussions we shall sglways consider the drain current to be a
rositive cuantity even though T may ilow intc or out of the &rain,
depending on whether the channel is n- or p-type, respectively. From

fig. 2.1% we see ihat

U.(O)Il- S-E-'—TT“"—-—-?-“l-'l/g
"o
v{L,5) vV, =~ V¥
w(lL) =1 - \fs + ~— =1 - d £ 1.4
"y Yo

s0 that integration of 2.15 over the whole chamnel length yields

L 1-v3
I_J’dx = ~26, IV u(Z - 1) du
0 1-vs
I(s,d) = Io[ﬁl - JE)E(l - o2dE) - (1 - JA)E + 2#3)] (2.17)

Tne multiplicative factor IO in this equaticn is given by

I, = T{Cc,1) (2.18)
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W
= (2.19)

(o]
o}

[,

and is, as we shail show in Section 2.4, the maximum drain current
that flows through the device without forward bias on the gate-
chignnel junetlon, I the potentlal WO were applled across a bar
of materigl of conductance Go’ g current I = GOWb would flow.
With WO zpplied across the length cf tne chamnel of an FLT, the
cuvrrent ip some factor Jess shan Gowé becouse of the prescnece of
the depletion region. For a step Junmction FET (with Vg =C) we see
from Eg. 2.19 that thls reduction factor iz 2.

Conalstent with the assumptlons made in Section 2.2, Te. 2.17 for
~the drain currvent is valld for voltages up Lo pinch-off, but not
beyond; i.e. for s < 4 =1, where the first inequality arises
because the drain-gete potential must slweys be greater ir magnitude
than the source-gate potential under normal bias conditions (current
flowing into the drain in an n-chennel device}. We defer &iscussion
of BEq. 2.17 until we extend it to voltages ¢ > 1 1in Sectleon 2.4,

We row derive the equation for the channel shape by integrating

Q. £.15 over only parit of the chamnel lengul, f{rom x = O,

2 =u(C) = (x - ¥8) to the arbitrery channel boundary point (x,u):

I

% - Ic[(l - JE)Z(l - ade) - 32(3 - 3“)]

o

The current 1 may be climinated by use of Z.17 to glve x as &

funection of 1 with & and 4 as the only parametere:
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i

_ (- WP s m) - s(3 - 246) (2.20)

d(3 - 2/d)~ 5(3 - 248)

Il

'ne curves drawn in Fig. Z.3 snow u versus x/L with s {or Vg)
fixed and & (or V&) as a parameter, ani with 4 - s (or V,)
fixed and s (or Vg) as a parameter. The vertical marks on some
channel curves indlcate, for the particular case L/a = 10, the
maximum values of x/I. for which the gradual approximation is valid.
These maximum values are based on the analysis of Section 3.4. Curves
with no marke are volid for their cntire longith. Thesc curves

should be studied carefully, bpecause & clear understanding of how

the channel shape is altered as the biases are changed gives mmuch

insigh~ into the chaoracterigtics of the FEWT.

Ze30%e A-C Analysis: Small-Bignel Tguivalent Clrzoult

We are now able to determine the small-signal, short-circuilt
admittapce parameters. From kEg. 2.17 we easlily obtain the (forward)
transconductance snd the output conductance below pinch-off. Since

both & and d céepend on Vg’ <he transconductance g defined by

5T S,
&, -‘éﬁr‘; (2.21)
is
&, = GO(-/E - ¥8) (2.22)

which is the same as the conductance of a channel of coastant frac-
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tional width wu(0) - u(L). For 4 =g, g, = 0. This is logical
becausc ror these bizses the cnannel iz uniform and no current flows,
and a change in the gete voltsge cannot alter these conditions. %he

outpul concuctance is defined by

~ _ |of o oo
%22 = |3V, (2.23)
a
and has the value
Gop = G (T - 1&) (2.24)
. We note that G02 is cqual to the conductance of = chapnel of con-
stent fractional wicth u(L); i.e. @ depends only on the drain-

22

gate polential and goes to zero when that potential equals WO.

The remaining elemenis in the equivalent cirecult are capacitive.

. LR
We define the ghert-circult input “charge-capacltance’ Cll i

%
put "charge-capacitance" 02? in terms of the voltage rate of change

!

nd oug-

o

*
of the charge § 1in transit between the source and the drain :

* / .
* al I = & 3 5] {
More preclsely, %a dqin/avg where 9, * the charge

placed on the gete. But for every elerent of input charge G2
an egual apount of charge goes into the space-charge region from
the chennel. Kence, dqin/iQ = -1, and @g. 2.25 is validg.
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M ¥
]
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<<

=

These guantitles may differ from the "real" short-circuit input

and output capacitances Cll and CPE’ vhich are defined by

Cqq = L [quadrature component of 1 {(z2.27)
11 7w g
g v _=0
a
11 . R .
C,, = = = [guadrature compcnent of 1] (2.28)
2z w v d
d vgﬁO

- wiere @ 1is the radiasn frequency snd v and i respectively denote
the a-c components of voltage and current. The capacitances denoted
by ©C are the real circuit parsmeters sizce they arc the values that
woltla be measured experimentally at the device terminals. The charge~
4 ,* PO Y 1
capacitances are use:ill. guartities, however, beczuse we shzll see
in Chapter VI that they do appear in the "real"” cquivalent rireuit.
* ¥

. . : et ,
1 is identical tc Cll’ and CEE is the fraction of

that appezrs beiween the gate and the drain. Since the method of

In fact, C
022
corputation implied by Eqs. 2.25 and 2.26 is significantly easier than
that implied by 2.27 and 2.28, and since the former approach is easier
to visuallze Dhysically, we shall continue the analysis by caleulating
C;l and CZ and discussing them in some detall.

For a wniformly doped chamnel, Q is simply proportionzl to the

chamnel area. Taus, sioce w(0) = u(L),



1(0)
o sAL{u(L) + [x) du

a(L)

G =

A streightfcrward calculation using 2.20 gives

. r .
.- poBAL 540 - JDE - a1 - /B)° (z.29)
2 a(3 - 2/31) - s(3 ~ 278) }
and application of Egqs. 2.24% and 2.26 vields
cly = R ) G T A A ) - A )
[3(/d + +8) - 2{a + A8 + 5))
(2.30)
i - (#r + 3 (L - J_) + 2(1 - )1 - ¥3) N
2e [3(/T + ¥8) - 2(d + VI + 5)‘“
I [ MR P
P3(vT + ¥3) - 2(a + V35 + s8)]

where we have defined

*
o ® Cp1(0,1)

= 3eh

2L

(2.32)
Thewe [ormulsge are fnvelld near s = d = G slnce we have neglected



the built-in potential.

IL is approprialbe, here, to discuss an error that 1s committed
by several authors [%). A planar junction of area § dx with =
depletion-region thickness (a - b) has a capacitance
¢ = {eadx)/{a - b). Thuc, we might bpc tempted to assert that the

input cepacitance of an FET should be

ﬂj_ﬁfm_c* (1 -43) + (1 ~ ¥8)
8 5 L-u 343 + 45 - 2(d + /ds + )

where dx was celculated from 2.20. This expressicn differs from
the previous expression 2.3C for the input charge-capacitance. 'The
misunderstanding is that by Integrating, we have taciily assumed that
the differentisl, parallel-plate capacitors are all cconnected in
parallel. This is not true. The capacitors do have one common
terminal (the gate), but the current flowing through the registance
of the channel results in the other terminsls having a ciTference of
potcﬁtial.*

in Fig. Z.4a we show the equivelent circuit whose element velues
are computed ir ZJgs. £.22, 2.24, 2.30, and 2.31. These elements, by
detinition, are short-circuit quantities, so that part of them may
appear between the gate and the draln. Actually, the geometry of the

*
TET suggests that 022 spould appesr entlrely between the gate and

*-
the drain, for both C

11 and C

*
e arise oaly from the field in the
L

* his stabement is true except when s = d. In this case we expect
the above formuls to be correct, and indeed, it is.
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Pig. 2.4, Small-signal equivalent circuits for the

step~junction FET: (a) Ceneral circult;
(b) Modified ecircult suggested by
arguments in the text.
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space-charge region., But all the field lines in the gpace-charge
reglon cmanate from the gate; i1i.c. none of these fleld lines exist
between the source end the drain. Therefore, no capacitance should
appesr between the source and the drain.*

This intuitive cconelusion 1s supported by two theoretical argu-
ments. First consider the case whnen s = & (V& = 0). Then the
charnel is of uniform width b = a(l - ¥8), and the input charge-

capacltance from Eg. Z.30 is

* >
Y11 7 £, 06
avs

- d)

- This is merely the capacitance of a reverse-biased, planar p-n
junetion of area LA with depletion regicn thickness (a+/8), and

is the result expected. But In our model, when 73 = 0, the source

and the drain are indistinguishable, so we must have equal capaci-

. *
tances between each ol these electrodes and the gate. If Cdg

represents the drain-gate charge-capacltance, then the source-gate

+ i * * * | .| r
charge-capacitance 1is ng == (Cll - cdg) and we have
* 3 % * ¥
(C1 - Cq.) = Cop or Ci1 = %4,

* Of course, whenever current flows between the source and she
drain, “here sre [1eld lines between these two terminals. These
field lines generate the drain-source interelectrode capacitance,
waich, sirnce it 1s an extrinsic parameter, is not significant in
this dilscussion.
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By Eq. 2.3i, when s = d the output charge-capacitance is

!.
|

*
NS
woIm
&k
[Nl

i_!
210%
[ ]

indicating Lhal Lhe actual equlvalent cireunit is that shown in 7ig.
2.4b. (Since the input resistance is infinite, there is no ambiguity
In the position of G?O.)

. g

Now consider the general casc. Wc observe from Egs. 2.30 and

2 » 31 that C

*
- ray be expressed as

0r,(8,0) = ¢ (8,8) + ) (a,8) (2.33)
this is an interesting result. An Instructive interpretation of this
relation may be octained by relerence to Fig. Z.5. n varts (a)
and (b) we schematically show two n-channel transistors with
bilases [(a) Vg = =B, Vg o= {a - s)wo >0, and

(b) Vg = -Gil, Vo= (s - d)W < 0. Interchanging s and ¢ does
not signify interchanging the gate and drain voltages: +the drein
voltege 1s given by (4 - s)wo. Interchanging & and d reverses
the orientation of the channel boundary; the channel EEEES is main-
tained.* From Eq. 2Z.33 we see immedilately that the short-circuit

input charge-capacitance 1s the samc in case (a) and in case (b).

*
Thus, C

11 is independent of the direction of current flow, but

% This is obvious since with g and & interchanged the gate-
source and the gate-drain potentials are interchanged.
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SOURCE -1 DRAIN
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SOURCE I— DRAIN
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F:l.g- 2.50 Pertinent to

©) (d-s)W,

the derivation of the equivalent

circuit of Fig. 2.4b, Shaded area denotes

space~charge

region.
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depends somehow upon the overall channel shape. On the other hand,

b
CEZ depends both upon the directlon of current flow and upon <he

‘ ¥
channel shape. Or, eculvalenztly, we nmay say that GZ depends only

o
.K_

upon the charrel shape 'nesr" the drain. These remarks and the

antisymmetry of Wigs. 2Z.2a and Z.5b suggest the interpretation of the

input anda output charge-capacitances shown in Fig. 2.52. This

particular interpretation satisfies BEq. 2.33 and also predicis correct

N

results under an interchange of s and d. The eguality of 022 and
Cd" follows at once from 7ig. 2.5¢, thereby indicating the general
g senerad

valldity cf the modified eguivalent circuit of Fig. 2.Lb.

"he desceription of the step Jjunction FET developed in this
- section ig only partially ccmplete, since we have not yet considered
the important pinch-off range of operation. Hcowever, ail the necessary
derivations have been performed because, as we now show, values beyond

pinch-cTf are obiained very simply from values telow pinch-off.

2.k, Txtension of Resmults Beyond Pinch-Off

As mentioned earlier, the results of Section 2.3 are valid for

potensials satisfying s < & < 1. In order to extend the formulse to

%  In normal operation - as in Flg. 2.%a ~ the channel is narrower
near the drain. Capacitance varies inmwersely with the width of
the space-charge region. “Yhereforoe, the capacltance associated
with the rart ol the channel near the drain is smaller than the
capacitance aggociated with the part of the channel near the
source. These arguments, coupled with the fact that
C22
the above asserticn.

(d,s) = sz(s,d) (which follows easily from 2.31} justify
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d > 1, we make {the one [urther assumption, in addition to the
seven listed in Section 2.2. This new assumption is fundamental ic
all the first-order theory to be ceveloped in this work:

(8) (a) At vpinch-o?f (4 = 1) =all the previously derived
results are valld.

(b) The effect of d for & > 1 may oe neglected.

o

Crude as this spproximation may seem, it does give an accuraie repre-
sentation of the operation of an TET. The drain is at potential &WO
with respect to the gate. If we temporarily assert that the channel
is pinched-off at any point whose potential is W, {or greater) with
recpect Lo the gate, then, in effect, (b)) implies that the finite

- voltage drop (d - l)wO appears across & zero length of space-charge
reglon. Actually, the chammel never really pinches-off, because then
no drain enrrent would be able to flow through the resulting space-
charge reglon. This physical fact Is allowed for mathematically by &
breakdown of the gradual aprroximation at points in the chsonel where
the potential with respect to the gate is near wo. Insteaa of
pinching off (u = 0), the channel merely becomes very narrow

(u= 0, but u>0), and the electric field is very high. But a
kigh electric field means that a large voltage drop ocecurs In a
relatively short distance, and the potential (& - l)wo appears
across & very small length of channel. The above-menticned laplica-
tion of assumrtion (b) is, therefore, not so farfetched as it seemed
st first glance. TPurthermore, we should ncte thet {b) tfollows

almest directly trom (a). For we seec Irom Egs. Z.24 and 2.31 that
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when 4 =1, 322 =0 and CZZ = 0: +the drain-current - drain-
veltage curves are horizontal and the incrementsl equivalent
clirecult contains nc drain-voltage dependent elcments. "hese
heuristic arguments are borne out empirically because the charac-
teristics of FET's are practically independent of drain volbage in

the pinch-cff range.

2.4.1, Drain Current

Applying assumption (8), we obtain the drain current beyond

pinch-off by substituting d = 1 drto Bg. 2.17:
€
I(s,d) =1 (2 - )71+ 2vs) d =1 (2.3h)

The normalized current cbtained from %®gs. 2.17 and 2.3% is plotted
as a funciion of 8 and & in Fig. 2.6. Because our model is
symmetrical, 1(s,3) = -T(d,s); +that is, *he surface of Fig. 2.6, if
extended, would be antisymmetric about the line s = d. The dashed
curves on the surface represent the draln current for constant

{(da - s) {i.e. constart Vd); along these curves the current
decreases as s inereases, until 2t s =1 the current is zero.
he s0lid curves represent the current for conmstant s (i.c. con-
starnt Vg). Tese curves, when drawa from a comnon origin, are the
normalized drain characteristics as showe in Fig. 2.7. The dashed
curve in Fig., 2.7 gives the current for d = 1. It separates the
pertode-like characteristics irto itwo regions: below pinch-off

(d < 1), where the current curves are rising, and beyond pinch-off
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(@ > 1), vhere the curves are Tlat and the currert is indevendent of

the drain voltage. (7tis latter region is sometimes referred to in

the literature as the "currens-saturation' region.)

2.4.2. &mall-Signal Equivalent Circuit

The first-order equivalenl circult beyond pinch-cif is similarly

obtained from the appropriste ecuations of Section 2.k,

g, = Gyl - ¥5) (2.35)
* ¥ 1+ 45 :
Cyq = Cp ————5 (2.36)

]
(1 + 2/5)"

1* ” 3
Cop = Upg =0 {2.37)

Tquations 2.35 and 2.36, along with the transfer charscteristics
T(s,1), Eg. 2.34, are drawn in Fig. 2.8 with each quantity normalized
to its value at & = 0. Figure 2.9 shows the equivalent circuilt
expressed DY Edgs. 2.35 - 2.37. It Ls loleresting to note that this
circuit containsg only those elements which, according to the charge-
control approach [6], are essential %o the operation of the device.

An crroy secmingly is appsrent in Bg. 2.36, for that equation

. . _K, _ . ..'x.
gives €, = (5/9)00

o

t s = 1, while if we substitute d =8 1in
2
*
417 and then let s = 1, we
¥ .)".
arrive at cll = (1/3)CO . Mathematically, this discrepancy arises

Ta. 2.30, the original Tormuls for C

because the polnt & =4 = 1 is a singularity of Tg. 2.30, and hence

we may realize different limits upon apprcachking this point from



Fig. 2.68. Plots of normalized I, &, and c;l V8. B
in the plnch-off ronge {4 > 1),

GATE DRAIN
o -0
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Pig. 2.9. Equivelent cireuit beyond pinch-off.



different directions. Physically, we expect unusual behavior because
when & = 4 the space-chnarge region cccupies all the chamnel
naterial. $Hince no free carriers remain Lo be incorporated in the
depletion region, a ITurther increase in s cannot add any rore spece-
charge to the channel, and the lnput capacitance must vanish Tor
s > 1. Bozh the mathematical and the physical viewpoints may be
betier comprenendea by reference to #ig. 2.10. There we show a
drawing ot the theoretical surface that represents the input charge-
. * -x o, * =l n 5 P )
capacitance Cll/C0 as a tunction of s and d. Although ncrmzl
device operation implies s < d, the range s » d 1s included in the
diagram for compieteness. Cur model is symmetrical, so that
.x. ] 'K. iy a = Y
: Cll(s,d) = Cll(d,s); i.e. the surface is symmetrical about the line
. * . . .

s =d. Ter s,d <1, Cll(s,d) is given by Eg. 2.30; for s <1,

* [‘X“ ha - 3 - ‘*‘ - - + -—
d = 1, Cll(s’d) = Cll(s’*)’ for s,d > 1, Cll(o,d) =0, The point

g8 =4 =1 iz a singulerity, and, as mentioned above, the value of

*

Cll st thkis point depends upon the dlrection of spproach. The dashed
*

curve in Fig. 2.10 represents the dlrection 8 =4, along whlch O

Y11
approaches the value (l/S)C: ; the curves in the directions d = 1
end 8 = 1 arpproach the value (2/9)02 3 curves in Intermediste
airections approach intermediate values. Tigure Z.11 shows several
cross sectlons of the surface of ¥ig. 2.2.0. The solid curves repre-
sent cuts by planes parallel to the d-axis, and ihe daghed curve 18 a

cuy le the dlreciion s = G2 (Vd = 0},
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Surface representing the input charge-capacitance,

Fig. 2.10.
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Fige 2.1. Cross sections of the surface of Flg. 2.10.

0 2 4 6 8
(Va=-Vg) or=v for-- - curve, (volts) —»=

¥ig. 2.12. Experimsntal curves asnalogous to those of Fig. 2.11.
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Most commercial FET'es do exhikit noticeable jumps in C;i when
the channel becomes completely pinched—off.* Of course, these jJjumps
will not be infinitely steep, but some units, notebly shose manulse-
tured by Motorola, do give exceptionally sharp drops. Experimental
curves analogous o the theoretical curves ol Fig. 2.11 are presented
in Flg. 2.12. (Dats zre from type MMT65, epitaxial-junction FET;
mesasuring setup is shown in Appendix 3.) The presence of a finite
bullt-in potenllal means thal Vg = Q douss nol correspond Lo v = O,

*
11 bear 8§ = & =0 ds not displayed. From

anc the steep slcpe in C
the abrupt érop in the Vd = ) curve we see that the pinch-off
wvoltage ig roughly 5 volie. ‘Yhe finlte value c¢f capacitance heyond

- pinch-of'® ('Vg >5v with V. = 0 and V, - vg > 5y with

Vg = -6.0v) 1s due to interelectrode and other spurious effects, and
since this capaeitance is esgsentizlly independent of bias, it may be
considered merely as stray capacitence. As sxpected, the singularity
at 5 =d =1 has been smoothed ocut. The ratio ol the drop in CIl
along the line Vg = -6.0v tc the drop along the line Vv, =0
theoretically should equal 0,67, but experimentally equals spproxi-

mately 0.589., The error may be attributed in part tc ftne smocthness

of the drop-off and the resulting ipaccurscies in computing she juumps.

* strictly speaking, measured lnpul capuacllaoces should be denoted

-x.
by € rather <han by Cll' In Chapter VI, however, these two

11
guantities are shown to be identical, so that for clarity, only

* .
the symbol 311 iz used here.
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The dottedé curve represents a cut parallel to the s-axls
(Cll VS . -Vg with Vy - Vg = 3.5v) and theoretically should be
identical to the corresponding cut parallel o the d-axis
*

o | -7 4 1 [ i =t E 3 B -
(Cll vs. V.-V, with 7y = 3.5v). 1he difference between the
Lwo curves arises Pecause the actusl il lacks the symmetyy assumed

in the model.

2.9. Conclusions

In this chapter we have given a rather complete, zlbeit terse

analysis of the step-junction FET. Although the rcoults for I and
x . C* . .

nd
11 a o nave nct peen

given before. For this rezson these quantities were discussed i

g, arc now standard, the solutions for C

detail, especially in their relation to the small-gignal equivalent
cireult of the "ET. A not-uncommeon pitfall iz the calculzation of the
input capacitance was mentioned, and some ol the singular properties
of Cil were discussed, along with experimental verification of the
predicted conclusions.

This chapter has provided the necessary background for the treat-
ment 0F ar arbitrerily doped [ET. Refore we begin this general
treatment, however, we shall, in the ncxt chapter, investigate the

validity of the assumptions used 1n the preceding derivations.
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CHAPTER III

VALIDITY CF THE ASSUMPT_CNS USED
IN THE
STEP-JUNCTTON ANALYSIS

Our primary burpose ir thls chepter ls to determine the useful-
ness and the liritations of the step-juncticn snalysis by an
examination of the assumptions and the approximations cf the previous
chapter. Despite the simplicity of the step-junction Tregtment, the
tneoretical results do agree with the experimentzl measurements cn
most unite tested (see also published data, e.g. in [71, [87, and
[9]) Nevertheless, some FET's that were tested in the prcocnt
~lavestigation differed qualitatively ic = Trom the results of
Chapter II. WNear gate pinch-off (where &, = ) the curve of
transconductance versus gate voltage theoretically should give a slope
that is mueh shallower than the small-bias slcpe; some units, however,
showed an zlmost uriform slope. Our secondary yurpose in this chapter
is to explsin this deviaticn.

The most fundamental hypothesis of the previous chapter was the
cnoice O & model Tor the FLT. In Section 3.1 we show the suitability
of the ideal model by comparing it with commercial structures. Tn
that section we also dispense guickly with four of the eight listed
assumptlions of Chaptexr II. The remulning four assuwptions are
treated in the subgequent sections. The procedure given in Section
3.2 shows how the bullt-1ln potential may be easily included in
previocus formulae; in Sections 3.32. and 3.1 we affirm that the

constant-mobility assumpticn and the gradusl approximation =sre
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reagonably well Justified in practice; by means of an approximate
analysls in Section 3.5, we conclude that the boundary on the gpace-

charge region may be congidered abrupt.

3.1. Deviations from Idealized (Geometry

Although some commercial FET's (e.g. Motorols units [10], [11])
closely approximate the geometry of our nodel, others (especially
diffused types) apparently differ significantly from this ideal. We
shall examine one typical case (three-terminal, single-diffused
Texas Tnelruments uwills; no bLype muber avalilalle) and prove Lhat whe
use of the idealized geometry is an excellent approXimation. Most
cther nen-ideal transistors can be treated in a similar manncr with a
similer conclusion.*

A crcss secticn of the device to be considered 1s shown in Fig.
3.1. The ratio A/L ~ 40, so that three-dimensional effects are
unimportant. The souwrce and drain contacts are nct negligible in
size, but have length L' ~ L. "This condition ralses doubts as to
the applicability of cur previous results and is therefore dlscussec

below.

¥ FFI's with concentric geometries (such as certain Crystalonics
units) are described by equations with Zunctional dependences
“derntinra’ to the dependences in the corresponding rlanar-geometry
equations. The exacs formulae for the concentric devices may be
obtained f{rom the planar formulae with the replacements
(L/a) - (l/Zn)ln(ra/rl) and (La) - n(rg - r%},
and r. are respectively the Inner and outer radli cf the
channe% {corresponding to x =C and x = .

in which
1
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Fig. 3.1. Croess section of practical FET with non-ideal geomeiry.
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For simplicity we consider the channel material o be a
anifermly aoped, nit-conductivily sericonducter. With nc bias on

the gate or drain, the Ideal model fredicts a source-drsin resistance

o]
o

1

We novw calculate the actual source-draia resistance R;& and show
fel

theat Rédsw Ryg
Since tne distances 1" are of the order cf ¢ Jew L', we may,

with no lcss in sceuracy, assume that " - ». Now, if C;d is the
2

capacltance between gfource and drain, then we nave []2],

-}}

I -
&

U~
o
2

assuming, for convenlence, that e = 1. IThe solution Lo the

cupaclitance problen has heen worked out In detail [13] with the result

-p} K. k' A
Cia T X[ ) (3.2)

where K is the complete ellipiic irtegral, and where

tanh ng N .
- 1 L dl
o zank Eiy + E;¥ ’ .
e A 23 aj

A useul approximation te Ec. 3.1 may be cobtained for I/a > 1,

sinase tacn
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k,ml%-ﬂﬂm 2 tanh (sL'/2a)
: 1 + tanh (aL'/Za)

andé T1h]

- [

=

=

¢
rals

K(k') ~ 1n ()-J-/K') ~1ln 2 4+ %

Although derived for L/a >> 1, +this approximation is within 1% even

; *
for L/a =2 [15]. The desired result is then

1iL
P . 3
de’”.A[a F 6'88} = Rys (3.2)

since L/a > 10 in practice.

As mentioned in the introduction, seversl of the listed
assunptlions of Chapter IT may be dismissed briefly. The hypothesis

of a step-junction doping profile will be removed in the next chapter.

* Egquation 3.2 also obteins 1if LT - @,
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In praectice, the direct gate current is several orders of ragnitude
*
less than the direct draln current, and the resistlvitles aud contact
fabrication are such thot the drain current is carried completely by
- £ - ** . - = - . -
majority carriers.. 'The empirical and heuristic justificatlon for
the assunption that exuvended the below-pinch-off formulac of Section

2.3 to voltages above pinch-off has zlready been given in Secticn 2.i.

The remaining assumptions are now examined in detail.

3,2, The Built-In Potential

By means o® a sinple redefinition of @ and 4, the built-in
potential may be incorporated into the previous formuiae, anc the
results effectively remain unchanged. We sghall treat this discussion
on 4 general basis since the results are directly applicable to all
dopirg profiles.

First, it is necessary to distinguish between applied cor
"external” potentials and total or "internel" poientials. The latter
quartities include the built-in potential. TUnicess otherwise
specitied, henceforward the symbol V (with various subscripse)
gignifies an coxternal voltage, and W significs the magnitude of an
internal voltage. We define the bullt-in potentlal to e Vc, and
the applied gate voltage necessary for pinch-off to be vp. Thus,

the magnitude of the internal pinch-off vcltage is

* The dala shect of any manufacturer may be consulsed for proof of
this fact.

x% Qualitative discussion on this point ic given in [8].



W, = |V + V| (3.3)
the magnitude of the internal gste voltage is

Wy lv, - vgl (3.1}

and the magnltade of {he irternal drsin potential is simply

Wy o= vyl (3.5)
because Vﬁ is measired from drain tc source. Tor reverse bizs on
the gate-channel Junction, Vc and Vg add directly, regardless of
the type of channel. fhe presence of a finite built-in potential
periits the zpplication of Vg of sign opposite to that of Vc.
These forward-blas values of Vg must be small enough to ensure that
the gate current remaing negligible.

All our theoreticzl expressions are writien in temms of the
internal guantitites s apd 4. Dpetalled transformation into
expressiong involving external voltsges 1s unnecessary, 1ror we

obscrve Lhat

W
s WES (3.6)
o]
Vé 1
— + "."1’
v+ T % v
P eV p ) E



W 4 b w’g
d = 5 (3.7)
wo
v [ 1 1
— c +. 'V V
= =7 n H T T - ""-—-—-—-.‘ - .
Vo Vp \ﬁc + (p g oot jp d

The above equations include the built-in potertial and are xore
general than Egs. 2.12 and 2.13. Therefore, Eqs. 3.6 and 3.7 replace
these earlier definitions ¢f & and G&. Because s, for example,
is linearly rciated to the applied voltage Vé, sny curve plotted

as a Tunetion of s will have the sare shape 1T it is plotted as a
function cf Vg' In order te compsre Theory and experiment we simply
add Vc Lo Vg, and then normalize this sum with respect =c

(v, + V,) toobtain s. Excess gate current will flow if Vg = Vs
go that experimental points will only lle within gsome fraction of the
thecretical range 0O < 8 = 1, &mall errcrs in Vc are critical
when the slope of the quartity of iLotercst is steep near s =0, as,
for example, in the case of Cil(s,l). Remarks simlilar to those given

sbove apply to the lnternal gale-draln pobenuial  d.

JFe3« Non-Constant Mobility

The Lypothesis of constant carrier mcbility o will hreak down
il the charnel tield is higher than the so-called critical field
E, [1€]. BReyond this field the mobility first varies as T
and then, 1r the veloclty-limited range, varies as E—l. Lacey and
Ross [8] have computed I and g, for a step-junctlon FET under the

agsumption that over the whole chanmel length the electric field is

greater than EC, but less than the limiting-velocity field. That is,
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2

they assume that u = u_ (EC/E)*/E, in vhich u_ Zs the low-Tield

mebility. In the pinch-off range their results are

E v1/2 1/2
e Bz - 45)3 - 3 - By (3.8a)
" el T - > '
1/2 1/2
oo |3 Yo fi:__s_ (3.8b)
S AN B PRy ‘

15 being the zerc-bias drain current for the constant mobility case.
The anslysis leading to these equations is valid only 1f Wb/L >> Ec,
Z.e, 1T the sverage channel Tield 1s cconsiderably greater then
Ceriticsl. As expected, the zero-blas current and transconductance
are reduced because of the lowered mobility. Aside from the normal-
ization, Eq. 3.8a does not d2+Per appreciably from the constant-
mebility transfer characteristics 2.34; the transconductance, glven
by Eq. 3.8b, does differ, however, by having a siightly concave-
downward shape near s = 1.

The above results may be applicable to some experimental FET's
and, perhaps, 1o a few commercial models, but the parameters of most
comrercial ¥ET's preclude the possivility of non-constant mobility
ﬁeing gignificant at ncrmal operating temperatures. For example,
Crystalonics tyve (610 and Motorola type MMT64 both have n~type
silicor. channels, for which the critical field is 2500v/cm [16].
Jowever, the aversge channel field for each of these units is roughly

500v/cm, so that xgs. 3.6 do not apply.
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3.4, yzlidity of the Cradual Approximation

The gradual approximation, which formed the basis ol our

derivations, is described by

lEy% << lExl’ 0 £y <o (3.9)
ia_xy' << [%], ney<e (3.10)

in which p = Po and = = a for the step-junction device under
conslderation. We now show, with actual calculations, that even under
worst-case conditions ihese loegunlities are satisfied for roughly

" 90% of the channel length.

First consider %q. 3.9. When z finite drain current flows we
know that the chammel becomesn progressively narrower ir the dircction
of increasing x. That is, the channel boundary b{x) has a negative
slope everyvwhere. Silnee the channel boundaz»y delirmits the current
#low, we must have Ey A0 =t y =, so that, by continuity,

Ey £C for y rear b. But Ey =0 at y =0, and hence the
maximum value cf Ey within the charnel occurs at y =b. Furthor-
more, the slope of the channel boundary, dh/dx, gives the direction
of the Iield at the boundary. These arguments ensble us to assers

that Iinecuality 3.9 will be fulfilled if

_Z - l%%] << 1 (3.9a}
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ie fulfilled. From Fg. 2.20 we get

|98 a(3 ~ 24d) - s(3 - 2v8)

2
ax 6(r/a) u(l - u)
Therefore, tc satlisty 5.9 we need
(3 - 244) - - 24m
u(i ~ u) > a(3 - 2/) - 5(3 - 2/5) = h {3.12)

The right-henc side of' this ineguality, &, is smsll because the
auwerator is at most unity, and L/a Is much greater tnan one.

The arguments for Bg. 3.10 rus similarly. Inside the space-
charge region 5E¥/5X #C. On the boundary vy = a, however,
BEX/BX = 0, 8o that, as with 3.9, the worst vioclaticn of 3.10 ocecurs

at Yy = D. lBguation 2.0 ylelds aEX/dX in the space-charge reglon:

We evaluate dzu/dx& from 3,11 to get

w31 - u):2 oo | (3 - 24@) - (3 - 2/5)| _ L2 (3.13)
l2a - 1] 5(L/a)

as the condition necessary to satisiy lnequality 2.10.

Inequalities 3.1%Z ané 3.173 are both violeted near u =1 an

o7

near u = 0. The failure of the gradual approximation near u = 41

does not intrcduce any error into the analysis because of the
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relatively large channel conductance in thalt region. The error near
u =0 7represenvs Llhe sigolificant breakdown of tie gradual spproxima-
tion., lor definiteness, we now consider '™> 1" 4o mesn "> W,"
where H 1is some number greater than one., Then (disregardirg the
violation rear u = 1), +the values of u for which the gradual

approximation holds are glven by the narrower cf the two pairs of

bounds

:}_5 -% L - gu=<l (3.1ka)
and
(h21{)1/3 [L - 33 (hEH)'?:/3 } % (BEH)] Ssu<l {3.1k4Db)

The lower bound in 3.ika is an exact soluticn of 3.1Z, while the
lower bound 1o 3.M4L Ls wo spproximate solublon of 3,13 for

h2H << 1. The relastive magritudes of h and I determine whlch
condition is sﬁfonger.

We now consider the werst-case condition, d - i, and by means

of Tg. £.20 for x/L convert Zg¢s. 3.14% into Inequelities for =x/I:

1 (-1 -_Eh_H)Z(E + YL - hEd)

= (3.15a)
(1 - )71 + 28)
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) (hEH)2/3[3 - Z(th)l{gj

(3.15b)
1 - 8{3 - 278)

The maximun values of x/IL such that H = 10 (i.e. such that the
right-hand and left-nand sides of each of the gradual-spproximatiorn
inequalities 3.9 and 3.10 differ by at least an order of magnitude)

are given for various values of & and L/a in thne Following table:

g L/a (X/L)max
G 10 0.89 )
20 0.98 '
Eg. 3.15%a3
1/k 10 0.95
2 C.98
1/2 10 0.97 Bg. 3.1%0
20 0.99

wWe see from this table that the graduszl approximstion is velic for at
least 8%% of the channel length, and is usually velid over a much
wider range. The maximum valuves of x/T for I/a =10 and for
various values of s &and d are iillustreted on the channel curves
drawn in ¥ig. 2.3.

Furthermore, with non-uniform channel éoping, as 1s present, for
example, In single- or double-diffused struetures, the gradual
aprroximation will be more accurate than with unlform doping, because
in vhe former case the channel ccnductivity is (in general) larger at
¥y =0 +than at ¥y = b, ana hence the current Ilow tends to he more

one~dimenzional.
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3.5. Kon-Abrupt Boundary on the Space-Charge Region

The oniy assumption remaining from Chapter IT is that of the
abrupt boundary Leitween the space-charge region and the peutral
channel. Actually, the transition from neutrality to almost complete
free carrier depletion occurs in a lenglh up the uvrder ol the Debye
length 13 of the channel material [17]. Thus, we expect the abrupt-
houndary assumption to break down when the channel width a 1s com-

parable with LD. Tke ratic of these Lwo gquantities 1e

= 1 KT (k1/q) W
D __ ,/E - S (3.16)
a & Vg

poaa/e W

_where W, = kT/q, k is Boltzmapm's constant, T 1s the absolute
temperature, and g 1s the electronlc charge.* Tor FET's with
small pinch-off voltages this ratio may he large enough to necessitate
the irtroduction of sigrificant corrsctlon terms in the previous for-
malee. We shall attempt to find a second-order correction to the
first-order theory. $ince the problem involves second-order effects,
vwe shall Teel Jjustified iz meking seversal broad simplifying assumptions
in the following analysis.

The methcd we shall adopt is to assume that some mobile carriers
remain on the depletion-region side of the first-order sharp boundary
of the channel. We consider @& > 1, and we divide zhe channel into

two regions, O <X < Ll and I, <x £ L. In the first region
e

%  he last equality in Eg. 3.16 is valld only for step-Junction
FeT's that have very high gate conductivities, i.e. only when
W_ = aZ/ZE
o~ Po '



v{x,0)] < W, S0 that © = O and the conduction s due mostly to
carricre la the neutral ckhannel O = y < b, but partly to carriers
within b <y < aj; +the second regiom has W('x,(})k > wc’ znd hence
there ig 10 neuiral channel, the conduction belng entirely cue to he
small number of free cerriers in the (pertial) depletiom region
0 <y <«<a. We sclve each region for the current and then eliminate
Ll from the two resulting eguations. The analysis predicts normaillzed
transconductances that are slightly larger than the firgt-order
values for the same s. The amount of the correction increases with
the ratio Wi/wo. When compared wlth experimental resulis, we find
that the theory provides the proper qualitative corrections in . to
account for the errors in the Iirst-order theory, but that the
magnitude of the correcticons is somevhat large.

We pegin the analysis by assuming that the previously derived
expression 2.9 for the chamnel boundary b{x) is valid. Now, hovever,

instead of assuming tnat the mobile-charge density Is {in magnitude)

*
we assure the distribution

* In this secticn we shall assume that the bullt-in potential is
included in the potentlals dencted by V.



Ipml = (3.27)
poexpl-|v(x,y) - V(=) |/w ], b <y =<a

The last expression represents & Boitzmann fallctf of free carriers
within the depletion region ard is the second-order correciion to
the firgt-order sbrunt falleff. gee pig. 3.2 for a sketeh of the
density profile 3.17.

We shall consider operation beyond pinch-cff (d = 1) because
the non~abruptness of the channel boundary has the greatest effect in
thet range. The condition 4 > 1 means that some interval of the
channel material, say Ll < x <L, will have, in the y =0 ©plane,
a potential with respect to the gate greater than Wb.' Ir this
irterval, tihen, © =0, and space charge is present over the entire
width ©C = y = 4. Furthemmore, lhe gale potential IVé] = WO, while
previously resulting in T =0, now permits a finite drain current
+to flow. {The situation will be illustrated in ¥ig. 3.2.) ‘'he two-
dimensionsl dengity of free carriers in a differcntial element of
channel material in the interval 0 =x = Ly is obtailned by
integrating Eq., 3.17 fram y =0 to y = a. The resistance dR of
this element is then {A dX}fu divided by this integral, and the
current is

o a
dV x b 1 -y -y b T .
T = 1A —g}—{—lLf o, 4 .%.f o, exp{-|V(x,7)-V(x,b) [/w.} ay
8] b
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The first integral in the square brackets is the first-order contribu-
—ion; the second 1s the additional term that resulis from the mublle
carriers ir the derletion region. By employing Ea. 2.8 for ¥(x,¥y)

we obtaln

avy 8 WO ¥ o
I =, 3% |¥ +-f-exy[— ﬁ_(§ -~ u)“} ay
/ 4
b
~ dv Vi .l -~ u \
oL =z (a4 3 ~ err(-@ﬂ—) (3.18)
) *
whers we have defined
o Zewt WL
goa WO

gnd where

ers X =

\ﬁ
v
t
o+
DS
ot
(2

2l

is the standard definition of the error function. Using Eq. 2.J4
for Vv{(x), we may integrate Lg. 3.18 over the range 0 = x < Ly,

0 =V s wo(l - 8) to get

* Cf. footnote page H7.
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YL
(L - ¥8)°(1 + 2v/3) + :gf ¢5 Jf 2t erf t ds (3.20)
VE/@

o
I-’L_il £

where IO is the zero-bias current for the first-order abruot-

boundary case and is slightly smaller than the rnew zero-biss currens

Ea
. SYm ]
I 5 1 -} —32-— ¢

4 2% erf < dt

o

The integral appearing in 3.20 may be solved,

X <3

f 2t er? 4t = (x‘: - -,J-;)Prf x4 A xe (3.21)
[

o Y

but we shall retain the unin<egreted expression for convenience.

We now cdeternine znother expression relating I  and Ll, Dy
congigering the space-charge region defined by Ll <x=%L. In = one-
dimensional treatment ol the spacc-charge region the maximam polential
that can appear across the width = is W, = poaz/ZE. Bus at y = 0,
fcr every X > Ll the potentlal with respect to the gate is greater
than WO. Ir. order <o maintain a one~dimensional problen while stlill
utlilizing ocur simple model, we shell assume that the y-dependence of
the potential in the spuce-charge region is unchanged, but that Py
is replaced by the x-depondent density p*. thus, for I, < x = L

1

the potential cbeys

* ) -
vix,y) = V, p (x) (a® - ¥9)

al S
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In the interior of the channel in the first-order theory we always
head IV - ‘v'i_] <l W ant b > C, 80 that no gquantity anaicgous to

5 wWse needed. The present second-order treatment necessitates

the consideration of two-dimersionsl cffects, and p* is irtroduced
o acceount for thesce offects. Along the plane y = ¢ (which, in the
intervsl Ll < x <L, corresponds to the channel bourdary y =b 1In
tne interval © < x < L,) the potential is

"(x)a”
7(x,0) = v, + &2
This ecustion is the analog of Wg. 2.9 for the potentisl in the
neutral channel. We note that V{L,,0) = Vg and that
v(L,0) = V,, so thst 0" (L) = p, aad p (L) = p (V, - V)i =
It is the x-directed electric field resulting from V(x,0) that
enters into *hc current-flow equation.

As 1In the treatment fur O s x = Ll’ we 5LL1L assume a Bollzmamnn
fallofi of the free-carrier density in the y-direction, but ncw this
falloff is Zrom y = O orather than from y = b. Alzo, as we ilrcrease
x Ffrom L., along the plane y =0 say, we expect the free-carrier
density to decrease becausc we are traveling avay from the neutral
channel. Our final assumptlon is that the free-carrier density
experiences a Boltzmann falloff in the x-direction lor x > Ll. Thus,

in the interval 11 < X = I we nave

lo| = o expl-1v(x,0) - V{Ly,C)|/u ] expi-[V(x,y) - v(x,0) /%, ]

(3.22)
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The complete mobile-carrier density is depicted in Fig. 3.4. Tor

0= x % ]_1, |p I i1s given by #=q. 3.17; for L

<zsL, 1t 1s
NI

1
given py Eg. 3.22. In the first-order theory Li = L, and {pm]

is a sharp-cornered, wedge-shaped surface bounded by the surface

v o- b(x).

Some of the sbove hypotheses may seer unrcasconztle, but, as
mentioned at the beginning of this secticn, we are belng gulded by the
fact that o goal 18 werely = corrvection to the slwost-satisfactory
first-order theory. turther, although the hypotneses themxselives nay
gseem unreascnakle, the resulting mobile-carrier distribution pictured
in Fig. 3.2 is gulte plsusible.

Combining the preceding remarks and eguatioans for the reglion
I <% <L, we cbtain the drain current in ihce follewlng straight-

forward steps:

avix,0)
I = i T fipm] dy
]
2 * 27 ¢ * 2
a% ag") (0" - py)u” |7 I:J _
B VTS )po exp 2w exP[Edﬂ‘ ay
t / k
&
_K.
o (0" = p,) ¥
= I-h‘-‘lAWD¢ _% expi- - 5 o’ | /= exrd % g— %}%
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I = 3T, —— lav"(a) - ’.“.K”(l){exp(i-‘l (3.2h)
Trn Xg. 2.24% we have written

_ I et (Jx/3)

nx)
2 (/¢)

"he Function ﬂ(x) depends parametrically on ﬁ. Ia particular,
M1—+C as 3 - o,
from Eags. 3.20 ana 3.24% to get
=1, (1 - J§)2(1+ 245) +—j—§—[¢3f 2t erf t dt +
Vs /¢

We now eliminate Ll

f ]
. S{dﬂd(d) _ nz(l)]exp(éi]> (3.23a)
1 .
|

The [lrst term 1n the curved brackets 1s the Tlrst-order currend; the
remaining terms are small correction factors.

Egquation 3.2%a is valid only for 8 <= 1l. TFor s >1 the
extension is clear: Hquation 3.18 gives no contribution, and we
merely adjust 2.2k oy integrating 2.23 from x = 0, p*/go =35 to

x = Ly, p*/po =d. This gives
2 2 1 '
T = 3L,1a17(a) - o1 (s)]exp| = {3.25b)
¢

Bearing in mind that d is & function of Vé, we obtain the
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transconductance by differentiating Eq. 3.25 with respect to VE:

( = — (a -
C‘ro {1 - '/S) + 1/ST1(S} - 1{d) expl|- —\-tl-?i) s =1

(3.26a)

H-1(d) expli Lg—lmil ; 8 >1

¢2
(3.26b)

In silicon the built-in potential Vé is of the order of 0.5v.
Since 'W'O > Vc and sinee L«.‘t s D3.025v  at room temperaturc, it
suffices to consider $ < 0.2, Then 1(x) ~ (Va/2)(#//%) for
X > 0.25, and if we restrict our discussion tc vslues Vd > 1.2 WO,
Egz. 3.25 and 3.26 may be simplified so

[
4

. 2 a
IwI (- JE)Z(l + 2¥8) + 3 (l A- )n(l) - (s - gz)fgﬂ(s) -

Z
.2
L e S e st (3.272)
7 7
I~ 3T, #7 1(s) exp |- “(;ﬁ;%‘l‘)‘ ,  s>1 (3.275)

os]
A
[

¢, [(l - =) + ﬁn(s)} ) (3.28a)

Sm Rﬁ<

3

¢ e) oo [ (—-—Z—QJ , s> 1 (3.260)
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Since T(x) =0 when @ = G, it is clear from the last set of
eguations that I and g approach thelr first-order values as 3
becomes small., Flgure 3.3 shows normalized g, VETsus s Tor
several values of ¢. Equation 3.27 is not plotted becauge i1 does
not differ appreciably [from the Tirst-order HEg. 2.34%. The sharp
corner in gm et B8 =1 arises because cf the approximations used;
in practice we expect this corner to be smcothed out. We see that
the general shape of g, tor $ >0 is eimiler to whe $ =0
shape, but that the corrected values sre everyvwnere grester than the
first-order values. In particular, we note “hat the correction <o
ihe g, curve, once the sharp corner is remcved, is in the proper
direction to account for the experimental discrepancies mentioned
earlier,

In crder to correlate experimental data with the theory wo must
calculate @. An exverimental plot of I/gm Vs, Vg, as described
in Section 5.7, preovides the meaas for actermining the externel
pinch-off voltage V?. The bullt-in potential may be determined
from capacitance measurements: a plot of (l/cll)2 Vs, Vg with
Vd = 0 dis linear and yields VC ae on intcrcept. The values for

the alloy-junetion unit Crystalonics C610 (#2) are

<}
It

9.33v

<}
i?

0.55v
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Flge 3.3, Normalized transconductance versus normalized

gate voltage. 7he parameter @ providee o
measure of the importance of the noneabrupt
space-charge-region boundary; @ = 0 corresponds
to an abrupt boundary.
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. _ \ o
Thus, Wy o= ULk Vp = 9.068v, and at N0°C we have

c

Curves of g for ¢ =0 and ¢ = 0.031 are shown with the
experimentnl veiues im Mg. 3.4e. A1l quantitiss nave been normal-

Zzed o their values st & = (.2) because g {.25) r;% g, (0) + g (1
. s H ard

and thus cxperimental errors terd to be averaged out. Wwith s
rounding cf tne corncer on the ¥ = 0.051 curve, the new theory
agrees well with the dais.

The theory was also applied to another unit, with less
successful resulis. For this transistor - Motorols type MM764 (43),

epltaxial Junction - ihe peraneters are

T\r = 2- Thv

2,52 x 107 %

ey o
¢ = e (8 = 0.121

e factor of 2 15 present under the square root sigh because the
gate and ckannecl dopings are egqual in this uwni- [I17, and hence

Z, . .
W= 2(953 /2e). (Ct. footnote puge 57.) Since ¢ ig larger in
this example, we expect greater deviatioans from the lirst-order
<heory. Yet the plote Tig. 3.4b show good agrecment with that

Lrheory.
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Fige 3ok Correlation between theoretical and experimental

values of + The dashed curves are based on the
theory developed for non-abrupt space-charge-region
boundery; the solld curves are based on the abrupte
boundary theory.
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Tme failure of the new thecry in fitting the data of Fig. 3.4b,
and the success of the old theory in fitiing this and most other
experimental results tend to indlicate thet the firsst-order theory is
adequate for practlcal purposes, and that possibly vhe fit in
Fig. 3.z is merely fortuitous, the deviation in g being caused
by other phenomena. The defects in the new theory may perhaps be
traced to the severity of the assurptions employed. But if the
assumpuvions were t00 acute, then their effeci should be less than
that calculated here¢, and herce the space-charge-region boundary nay

be considered abrupt.

3.6. Conclusions

The general ccncluasion that may be drawn from the discussions
in this chapter is that the simple, first-order snalysis performed
in Chapter II is satisfectory. This ccnclusion is supported by both
theoretical and empirical evidepce. The few experimental deviations
In g, ave sms=ll enough in quentity and in masgnltude to be
abtributed - ic the 1ighl of e work dooe La thls chapter - o
effects lying outside our model and 1ts related assumptions. Further,
the assumptions used in the analysis of +the step-juncition FET will be
at least as accurate wher appiled to other practical nrofiles bhecause,
as mertioned in Sectlon 3.4, these latier dopings In general have
nigher conductivity at y =0 than at ¥y = k. This results in

more current flowing in the y = ¢ plane, hence imprcves the
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accuracy of the gradual approximation and reduces the ilmporitznce ol
twhe non-abrupt boundary on the space-charge region and of the
deviaticns from ldealized geometry. Thus, we nay nov generalize
the analysis of the gtep-junction profile to arbitrary profiles =nd

have confldence 1o the zocuraey of bhe resulls.
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CHAPTER IV

ANALYSTS OF AN ARBITRARILY DOFREL
FILLD-BFFECT TRANSISTOR

In this chapter we shall use the same model for the FET ag in
Chapter IX, but we ncw generalize the problem to »elste to an
srbllrary doplng density p(y). '19us, except tor the essumptions on
the doping and conductivity (and orn the built-in potential}, all the
assumptions from Section 2.2 will e carricd over. I particular,
the gradual approximation and the sgoumpiion uscd to extend the
results for drain-gate voltages below pinch-off (d = 1) +o voltages
above pinch-off (d >1) are Zundemental to the fcllowing analysis.

Section 4.1 contains an interesting derivation of approximate ¥FET
characteristics. We show in Section L.3 that these characteristics
correspona e an important type of doping sroflle, and hence the
procedure used in Section L.l is of some significance. The gencrszl
treatment, analogous in approasch to that of Chapter II, is presented
in gection 4.zZ. lhe finsl results for the static and small-signal
parameters are quite simple and ir many cases are less complicated
vhen expressed in terms of an arbitrary doping profile than wher
expreeeed in terme of a particular prefilc. Turther, the general
equations permit broad inferences to be made about the similarity of
the properties of all FET's. Two useful, i1llustrative spplications of

the general treatment are glver ir Section k4. 3.
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4.1, A Bimple, Apsroximate Derivation of FET Characteristics [18]

In the following derivation we shall use the charge-control
spproach [67, [197] to show, without specifying the detailed nature
of {tne doping profile, that beyond pinch-off the drelin current and
the internzl gete voltage are related approximstely By a sguare law.

The transit time «+

+ is defined as the average time required

for a carrier to travel from the source to tne drain. Alternatively,
Te iz the time requlred for the charge in Lransit @ to rflow out of
the draizn. Bus charge is Flowling out of the drain at the rate of I

coulombs per second. Thus,

Hl&>

, or I =2 (4.1)

T
t T,

where, for the purposes of this derivation, we eonsider ¢ (as well
as I) %o be a positive quantity. This eguation is valid only i @
is approximately ccnstant during the transit of a carrier from the
source to the drain, that is, if the transit time is much less than
the time vequired for the redistribution of charges cGuring a change
in applied potential. Thne redistributicn time is of the order of the
reciprocal of tThe angular frequency o of the applied potentizl, and
hence the following theory is applicable for frequencies such that

oy << l/Tt’ the Tundsmental charge-contrcl relation .1, along with
two simplitfying assumptions, forms the basis of the following

derivation.



75

The basic assumptlon that we shall employ in this section is
that the electric field in the channel is uniform, anc hence ecual
to W./L. Then the drift velocity is constent at |W./L, and the
transit time is Ty = “B/HHd. We bresk up § 1inso tWo components,
QO und Qg’ such that 9 = QD - Qg. The flrst component, Qb’ Ls
the charge that would exist in the sbsence of biases (independent of
bias, but dependent on the doping profile*). The other component
ie the charge induced by the gate voltage. In genewsl, Qg is
positive, but it may be negative JTor forward-biased instlated-gate

FEP's. We may express thls charge in terme of the internal potentials

by means of the relation

whers (Hé + wa/z) is the average gate-chammel potential {since the
field is constant), and where Cg represents a capacitance, which,
urder certain conditions, may be ideniified as the total gate
capacitance. As a Tirst approximation Cg mey be considered constant,
independent of the blases. Comblnaticn ol these resulis glves the

drain current as

HQ,, W+ /2
I =l -2 2w (he2)
2 3
1, Ul U
* In terme of the channel conductance GO, QO may oe written as

2
Qg = GL/ ue
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The cutput cconductance is

. ) ol |.,LQ0 N 'Iwg + W 4
ez |, | T2\ T (
awd 4 QO/Cg

This guantity gocs to zero when wg + Wd = QD/Cg’ and so, by
anaiogy with the results of Chapter II, we identify the pinch-off

voltage as
W, = %/Cg (L.3)

In terms of the normalized voltages & = wg/w and d - (W_+ W )f(-l 3
o £ df o

Eq. 4.2 becomes

¥ (i .Lka)

o
A
f...

a &

bQ, 1 o
T o= © (l - - S;}(d - s), 8 =
L Cs

The drain current at, and, by extensicn, beyond vpinch-off is obvtailned
by substituting 4 = 1 in this expression. Thus,
B HQW

I =
L-

N

ol

(r -8)7, d > 1 (4.4b)

Plots of <hese drzin characteristics will be similar to the step-
Jurection charagteristice Fig. 2.73; only the spacing beltween curves
will be different. DBeyond pinch-off the transfer characteristics,
Eg. 4.4b, are especially close to the corresponding step-junction

curve {see Wig. L.?). Tn Section UL.3 we shall find a particular
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doping profile that yields the current-voltage dependence glven
by Egs. W.h,

Tne pinch-off voltage WO defined by Eq. 4.3 18 rot really a
constant because Cg in general depends on both wg and w&. Teyond

Pinch-of't, however, Cg iz esgentially indevendent of wa, sc that

-

in BEqg. 4.4b W, is dependent,* vhough only weakly sc, upon W
Thus, the fact that Cg is a function of <he diases, and the
avsumrtion that the chamnel ield ls unlform result 1n the square-law
dependence h.Ub belng only an approximation. Further discussion on
the power-law nature of FET characteristies, including a theoretical
explanation for the similarity between the sguare-law cheracteristics

and the step-junction characteristles, is giver in Scction 5.7.
’

4,2, Qeneral Treatment

We are now weady to treat an arbitrarily doped FE1'. We shall
use the same assumptions and the same approach zs in Chapter II, cxugpt
now we work with an unspecified impurity proZile p(y). Firsi, we
solve Poisson?s equation in the space-charge region to chiain a
rclation between the channel gotential and the chamnel widtn. Then
we use this relation implicitly to determine the drain current I
and the charge in translt ¢ as funetions of the bilases. The various
cerivatives of I and (¢ specify the small-signal equivalent cir-

cult, and thelr ratio /I defines the transit time. Apart from

* Note that this bias dependence of WO also appears ir the
denominator of 3.
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constant multiplicative factors, all of the device parameters will
be expressed entirely in terms of an integral of the doping profile.

Figure 2,1 gives the device nodel. Equations 2.4, 2.6, and 2.7
ray be carried over directly from Section 2.3; we rewrile them here
for convenieuce:

Polsson's equation combined with gradusl approximation:

5 v(zg,y) - oly) b(x) s ¥y = e(x) (k.5)

Iy €

Boundery condltlions:

EXL T 2y - o) (3.6)

vize(x)] = v, (k. 7)

4 first lntegration of 4.5, with boundary condition 4.6 gives

.
.-z p(yy) (4.8)

b(x)
Tae boundery of the depletion region iz the gate materlal also has

Ey = U, 850 that

c{x)
b(x)
This equation merely states that in any plane perpendicular to the

Junctlon the space charge wlithin the chennel material is egusl in
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magritude and opposite in sign o0 the spece charge within the gate.

rateriai. When .8 is integrated subject to 4.7 we get

c(x)r v,
1 R
v(x,y} = Ve t T f f p(yl) dy, | dy, (4.10)
| ¥ b(x}

At the channel boundary we may use kg. +4.9 and integrate 4.10 by
perts to chtain

e(x)

(
o 1 ]
W) = vy -3 [ ve) (v.11)
b(x)
as the pctentisl within the channel corresponding to the sten-junction
*

expression 2.%. At present, Fg. 4.11 is in terms of applied
voltages. ‘o convert to internal voltages we merely add Va to Vv
and take the magnitude of each side of the resulting equation:

w(gb) = |V, + YV, - yply) dy (k.22)

At X =0, we have D =b_,, ¢ =c¢ , and W =0, so thst

el =12 f o) @) (4.13)

D
5]

*  REouation 2.9 cannoi be deduced directly from %.11 because a
limiting process is involved. dhus, although we let foo in the
doping prcfile given by Eq. 2.1, and although in that case
c-a, we see from 4.9 that pB{c - a) is finite and equals
(& ~ ). To dbtain Fq. k.11 we must substitute Eg. 2.1 for
o{y) and then take limits.
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Sirce W(x,b) = W(C,b) = Wg, Ba. 4.32 may ve written in the form

-

c(x)

~.

|
%

ol

W(x,d) = vp(y) ay

- w ‘h'cl‘l'l'\
| - (. 14)
(x) |

o

This expression, together wilh the relamllon boetween bt amnd ¢ glven
by Eg. 4.9, is the desired Function which gives the channel pctential
in terms of the charnel width. 'The magnitude of the votentlial across
the gate-channel jimetior is (W + wg). When the channel is pirched-
off, B =0, and this potential is egual to the pinch-off voltage

'WO. Therefore, from Eq. <.1b

miH

f voly) dy (5.15)
0]

where e is defined as the maximum penetration of ~he space~charge

region into the gate material and is obtained from Eq. 4.9:

I

f ply) dy = O (k.9a)

Before proceeding with the snalysis of the channel, we introducc
three new normalized paraweters. Corresponding to wu(x) = b(x)/a,

we defirne

w(x) = c(x) {h.16)

(and L cm/a). We alsc normalize the y-ccordinate with respecs:
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1
i
%

(h.27)

To avold confusion, we would like to usce the same sywbol, a9, To
denote the doping profile &s a Tunction of =z. Therefore, We make

the replacement

p(¥) = o) = o(z) (k.18)

Note that p(l) =0 and p{u)p{w) =C since the junetion at =z =1
scparates two oppositely doped materisls. Finally, we define § as

the magnitude of the normalized channel potential measured with

respect to the gate:

Wieb(x;] W, wWix,b(x)]
() = e - & LT g (.13

W JC wo

Many of the following resulbs sppear in a convenlent, symmetrical
form because 0§ is nmeasured with respecs to the gate. The oymmetry
arises, in part, from the fact that the source contact has § = s,
and the drain contact has § = (wd/'wo +8) =d, and thus s and 4
have equal significsnce, esch heing the "petential' at one of +he
output electrodes. In terms of these new cuartities, the equations

for the various internal potentials become
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Lu (%.20)

W

s
[ zp{z) dz
)

s = o (4,21)
m
J[- zp(z) dz
0
s W
, a“| ™
q, == j sp(z) dz (L, 22)
C
subject tc the conditions
W ¥i W
2 mn
[g(z) dz .—_f p(z) dz =f o{z) éz =0 (5.23)
H G Q

)
Absclute value signs are not needed in kge. #.20 and 4,21 because tne
nunmerator and denominator in each expressicn always have the same

sign. Zquation 4,23 permits ug tc write Eq. 4.20 as



(4.20m)

(1 - 2)p(z) az

(1 - z)p(z) az

[an]
I
o\-ﬁxag g —=

"his forme is especially usefuvl when antisymmetric profiles
0 =z are considered.

[o(2 - 2) = -p(2), < 2]
Ve now solve for the drair current by examining the differential
The wwo-dimensicnal density

element of channel pictured In Fig. 2.72.
o7 free carriers In this element 1s

a(x)
o(z) éz

a

O
where we temporariliy assume an n-type channel (p > 0) to avoic
The resistance of the element is thus

difficulties with signs.

u{x) 'I-l
ax ;
dR = m a[ p sz
O A
From Eg. L.19 we have dW = W d8, s0 that the drain current is
n(x)
2 e (. 24)
=L, 06 =d glves

aw
I =35 = W 3%
¢

which, upon integration from x = G,



J 5 dz )y de (4. 25)

sinrce [ ds not a function of x. In this formuls we have
explilcitly indicated the dependence of u on 8§ (a3 given in Bgs.
4,20 and L.23). We obtain g, by partial differentiation of Eq.

4.25 with respect to Wg:

u(s)
g, = %‘,IT =L1Mé( p dz (k. 26)
5 u(a)

This result has alao heen obtained by Boekemnehl [207. When & = 0
and 4 =1 (i.e. when u(s) =1 and u(d) =0) the transconduc-
tance is

g (0,1} = -H%A- o dz

O\__\P

We recognize this expression as the conductance (G, of the charnel
in the shsence of any blases. Thus, in genersld,

1
5.(0,1) =5, =_“%5 f o dz (lv.27)
0

where we have ingerted absolute value silgns in ordex to include
p-type channels {p < 0).

We define a new function,
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{4.28)

in terms of which many of our final resulis may be expressed most
simply. The function g(8) always lies within the range
g{ly =0 = g(0) =21 = g(0). We now remove the assumption of an

n-type channel and rewrite Egs. 4.25 and 4.26 in terms of G, =nd g:

¢

~(s,3) =GW g(s) da (%.29)
o

g, (s,d) =G [e(s; - g(d)] (k. 30)

From Fg. 4.30 we may glesn the primsry significance of the function

g(8): It ls the normalized transconductance beyond rinch-offl at
normalized gate voltage & [l.e. g(8) = gm(e,l}/ﬂo].

Wher, & =0 snd 4 =1 the drain currert is

1{c,1)

i
fil

1
= QW j’g(e) an (L.31)
O

gince 0 < g(9) <1 for O < g <1, I, < GW,, 8s was the case witnh
the step~junction FET. The general form of the family of drain char-

acteristics glven by Idg. 4.29 is the same as in Fig. 2.7. Jor a
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given s the drain current increases with (d - s) = [vdl/wo
until d = 1. Then, in the pinch-c®f range, the current remains at

its d

1 vedlue. Further, as in the step-junction device, & in
the general FET is equal tc the conductance of a charnel of constan®
fractional width u(U) - u(L).

Differentlation of Lq. 4,29 with respecl to W{1 gives the

output conductance as

Goo(e,d) = G gld) (4.32)

Agaln G, 1 esqual to the conductance of s chammel of cconstant

z22
fractional width wu(L), Ls independen: of the gate-source voliage,
and goes to zero when 4 = 2,

It 1s easy to determine an antisymmetric doping profile that

will produce & desired g(6) (provided that 62g/d9& >0}, The

necessary equatlons are

w(o) =1 - &, :g (4.33)
n ] 2
2(w) = B, tgéieéup -, o<cu<l (4. 3ka)
L

RZ T TET O <nu <l (4. 34n)

and
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(. 35)

|3V

plu) = -p(2 = u) , 1<u =

where primes denote differentistion with respect to 6§, and where
By and 32 are arbltrary constants. The inverse funczion 6(u) is
obteined from Eq. 4.33 for use in Eg. 4.3%. [The requirement
g"(9) > 0 ensures that u(8) is a strictly decreasing “unctlon of
8, hence ensures the existence of a unigue inverse function 6(u).]
verificatlon thut p(u) delined sbove does generubte Lhe Tuncitlon
g(&) may be obtained by subsiitution into Egs. 4.20a and L4.28.

‘We now calculate the charge in transit and the capacitive

eguivalent-cireuit elements. The differential channel element of

y G.I
lagl = an ax ‘(p dz | = -%— g(8) dax
0

free carriers, and hence

GOL I
lo] = " fg(e) dx
0

Trom Egs.4.2k, 4,27, and 1,28, we have

WOL
X = Gog(e) de

so that
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o] C P
IQI - Ul ,d fu (0) L

We may supstitute Zg. 4.29 for T to obiain 3 enztirely in terms of
the function g;

g“{(e) és
lal =

(L. 36)

g(e) 43

T
u e — —F

The input and output charge-capacitances are chtsined by differenti-

ating this relation with respect to WE and “d rospectively;

pu
~

fgw){g(s} - e{e)ae

*( 2 * d 4ot VIR
Cll Sﬁu) = (:‘22 (’3.’ ) 4 W g(b) d E
[g(e):ie
J‘
(b 37]
a
, f £(6) (e(e) - a(a)}ds
% e
N . ) / -
LEB (31:1,] ;“JAIQ g(d) Sk i\ll.jS)

vie may Craw thc same conclusions concerning these general charge-
capacitances az we drew concerning the step-Janction capacitances 1n

Chapzer II. Tirst, we see immediately from the above eguations that

£ A .
200 (e,a) - Czo(s,d) ~ Coo(ese) (4. 39)
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%

Pigure 2.5 and the accompanying arguments indicating that Céﬁ
F

should appear entirely vetween the gate and the drain are thus
relevant here. These results for the charge-capacitances, together

with the results for the conductance elsrerts &n and G prove

22’
that the smull-sigoal equivalent clreait In the general case 1B
idertical to the circuit of ¥Fig. 2.4. Above pinch-off the circuit

¥*
reduces to that of Flg. 2.9 with only Cll and & present.

Second, when g = 4 (Wd = 0) +the chonncl is of uniform width,
*
and we expect qu te equal the capscitance of g planar p-n junction
of area LA with depletion-region thickness a(wa - us). Ta prove
this we apply 1'HApitalis rule o Egq. 4.37 to get
2 .
G L ag{s)

12
Cpples8) = - AT

It is not difficwlt to show that

1l < (4.40)

(&)

(We shall derive this relation in somewhat more detail in the next
chapter.) gupstitution of this expression into the previcus Fformala

glves



€AL, 1

a w - u

o
o

* 1,

9]

which is the desired result.

Finally, in Section Z.4.2 we showed that for a step-junction FET

lim (lim Cll(”’d) =

Z 11w ¢}, (5,1)
u—-'l d-s 3 ll

Application of 1'Hbpital's rule to Cll(”’ from Bg. %.37 and
comparivon withh Ey. .4l yield the same rclation in the general case.
The mathematical and physical reasons for the presencc ¢f the non-
unity mumericeal. factor 2/3 are given in Sectlon 2.Mu.

Another guantity of interest is the transit time 7, defined in

t

the previous section., From Eqs. 4.29 and 4.36 we have

a.
J—ga de
=)

- dal _ .
T T A Z (k)
Jf.g dg
5

How, the veloceity of carriers in the channel is equal to aw/dx,

and hence may also be written as

Tt

L L
R f 1 dW?dx f W7 d6/dx
0 0

By variational ealculus technlgues we may minimize

" with respect
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to 8(x} Twithk 6(0) =5 and 6(L) =d fixed]. WVicimum T,
oceurs when ag/éx = constant = (d ~ s)/L. Since the maxirum
operating freguency ol a device veries as l/Tt’ the gbove calcu-
lation shows that an FET with a constant channel fleld will have the
best frequency respomse. The simple dexdivaltion in the previcus
section assuned s constent channel field and hence corresponds to
this type of opiipnam WET,

We may summarize the separate conclusiong of this section by
stating that differences among FRT’'s are merely quantitablve, and
that all the cuzlitative conclusions from the step-junction dis-
cussiong of Chapter TI may be applied +to any other FEI. In Chapter V
we ghall prove that even guaniitstive results on different THT's nay
be very close, but firet we show the advantages cf tne general

treatment by working out some Iractical examples.

4.3, Applications cf the Gencrel Treatment

In this section we shall apply the previous results to two
useiul, general doping profiles. “the first prefile ls antizymmetric
and in the form of a power law, snd incluées the linearly graded
Jurction as & special case and the step Junction as one limiting case.
The other limiting case of this profile, in which all the chammeld
mobile charge is in the plane y = 0, 1is defined as a "delts"
Junctlon, Tne second profile has a region of zero doping (insulazor)
separaling uniformly, bub unecualdly decped p- and n-reglops. This pro-
file, in zadition to ylelding values for the limliting cases of the

unsymuetrical step Junciion and the delta junction, provides equations
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governing the operation of iansulated-gate FET's. Althougn these
exzmples include a wide wvariety of possible FET structures, we shall
see thet the resulting external properties are guite similer.

For convenience, hef'ore begimning the calculations we rewrite

the formulae for g(8) =and for 6

ufg)
o Gx
g(s) = 2 (i.43)
[
J
pr Gz j{(l - z)p éz
8 = 2 == ()

with

W

W
m

fp diz =J pdz =0 (4.h5)
4]

u

If p(z) is antisymmetric about =z =1, then Eg. k.45 yields

€
Il
V]
1
o

s (entisymmetric p)

£
1t
A
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end the function (1 - z)p(z) is symmetric about z = L. Equation

b obh may then be simplificd Lo

(1-r)pd=

, (antisymmetric o) (%.L46)

{1-2z)paz

Examnle 1.

We consider the antisymmetric profile given by

n

pl(l = 2’) 2 O<z<1
p(z) = c , z =1 (4.47)
~p (= - 0, 1<z <2

where is a positive constant and = = O. Figure L.l shows p(z)

P1
for several values of n. Ar antisymmetric step junction is given by
n = 03 a linearly greded Junction by r =1; and a delta junction

by the limit n - . We apply kgs. 4.46 and 4.4 to get

(:i_ _ u)n+2

(48]
Il

1-1{1- u)n+l

0=
Il

The paramcter U moy oc climirnated from these cquations teo give g

ag a funetion of &:
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n=«=00

GATE MATL
—

2 I j 0

n— 0

| CHANNEL MATL _

nsQ

1P

Fig. 4.1 Doping profile used in Example 1. A step
Jumetion 18 glven by n = 0, =& linearly
graded jJunctlon by a =1, and a delia
Junction by n - =,
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g(8) =1- ¢ 12 (1.48)

Now that g(8) is known, Wwe may calculate the drain current and

the small-signal eguivalent circuit for arbitrary biases from the

Tformuliae of the previous section. We shall, however, restrict our

attention to blases of greatest interesti, namely, to operation beyond
gr 2 ) M

rinch-off,

where

Tor 4 =1 the relevant normeiized equations are:
Ep .
= = g(s) (4 .49)
GO

j
Lo (4,50
9

1 1 2

g J
2 1

’ ilfg e [g(l-g) de

a

{h.51]
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@]
i
-
Eael
©
b=
p—

.o _ (k.52)
HW o 2

*
{ Also, Gpg = Cop = 0.) Bubstizution of g(8) 1into these equations
gives
SRR (.53)
O
= 1 1 N+l )
e 2 (k. 5)
C* il N i+1 Tl
1L (1 -8 )k - (20 +1)s + (2N + L)sk+ G " s
ri* l l I\[ l 2 ( 'Dj)
5 .
© 1o (14 qpet e }

in which we have written

I3
+
=

B
+
o

Fer n =0 (¥ =1/2) these equations reduce to the step-junction
results of Chapter “T; for n =1 (N = 2/3) we cbtain equations

for a linear junction,
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& _1 . A3
-G—'- = - 8
o
I 4 _ 3. 3.5/3
7~ =1-25+38 (k.56)
o
* 2/ 3y~ T7.8/3 , 7.5/3 T/ 3
Cy3 i {1 / ) 1- s / + g / 5 / 1
1* - - e S 2
“ Ll - 25 4 555/3]
a a
and 88 n - (N - 1) we obtain the especially simple deltu-

Junection formulae

|

oy
o]

HlH
o)

OO *l Ija *

il

1 -5
(1 - 8)? (4.57)
1

The results for step-, linear~, and delta-junction FET's are drawn
H H

in Fig. 4.2. We note that the formulze for the delta junction are

identlical to these from the simple derivation of Section 4.1 (square-

*
law for I, constanl C.

¢l)'

Ixemple 2.

We coansider the unsymmetric profile
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A, Q<
p(Z) = O ] a =
'5po r 1<

where Po and £ arc positive constants.

the step-Junction profile Rq. 2.1 by having

<% <1 between the gate and channel materials.

have an ordinary step-Jjuacilon dopiog; 1T

insulated-gate FET; the limit « - 0 defines a delta Junection.

varying o« within the range 0 <o <1l we

(%.58)

This function generalizes
an insulating region
It =1, we
o <1 we have ac

By

speclify different ratios

of insulator thickness

We proceed in the

to charnel thilckness.

sape maaner &s in Example 1, bui now we must

.
ot

use Egs. 4.kl and 4.45 to determine 6(u) since p is not anti-
symetric. The results are

gz (+.59)

0= -E}{ g(i—;;-” (k. 60)
where we have written

Y =7 1 - g (0 =y <1)

fros FEg. 4.45 we find that LA 1+ /B is the maximm penetration
of +the depletion region into the gotc materisel and hence is the wotal

effective width of the device (zince the materizl =z > W is
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Aonecessary for device operation). 'Thus, vy is the ratic of
insulatcr width o total effective widta. Since g is equal to the
ratio u/o, we.see from Eq. L.60 that g(2) depends only on the
parazeter V. Therefore, FET's dlffering both in conduetivities and
in insulazer Lhicknesses can have lLdentical properties. Lror
exeipie, & uwnit with a ratio of gate doping tc chammel deping (B)
egual to 10 and = ratiolof irsulator thiczkness to channel thick-
ness (i/0 - L} equal to 2.2 is identical n external character-
Istics to a unit with & doping ratio 1 and a thickness ratio L.}
Further, ordinary step-junction ¥ET's (o = 1) have v = 0,
regardless of P, and the nommalized churscleristics of these
devices are independent of the relative doping levels. Delta-
Junction devices (@ - 0) have v - 1, and again the resuits are

independent of f. For velues af o in the range O <« g <1,

4]

*
13/

special case of an insulated-gate FRET with a metallic gate (B - =)

(and hence I and C depends on both « and 8. The important
corresponds t¢ vy =1 - Q.

We now 20lve for the transconductance, the drain current, and
the input charge-capacitsnce In the pinch-off range. IZlimination of

u/e¢ from Egqs. %.59 and 4.60 gives

Y[ “Vi- - e - \,2)1 (4.61)

E(e) =1i_

#
as the normalized transconductance. In solvieg for I and Cll we

may avolid performing sny inlegration by substituting
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6,(6) =1 - (- 0} - v (4.62)

in Bq. 4.61. then g(el) is proportional to the step-junction

funetion 1 - 461 , and dé; is preportional to d6. Iurthermore,
el(l) = 1, and hencc (from Zas. 4.50 and L.51) the dependence of T
and C;i on s, = al(s) will be the szme as the dependence of the

*®
gtep-junction I and Cll on 8. That is,

2
I =Dy(2 - /)% + avs])

.- 1 -5

cll =D

£ (1 + 2/e))”

woore Dy and DE are constants. These constants may be eliminated
by normalization. Waen s =0, 8, = @ and I/I = C* /C* = 1
= : DA T ‘o~ Ylif Ve T T

Tnerefore, bearing in mind that 81 wist be cbtalned in terms of s

from Eq. 4.62, we have

- AR+ )

T
I . : (4.63)
o @=L ey)
o, (+zn? 1s e
T T TTT + ) S (L. 6k)

(1 + zvs.)"

. ) P
&8 the desired results. Curves of gm/Go, I/IO, arcl Cll/co
versus g are drawn in Fig. 4.2 for a step-junction FET (v = 0),

for a delta-junction ¥ET {vy = 1), and for an insulated-gate FET
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with ~ = 1/2. The delta-junciion device corresponds to the simple
ncdel of the insulaécd-gate FET that is usually analyzed (relatively
narrovw conducting chernel), For this case the equations derived here
are valid for forward as well as reverse geate biases.

The twoO examples presented here have one common property. In
th cases the step~ and delta-junction curves Zorm rather close
bourds on all other possible curves. The exlstence of these bounds
might welil be expectod vecmuse in theoce exwompies intermcdisnte resulio
are produced by doping profiles that can e ccnsldered "intermediate"”
between step and delts junctions. The closeness of the bhounds is of
definite practical interest and is also of theoretical wvalue because

it provides motivation for the work of the next chapter.

i .4, Coneclusions

The general treatment developed in thls chapter has ensbled us
to write the equations describing the operation of an TRT ir a useful,
compact form. All results are expressed in terms of an integral of
the (arbilrary) impuriby profile of the FE7. This integral, which is
equal to the normallzed transconductance beyond pinch-off, is
therefore of fundewental significarce. The gereral formulstion
gimplifies caleuwlations bhecsuse only the substitution of the impurity
profile is required in crder ito cbtain the final results, the
intermediate steps having been eliminated. This is in conmtrast to
the conventicnal treatment in which the Impurity prefile is
gpecified at the first step, and in which vhe soluticn must be

repeated from the begimning for different structures.
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Furthermore, and perhaps more important, the general formula-
tion allows us to draw general conclusions. Ve found that the
properties cf all FET's are gualitstively similar, and hence the
observations made in Chapter II about step-junction FET's are true
for 211 types of TET's. To particular, Lhe draln characteristics
elways have the same overall shape, and the small-gignal equivelent
circuit always contains the same elements with the same physical
interpretations and with analogous voltage dependcnces.

The exanples of Scction k.3 emphasize these conclusions and
acutbrate the analysis of the next chapter where, although still
working with general, qualitative formuvlae, we obtain specific,

cuantitative resuits.
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CHAPTER V

BOUNDS ON THE PARAMETERS OF AN ARBITRARILY BOPED
FIELD=-EFFECT TRANSISTOR

In this chapter we shall attain the goal toward whieh —he
previous analyses have been converging: & theoreticsl basis for
the much-used empirical conclugion that wicely different types of
FET's exhibit similar functional oehavior.

In the derivations of Section 4.2 no limitations were made on
the Impurlty proflle. The genersl results obtalned in thatl section
are velld for an& FET. We now show that if the functional form of
the doping profile of arn FET is slightly restriclted - but restricted
in suekh g way that cssentially gll manufactured types are included in
the theory - then the properties of the FET are retarkebly inseasitive
to the particular profile used. Specifically, we prove that for any
s 1irn the pinch-off state (d =z 1), the normalized transconductance,
drain current, snd input charge-capacitance, and the voltage-
dependent parts of various figures of merit are each btounded by their
step~ and delta-junction values. We alsc find & simple formula,
lndependent of the junetlon type, for the blsas point necessary for
zere tempecraturc coefficient of tbhe drain current. As a final toplce
we consider the power-law nature of the <ransfer characteristics and
find limits on the exponent in the pover law.

Tae results of this chapter have important practicsl implications,

being gpplicable to a veriety of problems pertaining to FET's.
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5.1, Preliminary Derivations

In order to e¢stablish most of the results that will be cbtained
in this chapter we shall use two inequalitiesg invelving the deriva-
tives of g{s). We derlve these inequalities in this section.

The relevant cquations for & and g from Chapter IV are:

W W
Jpr(Z) éz Jr(l - z)p{z) @z
S =:$ : = (5.1)

Il

5
m

zp(z) dz f (1 - z)p(=) d=
0

—~
f|
-
LAY
L

Since the only values of w and w that are considered 1n this
chapter are u_ anc WS, the subsceript s 1s omitted. We bear in
mind, however, that u and W always pertain tc the source.

For ccuvenlence in the analysis of this section we shall assumc

an n-channel device. Thus,



: L, 0z <1
p(Z) = C 3’ r =1
<G 1<z

The final results are in no way dependent on this assumption.

The first derivative of g with respect to s Is

W
m
f (1L - z)p dz
dg dg du _ ofu) 0
ds ~ du ds L aw
(2 - e - (1 - w)olu)
P dz
{0
From Eg. 5.2 we have
(W) ~ plu) =0 (5.1)
AR Y e - 2
50 that
W
(m
J (1 - 2z)p d=
te. 2 = (5.5)
g 1 W o~ u )
f p az
0

where we have used & prime to cenote differentiation with respect to
5. The integrands in both numerstor arc dencminstor are non-negative

for n~chanrel devices {(non-positive fer p-channel devices), and hence

dg/ds < 0. Differentiation of Eq. 5.5 and use of Eg. 5.k give



107

1

W
pil
f (l - Z)p dz

g" = — _ D(u) - D(W) (5.6)
(v =) -pu)elw)

74
p CzZ
e

-

Since W =2 - = u, each [raction in the abcve expression is strictly
positive, (For p-type channels both ithe denominator of the First
fraction and the numerator of the third fraction reverse sign.) 'hus,

for all doping profliles,

g" >0 (5.7)

T™is iz the first of the two preliminary Inequalities.

The seccond loeguality 1s
-g" - Zsg" = C (5.8)

Corbination of Bgs. 5.1, 5.5, and 5.6 reveals that this relation 1s

satisfied if

Hw) = (v - u)° p(i)_gﬂ -fz(l Sz)pdz =0 (5.9)

for n-channel devices. Tne ratio p(u)/p(w) is always negative

(or zero), hence
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o <o) _ 1 <1
3 R T TSI

and since w-1 as u -1, wec Lave

(1) =0

Fal

Thus, 1f dH/du <0 for O su=<l, then H(u) =0, and, since

the range O < uw < 1 ig equlivalent to the range C = 3

1M

1, Gq.
5.8 will be esteblished. After some cancellatlion, the reguired

derivative becomes

L M|
aH _ (v - u)™ & [E%E%Eiiir—y.
du da [ olw) - plu)

which is negative (or zero), provided that

d 1 1
-aja [m - WJ-_ C (5.1051)
or (since du/ds <0), provided that

d

1 1 . .

(Note that o(w) < 0O.) .This expression is equivalent to the

conditicon
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- dp P Gp = 0 (5.11)
po(u) &z o (w) ez
4=u Z=W

waich is useful if z particular pair of values for u and W 18

known. Therefore, inequality 5.8 will be satisfied if

1 1
p]uj giwj

iz an increasing function* of u or, alternatively, a decreasing
funztion of e. For p-channel FET's the contrary applics. Although
this eondition is sufficient, and by no means necessary, we now show
that 1t ie fulfilled by substantially a1l commercial profiles.
Clearly, moaotonic g(z) satisfy Fq. 5.10. Most maenufactured
types (alloy, epitaxisl, single-diffused, and insulated-gate FET's)
ZJall in this category. The only practiczlly important FET!s that
employ ncn-monotonic c¢oping rrofiles have double-diffused siructures
(with two gates).** .A gketch of an n~channel double-diffused profile
i glven ir #ig. 5.1. The plane where the two gabe-channel depletion
regions woull meet if Wg = WO were applied Is chosen as z = O.
(We assume that the two gates are tied together electrically.) If,
for analysis purpcses, the double-diffused device is split along the

z =0 plane, then 1t is easy to show that the g(s) of the original

* The function need not he strietly increasing; i.e. a zero deriva-
tive is permissible.

*% Motorole units, for example, have two gates, but are symmetrical
and hence may be consldered as twc ldemtical, single-gate,
monotonically doped FET's in parallel.
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O —

CHANNEL MAT'L

GATE 2

FET2 FET 1

Fig. 5.1. Bketeh of a double-diffused doping profile.

Fig. 5.2. Poasible H(u) for FET A of Pig. 5.1.
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FET 1g equal to a lineer combination of the [g,{(s)l's of the two
saller FET's; i.e. g =g + (1-§)g2, vhere O <t =1, and the
geubseripte 1 and 2 denote the two oingle-gatc units indicated

in ¥ig. 5.1. Double-diffused doping profiles have only one

extremuzm (near =z = 0 in the channel). Denote the location of this
extremum by z = U, and, witkout loss of generality, assume that
u, >0 and that o{1) = 0. Then FET #2 has a monotonic prcfile,
and. &, satisfies Eg. 5.8. For =z = Ug the profile of FET 4 is
monctonic, and hence for this unit, #(u), the function defired in
Egq. 5.9, has a negatlve slope over the interval N <u =1 say,
where dﬁ(Jﬂ}/du = 0. We kuow lhul v <u, beczuse Eq. 5.104
implies a condition on ¢ +that is weaker than monotonieity. If

u, < O, then FET /d satisfies 5.10 for its entire width, and

g, - and also, theretore, the overall function g - satisfles 5.8,
If u >0, then ¢H/da >0 for 0 gu< u . However, dg/du < 0
1z only a sufficient condition - nct & necessary coaditior - for the
establishment of Eg. 9.8. Figure 5.2 shows a possible H(u) for
FET #1. Unless the slope of H 1is rather steep for 0 < u <u, n
will be positive taroughout the interval O =< u < 1. Turthermore,
even if H(u) <0 near u =0, Ec. 5.8 may still be satisfied for

the overall g- function because we merely need

1

1
i

g[— & - zsgf] = -(= - i)[* g) - 2sg)

4

and we have already seen that the righit-hand side of this inequality
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is negative (or zerc). Although the asbove arguments are merely
qualitative, with reasonsbie certainty we may conclude that double-
diffused devices obey Eq. 5.8, Thus, essentially all manufactured
FET's are included in the following "restricted" theory.

To recapitulate the results of this sectlion, we rewrite the two

important inegualities with their relation to the impurity rrofile:

gr >0 , all o (5.12)

-g' - 28g" 20 , resvricted p (5.13)

These equations are applicable to both n- and p-channel FET's,

5.2, Transconductance

We now apply the inequalities of the previous seciion ¢ prove
that the normelized iransconductsnce beyond pinch-off, g(s), Iis

bounded by the step- and delta~junction lormilae

{1 -48) cg(s) =< (1 - 8) {5.1k)

The upper bound follows directly from Fg. 5.12 and hence is
valid for all doping profiles. The inequality g”" > C means that
g(s) 1s concave upward. But the values g{(0) =1, g(1) =0 are
fixed. Uherefore, g(s) must lie below the straight line {1 - g);

that 1s,
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g(s) <1 - s

Actually, the cquality holde only at 8 = C and at o5 = 1.

The lower bound derives from Eq. 5.1353. If that ineguality holds,

then

]

f{-g’m - 2tg"(t)] at = 0
(@]
a
¢(1) - 2tat(t) | =0
O

From Egqs. 9.1 and 5.5 we see that

W
sg'(s) o< v :_1_' uj (1 - z)p(z) d=
u

The right-hand side of tThis proportionality is equal to the average
value of (1 - z)p(z) over tke interval u <2 <w. As & - 0, this

average value approaches zero, hence 1lim tg'(t) = 0, and
-0

g(s) - 2sg'(s) ~ 1 =20 (5.15)
or

:s{yzg@)- %ﬁuag'@)—s_yz

= E[Ts'llzg(s) + s_l/z]'

O
Y
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Toe intermedlate inequallty .15 is weager than the initial inequaliiy
.13 (because the latter implies the former), However, Eq. 5.13 is
convenient in later proofs, ard since it holds for esgentlelly all
protfiles of interest, we have used 1t as our starting point.

Integration of the last cxpression fror = %o 1 yields
i - ) - -
El} + 8 lfﬁg(s) -5 l/hlz ¢

or
g(e) =1 - /e (5.16)

Thus, the ncrmalized transconductance for most practical FET's
lies between the volues fcr step~ and delta-junction FRW!s. These
pounds sre 1llustrated in ¥ig. L.2. 7The bounds that we shall sub-
sequently obtain on other guantitics are dependent caly on tnese
beounds on g and on inequallties 5.12 and 5.13 on the derlvatives
of g. &luce we cen obitaln real Juncltions as close as we like to the
iceal step and delta Junciions, tighter bounds on g{s) caanot be
obtained without further restrictions on pz). However, these
further restrictions would necessarily eliminate some practical

prollles frum the theory.

e3r Drain Current

In this section we show thst the normalized drairn current

sauvisfies
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-~
e
[

(1 - B2 + 24/5) < (s)/1, < (1 - 8) (5.17)
the upper bound being the delta-junction expressicn, and the lower
bound the step-Junction expression.

We first prove that if g < (1 - s) for 0 <s <1, then
I/ s (1 -8)7% [If g=(1-5), the right-hand equallty in

Eq. %.17 obtains.] From Eg. %.5C we have

3 s
jg(t) dt fg: dt
T 5 ]
_— = l -
Io 1
g(t) das g 4t
G C

We must saow that

]

or that

l
g at
. 2

QO -

0

But g < (1 - s) implies



116

1 1
g 4t <“j”(1 -t} at = %
0 G
Let
1
Jng at
0
e Mt
50 that
3 2
§(s) =-{hg at - (s - —
G
and

§'(s) = &ls) - M1 - 8)

Kovw, #{C} =¢(1) =0 and (0} = (L ~ %) >0, Thus, ¢{s) is
zero and has a positive slope at s =C, and is zero at s = 1.
Hence, if 4{'(s) has only one zero in the range 0 < s <1, then
4(5) cen never pass through zero and will alvways be positive (sioce
v ds conlinuous). This statement and the followlng arguments are
elucidated by the curves sketched in Fig. 5.3. In order that

y' = C we must bave g{s) = A{1l - s). But 21 - 8) 1is a straight
line, and g". >0, l.e. g(s) is concave upwerd. Thercfore, a
straight line can intersect g(s) at only two points. Bota g(s)

and A{1 ~ s) are zeroat s =1, and since ) <1, the remaining
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Fig. 543+ Pertinent to the proof of Eq. 5.18.
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zolnt of intersection lies within the renge O < s < 1.

< Thus  ¢'(s)
does have one and only one zero, and Eq. 5.18 is proved.

7o complete the proof of XEq. 5.17 we now show that if
g> (1l -48) for C<s <1,

o

and if (-g' - 2sg") =2 0, then

Loo@-vBRs2h) =1 - 3 - 20

O

[Again, 1T g = (L - +8), <he equallity Lolds.] Tae methed of proof
ig similar to that for the

upper bound. We rmust show that

?_
g dt -
("—JO (s - 257 ”fd‘i;*ro 5.19)
hw‘=m 8-38 ) -1 ¢ (5.19)
0
Let
L
l.g it
Wy -4

fince g > (1 - V3),

1 1
fgdt>f(l-1f§)dt=%
C 0

and A > 1. Further,

¥ '(8) = A (3 - /B) ~ gls)
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so that, ag in +the previous proof, ¢l(0) = ﬁl(l) =0 and

5 "(0)

Ii

(A -1) >0. Thus, if y§ '(s) has only one zero in the

range O < 8 < 1, then ¢l(s} > . To show thst ¢1’ does indeed
have only one zero, we change variables from s to 8y = Vs
(0 =8y <1) and show that §,"(sq) = Al - &) ~ g(slﬁ) kas only

one zero. By analogy with the previous prcof, we need only show

that g(sla) is concave downward (since A > 1), or that

d gE < C
dsl
Butb
dgg d . ag
= = —| P8, —=
is “ ds 1 ds
45y 1
dg 2 dag \
= 2 ~= 4 hsl — = 2(g! + Zsg"
ds ds
< 0

by hypothesis. This compleles Lhe proof of Eg. 5.19 znd establishes
Egq. 5.17.

Tus, practicalily all manufactured FET's have normsglized trans-
fer characteristiss that lie between step~junction and delta-
Junction characteristics. The boundary curves, plctured in Flg. 4.2,
are especlally close, and in fact are almost Indistinguishable

experimentally.



5.4,  Input Charge-Capacitance

Agaln using the inequalities cf Section 5.1, we can show that

the normalized input charge-cepacitance lies within the range

B ) C;l(s) ‘
5 —— <1 (5.20)
(1 - 2vs) C,

The prool of this stetemen: is deferred to Appendix A because &
result from Section 35.5. is needed. The bounds on Cil zre the
step- and delta-junction formulae and are illustrated in Fig. L.2.
Becguse ci the presence of g finite built-in potential Vé, C;
cannot be measured directly. Therefore, experimentzl points will

nct occupy some small dnterval of 0 <8 <1 near s = Q. gSince the
step~junction curve (lower bound) has a very steep slope near & = 2,
exverimental curves will actually lie between closer bounds than the
theoretical bounds of Eq. 5.20 and Fig. 4.2. (Similar remarks apply

to the bounds on g{s), but the effect of v, 1s not so strong in

this case.)

5.5. Migures of Merit

In this section we shall define and derive bounds for various
figures of merit for ¥IT's., The bounds for each figure of merit are
the expressions for step- and delta-junction doping profiles, and, as
in Secticns 5.2 - 5.4, the bounds are close enough that the detailed
nature of the impurity profile is unimportznt. The parameters of

Lmportznce sre (i, W, L, and G..
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The figures of merit that we shall consider are based on the

simple, small-signal cquivalent circuit beyond pinch-cff (Fig. £.9;

g, ond Cil are the only clecments present) and are
£, = a, Le(e)] (5.21)
o
- ~
o g(s) 1 &(s) w
12 - 6] = W; N (5.22)
ESE:
L 2 =
- 5
[ st dt}
1 “WO [
fo=— = (5.23)
3 e LB 1
[ teten)
1 a
( [g(t) dt
s) ny a
f), = gril = _zo — (5.24)
Cll(s) . r,
J Eat){g s) - g(t)} at

To a good approximation the output admittance vanishes beyond pinch-
off, so that fl 1s the gain of ar FET and fL ls the gain-
pandwidith product. The ratio of the gain to the steady-state
current necessary for that galn is specified by fz. As a rather
general figure of merit, f3 gives an estimste of the maxioum

frequency of operation of the device [1G". In each of the [1gures

of merit f,, %he square brackets contain a dimensionless, voltage-
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dependent Term which we denote by Fi' We now assume that Inequality
5.13 aolds [i.e. (-g' - 28g") = 0], and we establish the step- ana

delta~junctior dbounds for each f,.

Since Fl = g(s), we merely refer to Eq. 5.1k to assert that

(1 -~ 43} < Fpo< (1 - s) (5.25%)
Althougn g = (1 - s) gives the optimua (i.e. the maximum) 3., this

particalar g yields at most a factor of 2 improvemert over any

other g,

o
2

3efore demonsirating the deslred results, we must prove two

lemmas. We first show that it (-g' - 28g") = 0, +then
g(t) = g(s)};:—ii for s =t <1 (5,26}
-I--/E
Equation 5.26 means that over the range s <t < 1 1ihe transconduct-

ance function g(L) will be greuler Lhau or equul Lo a luncllon of
the form g~ (1 - %), provided inat both functions have the value
g(s) at + =s. If =8 =0, Ea. 5.26 reduces to zhe lower bound for

g(s} (Rg. 5.16). Tet us define

_ g(s) -
) = og(h) - =24l (1- )
¥z )= & 1- s



() =B(e) - —S -G
i =

where the dots dencte differentistion with respect to 4. Now, if

%2(t> = 0, then

g(s) _ .otk
= 24% 2(t)

. 1 . " -
it = ko [2ER(6) + 2(1) <0

by hypothesis. Thus, any stationary point of ¢q(t) is either a
[
rclative maxioumr or a point of inflcction. But mz(l) = ¢,{s) = 0.
! L
Hence, @2(t) is zlways positive over the range & <t < 1, and the

lemma is proved.
The second lemms gtates that g" > 0 ‘mplies
1 -+

g{t) = g(s)l — Tor s £t <1 (5.27)

=]

Because of' the elose similarlity between this and the previous lemma,
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its Lnterpretation and its procf are omitied.

Substitution of Egs. 5.26 and 5.27 into

jg(t) dt

vields directly the desired bounds

< F. < 3 (5.28)
~-s T (1~ AE)(L 4 ads)

V]

Tn this case g = (1 - ¥5) gives the optimum Tigure of merit, but the
largest and smallegt values of ¥, differ at most by & facter of

1.5

5

th

The voltage-dependeni part of '3 is

o
m'—\ l-d’mﬁ-——\

aend has the bounds

(1 - )2+ 2dE)"

5.29
ot 3 3 (5.29)

wl oo
A
=
A

Hew
~
I_..l
i
o
o

corresponding to a step and delta junction, respectively.
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In order tc prove the upper bound we rmst show that

1 1 2
53(9) = 302 - s)-['ga dt - 4 Jrg at] =0 (5.30)

=] 8
e

Since ¢3(l) = C, it suffices to prove that

1
45'(s) = -3(1 - S)gz(S)-+d(.g(t)i8g(ﬂ) - (t)lat =0 (5.31)

o
for 0 =s < 1. Consider the integrand,

9, (6) = £(8)1(s) = 38(t)]

aprearing in ®q. 5.31. For g given g(s) and a particular t, ¢4

will nave a relative maximunm when

Ll 4

g(e)

g(‘t) S
Bt Eq. 5.27 indicates that

1-3
)

g(t) = als)F—= < g(s)

Thus, we can never maximize the integrand ¢h (for any s =t < 1),
but we come closest to maximization if at each +t we choose g(t)
" &8 large as possible, that 1ls, 1f we choose

1l-t
g(s) = gls)—=x
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Hence,

L
30 - 9)b(e) + [ eleribeute) - (b a

A

¢3'(s)

"
2]

as was to ne shown.

The proof of the lower bound proceeds along exactly the same
lines, except that Eg. 5.26 1s used in place of Za. 5.27.

The two bounde in Eq. 5.29 are very close, differing at most
by a Tfactor ot 1.l125,

i

We shall wnrove that
1 £

Jrg dt

&

fg(t)[g@) - g(6)] dt

s

is bounded by the step- and delta-juncsion expressions

2 (1 - ¥8)(1 + 243)°
(2 + 5)

malew

< T, < (1 - &) (5.32)

wil

Subtracting the reciprocal of the upper bound from l/Fh’ and

digcarding the positive comrmon denomlnator, we get
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- a

1
3{L - S)-J’g(t){g(S) - g(t)] dt -2 'jpg dt

s

S5

as the guantity which we must show to be positive. If we substitute

(1 - 8)/2 =0, +hen we need only

Zd. 530 and remove the factor of

show that the remasining factor,

1l
¥5(2) Efg(t)ﬁas(s) - 3g(t)] at

8

is always positive (or zero). Now,

and

since g" > CG. Dut ¢5"{1) = 0, =0 that tyﬁ'(s)}' 2z ¢ Laplies
that ¢5'(s) <C for 0 <s <1l. Similarly, ¢5(1) = C, =0 that
¢5’(s) < & implies that ¢5(5) z 0, which establishes the upper

tound.
The proof ¢f the lower bound is algebralcally a little more

complicated butl uses essentially {he same approach. We mast show thaet

3 1+ /5) -1 50 (5.33)
O G C -V L
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or, equivalently, that

-

3(1 = ¥8) ]5 sl -
1 - )1 + 245"

i

$6(S)

1
—Efg(t)Eg{S) - g(t)Tat = 0
>

Kow, ~§6(1) =0, soif \36‘(3} 20 for O =8 <1, jy.8)

Tt suffices to demonstrate that

2
gT(s) = ig%é_:"igl_ *6‘(5) < 0

g dt

Ferforming the required calculationg, we get

/s _3(1+2f+?a)f 1t -6 501 - 8)
! aeehy J° g()(1+2«f‘)

2 (/B (s)1(1 - ¥5)°

Agein, y (1} = 0, aud hence wT(s) =0 if ¢7'(s) = 0.

sbove formuls we get

“rom the



_ 6 - (2 4 Sa)

L 2gt(e

Vsl - :zwfs')J+

jg“t ORI
A S5+ 248)7°

)(1"/5)(;.-|-1/§+3)+
(1 + 2/m)"

1 o
+ 2l-¥sg'(s)] (1 - V/&)° (5. %)
wat
Lt 1 - - )
C-/sg’] = —T-2sg" - g’ =2 0C {(5.39)
278
by hypcthesis (Eg. 5.13). Als0, Eq. 5.35 implies that
1
VT - - aa -
f’ i [-2tgl{t) - g(t)” d= =0
: vt
Integration gives
g(s) + 205(1 - Bg'(s) = ¢
or,
o
2e'(5) = - _gls, {(5.36)

(1 - )

Turther,



g(s)(1 - /)L + 243)

where use has been radc of Eg. 5.26.

Trus, since the coefficients
1
'
ol -f-g ds, g'(s), and [-v¥sg'(s)] in kgq. .34 are all positive,
S
we may substitute Egs. 5.35, 5.35, and 5.37 to get

(s} » B8 2(1 - 45)2%(2 - 45) -
¥ (= S0 2d8)3 '

- 31 - 38 - 8) - (L~ s+s‘)('.i+2~fr—:.)j|

thereby proving Eg. 5.33.

As with PF

1
bounrds on

’2, and FB’ the two

are cicse, their ratio at most equaling 2.259.

Tne existence of “he close bhounds on the

lill-

Fi‘s indicates that
the doping proiile may sensibly be neglected in the optimization of
& partlcular figure of merit i‘i,- only the parameters p, WO, L,
and Go need be considered.* Examination of the constant

*

Another figure of merit is the reciproeal of the input charge-
capacitanca.

The above conclusion applies to this gquantity,
whose bounds nave been discussed in Section 5.k.
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multiplicative factors ir Egs. 5.21 - 5.24 for f. -

L reveals thatl

in general | and G, should be meximized and 1. should be
*
minimived. (On the otker hand, optimization of l/Cll regulres a

small Go') Also, except for f pest results occur if W, 1is

2)
large. Moreover, since all fi (except fz) are maximum gt s = O,
the internsl bias corresponding to zero external bias should be as
smail as possible; i.e. Vc/wo shoulé be small, or W, cshould be
large. These remarks must be qualified because other phonomena have
to be teken into account ir the design of an FET. "I'we such phenomena ,
whosc effects we now consider briefly, are the maximum electric field
In the channel and the power dlssipation.

An increase in WO/L Wwill Increcase the electric field in the
channel snd hence will decreasc the transit time. Although the
frequency respcnse will improve accordingly, Dscey and Ross [8]
have shown that this improvement is accomplished at <the oxpense-of
the power dissipation. They conclude that it 1s not werthwhile to
increase WO/L above the critical-field value, beyond which
B Edl/z.

The povwer dissipated In an FTET is equal to the drain current
times the drain voltage. This prcduct is of the order of the zero-
oias drain current IO times the »iach-off voltage WC. The arca
available for dicsipatiocn is IA. GSince IO/WOGD ~ 1 for all
impurity profiles, the power dissipation per unit area is of the

order of



(s)|v4l I, ¥, o,
TA ~ 1A TA

which sets upper limits on WO and GD and lower limites om L
and A.

Thus, although the detailed nature of the doping profile g(z)
may be disregarded in the design of an FE?, compromises must e

reached in the cholce of the other parameters.

5.6. Temperature Compensetion

At & particular bias point, +the drain current of an FET will
vary with temperaturc because of the temperature dependences of the
bulli-in potential and the channel conductivity. Fortunately, these
two dependences have oppesite cffects, and 1t is possible in most
transistors to choose a bias poin® such that the temperature
coefficient of the drain current is zero (21, [227. Below, we first
show that this blas point is practically independent of the type of
FET junclion, depending ouly on the external plnch-ort voltage and
the typc of channel semiconductor. Thern we consider the delta-
Junction FET in more detall in order to cbtain an estimate of the
equivalent inpus drift.

Using reassoning similar to that employed ir {211, we calculate
the change §I i the dreain zurrent caused by a small change §I
in the temperature. As the temperature increases at constent externsl
gate-source voltage, the magnitude of the buili-in potentizl (and

hence *the magnitude of the internal gate potential) decresses, and so
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the drain current increases, On the other harnd, the decrease in

channel conductivity with increasing cemperature tends to decrease
the current. In the temperature range Of interest, the variation of
the conductivity may be taken to arise solely from the temperature

dependence of the mohility. Thus, at constant V_

£
alv, | {1 s .
. = |- —_— e —— 2 it 5,13
81(s) g,(8) —5p - \7 3| I(e) el (5.38)
From this eguation we sce that 6I/5T =0 at =2 = £ oo if
. I T A
l(SDO) . ou\ d]V&‘
Snrsooi BTJ oT
or, since u ™ T—m’ ir
“(s_ ) T -
00
ORI (5.39)
g1’.’1.‘\500 =
where
aVé
£(T) = - 3@“ {5.40)

4

a {+) 2.0 x 1073 v/oc for (E:] channel silicon

¥ty at room temperaturo

for silicon, nm =~ 2.5 [23], so0 that I(Soo)/%n(soo) = 0.25v. (The

f e 1 in [2177 gi 2
experimental values cited in [217 give I(soo)/gm(soo) = C.3lv.)
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Now we employ the bounds on f2 = gﬁ/I obtained in the

¥
previous section to get

z
1 N Tt
(V9 - ek E%EL <il -2 E%;l (5.41)

Since g is the inbternal pinch-off voltage (i.c. v, is
included), and since V. 2 0.5v in silicon, servicesple FET's have
W, > 1v, wnich implies that T[g|/my < 0.25. But for
’l‘l&l/:&'v,ro < 0.27 the twe tounds in Tg. 5.41 are within ten percent
of each other, so0 that for experimental purposes, Soo may be assumed
independent cf the junction type, snd for further derivations only
the analytically simpler delta-jurnction bound need be considered.
Desplte thils simplification, the form of Eq. 5.41 is not too
useflul because doth sides of the right-hand inequality are ?unctions
of T. We may climinete this drawback by solving for the external
bias voliage Vgoo corresponding to the internal normalized voliage
500" Since Wo - IVC -+ V.'E’ I‘ and & = (Vc + vg}/(ve + V:a)’ the

zero-temperature-coefiicient blas is

7 .
= -~ 2 Z5 i
Va00 = Yo — (5.h2)

*  pActually, il (&/24) s zlg]/mwo < (9/24), the step-junction limit
is double-valued, and, therefore, the zero-coefficlent bias point
can lie in the range 0 <8 < (1/16)(1 -~/9 - th[gl/mwc)z.

Aowever, as shown below, practical values of T[g[/mw are
smaller than 8/24, so that only the range given in Tg. 5.41 is
of impcrtance.
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Althocugh The right-nand side of thiz equation depends on I, +This
depengence is very weak sirce the variations in Vp end in Tk
tend 40 cancel. Thus, over an appreriable temperature range, Vgoo

may be considered constant; for best azcuracy, however, its value

should be computed zt the design-center temperature TO:

( o) .
Vaoo = T {Te) - 2 —4— (5.43)
This formula, as weli as the other formulae in this section, is wvalid
f'or both p- and n-channel devices provided that the appropriave sign
of £ is used, Oince Vp cannotl be detlermined with great accuracy,
Eq. .43 may iz practice be aprlied to all types of doping pro:"iles.%
In addition to knowing the biss point for zero lemperature
cecefficient of drain current, we should also be aware of the conse-
quences of biasing at voltages other than this optimum. For this
computztion we empioy the conecept of equivaleni Input érift - the
variation in applied gate voltagc Vg +hat would produce the same
effect on the arain current as a glven change in temperature. Fo
include this hypothetical variation of input voltage im REg. 5.33,
Vg may be added tc VC in the partial derivative multiplying g -
We may obtain the end result more directly, however, by noting that

(fur a della-junction FET)

* 0 v = O ne pe 1hage or in 3 ig. 5.4C
For Va0 = O the percentsge error Vgoo from Eg. 5.43 may

be considerable. The absolute error, however, will be small.
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T~ w(myd - s(1)1°
~ o ey 1P

all cther cuantities in the formula fer T weing independent of U

Tras, for temperature-indeperdaent current we must have

2 - s(m). ~ 17
or

1~ s(T) (_T_)m/z

1l-s

G

in whlch the subsecript o refers & 1o the design-center tempera-

ture To' Substitution for s 1n terms of exterrnal voltages.gives
T ;/2 ”
(M) = - - - - — :
V(D) = (v, + V) - V(T) (Vo Jgo)(To) (5.4h)

(The sum Vi, Yy is independent of T.) If the applied gate
voltage veries with temperature according to the funcition given 1n
this equation, then the drain current will remain constant.

in oréer to develop more specific results we miake the prectical
gpproximstion that the buili-in potential varies linearly with

temperature:

v (0) = Vo - £ (T - 7)



~37

=

Waere § = g(TO) is a constent. Alsgo, we defire AV, to be the
deviation of the design-center bias voltage Vgo from the external

pinch-off voltage VPD:

These two relations permit Eq. 5.44 o be expreased in the convenient

fornm.

T m/2 P T .
2 - 11 @R - a- s
"07 0 0 s

At room temperature the normalizing voltage goTo 1s of the order of
C.6v for silicon. Eguation 5.45 is plotted in Fig. 5.%. The' curves
in Fig. 5.ka show, “or various values of m, the normalized equlv-
alert input drift (relative to the design-center bias) as a “unction
ol temperature, with avs/goTo A5 4 parameter. In each case the
ortimmm curve is the one with zero slope at T/TO =1, These optimum
curves give the smallest cquivalent input drift over a temperature
range centered at Tb; they corrcopond to the solution for VgOO
(Fg. 5.43) obtained under the assumption that Vg was constant.
For germanium and silicon m lies within the range 1 <m < 3.

If m = 2, perfect compensaﬁion can be gltained at the bias

vgoo = Voo = EoT03 for m £ 2, small amounts of drift are unsvoid-
able. Figure Y.4a indicates that FET's with smaller values of m

possess two advantages over those with larger values, even though

the small-m units have relatively large equivalent input drifts at



xogompaxed Jurunma a o0
m =8 %1°3/°Av waTa femminrsdmey jo womo
my U g8 -

03
A

guTq JIqUs0-UITSI
B ot
I3 01 3ATIRTSI ~ 3JTIp ndul FusreaAinds PIZTTOUT
FrRwIoN  toq§ t3%d

Om>t u>

| O'le

&l

ik

* 1Ok




139

saaqomsxed FUULMI ot} 88 W UITM JITIP (ndul jusTeainba poziTUmION *qicg “ERL

3 O._I ..o._.l

OU>I O>

Lo | Lo+




ke

the optimum bias point. First, irn & wnlt with smaller m  the
optimum blss point is further from pinch-cff,and hence more of the
transistor's operating range may be utilized. Second, a glven
deviation of the actual hias from the optimum bias will result in a
gmaller equivalent input drift.

Tigure 5.4b displays the same independent aand dependent
varizbles as Fig. 5.4a but has m ag a parameter with femilies for
several values of Avo/goTo. The m = 0 curves are straight lines
with unit siope; they ccrrespond to the constani-mobility case, in
which only the linear temperature veriation of the built-in
potential affects the current. The plots in Flg. 5.4L are of use in
the estimation of the eguivalent input drift generated because of the
variation in the value cf the expopnent m; within each fawmily the
comparison is among E1l's biased at the same wvoltage relstive to
the pinch-off voltage. Varlations inm m are seen tc be less
significent at smsller Avo/goﬂo.

Although the variatior of V. with T 1s actually not exactly
linear, the above guantitative results are reasonably accurate. 1In
any cage, the optimum bias Vgoo given by Eg. 5.43 with ¢ defined

by Fg. 5.40 does give the smallest input drift.

5.7. Power-Iaw Neture of the Transfer Characteristics _24], [25]

In making experimencal messurements of FAL static drein
characteristics in the pinch-off range, determination of the effeclive
pinch-off voltage 1s not possible by dlrect messurement because of

the presence of spurlous drein current at and beyond pinch-off.
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Further, indirect mcasurement is hampered by the absence of &
theoretical straighi-line furction Zrom which the pinch-off voltage
may be dblalned as an interceyhiur a slope. IT the transfer charac-
teristics could be approximated by a power law, then the pirch-off
voltage could be determined easily from a straight-line plot of
experimental quantitices. We have seen that the upper bocund on
I(s)/IO is a power law with exponent n = 2. $Since the lower bound
is very close to the upper bound, it is reasonable Lo expect thal the
transfer characteristics of any FEY (subject t¢ the conditions on the
coping density discussed in 3Section 5.1) can be described by a power
law with n =~ Z. In this section we shall confirm this expectaiion
theoretically by proving that the wvalue of the exponent =n 1s con-
[ined to the rather narrow range 2 € n £ 2.2Y%, and experimentally by
Ppresentlng representatlve data corroberatlng the theory and
illustrating the usefulness of the power-law approximation.

We assume & powey law of the form

I(3) _ (1. g)" | (5.486)

which is a linear furnction cf the gate voltage. Compariscn of this

expression with the theoretical bounds given in ».1( shows that
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L = 2 18 clearly the smallest possible value of n. ‘he largest
value of r may *herefore be obtained by matchirg Tg. 5.46 with the
lower 1imilt 1In 5iq. S.17.

As suggested by Aqg. 5.&7, experimental determinaticn of the
exponent n in Eq. 5.46 1s most easily come by fitting a straighi
line thrcugh points of I/gm versus Vg. Thercefore, it is more
consistent to obtain the upprer wound by matching, not I, but I/gm
from 5.46 with that from the lower limit of 5.17. The "best match"
ig defined as that value of n which gives zero sverasge dilference
between the exact and the approximate normalized functlons I/gmwo
over the interval Ba £8 =1, The lower end of tne lnterval 1s
taken as 8o =z 3} rather than s = 0 1in order <c account for the
built-in potential, whosc preserce may limit the experimentally
measurable renge of 8. Thus, meximes »n 1s oblailoed [rom the

asolution cf

1
f[%(l - Vs (1 + 24/5) - %(l - Q)] dg = Q0
Sc
The result is
(1 + JEC)Z
n o= 2.25 (5.48)

1+ 2/ + 1l.5s,

and shows that n is at most 2.25 (when s, = 0) =znd decreases

~

nenoctonically toward a lower limit of 2 as 5, = 1.

The graphical interpretation of Bg. 5.48 is that for a step-
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Junction FET, =n is determined by the straight ime (1/n){l - s)
which vest matches the universal curve {1/3)(1 - +5)(1 + 2/8) over
the range Sc < & = 1. The result is sgheown in Fig. 5.5 Tor Sc -0
and for 8, = C.20, for which n = 2.25 and n = z.15, respecuively.
The value of n is guite insensitive to 8, Ve see from Tig. S.-

that the theoretical I/gmwo curve for a step juncticn is best

fitted by a stralght line over the range 5, < 8«1 1f g is

[

greater than the value s = 1/16 tor which I/gmwo attains a
theoretical maximuam.

Remarks similsr to the zbove spply to junctions other than step
Juneticons, but in these cascn the maximum value of n (corresponcing
to 8, = 0} will lie beiweer the values 2.25 =znd 2.

Flcts of I/gm versus vg for commerical v-n juneiion FRT's
of various structures are shown in Fig. 5.6. (Data were taken on =
General Radio Vacuum-Tube Bridge type 561-D; cf. Appendix B.) "he
external plnch-off voltage Vﬁ and the exponent n are obtained
directiy as the Intercept on the voltage axis and the reciprocal
slope of the straight line. The values for these quantities arc giver
in Table 5.l1. TIUL Ls seen thal the exXperimental points do indeed
defline straight lines quite closely, thus vindicating the use of the
power-law relation 5.46. Moreover, within experimental error Lhe
values of n Jie in the expected theoreticsl range. The departurs
from a straignht line in some units near the pinch-off voltage is due
to drain leakage currert, which is the effect that prevents direct
measuremensy of the pinch-off voltage. The expected maximm in

I/gm occurs at small, forward gate biases, but is not significant in
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Fig. 5.5. Theoretical curve of I/ng6 véa. 8 for a

step-junction FET, and the best-match straight
line for two values of By
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o # 2 left and upper scoles
45 o #3

& # 4)right and lower scales
& F1l

1.5

3.0 1.0 T
ng
{volts)
1.5 0.5

-30 -2.0 -1.0 0 +0.5
Vg (VO“’S) -

Flg. 5.6 Plots of I/.s_rm vee V. for four cammercial

FET's (see Table 5.1). For unit ## (p-channel
device) the sign of V_ has been reversed.
The drain biases were & v, = 25v (#2), ana

lvdl = 10v (#3, #, f1). a
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UNIT TYPE NATURE OF Vﬁ n
JUNC'TTON (volts)

#2 Crystalonics alloy -9.33 2.70
¢é10

#3 Motorola epitaxial w2, Th 2.18
MMT76L

2 Texas Instruments diffused +1.70 2.15
TEX6GL

#11 Fairchild diffused -2.68 1.98
FSPLOL

Table 5.1.

Data from the curves of Fig. 5.6.
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determining the best-fit straight line if the range O < \vg\ <V,
28 considered,

Tt is concluded that the power-law relation of Eg. 5.6
satisfacucrily represents poth theoretically and experimentally the
Lransfer characteristics of an FET in the pilnch-oft region and
allows values of the pinch-off voltage snd the exponent tc he deter-
mined directly from experimental measurements. FEquation 5.46 is not
intended to bpe exacl at any one point, but represents an approximatior
to the overall shape of the actual traqsfer characteristics, Purther,
the worst percentage errors in 5.4€ cccur near s =1 (Vg = gp)
where I 0, l.e. Where percentage errors are unlmportant

experimentally.

Z.8. Conclusions

An upper and = lower bound have been established for eech of a
rurther of guantities desecrihing the operation of FET's beyond pinche
off. The guentities considered were the drain current and the
exponent in its power-law approximation, the egquivalent-circuit
elements, several filgures of merii, snd the blas volvage for zerc
temperature coefficicnt of drain current. fThe method ¢f approach uscd
in this chapter may, of course, be applied to other quantities. The
wounds, which are applicable to subeitantially ell practicel impurlty
profiles, represent The solublons of two analytically simple
structures, a step-Junclion FET snd o dellz-Jjuaction FET. To each
zase the bounds are close enocugh so that the solution of an analyt-

ically intractable device, such as one with a diffused junction, may
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be satisfactorily approximated bj'either bound. Thus, burdensome

or hopelessly involved computations are avoided. Further, for design
and fabrication purpeoses the doping profile is only of pccondary
importance.

The proximity of the bounds on the drain current and the
parabolic upper bound suggested a péwar-law approximation to the
transfer characteristics. The theoretical and experimental conclusion
that the exponent in this power law i1s close to the value 2 lends
weight %o the simple derivation performed in Section 4.1.

It must be emphasized that the results of this chapter have
been derived from analyoio containing some approximations based on
& device model which itself contains certain idealizations; the
bounds that have been obtained are therefore not necessarily
absolute for all practical FET's. Nevertheless, because of the
anticipated parrow limits oﬁ the device parameters, it is a reason-
able approximation for most practical applications to employ the

gtep- or delta-junction formulae.
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CHAPTER VI

COMPLETE FIRSI-ORDER BQUIVALENT CIRCUIT OF AN ARSITRARILY
DOPED FIELD-EFFECT TRANSTSTOR

The assurption in Chapter IV that the channel current. T did not
vary with position enabled the-équation relating the currsnt and the
eleciric field to be solved by a simple Integration. Under a-c condi-
tions, however, I 1s nol independent of ¥, 8ince somc capacitive
current flows between the channel and the gate. In this chapter we
extend the analysls of Chapter IV by lncluding this current. The
resulting eguatlon is ccrrespondingly more difficult, and only an
approximete solution is developed. Thae present treatiment, which again
ia based on the pradusl approximation, is valié for arbitrary impurity
profiles and yields as ite objective the "real™ equivalert circuit,
that is, the one that would ve measured at the deviece terminals
(related to the a-c components of voltage and currens; cf. Section
2.3.2). The complete small-signal, low-frequency equivalent circuit
is obtalined clrectly from the approximste solutions Jor the draiz and
gate currents and is limited in validiiy by +the gradual approximation.

Two "new' elements are contained in this reel equivalent circuit:
o forward transicr capacitance present both helow and heyond ploch-ol'f,
and & drain-source capacitance presenl below pinch-of?, Tn other
respects the circult is identical to the circult of Fig. 2.4, the
remaining elements having the voltage dependences derived in Sertion
i4.2. In particular, the source-gate and drain-gate charge-capaciiances

are Zdentical e the corresponding real quaniities. TLata from a wide
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variety of TET's subnstantiate the predicted circuit.

6.1. TDifferential Equetion for the Channel Fotential, Including the
Effects of Gate«Channel Current

As mentioned ir the foregoing introduction, the capacitive
currens that flows between the channel and the gate must be considered
it a complete solution of the éhannel iz to be obtained under a-c
conditlons. The problem of solving for the channel potential with
the gate-channel current included iIs similar to that of solving for
the potential alcng s non-uniform transmission line with longitudinal
reslstance and shunt capacitance, both of which are voltage dependent.
{'ne assumption of only longitudinal wresistence is consistent with
the neglecti of Ey in the chemnel.) 1In this section we shall derive
the differentisi ecuation for the channel potential by a careful
consideration of fhe flow ol charges.

Figure 6.1 shows the flow of charge in a typical element of an
FET at time 1. The net rate of flow of charge across the element in
the positive x-direction is

I(xtdx,t) - I{x,t) = %% ax
Since the channel current is not unizcrm in the present treatment, we
use the symbal T  +to denote waiues within the chznnel, and we use
svbseripts s, d, and g o refer I +to the device terminsls. In
accordance with the sign convertion given in Fig. 6.1, Eq. L4.24 for
I may be used for both n- and p-type chemmels in the sbove formula

1f a minus sign is inseried;
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I (x+dx,t)

dQ(X,T)7 I

’

aw (x,t) -t
o —
ou(X,1)—mm

x+dx

Fig. 6.J-t

T

I(x)

Flow of charge in an element of an FET.
The cross-hatched area represents the
Bpace-charge region at time t¢; the
Bhaded area represents the space charge

gdded in the time interval dt.
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) Coax,t)
%ﬁ dx = %§ - HaAW %§,JF p(z) dz |dx (6.1)
6]

Ag in Chapter 1V, 06(x,t) is the normalized pozentiazl in <he

chamnel measured with respect to the gale zpd is glven by

(X:t}
(Z - z)o(z) dz
0,8} = 2t (6.2)
n
Jr (1 - 2)p(z) d=
G
with
W(KJt)
o() az = (6.3)
u(xat)

Now, the mobile charge dQ contaired in the aifferential element of
channel must change (with time) 1T the ouuvgoing current I(x+dx,t)
differs from the Incoming current I(x,1). Ta time dt the amourt
of this change is [3(dg)/at] dt. Tae rate of the change 1s thus
a(dg)/st and is, of ccurse, equal to the rate st which charge Tlows
intc the gate terminal of the element. This latter rate in turn is
equal to the rate at which charge accumulases oan the depletion region
on the gate side ol the junction. Therefore,
w(x, 1)
- :

3T raql = %% aAJ[ p{z) Ca | dx
1
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1
- %€ —aA_[- p(z) dzlax (6.4)
u(x,t)

where use has been made cf ¥g. 6.3. Since <he net flocw of charge into
the element must be zero, the right-hand sides of Egs. 6.1 and €.4 are

equal:
1l 1

A - a_ A2,
J{ o dz| == 3T J[‘p az (6.
8] a1

We now normalize the length variable x with respect to L

T
~—

x .
define
2
L
"o = W (6.7)

which has the dimensions of time (and is equal to 3/4 the zero-bias
trangit time for a delta-junction FET, 2/3 that for a step-junctiom
F=1}, and substitute the normalized transconductance function defined

in Eq. 4.28,
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50 that REg. 6.5 becomes

%[@:(O) %] = =1, -g—t le(e)] (6.8)
or
> 8
il fg(;zf) af | = v 2 ra(e)] (6.9)
aX2 o ot

3]

The two spatial boundary conditions on § are

8 = s(L) al X =0 (6.10a)

jan)
It

a(t)} at X =1 {(6.10b)

The temporal boundary condition depends on the initial conditions
that are assumed.

Equation 6.9 is the partial differential equation governing the
chammel potential. No restrictions have been made on p; on the
frequency, or on the magnitude of the applied signal, but the validity

of this equation is limited by the gradual approximation.

6.2. Approximate Solution for the Drain and Cate Currents

The differential equation 6.9 for the channel potential is
nonlinear, and its geolution is diffieult cven for the simple delta-
Junction FET for which g(8) = (1 - 8). We shall therefore cbiain

only an approximate solution valid for low frequencies and small a-c



slgnals. Ve assume that the right-hand side of Bq. 6.9 is small,
ana solve for the current by an iterative procedure.
As a first approximetion we assume that ag/ét = 0. The

solution of 5.9 subjJect to boundary conditions 6.10 is then

3 4
z(g) ag = x[g(m ag
fa2r9) (6.11)
= X —_——— [
Gowo

where Il denctes the expression for the drain curreat developed in
Chapter TV. Not unexpectedly, ihe first approximaticn to the a-c
aolution is the statie solution of Chapter IV. We use this result
to obtain a beiter apprecximstion for ag/at For substitution intc

the righit-hand side of Eg. 6.9. Equation 6.11 yields

wnere dcls denote differentiation with respect to time. Thus, since
.. 1

2g/dt = {dg/d0)6, the second approximation to Fd. 6.9 is

6 .

2 _ . I
E—E ‘jﬁg agl = -7, gg 1 X — g{s)s (6.12)
ax ds z(8) G,

Consisteny with this second-order approximetion we may substltute
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from Eg. 6.11 invo the right-hand side of Eq. 6.12.

cf both sides of thc resulting equation oy

e
a . _ .
e Igasﬁ dx = g(a) ao

gives

S
$

g

rol =
[

S
d da a Qj 4% -
ax |ax | © Y s

-

5

which yielids

Matiplication

fg af + g(s)s|dg

8 2 Loerg
%%ng ag| = "y %f f%(V) dv] %@ af + gf8)g(s)s p+ }2 Lo
° o (6.13)
where I 1is a constant of integration. The integral in the curved

srackets may be expressed in & simpler form by partial integration:

A

For brevity, we define

I

- 9
T
£(o) = - fg(mg(e) - a(®)] 3 + g(e)ale)s

so0 that Eg. 6.13 may be written as

5]
jl-[ glvy dv d_%g ag *‘=f%(¢)[@:{0) - g(#] a¢

(6.1k)



8 o 2
1 A1 4E a2 o =\
ﬁg‘j-g d¢ = g(ﬁ)ai =h o= ETOf(B) (€.15]

)

Since the second-order solution of Hq. 0.9 éiffers from the First-
order souzion only In terms ¢ tne order of Ty We must, have

h~1,/6 W, and hence

therefore,

2(3) |1 +—=1(9) |ae - h dx

which, upen integration and application ot boundary conditicn 6.1Cs,
yields

) d
e - [ ef) o - [ ez <1
h i3

£

The other boundary condition, 6.10b, allows the determinaticn of h:



Il Toa
h:cw, +—'75jgfd¢
0" 0 h™J
T cw ¢ ¢
h%f}’%"—*'fo“%‘g jéfdij
oo 1 /.

Thus, correct “o the Tirst power cf = Ba. 6.15 beccmes

o &
I. W
¢o 1 00 . N s
PO LA T - fg(m[f(m - £(6)] of
5 0 1 A
The current in the channel is
r - u e)
p.a.Al‘\o o
L == = 6’.5,.; s de
(9]

Henceforsh, &8 in the previous chapters, the d-c component of the
channel current will be considered a positive gquantity. (Its
dircction depends merely on the type of channel.) Wita this under-

gtancing, *“he zbove equation may be written

. ok
- GOrTog(e)gﬁ
G W 2 4
= T3+ 8ok, ?lo fg(?ﬁ)[f(@') - £(8)7 af (6.16)
S

The two values of I cf particular interesl, tie drzio sud gale

currents, are glven by
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Ig = Thyo (6:17)
G, = 0
ERErR S f (#)[2() - £(0)7 ag (6.18)
e Ty (6.19)
oy -
TG T f(s) - £(d)] (€.20)
1
Frorm the definition ol Il’
d
Il(s,d) _
- S (6.21)
<o 0
S
we Obtain
i (s,3) ,_ ,
e 'ﬂ;r = g(d)ﬂ - g(S)S :6-22}
o o

Equations 6.18 and €.20, together with 6.21, 6.28, and 6.1k for f£(8),
are the sought-after results that will provide the complete Zirst-
crder equivalent eircuit. 1In Section 6.5 we show that this solution
is valid for angular frequencies w such that wr << 1.

The time dependencas of Id and of Ig zre contained in the
time dependences of & and of 4 and i the time derivatives present
Ian f. For sinusoicéal signals the wime derivative terms generate
cozporents of the currents that are out of phase with the applied

voltagesn. The =hove cquations thus enable us to determine the real

equivalent-circuit capacitances.
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6.3. Bouivalent Circuit Below Pinch-Off; Experimentsl Verification

ol Cnr - O s as &z New' Cirecuit BEiement
( 22 12/ '

In this seetion we shall obtain tne complete cquivalent circuit
for an FET by assuming small, sinusoidal voltages at the cevic
terminals. The concucitive elements i the circult are Ggg and gm;
the capacitive elements are Cy;, Cp, Cpy (£ 312)’ and
022 {4 012)' In additlicon to the source-gate ani draln-gste capaci-
tances that arise in the treatment of Chapter IV, the particular
circuit configuration that we shsgll Justify with physical argumeats
containe a “inite (negative) drain-source capacitance Cds = 022 - ClE
ané a finite forward transfer capacitence (Czl - Clz). Txperimental
data which confirm the presence of CdS are presented In this section.

The capacitance (C0 remains Finite beyond pinch-off and is
i

%)
oonsidered 1n the next secticn.
In terms of whe short-circult admittence parameters yij of &

+wo-port network, the general equations cescribing the operation o

an 5T are

(6.23)

[y
|

a = 9mve T JYan¥e

with the conventional signal polarities. We may place Eqs. 6.18

and 6.20 in thiz form by substizuting
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s(t)

s, + py(t)

4(8) = s(8) = (5, - 8,) + (L)

in which s, and (do - sc) are the normalized a-c gate and drain

biases, and vhere and p., rcorrespond to the a-c¢ signuls
[

Py

v and Ve We assume small, sinuscidel sipgnals, and hence we have
g

o, | << s, o] << (a_ - s_) (6.24)

just
PysD, ~ o (6.25)
Equation 6.2l =1llows us to expand Il(s,d) as
d
f(e0a) = o, [ n(®) ag

~ L (e,dy) + Le(ey) ~ els e, + (e )p,

Use of the sbove relations and the resulis of the previous section

yields the results



1é2

(Ii - id) = d-c drain current
= I}_(So’du)
Y1 T 9l
Y1z - md,

Too = Uan 22

in which the circuit elements are given by

d

J‘g(e){g(S) - g(8)} as

~ @ B
Ciq = Cyp + TG,8(s8) q 2
d[-g(e) do
2

a

fgwnaw-gwnae

5
a
fg(e) G
s

9]

b Tosog(d)

2
Z

g, = o [e(s) - &d)]

(6.29)

(6.30;

(6.31)

{6.33)
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& ¢] d

fg(a) fg?'(,@:a-w g (Bap ¥ de
Cpp = Cyp + 73 [a(s)-g(e)] & s -
; g(6) de (6.3}
L4
022 = :}O g(d) (6- 35)
d 0 d
f a(6) j E(#a - f £(p)ag $a
. o _ . 4 11 2] e
(422 - {-'12 - 10(}0?;:(‘:1) r*d 3 (6'50)
L{g(m as
=<

The valuee of o ard d in Tgs. 6.31 - €.3G should aclually be =
and do’ bus the subscriosis huve been droppea for convenience. All
the circult elements are positive quantities. The signs in Lgs.
6.27 ~ 6.30 may be establisned either by physical argurents or by a
careful consideration ol voltage polarities ana current directions.

Ag expected, the d-c¢ drain current, the transconductance, and the

ocutput conductance agree with the corresponding expressions derived

in Chapter 1V. Furthermore, the charge-capacitsnces satisfy the

ldentitles
ﬁ*-—
C1- =03
»*»
0= Cy,
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These observations are reassuring, for they confirm that <he present
theory does not radically alter the conclusions of Chapter IV. The

remaining quantities, -0 and (022 - Clq), are new and are
Fa

(CZl 12)

not prediected by previous thecries or by intuiticn.

The above remarks and Egs. 6.31 - 6.36 suggest the equivelent
eircuit showr in ¥ig. 6.2, This cireuit satisfies two importart
symmetry properties ilnherent in {he 8T model under consideration.
#iret, as discussed In Sectlon z.3.2, an interchange of s and ¢

should produce en intercaange cf cng and Cag. rc = (¢

g 11 - C12)

and if Cdg = Clz’ when thig cenditlon is fulfilled. Second, if s
and <& are interchanged, 1l mapgnilude ol Lie "actlve" part of tne
forwarc transfer admittance should be unaltercd, but the sign should
be reversed. This conclusion may be esteblisned by referring to
Fig. 2.5. In normal operation (¥ig. 2.5a) with source-gate and
drain-gate pctentisls (s,d), a variation ir s (i.e. in Vg) with
ad-s (i.e. Vd) constant, changes the spacc-charge-region shape
over ithe whole channel length, thereby altering the drsiwn current.
With potentials (d,s) applled (Fig. 2.5b), & variation in d
changes the space-charge region shape in cxactly the same mamner as
the veriation In s did with biases (s,d) hence produces the

W2

* . .
identical effect on the drain current. Hewever, interchanging =

* In this argument we have neglected the drain current that flows
sarough the "pacoive! component €, o©Ff the forwazrd trapsfer
admittance. The magnitude of this™ “current is medified if s and
d are interchanged (ef. #ig. 2.5¢).
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GATE ig Cie ig_ pRAIN
o Y 11 » o o}
"'Vg -[ +Vg
Cu-Ciz

|

SOURCE e

Fig. 6.2, Equvalent eircult for an FET.
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ana d reverses the direclion of current flow. Taerefore, the

signs of the admittances differ in the two cases. Fguations 6.33
and 6.3 immcdiatbely rcveal that only the sign and not the magnilude
of the active admittance [g - jm(czl - Clz)] iz altered if s and
d wre interchanged. 'us, the second symmetry condition is ful-
filled by the circuit of Fig. 6.2.

Formulse for the capacitances may be obtained for any deping
profile by substitution irnto the previous equaticns. Tven for simple
sTep- and delta-junction FET's, however, the resulting expressions
for arbitrary viases are rather cumberscome end will not be given.
Figure 6.3 shows the shorl-clreult capacltances Cij Ior these two
types of FET as a function of the drain-gate voltage for the partizu-
lar pgetes bilases s = 0O and 5 = 1/&. The correspozding curves for
;

the eguivalent-cirenit ecepacitances O C

~
o -

sg = (€11 - C1p/7 %, = C1p

~ o

. (n - . - A 3 i ™
Cas = (Con 012)’ and (CZL C,,) are given in Fig. 6.4

Of the two "new" circult elcments and {Czl - C.,)s we

Cds -2
shall discuss the former in this section sirnce it vanishes beyona
binch-off, and we shall ciscuss the latter in the next section since
its visualization is casicr in the pilnch-off range of operation.
Although the experimentally measureble capacitance ng is positive,
the circult element Cds is negative. The existence of this
nepative element is nmade plausiblce 1f wc examine how 022 arises

physiezlly. Baslcally, the short-circuit cutput capscitance is

defined by



STEP JUNCTION

(1/2) ¢y

t
'
t
'
'
1

0

Fig. 603.

0.25 05 4 — 1.0

Normalized short-circult capacltances versus
normalized gate-drain potential for gate-source
potentials 8 =0, 8 =1/k. For 4 >1 the
capacitances are independent of d.
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§=Q
wemm- §50.25

STEP JUNCTION

Fig. 6.4. Equivalent-circuit capacitances corresponding
to the -short-circuit cepacitances of Fig. 6.3.
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1

v

g

nn [quadrature component of ir}

4 A v =0
g

Even with vg = 0, some capaclitlve current [lows Deltween the gate
znd vhe source because whe space-charge-region boundary varies along
its entire length when Vi # 0. fThe flow pattern of tﬁe capacitive
current is shown pletorially in Fig. 4.5. At the drain terminals the

capacitance C22 > (O I1s observed. All thec cspacitive current from

the drzin flowe into the space-charge region, but in addition some
capacitive current fiows from the source into the space-charge region.
(Because of the structure of an FET, no capacitive current flows
d¢irectly from the drain to the source. Cf. footnoie page 29.) ZHEither
from physical arguments or from ®Bg. 6.16 for I(x,t} we may irfer

that the quadrzture components of i'3 and i{1 are slways In opposite

directiovns. Thus, the net guadrature component of ij may bc

considered to be mace up of two components, ig ir the same (spatial}

direction as 1 and is in the copposite direction to i,. This

d’ d

latter component irplies a negative drain-source capacitance.
Tn order to verify experimentally thal the oubtpul capacitance

C,., =Zs smzller than the reverse trsnsfer capacltcnce Clq, measure-
YN &2

ments were taken on a wide variety of FET's. The experimenial selups
1sed <o oOptain these data and the other eguivalent~circuit data
presented in this chapter sre described ln Appeadix B. Consistently

and without exception C,’,2 was snaller than Clz below pinch-off.

Morecver, beyond pinch-off C. . =~ constant (very slightly de-

Cop = 13

pendent on biss), indicating that in this range these elements may
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?DRAIN

VAN

SOURCE

e

Fig. 6.5. Rough sketch of the capacitive current
in en FET with ?g = D,
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be identified as stray capacitances, A convenient quantitative

experimental tegt is 1o compare the values of ( and C at

1z zz
8 =1 (Vd - 0). Avplication of 1'HEpital'’s rule to Eqo. 6£.32

and 6.36 shows that Clz(s,s) = -(l/E)TOGDg’(S) and thas

ng(sfs) = -(1/3)TOGOS'(S)- Tence,
C'"JZ(S,Q) E) 6
= -;-: . 7
C, (5,8 3 (6.37)

regardiess of the tyve of junction. Use of this formuls eliminates
whe necessity of including the »uilt-in potential or the pinch-off
voltage in the analysis of the experimental data. Table 6.1 sihows
some representative data for the ratic 022/012 with biases
¥ =V, =0, (The stray capacitance was subtractec from the
measured values before the ratic was computed.) gfurthermore, the
ratlog were roughly independernt of gate blas, even though the
indlvidual capacltance values varied greatly. Although some wnits
have ratios that differ appreciably {rom the theoretical wvalue of
0.57, the sbove statement that Coo <Cyyp without exception below
Pinch~olf Indicates that the present theory is certainiy cualitatively
valid. Thke quantitative errors present in some units may be
attributed to the idealizations used in the theoretical model and in
its analysis.

The presence of Cds % 0O in the eguivalent circuit below pinch-

off is not too Zmportant practically Ttecause this capacitance is

smal- compared with the other cirecuit capescitances. However, the
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TRANSTSTOR NATJRE CF C../Cs..
JUNCTICN ae e
(7,57, = ©)

Ancleo ailifused

FG 34 (45k) 0.87
Jrystelonics alloy

C€Lo (£ 1) 0.69
Motorola epitaxial

MMTE3 (2) .76

M7 6l (# 3; 0.96

MMTES { 12k} 0.92
Texas Ins. diffused

TIXE91 (4 b3 0.96

3-lead, p-chamnnel

device (no medel i) 0.71

Table 6.1.

Representative data showing the
retio 022/012 with the biases
V.=V, =0, (The ratiuvs ure

g d
roughly independent of V .) The
theoretical value is 0.675.
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exisienrce of this capacitance in actual FET's does lend welght <o

the vglidity of the foregoing thecry.

6.4, Equivalent Circuit Beyond Pinch-of?; Iixperimental Verification
of C,, a8 a New" Circuit Element
{a

As Iin Chapters IT snd TV, the ecguivalent circuit of the previous
section may be extended to drain-gate veltages grester than pinch-off
by substituting d =1 1in the appropriate equations. The only ron-

zero olements are

1
fg(e)[gcs:- - a(a)7 40

Ci1 = quog(S} - i 5 (6.38)
fg(e) ae
g, = Ug8(s) (6.39)
%, 3] 1
[ [ @) b - [ &) ap oo
o
0y - T O u(e) 2 . 3 (6.10)

[ ste) e

5

and +he resulting equivalent circult is given in Fig. 6.6. The lnput
capacitance Cll and <the transconductance g, have already been
discussed. The forward transfer cepacitance CZl’ hovwever, 1ls new
and is nol present in the general circuit of rig. 2.9. The physical
explanation of Cgl may ote evinced by considering the f{low pattern of

capacitive current in the channel. The pattern will te slmilar to



174

GATE ‘g, 4 ORAIN
+ Vg + A
Cy T ® [gm-jwcz,]vg
o- —0
SOURCE

Fig. 6.6. Equivalent circuit for an FET beyond ploch-off.

——— STEP JUNCTION -
----- DELTA JUNCTION

o 0.5 1.0

Fig. 6.7. Bquivalent-circult capacitances beyond
pinch~off for step~ and delta-junction FET's.
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that given in ¥ig. 5.5, except that beyond pinch-off a variztion
A in the drain voltage has no influence on the channel boundary
and hence cannot affect the dérain cr gote currents. However, &
variztion vg in the gate voltage will alter the channel boundary
along its entire length. The capacitive current flowing toward the
drain {as well as the capacitive current flowing toward the source)
will therefore be affected. 7The variation in the drain current
producaes CZl'

The step~ and delta-junction expressions for the forwsrd {rans-

fer capacltence are

S . 34+ 155 + 10s
7. G

= G - step junction (6.h1)
Ll r ?
el 70 'o7o {l + 2_/;_,:) J

2

!
L delta junection (6.L2)

Cor = 15 oo ?

I Fig. 6.7 these couations are plotted zlong with the curves Tor ihe
irput capacitiances.

For s » 1 all capacitances vanish, so thal both Cll and C21
should shcoretically exhibit a sharp drop at s = 1. (This
phenomencn nas been discussed in Section 2.4.2.) At the singalar
reint s =& = 2, +the magnitudes of these drops depend on the
direction of approach, but Zor d > 1 +thne drops are independent of
the blases. In fact, application of 1'Edpital's rule to Egs. 6.38

and 6.40 yields
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i
li
—
o
£
(WS
.

independent of the type of ITT.

Measuremerts were taken on a large sasmpling of FET's and the
predicted circuit was substantiated. Most important, ¢ bias-
dependent forward transfer capacitance was observed in all iran-
sistors tested. The output and reverse transfer capacllunces were
equal and essentially constant, =nd hence thelr presence may be
attributed to Interelectrode effects; that is,the eguivalent circults

of the devices themselves have Cp, = Cos = 0. (Further justification

for this statement is the fact thalt beyond gate pinch-off C21 was
equal to C;, and qu.) A Tirite output conductance was also
& L

measupred, but this parameter is considered a second-order effect
because 1t is small and because its explanztion reculres drastic
mocification of the simple model that is being used.

Curves of C,, end C.., versus VYV _  for two transisiors -

1t 21 &

Crystalonics 0610 (#) and Motorcia MM763 (4#Z) - are shown in Iig.
- e * 4 . - - ), - - 3
6.9, Although in every unit testeq, 021 was Geflnitely dependens
on &, +he amount of zctual variation of this cuaxntity (for

| < |v.|) did not always agree witk the predicted variation (as

vyl < Iy

%  The abeence of sharp drops in Ci1 and 021 makes it difficult

to Tit the Crystalonics curves to the theory; the swmall voltage
range on whe Motorola unit and the fact that three "arbitrary”

pararcters must pe chosen (VP, VC, and TbGo) render o

theoretical fit on this unit unavailing.
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ir the .4 curve for the Motcrola unit of Fig. &.3.} ‘lhis
i

discrepancy is partly cue to the fect thet measurements could not

be taken near s =C (V_ - -V_ ), where C,

< o o1 has a steep slope.

Nevertneless, units which exhibtited reasonably sherp drops in Cll
andé 32; at gate pinch-off' and which thercfore permitied ecalculztion
of lthe ratic Cﬁlfcjz of Eq. €.43 yiclded values close to <he
theoretical velue 0.4LC. These data are presented in Teble 6.7.

Thne experlmental verifiecatlon 5% the existence ol sorves

Ca1
tc confirm the validity of ithe theory developed in {his chapser.
CZ practical imporiance is the Zect that a2lthough the suscepsance
-:JC?J_ uppcare togevher with the usually largs conductance B le
deleterious eflect of CEl will e novicesble at higher frequencies
and &lso at gete blases ncar pinch-off {where g, is smazl)., TIn
z2cédition, —he mere presence of C?‘J_ in the equivelent sirecuit

acccunts thecreticaliy For the previcusly mexplained high-reguency

talioft in &)

€.5. Validity of Restlts

Tne equivalent circuit thet nas been ceveloped from an approximate
golution of the differentia. cquation €.9 is velid for "small signals”
and "low frequencies.” Xquation 6.24% defizes “small-signal’ by
recuiring that tne a-c components of the terminal voltages be small
cempered with the d-c components. In this section we shall show that
our solutlion 1s valid 1P W, < 1, and hence "low Irequency” means
w << 1/ Ty

Tirsty coasider the case whea s == d (V. =0). With these



TRANSISTCR NATURE O or/Cqy
JUNCTION -
b:l, a>1
Motorola epitaxial
MMTE3 (4 2) .48
(1az) 2.42
MMTGh (# 3) 0.43
MMTO3 (42k) 0.4z
Texas Ins. dlffused
TIX691 (42.3; 0.k
(# j‘i“ :’ 0 L] "’5‘5

Table 6.2.

Experimental values for

the ratio.

gate plnch-off.

CZl/Cll a%

thecretical value is 0,40,
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biases the meaning of the solution of the initisl iteratlion, Egq. 6.11,
is rot clear, and the asccuracy of the final so_ution, Egs., €.18 and
6.20, is in doubt. To = [irst approximation, however, the channel is
uniform, so that the channel current is equal to the current through
a reverse-blased Jjunciion and is

2 _ 3 4+ EA - ;{_'
I(x,%) = Jﬂwg\tz IR (= 2)

. x 1
-vagGo'rog’(s){z -3 (6.40)

:

where vse has been made of ZEgs. 1.0 for g'{c) and 6.7 for Ty

This current causes s voltage drop Av belween the center af the
chammel and the drein and source terminals. Thus, the channel igs not
rezlly uniform, but varies in width because the gate-chanrel potensial.
is pot constant. PFigure 6.9 depicts an FOT under these conditions.

If the chammel voltage drop Av 1s small compared with the depletion-
region voltage drop Vg, then the miform-chennel approximation s
satisfactory. The channel resistance (per unit length) is given by

u -1

] = paA_[-p dz
O

a:[LGOg(S)]-“ = consbans (independent of x)
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Fig. 6.9. FET with blas V., = 0. The capacltive
current across tﬁe gate~channel junction
is indicated by the curved arrows and
causes the voltasge drops Av in the channel.
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2]

1, '(8)
=g I T B E)

gnd the channel may be considered uniform if

v
av| 1 g |g'(S) -
fit - goni] Il <2

For the doping profiles considered in Chapter V, it is easy to show

from fgs. 5.26 and 5.27 that

g
1 -8 g 2/5(1 - ¥8)

the right-hand side belng the value for a step-Junciion device.
Therelore, for practical FET'S we merely need
v

| —— <1 (6.15)
g 2/5(1l - ¥5)

[$:5

o, |

o+
<]

S8ipnce samall-signal operation entails \vg/vgl << 1, inequallity

6.45 is viclated only for 8 = C and s 1l. The violation near

s — QO arlses hecausge of the small voltage dyop across the depletion
region and may be disregarded becsuse we have neglected the bullt-in
potentinl; 1.e. 8 = 0 can never be attained in practics. The

important viclation, near s =~ 1, occur: because the chamnnel is
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then reletively narrow and the voltage drop Av correspondingly
ilarge. We conclude that the channel is uniform if ar, < 1,
except for gabe blases very close “o piluch-oll.

But, for a uniform channel, integratlon of Eq. 6.4k gives

I, =~ I(x,t) dx
L/2
S
+ ‘:«]ngog (s)
= - _3 1o
;rg = -2L4 Jwngcg {s)

and these eqguations are identical to those obtained by taking the

limit d - s in the results cf Section 6.3:

Id = -Jwgclz(sls)

1. ,
-+ Flav Gog (s)

Ig = Jwvgcll(s,s)

= -jangOg'(s)

Thus, if W <1, the approximate solutions for Id and Ig are

valid for s =d, unless s 1is very close <0 1. By extension, then,

if T, < 1, *he solutiong are alsc velid For o ;4.
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Now consider the case when 5 4 d. We have approximately
solvec the differential equaticn

5" y | 3
;"ﬂ Ig(m agl + 7, =t le(@)] =c¢ (6.46)

Yo

s

by assuming that the magnitude of cach of the two terms on the lefi-
aand side was large in comparison with the magnitude of the sum of
the two terms. We know that our solution is accurate tc terms of
order r_, and that the resulting left-hand side of Rg. 6.46 is
. . 2 RS
actually not zero, but is of order (mTO) »  The individual terms,
however, are each ol order wr . Therei'cre, the above assumption
r 3 )XA‘
and our approximate solulion are valig if
) 1 L
wr, << 1, or W << = (6.47)
o

"

The second inequality above defines "low-frequency.' From Zgs. 5.2

and 5.322 we see that

Bome typical wvalues are given in Lhe nexl section.

* There is another viewpoint from which this condition may be
cerived: An “exact" solution of Eq. 6.45 could ve written as g
vower series in w7 _; terms of order kigher thar (wr )3 could be
negiected if v <<T. mMirthermore, since the next terym in the
approximate solu%ion would irtroduce components njz out of phase
with the components resulting from the terms in wr , a sufficient
condition for validity might be cn<1/TD rether thin o << lfwo.
We have been comservative, however, and nave used the latter
inequality.
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Further approximations to the solution of differentizl equation
6.46 would give rise to additional ecuivalent-circuit elements.
These elements would become important at frequencies higher than
those which satisfy Zg. 6.47. But Eg. 6.46 iz based on the gradusl
spproximation whicn iiself breaks down at higher frecuencles wher
larger Ig flows; that 1s, when, Lo addltion Lo Lhe longlludioel
channel resistance and the gate-channel capacitance, the "transverge'
zhannel resistance must be included in the analysis. Thus, the
thecry developed in this chapter represents the limit of appiieshility

of the gradual approximation.

6.6, Yome Turther Przcticsl Considerations

In order to inject additional practicel feeling for the
snelysis confucted in the chapter, we shall, in this section, firstg
indicate & more usciul form for the Forward transfer admittarce of an
TET and tvhen dieplay typleal numeriesl wvalues Ior some of the
egquivalent-circuit parameters.

Beyond pinch-off the forward transfer admittance appearing in

. *
the TIT equivalent circuit (Fig. £.6) is

Yoy = & = d6Cy (6.48)

- 8,1 - /ey

¥ Arguments similar to those which fcllow apply below pinch-off to
the cirecuit Of bkig. 6.2
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A more instructive form for this admittance is the single-pole

arproximation
&g
Yol * T (6.49)
1+ o
w
£
with
g = Coy

being whe radian frequency (dependent on the bias point) at which

the magnitude ol Yoy ie 3-do wclow ito d-¢ value., By using Eg.
6.49 rather than 6.48 we can consider g, to be tne only element in

the Jorward transfer admittancc. Then Fg. 6.49 provides the
visualiizastion and interpretation for the freoguency dependence of g, -
The break frecuency ah is somewhatl greater than the frcguency
W

.Jq“__ - H_EE ~ :5.1. (6.50)
Q L C
beyond whick, s was shown in the previous section, the circuit of
Fig. 6.6 may no longer be valid.” Yhug, the single-pole approxima-

wion might be inaccurste near @w_ because the assumptlons used in
w

K We may interpret the breakdown of +the low-frequency equivalent
circuit in either of two ways. At high frequencies we can expect
additional elements to be of significance, or equivalently, we can
consider the existing elements to be frequency cependens.
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developing the approximation may become uriensble at these higher
freguencies. 7The circumstances are notb uniike those occuring ir the
low-frequency ocpproximetion to the zolleccltor-emitter currenk galn o

of a conventionsl cransistor

04
C
¢ =

[
This single-pole approximation, velid at low frequencies, is invalid
near the break frequency, since, irn particular, the incorrect phase
is predicted =t @ W, [261.
Iyplcal measursd values ol the external pinch-off voliage, the
¢rain current, and the cquivalent circuit parameters beyond pinch-cfi
are presented in Tevle 6.3 for several commerciasl FET's. All data

N . (1"7 - O is

g \ ¢ ™ 'p g
= C.) JYor each transistor, the listed pinch-off vcltage, together

N S N T,
iV SulvadigClle Lo

|
]

£ e
Al Wi

]

with the knowledge that the bullt-in potential lies within the
appreximate range ~ 0.5v < lVCI <~ 1.0v, provides an estimgte of
the value of s that corresponds %o Vg = 0. The cgpacitance vslues
are those of the "intrinsic" devices themselves; the constant stray
capacitances that remain beyond gate pinch-off heve been subtracied.
The bresk frequency W, is equal to gm/CEl' The ratic 5m/2ﬂcll

is ol the order oi the validlty f'requency l/2r:rD and, ircicentally,
18 equal to sthe gain-bandwidth product. As expected on theoretical

grounds, @, iz greater than %m/cll for each FET.
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Oz all the transistors listed in the table, g, ana Cyy were
constani up tc approximately 2Mo, the upper measuring frequency of
the tcot equipment. On all the unlts exceps Texus Instrumenbs

"TIX6SL, C was also constant up to 2Me. Of these units, all

21
except Crystalonics 2610 have gmfZKCll > 2Mc; i.e., as predicted,
tne eguivalent circuit is valid at low frequencies. Init 0610 has
gm/ZﬂCll < 2Mc, 1indicating that for this unit the low-frequency
‘ecircuit may be employed well beyond the validity frequency l/TO.
(This statement might apply to the cther units as well, btut neasure-
ments could not ke taken at sufficiently high fregquencies to obilain
verllicallon.) The applicablllty of the low-Ifrequency circult aw
“high frequencies is not incoansistent with the derivations of the
previcus section, since they predict velidity below l/TO, not
invalidity sbave 1/ o

on TIX691, C was not constart with freguency. (The tabulated

21

capacitance was mezsurcd at 100ke; the 50ke and 1C0ke values were

approximately equal.) However, the megnitudes of g, ana Cpq, botk

of which were consitant, predicted a velidity frequency l/ZﬁTO > ZNe.

Theoretically, then, ¢ should have been constant. Although nc

21
firm explanaticn can be given for this apparent contradiction, there
were two poteniial sourcces of apprecisble error in the measursments on

tnis unit. PFirst, the facl that the smail capecitance 021 appears

*
in parallel with the large conductance 8. precludes measurements

-4

* the data in Teble 6.3 shows that these values are respectively

srall and large both relative to each other and rclative to other
mwits.
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at lower freguencies. Thus, measursments were confined to the
narrow range 5Cke - ZMe (limit of equipment), the balance at 50ke
(where Lhe cvonduclance Lo susceptance ratlo gm/uﬂgl was greater
than 103) nct teing very sharp. BSecond, con this unit - and only on
tals unit - the interelectrode capacitance shunting the intrinsic
was darpe in compariscn with CEl'

interelectrcde capacitence was almost double the intrinsic capacitance.

capacitance O In faect, the
[#

1
Hence, a2 small error in the total forward trensfer capacitance would
produce a large error in 021‘

The data in Tabie 6.3, though representative, only cover part of
the wicde numerical ranges zvaliable from commercial FeT's., Tt should
ve clear, however, that the conclusions derived in this chapter apply

with equal force t0 all parameter values within these ranges.

6.7. Conclusions

We have s¢t up and solved hy on approximaste iterstive method the
differential equalion for the chanrel potential in an arbiirarily
doped FET. The chief result of the solution is the smasll-signal, low-
frequerncy equivalent cireuit, "low-frequency" meaning frequencies
satigfying w << l/TO, where Ty ie roughly equal tc the transit
time T, 8t 2ero gate bias (iz the pinch-oit range). The equivalent
cireuit contains & drain-source capacitance and a forward transfer
capacitance in additicn to the expected scurce-gate and drain-gate
capacitances, forward transconductonces, and outputbt conductaace.
Although = cursory investigation of FET operation dces not indicate

the existence of these two "new" elemecnts, the hindsight gained from
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the analysis performed in Section 6.2 suggested physical explanaticns
that are quite simple. Measurements on numerous types cf FET's
corroborated the theoretical results and prove that thesc clemento
are indeed present in the equivalen® circuit. Bearing in mird the
simplicity of the gradual approximation, the idealizstionsg innerent
in the model that was used, and the gencrality of tihe analysis, we
may conclucde that the qualitative and guantitative experimental
results are highly satisfactory.

In addition <o other effects, the breskdown of the gradual
approximation at higher frequencies necessitates a more detailed
approach if a high-Treguency eculvalent cireult 15 40 be developed
Thus, new methods must be evelved if Turther analysis is ¢ be
prerformed, the uiility of the gradusl spproximasion having been

exhanated.
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CHAPTER VIT

CONCLUSIONS

In this work the operation of IEP's has been considerec from a
completely generali standpoint in crder to aseceriain and compare “he
properties common to g1l FuT!s,

The prineipal feature of T performance that has been estab-
lished theoretically is the qualitative and quantitative similarity
in external characteristics manifested by transistors possessing
considerabie differences In internal characteristics. The final
results have been developed in & sequence of connected analyses.
First, baekground material was presented in Chapter II, where n step-
dunction NI was inveatigated. The salient aspects of FET Lelmavior
were cduced, including a detailed consicderatlon of the charge-
capacitances, since these elements hitherto had not been discussed.
Becond, vprior to The development of the general treatment for
arbitrary impurity profiles, the validity of the step-junctior analysis
was exanined, and the conclugion drawn that the simplifying
assumptions and approximations used In Chapter II are satisfactory
for praciical purposes. This conciusion reaftirmed the usefulness of
the step-Junctlon theory and provided confidence for the ITortheoming
general theory.

With the preraratory analysis of Chapter II, the transition %o
an arbitrarily doped T in Chapter IV was accomplished in a fairly

straightforward manner. The primary advantage of the general
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Lorrulation is that it makes gencral properties apparent. The
important perasmeters describing FET operation have been written irn &
compret, symmetrical Torm entirely (apart from constant multiplica-
tive factors) in terms of the normalized transconductance fuaction

g(8) (cefined by Eg. 4.28] and “he nommalized gate-source and gate-
drain potentials & and d. From these equations it was easy to
deduce that all FET's exhibit similer gualitative behavior. fence,

Lhe key results derlved for a step-jJunction FET - such as the Torm of
the drain cnaracteristics, the configuration of the equivelent circuit,
and the properties of the charge-capacitances - can be applied directly
to an FET with an zrbitrary junction,

Finally, in ordéer to cobtain quantitative comparisons between

different types of ¥ET's, some weak restrictions are assumed in
Chapter ¥ on the previously arbitrary impurity profile. Tae
resulting restricted theory ylelds bounds on some important FET
paramevers beyond pinch-ofr: ‘the transconductance, the drair urrent,
the input charge-capzcitence, several figures of merit, and the bias
point fer temperature-stable cdrain current. The conditicons impoesed
on the impurity profile zare weak enough that essentially all
manufactured FET's (except cylindrical) are erbraced by the restricted
wheory. WMoreover, the derived tounds, which for esch parameter are
the step- and celta-junction formitae, cannot be tightened without
eliminating some practlcally Important profiles from the theory.

Thas, the guantitative conelusion is thet ror practical purpeses FET

characteristics may be considered independent cf the Joping profile.
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This conclugion has many implications. "Wechnologlcally, it is
useful because it means thay design and Tsprication efforts car be
concentrated on the cother FEY parazeters: the geometry, the channel
conductance, and the pinch-cff voltage. Wor application purposes
the conclusion is significant because 1t justifies the approximation
cf the cquations governing an arbitrary device by these governing
either of two simple devices - a step-Junction or a delta-junction
device - or, if slightly better zccuracy is required, by a nower-law.
Tneoretically, the concluslorn is important because i1t obviates the
solution of analytically intractable devices; also, the fact that the
delta-Jjunction results arc a good approximaticn to the resulta for
all other FET's Jjustilles, for conceptual purposes, the simple
charge-control derivation of Secticn .1, in which the natlure of <he
gate-channel junction is not considered.

The other major objective of this work 1s the development of the
real eculvalent circuiv of an Fit. This objective was acnieved in
Chapter VI, wherc the general treatment of Chapter IV was extended by
including the capacitive gate-channel current. The approxXimate
solution that was obtained ylelds the first-order equivalent
gireuit - valid for small signais and low fregquencies - and adds two
clements, a drain-sourcc capacitance and & forward transier capaci-
tance, to the general eirzuil of Chapter IV. ![Ite predicted cirenit,
including most nctably the twe new elements, has been substantiated

by measurcments on a wide variety of FET's.
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The equivalent cireuvlt of Chapter VI breaks down at higher
frequencies, apparently because of thne inexact nature of the solution
to the "exact" differential ecuation. However, the urderlying cause
for the breskdown ig the failure of the gradual aprroximation at
higher frequencies. Thus, since the spproximate solution of Chapter
VI cortains all the informetion thai was obtained in the general
analysis of gSectlon 4.2, all the results that have been derived are
strictly valid only at low frequencies {(m << l/rrO = wa/LZ). Iti gh-
frequency results can only be achieved with revislon or replaccment
of +the gradual spproximation.

Tne general apprcach used in Chapters IV - VI, and, in
particular, the technlques employed in Chapter V tc obtain bounds on
the important 0T parameters nay be fruitivlly applied to areas other
than tnose that have beern explored here. A specific problem that
warrants solution is a gereral formulaticn of the properties of
eylirérical FET's, with the intent of obtaining limits analogous to
those derived for planar FET's. Witk the properties of both planar
and cylindrical devices in general terms, the relative advantages znd
disadvantages of ezsch t{ype of structure could be easily determined.

An importent parameter that has not been derived guantitatively
in a sa3isfactory manner Is the finile ocutput conductance G

ag

beyond pinch-off. Although is usuelly a second-order quantity,

Ial
Yo
in some circumstances 1is effect can be significant. The analysis
beyond pinch-off that nas been performed by Shockley [#] i3 based on

some rather severe sgsumptions that limit its practical applicebility.

In addition, the sciution is difficult to use even in simple casges
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because involved calculaiions are required. #he simple model tvhat
has been uged throughout this work is inadequate for the explanation

oft ¢ either additional prineciples must be introduced or some of

zzt
the first-order assumptions must be discarded. (Although & non~abrupt
boundary on the space-charge reglcn implies a finite C—22 beyond
Ppinch-off, the magnitude of this Ggg, a8 predicted by the analysis
of Beetion 3.9, iz much toc small to sccount for the observed
conductances.} A possible starting point might be based on the
approach Grosvalct, et. al. [27] used to explain the conditions
actually prevelling in the channel when an FET is operating in the
pinch-cff state. Thelr technique wae to incorporcte the concept of
veloelty-limiting fields that zre supposedly present where the channel
is very narrow. If this approach 1s prazcticable for the cxplanation
of Gﬁz, 2 solution must be developed that would be accurate encugh
to be gercrelly applicable, yet simple enough to avoid burdensocme
computations.

Cne furiher point that snould he more firmly established
involves the ineclusion of double-diffused structures in the resbricted
theory of Chapter V. The plausibilliLy argumenls that were presented
ir Section %.1 nay be sufficient, but a more rigorous foundation

woald be desirable.



197
AFTENDIX A

BOUKDS ON THE NORMALIZED INPUY CHARCGE-CAPACITANCE

Here we prove the assertion made in Section $.4 that the
normalized input charge-capacitance lies betwsen the step- and

delta-junciiorn bounds

C
1+V’:?g-}+lf;1 (A.1)
(2 +2/5)° ¢
ir
(1 - F) (=) < (T - =) (a-2)

We nave shown in Section 5.5 that

R GRR  Y GV - L 5
= < — 2
3 aidm o R

™
o

%k

The lower bound ir this equation has the value 2/3 at s = 0, the
value C at s - 1, and is concave downward in the range © < s < 1.
The upper bouand is & oitraight line passing through 3/2 2l 5 = 0

and € at s

1. Therefore, if each bound iz normallized to its

value at s =0, we clearly have

(g /c” (1 - /E)(1 + 2/5)°
1) < (A.3)

('1 - S) = >
(a/cL) (1 + 45)

If the ildentity gm/(}O = g and xq. A.2 are lnserted in A.3, Ec. A.l

results,
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APPENDIX B

EXPERIMENTAL SETUFS

Yigures B.l through B.4 show the cireuit configurations <hat
were used toO measure the short-circuit zdmittsnces yij T the FOT's.
(In tne symbol for the FET the arrow is located near the scurce and
lndicates The cirecilon of conventional current flow.) A Wayne Xerr
Radio Frequency Bridge type BOOL was used in conjunction with an
oscillator and & null detector. The particular settings on the
bridge multiplier switckes and the particular bridge oubput tap that
were cnosen depended on the magnitude of the admittance being
messured.

e relatively large drain eurrent {several ma) at smsll Vg on
some units caused an appreciable voltage drop in the bridge trans-
formers (on all measurements except yil); when this occurred, the
drain pias was adjusted 1n order to maintain the drain-source voltage
at the desired velue. As s check on the possible effects of ihe
direct current Zlowing through the bridge transformers, several
different blasing arrangements were tried; the results from each
arrangement were in excellent agreement.

Because the Torward transcooduclauce of qn FET hes 2 sign
opposite to that of & passive conductance (ef. Flg. 6.2; positive vg
results in pesitive ié), the bridge was modified internally in order

to read o "negative"” conductive componenl in the measurement .

o1

Thus, R. in Fig. B.3 is shown connected to the "ecommon" terminal
’ 21
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of' the bridge. For slightly oetter asccuracy (send as a check), the
transconductance, as well as the output conductance, was also

measured st lke on a (eneral Radio Vacuum-Tube Dridge type 561-D.
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202

NULL
DETECTOR

Fig. B+3+ Experimental setup for measuring Yo
Polarities are shown for a p-channel FET.



203

Ca2
' o
{ R NULL
| 22 DETECTOR
} i
0SC. 2| 8
: NEUTRAL
| JCOMMON s ~d
| o—l : ® @
EARTH T g
o—-“-—o

e ]

|
A =i ¥
DRAIN BIAS GATE BIAS

Flg. Beke Experimental setup for measuring Yoo
Polaritiea are shown for a p-channel FET.



20

LIST OF PRINCIPAL SYMBOLS

The subseript s, d, or g
pertains fto the souree, drain

or gate.
Section in
Which Symbol
s Defined.
A =  Depth of FET. 2.1
C (Ci’) = Capacitance (at terminals 1iJ). 2.3
* , % % .
C (C-5C..) = Charge-capuacitance (at input,
11°~22 -

at ouzput). 2.3
‘% * . s
Co = Cll(s,d) for s =0, d=1. 2.3
E - Alectric field. 2.2
GO = Chamnel conductance in the

cbhsence of biases. 2.3
Gos = Cutput eondustance. 2.3
I = Chezmnel ecurrent; also, drain

current under the assumpuion

of zero gate current. Z.3
I, =  Maximum drein current, (provided

that the gate-channel Jjunction

is reverse bilased}. Z.3
I- = D~C drain current. 6.2
L = Distlance beiween scurce and

érain (length of chennel). 2.1
Q = Charge in transii between source

and drain. 2.3
T =  Absolute temperature. 3.5
Vv =  xternal" potential (neglects

built-ir potential). 3.2
v = Zullt-in potential. 3.2
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Ixternal pinch-o0ff voltage.
Mzgnitude of internal potential,

Mzgnitude of internal pinch-off
voltage.

Width of channel material.
Width cf channei; spacoe-charge-

regicn boundary in the
chznnel materisl.

Space-charge-region poundary In
the gate material.

Maximum penetration of space-charge
roegion into gate material

(corresponds to b = 0).

Magnitude of normalized intermal
gate-drain potentiiazl.

Normalized trensconcuctance
function; normalized transcon-
duetance beyond pinch-off.

Traensconductance.

A-C component of current.

Magnitude of normelized internal
gate-source potentiszl,.

b/a

A-C component of voltage.
c/a (cha)

Coordlnates.

Y/a

Permittivity.

Magnitude of normalized gete-
channel potential.

Mobility of majority carriers
in the channel.

LAY
.
[

Py
L

AV}
[wE



3%
(&)
[o)Y

Excess density of donors over
acceptors, miltiplied by
the magnitude of the electronic
charge.

Mobile charge density.
2 .

I /uﬁn

Average transit time.

Radlan freguency.
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