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The correctionsto muon decay due to electromagnetic interactions
have been recalculated. Our results differ from those of Behrends,
Finkelstein and Sirlin, because those authors used an inconsistent
method for handling the infra=red divergences which arise separalely
in the real and virtual processes. The disagreement is especially
significant near the end of the electron (positron) spectrum where
our resulis indicate that the radiative correction to the Michel p
parameter is approximately 1% larger than previously supposed, a
result in the direction of increasing agreement between experiment
and theory. With the radiative corrections to muon decay given here
the predicted value of the muon lifetime using the universal theory is
(2.27 + 0.04) x l@mﬁ sete As a preliminary to studying the decay of
particles with structure the Bedecay of the neuiron is examired. This
leads to an incresse in the coulomb F  factor indspendent of the
nuclear charge and of amount approximately 2.6%. As a result the
universal coupling constant obtained from the decay of 034 is de~
creased to G = (1,37 % 0.02) x 10747 erg cm93 and increases the value

of the muon lifetime to (2,33 + 0.05) « 1@m6 SE€Co
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and appears not to participate in any of the 'strong' interactions,
Therefore the radiative corrections to its decay can be calculated
without regard to couplings with other fields. Although these cor-
rections are small, of the order of a few per centy they are larger

than the errors in the most recent and accurate experiments. It is

then necessary, in order to compare the theory and experiment with as
much precision as possible, to calculate those corrections to the ensrgy
spectrum which are a consequence of electromagnetic interactionse

If we consider the decay of any other particle we find that all
the remaining unstable elementary particles exhibit 'strong' inter=
actions and the correct calculation of their decay rate would have to
include these strong couplings.

When the muen.dacay is described by a linear combination of all
five types of interaction invariants,the decay electrom spectrum (in
the limit of zero mass) can be expressed @s a one parameter family
(%ichels{g) p) of curves, The p parameter is then a certain ratio of
the various coupling constants. When the radiative corrections are
included it is still possible to express the electron spectrum resulting
from a general muon decay as a one parameter Family of curves to the
extent that the radiative corrections for all types of coupling are

(4)

approximately the same.’ The theory of Feynman and Gell=Mann predicts
the value of the p parameter to be 3/4. When the radiative corrections
are included the shape of the electromagnetically unper%u?beé spectrum

is slightly changed but %he’vaiue obtained for the p parameter is

S{ill 3/&0

Since az = 1/137 is small compared to unity,perturbation theory



can be used to calculats the radiative corrections. The problem then
divides. itself naturally into two parts, the virtual processes which
are treated in detail in Section !lA and real photon emission accompany-
ing the decay, treated in Section |13,

Among the integrals which arise in calculating the matrix element
for virtual photons some exhibit a logarithmic divergence for small
photon momenta. The covariant method for handling this infra~red

(5)

divergence is given by Feynman and consisls of giving the virtual

photon a small rest mass N The resulting change in the photon propa=

gator is sufficient to prevent the integrals from having a divergence

for small photon momenta. However, the expression for the matrix

element for virtual photons is now logarithmically dependent on Ao

This dependence on km disappears when the smission of real photons

(inner bremsstrahiung) is taken into account. To this end one integrates

the differential cross-section for inner bremssirahlung over all the

space components of the photon momentum compatible with conservation

of energy and momentum in the decay process. This integration also

contains an infra-red divergence and to be consistent with the method

used for the virtual processes the pho%an must be given a small mass

A When the two parts are combined the dependence on L di sappears.
The cancellation of the paris dependent on A, may also be accom-

plishedy however erroneously, by treating the emitted photon as having

zero rest mass and cutting off the integral over the inner bremsstrahlung

cross=section at some lower limit arbitrarily defined as kmo This last

procedure is clearly not compatible with the method used for the virtual

processese
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Ife DECAY OF THE MUON

i The Virtual

Processes

We begin by mentioning certain conventions of notation to be useds
The choice of units is for ¥ =C =1 and unrationalized electromagnetic
units with o> = 1/137, We use the metric of reference 5 so that the

dot product of two four-vectors,asb is expressed as

M ayby - azbz = %ué& :

aob= ayby = ab
Thres-vectors will be denoted by an overhead arvow Z. Dirac spinors
will be normalized so that Z}tu = 2E where u = Ugfﬁa in order to
simplify certain expressions in Section Il the quantity n will be

defined by

where E, is the energy of an electron and m, is the mass of the
muon. 7 = 1 corresponds to the meximum energy of the electron which

is about 55 meve. The ultra=viclet and infra=red cutoff factors will be
denoted by A and M respectively and slashed four vectors &£ will
denote ay,. The symbol log will always denote the logarithm to the

base e.

Muons are observed to decay by the reaction
ety +y

Since both the muon and electron are charged their slectromagnetic
fields will affect the decay process.

In charge retention order the decay of the muon (1) into an electrom



T

(2) and two neutrinos (3) and (4) with electromagnetic coupling is

described by the interaction Lagrangian

L ine = 186G v,ak0) v 2t + oy, o)

+ @{@gT J @2} + herm. conje (1
where
¥ oa =y + 2

is the form of the universal beta interaction introduced by Feynman and
@@lluﬁanﬂ(Z) and j  is the usual four vector electromagnetic current.
Applying perturbation theory, the decay process with electromagnetic
interactions may be described to order @EGE by the six diagrams of
figure 1,

The corrections to the spectrum of the emitied electron arise
partly from the virtual processes described by diagrams 11 thru IV and
partly by the process of inner bremsstrahlung described by diagrams V
and VI of figure 1.

Using the form of the beta interaction given in equation (1) the

probability tihat the electron has energy n in dn will be expressed

as

2
o }dgvz“"m;m*m 6@ - 21 + 8= (@ + BT} dn  (2)
VN i GO b ag G Bl

In equation (2) o and B correspond to the contributions from the
virtual and real processes respectively. In this section we will dis=
cuss the calculation of .

Since most of the cbservable part of the spectrum lies in an energy

region where the rest mass of the electron is negligible compared to its
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FIGURE 1. FEYNMAN DIAGRAMS FOR MUON DECAY.
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kinetic energy we will make the approximation that My = O wherever
possibley i.eey unless this introduces a spuricus divergence. In this
case the radiative corrections for vector and axial vector interactions
are egual,

Diagrams [l and IV of figure 1 constitute the mass and wave
function renormalization. Since we associate a self energy effect, as
in diagram [1] figure L with both the decay vertex and whatever inter=-
action may follow, the mess and wave function renormalization R, are
given by one half the sum of the contributions from diagrams |11 and IV

of figurs 1. The result is

m _ 2 9
Rr,a = e /?ﬁ{l@g(hfhl}eg log(mg/km)+‘% log(mz/ml)ﬁﬂzj‘fu& (3)

where we have supressed the multiplicative factor V8 G,
Using the rules of quantum electrodynamics we can write the matrix
element for the charged leptons < el¥|u >, arising from diagram 11 of

figure 1 as

4 2
?Igg O (4)

2, ] ]
M= =dne” | Ly =y, a T v ]
ey K F Y By T gykemy Ty

where we have again supressed the factor V8 G. Upon making use of the

fact that M is to be evaluated between free particle states we have

i

- (26, ¢ ¥} v a -
4 2. f ﬁjéé‘i Q(kg) - x_gf«.}zy “J%l YM& (pr %{‘xf‘v)
=4Ra 3§ 2 i 2 2 3

(k“=2p, °k) (k“=2p, °k)

M

0? «

or .
2.

M= = &L ° & o a 4 =55

2

v -2 : 23
+ 2(ga§{m ?&gﬁﬁ} 13@5% J (5<ji
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where Il9 Iy I3 are defined by equations {7); (9) and {1Z2a) below,
" \
- o & . . ; .
The factor C(k™) is the usual convergence factor and as the integrals

appearing in equation (5) have at most logarithmic divergences we lake

" WA _
cidy =], @07 a ()
k&»

The three types of integrals which appear in equation (5a) are type I
with no k's in the numerator, type I, with one k in the numerator,

type I with two k's in the numerator. Wore explicitly

o odk ] (k) “
L=)""2 773 5 2 (72)
(2=) {(k* = 291°k)(k - 2p2°k) k
Cemyel T =2 2,02
= (8i) " | dy Py Iﬁg\ﬁy RSy (7b)

where we have used reference 5 and where Py = Py + (1 = ylpye Since
the evaluation of the integral in equation (7b) involves special diffi=-

culties we discuss this in detail in Appendix fo 1t is shown there

that in the rest system of particle one and for small mass m, equation

(7b) may be expressed as
P _ 9
I, = (8i)""[2(log 285/my) (log my/A )} + log™2E,/m,

and where L(x) is the Spence function defined in Appendix I.

The second type of integral arising is

_rdk gt k,

- 2 2 ,
(k" = 2p1°k)§k - sz°k)

1, 5 (9

and using reference 5



A 2
— LA = ; -, !’%‘
I, = (4i) " | dyp _ $19)!

The integral (10) is readily done for small my, hence

Iy = (@i)aliqv/QQ log(l + QE/QMIEz)

= py,/mEy log 2E5/m,] (11)

where the four vecior g = p, = Pye
[

The third type of integral which arises is

e cd k Ky
13&§ = | 5 5 5 5 (12a)
B0 0n? 6 02 - 2p, o) (2 = 2pyk)

and using reference 5 equation (25a)

1 1
C remenele [T =2 : 1l r N
I, .= 2 3 /A
208 = @D j@ Py PyuPyed ¥ 5 8y Jg dy log p,/
i
+5g,,] (12b)

From equation (5b) we note that I}uv arises in the matrix slement

in the two forms
I = -ez/gﬁfwg + 4 log m,/r = 4m . E,/ 210ﬁ 2E./m, ]
8 v 3uy T &M fEp/q 208 “Ro/Ty
and
bt s 1 2 n . 2 - 7
= g 4ml (plv‘pZ?v)Lq uzﬁéltglcg(i + g /Qmiz;z)j&

=g 2 -
+q "mypo, log(l + g7/2mEs)a

3

- [3/4 + log My~ mIEZngiﬂg EEZ/EH}YVa

If the coefficient of eQYHa including R is labeled A and the
s

coafficient of e£§ labeled ?M then the matrix element for the decay



T=/8GU,[(1+e%)ya+eBeal

The part of the energy spectrum from the unperturbed case coupled with
the virtual processes in the case of unpolarired electrons and un=

polarized muons is

s

5l
myG 2 P o 3 L
”“$””“”“§ {QQQBQQQ}[1+@2&/QR]}3 “””g%“””” § ds jd@s L %’ ) 712
(12) (2=) (?n) "m,E, * -
172 spins

05 dpy 3 (170 (pym pym & = 1)) (13)

where s and t are the neutrino four vectors., 3Since only corrections

to order 82 are desired those terms in ITIB proportional to AB
will not be retained,

a i 2 . . . .
The part of  |T] coming from the neutrinocs and depending on

s is spins

y U Y U 2 2 45t + st ~g set] =W (14)
Lofus L BJ O T Bt T B T My

spins

Using the method shown in Appendix |l the integral of the above equation
becomes
4 [ d*

s 5(s) s t, st =g eet] = E [e,6,~ 2,87 (142)

u v T S
where G = Py = pp =8¢ t.

[f the indicated summations remaining in equation (13} are per-
formed then we find for the quantity

o= 2[w210g(mgfkm}(icg n+o=1) = (logq+ Gﬂz + L(1 - q)

- {l= ﬂ)allog N+ 52 +2 logn =2+ n/2 log y(l = ﬂ)“l
+ /2 log n(l - ﬂ)"i(3 - Qﬁ)ai] (15)
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where @ = log(m/my)e

e see that dependence of @ on the ultra=violet cutoff A has dis-
eppeared just as in the case of pure electrodynamics. Since the inter-
action used for the beta decay is V + A and since in the limil as
m, *0 Vand A yield the same spectrumy the vertex operator is just
as in electrodynamics and we expect the same renormalization o work
heres If any of the other interactions (S,P,T) for the beta vertex
is employed the resultant radiative corrections will depend upon the
ultra=violet cutoff Ae(é) Furthermore since the interaction V¥ + A s
invariant under the interchange of the final particles (uy ++ u,) both
charge retention and charge exchange order have radiative corrections
which are independent of A.

That changing the photon propagator from K2 to {kz - ki ]ﬁi is
equivalent to giving the photon a mass h, may be seen by considering
the field scuation for a vector field %Mg with mass Ao This is given

in reference 5 footnote 27 as

2,
- 8v(6VAM =B A S h A = - 4ns, (16)
where Sy is the source.
If the source is conservedy i.eo %u%u = 0 then we have aygﬁ = 0
or in momentum space
k,a =0 (7

LY
where a  is the Fourier transform of AM° Using this result the Fourier
transform of equation (16) becomes (kg - ké)ay(k) = “%ﬁ%u(k)o Hence
the complete propagator for a spin one particle with divergence free

2w a217! and it is seen that the method of handling the

source is Lk
infra=red divergence in the virtual processes is equivalent to treating

the photon as a "neutral vector muon”™ with mass km. The calculation



14&

of the inner bremsstrahlung in the next section will be carried cut with

the same considerations for the emitted photon.
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Bo  lnner Bremsstrahlung (IB)

‘

The differential transition probability for 1B in muon decay has

5 . : 3 (’?) - Fad ;’
been determined indspendently by Lennard for m, = 0 and for My 3 0

4 - . s .
by SFS( )@ If the IB cross-section is calculated as part of the radia-
tive corrections to a given interaction to be consistent with the
virtual processes we must also treat the emitted photon as having a
small mass A o We shall now discuss this aspect of the IB crossesection
in detail.

The matrix T# to be evaluated between muon and electron spinors

for the process of IB is

).
T = ~(4ﬁ@2)1/ti

. Y | o .
7 Ydu‘c:s #I_M_mi é + é' P’g‘%”%"mg YIJ'M] (18)

or after a slight simplification

. ppte pyce
T;u' = ~(4"K@2)i/‘2[2(' 2 ) = : 2 )"}’M&
2p2 °k+)\§?‘ Zpl °k+k3”§%
ék?ua fuaﬁy ; ' .
+ ( 2 a» 2 )J (lfa>
2pskhe  2py ek

For the differential cross-section for 1B it is necessary to determine
the expression
T

LoooL o R Lh ey
pol. spins

(1%)

where 3 and 4 refer to the neutrinos.
From equation (16) we see that since the emitted photon has a mass

A, there is no gauge condition on the electromagnetic Tield operator and
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°

the massive photon hag really three independent directions of polari-
zation. These must be taken so as to sztisfy the condition
keg = 0 (20)
which follows immediately from squation (17).
if we take the direction of propagation of the momentum vector in
the 3 direction, i.ee k = (wy0,0,k), then the three polarization vectors
which are mutually perpendicular and satisfy equation (20) are readily

determined as

e = (0,1,0,0)
@2 = ((}90919@)
en = (3,0,0,k)0""
3 bt B m

b L)
o . " 5 e L «
in which case a sum of the form ; (Tes) s where the sum is over 3

directions of polarizationy, may be expressed as

2

L @) = (ee)? # (Teap)? ¢ (Teoy)

3 p@lo

#

’ -
- T7 x{f{‘rok)g 2y

fi

If Tee is the matrix element for 1B then we see from equation (19)
that Tek is of order ki and that |

(Tee)? = T2 ; (22)

i

Lim /,
A ™ 0 3 pol.

This is, of course, the same result as one obtains for real masslass

photons. We conclude that in the limit of A 0O there are no additional
terms in the 1B differential cross=section 2s a result of summing over

till

@
=

wree instead of two directions of polarization. However there is
thr instead of 1 directions of larization However there i

an infra=red divergence which arises when the differential cross=section
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for I8 is integrated over photon momenta. e examine this point below.

Summing over three directions of polarization final spins and

averaging over the initial muon spin as indicated in expression (1%a)

we Tind for the differential cross=section for 1B in the limit of Y

22 5 dpadk .
4n 2 2P % 2o s 2 £

o) i &(5 “9{3‘ - Syl 8 23
HIQAQ (gﬁ)y J ) 2g°3)B Sl &N S (233

whero

i

s + t

M is defined by equation (14)

:; L2
B QQ?{uPIMPQV SuwP1°P2 = 2Pyt Pookgt 2py k= (pyeklg,

4+ ' Fal o - ? §
‘QQGL 2?3@4@%@ QMN pig+ “pzv (gm pﬁ@“é«@;

"a<gapl)<pl°k)nxi2plwkvu Piek%uvj
=46203) (p ) ! 2p, k= prke,,]

-1 -1,
+ 4Gy k) L2y ke g, pyok] + 4 k) N 20, K mg pouk]

4 204 wmvpg
and
O = -l =]
9 ng(pg k)% - pw(plsk)

et me Py 4 3 3
Using the technique of Appendix 11 the intspral of 8 g
= Le:

P4 '
} d Pi o= 7 ; I - 3
Jdst, 27/3L%va u@y&;

5,

The differential cross-section for I8 can be written, after using the

above expansion in equation (23) and in the limit of my = 0y as

6 e & d393d3k my 2
d Rg N — {@éa “§m'G = 1 C?+ @@ o (2@ +mb)
3 Lﬂm(éﬁ) ) P g“:’z:; ’

(24)

]
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Equation (24) is in agreement with both Lennard and BFS.

For the spectrum of the decay electron equation (24) must be inte=
grated over all photon momentum compatible with conservation of energy
ahd méman{um in the decay. This is different from the radiative
corrections to scattering processes where the integral over photon
momenta is done over a very small range without regard to the conser-
vation laws. The reason for this difference is that in a decay where
there is a spectrum of energies, an electron found with low energy
could have been made along with a photon of considerable energy whereas
in a scattering experiment the maximum energy of the emitted photon
is determined by the energy width of the experimental apparatus. The
decay specirum will)b@ sensitive to the experimental resclution only
at the upper limit of the energy. In this region the electron could
be made along with only a very low energy photon whose maximum energy
depends on the resolution. Thus we expect that the usual logarithmic
dependence on the experimental resolution which occurs in a periurba-
tion theory calculation of the radiative corrections will only be sig=
nificant near the high energy end of the spectrum.

From conservation of energy and momentum the maximum photon momen=
tum k_ at a given photon angle € with respect to the electron in

the rest system of the muon is

2 =1
k, =G /Q(mx - By * pzx) (25)

where

x = cos €
The spectrum is determined by intezrating equation (24) first fromk = 0

to k = kg then over all angles. |f we attempt this with =K/
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then since F ~ (pok)mg the integral becomes logarithmically divergent
for small ko The eliminstion of this infra=red divergence must be done
in a manner consistent with the virtual processss. When the photon is
treated as having a mass'km the integral of equation (24) is no longer
divergent but depends logarithmically on L

There are three non=trivial integrals arising in the integration

of eguation (24) which when expressed in the rest system of the muon

and in the limit of My 0 are

=1 ;:k 2 ' ~ 259 b
| o] 0= s tog (20 ¢ o g o)
‘-1 Y0 wlpyok) 2™ " 2" B il
2E,N
é‘miﬁ log 2 = é%'1°% e agpg Vo (26a)
2E, iy 17 T2t
a1 ok 2 A
j e g ° e 2 = m%E log My = ?E» (260)
=1 "0 wlp ek)” 12 17 “=2
o1 -k 2 " A m
I A = == log( =2 log( 5t )
-1 70 wlpyok)(pyek) 7271 | 2
2 A Mo
* Egml log ( m1a2E2 ) log ( 2£2 )
m oo
1 - m, k
. “ (M 2 "
*y Llog (o) 4 ) ol ) = w7/6] (60)
1 el 2

Using the above expressions in the integral of equation (24) the
probability that the electron has energy 0 in a range dn is

2 2

m?@ e

2
(3 = 29)f (27
)3 (12) (21) 1P & )

pln)dn =

where



Ly

2X + ‘f?":g;’"g‘“j‘ {log n+w=1){1=19){5/q+ 17 = 34n)

o
i

; |
S{=n)” o
METE=I (28)

&
1

log (ml/mg)

A
X = {logq +we= 1)[2 log{l = ) = log q + &~ 2log( -2 3]

hég
Y
+ ;f ;gk/k - ﬁ2/€> - l’fl log (1 =19)
Lo i "
k=1 *

The difference between the result given here for g and that of

BFS is containad in X and the expression V equation (25d) of BFS.
e obtain the result of BFS, that X be replaced by V, if instead in the
integrals of equation (26) we set w= %] and integrate QﬁW with a
lowsr limit kmg If this is done the integrals of eguation (26) becoms
in the limit of m, =0y

2N

-1 Vko gigy 2 m
I T e T e ()
m O\P2°K "2
’ <1 oK 2 A m m
o o k ok _ A m 1 1
dx B 2 =% | 2= 2l0g (=) = == log( )]
Jml Jx wlp k) "R =2
m 1 1
pl # 2 )\
| e ] —k £ [1og( —2 )m( %)
-1 wlp, k) (pz°k) £
my=2E., 2, >k
+ log( “A““”” Jlog( 4 )+ %’ E: i%’]
" "2 k=0

fhen the wvalues of these integrals are used we Tind that B is given

by equstion (28) with



)

2

kK y N
x=v= ) T5o 1+ w-logl =2 ) =log 2](log 1 + = 1)
L , :

k=1
+ (2 log n+2w= 1= ﬁ’) log{l = q)
!

The complete spectrum with radiative corrections may be expressed

as
5.2
ml@ o9 X
pln)dyg = —=— 17 (3 = 29){1 + hiy)) ] (29)
(2%)"12
whars

Numerical values are shown in table | for 100 h(n) given here as well as
100 h{y) given by BFS. Figure 2 is a graph of the two h functionse
it is seen that the radiative corrections given here tend to decrease
the energy spectrum near the high energy end more than those of BFS,

in the expression for V we notice an appafent divergence as
1 -+ l, This divergence is of the same type that arises in the radiative
corrections to scattering and is removed when we consider the dependence
of the spectrum on the experimental resclution. WNear the upper end of
the spectrum the maximum energy of the emitted photon is not determined
by conservation laws but rather by the ensrgy resolution of the appara-~
tuse If & is the energy resclution and A& is an energy interval
such that

A<D

then since the cxperiment is incapable of digcerning the spectrum in a
width A we can replace p(n) in a region & about 7 =1 by its
average value in that interval. From the expressions for a eg. (15)
and B eq. (28) we see that

lim p(g) =€ log (1 = q) +F
- ]

1
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where E and F are constants which are finite and do not dapsnd on
7 in this limit. The average value of pln) is then determined by the
average value of log (1 = 1) in the interval 4 asbout 1 = 1, which
is log (8/e). By allowing

log (1 =) = log (1 =q+4/e)

over the whole interval we have a function whichy, as long as 4 is
small is log (1 = 1) when q‘ is not near 1, and is log (A/e) near
n= 1.

For the correction to the lifetime of the muon p(n) is integrated
from =014t =1 with 4 =0, The radiative corrections then
lead to a 0.44% increase in the lifetime compared to a 3.7 deéreas@
~ found by BFS, With this correction the predicted value from the unie
versal theory using the value of G = (.41 + 0.01)x 10747 erg cme
given by the beta decay of 0% s (2.27 + 0,04) x 1070 sec. while

the experimental value is (2,22 + 0.02) & 1076 sec.

TABLE 1
The Function hiy)

) 100 hin) given 100 hin) given

L here by BFS
0.1 24,68 26,5
0.2 9,69 11,6
063 5.54 7.9
Ood 3.43 6o2
0e5 2.0l 501
0.6 0.85 4,2
0o =623 3e4
C.8 ~1,42 253
0.9 =3,06 0,86
Co34 4416 ~0.16

Oec}?% ""éaﬁﬁ



cr e

o~

« om0 s
. o«
Ml - g

Chie

[t

e




reg

2

4
4

poiy

3

"

decny

tron

1

o]

TR

sl

men




"y
=26

particles are coupled together (Pe)(Nv) g the original interaction
B b} (o
(Py, att) ey, av)
[ [
goes over to
<2(P a e)(valN)

and the interaction V + A has become 2(S= P),
We may describe the decay of the neutron with radiative cerrections

by adding to the above Lagrangian the electromagnetic interaction

@Wp ﬁMQP + EW YMAMQ

In that case the decay of the neutron with radiative corrections has
diagrams A, By C of figure.3. The matrix T to be evaluated between

photon and electron states for disgram A is

4

a2 T Ak 2
I = 4mie LY - ?a v (k™)) (30)
J(2>43 ka"% i’%fﬁfi
where a = (1 +ivg)/de %u and iM» are the proton and electrom momen=

tum four vectors and S(kg) is given by equation (16). The minus sign
on X in equation (30) follows from the usual rules of quartum electro=
dynamics for electrons propagating backwards in time.

If we rationalize equation (30) and make use of the fact that T
is to be taken betwsen free proton and electron states then
Ta

= 21 Aot Tyt [4C0)) + 2y ] :
Z i 'ﬁ > l t J 2’*& .au'v 3@‘@

bt % (A1 3
+ ie /a mgaz%z + 8.%1@1,1] (31)

where M and m are the proton and electron mass respectively
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FIGURE 3. FEYNMAN DIAGRAMS FOR NEUTRON AND NUCLEAR
[3~DECAY.
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w2V

b™ = ala = 1) a> 1
= a{l = a) a< 1
@ = = coth™t a/b B= - (tan~! a/b + n/2)

If we take A large compared to the proton mass then equation (33a)

reduces to the form given in reference 5

@1 - [ 10 o) (34)
lim g I, = (4i)7°[1 =1 log=sd 4
A BV Jo g@iy
or ?2» 0 ,

y

whare we have used

lim a= 1/2 log (4a = 2)

A -~ o
Figure 4 shows the exact value, equation (33), and the approximaie
value, equation (34), for 1/4 < a< 10. When a is less than 1, which
is the case over most of the vy in%égratéon,we gsee that the approximate
value is guite poore.
As in the case of the muon decay the effects of waye function re-
normalization for the charged particles must be taken into account. To

this end we have for the electron and proton

O, 4 2
_o2, 0 d% ced ! 1
Ry, = ie"/ Y ¥ = v ] (3%
p J(%ﬁ Y Gy K Gy Redhy

If we determine the R for electron and proton by assuming A
larger than both masses then R is given by equation (3) section |, The
net effect of R and virtual photons is not independent of A as in the
case of muon decay since the P~interaction is now S = P instead of
V + & for the same order of wave functions as in the muon decay.

if we do not take A much larger than the nucleon mass then for the
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proton
2 - . P
Rp = e /2n[ = 2 log(WA ) + 2 + 2{12a" log 4a
2455 209° |
SN a8)

whers

a = Aziﬁ%?
and

b2 = afa = 1)

a» 1
d = = coth a/b
b2 = a(l = a)
-1 a<l

b = o(%an‘ a/b + n/2)

For A =M

R, = &2/~ 2 log (WA ) + 2 + 1,24]
which may be compared with R for A >> M

Rp = o7/2n[= 2 log (WA ) + 2 + 1/4 + log(h/W)]

fle will now consider two problems. First the evaluation of T as
given by equation (31) in the limit of large proton mass. At first
glance it would appear that this would yield the coulemb F facter to
order o, Instead we find in addition to the usual coulomb factor a
large contribution of the form log M/m where # and m rsfer to the
proton and electron mass respectively. Second we will consider the
enargy dependent corrections to the specirum when & is large. In this
case it will bs necessary to alsc determine the energy dependent parts
arising from (B,

The coulerb F  factor is the function which multiplies the unper=



w30 =

turbed electron spectrum from Bedecay when the static coulomb intsraction
i ; b2
between electron and the infinitely heavy deughier nuclsus is taken into
rd pey
account. This function has been calculated by several authors and for

) D , (9
not toc small velocities is given approximately by )

Flzye) = =
Lr(3)]

where s = (I = 6232 1/2; y = egzg x =81y y=v/Ny € and V are
the energy and velocity respectively of the electron and 2z is the charge
of the daughter nucleus. The quantity R in the sbove equation is taken
as the radius of the daughter nucleus. Since s is less than one, R
cannot be zerc; this is the usual infinity of the radial Dirac wave
funclion in the presence of a coulomb fields To compare F(z,8) with

a perturbation calculation we need the coulomb factor to order @2° Exe

panding F(zy€) we find

Flzge) = 1 + nzgz/v + O(aa) (37)

The depsndence on R is contained in the e@ and higher order terms.
in order to examine to what extent the virtual processes in the
limit of large M agree with equation (37) we must evaluate the inte=

grals in equation (32) for the matrix element T, equation (31},

He have
v S ey 2.2
I, = (8i) 1 dy P77 log (P°AS)
1 JG 4 y g y m
where
7] 2 ) 2
P; = }f’gin‘d - 2}/{3 = }Oﬁ@: + ] - y) mg

Since M>> m we can approximate Pi by

Pi s y2%2 - 2yl + m2
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and for the matrix element

lin il4(t P )42 F o)y L, = - Flop (5£) -2

i - a0

= ( )+llcp( -%Icg(g;g}

where we have made use of the fact that the malrix element is evaluated
between free proton and eleciron states, and where the term proportional
to a2 has been dropped since a 2 =0 in the matrix element squared.
The factor log (M/m) represents a surprisingly large correction which
we shall discuss in more detail below.

2

He note that for ﬁPy > G the integral is given by

gngSQw
equation (33b). By examing this integral for the range of y such
that 4?5 > A2 wa see ihat the iﬂ%agrand‘vamishe@ in the limit of large
e When y 1is very small so that 495 < Az then we may use the asyme
totic form of the integral given by équation (34)s In that case for

the matrix slement

: ' 2
: oy A
T o log 52 ) dy]
y

2

2
=[ -‘%‘%"}10%{1 N EREE L 1E B Iog('g? )]

- =] =2 log (‘% (38¢)

We see that there are no energy dependent terms from 13%v in the limit
of large H. Comvining the various integrals, the matrix element T

of squation (31) may be expressed as



“35-

. _@_igm{ (&E)_,,o 1 (5;) éfgé-zé"é- 1 ("’2;2’)
T=e1L 2o aylog 2 caylog Um ) = 4q) ¥ a;log U0
m
2 1 i A 31—
+ L{\} - : ) =5 log (5p) -2 log§ - $lza (39
E4p

For the complete matrix element for the virtual processes we need

the contribution of wave function renormalization for the electron and

3 .2
+ {%} + 12a£10g da + Cgéém - g%?“ié - 6a}] (40)

where @y by and & are given by equation (36). For A = M the term in
braces in equation (40) becomes 11/4., The complete matrix element for

the virtual processes is given by T = R2z.

The main contribution 1o 7 = R2a is contained in the factor

(a2 /22) (3/2) 1og (W/m)Za = (T = RZa)

This term is much larger than any energy dependent terms in T and in
the 1B which will be calculated in the next section. The effect of
this logarithm is to give the [Becoupling constant an electromagnetic
renormalization of + 2.6% with about 1/2% uncertainty due to neglecting
energy dependent parts. OF course none of the effect of mesons is thus
far included,

Examination of the coefficient of IE@ in eguation (52) section 1A
in the limit of large p; shows that the leading term 3/4 log ml/mz
relative to the electromognetically unperturbed interaction is the same
for the muon decay as for the neutron decay. This is to be expected

since the decay rate for



@3 e

Pol+e +v
g+-4 o + v HV
should be the same for large muon mass except for kinematical factors.

The reascn why the virtual processes as calculaled using the rela-
tivistic methods of quantum electrodynamics dées not agres with the
coulomb F factor to order az may be explained as follews.

As is well known the electromagnetic interaction may be divided
into the instantanecus coulomb potential and the transverse wave part.
For an infinitely heavy nucleon the transverse wave paris, in diagrams
of type D and E of figure 3; do not contribute and the whole effect
must come from the coulomb interaction. If we use second order periure

bation theory for a nucleus of charge z =~ 1 undergoing a P=descay to

a nucleus of charge 2, the matrix T to be evaluated between elactron

and neutrino states is determined in Appendix 111 and may be expressed
a8
3 (e, + Gok + Bm)
o : i
T=dme” | 4K 2

Lz =g
(2x)°> 2(e = £ )8

+ (=1) 2@+aga(}(gugﬂ (41)

where & and €, are the energy of the electron in the final and inter-
mediate state respectively and where the nucleus is treated as infinitely
heavy.

The two terms of T are equally logarithmically divergent but of
opposite sign, hence if it were not for the fact that (z = 1) instead
of z multiplies the negative energy contribution, T would be finite

ey
and lead to the F function of order ze . But we see that the usual



A

F function neglects the fact that it is a charge (z = 1) that contri=-
butes to diagram £ and a charge z that coniributes to diagram D. There-
fore when < elTiv > is calculated there appears a logarithmic divergence
independent of the nuclear charge 2. In addition there will be a loga=-
rithmically divergent term from the affect of iransverse waves in the
electron self energy, diagram C; as mentioned above.

As a check on the amount of log W/m we have considersd the J-
decay of a spin zero nucleus to a spin zerc nucleus with the emission of
an electron and an anti-neutrino. Since the limit of large nuclear mass
is taken there should be no difference bstween the spin 1/2 case and
the spin zero case. The spin zero case has been calculated in complete
detail in Appendix 1V and the resull agrees with the 3@2/§ﬂ log W/m
determined for the spin 1/2 decay. In the next section we compute the
portion of the energy spectrum which arises from the process of inner

bremsstrahlung in the limit of very large proton mass.
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B, lInner Sremsstrahlung (1B) in Neutron Decay

The calculation of B for neutron decay proceeds in an analogous
manner to the case of muon decay. In the representation in which the
charged particles are grouped together the matrix element for IB

accompanying neutron decay to be evaluated between proton and electron

spinors is

-~
{

= i (4ne )1/ [2a ;ﬁéﬁ; g+ & §gf?:§ 2a ] (42)

where %ué = -nu, and a = (1+ iYB)/? and P, refers to the proton.
Simplifying equation (42) by rationalizing the denominators and using

kek = 0 we have

peetdl
= V2 227 7 _ 2beatid 15 '
T = i(4ne ) [ 2P2ek - Sk 1%a (43)
where we have replaced t by =t so that in equation (43) %u@ = M.
Summing over spins and polarizations for IT/° vyields
YooY 112 = 32me® [Pyt = BP3Ket + BOWtPyek + BPyektek]
spins pol.

where Q= Py (Ppel)™! =t (tel)™  and B = (k)™ # (el

For the differential transition probability for IB we must multiply
JT/Q by the average over initial spins and sum over final spins for
the neutron and neutrinc. This yields a factor P1°s multiplying T
where Pl and s refer to the negiron and neutrino Eespec%ivelye The

differential transition probability for I8 is then

3 3
&R = 165 = 4P o5 y z HE & . d i3 dk 38 (E_~amE=)
en)® (en)? @n)d °

spins pole
(44)



O
s D

where EO is the energy release in the decay.

. i “':... T §a 3 5; fi‘ii %?&f = "
in the limit of large 4y and By (W) b = W)

- . 5 2 2
5 \ 2 _ 2 .2 r & Em_ 28 1, &
(Plas) . /L, [T/ = 128 & ﬁﬁésaa 5 u{ ot 5 ke s>+ e
spins pole w  (tek)
2

R e vl (45)

The contribution to the energy spectrum of the decay electron from
1B is determined by integrating equation (44) over all photon angles and
energies up to a maximum energy k@ = EQ = me The neutron decay in the
limit of large nucleon mass is different from the muon decay in this
respect Tor the conservation of momentum need not be taken into account.
If we treat the infra=red divergences as in the muon decay then the con-

tribution to the energy spectrum of the electron from IB is

22 2 k  ka, 2k
Ge _ 3 4, 0y.01 —2 } (e - 2
g = S ({22120 1 +< +=2) =2 30
?ig Zk ay
- {=4e B+ (e 4 2%+ 52 )5 L }2( o-E)k,
2
/k k
2o =2 5o+ (2 +*% k + 52 ) ”i%k 1p dp (46)

where
X

N .
- o, - W R
Iy =1+ log 2k Ty = log 2k 5%

2a R a

S— ~L 1
Iy = - =L log 1—@ log 2 + o [L(V) = L(-V)]

,.§; [L(242V) = L(2=2¥)] +<§; [log® (14V) = log”(1=V)]

where L is the Spence function and the velocity of the electron V = p/t,
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Using equations (39) and {(40) the contribution to the energy

gpectrum from the viriual processes is

22
- £ 2.
= “‘g""(ﬁ 532 Qép - i%i’i_ ;‘ { log f“ +a, log “:’; - Qaf—ﬂ’ /2

Ry =
=" m
.,e,lg.m.}_ilal .g..uLL(a__m?w)} -,Ll.n.ﬁlo .é’,
77 log F 2 %% "o 4

“ (£+P)

. 2
+1-10g‘;:‘?‘ -élog‘%wgglogé‘%-éz’%‘lgaﬁ@g 4a

4 i
3 2
+ (E%‘L 3%@« ) - 6al1(E - £)%5%ap (47)

where ay by & are given by equation (36). For A =M the expression

in the last brace becomes 11/4.



Co The Effect of Anomalous Homents

The second possibility of large coefficients comes from including
the anomalous moments of the proton and neutron. If we atiempt to come
pute the radiative corrections by treating the nucleons as bare point
particles with anomalous moments we find that the alec%fémagn@tic af fects
introduce quadratic as well as logarithmic divergences. It is neces-
saryy in order that finite results be obtainedy to cut off the integrals
over virtual photon moments by including the nucleon form factor. There
are two problems that arise in this connection,

First, even with form factors the complete end resull would not be
finite as there remains the logarithmic divergence from the wave function
renormalization of the electron {(diagram C of figure 3). (However, if
only the energy dependent correction is desired this is of no signifi-
cance since the result is just to provide an electromagnetic renormali-
zation of the B-coupling constant.) Second, the only form factor that
is known is for the interaction between electron and nucleon, but the
complete @iec{romagﬁe%ic corrections would require the form factor for
the interaction of the neutron moment with the proton charge and moment.
This latter form factor is; of course, unknown. However a reasonable
calculation procedure would be to include the effect of the momente by
using only the Stanford form factor. Howevery since the virtual photon
interacts with non=free nucleons and the Stanford experiments are done
with free nucleons this procedure may not be relevant.,

For the purpose of estimating the kind of corrections introduced
by the moments as well as the order of megnitude we have considered the

problem without form factors and using a cutoff Ay large compared to
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#He The moments give rise to four additional diagrams, two from the
interaction of the electron with the neutron and proton moments, and
two from the interaction of the neutron with the proton charge and
moment. The last type, the neutron proton moment interactiony is quade
ratically divergent, whereas the O?gef three types are logarithmically
divergent.
Let us consider the problem in some detail. The four new diagrams

P thru VI of figure 5 are listed below where the circle stands for

ancmalous moment interaction. The matrix element to be evaluated be=

tween proton and electron states for diagram 111 of figure 5 is
2.
= al@ﬁ ‘MP E ﬁnﬁ-c 1 m
T T T s ) P 2 T ) (48)

where fu@ = =mu_ refers to the positron and P refers to the proton
and @(kz) is given by equation (6). Employing the rules of gamma alge-

bra T, can be simpli?ied to

“@ f 28 k;{-?wsk ~3/2m< )23 4 )

T 5
(?n ) {k 2P k)(k +24 k) k-

-

e -

+ @(iﬂ/éﬁ) (49)

where 1, > 0 and terms of order 1/# are dropped in the limit of large
Mo
There is one new integral in equation (49) not appearing in

reference 5 which is readily evaluated by Feynman techniques. We have

Yem)? K (Pm2Pek) (P42t ok) 0 P§
i
-ty P A L Ty, : -
2(guv“y5 gp@ YV gvﬁ yi Jlog 75 ?2 * 2(%uvpys+gusayv+gv6Pyﬂ)]

Yy



whare

P = yP= {1 - yit
y
Since we are interested in the above integral for large M we can use
2 e , ) : ) , : Combini
= My" which makes the integral on y quite simple. UCombining

terme and using the integral equation (34) we have

2
Il i - 42

e note that in the standard representation {5&){2&) the Za of equation
(51) goes over to the interaction ¥, a.

For diagram IV of figure 5 we use the Furz transformation which
changes the order of operators from Puy (ev) to Pv)(el) and thus
leaves the interaction ¥ a invariant. Hence the matrix slement to be

b3
evaluated between electron and neutron states is

. 2 -
_ ia ;,4% o ,‘3 I Q(g{&z
v ® = T ,,5 (S )2 Ly %»M-m Yy® P {YM%“W#) ! kz (52)

where S(kz) is given by equation (6) and where Ku = mu_ and since
the limit of large M is to be taken we do not distinguish between
proton and neutron momenta and refer to the latter also by B. Col-

lecting those terms in T, which are non zerc in the limit of large ®

we have
.2 N o 2 ,
. i iy, dgk SPwk aaSkvk d%ﬁmkv%é+gvva%k } y
. gﬁéfj
A e d o ony? (k2=2t o) (K2=2P k) K
+ 0{1/M)

With the aid of 6@U&%i0ﬂ(50}1§¥ becomes in the limit of #H ==

P
Ty =22 g () + by as Glog (B) + =237 ()

v " T



Using the standard representation (PN)(ev) the matrix element to

Al

be evaluated between proton and neutron states in diagram V of figure 5

is

, 2 4
_ 4 d'k J(k )
Tl’" - 4;3{ (7x )2 §< [(’Y M”E{Y ) ?"% ?'wk’-»m ] (5&)

where in anticipation of the limit of large M we have labeled both
neutron and proton by P and where C(kg) is again given by equation (6).
Simplifying T, yields
ieg 4
T =.“?“E§ P4k Lm?P k a “‘i Mk Y8 + 2k kga - mkzv =

(k2
egg (kzazpck)z

+ 2@%&9@ + ng%?v&}

Since we have made no distinction between proton and neutron momentum
the integral with thres k's in the numerator is given by equation (50)
with P = P and P2 = %20 Using the same substitution in the inte=
grals of reference 5 we have after some simplification in the limit of
large M

e WU '
Ty =g [310g (§) +4)r, +2r 3] (55)

In the standard representation the matrix element to be evaluated

between proton and neutron states in diagram VI of figure 5 is

_demngts o A 0gdy . i ]
Ty == 2 L?”k’%?u RV I YT @%w%;%fuﬁ] (56)

L A S

where both neutren and proton are again labeled by P. The matrix element

. C , 2 :
Tyy s quadratically divergent so thal we cannot use C{k") given by

equation (6). Instead the sironger convergence factor
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-~

2 -
' (k) = AY® - %) (57)
is used. In order to perform the integrals in eyuation (56) we intro~
duce auxilliary integrations over x and y so that

E 1

2 -
2 2 "J 2xdx A lay\lwy} (k =P ek ye Ay)

2 2 -2
k (k" =2Psk) (k“aﬁ )

whare
- 2
Ay = (1=y)xh

After carrying through a considerable amount of gamma=-algebra TVE can

be written as

2
e tip cﬁk
Ty =~ o Lenp . 4P g 3+ i g e

- 2P #la + a)guv - 2%@#yayv(a - @) D%uv

¥ (wd?ﬂp Yy 2= Moy oYy (g - a) + Qﬁg&%gvg(a + a) )Iyyg

+ (a%&wm)l Vot ] (58)
where
- dék? ko
w (Or)°  (KC-2Pek)? kP

I =
g J (21{)2 kg (k2°2g3°k)

i
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Carrying threugh the indicated algebra in squation (58) yields

e %@"Lp 3 A 23 A, 241
=" (3 &,;2 + 3 log i+ 53¢ )Wf&a
e (el iog Pra (59)

Since we have assumed A is large compared to M then the main
effect of disgrams |1} through VI of figure 5 is contained in equation
(59) and is that the unperturbed P=interaction Yﬂa avaluated belween

proton and neutron states becomes

e A2
Y%&‘f"“?" ,ugipw?"f

The added term to the interaction T%a leads to an interference
term in the energy spectrum and anisetropy in the decay of polarized
neutrons, We can easily calculate this for neutrons at rest and
polarized in the z=direction by using the additional projection opera=-
“tor 6,* 1)/2 on the initial free neutron state. The correction o
the energy spectrum and anisotropy occasioned by the additional inter-
action is then given by

2 .2

3 &ﬁm.&”

=30 % ﬂﬁ*p( 3/[gw“f°q+ﬁzﬁégiz}iaﬁd€d5365 8 }d cos O }j

- s , .
whera g, o and €, 1t are the energy and momentum of the neutrino and

electron respectively.
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FIGURE 5. FEYNMAN DIAGRAMS FOR NEUTRON DECAY.



APPENDIX |

Evaluation of the Integral I

The integral I, appe:sring in Section IlA is

i
1 p?
I 2
: = | = A ﬁ
8i1, N Py log ( N ) dy (A1)
m
where
2 2
PC = (py = ay)

Y

In the rest system of particle one

2 _ 2 2 22
Py = m, + Q(mlﬁz = my)y +qy
With the substitution

b coth g = a

y

where

l

a= (mfy = ma)/q” and b2 = a° = wi/q

I, may be expressed as

1
ol 2.2 o
BiI, = = l/ﬁqzﬁj “ da log Q“%" -2 j@? log sinh a da] vy
a A a
1 m 1
where 5
- bt my (Entpy )=
2@1 = Zeoth l(a/b) = log 6;%%) = log [ 272 g
my (Ep=pp)=ry
and
2
- m;=m, (E,~p,)
ty = coth 1( igg ) =~%'leg [ é L 272
mlmml<E2+p2)

The second integral of (A2) can be readily integrated by using the

exponential form of sinh gy in which case

%;:2 da log sinhg = (&2@&1)5+2(a1a10g 2)(qgaal}+L(em2m)¢L(e_2m2) (A3)
1



e
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whera L is ihe Spence function defined by

Lik) = gz’log {1 - 2)
JGE =

Jsing the identity
béqg = bgmgf& + b)”lia - b)ml
and the relation

b@z = mIPg

1, may be expressed as

Bil, = = =t— [ (a,=a,) 10 fg + {a,~a,) log fawgzmm 1+ L(@a2@2>
: - = oy = g o B L y
! Myt el ki 2"l (atb)?
"2@1 T .
=L{e ) - Z(mgnal) + 2{uy=a, ) log 2] (A4)
Employing the relation
E Lol

,. ) P2

and passing to the limit of m, =0 we obtain the result
) q
2E., mé 5 2k, 2E
8iI, = ““l“°[log (=" ) log (=5 ) + log"(—=) = L1 = =%)] (a5)
L mpy m 27 = m my

whefe we have used
lim e =0
0
lim (&2 ) =4

mgﬁO



APPERDIA T

Covariant Method for integrating Over Heutrino Momentum
Consider an expression of the form
3 £ 2 \ p\:’z 3 £3 é i
1= Jé(s 15 (" =ZgeG)Aos Bes d g : (a6)

= f@ (532)6 (@2@2@@) (A4$4—K°@ (845@@@) d’s

Yo evaluate the integral in a coordinate system where G has only a time
componant and express the result in a covariant forme In this coordinate

system the & functions have no angular dependence so that integrating
over the angles of s gives

) - . -
I= 4‘5&5‘&(%84@ %?oéf)a(gé@g?)5(@232%@4)@%%“@@

e : k] . & 3 ®
Performing the integrations over s, and ['s| use up the two & functions
and give

I= (sz/@}@i(ﬁ‘w% +20,8,)
or rewriting in covariant form
I = n/24[ (A-B)G" + 2(AsG) (B-G)] (A7)

in 2 similar menner we determine

[thesre (s (19 d%s = (ne0)n/a (A8)

Equations (A7) and (AB) yield the right side of Equation (14) Section IlA.
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APPZMDEX 11

Derivation of the Static Coulomb Correcticn, Equation (41) and

-

£

the Coulomb F Function to Order e

The transition matrix element TFo for PBedecay with coulomb inter=

action is given in second order perturbation theory by
v = @]
= ; " ki = Bm -
Teo = /) ﬁFn%%o(gu Qok = Pm - 3) (A9)

where the P=decay has

Hon = (Nue) U, 0 u,,

¥

and the coulomb interaction has

Hep = (iue)anze™ ( 3K )™ T(P)uli)

/

and the energy releasefor a neutrinc of energy s is

Eo = g+ ﬁk

7.
E.2 P2+m29.6k=k2+m2

Since the detailed structure of the nuclear matrix elements is not rele=
vant for the derivation of equation (41) we symbolize their appearance

in H o and M by the expression (Huc). The O appearing in the

Fn
Pedecay matrix element is the operator describing this interaction. Both
diggrams D and E of figure 3 are included in TFQ providing we sum
over both positive and negative values of the intermediate energy of the
electron, From the expression for He  and Hno we see thalt summing over

spine of the intermediate states gives for the positive and negative

energy contributions



¢n54@

P * - EA
) Ll ) (pg= 3K = pm)™hu_Gk)u_ Gy, ()]

spins
g+ :.fag = {ﬁm
= e for & >0 (#10s)
2e, (e = ack = Pm)
Ek haed ge%‘: had gﬁm
= for 1 <0 (210b)

2 g, (¢ + Gk - Bm)

For & >0 the interaction is pictured by diagram D of figure 3
and corresponds to an electron scattered by a coulomb potential of
strength 2@2, For € <0 the interaction is given by diagram E of

figure 3 and corresponds to the coulomb potential taking an electron
from the sea to a positive energy state. However we see that the
strength of the coulomb potential is (z = 1)e. Making use of
(@-k + ﬁm)u@(k) = Eku@{k) leads to equation (41),
if we disregard the fact that we should have strength z and

strength (z = 1) for diagrams D and E respectively then we can write

?Fc as
‘ 3 -5 -
. 2T % E Y o
?FO = (NUC)@‘KE@ j MB U@(P)[ %:g‘ngw ] Q‘;? uv (g,)
(2n) 2peg~q-  q
with integrals
3
H (f.a Q l - @l
= (16xp))
D en? G- 0
| £ 3 (2]

i
=0
en) (@7 - T

Hance

* 2
2T = u 0 umz
Fo o 0 umze /N

whereas for the unperturbed case



TE =40
Fo Y™ YW

If we average and sum over initial and final spins of electron and
neutrino and insert the density of states and normalization factors

5
we have the coulomb F Ffactor to order e s
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APPENDIX IV

Spin Zero Wodel

In this appendix we calculate the radiative corrections to a P=decay
process in which the nucleons are assumed to be spin zero particles while.
the electron and neutrino behave as before. The analogous spin zero inter-
()

action corresponding to Ty is given by Feynman and hence ithe corres~

ponding P=interaction Lagrangian is
L2, = dolp, * po )6, Vy,a b | (A11)
int ~ P2'PpyT Pou’®y Vel gf\, |

where p, and p, refer to the initial and final nucleus, It is im=
possible to construct an axial veclor like 3}3 - for spin zero particles
so that the interaction has only (p, + pg)ﬂo

Consider a P~decay of a nucleus of charge z to a nucleus of charge

z + 1 with the emission of an electiron and antineutrino, i.ee,
z={z+t1)+et+v

The electromagnatic corrections in first order fn @2 to the above
decay are described by diagrams | through VI of figure 6. In addition
to the diagrams encountered in the neutron decay there are three new
types of diagrams |V, V and VI of figure 6. These result as a conse-

quence of gauge invariance which requires the substitution
p = (p = zeh)

in equation (All) and hence we have five field vertices as in diagrams

The corresponding matrix elements are



T= ~4ne®iz(z41) [(EP YA (P 4P 22k Y
j“ ‘2!‘,,& ( 2 -k 2-&%& 29 Iv ¥ (Pl%k)ga%ﬁg

c3) =
R R A A (A12)

where Pl and P9 are the momenta of the nuclei with charge z and (z+1)

respectively and t and s are the electron and neutrino momenta

respectively.

4 Z
) ) o k™)
Ty = dme x(z+1)f(2ﬂ {(599 “k )< oyt IV ~ky) mk) mﬁg k2

S WP (
Qé?@ Helemis Yv&¥$] (A13)
»?éﬁi = T%ﬂ with PZ — - ?1 and {z + 1) = =z
T, = (z+1)(22+l)4%@23§ L (2P - C(kz)
W w4 % (Pek)oeif K
(AN (A14)
TV = TBV with Py e PI and (z 4+ 1) =z
g . cfu
FVU 4ﬁe a(22+1) ' )4{¢{YM Yeolbmi TM§3 ] (A15)

Since we are only interested in determining the corrections in the

limit of large nuclear mass we will see here as in the neutron problem

that terms of the type log M/m do not arise from integrals which have

ultra=viclet diver:ences. Hence for the purposes of evaluation the use

of equation (6) for S(kZE in all the matrix elements will not affect
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the log W/m terms in the limit of large nuclear masse
The last matrix element TVI is just a multipley (22'+ 1), of the
electron self energy. Hence

2 ‘
= ggm [3 log

-

T -% 12z + I)w{&y {(a16)

Vi m
Since the unperturbed interaction is proportional to the nuclear momenta

and T, is independent of the nuclear momentum it will not contribute

Vi
in the limit of large nuclear mass.

Ti can be readily evaluated using the integrals of reference 5 and
is sspecially simple in the limit of M -® in which case Pl = ?zo in

the limit we have for Tﬂ

pi
.. 8 i A 4T p
= 5 z{z+1) EP?v[w log =5 = log 3 + 4]¢{Yva¢a (A7)

5
! ? km
From equation (A13) we see that the same integrals occurring in

equations (38) appear in T,, with the additional integral given by
equation (50). OF these only the integral of equation (38b) behaves as

log (M/m) for large M.

Expressing T, as

4, ,
_ Gt ;zg r % reo | :
Tll J (2n) [{éPZu(p2v+Plv) 2?°ukv - kM(Plv+ P2V>

1 e
+k k1 - ¥, (2t + v Ky el ]
COEY (Paop,ek) (K2tek) b M §uYe

we see that the part of T,, which behaves as (Pl + Pyl log (Wm) in
the limit of large M s

~

. 2
le. - ~ I
Ty (z + 1) ® 2?2y{Pl+P2)UIQ@¢%Yuﬁ§Yva%é
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where I, is given by equation (38b). Using thisfact in the limit of

large M thera is only one component of Py, and Pgﬂ namely the time
| &

foter

component we have

z
M - N
Ty = (@) 57 log = (P+P)) Vv el (418a)
and
2 M
£on o= U 7 A
Tyyy =35 log m (P1+P2)v¢{vva§8 {A18b)

Using the integrals of reference 5 Tyy is readily determined as

7?2
i AL 9
Tiv = (z41) (2z+1) %;’LB log 35+ 7 j PEMWEYMa@é

and ,
& AL9+, =
?v = z{(2z+1) o {3 leg‘@ +'§ ] PIM§%YQ§¢$
Both TlV and TV have no log #/m behavior in the limit of large M.

To complete the calculation we must now determine the contributions
from wave function renormalization. We determine this by using the

Ward identity (!9

%S?# = {A (P,P) (r19)
Py L

which relates the derivative of the self energy Z to the vertex

operator for zero momentum photons. For spin 1/2 particles

=7 A
Aﬁﬁpgg) W?uﬁ | (420)

where in both the spin 1/2 and spin zerc cases R represents the wave
function rencrmalization. from sgustions (A19) and (A20) we see that

R for the spin zerc case is determined by



Re—dp & = lop %Qi&ﬁ o (a21)
21 M 9Py a4 Py
, ﬁ , . N (5)
Using the mass chenge AM for 2 spin zero particle as given by Feynman
1 2 2 3 1 Cﬁsgszz
L=% | [ (2Pak) s - 4] 25 (A22)
2 F Y (2w) (Prkc) =i k

From equation (A21)

M ?(7%.52- k)

f ( 2 <y °k ( 412&%?"’2?) k + 1)};&&&,’1’ (AZB)
m& ony2 opae | Weam ) Kis2puk
where C(K°) is given by equation (6).
Executing the indicated integrals yields
2 3 A
R = ?’{ 5 log (3 ) - log (“” )+ 2] (a24)

M
Wave funclion renormelization is seen to contribute some log W through
the second term in H.

Collecting all the log (#/m) terms we have from T,

-(ez/'ﬁ)z(zﬂ) log (M/m) *
from TGS and Tgag

GE/QK log (¥/m)

from the wave function renormalization of the nuclei of charge z and z+l
(2°/2) (&2 /) Log (W/m) 5 (241)° (e%/20) Log (/m)

and from the wave function renormalizetion of the electron
m(@?/ﬁﬁ)l@g(ﬁ/@)

If we add these together we have



(3@2/ﬁﬂ)ﬁagf@fﬁ)

which is precisely what the spin 1/2 case yielded in the limit of large

nucleon masse
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FIGURE 6. FEYNMAN DIAGRAMS FOR THE DECAY OF A SPIN
ZERQO NUCLEUS.
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