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ABSTRACT

In this thesis we study rank 4 permutation groups. A
rank 4 group is a finite transitive permutation group acting on -
a set ( such that the subgroup fixing a letter breaks up Q into
4 orbits. The main tool employed in examining rank 4 groups is
the use oflintersection matrices, an idea introduced by Donald
Higman. Intersection matrices are used to obtain relations
between the lengths of the four orbits associated with a rank &
representation and the degreés of the irreducible characters in
the permutation character of the representation. It is shown
that two orbits of the representation are paired if and only if
two of the characters are complex conjugates of one another. All
the maximal primitive rank 4 groups are determined.

Techniques are developed, using intersection matrices,
to find all rank 4 representations of known finite groups. Group
.theoretic results about possible rank 4 groups are derived from the
intersection matrices which would have to correspond to the rank &

representation.
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INTRODUCTION

The idea of considering transitive permutation groups in
terms of the number of orbits of the subgroup fixing a point has
been given special consideration by Donald Higman. The rank of
a transitive éroup is the number of orbits of the subgroup fixing
a point. The rank 2 groups are simply the multiply transitive
groups. The rank 3 groups have been investigated by Higman [9, 10,].
Higman has also considered the matter of rank for every finite
value t8]. Iﬁ this paper we specialize our attention to rank &
groups.

In the first five chapters we consider numerical relation=
ships which exist in rank 4 groups. In Chapter Two a bound on
the order of rank 4 groups is found and the bound is shown to be
sharp in the sense that the bound is actually attained. In Chapters
Three, Four, and Five, the relationships between the lengths of
the orbits of the subgroup fixing a point and the degrees of the
irreducible characters contained in the permutation character are
examined. Incidence and intersection matrices are used in deriving
these and other relationships.

In the last three chapters we consider more of the ap~
plications of intersection_matrices to the study of rank 4 groups.
In Chapter 6 we find the maximal rank 4 groups. Chapter 7 deals

with techniques which can be used to find the rank_4 representations



)

of known finite groups. In the last chapter we include severa;
results about the order of a rank 4 group and some of the conjugate
classes of the group. These results are specialized to the case

where one of the orbits has length p, where p is a prime.
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CHAPTER I

NOTATION, DEFINITIONS, AND ELEMENTARY RESULTS

The notations and definitions used in this thesis are
standard and can be found in Higman (8] and in Wielandt [13].
For the sake of completeness the more important ones will be
given here.

All groups mentioned in this thesis will be finite.

G will denote a transitive permutation group acting on the set,
Q= {1,2,..°,n}, of n elements, where n is a positive integer.

Gi will denote the subgroup of G consisting of all elemepts of

G which f£ix the point i. H, N and K will also denote subgroups
of G and will be defined as they are used.

We:denote the rank of G by r. This means that for each
i €Q, Q is dgcomposed by Gi into r Gi-orbits. We will label the
orbits of G, as To(i), Fl(i), Fz(i), eeey and Fr_l(i). The

orbits will be chosen so that l"j(i)g = Fj(ig) where g is an ele-~

ment of G. We define Tj,(i) = T;(i) as-{ig-llig € Tj(i),

g €G, 1 €Q)}. 1In section 16 of [13] it is shown that Fs(i) is
also an orbit of Q under Gi and that the pairing Fj(i)<—4~F;(i)
is well defined. -An orbit, I, (1), is said to be self-paired if
Fj(i) = T;(i),.and paired if Fs(i) # Ts(i). Two paired ogbiCS

will have the same length as is shown in Theorem 16.3 of [13].
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All representations of groups will be over the field of
complex numbers. The permutation representation of G will be
denoted by P and the character of this representation will be
denoted by X. The absolutely irreducible characters contained

in ¥ will be denoted by Xi“ We can write X = Zeixi where e def

i
notes the multiplicity of Xy in X. According to Proposition 29.2
of [13], Eei = r,

The following lemma, while quite elementary, is alsc

quite necessary to the study of groups of rank less than six.

Lemma 1.1: Let G be a transitive permutation group of rank r< 5.

If x = Zeixi, then e = 1 for all 1i.

Proof: Since G is transitive, we see from Theorem 32.3 of [3] that
the 1G, the identity character on G, occurs with multiplicity 1.

If r < 4, then Zei = 4 implies that e, = 1 for all {i.

If r = 5, then either X is the sum of five distinct ir-
- reducible characters, each with multiplicity 1, or X is the sum of
the identity character and another irreducible character, 0, which
has multiplicity 2. In the first type all the multiﬁlicities are
'l since the characters are distinct.

Let us examine the second typée If.there is an element
g€G which fixes no points of (1 then X(g) = 0 = 1 + 26(g). This

means ©(g) = -% which 1s a contradiction since 9(g) must be an

algebraic integer and ~% is not an algebraic integer. Thus no
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element in G moves every point of (I, Let |G1|- h and |Q| = n.
The total number of elements is at most (lGll-l) + (lel-l)
+ ...t (IGnI-l) + 1 or n(h~1) + 1. The order of the groub is
[Q]olcl[ = ph sinée G is transitive. Thus n(h-1) + 1>nh or 1>n
which is a contradiction. Hence the first type is the only one
possible.

The theory of induced charactérs plays an important role
in the theory of permutation characters. We will briefl& sum=
marize some of the most important concepts about induced charac-
ters. A standard treatment of induced characters can be found in
Chapter 6 of [3]. Let G be a group and let H be a subgroup of G.
Let © be a character of H. Define a function é on G as follows.
é (g) = 6(g) if g €H and é (g) = 0 if gfH. We can now define a
function BIG on G. We define Glc(g) = Zé(x-lgx) where this sum
is taken over all elements x of G, where g is also an element of
G. GIG is a character of G and is the character of G induced

’from the character 6.on H., If Y and ¢ are two characters of G we

define an inner product of the characters by (¥,9) B = (G:l)-l
P P C

Sec Y (g) ¢(g-1). We now consider another relation between the
characters of G and the characters of H. If ¢ is a character of

G, then we define ‘P'H as cle (h) = ¢ (h) where h€H. This function,
called the restriction of ¢ to H, is a character of H. The

Reciprocity Theorem, due to Frobenius, states that if ¢ is a
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character of G and © is a character of H then 0?,9|G)G = OpIH,G)H.
If a group G is represented as a transitive pefmutation gfoup on

the cosets of a subgroup H, then 1HlG is the permutation charac-

ter for this representation.
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CHAPTER II

A BOUND ON THE ORDER OF RANK 4 GROUPS

In this chapter we develop an inequality involving the
order, g, of a rank 4 group G, the order, h, of the subgroup
fixing a letter, Ga’ and the index, k, of Ga in NG (Ga)' Using
this formula we find all the rank 4 representations associated
with the PSL(2,p) groups and the Janko simple group, J, of order
175,560.

Before we derive the order inequality we prove an elementary
lemma which we will use. |
Lemma 2.1: Let G be a finite.transitive permutation group. Let
Ga be the subgroup fixing the letter a. Let k = (NG(Ga): G;).

Then there are k orbits of length 1 for the group Ga'

Proof: Let G = Ga + Gax2 R Gaxk'+<... + Gaxlﬂl be a coset
decomposition of G where NG(Ga} =G, + Gax2 + ...+ Gaxk' It is
well known that there is a permutation isomorphism between G act~
ing on the cosets of Ga and G acting on the points of (}. We will
"show that every element of Gé fixes Ga’ Gaxz,..., and Gaxk' Gaxix=
Ga(xixxinl)xi = Gax 1

if x € G_ and 2 < i <k since x.xx_ = € G,°
a - i

i
1f i > k, then‘xjﬂNG(Ga) and so there exists.a y € G, such that

x”
IR
would imply xj y X

1 = h £ t
¢ G, and hence G, X,y G, X,y x5 X, # G, X, or equality

3

exactly the elements fixed by all elements of Ga'

1
e Gao Thus Ga, Ga ng YRR and Ga ]ﬂk are
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If Ga is the subgroup fixing a letter, then 1 G is the

G
. a
character of G. Using Proposition 29.2 of [13], we see that

(1G IG, 1G ]G), the sum of the squares of the multiplicities of

a a
the irreducible representations contained in the permutation

representation, is the rank of G. Using Frobenius' Law of Re-

ciprocity, we have
G G ‘ G
g 17 15 1D = g s 15 Pl dg =
a a a a a

AR N CA S M S

-1
y€ G, x€G & x yx€Ga

G
a

G will be a rank 4 group if and only if

deh®) (L v ).

-1
yEGa x€G & x yx€Ga

Since de,nD2 ) () 1 ) >

-1
yEGa x€G & x nyGa

> de,hD2(let+ ) (2 1))

yEGa XGNG(Ga)

= (e, D7%dlel + dle| - DINgEHD,
if G is to be a rank 4 group, we musé have a‘g,h“z (g + (h=1)kh).
From this we see that h(k + (4-k)h) > g. If G is a rank 4 grou§
such that k = 1, then h(3h + 1) > g. If G is a rank 4 group sﬁch
that k = 2, then h(2h + 2) > g. If G is a rank 4 group such that

k = 3, then h(h + 3) > g. From lemma 2.1 we know that k = &
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implies all the orbits of Ga have length 1 and also from the
lemma we see that k cannot be bigger than 4 for a rank 4 group.

If G is a rank 4 group and if equality holds in the
inequality just derived . then this gives additional information
oﬁ the group. Equality holds if and only if the following occurs:
Ifx€Gand y $1€ Ga and x.1 y x € Ga. then x € Ng(Ga). This
means the Ga’ a € Q, form a disjoint collection of sets. If a
group G satisfies this condition tﬁen only the identity fixes
more than one point and hence G must be a Frobenius group.

These formulae are sharp. If we consider the relative
holomorph of an elementary abelian group of order 9 with an
involution we obtain a group of order 18. If we represent this
new group on the cosets of a subgroup of order 3, we have a rank
4 representation with Kk = 3, g =18, and h = 3.. If the simple
group of order 60 is represented on the cosets of the subgroup
of order 5, then k = 2, g = 60, and h = 5, If G is the group
given by the defining relatiomns, G.= <a,b,c| a2=b2=c13=1, ab=ba,
aca-c-l, bcb=c-12 and we represent G on the cosets of a Sylow
2 group then k = 1, h = 4, and g = 52,

We can summarize these results in the following theorem.
Theorem 2.2: Let G be a rank 4 group of order g, let Ga be the
subgroup fixing a letter and let |Gal = h, and let k = [Ng(Ga):Ga].

The inequality g < h (k + (4~k)h) is then valid and equality fxolds
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if and only if G_ NG =1 for all a and b in O with a # b. This

b
inequality is sharp in the sense that for k = 1, 2, and 3, there
are groups in which equality is attained.

To illustrate the use of this formula we will find all
rank &4 representations of the PSL{2,p) groups and also show that
there are no rank 4 represen;ations of the Janko simple group of
order 175,560.

If one represents PSL(2,p) as a permutation group on the
cosets of a subgroup of order < p-1 then we must have (p~1)(3(p=-1)+1)
> %p (pz-l) which means p = 2 or p = 3. PSL(2,3) has a rank &4
representation on a subgroup of order 2. If we represent the group
on the cosets of a subgroup of order p, then the order relation
requires p = 2, 3; or 5. If one represents PSL(2,5) on the cosets
of a Sylow 5 subgroup, one obtains a rank 4 group. In the case of
a subgroup of order p + 1, p must be 2, 3, 5, or 7. The represen-
tation for p = 5 has rank 3 and the reﬁresentation for p = 7 has
rank 6. In Chapter 20 of [2], all the subgroups of PSL(2,p) are
determined and it is shown that the orders of the subgroups either
are less than p-l1 or have order p, p +1, %p(p-1), 12, 24, or 60.

If one looks at the group of order %p(p-1), this is precisely the
subgroup fixing a letter im a doubly transitive representation. If
PSL(2,p) is to have a rank &4 representation on a subgroup of order
12, p must be 2, 3, 5, or 7. The only éossibility is for p = 7

and this gives a rank 3vrepresentation. If PSL(2,p) is to have a
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‘ rank 4 representation on a subgroup of orde; 24, p must be congruent
to+1 or - 1 mod 8 and 24(73) > %(p) (p-2-1) so p = 7 is the only
possibility. In this case we have a doubly transitive represen-
tation. When we consider a subgroup of order 60, we see that
p = %1 (5) and also 10,860 > %p(pz-l) and hence p = 11 or 19. In
the case of p = 11 we obtain a doubly transitive representation,
and in the case of p = 19 we obtain a rank 5 representation. One
can see from this that there are precisely two rank 4 represen-
tations of PSL(2,p), namely PSL(2,3), represented on the cosets of
a subgroup of order 2 and PSL(Z,S),.represented on the cosets of
a subgroup of order 5.

On page 48 of [11] all maximal subgroups of Janko's simple
group are listed. The largest maximal subgroup has order 660 and
is isomorphic to PSL(2,11). Representing the group on the cosets
of this subgroup gives a rank 5 representation. The next largest
subgroup, which incidentally is alsq a maximal subgroup, has order

168. Since 175,560 > 168(3-168 + 1) there can be no other possible

subgroups which we must consider. Thus we see that Janko's simple

group has no rank 4 representations.
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IMPRIMITIVE RANK 4 GROUPS

In this chapter we will consider the relationship which
exists between the degrees of the irreducible representations
of the permutation representation and the orbit lengths of the
subgroup fixing a letter in aﬁ imprimitive rank & group.

An imprimitive group, let us recall, is a transitive
group G which has at least one subgroup H which properly contains

G1 and is properly contained in G. The length of a chain of sub-

groups between G, and G cannot become arbitrarily large. In

1

fact we have the following lemma.
Lemma 3.1: Let G be an imprimitive rank 4 group and let

G, § it g 5? g . . g * ; G be a chain of subgroups between

G1 and G, Then k < 2.
H1
Proof: Consider the identity character lc . lc l is the sum
1 1

and at least one other irreducible character, Bl, of Hl.

of 1
H1
H2
1\ is the sum of 1 2 and at least one other irreducible

H

Likewise 1
H

2 Hi+1
character, 92, of H®. In the same way we see that 1 il is the
H

sum of 1 i+l and at least one other irreducible character, 6

o
H i+l

, of
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W rhus 1, (901, +6 |C+0, %+ ... +06|%+6", where o
¢, 2t ™ 2 k

is 8 mnonidentity character contained in 1 le
H

o Using Lemma 1.1

wg see that all the irreducible chai:acterla contained in I'GIIG (- x)
occur with multiplicity 1 since G has rank 4. Hence
BiIG and QjIG, i # j, have no irreducible characters in common
and hence k £ 2.

| We now turn to the two cases which arise in imprimitive
rank 4 groups. The first case is the one where there are precisely
four groups in a proper chain from G1 to G. The second case is the
one where there are precisely three groups in a proper chain from
G1 to G, We first prove a lemma which will be useful in both cases
and also in later work.
Lemma 3.2: Let G be an imprimitive rank 4 permﬁtation group. Let
Fo(l), Fl(l), Tz(l), and T3(1) denote the four orbits of Gl and
without loss of generality 1et.1 <1< j< k denote their lengths,
‘respectively. Then the sets of imprimitivity have lengths 1 +i
andfoxr L + 1 + j. .
Proof: Let H be a subgroup of G such that G1 ? i ? G. Let us
determine the set of imprimitivity of H that contains 1. Since
H # Gl’ this set contains more than one poin.t. If a point from one
of the orbits of G1 is in this set then every element of the orbit
is in this set. Those orbits of G, which are not in this set must

i
contain complete sets of imprimitivity of H., If Fl(l), the smallest
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nontrivial orbit of Gl’ is not in this set we have a conttadic;ion
for this would imply either 1 + j, 1+k, or 1 + k + j divides i,
Thus one of the possible lengths of a set of imprimitivity of H is
1+ 41, If a set of imprimitivity werelto contain the point 1 and
two other orbits them in a similar fashion one could see that it
would have to be the point and the two smallest nontrivial orbits.
Such a set would have length 1 + 1 + j.
Let us now consider case 1. Let H and K be two subgroups
of C such that Gl g H ? X f;- G. The length of a set of imprimitivity
of H must be 1 + i and the length of a set of imprimitivity of K
must be 1 + i + j. This means that [H:Gljg 1 +'i and [K:H] =
= (1+1i+ 3/ + 1) and [G:K]=n/(L + 1 + j) wheren =1+ 1+ j + k.
- We will now determine the degrees of the irreducible charac~
ters of the permutation character. If we induce the identity

representation, 1G s to H, we can use an argument similar to the one
2

in Lemma 3.1 to show that 1G IH is the sum of 1. and precisely ome

1 H

other irreducible character, 61, of H. The degree of 91 will be i.

Likewise IHlK is the sum of 1K and precisely one other irreducible

character, 62, of K. The degree of 6, will be [ (l+i+j)/(1+i)] - 1

2
or j/(itl). 1In a similar manner we see that IKIG =1, + 63 where

' 63 is an irreducible character of G. Since X= 1G lG is the sum of
1

precisely 4 distinct irreducible characters, ellG and 9216 must be
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irreducible. The degree of ellc is (deg 8.) - [G:H] = & + n/(L + 1),
The degree of ezlG is (deg 8,) - [G:K] = [4/(1+1)][n/ (1 +i+5)].

The degree of 6, is n/(l+i+j) -~ 1 or k/(i+i+j). These results are

3

summarized in the folldwing theoremn,
Theorem 3.3: Let G be an imprimitive rank 4 permutation group.

Let the lengths of the orbits of G, be denoted by 1, i, j, and k,

1
where 1 < i € j €< k. If there are two subgroups H and K such that
Gl % H C;» K $ G, then the degrees of the irreducible characters
contained in the permutation character are 1, in/(1+i),
3n/0(L+1) (1+i+3)], and k/(1+i+]),

We will now examine case 2. Suppose that in any chain
between G1 and G precisely one subgroup can be inserted. Let H
be such a subgrou;;, thaf. is, Gl g H g G. The sets of imprimitivity
of H may have length 1 + £ or 1 + i + j. '

Suppose the sets have length 1 + i. Then [H:Gi]ﬂ 1 +14

and [G:H]= n/(it+l). 1 lH is & character of degree 1 + i. If

61

1, [H is the sum of L and two other irreducible characters then
1

IHIG is the sum of 1G and precisely one other irreducible character

|H is the sum of 1
G1 H

of degree n/(i*+l) - 1 or (4+k)/(1+i). If 1

and precisely one other irreducible character, ©, of H then the
following cases can occur. GIG may be ilrreducible, in which case we

have an irreducible character of G of degree ni/(i+l), or 1HlG is
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the sum of 1G and one cher irreducible character of G of degree
(j+*k)/(1+i). In either case we must have an irreducible character
of G of degree ni/(1+1i) or (+k)/(1+1).

We will now assume the sets of imprimitivity of H have
length'l + 1+ j. In this case G is doubly transitive on the
sets of imprimitivity of H and hence IHIG is the sum of IG and
precisely one other irreducible character of G of degree k/(l+i+j)
or k/(n-k). These results canbe summarized in the following theorem.
Theorem J.4: Let G be an imprimitive rank 4 permutation group.

Let the lengths of the four orbits of G, be denoted by 1, 1, j, and k

1
where 1 < 1 S_j < k. 1If the lengih of a maximal chain of subgroups
from G, to G is 3, that is, G, % H % G, then (1) if [H:Glj =144,
the degree of one of the irreducible characters contained in the
permutation character must be either ni/(1+i) oxr (j+k)/(1+i), or
(2) if ﬂH:Gl] =1+ i+ j the degree of one of the irreducible
characters contained in the ﬁerﬁutation character must be k/(n=k).

We will now give some examples of imprimitive groups.
In Chapter 2 we listed several groups ﬁhich actually have imprimitive
rank 4 representations. The relative holomorph, G, of the elementary
abelian subgroups of order 9 with an involution gives a rank 4
representation with orbit lengths 1, 1, 1, and 3. In this case
all the irreducible characters of G are of degree 1 or 2 and this

is what comes from Theorem 3.4, If we represent the alternating

group on 5 letters, As, on the cosets of a Sylow 5 subgroup we obtain
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an imprimitivé rank 4 representation in which the orbit lengths are
1, 1, 5, and 5. The degrees of the characters in this representation
are 1, 3, 3, and 5, and 5 is the value which comes from Theorem &.3.

An infinite set of examples results from the following
groups. Let Sn be the symmetric group on n letters and let An-l

be the alternating group on n-1 letters. The ﬁnly propex subgroup

of Sn which contains An-l as a proper subgroup is Sn Represent-

-1°

ing Sn on the cosets of An- we obtain a rank &4 representation of

1
» degree 2h with the orbit lengths being 1, 1, n-1, and n-1, Using
-Theorem 3.4 we see that we must have a character of degree n or n~-1
associated with the permutation character of this representation.

One can easily see from Chapter 8 of [12], that there is no character

of degree n for Sn when n is greater than 5, and hence the character

must have degree n-1.
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CHAPTER IV

INCIDENCE AND INTERSECTION MATRICES

In this chapter we will develop the ideas which will be
used in the remainder of this thesis. In the first part of this
chapter we will give results found in [13] and in [8]. We will
then refine and extend these results for rank 4 groups. - We con~
clude the chapter by proving the following fundamental theorem:

If G is a rank 4 group two of the orbits of G1 are paired if and
only if two ofvthe irreducible characters contained in the
permutation character are conjugate,

If Ti denotes an orbit of the subgroup of G fixing a letter,
we can define an incidence matrix, Bi = ( B:b >’ as

o = 1if a €T (b)

ab = _0 otherwise

These matrices have the following properties:
. r-1
Bl. Bo = T and 2;80 Bi = F where F denotes the matrix with all

entries equal to 1. See Proposition 28.2 of [13].

B2. Bo’ Bl, « « +» , B is a basis for the commuting algebra

r~1

of the permutation representation of G. See Proposition
28.4 of [13].

are paired orbits, then B T. B See Theorem

- B3. If Pi and T 1 j°

]
28.9 of [13].

If we again let Fk, of length 4 , denote an orbit of the



subgroup of G fixing a letter we can define an intersection matrix,

Mk' associated with this orbit as follows: Mk = ( uij ), where

u‘;j = r®Nr| if b€ OP

We call uk an intersection number.

i}
We list here the important properties of intersection matrices and

numbers found in Section &4 of [8].

koL, T ok _ kK i \

Ml. Uy Lkﬁ Lk.uij Li’ and uij Up g0 where j. denotes

the number of the orbit paired with Pj,

k k
M2, ul, = 6ikLk and u oi Gik'

k j k

M3. Ljuij = 4 uji and Liuk " ‘Ljui'j Lkuj K
M4, Mk has column sum Lk.
M5, Mb, Ml’ N Mr-l are linearly independent and.Z; Mk = F,

where F denotes the matrix whose ith row is (Li,Li,...,Li),
i=0,1, . . . , T~ 1.

M6. The algebra generated by M M . s 3 M

1’ ° -1
as an algebra to the algebra generated by Bo’ B

is isomorphic

1’ L R 1 Br'l.
" M7, Mi and B. satisfy the same minimal polynomial.
M8. ML = 4, L whera L = (4 4 yT

S 'Lr-l )

We will now specialize our discussion to the case where the
rank of the group is four. 1In this case we know from Theorem 29.5
of [13] that the commuting algebra of the permutation representation
is commutative.

We will now.consider the situation in which two of the

orbits, Fl and Fz, are paired. Let us first examine Ml’ the

intersection matrix for one of the paired orbits. To simplify
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notation and to facilitate reading of this work we will substitute
unsubscripted letters for the intersection numbers whenever

possible. The transition from one notation to the other is rather

straightforward. Thus we can give Ml by

©C O ¢ O

e A B O

o0 o e

H M 0 O
-

where the first row and column have been determined from M2.
We will now try to construct MZ. Using M2 we can determine
that the first row is (0, 1, 0, 0) and the firet columa is

(o0, O, Ll’ O)T, for &1 = Lz because Fl and Tz are paired. Using

| - 2 o1 2 1
the fact that &l %2 and M3, we see that upp T upps Yoy T Us0s
2 1 2 1 2 1 1 2
Ugq = Ugg, Uyy = U1, and Uj, = Uy Using ML we see that Ugg ™ Uyq
1 1 1, w1 =2 2 2 1 _ .2
and U, + Usq + Uas Ll = 62_ Uiy + Uys + U3, and so U, Uya
From this we know that M2 is
0 10
0 a 4d
L b ’
1 P e ¢
0 x vy i
where x and y must still be determined. Since Ml and M2 commute,

: Mle = MﬁMl' The (3,0) entry in MIMQ is &lh. The (3,0) entry in

MM is le. Thus h = x. Using M8 we see that h&1+y§1+i63 = Llés

from ML = LlL and hL1+gL1+i&3 = LILB from ML = LlL soy =g
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and M2 is completely determined from Ml. M3 is also completely

determined since M3 = F ~ M2 - Ml - L.
We will now reduce the number of variables appearing in the

matrices by using other properties of the matrices. The first

"column in M1M2 is (Ll’le’Lle’&lh)T' The first column of M2M1 is

(Ll,bla,&lb,¢ h)T. From this we see that a = b = e, We know that
the column sums of M, must be LL (by M4). Thus

() d+g= 41 - a

(2) £+c+1 = &1
(3) h = Ll - 2a -1,

Using M8 we obtain three more relations

2
(&) le + 43;& Ll - Lla
2
(5) L3c &1 - Za&l Ll
(6) 4.1g + /Llh + &31 = 4,3&1 .

We may solve these six equations qnd obtain b, ¢, e, f, g, h, and i
in terms of a and d. -

b =g

c = Ll(Ll - 2a - 1)/&3_

e = a

£t - a- O,

g = %1 -a=-d

h = Ll - 2a=~-1

i (b, =20 +3a+d+ 1)L,

1
In the case where all the orbits are self-paired we can

carry out a similar reduction. For the sake of convenience we will
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again use unsubscripted letters to denote the intersection numbers.

From M2 it is immediate that the first rvow of M1 is (0, 1, 0, 0)

and the first column is (O, Ll, 0, O)T. Thus we have Ml as
0 1 0 0
Ll a b ¢ ,
0 d e £
0 g h i

We should note that the case in which two of the orbits are paired
is separate from this case and the letters a, b, ¢, . . . , i are
not related to the ones in the previous case.

We will now express M, in terms of a, d, and e, Using M3

1
we see that b = le/&Z. Applying Ml to the columns of M1 we see

that g=4, ~a=d=1and h = Ll -e - &1d/¢2. Again using M3

1
we see that ¢ = Ll(bl -a=d- 1)/{«3 and that faLz(Ll-e-le/LZ)/L3.

The number i can be determined by using ML on the last column sum

= {, .{, -4', e 't, -+ L oo 4& - 4; ’L + ’L &
of Ml. We obtain 1 ( 173 1 a 1 2d 1 1 1°2 e 2)/ 3.

Using M2 it is immediate that the first row of MZ is

€0, 0, 1, 0) and that the first column of M, is (0, 0, %,, 07,

We denote M2 by

0 0 1 0
0O p q =
g
Lz s t w
0 x vy =z

The first row of M1M2 is (0, p, q, ). The first row of M2M1 is

0, 4, e, Lz(Ll - e = le/Lz)/LB). Thus p =d, q = e, and ¢ =

= Lé(bl - g - le/bz)/ég. Using M3 we see that s = &ze/-b1 and
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X = Lz -~ e - Lzelbl. Using ML on the fourth column of M2 we find
2 | | '

= - + L, - 4 .
that z (&263 Lz&l Ze&2 T db, , t c&2 + &2)/L3

The matrix M3 can be determined from the relation M3 =
= = M1 - Mz = I given in M5.

We have thus shown the following theorem.
Theorem 4.1: Let G be a rank 4 group. If two of the orbits, Fl
and Tz, of the subgroup fixing a letter are paired then the

intersection matrices are completely determined from 4

and the intersection numbers uil and uil.

1° LZ’ LB’
If all the orbits of
the subgroup fixing a letter are self-paired then the intersection
matrices are completely determined from &1,'&2, 45, and the
intersection numbérs ul u1 u1 and u2 .
11> "21° "22? 22

We will now study the relationship between the eigenvalues
of the incidence matrices and the values of the irreducible
characters of the permutation character. Since the incidence matrix
Bi and the intersection matrix Mi satisfy the same minimal poly-
_nomial they have the same eigenvalues, an& only the multiplic;ties
of the eigenvalues are different. The relevant facts which we will
use in the remainder of this thesis with regard to this matter are
contained in the following theorem.-
Theorem 4.2: Let G be a rank 4 group. Let Xl’ XZ’ and X5 denote
the nonidentity characters contained in the permutation character.
Then |

(1) Xy %o and %y are rational characters if and only if

the eigenvalues of the incidence matrices are rational,
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(2) xl, x2, and x3 are real characters if and only if tbe
| eigenvalues of the incidence matrices are real, and
(3) at least one of ;he characters Xl’ XZ and/or X3 is
complex if and only if some of the eigenvalues of
some of the incidence matrices are complex.
Proof: Let 81> By v v s and gi be the eléments of G in a
conjugate class, Cj’ of G. Let ajrdenote the element in the group
ring of G given by 8; + 8, + ... F gy In the usual way we
define P(dj) to be P(gl) + P(SZ) . P(gi). The class
matrices Pczl), PG&Z), o« v e s and'P(dk) are in the commuting
algebra of the permutation representation, by Theorem 29.7 of
[13]. Since the commuting algebra is commutative, P(al), P(dz),
. .., and P(ak) generate the commutiﬁg algebra and without loss
of generality we may assume Powl), Pﬁwz), Poua),_and P(aé) are a
basis for the algebra. Bo’ Bl’ BZ’ and 33 are also a basis. Since

POwi) has only integer entries and since ZBi = F, P(ai) =

—3
=‘Zr_ a,.B., where the a_,. are integers. If we let A = (a,.), then
j=0 "ij ] ij ij

A is nonsingular for it carries a basis to a basis, and its inverse
C = (cij) will consist of rational entries. Thus every Bi is a
rational linear combination of the P(aj).

| Since the multiplicities of xl, XZ’ and X3 are 1, all the
‘elements of the commuting‘algebra, when transformed by a unitary
matrix, U, which completely reduces the permutation represéntation

of G, must be in diagonal form as is shown on page 85 of {13], and

the diagonal entries are the eigenvalues. Each eigenvalue of a
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class matrix is a rational multiple of the value of Xl’ x2, XB’.
or 1G on that Class, as can be seen on page 235 of [3].

Let us show (1). If xl, Xz, and X3 are rational then
the eigenvalues of P(al), P(az), P(a3), and P(04> are all rational,
Since the Bi's are a rational linear combination of the P(aj) all
their eigenvalues must be rational, Since their eigenvalues are
also algebraic integers their eigenvalues must be integers. 1If,

on the other hand, all the eigenvalues of the B,'s are integers,

i
then the eigenvalues of the P(aj) must be rational numbers because
each P(dj) is a rational linear combination of the Bi's. Thus
also Xy> Xy and Xq must be rational.

Let us now prove (2). This result is proved in just the
same way as (1) except th#t we realize that the eigenvalues of the
Bi's are real if and only if the eigenvalues of the Pazj

The proof Qf (3) follows from (2). For if some of the

) are real.

incidence matrices have complek eigenvalues and all the characters,
X1» %o and Xq are real then this contradicts (2). On the other .
hand if all the eigenvalues of the incidence matrices are real then
all thg characters, Xl’ Xz’ and XS’ must be real.

We are now able to prove the following fundamental theorem.
Theorem 4.3: Let G be a rank 4 group. Two of the orbits of
the group fixing a letter are paired if and only if two of the
characters are complex characters and are conjugate.

Proof: Suppose two of the orbits are paired, say I, and FZ' Using

1

B3 we see that BIT = Bz. Let U be a unitary matrix which transforms
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the permutation representation to the four irreducible represen=
1 =T '

B1 U=107 Bl U is a diagonal matrix. If all

the eigenvalues of B

tations. Then U

y were real, then

T

which implies that B1 - Bz'which is a contradiction since

B1 and B2 are linearly independent by property B2. Hence B

and therefore B2 have complex eigenvalues, and those in B

the complex conjugates of those in B

1

are

, 2
1° Because the characteristic

equation of B, has real coefficients and one of the eigenvalues

1
of B1 is Ll’ by M8, the other distinct eigenvalues must be one
other real eigenvalue and two complex values which are conju-
gate. Since the trace of Bi’ i # 0, is zero the multiplicities
of the complex eigenvalues are the same. Since BBT = 33 all its
eigenvalues must be real. From Theorem 4.2 we #now that there must
be complex characters contained in the permutation character, ¥X.
Since ¥ = ; the complex characters must be conjugates of one
-another.

Suppose that two of the characters are complex conjugates.
This means that some of the eigenvalues of some of the incidence
Amatrices must be_complex. Suppose B1 has complex eigenvalues. If
Tl is self-paired then BlT= Bl,and by a proceas similar to the omne
used in the first part of the proof we can see that all the eigen-
values of B, would be real which is a contradiction. Hence Pl is

1
paired with another orbit.
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CHAPTER V

DEGREES OF IRREDUCIBLE REPRESENTATIONS

" In this chapter we will study the relationship between the
orbit lengths of the stabilizer of a point in a primitive rank &
group and the degrees of the irreducible representations contained
in the permutation representétion. The case for imprimitive
groups was considered in Chapter 3. |

‘Throughout this chapter we will let U denote a unitary
matrix which completely reduces the permutation representation
of G. If C is any matrix in the commuting algebra of the
permutation representation of G, then Uflc U will be a diagonal

matrix, and will have the form

where ai occurs di times, where di represents the degree of xi. This

can be seen from page 85 of (1a]. Note that the ¢, are not neces-

i
sarily distinct one from the other. 1If all the o, were distinct then
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we would know the value of d d2, and d, if we knew the multiplic~

1’ 3
ities of @ dz, and g If all the @, are not distinct we simply

know the sum of two or three of the degrees.
The matrices in the commuting algebra which we will consider
are the three incidence matrices Bl’ BZ’ and B3. Corresponding to

each of them are the intersection matrices M MZ’ and M, respece

1’ 3
tively. 1In Chapter 4 it was noted in M6 and M7 that the algebra

generated by the M,'s is isomorphic to the algebra generated by

i
the Bi's, and that M, and B, both satisfy the same minimum poly=-

nomial. The connection between Mi and Bi will now be made clearer.

The isomorphism mentioned above comes from the usual linear
extension of the map Bi*Mi; On pages 30 and 31 of [8] a way of

obtaining M, from Bi is described. We will briefly describe this

i
procedure. First an element a € Q is picked and all the points of

{1 are arranged in the orbits of the subgroup fixing a. The

- arrangement results in 16 blocks in each B Each of these blocks

g
has constant column sum and if these column sums are inserted in
the appropriate places in a four by four matrix the matrix Mi is
the result.

The first case we will consider is when all the orbits
are self-paired. We are able to obtain three equations, involving
from which we can solve for d The

dl, d2, and d d2, and d

3’ 1’ 3°
first equation comes from the fact that the sum of the degrees of
the irreducible representations is the degree of the permutation

representation.
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-Z,-

(1) 1+d +d,+d, = n

The second equation comes from the fact that the trace of B, is

i
zero if 1 = 1, 2, or 3. The eigenvalue with multiplicity 1 in

Bi is Li, as is shown on page 31 of [8]. If we denote the other

three eigenvalues of Bi by o aiZ’ and o 3 then we have

i1’ i
(2) 41 ta,d +o.d +a.d, =0
The third equation comes from Theorem 28.10 of [13] and is that

the trace of Biz is Lin if 1 =1, 2, or 3, Thus we have

b 2 2 2 2 "
(3) Li + ozildl + aizdz + aisda Lin.

Solving these equations for dl’ dz, and d3 we obtain

2
- - )
ap = (oD by m v (e e
(g = @39) @4y = ¥4
' L. -2 2 L
d, = o= Do by -4 #0099
@9 = ¥ @35 = %3
B
dy = (- Dagja, +ody -4 +4 (o, +o)

o, - [ S
( i3 vil>( i3 12)

These equations will be walid, that is, the denominators of
the fractions will be nonzero, if for some value of i, ail’ di2’

and @, are all distinct. This will occur exactly when at least

3
one of the three intersection matrices Ml’ MZ’ or M3 has four
‘distinct eigenvalues. If this is the case then we have determined
the degrees of the irreducible characters in the permutation

character in terms of the eigenvalues of the intersection matrices and

the orbit lengths of the subgroup fixing a point.
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In Theorem 4.8 of [8] it is shown that a rank 4 group is
primitive if and only if MI’ Mz, and M.3 are irreducible. On page
53 of [7] it is shown in this case that the value Li is a simple
root of the characteristic equation of Mi. Combining these two
facts we see that if there are only two or three distinct eigen-
values of Mi, Li still occurs with multiplicity 1.

If none of the three matrices Ml’ MZ’ or M3 has four
distinct eigenvalues there will be several cases_to consider.
Case I. All three matrices have three distinct eigenvalues.
Case I1I, Two have three distinct eigenvalues and one has only

two distinct eigenvalues.
Case III. One has three distinct eigenvalues and two have only
two distinct eigenvalues.
Case IV. All three have only two distinct eigenvalues.
None can have simply one distinct eigenvalug, for as we

noted before Li is a simple eigenvalue of M To simplify notation

L
we will denote a four by four diagonal matrix by (a, b, ¢, d),
where a, b, ¢, and d represent the elements on the diagonal. Let
Ni denote the diagonal matrix equivalent to Mi'

In case III a representative case would be No = (1, 1, 1, 1),
N = (4, 0,0, B), Ny = (L, ¥, Y, Y), and Ny = (4,, 8, 8, 8) and
one can see thaﬁ the dimehsion of the algebra generated by these
four matrices would be 3 which is a contradiction.

In case IV we can easily see that (No, N, N, N3> would be

an algebra of dimension 2 which would also be a contradiction.
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In case I there are several possibilities. If we have
N, = (i, 1, 1, 1), N, = (Ll, o, o, B), N2 = (Lz, Y, ¥, 6), and

N3 = (L3, £, C, ), the algebra (No, Nl’ NZ’ N3) would have

dimension 3 which would be a contradiction. Without loss of
generality we may suppose we have either N = (1, 1, 1, 1),

N = (b, 8, 8y, 8)), N, < (Lz, M Mo Ap), and Ny =

= (43, By Hys ul) or N = (1, 1, 1, 1), N, = (Ll, 8. 61, 62),

“2 = (Lz, kl, kz, kl), and N3 = (L3, Hys Fos uz). Using equations
(1) and (2) as before we can find the deéree of one of the
nonidentity representations for Nl’ Nz, and N3. Suppose these
three degrees, one from each of the three nontrivial matrices,

are denoted by £ fz, and f, respectively. If they are all

1’ 3
different then they represent the degrees of the three separate

irreducible representations. If two are equal, as in f1 = f2

and fl-* f., then the degrees of the irreducible representations

3

must be 1, £ f3, and n - £, - £, -1, If all three are equal

1’ 1 3

then the degrees of the irreducible representations must be 1, fl,

fl’ and n = 2fl - 1.

In case II if N, = (1, 1, 1, 1), N, = (&1; 61, 61, 61),
Nz = (Lz, kl, Xl’ kz), and N3 f (LB, by Mo uz), then
<NO’.N1: Ny» N3> would be an algebra of dimension 3 which is a
contradiction. We may thus assume that No“ a, 1, 1, 1),

Nl = ({’1’ 813 613 el)) Nz = (‘8’2! )“1’ Xl, )‘2)’ and N3 = (4’3:“1)“2)“1)'

Using equations (1) and (2) in connection with N, and N, we may

determine the degrees of two of the irreducible representations,
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d1 and d2. The degree of the remaining one will be n - dl - d2 - 1.

In the case where all the orbits are self-paired we have determined
the degrees of the irreducible representations.

Let us now consider the case where two of the matrices, Bl

and Bz, are paired with each other. From the work done in Chapter &

and from the material given in this chapter on primitive groupe we

know that there must be four distinct eigenvalues of Ml’ denoted by

LI, x,‘i, and 6 where M is complex. Since the degree of two of

the irreducible representations are aqual, we suppose d1 = dz.
The two equatioms

Lo 48+ 40 +2) =0 and

1 + d3 + 2dl = n

can be solved for dl and d3.

Ll + 0(n -~ 1)

We obtain

and

26 - (A +N)

4, = (@ - DO +R) + 20

(A + A) - 26
IfE A+ X - 28 is zero, that is, the determinant of the
matrix of coefficients is zero, then we can form two more equations,

2 2 T
= + + - . .
1 + d3 + 2d1 n and &1 d39 Zthl n&l,u51ng Theorem 28.10

of [13] and solve for dl and d3. If the determinant of the matrix

of coefficients is zero in this case also, then this implies that

2 2 2

8% = XI. If A + X = 20 then A\° + 20 + N = 492 and hence

M+ R +W =X or (A= %)% = 0. This is a
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contradiction of the fact that the number A must be complex.

Hence one of the two sets of equations yields a solution of

the problem.
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CHAPTER VI

MAXIMAL RANK 4 GROUPS

If G is a rank 4 group it is said to be a maximal rank
4 group if n is maximal with respect to the length, 4, of the
smallest orbit of Ga’ other than the orbit containing a. In
this chapter we will prove a result for rank 4 groups similar
to one Higman proved for rank 3 groups. We will however be
able to abtain much more precige results.

The theorem that Higman was able to prove is Theorem 1
of [9], and is: 1If G is a transitive group of rank 3 and degfee
n= l? + 1, where 4 is the length of a Ga~ orbit, then
n =5, 10, 50, or 3250.

The reéult we will obtain is: If G is a primitive rank
4 group and 4 is the length of the smallest nontrivial orbit of
Ga then the lengths of the other two orbits are at most (4 - 1)
‘and 4+« @-1)+ (4 = 1) and if equality is attalned then the
group must be the dihedral group on seven letters,

If the group G is imprimitive then we can't obtain any
bounds on the size of (0. If we consider as G, the symmetric
group on n letters, Sn, and as the group fixing a letter, the
alternating group on n-1 letters, An-l’ then this gives an
impfimitive representation and the orbit lengths are 1, 1, n-1,

aad n=1l.
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A rvesult which is very necessary in proving this theo;em
is Theorem 4.8 of [8]) and it states that G is primitive if and omly
if Mi’ the intersection mhtr;ces associated with Fi’i =1, 2, and 5,
are irreducible.
We prove the theorem by first considering three possible
cases. The first is the one in which two orbits are paired and
the shortest orbit is the self-paired one. The second is the one
in which two orbits are paired and they each have the shorter
length. The third is the one in which all orbits are self-paired.
In case 1 the intersection matrix for the smallest orbit,

I., the one which is self-paired, will be:

3
0 0 0 1
0 o : B Li(LB -B - a)/{,3
0 B o Ly B -ty |’
&3 43 -B-a 43 - B~ *

where * represents the quantity (432 -4, - 241 (43 -8 - W))/LB.

3
- If £3 - B - o is zero then one can see by interchanging rows and
columns 2 and 4 that the matrix is reducible and hence the group

is imprimitive, If L3 - B - o is non zero then

Ll (&3 -p - a)[&3 must be an integer less than or equal to

is odd and (¢3 - 2)/2 if 4_ is even. This implies

(LB ~1)/2 if 4 3

3

that 4, 1s less than or equal to LB(LB - 1)/2 or L3(63 - 2)/2 and

1

n is less than or equal to L32 + 1 or ng - L3 + 1 respectively.
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In case 2 the intersection matrix for one of the paired

orbits, Pl’ is
0 0 1 0
L, o« o L, 4y - - /4,
0 p o &1(43 - - 3)/L3 ,
v} &1 -a - Ll - 20 -1 *

where * represents Ll (43 - 241 + 3041 +B + 1)/&3. If G is to
be primitive then Ll (&1 - 2u- 1)/&3 and/or LI (Ll - - 3)/43

must be nonzero. If both Ll - o =P and 4, - 20 - 1 are nonzero,

1

then 43 can be méximal when Ll -20 - 1= Ll =~ 1 and Ll - - f =

&1 - 1 which is the case when @ = 0 and f = L. 1In this case

L, =4

3 1 - 1). 1f &1 - 22 - 1 is zero, the? o = (Ll - 1)/2

1

and hence 43 5_&1 (LI +1)/2, If &1 - a - B 1s zero, then

Lo<t (4

3= (b - 20 - 1) and is mwaximal when @ = 0. In this case

B = 1, and &3 <4 (; -1). Hemcen<1+ Lot 412 or

n<(2+ 5t + 4.12)/2.

1
In case 3 the intersection matrix for the orbit, Pl’ of

shortest length is:
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0 1 0 0

Ll a le/42 Ll(&l-a-d-l)lb3
0 d e &2 (Ll-e-‘(old/{az)'l,3
0 -61"8-'(1-1 Ll-e-'fald/&z

where * represents the quantity (e &2 + &143 - 412 + a&l + 26&1 +

+ -1 L, L, -a-d -~
Ll 1&2)/ 3- If d and L " @ d - 1 are both nénzero, then

Lz and 63 are both less than or equal to 41 (Ll - 2). If d is zero,
then &l - a=d -1 may not be zero. Thus LS must be < Ll (Ll - 1).
1f 41 -e- leléz were now zero then the matrix would be reducible.
Since Lz (Ll- e - leltz)/£3 must be a positive integer less than

or equal to &1 -1, éz will have its largest value when

- - = - 2
Ll -e = -le/&2 = 1 and &2 &3 (&1 1) or %2 &l (Ll 1), 1f

d # 0 and &1 - a=de~1=20 an argument using the interchange of

- orbits Fz and Fa leads to the same answer, with 42 = Ll (Ll - 1)

and-&3 = &1 (&1 - 1)2. The total length, n, is therefore at most

3 2 '
tbl 'Ll +~&1+1.

The maximal case to consider is therefore case 3. We
should note that in case the smallest orbit has length 2 we need
to consider several possibilities. When the smallest orbit has

length 2 3, clearly case 3 is the desired one.



The intersection matrix associated with the smallest

orbit ', when the other two orxbits have length Ll (Ll -1) and

1
L@, - 12 is
1 %
0 1 0 0
Ll 0 0 1
0 0 41 4l
0 Ll-l 1 0

Its characteristic polynomial is
(x - &l)(x3 + x2 - 2(&1 - 1)x =~ (Ll = 1)). The discriminant of

x3 + x2 - 2(&l - )x - (Ll - 1) is

36 (&, -+ 4@, 1)+ 4@y 12 + 32 @, - 1% -2 “, - 1)? and

is always positive where 4. 2 2. From this fact and the fact that

1
G is primitive we know that the characteristic equation has four
distinct real roots.

Suppose x2 + x> - 2(&1 - 1)x - (&l = 1) = 0 has an integer

solution, y. Thus y2 (y+1l) = Cbl - 1)Q2y + 1) or
yz +1)/@2y +1) = Ll - 1 unless y = =% which is not possible

since y must be an algebraic integer. .Hence y2 (y+1)/(2y + 1)

must be an integer. y2 and 2y + i have no f;ctors in common for

if p is a prime and p I y2 then p |'y and p l.2y and hence

p I 2y+l., y + 1 and 2y + 1 do not have any factors in coﬁmon for

if p 18 a prime and p ] ytl then p l 2y + 2 and p Y 2yt2-1. 1If



2y + 1'is 1 then y = 0 and 41 - 1=0or Ll = ] which is impossible.

Hence for any integer &1 > 2, x>

+x2-2(¢l-1)x- , -1 =0
has no integral solutions. |
We now need a lemma to show that the characters and hence

the irreducible representations which occur in the permutation
representation, in addition to tha identity representation, must
be_of the same degree.

Lemma 6.1: Let G be a rank 4 group and M be an intersection matrix
for one of the mnontrivial orbits. If the eigenvalues of the
matrix are four distinct real numbers, exactly one of which is
rational, then the irreducible characters in the permutation
character consist of the identity character of G and three alge-
braically conjugate characters, each with the same degree.

Proof: From Theorem 4.2 we seé that all the ‘nonidentity characters
in the permutation character must be real but not rational. There
is a finite extension field of the rational numbers which is a
splitting field for G. Consider all automorphisms of this field
over the rational field. If ¢ is any such automorphism then o

fixés the permutation character for it is rational. Since the noniden-
tity - characters assume values not in the rational field there
must be automorphisms which permute these characters among themselves.
Hence the characﬁers are algebraically conjugate and hence the

degrees of these characters must be the same.



40~
Since the degrees of the three characters we are consider-~
ing must be the same, each must have the value

(Ll + &1 (61 - 1) +'L1 (41 - 1)2)/3. When simplified, this value
becomes (4 3.1 2l+ 4.)/3
1 1 1 *

We now need a general theorem due to Frame. Theorem of

Frame [4]: Let G be a transitive group of degree n. Let Li

denote the lengths of the orbits of Ga' Let d, denote the degrees

i
of the absolutely irreducible representations of G contained in
the permutation representation. Let r denote the rank of G. If
the irreducible representations contained in the permutation

representation are all distinct then the rational number

q= a2 T Z;i

i=1 i
is an integer. If the irreducible representations all have rational
characters, then the integer q is a square.

Using Frame'’s Theorem we find thate

(4.13-412+vz,1+1>2-4,1-4.1 “‘1"”'*’1“‘1'1)2/“‘"13’*’12“1”3)3 must be

an integer., Since Lla - le + 4. +1 and 413 - 412'+ 41 have no

1

factors in common, this is equivalent to showing that

L 3 3

1 - 1)

3
(41 « 37 /( %13 o (&12 - 61 + 1)3) is an integer

which is equivalent to showing 3(&1 - 1) /Q&lz - Ll + 1) is an

integer. This means le - Ll +1 5,361 - 3 or QLI - 2)2 < 0.
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This is true only for ¢1 = 2. In this case the lengths of che'
orbits are 1, 2, 2, and 2. The dihedral group on seven letters

is an example of such a group.

We will now show that this is the only case. If G is a
primitive rank 4 group on seven letters then the oxbits of Ga
must have length 1, 2, 2, and 2, for otherwise another orbit would
have length 1 and the group would be imprimitive, From Theorem
18.7 of [13] it i{s immediate that the order of the group must be
14. There are precisely two groups of order 14 and the only one
which is a rank 4 group is the dihedral group on seven letters.

We note that in any of the three cases we considered if
the length.of the smallest orbit of Ga is 2 then the value of n
must be less than or equal to 7. Hence we have indeed found all

the maximal primitive rank & groups.
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CHAPTER VII

RANK 4 REPRESENTATIONS OF KNOWN FINITE GROUPS

In this chapter we will discuss a procedure which can be
ugsed in finding the rank 4 representations of a finite group.
The procedure is not an algorithm whose output is all the rank
4 representations of a known finite group. It is quite useful
however in showing that a group has no rank 4 representations.
We will illustrate the technique by finding the rank 4 represen-
tations of the Hall 3anko simplé group,

| We begin with a finite group G. If G is to have a rank
4 representation then there must be three absolutely irreducible
characters of G such that the sum of these three irreducible
characters and the identity character form a character all of
whose values are non-negative integers, for this would be the
permutation character associated with a possible representatioﬁ.
If no such combination of characters exists then there can be
no rank 4 representations of the group G.

All these combinations of three irreducible characters
and the identity character need not be permutation characters.
At present there are no necessary and sufficient conditions
which guarantee that such a combination of characters would be a
permutétion character. There are several necessary conditions which
can be used to eliminate several possibilities. Let us denote by X'

the character under consideration, that is, one which possibly may
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be a permutation character. The first requirement is that the degree
of the character must divide the order of the group, since the group
must be transitive on precisely that number of points. Another
necessary requirement concerns the number of points fixed by a
permutation. It is easy to see that if x is an element and a is an
integer then the number of points fixed by x is not greater than
the number of points fixed by x%. The value of a ﬁermutation
character is simply the number of points an element fixes. Thus
anather criterion .for %' to be a permutation character is that
x(x) < x'(xa) for all integers a and all elements x.
| From the character X' one can usually determine what size
the orbits must be. For example, if %' (x) = 1, where x is an
element of order 1ll, then eachvof the three nontrivial orbits
associated with Ga must be a multiple of 11. By making use of
several of these values of X' one can usﬁally.show that the actual
nontrivial orbit lengths, ( 41, &2, 53), must be among a rather
small set of triples of positive integers. Using the Theorem of
Frame one can eliminate even more of these triples.
1f one knows three numbers which may be the nontrivial
orbit lengths of Ga corresponding tc a rank &4 represeﬁtation then
one can try to construct intersection matrices corresponding to
;hose orbit lengths. This process is best carried out on a digital
computér. If two of the characters are complex conjugates then one
has a two parameter system and 1f all the characters are real then

one has a four parameter system, as was shown in Theorem 4.1. The
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first step is to pick parameters for one intersection matrix,
usually the one corresponding to the nontriviallorbit of
smallest length. Only those parameters which give an intersection
matrix with all non-negative integer entries need to be considered.
One can then calculate the characteristic equation of the matrix.
Since one of the eigenvaluea of the matrix must be the orbit
length, 4 , one has a cubic factor and (x =4 ) as the other factor.
If all the characters are rational then all.the eigenvalues of the
cubic equation must be rational by Theorem 4.2. Since they are
also algebraic integers they must be rational integers. If two
of the characters are complex conjugates and the intersection
matrix is associated with a paited orbit then the roots of the
dubic equation must be two complex values and one integer.
If two of the characters are real and algebraically conjugate,
then either one of the roots of the cubic equation has multiplicity
greater than one, or else one of the roots is an integer and the
other two are distinct irrational numbers. If all three characters
are algebraicaliy conjugate then either one of the roots of the
cubic has multiplicity greater than one or else all three roots
are irrational.

From the eigenvalues one can determine the multiplicities
_ of the eigenvalues in the corresponding incidence matrices and
thus in some cases the degrees of the irreducible rpesentations
contained in the permutation representation. If these degrees do

not agree with those which were known beforehand then this



45 =
intersection matrix is not the one associated with the represeqtation
under consideration. 'If all the elgenvalues are integers then one
can use the formulae developedvin Chapter 5 to find the degrees of
the characters. If two of the eigenvalues are complex then the
formulae in Chapter 5 will also yield the degrees of the characters.
If precisely two of the eigenvalues are irrational but all are real,
then the multiplicity of the two irrational eigenvalues must be

the same and hence one can solve for the degrees without finding
‘out explicitly what the two irrational eigenvalues are. If all
three of the eigenvalues are irrational but real then all the
degrees must be equal and one can éasily check to see if this

is true.

1f one has obtained one of the nontrivial intersection

matrices it 1s usually the case that the other two nontrivial
intersection matrices are uniquely determined by it. In any

case there are only a relatively small number of possibilities
lwhich one must consider. The intersection matrices thus obtained
can be used either to find the subgroup of G corresponding to Ga
or else to show that no sgch subgroup exists. One procedure will
be examined in the next chapter.

We now apply this method to the Hall Janko simple group,

J, of order 604,800, 1If oﬁe represents J on the cosets of a
particular subgroup of order 2160 then one obtains a rank 4
representation, as is stated on page 449 of'[73. The combination

of the four irreducible characters of J associated with this
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representation is the only combination of characters which could
glve a rank 4'representation of any degree for J. This was verified
using a computer. The degrees of the characters are 1, 90, 63, and
126. The permutation character, %, is given by:

"Order of an element, x¢ 1 7 24 8 6 12 10 10 2 6

% (x) : 280040 4 2 1 1 6 012 o

Order of an element, x: 1010 33 5 5 5 5 15 15

X (x) :t 2 2 141010 0 O 1 1

where this listing of elements corresponds to the one given on
page 435 o£ [ 7].

Let us consider an element, a, of order 12. It fixes
exactly one letter. The element, az, fixes all points fixed
by a and those in the 2-cycles of a. Since)((az) = 1, a has
no 2-cycles. a3 has order & and fixes 4 points so there is
precisely one 3~cycle in a, a4 has order 3 and must £ix either 1
or 4 points. The fixed points of a4 consist of the original fixed
point and all those contained in 2-cycles or 4-cycles. Since
there are no 2-cycles and since fixing a 4-cycle would result in
at least 5 fixed points we must conclude that a contains no 4~-cycles.
The cycles of a must consist of one of length 1, one of length 3,
and then the rest must have lengths which are multiples of 6. Thus
the orbits of the subgroup fixing é point must consist of one of
lengtﬁ 1, two of lengths which are multiples of 6, and one whose

length is congruent to 3 mod 6.
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Let us consider another element, b, of order 15, It fi;es
exactly one letter. h3 fixes 10 letters and so there are three
3-cycles in b. b5 has order 3 and the number of fixed points
of b5 must be congruent to 1 mod 5. This means bs has exactly
one fixed point and hence b has no 5-cycles. The nontrivial
orbit lengths of the subgroup fixing a point must have oune
of the three arrangements,'

(1) 15K, L5L, 15M+9,

(2) 15K, 15L + 3, 15M + 6, or

(3) 15K + 3, 15L + 3, 15M + 3,
where K, L, and M denote positive integers.

Since the subgroup fixing a letter must be transitive on
each of its three nontrivial orbits, the length of each orbit
must divide the order of the subgroup, which is 2160. We shall
call ﬁhis property D in the discussion which follows.

In case (1), using property D, one can show that M can
gssumé only the values 1, 3, or 9. 1In each of these cases
154 + 9 has the form 6N. Thus we may suppose 15L = 6R + 3.
Using property D this implies that L = 1, 3, or 9. Using
property D again we see that 15K = 6S ounly when K = 2, 4, 6, 8,
12, and 16. Notice that K+ L + M = 18 since 279 = 18:15+9. The
following triples, (X,L,M,), are‘possible: (16,1,1), (12,3,3),
(8,9,‘1), (8,1,9), (6,3,9), and (6,9,3).

In case (2), using property D, one can gee that L can

assume oaly the values 1, 3, or 7 and M can assume only the values
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2 or 14. For each of these values of L and M, the numbers are
of the form 6T. Thus 15K = 6U + 3, Hence K =1, 3, or 9. The
following triples, (K,L,M), are possible: (1,3,14), (3,1,14),
“and (9, 7, 2). '

In case (3) K, L, and.M can each assume only the values
1, 3, or 7. Each of the ogbits would then have a length which
would be a multiple of 6 which is ﬁot possible,

Using ﬁhe Theorem of Frame it is possible to eliminate
all but one of the above possibilities. Since all thé characters
are rational, the integer, q, mentioned in the theorem must be a
square. In all the possibilities for case 1, 53 exactly divides
q and thus these are eliminated. In the first two possibilities
in case 2, an odd power of 3'exact1y divides q and hence the
orbit lengths of the representation must be 1, 135, 108, and 36,
and indeed for these values q is a squafe.

Since the characters are rational all the eigenvalues of
the intersection matrices must be integers. Using a computer
all possible intersection matrices for the orbit of length 36
were examined and it was found that there was only one such that
the multiplicities of the eigenvalues in the correspbnding incidence
matrix agreed with the known degrees of the characters. The
~other two intersection matrices could then be determined uniquely.

1f we let ¥, be the orbit of length 36, 1, be the orbit of

1
length 108, and %3 be the orbit of length 135, then the intersection

matrices are:



o 1
ﬂﬁ 5
T \o 15
0 15
o o
0 15
Y2 T 108 33
0 60
o 0
| / 0 15
M =
0 60

3 \\\
135 60

11

20

11
41

55

0
20
55
60

16

16

16
» and

44

48

1
16
48

70

The characteristic equations of the three matrices Ml’ MQ’

and Mé,are, respectively, (x - 36)(x =6.)(x + 6)(x + 4),

.(x - 108)(x = 1O)(x *+ 2)(x + 12), and (x = 135)(x~15) (x*+5) (x+5).

Relative to a suitable unitary transformation the incidence

matrices are:
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36
=6
< O
-l
hd ]
o -
6
6
108
10
10
-12
. , and
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15

where the multiplicities of the eigenvalues, in order, are 1,

90, 63, and 126.



CHAPTER VIII

APPLICATIONS OF INTERSECTION MATRICES

In this chapter we will give some more results about
rank 4 groups which are obtained using intersection matrices.
Information is obtained about the order of a primitive rank
4 group and also about the cardinality of some of the conjugate
classes of elements of the group. The results are closely
examined in the case in which one of the orbits associated with
the rank 4 representation has length p, where p is a prime.

If a rank 4 group, G, is primitive then each intersection
matrix must be irreducible, using Theorem 4.8 of [8]. From the
Perron- Frobenius theory on page'53 of [6] this implies that the
length of the orbit associated with an intersection matrix must
be & simple root of the characteristic equation of the inter-
section matrix, If all the irreduqible characters contained
~in the permutation character are rational then all the eigenvalues
must be rational integers. In addition these eigenvalues must
be such that when they are substituted in the appropriate
formulae in Chapter 5 the values that they yield for the degrees
of the irreducible characters must be positive integers.

Using a computer it is an easy, but somewhat long, pro-
cedure to f£ind all possible intersection matrices, corresponding

to a given set of orbit lengths, which are the intersection
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matrices for primitive rank 4 groups which have only rational
irreducible characters in the permutation character.

If the length of the smallest nontrivial orbit of the sub-
group fixing a point has length £, thén the other two orbits must
have lengths less than or equal to 4 (4 =1) and £ (4 -1)2. Given
the length,£, of such an orbit, there are only a finite number
of possible orbit lengths corresponding to possible rank 4 groups.
Using the computer one can then determine all possible intersection
matrices corresponding to these orbit lengths. This procedure
was carried out for the cases in which the smallest nontrivial
orbit had length between 4 and 15 inclusive, If the eigenvalues
of the intersection matrix corresponding to the orbit of smallest
length are all simple roots of the characteristic equation, then
the degrees of all three Af the nontrivial irreducible characters
can be determined_from the formulae developed in Chapter 5. 1f
one of the eigenvalues has multiplicity two themn only one of the
‘ degrees can be obtained. The case in which one eligenvalue occurred
with multiplicity three did not occur in the cases examined.

In Table 1 are listed the possible orbit lengths and corresponding
degreces of characters associated with the intersection matrix
having only simple eigenvalues in its characteristic equation. In
Table 2 are listed the possible orbit lengths and one degree for
these are the cases in which one of the eigenvalues has multiplicity
two. The lists in these two tables correspond to all possible

primitive rank 4 groups all of whose irreducible characters in the



TABLE I
POSSIBLE ORBIT LENGTHS AND CHARACTER DEGREES

FOR RANK 4 REPRESENTATIONS

ORBIT LENGTHS DEGREES OF CHARACTERS fe]
1 4 12 18 1 6 14 14 35
15 10 20 1 9 10 16 36
1 6 8 12 1 6 8 12 27
"1 6 12 16 1 & 10 20 35
1 6 24 32 1 14 21 27 63
1 7 14 14 1 6 3 21 36
1 7 28 84 1 246 32 63 120
1 7 21 35 1 7 21 35 64
1 7 42 126 1 32 66 77 176
1 8 16 20 19 10 25 45
1 8 32 64 1 20 20 64 105
1 8 56 70 1 30 50 54 135
1 9 27 27 1 9 27 27 64
1 9 12 18 1 3 12 24 40
1 10 24 30 1 13 25 26 65
1 10 12 40 1 7 27 28 63
1 10 20 50 1 10 20 50 81
1 10 15 30 R 28 20 56
1 10 80 140 1 55 77 98 231
1 11 38 110 1 5 77 77 210
1 11 66 132 1 44 55 110 210
1 12 15 40 1 16 17 34 68
1 12 15 60 1 22 32 33 88
1 12 75 120 1 64 65 78 208
1 12 16 48 1 7 21 48 77
1 12 72 90 1 2L 28 125 175
1 12 48 64 1 12 48 64 125
1 12 108 243 1 91 104 168 364
1 13 65 65 1 26 39 78 144
1 13 52 130 1 16 49 130 196
1 14 63 126 1 51 68 84 204
1 14 49 56 1 35 35 49 120
1 14 112 128 1 51 84 119 255
1 14 140 385 1

135 140 264 540
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14
14
15

.15

15
15
15
15
15
15
15
15
15
15
15
15
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TABLE I (CONTINUED)
POSSIBLE ORBIT LENGTHS AND CHARACTER DEGREES

FOR RANK 4 REPRESENTATIONS

LENGTHS DEGREES OF CHARACTERS
56 64 1 1s 35 84
168 672 1 189 266 399
35 45 1 12 20 63
18 30 1 8 10 45
20 60 1 18 32 45
105 135 1 54 96 105
27 45 1 10 22 )
56 90 . 1 36 48 75
20 24 1 16 18 25
20 30 1 10 11 44
105 455 1 84 140 351
45 135 1 18 30 147
75 125 1 15 75 125
75 165 1 40 50 165
195 429 1 156 208 275
210 280 1 22 230 253

135
855
96
64
96
256
88
160
60
66
576
196
216
256
640
506



POSSIBLE ORBIT LENGTHS AND ONE CHARACTER

DEGREE FOR RANK 4 REPRESENTATIONS

56

ORBIT LENGTHS

5 5 5

5 5 5

7 14 28
7 21 21
8 8 8

9 9 9

9 9 9

10 10 15
10 15 30
10 15 30
12 12 24
12 18 18
12 16 16
12 16 16
14 14 35
14 14 56
14 21 28
14 21 63
14 28 42
14 28

14 14 28
14 35 35
14 21 21
14 42 42
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TABLE I1

DEGREE OF A CHARACTER

5

10
28
21
8

6

21
10
20
35
12
12
24
20
14
34
14
54
34
4
38
50
18
54

16
16
50
50
25
28
28
36
56
56
49
49
45
45
64
85
64
99
85
99
57
85
57
99
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permutation character are rational and whose smallest nontrivial
orbit for the subgroup fixing a letter has length greater than
or equal to 4 and also less than or equal to 15.

We will now examine the case in which the length of the
smallest nontrivial orbit is 5.

In Table 2 there are two cases we must examine. In the
first case the orbit lengths are 1, 5, 5, and 5 and one of the

characters has degree 5. The intersection matrix for one of the

orbits is
01 00
5 0.2 2
0-2 2 1 )

Nozrz/

Without loss of generality we may assume that the subgroup fixing
a point, 16, breaks up into the following orbits:
{16},{1,2,3,4,5},{6,7,8,9,10}, and {11,12,13,14,15}. From the

_ intersection matrix we see that we can assume that the subgroup
fixing 1 has the orbit structure:

{1}, {16,6,7,11,12}, and two other orbits. Suppose an element, x,
of order 5 fixes 16 and 1. It must then fix 2, 3, 4, 5, and alsoc
6, 7, 11, and 12, and this in turn implies that it must fix all

16 points, that is, it is the ident;ty. If p is a prime greater
thaﬂ 5 then p # 0 (16) and thus if there were an element of order

p it would mecessarily fix a point. Since it would have to move
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the points in orbits of length 1, p, pz, etc. and since p > 5,
such an element would necessarily fik all the points.

Suppose 25 divides the order of a rank 4 group associated
with this intersection matrix., Since none of the orbits is a
multiple of 25, a subgroup of order 25 must be elementary abelian.
Let a and b, both of order 5, generate the subgroup. We may also
suppose that a has the form (16) (1,2,3,4,5)-++. Since b centralizes
a, and the only elements of order 5 centralizing (1,2,3,4,5) are
powers of it, this constituent of b must be a power of (1,2,3,4.5).
Thus abi, for some integer i, must fix 16, 1,2,3,4, and 5. Thus
abi = ] and hence b is simply a power of a which is a contradiction.
Hence 5 exactly divides the order of the group. The oxder of the

K

group must be of the form 23 . 3% . 5. Brauer [1] has shown that

if this group is simple, then it is either A A6’ or the orthog-

59
onal group 0(5,3). None of these groups has a rank 4 represen-
tation corresponding to the orbit lengths and degrees given above.
In the secoud case from Table 2 the orbit lengths are
1, 5, 5 and 5 and one of the degrees is 10. The other two non-
trivial degrees must sum up to 5 and each degree must be able to
be determined from at least one of the intersection matrices, as
was seen in Chapter 5. Since this is not the case, this pos-
sibility cannot occur.

The only possibility listed in Table 1 is the case in

which the orbit lengths are 1, 5, 10 and 20 and the degrees are



1, 9, 10, and 16. The intersection matrices for the orbits of

lengths 5, 10, and 20, respectively, are

01 0 0
5 0 0 1
2
0 0 1 2
0 4 4 2
0 0 1 o
0 0 ¥ 2 » and
10 2 &4 2
0 8 4 6
0 0 0 1
0 & &4 2
0 8 4 6
20 812 11

In this case let 0 = {1, 2, . . «s 35, 36} and let

Tp(36), T1(36), T,(36), and ',(36) be respectively {36}, {1,2,3,4,5},
{6, . « «, 15}, and {16, e « +5 35}, We will again show that 5
exactly divides the order of any primitive rank 4 group corres-
ponding to these intersectiqn matrices. Suppose 25 divides the
order of the group. Then again we will have two elements a and b,
each of order 5, which generate an elementary abelian subgroup of
ordér 25. As was shown previously, we can find an element,

x = abi, for some integer i, such ﬁhat x fixes 36, 1, 2, 3, 4, and

5. Let us look at Tl(l), Tl(Z), T1(3), T1(4), and Tl(S). From
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the intersection matrices we see that each of these orbits must
contain 36 and 4 points of T3(36). These orbits have the poi;t'
36 in common and hence cannot have any other points in common.
Thus the 20 points of T3(36) must each occur once among these
5 orbits. This implies that x fixes all 20 points of F3(36) for
it must take Fl(i) into itself and since x fixes 36 it must fix
the other 4 points, for i = 1, 2, 3, 4, and 5. Let us examine
F1(6). This contains one point from T2(36) and four points from
T3(36). If x does not fix 6, then Tl(§)x contains at least four
points in common with T1(6) and this is a contradiction. Hence
x fixes 6, and, as one can easily see, every other point in
P2(36). Thus x is the identity and b is a power of a which is a
contradiction. Thus 5 exactly divides the order of the groups.
We will now show that the order of any group associated
with these intersection matrices must have an order of the form
27 . 3k * 5. 1f p, a prime greater than 5, divides the order of
the group then any element of order p in the group must fix at
least one letter for p # 0 (36). Suppose y is an element of
ordef p which fixes 36. It must also fix 1, 2, 3, 4, and 5 since
p 2 3. Continuing in a manner similar to the one stated above
one can show that y fixes all the elements of Q. Thus the order
of the groups must be of the form 2j . 3k * 5., The three simple
groﬁps which have an order of this form do not have a rank &4
representation corresponding to these matrices. We have thus

proved the following theorem:
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Theorem 8.1: There are no simple groups which have a primitive
rank 4 representation such that all the irreducible characters

in the permutation character are rational and such that the
smallest nontrivial orbit has length 5.

We will now actually give some examples of groups which
have rank 4 representations corresponding to these intersection
matrices given above. In order to make the calculations somewhat
eaéier we inélude some results of general interest.

Let G be a group and let H be a subgroup of G. Let G

be an involutory automorphism of G which takes H into itself.
Let G* denote the semi-direct product of G and O and let H¥
denote the semi-direct product of H and 0. Suppose p is an
irreducible character of G.‘ We want to investigate plG*. For.
ease of writing we will denote the element, g%g, of G* by g¥,
and pic* by p*. The element x will dénote-any element of G¥%,

We will fi;st investigate p* (g*). The formula for

p¥* (g*) is p¥*(g¥) = (lGl)-lz g (x-lg*x) where the value of pis
x € G*

p if the argument x’lg*x is in G and is zero if x_lg*x is not
in G. Since all elements x-lg*x are not in G for amy x € G¥,
we conclude that p*(g*) = 0.

We will now.eﬁémine p*(g). Again we have

p*(g) = (lGl)-l E: ﬁ(x-lgx). We note that for every element
x € G*
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g € G we have (g -18 g.) = p(g -18 g.) and for g, * we have
- 1 88 1 &8 1
. -l -l10 * a
p((g,*) "gg,*) = P(g) "2'8). Thus p¥*(g) = p(g) + p(g ). If

o o :
we denote p(g”) by p (g) we have p¥*(g) = p(g) + p°(g).
We can now compute the number'of irreducible characters
of G* which are contained in p%*, If we consider the inner prod-

uct = (p*, p*)c* we find that

S~

w*, o0 = @leD( ) (s + °@)(p@) + o (@)

g€G '
= @leb ) (et + 07(e) #%(e) + pla) P°(@ +
g€G

o D n——
+p (g) p(g)>-
If p does not equal pc then the usual orthogonality relations

for irreducible characters give us

Gr, 0% = @leh) (ptedete + %) ) = 2le] = 1
g | 2] 6]

and in this case p* is an irreducible character of G¥%. 1If p

dogs equal pc then we have

@*, o%) = 2|67 (]e| + le] + |6] + |¢]) = 2 and thus p* is the
sum of two distinct irreducible characters of G*. If we &enote
the two ;rreducible characters by el and 62 theﬁ (p*,el)G* =

= (p*, 62)6* = 1. Using the Law of Reciprocity we have

(p’eltG*)G* - (p’GZIG*)G* = 1 and hence the degrees of 91 and 62
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are each not less than the degree of p. Since the degree of
91 + 62 is twice the degree of p, we know.that the degrees of
0, 91 and 62 are the same.

We now come back to the task of finding‘some examples
of groups which correspond to the intersection matrices we
have given previously. It is well known that the degrees of
the irreducible characters of a group divide the order of the
group. The least common multiple of 16, 9, and 10 is 720 and
thus 720 must divide the orders of the groups we are seeking.

The symmetric group on 6 letters, 36, has order 720.

A subgroup of order 20 is the normalizer of an S(5), a Sylow

5 subgroup of 86’ and has index 36 iﬁ S6. * Let us denote 86

by G and NG(S(S)) by N. The character IN]G is the sum of five
irreducible characters of G and hence G represented on the cosets

of N has rank 5. We list the five characters.

1 1% 133 1241%2% 123 15 6 26 23 32
1, 1 101 1 T 1 1 1 1
Xl. 5 3 2 1 1 -1 -1 -1 -1
x, 5 -1 -1 1 1 -l 13 2
X3 9 -3 0 1 1 0 -1 1 =3
x, 16 0 =2 0 0 1 0 0 -2

The complete character table of S6 can be found on page 266 of
[12]. The heading for each column of this table describes the

cycle structure of the various permutations of 36.
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In Section 162 of [2] it is shown that the outer auto=-
morphism group of S6 has order 2. We can choose the automorphism,
g, in such a way that NG= N. The automorphism interchanges
elements of the form 133 with those of the form 32. Thus xlo_# X

1
and xza # xz. There are two other irreducible characters of §

6
of degree 5 but each of them assumes a value of =3 for at least
one element of G. Hence we must have xla = X2 and Xza = Xl'
The character, X3, is fixed by ¢ for the only 6ther character of
degree 9 assumes the value 3 on an element of G. Since x4 is the
only character of degree 16 in S6 we have x4° = Xye

If we considér the semi-direct product of G with T we
have G*0 which we denote by G*¥. From the general results we

'G* !G* are the same ir-

|*

obtained earlier we know that Xl and XZ

%
reducible character of G* and that X3IG and x4 each are the
sum of two distinct irreducible characters of G¥. Let us denote

* %
Nixo by N*. The inner product, (1N,“,lG ,inG )G* has the same
value as (lNlG,xi)G because, as has been shown previously, any

character of G induced to G* vanishes off of G. Thus

Fel] %
(I.N*!G ,XilG )G* has the value 1 for i = 1, 2, 3, and 4. This

implies that IN*]G* contains four irreducible characters. Their
degrees Are 1, 10, 9, and 16, Thus G¥* represented on the cosets
of N* has a rank 4 representation.

We must now show that this representation we have cor-

responds to the three intersection matrices we have previously
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given. We know the degrees of this representation to be 1, %,
10, and 16 and we know that 10] = 36. Thus the length of the
smallest nontrivial orbit of the subgroup fixing a point must be
less than 12. Therefore the intersection matrices corresponding
to this representation of SG* must be among the ones which are
sumnarized on Tables 1 and 2. There is one other possibility
besides the one we have given previously. It océurs in Table 2
and is the caée in which the orbit lengths are 1, 10, 10, and 15.
The subgroup fixing a letter, in this case N*, must be divisible
by each of its orbit lengths since the subgroup is transitive omn
each of them. Since 15 Y 40, we can rule_out this possibility.
We have thus shown that SG* represented on the cosets of N¥
does indeed correspond to thé three intersection matrices men-
tioned earlier which occur in Table 1.

We consider now the alternatiné group on six letters,

6° The character table of A6 is

1 (ab)(ed) (abce) | (abcde) (acebd) (abed)(ef) (abe)(def)
v, 1 4o 1 1 11 1
X 2 1 2 0 0 -1 -1
X2 5 1 -1 0 0 -1 2
X3 9 1 0 -1 -1 1 0
X, 10 -2 1 0 0 0 1
Xs 8 0 -1 @ +V5) 31 -15 o -1
Xg 8 0 -1 1 - 0B xa+B) 0 -1
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and can also be found on page 337 of [5]. The elements on top
denote the cycle structure of the various conjugate classes.

Let us denote A6 by G and the normalizer in A6 of a
Sylow 5 subgroup by N. If we represent G on the cosets of N
we obtain a rank 6 representation. If X dénotes the permutation
character for this representation then ¥ = Xo + Xl <+ x2 + x3 +
XS + X6.

In the symmetric group om six letters, 86’ there is an
element, T, of order 4 and of the form (abed)(e)(f), which normalizes

.the Sylow 5 subgroup, S{5), of N. If S(5) is generated by an
-1 2 T T T
element a, then 7~ a T = a~., Thus Xo Xy xl Xl’ X2 Xz,
and % T . %.,+ Sinece ¥ T(a) = y (aT) = ¥ (32) = ¥ (a) we have
3 3 5 5 5 6
T ax.T =

Kg = Xg and Xy = Kge

As we have seen before there is an outer automorphism
of 86 which also acts on A6' It is of oxrder 2,and let us choose

it so that it also centralizes the S(5) under consideration. Let

o]
* us denote this automorphism by ¢. We see that xoa = Xo’ XB = x3,

and Xsc = XS’ and x6a = XG' The last two equalities hold because
ac is either a or a-l. Since ¢ interchanges elements of the form
(abc) and (abc)(def) we see that xlc = X2 and xzc = Xl'

We now consider tﬁe element ¥ = 0 T which is contained

in the semi~direct product of S, and 0, We see that vz = (a'r)2 =

6

= 02 ™7 r which is either 72 or 1 depending on whether ¢ fixes T

or takes it to T-l. Thus v2 is in A6.' 1f we denote by G¥ the
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subgroup of 86* ¢ generated by AG and V we obtain a group which

has A6 as a subgroup of index 2. Since valso normalizes N we

can denote the subgroup generated by N and V by N*. We note that
v v v v Y v_
Xo oo X1 TXgs Xy Xps X3 ™Xgs Rg "Ags 8nd Xg =Y. From

calculations gimilar to the ones carried out in the previous example

lG* =1 lG* |G* where 6 is one

|,

we can see that 1N* + 0 + xs

o T X
of the irreducible characters of G* contained in x3 The
degrees of the characters are 1, 9, 10, and 16. As we have seen
before, this gives us a rank 4 representation which corresponds
to the 3 intersection matrices given earlier in the chapter.
This group G¥* has oxrder 720.

Some of the material contained in the first part of this
chapter can be generalized. We do this in the theorems that
now follow.
Theorem 8.2: Let G be a group which has a primitive rank &4
representation. If the orbit lengths'of the subgroup fixing a

. point are 1, p, 4., and 4

2 3
the prime p, and if q > p is a prime which does not divide lﬂl,

» where 42 and &3 are not less than

then ¢ Y ‘G‘.

Proof: Suppose such a prime, q, does divide the order of the
group. Since IOI # 0 (q), any element, x € G, of order q must
fix a point, Suppese x fixes the point 1. Then x must also

fix the poincts of Fl(l), where I', has length p, for the nontrivial

1

cycles of x will have length at least q. In a similar fashion one
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can see that the Fl orbit of each of these p points will be

fixed pointwise by x. If this process is continued we obtain

a list of points that are fixed by x. In Theorem 1.12 of [8]

it is shown that because G is primitive every point of {} can

be reached by such a chain of orbits. Hence x fixes all the
points of Q. This is a contradiction and the theorem is proved.
Theorem 8.3: Let G be a group which has a primitive rank 4 repre~
sentation. Suppose that the orbit lengths of the subgroup fixing

2

a point are 1, p, 4,, and -L3 where p is a prime and p < LZ <p

27
and p §‘£3 < p2 and |Ql #0 (p). rLet M be the intersection
matrix associated with the orbit of length p. If p occurs as
an entry in the matrix precisely once, then p exactly divides the
order of G.
Proof: Since G . is transitive on I', (p*l), the orbit of length
P> p ] lGP+1| and hence p | IGl.

Suppose p2 | ]Gl. Then pz.l]Gp+1‘ for p f [G:Gp+1]q
Suppose a and b are two elements of order 5 which generate an
elementary abelian p group of order p2. Such a subgroup exists

because we cannot have an element which fixes a point and has a

cycle of length pz. We may assume that a, b € Gp+1 and

a = (p*1)(1,2,...,p)***. Since only powers of (1,2,...,p)
centraliée it, and since b centralizes a we must be able to find

an integer i such that x = ab® fixes p+1,2,..., and p. Thus
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we have an element x of order p which fixes these p + 1 pointg.
Let us examine Tl(l), Fl(z), eesy and Fl(p). Because p occurs
exactly once in .the intersection matrix Ml’ each of these
orbits contains points from at least two different orbits as=
sociated with p + 1. =x must map Fl(l) to Tl(l), «vey and

I"l(p) to I"l(p) and it must also map the points of each orbit
associated with p + 1 within each of these p orbits into them-
selves. These sets have cardinality less than p and hence x
must fix ‘all the points of 1"1(1.), Pl(2), vsey and I‘l(p). Con-
tinuing on we obtain a list of points fixed by x. Using the
same result of Higman that is contained in Theorem 8.2 we see
that this list includes all the points of 3. Hence x is the
identity and b is a power‘of a which is a contradiction. Hence
p> | lal.

We now want to use the intersection matrices to tell us
something about the size of conjugate classes of elements of a
group G when G has a rank 4 representation. We then apply it to
the case in which one of the orbits associated with the rank 4
representation has length p.

Theorem 8.4: Let G have a rank 4 representation. The number of
elements in a conjugate class of G each of whose members fixes

no letters in the representation must be an integer multiple of
the greatest common divisor of thebleng;hs of the three nontrivial

orbits of the subgroup fixing a point.
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Proof: Let C denote the element in the group ring of G consisting
of the sum of all elements in one conjugate class of G. This
conjugate class is chosen sc that each element of G in it fixes
no points in the rank & representation. Since C is in the centex
of the group fing, the matrix representation, P (C), is in the
commiting algebra of P and hence is a linear combination of

'Bo, Bl’ Bz, and B3, the incidence matrices. Each of these
matrices has (1, 1, ..., I)T as an eigenvector and the corre-
sponding eigenvalue in each case is the length of the orbit
associated with the matrix, since each incidence matrix has
exactly this many 1's in each of its rows. The matrix, P (C),
has (1, 1, ..., l)T as an eigenvector.and this corresponds to

the eigenvalue which is the cardinality of C.

3
P (C) can be represented by z bi Bi where the b ; are

i=o
non-negative integers. Since each element in the conjugate class
under consideration ﬁixes no element of (2, bo = (. Bl’ BZ’ BB’
and P (C) may all be simultaneously diagonalized by an appropriate
unitary matrix, U, and the eigehvalues %1, Lz, LB’ and [Cl must
correspond in relation to their position on the diagonal since
each is the eigenvalue of greatest magnitude in each of the
matrices. This comes from results on page 66 of [6]. Thus

lcl = blél + bzéz + b3£3 and the result is proved.
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We now specialize this to the case where one of the
orbits of the subgroup fixing a point has length p, when p 1s a
prime. We will also assume that the rank 4 representation is
primitive. Using the result that if G is a primitive group and
1 5.L1 f.Lz < ... Sl&k are the lengths of fhe orbits of G_ then
g.c.d.(&l,ék)?%'for 1 <1ic<k, one can see in the rank 3 case
that if one of the orbits of the subgroup fixing a point has
length p then the other nontrivial orbit must have a length a
multiple of p. In the case of rank 5 groups the Janko ’si.mpl.e
group of order 175,560, when represented on the cosets of the
subgroup of order 660, has orbit lengths 1, 11, 12, 110, and 132.
Thus in the rank 5 case it is not necessarily true that if one
of the orbits has length a prime, then all the other nontrivial
orbits must have length a multiple of that prime. In the rank &
case the validity of the result is an open question. We there-
fore state the following corollary to the above theorem in the
following form.
Theorem 8.5: I1If G is a primitive rank 4 group and if each of the
nohtrivial orbits of the subgroup fixing a point has length a
mulctiple of p, a prime, then the cardinalities of the conjugate
class of G each of whose elements fixes no points of Q must all

be multiples of p.



9.

‘10,

11.

12.

13..

wjle-

REFERENCES

by,

Brauer, R., "On simple groups of order 5:3%.2°," Bull, Amer.

Math. Sec., 74 (1968), 900 - 903,

Burnside, W., Theory of Groups of Finite Order., Dover,
New York, 1955.

Curtis, C. W. and I. Reiner, Representation Theory of Finite
Groups and Associative Algebras. Interscience, New York,

1962.

Frame, J. S., "The double cosets of a finite group," Bull.
Amer. Math. Soc., 47 (1941), 458 -~ 467.

Frobenius, G., "Uber die Composition der Charaktere einer
Gruppe,' Sitzungsberichte der Kdniglich Preussichen
Akademie der Wissenschaftern zu Berlin, (1899), 330 - 339,

Gantmacher, F. R., The Theory of Matrices. Vol. II. Chelsea,
New York, 1960. :

Hall, M. and D. Wales, "The simple group of order 604,800,"
J. Algebra, 9 (1960), 417 - 450.

Higman, D. G., "Intersection matrices for finite permutation
groups,' J. Algebra, 6 (1967), 22 - 42,

, "Finite permutation groups of rank 3," Math.
Zeitschrift, 86 (1964), 145 - 156.

Math. Zeitschrift, 91 (1966), 70 - 86.

Janko, Z;; YA new finite simple group with abelian Sylow 2

subgroups and its characterization,” J. Algebra, 3 (1966),
147 - 186. ‘

Littlewood, D. E., The Theory of Group Characters and Matrix
Representations of Groups. Oxford, London, 1958,

Wielandt, H., Finite Permutation Groups. Academic, New York,
1964,

» "Primitive rank 3 groups with a prime subdegree,"



