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ABSTRACT

The variational principles of finite elastostatic strain theory
are presented in a unified manner for both compressible and incom-
pressible bodies. Whereas the principle of stationary potential
energy, a restricted case of the general principle of Hu and Washizu,
is valid for any elastic deformation, it is found that the principle of
stationary complementary energy is valid only for infinitesimal
clastic strains. Comnsequently, Reissner's Theorem is the approp-
riate stationary principle to use in finite elastic strain theory when
the complementary strain energy density is to be the argument
function.

The potential energy principle is applied to several problems
dealing with the finite straining of a neo-Hookean material. All but
one of these problems are concerned with plane strain deformations;
the one other problem, in a spherical geometry, involves an unusual
stability question. Approximate solutions are obtained for some
mixed boundary value problems which are not amenable to the semi-
inverse methods of solution frequently used in finite elastic strain
theory.

Another plane strain problem, requiring more detailed stress
information than can be obtained from the potential energy principle,

is studied approximately by means of Reissner's Theorem.
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CHAPTER 1. VARIATIONAL PRINCIPLES FOR THE

FINITE DEFORMATION OF A PERFECTLY ELASTIC SOLID

1. Introduction

In general, the field theories of physics may be presented in
twao alternative formulations. These are a) the appropriate field
(differential) equations together with the associated boundary and
initial conditions; b) a variational principle which is equivalent to
the first formulation. Equivalence means that the Euler equations,
boundary conditions, and initial cenditions (if any) of the variational
principle correspond to the field equations, bourndary conditions, and
initial conditions of the physical theory. [1] *

In some cases certain of the field equations, boundary
conditions, and initial conditions of the theory are usec as admis-
sibility conditions. Then one constructs a restricted variational
principle which will have the remaining field equations and conditions
as its Euler equations and conditions.

Frequently the mathematical problem of sclving the field
equations, subject to given conditions, may be intractable. In that
event the variational formulatior. of the theory may provide a means
for obtaining an approximation to the desired soluticn. The Rayleigh-
Ritz method is the best known of the so-called direct methods of the
calculus of variations which are used to obtain such approximations.
[2] In this method an approximating function(s) of known form,
but contalning (ree paramelers, which satisfies the admissibility

%k
Numbers in brackets refer to references listed at the end of this
thesis,
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conditions is substituted into the functional of the variational principle
and the Junctivnal is made stationary with respect to the free parame-
ters. The problem is thereby reduced from a problem in the Calculus
of Variations to a problen’n in the calculus of a function of a finite num-
ber of variables. The functional is thus giver a value as close to its
true value for the problem under consideration as is consistent with
the approximating function(s). In this sense the variational principle
provides one with a '""best approximation.™

The Rayleigh-Ritz method has proved to be of great value in
the approximate solution of difficult problems in the infinitesimal
theory of elasticity. ¥ The literature does not seem to contain appli-
cations of the Rayleigh-Ritz method to problems of the theory of
large elastic strains, i.e. problems involving physical nonlineari-
ties. A correct statement of the variational principles governing the
finite straining of a perfectly elastic solid is the first step which
must be taken if such problems are to be treated by a Rayleigh-Ritz
procedure., The approach taken is similar to that of Johnson [6] who
formulated variational principles for a non-Newtonian fluid.

Reissner [7] made the first contribution toward this end with
his theorem. There is a possible objection, however, in starting
with a theorem which assumes that the complementary strain energy
density may be written down explicitly. This possibility exists only
if the constitutive equations for an elastic material can be inverted.

As Truesdell and Toupin [8] have noted, it is not to be expected

The princinles invalved and the methods used are discussed in
great detail in the books by Sokolnikoff, [3} Timoshenko and Goodier,
[4] and Hoff. [5]
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that this inversion wiil be possible for an arbitrary, non-quadratic,
strain energy density simply because of algebraic difficulties.

In view of this last point, it is decided to take as fundamental
a theorem, due independently to Hu [9], Washizu [10], and the
author, which is stated in terms of the strain energy density. This
theorem can be transformed into Reissner's Theorem by means of
a Liegendre {contact) transformation when the counstitulive equations
are invertible. The potential energy theorems governing finite strain-
ing of both compressible and incompressible perfectly elastic media
will be derived from appraopriate forms of the fundamental theorem.
Similar restrictions on Reissner's Theorem lead to the corresponding

compiementary energy theorems provicded that only infinitesimal

:strains are considered; for finite strains the meaning of the functional
obtained by restricting Reissner's Theorem is not clear. However,
since the question is studied in some detail it is hoped that the diffi-
culties alluded to by other workers in the field [11], [12], [13] will
be clarified to the extent that further investigation of this question

becomes possible,

2, The Fundamental Variational Principle for a Compressible
Elastic Solid

In this section the very general variational principle of Hu and
Washizu governing the static behavior of a perfectly elastic solid is
presented. As in Reissner's Theorem, stresses, displacements, and
strains are all allowed to vary independently. Only the symmetry of
the stress tensor and sufficient regularity conditions to permitthe re-
cuired analytic operations are assumed., Thevariational principle then

provides all the field equations and boundary conditions of the theory



of finite elastic deformations.
Convected coordinates are used throughout this paper and,
in general, the notation of Green and Zerna is used. {14]
Consider the functional
o er (y..) . _
J=)S\g {(—2 + VNGV ATV VLV Oy
Yoo JII 1) J o1 ) .1 1)
M ' n (I.1)
-p&(v)} d+ - S&; V-Ei dsi - S 55 (F—g)-i.dsi
t
where W, the strain ¢nergy density ner unit volume of the undeformed

body, is taken to be & function of the finite strain components,

+ . . - - . - _
Yij’ through the invariants {LM, IIM, IIIM} of the mixed de
formation tensor. VﬁM = d'r/d'ro is the ratio of a volume

element in the deformed body to that of a volume element in
the undefiormed body, and is the square root of the third

invariant of the mixed deformation tensor

L _ i |
gCy = Mi; I = det MY (I.2)

is the first invariant of the

1M=M%i=tr M?k (I.3)

mixed deformation tensor.
is the second irnvariant of the

~1,1
I =1II ,tr (M ). (I.4)
M M Kk mixed deformation tensor.

iy, )
-] is the Gauchy-Green true siress Lensor,

v is the displacement vector and has the prescribed value v

on the part of the bounding surface Sv'

{Ei} are the base vectors in the deformed body and are

related to the base vectors in the undeformed body by



Gi =g + V,i {I.5)
Gij is the metric tensor for the deformed body and is related
to the metric tensor for the undeformed body by

Gi_j ST + g - +

v . v .tv, .7
; g

: ¥ (1. 6)

; ,1 o1
&(v) is the body force potential

t, is the stress vector in the deformed body and is related to
the stress tensor by

(I.7)

i~

Ti has the value _Ei on the part of the bounding surface S, -
St+ SV = 5 is the total bounding surface of the deformed body B.

In order to avoid any confusion as to what is meant by varia-

tional operations on ([.1)it is desirable to define the surface and

volume elements in the undeformed body BO and transform {Ll) into

a functional defined with respect to Bo

7= §01 e sinE, v 0
o

iVt vyl

(1. 8)
egr@rer,- [ 55,0, (( @os

v
where Sij = IIIM 'J'ij

If this is done (Il) becomes

(1.9)

is the engineering stress with components along the basis

{Gi}; E_o is the stress vector in the undeformed body and
i

has the value _1:0i on the portion of the bounding surface of



B denoted by S_ .
o] El.t

_t'o is related 1:0_ti by
i

o]
1

T, =% ds/ds_ =T, VIO, VG'/g" (1.10)
1
Now form
6J = S S C {aaw
Ju \(
"l'0 1J

¥ s”[%@i-a;’j@j»a\?, i+\—;’i'6;’j+\_r’j°6§;; ) -6y,

1= . — = — .—
Oy.. .+ 88V | 3(g.°v .~g.ov vV v )-vy..
Vit 65V 3, ¥ EeT 0V vy )

(.11}
-p, F - &v}dr_ - &L Gv-:ri?i dSoi
°t
—‘SL [6v- t+(v-y)- 6t0.] ds
o 3 1 1
v

where

8%3=F+6v; F is the body force per unit mass of the body (I1.12)

Consider the following term in &J

dr

e Nal — ij _ _ = o
555 vg S¥ {g.+ v .)e v .
3T g

cr

=SS§ [Vg Sij(E. FV L) V)L (1.13)
- o)
(o]

[ S Ao

Ve

dr

§ SSS;O [vg s} RN \/EC:

which becomes by Green's theorem, and by (1.5} and (1.10),
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ds
. o, o .. dr
= gg sU G . sv E ‘”g (VG =MG.) &Y S {1.14)
S, J YA T, o Vg
anc by use of (I.7) arnd (I.9)
= SS T.-ans.-%S L wa-NT), - &vde (1.15)
g 1 1. ’VVPG— ] 1
so that
- AL Uiz .7 255 3 -7 -
6.]‘—5 SST {( B, §V}6y, 78S [2(g1 VBV Y ,j} yijj} dr_
-S:SS [——1-- VG 'Ti‘] G.).+pFj- dvdr
T VG !
(I.16)
+S‘L ti'ﬁvdsi-‘s‘gsév t, dS,
=85+ 8, .o
SS (67 - %, ° (v- ¥)-6T.] as
S i i
v
In order for &6J to vanish it is necessary that
ij _ OW
s = (1.17)
aYij
e LT T LTS LT T
Vs = z(g, voitegv gty V’J)
or (1.18)




JE it
or
;/-L—[v"é’ U (g + v ] ;te, F=0 (1.19)
g H} ?
or
L (gttg),tp F=0
— i%i o
YE
where ¢4 = giT [6Jr - vJ Ir] (I.20)

is an unsymmetrical stress tensor referred to the {Ei} basis in BO
[15], [16].

In additicon it is necessary that

on S :t.=t, or on S 1t =% {I1.21)
t ! i o o, 0,
~ t i~
and on 3 ar S VeV (1.22)
v o, ~

depending upon which basis v is referred to.
(I.17) is the constitutive equation for the deformation of a
perfectly elastic solid. (I.18) correctly defines the strain tensor

Vij' (1.19) are various representations of the vector equilibrinm
equation. (I.21) and (I.22) are the boundary conditions over the
appropriate portions of the bounding surface of B_ or B. [15][16]
Consequently the vanishing of §J implies the complete set of rela-
tions governing the finite deformation of a perfectly elastic solid
and, conversely, the equations of finite elasticity imply that 8J = 0.

This is what shall be called fundamental variational principle of

finite elastostatics,
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At this point it is noted that when the constitutive equation,
(I.17), can be inverted, i,e. if Vij can be expressed as Yij (Sk'e), then

there exists a function WC(S?‘J) such that

_ i kdy k-
W =87 v {87 W[vij(s )] (I.23)
oW
and v, sk - < (1. 24)
] agi]

(I.23), which defines the complementary strain energy den-

sity, is a Legendre (contact} transformation on W.[17 ]

3. Reissner's Theorem for a Compressible Solid

In this section it is assumed that (I. 23) helds sc that (1. 8)

may be written as

jm = = = = = ij
I = S‘S& {3s ‘}(giﬂv.jrgj'v,fv,iov’j) - W (s J)
o]

- p,5 (W)} a7 -Sgs ve 't dS (I.25)

ﬁs (v-y) -, dS,
o
v

1 1

In addition to the weak admissibility conditions of Section II

it is also assumed that (I.18) holds, Then

- rqli - -
S
o

- vt ds - fv-v)-t_ ds
0., o, ~' Te. o,
~7i i i i
o)
v

(L. 26)

°
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In this case

Sq (¥

S‘([—-—— WG T G)) ;r pF] - svar (1.27)

vr VG

1Jl
o

V\/S

S0 g e - [ 6 -pmes,
t v

since

Si'lﬁyij - gl @+ 7)o (. 28)

» 1

The analysis is quite the same as that required to obtain {(I.16},

The vanishing of 8J requires that (L,19), (L.21), {I.22), and
(I. 24} hold. Since (I.18) was assumed to hold, 6§J = 0 provides all
the relations governing the firite deformations of an elastic solid
in the case when Wc (Sij) may be written explicitly. Since the con-
verse is also true 8J = 0 is a valid variational principle for finite
elastic deformations. When J is written as in (1. 26) the variational
principle is called Reissner's Theorem, [7]

Reissner's Theorem is completely equivalent to the funda-
mental variational principle presented in Section 2 when the
constitutive equation can be inverted explicitly; otherwise it is
without meaning.,

4. The Principles of Stationary Potential Energy and Stationary
Complementary Energy for Compressible Solids

The theorems given in Sections 2 and 3 have the theoretical
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advantages of generality and elegance; this very generality may
prove burdensome, however, in the actual solution of particular
problems by one of the direct methods of the Calculus of Varia-
tions. This is because one would be required to choose approxi-
mations to all of the field simultaneously and thereby one might
be pushed beyond the bounds of intuition and reasonable compu-
tational effort,

For this reason it is desirable to have principles which
require that only one field, either the displacement field or the
streess ficld, nced be chosen in some trial formm. The potential
energy and complementary energy principles of infinitesimal
elasticity have this feature,

‘ The potential energy theorem has been established, in
the past, by means of the principle of virtual work; [18] now it
will be shown to be a restricted case of the fandamental theorem
presented in Section 2.

Again consider the functional J with the argument function
W. In addition to the requirements that 7 pe symmetric anc¢ that
all functions be sufficiently regular now it is required alsoc that
(I.17), (1.18), and (I.22) hold.

Then

= S'g( {W—po‘l’} dr_ - U(lj v+t 4S8 (1.29)

. a,
‘"ro So i i
t

so that the functional J can be computed if v be given.



h L] h aw .
6J SSS, {5\7;;_ ﬁyij - p F ¢ BV} dr
e {I.30)
- ‘S Ss T §vdsS
[ <,
o 1 1
£

After invoking (I.18) and verforming the same analysis as
ir. Section 2
* i .
83 = - & Y‘S [—l“ NG NG |+ pF] - 8vds
vd LrE i',i
{I. 31}
- ( ( (L. - t.}-8vds
J ust i i

The vanishing of 8J implies the relations of elasticity rot
taken as admissibility conditions znd, conversely, if these relations
hold 8T = 0. This is the principle of stationary potential energy.

If ([.17} is called to mind it is clear that (I. 30) is a statement
of the principle of virtual work.

In order to apply the principle of stationary potential energy
it is necessary only to know the form of the appropriate strain energy
function in terms of a convenient deformation measure and to choose
a trial deformation field which is continuous and satisfies (I.Z22),
i.e¢. satisfies the displacement boundary conditions.

Clearly it would be desirable to have a variational principle
in which oniy & trial stress field, satisfying ([.1%9) and (I.21), need
be clLosen.

Consider (I.26) and assume that only the stress tensor st

{or +~) is varied, [8] Then
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= SS.S'T {SIJY].._]_WC} d'To - S\i (; - E).?Oidsc)i (I- 32)
o o
v

since when 8J is formed the omitted terms contribute nothing.

It is not clear how (I.32) is to be calculated since there are
admissibility conditions only on the stress tensor; v is required to
be continuous only. The following analysis must be considered,
therefore, as purely formal.

Form

ﬁ (‘ {v:. -—~——} as”drr -‘85 (v-y)-8t_ds {I.33)
Vo o agh S °f 9

0

v

The vanishing of 63 implies those relations of elasticity,
(I.22) and {I.24), which have not been used as admissibility condi-
tions, Conversely the complete set of relations of elasticity require

that §J = 0. This establishes a principle of stationary complemen-

tary energy in a purely formal sense only since, as has been indi-

cated, there is no rule on how to choose v. This is the result

indicated by Truesdell and Toupin, [8]
If (I.32) is rewritten so as to take (I.18) into account and

an apparently extraneous term is included then

200 seiinyes .o o= = o= .o :
J S:Si ] (a)(gi V,ji-gj V’j'i'V’i v'j) Wc}d'ro
o

5550 F-2) ﬁ; 7, 4,
.

Note that

(1.34)

O3



~14-
’ By .o 23,3 _{ ij
SS ST S ey, jreyry )T, = .S SE. SUvily AT (1.35)

o o
because of the symmetry of the stress tensor. The right hanc side
of (I.35) is a divergence term and if Green's theorem is used it is

found that (I.34) becomes

_ o Ta'a) N iJ—-- - 3 — ) = = .
I = SSS,T {ZS V,i V)j WC}dTO-]-\g‘L z toidso. S‘i v ('EO. t().)aso.
o o 1 o 1 1 1
\% t

(1.36)
The integral over So vanishes because {I.2)) is assumed to hold, i.e.
t
_ g 1 13— u_ ] LI —
J = ‘g\‘g S;‘[ES VitV WC} dr_+ SL v to.dso. (I.36a)
o o i i
v
It is no clearer how to calculate (l.36a) than it is to calculate
(I.32) unless one makes the assumption that quadratic terms in dis-
placement gradients are negligible, i.e. one passes over to the
infinitesimal theory of elasticity. Then
J=-555 W_dr +SS v't_ d8 (I.37)
c o ~ Yo, o,
’TD S

1 1
8]
~

and the functional J now may be computed once an admissible stress
field is chosen. (I.37) is, except for a change in sign, the functional
considered in the classical principle of minimum complementary
energy of infinitesimal elasticity.

(I.37), or even (1.32), may be obtained as a Legendre trans-

formation on the principle of stationary potential energy as well as
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by restrictions on Reissner's Theorem. Since, for stable equilib-
rium, the potential energy principle is a minimum principle it is
clear that (I.37) leads to a maximum principle [L7] and by changing
signs, as is usually done, a minimum principle is obtained.

If (1.19) is appended to (I.37) by means of a vector Lagrange
multiplier, v, then the appropriate Euler equations are obtained. [12]

it is now possible to understand the constant references in
the literature, e.g. Hoff, [5] concerning the application of the com-
plementary energy theorem to nonlinear elastic and even inelastic
deformations. Obviously these comments apply to physical rnonlin-
earities and not to geometrical nonlinearities. The use of a comple-
mentary energy principle may be justified, then, in the case of
iimited plastic deformation of metals whereas the application of
such a principle to the large elastic deformations of thin bodies,
i.e. plates, shells, beams, etc., is questionable, since such prob-

lems always involve geometrical nonlinearities.

5. The Fundamental Principle for an Incompressible Solid

As is well known, the incompressible elastic solid must be
treated as a special case irn the theory of finite elastic strair. [14,
19] This special case is, however, of great theoretical and practical
interest. Most of the exact solutions of finite elastic problems given
in the literature arec limited to the incompressible solid and, of
greater importance to the engineer, the only engineering materials
capable of sustaining truly large strains are the almost incompres-
sible rubberlike materials, natural and synthetic., In this section

the fundamental variational principle for an incompressible elastic
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solid, corresponding to the srinciple for compressible solids of
Section 2, is derived,

Consider, now, the functional

Egrr\ { W(Yl') i.] L= — . _ —
I= --3«;- —-———'LHI " Ty [E(Gi‘v,j-‘_ :j-v’i—v’i'v’j)-\(ij]
M
pd+ = in «/IIIM}d'r - SS\ V-Ei ds; {I.38)
VIIIM St

- S:g:s (v - ff)“ti c'lSi

where 'rldj is essentially the stress deviator tensor.

k is a scalar invariant function of position.

kGY

TG = g, = (e S 7
x’IIIM J

MR,

v II1 M

portion of the stress tcnsor. k is called by some authors the

sco that has the interpretation of being the hydrostatic

hydrostatic pressure. [14]

All other symbols have been defined previously.

If the integrations are referred to the undeformed body BO’
then

= . i‘j -l- " o‘—- T o_ v n_ - |
I - E\SIST {W(YIJ)+S(1 [Z(gi V, J+gj V’ i+v,i V:j) Yl_]'l
(o]

- o ¥+ k4n VI }dr - gSg v f,oidso {I.39)
o

' t
-‘S S.S <V_E)°to.dso.
o i i
v
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] ij . ] ij .
wneare Sd is the deviato> of the 5™ tensor.

Now form

(W oW

1
vuiu d- ‘ ] s 1 ,i

+s;f [%@i-eﬁ? :+§j.5&? 4V BV AV -8V -6y,

' ’ ’ 2] ’

-pOF« v + Skiny 1, +k&4r \/IIIM }d'TO

-55 ve t dS_ - S &v. T _ds
S i % v s °; 94
o 0
‘I_t v
-E {(v-v)+ 8t dS
[o) i 1
v
The term éﬂn-flﬁw will be considered now.
&I1T
T - 1 _ 1 M _8G_ 1 3G
Sy IIIm = 384n IIIM =3 IHM i TelalvTeu:Tem
1}
but 551_.= Dij= Gc}ij [20]
oG, .
1]
where G is det(GiJ.}
Dij ig tne cofacter of Gi' in G
GY is the associated metric tensor in B
Therefore
_ Li
E-imfIIIM = 3G GGij
or

M =Gl @+ T ) 5w
dir I, =G (gj-l v,j) ﬁV,i

dcee to the symmetry of GV, (I. 44) follows immediately from

(1. 40)

{I.43)

(1. 44)
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Eq. (2.6.2) in Green and Zerna [14] and (L. 5)

If (I.44} is substituted into (I. 40}, then it follows that
1= q u"""” s§)6v,-655 [4@, 7 47,
1

VAV LV
SR U]
n (SlJ =g )(g_"r;;.-)é-‘?i‘P F-6v r InvIIl, 6k} dr
3 a] s
N ——
o, "o

317V
o M O
o {I.45)
T,as, -\ | 6T as,
"S i i Jg . L"L
&
v
Si V- V) 61: dS
After the usual manipualations it is found that
8“ i_'; - ij LT LT T T v -
&—ju {( - _1)6 6Sd“_{ v,j-ig. vy V’l'V’j) Vi_j
[Vg S(‘_fka‘J}tg vl
- — 2 2140 F) v+ InyTIL, 8kjer (1, 46)
Ve
A a, 3 eves -\ | @-mes as
S i i i vs b i
O 4}
t v
The vanishing of 81 implies, sirce all variations are taken
indeperdently, that
. W (y
<l .
54 = 7Yy (I.47)
Yi_j = (g ij g,] V’ i"V.l ij) (IolB)
L rvs (gl ij ' v T o=
= [Ve (S5 + =GP + v )] ;+p F=2
g
but since Siél - kC'ri'i = Si'i

(I.48)

(. 49)
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this is merely
Livrsii 7 4o =_
—_— S v ) tp F=0 o1
Jg[g &+ vl i+ e, (I.19)
and may be written as either of the other two forms of (I.19) that

were given previously.
InyIl; =0 or II_=1 (I. 50}

which is the incompressibility condition.,

In addition it is necessary that the boundary conditions (I.21)

and ({I.22) hold,

(I. 21)

nn S or S s o=
v O
v

1]

(1.22)

Note that for an incompressible material, since IIIM =1, one

+

may write ™ or gY (or their deviators) interchangeably.

g = AJ - BW G (I 51)
an_;
»

Thus all the equations governing the finite straining of an
incompressible, perfectly elastic solid are implied by &1 = 0 and,
conversely, these equations imply 81 = 0.

If (1. 47) can be inverted to give vy Sy) then, as in the

ij = Yy

case of a compressible solid, a complementary strain energy den-

gity, WC, may be constructed by means of a Llegendre transformation,

-1y odi iy ij -
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B
BWC {Sd )
and Y, = —————

Yo as)

6. Reissner's Theorem for an Incompressibie Solid

Assume that (I.52) hoids so that

. gl .
I= S{_d (B.:F 4B.+T 4V .-F )
Jp 2 BTV RV
[®)

1] .
- - + kin T
W (S5)-p &+ k w/IIIM}d o
- vet @5 - g (v-v)-t_dS
e ~0, o, . o. O,
i 1 1 1
o o]
t v

and if (I1,18) is taken as an admisaibility condition

_ s Fal ij ) .
I= SSS,, {sd \,ij_wc pd+lk ﬂn_«/IIIM; dr_
o

A5 vz, - 703, s,
i iV So i i
v

SO
t
Then
51 = {y.. - aWC) 65+ sbsy. . -p F-67
i i d"’ 2a %P
'TO asd

+ zmﬁﬁMak - kb ﬂn\/IIIM.} d7_

- 67.T. a5 SS -7+ 5T, dS
S‘gs % 9 JJs ©; 9
&) o]
t v

{1.53)

(I.54)

(I.55}

(L. 56)
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The now familiar operations lead to

" oW
.. 1 T
51 = S‘S‘g {(Y:-J - 1(:: ) 681& - ("""' [@(SE‘I'KGIJ)(Q‘J-}V,J)]’:
T 98" Vg

O d
+ pOF)' 6v+ In VIIIM 6k}d-ro (I.57)
AC @ = vevas (0 st as

vs Yo Yy Vg Yi oM
Q O
t v

The vanishing of 81 implies

aw
c

Y, =

1.‘

= (I.58)
i]
9S4

and (1.19), (I.21), (I.22), and (I.50). Thus, since (1.18) was taken
as ar. admissibility cordition, all the equations of elasticity are given
when &I vanishes and all the equatione of elasticity imply 61 = 0,
This is Reissner's Theorem for an incompressible, perfectly elastic
solid,

Again, as in the case of a compressible =solid, it is noted
that Reissner's Theorem is completely equivalent to the fundamental
theorem when the constitutive equation, (i.47), can be inverted.

7. The Principles of Stationary Potential Energy and Stationary
Complementary Energy for Incompressible Solids

Consider, once more, the functional I with the argument
function W{yij). The admissibility conditions are now extended to

include (I.18}, (I.22}, and (1.47) as well as S::i] = S‘g ard the required
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regularity conditions,

Then

I= W(‘ {wW- Py &+k dnyIll }d-r SS. v f.jo s _ (I.59)
i i
If 81 is formed and operated upon as usual it is found that
1 ij iy= .= =
= - ,W {(F [Veg (s + kGJ)(gj*v_j)J FURS
TO g
{I.60)

-fn \/f okjdr_ _ﬁ T; -“EO_)-aEr“dso.
1 1

The vanishing of §I implies (1.19), (I.21), and (I.50) which
are the remaining relations of the theory of finite strain of an in-
compressible elastic solid. Conversely, (1.19), (I.21), and {I.50)
imply 61 = 0. This is the principle of stationary potential energy
for an incompressible elastic solic,

Since a k field must be chosen to compute (I.59) a somewhat
different formulation of the potential energy principle for incom-
pressible solids is desirable. If only incompressible displacemert
fields are allowed as trial fields, i.e. v’mME 1, then the principle

may be written as

61 = a[ﬁi (W-p 8} dr_ W s, |

Although (I.6l) appears to be formally the same as (1.29) it

it
o

(1. 61)
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must be remembered that for the incompressible case (1. 47} and not
{1.17) holds.
In the formal sense of Section 4, it is possible to establish a
complementary energy principle for an incompressible elastic solid.
Consider (I.54) and assume that (1,18} and (I.19) hold. Fur-
thermore only Sig anc k are to be varied. Then

‘S‘gy {ley -W_ + kenyIIL }dr &L F-2)T, as e

-

and when the formal variation, indicated above, is performed it is

found that

_ AW o)
61 = S'S‘S {(yij ——-ij)esd + 8k £n \/IIIM} drg
s 3Sd

-‘SS:; (v-¥ ) 6t_dS
o, 0,
1 1

OV

81 = 0 if and only if {I.22), (1.47), and (I.50) hold. Since

{I.63)

these are the remaining relations of elasticity the formal principle
of stationary complementary energy is established.
An analysis similar to that of Section 4 shows that the func-
tional {I. 62} may be written as
= L ij v e _ F + g\ vt !
S‘S‘ i {a Sd V,i V:j “C k in VIIIM}d'rO + VS; A t',OiclSGi {I.64)
o

Q
v

It it is possible to express

s _s“(sl"“2 , (1.65)"

Reissner has shown this to be possible for a neo-Hookean mater -
ial, [7]
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i.e. k can be found as a function of Sk'e, and if (l.65) implies that

inv’IIIME 0, then it is possihle to write

3 i okl - — Credi okd
I= SKS; {38 é(S )V,i‘V,j - W, [S4 (87 )]}dr
(8]

+Si vet dS
-~ O, O,

1 1

(1. 66)

(I.66) can be viewed in the same manner as (I.36a) or, in
other words, the meaning of (I.66) is only clear for the case of

infinitesimzal strains,

8. Concluding Remarks and Summary

A very general variational principle, called the fundamental
principle, for finite strain of both compressible and incompressible
elastic solids has been presented. Aside from regularity require-
ments the principle has as its only admissibility condition that the
true stress tensor be symmetric, i.e. moment equilibrium is en-
forced. Stress, displacement, and strain fields are varied inde-
pendently. From this principle one obtains all the relations governing
the finite deformation of a perfectly elastic solid. The functional
used in the principle has the strain energy density, W, as an argu-
ment function and hence the principle is valid for all perfectly elastic
soligs.

Reissner's Theorem, involving the complementary strain
energy density, Wc’ is obtained from the fundamental variational

principle with the aid of a Legendre {contact) transformation. Since
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there is no a priori reason to believe that this transformaticn can be
performed for an arbitrarily given strain energy density, Reissner's
Theorem may possibly be of more limited applicability than the
fundamental principle.

By imposing suitable restrictions one cbtains the nrinciple
of stationary potential energy from the fundamental principle. If,
in a similar manner, one attempts to obtain the principle cof station-
ary complementary energy from Reissner's Theorem it is discovered
that the desired result is obtained only if the strains are taken to be
infiritesimal; for finite strains the resulticg functional apparently
cannot be computed in a precisely defined manner. This question
warrants further study.
| Faor convenience the various principles are grouped below.

Compressible Solid

Fundamental Principle

5[§{S {w+ S [ v +g 'v 'l'v .-.\:’—’j)-ﬂgij] —Po‘fﬂ}d'ro

(1.8)
—S‘S‘;:‘E S\S‘ (vv)tdS}=0
3 i
C¢
Reissner's Theorem
&W {s”y -W_-p 8} dr,
{I.26)

Sgs "1, g (vv)tds_]=o

a

4.
[

rEquat:.on numbers correspond to equations defining the appropriate
functicnals in text.
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Principle of Staticnary Potential Energy

5 [ﬁ.j {W—pO@} d-ro-ji ?-io_dsO.] =0
o} Ot h 1

(L.29)

Principle of Staticnary Complementary Energy (infinitesimal strain)

& [ESS; W_dv - ESS g-"%oid.so_] =0

Incompressible Solid

Fundamental Principle

1 4,1 ) 1]

5 [jSS {W+slc~’1 [%(Ei«'\"r:jﬁ-"guj-?' L PV
T
8]

. O

PR+ kinyIIL  Jd7_ - ggs v-t_ ds

O

t

Sg (?S\_?_)-T;O'dso.] =0
S i i
OV

Reissner's Theorem

ij _ - . —
G[Sﬁ; {sdyij W_-p@+ k dnvIlL Y d7
o]

5‘8 Vet ds_ &g tv-y):t ds_ 1 =0
S i %iYYs ¢
[0} 0

t v

Principle of Stationary Potential Energy

6[555; {W-p_ 8} d7 - SS‘S ?-Eoidso;] =0
o o, -

{L.37)

(I.39)

(1. 55)

(I.61)
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provided that only incompressible displacement fields are admitted

as trial displacement fields

Principle of Stationary Complementary Energy (infinitesimal strain)

(I.37) may be used for a Hookean soclid provided that Poisson's
ratio is given the value 1/2. If a nonlinear stress-strain law is

assumed then

ot-§0], Wi er 4 | T3, 05, (L.67

O &)
v

[%)]
H
<
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CHAPTER II. PLANE STRAIN OF A MCCNEY-RIVLIN MATERIAL

1. Intreduction

The burpose of this chapter is to introcuce the ideas and
formulas that will be useful for the variational solution, exact or
approximate, cf plane strain sroblems of 2 Mconey-Rivlin material,
It will be shown that in plane strain there is no distinction between
a Mooney~Riviin material and a neo-Hookeanr material.

The questior. of choosing incompressible deformation fields

is also given some attention in this chapter.

Z. Plane Strain of a Mooney-Riviin Solié

L. this section it is assumed that a.l deformations occur in a
plare and that the directior normal tc the plane may be considsred
as a principal directior cof the deformation. A rectangular Cartesian
ccorcinate system, (xi}, ig asscciated with material pocints in the
urdeformed body Bo such that the deformations occur in *he X - X,
plare. Wken conveniert, Greek incices taking enly the values 1 and
2 will be used.

As the body undergoes deformaticn the point (xl,xz) moves to
(Xl,XZ} in the deformed body 3 and %q = X3. It is possible to write,

in a common rectangular frame, that
X =x +tv (I11..)

where v are components o: the displacement vector v,
The metric and associated metric tensors in the undefsrmed

budy are given by
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1 a 0
= 1-] = = 1
gij g i 0 1 0 (11. 2)
0 0 1
In the present case it is convenient to write
X] =X X, =Y
(IL. 3)

and to denote partial differentiation by subscripts. If a convected
coordinate system is associated with the rectangular coordinate
system in the undeformed body, and the body is considered to be
incompressible, it is possible to write the metric and associated

metric tensors in the deformed body, B, as

X2+ v X X +Y X 0
X X xy TxTy
2 .2
G, = X X +Y ¥ xéy 0 (I1. 4)
17 Xy XYy Y Y
0] 8] 1
%% 1y? (X X +Y Y ) 0
y x*y Txty
ij . 2 2
Gl = (XX 4Y Y ) X%+ vy 0 (11. 5)
xy x pd X
0 9 1

since G = g = 1 for an incompressible body in the coordinate systems

considered. In general, it should be noted that the notation of Green
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and Zerna [12] will be used.
The Mooney-Rivlin material is characterized by the strain

energy density
—H - s =
5 [(1-c)(1, ,-3) + C(IIM 3]s IIIM 1 (I1. 6)

where p is the classical shear modulus.
C is a material constant.

If }\.1, 7\2, 3\3 are the principle extension ratios of a deforma-

tion then
_ .2 2 2
IM = }\1 + }\.2 + )\3
I, = M2 Zeadns (11. 7}
M 172 273 )
_ L 2,2,2
IIIM = R1k2h3
in the case of incompressible plane strain
2 2 2
Ny=li S = 1/>\1 (II.8)
so that
_ _ .2
IM = A ).2 + 1
2 2
IIM =1+ A )‘2 IM (II. 9)
IIIM =1

and the Mooney-Rivlin strain energy density hecomes

o EJ, . - .
W= 5 {1435 L, =1 (I1.10)
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which is identical in form to the nec-Hookean strain energy density,
[19] i.c., ir plane strain there is no distinction between Mooney-
Rivlin and neo-Hookean materials.
Rivlin [19] has shown that for the neo-Hookean material it

is possible to write

W=pg v, =k Yy (I1. 11)

in rectanguiar Cartesiar coordinates.

vi; = 3Gy - &) (I1.12)

is the strain tensor.

It is found, then, that

W =

ol

(xi + X; + Yi n Yfr - 2); (XY, - XY ) =1 (II.13)

Introduce the unsymmetrical, nominal stress tensor tY which
is referred to the base vectors in the undeformed body.[15] If no

body forces are acting the stress equilibrium equations are
N =0 (II.14)

where t" = \/IIIM 'rlr(ﬁi_ + v ir) and 7' is the Cauchy-Green true
stress tensox.

For an incompressible material

A e N T
€7 =3+ kG~ (6], + v ) (I1.15)

where tlgl is the deviator of t* ana

X is a hydrostatic pressure term [1£]
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In rectangular Cartesian coordinates

j j -t .
(L + v ]r) = de/dxr (I1.16)
(X, )
£ = [13] = =2 i . 8w (11.17)
20 ] RSB 8 ) T KT

so that (II.14) may be written as

B8
[fﬂ—Y + kG gx ] =0 (I1.18)

for the case of plane strain.

In particular, for the Mooney-Rivlin material and 8 = 1, (I1.18)

may be written as

é [_Z—)+k(G X e X )] I-a [W+R(G Ly +G X )]= (I1.19)

From (1I.13) it is found that

oW oW
W—)- = }LXX 3 mx—) = I-LXY {II- 20)
X y

With the use of (II.5) andc (II.20) it is possible to write {I1.19)

as
D lux kX% + YHX - (XX + Y. Y )X H
ox F% y v x Xy x"y'y
(I1. 21}
F L o+ k{2 YHX - (X X 4Y. Y )X }] =0
8y "y x  x'Ty xTy TxTyTx
i the incompressibility condition (I1.13.2) is used (Il.21) be-
comes 5

9 - _
o X+ KY ]+ 5o [oX - kY ] =0 (I1. 22)

y
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ang finally

2

VX =1l Y- kY] (II.23)

In a similar manner it is found cthat

VY = 1/p [kxxy-kyxx] (II.24)

when 3= 2,
Call the boundary of BO in the x-y plane SO and denote the
unit normel vector to SD by Ho' Then if n are the coraponents

o
&
{direction coseines) of n in the coordinatc dircctions

. 29X
af _r OW ay 3 - :
t5P n =[5 + kG ]ln =7% (11. 25}
OQ’ dixﬁ,a; BxY oa OB

represents the surface traction in the Bdirection. For the Mooney-
Rivlin material {II. 25) becomes in the x direction
T = + 1 - -
tg [(pxx .:(Yy)no 1 (HXy kY )n_ ] {11. 26}
X = Y
and in the y direction

By =MY, - XX Ju, + (Y + kX o ] (I1. 27)

b x y
where it is understood that the Greek subscripts on the n, refer to

o
directions rather than to partial derivatives.

The boundary conditions on SO are that at each point of SU
either_fo, the stress vector with components_fo , o> the displacement
o

vector v is given, If v is given then equivalently, of course, X, i

given,
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It will now be shown that (II.23), (II.24), (II.25), and (II.26)
are a consequence of the principle of stationary potential energy. It
is again assumed that rno body forces act.

For the purpose at hand the principle may be stated as

6[5'5‘ W dxdy S T -vds =0 (II. 28)
T S © ©
O Ot
where
LS
W =W+k(X.Y -X Y -1) (I1. 29)
X'y vy x

is the strair energy density modifiec to include the incompres-
sibility condition (II.13.2) through the use of the Lagrange
multiplier k.

SO is the portion of So on which the stress is prescribed.
t

{II. 28), when written out, becomes
22 2 w2 gy L i i
6[53; [Z(XX+Xy+Yy+ Y -2} k(Xny X ¥, 1)] daedy

o}

(II. 30)

g [T, X-x)rL, (Y-y)]ds ] =0
Sot b'd v

When the indicated variations are perfiormed it is found that

Sg [MX 68X +X 86X +Y &Y +Y &Y )
T x ok Ty Ty Ty Ty Tk Tx
(8]

. o _V . h - -
PG, YHY 8X =X 8Y -V 8X -X 6Y )]dxdy (II. 31)

S [t 86X+t 8Y] ds =0
0 Q o]
SOt X y
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Assume that X ard Y, i.e., v, are sufficiently regular so that

X =X ;Y =Y (1I. 32)
yx = Txy yx Xy

Then after performing the indicated integrations by parts {or really

by use of Green's Theorem) it is found that

2. . _ 2o ..
S‘S; {[pVex + kY -k Y 18X+ [uV7Y + w X,
o]

X

_kxxy] 8Y } dxdy +S‘Sot{L(HXx'LkYy)no

"“(PXy-ka)noy" I, 16+ [(uYy—kxy)nox

(II. 33)

*(pr+k}{X)nO -“;:O ]6Y}dSo T‘go {[(pXX-FkYy)nO

¥ y X

v

+ (ny-ka)noY] X + [(}LYx'kXy)nox

iy HRX In_ ](sy}ds0 = 0
¥ b

where SO is the portion of So on which the displacement v is pre-
v
scribed.
(1I. 33) implies the ecuilibrium equations {II. 23) and (II. 24)

as well as the natural boundary conditions, making use of (II.26) and

(I1. 27), that

on S 1t =t ;t =% (II. 34)

on  S_ cv=y; i.e. 8X =58Y =0 (1I. 35)
v

Now the Lagrange multiplier k will be eliminated from the

equilibrium equations to give one equation in X and Y which together
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with (I1.13.2) will constitute the field equations for the plane strain
of a Mooney-Rivlin material. These have been obtained previously
in a different manner by Adkins, [21]

Multiply (II.23) by Xx and (II. 24} by Yx' Then add the result-

ing equations to obtain

X VX~ Y Vv =Lk (I1. 36)
X x B

H the same operations are performed with Xy and Y

1

XVZX%Y VzYz——k
y y MY

(IL. 37)

is obtained.

Differentiate (II. 36) with respect to y and (II. 37) with respect

to x and subtract one from the other to obtain
9 2 2 8 2 2 -
W (XXV 'X+YX\7 Y- Bx (va X«\-vi ¥y =0 {11. 38)

which is identical to Adkins' equation

2 2
X, VX) ay,VvV'Y) I
+ = .
55 y) 56 y) 0 (1I. 39)
(II. 38) and (II. 13.2) are the required, coupled field equations in

rectangular Cartesiar coordinates.
It is also possible to eliminate k from the stre¢ss boundary
conditions and obtain a natural boundary condition for (II. 38} and

(1I1. 13.2). From {(I1.26)
£, -#X n {-Xyno )

X% * y
k= s (11. 40)
Yy o X0

X Y
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and irom (If.27)
LOY - p(Yxn0X+ Yynoy)
k = X {11. 41}
X o

y ¥ %

so that the stress poundary concition on So may be written as
t

t (Xyn X n Y+t (¥Yn -Yn )=

(II. 42)
2

L2 L2 2 2 2
u{(hx-xyTyx-Yy) (n, n_ }+ (xxxywxyy:(nu -n.] '}

Xy b x

It is not clear that (II.13,2), (IL. 38), and (II.35) and/or
(I1. 42) define a well posed mathematical problem.

There may ve cases, especially in curvilinear ceoorcinates,
where certain of the earlier results of this section will be useful if
expressed in terms of the displacement vector rather than the

deformalion mapping.,

Ts rs T T T . T T
=8 Grg=g g gieg Vie'Bg V2V r ‘,s] (L. 43)
so that
rs . -
- = ¢ + - .
(I~ =g [Vris Yslr " Vm|r " is ! (II.44)

and for the plane strain of a Mooney-Rivlin material

—.E QB . r S 72 Y .
Weze lvaigt Valat Yyla¥ [51 (L. 45)

(II. 45) is clearly the generaiized tensor expression for {II.11}.

In rectangular Cartesian coordinates (II.45) becomes
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w=k {ui-.' u.i + vi + v;zr T 20 v v )] (IL. 46)

where u and v are the components of the displacement vector in the

% and y directions respectively.

The incomprewsibility condition, (II.13.2), may be written as
u_ tv. fuv —uwv =0 {II. 47)
X v X'y

y X

(I1. 47} may be used to simplify (IL. 46}.
2 2
Webil v s tu, - v )0 (T1. 467)

It is noted that results analogous to those presented in this
section will be obtained if the convected coordinate system is asso-

ciated with a Cartesian system in the deformed body B.

3. Un Obtaining Incompressible Deformation Fields

When the Rayleigh~Ritz method is used to obtain approximate
solutions of problems in the infinitesimal theory of elasticity the only
restrictions placed or adinissible defornation fields are those of
continuity and that the geometrical boundary conditions be satisfied,
[22] The incompressibility condition, if imposec, is satisfied by
letting Poisson's ratic assume the value of cne-hali. For finite
strain problems there are two ways to deal with incompressibility.
The first is to reguire that only incompressible deformation fields
be admissible. The second, and more complicated way, is to choose
both a deformation fieléd and a hydrostatic k field as indicated in

Chapter [.
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It is believed that in most cases the first way of dealing with
the incompressibility condition is the preferable one. With this view
in mind the case of plane strain is studied. If the incompressibility
condition for this case, (II.13.2), is examined it is seen to be a first
order, bilinear partial differential equation for X and ¥. If it is
possible, on the basis of physical intuition or experience, to chocse
an appropriate form for either X or Y then (I1.13. 2) becomes a first
order, linear partial differential equation for the remaining function
and it may be solved by the method of characteristics. [23]

Assume that Y = Y(x,y} is given. Then (II.13.2) becomes

ala,y) X4 olx,y) X =1 (11. 48)
where
a=Y_ ; b=-Y (1I. 49)
y x
The family of characteristics of (II.48) is defined by
dx _dy _dX¥X -
a b 1 (IL. 50)
The first equation (II. 5Q)
bdx - ady = 0
or (I1.51)

Y dx+ Y dy =0
x y

is an exact differentiai equation whose solution is

Y(x.y) = C, (II.52)
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If it is possible to solve (II.52) for x or y in terms of the other

variable then from {II. 30) it is wossible tou vbtain

dy _
X‘g“ﬁ“‘cz

or (II1.53)
dx
X - 5 = 3

The general solution of (II. 48) is [21]

H
0

® ([Y(x,)], [X-S‘ %]) =0
or (I1. 54)
@ (veeyl, (x-{ D1y= 0

where ® is an arbitrary furction of its arguments.

A simpler, restricted form of (II.54) is

or . (11. 55)

where W is an arbitrary function of its argument.

Similar results for Y are obtained if X is assumed to be
known.

The method presented in this section is a systematic way of
constructing incompressible deformation fieids for plane strain
problems. The extension to three dimensions is straightforward.
In that case two of the three defoermation components are to be

chosen,
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CHAPTER III. ILLUSTRATIVE APPLICATIONS OF

THE PRINCIPLE OF STATIONARY POTENTIAL ENERGY

1. Introduction

The present chapter deals with some illustrative applications
of the principle of stativnary putential energy to problems of the
finite deformation of a neo-Hookean material.* Two of the problems
are solved exactly and one of these involves an unusual sort of sta-
hility question. An approximate solution is presented for a problem
which is not amenable to the usual semi-inverse methods of solution
used in solving finite elastic strain problems. The approximate
solution is obtained by making the sort of assumption that is more

easily associated with a ''Strength of Materials'' approach rather

than with a '"Theory of Elasticity'' approach,

Z. A Two-dimensional Slump Problem

The application of the Rayleigh-Ritz method to plane strain
problems of a neo-Hookean material is illustrated by the following
""slump'' problem. An infinite slab of thickness t, shown in Figure
I11. 1, is bonded to rigid walls which always remain a distance t apart.
The system is subjected to an upward acceleration of Ng so that the
total force acting on an element of unit depth (into the plane of the

paper) is in the y direction and of magnitude

Fy = p(N)g (II1. 1)

* Henceforth, wherever they are equivalent, the term neo-Hookean
material will be used instead of the term Mooney-Rivlin material.
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FIGURE IIl. 1. Infinite Slzab.

where p is the mass density of the material and
g is the gravitational constant
From conditions of symmetry and the infinite extent of the
slab it is reasonable to assume that vertical fibers in the undeformed
body remain vertical after deformation and that their spacing remains

unchanged, i.e., it is assumed that
X=x (II1.2)

and therefore, from (II.13.2)

or Y =y + f{x); v = {{x) (III. 3)
Since the following bouncary conditions must be satisfied

v(0) = v{t) = 0 and % (t/2) = 0 (IIL. 4)
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v is assumed to be of the form

o
v = A sin (______mrx) (II1. 5}
I, t

n
n=1,3,5,..,

The principle of stationary potential energy, with body forces

and no surface tractions, states in view of (II.46a) that

Yo  F Z.
6[5 j {£ v )"-p(N)gv }dxdy] = 0 (11, 6)
y; "0
or
LBy i
5[ 0{2 (v )" - p(N) gv}dx] =0 (IIL. 6=)

gsince the problem has no v dependence.

Performing the indicated integrations it is found that

2 2 > A
m > 2 2 - E Z ._.-..P.H =

5[_&“411 / Ann Z.p(n_)g = ] 0 (I1L. 7)
n=1,3,... a=1,3,,.

Since the variational operation is equivalent to partial differ-

entiation with respect to each An

A
) AP 2t
» _ 4tp(Njg  _
% e = 0 (11L.8)
from which
4t2 p(IN)
A = £ (IIL. 9)
() ¥
and
4tdp(N)g s M 1 . ,3gx
vix) = —5=—= [sin(=) t 5= sin (=) 7 ...] (I11.10)

TR
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The sine series (IIT. 10) may be written in the following closed

form.
t%p(N)g
vie) = L0MNlg 2 x (. 11)
1 t tZ
and then
2 2
t N <
YzY*’_pz(;r‘)“g”(%'fi) (111 12)

The nominal stress tensor tl‘} will now be calculated. It will

be recalled that one may write

{52 wlel® EGlr)(ﬁJr boyd r) (III. 13)

which is merely another form of (II.15).

From (II.5) it is found that

1 ~ 1]
p
Gl= v, by’ 0 (II1. 14)
0 0 1
so that
+x  ~v_K 0 0 v_(1+k) 0
X X
9= w | v E BE@® 0 |+p |0 2 0
B x < 2 «
a 0 1+k 0 0 0
1tk v
‘s X
tV=p |-v K 1+K 0 (IIL. 15)

0 0 H+k
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where

E=k/u (1I1. 16}

*
The equaticons of equilibrium are
th L+ F.o=0 (II1. 17)

When written explicitly for the present problem, noting that

%{M%(z_) =0, (IIL. 18)

it is found that

(1IL. 19)

MVt pNg = 0

X

{II1. 19, 2) is identically satisfied and,if k is a constant, (III. 19, 1) is
satisfied so that the exact solution has been obtained.

Since there are no stress boundary conditions to be satisfied

k may be chosen arbitrarily. If k = -1 is chosen
tpNg, , 2x
0 v, 0 o LeNE(-Zx%) o
ij _ _ tpNg . 2x .
t 58 Vo G 0 = 5 (1 T ) O 0 (1II. 20}
0 0 0 0 0 0

Note that t” is symmetric due to the choice of k {or k) but Y

in general is not symmetric, although 7 is always symmetric,

—
’ {II. 23) and (I1. 24) could be used as well,
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It is of interest to examine the results obtained by using only

the first term in the expansion of v.

2

_ M pNg . 7Tx
Vapprox. WEH sin (=) (I11. 21)
and
4t pNg TX
0 —5—=cos (=) 0
T
Y = | AeNg (1%
tapprox. 2 cos(—) Y 0 (II1. 22)
0 0 0

(II1. 22} does not satisfy the equilibrium equations (III.17).
Comparisons of the approximate and exact solutions to the

""slump'' problem are given below in Table IIl.1.

X v Vapprox, 1:12 1zlza]pp:rox.

t m W tpNg tpNg

0 0 0 0.500 0.406
0.125 0.0515 00,0494 0.375 0.375
0.250 0.0938 0.0912 0.250 0.287
0.375 0.1171 0.1192 0.125 0.155
0.500 0,1250 0.1290 0 0

Table III. 1

As is to be expected when the principle of stationary potential
energy is used to obtain an approximate solution, the displacements
are approximated with much greater accuracy than are the stresses,
In the case under consideration the maximum error in the displace-

ment is only 3,2% whereas the maximum stress is underestimated
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by 18.8%. Still, this error is within allowable limits for most
engineering stress analysis.
The slump problem considered proved to be a linear one but
it should not be expected that this will be the usual situation when a
Rayleigh-Ritz solution is attempted. For example, the prohlem of
the pure shear of a neo-Hookean rectangular block, shown in Figure

III. 2, can be solved by assuming

X =axt by
; ad - bc =1 (IIL. 23)
Y =cx+ dy
with "a,™ "b," "c," ané "d" as parameters,
b |
.
o

———
——
|

FIGURE III.2 Pure Shear

Substitution of (IIL. 23) into the variational principle clearly
lcads to non-linear algebra, Inthis problem the exact solution wiil

be obtained,

3. An Unsymmetrical Plane Strain Problem

In this section an unsymmetrical, mixed boundary value
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problem is studied and an approximate solution is obtained. The
method of approach is different than the one used to study the slump
problem in that a certain geometric assumption is made which leads,
through the variational principle, to an easily integrated ordinary
differential equation.

Consider the following unsymmetric probiem. The right,
isosceles triangular block shown in Figure III, 3 is bonded to a rigid
basc (indicated by shading) and is loaded by a linearly varying hori-

zontal locad onthe face x = a,

elastic
body

+

3

FIGURE III. 3. Unsymmetrical Problem

The problem will be considered to be one of plane strain,

It is assumed that the loading is a dead loading, i.e,, the
loading always acts horizontally and furthermore each ''load element"
is of constant magnitude and always acts on the same surface element,

The geometrical boundary conditian that must he satisfied is

that along the bond line, x + v = a, the displacements vanish. This
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suggests that the following assumption be macde.

u=glx+y)

and (111, 24)
v=-glxty)

with gla) = 0 (I, 25)

as the boundary condition.
(I1II. 24) satisfies the incompressibility condition (II.47). This
is the reason that v was chosen to be -g{x + y) rather than hix + y).

The strain energy density, given by (Il.46a), becomes

W = 24 (98 2 II1. 26
and the variational principle is written as
aa n A
. - dg 42, . O S - .
6[415 X [yl dydx - o ) velatyldy] =0 (II1. 27)
0 a-x G
Now introduce new variables
n=x+y, §=x (111, 28)

for which the Jacobean of the transformation is unity. Therefore

8 a 2a a
' dg 2 _{ dg\2 .. .
S\ S [d—(X'*_Y)] dydx = S S (Eﬁ) dédn (III.29)

0 a-x a mn-a

The choice of limits is easily seen by examining Figure III. 4 below.

Similarly, letting {a + y) =,

a 2z

iy

5 ygla + y)dy =5 (n-a)g({v)dn (III. 30)
0 a
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(a,2a
yi n
L)

&

@ (a.,a)

®

> = =

FIGURE III. 4. Transformation from x-y to

£-n coordinates.
so that (III. 27) becomes
' 2a = : 2a
dgy2 4 "o
5[zp (gR) gbdn - — | (m-a)glnidn] = 0 (III.31)
a m-a a

After the variational operation is performed it is found that
2

-m3g
4pfza-nig2 g

a 2a
d dg Po
- S {4p H;]—[(Za—n}dnl t —(n-2)}égdn = 0 (III.32)
a a

so that the Euler equation for the problem is

d d Fo
T [Ra-n) ] = g (@-n) (111, 33)

and the natural boundary conditions are that at

n=a;: %: 0 or g is specified

(III. 34)
dg . ‘o
n=2a: an # o0 or g is specified
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For the problem under consideration at

n=a:g=0
(I11. 34a)

2a : is finite

s}
"
she

The function satisfying (1IL. 33} and {111. 34a) is

Poa 2
g= 15 Fz- 1) (TII. 35)
a
or
P a 2
4= oy = lzp ((";lz) - 1) (111, 36)

For the case of the unit square, with Po/p = 1, the deforma-

tion is as given in the following table and Figure IIL. 5.

TABLE III.2

1 b= -V
1 0
5/4 0.035
3/2 0,078
7/4 0.129
2 0.188

If the equilibrium equations, (II.24) and (II. 25), and the
stress boundary conditions, (I[.26) and (I1.27), are considered, then
it will become apparent that the solution of (IIl. 33) is only an approx-
imation to the solution of the elasticity problem posed and studied in

this section.
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Since

8( ) _8L ) on _ B( )_ 8 )
8x _ ©on ox  &n 9y (I11. 37}

P
Jlkc dlc
T ol ﬁ {111.38)
s0 that
Pon
k= el pConst. (11I1. 39)

and it ig clear from (II.26) and (II. 27) that the boundary conditions
on the faces x = a, y = a will not be satisfied. However, since the
deformation field satisfies the equilibrium equations without body
z;orces an exact solution of some problem(s} has been found and it
would be instructive to search out such a problem. The problem
will be determined by how the arbitrary constant in (III. 39} is deter-
mined. In view of the problem studied it would seem reasonable to

require on the face y = a that

a
22 -] S‘ 2% 4x = 0 (I11. 40)
0

o

or, using {II.27),

22 P P P
T _-S{ ?3-- L 1] a[—(—« l)i—pConst]j_l+-—-(—~+1)]}dx—
{LL. 40a)
It is found that
P 2
7(—2)
Gonst. = -(1 + I ) (III. 41)

96 + 18 ~o
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so that
RJZ
P (x+y) 7(~2)
1<=._27r____ -9(14-___miiﬂ_Fra) (1I1. 42)
a 96 ~ 18-§9

Using (II.26) and (II. 27) tke following numerical results are

fourd for the case Po/p. =1,

TADLE III.3

Onx =a
y/a |t y/a | %/
0 0.415 2 0.039
0.5 0.630 0.5 0.109
1.0 0.829 1.0 0.140
Ony=a
x/a | €%/ x/a | 2/
0 -0.038 0 -0.039
0.5 -0.003 0.5 -0.109
1.0 0.048 1.0 -0.140

It is seen from the results presented in Table Iil. 3 that the

shears and tza, which vanish in the problem posed, are small com-

11

pared to t Unfortunately the distribution of g1 along the side

*¥ = a is not a good approximation to the assumed form

11

"—ﬂ- la,y) = y/a (II1. 43)

since the result given in Table IIl, 3 can be represented approximately

oy
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il
t” 7 (a,y)

. = 0.415 (1 + %) (II1. 44)

i

' : 1 X
FIGURE III.5. Deformed Triangle,

It is likely that the approximate solution represents a fair
estimate of the displacements but certainly it wili give a poor esti-

11 11
(or 7

mate of the stresses, particularly t ). Considering the
complexity of the problem and the simplicity (or simplemindedness)
of the method of approximation little more was to be expected. The
approach was essentially a ''strength of materials'' one such as
might be used if a quick estimate was required for design purposes.
If an attempt is made to use assumption (III. 24) as the basis
of a semi-inverse type solution it will be found that the displace-
ments are quadratic functions of n; however there will be no rational
basis for choosing any particular parabolas. Consequently a semi-

inverse approach cannot be considered appropriate fcr the problem

just considered,



-55-_

3. Internally Pressurized Neo-Hooxean Sphere

The principle of stationary potential energy will be applied
now to the problem of a hollow sphere which is internally pressur-
ized; the sphere is composed of a neo-Hookean material and has

innmer radiua "a'" and outer radius "b" in its undeformed state.

_ B ] -
W = = (IM_B) ; IIIM =1 {II1. 45)
where
" a2 L2 2
IM = }‘1 2 )‘2 + }\3
(III. 46)
_ 2,2 .2
IIIM = ?xl 7&2 7\3

and the ki's are the principal extension ratios. If a spherical coordi-
nate system, (r, 8,¢), is used to parametrize the sphere in its unde-

formed state then
X, =X = M. (III. 47)

due to the symmetry of both the body and the loading.

Let }”2 = Ar); then from (III.45.2) )Ll = (T(lr—)}z and

21
=2\~ (IIL. 48)

X

The incompressibility condition may be used to find
a3 r2.1/3
My=2= {{h - 1) T ) (111. 49)
T a a3

where )\a denotes the value of \ at the inrer radius "a" of the sphere.



~56-
Sirce W = W(\_) and v = "_’“‘a} in this problem, the variational
operation becomes merely the total differentiation of a function of

one variable

(-1—4 232-3) ; BW = 2u(h - =) BN (II1. 50)
A 1N

W =

A o

and from (III. 49) it is found that

3 2
5)\_-_:3)\,2 [(}\ - 1)4 ] 2/36)\ =2 _Ma &h (III.51)
r a 3 )\2 a

H

The expressions for W and 8W are integrated over the volume

of the undeformed sphere noting that

2
ar . 1% (I1L. 52)
1=
Then
S‘S‘ 3,03 2N 2 M
Wdr = 2rpa” (W -1 [ =5 -5 ] {III.53)
S:r © a NEaZEn M
o]
and
‘ 2 1 Mo
SS& 6Wdr = B?rpa N [K ——{]}\ 6N {117, 54)
o 40 a

By integrating over the surface of the deformed body it is

found that thc potential energy of the external forces is

-S'S‘E, « vdSs = -W P(:x -1)adS = - 1o, {aX )3 (TI1. R 5)
g Jdg a 3 a

and
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—GSLE + ¥dS = -4P7 (ah ) %26\ (I1L. 56)

where P is the internal pressure.

Note that there are additive constants in (I11.53) and (III, 55)
which may be disregarded or chosen so as to normalize the total
potential energy in some desired fashion,

The principle of stationary potential energy requires that

the sum of (IIl. 54) and (III.56) vanish

3,2 4,1 1 1 1 3,2 -
A _[Brpa A {(i— - )+ (—5 - —)}-4ma”\P] = ¢ (IIL.57)
a a Ay AT Tt a
b a
so that for arbitrary 67\a
P 1 i 1 i
£ [% (_4 S g Z(T - T)] (I1I. 58)
b N Ny b "a

which is the result cbtained by a conventional semi-inverse analysis.
[24]
It is possible to make a complete characterization of the be-

havior of (I1I.58). After some manipulation it is found that

d ,P Z 1 b 3 3 3 %
_d_"(_")=—2—[“§ {1_7 - 3 3 3)3'“{1_5"(1 _"_3__“——) 1y
P Ao N a 27+ (\-1)a b +(x -1)a
(11I. 59)
Observe that
3
d P a
a) { #k =41 - >0
dx_ ' p a 1 '1:?,'
d P
b) gi= (b o = 0 (III. 60)
a a
c) 4 (P—) <0 for A sufficiently large but finite
an. R a y iarg
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From 2z) and c; it is concluded, since d(P/p}/dha is 2 contia-
uwous funciicn, that there is 2 zero of d(P/p.)/d?\.a for at least one
finite }\a' It will ve shown that there is only one such zero.

Assume \_ is the value at which the first zero of (P/p)/dha
cCocurs, i.a., d{P/p)/dla >0 for ka'( }"a:)' It is clear that the sign
cf tke right narnd side of (III. 59) is determined by the terms in the
square bracxet. Since the terms in the square bracket are monoton-
ically decreasing with increasing A, and vanish at A, = Lao {by
assumption) it foliows that d(P,’p)/'d}\a is negative for ali A_> }\ao.

Therefore d(P/'p.)/d,\a has only one firite zero, namely at A_ = X
(=9

ao'
It is found by differertiating (III. 39} that
2, P 7
de=y . 4 3 3
el b bt U e st R
A\ o e b7+ (A2 -1)a
a a a a
% T2l -y -2]- 5} + (111, 61)
& b7+ (A7 -1)a
a
4 1
. 3 3 I 3 .3
F 201 - _3b_:§§__§:.3 [420 - TE__T%—“?Ji -2] -21
2 b = {x"-1)a & b7+ (A7 -1)a
L a
Observe that
a*&) L 3
a) —b P =l=-120 -2 <0
e b3
a
a%(2)
b) —\, @ =0 (III.62)
A\
a
%)
c) *“2 >0  for A  sufficiently large but finite
dx 2

a
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An analysis paralleling the one made for d(P/p)/dKa leads to
the conclusion that there is one,arnd only one,finite inflection point in

the curve of P/u vs. }\a'

Figure III. 6 below illustrates this behavior

|d

=)

M max

1 ) 5N

o) a

FIGURE TIT. 6. Qualitative Rehavior of a
Neo-Hookean Sphere.

It is noted that for each P/p< {P/“)max there are two
equilibrium values of A, . It shall be made clear in the following
analysis that the portion of the curve to the left of the maximum ren-
resents stable equilibriwmn and the portion to the right unstable equi-
librium,

The static condition that the equilibrium be stable is that
the second variation of the potential energy be positive in the equi-
librium configuration where the {irst variation vanished. In the
present case this is merely that the second derivative of the potential

energy with respect to A be positive, i.e.,



d 27,1 1., 5,1 1 ;
'd_);{ka[z(_f;*i;)-“z(?._;z)_ﬁ]j)O (IIL, 6 3)
b a
or
1 1 1 1 P
2h (26— -t %(—Z-F)-F]
b Ta MM (IIL 63a)
2r d 1 1 1
g - - - D s o
a b a 7\.‘; ?La

The first term is identically zero for equilibrium positions

from (III.58) and so the stability criterion is really
d P
ara- (E)equil. >0 {111. 64)

‘This is the analytic confirmation of the intuitive belief that the equi-
librium is stable when P/ increases with increasing }\a and unstable
when P/ decreases with increasing Xa. )\.a corresponding to
(P/p.)max is the transition point and must be considered as a point
of unstable equilibrium.

To illustrate these ideas with a numerical example the case
b/a = 2 is considered. It is found from (IIL. 58} and (I1I.59) that at
A, = 1.82, (P/p.)max = 0.83. The potential energy of the system
for this value of P/u is plotted against A, in Figure IIL 7" and it is
seen that this curve has no maximum or minimum although it does
have a stationary value at Xa = 1.82. This means that for (P/p)max

there is really an instability. To show the behavior of the potential

energy for any (P/p) < (P/p’)max the case (P/u) = 0.55 is considered.

%
T'ull page figures prouviding quantitative information are grouped
at the end of the thesis,
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This is found to correspond to A, = 1.25 and )\a = 3.€0. It is found
that at }\a = 1,25 the potential energy has a minimum and at ?\.a = 3,60
it has a maximum. These are the stable and unstable equilibrium
positions respectively for (P/p) = 0.55. This, too, is plotted in
Figure III. 7.

It is to be remembered that the potential energy is determined
oniy to within an additive constant, For (B/p)max the constant was
chosen so that the potential energy vanished in the (unstable) equi-
librium position while in the case {P/j) = 0.55 the constant was
chosen so that the potential energy vanished at the stable equilibrium
position. These choices were purely arbitrary.

The variational solution of this problem has the advantage
that with little additional effect the static stability criterion is found
or, viewed in another way, in the course of finding the stability

criterion one automatically finds the equilibrium relation.
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CHAPTER IV. THE FINITE PLANE STRAIN

DEFORMATION OF A THIN PAD

1. Introduction

The finite elastic deformation of a thin neo-Hookean pad
bonded to the faces of a rigid testing machine is studied in this
chapter under the assumption of plane strain. Similar studies,
under the assumptions of infinitesimal elasticity, have been made
by Gent and Lindley [23] and Lindsey, et al., [24] ‘L'he latter
work considers both compressible and incompressible materials.

The appropriate differential equation governing the problem,
together with the associated boundary conditions, is derived by
applying the principle of stationary potential energy to a suitably
restricted deformation field. For tkin pads an approximation to
this boundary value problem can be solved in closed form. It is
then possible to show that for some cases of practical interest the
solution of the approximate diiferentizl equation is an excellent
approximation to the solution of the full differential equation de-

rived from the variational principle,

2. Formulation of the Thin Pad Problem

It is assumed that in the deformed state the thin pad, shown
in Figure IV.1 below, has a rectangular cross-section in the plane

i
of the paper. It is also assumed that the pad has undergone no

* If the cross-section of the undeformed pad was rectangular the
formulation of the problem would be similar except for the fact that
undeformed coordinates would be the independent variables. The
computation of true stresses would be more complicated.
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FIGURE IV, 1l. Thin Pad in Deformed State,

deformation normal to the plane cf the paper, i.e, a plane strain
deformaticn is considered.

The pad is bonded at the faces Y = £+B/2 and is stress free
on the faces X = £ A/2. The deformation has consisted of a uniform
stretching in the Y direction such that the original tkickness of the
pac is given by B/\. A point (X, Y) in the deformed body was origi-
nally at {x,y) in the undeforined body,

The probiem, as posed above, requires the solution of the
coupled Adkins arnd incompressibility equations, taking into accoun:
the approvriate boundary conditions, [21}] This is a formidable
task weil bevond the beuncs of present mathematical knowledge.

In order to simplify the probiem it is assumed that
Y = YiY) (Iv.1}

provided that A>>» B. TLis assumption has been made by those who

nave studied the problem witkin the context of infinitesimal elasticity
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and should be reasonable for the finite deformation of a thin pad ex-
cept in a region of non~uniformm depth close to the free edges. Since,
from a stress peint of view, the region of greatest interest is at the
origin, i.e. center of the pad, it seems justifiable to proceed on
assumption (1).

The incompressibility condition

X - X

where subscripts indicate partial differentiation, becomes in the

present case
and the mapping = is given by
x=X/yg {TV.3)

gince x(0,Y) must vanish.
Previously the strain energy function for a neo-Hookean body

has been shown to be

2 2 2 2 .
W=]=21-[XX+XY-I-yX+ yY—d] (IV. 4)

for the casc of plane strain. Therefore the statement of the principle
of stationary potential energy for the problem under consideration

becomes

A2 B/2 2 2
5 ’ (L X Vyy o2
0 0 Z ! Yy
Yy Yy

2] dYax =0 (IV.5)
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If (IV.5) is integrated with respect to X, and

T=rlo; v
B2 YB3 (IV. 6)
are introduced, it is fourd that
1 -2 —
A 2 V= -1 -
5 yy , 3B Y1 |av-o0 (Iv.7)
—= 2 —
0 Y-;f- A YT

At this point the cumbersome barred notation may be dropped
and, unless otherwise noted, y and Y will denote the nondimensional
quantities defined in (IV.#6).

If the variational operation indicated in (IV.7) is performed,

the Euler-Lagrange differential equation is found to be

.2 2
_f%(%/(%}‘*)m%ﬁ} s )5-3AB TG 3)} (1v.8)
a

together with the boundary conditions

-
5 (E%-—)l
0
2
dy .2
e(—= 1
2 [y -1 ay? d (d3y ,dy .4\ ]
: - =% & ) ey | =0 {(IV.9)
[Az ) (32; 5 T4y (dY dy )J

The correct choice of boundary conditions for the problem

being studied is as follows

ay{l) _ 4. dy(l) _
§qv-=05 Gy =1 (IV.10)
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since x(X,1) = X,

dy) _ (Iv.11)

. 3
since 5}5{? (X,0y =0,

sy(1)=0; y(1)== , and (Iv.12)

by{0) =0 ; y(0) =0 (Iv.13)

Thus, under assumption (1}, the bonded thin pad problem for
a neo-Hookean material is reduced to the study of the fourth order,
non-linear, one-dimensional boundary value problem defined by

{Iv.8), (IV.10), (IV.11), (IV.12), and (IV.13).

3. Partial Intcgration of the Full Differential Equation -

If one integration of (IV.8) is performed and the substitution

=dy
w o= % (IV.14)
is made then (IV.8) becomes
4 @w ), p@W2,,5 3BE L1 (IV. 15)
Y 'dY 4y AZ 377 .
W
where C is an arbitrary constant of integration.
Nocte that
d _dy d__d
dy "dYdy "V dy (1v. 16)
so that after some manipulation (IV. 15) may be written as
2 2
d"w dw, 2 B 4 _ 3
wog - (G - 35w - 1) = Gw (IV.17)

dy A



—_dw d _ d

2E Ly H OV aw (V. 18)
leads to

w dz ?:B2 4 3

7d_—_Z_F(W -1y = Cw (Iv.19)

which may be further simplified by the substitution

£

t=—%; a%=wzad%+ 2wt (IV.20)
W

The resulting equation in terms of t is

2
dt _ 3R 1 ]
T\;-—-ZC'*'F (W —""'?) (J.V.Zl)

w
which may be lmmediately integrated to yield

2
,I‘iz (w - LZ) (IV. 22)

w

t=D+ 2Cw + -

where D is another arbitrary constant of integration.

By inverting the order of the various substitutions it is

found that
dy = dw
V6B2/289wk + 2cw + Dwl + 3B2/2A2
(IV. 23)
4y = dw

2

wyBBZ /289wt + 2Cw> + Dw? + 3B /242

The problem thus kas been reduced to the consideration of

two elliptic integrals. Unfortunately, due to the nonlinearity of the
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problem, the arbitrary constants of integration C and D occur under
the radical and hence a straightforward evaluation of the integrals
is not possible. It is not even clear that one can find a workable
numerical procedure to solve the problem for given values of the

parameters B/A and ).

4. Solution of the Asymptotic Differential Equation

Assumption (1) was made on the basis that A>>B., If this is
so, there is also justification for the investigation of the approxima-

tion to the boundary value problem posed in Section 2 which is defined

by
d d dzyd4 dZZdysl_
H’L"é'? (;?z /(E‘%) ) ¥ Z(EYZ) /('d”i‘f”) L 0 (IV. 24)

and (IV.10), (IV.11), (IV.12), and (IV.13)., It is difficult to assess
the worth of this approximation a priori; however an a posteriori
judgement may be made by solving (IV. 24} together with the boundary
conditions and then determining how closely this solution satisfics
(IV.8), point by point, for a given set of parammeters A/B and \.

It is noted at this point that at Y = y = 0 a solution of {IV. 24)
which satisfies the boundary conditions also satisfies (IV.8) because
of {IV.11). In addition such a solution of (TV.24) satisfies {IV.15)
at Y =1, y = 1/\ because of (IV.10).

The solution of (IV.24} is attempted in the same manner as

was the solution of (IV.8} and,analogous to (IV. 23), it is found that

iy = — I (IV. 25)
wyGCwt+ I
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ay = % ___ (IV.. 26)
w VoWt D

Fortunately these expressions may be integrated in closed form and
the solution of (IV.24) may be expressed simply in terms of elemen-
tary functions.

It is necessary to distinguish between the two cases D > 0 and
D < 0. Inthe course of the analysis it will become clear that D > 0
applics to the case of compression (A< 1) and D < Q applies to the
case of extension (A > 1),

1} The Case D> 0

From (IV. 25) one cbtains

y-E = - —2'——- tanh

vD

1

WE w1t 1) (IV.27)

v

which may be inverted to yield

w = -j—% = - 3 sech® (LZB_ (E-y)) (IV. 28)

From (IV.28) one easily obtains an implicit expression for y

i texms of Y

Y-F = ED%/—’Z [sinh(vD (E-y}) + VD (E-y)] (IV.29)
Also
2 5/2 =y
3;3’_'2 = DCZ sech? (———grl (E-y)} tanh (1/22 (E-y)) (IV.30)

Boundary condition {IV.11) implies, from (IV.30), that E=0

and this result together with boundary condition (IV. 13} irmnplies,
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from (IV.29), that F = 0,
The remaining two boundary conditions, (IV.10) and (IV. 12),

require that

D 2 VD

Zsech? )+ 1=0 (IV. 31)
and ;_Dm {sinh (_1‘@.) + @_) -1=0 (IV. 32)
From (IV.31) it is found that
c=—22D (IV.33)
cosh(—‘%}—:]-f-l

which, when substituted into (IV. 32), provides a transcendertal

equatiorn for D.

VD

cosh (T

)+1={]13 sinh (YD) 1 L (IV. 34)

It is easy to show that if D is real and positive, as was as-

sumec, then A<l is implied. Expand both sides of (IV.34) in Taylor

series.
2 2
2+ D2+—9T+..,=%$ D -2 ... av.3)
AR 41 A 31 A 51 A

I X >1 then each term on the right side of (IV.35) is less than the
corresponding term on the left side of (IV.35) and the equation cannot

hold. Therefore N 1. The condition A = ] implies D = 0 since only
JB VD
(T)

then is cosh (—) = L sinh

T . Consequently D> 0 implies A <1,

Simple arguments establish that D is uniquely determined
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for A > %. For any A < 1 the expression on the left side of (IV,35) is
smaller than the expression on the right side of (IV. 35) provided that
D is sufficiently small. If (IV. 35} is differentiated with respect to D
it is found that

2 2
l o _, D 1.1 . D . D

% 12)% 24000 6x>  60nt  1e80n

.l e o) {1V . 36)

For \ > % the expression on the left side of (IV.36) is greater than
the exnression on the right side for all D. The two arguments pre-
sented in this paragraph establisk that there is at most one value of
D satisfying (IV.35). The existence of D for any given case can be
established by computation. The fact that these arguments have
established the uniqueness of D (in the case of compression} only
for %-( A is of no practical importance as anyone who has attempted
to squeeze a rubber pad {or block) to one third of its original thick-
ness can testify.

The stress field in the pad can be found from the following

formulas.

"rll/ =k+ xi + y%
722/|.L =k + x}zc-E- yg'{
(IV.37)

12
Tk = - by - ygYy)

where k is a nondimensional hydrostatic stress term to be determined

irom the equilibrium cquations and boundary conditions.
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Using the results previously found one has, raecalling that X

dy _ dy

is a coordinate with length cirnensions and that T~ F but that
dx _ 2 ¢x

11, _—., +X° _ (cosh{yDy)-1) = D* 44D

T /p =kt 4 ZD : sech —z—-—y)
B (cosh@WD yR1l) ¢
22, _—,C% 44D
/ =k + —]:—)? cosh (—2— V)
(IV.38)
33/p =k+ 1

Since the displacement field is based on assumption (1) it is

not to be expected that the stresses, {IV.38), will satisfy the equi~

librium equations

A =0 (IV. 39)

y 1

exactly.

The equilibrium equation in the X direction becomes, in

terms of (IV.38),

© 4 4XD (cosh(vDy)-2) 0 (IV . 40)

X B (cosh {‘fﬁy)+1
and that in the Y direction is
K. - = -<_ sinh (yDy) = 0 (IV. 41)

VD



-73-
In cbtaining (IV.40) and (IV. 41) one must recall that the stresses are
explicit functions of y and the differentiation is to be performed with
respect to Y,

Since both (IV.40) and (IV.41) cannot be satisfied simul-
taneously it is necessary to choose a way to compute k. In view of
the stress free boundary condition at X = £ A/2 it will be assumed
that (IV.40) holds and k wili be completely determined by enforcing

the condition
11
T (£ A/2,¥)=0 (IV. 42)

For (IV.40) to hold it is necessary that

2
k=222 (2-cosh(YDy) | vy (IV. 43)
B {cosh(vDy)+1)

Substitution of (IV. 38.1) and (IV. 43) into the boundary condi-

tion (IV.42) leads to

? —
f({Y) = - -12? sech? l[zD—y) -
C

DA’ _ cosnyDy) (IV. 44)
2z g2 (cosh(vD y)+1)

0 that the stresses are given by

11, _ 2Dcosh (yDy) X% A?
T /p = (— -—
{l+cosh {¥Dy)) B 4B
(22, _ 2D cosh (VD y) {(Zsech(\/ﬁ 5 - nXo A%
(l+cosh (YD y)) B2 4Bzf
2 5 (IV. 38a)
N cc>e;hf't {izi; v)- D—Z sech4 (? y)
c

D
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2 2

1'33/}1. = 2D cosh (VD y) {(2sech D Y)-l)-x—z- - —é-—z}

{1+ cosh{(vD yv)) R 4B (v 383)

IV.38a
2 —
£ 1 - % SEChé (\I—ZD— v)
C

le/p - S % sinh VD y

VD

2) The Case D< 0

The difference between the case D > 0 and the case D< 0

depends on the fact that for D< 0

_ 2 -1 o
y-E= = tan ~ ( Y w-1) (IV . 45)

It is found that in the present case

C
Y =m7.2_ (sin[VIDI v}t IDI y) (IV . 46}
%:w = Igl SECZ ( IZDI'y) (W-47)
2 5/2 /
d“y _ IDI 4 vIiD| 1D
- ) tan ( ) (IV . 48)
dYZ CZ 2 2
and that
_ 21D (V. 49)
cos(v’fD]/)\)+ i
5 ‘“‘“”xi) + ? sin (Vif')ﬁi (IV. 50)
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In this case, D < 0, it is desired to show that A > 1 is implied,

Expand (IV.50) in Taylor series.

2
2ol IDIT,

212 ant

L 1D
——-;; .) (Iv. 51)
IETECCTEN

The series on the right side will be smallcr than the series on the
left side for IDI/XZ sufficiently small so that ir this case A > 1 is
implied if (IV.51) is to hold. If D is a continuous function of A, and
since A = 1<=> D =0, thenfor all D< 0 x> 1.

Since the results of this subsection are, in a sense, analytic
continuations of the results for A <1 as X\ passes through unity, i.e.
as A —1+ and X —1- corresponding expressions coalesce, it becomes
reasonable to choose those values of D which make D a continuous
function of A across A =1 and so the question ot the uniqueness of D
for the case of exiension is bypassed,

By means of computations similar to those made in the case

of X< 1 it ie found that

. = 2{Dlcos{(vViD] y) | xfz)
M it cos(/TDT y)) 4B " B?
, - 2 lchos('\ﬂE Y) Az XZN

- (2 WIDT y)-1)25 »
22/* (tcos(¥TD1 y)) L4B? °ee B

2 T 2
+_§7COS4(VID|y)_% (JIDI )

2 PAN
733/}1 _2IDlcos(VIDIy) [ A ;- (2sec(/TD1 Y)"l)z{—z .

l-I-cos(VIDly 4B BSJ

,1 "”zsec V_’ D] (IV.52)
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v/ E = £ sin (/DI y) (IV.52)

JiD]

5, The Linearized Problem

Before any numerical results based on Section 4 are pre-
senled it is desired to make an analysis of the thin, incompressible
pad under the assumptions of infinitesimal elasticity. The analysis
based on assumption (1) and pursued by means of the principle of
stationary potential energy seems more straightforward than those
found in the literature [23, 24] although, of course, Lindsey, et al.
were orly incidentally concerned with the special case of an incom-
presgsible material. The gross results of the two pricr analyses
and the present one are in agreement; however the details of the
present analysis seem to be cleaner.

For the linear, i.e. infiritesimal, case (IV.24) reduces to

dy _ g (IV.53)

Since it is customary, in infinitesimal elasticity, to work

with the displacement vector introduce now
v={Y -y) (IV.54)

so that the governing differential equation may be written as

4 4
d“’4=o or Y - 9 (IV.55)

dY dy

since the mapping is the identity mapping to withir a first order

infinitesimal mapping. The second form of {IV.55) which is
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consistent with the usual formulation of infinitesimal elasticity will
be used.

The appropriate boundary conditions, corresponding to {IV..0),

(IV.11), (IV.12), and (IV.13) are

ay { =0 (IV.56)
dz'v

— (0) =0 (IV.57)
dy

vil)=4a; A=x-1 (IV . K8}
v(0) =0 (IV.59)

The solution to the boundary value problem is
A 3
v=z(3y—y ) (IV . 60)

Introduce, now, the displacemeni{ compenent

u=}<§~1k:=—:ar:§-“—r 3

- (i-y%) (IV . 61)

where the final form follows directly from the linearized incompres-

sibility condition for the case of plane strain,

ou _ 2
Ex = F}Z— - 3/2 A (1-‘y }
ov 2
- = —= 3/2 A (1- IV. 62
-, = .8._5.1.. g‘-{-— = ﬂ
2/xy T 9y tax C R



-78-
are the components of the infinitesimal strain tensor. The factor
2/B enters into YXY because x was never nondimecensionalized. Note
that dv/dy remains the same whether or not v and y are nendimen-
sionalized.

The nominal stresses are giver by the following expressions

for the infinitesimal plane strain of an incompressible material.

1 _
/w=12¢ tp
tzz/p = 2£y +p (IV.63)
12
=2y

where p is a nondimensional hydrostatic term.

For the remainder of this section dimensioral x and y will

be usec.
Wher the expressions for stresses are placed in terms of
displacement components and the stresses are then substituted into

the (nominal) equilibrium equations it is found that

P+ 3A :)c/(—;-?--)2 =0
(IV. 64)
B, - 3ay/3% =0
Consequently
5=3F Y3 - x2/B% - const. (1v. 63)

where the constant will be determined from a mean stress free



condition at x = A /2, i.e.

B/2
11
“0 t Ix:A/Z dy =0 (IV. 66)
Thus
; 2
RS AL R R S i) (V. 67)

and finally

2 2 2
11 3A 1 ,A 4% 12
t /H=—[(—————g)+(—%— 1]
2 g’ B B

2 2 2
22 3A ¢ A 4x, | 4y
t" /= (B - )+ (3 - ]| {IV.63a)
2 Vg2 T g2 52
1% - 12A512—
B

These results are virtually the same as those of references
[23] and [24] but the details of the present analysis are cleaner. As
a matter of fact, the ""extraneous'' stresses acting on the free edges
are small compared to the stresses at the center of the pad for B<<A
so that if St. Venant's principle is invoked it may be claimed that the
analysis is virtually exact near the center of the pad. Note that in
the present infinitesimal elasticity analysis it was possible to satisfy
both equilibrium equations whereas this was not possible for the

finite strain analysie,

6. Numerical Fxamples

In this section the results of Sections 4 and 5 are used to

compute displacement and stress fields for particular numerical
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cases. The ratio A/B is taken to

be 20 in all cases as was done in

reference [23], and the values 1.1, 0.9, and 0.5 are chosern for the

gross stretch ratio A,

la) The Case A = 1.1 {non-

linear analysis)

Newton's ethod ig vsed to
wion 1etnod 18 used to

il

then C is compvuted from (IV.49).

-0.669

c 0.771

]

so that the displacement field is found to he, from (IV.46), {IV.47),

and (IV.3),

Y = 0.704 (sin(0.818y) + 0.818y)

x =1.162 X (:c)s2 {0.409y)

The stress field, (IV.52), is giver by

11, _ 1.338 cos (0.818y)
T s {1+ cos (0.818y)
1_2.2/“ _ 1.338 cos (0.818y)

T (1 4 coe (0.81I8y)

+1.372 cos™ (0.409y) - 0.754 sec¥(0. 209y)

33, _1.338 cos (0.818y)
T /}i— {I+cos(0.818y]))

find D from {IV. 50} fcr X = 1.1 ard
The results are
(IV. 68)
(IV.69)
2
(100 - 'X_z)
B
52
[100-(2sec{0.818y)-1) =]
B
(IV.70)
e
[100 - (Zsec(0.818y)-1)——2]
B

+ 1-0.754 sec4(0.409y)

1% /i = 0.942 % sin (0.818y)
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At the center of the pad it is found that

'rll/p = 66.9
22 /0= 67.5 (IV. 70a)
2/ = 67,1

so that 2 state of virtually hydrostatic tension exists there.
(IV.69.2) states that the undeformed pad bulged out 15, 2%

of A/2 at its center as shown in Figure IV.2 below.

lv.Y
- B/2 -
0.909 B/2
-1.152 A/2f t-A/2 A/21 \1.152 A/2
+ —
X, X
-10.909 B/2
— 57z -
undeformea pad
e = e deformed pad

FIGURE IV.2. Deformed and Undeformed Pad for A = 1.1

(not to scalce)

It is noted that the analysis gives, on the edges X = =A /2,

an "'extraneous'' shear stress

12 .
. [XziA/?_:g.sz sin (0.818y) (IV. 71)
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whose maximum value at y = 0.909 (or Y = 1) is 6.37. BSince the
total shearing force on each of the edges is equipollent to zero and
the maximum value of the shearing stress on each of the edges is
an order of magnitude smaller than the normal stresses acting at
the center of the pac it is reasonable to conclude [rom St. Venant's
principie (assumed here to be valid for finite elasticity)} that these
""extrancous'' shear stresses have little effect on the normal stres-
ses at the center of the pad.

At this point it is pertinent to inquire about the relation
between the solution of the asymptotic equation (IV. 24}, and the
full equation, (IV.8), i.e. how well does the sclution of (IV.24)

satisfy (IV.8)? For the present case, A/B = 20 and \ = 1.1, direct
calculation gives the following results.

a} at ¥ = 0 the solution of (IV. 24} satisfies (IV.8) exactly,

This is a general result noted previously.

b} at ¥ = 0.516 (y = 1/2X\ = 0.4545) the neglected terms

are about 2% of the magnitude of each of the terms
wkich are retained.

c} at Y = 1 the neglected terms are about 3% of the

magnitude of each of the terms which are retained.

Because of the smooth behavior of the functions involved
the above information seems sufficient to conclude that the solution
of (IV.24) is an excellent approximation to the solution of (IV.8)

for the particular case considered.
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1b) The Case \ = 1.1 {linear analysis)

The case N\ = 1.1 cozresponds to a = 0, 1 when the terminology

of Section 5 is used.

Recalling that

Y:y-i—v (IV . 54)

it is found that

Y =y + 0.05 (3y - y°) (IV. 72)

A tabular comparison of (1v.64.1) and (IV. 72) is made below.

Y nonlinear Ylinear
2 0 0
0.227 0.261 0.261
0.455 0.517 J.518
0.682 0.765 0.768
0.909 1 1
Table IV.1. Ynonlinear vSs. Ylinear for x = 1.1

The agreement between the nonlinear and linear results for
the moderate strains considered is very close indeed. It must be
borne in mind, however, that somewhat different physical problems
are belnyg cumpared. The linear results are for a body of originally
rectangular form which is deformed to a concave section whereas
the nonlinear analysis is for an originally convex section which is

deformed to a rectangle (cf. Fig. IV.2).
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The stresses given by (IV.63) are nominal stresses. At the

center of the pad these are

tll/p = 59.9

tzz/p = 60.5 (IV.73)
11, .22

33 £+

£ /b= §E——) = 60.2

It is seen that if the undeformed body is of rectangular cross-
section the state of nominal stress at the center of the pad is approx-
imately hydrostatic tension.

The relation between the true stresses and nominal stresses

is given by

L i
= 7 (8d 5 9."'—r (IV . 74)
ox

for a rectangular coordinate system so that at the center of the pad

the true stresses are

- 69.8
w22/ = 52,6 (IV. 75)
'1'33/}1 = 60.2

This is a state of triaxial tension only roughly approximating hydro-
static tension,
It may be concluded, then, that if it is desired to reach an

almost hydrostatic tensile state in a specimen which fails at more
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than a couple of percent extension,that the original cross-section
should be Larrel shaped. Once the siretch ratio at failure is xnown
approximately it is possible to design a suitable specimen. These
comments apply as well to the commeon ''poker chip'' test specimen.

Fxamination of the nominal stress expressions, (IV.é63a),
shows that at the free edges the "'extraneous'' stresses are small
compared to the stresses at the center of the pad. t”/p varies
parabolically from -0.15 to 0.3 as y goes from 0 to 0.909 and -7-12
varies linearly from 0 to ¢ in the same domain. Since in the linear
case the equilibrium equations are both satisfied it is possible to
have great confidence in the results obtained at the center of the
pad when appeal is made to St. Venant's principle.

2a) The Case A = 0.9 {nounlinear analysis)

From ({IV.33) and {IV.34) it is found that

C = -0.457

(IV. 76)
D

i}

0.537

so that from (IV.28), (IV.29), and (IV.3)} the displacement field is

found to be

4
i

0.593 (sink(0. 734y} + 0. 734y)
(IV. 77)

b
1

0.851 X cosh® (0.367y)

The stress field is given by
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'rll/p. _ 1.074 cosh (0.734y)

XZ
{l+tcosh{0. 734y)) (},,_2 - 100)

2
22, _ 1.074 cosh (0. 734y) X
T = ressnp G L 29eck(o. ?34Y)—l)]—3-2— - 100}

+ 0.723 cosh? (0.367y) - 1.384 sech?(0.367y)

> {iv.78)
1.074 cosh(0. 734y) X
733/p = {ITcosh(0. T555T) {2sech(0. 7343;)-1)_];f - 100}

+ 1 - 1.384 sech®(0. 367y)

1% /= -0.623 Z sinh (0. 734y)
At the center of the pad

-53.7

i1
T/

22
™/

-54.4 (IV. 78a)

733/}; = -54,1

Note the significantly diffierent absolute values of the almost hydro-

static stregses for the cases of 10% extension {A = 1.1} and 10%

compression (A = 0.9). This is not really surprising when it is

observed that in the compression case the undeformed pad was

concave whereas in the extension case it was convex.

The absolute value cof the '‘extraneous!'shear stress at the

bonded corners is found to be 5. 66 in this case.

Computation again indicates that for the present case the
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solution of (IV.24) is an excellent approximation to the solution of
(IV.8). In fact, the degree of approximation is about the same as
for the case A = 1.1.

2b) The Case A = 0.9 (linear analysis)

The case A = 0.9 corresponds to A= -0, 1 so that the dis-
placement and nominal stress fields are the same, except for a
change in sign, as in the case of A = 1.1. The true stresses at

the center of the pad are

-7-11/;1 = ~-52.6
722 /= -69.8 (IV . 80)

which again only roughly approximates a state of hydrostatic stress.

3) The Case A = 0.5 (nonlinear analysis)

In this case the values of C and D frum (IV.33} and (IV. 34)

are

C = ~0,440
(iv.81)
D= 1.438
sc that the displacement field is found to be
Y = 0,127 (sinh (1.199y} + 1.199y)
(IV . 82)
x = 0.306 X cosh® (0.600y)
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The stress field is given by

2
11, _ 2.876cosh(l.199%y};X
T = {I+cosh{1.199y}} [1_3? - 100]

XZ

(Treosh(l. 1995y | (2 sech(l. 199y)-1)=5 - 100]

”.22/}‘L _ 2.876cosh(l. 199y}

+ 0.094 cosh®(0. 600y)-10.68 sech?(0.600y)
(IV.83)

/33, _ 2.8T6cosh(l.199y) x°

S =1y - 1
Troosh(1. 1995)) L(2sech(1.199y) 1)BZ 1001

+ 1 - 10.68sech®(0.600y)

1

‘le/ln. = -0.367 % sinh{i.19%y)

At the center of the pad

'rll/p. = -143.8
Tzz/p. = ~154.4 (IV.83a)
"'33/”: -153.56

The magnitude of the shear stress, le/p. is found o be

19.9 at the corners.

The results just given ‘ndicate that for very large compres-

sion the state of stress at the center of the pad does not approximate

hydrostatic compression as well as it does for moderate compres-

One obvious reason that the stress at the center of the pad



-89-
does not increcase as rapidly as the amount of compressior is that the
undeformed body taken for increased compression is softer since its
concavity is greater,

The deformation field for X = 0.5 is calculated now so that the

shape of the undeformed body may be compared with the final shape.

v ¥ T iX=A/2
0 0 0.306 A/2
0.5 0.157 0.335 A/2
1.0 0.344 0.429 A/2
1.5 0.602 0.629 A/2
2.0 1.0 AJ2

Table IYV.2. Deformation Field for A = 0.5.

The results tabulated above are sketched in Figure IV.3 in
order to give a graphic demonstration of the magnitude of the defor-
mation.

Finally,an estimate will be given of how well the full differ-
ential equation, (IV.8), is satisfied.

a}) at Y = 0 (IV.8) is satisfied exactly.

b} at Y = 0.602 {y = 1.5) the neglected terms of

(IV. 8} are about 2% of the magnitude of each of
the terms in (IV. 24),

c} at Y = 1.0 {y = 2.0) the neglected terms of
(IV.8} are almost 4% of the magnitude of each

of the terms retained in (IV.24).
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B
- - iB/2 _ /
A2 -0.306 A/2 AOG A/ }A/_Z,.
x,X
/ i ) B/z i —\
-|B

undeformed pad

deformed pad

FIGURE IV.3, Deformed and Undeformed Pad for A = 0.5

{v,Y scales stretched 3 times)

Comparing the above results with the cases A = 1.1 and
A = 0.9 shows that the error introduced by neglecting the part of
(IV.8) multiplied by BZ/AZ' is essentially independent of X and
depends almost wholly on B%/A% so that for BZ/A2 sufficiently
small the use of (IV.24) instead of {IV.8) is justified and intro-~
duces errors into the analysis which are probably of less conse-

quence than those introduced into the problem by assumption {1).
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7. A Related Elasticity Problem

The work already presented in this chapter is based on the
appiication of the principle of stationary potential energy to a
partially restricted deformation field. It is assumed, when the
governing Euler-lagrange differential equation is derived, that
the stress boundary conditions are satisfied. Therefore, within
the restriction of assumption (1), the sclution of the Euler-Lagrange
equation provides a deformation fieid which renders the total poten-
tial energy of the system a minimum (if the equilibrium is stable).
Since assumption (1} is not exactly true for the physical problem
considered a penalty must be paid in that the deformation field leads
to a stress field which does not satisfy the equilibrium equations.
Becausc it was assumed that the elastic medivm was incorupressible
it was possible to satisfy one equilibrium equation exactly (and also
the normal stress boundary condition). The overall solution is, in
an energy sense, the best to be had once assumptior (1} ia made.
Indeed, by comparing the solution of the nonlinear problem, for
moderate strains, with the results of the linearized problem which
satisiies the equilibrium equations it seems likely that an excellent
estimate of the almost hydrostatic stress at the center of the pad is
oblained.

In this section a solution of the Adkins equation
2 2 2 _ 2 -
XX(V x}Y-XY(V x)X+ yX(V y)X-yY(V y)X =0 (IV.84)

based on assumption (1) will be presented. This solution will be

the exact solution to some problem in the theory of plane strain of
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a neo-Hookean solid. However, since no attempt is made in the
process to effect a reconciliation between the contradictory assump-
tions that the surface at X = A/2 is stress free and that (1) holds, it
will be found that the hydrostatic stress predicted as occurring at
the center of the pad will differ significantly from the hydrestatic
stress predicted by the variational analysis. In addition, the
"extraneous'' stresses acting on the free boundary will be of the
same order of magritude as the hydrostatic stress at the center

of the pad. On the basis of the energy criterion, arnd what has just
been stated, tne variational solution would appear to be the more
reliable approximation to the solution of the physical problem which
~was proposed originally.

Assumption (1), when substituted into (IV.84), leads after

some manipulation to

d dyv 2
d E}%\ z(dY ) . .85
a¥ dy | ) (EX_Z ) - 89)
Iy ay)

where vy and Y are to be interpreted as nonalmensional quantities
for the present.
If substitutions of the sort used in Section 3 are made the

solution of (IV.85) is found to depend on the integration of

dw

dy = —oN __ (IV. 86)
\/DWZ—C
ay - Gw (IV.87)

WVDWZI—C
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together with the boundary conditions (IV.10), (IV.11), (IV.12),

(IV.13). Againw = dy/dY.

The analytic form of the solution of {IV.85) deperds on the
sigr. of D, The case D< 0 is solved by

y = 1 COS_l (sech (VICI| 1)) (IV.88)
VInl
or Y = -t sech ! (cosvIDl| y) (IV.88a)
vicl
This also may be written as [25 ]
Y = :: ] infsec (VID!| y) + tan (vIDI y)] {IV.88%)
G
The relation between C and D is given by
D = C sech® (yTC)) (V. 89)
and the transcendental equation to be solved is
cos {\”)\CI sech vIC 1) = sech VIC] (IV.90)

As is shown in Figure IV.4, where |C| is given as a function

of \, IC] »0as A ->1land¢ IC| - as \ »0.

The stress field, associated with the above displacement

field, which satisfies the normal stress boundary condition in the
mean, i.e,

!sz/a (IV.91)
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R I 2
"'ll/P- = IDisinh(2viCl) S.ilCI - J; W IDlcosh2V1C 1Y)

4/7cl

_yic tanh vIC . +Esechz(\/fCi Y
D] D
X 2 2
Tzz/u _ IDTsmh(Z\/iCI){ ‘1‘ —%—H lelX—z
4,1[0[ Z.l(,:l B B
——I—T‘“‘;‘)ltanhﬂm + %3(—: {1 + 3 cosh (2VICI YY)
. z 2
'r33/u _ IDIsinh{(2vICT) ( 1 -%H 2D | _)_gz
a/IC1 2lc1 B B
-Zr-)c cosh (2VICT v) - y1G tanh VICI| + 1
1D
12 D X ;
w2 ——— i sinh (2VICT Y)
Jicl B
For A\ = 0.9 it is found that
C = -0,349
D=-0,251
sc that

1,995 cos™! (sech(0.591YY)

“
it

g

=w = 1.182 sech (0.591 Y)

41C 1|

{IV.92)

(IV.93)

{IV .8%a)

(IV.94)



-95-
x = 0.846 X cosh (0.591 Y) (IV.95)

and, for A/B = 20,

1 x°
7'/u = ~63.8 + cosh (1.182Y)(0.502 X, - 0.178)
s}

+ 1.39 sech® (0.5917)

22 x?
% = -63.4+ 0,502 =5 + 0.360 cosh (1.182Y) (IV.92a)
B2

33 x>
77/ = -62.8 + 0.502 =5 - 0,178 cosh (1.182Y)
B

7%/ = -0.425 £ sinh (1.1827)

At the center of the pad (IV.92a) shows that
'rll/p. = ~62.6
'rzz/p. = -63.0 (IV.96)

'r33/p. = -63.0

The virtually hydrostatic stress at the center of the pad is, in this
case, about 16% greater in magnitude than that obtained from the
previously presented variational solution. In addition, the present
elasticity solution requires, at the free edges, an ""extraneous'’
normal stress 'rll/p. whose magnitude varies from -12.4at Y = 0
to 26.5 at Y = 1. While it is true that the present calculations deal
with an exact elasticity solution to some problem it is believed, as
previcusly indicated, that the variational solution is a better

approximation to the physical problem which was originally posed.
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Figures IV.5 through IV, 8 provide a comparison of the
stresses given by the two solutions on the lines X = 0, X = A/2,
Y =0, and Y = 1.

The following table compares the deformation fields given

by the two solutions. Tt iz comnuted from (IV.28), (IV.77.1)},

(IV.88a), and (IV.94). dy/dY is given in the table because x = -d—}){r-— .
ay

¥ Yvar. Yelas. %Var' % clas.

1 1.111 1.111 1.000 1.000
0.802 0.888 0.891 1.0R7 1.062
0.592 0.666 0.675 1,105 1.111
0.391 0. 444 0.449 1.143 1.153
0.194 0,222 0.227 1.170 1.174

0 0 0 1.175 1.182
Table IV.3. Deformation fields for the case A/B =20, A =20.9

The above table shows that the deformation fields computed
in the two different manners are very similar. These results also
are shown in Figure IV.9.

The case D> 0 has the solution

i -1
y = cosh (sec(¥C Y} (IV.97)
vD
or y = ;—l_I;—- In [sec(\/(-l Y) + tan (VC Y)] (IV.97a)

D=C sec?‘ (\/'C_l) (IV. 98)
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‘_/F sec (VC)) = sec (C) (IV.99)

and cosh {

8. Summary

In this chapter an approximate solution to a non-trivial, mixed
boundary value, plane strain problem of a neo-Hookean body was
found. The problem, that of a thin pad bonded on its faces to a rigid
testing machine and then subjected to extension or compression, was
solved by making a reasounable geometrical assumption that led to a
highly nonlinear fourth order ordinary boundary value problem. An
asymptotic approximation to the differential equation involved was
solved exactly and this solution was shown to be an excellent approx-
imation to the solution of the complete differential cquation provided
that the pad was suificiently thin, The errors introduced by the
geometrical assumption were not assessed since to be able to do so
would imply a knowledge of the exact solution to the problem that is
not available. However on the basis of a linear analysis and St.
Yenant's principle {assumed valid for large strain theory) it seems
likely that the significant stresses, at the center of the pad, were
determined reasonably well. Comparison with a related large strain
elasticity problem indicates that the deformation field is approximated
very closely by the variational solution.

Of possible future practical interest is the observation that
if a '"poker chip'' specimen fails at more than a couple of percent
extension it is worthwhile to consider making it barrel shaped rathex
than cylindrical in order that a more nearly hydrostatic state of

tension will exist at its center.
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CHAPTER V. THE FINITE PLANE STRETCHING
OF A STRIP BONDED AT ITS ENDS

1. Introduction

The finite elastic deformation of a neo-Hookean strin bponded
at its ends to rigid supports and stretched lengthwise is studied in
this chapter under the assumption of plane strain. The appropriate
differential equation, derived by means of the principle of stationary
potential enexrgy, is essentially the same as that arising in the study
of the thin pad. However, different techniques are used to obtain
approximate solutions for the strip problem because in the present
case a small parameter mulitiplies the higher order terms of the
differential equation rather than the lower order terms and, conse-~
quently, the solution of the strip problem behaves in a markedly
different manner than does the solution of the thin pad problem, The
techniques used are

a) a direct minimization of the energy integral

b) a singular perturbation study of the Euler-Lagrange

equation associated with the problem.

It is found that for the particular numerical example consid-
ered both approximate scolutions provide similar information about

the pertinent aspects of the problemn.

2, Formulation of the Strip Problem

In the undeformed state the strip, shown in Figure V.1
below, is bonded to rigid supports at y =+ B/2 and is free on its

sides x = ® A/2. The deformation consists of a gross stretching of
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FIGURE V.1. The undeformed strip.

the strip in the y direction sc that the final length of the strip is AB.
It is assumed that there is no deformation normal to the x-y plane,
i.e. a plane strain deformation is considered. This situation can be
approximated, experimentally, near the center of a strip whose
dimensiorn in the direction normal to the x-y plane is considerably
greater than B.

In the deformed strip & material point which was originally
at (x,y) moves to the position (X,Y). For A/B sufficiently small it

is reasonable to assume that

Y = Y(y) (v.1)
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This assumption is based on the experimental evidence that, except
near the bonded edges, the strip is in a state of uniaxial tension (in
the x-y plane). [26] It is this assumption that makes the strip
problem similar, in formulation, to the thin pad problem.

The incompressibllity condition

XY XY =1 (V.2)
Xy ¥y x

is reduced, on the basis of (V. 1), to

1
X)g =% {(V.2a)
b

so that

==
X = S (V.3)
b4
since X{0,y) must vanish,

If the notation

— = Y
y:—%—; Y:—B— {(V.4)
Z 2z

is introduced, the statement of the principle of stationary potential

energy becomes, after integration with respect to x,

1 = L
2 Y—— Y—-1.
afl"‘ 3 )l dy=0 (V.5)
g 3B Y Y—
y ¥

At this point the cumbersome barred notation will be dropped
and, unless otherwise noted, y and Y will denote the nondimensional

guantities defined in (V. 4).
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The Euler-Lagrange differential equation found by performing

the variation indicated in (V.5) is

jLzY 2(@}2
%{2[%( (%)4)+ d%’:%)s] -(% -(?)Jﬂo (V.6)
where

ce=A/3PBR (V.7

Using arguments similar to those used in the case of the thin

pad the appropriate boundary conditions on (V. 6) are found to be

Y{0) =0 (V.8)
avioy _ 0 V.9

—— = (V.9)
dy

T(1) = A (V.10)
dY (1) _

& " 1 (vV.11)

Equations (V. 6) through (V. 11) define the approximate bound-
ary value problem for the thin strip. The striking differerce between
the strip and thin pad problems is that in the oresent case the small
parameter ¢ multiplies the leading terms of (V.#6) instead of the
lower order terms so that entirely different approaches to the ap-

proximate solution of the mathematical problem must be used.

3. A Direct Minimization of the Energy Integral

Examination of (V.6) suggests that, except near the boundary

points, Y behaves like a lirear function of y. A simple functicn
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having such behavior in the interval -1 €y < 1 is

Y = ay + by’n (V»lZ)

provided that n is large compared to unity, For (V.12) Lo be an
admissible function for the variational principle it is necessary that
it satisf{y the boundary conditions (V.8), (V.9}, (V.10), and (V.11);
{V.8) and (V.9) are satisfied automatically and (V. 10) and (V. 11)

will be satisfied if the constants a and b are related to the constant

n as follows,

a=(\+ ;):—:%)
(vVv,13)

Y= (0t 2)y - (=) v (V.12a)

which contains n as the only parameter to be determined by the
variational principile.

If nis truly large compared to unity when \ is a moderate
multipie of unity it is seen that, except near the bonded edges, the
deformation closcly approximates that of a uniaxial specimen
stretchec to A times its original length.

When (V. 12a) is substituted into (V.5) it is found that
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1
iy {&2 1’;:2(1)\"1)2(3;:2(111)-21 g "
¢n - niA- i~ 4
0 L(x+ n-l) T Ta-1) ¥ ]

(V.14)
n(h-1) (n-1);2
n-1y 7 ]

1 n{i-1) (n-1)
RO Ul v y

A-1
[+ 2250 -

‘1)2}dy=0

The simplest way to perform the minimization, given ¢ and
A, is to evaluate the integral in (V. 14) for various values of n and

then to determine, from a curve, the value of n satisfying (V. 14).

4. A Singular Perturbation Approach to the Euler-Lagrange Equation

4y , _ adw
w' =

Let W =-a§, -d—y (V.l5)
so0 that (V.6) may be written as

42wy, 20t Ly (V. 6a)

dy '€ Gy "4 I R .

As ¢ - 0 the order of the differential equation changes and a

gsolution of the reduced second order equation
d 1
E?(W“;g-)-o (V.l6)

cannot satisfy all of the boundary conditicns associated with (V. 6éa).
(V.16) has for itas only real valued solution w = constant or that ¥ is

a linear function of y. A solution satisfying the boundary conditions
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at the origin is that

Y =%y (V.17)

where X is a constant which is not vet specified,

(V.6a) will be studied using some of the ideas arising in the
theory of singular perturbation problems. [29] Because of the
rather complicated nonlinear nature of {V.éa) an ad hoc approach

to the problem will be adopted.

Assume
Y=y _+ Py vy Py (V.18)
‘and let
£ =12 (V.19)
a

3

a and P are constants.

When (V. 18) and (V. 19) are substituted into (V. 6) it is fourd

that
Z 2
Ty, 262(1-1—[3-20,)(& Y1}z
CI G W a?
Y .
(X-Prel oy (x-Pe)
{vV.20)
dy
SR (Bre) 1y 1 =
et ) - a1 e

If a =f =1the leading terms of {(V.20) will be retained,

independent of e, and if
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TW’:K——dT (V'ZI)

it is possible to write (V. 20) as

dw Z(dVV)Z
Sl e - W -] =0 (v.22)

The boundary conditions {V.8), {(V.9), (V.10), and (V.11) become,

in terms of ¥, and £,

Y (o) = 0 (V.23)
szl(oo)
———= 0 (V.24)
dg

A~
Yl(O) = ""E— (V.25)
le(D) _
—~F = (x-1) (V.26)

(V.23) and (V.24) are expressions of the basic assumption
underlying a singular perturbation analysis, i.e. that the perturba-
tion term Y1 decays exponentially in the ''stretched'' coordinate £.
Consequently it is assumedthat at y = 0 § - for all practical pur-
poses.

From the analysis of the thin pad problem it is known that

{(V.22) may bec integrated twice to yield

dw 4 3 _
qE - wa + 2CW”  + DW + 2 (V.27)

where C and D are the first two constants of integration, respective-

ly, found in integrating (V.22).
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If, furthermore, the basic assumption about Yl is again in-

voked it may be assumed that for all n =0

d(n)Yl(oo}

—c—l—g—(Hr = 0 (V.28)
Assumption (V. 28) permits the evaluation of C and D in
terms of X as follows. From (V.22)
C=(—"§'l - W) | =L . X (V.29)
W f=c0 ~ 53 '
Furthermore, from (V.27) it is fourd that
D =% - 3/5[2 {V.30)

It is posgsible to write, then, that

aw _ L2 2 o 1
?E——:I:W(\V—K)‘/W +_X—§W 3:—2

(V.27a)

To aic¢ in determining the appropriate sign to use in (V. 27a)
it is observed that from gross incompressibility considerations x> .
Consequently Yl(O) < 0 and le(O)/d§ > 0. If the plus sign in (V. 27a)
were to hold at £ = 0 it is seen that dW /d&(0) < 0 (or szl(O)/d§2>0).
Ther. for Y1 to behave as assumed in {V.28) for £ > w it is necessary

thal there be an inflection point in the Y. vs. € curve for some finite

1
£, i.e. dW/dE = 0 for some finite £. There are two possible ways
for this to happen. Either W = 0 or (W-2) = 0. The second possibili-

ty implies that le/dg and szl/dgz vanieh simultanecusly for some
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finite §. But for Yl’ a smooth function of §, this is impossible unless

dZYl/dgz

0 for some smaller value of £ also. This could happen
only if W = 0 so that one is led to consider the first possihility which
would make dW /d§ vanish. This possibility is examined most ea sily

by integrating (V.27a).

w

20 (%% - (o Y W-N)- [ (X +—*)cw2b2 2)} /_
(&—E):ﬁn{( ¥ X

W - X )
(V.31)

(\/P«.W L 20W + X LWXZ)}

wWie

if the plus sign holds. E is the constanl ublained by evaluating the
right side of (V.31) for W = 1. Observe that W = 0 implies £ —co.
It 1s possible to conclude, then, that if (V.28) is a valid assumption

the plus sign cannot hold in (V.27a). Therefore

%ng = W(X-W) Jw? s ZW/X3 + 1/X2 (V.27b)
and
\i
dW!
£ = (V.32)
}

WE-w) VWl 2w /30 138

It can be shown that W~ X implies £ — co.
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Since W = X - le/dg

W
dw:
Y, = ¥, (0) + gl (V.33)

wilw o+ zw'/i'?' + 1/I2

and, in particular, since Yl(oo) =0

By

- 1

¥+g _ dw =0 (V.34)
1 JW‘2+ 2W’/")'f3+ 1/3(2‘

This is a transcendental equation for X which may be written as

/4
(—):-1)-&111{ A +3%2 }

(V.35)

A

\/'K‘if 2% + XZ+K+ 1

Clearly any root X greater than unity must also be greater than \
(which is consistent with a prior cbservation). Since the left side

of {V,35) is monotone decreasing in X\ for \ greater than unity (start-
ing at a positive value for X = 1} and the right side of (V.35) vanishes
at both X = 1 and A — w {taking on negative values for X positive) it
is likely that there is only one root \ in the interval 1 < X\ < o due to
the smooth nature of the functions appearing in (V. 35).

It is now posseible to compute N for any particular numerical
case and thus evaluate the boundary conditions (V.25) and ({V.26).
Then one may compute Yl(g) in tabular form from the parametric
equations (V.32) and (V.33).

The worth of this singular perturbation analysis depends on
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how rapidly le/dg and Y1 decay. For large £ {(V.27b) may be ap-

proximated by

%"gl = YR 3/X2 - W) (V.36)

so that
dy, S w2 3/1‘2 &
T&- ~ e (V. 37}
This indicates that for x > 1, as it must be, le/dé and Yl du indeed

decay rapidly.

5. A Numerical Example: X =2, A/B = 1/8

a. Direct Minimization of the Energy Integral

For the numerical values A = 2 and A/B = 1/8 the integral in

(V.14) becomes

g-l . o2y 2(0-2)
) ‘12 ATy 2
0 (2 + = 1)) Y y ]
[2+ i) - gy v M2
+ &1~ & 11) ) ) dy (V. 38)

1
Cr et menyY

Iutegrating (V. 38) numerically for various values of n shows
that (V. 38) is minimized by n 215, On the basis of the numerical
work performed it does not seem justifiable to specify n to more than
2 digits.

From (V.12a) and (V.3} it is found that in the present case
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-110-

5

xA2.071 - 1,073

(V. 39)
)

The deformations of the free edges are given in some detail

in Table V.1 below.

v X
Az
0.0 0 0.483
0.2 0.414 0.483
0.4 0.828 0.483
0.6 1.243 0,483
0.7 1,445 0.485
0.8 1.655 0.495
0.9 1.849 0.548
0.95 1.934 0.647
1.0 2.0 1
Table V.1. Deformed Geometry of Free Edge

b. Singular Perturbation Analysis

From (V.35) it is found that if A = 2 and € = 0.0722 the

appropriate value of X is X = 2.032.

In this case (V.32) can be written as

§:0.216+

W-2.032 0.22331

x

_'_m{(

“

9.7112+4.3024(W-2. 032)-1/19. 422(W2’+ 0.2384W+0. 2422)

(V.32a)

4,129W

J17.045Wo+4. 064W+4.129+ 4.129W
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To show how rapidly le/dﬁ and Y. decay (V.32a) is evaluated

1
at W = 2, It is found that g[W=2 = 0.82 so that dY./d§ (0.82) = 0.032
as compared to dY,/dg(O) = 1.032Z. Furthermore, in the present case
(V.33) may be written as

W
¥ (£) = -0. 443 +5 dw’ (V.33a)

L widwi2ro0.2384W'+ 0. 2422

When (V.33a) is evaluated for W = 2 it is found that Y, (0.82)=-0.008.

1
Clearly Y1(§) and le/d§ do decay rapidly. As a matter of fact the
decay is even more rapid than the decay of the asymptotic forms of

Yl given by (V.37), since the function

~4.47¢ _

v = 0,443 6 = 0,443 ¢ 02-0(1-y)

{(V.40)

evaliated at £ = 0.82 has the value Y *)(0.82) = -0.012.

At £ = 0.82, y = 0.941 and X{A/2,0.941) = 0.493 A/2 as com-
pared with X(A/2,0) = 0,492 A/2. Consequently the portion of the
strip originally in the interval -0.94< y<0.94 can certzinly be
considered to be undergoing uniaxial tension (in the x-y plane), Note
that the true stress in the central portion of the strip differs by less
than 2% from the true stress in a similar strip undergoing a com-
pietely homogeneous deformation.

The singular perturbation analysis is believed to be the more
accurate of the two aporoximate analyses which have been presented
for the simplified strip problem. This is because the basic assump-
tion, (V.28), concerning the exponentially decaying behavior of Y

1

has been confirmed for a reasonable numerical example. The rest
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of the singular perturbation analysis is exact (except for numerical
error).

The reasonableness of assumption (1) is also confirmed by
the singular perturbation analysis. The portion of the deformed
strip adjacent to the rigid support which undergoes a nonhomogeneous
deformation will be referred to as the ''boundary layer.'' The mean
''boundary layer'' width (X-dimension) is about twice the "'"boundary
layer'' depth if £ = 0.82 is taken as the extent of the ''boundary layer"
(this is a reasonably conservative definition). It is observed that in
this case assumption {1} is likely to hold even over a good portion
of the '"boundary layer.'' Of course the state of stress at the bonded

surface is in no way given by the present analysis.
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CHAPTER VI. THE APPLICATION OF REISSNER'S THEOREM
TO THE SLUMP OF A BLOCK OF FINITE LENGTII

1. Introduction

The deformation of a neo-Hookean block of finite length,
bonded te rigid walls on two parallel faces and accelerated in the
direction paraliel to the wails, is studied in this chapter under
the assumption of plane strain. The analysis is based on suitable
approximate stress and displacement fields which are character-
ized by a single parameter, The appropriate value of the parameter
is determined by using Reissner's Thevrem.

2. The Neo-Hookean Complementary Strain Energy Function in
the Case of Plane Strain

As a prelimminary to the study of the slump problem it is
necessary to construct the neo-Hookean complementary strain
energy function, Wc’ for the case of plane stfainu

For principal coordinates in the deformed body it is pos-

sible to write the constitutive equation for a neo-Hookean material

as
_3
Toepatt ks e =1 (VI. 1)
i i = L

where 7, and >‘i are the ith principal true stress and the ith prin-

cipal stretch ratio respectively; k is the hydrostatic portion of
the stress. (VI.1) may be used to express the first deformation
invariant in terms of the first stress invariant.

IT—3k

IM = m (VI.Z)
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Consequently the neo-Hookean strain energy function may be written

as

W= g [T - 3+ )] (VI.3)
Consider the case of plare strain, i.e. }L3 =1,

2.

'1'1 = }.L)Ll ik
N . 2.2 _

T, = H?La + k ; ?Ll ;’Lz =1 (VI. 4)

Ty = -k

. 2 Tk 2 T2k
Sirce ll = and X, = it i{s seen that
T8 2 T
K° - (1 + ) k+ (7, - p%) = 0 (VL.5)
17 "2 172 " ¥ 1= '

or, using the definitions of the invariants of the two dimensional

stress tensor,

2 2, _
K - L k+ (I -p%) =0 (VI 6)

(V1. 6) may be solved for k to give

I‘T
where
I 11 T,-T
_ T, 2 T _ l 2.2

In other than principal coordinates



~115-

Al 22, 12
I= +
Ca )+

2
m )

{VI.8a)

The proper sign to choose in (VI.7) is the minus sign since Rivlin
[17] has shown that the hydrostatic term, k, must take on the alge-
braically smallest value poasible, i.e.
I
k== -pvI+1 (VI. 7a)
Substitution of (V1. 7a) into (V1. 3), specialized for plane

strain, leads to
sz.[\u‘1+l—l] (VI.9)

when it is recalled that for plane strain 7, = k + p. If the radical in

3

(VI. 9} is expanded in a power series in I it is found that

1 1%, 1°
W:p[—i-—s—-I“ 12 - .. 3 I< 1 (VI.10)

The first term of (VI.10) can be shown to correspond to the strain
energy function (expressed in terms of stresses) of an incompres-
sible Hookean solid,

It is now possible to construct the neo~Hookean complemen-
tary strain energy function for the case of plane strain. Using the
present terminology in the defirition of the complementary strain

energy iunction given in Chapter I it is found that
Z
w =§-$ [r. - k+ W] [M2-1] - W (VI.11)
c J, - i
i=]

5 T " {k+ )
Since (}\i -1)= — (VI.11) may be written as
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[

2

W =2%2 [Ti—-{k‘l' |J.)]2-|.L[VI+1 - 1] (VI.lla.)_
i=l

Using {(VI.7) and (VI.8) it is possible to write {VI.11a) as

W= p[21+ 3 (1 - VI+1)] (VI.11b)

If the radical in (V1. 11b) is expanded in terms of a power series in I

then
2 3 1L -
Wc=p[I/2+ 3/81° -3/16 17~ ...1; i< (VI.12)

The leading term of (VI.12) is, as it should be, the same as the

leading term of (VI. 10).

3. Formulation of the Slump Problem

It is assumed that in the deformed state the block, shown in

Figure V1.1 below, has a rectangular cross-section in the plane of

L Y

T2

e - e oo
Y

et A —pu— A

Ypzzpzzzzi

J
]
1

FIGURE VI.1. Deformed Block
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the paper. The deformation of the block is presumed to be due to a
constant upward acceleration of magnitude Ng where g is the accel-
eration due to gravitational forces.
If the block were of infinite extent in the Y direction, i.e.

B -+ oo, then the exact solution of the slump problem would be given

by
v =X
(V1. 13)
2
y=v+E88A% 1 - X,
p.
A
and
Tll
—_— G
P.
22
T - (PNg 2 (VI.14)
m m
12
I__.. :EE&X
m m

where p is the mass density of the material.
(VI.13) and (VI. 14) aid one in choosing suitabie approximate
deformation and stress fields for the case of a block of finite length

ZB. The choices made will be relatively simple. For the deforma-

tion field choose

2 {VI.15)

-
#
!
+
=]
b
—
]
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where a is an undetermined parameter. (VI1,15) satisfies the incom-
pressipility condition identically, The stress field given below is
determined by assuming 'le/p. and then using the stress equilibrium
equations to generate T ! 1/}1 and Tzz/p.. 'Tzzfp is determined uniquely
in this manner whereas ‘Tl l/p is determined only to within an arbi~
trary function of ¥. This arbitrary function is taken to be zero since

the resulting expression for 'T1 l/p. pehaves as would be expected

intuitively.

11 2
T o anXoye n{1-Y/B)

B AZ

22 2 . 2 ; ES
T o BeNg 5 BLy (X gy 2aBTry -R(I-Y/BY g
= e 2" B nAz

12
T B X -n{l-Y/B

— =2 R &1 Y/B)

where n 1s an undetermined parameter. Note that the hydrostatic

portion of the stress, (k + ), may be considered as vanishing in

j .

_ 1
=74 -

a and n by a purely static argument. The total shear force acting

this case so that T It is possible to relate the parameters

along each block-wali bond surface must balance one half of the

total body force acting on the block.
B
12 ,
S' T IX::A dY = AB pNg (V1.17)
0

N (VI.16) is valid for 0 <Y <B. An obvious modification is reguired
for -B=Y =0.
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Consequeantly

2
=1 (BeNg,y ] (V1. 18)
‘ 32 b n-(1- e_n)

For the present problem Reissner's Theorem may be written

as

P ap W — — .
T [ pEv %
& e - o= 2y dT =0 VI.1
\ { T Yap TR m ) dr { 9)

T
where Yufi is the strain tensor and pF-v is the scalar sroduct of the
body force per ucnit volume and the displacement vector.

From (VI.15) and the cdefinition of the strain tensor it is

found thzt
2 2
2. B b4
Y, = -2a {(—s) (=)
11 AZ AZ
Yjo = 0 (VI. 20)

le = Yz] = (I.(:'&B_—)(—%)

(VI.15) also provides

PE-V _aBpNg ; X~ VI. 21
o T A,._,') (VL. 21)

Using (VI. 1€) and {VI. 20) it is {ound that

* .
(VI.19) holds because the boundary conditions and the incompressi-

bility condition have heen satisfied identically by the assaimed trial
fields.
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- 9P 3 B% x? -n(l-Y/B) *+
—_—y = -2a n{—5j{—) e
woap a2 A%
(VI1.22)
2 2
+ 20? E) & [1 - e 0Y/3)
A A
Recall that
11 22 12
T -7 2 T 2
s0 that in the present case
2
1=[22 (X_)e‘n(l"Y/B) - (@_N_g = (X - 1)+
2 2 24 L2 'B
(VI. 23)
2 2 2
. aB -n{l-Y/B),; 2, , 2,B* X -n{1-¥/B), 2
T = (1-e )]+ 40 (=) {55 1-e ]
n a2 Al a?

The substitution of {VI.11b), (VI.18), (VI.21}, (VI.22), and
(VI.23) into (VI. 19) provides the basis for determining the single
parameter n, Except for the term under the radical in WC the inte~
grations may be performed explicitly. However, as things stand
the simplest way of determining n for a given case is to evaluate
the functional of Reissner's Theorem, {(VI.19), numerically for
various values of n and thus determine the value of n which makes

the functional stationary.

4. Numerical Examples

The fullowing cases are considered,



-121-

pg = 0.06 1b./in>

N = 100

poo= 100 psi (VI.z4)
A = 10 in,

B _ 5. B _

= = 3x=10

Case a) B/A = 3

In this case
B_JL_Ni = 1.8 (V1.25)
and
a = n (VI. 26)

10[n-(1-e ™)

Consequently, from (VI. 22), (VI.23), and {VI.21},

Yop _ -0.018n% ,x4) ,-{1-Y/B) ,

B ) [nm(l—e-n)}?’ ‘A4

(VI. 27}

2 2
0.36n X
* z G2 -

e—n(l—Y/B)]
mn 4
[n-{1-e" )] A

2 2
I — o > {[0.05ne‘n(1_Y/B)(-X—2} +
[n-(1-e™)] A

£ 22 e [E - 1]+ [1-eY/BY 2 (vr2g)

2
+ 0.36 (X_Z} [ 1-e‘““'Y/B)]2} ,
A
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and

(1 - -—2-) (VI.29)

pE v 0.18n Xz
P fn - (1 - e_n)] A

The integral to be evaluated for various values of n is

Tin) = \ S { B (em3(1-vIT1))- PF“"l () ()

(VI1.30)
When (VI.27), (VI.28), and (VI.29) are substituted into
(VI.30), and a numerical integration is performed for various n
by means of Simpson's rule for double integration, [28] it is found

that {VI. 30) is maximized by
n=10.8 (VI.31)

Although the numerical integrations have been performed with a
rather coarse 6 by 6 net the result, (VI.31), is probably fairly
accurate since it depends on the comparison of (VI. 30) evaluated
for different values of n rather than on the absolute value of (VI. 30)
calculated for each n. It does not seem reasonable that the rela-
tive magnitude of J(n) will be affected by the numerical scheme
which has been employed if n varies over a relatively small domain.

For n = 10.8 it is found that
a=0.110 {VI.32)

so that the deformation and stress fields are given by
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x X
ATA
5 (VI. 33)

vy _ Y X

A
11 x%. -10.8(1-Y/B)
—— = 1,19 (=5)e
B A
22 ,
”'T = 0,186 (1 - ) - 0,183 [1-¢10-80-Y/Bh yq 34
12 ]
I"ﬂ" - 0. 662 (%)[1_3-10.8(1&/5)]

The stresses acting at the wall-block bond surface are shown

in Figure VI. 2.

and

Case b} B/A = 10

In this case

%g- - 6.0 (VI. 35)
a=0.03 —-——i—n— (VI.36)
[n-{l-e )]
Consequently
ap
T "Yap _ -0.0054 n* ,X4)e-n(l-Y/B)+
= — \
R [n-{1-e n)]3 A : )
VI.37
0.36n% X% -n(1-Y/B)
¥ oz ) [H-e 1
[n-{1-e T)]" A
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2

n

I= 5 JL[0.015ne

-n(l—Y/B)(XZ
I
[n-(1-e7)]

—) +
N

+ 3 ([1-eP [¥/B-1] + [1-e PI-Y/Bl g2, (g1 g

2 y
+0.36 &5) (1-eni-¥/BR2 L
A g

- : (1 - Z:_2.) (VI. 39}

Again, (VI.30) is to be made stationary with respect to n; in
this case (VI.37), (V1.38), and (VI.39) are to be substituted into
(VI.30).

A comparison of (VI.27), (VI1.28), and (VI.29) with (VI.37),
(V1.38), and (VI. 39} suggests that n may be approximately propor-
tional to B/A. This observation is confirmed when (V1.30) is

computed for various values of n and it is found that
n = 32 (VI.40)

i . ¥
maximizes the functional.
The physical interpretation of the above suggested relation
between n and B/A is that the free surface, i.e. finite length, effect

is essenlially independent of B/A provided that B/A is large enough

The computational net used in this case consisted of four equal
divisions in the X/A direction while in the Y/B direction the mesh
points were 0, 0.45, 0.90, 0.925, 0.950, 0.975, and 1.
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for the effect of the free surface to become negligibly small as the
center of the block, Y/B = 0, is approached.

Forn = 32 it is found that

@ = 0.031 (V1. 41)

so that the deformation and stress fields are given by

x _X
AT A
(VI1.42)
2
Y-2Lyo0.03101-%
B~ B A2
and
11 2
T =0.992 %) e"32(1-Y/B)
b A
22
I‘;f“ =0.200 (1-Y/B) - 0.194 [1-e‘32(1'Y/B)] (VI.43)
12
T 20,620 X [1-¢732(1-X/B)
p A :

The stresses acting at the wall-block bond surface are shown
in Figure VI.2.

The present analysis indicates that a block of finite length
sustaing greater displacements and maximum shear stresses than
does a similarly accelerated body of infinite length; the shorter the
block, the greater are these differences.,

Note the complete change in the character of the normal

stresses when the block of finite length is compared to the infinitely



-126-
long body. Of particular interest is the rapid increase in 'Tll/p as a
corner is approached. This suggesls a possible singularity in 'Tll/p
at the corners. Unfortunately, simple energy approximations ''wash
out'' stress singularities which are not allowed for explicitly.

The approximate sclution of the slump problem for a block of
firite length which has been presented indicates the usefulness of
Reissner's Theorem for problems in which more information about
the stress field is required than can be provided by the principle of

stationary potential energy,
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(U+V)
2rpa’ A

-1 L {P/p)ma; 0,83

FIGURE III. 7. Total Potential of Neo-Hookean Sphere

for P/-i.p = 0,55 and (P/}.L)max = 0.83; b/a. = 2.



10

~-132-

0 0.5 1.0

FIGURE 1IV.4, Arbitrary Constant |C; as Function of Stretch
Ratio M for Compression Case of the Related Elasticity Prob-
lem.
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FIGURE IV.5. Stresses on X = 0 from Variational and
Related Elasticity Solutions for the Case A = 0.9; A/B =20,
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FIGURE IV ,6, Stresses on X = A/Z from Variational and
Related Elasticity Solutions for the Case \ = 0.9; A/B=20.
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FIGURE IV.7. Stresseson Y = 0 from Variational and
Related Elasticity Solutions for the Case A = 0.9; A/B= 20,



~136-

T/ i
20 3
variational
il
10k elasticity /

-70F

FIGURE IV.8. Stresses on ¥ = 1 from Variationalarnd Related
Elasticity Solutions for the Case = 0.9; A/B = 20.
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Note: Since the Deformation Field is
Virtually Identical for Both the
Variational and Elasticity Solu-
ticns, Only One Set of Curves
is Drawn. (Cf. Table IV.3.)

< ¥

FIGURE IV.9. Deformation Field for A/B =20, A=0.9.
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