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ABSTRACT

NUmerical iterative methods of solution of the one-dimensional
basic two-carrier transport equations describing the behavior of semi-
conductor junctions under bothsteady~state and transient conditions
are presented. The methods are of a very general character: none of
the conventional assumptions and restrictions are introduced, and free-
dom is available in the choice of the doping profile, generation-recom-
bination law, mobility dependencies, injection level, and boundary
conditions applied solely at the external contacts, For a specified
arbitrary input signal of either current or voltage (as a function of
time) the solution yields terminal properties and all the quantities of
interest in the interior of the device, such as carrier densities,
electric field, electrostatic potential, particle and diéplacement
currents, as functions of position (and time),

The work 1s divided into two parts, In Part I a numerical method
of solution of the steady-state problem, already available in the
literature, is improved and extended, and is applied to a two-contact
and a three-contact device. The analytical formulation of the original
method is shown to be unsuitable for generating a sound numerical
algorithm sufficlently accurate and valid for high reverse bias condi-
tions, Difficulties and limitations are exposed and overcome by an
improved formulation extended to any bilas condition, As a simple appli-
cation of the improved formulation, "exact" and first-order theory results
for an ldealized N-P structure are presented and compared., The poorness
of some of the basic assumptions of the conventional first-order theory

is exposed, in spite of a satisfactory agreement between the exact and
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first-order results of the terminal properties for particular bias
conditions., Results for an N-P-N transistor are also reported and
the inadequacy of the one-dimensional model discussed.

The time-dependent analysis of ‘the problem is presented in Part II.
The fundamental equations are rearranged to an equivalent set of three
non-linear partial differential equations more suitable for numerical
methods., A highly non-uniform two-dimensionad mesh, subJect to
maintenance of constant truncation errors in both spatial and time
domains of certain pointwise operations, is chosen for the discretization
of the problem, in view of the variation of most quantities over extreme
ranges within short regions. Consequently an implicit discretization
scheme is selected for the second-order partial differential equations
of the parabolic type in order to avoid restrictions on the mesh size,
without endangering numerical stability., An iterative procedure is
necessary at each instant of time to cope with the several non-linearities
of the problem and to achieve consistency between the internal distridbu-
tions and the generating equations. This procedure is easily general-
ized to incorporate equations pertinent to networks of passive elements
and ideal generators connected to the semiconductor device, Results for
a particular single-junction structure under typical time-dependent
excitafions of external current and terminal voltage, and for an N-P
diode interacting with an external resistor under switching conditions,
are reported and discussed in detail,

Considerable attention is focused on the numerical analysis of
the steady;state and transienf problems in order to achieve a numerical

algorithm sufficiently sound and efficient to cope with the several
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difficulties of the problem, such as the small differences between
nearly equal numbers, the variation of most quantities over extremely
wide ranges in short regions, and the stability conditions related to

the discretization of partial differential equations of the parabolic

type.
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INTRODUCTION

Basic concepts in the theory of the D-N junction were first pre-
sented in Shockley's fundamental paper [1] with an approximate solu-
tion for the low-level injection case, and many authors presented in
the following years extensions, corrections and refinements in the
search for a generalized solution to the prcblem, A comprehensive
bibliography is given by Moll [2], Pritchard [3],“and Matz [L4], and
wore recent considerations have been presented by Middlebrook [5],

Van Vliet [6], and Sah [7]. Only partial success has so far been
achieved; this is due mainly to serious difficulties in the analytical
solution of the pertinent set of equations that describe mathematically
even the simplest physical model.

In order to achieve analytical resulls in closed form, a number oI
assumptions in the model and of approximations in the set of equations
has been consistently introduced; several "first-order" results, valid
in certain ranges of the relevant quantities and for a limited number
of specialized s%ructures, héve been obtained. Some of these assump~‘
tions for the one-dimensional model (to which attention will be
limited in this paper) are the following:

(a) separation of the structure into regions with sharp boundaries,
either fully depleted of mobile carriers, or space-cha}ge neutral;

(b) postulation of explicit boundary conditions on the relevant quan-
tities in the interior of the device, at the interfaces between
the depleted and neutral regions of assumption (a); limited

choice of boundary conditions at the external contacts;

(e¢) limitation of the doping profile to very special cases (mostly



2
step and linear distributions) and to particular quantitative
values (either symmetric or highly asymmetric impurity distribu-
tions);
(d) simplification of the dependence of the carrier mobilities upon
electric fleld, doping and scattering phenomena;
(e) limitation of carrier recombination laws to thé low-level linear
case,
The most unsatisfactory of the above assumptions is certainly the
first, which is definitely in error at high injection levels, highly
questionable near equilibrium, and probably only slightly inaccurate
in high reverse blas cases,

Numerical methods, with the aid of high-speed digital computers,
represent an alternative approach to the problem, the final aim being
the achievement of an "exact" solution of the most general character |
with none of the conventional assumptions. This also allows comparison
with the classical first-order theory results so that the goodness (or
poorness) of the numerous conventional assumptions may be judged.

Serious difficulties are also present in a numerical investiga-
ticn,‘and have prevented most of the currently availlable numerical
solutioﬁs fromw having the general character desired, These difficul-
ties arise already in the much simpler metalwsemiconductorvjunction
. case treated by Macdonald [8], and are responsible far the acceptance
. of some of the conventional éssumptions in the P-N junction case,
Lawrence and Warner [9] and Breitschwerdt [10] present a numerical
integration of Poisson's equation in the fully-depleted region for

various doping profiles; Sparkes [11l] gives the complete, partially
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numerical, solution for the abrupt P-N junction in equilibrium in
steady-state; van der Maesen [1z], Lieb et al. [13], Kano and Reich
[14], and Chang [15] restrict the analysis to the injection region
only in the charge-neutrality approximation with the low-level recom-
bination law for thé cage of an asymmetric abrupt junction, TI'ulkerson
and Nusébaum [16] and Sanchez [17] present a complete steady-state
solution, again for the asymmetric abrupt case (with ohmic contacts,
constant mobilities, uniform doping); their method implies, though,
the reduction of the two~boundary problem to an initial-value problen
very much sensitive, for the case under consideration, to the several
required guesses of slopes at the boundaries. This guesswork is
likely to become critical in most instances, In addition the method
described in Ref., 16 is based upon the separation of the interior of .
‘the device into several regions and the iterative solution of various
sets of approximate equations, specialized for each region, matched
by boundary conditions at the interfaces.*

The onl§ comérehensive and general numerical procedure for the
steady-state problem is presented by Gummel [18], and is applied fo
the solution of the transistor. The method allows for arbitrary
impurity distribution, recombination law, mobility dependencies,
injection level, and boundary conditions. Hypothetical regions in
the interior of the device are not assumed, and the problem is tackled

- exclusively with the postulation of boundary conditions at the external

* As a direct consequence of the method, questionable results are
obtained near the internal interfaces.
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contacts for a set of basic equations valid throughout the whole
interior, Although Gummel's ilterative schemé is of a very general
character, its analytical formulation is unsuitable for generating a
sound numerical algorithm sufficiently accurate and valid for high
reverse-bias conditions.

It is the purpose of the present work to present an improved and
extended analytical formuiétion of Gummel's original steady~state
scheme, to present a numerical method of solution of the P-N junction
under arbitrary transient conditions, to expose the difficulties of
both fundamental and practical nature arising in the numerical analy-
sis of the problems, and to illustrate results for particular
structures under both steady-state and transient conditions,

The presentation is divided into two parts: the first is re-
stricted to the steady~-state analysis and illustrates solutions
obtained with the improved formulation based on Gummel's original
iterative scheme; the second 1s mostly concerned with the analysis of
the problem in transient conditions.

In Part I, Chapter I describes the physical model adopted for a
two«cpntact device, the fundamental equations and boundary conditions
that determine mathematically the steady-state problem, an alternative
derivation of Gummel's relations featuring a more convenient choice of
unknowns, and the overall iterative scheme for the "direct prdﬁlem"
(the terminal voltage is specified). Chapter II exposes the difficule
ties of the original formulation arising in the numerical analysis of
the problem, describes an improved and extended formulation, treats

the discretization problem in detail, and illustrates appropriate
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numerical techniques. Chapter III presents two applications of the
basic program for the direct problem: the computation of the total
incremental capacitance of the device as obtained by two successive
steady-state solutions, and a method of solution of the "reverse"
;problem’ (the total current is specified), Chapter IV extends the
steady-state solution to the transistor, on the basis of Gummel's
general lines, discusses the inadequacy of the oﬁé-dimensional model,
and analyzes the effects of an alternative boundary condition for the
base contact., Chapter V discusses the various sources of errors and
the accuracy of the final results, tested with several sets of rela-
tions, derived from the fundamental equations and suitable to expose
discretization and numerical errors., Chapter VI presents steady-state
results for a few special structures: terminal properties and quantif
ties in the interior of the device are illustrated for an abrupt N-P
diode and N-P-N transistor; "exact” and approximate-conventional
"first-order” results are compared and digerepancics arc cxposed.

In Part II, Chapter VII presenfs an analytical formulation
suitable for the achievemen£ of numerical transient solutions for
excitations of external current for a two-contact device; boundary
and initial conditlons are chosen., The problem of the selection of
sound discretization schemes, featuring numerical stability, is
analyzed in Chapter VIII; discretized formulations are given inAdetail
for two implicit schemes; the overall iterative procedure of solution
is illustrated and a simple method for an automatic time step selec-
tion is described. In Chapter IX a method of solution for the

voltage-driven transient is presented, and an altermative procedure
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to achieve steady-state solutions 1s described; the time~dependent
algorithm for the analysis of an lsolaled device driven by ideal
generators is extended to incorporate a general network of circuit
elements. Chapter X completes the discussion, initiated in Chapter V,
of the overall accuracy of the results; the various contributions to
the discretization and numerical errors in the time domain are identi-
fied, and techniques to estimate and control the aﬁéuracy of the
results are deseribed. As an example of numerical calculations, time-
dependent solutions are illustrated in Chapter XI for a particular
structure of an N-P diode under various excitations of current and
voltage, and for the combination of an N-P dlode and an external resis-
tor under switching from a forward to a reverse bias condition., The
potential of the basic tool developed throﬁghoﬁt the present ilnvestiga-
tion is underlined in Chapter XII; some of the several immediate
applications for the analysis of devices under more general conditions
and the possipilities of extenslions to more complex situations are
briefly discussed,

In the Appendices (A to ¢) are gathered the conventional first=
order theory steady-state results, éiscretized formulations suitable
for numerical integration and differentiation, basic concepts and con-
clusions available from the theory of numerical analysis on the dis-
eretization of partial differential equations of the parabolic tﬁe,
and the FORTRAN programs for both the steady-state and transient

algorithms,



PART I

STEADY-STATE ANALYSIS
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CHAPTER I

QUTLINE OF THE METHCD FOR THE SOLUTION OF THE DIRECT PROBLEM

QA - J) FOR.A TWO CONTACT DEVICE

In this Chapter the physical model and corresponding fundamental
two—carrier transport equations deseribhing the hehavior of semiconduce
tor junction devices are presented, then specialized and normalized
for the one-dimensional steady-state case. Bounddfy conditions of a
very general character for a two-contact device, are given to complete
the mathematical description of the problem, The basic equations are
then rearranged to an equivalent reduced set, more appropriate to an
iterative type of procedure, Only the "direct” problem (the applied
voltage is specified, the total current unknown) is considered; the
analysis of the "reverse" problem (the total current is specified, the
terminal voltage unknown) is postponed to a later chapter, Schematic
block diagrams illustrate the procedure in the general and particular

cases.

1.1, Physical and mathematical model,

1,1.1, Fundamental equations.

The following assumptions are introduced:

(a) non-dcgenerate conditione (for validity of the Boltzmann
statistics)

(b) constant temperature

(¢) timeeindependent impurity distribution

(d) full ionization of the impurities

Phenomena occurring in the interior of the device may be inter-

preted with the aid of the Boltzmann transport equation supplemented



9

by quantum mechanics. The conventional stage of approximation (see,
. for example, Moll [19] pp. 62«G7) of the Boltzmann equabion treats
electron and hole currents ag a sum of a diffusion component propor-
tional to the carrier density gradient and a drift component repre-
senting Ohm's law, Such a simplified form of the current flow equa-
tions, together with Polsson's equation and the continuity equations
for the mobile carriers are here taken as the mathematical descripbtion
of the behavior of the device. Generation-recombination processes are
assumed to be satisfactorily described by an additive expression
solely in the continuity equations for electron and hole densities.
For the present purposes this expression is permitted to assume the
most general form in terms of the quantities of interest, and will be
left unspecified.

Although more general and complete formulations of the problem
mey be devised, solutions of the simplified set of equations, present-
ed below, will be here referred to as "exact" solublons.

Maxwell's equations

3,®) = 3(nt) + I(t) - ¢ 3 wiz) (1.1)
v.i(kst) = 0 (1.1a)

show the solenoidal character of the total current density* J

* Current densities have the dimension of current/area, For simplic-
ity, in the following context the term "current" will be consistent-
ly used to denote "current density". '
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expressed as sum of the electron and hole particle currents jn’ Jp
and the displacement current in terms of the electrostatic potential
¢ and the dielectric constant e. The current flow eguations for

electrons and holes:

=
ot
p—

il

- eu (z) n(x,t) vy(z,t) + <D (r) Vn(&#) ' (1.2)

3,(5, ) = = eny(z) p(z,t) vilg,t) - oD (x) vp(g, t) (1.3)

express the eleclron and hole currents as sums of thelr drift and
diffusion components, in terms of the electron charge -e, electron
and hole concentrations n, p, mobilities Hy p#, and diffusion
constants DnJ DP.

Poisson's equation
vz, t) = = [n(g,t) - p(g,t) - N(z)] (1.4)

with N(r) = ND(E)'- NA(E) relates the electrostatic potential to the
net spatial electric charge in terms of the mobile carrier densities
and the fixed net impurity atom concentration N, which is the differ-
ence between the donor and acceptor contributions Nb, NA‘

The continuity equations for electrons and holes

n(r,t) 1
—— =, t) g vedp(z,t) (2.5)
op(r,t) 1

= = - U(g,t) - 3 v~jp(g,t) | (1.6)
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state the equality between the time variation of the carrier concen-
trations in a certaln region and the flow out of such a region sub-
tracted from the internal net generation-recombination term described
by U.

It is of interest to observe that only six of the above equations
are independent, Equations (1,la), (1.4), (1.5) and (1.6) are related:
any one of these may be obtained from the remainiﬁg three (and the
knowledge of WN(r) if Poisson's equation is omitted).

If E(r,t) is the electric field, k the Boltzmann constant, T
the absolute temperature, V. £ xT/e the thermal voltage, then the

following subsidiary relations are valid:

E(r,t) = - w(z,t)
D (z) =u (x) Vy
Dp(lg) = up(z) Ve

The one-dimensional structure of Fig. l.l‘ is considered, in which
% recpresento the poosition coordinate, O and L +the external con-
tacts, and M the metallurgical interface between the N-material and
P-material, The fundamental equations, specialized for the one-dimen-

sional steady-state case, assume the simpler forms:

[N
i

3p(x) + 3, (x) (1.7)

=0 (L.78)

glé:



L/ i /
g | 9
b | 4
g | ’
0 oneo | N 4
// x) N (x) //
O 8 &> o
0 vl L X

X = position coordinate

Fig. 1.1. One~dimensional N-P diode structure.
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5(x) = - en_(x) nx) LK L op () dlx) (1.8)
3(x) = = en () p() TLEL L ep (x) S2ix) (2.9)
2
2 ux) _ & fax) - plx) - N(x)] (1.10)
dx” €
a3, (x)

— = eU(x) ' (1.11)
aj_(x) :

gx = - ey(x) (1.12)

with the subsidiary relations:
d

Efx) - - _g-x(ﬁl ;M) = Ny(x) - N, (x)
Dn<x) = U-n(x) Vt ’ DP(X) = “p<x> Vt
9, () & 4(x) - v, 1n “fj;) (1.13)
o (x) £ y(x) + v, 1a BE) (1.14)
P nI

o(x) = eugalx) + o p(x) o a

where n. 1is the intrinsic carrier concentration and o(x) 1is the con-

I
ductivity of the material,
Equations (1,13) and (1.14) may be taken as definitions of the

electron and hole quasi Fermi levels Py ?p introduced originally by

Shockley [1].
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1.1.2., Normalization of the fundamental equations,

It is very convenlent at this stage to express bhe relevant
quantities in dimensionless form; the set of normalization constants
is chosen with the criterion of achieving the highest simplification in
the relations of interest. The list of normalization factors is given
in Table 1.1.

The signs of jn and jp were originally'énosen positive in the
positive x direction (Ecs.(1.8) and (1.9)); in order to obtain posi~
tive currents in the forward bias case for the structure under cénsid~
eration, a negative normalization factor is chosen for the current.
Normalized electron, hole and total current densities will then be
indigated by Jn(x), Jp(x), J. Hole and electron diffusion constants
are normalized in a symmetric fashion with ﬁhe introduction of an
arbitrary diffusion constant Do; for convenience in the normalized

context, the following dimensionless quantities will be used
Yo(x) =D /D (x) 5y (x) = D /b (x)

With the exception of the above, symbols adopted for the
unnormalized quantities will also be used for the normalized ones. For
the remainder of this work, all symbols will consistently refer to
normalized quantities, unless otherwise indicated, .

The fundamental equations may be written in normalized terms as:’

AR CORI R CO N (1.16)



DESCRIPTION NORMALIZED NORMALIZATION FACTOR
QUANTITY
symbol numerical value
position coordinate x L 4 eV;/enI 9.56685 x 107 em
time coordinate t LE/Do 9.15246 x 1077 sec
electrostatic potential ¥ Vt 0.025875 volt
. . i1
quasi-Fermi levels P @p V£
applied (or terminal) voltage v, v, "
diffusion (or barrier) potential - Vq vy "
electric field E V,C/IfD 270.465 volt/cm
carrier densities n, p n 2.5 x 1003 en™3
net impurity,- donor, and acceptor
densities N, Nf’ NA n n
total, electron, and hole current 5
densities Iy Iy I, - eDonI/;D - 0.0418649 ampere/cm
generation-recombination rate U DOnI/LD2 2.73151 x 107 en™3 sec™t
-1 -1
carrier diffusion constants Y, 2 yp Do 1 cm?/sec
. eq s - - 2 '
carrier mobilities Y o Yp Doth 38.6473 cm”/volt-sec
conductivity o enIDO/Vt 1.54789 x 1o‘L‘(f_ cm)-l
. - 2
capacitance/unit area C c/LD 1.48084 x 10 8 farad/em”

Table 1.1. List of normalization factors for the quantities of interest.

GT
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: dy(x n(x
3090 = ey (a0 242 - 450 ]

dy(x dpi{x

I, (%) A [P(X) :g}({ . gfc )]
2,
S8 _ n(x) - p(x) - Wx)

ax
dJn(x) |

= = - U(x)
ag_(x)

= = U(x)

with the subsidiary relations

E(x) = - dd§X

N(x) = Nb(x) - NA{X)

1
Yn(x) = E;T;Y s Yp(x) N E))

y(x) - 1n n(x)

¢ (x)

¥(x) + 1n p(x)

1

¢b(x)

n(x)

O(X) = -+
AN EIMENEY

(1.16a)
(1.17)
(1.18)
(1.19).
(1.20)

(1.21)

(1.22)

(1..23)

(1.24)

(1.25)

(1.26)
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Equations (1.16) and (1.17) to (1.21) represent a set of six independ-
ent equations in the six unknowns n(x), p(x), y(x), Jn(x), Jp(x),
J. Equation (1.16a) follows directly from Egs.(1.16), (1.20), (1.21)

and will be considered as the dependent equation of the set.

1.1.3., Boundary conditions.

It is apparent from the nature of the fundamental set of ordinary
differential equations that six conditions at the boundaries are

necessary. These are chosen as the carrier concentrations

n(0), »(0), n(L), »p(L)

and the electrostatic potential

¥0), (L)

at the external contacts O and L. Either of the boundary conditions
on the electrostatic po‘bentié,l may be taken as a reference value, the
other being directly related to the externally applied voltage VA

and the diffusion potential Vd:

11;(0) - $(I’) = Vd - VA (1027)

The boundary conditions on the carrier densities are in general given
by relationships involving the currents at the external contacts;
Since explicit forms of such relationships are not essential for the

present purposes, only their functional dependence will be indicated:
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n(0) = £,,[7,(0), 3,(0)]
p(0) = £,,5,(0), 7,(0)]
> (;,28)
n(L) = £,;[3, (1), J,(L)]
p(L) = £, [, (), 3,(D)]

The above relations assume the simplest form for contacts of the
ohmic type, defined by:

n(0) = n ; n(L)

N

]
ja]

U

(1.29)

]
i

p(0) = py 5 (L) = py
where ny and Py (nP and pP) are the electron and hole equili-
brium densities at the external contact of the N-material (P-material)

respectively. An equivalent definition requires charge neutrality at

the contacts

n(0) - p(0) -~ N(C) =0 _
(1.30)
n(L) - p(L) - N(L) = 0
and coincidence of the quasi-Fermi’ levels at the contacts
2,(0) = ©,(0)
(1.31)
9 (L) = @, (L)
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With the aid of Egs. (1.30), (1.31), (1.2L4) and (1.25) the carrier
densily boundary values are readlly oblalned, for thils speclal case,

in terms of the doping concentrations:

n(0) = ny = [N(O-]“ + 1+ n(o) 3 [N(0) = O]

2 7
p(0) = py = 1/ny
(1.32)
n(L) = n, = 1/p,
2
o) = pp - (] w1 BB S ) <o

L.2, Derivation ot the reduced set of equations,

It is convenient to rearrange Egs.(1.17) to (1.21) in a form more
appropriate for numerical methods.

Tquations (1,17) and (1.18), rewritten as

dgix + B(x) n(x) = - ¥p(%) Iy (x)
égéfl - B(x) p(x) = YP(X) Jp(x) s

may be treated as two independent first-order linear differential
equations in the unknowns n(x) and p(x), respectively, if the other
quantities are considered as non-constant coefficients, Analytic
solutions are straightforward:

-fE(x)dx fE(x)dx

n(x)a= e - yn(x) Jn(x) e dx + C

n



_ dx + C
p(x) X + o

Fonlr P fawe
e J/' x) e

P

Cn and Cp being integration constants. A more definite form is

obtained if x and L are taken as limits of integrations, and if

C_ and Cp are expressed in terms of the boundary conditions at the

'y

point i:
L
n(x) = o¥0¥) fvn(x') 7 (x) e HED) gy on(zy em¥(H) (1.33)

L
p(x) = e~¥(¥) E]YP(X‘) I, (x") V(") axr 4 p(n) eq’(L)] (1.34)

X

The current densities J , Jp may be expressed in terms of U(x)

and {(x). Integration of Egs.(1.20) and (1.21) yields:

X

J(x) = —]U(x') dx' + K (1.35)
C

3,(x) =JU(:{’) axt v K (1.36)

The constants of integration Kn’ Kb are readily obtained by inserting
Egs.(1.35), (1.36) respectively into Eqs.(1.33), (1.3k) evaluated at

X = Qs

L x A i
a(0) =,e¢(o) fvn(x)e"l’(x) 'IU(X')de ¥ Kn)dx + n(n)e V| (1.37)

0 0

L X
p(0) = e ~fvp(X)e“’(")(/U(x')dx' + Kp)dx + p(mye¥® | (1.38)
| 0 0
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The expressions for K = and Kp found from Egs.(1.37), (1.38) can be
inserted into Egs.(1.35), (1.354) to give the final results for the

current densities in terms of the potential distributions:

L X
X n(O)e_w(O)-n(L)e'w(L)+‘j(yn(x)e-¢(x)[JrU(x')dx}dx
-*[’U(x')dx' + O 0

) 2 L ()
0 f(yn(x)e dx (1.39)
| ‘ L X
X p(L)ev(L)—p(O)e\'(o)-_{y (x)eq’(x)[/U(x')dx]dx
P 0
J (x) = JrU(X')ﬂX' +
P y y(x)
0 %(Vf(x)e dx (1.40)

Gummel's relations are essentially contained in the above and have been
here derived diz'ectiy from the basic equations, rather than through the
introduction of a set of identities [18].

The five basic equations (1.17) to (1.21) have been rearranged to
a reduced set of three equations [Eq.(1.19) and Egs,(1.33), (1.34) com-
bined with relations (1.39), (1.40)] with the boundary conditions (1.27),
(1.28)., In this new formulation of the problem the electrostatic
potential ¢, the electron density n and the hole density p are
chosen as the independent quantities and represent the unknowns of the
reduced set of equations.

If generation-recombination processes are neglected [U(x) = 0],

Egs.(1.39) and (1.40) assume the simpler forms:

3 - n(O% e-w(o) - n{L) e-ﬁ(L) (1.41) |
/[Yn(x) e-w(x) dx
0

n



o _pm et® - 50 O (1.52)
P ]j[y (=) e\y(x) dx
P

which clearly shows the solenoidal character of each current through-

out the interior of the device in this special case.

1.3. Iterative procedure of solution,

An iterative procedure may now be employed to ‘cope with the
several nonlinearities of the problem., For this purpose it is conveni-
ent to rearrange Poisson's Eq.(1.,19) in a more appropriate form, in
terms of a quantity with zero boundary values. The correction
6(j+l)(x) between the electrostatic potential distributions obtained

by consecutive iterations (Jj+1) and (J) is introduced, and defined

as:
oIV 24V 6) - Dy 5 g2a, 2,5,

where $90(x) amd ¢(9*)(x) are the potential distributions ab the
completion of the (j)th and (j+l)th iterations respectively. It is

readily verified that:
Doy = sy =0 5 5-1,32 3 - (1.13)

as desired, Poisson's Eq.(1.19) may be writlen, in lerms of the guasi-

Fermi levels (1.24k), (1.25), for the (j+l)th iteration as:

a8 (j+l)(x) ) ¢(j+l>(x) - Qéj)(x) @éj)(x) - ¢(j+l)(x)
x’ '* w ) (1.Lh)
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TR (O DR S
ax” B

(1.45)
. 2 3

if terms of order [§(3+l)(xi} and higher are neg:l.ecteci.)e

Equation (1.45) represents a second-order linear differential
equation in the unknown. 6(j+;)(x), with boundary conditions (1.43),
if the remaining quantities are availaeble after the completion of the
(j)JGh iteration,

The complete iteration scheme for the general case is shown in
Fig. 1.72. The applied voltage VA is specified, a trial potential
distribution is éhosen, and absence of recombination is assumed in
order to start the first cycle of the main iteration loop (labeled "Jj").
The electric field E(x) and the mobilities y;l(x), v;l(x), in
general dependent upon the electric field, are computed as functions of
position., If relations (1.28), that specify the boundary valués of the
mobile carrier densities, combined with Egs.(1.39), (1.40) may not be
reduced to an explicit form for the currents at the boundaries in terms
of Y(x) and U(x), a preliminary iteration loop (labeled "h") is
required, An initial guess on the current boundary values (for example
zero) is inserted in Eq.(1.28) to compute preliminary carrier density
boundary values, which in turn arc inscrtecd in Egs.(1.39), (1.40)
specialized at x = 0 and x = L respectively, to compute new current
boundary values, and the "h" loop is repeated until the desired

accuracy is reached. BEqs.(1.39), (1.40) yield then the electron and

# This is not related to the‘accuracy of the final results if conver-

gence of the iterative scheme occurs, i.e, 6(j%x)~ 0 for large enough j.
O=x=T,
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Fig., 1.2, Block diagram of the iterative procedure for the general case.
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hole current distributions J (x) and Jp(x), which, inserted in
Eas.(1.33), (l.3h), allow the computation of the carrier densities
n(x) and p(x) as functions of position. The solution of Poisson's
Eq.{1.45) yields then an improved potential distribution, and the
generation-recombination term may be computed with the aid of the
quantities already available, The "j" cycle, with inclusion of the
"h" loop, may now be repeated to the desired acéufacy.

The generality of the method is apparent, Complete freedom is
available in the cholice of the impurity distribution, the carrier
boundary conditions at the external contacts, the dependeunce of the
mobilities on the electric field and doping, the generation-recombina-
tion law, and the injection level. If the applied voltage VA is
specified, the method solves for the total current J and all the
quantities of interest in the interior of the device as functions of
position., This is referred to as the "direct problem"”, as opposed to
the "reverse problenm”" of specifying the total current J and solving

for the terminal voltage VA'

1.3.1, Two special cases.

If the combination of Egs.(1.39), (1.40) and the relations (1.28),
that specify the boundary conditions on the carrier densities, allows
explicit solutions for both the carrier densities and the currents at
the contacts, the secondary "h" loop and the initial guess on the
current boundary values is unnecessary. This is certainly the case for
contacts of the ohmic type, defined in Subsecfion 1.1.3. The iteration
scheme is then simplified, with the ald of relations (1.29), as shown

¢

in Pig. 1.3,
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A further simplification is achieved if recombination in the
interior of the device is neglected [U(x) = O] and mobilities are
considered constant. The electrostatic potential may be considered in
this case as the only independent unknown of the problem, since every
quantity may be expressed solely in terms of w(x) and assighed con-
stants. Egquations (1.41) and (1.42) apply in this case, and the itera-

tion scheme is shown in Fig. 1.L,

1.4, Conclusion.

The basic two-carrier transport equations describing the behavior
of semiconductor junction devices have beén stated, specialized for the
one-dimensional steady-state case, and normalized in dimensionless
form. The fundamental set of equations has been applied to a two-con-
tact device and boundary conditions of a general nature have been
specified to complete the mathematical formulation of the problem. An
equivalent reduced set of relations has been derived directly from the
fundamental set, and an iterative scheme suitable to generate solutions
under general conditions haslbeen illustrated,

However, basic limitations of most currently available digital
computers prevent achievement of solutions of such general character
and gufficient accuracy if the described formulation (originelly pre-
sented by Gummel [18] in a slightly different form) is taken to generate
the numerical algorithm, These difficulties are exposed and overcome

in the following Chapter.
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CHAPTER II

IMPROVED ANALYTICAL FORMUIATION AND NUMERICAL TECHNIQUES

In this Chapter the method of solution, outlined in Chapter I,
is analyzed from a numerical point of view, to expose serious difficule
ties of‘fundamental and practical nature that arise if the described
analytical formulation is taken to generate the numerical algorithm.
Small differences between nearly equal numbers and quantities exceeding
in magnitude the range permitted by most digital machines are recognized
to oceur in certain conditions. An improved and extended analytical
formulation.that overcomes these hindrances is presented,

The discretization problem is discussed in detail, and criteria
for the selection of a non-uniform step distribution automaticaily
adjusted by lhe coumpulber durilng Lhe enlire solullon are glven,

Numerical techniques for the evaluation of numerical integrations
and differentiations, and for the solution of Poisson's equation are
illustrated. The non-uniform character of the step distribution suggests
& finite difference scheme for the numerical solution of Poisson's
equation to reduce the problem to the solution of a system of simultane=-
ous linear algebraic equations, A direct method, rather than an itera-
tive one, 1s preferred to solve such a system, in consideration of the
triple~diagonal character of the corresponding matrix, A very interest-
ing feature is the conservation of the same triple-diagonal matrix for
any order of finite difference scheme employed,

A detalled 1llustration of the alternatives chosen in the compﬁter

program, reported in an appendix, concludes this Chapter.
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2,1, Generalities,.

Seriousg hindrances arisze in the numerical snalysis of the problem
if the analytical formulation, described in the previous Chapter, is
used to generate the numerical algorithm., These difficulties are re-
lated to basic limitations of the digital machines available, such as
the finite number of significant digits and the limited range of the
magnitude of the quantities that may be accommodatéd, and the finite memory
size, Each of these three constraints is responsible, in the problem
under consideration, for a major difficulty that deserves particular
attention, and therefore 1s analyzed separately in this Chapter, OSmall
differences between nearly equal numbers generate, in certain conditions,
highly inaccurate results, and the tendency of several terms of the
relevant expressions fo exceed in magnitude the permissible range
restricts the solutions to forward and to low reverse~bias cases. To
overcome these major restrictions an improved analytical formulation is
necessary, In addition, variations of most quantiticse over widc rengces
in short regions require an appropriate discretization technique to
contain truncation errors within acceptable limits.

A simplified model, characterized by ohmic contacts, absence of
recombination in the bulk [U(x) = 0], and constant mobilities, is
considered throughout this Chapter, These restrictions contribute to
expose (rather than alleviate) the basic difficulties in g clearér con=
text stripped of several cumbersome details., These can then be readily
Iilled in, once the basic hindrances have been overcome, to generalize
fully the procedure, if so desired, The original formulation that

applies to such a simplified model is illustrated in Fig, l.h, and the
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iterative scheme is described in Section 1.3,

2.2. Improved analytical formulation.

2.2.1, Small differences between nearly equal numbers,

The computation of the difference between nearly equal quantities,
whose accuracy(is specified by a finite number of exact significant
digits, yields a considerably less accurate result.l This difficulty is
already present 1n the basic Egs,(1.17), (1.18), and arises, in the
described method of solution, when the computation of the mobile carrier
densities is attempted through the combination of Eqs,(1.,39), (1.40) with
Egs.(1.33), (1.34) respectively, Equations (1.33), (1.34) witnh the aid

of Egs.(1.39), (1.40), specialized according to the simplified model

(ohmic contacts, absence of recombination in the interior, constant

mobilities), may be rewritten as:

p0-40)] Tm® TR oy | 4(0)-4w)]
n(x) = e ny F};T67 - n, F;;(EY e + npe (2.1)
eyl F (%) 7 (x) .
p(x) = e¥(O)-¥Hx) |y F;Ig‘m - Py ?";‘E‘(BT HD40) | 5 HD-HO)] (5 5
. D D -
where:

The differences appearing in the square brackets of Egs.(2.l1), (2.2)

may represent sources of excessive numerical errors, and therefore are



32

highly urdesirable, For example, in Eq.(2.2), throughout part of the
quasi-neutral N-region, the second term within the square brackets is
nearly equal to the third; theilr subtraction introduces a larpge error
which, if comparable to the first term, is responsible for a highly
inaccurate hole distribution in that region. The higher the applied
voltage (in the forward bias direction), the higher the influence of
such error, This is certain to reach prohibitiveviimits at high injec-
tion levels., A similar situation arises in Eq.(2.1).

These difficulties may be overcome at once with the introduction

of the new integrals

F (x) b mwlx") dx'

Fp(x) 4 e¢(x') dx!

O\—-ﬁ‘?‘: o\~—\><

*
(to be evaluated numerically directly from the integrands ) and a

rearrangement of Eqgs.(2.1), (2.2) to the following form:

L4 - (T)

(2.3)

() = |7 (x) I
n e¢(o)-¢(fa' In P Fﬁ(L)

*  That is, not by using the relations
FIII(O) - FIn(X)

FIP(O) - FIp(x)

e

F,(x)
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Ty Pp

P(X) = FIp(X) -+ e‘y 0 _qy 1, Fp(X)

_4(0)-4(x)
(2.5)

nN FIp<O)

Extension of the above expressions to the more general case is
straightforward., For example, if generalized boundary conditions on

the mobile carriers are specified, the eleclroun and hole deasllies are

given by:
n(x) = ) %) + n(0) X- n(r) e (¥)-#(L)
(x) = L.Fn( ) (L) ew(,o)n\y(f) FIn( )~ Fn(L) 2.5)
» FF - (L) P )_ (0) o ¥(0)=4(x) 5.6
PLX) = xX) + x )
| p(0) &V (OV(E T2 | PO

In particular, the values of the minority carrier densities at each
external contact may be determined by a finite surface recombination
velocity, and the majority carrier density by the requirement of charge

neutrallty at the contact;

(0) i (L) o
pO-pN=-S—- nL-nP=--

0 L (2.7)
p(0) ~ n(0) + Ny =0 p(L) - n(L) -N, =0

where 84 and sy are the surface recombination velocities at the
contacts O and L respectively. In this case explicit expressions
for the current densities may be found by combining relations (2.7) with

Egs.(1.41), (L.h2):
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v, :r.p(o)[nw“ _n . ML)}_[ppew(L)-w(o>_nPe¢<o)-¢<L>+ w /s,

In = |
n [p IP(O) + e‘p(o)/‘so] [’YnFn(L) o+ e“V(L)/SL]_ e‘k(L)*V(O)/(SOsL)
| (2.8)
Vo F, (L) Ppe oy e‘*(o)] [ (D) =4(0)_ D¢ c$(0)-4 (1), NAJ/SL
J =
P [\/ 5(0) + NG )/S]{:Y \k(L)/S] q;(L)-\y(o)/(SOSL)
(2.9)

Equations (2.3), (2.4) (or alternatively Eqs.(2.5), (2.6)) are
numerically accurate expressions for the electron and hole distributions,
provided that each single term, or combination thereof, does not exceed
in magnitude the maximum range that the particular computer available
may acanmmodate.* This is usually the case for forward and for low
reverse bias cases, so that the above relations will be restricted to
such conditions., The high reverse bias case is discussed in the
following Section.

The expression for the net charge in Poisson's Eq.(1.19) also
exhibits small differences in the quasi-neutral regions of the device.
However, these may we;l be tolerated, since the only conseguence is a
very small absolﬁte error in the curvature of the electrostatic poten-'

tial in such regions,

*  Thne permissible range on the IBM 7094/7040, on which actual calcu-
lations were performed, is the following: 10"3 for real numbers in
single precision (8 significant digits), > 10-29, < 1038 for real

numbers in double precision (16 significant digits).
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2.2.2. Extension to high reverse-blas conditions,

When the applied voltage exceeds a few volts in the reverse direc-
tion, several terms of Egs.(1.33), (1.34), (1.39), (1.40) exceed in
magnitude the range permitted by most digital computers.* A new set of
felations is therefore required to allow the computation of the mobile
carrier densities in high reverse-bias conditions, This may be achieved
by dividing Lhe elecbrostatic putehtial range w(é) ; y(L) dnto several

¢

cells defined as follows:
A

1st cell $(L) < y(x) < ¥ (xo =L=zx> xl)
2nd cell 4 < P(x) < ¥y (xl zx > xz)
rth cell Yooy € P(x) < Y. (Xr-J. zx > Xr)
A
mth cell b1 < ¥(x) < iy = 4(0) (x, , 2x=2x =0)
where
Y - y(L) =R
(2.10)
Y4 = VY51 = @R ’ 1=2, 3, *** m

*¥ - The permissible range of the applied reverse bias may be doubled by
taking the value [{(0) + ¢(L)]/2 as origin for the electrostatic
potential in Egs.(1.33), (1.34), (1.39), (1.Lk0).
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and R must be chosen small enough to limit the magnitude of the

gquantities
' Ry + 1 R\* 1
(L e) , (Lppe)

within the allowed range. The situation is illustrated in Fig, 2.1,

The following quantltles are then defined

"l’ol = V(L)
' (2.11)
A ¢r * q’r-l
Yor = ) y T =2 3, *m

and are treated as scale factors to allow in each cell r the numerical

computation of the integral

for X..1 2 x > X, If the following guantities are defined as:

A "nPp
O] (2.22)
[F_(0) | w(L)-y '

pm Or
or ~$T67:$;; e e Pp 5 T = 1, 2, *s+ m
. © o
u[Eml®
P y(0) U

G)-y
e Om |

e

He

Eq.(2.2) may then be rewritten as:
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2, . . .1).



p(x) = [(l-e) Fpr(x) + Ypé]/[%pev(X)‘wo{} (2.13)

for X. 1 2 x> X. r=21 2, ***m

where is selected as the scale factor corresponding to the rth

wOr
cell in which the particular value of x [or ¢(x)] is located. It is

" readily verified that p(x) is scale factor independent, as desired,
The quantities 6 and Ypr (r =2, 3, *+* m) s8till exceed the

permitted range for an applied voltage VA such that

¢(0) - ¢(L) >R, ie. V, <V, -R

*
However, for large enough R , the following inequalities are valid:

el T 3 z i .
Ypr Ppr(x) if xsx o, il.e. r>l

0 «< 1 if y(0) - ¥(L) >R

Moreover, it can be observed that, for a given r, 6 Fpr(x) is

either negligible with respect to Ypr’ or else comparable to Ypr’

in which case if ¢{0) - ¢(L) >R then x = Xq.

The above considerations lead to the following rules:

*. A value of R =z 50 is usually sufficient. Currently available
digital machines allow a considerably larger value,
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(1) for 0 > V, V4 - R, i.e. low reverse bias, one cell only is

present (m = 1), the parameters Ypl and © are sufficiently
large and equation (2.13) may be computed in its complete form,
(2) for V, <V; - R the quantity 8 Iis ignored, and its computation
is hot attempted; the parameter YPr is calculated only in the
first cell (r = 1) since it becomes insignificant elsewhere,
With the aid of the above rules, Eq.(2.13) is suiéable for an accurate
numerical computation of p(x), for an arbitrary reverse bias condition.
A similar procedure leads to an expression extended to high reverse

bias cases for the electron -.ilensity‘. The eleclroslabic polentlal range

$(0) - y(L) 1is divided into cells defined by:

A

1st cell (0) > ¢(x) > A (xc') =0 x <« :xi)
rth cell Vo2 y(x) > ¥ (xl;_l <x <x)),
r o= 2’ 3’ s mMml
. ; 4
mth cell Uig 2 y(x) = ¥y < (D) (xﬁl_l Sx x5 = L)
where
§(0) - 4] =R
(2.14)
wéul - ¢; =2R , r=2, 3, *** m

With the aid of the scale factors
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A
¢6l = ¢(O)
(2.15)
R
W ==, T=23 m
the corresponding modified integral
X
RIS ICD ,
F‘nr(x) =] e dx' , xg g <x <xp , r=1,2, ¢m
0 (2.158)
may be inserted in Eq.(2.1) to obtain the final expression:
Wy = ¥x)
n{x) = [(1-9) ;‘nr(x) + Ym,:} /[Zne (2.16)
for X Sx<x, , r=12 *°mn
where: ;
' -
I Fm@® g, - W)

Thr = ‘Eg;f?"WTET @ "y Pp

e

A an(L)

Zy = o - WD) e

e

and 6 is given by relation {(2.,12).

Considerations similar to those presented in connection with Eq.
(2.13) lead to the same rules concerning here the parameters Y . and
® in Eq.(2.16).

Equations (2.3) and (2.4), or alternatively Egs.(2.5) and (2.6)
for forward bias, and Egs.(2.13) and (2.16) for any reverse bias condi-

tion, represent the improved analytical expressions for the mobile
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carrier densities and complete the formulation of the "direct' problem
of specifying the applied voltage and solving for the total current and
the relevant distributions as functions of position.

The improved formulation for the simplified model is summarized in

Table 2.1.

2.3. Numerical technigues.

Once a satisfactory analytical formulation of the problem is
achieved, the following phase toward a numerical solution is the dis-~
cretization of the relevant gquantities at a finite number of points.
This involves the problem of the distribution of such points throughout
the interior of the device, or, in equivalent terms, the determination
at each point of the step, defined as the distance between two consecu-
tive points. In addition, appropriate numerical technigques must be
devised to approximate the analytical integrations and differentiations
of the relevant expressions, and to solve the second order linear diffef-
ential Eq.(1.45) (essentially Poisson's equation). Thesc topics arc
analyzed in the following subsections.

2.3.1, Automatically adjustable non-uniform step distribution.

It is quite clear from the expected distributions of most quantities
throughout the interior of the device that the choice of a uniform step
would hardly be satisfactory. To yield comparable accuracy in the
process of discretization, the rapidly varying distributions near the
metallurgical interface require a step much smaller than that needed in
the quasi-neutral regions. An algorithm capable of an automatic step
selection, subject to a preassigned condition, is therefore highly

desirable.
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FOSWARD BIAS
¥(x)-¢(1)
a{x) = [Fn(x) + 8 Fm(x)] W— (2.3)
. (H(0)-4(x)
pix) = [Fxp(*) + 8 Fp(X)] W {2.b)
'7 (x") T (x*)
vhere: Fo (x) & [ VX gy ; Fo(x) & [ V% axe
In i 1
/ 8]
X x
Fy(x) Q[e"’("')dw ; Fo(x) Qf.s'("')dx-
) °
p My Pp
9= m (2.22)
REVERSE BIAS
! ~4(x)
n(x) = [(1-0)F, () + ¥, /(2 Yo" 1 {2.16)
: ' §(x)-y : ‘
P(x) = [(-0)F () + X 1/(2, e 0ry . (2.13)

x

|k__ 1 L "o
where: ¥ (x) 1 eVg,. ¥x )dx' i F(x) éj'e'(" ) 'Q'dx'
0 ..
P01
/ v v e e
e
Y =
nr
\ o . . . i1

¥om4(0)

F_(0) WL~y " .
e T =
eﬂo;-vm °x Pp .

Y =/
pr
\0 : ’ if r41
: "y Pp '
-y T i£ 0>V, 2 Y-8
3] =\

o i VA<Vd-R

F_(0)
e[

Nop and - "('7'1" r=1 2 **m are scale factors given by relaticns
(2.10), (2.11), and (2.14), (2.15). R 48 chosen &8 the largest
mmber that allows (L ny MY ad [ L Pp et 1 yithin the
permisaible range,

Foa(L)
T | VoY | P
e

Table 2.1,

Improved and extended analytical formulation for the simplified model (omic contacts,
abgence of recombination, ccnstant mobilitles),
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It is apparent from Fig, 1.4 and Table 2.1 that two main opera-
tions are present in the iterative scheme: the integration of the
functions eI w(x) and the solution of Poisson's equation. In consid-~
eration of the.accumulative type of error propagation in the execution
of a pointwise integration, the former operation is chosen to dictate
the criferion responsible for the selection of the step distribution.

The integration, in the discretized context,‘will be performed as
a sum of a finite number of terms, each computed with the use of an
interpolation technique; an error will be introduced in each of such
terms, depending wupon the magnitude of the step al lhe correspondent
?oint for a chosen order of interpolating curve. It is of interest to

consider the relative error . &g pertinent to each term, defined as:

‘A relative error of A absolute error
S a single term " magnitude of term

€

A step distribution will be considered optimum if it yields the same
relative error for each single term; the.whole integral will then

suffer from the same relative error. If this is specified the corres-
pondent optimum step distribution can be determined hy the procedure
illustrated schematically in Fig. 2.2. An upper bound SMx for the
step together with the parameter RATIO, the step mbdifier; may be
initially fixed. Starting with the step at its upper bound at the
boundary on the left, (x = 0) the whole region is scanned to adjust at
each pbint the svep according to the result of the comparison between

the actual relative error and the specified one When the boundary

ey -
on the right (x = L) is reached, the step distribution and the total
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nurber of points is obtained.

The two integrands eI ¢(x) will in general generate two different
step distributions; it is appropriate to choose at each point the most
severe step requirement featured by the two distributions.

It_is very convenient to proceed one stage further by linking, in
reverse order, the relative error Eq with the desired total number of
points 4. This latter parameter is directly reldted to the storage
capability of the particular machine available (and to the actual
computation time), therefore it may be inserted externally as input
DATA to suit the particular needs of the programmer, When £ 1s
specified, the problem consists in determining €5 which allows then
the generation of the step distribution with the aid of the procedure
discussed above, This can be achieved with on intcrpolation scheme Of.
the type illu;trated in Fig. 2.3. A few trials with suitable values of
Eq will determine the correspondent 4 wvalues to surround the required
nunber of points {R by two 4 wvalues; at this point successive
Legrangian interpolations may be used on the curve gy = ES(L) to
complete the search of the relative error (SS)R correspondent to {'R'

Two different approaches may be takeq Tor the actual pointwise
computation of the relative error to be compared with the specified €qs
depending upon the availability of the function ¢(x) in discretized or
analytical form.

(a) The function y(x) is available in discretized form only.

At the completion of the jth prineipal iteration cycle (Fig., 1.2)
the electrostatic potential ¢<J+l)(x) is known only at a finite number

of points determined by the previous step distribution required by
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Assign LR
3
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initlial €q
¥
5 =1
BRANCH = O

____Q___._I‘jﬁ—j-l-ll

s
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=2
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I
1/ 6 o <o

or
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IBRANCH = lJ Decrease Increase

- fs *s
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on the curve gg = es(%), in
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S

ponding to &R' Obtain & new e,

A

Fig, 2.3. Procedure suilable to obtailn the step dlstribution and the
relative error €g if the total number of points LR is specified.
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w(j)(x). If the correction 6(j+l)(x)‘ is significant, a new step
distribution may be desirable, In this case the followllg algorilhm
may be used to obtain the relative error at each point.

Let Si be the step at the point of abscissa X45 defined as
i=1, 2, 3, *=* 4~-1
=0, x = L. In the execution of one sweep from O to L

where x

the steps
S s r=1, 2, ¢+ i-1

are supposed already adjusted to the proper Value; the adjustment of
the step Si is sought. Moreover, for 'simplicity, let the trapezoidal
rule be chosen for the numerical integration of the function £(x);

an elementary contribution amounts, in the present case, to the area
between points x,, x, , under the curve f(x) (see Fig. 2.4). This
value must be compared with the exact one, which, for all‘practical
purposes, may be computed with the use of a higher order interpolating
curve, for example by tracing a cubic through the points fiml’ fi’

f f

5417 Ti,ps ond by integrating it between x; and x; (see

Appendix B for explicit relations). Result of the comparison may cause
a shift in X5 1 to a new pesition xi+l; the correspondent value

£l

i1 *‘f(xi+l) may then be recovered on the same cubic already employed.

A new comparison between llnear and cublc integration between the points

X may now be performed in the search for the step at the point

. x!
i’ i+l
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third order polynomial

| it

Fig. 2.4, Shift of the point x, to achieve the required integration
: . + . .
error and determine the step size at the point X
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X5 that will yield a relative error approximately equal to the one
specified., Once this is achieved, the new point X:1 is determined
and the procedure may continue to adjust the next step Sivl'

The scheme may be extended easily to interpolating functions of
ﬁrder higher than linear and cubic, if so desired.

Alternatively it may be more convenient to approximate with an
interpolating polynomial directly $(x), rather fhan the functions
;: w(x); thi; would indeed be the case for a structure close to that
considered in Appendix A, which displays a first-order parabolic dis-
tribution of y(x) in the transilion region, The above procedure re-
quires then only a minor alteration.

(b). The function Yy(x) is available in analytical form,

If the trial potential function is choséﬁ in enalytical form and
the selection of the optimum step distribution is performed only once,
before the first iteration, the costly procedure discussed in the pre-
vious Section may be considerably simplified. It is then impliecitly
assumed that the corrections é(j)(x) obtained after each Poisson's
iteration will not be of such magnitude to require a significant altera-
tion in the .original step distribution.

To illustrate an example, let the trial potential function be
represented by the first-order potential distribution for an abrupt
N-P asymmetric junction with uniform doping (see Appendix A), Such a
trial function will then display the square-law spatial dependence of
Egs.(A-36), (A-37) (of Appendix A) in the transition region, logarithmic
dependence in the neutral region in the low conductivity side and con-

stancy in the neutral reglon in the high conductivity side.



50
Let the relative radius of curvature of a function f(x) at a

point X be:

f(xo)

a°1(x)

dxz

A
Rcurv,rel x0> -

X=X
From an intuitive point of view it is clear that the relative radius

of curvature of the functions éI ¥(x) is soméhow related to the re-
quired step distributions: the smaller the relative radius of curvature
at a particular point, the smaller rmst there be the step. It would be
desirable to find an explicit relationship between the two quantities,

Iel the lransition region be considered firslL., With reference to

Fig. A-1, the functions of interest are given by Egs.(A-36), (A=-37) as:

>

©
- — Nz~
A — D
fN+ = e ¥ = exp4 + E-—Er—-r ¢(MN)] 3 5 =X - MN >0

in the N transition region, and

e

Lef Vs exp 1{ i \\f(“ip)-] 5y

5 ] MP -x >0

in the P transition reglon. From these one obtains:

deN+ ' 2 ¥
=N (N.z° = 1) F

122 D'\'D N

ol 2 T
= = NA(NAy + 1) f5
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and;

¥
. b _ - (2.17)
curv,rel, N = dz 7 Nb(NbZZ -
dz8
T
o~ f 1 .
curv,rel, P 2 T 5 _
a £ NA(NAy + 1)
dyz

The functions with the smallest relalive radius of curvature in each

region are then:

N
fN_ =e Vo exp[EQ 22 - w(MNﬂ (2.19)
Pt +§ NA 2
p = ' =exp=—1y + §(M) (2.20)

Let the step Si at point i %be tested with the comparison be-
tween trapezoidal and Simpson's rules for the computatlon of the ith

term @, in the pointwise execution of the integral “f f(x) dx. With

0
reference to Fig. 2.5 one obtains:
‘(Qi)trapezoidal = (fi * fi+l) Si/z (2.21)
@ )gimpson = (Fy + ¥i17p * Ti41) 84/6 (2.22)

After completion of the adjustment of the step Si to meet the



[{Qi)rapezoical -(Q)) simpson]

parabola
fi+1_
f_7770%
h-..__.c:./f
Si/2
l =g
X Ries Xi 41 X
ey £
S;
Fig. 2.5. Determiration of the error of the pointwise integration of

an elementary interval,
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requirement dictated by the specified relative error Eg» the following

relation will be valid:

(2,) (@)

trapczoidal Simpson

(Q)grapezoidal

£, -2 1, + T,
i +l{2 i+1
. + f. (2.23)
.t i+l

2
-3

where relations (2.21), (2.22) have been used.

Otherwise, if the simple three-point formula to approximate the

curvature at the point xi+l/2 is chosen,

. Ry . iv1/2 52
curv, rel att £o-2f, o+ £, |2
T i i+1/2 ivl
i1/
which may be inserted in Eq.{2.23) to odbtain
£.o4 T,
1
S, = \/6 e * (R ) = (2.24)
i 3 eurv, rel i+1/z fi+l/2

Moreover, for a function of the type
f(ui) = exp(K ui2 + constant) ; K = constant >0, u, >0

and for Si = u -u, >0 the following holds:

i+l
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i
exp[K(ui + 31/2)2]

exp[Kuiz] + exp[K(u, + S.)Z] Ks,"”
* = exp |- RE

fie1/2
| 3 e 2 _
+ exply K8,° + KSiui] > expl Ksiui] + expl+ KSiui] >

> (1 - KSiui) + (1 + KSiui) = 2 (2.25)

If the above result is applied to Egs.(2.19), (2.20) it may be observed
thet the first inequality of relation (2.25) becomes, for all practical
purposes, an equality in most of the transition region (where

uy >> Si)’ with exception of a short region near the origin u = 0
where Si becomes comparable to u.. The second inequality also reduces

essentially to an equality if the following conditicn is satisfied:
2 . .
(Ksiui) <«< 1l (2.26)

If this is the' case, then with the aid of relations (2.17), (2.18),

(2.2""): (2025) (replacing Rcurv,rel with Rcurv,rel )

X=X, X=X,
i+1/2 i
one obtains:

- 1z 1/2
" . “ s
N transition region: 8, = —— Z ., X ; (Zi =X, - MN) (2.27)
L DV D 1
B 12 ES 1/2
P transition region: §; = — ; (yi =My - xi) (2.28)
NA(NAyi + 1)
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The condition (2.26), with the aid of relations (2.27), (2.28) and with

the substitution

in the N region

e ND/Z

NA/E in the P region

K =

may be written as:

Which.is certainly satisfied, since reasonable values of eg are
several orders of magnitude below unity.

Equations (2.27), (2.28) yield then an explicit expression for the
step distribution in the transition region in terms of the relative
error eq. This relationship was derived with the implicit agreement
of accepting a slightly more severe requirement for a few steps near
the points MN’ M (in virtue of the first inequality of relation

P
(2.25)),which is certainly a negligible drawback.

From Egs.(2.27), (2.28) it can easily be observed that the smallest
step in each region occurs at the metallurgical interface M, With the
aid of relations (A-38), (A-39), the step values at x = M, approached.

by both regions, are obtained as:

pot) - o)\ A
(8,)- . o=16ey ¢ + — (2.29)
M/N-region S 1 L
-N—-+-ﬁ.— 2
D A
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-1n1/2
SRR ST A e
(5,) . T P& | T T = (2.30)
' P-region Tt T P
A D '

which locaté the smallest step at the interface M on the side of
higher impurity concentration.

Siinilar considerations may be applied to the léw conductivity
neutral region, where Eq.{A-16) is valid. ‘he functions of interest

will then be:

where

X = 0p n(M_)
p £ T - .° .Xé £ (injection parameter)
v, é L - x.
1 i

Rcurv,rel,P = o T ‘
i \ i
— (1 + BV )

av 3 (2.31)
2p

' !
so that only the function eV deserves further attention. Moreover:




o7
1 1

+ +
(FP )i * (FP )i+l 1+ BV, T T B(vi+S;7
- = T =
(F,7), —
P 'i+1/2 L+ Blvy + ;3)
2
- 201+ 2 1>z (2.32)

2
(1 + Bvi) + asi(l + 5vi)

It may be observed that if the condition
2 o o
(pS;)° =<1 (2.33)

is valid, the inequality (2.32) becomes essentially an equality
throughout the cntire region., In this case, with aid of relations
(2.2L), (2.31), (2.32) an explicit expression for the step distribution

may be obtained:

1
(S.) ='\’6E . (—.+ v_) 3 V. =L -~ x, 2-3)4')
* neutral S B * * -l '(
Poregion

The inequality (2.33) may now be verified, with aid of Eq.(2.34). The

relation

2
(85)% = (85)% = 6eg -+ [+ (xmD)]

xi=MP
leads to

-2
oy << s (- )
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which is usually satisfied.
For a given bias condition, the step increases linearly, in the
low conductivity neutral region, from the minimum value
\/688

(Si) = ) (2.35)

X=

at x =1L, +to the maximum

1
(Si)x*M 7 l[6€s (*-B- + Lo M.P)
P

at x = MP (at the neutral region side). The above quantity may be
compared to the corresponding value in the transition region, given by

Eq.(2.28) as

.
(Si) - = V6ES HI’\T—' ’
x=MP A

*
to observe that, for usual structure parameters , the step at the

transition region side of the boundary x = M. 1is considerably lower

P
than that at the neutral region side, It may also be observed from
relation (2.35) that the step at the external contact x = L 1s in-
versely proportional to the injection parameter, in forward bias
condition.

In the high cOnductivity neutral region the assumed constancy of

y(x) would generate a step of infinite magnitude, which would also

%  With excepbtion of extremely narrow low conductivity neutral regions
or conductivities close to the intrinsic value.
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occur in the low conductivity neutral region for small enough injection
parameter., This situation is of course taken care of by establishing
an upper bound for the step. An upper bound on the ratio of consecu~-
tive steps may also be introduced to 1imit the loss of accuracy due to
the various interpolations involved in the discretizatilon process of
the pertinent integrations and differentiations.

The foregoing results suggest then the :;;chemé shown in Fig. 2.6,
suitable to obtain the optimum step distribution and the total number
of points, for a specified relative error eg- For illustration purposes
the structure of Fig. A-1 is chosen, with the N-region on the left and
ED >> NA. The metallurgical interface M 1s tThe starting point, where
relation (2.29) furnishes the initial step value. The scanning is
performed first in the N region toward the external boundary 0. The
determination of the step in the transition region by relation (2,27)
is followed by the test on the ratio of consecutive steps. If such a
ratio exceeds the maximum allowed RATMX, the step will be modified to
suit this addftionai requirement; such modification will always result
in a step decrease, since the generating functions (2.27) and (2.28)
are monotonically increasing with |x - M|. Comparison with the upper
bound SMX is then performed, before the step is permitted to modify
the x coordinate; the cycle may now be repeated until the boundary 0
is reached. The same scheme is uged in the P-transition startiﬁg again
at x =M, with the same initial value for the step previously employed
(Eq.(2.29)). When either the upper bound for the step or the external
contact L 1is reached, a similar procedure starts at x = T to secan

backwards the P-neutral regilon and to provide proper matching of the
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in analytical form for & special case.
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step distributions in the transition and neutral regions, subject to
the requirement dictated by the upper bound of the ratio between cone-
secutive steps.
An example displaying the result of the above procedure is illus- -
trated in Fig. 2.7 for a highly asymmetric abrupt N-P Junction with
uniform doping under a high injection condition (number of points speci-

ried 4 = 1000, RATMX = 1.05, &, = L/200), The step distribution

Mx
(in semi-logarithmic axis) and the trial potential function are shown
as functions of position x. The various regions are readily recogniz-
able; the variation of the step ai;c over o wide range throughout the
entire‘device is enlightening.

The above procedure represents an example of how the rather
lengthy scheme required for case (a) may be reduced to a much simpler
one, with a resulting decrease in computation time of one or more orders
of magnitude, This is achieved with the agreement of selecting only
once the step distribution on the trial potential function, which is

supposed to be given in analytical form and reasonably close to the

exact one,

2.3.2. Numerical integration and differentiation,.

Now that the criteria for the selection of the automatically
adjustable non-uniform step distribution throughout the interior of the
device have been stated, the problem of choosing suitable numericadl
techniques to approximate the analytical integrations and differentia-
tions of interest 1s considered. In the numerical execution of such
operations an crror is usuelly introduced, which often arises from

truncating an infinite series at a convenient point. Therefrom this
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available in analytical form, for a special case.
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error is referred to as "truhcation error" or, more generally, "discre=-
tization error.” This 1s very much dependent upon the value of higher
derivatives, very sensitive, in the problem under consideration, to the
abruptness of the Junction, i.e., the specified doping profile, It is
therefore desirable to employ an algorithm, for the numerical integro-
tions and.differentiations, of a considerable degree of flexibility,
to permit a significant control of the discretizaﬁion error once the
device parameters, the total number of points, and the eriteria for the
step selection are specified.

Also in conslderation of the availability of the relevant quanti-
ties solely in a discretized form with a non~uniform step distribution,
a gsimple but efficient numerical technique based on a Lagrangian inter-
polation scheme is chosen. ‘'his determines numerically a polynomial of
appropriate degree that approximates locally the quantities availlable
at an unequally spaced array of points; the integrated or differentiated
analytical form of this polynomial is then readlly compuled., Higher
order interpoléting schemes may ve selected to reduce the discretization
error within certain limits, Since the numerical error (mostly intro-
duced by the usual problem of small differences between nearly equal
numbers arising in any finite difference.algorithm) increases for
increasing order of the interpolation scheme, a compromise must be
usually reached. Another limitation is represented by the rapid
increase in the number of elementary operations (or computation time)
for an increase of the order of interpolating scheme,

Details of the algorithm are reported in Appendix B for various

orders of interpolating schemes of practical interest,
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It may also be observed that the use of different interpolating
functions (other than a polynomial, for instance exponentials), although
of great interest, is lixely to require prohibitive computation times,
if a sufficient number of points in the interior of the device is

employed,

2.3.3. Numerical solution of Poisson's equation,

Poisson's equation in the original form (1.19) has been rearranged
to Eq.(l.45), in terms of the correction &(x) for the electrostatic
potential distribution,

To solve The second oyder linear differential Eq.(1.45) in the

unknow 6(j+l)(xi), wilh boundary conditions
50y = 6y =0 | (2.36)

several numerical techniques are available. The method of approximating
the analytical derivatives with a finite difference scheme, followed by
the solution of a system of linear algebraic equations, applies in a
straightforward fashion to the present case in which the relevant quan-
tities are already discretized with a non-uniform step distribution.

Equation (1.45) may be rewritten for the internal point i as:

2 2
a : d
*--*S - 5i(ni + pi) = - _JLZ #n; -p - N (2.37)
dx dx
A=X. K=
1 by

where the iteration index () has been omitted for conciseness. The
second derivative of { with respect to x, at the point i, may be

computed numerically with one of the finlte difference schemes
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illustrated in Appendix B (3~point, or higher order formulae) so that
the right hand side of Eq.(2.37) at an internal point i may be cone-

sidered numerically known,

If the second derivative of the unknown 6 is expressed with the
3-point finite differcnce formula B-12, Eq.(2.37) at thc point i

reduces to;

i

a6,y - [(ai + 1) + ’ﬂi(ni + 0,01 6y + by, =4y (2.38)

where:

X=X
L

The ensemble of Egs,(2.38) written at each loternal point
i=2,3, L4 s+ -1

represents a system of 4-2 linear algebraic equations in the 4-2

unknowns 55 with the additional conditions at the boundaries:

In vector notation:

T§=4d : (2.39)
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here:
_whe 5

i

) is the unknown vector

>
o

’ is the known vector

and

[(u2+l) + ﬂg(n2+p2)] , 1, O; O » ¢

T=| ccc 0,0 Q, - [((xi+l) -+ ’]‘ii(ni+pi)] y 1, ¢, O~ ~ =

. e . 0, O, %y 15 - [(a&‘l+ 1) + Tk-l(nL-l+P%'l)]

is a triple-diagonal matrix of dimension (¢-2) with known entries,

The numerical éolution of the system of E£g.(2.39) may be achieved
with two basically different methods: direct or iterative. The former
is based on Gaussian elimination and back-substitution, the lattér on the
successive correction of an initial trinl solution with an iterative
scheme, Although several iterative methods are available featuring a
very fast convergence and allowing a precise control of the accuracy

desired, the direct method is preferred in the present case, in
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considerationéof the sparsé character of the matrix T (purely triple-
diagonal) and of the small error introduced in such an operation (mostly
round-off) which is certainly not the dominant error of the whole
solution.*
For a tridlagonal matrix the direct method reduces to the very

simple ard elegant algorithm summarized below [see, for instance,
Ref. 20 pp.l01-103]. Let the set of linear algebfaic equations be
represented as

ag 85 4 v by by vy b, 9 =ds , 1=2, 3, *vr 4-1 (2.40)
with boundaries 61 = 8, = 0. The solution of such a system of differ-
ence equations is uniquely determined if two values of 6i are given

(for example the values at the boundaries)., It will therefore be

pertinent to seek two quantities 845 hi such that

1 7By 85, s =41, 42, el (2.51)

Applicaﬁion of the first boundary, 61 = 0, yields_

=h, =0 (2.42)

%  Computation time and availability of core memory in the machine are
certainly in favor of the direct method. '
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Substitution of

h )

8i.1 = 831 " Byy O

in the difference Eq.(2.40) yields:

5 dy -8y &4

1
obgmag by by may kg

so that it is immediately possible to identify

P Sl = B
i bi - ey hi-—l
S i=2, 3,
°i
h, =
Poby Ay )

Recursively then, the quantities g5 hi may be determined from

relations (2.42), (2.43), to compute subsequently all the unknowns §

with the aid of Eq.(2.41),

e {/“l

R i = '{,/"'l; ,L..Z eee D

(2.13)

i

Moreover, for the present case, the following inequalities hold:

a; >0, b, <0, c; >0 P
by > a5 + ¢
with:
238 5 ey =85
bi == [(Si+si-l) + ﬂi(ni+pi)] 5

i=2, 3,

ooo{,-l
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- 1t may then be shown thait the quantities P hi very conveniently

stay in scale. .
For the special case of a tridiagonal matrix with the upper
diagonal elements equal to unity (this is indeed the case for the

matrix T of Eq.(2.39)) the above scheme may be reduced Lo the

following:

. . - 1 = e —l
solution of &; &,  + DBy &+ 8., =4d; , i=23 3 L (2.h4k)
with boundarics 61 = 6& = 0

P d
2
L B - —
Rp' = by ’ 82 =%
2
A \
r 2 - '
hy' =y -ay/hi
given by < L oi=3, L, eee gl (2.45)
g; = (43 ~a; 85 1)/b] 5
o
65 =85 = by,1/0] » 1= 4-l, 4-2, 000 2

The efficilency of the method is apparent:; only four multiplications
(or divisions) per point are requlred, and only three vectors of
dimensions 4 are needed for storage if the coefficients 8y5 bi,
d; need not be conserved.*

Once ¢ has been obtained with the direct method described, the

error introducéd may be easily tested, for example by comparison of the

*  This may be achieved, for instance, by assigning the same storage
locations to 845 di’ g and to b, hi.
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vector T8 with the known vector d. Whenever the entity of such
error becomes signifiaa.nt*, an iterative method may he easily inserted
in the program (see Appendix C) to replace the direct one,
It is important to observe that the diseretization error pertinent
to the solution of Poisson's equation ié solely related to the order of

the finite difference formula that approximstes the quantity

X=X,
1

of Eg.(2.37), and is not connected in any way to lhe Lruncallion error

introduced by the numerical evaluation of

a”8(x

dx3

X=X.
i

for small enough &. This is indeed the case 1if convergence of the
iterative scheme occurs (and this is the prime requirement for the
validity of the whole procedure), in which case éi -+ 0 at each point
i, for a large enough number of iterations. It may be concluded that
the choice of a 3-point formula to approximate the curvature of the un;
known & 1s in no way restrictive, so that the triple-diagonal structure
of the ﬁatrix T may be conserved if higher order finite difference

schemes are employed for the computation of dzw(x)/dxz, in order to

reduce the truncation error.

* This has never bpeen observed to be the case.
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In consideration of the much heavier computational load involved
in the handling of a band matrix wider than a triple-diagonal, the

above feature acquires particular value.

2.4, Computer program for a special case,.

Several alternatives have been presented in Chapter I regarding
the physical model on which various schemes of solutions are based; other
alternatives have been discussed in the previous sections concerning the
numerical aspect of the solution of the relevant equations.

Choices between the various possibilities have been made to con-
struct a program and perform a series of illuminating calculations on a
digital computer. Table 2.2 1s intended to summarize all the alterna-
tives mentioned, and to indicate clearly those chosen to be incorporated
in the progrem reported in Appendix C (coded in Fortran IV, version U4).

A speclal effort has teen made in sectioning the program, in the
coded context, into several subdivisions or subprograms, each featuring
a set of operations logically separated from the remainder. Such a
modulor charactcristic offers several programming advantages; among them
the possibility of performing substitutions of one or more subprograms,
if alternatives other than the chosen are desired.

Results of calculations performed on an IBM shared file systen,
which includes the computers 7094 and 7040, will be presented in.a later

chapter.

2.5. Coneclusion,

Difficulties of fundamental and practical nature, arising in the

numerical analysis of the original formulation of Chapter I, have been
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Table 2.2, Illustration of the various alternatives: the central column dlsplays

those actually incorporated in the program reported in Appendix C,
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exposed and overcome by an improved and extended analytical
formulation,

Numerical_techniques suitable for the discretization of the
problem have been discussed. Criteria for the selection of an auto-
matically adjusitable non-unllorm step dlstribullion, numerlcal mellods
for the execution of integrations and differentiations and for the
solution of Poisson's equation have been presented;

A satisfactory rate of convergence to the exact solution for
successive iterations is clearly the prime requirement for the success
of the described procedure, In all cases tested on the computer, for a
wide range of structure parameters and injection levels, a good conver-
gence rate has been observed, even for guite poor trial potential
functions,

A basic prog?ang written in a highly modular fashion for a special
structure, has been reported*; its flexibility allows prompt altera-
tions in case 1lncorporation of different numerical schemes or extension
to more general cases are desired,

As an example, the use of the basic program in two different appli-
cations will be described in the following Chapter; +the computation of
the total incremental capacitance of the device, and a solution for the

reverse proolem (J - VA).

*  The organization of the program and coding details are gathered in
Appendix C,
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CHAPTER 11T

TWO SIMPLE APPLICATIONS OF THE BASIC DIRECT PROGRAM

3.1, Generalities.

In Chapters II and III an iterative scheme for the direct problem
has been described and a basic computer progroam has been written to
achieve the complete solution of the junction for a specified applied
voltage, )

As an example of the application of the basic program in two
slightly more intricate schemes, an algorithm for the computation of
the total incremental capacitance of the device is illustrated, and a
solution for the "reverse" problem is presented (the terminal voltage
and gquantities in the interior of the device are sought for a specified
total current). The former task requires two successive solutions for
slightly different values of applied voltage, the latter 1s solved with
the combination of the basic direct program and an interpolation scheme

on the exact current-voltage characteristic.

3.2. Computation of the total incremental capacitance,

If Q is the total charge (of one polarity, per unit area) in the
device, the incremental capacitance € (per unit area) at a specified

voltage V = V, may be defined as:

A
c‘ = %% (3.1)
V=v V=
A A

The neutrality condition on the entire device implies the presence of
sheets of charge at the external contacts if the interior exhibits an

overall nunhalance of chargeé. Poisson's Eq,(1.19) written in integral
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form in terms of the electric field at the contacts

L |
j [p(x)-n(x)+H(x) Jax = B(L) - 2(0)
o]

may be differentiated with respect to the applied voltage, to obtain

L L
%V_/’P(X)dx - %v.jfn(x)dx = {%V [E(L) -'E(O)]} (3.2)
0 V=V, 0 V=V, v=v,

The term on the right side of Eq.(3.2) represents the contribution of
the surface charge at the terminals to the total copacitance., If this

*
term may be neglected the relation (3.1) becomes:

, L : L
CI = .gvj,p(x)dx; = -g—-vfn(x)dx (3.3)
V=V V=V V=V '
A 0] A 0 A

If a two-point formula is chosen for the discretization of the above

derivatives, one obtains:

v,' -V

- f (}f) p(X) fn'éx»)-n(h ax (3.4)

where n'(x) and p'(x) are the electron and hole densities corres-
ponding to the applied voltage VA' slightly incremental with respect

to the applied voltage V which generates n(x) and p(x).

A’

* This is indeed a very common case, with the exception of structures
with extremely short neutral regions or at extremely high injection
levels,
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Of course, higher order finite difference schemes may be employed
to approximate the derivatives of relations (3.3); additional solutions
for incremented applied volitages are then required.

The modular organization of the basic direct program of Appendix C
requires only a variation of the main program to incorporate the
algorithm for the computation of the total incremental capacitance. An
example of such a modified main program, with the.coding detalls, is
reported in Appendix D.

Although the validity of the definition'(3.l) of the incremental
capacitance C may be questioned, it is very much of interest to ob-
tain "exact" ;esults on the basis of such a definition, since this is
the only calculation that steady-state considerations permit, and is
therefore conventionally accepted. A more appropriate definition re-
lates solely terminal properties and is in general a function of

frequency f, for a small increment of applied sinusoidal voltage v(f)

about the value VA:

C(f)}v = {[J(f)]reactlve / [Zﬂf V(f)] (3'5)
A

Va

Comparison between results furnished by the two definitions is of con-
siderable interest and requires the availlability of solutions for tran-

sient conditions,

3.3. A solution for the reverse problem (J -V, ).

It is desired to solve numerically the fundamental Egs.(1l.16) to
(1.21), subject to the boundary conditions (1.28) on the moblle carrier

densities, for a specified value of total current J, Accurate
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solutions for all the quantities of interest in the interior of the
device and the terminal voltage are sought. To achieve this, a re-
arrangement ofvthe fundamental equations may be attempted in fhe search
for a suitable new formulatién. This approach will be discussed in
Part II, Section 9.3.
An alternative procedure, which employs the basic direct program,

is illustrated below.

3.3.1. Description of the method,

The quasi-linear local feature of the current-voltage characteris-
tic in semilogarithmic axes, together with the availability of the
basic program, suggests a successive approximation procedure based on
a Lagrangian interpolation scheme.

The discussion will be restricted to the case, of practical inter-
est, of forward bias., Positive currents are then assumed,

The following notation is introduced:

J = variable representing total current on the exact current-voltage
characteristic

VA = variable representing the voltage at the terminals* on the exact
current-voltage characteristic

JS = specified value of total current

VAS = voltage at the terminals correspondent to JS

H = 1n(J)

Hy = In(Jg)

¥ In the following context for "voltage at the terminals", or briefly
"voltage", the difference of the electrostatic potential at the
external contacts subtracted from the diffusion potential will be
intended [i.e. V, =V, + (L) - ¢(0)].
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Were VAS known, then the direct program would readily give the
sought complete solution of the basic equations. The problem is
therefore to determine VAS once ‘the current JS is specified,

To achieve this, H is first surrounded by two points Hy, Hz

on the curve H = f(VA) such that;

(3.6)

H, < HS < H2 or H zH, 2z H

The exact current values Hl and HB may be obtained merely by guess-
ing two values of applied voltage VAl’ VA2 (or better, by use of the
first-order theory, if applicable) and determining the correspondent
values of currents with use of the basic program. Subsequently success=-
ive Lagrangian inteypolations on the function VA = g(H), with the aid

of the basic program, are suitable to refine the search of the quantity

v

AS to the desired accuracy.

If the general first-order theory results are used to obtain VAl,
and VAB’ a preliminary successive appreximation scheme must be em-
ployed to solve the impliecit system of Egs.(A-13) and (A-~4l) for the
applied voltage, for a given total current J = Jn‘

The whole procedure is illustrated in Fig. 3.1. The current JS

is specified together with a tolerance ERRJ such that any value of

voltage, yielding an exact current J satisfying the relation

(3.7)

will be accepted as the solution of the problem, A first value VAl
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Fig. 3.1, BSchematic block diagram illustrating & successive approximation
scheme for the solution of the reverse problenm,
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is sought, approximately correspondent to a current value Jl' = JS,
and obtained by use of thé first-order theory, if applicable. The
basic direct program will then yield the exact current Jl correspond-
ent to V,,. Failure of the accuracy test of Eq.(3.7) is followed by

the estimation of a value of current Jz' with the aid of the relation

E o= H + (1¢1) + (Hg-H) (i =1) (3.8)
with Hl = 1n Jl
and Jo' = exp(H)

The above is then repeated: an approximate voltage VAZ is computed
‘to enter once more the basic program and obtain the exact current Jz

to perform the test on the condition (3.6). A negative outcome reiter-
ates the cycle with the parameter i of Eq.(3.8) increased each time by
tnity. A very few iterations will generally satisfy the condition (3.6)

so that a Tagrangian interpolation on the funetion
Vo = 8(H) m=1 2, *++ 1

may be successfully used to obtain a new (and considerably more accurate)

value of VA i1 to be fed into the basic direct program and obtain the
3
correspondent exact current Ji-l’ or Hi+l’ Successive applications

of the interpolation operation and of the basic program will then lead
to the desired value VAS with the specified accuracy.
The Lagrangian interpolation procedure involves the solution of a

system of linear algebraic equations, which may be reduced to a matrix
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form, and treated with one of the conventional methods available from
numerical analysis, A protection feature must then be incorporated in
the program to cope with the unfortunate situation of the matrix
becoming ill-conditioned for the method of solution chosen. This cir-
cumstance may occur in the present procedure if too small a tolerance
parameter ERRJ is specified.

3.3.2. Results.

The computer program for the solution of the reverse problem
features only a slight alteration of the main progrém of Appendix C
and a mere addition to the basic direct program of a subroutine to
execute the interpolation procedure. The organization of the program
with the coding details is shown in Appendix E.

Several test calculations have been performed on the computer for
various structures, total number of points, specified current ranges,
for several current tolerance parameters. The results obtained may be
summarized in the following: three to five iteration cycles (i.e.
calls of the basic direct program) are sufficient to satisfy a tolerance
parameter ERRJ = 10—5, whereas four to seven iteration cycles are |
usually required if a tolerance parameter ERRJ = .'LO-7 is specified;
however, a very few isolated cases feature an ill-conditioned matrix
before reaching the latter value if single precision arithmetic is used,
Interruption of the procedure at an appropriate pointf yields for these
singular cases results satisfying a tolerance ERRJ = 10-6 which is

still to be considered well acceptable from any practical point of view,

*  The protection feature incorporated in the program may very well
take care of this,
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Alternatively double precision arithmetic may be used, if a more severe

tolerance 1s deslred.

3.4, Conclusion.

Two simple examples of the application of the basic direct program
in slightly more intricate schemes have been illustrated. The total
ineremental capacitance has been abtained from two successive steady-
state solutiors for different values of applied voltage, and a method
of solution of the fundamental transport equations for a specifiedvtotal
current has been described.

The highly modular organization of the basic direct program
requires only slight vafiations of the main program and the addition of

one subroutine to incorporate the new features,
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CHAPTER IV

KXUENS LON OF 'HE MEWHOD 10 THE SOLULLON OF THE THRANS ISTOR

Although the method of solution described in the previous chapters
for a two-contact device allows for doping profiles generating multiple
Jjunctions, additional boundafy conditions are required if a multiple-
contact device is analyzed. As an example, the extension of the method
to the solution of the transistor i1s discussed in this Chapter. The
general lines of Gummel's original procedure [18] are followed, the
inadequacy of the one~dimensional model to implement a realistic
representation of the base contact (other than, verhaps, in the low
injection case) is recognized, and a slightly different approach is
suggested as an alternative to the original procedure, Detaills of the
modifications introduced by the additional boundary conditilons in the
analytical formulation and in the overall iterative scheme are

illustrated.

4,1, Methematical model and boundary conditions.

Under the same assumptions stated in Subsection 1.1,1 the
equations that describe the behavior of the transistor are given by the
fundamental set of Egs.(1.16) to (1.21). These are here applied to the
one-dimensional N-P-N structure of Fig. 4.1, in which 0, B, and L
represent the external contacts of the emitter, base, and collector

respectively, and M and M, the metallurgical interfaces of the

C
emitter-base and base-emitter junctions, respectively., The impurity
density N(x) as a function of position x may be again expressed in

terms of the donor and acceptor contributions as
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X = position coordinate

Fig. 4.1, Une~dimensional N-P-N transistor structure.
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NGx) = B (x) - N, (x)

and is assumed consistent with the N-P-N device configuration.

The same boundary conditions for the carrier densities discussed
in Subsection 1.l.3 may be specified for the emitter and collector
external’contacts 0 and L, whereas the base contact must be treated
differently, This is a consequence of the one-dihensional model, éer—
tainly inadequate to represent with comparable degree of realism and
generality the position and property of the third contact for the
device under conslderatlon, If Gummel's general lines [18] are
followed, the value of the majority carrier (hole) quasi-Fermi level
at the position of the base contact is chosen as the additional boundary

condition according to the relation:

it
<

9, (B) - 9,(0) =V (b.1)

or

9,(8) - 9,(T) = Ty,

il
<3

where Vﬁo and VEL are the voltage differences applied between the
base contact and the emitter contact, and between the base contact and
the collector contact respectively. This choice was originally justi-
fied by the observation that the majority-carrier quasi-Fermi le&el is
essentially constant throughout the base and that the position of the
base céntact is not critical. Although this may be well acceptable in

low-injection cases, it is reasonable to expect, in the one-dimensional

model under consideration, both internal and terminal properties to
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become highly;dependent upon the position of the base contact in high
injection conditions. This is a consequence of the significant conduct-
ivity modulation in the base, which is responsible for considerably
different potential drops in the emitter side and collector side of
the "neutral" base for given total currénts, or alternatively different
total currents for specified voltage differences at the contacts., It
is apparent that, in these conditions, the choice‘of the position of
the base contact becomes highly critical,

Although the basic inadequacies of the one-dimensional model can
not be entlrely resolved, the choice o a more realistic boundary coll-
dition may be attempted by specifying the position of the base contact
at the point* where the majority carrier density, or in essentially
equivalent terms the conductivity, assumcs the valuc onec would specify
as a boundary condition at the base external contact in a realistic
three~dimensional model, In this case the position of the base contact
must be determined by a successive approximation methodf* as a conse-
quence of the additional requirement introduced. The lack of freedom
in the choice of the position of the base contact in the one-dimensional
model, for a specified boundary condition of the described type, is of
insignificant importance, since there is very little relation between
the position of the base contact in the one-dimensional model and the
actual position in the real three-dimensional device., Results of cal-
culatibns, illustrating the importance of the choice of the position of

the base contact, arc reported in a later chapter.

* 1In the base at the collector side, for normal transistor operation.
** An automatic procedure may be easily incorporated in the computer
Program as part of the solution.
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It is also of interest to observe, as a direct consequence of the
‘dependence of the boundary condition at the base contact solely on the
majority carrier (hole) quasi-Fermi level, that the external base
current is only generated by the difference between the majority
carrier curvents at the emitter and collector side of the base contact,
and not by the minority carrier (electron) current, continuous at the
position of the base contact.

Two boundary conditions on the electrostatic potential, chosen as
the values at the emitter and collector external contacts, complete the
mathematical formulation of the problem., Either of these boundary
values may be taken as a reference value, the other being directly
related to the externally applied voltages V. and VBC and the

BE

diffusion potentials VaE and de of the emiller and collector

junctions respectively:
X @ - 0 = - V. - v v Iy o

4.2, Anzlytical formulation,

The same procedure employed for a two-éontact device to rearrange
the fundamental Egs,(1.16) to (1.21) to the reduced set of Egs.(1.39),
(L.40) (with (1.33), (1.34)), (1.19) and subsequently to the improved
fofm of Egs.(2.5), (2.6), (2.11), (2.12) may be used here for the tran-
sistoy, with provision for the additional boundary condition at the base
contact., This leads to only slight modifications in the final form of
the analytical formulation concerning the hole density distribution and

the terminal properties.
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It is appropriate to define two domains in the interior of the
device:s
emitter domain for 0<x 3B
collector domain for B=sx=<1L
At the interface of the two domains the hole gquasi-Fermi level is
specified by the condition (4.l1), which, with the aid of the definition

(1.25), may also be rewritten as:

p(B) = expl@ (B)-4(B)] = exple (0)+Vpp-y(B)] = p(0) exp(y(0)+Vyy-4(B)]
(k.3)
to give a boundary condition on the hole density at the base contact in
terms of the hole density and the electrostatic potential at the
emitter contact, the base to emitter external voltage and the electro-
static potential at the domain interface, The hole density and hole
current distributions in the two domains assume the following form

(which corresponds to Rqs.(1.34) and (1.L0) for the two contact device):

B

p(x} = et ) 'pr(x') Jp(x') VXD gyr p(B) e ¥(®)

_ 5 |

X p(B) e‘MB)-p(O) e“"(O> —_gyp(x) ew(x) ZU(X')dX')dX
Jp(x) =fU(x') ax"' + 5 :

0 { yp(x) eﬁf'(x) dx

(4.1)

for U=sxsB, and
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for B =x <L and p(B) is given by the condition (4.3). Express-
ions for the electron density and electron current distributions valid
throughout the wkole interior of the device (0 < x <L) are still
given by Eqs.(1.33) and (1.39).

| The same considerations of Section 2.2 lead in each domain to
impréved analytical formulations for the hole density essentially
equivalent to those presented for a two-contact device. For example,
for the simplified case characterized by absence of recombination
[U(x) = 0] and constant mobilities, the following relations apply for
forward and moderale reverse-blas condltions at elther Jjunction, The

electron density throughout the entire device

§(0)-4(L)

5 ¢BL—¢(O) ‘1’(")"‘1‘31,

(T) ) ‘n(o)e
. F "/ (x) e
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is valid for 0 <x < L, with

g Yo =t (! x e x?
F§§)(X) =="/ﬁelBL lx )dx' , F(T)(x) =~/”G¢BL #( )dx‘
0
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The hole density throughout the emitter domain

B)-¢(0 5(0) =
) : P(o)eu( o8] g i(x)
p(x) = BIPe(x) + e 6ere(x) Fpe(B) e
(&.7)
is valid for O < x < B, with
B(x") o T ) g
%Jﬂ:j@ 5 F@J@=f€ !
0 b'e
B)-4(0
2
p(B)e _y(0) + (B
O = ’ Yom =
r(0)
The hole deansity throughout the collector domain
- (L) -
{ B p(L)ew( e bpr ¥ ()
v(x) = ch(x) + e ‘ ecFIpc(x) ch(L) e
(4.8)
is valid for B <x < L, with
X L
§(x) =gy (%) =gy,
ch(x)*=-jﬁe dx ; FIpc(x) ='jfe dx
B X
§(B) =~y (L
5 - p(B)e 2 . _¥(B) + ¥ (L
c p(L) ? a1, = 2

The introduction of the scale factors Ya1, and ¢OB’ together with
the additional rearrangement of terms, extends the range of numerical
"application of the above relations to moderate reverse bilas, according

to the restrictions:
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va 2z R - VaE

r oR -
Y = 2R Vd

BC C

where R 1is the parameter defined in Subsection 2.2.2, and VBE’ Véc

and VdE’ Vac are the normalized applied voltages and diffusion
potentials defined in Seetion L. 1. Considerations similar to those pre-
sented in Subsection 2.2.2 lead to the corresponding relations for the~
carrier density distributions at any reverse~bias condition,

Terminal currents are, in the general case, easily recovered with
the aid of Egs.(1.39), (4.4) and (4.5). For instance, the base current
Jg is given, as the difference between the emitter current JE and

collector current JC’ by:

Ig = Jp~Ju = [Jn(x) + Jp(x)] - [Jn(x) o+ Jp(x)] =
x in emitter » x in collector
domain domain
B X
5 p(2)e/®) p(0)etO)- [y (et () IU(X,)dx,)dx
x‘jﬂU(x)dx + - = 0 0
0 ‘é-yp(x)eq[(x) dx
L X
p(L)e¢(L)- p(B)ew(B) '.f’Yb(X) e¢(x)_[’U(x')dx’)dx
- : - (4.9)

= :
.%'yp(x)e¢(x) dx

The sign convention for the external currents is shown in Fig, 4,2

4.3, TIterative procedure for the direct and reverse problenm,

The same iterative scheme described in Section 1.3 for a two-

contact device is applicable to the transistor, for the solution of the
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|

VBE = pase~to~emitter voltage (positive for forward-biased
emitter junction)

VBc = base~to~collector voltage (positive for forward-biased
collector junction)
Fig. 4.2, Sign convention for the applied voltages and ex-

: ternal currents: currents are positive if flow-
ing in the indicated directions.
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direct problem, The emitter to base and collector to base voltage
‘differences are specified, a trial potential function is chosen (con-
sistent with the boundary condition (4.2)), and the recorbination-
generation term is set to zero for the first cycle. The values of the
mobile carrier densities at the emitter and collector external contacts
are determined, in the general case, by the combination of relations
(1.28) with Egs.(1.39) and (4.4) specialized at the emitter external
contact and with Eas.(1.39) and (4.5) specialized at the collector
external contact, with the aid of a secondary iteration loop if necess-
ary. Mobile carrier density distributions are given by Egs.(k.6), (L.7),
(4.8) for the constant mobility, absence of recombination case (or by
their generalized equivalent if required). The same proéedure, formula-
tion, and numerical'techniques described in Subsection 2.3.3 may be used
for the solution of Poisson's equation (1.45) with boundary conditions
(1.43), to obtain an improved potential distribution and restart the
cycle.,

The combination of the described iterative scheme for the direct
problen with an interpolating procedure of the type described in
Subsection 3.3.1 may be used for the solution of the reverse problem on
either junction or both simultaneously (that is, for the case that

elther one external current and one voltage difference between terminals

aor two external currents are specified).



95

3

4.4, Conelusion.

Since freedom is available in the choice of the doping profile in
the method presented in Chapters I and IT for a two-contact device, the
numerical solution of multiple-junction two-contact devices does not
require'any variation in the previously described formulation., If a
three-contact device is considered, such as the bipolar transistor
examined in this Chapter, additional boundary conditions are necessary
fully to determine the mathematical problem,

The implementation in the one-dimensional model of realistic
boundary conditions has been shown to be a difflcult task, As an
alternative to Gummel's original method [18], a more realistic repre-
sentation of the boundary condition on the external base contact has
been attempted through a slightly different approach., The position of
the external base contact in the one~dimensional model has been treated
as a parameter dependent upon additional properties imposed on the
mathematical base contact, ré.ther than as an independent parameter [18].
One motivation for this choice is the little relation between the
position of the base contact in the one-dimensional model and the actual
one in the three-dimensional device.

Minor rearrangements in the analytical formulation discussed for a
two-contact device and in the iteration scheme to incorporate the
additional boundary conditions have been presented to extend thé method
to the transistor. Results for a particular structure, under various
blas conditions, (obtained with a slightly modified version of the
computer program of Appendix C) illustrate Eoth internal distributions

and terminal properties, and are reported in a later chapter,
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Further extensions to more complex multiple-junctions and multiple-
contact devices may be attained by the same procedure, However, for
such cases it would be desirable, as has been made apparent by the
example of the bipolar transistor, to allow more realistic models

through development of multidimensional solutions.
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CHAPTER V

ON THE ACCURACY OF THE NUMERICAL RESULTS

In this Chapter the sources of error are individually analyzed
and theilr influence on the final results is examined. Techniques
sultable to control the magnitude of such errors are discussed, and a
realistic criterion for the evaluation of the consistency of the
results achleved is described and accepted as a satisfactory means of

accuracy estimation,

5.4, Generalities,

One of the most delicate problems of the numerical solutions
presented 1ls indeed related to the accuracy of the results obtained.
This peculiarity is to be consistently expected in most problems ine
volving the solution of the bipolar transport equations applied to
semiconductor junctions and must be regarded as a feature inherent in
the pertinent expressions which suffer from serious hindrances, such as
the variation of the relevant quantities over extremely wide ranges and
small differences between nearly equal nunbers.

The ideal approach to this problem consists in the determination
of the single errors (or proper bounds) introduced by each elementary
operation to achieve an estimation of the total error for a particular
algorithm chosen, An alternative method may restrict the evaluaﬁion of
the accuracy solely to the final results by testing their consistency
with an appropriate set of relations. These "testing relations" must
then feature finite difference schemes and numerical errors different

from those exhibited by the actual expressions which originally genera=-
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ted such results and must conveniently expose the discrepancies, which
will then serve as a measure of the accuracy achieved,

Preference will be given, in the following context, to the latter
approach, rather than to the former more rigorous one, whose difficul-
ties seem to prevent a sufficiently realistic estimation of the total
error. The problem may then be considered threefold:

(a) searching all the single sources of error fresent in the pro-
cedure

(b) analyzing the influence of each error on the'accuracy of the
final results and devising techniques to minimize such
influence

(c) constructing an appropriate set of "testing'relations" to
evaluate the consistency of the results.

These three aspects of the problem will be considered separately in the

following sections,

5.2. Sources of error.

5.2.1, Discretization error,

The exact analytical formulation, describing mathematically the
physical phenomena, is approximated by a discretized formulation, which
evaluates and recognizes the quantities at a finite number of points
only. An error may then be introduced whenever an operation is per=
formed on a discretized Tfunction; the magnitude of such error depends
on the order of approximation used, Two basic operations are of
interest in the present context:

' + §(x) + constant

(a) quadratures of functions of the type e

(b) computation of the First and second spatial derivatives of the
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electrostatic potential,

5.2.2. Numerieal error.

The denoﬁination "numerical error’ is usually given to any depart-
ure of the actual numerical result from the exact solution of the dis=-
cretized formulation, The following sources of inaccuracies will bve
considered in this class of errors:

(a) round-off errors

(b) quantities exceeding the allowed range

(¢) small differences between nearly equal numbers

(d4) interruption of the overall iteration scheme (iteration error).

5.2.3, Physical model discretization error.

If the exact representation in the discretized context of an
abrupt impurily distribution were attempted, a spatial step of zero
wmagnitude would be required at the metallurgical interface. The
impossibility of realizing this conditior introduces an error in the

discretized physical model furnished to the digital machine,

5.3. Muence and centrol of the errars.

5.3.1. Discretization error,

(a) Quadratures.

Particular care must be exerted in the evaluation of the integrals
of functions such as e: b(x) ~ constant’ especially in the transition
region, in which {(x) 1is forced to a considerable variation in both
magnitude and derivatives., The problem has been examined in detail in
Section 2,3 and treated by the automatic selection of a non-uniform

Step distribution, based on the criterion of achieving constant accuracy

at each step in the pointwise integration throughout the interior of
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the device. The magnitude of the error may be specified a priori, its
lower limit being determined by the max:x.mum nurber of points the pro-
gram allows for, Alternatively, the total number of points may be
specified, with reference to the storage capabilities of the machine,
computer time the programmer is willing to accept, and accuracy in the
final results, A further reduction of the truncation error may be
successfully achieved, for a specified number of éoints, by adopting
higher order discretization schemes, for instance of the type shown in
Section B-1 (Appendix B).

(b) Differentiation.

The iterative procedure described requires two differentiations in
the solution of Poisson's equation: the second derivative of the
elecbroslatlc potentlal ¢(x) and of the correctlon &§(x). It has
already been observed (Subsection 2,3.3) that the truncation error
pertinent to the latter quantity is by no means connected to the error
of the final results, if convergence occurs, ©Since the step size is
already determined by the quadrature requirements, the truncation error
introduced in the differentiation of ¢(x) may be solely controlled by
the order of the finite-~difference ‘sr-.heme employed. A successful ime
prOVemént of the accuracy is then strictly dependent upon a "well-
behaved" shape of the function {(x) and its derivatives. This is
indeed the case in the problem under consideration, with the excéption
of a short region about the metallurgical interface, where the cﬁrvature
of the electrostatic potential (i.e., the net charge density) undergoes
a variation of several orders of magnitude., This peculiarity is cer-

tainly enhanced by an abrupt impurity distribution, in which case the
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entire variation occurs, in the discretized model, in one step length,
The higher order derivatives become extremely large there, causing a
huge truncation error in the computation of Qfﬁﬁgl at the points
close to the metallurgical interface, for any fiﬁite difference scheme,
For the abrupt case, since the problem is particularly serious, an
extrapolation technique on the discretized ¢(x), on both sides of the
interface, has been attempted. This procedure, wﬁich indeed would have
considerably lessened the difficulty, had to be discarded, since it
impaired beyond tolerance the overall convergence of the iterative
scheme. However, the dlslurbance created at the interface by the dis-
continuity of theqhigher derivatives of {(x) may be confined to a
very narrow region if the step is there further reduced* Py one or more
orders of magnitude, Such additional constraint is then relaxcd awey
from the interface, to allow the step to resume the appropriate magni-

tude previously selected, This "step-compression technique", merely a

palliative, has proven to succeed in localizing the disturbance on the

2 x the transition

internal distributions to a region as short as 10~
region length. Also in consideration of the insignificant effect of
such error on the terminal properties of the device, this solution is to
be considered acceptable for any practical purpose.

If the electric field distribution throughout the device is also

desired, the above may be applied also to the computation of the first

derivative of ¢(x).

*  The smallest step, according to the selectlon described in Subsection
2.3.1, is usually located at the intcrface.
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Several finite~difference schemes are reported in Appendix B,
suitable for the computation of the first and second derivatives of a

function availeble in discretized form at unevenly spaced points,

D.3.4., Numegical.error.

(a) "Round-off error.

A round-off error in introduced, in general, at the execution of
any elementary operation on quantities represente& with a finite
numper of digits. This type of error is then strictly dependent upon
the machine employed; in the present case a choice on either 8 (single-
precision arithmetic) or 16 (double-precision arithmetic) significant
digits is available,

Also in consideration of the significant exposure of the round-off
error caused by the presence of unfortunate conditions (such as small
differences between nearly equal numbers), double precision arithmetic
is certainly required whenever good accuracy (5-6 exact significant
digits) in the final results is desired, The round-off error will then
certainly be negligible when compared to other types of error, and does
not deserve any further attention. On the other hand, the adoption of
single~precision arithmetic in a sound algorithm will be responsible
for round-off errors comparable to low-order truncation errors and will
5till lead in most cases to reasonably accurate resulbs (2=-4 exact

*
significant digits).

*  The total number of points is also limited in this case by the
round~off errors on the smallest step,
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(b) Quantities exceeding in magnitude the allowed range.

The range of the numbers a digital machine is capable of handling
is usually limited and may not satisfy the réquirements of certain
formulations.a This has been indeed the case in the problem under con-
sideration; an appropriate numerical formulation has thersfore been
devised (Subsection 2.2.2) to avoid gross errors leading to meaningless
results, |

(¢) Small differences between nea:z:ly equal numbers.

This problem arose in Subsection 2.2.1, where its influence‘on
the computation of the electron and hole distributions was discussed,
A rearrangement of the algorithm succeeded in eliminating such sources
of error from the relevant expressions., This is indeed the ideal
approach for this kind of problem, since, in general, increasing the
number of significant digits is not an acceptable solution. A similar,
but less serious problem, is also present in the right-hand side of
Poisson's equation (Eq.(1.19)). A considerable relative error may be
introduced in the computation of the net charge, in the highly neutral
regions of the device; this may well be tolerated, since the only con-
sequence is an ingignificant absolubtec crror in the second derivative of
the electrostatic potential,

(d) Iteration error.

The interruption of the overall iteration scheme afher a f‘inite
number of cycles introduces an error. In consideration of the fast

’ X
convergence observed, 1t seems reasonable to accept as a measure of

* 815 iteration cycles reach a correction &§(x) < 1077 . Vg for an
abrupt junction, with first-order theory trial potential function,
for low and moderate injection., More iterations are required for
very high injection cases.
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such "iteration error" the largest correction §(x) for the electro-
static potential, over all x, achieved at the last cycle. The magni-
tude of the iteration error may then be specified by the programmer
and inserted as DATA to interrupt the iterative procedure,

The magnitude of the dominant error in the entire procedure may
serve as a convenient guide for the most economical choice of iteration
error., '

5.3.3. Physical model discretization error.

Limiting factors such as the upper bound for the ratic of consecuw
tive stepg, the total number of points, and the round-off crror
deternine the minimum step size, The discretization of an ideal abrupt
impurity distribution, useful for comparison with the first-order theory
results, may therefore not be realized exactly. However, only discrepf
ancles of insignificant amount, and confined to an extremely narrow
region about the metallurgical interface, are thus introduced, A
reduction of this error is in any case obtained with the "step compres-

sion" technique mentioned in Subsection 5.3.1 (b).

5.4, Testing criteria of the accuracy of the results,

Same guanblilles may be expressed 1ln verms of varlous analytically
equivalent formulations, whose numerical counterparts display errors of
quite different nature and magnitude. These may be used to expose the
inaccuracy of the results, From the fundamental equations (1,16) to
(1.21), and subsidiary relation (1.22), specialized for simplicity for
the zero-recombination case, the following set of reiations may be
obtained.

(a) Electric field:
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( E(x) = - —LH é:i - (5.1)
X

| B0 - f [o(x")on(x') + N(x')] ax' + B(0) (5.2)
0 )

[ ) =£[p(x'>-n<x'>'+ N(x')] axt + B(L) (5.3)

(b) Currents:

( n(o) e‘\lI(O) - n(L) e”‘b(L)

Iy = T (5.4)
| g'yn(x) uﬂb(x) dx
{ J, = - Q;—%—}—{-)-[n(x) - B(x) + El—é-x}f-l} (5.5)
n(x) dcpn(x) eﬂf(x) de (Pn(X)
T T TN T ©-6)
L
ST [Imm « n(x) @x - (L) + n(o)} (5.7)

( T = 2(0) ') - p(0) MO (5.8)
{\’p"” RicINFm
5 - Tj’ﬂ {- p(x) * E(x) + %l} (5.9)
v (x)

p(x) dep_(x) emw(x) de P
J Y

- YP(X) dx = yp(x} dx

5L
5=k [fm(::) + plx) ax - p(E) 4 p<o)} (5.12)
\ .{;Yp(x)dx 0

(5.10)
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Equations (5.4), (5.8) are the actual expressions used in the numerical
solution to compute the total current; the identity of Egs.(5.6) and
(5.10) with Eqs.(5.5) and (5.9), respectively, is easily verified with
the aid of the definitions (1.24) and (1.25); Egs.(5.7), (5.11) are
readily obtained by integration of Egs.(5.5), (5. 9) respectively.

(e¢) Consistency of Poisson's equation:

) -
epe(x) 2 | (x) - n(x) + N(x) + d—-ﬁ\;—}{%—’] [1p(x) - n@x) + ¥E)D (5.12)
ep () 8| p(x) - n(x) + N(x) - %—}/Ep(x) - n(x) + N(x)] (5.13)

(d) Incremental surface charge:

d(cL - co) d[E(L) - E(0)]
v, =T av, (5.14)
d(oy - og) fan(x) L ap(x)
A =.Of T, dx -j(;-—-—--dVA dx (5.15)

The consistency of the final distributions of (x), n(x), p(x)
may be evaluated first by comparing the discrepancies on the electric
field at each point obtained from relations (5.1) to (5.3). Such dis-
crepancies will be exposed by relations (5.5), (5.6), (5.7), and (5.9),
(5.10), (5.11), if compared to relations (5.4) and (5.8), respeéﬁively.
The usual small differences between nearly equal numbers are present in
Lhe lformer sel and are in lhls lnstance usefully exploiled, Equalions
(5.5), (5.6), (5.9), and (5.10) conveniently expose the error at each

point in the interior of the device, leaving to Egs.(5.7), (5.11)to
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show the overall effects of the various internal inconsistencies on
the terminal properties, The relative eéror aPs(x) given by
relation (5.12) is directly dependent upon the specified iteration
error [Subsection 5,3.2 (d)] if 93&&%1 is computed with the same
finite-difference scheme, e

The consistency of Poisson's equation in terms of the electric
field may then be tested with the aid of relation (5.13) and comparison
of the two relafive errors e%s(x) and aPs(x).

Relations (5.14) and (5.15) yield an indication of the accuracy of
the incremental capacitance by comparing the iIncremental surface charge
at the external boundaries evaluated first in terms of the field

variation at the contacts and second in terms of the incremental net

charge in the interior of the device,

5.5. Couelusion,

Several types of errors arising in the numerical solution under
consideration have been described, their importance and influence on
the overall accuracy hao been illustrated, mcans to control within
limits the magnitude of such errors-have been suggested, and criteria
suitable to evaluate the accuracy of the final resulits have been stated,
Tne abruptness of the assigned doping profile has been recognized as a
determinant factor for the overall accuracy, since it affects very much
the magnitude of the truncation errors of the numerical operations.

Ihe step distribution for the impurity density represents the worst
case numerically, since it maximizes discretization errors. This ideal

situation, although unrealistic from a technological point of view, has
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been selected to perform a series of actual aumerical calculations
also in order to test severely the accuracy of the solution under
extreme conditions. Some of the results obtained for such ideal

structures are discussed in the next Chapter,
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CHAPTER VI

RESULTS

Solutions obtained with the numerical procedure described in the
previous chapters are presented for a few special structures., A
narrow-base abrupb asymmeleic N-P dlode and an N-P-N lransistor, wilth
external contacts of the ohmic type, are considered. The effect of a
finite surface recombination wvelocity at the external contact of the
high-conductivity side of the diode is also analyzed., Distributions
of electrostatic potential and quasi-Fermi levels, mobile carrier and
net electric charge densities, and increments of mobile carrier densi-
ties for a small inerement of applied voltage are shown as functions of
position throughout the interior of the device, Terminal properties
including currents and total incremental capacitance versus applied
voltage are illustrated. "Exact" and conventional approximate

analytical results are compared, and discrepancies are exposed.

6.1. Generalities.

in the previous chapters a numerical method of solution of the
one-dimensional two-carrier transport equations describing the behavior
of semiconductor Jjunction devices has been described in detail,
Difficulties arising in the numerical aunalysls of the problem have been
exposed. and overcome; criteria for the evaluation of the accurac& of
the final results have been stated.

Although both method of solution and numerical techniques allow
- for arbitrary doping profiles, recombination-generation law, boundary

conditions at the external contacts, and mobility dependencies, results
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for a speclal type of idealized structure are presented as an example
of numerical computation for a two-contact and a thfee-con1:;1.ct device.
Absence of recombination in the interior of the device [U(x) = O],
abrupt asymmetric impurity distribution, and constant mobilitles are
assumed, The analysis is restricted to "short" structures (with
respect to diffusion lengths) so that recombination effects other than
at the contacts may be neglected, The choice of ébrupt doping profiles
has two motivations:
(a) the achievement of an extensive analysis for the numerically worst

case represenlbed by abrupt variations, |
(b) the comparison between "exact" and approximate analytical solutions

only available for ldealized structures.
Motivation (b) also justifies the selection of appropriate conetan*
values for the cérrier mobilities,

Results, obtained for an idealized two-contact, single-junction
device and a three-contact double-junction device, are presented and

discussed in the following sections.

6.2. A two-contact device: the N-P diode,

A short N-P structure of the type illustrated in Fig., 1.1 is
considered first. Absence of generation-recombination in the interior
of the device [U(x) = 0], highly asymmetric step distribution for the
impurity denslty, and constant mobllities are assumed. The device will

be examined under two different types of external contacts,
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6.2.1. External contacts of the ohmic type.

In addition to the above assumptions, external contacts of the
ohmic type (Eg.(1.32)) are specified for the N-P device under consider-
ation. The physical parameters characterizing the structure are listed
in Table 6.1.

For various applied voltages the electrostatic potential and
the quasi-Ferml levels Qo wp are shown in Fig., 6.1 as funclions of
position, the mobile carrier densities =n, p and the net charge p
in Fig. 6.2 (semi-logarithmic scales) and in Fig. 6.3 (linear scales),
and the increments of mobile carriecrs An, Ap for a omall incrcment
of applied voltage (0.1% of the potential drop across The transition
region), in Fig. 6.4, A dashed vertical line indicates the position of
the metallurgical interface at x = 0.2, Terminal properties (current-
voltage characteristic, and total incremental capacitance versus
voltage) are depicted in Figs, 6.5 and 6.6. Quantities are displayed
in normalized form; currents and caﬁacitances are gilven per unit cross-
sectioﬁal area, Both exact and first-order results (identified by the
superscript "f") are displayed wherever appropriate (the first-order
net charge density is not shown in the high-conductivity side because of
the narrowness of its depleted region); the carrier and net charge den-
sities are compared at the same value of total current, and the
electrostatic potential and quasi-Fermi levels at the same value'of
applied voltage.

The first-order results displayed are generated by the simple
conventional formulation briefly summarized in Appendix A, The electro-

static potential distribution w(f) is given in the variocus regions by .
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Material: germanium (relative permittivity = 16)
Temperature: 3OOOK
N-side, N(x) nkmb - 104 (or 2.5 % lOJ'7 cm-3)
Doping: 5 15 -3
P-side, =-N(x) = N, =10 (or 2.5 x 1077 cm ~)
( -l

N-gide, M-0 = 0.2 (or 0.1913 x 10  cm)

Length:

) «| forward bias L-M = 1.4 (or 1,339 x I)-hcm)

P-Side, "
reverse bias L-M = 3.0 (or 2.870 x 10

N

cm)

12

electron, Y;l =93 (or - 3600 cmz/volt-sec)
Carriler mobilities:

hole, y;l = 44 (or T 1700 cmz/volt-sec)

Table 6.1, The physical parameters characterizing the N-P
structure, analyzed under stecady-state conditions
for variocus applied voltages,

¥  Consistency with the first-order theory model requires a slightly
longer structure in reverse-bias cases. Boundary effects not
accounted for by the first order theory, such as the contribution
to the total .incremental capacitance of the sheet of charge at the
external contacts, are then negligible,



Electrostatic potential

and quasi-Fermi levels

Q

D

@

1
00 0.2 0.4 06

1
C8 10 .2 - 14 16
Position coordinate x

Fig. 6.l1a.. Structure of Fig. 1.1; parameters of Table 6.1; boundary conditions (1.32).
Electrostatic potential and quasi-Fermi levels as functions of position.
High forward bias case (VA = 22).

€Tt



Electrostatic potential
and quasi- Fermi levels

Ly
N
)

I
e I

I
-4 |

’ W) (ep
0 e

!
aq- | ¢(f}) v =10

P

i e
8 i ] 1 i 1 1 1 1 1 1 1 1 1 ! 1 |
00 0.2 04 06 0.8 1O 2 14 16

Position coordinate x

Fig. 6.1b. Device as in Fig. 6.la. Electrostatic potential and guasi-Fermi levels

as functions of position. Hoderate forward bias case (VA = 10).

HTT



Electrostatic pétentic!

and quasi-Fermi levels

E
8 | ’ -
al- l P
‘ w6
0 VA=4
I
i 1 |
| 1 I 1 1 1 !
00 0.2 o4 06 08 1.0 1.2 14 16
Position coordinate x
Fig. 6.lc.’ Device as in Fig. 6.la. Electrostatic potential and guasi-Fermi levels as

functions of position. Low forward bias case (VA =L},

STT



@
?

|
D

-Fermi levels
o

-20

Electrostatic potential

and quasi

y

.
.e"
©w

[

—10;/)| Vy=-40

| { | 1 | I 1

91T

O 1
00 04 0.8 1.2 16 2.0 24 28 22
Position coordinate x

Fig. 6.1d.. Device wus in Fig. 6.la. Electrostatic potential and quasi-Fermi levels as
functions of position. Low reverse bias case (VA = -Lo).



Electrostatic potential
and quasi-Fermi levels

-250 - | :
| Vp=-200
|
|

-200+ 1
|
|
|

-150+ ]
|
|
5 -
| -

-100F | 3
|
!
]
|

= @
|
]

S . .
0 yd ! 1 ; 1 L ! 1 ] ! ! 1 1 I 1
00 04 08 1.2 16 20 24 28 32
Position coordinate x
Fig. 6.1e. Jdevice as in Fig. 6.la. Electrostatic potential end guesi-Fermi levels

as functions of position. Moderate reaverse bias case ('\;’A = -200).



Mobile carrier and net charge densities

Toml®
102
1073
|O—4_
105 _ ! 1 I 1 1 1 1 1 j 1 ! 1 1 !
0.0 0.2 04 06 08 1.0 12 14 16
Position coordinate x
Fig. 6.2a. Device as in Fig. 6.la. Mobile carrier and net charge densities as functions
of position (semi-logarithmic scales). High forvard bias case (V. = 22).

A

81T



Mobile carrier and net charge densities

VA'—'iO

1075 L 1 1 1 r ! 1 ! 1 1 ! } 1 1
00 0.2 04 06 08 - 10 12 14 16
Position coordinate x
Fig. 6.2b. Device as in Fig. 5.1a. lobile carrier and net charge dcnsities as

functions of position (scmi-logarithmic scazles). Moderate forvard
bias case (VA = 10).

61T



Mobile carrier and net charge densities

104
1075 L 1 1 1 1 { - 1 1 1 1 1 1 1
0.0 0.2 C4 0133 08 1.0 L2 14 16
Posiiion coordinate x
i . . ice as in Fig. 6.1a. Mobile carrier and net charge densities as fv:nc-—
Fig. 6.2¢ Device a & Low forward bias case (\"A =L},

tions of position (semi-logarithmic scales).

0etT



102

S

o—

3

Mobile carrier and net charge densities
3 S
W w—

1074

10-5

1 i 1 I i H {

!
.0 04 08 : L2 L6 20 24 28 32

Position coordinate x

Fig. 6.2d. Device as in Fig. 6.la. Mobile carrisr and net charge density as functions
of position (semi—logarithmic scales). Low reverse bias case (VA =-40),



dﬂ

10!

102

03

Mobile carrier and net charge densities

jo~4

107°

} 1 I

1

] H 1

1076 1 i 3 L 1 1

i
0.0 04 08 1.2 1.6 20
Position coordinate x

Fig. 6.2e. Device as in Fig. 6.1a. Mobile carrier and net charge densities as

functions of position (semi-logarithmic scales).
bias case (VA = -200). :

24 28

Moderzte reverse

32

XA



10,000

Mobile carrier and net charge densities

7500

t

5000

2500

!

ﬂﬂ

VA:EZ

[ SRS

z :

%0 02 04 06 03 10 12 14 6
Position coordinate x

Fig. 6.3a. Device as in Fig. 6.la. DMobile carrier and net charge densities as functicns

of position {linear scales). High forward bias casec (VA = 22).

€2T



200

150} f
o) || (®)

100} _ AN

Mobile carrier and net charge densities

et

50}
n
0 1 ] T~ ! i ! ' I ! | !
0.0 0.2 04 06 08 10 .2 13
Position coordinate x
Fig. 6.3b. Device as in Fig. 6.1la. Mobile carrier and net charge densities as
functions of position (linear scales). lioderate forward bias case

(VA = 10).



Mobile carrier and net charge densities

200

V4
150
100
[
n
A\
50
0 : ! ! | 1 ] 1 1 1
0.0 . . . 08 10 L2 .4 16
Position coordinate x
Fig. 6.3(:1. Device as in Fig. 6.1la. Mobile carrier and net charge densities as

functions of position (linear scales)

Low forward bias case (VA = 1),



0.8

o
D
|

o
N
!

Mobile carrier and net charge densities
o
D
i

O ! — 1 1 1 1 ! 1 1
00 0.2 04 06 08 1.0 12 14
Position coordinate x
Fig. 6.3cé. Device as in Fig. 6.1a. Mobile carrier and nct charge densities as

functions of position (linear scales).

Lov forward bias case (V

A

.

92T



Mobile carrier and net charge densities

2001
VA=-4O
150t ,
»
100 \ ‘ :
s
[\@ P < R‘;
0O J k L1 i ! ! ! 1 ! ! I ; )
00 04 0.8 1.2 1.€ 20 24 28 32
Position coordinate x
Fig. 6.34d. Device ‘as in Fig. 6.la. Mobile carrier and net charge densities as func-
tions of position (linear scales). Low reverse bias case (V. = -b0),

A



0.25r

| Ap -
| 22
24 | -3
EO.EO AV=1.2359x10
@
£
o
S 015
R An
8
8010 '
0 ]
a I
=005 |
I
0 | 1 1 1 1 I L L 1 1 1 L I
00 02 04 06 08 10 12 v 6
Position coordinate x '
Fig. 6.4a. Device as in Fig. 6.la. Mobile carrier density increments as functions

of position, for a small increment AV of applied voltage (llnewr scales).

High forward bias case (VA 22).

gcT



035 I

I : Va=10
0.30}- Ap AV=44981 x 1073

o o
(@] h b
= n
g o 9

Mobile carrier increments

Qo
2

005~

0 i ! i t i 1 i i i 1 : i i 1
00 0.2 04 06 08 1.0 12 14 16

Position coordinate x

Fig. 6.4v. | Device as in Fig. 6.la. Mobile carrier density incroments as furctions of
position, for & small increment AV of applied voltage (linear scales).
Moderate forward bias case (VA = 10).

62T



Mobile carrier increments

035

VA=4
0.30 l AV=98I69 x1073
|
|
0.25 I
|
020} '
{
|
Q.15+ I
|
010+ *
|
|
0051 !
|
o) I T a 4 i I i ) !
Q0 02 04 06 08 10 I.2 14 16
Positicn coordinate x
Fig. 6.4e. . Device as in Fig. 6.la. lotile carrier density increments as functions

of position, for a small increment AV of applied volizge (linear scales).
High forwsrd bias case. (V, = L).

0€T



Mobile carrier increments

TET

VA=’4O
- AV =053816
LO-
- It
osk !
|
| (o)
i !
J‘L
1 1 | i L 1 ! ! ! R | |
%o 04 08 12 6 20 24 28 32
Position coordinate x
Fig. 6.4d. . Device as in Fig. 6.la. DMobile carrier density increments as functions

of position, Tor a small increment AV of appiied voltege {(linear scales).
Low reverse bias cese (V, = -L0).



132

108

10%

104
2
=
@
ud
3 103
o
102
10
i | J i i
0 5 10 15 20
Applied voltage
Fig. 6.5a. Device as in Fig. 6.la. Current densities as

functions of applied voltage. Forward bias.



133

Applied voltage

-240 -200 ~160 -120 -80 -40 oO o
0.00 7 I ] T — .
-0.02- Jo =02
-0.04 =04 -5
o e
] [
= et
g 5
= -0.06]- 1706 ©
3 In 5
o IS
£ @
-0.08 4-o8 W
~0.10}- —1-10
-0.12 -1.2
Fig. 6.5b. Device as in Fig. 6.la. Current dcnsities as

functions of applied voltage. Reverse bias.



134

250
C(f)
200
ol

®
&
5
= 150~
S
S
a
o
o
5
o
3
£
L
£ 100}
S
3)
*—

50

1 | |
00‘ 5 10 15 20
Applied voltage
Fig. 6.6a Device as in Pig. 6.la. Total incremental

capacitance (per unit area) as a function
of applied voltage. Forward bias.



135

—12.0
-2 .
[Cm]( Schottky)
9
1.5 >
Q
[ g
2
o
o
a
(=]
(]
8
0 3
£
@
-
(8]
R=
S
L2
0.5
1 | | ! 0
-80 -60 -40 -20 0
Applied voltage
Fig. 6.6b. Device as in Fig. 6.la. Reciprocal of the square

of the total Incremental capacltance (per unit area)
as a fuanction of epplied voltage. Reverse bias.



136
Zgs. (A-21), (A-38), (A-37), (A-42) and by the combination of Egs,
(A-12) and (A-15); the eleclron densily disblribullon n(f) vy Egs.
(A-20), (A-30), and (A-12); the hole density distribution p'f) by
Egs.(A-19), (A-35), and (A-9). Relations (A-6a), (A-6b) yield then
the quasi-Fermi level distributions Lpr(lf) ’ cPéf) ’ and the right-hand
side of Poisson's equation (A-L), together with the assumption of
fully-depleted transition region, yields the net élecﬁric charge p(f).
The current-voltage relationship Jﬁf) = Jﬁf)(VA) is given by the
corbination of Eq.(A-13) with Eq.(A-41), and the total incremental
capacitance C(f) by the sum of the expressions (A-54) and (A-55).

The poorgess of the first-order theory assumptions of sharp
boundaries between the depleted and neutral regions is evident in
Flg. 6.2 and particularly in the linear expansilons of Fig. 6.3: with
exception of the reverse-bias cases, the net charge density distribution
has little resemblance to the first~order ldealization. Moreover, the
concept of a depleted regilon appears to be highly unrealistic even at
moderate injection levels,

On the other hand, neutrality is well conserved far from the tran-
sition region, with the exgeption af a narrow region near the external
contact on the P-side at high injection levels. The "ohmic” contact
prevents the conductivity of such a narrow region from being signifi-
cantly modulated, so that the large current causes a high voltagé drop,
or, in equivalent terms, a strong (negative) electric field near the
terminal, Holes tend then to be expelled from this region and electrons

attracted, the consequence being a local alteration of the neutrality

balance, This effect is particularly evident in the very high injection
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case depicted in Fig. 6.2a, which shows how the electron density is
forced to becpme greater thén the hole density in a short region near
the external contact in the low conductivity P-side.

Although the positions of the boundaries of the transition region’
are not well defined, it ﬁay be observed (Figs. 6.2, 6.3) that the
exact distributions indicate, at high injection levels, a width of the
"depleted region" significantly smaller than thaf predicted by the
first-order theory.

On the contrary, the Boltzmann relation for injected minority
carriers, in terms of the exact potential drop across the transition
region, agrees well with the exact equivalent in forward bias. This
may also be verified from the constancy of the exact quasi-Fermi levels
in the transition region. In reverse vias (Fig. 6.2d4, e) the Boltzmanp
relation is in error by many orders of magnitude in predicting the

.minority carrier density at the edges of the transition region, This
discrepancy may be related to Middlebrook's detailed treatment [5] of
the transition region properties of a reverse-blased P-N junction under
varlous conditions of current injection.

The monotonic character of the exact quasi-Fermi levels throughout
the entire length of the device, for any forward bias condition,

reaffirms the incqualitby

.
p(x) « n(x) <e

between the hole-electron product and the externally applied voltage

v This is in agreement with Gummel's recent numerical results [21]

Aa
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for a slightly different structure.

The distributions of the injected minority carriers (Fig. 6.3)
are closely linear in forward bias and would agree well with the first-
order results were the boundary values at the edges of the transition
region predicted correctly.

In spite of the serious disagreement between the distributions of
the relevant quantities in the interior of the de&ice, the first-order
terminal properties are close to the exact ones with the exception of
the very high injection range. The discrepancy in the current-voltage
characteristic (Fig. 6.5a) at high injeetion is generated mainly by
the properties of the external contact of the ohmic type in the N-side
and by the particular structural parameters chosen. The equilibrium
carrier boundary condition at the external contact of the high conduc-
tivity N-side, together with the narrowness of the N-material, tend to
oppose the conductivity modulation of the P-material at the transition
region edge. This effect becomes already significant at high injection
levels and is responsible for a smaller current and a higher potential
drop across the transltion reglon, for a given applied voltage, than
predicted by the first-order theory which does not account for this
phenomenon, A far better agreement is observed if the external
voundary condition of the high conduectivity side is modified by the
introduction of a finite surface recombination velocity, with cénserva-
tion Qf charge neutrality. The hole density at the contact is thus
permitted to increase by several orders of magnitude, with the conse-
quence of a significant decrease of the hole current and increase of

the total current, 'This effect 1s considered in detail in the following
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Section,

The decrease of emitter efficiency (i.e., the ratio between the
injected minority current in the low-conductivity side and the total
current) for increasing applied voltage may be explained as follows,

The quasi-neutral region in the low-conductivity side (P-side), with
exception of the regions adjacent to the boundaries, is considered, In
such a region% at low injectlon, the electron curfent (i.e. the
minority éurrent) is essentially diffusion current, whereas both drift
and diffusion are responsible for the hole current. In any forward bias
case the electron current is given by the arithmetic sum of the drifit
and diffusion terms, and the hole current is given by the arithmetic
difference between the two components., In addition, for any forward
bias case, the hole diffusion component and electron diffusion component
are essentially equal* (this is a consequence of electric charge neutral-
ity in the region considered), and the magnitude of the héle drift
current is always larger than the magnitude of the hole diffusion
current, At high injection the electron density is essentially equal to
the hole density, so that the electron and hole drift components are
essentially equal%‘ It may also be observed, as a consequence of the
essentially linear distributicn of the mobile carriers, that the value
of lle elecltron and hole densities n and p Increases, for an
increase of applied voltage VA, with the same rate as the resﬁective
dp

d . : . . R
slopes 5% and = - Since also the electric field increases for

* ° The difference in electron and hole mobilities, or diffusion con-
stants, is unimportant for the present reasoning. It is also
recalled that both J_ and J_ are independent of position
throughout the entire“device, ¥
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increasing Vs it may be concluded that, for both electron and hole
‘currentsg, the magnitude of the drift terms increases faster than the

magnitude of the respective diffusion terms, for an increase of Voo

It is then apparent that the ratio

ig . I(Jn)driftl i I(Jn)diffusionl
J - _ b
P ) aries]l = 10p)a1prusion!

and coﬁsequently also the emitter efficilency, decreases with increasing
applied voltage.

The first-order dominant current is not shown in the reverse
current-voltage characteristic (Fig. 6.5b) since its magnitude is
approximately only 1% larger than the exact equivalent. Both minority
and majority currents are highly dependent upon the structural parame~
ters, through the lengbh of the respective quasi=-neutral regions,

The tendency of the device to behave inductively at very high
injection is apparent in Fig. 6.6a, which exhibits a decrease of total
incremental eapacitance C for inecreasing applied voltaée. Al though
the graph of l/C2 versus reverse voltage (Fig, 6.6b) is closely
linear; it is slightly displaced from the straight line representing
Schottky's capacitance, This discrepancy is responsible for a signifi-
cant error (= 25% in the present case) in the evaluation of the barrier
potential by extrapolafion of capacitance measuremenfs, and is related
to the inaccuracy of the first-order theory model in assuming depleted
regions with sharp boundaries, as discussed above, Chang's approximate
treatment [22] of the total incremental capacitance, based (although

not explicitly stated) on the constancy of the quasi-Fermi levels in
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the transition region, leads to results in good agreement with the
exact ones (Fig. 6.6b). This is once more indicative of the little
effect on the terminal properties of drastic first-order assumptions in
reverse-bias conditions, in spite of the serious departure of the exact
quasi~Fermi levels from the constant first-order value in the transi-
tion region (Fig. 6.1d, e).

The computer program used for this set of caiculations is reported

in Appendix C and D.

6.2.2. A finite value of surface recombination velocity at one

cxternal contact,

In the previous Subsectlon the discrepancy between the exact and
first-order current-voltage characteristic at high injection levels
(Fig. 6.5a) was exposed. This affect was attributed to the imposed
equilibrium boundary condition at the external contact of the high-
conductivity side, the narrowness of which enhances the phenomenon.
Tnis situation is examined in detail in this Subsection, by analyzing
the effects intréduced by modified boundary conditions on the mobile
carrier densities in the high-conductivity side.

A‘model characterized by absénce of recombination in the interior
of the device, abrupt asymetric impurity distribution, and constant
mobilities is still assumed. The same physical parameters.of the
structure considered in the previous Subsection, and listed in Table
6.1, are specified, with exception of the doping ratio between the
N-side and P-side, to better expose the effects of interest., The

impurity step distribution is gquantitatively defined by:
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N-side: N(x) = Ny = 106 (or 2.5 x 1019 cm'3)
2 _ 15 -3 (6.1)
P-side: ~N(x) = N, = 10 (or 2.5 x 1077 cm ”)

With reference to Eq.(2.7), the following boundary conditions on the

mobile carrier densities are imposed at the external contacts:

a finite value of surface recombination
N-side (x = 0) { veloclly s, [or lhe minority carrier density,
electric charge neutrality at the contact;
| ((6.2)
P-side (x = L) contact of the ohmic type, di.e. s, = and
N electric charge neutrality at the contact.
/

3

The analytical formilation applicahle fo the case under consideratioenm,
is given by Egs.(2.8), (2.9), and (2.37).
Exact total currents and hole currents corresponding to different’
values of S5 (=, 150, lO)'and the first-order dominant current
(sO = » only) are displayed versus forward applied voltage in Fig. 6.7.
Exact electron and hole distributions for a high-injection case are
shown as functions of position in Fig, 6.8, for the same values of - Sg-
As briefly mentioned in the previous Section, the modified boundary
condilion permits a conslderable lincrease of the hole density at the
external contact of the N-side, with a c5nsequent increase of the mobile
carrier distributions throughout the interior of the device. Whereas
for low to modcratc injection cages the tobal current (essentially

electron current) is unaffected by a change in s at high injection

OJ

levels the total current increases significantly, as 54 decreases,

toward the first-order dominant current (sO = ®). The hole current,

instead, decreases for decreasing o for any injection level up to
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very high values (VA -

So is inverted. At thermal equilibrium, of course, the value of the

surface recombination velocity becomes irrelevant (see Egs.(2.7)),

26), above which the dependence of JP upon

since both Jn and JP are zero, The peculiar terminal characteris-
tics of Fig. 6.7 are interpreted below, by analyzing the effect of the
modified boundary condition on the internal distributions.

The quasi-neutral region orf the high-conductivity slde is con-
sidered first. As a consequence of the high doping ratio between the’
N-side and the P-side, the high conductivity side operates generally
under low-injection conditions, with exception of extremely high bias
conditions combined with extremely low values of the surface recombinaw-
o+ For the case S5 = % and any forward-bias condi-

tion, the electron current Jn is given by the arithmetic difference

tion velocity s

between drift and diffusion components, whereas the hole current JP

is given by the arithmetic sum between the corresponding two components,
in addition, the magnitude of the electron drift component is larger
than the magnitude of the diffusion component, and the hole drift
component 1s negligible with respect to the hole diffusion component,
If 54 is now decreased, and the applied voltage VA is fixed, the
magnitude of the diffusion components (essentially equal for electric
charge neutrality) decreases (with exception of cases combining small
values of 85 with very high bias conditions, in which the diffusion
tem inverts sign and increases in magnitude) and the drift component -
increaées. At low and moderate bias condiﬁions Jp will then decrease,

for decreasing s since the diffusion process dominates, whereas at

OJ

very high bias levels and for small 54 the hole drift component becomes
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dominant, so that the dependence of Jp upon SO inverts direction,
This is apparent in Fig. 6.7 which indicates the normalized voltage

VA = 26 as the point of inversion. Since the electron drift component
alweys dominates, inversion for the electron current does not ocecur,

so that, as shown in Fig. 6.7, I, increases as s, decreases for any
forward-bias condition. This effect becomes significant only for high
current values, at which variations of the hole distribution, for a

variation of s require a significant variation either in the

OJ
electric field or in the electron density distribution,

A different situation occurs in the quasi-neutral region of the
low-conductivity side (P-side), which is now considered with exception
of the regions adjacent to the boundaries. The electron current
(minority current) is given by the arithmetic sum between drift and
diffusion components and the hole current by the arithmetic difference
between the corresponding two components, The applied voltage VA is
considered fixed and 55 is varied. With exception of extremely high
injection levels, the mobile carrier distributions are essentially
linear so that n and p increase with Lhe same rale of %}I-;- ard %.XE
(again essentially equal for electric charge neutrality) as So
decresses. Since the mobile_carrier densities at the edges of the
transition region increase fo? decreasing s, (and fixed VA), the
electrostatic potential drop on the transition region decreases (also
in view of the Boltzmann relation), so that the (positive) electric field
in the transition region decreases. As a consequence, the magnitudé of

the (negative) electric field in the quasi-neutral region under consid=

eration also decreases, in order to maintain the constancy of the
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integral

?E(x) dx
0

required by the assumed fixed VA' This is also related to the higher

rate of increase of the conductivity compared to the rate of increase

of the current, for decreasing 55 and fixed VA. It may be concluded
that, as 55 decreases, the drift components increase slower than the

respective diffusion components, so that the net hole current decreases
as shown in Fig. 6.7, wllh exception of very high Injectlon levels

(VA > 26). In those conditions the assumption of linearity in the

" mobile carrier distributions becomes invalid: the distributions dis-
play a negative curvature consistent with the considerablce variation of

the drift components upon position. As s decreases, n and P

0
increase faster than the respective slopes dn/dx and dp/dx, so that,
in spite of the decrease of the electric fileld, the drift components

increase faster than the diffusion components. This is consistent with

the inversion of the dependence of Jp upon 8 occurring for VA > 26,

0
Cn the other hand, the electron current Jn, as an arithmetic sum of
two increasing quantities, always increases as 50 decreases.

The mobile carrier distributions for the high-injection case of
Fig. 6.8 clearly show, in the region adjacent to the external contact
of the P-side, the unbalance of net electric charge, mentioned in the
previous Subsection, This was attributed to the effect of the strong

electric field near the contact generated by the high current. The

action of the field upon the mobile carriers attracts electrons and
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expells holes from this region, forcing the minority (electron) carrier

density to exceed the majority carrier density.

6.3. A three-contact device: the N-P-N transistor,

As an example of one-dimensional solutions for a three-contact
device, results for a narrow-base N-P-N transistor are presented in
this Section. The special case already discussed.for the diode in Sub-
section 6.2.1, and characterized by absence of generation-recombination
processes in the interior of the device [U(x) = 0], constant mobili-
ties, abrupt doping profile, is here considered and equally motivated.
Emitter and collector external contacts of the ohmic type and boundary
conditions, at the position of the external base contact, of the type
discussed in Chapter IV are specified., The analytical formulation that
applies in such a case has been described in Section 4.2,

The physical parameters characterizing the structure, schematlcally
indicated in Fig. 4.1, are listed in Table 6.2. The values chosen for
the impurity density, with the specified carrier mobilities, yield N«
material with a (thermal equilibrium) conductivity of ZLOLL (n cm)-l
and P-material with a (thermal equilibrium) conductivity of 1 (a cm)'l.

For a fixed position of the external base contact (B = 1.2) in the
quasi-neutral region of the base, and for various bias conditions, the
"exact" and first-order electrostatic potential { . and w(f) and the
"exact” quasi-Fermi levels Py @p are shown in Figs. 6.9a to 6.17a
as functions of position, and the "exact" mobile carrier and net electric
charge densities n, p, p in Figs. 6.9b to 6.17b. Terminal charac~-

Lerislics are displayed in Fig, 6.18 and 6.1y, The effects of modified
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Material: germanium (relative permittivity = 16)
Temperature: 3000 X
emitter (N-type), N(x) = Ny = 69,467 (or 19 -3
1.7367 x 1077 em °)
Doping: base (P~type), =N(x) = N, = 146.85 (or 15 3
3.6712 x 1077 em )
§ collector(N-type),N(x) = Ny = 69,467 (or 19 -3
1.7367 x 1077 em™ )
g
emitter, M - 0 = 0,1164 (or 1.1136 x 1077 cm)
base, My - M = 2.9672 (or 2.8387 x 10'” cm)
Length: < -5 .
- collector, L = M= 0.1164 (or 1.1136 x 10~ cm)
total, L -0=3.2 (or 3.061h4 x lO-ucm)
\~
’ -1 ~ 2
electron, vy =~ =93 (or = 3600 cm”/volt-sec)
Carrier mobilities: , '
1 hole, y;l =4 (or = 1700 cmz/volt—sec)

Table 6.2, The physical parameters characterizing
the N-P-N structure, analyzed under steady-state
conditions for various applied voltages.



0] B
-20 i
wn —10 \
T o
5
§- o @
8 E
.Qlf 10
T ..
% o
°5 b
L v
W g
30,_. VBE = 0O volt VBC =0 volt
40 ] 1 1 ] ! 1 1 | 1 ] I 1 ! i
00 04 08 i.2 g 2.0 24 28 32
Position cocrdinate x
Fig. 6.9a. Structure of Fig. L4.l; parameters of Table 6.2; boundary conditions

(1.32) for the emitter and collector external contacts and (L4.1) for
the base external contact located at B = 1.2. ZElectrostatic potential
and quasi-Ferrl levels as functions of position. Thermsl equilibrium.

0¢T



Mobile carrier and net charge densities

®)
e 22
Z

5
vt [T)
=

9
o
Z

S
—

08k o

o
D
1
e

TET

108 Vge = O volt Ve = O volt

10710 i 1 1 1 i 1 1 i 1 i 1 ! L 1 |
00 04 08 1.2 1.6 20 24 2.8 32

Position coordinate x

Fig, 6.9pb, Device as in Yig. 6.9a, Nobile carrier and net charge densities
as functions of pcsition. Thermal equilibrium,



= (]

.24
Rl
Tt o
Qo
8 E
o
B .L
§ § 20—‘
82 30
LT -
w g
40 Vgg = O volt Vg =1 volt
50 1 t 1 1 i ] 1 ! 1 1 i 1 I t |
00 04 0.8 1.2 1.6 20 24 28 3.2

Fig. 6.10a.

Position coordinate x

Device as in Fig. 6.9a. Electrostatic potential and quasi-Fermi levels
as functions of position. Base-to-emitter voltage V = 0 volt, base-

to- collector voltagze VBC = -1 volt.

BE

A



Mobile carrier and net charge densities

D-a B VBE =0 volt VBC =-| volt

1510 i 1 { 1 i 1 g 1 1 1 ) 1 L

t
00 04 08 .2 1.6 20 24 28 3.2
Position coordinate x

Fig. 6.10b. Device as in Fig, 6.9a. Mobile carrier and net charge densities as
functions of position. Base-to~-emitter voltage V__ = 0 volt,

base-to-collector voltage VBC = =1 volt,"

€aT



Electrostatic potential

O M Mp B Mpc Mc L

= o ' @m |

0 - M*—qiisﬁtb\
o J,"
(8
gz ° (%

E o}
©

]
'g 20+

}._J

& g
©° 30
o

40r Vge = 0.2 volt Vge=-1.0 volt

50 1 1 1 i 1 1 ] 1 1 ) I 1 L 4 I
016 04 0B 1.2 16 2.0 24 2.8 32
Position coordinate x
Fig. 6.11@. Device as in Fig. €.9a, Electrostatic potential and quasi-Ferni levels as
functions of position. Base-to-emitter voltage V__ = 0.2, Dbass-to-collector voltage

BE

V.~ = -1 volt,

BC



Mobile carrier and net charge densities

O M Mp
iolO - I

Ic8

Tel

104

g

102

1072

1074

10-6

078} Vge=02volt  Vge=-LOvolt
1I0°L____1 L 1 1 L i I 1 L L L . 1 1 1
00 04 08 12 1.6 20 24 28 32

Fig. 6.11b, Device as in Fig. 6,%a,

functions of position.

Position coordinate x

Mobile carrier and net charge densities as

Base-to-emitier voltage V__ = 0.2 volt, base-to-collector
~ voltage VEC

5
-1 voIs,

GST



Electrostatic potential

wn

)

>
@

£

o
(3

| g
A ut
14 N
(o]

3

o
ke

c

o

€0r Vgg = 0.5 volt Vg = -1.0 volt
70 1 1 1 1 1 { 1 1 L 1 ! L 1 Lo [
00 04 0.8 i.2 1.6 20 24 2.8 32

Position coordinate x
Fig. 6.12a, Dcvice as in Fig. 6,9a. Electrositatic potential and guasi-Fermi levels as
functions of position, Base-to-emitter voltage Vge = 0.5 volt, base-to-collector

voltage VBC = -1 volt,



(@)
Z
=
3
= (0
=
3
o
=
S
-

Mobile carrier and net charge densities

10-6}
1078~ Vgg =05volt  Vge= 1.0 volt
o710 L 1 ! i 1 1 t 1 ! 1 ! 1 1 1 1
00 0.4 08 1.2 1.6 20 24 28 32

Position coordinate x

Fig. 6.12b. Device as in Fig., 6.9a. Mobile carrier and net charge dernsities as functions

of position, Base-to-cmitter voltaze VBE = 0.5 volt, base-to-collector voltaze VBC = =1 volt,

LsT



_.20 —

40;}2@
O g —— o T T T T T T T T T T me e e e _——

{f) N
IO—¥ \QD ﬁ
20}~ e

30

0 M Mp B Mpe M L
l l i

40t

Electrostatic potential
and quasi-Fermi levels

50+

€or Vgg = 065 volt Vge: —1.00 valt

70 I L ! 1 1 1 1 I 1 i I i t 1 1

00 04 08 1.2 1.6 20 24 2.8 32
Position coordinote x

Fig. 6.13a. Device as in Fig. 6.%9a. TFElectrostabic potential and quasi-Fermi levels as

functions of position. Base-to-emittier voltage Vop = 0.65 volt, base-to-collector
voltage V_. = - 1 volt,

BC

85T



1@

Mobile carrier and net charge densities
1

lo—-4 n
|o-6 L
1078} Vge=065volt  Vge=-100 volt
|0—10 { i | 1 1 1 1 1 1 1 ] 1 { i |
00 04 08 .2 1.6 20 24 2.8 3.2

Position coordinate x

Fig, 6.13b, Device as in Fig. 6.9a, Mobile carrier and netl cherge donsities as functions

of position., Base-to-emitter voltage -VBE = 0.65 volt, base-to-collector voltaze VBC = -1 volt,

65T



Electrostatic potential
and quasi- Fermi ievels

Device ss in Fig. 6.9%a,
cf position,

\2

2 L/?
e
OIcE

n
O
T

N
O
T

D
o)

ol

VBE =0.20 volt

VBC: 0.18 volt

1 1

(@]
o

04

1.2

1
1.6

20

Position coordinate x

Fig. 6.1ka,
Electrostatic potential and quasi-Fermi levels as functions

voltage

Bage~to-emitter voltage

V,. = 0.2 volt, base~to-collector

BE

V.- ~
—_— 0.18 volt.

09T



L]

o

Mobile carrier and net charge densities
O
|

4 Vgg =0.20 volt Vgg= 0.18 volt \
jo10 1 1 i 1 1 I 1 L | ! 1 i 1 1 L
00 04 08 1.2 1.6 20 24 28 32

Position coordinate x

. P . . . . . ‘s .
Fig. 6.,14b. Device as in Fig. 6.9a. Mobile carrier and net charge densities as functions

of position. Base~-to-emitter voltage VBE = 0,2 volt, base-to-collector voltage VBC = 0.18 volt. .

9T



Electrostatic potential

and quasi-Fermi levels

Fig. 6.15a.

!
@)
1

o
:

38
O
1

0
O
1

o

| Vac=02volt Ve = O volt

1 I3 . | 1 i 1 1 i }

D
QCD
(@]

04

08

functions of position.

. i
1.2 1.6 20 24 28 32
Position coordincte x

Device as in Fig. €.9a., Elcctrostatic potential and quasi-Fermi levels as

Base-to-cmitter voltage VB“ = 0.2 volt, base-to~-collector
voltage V_ . = O voli,

BC

s



1081 q

102

)
D

S
D

5 3
£y N

Mobile carrier and net charge densities
5 -
[

3
w
TTNL

V8E=O'2 volt VBC =0 volt b\

1070 I 1 1 i 1 1 1 1 1 1 ! ! 1 1 !
00 04 08 1.2 1.6 20 24 2.8 32

Position coordinate x

Fig. 6.15b. Device as in Fig, 6.9a. Mobile carrier and net charge densities as functions

of position., Base~to-enitter voltage VBE = 0.2 volt, base-to-collector voltage VBC = 0 volt.



Electrostatic potential

Ch

B Mpe M L
{ | l
s O
4
2 =
L
]
‘0
S
2 20f
pe)
5
30 Vgg= 0500 volt  Vgc=0493 volt
40 | i 1 t 1 1 ] 1 1 ! 1 1 1 1 1
(0]0] 04 08 1.2 1.6 20 24 28 3.2

Position coordinate x

Fig. 6.16a. Device as in Fig. 6.9a. Electrostatic potential and quasi-Fermi levels as
functions of position., Base-to-emitter voltage V,., = 0.5 volt, base-to-collector

Voo = 0.493 volt,

_ BE



oM M B Mpc
D0 I {
108 L.
n n

o

Mc L

,OW%@ »

1074
()

Mobile carrier and net charge densities

10-8f- Vge=0500volt  Vge=0.493 volt
g0 ] i i 1 ; ! f } ! ! ! L 1 1 !
01¢] 04 08 1.2 1.6 20 24 28

Position coordinate x

32

Fig. 6.16b. Device as in Fig, 6.9a. HMobile carrier and net charge densities as funciions

of position, Base-to-emitter voltage VBE = 0.5 volt, base-to-collector voltage V

BC

= 0.193 volt,

coT



Electrostatic potential

and quasi-Fermi levels

991

Vge = O volt

VBE =05 volt

I ! 1 i 1 ! H i 1 1

00 04

Fig. 6.17a.

08

Device as in Fig. 6.9a.
functions of position. Base-to-emitter voltage VB

t
1.2 1.6 20 2.4 - 28 3.2
Position coordinate x

Electrostatic potential and guasi-Fermi levels as
p = 0.5 volt, tase-to-collector

voltage V = 0 volt,

BC



o
—_—
=

vl

e (1)

‘6 .
-
T

102 /{ p
10°2 _/‘ el

|0—4 L

6L

o
1

Mobile carrier and net charge densities

1078 Vge = 0.5 volt Vge = 0 volt

(e} 10 H : 1 1 i i 1 i !

i

1

1Pl

] !

00 04 08 1.2 1.6
Position coordinate x

20

24

28

32

Fig. 6.17b. Device as in Fig, 6.3a. Mobile carrier and net charge densities as functions

of position, Base-to-eritter voltag: VB?? = 0.5 volt, base-to-collector voltage

Vg

c = 0 volt,

19T



108

VBE =05 volt
108}- 7
S r' Vgg 04 volt
N
© B .
E Vgg =03 volt
g ;04_
: a
£
— | : VBE =Q.2 volt
c
[433 r
ay
3 102k
S VgE = 0.1 volt
5 BE .
@ "
: ~
O
b VBE = O volt
IO-Z TR N N NN S SRR SUNN RN SN S NN AU NN SN SN N SSUNUE I S N T
+05 00 -05 -10 -15
Base-to-collector voltage Vge (volt)
Pig. 6,18, Device as in Fig, 6.9a., Collector current as a function of the base-to-collector

voltage for various base-to-emitter volbzges.

89T



108

Base contact B = 1.2 B=263
B Base contact B such that p(3) = p,,
|06_
5 2.60

b
N

= o
£
|

g 104+
o
<

E =
et

’ S 102+
S
©

@ L
©
()

‘ =

Vgc = —1 volt
lC)'2 1 1 i i 1 1 1 ] ] i | 1
00 0 02 03 04 a5 06

Base-to-emitter voltage Vge (volt)

Fig. 6.19. Device of Fig. 6.9a (upper curve) compared to the sane device with the
boundary condition p(B) = p, on the external base coniact (lover curve).

1lector 5 ion of base-to-emits - N
Collector currens as a function of base-to-emitter voltage, for a fixed

base-to-collector reverse bias (VEC = - 1 volt).

modified

69T



-20
-10
0
-
2210
c @
o _
8 E 20
o
© ..
38 %
gcr;o
A )
W g

50

6o Vge = 065 volt Vge =~100 von_]
70 1 1 1 ! i L 1 L 1 t 1 1 L 1 i
00 04 08 1.2 1.6 20 24 28 - 32

Position coordinate x

Fig. 6.20a. Device of Fig. 6.9a with the modified boundary condition p(B) z P on the
" external base contact. Electrostatic potential and quasi~Fermi levels as functlons of

position, Base-to-cmitter voltage VBE = 0.65 volt, base-to-collector voltage VBC = -1 voit,

OLT



Mobile carrier and net charge densities

lopd =

ond S

08 Vge =065 volt  Vgo=-100 volt

o ! 1 ! 1 | 1 1 ! ] s 1 1 ' i t
00 04 08 1.2 1.6 20 24 2.8

Position coordinate x

32

Fig. 6.20b. Device of Fig. 6.20a. Mobile carrier and net charge densitics as functions of

position. Base-to-emitter voltage VBE = 0,65 volt, base-to-collector voltage

VBC

= =1 volt,

TLT



Collector current J,

172

108
107 f—
p(B)=p
P\'&k

{06 j—
105 —

VBE = 0.65 volt

Vge = - voit
|o4 -
103 | | ] ! - L |

.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 28

Position coordinate of the base contact B

Pig. 6.21. Device of Fig, 6.9a, with exception of the
position of the base contact taken as a variable,
Collector current as a function of the position of the
base contact B. Base-to-emitter voltage Voo = 0.55

volt, base to collector voltage V -1 volt,

BC T



173
boundary conditions on the external base contact are illustrated in
Pigs., 6.19 to 6.21., The sign convention and the symbols adopted for
the external currents and the applied voltages are depicted in Fig. 4,2.

As a consequence of the identical structure parameters of the
emitter and collector regions, the thermal equilibrium case of Fig. 6.9
displays symmetric distributions with respect to the base, in spite of
the asymmetric position of the external base contéct. In consideration
of the specified boundary conditions at the base contact (Section L.1)
it is apparent that such asymmetry becomes insignificant under equilib-
rium conditions, i,e., overall constancy and coincidence of the guasi-
Fermi levels,.

Figures 6.10 to €.13 illustrabe the internal distributions for a
fixed bage-to-~collector reverse blas (VBC = =1 volt) and increasing
base-to-emitter forﬁard bias from thermal equilibrium (VEE = 0) to
low injection (V’BE = 0.2 volt), high injection (V,, = 0.5 volt) and

BE

very high injection (V.. =0.65 volt) conditions. Most features

BE
already discussed for the diode case (Section 6.2) are recognized here.
The inadequacy of the assumption of fully depleted and neutral regions
with abrupt boundaries, the severe discrepancy between "exact" and first-
order minority carrier density at the edge of the neutral region in the
base at the collector side in the presence of collected current (al-
ready analyzed by Middlebrook [5]), the discrepancy between "exact" and
first-order depleted region widths and electrostatic potential distri-
bution 1n the transltlon reglon of the emlitter Jjunction at high injection

levels, are particularly evident, In addition, for increasing injection

level of the emitter Junction, the first-order theory prediction of the
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properties of the collector Jjuncticn worsens considerably: this is
also apparent from the increasing discrepancy between the "exact" and
first-order potential distribution in the trénsition region of the
reverse-biased collector junction, Responsible for this effect is &
high injection of minority carriers (electrons) into the base from the
emittef, together with the narrowness of the base region: the
"depleted" region of the base~colleclor junction,'although reverse -
biased, is prevented from being significantly depleted of mobile
carriers and becomes considerably narrower than predicted by the first-
order theory applied te an isolated P-N Junction under the same bias
conditions% As a consequence, the transition region capacitance of the
base-collector Junction may vary significantly from the first-order
theory prediction.

For the same fixed position of the base contact (B = 1.2), Figs.
6.14, 6,15, 6.11 and Figs. 6.16, 6.17, 6.12 display the internal dis-

tributions as functions of position for fixed base-to-emitter biases, &

low~-level injection (VEE = 0.2 volt) and a high-level injection case
<VBE = 0.5 volt) respectively, and various base-to-collector biases,

from a forward-bias condition in the "saturation" region (VBc = 0,18

volt and Vg, = 0.493 volt respectively), to thermal equilibrium
(V'BC = 0) and to a reverse-bias condition (V’BC = -1 volt), It is

apparent, from the saturation conditions of Figs. 6,14 and 6,16, that

both forward-biased junctions injeet minority carriers (electrons) into

%  This effect, referred to as "base push-out", is analytically inves-
tigated by Kirk [23].
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the base such that the quasi-Fermi levels become nearly constant (but

distinet) throughout the base, According to the relation

P dx

the total emitter and collector currents then vary considerably for a
small.variation of bias conditions, yielding the fypical characteristic
of the saturation region.

The above feature may be recognized in Fig. 6.18 which displays
the total collector current density JC (normalized) versus base-to-
collector voltage Vﬁc (unnormalized) for various base-to-emitter

voltages V. (umnormalized). Since generation-recombination effects

BE
have been neglected [U(x) = 0], the collector current is essentially
zero (not exactly for the asymmetric position of the base contact) if
both junctions are equally forward-blased, and increases steeply for a
small decrease of the base to collector bias., For a variation of the
collector bias of a few Vf, the collector current reaches the constant
value typical of the "linear" region of operation, rather insensitive
to a further inecrease of collector reverse bias. The slight increase
of collector current, for an increasing reverse blas on the collector
Jjunction, is essentlally a consequence of the decreasing width of the
quasi-neutral base region.

The effect of a modified boundary condition on the external base
contact is shown in Fig. 6.19. Such a modified boundary condition on

the mathematical base contact is determined by the simultaneous

enforcement of two requirements:
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(1) the requirement (4,1) on the majority carrier (hole) quasi-Fermi

level at the position B of the base contact

P,(B) = 9,(0) = Vg

(2) thermal equilibrium conductivity of the neutral P-material at the
point B for any bias condition.
The condition (1)} is the original boundary condiﬁion on the external
base contact, whereas the condition (2) represents an attempt to simu-
late in the one-dimensional model a base contact of the ohmic type.
Since the position of the contact B affects (considerably at high
injection, see Figs. 6.20 and 6.21) the internal distributions and
terminal properties ot the device, a method based on successive approxi-
mations requiriné several "exact"” solutions for various values of B
is employed to satisfy the above condition (2). The position of B in
the one-dimensilonal model becomes now a dependent parameter, implicitly
determined by the introduction of the additional boundary condition (2)
on the base contact. The total collector current density ié displayed
in Fig. 6.19 oo o function of the base to emitter voltage for a fixed
base to collector bias (VBCls -1 volt) for both cases of fixed
position of the base contact (B = 1.2) and modified boundary condi-
tions with equilibrium conductivity at B, The considerable diécrepancy
between the two cases for high injection conditions is to be attributed
to the inclusion within the emitter-base junction of a low-conductivity

region, for the case of modified boundary conditions, For high-

injection conditions, the conductivity of the quasi-neutral base region
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at the left side of the fixed external base contact (B = 1.2) is
highly modulated, whereas if the position B 1s shifted sufficilently
toward the collector junction to satlsfy the modified boundary condi-
ticns, the region at the left of the point B features a low (close
to thermal equilibrium) conductivity and is responsible for a signifi-
cant décrease in both emitter and collector currents for specified bias
conditions. The internal distributions for a very high injectlon case
(VBE =0.65 volt, Voo = =1 volt), with the modified boundary condi-
tions at the external base contact, are shown in Figs, 6.20. In
addition, for the same bilas conditions, the total collector current
density is shown in Fig. 6.21 as a function of the position B of the
base contact, from B = 1.2 +to slightly beyond the value B'
(B' = 2.633) specified by the modified boundary conditions p(B') = Pp-
The abruptness of the collector current about the point B' 1is indica-
tive of the sensitivity of the terminal characteristics upon the choice
of the boundary condition on the external basc contact,

The analgsis éf the results obtained, rather than suggesting the
use of modified boundary conditions at the position of the external
base cvontact, merely exposes the inadequacy of the one-dimensional-

model in characterizing the properties of a three-contact device,

typically a multi-dimensional problen,

6.4, Conelusion.

As an example of one-dimensional numerical solutions, results for
idealized models of a twe-contact (N-P diode) and a three-contact device

(N-P-N transistor) have been reported and briefly discussed in this
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Chapter, The electrostatic potential, quasi-Ferml levels, mobile
carrier and net electric charge densitiés as Tunctions of position and
terminal properties have been illustrated, and the effect of modified
boundary conditions has been investigated. "Exact" and first-order
theory distributions have been quantltatively compared and discrepanciles
exposed, to achleve a thorough quantitative evaluation of the several
gesumptions and approximations cbnventionally introduced in analytical
and numerical solutions of the problem, Although a one~dimensional
model may closely characterize the properties of certain realistic
structures of two-contact devices, the inadequacy of one-dimensional
solutions of three-contact devices is confirmed by the analysis of the
resulis obtained for the N-P-N transistor.

Calculations were performed on an IBM TO94-TO4O shared file
system. Output data were recorded on magnetic tape and directly dis-
played in graphical form by a Calcom plotter, connected to the IBM T04O.
For the N-P diode, computation time for the achievement of one set of
solutions (with five exact significant digits), including one point of
the current-voltage characteristic, for one value of applied voltage,
amounted to approximately 30 seconds for reverse blas and for low-level
injection, and to 55 seconds for high injection, for a trial potential
function given by the first-order theory, Two successive solutions were
needed for the computation of the total incremental capacitance'at a
specified voltage. Higher computation times (especially at high
'injecfion conditions on the emitter Jjunction and high reverse blas on
the collector junction) were required for the N-P-N transistor to

achleve results with comparable accuracy.
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CHAPTER VII

ANATYTTCAT, FORMUTATTON OF TER CURRENT-DRIVEN TRANSTRNT

PROBLEM FOR A TWO-CONTACT DEVICE.

In the previous chapters a method of solution and results for
the one-dimensional two-carrier transport equations in steady-state
have been presented. This and the following chapters are concerned
with the analysis of the problem in transient conditions. This becomes
essentially a two-dimensional problem, since quantities are functions
of both posivion and time, and therefore it is of considerably higher

degree of complexity.

7.1, Generalities,

Time-~dependent solutions are available in the literature, at the
present time, only for a set of approximate equations based on highly
idealized models and limited to very special cases. Kennedy [24]
analyzes the effect of a fictitious uniform electric field in & simpli-
fied form of the Giffusion e@uation for minority carriers in a P-N
Junction under abrupt switching from a forward to a reverse bias condi-
tion; Kano and Reich [1L4] present transient solutions for a P-N junction
driven by an external excitation of forward current., Both investigations
are based on conventional assumptlons and approximations, sﬁch as the
abrupt separation of the interior of the device into fully deplefed and
quasi-neutral regions, highly asymmetric abrupt doping profile, linear
recombination-gencration law, and Boltzmenn relation between the
barrier voltage and the internal boundary value for the injected

minority carrier density. In addition, solutions are only sought in the
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quasi-neutral region of the low-conductivity side of the device.

It is in the scope of this and following chapters to present a
numerical method of solution of the one-dimensional two-carrier trans-
port equations under transient conditions, and to illustrate results
for a particular structure. The method is of a very general character:
none of the conventional assumptions and restrictions are introduced
and freedom is available in the cholce of the dop:"mg profile, l'ecoin-
bination~generation law, mobility dependencies, injection level, and
boundary conditions applied solely at the external contacts. For a
specified arbitrary input signal of either current or voltage as a
function of time, the solution yields terminal properties and all the
quantities of interest in the interior of the device (such as carrier
densities, electric field, electrostatic potential, particle and dis-
placement currents) as functions of both position and time,

The physical model and corresponding basic equations, boundary
conditions for a two contact device, and initial conditions are pre-
sented in this Chap%er. The fundamental set of equations is rearranged
to a more convenient form suitable for a numerical iterative schemé of
solution of a very general character, for the case of an external
excitation of total current as a function of time (current-driven
transient). The general lines of the method are also illustrated.

The mathematical formulation of the problem is presented in the

following Section,
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Physical and mathematical model,

[AV]

7.

7.2.1. Normalizned fundamental equations.

Under the assumptions stated in Subsection 1.1.1, the set of
equations (1.1) to (1.6) describe mathematically the behavior of bi-
polar semiconductor junction devices, This fundamental set includes
Maxwell's equation stating the solenoidal character of the total
current expressed in terms of the electron, hole,>and displacement
contributions, the electron and hole current flow equations in terms of
the respective drift and diffusion components, Poisson's equation and
the continuity eguations for eleclrons and holes, This basic system of-
equations represents the mathematical model and is now applied to the
one-dimensional two-contact N-P structure of Fig. 1l.l, to analyze time-
dépendent phenomena, With the ald of the normalization factors of
Table 1.1, Egs.(1.,1) to (1.6), specialized for the one-dimensional case,

may be rewritten in the following dimensionless form:

3(t) = T,(x,8) + I (%8 - i‘%%ﬁl (7.1)
aJéz) =0 (7.1a)

I (%,8) = = T(%{-.ﬂ{n(x,t) E(x,t) + ?—“%ci’l] (7.2)
1n 2

' 1 o) t
Jp(xﬁt) = m {" p(X,t) E(X;t) + ""p_(—%x_'z'] (7-3)
é&%;cw = p(x,t) - nlx,t) + N(x) (7.1)



an(x,t) aJn(X,t)
ap(xy t) BJP(X,'b)
—5r = - U(X,'t) + — = (7-6)

As already observed in Section 1,1.l, only six of the above equations
are independent, since amny one of Egs.(7.la), (T.i%), (1.5), and (7.6)
may be derived from the remaining three (and the knowledge of the
doping profile N(x) if Bq.(7.4) is omitted). The recombination-
generation term U(x,t) and the mobilitics l/yn(r:,'b), l/yp(x,’b) may
be specified in the most general form in terms of the remaining vari-
ables, and complete freedom is available in the choice of the doping
profile N(x). These guantities are therefore left unspecified, since
thelr exact form is unessential for the present purposes,

7.2.2, Boundary and initial conditions.

For a two-contact device of the type shown in Fig., 1.1, four
boundary conditions on the mobile carrier densitiles may be specified,
These may be characterized by the same generality of relations (1.28),

which are here rewritten as:

n(0,8) = g,,[9,(0,%), (0, %)] )

p(0,%) = 8,4l (0,%), J,(0,%)] ; 1)
n(L,t) = g [, (L), Jp(L,t)]

p(L,t) = gpL[Jn(L,‘t), Jp(L,t)]

where, according to Egs.(7.2), (7.3),
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B 1 o o oa(x,t)
J,(0,t) = - oA n(0,%) E(0,t) + —2— o
. ™ ( 6 n
_ 1 = op(x,t)
JP(O;t) = ;;TE;ET “P(O:t) M(O;t) + K w0
- L (7.8)
B 1 o an(x, t)
Jn(L,t) = - ?;TETET n(L,t) BE(L,t) + - L
- 3
N S I let)
JP(L,t) = EEKT;%j- -p(L, L) B(L, L) + o o
o ..J‘J

Relations (7.7) need not be specified, and may be assigned with the
generality desired. A dependent boundary condition on the slope of

the electric field is given by Poisson's equation (7.4):

B8 L p(0,5) - no,t) + (0)
K=
> (7.9)
B 2 p(n,t) - a(L,t) + N(E)

x=L /

The electric field and the mobile carrier density distributions

throughout the interior of the device at the initial time +© = O:

E(x,t)
n(x,t) pfor 0<x <L , at t=0 (7.10)
P(X:t)

mzy be specified as the independent initial conditions, which explicitly
determine, with the aid of Egs.(7.1l) to (7.6), all the quantities of
interest at the initial time, If the evolution of a time-dependent

solution starts at a steady-state condition, the initial conditions
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are available from the steady-state solutions obtained with the
method described in the previous chapters%

If the total curreat J(t) through the device is specified at
any instant of time t > 0, the fundamental equations (7.1l) to (7.6)
with the boundary conditions (7.7) and the initial conditions (7.10)
represént the complete mathematical formulation of the problem, Solu-
tiong for all the relevant guantities ae functions of both pogition =
and time t are sought. As an aside, the electrostatic potential

y(x,t) and the terminal voltage VA(t) may be computed by the subsid-

lary relations:

X

y(x,t) = -'jﬁE(x',t) dx*' + (0,t) (7.11)
0
L

VA(t) = —fE(x,t) dx + Vg (7.12)
0

where V(0,t) may be taken as the reference value for the electro-

static potentials, and Vd is the diffusion potential defined by

L
v | 300 e (7.13)

0 thermal
equilibrium

If external contacts of the ohmic type are specified, the

boundary conditions (7.7) assume the simple form:

¥  An alternative method of solution, "compatible" with the formula-
tion employed for the time-~dependent solution, 1s presented in
Section 9.3.
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n(0,t) = ny ]
D(O,t) =
i W > (7.14)
n(L,t) = nP
p(L,t) = PP
/

where e Py Bps and bp are the equilibrium carrier densities at
the external contacts given by relations (1.32). 'The dependent boundary

conditions (7.9) become then:

A (x,t N , i
= =0 (r.15)
x=0
x=L

and are a consequence of the charge neutralily condition of the ohmic

acontacts,

T7.3. Derivation of the reduced set of equations.

The “undamental equations (7.1) to (7.6) may be conveniently
rearranged to a form more appropriate for numerical methods, If the
expressions (7.2) énd (7.3) for the electron and hole current densities
are inserted in Maxwell's Eq.(7.l), the displacement term may be

explicitly written as:

WE(x,t)  [nlx,1) | plxt) 1 dn(x,t) 1
S [Yn(x,‘c) * Yp(x,‘;)]E(x’t) EACHD - v 05, 8)

C B 5()  (7.16)

Moreover, if the expressions (7.2) and (7.3) are inserted in Egs.(7.5)

and (7.6) respectively, one obtains:
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n(x,t) 1 aEn(X;t) ¥ B(x,t) an(x,t) n(x, %) FE(x,t)
a{ -

ot Yn(X,t) & [os

oy, (%, %)
Jn(X,'t) ——-&———'— - U(X.,'t)

p(x,t) _ 1 E’ZP(X’;‘) - B(x, 1) BLELE)L gy ) Elub)
- .

3t vp(x, t) x ax

dy_(x,1%) ‘
I, (x5 ) ——E-é;g—— - U(x, %)

and with the aid of Poisson's Eg.(7.4) and Egs.(7.2), (7.3):

o (x, t) 1| 3%(x,t) 1 3y (x,t) | en(x,t)
ez 3 -+ E(X,t) - +
at \(n(x,t) e \(n(x,t) ax x
E(x,t) 3y, (x,%)
p(x,t) - nlx,t) - Yn@gt) = + N(x){n(x,t)p- Ulx,t)
| (7.17)
3p(x,t) 1 gﬂ%t) 1 ov_(x,t) | ap(x,*%)
= 5 -{E(x,t) + P -
3t yp(x, t) d3x Yp(x, t) & X

B(,8) oy (5,%)
P(xat)'n(x;t) - Yp(xgt) 3% + N(x) p(x,t) - U(X)t)

(7.18)

The reduced set of Egs.(7.16), (7.17), and (7.18), with the boundary
conditions (7.7), initial conditions (7.L0), and the specified external
excitation J(t), represents a complete formulation of the problem

¥
equivalent to that described in Section 7.2. In this new formulation

;l(x,t) upon

#*  The dependencies of the carrier mobilities y"l(x t), v
N, 5.7 : .
impurity

the quantities of interest (such as electric " field,
density, etec.) must, of course, also be specified.
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the electric fleld E, the electron density n and the hole density,
p are chosen as the independent gquantities and represent the unknowns
of the reduced set of equations.
If generation-recombination processes are neglected [U(x) = 0],
and mobilities are considered constant, Eqs.(7.16) to (7.18) assume

the simpler form:

ot n p hn = P

aE(th> = e [H(X,t) + p(x’t):]E<X,t) - %‘__ an<x2t) + %__ ap(}é{ztg - J(‘t)
(7.19)

on(x,8) _ 1 ______,____a nlxt) | B(x,t) 2 (p(x,t)-n(x, 6)8(x)] nlx,t)
ax

*ow| (7.20)
2 R

p(t) |1 J3p0x,t) P(X,t - B(x,t) _____‘,___}_p(x 12 (x,t)-n(x, t)+N(x)] p(x,t)
S e (7.21)

7.4. TIterative method of solution.

Equations (7.16) to (7.18), or alternatively Egs.(7.19) to (7.21),
represgnt a system of three non-linear partial differential equations
in the three unknowns E, n, p, in two dimensions: +time t and
position x., In particular Eqs (7.17) and (7.18), or Egs.(7.20) and
(7.21) are non linear partial differential ecuations of the "parabolic”
tyjpe%f The first step toward a numerical solution of such a system of

equations requires the discretization of the relevant quantities at a

*  See Appendix F,
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finite nuwber of points in both time and space. Appropriate numerical
techniques must then be dc\fiscd to determine at cach instant of time
the spatial distributions of the unknowns (throughout the interior of
the device), ;hat satisfy the set of equations for assigned boundary
conditions.*

Although the discretization problem for partial differential
equations of the parabolic ﬁype requires particuiar considerationf*
a numerical method of solution may be séhem&tically sketched at this
stage. The simpler case of fixed boundary conditions (for example
corresponding to ohmic contacts), absence  of generation-recombination
and constant mobilities is considered first. The.mathematical formula-
tion of the problem is then given by Egs.(7.19) to (7.21), boundary
conditions (7.1L), initial conmditions (7.10) and the external excita- .
tion J(t). It is apparent that the highly non-linear character of the
equations requires an iterative procedure at each instant of time to
reach the desired consistency. TIrom the knowledge of the spatial dis=
tributions at the initial time t =t it is desired to determine the

OJ
unknowns at tae next instant of time + = tl. A guess for the electron
and hole density spatial distributions at tl is made (for example
those available at the previous instant of time to), and these are in-

serted in Eq.(7.19) to solve for a preliminary (approximate) electric

field spatial distribution at tl, which in turn may e inserted,

¥  The existence and uniqueness of the solutions is justified on the
basis of physical requirements,

*¥* This is the subject of Appendix F.
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together with the guess for the hole density distribution, in Eq,(7.20)
to determine an improved value for the electron density spatial dise
tribution at tl. These improved distributions may now be inserted in
£q.(7.19), and the iteration cycle at the instant of time tl may be
repeated until overall consistency is achleved at tl. The "exact"
distributions at the instant tl are vhen taken as initial conditions
and the procedure is repeated to delermine Ulhe "eiacb" distribullons at
the instant tg. The process terminates when the final state is
reached, that is when both the external excitation J(t) has reached
the final value and the right hend sides of Eqgs.(7.19) to (7.21) arc
zero. The scheme is summarized in Fig, 7.1.

Extension to the more general case of Egs.(7.16) to (7.18),
featuring space and time dependent mobilities y;l(x,t), y;l(x,t)
and a non-zero recombination—generétion term U(x), is straightforward.
A slightly more intricate scheme is required for the case of variable
boundary conditions (7.7). A secondary iteration loop at each main
cycle at each instant of time may be required to resolve the non-linew-
arities of the combination of Egs.(7.7) with Eqﬁ;(7.8) to determine
the boundary values of the mobile carrier densities before attempting

the solution of Egs.(7.17) and (7.18).

7.5. Conclusion,

The problem of the lLime~dependent analysls of phenomena governing
‘the behavior of semiconductor junction devices has been formulated.
Fundamental equations, boundary conditions, initial conditions, and
external cxecitations have been prescnted for the physical model chosen,

The fundamental set of equations has been rearranged to a more



Assign ihe boundary conditions on
the mobile carricrs (e,g. ohmic contncts):

n{0) = ne a{l) = Ny &
(7.19)

Me) = py 5 R(L) R,

Assign the initial conditions at
t = to fer the unknowns:

E(x,tc)

n(x,tc) 0sx "L (7.10)

!

l Specify the external excitation
otal current):

L gt} , N

p(x, tc)

Increment the
Yime variable;

Lot At

Gueas she opatial diotributiena !
n(x,t), plx,t) at time t {(e.g.

those available at the previous i
instant of time). i

I
r

Insert the approximate spatial distributions n{x,t), p(x,t} at time t in the equation

AE(x, %) _’-n{x,t) . p_(:c.t:‘.!‘ Uk oxlxt 1 aplyt) | -
s = Y + v J},(x,t) PR * 3 g J{t) (7.15)

to solve for the electric field epatial dictribution E(x,t) at time +.

!

Insert the spatiai distributions BE(x,t), p(x,t) at time t in the equation

.t r:Z . - . 1
mig ) | l__( ael(x,t) + E(x,t) nlx,t) + [p(x,5)-n{x, t)}+%{x)] n(x,t) {7.20)
at ve L [

H

to solve for the improved electron density spatial distribution n(x,t) at time .

!

Insert the spatisl distridutions ®(x,t), n(x,t) at time t in the equatien
.2
0ty L ekt {x,%
Sl b =-{”“;3 - e) 2EED L (o0 enl, e80T Bl b (7.20)
at Yy s b J
to solve for the improved hole density spatial distributlon p(x,t} at time <,

Overall

consistency Megative

test

Posltive

Final
state
reached?

Terninal voltage
at time t given by
L

v (t) = - gE(x,t)d.x + v,

Fig. 7.L. Overall iterative procedure for the current-driven transient, for a special case,
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convenient equivalent set of thrce non~-lincar partial differential
equations and the general lines of an ilerative numerical method of

solution have been briefly outlined, The next step toward a detailed
numerical solution reguires the selection of a "sound" discretization
scheme suitable for partial differential equations of the parabolic

This problem will be considered in the next Chapter, on the

oL

ocype.,

basls of the theory oI numerical analysis avallable for simpler cases,

and summarized in Appendix F.
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CEAPTER VIIZ

DISCRETIZATION OF THE ANALYTICAL FORMUIATION I'OR T

CURRENT-DRIVEN TRANS IENT

In this Chapter the problem of the selection of a numerically
sound discretization scheme for the analytical formulation of the
current-driven transient problem 1s analyzed. A particular type of
discretization scheme is chcsen, and detalls of two discretized formu-
lations and of the iterative procedure of solution are presented.
Criteria for the achievement of a non-uniform discretization mesh
automatically adjusted by the compuler durlng Lhe entire evolution of
the transient are stated. Inadequacies of the procedure arising under
special conditions are exposed and will be the subject of a later

chapter.

8.1. Selection cf the discretization scheme.

In the previous Chapbter the analytical formulation of the problem
has been presented, centered or the solution of a system of three non-
linear partial differential equations in the three unknowns E(x,t),
n(x,t), p(x,t), as functions of both position x and time t. Two of
the eguations have been recognized as non~linear partial differential
equations of the parabolic type, the discretization of which requires
particular attention,

In general, the continuous quantities appearing in the analytical
formulation are discretized at a finite number of points in both posi-

tilon and time coordinates; the ensemble of these points constitutes a

"grid" or "mesh" (two-dimensional in the present case)., Finite
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ifference schemes are then employed to approximate the analytieanl

ot

differentiations and reduce the problem vo the solution of a system
of finite difference equations which represent the discretized formu-
lation.

The exact solution of the original analytical formulation differs,
in general, from the exact solution of the system of finite difference
eguations. The discrepancy between the two soluticns is usually
referred to as "discretization error”, The problem of "convergence'
deals with the conditions under which the discretization error becomes
equal to zero in the limit of vanishing distance between adjacent
position and time points., In addition the actual numerical solution,
obtained as a result o computations on the basis of the discretized
formulation, differs from the exact solution of the system of difference
equations by an amount equal to the "numerical error”. One reason for
the presence of the numerical error arises from the Limilalion of the
digital machines to accommodate only a finite number of significant
digits: a “round off error” is then introduced at each elementary
operation throughout the numerical solution. Thc problem of "stability"
deals with the conditions under which the numerical error is small
througkout the entire range of solution. The basic problem arising in
the numeriecal solution of partial differential equations of the
paravolic type is therefore the selection of a discretization scheme
featuring both convergence and stability, together with a satisfactory
degree of efficiency.

The currently available theory of numerical analysis furnishes

several discretization schemes, the convergence and svability of which
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are proven for the simpler cases, Whereas the theory is complete for
the case of linear equations with constant coefficients, it is frag-
mentary for the case of linear equations with non-constant coefficients,
and conditions of convergence and stability for the non-linear case are
only available for a few special equations and discretization schemes%
However, 1t seems appropriate to extrapolate from the conclusions
available t'or the simpler cases, in the search for a discretization
scheme with the desired features for the more complex situations, such
as the non-linear system under consideration,

Convergence and stability requirements for certain types of dis-
cretization schemes are contingent upon restrictions on the mesh size,
For example, for the linear cases with non-constant4coefficients and
for the semilinear Eq.(F-9) (of Appendix F), convergence and stability
may be proven for the simplest "explicit" scheme with uniform mesh
(see Appendix F) if the inequality (F-10) between the time step At
and the spatial step Ax of the discretigation mesh ie gatisfied, IFf
extrapolation to the system of Egs.(7.16) to (7.18) is made, the

inequality (F-10) becomes:

2 At

—_— <1 (8.1)
v (x, ) (1x) ©

l.u.p.

where vy(x,t) is either yn(x,t) or Yp(x,t) whichever is smaller.

The spatial step size will be selected with criteria similar to those

* A brief summary of the available information on the subject is
gathered in Appendix F.
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outlined in Subsection 2.3.1 and will lead to a step distribution of
the type of Fig. 2.7, in which the order of magnitude of the smallest
step is 1077, If the inequality (8.1) is extrapolated to a non-uniform
mesh, and the order of magnitude of the minimum value of v(x,t) is
taken as lO—z, the restriction
-17

at <5 x 1077 (or 4t <5 x 10 sec)

dimensioned
(8.2)

on the time step size is necessary, to ensure convergence and stability.
The condition (8.2) is highly undesirable because of the excessive
number of points‘required for the time coordinate, with consequent
unacceptable computation load.

Also in view of the convenience of adopting a highly non-uniform
mesh, in both position and time directions, it 1s desirable to select
a discretizatlon scheme which features, at least in the simpler cases,
unconditional convergence and stablility without any constraint on the
mesh size., It may be proven that a discretization scheme of the
"implicit type" (see Appendix F) satisfies this requirement for the
case of linear eguations with constant coefficients. Preference will
therefore be given to schemes of the implicit type; these will be
generalized in the following Section and applied to the more complex
case of tThe non-linear sysftem under consideration,

A partial differential equation of the parabolic type, discretized
with an implicit scheme, requires the simultaneous solution of a system
of difference equations (one for each spatial point) at each instant of

time, unnecessary for the discretization generated by explicit schemes.
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The corresponding increase in computation time will be shown to
represent a minor drawback, greatly compensated by the freedom avail-
able in the selectior of the mesh size in both position and time

coordinates.

8.2, Dilscretizavion by lmpllcll schenes.

e

In the previous Bection the choice of a scheme of the implicit
type has been‘made for the discretization of the analytical formulation

of Section 7.3. Tor a partial differential cquation of thce typc:

L 2 -
BY(x,t) _ pd ax;g) ) é_ﬁf_(i:l, v(x,t) (8.3)
3t & '

a class of implicit discretization schemes may be summarized by the

formula
(8.4)

(i=1,2,3, *** 4 3;k=1,2,3, =)
where:
& is a parameter that determines the specific type of discreti-
zation scheme and may be chosen as % £ 8 <1,
x is the index identifying the instant of time ¢t (time index;
ot D initial time)

i is the index identifying the spatial point xs (spatial index;

x, 8 0,x, & L)

e =

kAt kt - % .t 1s the magnitude of the time step at the instant Kk,
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Aoy
R RICITON
2 . o .
¥, A g 3 Y(xgt) 3 ¥(x,t) ¥(x £)
ki 2 ? ik ?
ax ax
t t
k K. k X.
L i i

and a two-point finite difference formula is chosen to approximate the
time derivative of Eq.(8.3) (two-level finite difference scheme).

Two specific discretization schemes will be‘considered below,
corresponding to Eq.(8.4) with 8 = 1 (referred to as "generalized
pure implicit scheme™) and to Eq.(8.4) with 6 = % (referred to as
"generalized Crank-Nicholson scheme'). Detailed difference equations
will be derived, for the sake of conciseness, solely for the special
case of Egs.(7.19) to (7.21), characterized by absence of generation-
recombination in the interior of the device, constant mobilities, and
ohmic external contacts. Extension to the more general case is

straightforward.

8.2.1. Generalized pure implicit discretization scheme.

The discretization scheme of the generalized pure implicit type,
defined by Eq.(8.4) with © =1, is schematically illustrated in Fig.
8.1. A typical non uniform two-dimensional mesh In the position and
time coordinates is shown, with 4 spatial points including the
boundaries i =1 and 1 =4, and [+ 1 Lllwe poluls locluding the
initial and final state %k =0, and k = f, respectively. The'assigned
boundary and initial conditions (of the open type) specify all the
quantities at 1 -~ 1, i =4, and k = 0. The finite difference cquation

(8.4) (6 = 1) represents a relationship between quantities at the
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ure —implicit scheme
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Fig. 8.1. Generalized pure implicit discretization scheme with
a five-point formula for the numerical spatial
differentiation (schematic).
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point (i, k-1) and at a minimum of three adjacent points% i-1, i,
i+ 1 on the line Xk, the next instant of time. From the initial
line k = 0 it is necessary to determine the quantities on the line
kX = 1, by solving the implicit system of simultanecus eguations
(8.4) with k=0, i =2, 3, &, +++ £-1, then proceed to the line
kK = 2,‘ and so on.

For the case of interest, Egs.(7.19) to (7-21), discretized on
the basis of Eq.(8.4) with & = 1, generate the following system of

difference equations:

e kP ooy Lojer
s e 2= 2= B, e — | — 4 — |—]| - .J (8.5)
kAt y ¥ XK7i v ¢/ v x k
n P o1 Px i
n. - n (azn\ an
1 k-174
NSV * 8 ol [kpi e Ni} 14 (8.6)
Yoo KEA AR A
2
p. - O, o p op
kPi T k11 /
oy BT ] 1&‘; - [kpi Tkt Ni] k1 (8.7)
Yp k i i
(k = 1, 2 ere f 5 i=1,2, 3, ' /f,)
Quantities at instants of time t < k-lt’ at any spatial point

0 < x5 < L, are supposed known, and solutions for the next instant of

time kt are sought, According to the method briefly outlined in

* The number of such points on the line k depends upon the order of
the finite difference formula employed for the numerical computation
of the spatial derivatives in the right side of Eq.(8.4), and is
usually 3, 5 or 7 (not higher for practical limitations).
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Section 7.&, an iterative procedure is employed at each instant of
time to determine the unlkmown guantities. A third index
(3 =0, 4, 2 »»+ ) is introduced to identify the cycle of such an
iterative procedure; qmmnﬁ.fies labeled with the superscript J are
supposed available at the completion of the jth iteration., Since the
iterative procedure is reveated at each instant kt’ the index J
is set To zero each time consistency has been reached at one instant,
the time index X is increased by unity, and the iteration restarts
at the next instant. Quantities labeled with the superscript J = 0
are then the trial distributions required to initiate the iterative
procedure at each instant of time,

It is convenient to introduce tae corrections An and Ap for

the electron ard hole densities respectively, defined as the differ-

ence between densities corresponding to two successive iterations:

g & a0 L a (3o ‘% (8.8)
wioi? & 2l - eI j

(k =0, 1, 2, »=+ 1 5 i=1,2,3, '+ 4 5 J=0, 1,2 )
If convergence of the approximate spatial distributions Lowards the
exact spatial distributions occurs during the iterative procedufe at
each instant of time, the following relations are readily verified

with the aid of the definition (8.8):



lim kAn§J) =0 ; lin kAng) =0, (8.9)
j—)OD J—"OO

l<i<] l<i<t

O<ks? O=k<f

In addition the time independent property of the boundary conditions

(7.14) yields:

(3) _
k2] =0
(1)
_Anid) = 0
£t g for 0<k<f (8.10)
kAP(i) -0 and any J
(3) _
kPPisy =0

If the quantities labeled k + 1 1in Egs,(8.6) and (8.7) are
identified with the superseript J + 1 (with exception of the term

Py of Eq.(8.6), lebeled j), and relations (8.8) are rewritten in

the Torm

T DRI RN EY (511
27 - e - D (5.22)

and inserted in Egs.(8.6) and (8.7), one obtains:



where F = and Fp are defined, for conciseness, as the right side of

o 4 (3+1) . (3+1)
a7ant . 3An . % )
- + E€J+l) — + p<3) - 2 n(J) + N - = Ang‘]*l)
3 K . k ki L
X & i k i X
. ~ o (3) (1)
. 5 an |
L@ _ (22} L g [ E) @) )
ok U g K1 kPi ki i
X i K Xy
(J) (3) A (3)
" 1 T k- (B )5/ (g g2y _q) (8.13)
: kAu
5y (3+1) (3+1)
i ey (2R (3) _ D), g LT
N i - 2¥Pi T Tk 1" TAE
kO i X i
(a+l) (G °r (5+1) [P (3)_  (3+1)
"xOPL k5P1 R T K1 - TPl T TNy
k i KV
oL3) L (3) ()
R R S SR £ (r SHAICTIRL Y (8.1k)
k

Eqe.(8.13) and (8.11) respectively, weighted by the factor (Xi+l-xi l).

On the other hand the electric field at the instant k + 1 may

be explicitly recovered from Eq.(8.5) rewritten as:
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. SIC)REPRIRTE)
VI = HEVEE ™ -
(+1) ° Dol i Pyl /s A (3)
WEi = = k(FE)i (8.15)
(3) (3
K
* T TRE
Yn Yp k

where FE is defined as the right side of Eq.(8.15)., If the second-
order terms (An)z, (Ap)2 are neglected, and thé three-point formulae
B-11l and B-12 (of Appendix B) are used for the numerical computation of
the first and second derivatives of An and Ap in Egs.(8.13) and
(8.14), these assume the final form:

K(An)§j> kAnj(iZl) " K(Bn)j(_j>- kAn§<j+l) n K(Cn)ij) km£211> =lk<Fn>§:j)

(8.16)

1

k(Ap)Fj) kAP(j+l) + k(Bp)(j) kAP§_j+l) + (Cp)ﬁj) kAP(j+l) = (F )(J)

i-1 N X i+l x Py
' (8.17)
where
i g2 p(3+1)
3 i
k(cn>i N ’ &y
(3) arf _(3) (3) Yn (3+1) j
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The numerical spatial derivatives of the electron and hole densities of
the expressions Fn and Fp may be compufed with the aid of the
formilation of Appendix B.

Equations (8.16) and (8.17), with the use of the boundary condi-

tions (8.10), may also be rewritten in vector notations as:

k(Tn)u) JRON k(Fn><:1> (6.20)

(T )(j) .Ap(d) _

(3)
(1 et - ) (8.21)

where Tn and Tp are the tridiagonal matrices:
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Ap and Fn’

F
b

are the vectors:

(8.22)'
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Tne interpretation of the above formulation and the detailed iterative
procedure is illustrated in Section 8.3,

8.2.2. Generalized Crank-Nicholson discretization schene.

The discretization scheme of the generalized Crank-Nicholson type,
defined by Eq.(8.4) with 6 = 1/2, is schematically illustrated in
Fig. 8.2. The same ooundary and initial conditions (8.10) and (7.10)
of the open tyde agdin specify the gquantities at the boundaries 1 = 1,

i =4 and at the initial state Xk = 0., The finite difference equation
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~ Generalized Crank—-Nicholson scheme
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Fig. 8.2. Generalized Crank-Nicholson discretization scheme with a
five~point formula for the numerical spatial differentiation (schematic).
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(8.4) (6 = %) represents a relationship between the quantities at a
minimom of three adjacent points* i-2, i, 1+ 1 on the line k - 1
and the gquantities at the same number of adjacent points 1 - 1, i,
i+ 1 on the lire Kk, the ﬁext instant of time. TFrom the initial
conditions at k = O, the solution proceeds toward increasing k and

-

determines the quantities on each k-line for 1 =1 = 2,

Equations (7.19) to (7.21), discretized on the basis of Eq.(8.4)
with © = %, generate a system of difference equations of the type of
Egs.(8.5) to (8.7); the right side of these equations assumes a more
complex form since it averages the relevant expressions between the
instant k -~ 1 ard k, The same iterative procedure outlined in
Section 7.4 is introduced, and the finite difference equations are ex-
pressed in terms of the corrections (8.8) to cbtain, on the same path
followed for the generalized pure inplicit scheme, the final discretized
formulation descrived below.

If the following quantities are defined as

(3) (3)
1 an 1 op 2 n. p.
. Ti&') VA Ex') * WAt““k;ll'k;ll k-1"1 ~
(FE,}>(J) é 3 1 'pk 1 £ a P
k i
1 an 1 fo)e)
- Y RN L S B
Yo k—lax)l Yo k-1 e )1 k-1 5 (8.26)
(3) (d)
2 Ki K
ko Yn Yp

#*  The footnote of the previous Subsection applies here to both k-1
and k-lires,
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the system of finite difference equations may be written as:
(3+1) _ oy ()
i = k(“E)i (8.33)

(An)iJ Wi k(Bn)iJ kAn£d+l) " k(cn)EJ) kAngiil) - k(FQ)EJ)

(8.34)

k

(Ap>€j) kﬁpgizl) + (Bé)(j) kAP(j+l) + (Cn)ij) kﬁp(j+l) - k<Fé>§j)

Xk x 5 i Xk i+1
(8.35)

where A, C,, Ap and CP are defined by relations (8.18), (8.19).
Equations (8.33) to (8.35), with the boundary and initial condi-
tions (8.10) and (7.10), may of course be written in the matrix nota-

tion corresponding to Egs.(8.20) to (8.25).

8.2. Detailed iterative procedure of solution.

The formulation generated by two diseretization schemes of the
implicit type has been presented in the previous Section for a special
case characterized by absence of generation-recombination in the
interior of the device, externgl contacts of the ohmic type, and con-
stant mobilities. For such a simplified case the iterative procedure
of solution, briefly outlined in Section 7.4, is here discussed in

detail,
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The generalized pure implicit discretization scheme 1s considered
first. Reference is made to Fig. 8.3, The structural parameters,
including the carrier mobilities, doping profile and boundary conditions,
are specified. The initial spatial distributions of the electric field
and of the mobile carrier densities at the instant k = O are assigned,
for example as steady-state distributions obtained with the method
described in Part I. An external cxcitation of total currcnt as a
function of time is specified, to drive the evolution of the transient.
The spatial distributions of E, n, and p, the unknowns of the
problem, are sought at the first instant of time -k =1, and will be
obtained with the use of an iterative successive approximation scheme,
The iteration index J 1is set to zero and the spatial distributiom of
the mobile carrier densities available at the previous instant (k=0)
are taken as trial functions to start the iterations at the instant
k = 1. Equations {8.15) yield then explicitly a spatiai distribution
for the electric field, which may be inserted in the implicit system of
Egs.(8.16) to solve for the corrections kAn§j+l) (i=2,3, L < 2-1)
for the electron density. Equations (8.11) yield then an improved
electron density distribution, which, together with the electric field
distribﬁtion last obtained from Egs.(8.15), is inserted in the implicit
system of Egs.(8.17) to solve for the corrections kAp§j+l), s0 that
Egs.(8.12) yield an improved hole distribution. As an aside, the ter-
minal voltage may be obtained by integration of the electric field. A
nega’h‘ivé outecome of the test on the overall consistency at thc considered
instant of time (k=1) increases the iteration index by unity and

restarts the cycle with the insertion of the improved mcbile carrier
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Fig. 8.,3. Detailed fterative procedure for the generalmed yure implicit scheme,
. for the current-driven transient case.
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distributions in Eqs.(8.15), solved for an improved electric field
distribution at the same instant of time (k=1). A positive outcome of
the consistency test accepts the quantities obtained by the last
iteration as the "exact" solutions at the instant of time considered
(k=1). Unless the final state (k=f) is reached, the time index is
increaséd by unity, the iteration index J 1s set to zero and solutions
at the next instant of time (k=2) are sought. The iteration is
restarted by taking as trial functions the mobile carrier distributions
available from the previous instant (k=1), and inserted in Egs.(8.15).
The sawme ileralive procedure ls repealed (o achileve "exact" solutions at

the instant k

]

2 and at the subsequent instants of time until the
finagl state X = f 1s reached,

The spatial differentiations present iﬁ the right side of Egs.
(8.15) and Egs.(8.16), (8.17) (explicitly shown in the right side of
Egs.(8.13), (8.14)), and the integration of Eq.(7.12) may ve convenient~-
ly computed with the formilation of Appendix B, suitahle for a none
uniform spatial step distribution., The numerical solutions of the
tridiagonal systems of Egs.(8.16) and of Eqgs.{8.17) may be obtained
with the same techniques successfully employed in Subsection 2.3.3 for
the solution of the tridiagonal system (Eq.(2.38)) generated by the
discretization of Polsson'’s equation in the steady-state analysis
described in Part I. Identical considerations of Subsection 2.3;3 on
the conservation of the same tridiagonal matrices (8.22) and (8.23) are
here applicable it higher order interpolating schemes are employed for
“he numerical computation of the spatial derivatives in the right side

of Eqs.(8.l6)‘and (8.17). This property is a direct consequence of the
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assumed convergence of the lterative procedure (relations (8.9)), and,
in consideration of the large number of repetitive solutions of Egs.
(8.16) and (8.17) required during an entire evolution of a transient,
it representséa decisive feature for the success of the method.

The overall consistency, between the unknowns E, n, p and the
system §f equations determining them, may be tested at any iteration
cycle Tor each instant of time by considering tne,magnitude of the\
corrections An, Ap and of the difference of electric field distribu-
tions obtained by two successive iteraticns., If the magnitudes of these
gquantities are smaller than a specified value (lhe lterallion error at
each instant of time), achievement of overall consistency at that
instant is assumed, The final state Xk = f 1is reached when the
external excitation has reached the final state J = fJ and the un-
knowns E, n, p are unchanged for an increase of time,

If the generalized Crank-Nicholson discretization scheme is used,
Eqs. (8.34) and (8.35) substitute for Fgs.(8.16) and (8.17) respectively,
Equations (8.33) may be used in place of Egs.(8.15) only for cases in
which tne second time derivative of the specified total current within
a time step (extremes included) is continuous and sufficiently small,
This limitation arises from the presence in the expressions (8.26) of
the average of total current values taken at consecutive instants of
time, This average "effective" current as a function of time may become
considerably different from the actual specified external excitation and
Lhus geherate highly l1naccurate results, 1f the above restriction is not
introduced. The same procedure described for the generalized pure

implicit scheme and illustrated in Fig. 8.3 may be used for the
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generalized Crank-Nicholson scheme, and applied to Eqs.(8.15) (or to
Egs.(8.33) with the above restriction) and to Eqs.(8.34), (8.35).

Although the computation load reguired by the formulation
generated by the Crank-Nicholson scheme, as opposed to the pure
implieit scheme, ig slightly heavier, a considerably smaller triumeation
error in the time domain (approximately one order of magnitude; see
Appendix F) may be achieved. On the other hand it may be expected, as
an extrapolation of the simpler linear cases, that the generalized
Crank-Nicholson scheme is more likely tc become numerically unstable
under conditions in which the generalized pure implicit scheme features
numerical stability. is was indeed verified experimentally: for all
the cases tested on the computer the latter discretization scheme con-
sistently generated stable sblu.tions, whereas numerical instability
was observed in some instances if the former discretization scheme was
employed. It may be concluded that, if more accurate solutions are
sought with use of the Crank-Nicholson discretization scheme, particular
care must be exerted in testing numerical stability during the evolution
of a transient, and it should not cause surprise if in some cases the
scheme fails,

A prime requirement for the success of the described method is
the convergence of the iterative procedure to reach at each instant of
time overall consistent solutions from & sef of approximate trial distri-
butions. In all the cases tested on the computer, for various structures
and exbernal excitations, convergence was always observed, In addltion
an excellent rate of convergence was experienced in situations in which

significant variations (in time) of the total current occur, so that
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- the electric field (given by Egs.(8.15)) becomes the quantity "driving"
the varislions of the mobile carrier distrioutions (BEgs.(8.106), (8.x17)
or (8.34), (8.35)) and is essentially respomsible for the evolution of
the transient, A slower convergence rate* was observed under condi-
tions, opposite to thosc just deacribed, in which the total current is

- maintained constant over a significant length of time and variations of
mobile carrier densities (mostly diffusion processés) become the princi-
pal effect, now driving the varialions of the electric field. The rate
of convergence for such cases was found well within practical limita-
tions, with the exception of conditions arising toward the termination
of a transient soiution, when the gquantities approach the final steady-
state distributions (usually within a few per cent of the overall excur-
sion of the total current)., Several artifices have been attempted,
without success, to improve the convergence rate. Although this
inadequacy of the iterative scheme may be considered unimportant for

the sole purpose of achleving time-dependent solutionsj* the method
described for the current-driven transient may not be used for achieving
"exact" steady-state solutions of sufficient accuracy from an initial
guess of approximate trial distributions, ‘he importance of starting a
time-dependent solution with "exact" initial distributions obtained with

the samre formulation subsequently used for the ftransient solution wiil

¥  The convergence rate is also dependent upon the size of the discreti-
zation mesh, particularly upon the size of the time step. A reason-
able number of points on the time coordinate (e.g. 100 - 200)is
assumed.

*¥¥ The spatial distributions for the final state may be determined
easily by a steady-state solution, for instance of the type described
in Part I. '
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be discussed in Chapter IX, and an efficient numerical procedure for
achieving this will be presented.

The extension of the described iterative procedure to the more
general case, characterized by arbitrary generation-recombination term
U{x) and mobility dependencies, is straightforward. Eguabtions (7.16),
(7.17), and (7.18) apply in this case and may be discretized with the
same schemes used in Section 8.2 for the simpler case, If generalized
boundary conditions of the type of Egs.(7.7) are also specified, a
secondary iteration lcop may be required to resolve additional non-
linegritles Introcduced in the relationships between the particle
currents and tﬂe mobile carrier densities at the boundaries., In
addition, at each cycle of the iterative procedure at each instant of
time, <he mobilec corricr dissributions must be modified to incorporabe
the time-dependent boundary conditions.

It is apparent from the method and the formulations described that
complete freedom is available in the selec@ion of both spatial and time
step distrivutions, which may be conveniently chosen, and automatically
adjusted by the computer during the entire evolution of the transient
according to specified criteria., These are discussed in the following

Section.

8.4. Automatically adjustable non-uniform discretization mesh,

It 1s desired to achleve an automatic adjustment of both spatial
and time step sizes subject to the requirement of maintaining constant
errors, throughout the space and time domains, of certain numerical
operations. Aport from the integrations of Eq.(7.12), not an essential

operation of the procedure, only numerical differentiations are present
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in the described formulation, The total error introduced by such
operations may be regarded as a sum of truncation and round-off errors,
For a decrease in step size and an increase in the order of the inter-
polating scheme used, the former type of error decreases whereas the
latter increases, In addition round-off errors increase with the order
of the derivative desired. TFor the case under consideration, round~off
errors may be usually consldered negliglble 1f double preclsion arith-
metic (16 significant digits) is employed. This is a consequence of
practical restrict?ons on both the order of the numerical scheme and the
minimum step size that may be used (related to the maximum number of
points, limited by both memory size and computation time) together with
the considerable magnitude of truncation errors in the position domain
in certain regions of the device (mostly transition regions)., The
efforts will be then toward achieving uniform distributions of the
truncation errors in both domains,

The search for the "optimum"” non-uniform spatial step distributions
may be conducted with the same procedure used in Subsection 2.3.1 for
the steady-state solution. The numerical schemes employed for the
differentiations of the mobile carrier densities present in the
expressions (8.13) and (8.14) are now considered, in place of relations
(2.21), (2.22), and the corresponding stages of approximation, described
in Subsection 2.3.1, may be used. The spatial step selection ma& be
performed only once to satisfy the requirements of the initial distribu-
tions and then considered satisfactory for the entire evolution of the
transient, or it may be repeated once at each instant of time or at

each cycle of the iterative procedure at each instant of time. The
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decision, usually not critical, is in general the result of a compro-
mise between the accuracy desired and the computation time allowed.

On the other hand, the computation load of a search for the
optimum step size in the time domain, based upon a trial-and-error‘
procedure requiring successive "exact" solutions at each instant of
time for.various time step sizes? well exceeds any practical limit, As
a substitute, the following simple scheme, based on the extrapolation
of the information available at one instant of time, may be used to
adjust the size of the time step for the subsequent instant.

The Taylor expansion about a point T = kﬁ of a continuous

function f£(t) with continuous derivatives is considered:

2
art L 2 f
f(t) = f(kt) + (t‘.’c{t) a—;s + E-i- (t-kt> g.--t-é' 4 e (8.36) ‘
txkt t:kt

If a two-point formula is used to approximate the first derivative at

the point t = kt, such as

4af AT
= T (8.37)
_ k+ 1

where

e

Af

ler 1 8) - T(yt)

f<k+l

e

t -t

A6 = 1% -

ket 1

*  Buch as a predictor-corrector method conventionally adopted for the
numerical solution of ordinary differential equations,
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and is inserted in the expansicn (8.36) evaluated at the point

t = k+lt’ one obtaing ;
1 2 dzf
f(k+lt) = f(k't») + k+lAf + 3 (k+lAt) E;é' v (8.38)
' t= t
k

If higher order contributions of Eq.(8.38) are neglected, the term

¥

1 "
k€ =7 k1t i

where
£1 A de
k - 2
dt
t:kt
represents the error introduced in the approximation (8.37). The
. 2 OF
relative error is then defined as the ratio kg/fiizg . The above may
k+1

be repeated for a sequence of adjacent points kt (k =1, 2, 3 =++ ),
and the requirement of maintaining a constant magnitude of the relative

error at each point may be specified. In this case the following

relation must hold:

(Lat)e . _gm (. . At)E _om
i BRSS! K
kAF 1er 185
Qr
fﬂ Af‘
kel" . k+1
k18 = [T g k=32, 5 e (8.39)

which reprecsents o rcloationship between consecutive steps in terms of

local increments and curvatures of the function £(t).
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In the case of interest, the magnitude of the time step k+lAt
at the next instant of time may be approximately predicted with the
knowledge of quantities only available for times +t < kt if the

expression (8.39) is modified to the following form

(8.40)

which merely adopts as the ratio between consecutive steps, at one
instant of time, that corresponding to the previous instant. For the
present purposes the terminal vollage YA(L), avallable at each
instant of time from Eq.(?.lz), may be convenlently chosen as the
function f£(t) in relation (8.L0), since it reflects the overall
behavior of the device under the gpecified excitation. The sccond time
derivatives required by the expression (8.40) may be computed with a
three point formula (e.g. B~1l2 of Appendix B) suitable for unevenly
spaced points, It is then apparent that the sizes of the initial three
time steps (A%, k=1, 2, 3) must be independently specified, and
that the size of the fourth (and following ones) may be predicted by
relation (8.40). Instants of time for which the argument of the square
root of Eq.(8.40) exceeds in magnitude the permissible range become
singular points. These are likely to occur during the evolution of a
transient solutlon and are easily taken care of by specifying upper and
lower bounds for the ratio of consecutive steps and for the magnitude
of the step size. These, as well as the initial steps, must be chosen
with regard to the total number of instants of times that may be allowed

and to the rate of convergence of the iterative procedure, very much
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dependent upon the step size. In addition, at any instant of time,
the prediction process may be diécontinucd, and an arbitrory magnitude
of time step may be specified, until the process is reenforced,

Although a time step adjustment of the described type 1s not very
accurate, it appears satisfactory from any practical point of view,
also in consideration of the insignificant computation load required
and by the observation that the selection of the fime step is by no

means critical.

8.5. Conclusion,

The discretization problem of the current-driven transient
algorithm has been analyzed. Extrapolation from the simpler cases,
treated by the theory of numerical analysis, leads to the choice of a
discretization scheme of the implicit type, if restrictions on the
diserebization mesh are not desired, The discrebtized formwlablion for
two implicit schemes, the generalized pure implicit and the generalized

rank-Nicholson schemes, have been presented for a special case and the
details of the iterative procedure of solution have been outlined.
Extension to the more general case has been shown to be straight-
forward, A brief discussion on the criteria responsibie for the auto-
matically adjustable step selection, in both space and time domains, has
been given, together with a simple scheme for an approximate time step
prediction, suitable for the problem under consideration., As a
consequence of the worsening of the convergence rate of the iterative
procedure at each instant of time for conditions approsching the final
state during the evolution of a transient, accurate steady-state solu-

tions may not be obtained, within practical limits of the currently
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available machines, with the described formulation, Although this
inadequacy may be considered unimportant for a transient solution, it
is highly desirable to generate initial steady-state distributions
with the same discretized formulation used for the achievement of time-
dependent solutions. A successful approach to this problem is presented
in the following Chapter, together with a method of solution of the

voltage~-driven transient.
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CHAPTER IX

VOLTAGE-DRIVEN TRANS IENT

In this Chapter the time-dependent analysis of the bipolar semi-
conductor transport equations is completed with a solution for the
voltage-driven transient problew and an albternative proceduare sullable
for steady~state calculations. A valuable feature of either method is
the capability to generate solutions "compatible" with the formulation
employed for the current-driven transient previously described. The
iterative procedure adopted for the analysis of the response of the
isolated semiconductor device, driven by an ideal time-dependent
generator, 1s also extended to incorporate the interaction of the
device with a general network of passive circuit elements and time-

dependent current and voltage sources.

9.1, Generalities,

In the previous two Chapters, the analytical formulation, discre-
tization schemes, and an iterative procedure of solution have been
‘desceribed for the current-driven transient for a two-contact dcvice.

The voltgge-driven transient, (the applied voltage as a function of time
is specified as the external excitation and the total current is

sought) may be considered equally important and of great interest, and
is here considered to complete the general time-dependent analysis of
the problem. Priority has been given initially to the former type of
analyéis, in view of the explicit appearance in one of the fundamental
equations (Eq.(7.1)) of the total current, which may be easily incorpor-

ated in a reduced set of equations (Bqs.(7.16) to (7.18)) to drive at
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each spatial point the internal distributions. A variation of the
total current at one instant of time generates an immediate response
of the driven quantities simultaneously throughout the entire length
of the device, at each iterative cycle at that instant of time. This
situation contributes to maintaining the rate of convergence of the
iterative procedure at each instant of time within practical limits.

If the applied voltage as a function of time is to be incorporated
instead, Eq.(7.16), expressing the time variation of the electric field
in terms of the total current, must be substituted by Poisson's Eq.(7.4)
written in terms of the electrostatic potential {(x,t). The applied
voltage appears then explicitly as a boundary condition for ¢ in the
solution of the second-order differential equation (7.4).The reduced set,
equivalent to the fundamental set of Egs.(7.l) to (7.6), includes now
Egs.(7.4), (7.17) and (7.18), written in terms of the new unknowns ¢,;
n and p. Equations (7.17) and (7.18) are still treated as described
for the current-driven case, whereas the new equation of the set
(Eq.(7.4)) may be discretized and solved with the same procedure
adopted in Subsection 2,3.3, based on the solution of a tridiagonal
matrik equation, An iterative procedure of the same type described in
Section 8.3 may now be employed to reach the desired consistency between
¥, n, P and Egs.(r.4), (r.17), (7.18) at each instant of time,

A considerably slower rate of convergence of the iterative ?roced-
ure is to be expected in this case, since the error (arising from the
variation of the boundary value on the electrostatic potential) is
localized, at the beginning of the iterative scheme at each instant of

time, near one external contact and must propagate throughout the whole
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interior before the solution is allowed to proceed to the following
inastant of time. This may require a large number of iterative cycles
for each timevpoint. If compared to the current-driven transient case,
the above formulation also requires a heavier computation load, which
includes the additional solution of a triple-diagonal matrix and the
computation of the first and second spatial derivatives of the electro-
static potential . 1n addition, solutions genefated by such an
algorithm are not “compatible™ with the formulation adopted for the
current-driven transient, in the sense that the different discretiza-
tion errors of the two formulations are responsible for slightly
different steady-state solutions under otherwise identical conditions.
This inconsistency may be responsible in some cases for undesirable
effects (see Section 9.3).

Also in ccnsideration of the above, an alternative method of
solution for the voltage-driven transient is preferred. This is based
on the combined use of the formulation adopfed for the current-driven
transient together with an interpolating scheme on the current-voltage
characteristic at each instant of time, A similar cbncept was already
used in Chapter IIT for the éolution of the steady-state problem for a
specified total current, The following Section illustrates the

details of the methcd,

9.2, Voltage-driven transient; outline of the method,

The mathematical formulation of the problem is described by the
fundamental set of Egs.(7.1) to (7.6), with the boundary conditions
(7.7) and initial conditions (7.10). The applied voltage VA(t) at

the external contacts is specified as a function of time and the total
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current J(t) and the unknown distributions E(x,t), n(x,t) and
p(x,t) are sought. A method for the solution of the reverse problem
of specifying the total current J(t) and determining the terminal
voltage VA at each instant of time has been described in the previous
Chapter and will be used as an integral part of the solution of voltage~-
driven transient described below,

"Exact" solutions for the total current and the internal distribu-
tions are supposed known for times 1t < k—lt’ and quantities at the
following instant of time kt are sought. If the total current kJ
were known, the iterative method described for the current-driven
transient could be applied to obtain the unknown distributions at the
instant k. The problem consists then in searching for the particular
value of current kq that ylelds the specilfiled terminal voltage kVA
at the instant k., This is achileved in two stages with the aild of the
same algorithm employed for the current-driven transient at a specific
instant of %ime. A "prediction” sfage initially furnishes two estimates
of the‘total current él)J and éZ)J close to the "exact” value 1
which is to be determined, These estimates may be achieved easily with
two different extrapolations from the quantities supposed available
for times t <, ,t. A linear (two-point) and a parabolic (three-point)
extrapolation on the current response as a Tfunction of time furnishes,
in general, two different estimates* for the current kJ' Two ihdepend-

ent applications of the current-driven transient algorithm yield for the

*  The two values are coincident 1if the quantities ku3J, xeo9r 1Y

lie on a straight line. In this situation a second estimate may be
furnished by higher order extrapolation formulae or by an arbitrary
value close to the first estimate. The nearness of such estimates
to the "exact" value is by no means critical.
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two currents él)J, éZ)J the corresponding values of terminal voltages

§1>VA’ iZ)VA, which, in general, differ from the specified terminal
voltage kVA (if this is not the case, solutions at the instant kt

are found). A second stage, based on an interpolating procedure on
the curve ih)J as a function of éh)VA (h=1, 2, 3 *++ ) at the
same instant of time k, may now be started to obtain an improved

estimate of the total current that generates a terminal voltage within

(1),

an assigned tolerance about the specified value, Two points, x

(1) (2); (2)
LV, and 73, LV,

graph "frozen" at the instant k, so that a linear inlerpolatlon ylelds

>

are already available on the current-voltage

& third estimate £3)J corresponding to the specified terminal voltage
kVA' A third application of tne current-driven transient algorithm at
Tthe instant k for the current §3)J furnishes a third point é;)J,
é?)VA on the current-voltage graph, so that a parabolic interpolation

may be used to further improve, if necessary, the estimate of the total

current. The procedure continues with higher order interpolating

schemes until the wvalue i?)J, that generates a terminal voltage é?)VA
sufficiently close to the specified kYA’ is determined. Solutions

at the instant of time Xk are <hen available and the overall procedure
may be.restarted at the following instant k + 1 with the prediction
stage. Prediction stage, interpolation stage, and overall procedure at
the instant X are schematically illustrated in Figs., 9.1, 9.2 and 9.3,
respectively, For a few initial time points (k = 1,2) the prediction
stage.may noL be performed as described; an arbitrary estimation

procedure may be employed equally Well, if the time step is initially
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J it First stage: prediction

(1
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!
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kJ

Fig. 9.1. Estimation of two values of current at the instant kt

from the response known for t 2 k-lt’ during the prediction stage

of the voltage-driven transient,
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Fig. 9.2. Interpolation on the current-voltage characteristic at
the instant kt to determine improved values for the total current

during the second stage of the voltage~-driven transient,
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First phase: predlctlon on
the J = J(t) characteristic
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Fig. 9.3. Overall procedure for the voltage-driven transient
at the instant of time k. (Schematic)
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kept small enough in order to obtain a closely linear current-voltage
characteristic in the interpolation stage%
The efficlency of the method relies mainly on two features of the
scheme., First, the prediction stage yields in general "good" estimates

of the total current so that the current-voltage characteristic
(n)_  (n) |
k 97 k VA
applications of the current driven transient algorithm are sufficient

(h=1, 2, 3 =« ) is closely linear and usually three

at each instant of time to satisfy even a tight tolerance about the
specified voltage kYA' In addition, an external voltage excitation
of the general type generates a variable current as a function of time;
this represents, as mentioned in Section 8.3, the condition in which
the current driven transient algorithm features a fast rate of conver-
gence, This characteristic is maintained, as expected and observed,
throughout the entire evolution of the transient, so that the final
steady-state distributions may be reached easily within practical com~
putation times (a few winules on the IBM 7O94/T090 system), a feature
unfortunately not occurring in the current-driven transient scheme
descrived in the previous Chapter.

Results for a special structuie under various external excitations
of current and voltage have been obtained and will be illustrated in a
later chapter. The corresponding computer program for both-the current -

driven and voltage-driven transient is reported in Appendix G.

¥  Such a linearity is a direct consequence of the relation between the
total current and the electric field (Eq.(8.15) or (8.33)), essenti-
ally linear if the mobile carrier densities remain unchanged, which
is indeed the case for small enough At and fast enough variation of
the current. This 1s equivalent to considering the total current as
essentially due the displacement current (Eg.(7.1)).
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9.3. A "compatible"” steady-state solution.

The set of initial distributions (7.7) for the unknowns of the
problen is required to initiate a time-dependent solution, For the
case in which the initial state is a steady-stale one, the initial
distributions were assumed available from the procedure illustrated in
Part I. However, the analytical and discretized formulations there
described are not "compatible" with the formulations adopted for the
time-dependent solution, in the sense that the steady-state distributions
feature truncation errors different from those introduced by the
algorithm that generates transient solutions, QObviously, if a transient
solution is initiated from a steady-state condition in absence of an
external excitation, the internal distributions and the terminal proper=-
tiee should remoin unchanged. Instead, as a consequence of the above
incompatibilit&, a "drift" of the original steady-state distributions
is observed throughout the execution of such a fictitious "transient"
solution. This drift continues until compatibility between the spatial
distributions and the new discretized formulation is achieved, Although
the magnitude of the total shift of the quantities is relatively small
(of the order of the truncation error), itlmay be significant for time-
dependent solutions specifying small external excitations, Moreover,
if a discretization scheme which may easily generafe unstable solutions
is used (such as the Crank-Nicholson scheme of Subsection 8.2,2), the
initial incompatibility is often responsible for oscillations (the first
symptom of an unstable solution) in the internal distributions and in
the terminal response, such that the "exact" solution is completely

obscured.
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As a general rule, if solely initial conditions incompativle with -
the time—dependent formulation are available, a preliminary computation
phase in absence of external excitations is required, before initiating
the actual transient solution, to achieve overall compatibility. This
preliminary phase of "adjustment” of the initial steady-state conditions
is of course unnecessary if the same formulation is capable of gener=-
ating.both steady~state and transient solutions, therefore assuring
full compatibility. This is a very desirable situation, also in con-
sideration of the consequent conciseness and the simplicity of the
overall algorithm,

It has been already mentioned in Section 8.3 that the current-
‘driven transient scheme is unsuiltable for generating steady-state solu-
tions, whereas the procedure described in the previous Section for the
voltage~driven transient is well capable of reaching the final steady-
state of a time dependent solution within practical computation times,
The same voltage-driven scheme may be used to generate steady-state
solutions from a set of trial distributions for the unknowns. These
dlstrivutions are treated as 1nitial condltions of a fictitlous "tran-
sient solution”, in which the constant terminal voltage desired is
specified as the external excitation and the time coordinate becomes a
meaningless quantity. The time step, which appears in the discretized
formulation, may be chosen large enough to cause a negligible contribu-
tion of the time-dependent terms; or may be usefully adjusted as a
"econvergence parameter"” to shorten therconvergence path toward the
"exact" SOiution. In addition, the nunber of (3) Aiterations for each

application of the current-driven transient algoritim (Fig. 9.3), the
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tolerance aboutv the specified terminal voltage kVA =

cach ingstant of "time", and the number of "time" points, may be also

vy (any k) at

all adjusted properly and treated as convergence parameters, The

choice of the trial distributions E(x), n(x), and p(x) is slightly
critical, in the sense that if the inconsistency between the trial func-
tions and any "exact" solution of the equations (for any terminal
voltage) 1s too large, the iterative scheme may not be capable of
resolving such discrepancies. Trial distributions available from the
first-order theory, although considerably inaccurate (Section 6.2),
usually generate satisfactory convergence patterns if an appropriate
selection of the convergence parameters is made, Although the rate of
convergence becomes considerably slower as the Injectlon level increases,
Just as cobserved for the steady-state method of Part I, solutions may
be still achieved within practical limits at high injection levels.

.As an alternative, the fictitious "transient" solution generating
compatible steady-state solutions may be started from "exact" steady-
state distributions available for a terminal voltage (for instance for
the thermal equilibrium case) different from the one desired. Rather
than following the natural transient evolution toward the final state,
an artificial convergence path may again be followed by a proper selec=
tion of the time step size, the number of (J) iterations, the tolerance
about kVA and the nunber of time points. The overall number df
operations to reach the desired steady-state distributions may be then
considerably reduced.

Although the method described in Part I is capable of generating
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steady-state solutions in a shorter computation time% if compared to
either of the above procedures, these feature the same formulation
employed for the time~dependent algorithm and therefore generate
compatible steady-state distributions that may be directly used as
initial conditions for a transient analysis., Freference may then be
given to the former method if solely steady-state solutions are desired,
and to the latter if such distributions must servé as initial conditions

for a time«dependent solution as well.

9.4, Time-dependent solutions for the combination of an active device

with a network of passive circult elements,

In this and the previous chapters, methods of solution of the
fundamental equatlons describing the behavior of a two-contact semi-
conductor device under both steady~state and transient conditions have
been described, The transiént response of the device was supposed
driven by an ideal time-depeﬁdent source of either voltage or current,
A more realistic condition requires the incorporation in the external
circuit of one or more paseive circuit clements to represent circuital
parasitic effects or actual passive components inserted in the circuit,
More generally, the interaction of a semiconductor device with a net-
work of ideal time-dependent current or §oltage sources and passive
elements is of great interest. This problem may be easily solved with
a slight extension of the methods described for the transient analysis

of the isolated semiconductor device.

¥ Usually from two to five times shorter, under similar conditions,
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A general two-port network, composed of ideal current and/or
voltage sources and passive circult elements, is connected to the
terminals of a two-contact semiconductor device, as shown in Fig, 9.4.'
Both the normalized total current density J(t) of the device and the
normalized terminal voltage VA(t) are quantities dependent upon the
properfies of both the semiconductor device and the network. At a

J and v are

particular instant of llme k, the two unknowns .k N

determined by the system

W T fS(kJ) | (constant k) (9.1)
<
WA= fN(kVA) (constant k) (9.2)

where A is the cross-sectional area of the device, and Egs.(9.l) and
(9.2) are essentially the discretized current-voltage relationships,

at the instant Xk, of the device and of the network respectively.
Equation (9.1) is a concise form of the system of equations determining
' the transient response of the isolated device at the instant k

(e.g. Egs.(8.15), (8.16), (8.17) and (7.12)5, solved with the iterative
procedure of Fig. 8.1, Equation (9.2) may be inserted within the

iterative scheme, at the instant Xk and lleration J, Ilo the form
(J+1) [ 2 (3)
I = 2 £y [0 (9.3)

as the first equation of the set, to determine an improved value of
total current density from the network response to the terminal voltage,

available at the previous iteration., Actually, for a given k and J,
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L Semiconductor device with characteris~
i tic:

4

v Wa = I (kJ) (constant k)

N/

Network of ideal
current and/or
voltage goureces and
passive elements, with
overall characteristic:

Fig. 9.4, The combination cf a semiconductor device with
©a network of ldeal time dependent generators and passive
elements, with their overall characteristics at a given

instant of time kt'
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Eq.(9.3) also?represents a system of equations (for instance the
mesh or nodal equations) describing the network properties. The time
required for the solution of this system is usually insignificant (for
a reasonable number of network elements) if compared to the computation
time required by the system (9.1). The only undesirable effect of the
incorporation of Eq.(9.3) within the original iterative procedure may
result in a slower convergence rate to achieve ovérall consistency at
each instant of time.

Alternatively, Eq.(9.2) may be combined, at a givenvinstant k,
with the currenl-volluge characleristic of Lhe device (Eg.(9.1)),
originally obtained during the interpolation phase of the voltage-
driven transient (Fig. 9.2), to solve for the intersection W wWa
of the two curves.

For the simpler case in which only a resistor R in series with
a time-dependent voltage source VS(t) (unnormalized) is present in

the external circuit, the system (9.3) reduces to the single equation:

’ (3)
R V, =V -V
Q

where

is the normalization factor for the current density (Table 1.,1)., As an

example of numerical computation for this special case, results have

been obtained for the combination of an N-~P diode and an external
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resistor under switching conditions from a forward to a reverse bilas

condition., These are reported and discussed in a later chapter,

9.5, Conclusion.

An iterative meﬁhod of solution of the fundamental bipolar trans-
port equatlons describing the behavior of semlconductor junction devices
under a time-dependent excitation'of terminal voltage has been presented
in this Chapter. A valuable feature of the method, not available for
the current-driven transient previously deecribed, congsiste in its
capability of reaching the final steady-state distributions without
significant worsening of the convergence rate of the iterative proced-
ure. The concept of Mincompatibility" between solutions obtained with
different formulations has been discussed and a method for achieving
" steady-state distributions,vcompatible with the time-dependent formula-
tion and therefore suitable to serve as initial conditions for a tran-
sient solution, has been illustrated. This steady-state procedure, and
the current-driven transient and voltage-driven transient methods,
represent a self-sufficient algorithm to obtain compatible solutions
for an external excitation of the most general form. The extension of
the algorithm to incorporate a network of ideal current and voltage
sources and passive circult elements has also been illustrated. |

The computation time usually fequired for the achievement of time-
dependent solutions with sufficient accuracy amounts to a few minutes
(five to twenty) on the IBM 709%/7040 system. A discussion on the
accuracy of the time-dependent results is presented in the following

Chapter.
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CEAPTER X

ON THE ACCURACY OF TIE TRANSIENT SOLUTIONS

In this Chapter thc varioue sources of errors, arising in the time-
dependent solutions of the type described in the previous chapters, are
exposed and techniques suitable to estimate and control the accuracy of
the final wresults are discussed. The influence on the discretization
error of the order of the finite difference scheme, of the time step
size and of the abruptness of the external excitation is considered,
Among the various contributions to the numerical error of a stable dis-
cretization scheme, the iteration error is recognized as often being the

dominant source of inaccuracy and therefore it is analyzed in detail,

10.1. Generalltles,

In Chapter V a discussion on the various sources of errors present
in the steady-state solution of Part I has been described., The overall
accuracy of the final results has been evaluated with the aid of a set
of testing relations, suitable to expose errors of different nature.

A time-dependent solution of the type described in the previous chapters
may be considered as a sequence of "pseudo-steady-state" solutions (one
at each instant of time), whose function is to achieve consistency
between the spatial distributions of the unknowns and the set of
equations, starting from a set of trial distributions at each inétant

of timé. The basic considerations of Chapter V, regarding the spatial
domain, are therefore still valid for the iterative scheme searching
consistency at a given time, provided that such an iterative scheme is

considered isolated from the others., These considerations are now
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applied to the new formulation, which Includes the time-dependent
terms. In addition, the interaction between the errors introduced by
iterative schemes at different instants of time may become a dominant ‘
factor for the overall accuracy and deserves partlcular attentlon,
This problem has already been considered in Chapter VIII in the process
‘of selecting a sound discretization scheme for the numerical solution
of partial differential equations of the parabolic type. The discreti-
zation error in the time domain and the growth of the numerical error
for increasing time are responsible for this interaction and determine
the conditions of convergence and stability respectively of the
evolution of the transient,

In addition to the analysis of Chapter V, concerning inaccuracies
within the spatial domain, the principal sources of error arising in
the time-dependent solution, together with techniques suitable to
evaluate and control the influence of such errors on the final results,

are driefly discussed in the following sections,

10.2. Discretization error in the time domain,

In the formulation adopted for either the current-driven or the
voltage-driven transient the left sides of Eqs.(7.16) to (7.18), ex-
pressing the variation with respect to time of the three unknowns of
the problem, are the only terms in which the time coérdinate appears
explicitly. When such analytical derivatives are approximated by a
discretized formulation, the discretization error is introduced. This
approximation is often achieved by truncating a Taylor expansion at a
convenient point (e.g. Eq.(8.36)) to obtain simple finite difference

expressions, This truncation error depends upon the values of the
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higher derivatives, on the size of the time step, and on the order of
the finite difference scheme. The magnitude of the higher time deriva-
tives of the function to be numerically differentiated is wvery much
related to the abruptness of the time variation of the unknowns,
directly dependent upon the time variation of the external excitation,
for a given time step. For a decreasing time step, the dependence of
the electric field upon an abrupt variation of external excilation is
more emphasized, if compared to the dependence of the mobile carrier
densities, This feature may be easily verified from the set of discre-
tized equations (Eqs.(8.15) to (8.17)) and is a consequence of the
physical properties of the mobile carrier densities (and therefore the
particle currents) requiring a finite time for a significant variation,
whereas the electric field (and therefore the displacement current) may
respond immediately to any external excitation (see also Section ll.l);

If excitations with continuous and finite time derivatives are
specified, the truncation errors introduced by the numerical time differ-
entiations of the electric fleld and mobile carrier densities may be
contained within limits with an appropriate choice of the time step at
each instant of time, A simple application of this concept has been
illustrated in Section 8.4 for the selection of a non-uniform time step
distribution, subject to the criterion of maintaining a constant
truncation error of the time differentiation of the spatial integral of
the electric field throughout the entire evolution of the transient. In
addltlon, higher order (multilevel) finite difference schemes, approxi-
mating time derivatives, may be employed to reduce truncation errors,

These schemes are an integral part of the overall discretization scheme,
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and therefore must be individually analyzed to investigate convergence
and stability conditions. An example of a three-level scheme, featur-
ing uncoﬁditional stability, is given in Subsection F-3.1.1 (Appendix
F) for a very simple case. This, as well as higher level discretization
schemes, may be generalized for the non-linear case under consideration,
and nuﬁerical calculations experimented, although the stability of the
solutions may not be guaranteed. An additional cbmplication arises in
the initial phase of a time-dependent solution, where higher level
schemes may not be used and a different discretization based on lower
level schemes (two=level initially) must be employed.

If ideal excitations such as ramp, step and delta functions, are
specified instead, an overall control of the truncation error is not
possihle, since higher order time derivatives are either infinite or
discontinuous: Bofh step functions and delta functions are represented
in the discretized context as ramps, or combinations thereof, since
only non-zero step sizes may be used. In addition, both the minimum
step size and maximum amplitude of any excitation must satisfy the
usval limitation on the permissible range of the particular machine.
Although this idealized abrupt type of excitations may be considered
only of academic interest, it has been consistently used in a series of
preliminary test calculations (reported in the foilowing Chapter) to
. focus the attention on the worst case represented by abrupt variations.
For constant slopes of a sequence of specified ramps, calculations have
becen repeated for differcnt time step sizes and for various discretiza-~
tion schemes, featuring truncation errors of different orders of magni-

tude in the time domain, As s result, the overall transient response
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has been ovserved to be little sensitive to the variation of the time
step size (within limits) and the adoption of more accuratbe schemes,
with exception of the time points adjacent to the discontinuities of
the time derivatives of the specified excitations. The considerable
error introduced at theseESingular instants may be restricted to very
short time intervals with the use of a time step compression technique
Qf Lhie same Lype used for the spatial step in the.vicinity of the
metallurgical junction of an abrupt doping profile (Subsection 5,2.1).
A valuable feature consistently dboserved is that the error introduced in
the neighborhood of the singular pointe does not affect significantly
the résponse at later times.
It may be concluded that the discretization error of solutions

obtained with the procedure and the formulation described may be cone-
idered sufficiently small for any practical purpose, even for the

‘worst case considered above.

10.3. Numerical error and its growth in the time domain,

The numerical error 1s defined as the difference between the exact
solution of the discretized formulation and the numerical solution
actually achieved. The growth of the numerical error throughout the
entire evolution of a time-dependent solution, governed by partial
différential equations of the parabolic type, 1s ruled by the conditions
of stability., These furnish, for the simpler cases, bounds for the
amplification (for increasing time) of the numerical error introduced at
one stage of the solution, for a given discretization scheme, For the
more complex cases, such as the non-linear system tnder consideration,

stability conditions may not be proven and must be experimented with
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actual numerical calculations., Unstable conditions are easily
recognized by unexpected oscillatory pattern, with increcasing amplitude,
of the solution evolving in the time domain,

The numerical error, in the form of round~-off error, is always
present in a numerical solution dealing with gquantities represented by
a finite number of digits. 8mall differences between nearly equal
numbers also contribute to the numerical error and are present, in the
discretized formulation adopted for the transient solutions, in the
expressions for the net charge density (the right side of Poisson's equation,
Eq.(7.4)) implicitly incorporated in the equations yielding the improved
mobile carrier densities (e.g. Egs.(8.13) and (8.14)). These sources
of errors are usually not responsible for significanﬁ inaccuracies in
the final results, since other contributions to the numerical error are
dominant., These are briefly discussed in the following subsections,

10.3,1l. Iteration error.

An iterative procedure at each instant of time has been described
in Section 8.3 (Fig. 8.1 for a special case) to resolve the non-linear-
ities of the problem by achieving consistency between the spatial
distributions of the unknowns and the system of discretized equations.
When the estimated discrepancy between the "exact” distributions and
those achieved at the completion of an iterative cycle, at a given
instant of time, is less than a specified amount, the procedure }estarts
at the_following“instant. Such discrepancy represents the iteration
error at a given time,

The estimation may be obtained by an appropriate extrapolation of

the corrections for the distributions available from the previous cycles
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at the same instant, and 1s more accurate the faster the rate of con-
vergence of the lterative procedure. A constant fraction of the
maximum excursion (over all spatial points) of each unknown, at each
instant of time, may be conveniently specified as the iteration error.
It is often sufficient to limit the evaluation of the overall consis-
tency,‘at each instant of time, to the terminal response, which (with
the exception of singular points) reflects sufficiently well the behave
ior of the intermal distributions, ‘

An slternative and more accurabe evaluation of the consistency at
a given time mey be performed with the aild of a set of testing relations,
derived from the fundamental set (7.1) to (7.6), with the criteria
stated in Section 5.4, This technique is not very suitable, from a
practical point of view, to test the consistency at each iterative
cycle, but may be occasionally used to refine the accuracy of the solu=
tions at a particular instant of time, for which the spatial distribu-
tions of dependent quantities (such as the particle currents and net
charge densities) are also desired.

The rate of convergence of the iterative procedure at each instant
of time is considerably influenced by the rate of change of the external
excitation., The most favorable condition arises when variations of tle
total current occur, particularly in the presence of a significant
displacement current, so that the overall system of equations is
essentially driven by the time variations of the electric field, rather
than by the diflfuslon processes of Lhe moplle carrler densities., This
feature haé already been menfioned in Section 8.3 and usefully exploited

in Section 9.2: for the solution of the voltage-driven transient, A
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dominant factgr, governing the rate of convergence at a given instant
of time, is the magnitude of the time siep at that instant: larger
time steps are always responsible for slower convergence rates. The
time step size, directly related to the discretization error in thé
time domain, becomes a determinant paraﬁeter very much affecting also
the magnitude of the iteration error if an upper bound for the computa=
tion time, or in equivalent terms for the total number of iterations
during the entire solution, is specified. In such conditions the
iteration error may dominate over the discretization error, so that it
may be advantageous to select the time step size on the basis of the
requirements dictated by a minimization of the iteration error. The
total number of spatial points also affects the convergence rate of the
iterative procedure. This phenomenon is related to the propagation of
the inconsistencies of the approximate distributions throughout the
length of the device during the execution of an iterative cycle at a
given time. A smaller number of spatial points within certain limite
usually increases the convergence rate, The same criterion used above
for the sélection of the time step size applies here if a maximum
computation time 1s specified and thg iteration error is dominant: a
larger discretization error in the spatial domain is tolerated to
decreasé the number of spatial points, increase the convergence rate
and consequently reduce the iteration error. The abruptness of ‘the
doping profile may be indirectly responsible for a larger iteration
error in the viecinity of the metallurgicel interface., This is a conse=
quence of the larger discretization error (in the spatial domain),

occurring near the interface if the spatial step there required to
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maintain the overall constancy of the truncation error (Section 5;3)
is smaller than the specified lower bound of the step, This is cer=~
tainly the cése for an ideal step distribution for the impurity density,
which has been therefore chosen, as the worst case from a numerical
standpoint, to characterize the structure analyzed under transient con-
ditions in the following Chapter.

The accumalaticn, throughout the evolution of the transicnt ecolu-
tion, of the iteration error introduced at each instant of time is of
great interest. If a constant fraction of the excursion of the
unknowns within a time step is specified as the iteration error, a
transient solution featuring a monotonic pattern is affected by the
same relative error at any instant of time if the single iteration
errors are simply accumulative, A considerably more favorable situation
has been actually observed in the cases tested: +the iteration error a£
a glven time is partially compensated by a larger excursion of the un-
knowns at the following instant of time, so that the resulting error is
less than the sum of the iteration errors introduced at the previous
instants, This is a consequence of the deviation from the "exact” con-
dition of dynamic equilibrium at avgiven time caused by the iteration
error; and may be regarded as an gutomatic corrective feature inherent
in the formulation adopled for Llhe solutlon,

10,3.2. Inaccuracy of the initial conditions,

If a time-dependent solution is initiated from a steady—étate
-condition, initial epatial distributions of the unkmowns, available
from a steady-state solution, must be furnished. The inaccuracy of

these steady-state distributions represents a contribution to the
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numerical error of the transient solution., As such, 1t may generate
unstable Soluﬁions, if certain types of diseretization schemes are
adopted, and therefore must be contained to sufficiently small values.
This problem hasgbeen already encountered in Section 9.3, where the
importance of compatible initial steady-state distributions has been
discuséed and a method to achleve steady-state solutions compatible
with the discretized formulation employed for the-transient analysis

has been described,

10.3.3. Tolerance on the specified excitatlon in the voltage-driven
Lransienf..

In the method of solution of the voltage-driven transient described
in Section 9.2 (Figs. 9.1, 9.2, 9.3) a sequence of interpolations on the
current~-voltage characteristic at a given time is used to determine thg
value of total current that ylelds, within an assigned tolerance, the
specified terminal voltage at that time. Such a tolerance may be
regarded as the upper bound of an additional contribution to the numcr-
ical error at each instant of time, a necessary consequence of the pro-
cedure adopted. The combination of an accurate prediction phase,
preceding the interpolation phase, together with the closely linear
shape of the current-voltage characteristic within the range of interest
at a given time, permits the achievement of excellent tolerances with
just a few (three to four) interpolation cycles. This type of inaceur-
acy may therefore be considered of secondary importance, if compared to

the other contributions to the numerical error.
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10.4. Conclusion.

As an cxteoneion of the discussion of Chapter V concerning the
error in the spatial domain, discretization snd numerical errors in the
time domain have been considered in this Chapter. Attention has been
given to the growth of the numerical error throughout the entire
evolution of a time-dependent solution, to achieve numerically stable
solutions of sufficient accuracy. ZEmpirical techﬁiques suitable to
estimate the ;verall accuracy of the results have been discussed, as a |
substitute for an exact error analysis prevented by the complexity of
the analytical formulatioﬁ of the problem and by the presence of
several sources of errors of different nature, The majority of these
errors may be controlled by parameters such as the order of the finite
difference scheme, the spatial and time step size, the total number of
spatial and time points, the number of éycles of the iterative procedure
at each instant of time, and the tolerance on the specified excitation
in a voltage-driven transient, The maximum efficiency of the method,
that is, the best accuracy of the final results for a given computation
time, is achieved by optimizing the selection of the above parameters

toward an overall equalization of the various contributions to the

discretization and numerical errors.
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CHAPTER XI

RESULTS

As an example of numerical calculations, time-dependent solutions
for a special structure of a two-contact device under typical excita-
tions are presented. The transient behaviour of a short highly
asymmetric abrupt N - P diocde, driven by steps and spikes of exter-
nal current and terminal voltage, is analyzed. In addition, results for
the interaction of a slightly longer structure of the same device with
an external resistor, under switching from a forward to a reverse bias
condition, are also reported and discussed. '"Exact" and conventional
approximate analytical results are compared and discrepancies are
exposed. Furthermore, solutions obtained for various types of discre-

tization schemes and time step sizes are compared, and the overall

accuracy estimated.

11,1, Generalities,.

In the previous chapteré an algorithm suitable for solving the oné=-
dimensicnal basic two-carricr transport equations under time-dependent
excitations of current and voltage.has been described, Although fhe
method allows for arbitrary doping profile, generation-recombination
law, mobility dependencies, boundary conditions and externai.excitations,
results for a special case are presented., The same model adopted in
Section 6.2 for a short structure, characterized by a highly asymmetric
N - P diode with abrupt doping profile, absence of recombination in
the interior, ohmic external contacts and constant mobilities, is

analyzed under idealized input signals (steps and spikes) of current
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and voltage., In addition to the motivations of Section 6.1, this
‘choice facilitates the interpretation of the phenomena respongible for
the behavior of the device under transient conditions by a more dig=-
tinct separation of effects of different nature.

The abrupt time-dependent cxeitations arc approximated in the
discretized context by a sequence of ramps (Section 10.2) of finite
slope, Although this approximation does not introduce in most cases a
significant alteration of the transient response to the ideal excita-
tion, it may occasionally become the determinant factor characterizing
the response in the vicinity of the quasi~abrupt variations. In such
cases, in the examples analyzed in the foliowing sections, the parame-
ters identifying the discretized excitations actually used will be given
and thelr influence dlscussed,

Solutions have been obtained within five to twenty minutes of
computation time on an IBM 7094/7040 shared file system. The accuracy
of the final results has been usually contained within a relative error
of 0.02, considered satisfactory from any practical point of view,

This is not to be regarded as a limitation of the algorithm: a consid-
erably higher degree of accuracy may be easily achieved with a corres-
§cnding increa;e of computation time. '

Two basic phenomena will be of interest in the following analysis:
the variation of the electric field in the time domain without vériation
of carrier densities,‘and the motion of carriers in the presence of a
“Lime-lnvariant electric fleld., The former effect may be described
mathematically by the combination of Egs.(7.1), (7.2) and (7.3), which,

specialized for the present case, may be written as:
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QEJ.;EJ_Q + o(x) B(x,t) = - J(t) + D(x)

where
1 1
Dlx) = 3 Ty

and o(x) 1is the conductivity of the material, Both D(x) and o(x)
are time invariant by assumption. If a positive step of current of
amplitude Jg 1is imposed at t = 0O as external excitation, the solu-

tion of the above equation becomes:

E(x,t) - E(x,$=0") = - a%% (1. et ]
where

E(x,t=0") = %{7 [- J(t=0" ) + D(x)]

is the initial steady-state electric field distribution. The time con~
stant Ty of the exponential time variation of the electric field is

then:

Tr(x) = 3%57 (normalized quantities)
(11.1)
_ _E - s
Tr(x) =55 ‘ (unnormalized quanﬁltles)

and is referréd to as the "dielectric relaxation constant", In a
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homogeneous material T is independent of position,
The time  variation of the minority carriers in a certain region of
width w of semiconductor material, in the presence of a time-invariant
Tield, may be associated with the concept of steady-state transit time -

T, of minority carriers in that region. This quantity is convention-

t
ally defined as:

1L
= 8 .2
T ( )

where Qm and Jm are the charge density and the current density
respectively of minority carriers in the region considered., If the
first-order theory parameters are used (Appendix A), two simple
expressions of the transit time in the lowe~injection and high-injectiop
limits may be determined, If electrons in a quasi-neutral P-region are

considered, the definition (11,2) becomes:

y w5 |
Ty = nz (low injection) (11.2a)
2
YW |
Te =TT (high injection) (11.2v)

Although the transit-time (11.2) is defined as a steady-state quantity,
it may serve as the first-order estimation of a "timc—conatant".in a
time-dependent phenomenon, involving solely motion of carriers. For

~instance, the conventional solution of the simple diffusion equation
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driven by abrupt time variations of the boundary conditions, evolves
usually within a period of time approximately equal to a few multiples
of the low-injection transit time (11,2a).

The assumed absence of interaction between relaxation and transit-
time effects is motivated by the considerably different magnitude of
the respective time constants often arising in practical situations,
Order-of-magnitude estlmalions, on the basis of fhe above considerations,

will be therefore used in the following examples where applicable,

11l.2. The N-P diode driven by ideal current and voltage sources,

A short N~P structure (Fig. 1.l1) is analyzed under transient con=
ditions for various types of excitations of external current and ter-
minal voltage as functions of time. An idealized model characterized
by absence of generation-recombination in the interior of the device,
abrupt asymmetric impurity distribution, constant mobilities and ohmic
contacts is assumed. The discretized formulations employed have been
described in Section 8,2 and the iterative method of solution in
Section 8,3 for the current-driven transient and in Section 9.2 for the
voltage-driven transient,

The physica; parameters characterizing the structure are listed
in Table 11.l. Dependent parameters of interest are:

conductivities of N-side, Y 3.720 x 106 [or 575.8 (a cm)-l]

the material in , 3
thermal equilibrium; | P-side, o, = 1.760 x 10

[or 0.2726(a cm)-l]

2.688 x 1071 (or 2.460 x 1074 sec)

I

dielectric relaxation |[N-side, Tl
constants of the : L _12
material in thermal |P-side, T , = 5.678 x 10 " (or 5,197 x 10 sce)
equilibrium;
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Material: germanium (relative permittivity €. = 16)
Temperature: SOOOK
N-side, N(x) = Ny = 4 x lOLL (or 1018 cm'3)
Doping:
. _ _ : 15 =3
P-side, -N(x) = N, = Lo (or 107 em )
, N-side, M-0 = 0.22 (or 0.2105 x :Lo'LL cm)
Length: P-side, IL-M = 1,78 (or 1.703 x lO'u cn)
total, I-0 = 2,00 (or 1.913 x J.o"“ cm)
-1 ~ . 2 - k
electron, Y, =93 (or = 3600 cm”/volt-sec)
Carrier
) =L ~ 2
mobilitiess hole, Y, = Ll (or = 1700 em®/volt-sec)

. Table., 11,1. Physicel parameters characterizing the NP
structure of Fig, 1.1, analyzed under transient conditions,
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first-crder theory width of the quasi-neutral region in the P-side, in

thermal equilibrium:

b cm)

wp =L =M, = 0.9363 {or 0.8957 x 10~

first-order theory low-injection transit time of electrons in the quasi-

neutral P-region, in thermal equilibrium:

= 5,150 x 1073 (or L7.13 x ,'1.0"12 sec)

In addition, the "exact" total incremental capacitance (per unit area)
of the device in thermal equilibrium, obtained with the method outlined

in Section 3.2 is:
C = 1.668 (or 24.70 x 10”7 farad/cn®)

Results are displayed graphically in dimensionless form {according
to the normalization factors of Table 1,1), A dashed vertical line at
x =M, in the illustrations showing internal distributions, indicates
the position of the metallurgical interface,

11l.2,1, HExecitation: a low current step.

An ideal current step in the forward direction is applied Eo the
‘device initially in thermal equilibrium., This excitation is quantita-

tively determnined by:

J(t) =0 t <0
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J(t) = JF = 100 t >0
and is recognized as generating a low-injection condition in the low~-
conductivity (P) side in the final state
The response of the device is illustrated in Figs. 11.1 to 11.6.
The terminal voltage as a function of time is shown in Fig. 11.1;
electron, hole, and displacement currents as functions of positlon are
displayed at various instants of time in Fig. ll.é (for short times)
and 11.3 (for long times); time increments of the electric field and of
the electrostatic potentials as functions of position are displayed in
Fig. 11.4; and mobile carrier densities as functions of position in
Figs. 11.5 (semilogarithmic scales) and 11.6 (linear scales).
The‘initial part (t <2 x 10-3) of the terminal voltage respouse
as a function of time (Fig. 11.1) rcpresents the build-up of the ohmic
voltage drop in %he quasi-neutral region of the P-side, This phenomeﬂon
is ruled by the dielectric relaxation properties of the low~conductivity
(P) side, and occurs within a period approximately equal to four times
the dielectric relaxation constant TrP’ as a consequence gf the expon-
ential nature with time constant T (= 5.678 x 10'“) of the

rP
phenomenon. If the first-order theory estimation of the ohmic drop

Jwy 100 x 0.936 3
AV = = = 0,053 (or 1.37 x 1072 volt) (11.3)

ohmic 9p 1.76 x lO~3

* The corresponding terminal voltage VA amounts approximately to

4,06 (or0.105 volt) and the first-order theory injection parameter
% (A=43, of Appendix A) to 0.035.
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is compared to the "exact" one, an excellent agreement is observed.
.Such initial thic drop increases only slightly throughout the entire
evolution of the transient as a result of an increase of WP(: 1495)
and of the conductivity OP(: 3%). When the relaxation effects have
disappeared, %he charge of the transition region capacitance* with the
displacement current becomes the dominant phenomenon. The diffusion
capacitance, a negligible contribution to the total capacitance at the
low injection levels considered, has an- insignificant influence on the
transient response., The transition region capacltance is essentially
charged with the constant current JF during an initial period
(t <0.02), in which the displacement current dominates over the
convection components in the transition region. A simplé first~order

calculation yilelds

VA(t) JF 100 -
—-—-——-—-t = -6-- = m. = 60 (ll.h')
and
VA(tF) ¢ L,06 x 1,668 -2 :

as the slope of the terminal response in the linear region and as the
time constant of the phenomenon respectively (tF is the time at which
the final steady-state is reached), These first-order results are

again in good agreement with the "exact” ones of TFig, 11.1, At later

*  "Incremental” capacitances are consistently assumed.
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times, as the electron current becomes the dominant component, the
displacement current charging the transition region capacitance gradu-
ally decreases to its steady-state zero value and the terminal voltage
approaches its final state. Transit time effects are negligible during
the entire evolution of the transient since the time constant(1l,5)is
.considerably larger than the transit time Tt(: 5.2 x 10"3) of electrons
in the quasi-neutral P-region. As a consequence,.the conventional
first-order analytical solutions of the diffusion equation of minority
carriers into the quasi-neutral region of the low conductivity side,
with omission of the electric field (see for example Ko [25]), are not
applicable in the present situation.

A thorough understanding of the internal behaviour of the device
is easily achieved with the analysis of the spatial distributions of
Figs. 11.2 to 11.6., The electron current J, ‘the hole current Jp,

and the displacement current (= —<%%) are displayed in Fig, 11.2

D
as functions of position for three instants of time (t' =3 x lO'u,
t" = 9.4 x 10"”, £ = 1,57 x 107°) within the dielectric relaxation
range. According to the sign convention consistently used, normalized
currents are positive if flowing in the negétive x direction., The
three‘current components must, of course, add to the total current JF
at each position O «x <L and time % > 0., Immediately after the
application of the step of current, at t = O+, the displacement
current accounts for the total current ﬁhroughout the interior of the
device:

(%, t=0") = g Osx <L |,

F )
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whereas the particle currents Jn(x,t=01), Jp(x,t:Or) remain unchanged
from the initial zero value., At the instant t', far greater than -
TeN but smaller than Top dielectric relaxation phenomena have
already disappeared in the quasi-neutral region of the N-side so that
the majority (electron) current essentially accounts for the total
current and remains unchanged as the time increases to ', The tran-
sition region is dominated by the flow of displacément current which
features only small variations within the time range considered., The
absence of particle currents is a consequence of the little increment
of the electric field and the mobile carrier densities from the initial
equilibrium condition, despite a relatvively large time derivative of
the electric field, The increment of the field in the transition
region is related to the build-up of junction voltage, in turn related
to the charge of the transition-region capacitance, a phenomenon occurr=
ing with the considerably larger time constant (11.5). The dielectric
relaxation phenomenon is well apparent in the quasi-neutral P-region,
which illustrates the gradual changeover from a condition of displace-
ment current flow to hole current flow, with absence of electron current
flow. This is the typical feature of the build~up of the ohmic drop in
a semiconductor material with finite nonzero dielectric relaxation
constant, after the application of s gtep of total current,

The interplay of the three current components as functions 6f
position may bé foliowed in Pig, 11.3 at five subsequent instants of
3 = 0.090, th = 0,117, t5 = 0.1&7)

after the completion of the relaxation phenomena and during the charge

time (tl = 0,030, ta = 0.060,

of the transition-region capacitance (see also Fig, 11.1), The final
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state of the currents is also displayed. The displacement current in
fhe quasi-neutral P-region has essentialiy disappeared and the electron
current is increasing, as t increases, as a result of the diffusion
of electrons into the.P-side, and the hole-current is decreasing
accordingly. A similar situation, although on a minor scale, occurs in
the quasi-neutral N-region, in which the hole current increases as a
result of the diffusion of holes in the N-side, wifh a consequent de-
crease of electron current., This effect is hardly noticeable in Fig,
11.3 for the high conductivity characterizing the N-side. As the electron
current also increases in the transition region, approaching the tinal
state, the displacement current decreases in completing the charge of
the transition-region capacitance,

The time dependence of the displacement current is direcily re-

lated to the increments of electric field
E(x,t=0) - E(x,t)
and to their spatial integrals
¥(x,t) - ¥(x,1t=0)
displayed in Fig. 1l.4 as functions of position X for the same‘instants

of time tl to t5’ and for the final state., The increments of the

electrostatic potential at x = L of course coincide with the terminal

voltage response:
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v, () = §(E, £)-y(E, 1=0)

The mobile carrier densities are shown in Fig, 11.5 as functions
of position for the instants t = 0, tl to ts, and for the final
state. The linear expansions of the electron density spatial distribu-
tions of Fig. 11.6, injected into the quasi-neutral P-region, are nearly
lincar and rclatively close to the correesponding s{:eady—state distribu~
tionsf eveluated for the same terminal voltage V,(t) at each instant
of time. This is a consequence of the narrowness of the quasi-neutral
P-region, responsible for the small transit time T, (= 5;2 x 10—3).

11.,2.2. BExcitation: a high current step.

The high forward current step defined by

l
e}
ot
A
o

J(t)

J(t) =5 x 10 t >0

is applied to the device initially in thermal equilibrium, The final
state is in the high-injection region and corresponds to a terminal
voltage ,VA(tF) Z 12,7 (or = 0.328 volt) and to a firsteorder theory
injection parameter yx = 13.

The response of the device is illustrated in Figs, 11.7 to 11.12,

The terminal voltage as a function of time 1s shown in Fig. 11.7, the

* The injected electron density at the edge of the transition region is
slightly displaced from the first-order theory prediction of the
Boltzmann relation (A-45) (of Appendix A) in terms of the "exact"
voltage drop on the junction,
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displacement, electron, and hole currenls as [uncllons of position are
displayed at various instants of time in Figs, 11.8, 11.9, and 11.10
respectively, and the mobile carrier densities as functions of position
in Figa. 11.11 (scmilogarithmic scales) and 11,12 (linear scales),

The initial part (t < T, of the terminal voltage time response

p)
(Fig. 11.7) is the result of the combination of two basic effects: the
build-up of the chmic voltage drop in the quasi-neutral D-region and the

charge of the transition region capacitance. The first-order estimation

of the ohmic voltage drop, in terms of the thermal equilibrium parame-

ters vy and T yields:
J Vip
AV =~ = 26.5 (or 0.685 volt) (11.6)
ohmic P

and an initial slope

v, (t) AV . 26.5 o
A _ Iohmlc _ o Z b7 x loh
t T.p 5.678x10

ohmic,

initial

(11.7)

Furthermore the charge of the transition region capacitance C occurs

with an estimated initial slope

VA(t) JF 5 x lou - )
T - = —C-u = ~——%—6—8—l. - 3 x 10 (ll.8)
" |charge,
initial

The combination of the two effects yields a total slope of the initial

part of the terminal voltage response:

v (t) v, (t) v, ()
At - i + At = 7.7 x 0% (11.9)

total, ohmic, charge,
initial initial initial




279

The "exact" response (Fig. 11.7) is well in agreement with the estima~
tion(11.9). It may be noted that, for increasing times, both W and C
increase, so that the above estimation, in terms of thermal equilibrium
parameters, is only valid for short times, At later times (t > 8 x lO"u)
conductivity modulation effects, essentially absent in the initial part
of the résponse, are dominant so that the terminal voltage decays to
its final steady~state value with a tlime constant éssentia.]ly equal to
the transit time of electrohs in the quasi~-neutral P-region, This tran-~
sit time differs from the low-injection value(ll.2)since the motion of
minority carriers (electrons) is ruled by both drift and diffusion .
phenomena, as a result of the conductivity modulation, and since the
guasi-neutral P-region is significantly wider at high injection levels,

The two ecurves of Fig. 11.7 refer to solutions cbtained in identi-
cal conditions with two different discretization schemes:; the general-
ized pure implicit (Subsection 8.2.1) and the generalized Crank-
Nicholson scheme (Subsection 8.2.2). The two schemes feature truncation
errors in the time domain differing essentially by one order of magnitude
(Appendix F). The comparison between the two results may serve as an
estimation of the overall influence of the truncation error, for the time
step size employed. The unevenly spaced time points actually used for
this calculation are indicated by vertical segments on the curves, and
have been auvtomatically selected by the procedure described in Section
8.4, The little discrepancy (< 1.5%) between the two curves, despite
the relatively large size ol the time steps, is an indication of the
sufficient accuracy of the discretization schemes, Additional calcula-~

tions have been performed with considerably larger time steps, for a
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given discretization scheme, to test the influence of the time step
size on the truncation error in the time domain. The insignificant
variations of the respective responses are once more indicative of the
insensitivity of the resulls achieved upon the discretization error,

The three current components are separately displayed in Figs.
11.8 to 11.10 as functions of position for various instants of time
- 0.90 x 1073, t, = 1.19 x

= 6.19 x 10"3,

(t; = 0.31x 107, t, = 0.61x 107, ¢

2 3

o =2.20x 1073, b = k.17 x 107, t,

tg = 8.57 x 103, tF = ®), The same situation discussed in the previous

example for the low current step is here present in the high conductivity

10'3, t

(¥) side and in the transition region, aside from quantitative discre-
pancies such as a more signjficant decrease of the transition region
width for increasing time. In the quasi-neutral P~region, though, the
displacement cﬁrrent features a basically different pattern. The

initial decrease of the (positive) displacement current, which corresponds
to the build-up of the ohmic potential drop in the P-side, is followed

by an inversion of sign and subsequent decrease in magnitude toward its
steady~state zero value, The reversal of the direction of the displace~
ment current flow is a consequence of the @ecrease of voltage drop in a
region whose conductivity is becoming modulated. The modulation initiates
in the quasi-neutral P-region at the edge of the transition region and
evolves gradually towards the external contact L. This evolutidn is
particularly evident in the spatial distribution of the displacement

current at the instant +t, (Fig. 11.8) which shows how the voltage drop

3

is already decreasing (for increasing time) in the increasingly modulated
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region close to the transition region, and is still increasing in the
‘region close to the externél contact,

The conductivity medulation is well apparent in the spatial dis-
tribution of the mobile carrier densities of Fig., 1l.ll. The discrepancy
between the injected minority carrier density in the P-region at the
instants t8 and tF’ exposed in the linear expansion of Fig. 11,12,
and thg absence of displacement current for t8 s't < tF indicates that
the terminal part of the transient response is essentially determined by

the motion of mobile carriers.

11.2.3. Execitation: a spike of current.

The forward current spike defined by:

J(t) =0 t <0
J(t) = 5x 1oh t/tl 0<tst = b x 1077
J(t) =0 t > tl

is applied to the device initially in thermal equilibrium. This is, of
course, also the rfinal state of the device,

The response of the device is i1llustrated in Figs, 11.13 to 11,15,
The terminal voltage és a function of time is shown in Fig. 11.13, the
gelectric field and the increments of mobile carrier densities
[n(x,t) - n(x,t=0), p(x,t) - p(x,t=0)] as functions of position are
displayed at various instants of time (tl =k x 10—5, t, =3 x lo-h,
tg = Lb x 107, %, = 5.4 x 107, tg = 0.405, g =1.205) in Figs,
11.14% and 11.15 respectively, Three distinet phases characterize the

evolution of the overall transient response,
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Phase I. The initial part (t < tl)v of the terminal voltage response
is due to the combiﬁed effects of the ohmic voltage drop in the Quasi—
néutral P-region and of the charge of the transition region capacitance,
An identical situation was discussed in the previous example (Subsection
11.2.2), where the phenomena evolved until completion., In the present
casé, instead, they are aborted for t > tl. The first-order estimation
of the initial slope of the terminal voltage respoﬁse is given by the
relation (11.93, so that the value of the terminal voltage at t = tl
- may be estimated as:

v, (&)
VA(t = tl) = =7

x 6 = 7.7 x 0% x b x 1070 =3.08
initial
which is sufficiently in agreement with the "exact” value of Fig, 11.13.
During this initial phase the electric field changes significantly both
in the transition region and in the quasi~-neutral P—region.(Fig, 11.14).
A considerable increment of elecﬁric charge density (due to electroms,
Fig. 11.15) is built up in the transition region at the edge of the
N-side, balanced by an essentially equivalent dielectric charge on the
surface x = L in the amount - E(x=L) = 1.93 (Fig. 11.1%, and Eq.
(7.4)), apart from the small contribution of the increment of hole
density at t = tl.
Phase II. The dominant phenomenon of this second phase
(b <t < mrP 2 2.3 x 10”3) is the relaxation of the ohmic voltage drop
in the quasi-neutral P-region to 1its thermal equilibrium zero value

(Fig. 11.14), with time constant T.p- AS a consequence, the terminal

voltage decays to a value VC essentially equal to the initial voltage
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drop on the transition region capacltance estimated on the basis of the

"slope (11.8) as:

Vo(t) |
RO

. T xt; =3x J.Ol‘L x b x 107 = 1.2 (11.10)

charge,
initial

inyégreement with the "exact" response (Fig. 11.13). Simultaneously,

tﬁe increment of hole density increases (Fig. ll.lE), as a result of a
drift of holes governed by the electric field converging, on both sides,
toward the interface between the transition region and the quasi-neutral
P-region. TIurthermore, the peak of the electron densily increment
decreases, even though the overall electron charge remains constant, and
becomes balanced by an equal amount of charge due to the hole increment,
as the sheet of charge at x = I, disappears.

Phase III. The transition region capacitance, initially charged to

VC (relation (11.10)), is discharged essentially through the incremental
resistance of the diode, This is the only phenomenon responsible for

the terminal voltage decay from VC to the final steady-state zero
value, since the only variations of the field occur in the transition
region (Fig. 11.1h). A first-order estimation of the terminal voltage
response during this phase may be attempted by analyzing the discharge of
a lumped constant capacitor C (equal in value to the transition region
capaditance), initially charged at VC’ through a variable resisfor-
whose characteristic is determined by the steady-state current-voltage
relationship of the diode ((A-51), of Appendix A) for low injection

levels. If JSat is the saturation current (A~53), the terminal

voltage obeys then the equation:
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av, (t) J v, (t)
A sat | ‘A
eI 2 [c - 1] (11.11)

with solution

v, (t)
Isat e b0 L1
VA(t) =V, +—t+1In "Vg""“'“”' (11.12)
e ~ L1 '

The estimation (11.11) yields at VA(t) =1 a slope

dv, (t) . n 93

P ~ ~
at ~ 7 Y, Wp C (e-1) - - 5% 0.9% x 1,67 (1.7) - 2.5

which differs essentially by a facfor of 2 from the "exact" value of
Filg, 11.13. This disﬁrepancy, not at all surprising, 1s to be allribut-
ed to the insufficiency of the model, on which the estimation is based,
and to the inaccuracy of the steady-state first-order parameters used.

11.2.4, Excitation: a low voltage-step.

A step of voltage in the forward direction is applied to the
device initially in thermal equilibrium. In the discretized context
the ideal step is approximated by a ramp, whose slope is a determinant
parameter very much affecting the initial response of the device. The

applied voltage ramp is defined by:

VA(t) =0 t <0

- . - =5
VA(t) = 3.86 2y 0=st<t =2x10
VA(t) = Vyp = 3.86 (or 0.1 volt) t =zt

(11,13)
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Tae instant b, is taken as the first time point in the actual genera-
tion of the solution; The final state is a low-injection steady-state
condition, characterized by a total current Jp = 84 and a first-order
injection parameter = 0.029,

The response of fhe device is illustrated in Fige., 11.16 to 1l.22,
The-total current as a function of time is shown in Fig. 11.16 (in two
different timelscales), the ratios between the thrée current components
and the total current as functions of position are separately displayed
in Figs, 11.17, 11.18, and 11.19 respectively, the electrostatic poten-

tial and the mobile carrier densitiles as functions of position in Figs.

11.20, 11.21 and 11.22. The spatial distributions are shown at various

instants of time (tl =2 x 10“5, 6, =5 x 10’“, t3 =1.,9x 10‘3,

- - -2 -2
t), = 3.9 210 3, tg = 7.9 x 10 3, tg = 1,6 x 1077, by = 3.6 x 10
- tF).

Whereas an ldeal step of voltage woﬁld be responsibie for an
infinite total current (essentially displacement current) at 1t = O+,
the ramp of voltage (11.13) generates a finite current atany instant of
time. The initial part (t < tl) of the current response (Fig. 11.16)
is ruled, just as in the previous examples, by the build-up of the ohmic
voltage drop in the quasi-neutral P-region and by the charge of the
transition region capacitance, ©Since the time constants of these two
phenomena are considerably larger than tl’ the linear approximétion on’
the initial terminal voltage response of Subsections 11,2.1 to 11,2.3
may also be used here to estimate the current at the instant tl. The

ohmic voltage drop may be attributed to a fraction o of the slope of

the voltage ramp (11,13), and the charge of the transition region
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capacitance to the remaining traction L - &, If the expressions (11.6)
to (11.9) are used with the first-order thermal equilibrium parameters,

the estimated value of the current a the instant tl is given by:

. Var %p Trp )
ey =gt
1 P
} (11.14)
Var
J(tl) = (1-0t) —C
1 /
or
-1
v W 1
J(tl) =-_E-A—F— 5 f +_é -1.25}{105
1 P rp

>

which is sufficiently in agreement with the exact value 1.13 x 10
(not shown in Fig. 11.16)., Except in the N-side, the displacement
current accounts essentially for the total current at the instant tl

(since T << 5 << TrP)' This is related to the relatively abrupt

rN
initial change of the spatial distribution of the electrostatic poten-
tial well apparent in Fig. 11,20, with consequent increase of the
magnitude of the (negative) electric field in the quasi-neutral P region.
At later times (t > tl) the fesponse of the device 1s governed
by three phenomena: the relaxation of most of the ohmic voltage drop in
the quasi-neutral P-regiocn, the completion of the charge of the transi-
tion reglon capacitance, and the diffusion of lhe minorily carriers
(electrons) in the quasi-neutral P-region. Whereas the time constants

of the first two effects are dependent upon the current, and therefore

are time dependent, the time constant of the third effect may be taken
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as the steady-state transit time Tt’ current independent and therefore
essentially constant. The relaxation of the ohmic drop generates an
inversion of the displacement current in the gquasi~-neutral P region
(Fig. 11.17), related to the decrease of the magnitude of the (negative)
electric field {Fig. 11.20). This current is balanced by an essentially
equal and opposite hole current in that region until the electron current
fraction is permitted to increase significantly at later times (t > 'rt)
and become the dominant component. 1In the transition region the de-
- creasing displacement current fraction, balanced by an increasing
electron current contribution, completes the charge of the transition
region capacitance.

The overall transient response essentially reaches the final state
within 5 Tt - 0.026, since transit time effects become dominant at
later times. The influence of these effects may be recognized in the
spatial distributions of the injected minority carriers (electrons) in
the quasi-neutral P-region (Fig, 11.22): these feature a significant
curvature in the vicinity of the transition region, as opposed to the
closely linear guasi-steady-state distributions.

In order to test the influence of the dilscretization error in the
time domain due to abrupt variatioﬁé of the external excitation in the
critical part of the response (t <k TrP>’ calculations have been
repeated for smaller time step sizes in both the initial phase (t S_tl)
and in the following rélaxation period. Of course, the original excita-
tion has been maintained in the original form (11.13). As a result,
transient responses have been cbserved to be very much sensitive in the

critical period to the step size, as expected, However, the current
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at the instant tl is not affected significantly (within a few percent)
.by the time step sizé, even for the extreme case {discussed above) in
which tl is taken as the first internal time point of the discretiza-
tion mesh, Furthermore, for t > tl, various current responses, ob-
tained for different time step sizes, converge after a short time to a
uniéue curve, rather insensitive (within limits) to a variation of the
mesh size. This is indicated in Fig. 11.16 by the dashed curve conver-
ging to the solid curve -(the original response) at t =4 T,pe The
actual time points employed for the calculation are indicated by dots on
the two curves. It may be coacluded bhat, allhough the transient
response is highly dependent upon the time-step size within critical
time intervals featuring abrupt excitations, accurate solutions are
generated for later times even by coarse diseretization schemes. This
valuable feature may be usefully exploited to decrease the computation

load, if the achlevement of a high degree of accuracy in the vicinity

of abrupt excitations is not of interest.

11.3. The interaction of the N-P diode and an external resistor under

switching conditions.

A slightly longer N-P structure (Fig. 1l1.23) is analyzed under
switching conditions from a forward bias [initial external current
I(t=0) = 2 mal to a reverse bias condition driven by a constant voltage
source VB( = 3 volt) through a resistor R{= 150 n). The same
idealized model of Section 11.2, characterized by absence of generation-
recombination in the interior, abrupt asymmetric impurity distribution,
constant mobilities and ohmic contgcts, is assumed. The method of

solution employed has been illustrated in Section 9.L.
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The structure is characterized by the physical parameters listed

in Table 11.1 and in Section 11l.2, with exception of the following;

L

i

0.22 (or 0.2105 x 10~
29,78 (or 28,49 x :Lo"lF cm)
30.00 (or 28.70 x lo“h cm)

N-side, M-0
length: ¢ P-side, L-M
total, L-0

cm)

]

i

cross-sectional area of the device:

L

A = 2,8954 x 10 (or 2.65 x 10'h em?)

Tirst-order theory width of the quasi-neutral P region:

initial state, wPI =L - MPI =29.2 (or 27.9x lo'h cm)
' in in
N

final state, =L - MP{ =27.2 (or 26,0 x 10" cm)
fin

WPlfin

first-order theory low-injection transit time of electrons in the quasi-

neutral P-region, corresponding to an average WP = 28.2:
av
(2] L
n Plav ~ by -9
Ty = = 4.3 (or 39.k x 107 sec)
av

external current, I(4=0) = 2 ma
initial state:d terminal voltage, VA(tmO) = 0,2115 volt (11.15)
lnjection parameter, x(t=0) = 0.95
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I

1
=

&

external current, I(t:tF) =
final state: . - (11.16)
terminal voltage, V,(t=t;) = - 3 volt

Furthermore, the relation

Vﬁ + YA(t)

I(t) = - —x

(11.17)
is valid at any time % > O.

‘ A structure featuring a considerably longer P-side, as opposed to
that analyzed in the previous Section, has been selected, in order to
expose the various phenomena occuring in the present case, For conveni-
ence, quantities referring to the external circuit (time, current,
voltage, resistancé) are consistently given in unnormalized form
throughout this Section.

The response of the device is illustrated in Figs. 11.24% to 11.28.
The terminal voltage of the diode and the external current as functions
of time are shown in Figs. 1l.24% and 11.25 with different Lime scales,
the electric field and the injected minority carriers in the P-side as
functions of position in Figs. 11,26, 11.27 and in Fig, 11,28 respect-
ively at various instants of time. The transient response may be
separated into three distinct phases: the bulld-up of the ohmic voltage
drop in the quasi-neutral P-region; the limitation of the reverse cﬁrrent
to a constant value essentially determined by the external eircuit
parameters, and the decay of the reverse current toward the final steady-

state value,
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Phase I. Build-up of the ohmic voltage drop in the quasi-neutral P-

region, At the instant t = 0+, a current

vV, + V,(t=0)
B 7 A = 21,4 ma

I(t=0") = -

is forced through the device, since its terminal voltage VA remains
unchanged from t = 0 to t =0 . Subsequently the establishment of
the ohmic voltage drop in the gquasi-neutral P-region becomes the domin-

ant effect and occurs with the time constant:

L 12

T oz i 23,8 x 107 (o - 3.5 x 107

rP GP
initial
average

sec) (11.18)

where an average conductivity of the gquasi~neutral P-region in the
initial state has been employed, evaluated on the basis of the assump-

tions of the charge neutrality and linear mobile carrier distributions

as
c =$—+$—- & 93 x 19 + 4b x 57 2 k.27 x 100
i;ﬁgt;al B P linitial
rage average
M_<x<L

P (or 0.66 a~t ™)

The ohmic voltage drop may be estimated as:

[1(t,)-1(0)]
AV = . wPlin __ 9+ 2)x 1073 x 27.9 x 10

A o 2.65 x 10°F x 0.66

n

initial
average

< - 0.34% volt (11.19)
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where ty = 15.5 picosec., and I(tl) is the external current flowing
once the ohmic voltage drop is established% The estimation (11,19)
agrees well with the "exact" value of Fig. 1l.2k,

The evolution of the response during this first phase may be
conveniently followed in the time expansion of Fig. 11.25 and in the
spatial distributions of the electric field of Fig. 11.26 at various

I IT

instants of time (to=0, 7 = 0,92, £ = 1.83, t T, 5.7,

v

7 =11.0, %, =15.5, t, = 6L.4, in picoseconds). The external

(negative) current decreases slightly in magnitude from the value at

t =t (taken as the first time point for the generation of the solu-
tion), according to the relation {11.17) as the terminal voltage vy

of the diode decreases by the amount of (11.19), with the time constant
(11.18). The electric field (Fig. 11.26), initially in the steady-state
condition E(x,t:to), gradually assumes the new spatial distribution
E(x,L:LE), consistent wilh the dynamic equilibrium condition governed
by the reverse current I. At the instant tz the ohmic voltage drop
in the gquasi-neutral P-region has been essentially established, Simul-
taneously, in the same region, a changeover from displacement current to
particle current takes place; the motion of carriers initiates toward

the end of this phase (t = t1), and the second phase begins,

Phase II. Constant reverse current phase. A partial depletion of the

injected minority carriers in the gquasi-neutral P-region represents the

*¥  Of course, the numerical value for I(tl) must be determined by the
solution of the system of simultaneous Egs,(11.17) and (11.19).
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dominant phenomenon of this phase, - The evolution of the response may be
followed in Fig., 11.27, which illustrates the spatial distributions of
the electric field at various instants of bime (t5 =0.107, %, =0.199,

tS 20‘\405’ t6 =O'79)+: t =l’65) t8=3'3‘2: t =6'05: t =%, in

7 9 F

nanoseconds) and in Fig, 11.28, which displays the minority carrier

0

The. changeover from displacement to electron current (due essenti-

densities as functions of position at the instants +. and tl to t9.

ally to diffusion) at the transition region edge MP of the quasi-
neutral P-region, during the first phase, is apparent in Fig., 11.28,
which shows the adjustment of the spatial slope of the electron density
at M, to the new high reverse current at t = t, from the initial
forward value., The small electric field in the quasi-neutral P-region,
particularly in the vieinity of MP. (Fig. 11.27), ensures that the
electron drift current is a minor contribution to the total current,
which is therefore essentially proportional to the spatial slope of the
electron density at MP' The electron flow from the quasi-neutral P-
region to the N-side occurs then with a nearly constant rate, essentially
determined by the external voltage source VB and the resistor R.
Therefore the electron density at MP decreases with a nearly constant
slope generating the typical distributions of Fig. 11.28, until the
depletion of carriers at the edge of the transition region is éompleted
(t = 1.2 x 1077 sec). The (negative) external current, essentially
constant during this phase, is then forced to decrease in magnitude and
the third phase begins,

though the electron flow in the quasi-neutral P-regioﬁ is mostly

ruled by diffusion in this second phase, the effect of a small drift
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component is apparent in the distributions of Fig. 11.28, which shows
how the electrons are "pushed" from the external contact of the P-side
toward the transition reglon by the (positive) electric field,

Phase ITII, Decaying reverse current phase. The dominant phenomenon of

this pnase is the termination of the depletion process of the excess
electron charge remaining in the quasi-neutral P-region at the completion
of the second phase. The diode beéomes a high impedance device, forcing
the reverse current to decrease to its steady-state value and the ter-
minal voltage VA to approach the voltage source VE according to
relation (11.17). Oimultaneously the electric field distribution

(Fig. 11.27), essentially unchanged during the second phase, relaxes
toward its final steady-state distribution both in the transition region,
whose width gradually increases, and in the quasi-neutral P-region.

The former effect is related to the discharge of the transition region
capaciltance, whereas the latter allows a noticeable diffusion of the
electrons also toward the external contact in the quasi-neutral P-region
(t = t9, Fig., 11.28). The spatial distributions of the electric field
(Fig. 11.27), featuring zero slope in part of the quasi-neutral P-
region in the vieinity of the external contact, are Indicative of the
achieved electric charge neutrality condition in that region during this

third phase.

The prediction of the duration of the various phases, characteriz-
ing the transient response discussed above, is of great practical

interest. An estimation of the time constant of the dielectric relaxa-

tion process of Phase I has already been given and a good agreement with
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the "exact" value has been observed., Both thase II and Phase III are
conventionally analyzed on the basis of a highly simplified form of the
diffusion equation for minority carriers in the quasi-neutral region of
the low conductivity side, with the aid of the usual first order assump~
tions (for instance, Steele [26] and Byczkowski [27]). These first-
order results are gathered by Grove [28], with explicit asymptotic
expressions for the model under consideration (short structure in
absence of recombination in the interior).

The duration of the constant-current phase (II) is predicted as:

w)\ Yp (| )’

At _ in
!phase T \L [T+ 10,0 /1(%,) ]

Z 0.6 x 1077 sec (11.20)

where I(to) and I(t,) are the forward and reverse currents respect-

P|.
in
unchanged during Phase II. The time required by the decaying current to

ively, and w is the width of the quasi-neutral P-region, essentially

reach 10% of the constant value of Phase II is defined as the duration

of Phase III and is predicted as

At -z - ) 5 ‘
phase IIT = fr " "7 I(tz)/:[(to)]z [T+ I(tz)/(to)]z
. T‘t] = 6.3 x 10-9 sec (11"23‘)
av

The total switching time, essentially determined by Phase II and IiI, is

then:

At + At = 6.9 x 1077 sec (11.22)

total = 5% phase IT Phase IIT
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The prediction (11.20) differs considerably from the "exact"
value (- 1.1 x 10-9 sec) of Pig. 11.24. The discrepancy is to be
attributed partially to the influence of the electric field which tends
to accumulate electrons at the edge of the transition region in the
guasi-neutral P-region, and deplete the region close to the external
contact during the Phase II, This effect, not accounted for by the
first-order analysis, 1s apparent in the distributions of Fig. 11.28 and
is responsible for a longer duration of FPhase II, as compared to the
first-order estimation (11,20) (= 0.6 x 1077 sec)% On the contrary, as
a consequence of the above, the smaller excess of winorily carrilers,
left in the quasi-neutral P-region at the completion of Phase II, is
responsible for a shorter duration of Pnase III (: 5.5 x l0'9 sec,
Fig. 11.28), as opposed to the first-order estimation (11.21)
(< 6.3 x 1079 sec). It may be recalled that the electric field in the
quasi-neutral P-region 1s essentially absent during Phase III, so that
the first-order diffusion equation becomes considerably more accurate,
As the result of the compensation of the discrepancies of the firste
order estimations of the durations of Phase II and IITI, the total "exact"
switching time (= 6.6 x 1077 sec) agrees sufficiently well with the

prediction (11.22) (= 6.9 x 1077 sec).

* A qualitative agreement between the "exact" results and Kennedy's
[24] "second-order" solutions of the diffusion equation of minorily
carriers in the quasi-neutral region in the low conductivity side,
in presence of a uniform field, may be recognized.
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Ll 4, Conclusion,

Numerical results for a special structure of an isolated N - P
diode driven by typical time-dependent excitations of ideal current and
volbage sources have been presented, In addition, the transient
response of the combination of the N* - P diode and an external
resistor has been analyzed under switching from a forward to a reverse .
hias condition. Accuracy tests have been performed by comparing solu-
tions obtained for various discreﬁization schemes and step sizes,

The "exact" results, displayed in graphical form as functions of
position and time, allow a thorough understanding of the contribution of
each quantity to the overall behaviour of the device. The first-order
estimations, consistently attempted as an integral part of the interpre-
tation of the computed solutions, are usually in good agreement with the
"exact" results, provided that only one isolated phenomenon is respon-
sible for the generation of a portion of the transient response, On the
other hand, only order-of-magnitude estimations are available if a
simultaneous interaction of basic effects contributes to the characteri-

zation of the time~dependent behavior of the device,
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CHAPTER XII

CONCLUS IONS

Numerical methods of solution of the one-dimensional basic two-
carrier transport equations describing the behaviour of semiconductor
Jjunction devices under both steady-state and transient conditions have
been presented in this work, The methods described are of a very
general character: none of the conventional assumptions and restrictions
are introduced, and freedom is available in the choice of the doping
profile, generation-recombination law, mobility dependencies, injectidn
level, and boundary conditions applied solely at the external contacts,
For a specified arbitrary excitation of either current or voltage (as
a function of time for a transient analysis) the solution yields the
terminal properties and all the quantities of interest throughout the
entire device as functions of position (and time), |

The physical and mathematical model, which includes the conven-
ticnal simplified form of the Boltzmann transport equation in terms of
drift and diffusion processes, is described in Chapter I, Considerable
attention is focused on the numerical analysis of the problem in order
to achieve a numerical algorithm suf'ficiently sound and efficient to
cope with the several basic difficulties of the problem, Some of the
basic difficulties are already recognized in Chapter II, in which a
steady-state iterative scheme, already avallable in the literature and
presented in a slightly different form in Chapter I, is numerically
analyzed, The inadequacies of the original analytical formulatlon are
overcome by an improved algorithm, which, together with the aid of

appropriate numerical techniques, is capable of generating very accurate
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steady-state solutions under the above general conditions.

Additional difficulties of fundamental nature arise in the time-
dependent analysis of the problem, whose formulation, described in
Chapter VII, calls for the discretization of a system of non-linear
partial differential equations of the parabolic type. This problem is
approached in Chapter VIII, on the basis of extrapolations from the
results avallable in the theory of numerical analysis for the simpler
cases. Preference is given to discretization schemes of the implicit
type, featuring unconditional stability without restrictions on the
discretization mesh adopted. It is in fact very convenient to employ
an automatically adjustable non-uniform mesh, in both the position and
time coordinates, consistent with the criterion of maintaining constant
truncation errors throughout the entire evolution of a transient
solution, without endangering numerical stability,

The importance of achieving numerical compatibility between steady-
state and transient solutions is emphasized in Chapter IX, in which an‘
algorithm for the solution of the voltage-driven transient, compatible
with the current-driven transient of Chapter VIIIL, is described. The
procedure employed for the voltage-driven transient is also capable of
generéting compatible steady-state distributions, therefore very suit-
able to serve as inditial conditions for a lLime-dependent solution,

As an example of numerical calculations, resulis for special
structures under steady-state and transient conditions are reported in
Chapters VI and XI, respectively. The analysis of solutions for
idealized models and excitations allows a thorough evaluation of the

conventional first-order theory, based on several drastic assumptions
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and approximations, and a comprehensive test of the accuracy of the
results for the numerically worst case., For the steady-state case,
the "exact" and first-order £erminal properties are sufficiently in
agreement only for reverse bias conditions and low to moderate injec-»
tion levels, despite of the discrepancies of the internal distributions.
Although this insufficiency of the first-order theory is well known
qualitatively, the "exact" analysis permits a valuable quantitative
comparison, for any type of structure and bias condition, On the
other hand, the conventional time-dependent solutions are available in
closed form énly for very particular situations, aml require the usual
drastic assumptions of the first-order theory. More generally, only
order-of-magnitude estimations may be used to achieve qualitative pre-
dictions of the overall transient response, even for the simplest
structures and external excitations. This difficulty is a consequence
of the interaction of several effects of basic nature, which require
the simullaneous solullon of the system of fundamental eguations
throughout the entire device. |

The principal sources of errors, and techniques suitable to control
their influence on the overall accuracy, are discussed in Chapters V
and X for the steady-state and transient cases, respectively. The
accuracy of the final steady-state results is evaluated on the basis of
consistency tests between the achieved solutions and a set of dependent
relations suitable to expose discretization and numerical errors, DPar-
tial results at the completion of the iterative scheme at each instant
of time in a transient solution, may also be evaluated with the aid of a

set of time-dependent testing relations. The overall accuracy of the
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transient results is estimated by comparison of solutions obtained for
different discretization schemes and mesh sizes.

The FORTRAN programs for the steady~-state method of Part I and
for the transient solutions (current or voltage driven) of Part II are
reported in detail in the Appendices for a special case. Whereas the
usage of the former is rather straightforward, the latter requires
usually more attention in order to achieve a uniform contribution of
the various sources of errors, and therefore the minimization of the
computation time for a desired overall accuracy. This may be attained
by an appropriate choice of the discretization scheme, diascretization
mesh size, total number of spatial and time points, iteration error and
terminal voltage tolerance (in a voltage-driven transient), The magni-
tude of these parameters may vary widely, and is highly dependent upon
the abruptness of the doping profile and of the external excitation,
Experience may serve as a useful guide for the optimization of the
selection of the determinant parameters., This situation is a direct
consequence of the degree of complexity of the transient solution, one
order of magnitude higher than that of the steady-state analysis,

The numerical solutions of the steady-state and transient problems,
for the simple physical model considered, are intended to expose the
several difficulties of fundamental nature present in the numerical
analysis. The overcoming of these difficulties opens the path to the
. inclusion of additional effects and to the extension to more complex
situations. As an example of straightforward applications of the
steady-state procedure in slightly more intricate schemes, the computa-

tion of the total incremental capacitance for a two-contact device and
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a solution for the reverse steady~state problem are presented in
Chapter III. The extension of the steady-state formulation to a three-
contact device is described in Chapter IV, although the inadequacy of
the one-dimensional model prevents. achievement of sufficiently realistic
results, The time-dependent algorithm is extended in Chapter IX to
incorporate a network of ideal generators énd passive circuit elements,
and a numerical example is reported in Chapter XI,.

The powerful tool developed in the present work opens the door to
a wide variety of investigations of both practical and theoretical
interest. Some are listed below.

(1) Application of the numerical methods to diffusion-controlled
structures with multiple junctions, more complex geometries, and ulti-
mately to ensembles of passive and active circuit elements.

() Inclusion of recombination and trapping mechanisms of various de-
grees of complexity in Junction transistors.

(b) Use of the numerical solutions to suggest and to validate more
comprehensive and improved analytical‘results.

(¢) Use of the numerical transient solutions to investigate the
switching properties of junction dlodes and transistors, particularly
diode reverse recovery and transistor storage time.

(4) Determination of impurity doping profiles to optimize specific
device performance parameters,

(e) Device modeling, as a basis for computer-aided circuit design and
analysis,

(2) Extension of the numerical methods to include zener and aval-

anche multiplication mechanisms, Junction breakdown effects can then be
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studied, and thermal effects could be incorporated so that possibility
of thermal runaway can be investigated, and the complete terminal
properties under transient as well as stesdy-state conditions can be
determined,

(3) Study of radiation effects in semiconductor devices, The pro-
gram for transient solutions is directly applicable to these investiga-
tions, for both cases of transitory and permanent radiation effects,

(k) Application of the numerical methods to space-charge-limited
structures, both single and double injection types.

(5) Extension of the numerical methods to multi-dimensional
geometries, Two-dimensional soluticons may become necessary if mean-
ingful results for realistic modeis of commonly used structures (such
as planar devices, field~effect transistors, integrated structures, etec.)

are desired.
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ATPENDIX A

SOME RESULTS OF THE CONVENTIONAL FIRST-ORDER THECRY FOR THE

N-P JUNCTION IN STEADY STATE

It is of interest to report, with a brief derivation, some
approximate results of the conventional theory (referred to here as the
"first-order" theory) for the P-N junction in steady-state in a simple

formulation.

A-l, Mathematica.l model.

The N-P structure that will be considered, with definition of its
parameters, is shown in Fig. A-1,

The simplified model is based on the following assumptions (in
addition to those listed in Subsection 1.1.1 for the "exact" approach):
(e) step distribution for the doping profile
{(£) higlly asymmelric Junction with oy 77 Op (GN and o, Deing the

conductivities of the N and P side respectively)
(g) separation of the interior of the device into fully.depleted andv
charge-neutral regions
(h) absence of recombination-generation in the interior [U(x) = 0]
(1) constent mobilities
(3) ohmic external contacts
Restriction to a specific injection level range is not introduced.

According to Fig. A-1l, Mp W and Xy (MP, Vo and xP) are
defined as the interface between the neutral and depleted regions, the
neutral region length, and the depleted region length respectively in

the N-material (P-material),
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Fig. A-1l., One-dimensional abrupt asymmetric N'-P diode model
with definition of the conventional first-order
theory parameters,
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The normalized fundamental Egs,(1l,16) to (1.21), specialized for

the simpler model, become:

3 =7 (x)+ Jp(x) (A-1)
g—i =0 (A-1a)
RN (a2
5, = %{;[p(x) i) dgfcx)} (4-3)
d“"b(cg RCRECRESER | (A-L)
Zin = g;ﬁ =0 (A-5)

N, =0 for 0<x <M (N-region)

A
E(x) = - %—;’;—' 5

Ny =0 for M<x <L (P-region)
9, (%) = 4(x) = 1n n(x) (a-6)
Pp(x) = §(x) + In p(x) (A-6b)

Assumption (f) leads to the inequality
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9l > gl 5 (er T =43) (A-7)

whereas assumption (h) is responsible for the solenoidal character of
each of the two current densities Jn’ Jp. Assumption (j) furnishes
the boundary conditions on the mobile carriers of the external contacts

as the equilibrium values:

n(0) =

p(0) = = 1/ng

»(L) = pp = 25)2 + 1+ A
n(L) = ny = 1/pg

whereas the boundary conditions on the electrostatic potential are

taken as:

potential reference

$(0)

]

(4-8)

1\r(L) 1‘,:(0) + VA -V

a
The quantities of interest will be obtained separately in each

regioﬁ and boundary conditions at the internal interfaces will be deter-

mined by matching the corresponding distributions.
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A-2. Neutral region in the low-conductivity (P) side (M_ < x < L),

Charge neutrality implies:
p(x) - n(x) = pp - n, (4-9)

The combination of inequality (A-7)with Egs.(A-2) and (A-3) yields:

40D o) -y + py) - - 2200 (8-20)

oxr 3

n(x) - n+ D, = D, SH(L)=4(x) (A-11)

From Egs.(A-2), (A=10) one obtains:

n(x) . ]dn(x)

vJ_ = - [l + ~
nn n(x) nP.erP dx
or

(A-12)

n(x)-nP+pP
n'n

Y, J, (L=x) = 2[n(x)-n,] - (pp-n;) Lﬂ[ B

which shows the dependence of n(x) wupon x, Specialized at x = M,

. Eq.(A-12) becomes:

——————n(MP)'nP+PP] | (1-13)

Yan<L-MP) = 2[n(MP)-nP} - (pP-nP) ln[ pP
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If n{x) > Pp, OF n(x) << P Eq.(A-12) can be linearized to yield,
with the aid of Eg.(A~13), an explicit relationship between n(x) and
X

-X

n(x) - ng = {n(MP)-nP] %iﬁ; (A-1h)

Otherwise, integration of Eq.(A-10) yields:

n(x)-nP-a-pP] (4-15)

§(x) - 4(1) = - m[ >

which combined with Eq.(A-12) gives the dependence of { wupon x, In
the linear approximation of Eq.(A-14), the relationship can be obtained

in closed form:

n(Mp)-np] o + 1} (a4-16)
P

Bx) - YL = - :m[[ 5| T

Equation (A-6) can be rearranged as
§x) - 9 (x) = nn(x) = 2 4 - an 9—%-1 + [9(D)-e(L)] (A-17)
P .
which, with the aid of Eq.(A-9), becomes:
n(x)

) = 9 (D) = 4(x) - §(E) - I 5= = - 30 (a0 alx)ongrpy) (A-20)

Equation (A-18), combined with Eq.(A-12), gives the dependence of 9

upon X.
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A-3, Neutral region in tne high-conductivity (N) side (0 <x < M),

An electric field of significant amount (for the flow of minority
carriers) cannot be sustained in the neutral high conductivity (I)
side, so that in Eq.(A-3) thc hole currcnt may well be approximated, in

this region, solely by its diffusion component:

; -1 dplx

dax
Y Yp

This leads to a linear hole density distribution:
p(x) =[W (-0) + By (2-19)

Moreover, in virtue of assumption (f), the following approximations

- - » *
are made in this reglon:

n(x) = ny (A-20).

y(x) = MO) =0 (A-21)
from which:

P, (%) =9, (0) (A-22)

¥  The goodness of these approximations worsens with the increase in
forward bias, This pattern is consistent with the behavior of the
remaining assumptions, which all become poor at very high injection
levels,
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Equation (A-6b) yields then:

p(x) = exple ()]

p(0) = exp[cpp(o)]= Py
or

7y05) = y(0) = 1n B (a-23)
and with the aid of Eq.(A-19):

~ p(M,) x=0

cpp(x) = cpp(o) + 1n [ P}:TN - l] M;-O + 1 (A=24)

which gives the dependence of cpp upon X in this region.

A-4., Transition region (M < x < MPl.

In virtue of assumption (g), mobile carrier concentrations are
neglected with respect to the fixed impurity concentrations, A very
strong electric field together wi’l;,h a high gradient of carrier density
is to be expected; an estimation of the orders of magnitude and sign of
the drift and diffusion current components leads to the conventional

approximation
0 ’ (A~25)

when such net currents are compared to their respective components of '

Egs.(A-2) and (A-3).
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The condition J, =0, applied to Eq.(A-2), yields:
n(x) « ¥ (*) (4-26)

which can be specialized at the boundaries of the transition region in

the forms:

ny = ng o (A-27)

) - e PO .
or

ae) -y o' P O (4-29)
and

a(e) = n) e\lf(X)-\lJ(MP) (430

where use of the relations

$(0)

R

P

SN
I

n(0)

5
£
H

has been made.
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Similarly, 1f the condition Jp = 0 1s applied ©o Eq.(A~3), one

obtains:
p(x) = e ¥(X) (A-31)
or
Pp = Py eVD (A-32)
0t) = 20%) 09O (a-33)

The combination of Egs.(A-27), (A-28), (A4-32), (A-33) and the neutral-

ity condition at x = MP
p(Mp) = pp + n(M;) - 0,
yields:
p(My) = py expw(MP)-_xy(O)de . [l + nﬁ exply(Mp)-4(0)-v ] - nf,] (A-34)
and
p(x) = p(r) &V(O)-H() (a-35)

Otherwise Poisson's equation (A-U4) may be readily integrated if

the mobile carriers are neglected:
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D
‘ dx
for £ x €M
. (x) = = ﬁg (et )2+ (L) (8=-30)
Hx) = -3 N My
40 _ y
dxa A
for M<x <M S
p Ny 2
b(x) = 5= (xm)? o y() (8-37)
\ .
where the conditions ggéﬁl = 0 have been used,
XaMN
x:MP

If the condition of continuity of ¢(x) at x = M

and. overall charge neutrality
ND(MfMN) = NA(MP-M)

are imposed, the width of the depleted region in the N-side and in the

P-side may be determined:
A 1/2
Xy = MMy = [th(o)—w(MP)J/(l + ND/NA>} (4-38)

1/2
8 ] / (A-39)

N ECCRICSIARE S



331

A-5, Internal boundary values,

The above results have been expressed in terms of the bounda.r:}
values w(MP), n(MP) at the interface between the depleted and
neutral P-region, These quantities may be determined by matching the
electron density distribution at x = M. _

The combination of Eq.(A-1l), specialized at x = M, Egs.(A-29)
and (A-8) yields:

v

n(MP) [n(MP)-nP+pP] =e b | (A-40)
or
Va
n(Mp) = = ‘ (A-41)
Pptig, 2y Py- '
( P2 ) + e A - 1+ P2

which relates the value of injected electron density, at the edge of
the neutral P-region, with the applied voltage VA’
If relation (A-Ll) is inserted in relation (A-29), the boundary

value of the potential at x = MP may be explicitly determined:

2
v P~n
ref 14 _Ef—g /pP + ¢(O)-Va (A-l2)

Pgt
2

y(Mp) = V,- 1n \/

Expression (A-41) may also be inserted in Eq.(A-13) %o obtain the
relation between the dominant current Jn (essentially the total
current J) and the applied voltage V,.

A gqualitative illustration of the distributions of interest, as
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given by the above first-order formulation, is shown in Fig, A-2 for

three different bias conditions.

A-6. Two special cases: low-level and high-level injection,

The quantity

) (A-43)

is defined as the injection parameter, and may be convenlently chosen
to separate two different ranges of operation of the deviee, deter-

mined by:

x << 1 low=level injection range
(A-Lk)
x 2> 1 high-level injection range

The injection parameter is closely related to the applied voltage for
a given device structure; Eq.(A-40), combined with the definition

(A-43), yields;

v P
eA=x-—-l?-(X+l)-l
Bp

The inequalities (A-l4l4) become then:

Va Pp
g K2 e - ) low-level injection
a Pp
e > |2 -~ 1] high-level injection
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First-order spatial distributions for different
bias conditions: (a) thermal equilibrium,

(b) high forward bias, (c) reverse bias.
(Schematic) :
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With the additional assumption

pP >>nP

the results of the previous sections may be specialized for the two
injection ranges and reduced to a simpler and more familiar approximate

form, For instancc, Eq.(A-l1) becomes:

v

An(MP) =1, e A low-level ' (A-L5)
v, /2 :
= e & high-level (A-L5) -

(M)
which inserted in Eq.(A-29), yield :

$(L) : low level (A=L7)

il

§OL)

]

1lr(MP) ¥(0) - vy o+ \}A/z + 1n Pp high level (A-48)

If V., 1is defined as the fraction of the applied voltage that modifies

4

the potential drop on the barrier, that is

vy 8 g0n) - 4(0) + Wy = 408) + , - WD)

relations (A-47), (A-48) may be written as



335

Vj =V, low-level (A-L9)
a
vj =~ ln P, high-level (A=50)

If relations (A-U45), (A-46) are inserted in the linear approximations
of Eq.(A-13), the relationships between current and applied voltage

are easily recovered:

Vv

~ A
J-3J, = JSat(e - l) low-level (A=51)

N v,/2
J-Jd =27p JSat e high~level (A-52)
where

n .
A P "
Usat = Y(T-L) (4-53)

is the saturation current.

A-7. Transition region and diffusion incremental capacitances,

- : . . . * s
(a) The incremental transition region capacitance €, is conven=

t
tionally computed as the variation of the net electric charge
density Qt in the depleted region (on one side of the metal-

lurgical interface) with respect to the applied voltage:

*  Capacitances are intended per unit cross-sectional ares.



4. dx
C, = e = = N o
£ =@, A TV,

This is the dominant incremental capacitance of the device under

reverse-blas and low forward-bias conditions. In this case

y01p) 2 4(x)

so that the expression (A-39), with the aid of relation (A-8), may be

readily differentiated, to obtain Schottky's formula:

N 1/2
A
Ct = N (A“su)
A
2(V - ) 14+ -2
d A Nb
which shows the linear dependence of (Ct)-2 on the applied voltage
VA'

(b) The incremental diffusion capacitance is conventionally
evaluated as the variation of the electric charge, in the
neutral region of the low conductivity (P) side, due to one
type of mobile carriers (either one for the assumed neutrality
condition), with respect to the applied voltage. This capaci-
tance is therefore the dominant one under moderate and high
forward-bias conditions,

If QP is the electric charge due to holes in the neutral P-region,

and QPo is the same at thermal equilibriumg then:

Qp, = € Pp¥p

Q
~ “Po
9 = Qpy = B [n(MP)”“P]
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If Eq.(A-40) is differentiated to obtain

dln(My)]  nMp) [n(My)-ngrp,]
av = 2n(MP) -ngtP,

A

the incremental diffusion capacitance Cd may be easily determined:

dQ,  aq aln(Mp)] wpn(My) [n(y)-ngrop]
a = av, = dln{M)] av, - (2n(M,)-n5rpp] 2

e (A-55)
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APPENDIX B

NUMERICAL INTEGRATION AND DIFFERENTTATION

It is of interest to report, as a convenient reference, a few of
the simplest schemes suitable for the numerical evaluation of deriva-
tives of the first and second order and integrals of a glven function;
Such a function is assumed available in discretized form, at a finite
number of points unevenly spaced, for which a method based on local
interpolation with a polynomial and subsequent manipulation of the
same is appropriate.

The following notation is used:

x; = value of the abscissa x at point i, i =1, 2, 3, «=¢ L
A . N . ;
Si =X "Xy step magnitude at point 1
oy £ Si/S ratio of consecutive steps at point i
i-1
Y, = one dimensional array representing the continuous function y(x)

given in discretized form at the 4 points,

B-1., Integration,

The numerical computation of the integral of the function y(x),

defined in the interval X x

l) &)

being one extreme of the interval (either x; or XL> and each point

1s desired, limlts of integration

%3 (1=1,2 *° £)f

B-1l,1. Two-point formule (trapezoidal rule).

Linear interpolation is used to approximate the integrand y(x)

i menta interval x. KXo ot
in each elementary 17 *541
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“441
f y(x)ax ¥ (v, ) 8,/2 (B-1)

X.
1

B-1l.2. Three-point formula (parabolic interpolation).

The integrand y(x) is approximated by a second-order polynomial

passing through three consecutive points

(Y90 %59) 5> (g x5) 5 (Vg9 %g,9)

If the origin of the abocecissac is shifted for convenience to the point
Zs, the condition of passage of the parabola A + Bx + sz through

the points
(Yi-l’ = Si-l) ) (Yi’ O) ) (Yi+l’ Sl)

becomes:

2
PoSia P & i1
1 o o Bl = | v,
1 s, s° c Y
i i . +1

from which;:
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A=Y,
L2 2 2 2
N (5;_15¢) Y3 = B33 Y441
- sisi_l(si+si+l) > (B-2)
oo Ba¥iat B8y )Y -850 Y
- 8;8; 1(84%85,9) )
Moreover
Y,b Xb
f (A + Bx + sz)dx =(Ax+ %xa + %XS)
X X
a a
so that:
i1

S.i8.
f y(x) dx = ._.1_6_}:_1. {(z-ai)yi_’l + (ai+2+l/ozi)Yi + (z-l/ozi)Y. ]

S i+l

) (B-3)
which reduces to Simpson's formula if the step is uniform (Si = Si-l’
i,e. Q; = 1). 1In each of the two elementary intervals the integral
becomes:
X, ’
j y(x)ax = '%:}' (3 - ozj.l_+l Tia* (3 * é?; I - &?'(]x;f—l'f Tiv
X421 (B-k)
%01 " . .
Jf y(x)dx = Bi - ag%f Y. i+ (o:i-+3)Yi + (3 - a;%I Yiiq1 (3=5)

X.
1



341

2-1.3. Four-point formula (cubic interpolation),

The integrand y(x) is approximated by & third order polynomial,

passing through four consecutive points

(5 %) (Yo%) (Y %590 (Y 0%y 0)

If the origin of the abscissae is shifted to the point Xs5 the condi-

tion of passage of the cubic A + Bx + sz + Dx3 through the points

(Yi_l’z_l)) (Yiﬁo>) (Yi+l)zl)) (Yi+2J22)

where
Zj-i = xj-xi R J =11, i, 1+l1, is+2
becomes:
] T Ta] [y ]
1 0 0 0 A Yi
2 3
oy g P Bl | Y
2 3 =
1 Z 1 Zl z:L C .%ﬁl
2 3
i Loz, zy oz | i D ] i Yi+2_

or



Finally:

where V

- Y. . -Y,
R l-Z-l 1
-1
Y, .-Y
C - 1+i 1
1
Y. =Y
D 1+§ i
B B L 2

(Y, %)z, 25 2y
(¥ ) :
1Y)z, 7 7
(Y, -Y.)/z z 2’
2" 1//% 2 2
v
1 (Y, .-Y.)/z z°
1-17%30/Ey 2
1 (Y, .-Y.)/z 2°
w1 ti/E B
1 (Y, ,-Y.)/=z z°
i+2 i 2 2
v
1oz (G a=%)/z,
Lo (N n)/E
1oz, (Y, ,1,)/7,
7

is the Vandermondian determinant
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1 7-1 m_i
V={1l 1z zi = (zl-z_l)(zz-z_l)(zz-zl)
1 Z, zg
Moreover
X ‘ N |
.[~(A+Bx+0x2+Dx3)dx = (Ax + % x° 4 % X+ % XLP = Q(xb)~Q(Xa)
Xfﬂ. Xa
where Qlx) = x{x[x(g— X + -g—+ %]4 A]
so that )
i+l
y(x)dx = Q(X)l (B-6)
X:S
X. i
i
X,
L
f y(x)ax = - Q(x) (8-7)
K==,
xi-l i=1l
xi+2
f y()ax 2 afx) - a(x) (5-8)
X=5, X=0,+8,
xi+l i i 741

The highest accuracy is

of relation (B-6) only,

of course achieved with the use at each point

at the expense of computing a new interpolating

*  Such factorization represents the most efficient algorithm for
computing the value of a polynomial at one point.
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polynomial at each point in the interior of the interval of integratioh.
Exception must pe made for the points adjacent to the extremes (and in
the interior for points of discontinuity of a derivative of y(x)) for
which formulae (B-7), (B-8) are suitable.
In view of the rapid increase in the load of operations involved,
higher‘order interpolation formulae are not considered practical in

the present case, and are not reported.

B-2, Differentiation.

The first and second derivatives of the funetion y(x) are
desired at each point X5 with exclusion of the extremes for the
second derivative, assumed small at such points,

B~-2.1., Two~point formula,

Only the first derivative may be computed in this case with the
aid of a linear interpolation to approximste the function y(x) in

each elementary interval:

~ Y117ty
)| T2 i1, 2, e 2el (8-9)
X=X, i
i
or alternatively
~ Tt
y'(x) =73 1=2,3, ** 1 (B-10)
X=X, i-1

B-2.2, Three-point formulae,

The same second order interpolating polynomial of Section B-l.2

to approximate the function y(x) is employed, with coefficients
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A, B, C given by relations (B-2).

The first and second derivatives at the point Xy are then:

= 2 z * .— LN ]
v' (%) l =B ”[Yi+1+ (05-1)Y, oY, ] /[ozi(si+si_l)] 3 1=2,3, 4-1
}Cn}(i )
 (B-11)
v (x) e =2C = 2'[Yi+1'(“i+l)Yi+aiYi-1]/[Si(si+si-l)]5 i=2,3,¢* 4-1
+ (B-12)

The first derivative at the extremes may be computed with the lower-
order formulae of Section B-2.1.

B-2.,3. TFive~-point formulae,

The function y(x) is approximated by a fourth-order polynomial

passing through the points

(g _po%s o) (Yy_ 1% 905 (Tpoxy)s (Vg 5% 005 (T 00%s o)

If the origin of the abscissae is shifted to the point Xss the condi-
tion of passage of the polynomial A + Bx + sz + Dx3 + Exbr through

the points

> j:imz’ ic-l’ s e i+2

where Z, . =X, = X,

becomes



or

so that:

2 3 L] B
Zp %o %o Pop A T2
2 3 L
Z1 Pl By 2. B Tia
0 0 0 0 c Y,
2 3 L
2 % # 1 D i+l
2 3 I
Zo P 2o 2 E Tiro
b4 2" 23 -B_ | (Y, -Y.)/= ]
- -2 -2 i~2 i
z z” z" c (Y;_1-Y3)/2 1
-1 -1 -1 i=1""1
2 3
S T | D Ty,17Y5) /%
2 3 .
z, Z, z5 b Y1+2 -Y, )/z
2 3
(¥; _p=¥3)/7 %22 Z.2 -2
2 3
(Y3174 74 Z_1 Z_1 L1
2 3
l+l -Y,) /2y 2 41 1
2 3
(Yy,0-¥) /2, Za Zo 2
W

(B-13)
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* (Yl 2 Yl)/z-z 4.2 2.2
1 (Y, .-Y.)/z 2° 22
i-1 "i -1 -1 -1
2
2 3
Lo (g q7Y) /7 2 z1
2 3
N 1 (Y, ,=Y.)/z z z
y"(x) T oo = 2 71 S 2 2 (B-l&)
KX o
i
where W 1s the Vandermondian determinant
2 3
1 Z—d 2_2. 2_2
2 3
1 Z_1 Z_ 4 z7 4
W = = (z_l-z_z)-(zl-z_z)o(zznz_z)-
1 2 Zi Zi (Zg=z o) (Z,~2z ,)°
1 =1 2 =1
: 2 3 (2,=2-)
1 22 ZZ zz 2 "1

The above relations allow the computation of the derivatives at the

points
i=3214—"‘_,4?_,*2 2

whereas the lower order formulae of Sections B~2.1, B-2,2 may be

employed for the points close to the extremes.
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APPENDIX C

COMPUTER PROGRAM FOR THE DIRECT STEADY-STATE PROBLEM,

In this Appendix the computer program (in FORTRAN IV, versioﬁ L)
for the steady-state basic direct problem is reported, The method of
solution and the mathematical formulatbtlon are described. in Chapters I
and II, and the illustration of the various alternatives chosen is
shown in Fig. 2.2.

The program consiste of a main program (deck 'PND'), a first set
of subprogrems (decks 'SOL' to 'S15') each performing logically differ-
ent operations of the algorithm, and a second seﬁ of subprograms
('SP1' to 'SP4' or 'SP5') driving various types of peripheral equipment
to display and record the results, This modular organization of the
program allows the most efficlent core memory usage for the selection
of several options, without modification of the program, by simple
interchange of the relevant decks, It also facilitates considerably
partial alterations of the program to lncorporate new features,

Double precision arithmetic has been mostly used., The size of the
vectors and matrices has been chosen according to the memory size of
the machine available (32,000 locationa),

The following remarks, in addition to the comments incorporated
within the program, may contribute to clarification of the various

algorithms selected,

Main progran,

Deck 'PND', The main program drives the subprograms actually

performing the required calculations,
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Subroutine 'STRUCT'.

Deck *S0Ll', Furnishes the structure parameters of the device
determined by two DATA cards. An option aﬁailable in the solution
allows the selection of the structure in the following "standard” cone
figuration. If a fictitious abrupt doping profile is specified by a
- first DATA card, the structural points M and L are then furnished

according to the following relations (kig. A-1):

. =-//////,, XP/H if xS xp/h
T Xy if x> XP/M

M= MN + Xy

L =M+ 2x

where x (XP)

N () material in thermal equilibrium corresponding to the fictitious

is the depleted region width [(A-38), (A-39)] in the

doping profile assigned. This profile may or may not coincide with

the actual doping profile used for the device of interest, and defined

by o second DATA card. The first-order parameters Xy and Xp are
computed by the subroutine 'FSTORD',
Subroutine 'FSTORD'.

Deck 'S02'. Computes several first-order parameters for an abrupt

asymuetric junction, on the basis of Egs,(A-41), (A-k2), (a-38), (4-39),

(A-13), (A-55), (A-5k) (Appendix A).
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Subroutine 'STPSEL'.

Deck 'S03'., Performs the interpolation scheme of Subsection
2.3.1 (Pig. 2.3), concerning the selection of the step distribution

throughout the device for a specified total number of points.

Subroutine "XSTEP2'.,

Deck 'SO4', C(omputes the step distribution and the total number
of points for a given accuracy e on the basis of the algorithm of

Subsection 2.3.1b (Fig. 2.6)."

Subroutine *SILAGR'.

Deck 'S05'. Performs a Lagrangian interpolation on two one-dimen-

gional arrays unevenly spaced.

Subroutine *STPADJ?,

Deck 'S06'. Performs a minor adjustment on a preliminary non-
uniform step distribution in a certain region (N or P), in order to

improve the accuracy of the relation

E{:aJstteps in region = length of region (c-1)
without altering the ratio of consecutive steps, The preliminary step
distribution which enters this subroutine satisfies the relation (C-1)

within onc half of the largest step in that region,

Subroutine 'DOPING?.
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Deck 'SO7'., Furnishes an abrupt impurity distribution, uniform

in both N and P regions (Fig. 1.1).

Subroutine 'PSITRL'.

Deck 'S08', Furnishes the trial potential funetiom given by

relations (A-21), (A~36), (A-37), and (A-16) (Appendix A).

Subroutine '™MOBCAR'.

Deck 'S09'. Computes the mobile carrier distributions throughout
the device for a given electrostatic potential according to Egs.(2.3),
(2.4) for forward bias, and (2.13), (2.16) for reverse bias conditions
(summarized in Table 2.2), Electron and hole currents are computed

wilh Lhe aid of Egs.(L1.41) and (1.k2).

Subroutine 'INTEGR',

Computes the integral of a function given in discretized form
throughout the device, limits of integration being one boundary and
each of the internal points. Two versions of this routine are avail-
~able, Only one must be inserted in the actual program,

Deck 'S1OA'. A two-point formula (trapezoidal rule) is used,
according to relation (B-l) (Appendix B).

Deck 'S10B'. A four-point formula (cubic interpolation) is used

according to relation (B-6).

Double precision function 'DET'.

Deck 'S1l', Computes the determinant of a matrix.
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Subroutine 'INTGSF',

Deck 'S12'. Computes the integrals (2.1la) and (2.15a) with the
insertion of the scale factors (2.11) and (2.15) whenever needed.

Trapezoidal rule is used,

Subroutine 'POISSN'.

Deck 'S13', Solves Poisson's equation (l.45) with a tinite

difference scheme and solution of a triple-diagonal matrix equation.

Subroutine 'CURV’.

Computes the curvature of a function, given in discretized form,
at each internal point throughout the interior of the device. Two
versions are available. Only one must be ingerted in the actual pro-
gram,

Deck 'S1HA', A three-point formula (parabolic interpolation) is
used, according to relation (B-12) (Appendix B).

Deck 'S14B', A five-point formula (fourth-order polynomial) is
used, according to the formulation of Subsection B-2,3. The relevant -
matrices are slightly rearranged in this routine in order to achieve &

higher efficiency.

Subroutine 'TRIDUL®,

Deck 'S15'. Solves a triple-diagonal system of the form (2.4k)

with a direct method, according to the algorithm (2.45).

Subroutine 'PRINT'.
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Deck 'SPL', Writes on the printout sheet the results of interest.

Subroutine ’PUNCH’.

Records on punched cards the rcsults of intcrcst., Two versions
are available. Only one must be inserted in the actual program.
Deck 'SP2'. Recording on cards is actually performed.

Deck 'SP2D!, Recording on cards is not performed.

Subroutine 'PLOT',

Displays in graphical form the results of interest. The actual
routine is not reported since it is highly dependent upon the plotting
equipment availlable and therefore not of general Interest, If graphi-
cal recording is not desired the following deck must be inserted in the
actual program.

Deck 'SP3D'. Graphical recording is not performed.

Subroutine 'TAPE'.

Records on magnetic tape results of interest. Two versions are
available. Only one must be inserted inAthe actual progran,

Deck 'SPht, Reéording on tape is made available during the execu-
tion of the program,

Deck 'SPUD', Recording on tape is not performed.

Deck 'SP5', This subprogram (written in Assembler language IBMAP)
defines the file for one magnetic save tape needed by the deck 'SP4',
If the deck 'SP4D' is used instead (i.e. recording on magnetic tape is

not desired) the deck 'SP5' may be omitted.
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THIS PROGRAM SOLVES THE BASIC TWO-CARRIER TRANSPGRT EQUA-
TIGNSs GOVERNING THE BEHAVIOR OF SEMICONDUCTOR DEVICES. APPLIED TO AR N-P
JUNCTICN UNDER' THE FOLLOWING ASSMUMPT[ONS
(A)  NON DEGENERATE CONDITIONS
(B) CONSTANT TEMPERATURE
(C1  TIME INDEPENDENT IMPURITY DISTRIBUTION
DY FULL TONT2ATION OF THF IMPURITIES
{E) ONE-DIMENSIONAL STRUCTURE
(F) STEADY-STATE CONDITIONS ONLY
{G1}  OHMIC CONTACTS
{H)Y ABSENCE OF GENERATION~RECOMBINATICN IN THE INTERIOR
(1) CONSTANT MOBILITIES
{J) DIRECT PROBLEM, GIVEN AN APPLIED VOLTAGEs THE TOTAL CURRENT
THROUGH THE DEVICE 15 OBTAINED (TOGETHER WITH ALL THE PAFAMETERS
AND DISTRIBUTIOMS OF INTEREST).
NO APPROXIMATIONS IN THE SET OF EQUATIONS HAVE BEEN INTRODUCED.
THE N-REGION IS ASSUMED LOCATED ON THE LEFT SIDE OF THE METALLURGICAL
INTERFACE M. :

THIS PROGRAM USES AN ITERATIVE SCHEME BASED ON THE COMPU-
TATION OF THE MOBILE CARRIERS FROM A POTENTIAL DISTRIBUTION TtRCUGH DIR-
ECT INTEGRATION FOLLOWED BY CORRFCTION OF THE POTENTIAL DISTRIBUTION
THROUGH THF SOLUTION OF POISSON'S EQUATION, A TRIAL POTENTIAL DISTRIBU-
TION 1S REQUTRED TO START THE ITERATIONS.
THE WHOLE PROGRAM IS BUILT IN A HIGHLY MODULAR FASHIONs FEATURING A MAIN
PROGRAM CALLIMNG SEVERAL SUBPROGRAMSs IN FAVOR OF A GREATER FLEXIBILITY
AND SIVPLICITY OF LOGIC ORGANIZATION.
SUBPROGRAMS EXPLICITLY CALLED BY THIS MAIN PROGRAM ARE

SURROUTINE *STRUCT®* (DEFINES THE STRUCTURE PIRAMETERS)

SUBROUTINE *FSTORD' (COMPUTES FIRST~ORDER THEORY PARAME~
TERS)

SUBROUTINE 'STPSEL?' (SELECTS THE SYEP DISTRIEUTION:

SUBROUTINE 'DOPING' (FURNISHES THE IMPURITY CISTRIBUTION)

SUBROUTINE 'PSITRL*® (FURNISHES THE TRIAL POTENTTAL FUKC-
TioN)

SUBROUTINE  *MOBCAR* (YIELDS THE MOBILE CARRIER CONCEN-
TRATIONS FOR A GIVEN POTENTIAL 1}

SUBROUTINE *POISSN®* (FURNISHES AN IMPROVED PCTENTIAL DI-
STRIBUTICN BY SOLVING PCISSON'S
EQUATION FOR GIVEN MOBILE CARRIERS)

SUBROUTINE *PRINT!? (WRITES OUTPUT DATA ON PRINTOUT
SHEET)

SUBROUTINE  PPUNCH® (PUNCHES ON QUTPUT CARDS RELEVANT
QUANTITIES)

SUBROUTINE *PLOT? (EXECUTES PLOTS OF RELEVANT QUANTI-
TIES)

SUBROUTINE 'TAPE® {RECORDS ON MAGNETIC TAPE RELEVANT
QUANTITIES)

OTHER SUBPROGRAMS MAY BF CALLED BY THE ABOVE SUBROUTINES.
DOUBLE PRECISION ARITHMETIC IS USEDS
TNPUT PARAMETERS ARE

DATA CARD 1. PARAMETERS CONCERNING THE STRUCTURE ARE READ A THE SuB-

IR BN AR RN RN ENEE NS R AR R S RN NN EEEEERERENEENENEERESEENENE NN

ROUTINE  *STRUCT®  (SEE SUBROUTINE  *STRUCTY' 1}
DAT2 CARD 7« PAPAMFTERS CONCERMING THD MATERIAL PROPERTIES ARE RLAD IN
THE SURROUTIHL  'STROCT! (SEE SUSROUTINE  *STRUCT! ]

DATA CAPD 1, PARAMETFRS CONCERNING THD ACTUAL APPLIED VOLTAGE ARE RERD
IN THIS MATN PROGRAM AS FGLLOWS
VAA = :PPLIEG VOLTAGFSGIVEN IN KOR#MALIZED FORM IF THE ({BELOW} [INPUT
PARAMETER I¥AS 1S FGUAL TGO  OXEsIN UNMORMALIZED FORM OTHERWISE,
FXP = 'OPTIONAL) MULTIPLICATIVE CORPRECTION FACTCR TO THE FIRST-OROER

VIBTH OF T+ GFPLETED REGION Tr THE LOW-CORDUCTIVITY SIDE (IF GAIT-
“ED, NG CORRECTION 15 PIRFORMEDS

TTMAX= ®AXIMUM NU'BES OF POISSON'S JTEPATICONS

ERRPE = FAXIWUM ERO0% ALLGYED NN THE FINAL POTENTIAL FUNCTICh THE Kud~
BER OF POISSZH*S ITFRATIONT 1S CETERMINED EITHER BY ITMAX OR 3Y
ERPPS, WHIMHEVER APPL 'FS FIRST

SIMPR=RTGUTIRED 2T EXTREMALY HIGH INJECTICH LEVELS. OPTIONAL OTHERWISE)
PARAMETEP THAT DETERM NES THE VALUE OF TwHE FIRST-ORDER TRIAL ELEC-
“ROSTATIC POTENTTIAL A~ THE INTERFACE BETWEEN THE DEPLETED AND NIy-
TRAL PEGION IN THE LOV-CONBUCTIVITY SIDE.{!F DMITTEDs NO CORRECTION
'S PFRFORMEDS

IWR = PARAMETER THAT CONTROLS THE PRINTOUT IN THE SUBROUTINE
1SEE SUBRQUFIME  fPRINTY

INTAPE=PARAMETER THAT CONTROLS THE PROCECURE OF RECORDING DATA ON MAGHI~
TIC TAPE (SEE SUBROUTINE  fTAPEY )

Ivas = (INTEGER) PARAVETER THAY CONTROLS THE
YOLTAGE VAA  (SEE ABOVED

15TOP= PARAMETER THAT CONTROLS THC RFPETITION OF "HE SOLUTICN FOR STVFRAL
4APPLTED VOLTAGES AS FOLLOWS

TPRINT?

INPUT OF THE APPLIEZ

1ST0P = & THE STRUCTURE AND MAYERIAL PARAMETERS ARE NOT
CHANGED FOR THE FOLLOWING APPLIEC VOLTAGE
(HEW STRUITURE aND MATIRIAL DATA CARDS  le AND
2. MUST NCI BE INSERTID FOR THE FOLLOWING AP~
PLIED VOI TAGEY

15708 = 1 LAST 2P 1EC VOLTAGT OF THF SOT

15102 = 2 THE STRUITURE AND MATERIAL SARAMETERS ARE {HAN-

GED FOR THE FOLLOWING 4PPLIED VOLTAGE (NEW
STRUCTURE AND MATERIAL DATA CARDE 1. AND 2.
MysT BE IASIRTEN FOR THE FOLLOWIAG APPLIED vOL-
TiGE)

DATA CARD 44 PARKMETERS CORCEPNING TrE AUTOMATIC STEP SELECTION PROCE-
DURE« INCLUDIRG THT TOTAL NUMBER OF POINTS DESIREDs ARL
REAS IN THY SURROUTINE  *STBSELY  [SEE SUBROUTINE 'STP3EL ')
ONE DATA CARC FOR EAlW APPLIED WOLTAGE MUST EE FURNISHED
IN THE ADPROPRIATE OPDERe

OUTPUT PARAME“ERS ARF

PS] = ONE-DIMEKSIONAL ARRAY, EXACT POTENTIAL DISIRIGUTION

N = ONE-D1 SIONAL ARRAY, EXACT ELECTRON DISTRIBUTION

P = PHE-DIMFNSIGNAL ARRAY. EXACT HOLE. DISTRIBUINION

x = ONE-DIVENSIONAL ARRAY, ABSCISSA CF EACH POINT THROUGHOUT THE JUNC-
TION

STEP = ONE~DIMENSIONAL ARRAY, NON UNIFCRM STEP MAINITUDE AT EACH POINT

JN = ELECTRON CULRRENT

JP = ROLE CURREANT

J = TOTAL CURRENT

ALLOWANCE FOR SEVIN DOUBLE PRECISICHN ARRAYS ({STEPsPS!s

NeP+DELTA  +  TwD WORKING ARREYS IN THE LABELED C(OMMON  /WIRK/ 1 AND

MR R R R T E R E NN RN NN RN NN R IEN RN NI NI AN NN N
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C*  ORE SINGLE PRECISION ARRAY (NTM)s ALL OF DIMENSION 1000, HAS BEEN MADE. *
CHERR BB AP E AR R RR RN AR RAF ISR B AP AR RS A AT A IR FRRRERRRA S LI AR ER R R ERRAEXAE
DOUBLE PRECISICN STEP(1000)sPS1(1000)sVA
$WNLTIO60)4P{1NN0) 4DELTA(1000) +DUMMY (2000)
s, ND»sNASNNSPP yNP PNy VD ML
REAL NIM(1nN0)4UN,JIP
COMMON /STRC/ NDsNASNNsPP oNP 3PN VD sMol s TMs IL 3 VT s GAMN s GAMP
JMCAR/ NP UNWJP
/XST / STEP
/WORK/ DUMMY
/TRDG/ DELTA
/PSNM/ PSTWNIM
10 FORMAT {2E104Ns1NX»11042E10405415)
1% FORMAT (1H1, 54H THE APPLIED VOLYAGE AND RELATED INPUT PARAMETERS
SARE  ///F7777777100 VAA = +F9.5// 10H FXP = sF9.5//
s 10H ERRPS = +E1345//10H 1TMAX = »13////77)

WA A

Crédennrasnadnhnsins STRUCTURE AND MATERIAL PROPERTIES DEFINITIONSHRM¥xskxxxssan®s
100 CaLL STRUCTY

CrE¥nsxxxsxswsxx s xxREADING OF THE APPLIED VOLTAGE AND CONTROL PARAMETERS FROM *
C* DATA CARD 3 #XNNRNANANNXNENEN KB RXRA RN EI AKX ARF NI AR AR RK AR FERRARXR KN EROR
120 READ (5,10) VAASFXP, ITMAXsERRPSy PSIMPRs IWR.INTAPE»IVAA
S4ISTOP
VA=VAA VT
1F (IVAALNFG.1Y GO TO 130
VAaVAA
VAAZVANYT
130 CONTINUE
WRITE (6+15)VAAFXP,
1F (IWR14EQ.0} IWR1®10

ERRPSs ITMAX

CHEXAFHAXRS4ARANKXXDETERMINATION OF FIRST-ORDER THEORY PARAMETERS (DEPLETEQ *
C* REGION LENGTHS ONLY) TO BE USED IN THE STFP SFLECTION PROCEDURE##X%%#x%xx%%x%
KW=1

CALL FSTORD (VA +FXP XU .PS5IMPR)
I1F (KWelTeN) GO TO 9999

CHPEXFERXXRRNEZRARFFAUTOMATIC SELECTION OF THE STEPHR¥XFERXAXRAXXRRFXRRREFX XXX ERRR
CALL STPSEL (JRET.141)
IF (JRET+EQ.]1) GO TO 9999

CHRERXuNCRY» S ¥R % ¥XDEF INITION OF THE IMPURITY DISTRIBUTIONA##xk#% aaNasbssptnnnss
CALL DOPING (NIM)

CUrBRERBR AR XA RN R XADETERMINATION OF FIRST~ORDER PARAMETFRSEEX ¥ARN XA KRR EXAN UK ¥ N2
KwW=2 .
CALL FSTORD (VA +FXPsKW,PSIMPR}

CHESR IR EnB B 822N 2 23CHOTICE OF THF TRIAL POTENTIAL DISTRIBUTION##SAANEFNERERRNERLS
CALL PSITRL (PST,VA}
DELTAM=1.E20
ITER=N

CeonspanaxsnnadvusxDCTERMINATION OF THE MOBILE CARRIER DISTRIBUTIONS FROM THE #
C* POTENTIAL DISTRIBUTION®#F s h ¥ R u N RN ¥ X pd b X F A RS R I N S F R R AR SRR AT E AR R IR DR R R RN ERES
170 CALL MO8CAR (PSI,vA)

1F (ITEREQ.ITMAXJORs DELTAMCLELERRPS )} GO TO 300

CEREN4usn b RnMsenux [MPROVEMENT OF THE POTENTIAL DISTRIBUTION THROUGH THE SOLu- *
C* TION OF POISSONIS FEOUATIONN KNk ¥ MR KRN K K RER R F RN KR XX N XA RS R AR PR NP R R AR AR R RN K

TALL POISSM (DELTAMGIL]
ITER=ITER+1
GG 10 170

300 CONTINUE

CERRFAXEXRXCUXAXEHRD]SPLAYING AND RECORDING RESULTSH*ResasssusdisdansntXIsksssxs
CALL PRINY (TWRITERIVASDE TAMLERPPS!
CALL PUNCH {(VAJCELTAMWFXPSITERS
CALL PLDT {vAsIL}
CALL TAPE (VASDFLTAMSITERSIDTP 4 INTAPE)
9999 IF [I3TOP.FG«2) GO 1C 159
IF LISTOP.FQe2) 60 TO 129
CALL TAPE {VA,DELTA“+ITERs 0s &)
syep
END

SIBFTC 501 DECK
SUBROJTINE STRUCT
[ g s e s TSI s T T

(42 THE SURROUTINE *STRUCT' FURNISHES THE STRUCTURE PARAME- -
€*  TERS INCLUDING THT THERMAL TQUILIBRIUM CCNCENTRATIGNS FOR “HE MOBILE *
{* CARRIFRS. »
(<] *
8.4 THIS RCUTIKRE IEADS FROY THE FIRST DATA CARD PAREMETERS RELA-*

€% TED TO THE STRUCTURE AND FROY THE SECOND DATA CARD PARAMETERS CONCERNING
{* THE PROPERTIES OF THE VATERIALS. VARIQUS ALTERMTIVES ARE PROVIDEDs AS
¢ INDICATID RI(OWa

(% SUBPRGGRAM MEEDED

(34 SUBROUTINE *FSTORD!

%

Cx

(<] INPUT PARAMETERS ARE

(S FIIST DATA C4RD. FITHER

(®  MA = ARGCISSA OF THE METALLUPGICAL INTERFACE

% LA = ARSISSA OF THE EXTERNAL CONTACT ON THE RIGHT SIDE (ALSO LENGTH OF
o THE WHOLE 3TRUCTURE}

{¥ IF THE PAPAMETERS MA, LA ARE GIVEN IK UNNORMALIZED FOHMs THE QUANTITY
{» MA  MyUsT RE POSITIVE, IF GIVEN IN NORMALIZED FORM THE CUANTITY MA MUST
¢+ BE NEGATIVE.

<] OR

¢®  CNST = FICTITIOUS €ONDUCTIVITY OF THE K-REGION

(¥ CPST = FICTITIOUS CONDUCTIVITY OF THE P-REGION

<*  ySTA = FICTITIOUS APPLIED VCLTAGE fUNNORMALIZED)

<®  THE SET CNSTsCTPSTe WSTA  DETSRMINES TRE POINTS F AND L IN A STANDARD
(*» CONFIGUPATION {SEE SUBROUTINE DESCRIPIION).

144 oR

{# HDST = FICTITIOUS DONDR CONCENTRATION IN THE N-REGION

C* MAST = FICTITIOUS ACCEPTGR CONCENTRATIOH IN THE P-REGION

(* VYSTA = FICTITIOUS ADPLIED VCLTAGE  {UNSOIMALIZED)

(% IF PARSVETERS KND3T. NAST AT GIVEN I UNNORMALIZED FORM THE SUANTITY
(%  NDST wUST BE POSITIVEs IF GIVEN [N NOR®ALIZED FORM THE QUANTITY NDSY

£x MUST BE NEGATIVE.

(% THF SET NDTSRAS[e V2ST DETFRMINES THI POINTS N AND L IN & STANDARD
¢+  CONFIGURATION (SEf SUSRCUTIAE DESCRIPTICN}.

(& SECOND DATA TARD. EITHER
€»  CONCN= ACTUAL CONSUCTIVITY CF THE N MATERIAL 1A YHERVAL EJUILIBRIUM

(B R BN RN EEEENE RN NEEENENENEENEEREERSEN]

jejely



[« ]

RN A F R N N R RAE R RN F N RIS A SRR FRFRUR TN RN RN X ERFRRRR R R TIR RN F AR RRR AR NF RS
DOUBLE PRECISION
$

10
15

20

32

<o

ND.
NA

IF
KD
MU

~

L

ND
N&
NN

NP
PP
PN

vD
vt
GA
GA!

s

b
%
3

3|
s
s
s
s
s
s
s

(UNNOR™AL1ZED}

HDP= ACTUAL CONDUCTIVITY OF THE
CUNNORMALIZED)

OR

A = ACTUAL DONDR CONCENTRATION IN THE N MATERIAL
BRIUM (AT THE EXTERNAL CONTACT)

A = ACTUAL ACCEPTOR CONZENTRATION IN THE P MATERIAL IN THERMAL EQUILI-
BRIUM . (AT THE EXTFRNAL CONTACT)

THE PARAMITERS NDASKAA ARE GIVEN IN UNNORMALIZED FORM THE QUANTITY
A MUST BF POSITIVEs IF GIVEN IN NORMALIZED FORM THE QUANTITY NDA
ST RE NEGATIVF. .

P MATERIAL IN THFRMAL EQUILIRRIUM

IN THERMAL EQUILI-

OUTPUT PARAMETERS ARE

= ABSCISSA OF THE LAST POINT OF THE N REGION AT THE METALLURGICAL
INTERFACE
ABSCISSA OF YHE EXTERNAL CONTACT ON THE RIGHT SIDE (ALSO LENGTH OF
THE WHOLE STRUCTURE)}
* DONOR CONCENTRATION IN THE N MATERIAL (AT THE EXTERNAL CONTACT)
ACCEPTOR CONCEMTRATION IN THE P MATER[AL (AT THE EXTERNAL CONTACT}
= BOUNDARY VALUE FOR THE ELECTRON CONCENTRATION IN THE N-REGION
(AT THE EXTERNAL CONTACT)
BOUMDARY VALUE FOR THE ELECTRON CONCENTRATION IN THE P-REGION
{AT THE EXTERNAL CONTACT)
BOUNDARY VALUE FCR THE HOLE
{AT THE EXTERNAL CONTACT)
BOUNDARY VALUE FOR THE
{AT THE EXTERNAL CONTACT)

= DIFFYSTON POTENTIAL (BARRIER POTENTIAL)

= THERMAL VOLTAGE
MN = RECIPROCAL OF THE NORMALIZED DIFFUSTION CONSTANT FOR ELECTRONS
MP = RECIPROCAL OF THF NORMALIZED DIFFUSION CONSTANT FOR HOLES

CONCENTRATION IN THE P-REGION

HOLE CONCENTRATION IN THE N-REGION

[}
I EEREEEENEENRERENENENERNEIREZENESNENNEES

ND oNASNN PP NP oPN VD s14sL .
REAL MM 4MP , TNJP ARy KAST sNDST sNDA SNAASNINT JMORN s MOBP 4 LD
WMASLA 2 JINFSOR
COMMGN /STRC/ NDsMANNWDOPLEP 4PN VDsMsL g IMs 1L o VT 9 GAMNSGAMP
JFSO 7 XNaXPyMNaMP,INJPARWPSIMP, UNFSOR

FORMAT (7E£10.0)
FORMAT {1H1+62HTHE STRUCTURE 15 DETERMINFO BY THE FOLLOWING INPUY
CARAMETERS /77

TH CNST =4E15.8/77TH CPST =4E1548//TH NDST =+E1548//7H NAST =,E1l6a
B77TH VSTA =20E1SeBI /277117202277 277777)
FORMAT (1M1 ¢29HTHE STRUCTURF PARAMETERS ARE ////10Xs12H{NORMALIZE
D} 932X 14H (UNNORMALIZED) +23X925H(NORMAL IZATION CONSTANTS)///

TH M =4D23,16

20Xs7H MA  =,E15.8.20Xs7H LD
™ L 3sD23416420Xs TH LA =3E15.87///50X+eTH CONON=yE15.8//
50XsTH CONDP=,E1548/7/777H ND =3023.16,20Xs7H NDA  =~9E1548520Xs
TH NINT =,E15.8//7H NA =4D23416+20%X37H NAA =+E15.8//7H NN =,
D23416/77H PP =4D23.16//7H NP =4D234167/7TH PN =vD23416/777
TH VD *4D23.164,20Xy TH VDA =9E15.8420Xy 7H VT =3E15.8/)
FORMAT (4E10.0)

=4E15.8/7/

CHESRFUESNHBA RS e R EXSET CONSTANTSHAR KA XX NN X EFXARERFEARXARRARI SRR AR S UR R RRENSC I

VT=4025875
ELCH=).60206E-19
NINT=2,.5E13
PERM=8.85474E-14%16,
MORN=293, /VT

MOBP =44, /VT

GAVHs1 /93,
GAMP=1a/44,
Z=NINTHELCH

LD= SORTIPEFM®VIZZ)
I5TR=D

CERESERUNFARRASS X PERD FROM A GATA CARD PARAMETERS PERTINENT T0 THE DETEZMI- #

(&

33

40

43

50

70

5

BO

NATION OF THE STRICTURE POINTS M

AHD L ONLYSIP#SAFR5S ¥ RLFAIRRRIEIRRSXEN
READ {5410) MAS A JCHSTHCPET W HDST S HNASTHVSTA
MepMALD
L=LA/LD
IF {NA+GEWDa} G) TO 33
L=ABS{LA}

M=ARI(N¥A)

IF {MeNEWGa) GO TO 80

WRITE (8415) CHSTUPSTNDSTHNASTVYSTA
CONDR=CNST

CONDF=CRST

MDA=KDST

NAA=KASY

IF{NDALEQeDsY GO TO 50

KD=HDA /NINT

K2=NZAZHINT

IF. (KDALGT.0s1 GG TO 43
MDxAES(NDA)

KA=ASS(NAA)
NH=DIQRT{HO*ND/4.DC+1.D01-ND72.D0
PP=DSORT{NA¥KA/G.DC+1.DD1-NAS2.00
NP=1.DO/PP

PN=1.,D0/NN

CONDN=Z# {HCBN¥NN+MOBD PN
CONDP=Z# {MCRNSND 1 MDRP#PP}

GO 10 70

¥SROBN*MOBR

ND={CONDN* (MORP-MOBN )+ {MOBN+HMOBP I ¥ SCURT{CONDN4#244,¥Y#237) 3}/

L2.%Y82y )

NA= {{ONDP* {MOBN~MOBP )+ {MOBN4MOBP I #  SCRT{ICNDP#¥ 244 #Y%222) )/
$E2,%Y87y

RN=DSGRT (KD ¥ND /4o D0+1 D0 }-ND/2.00
PP=DSQRT(KARNA/L,.D041.00)-NA/2.DD

PN=1,DO/KN

NP=1.D0/PP

CONT'NUE

VD=DLOGINN>PP |

IF (ISTRW.EQ.0) GO TO 75

AU D

LA 5LD

KDA=ND¥NINY

RAZ=NASNINT

VDA=VDSVT

WRITE {6420} N-HA,LD.L-LA.COHDN-CONGP,HD.NOA.N[&TQ

S NASHAR NN PP NP o P YD VDA VT
RETURN
KW=
VST=YSTA/VT
CALL FSTORD {VET+lesKWsDal
MN=XP /4,

IF (XNaGTe™N} MN=XN
smpas XN

Leva2 »xp

ISTR=Y

9cg



CRETREFIAyEso a3 EREAD FROM A DATA CARD PARZMETERS PERTINENT TO THE ACTUAL *
C* PROPIRTY OF THE MATERIAL ONLYS 633 ¢ d o n i A 4 R BN R AU R R ARI KRR A AR RS RN AR REH IR R ER
READ (5430) CONDN(ONDPNDARAA
GO TO 40
END

$IBFTC S02 DECK
SURROUTINE FSTORD fVE sFXPKN.PSIMPR)
F s e L T e T e I L s I )

= THE SUBROUTINE 'FSTORD' COMPUTES SEVERAL FIRST-ORDER
C* THEORY PARAMETERS FCR AN ABRUPT ASYMMETRIC JUNCTION.

c*

c* TNPUT PARAMETERS ARE

VA = APPLIED VOLTAGE (NORMALIZEGD, DOUBLE PRECISIONY

C* FxP = (OPTIONALY} MLLTIPLICATIVE CORRECTION FACTIGR TO THE FIRST-CRDER

= WIDYH OF THE DEPLETEDR RIGION IN THE LOW-CONDUCTIVITY SIDE {IF OMIT=~
(4 4 TEDs NO CORRECTION IS PIRFORMED)

% KW = Nele? OR 3 DFFENDING UPCN THE VARIOUS FIRST ORDER THEGRY PARAME-
Cs TERS DESIRED

C* PSIMPR=(REGUIRED AT EXTREMELY HI1GH JNJUFCTION LEVELSe OPTIONAL OTHERWISE!

C* PARIMETER THAT DETERMINIS THE VALUE OF THE FIRST-ORDER TRIAL ELEC~
(e TROSTATIC POTENT1AL AT THE INTERFACE ZETWEEN THE DEPLETED AND NEU-
(4 TRAL REGION IN THE LOW-IONDUCTIVITY SIDEL(IF OMITTEDs NG CORRELTION
Cs 15 PERFORMED).

¥ STRUCTURE PARAMFTERSITINCLUOED {N THE LABILLD COMMON /STRC/ 3

C*

(4.4 OUTPLT PARAMETEIS ARE

[ S & = WIDTH OF THE DFPLETED 8- REGION

C*  xP = WINTH OF THT DFPLETFD 2~ REGION

C# MN = ABSCISSA OF THE {NTERFAZE BETWEEN THE KEUTRAL AND DEPLETED

(4 N~REGTON
C»  mp ABSCISSA OF THE INTERFACE RETWEEN THE HEUTRAL AND DEPLETED

C* P-RFGION

K = A NEGATIVE NIMRER IF THE SPECIFIED APPLIED VOLTAGE EXCEEDS THE
4] MAXIMUM ALLCWED BY THE FIRST-ORDEZ THEORY TRIAL FUNCTION

C*  INJPAR = IRJECTIOR FARIMETER

C*  PSIMP = VALUF OF THE POTENTIAL AT THE POINT MP

(ORIGIN OF THE POTEN-

Ce TIAL IS THE EXTERMNAL [OMTACY OF THE N-REGION)
c»
C# OTREF FIRST-ORDFR THEORY PARAMETERS COMPUTED AND WRITTEN

% ON PRINTOUT SHEET

(e UNFSCR = FIRST-ORDER ELECTRON (DOMINANY: CURRENT
C# .C2PDF = DIFFUSTON CAPACITANCE
C* C2PDFR = DIFFUSION CAPACITANCE TO THE ~2 POWER

€n  CAPSK SCHOTTKY CZPACITANCE
€4  CAPSKR = SIHNTTIKY CZPACITANCE TO THE -2 POWER
CC!!I-‘G!&{!Q'&;i»lll'i!*lii*‘*l;%l{«}i'*i}i*{-ll{»ll!l EREXAAAARERFF R ERREFFRRXRRXH AN 2R

DOUBLE PRECISILN FP3SQ.PRE,VA

< NDsHAS T2 PR L NP sPN VD s ML

REAL MN, MU, [NUDES NHPy UNE ST

COMMOMN /STREZ NDsHACHNSPP PPN VD s MaLi IMy IL s VT 2 GAMNIGAMP

% FESD 4 XKNIPyMNQMP L INIPAS 4PSTIMP, UNFSOR
1" FORVAT (1H1,%2H THE FIRST-ORDER THEORY (NORMALIZED) PARAMETERS ARF

I N R EE R RN E R R R E NN ERERERENEE]

€ 12222224
$ 9H wN =y £19.87/9H M Ty E15e3/79H XA =sE15.8/7
t 9H xP =9E15.67/9H THUPIR =.£15.8/794 INFSOR =, E15.8//77

E9H CAPDF  =,£15+24 30XsSH CAPCFR =» (13487794 CAPSK
$9H CAPSKR =4 FI1S.8 ff/77£/271Y

=4sE15.8+30Xs

IF (I1WeF2+2) GO 10 50

INUPIR=0.

IF {VALCTL(-85.33IM)PARS 4Pe DEXPIVAY/(DSQRT{{ PP4+NPI1%%2/4,D0+
SIDEXPIVAI =11 ) HIPP-NP1/2.30)

IF {FXPL.EQ.Te) FXP=1,.

PSIMPeVA-YD

IF (INIPARGT e 2eE~4) PSIU2= —VD4DLOG(PPH*PPH [N IPARY
JF (PSIMPRLNE W0} PSIVP=PIIMPR

IF {PSIMPWGT5s) GO TO 99

XNz DSOQRTIZ2 /MO -PSIMPS fI1,+ND/NAY !

XPeDSQRY (24 7HA* (-PSIME} / (L, +NASND) 4T XP

IF {td«FN.0) PETURN

LI AT AV BN N BB IR R R B BN B N N B A

50 M =M-XN
Mpzmpx P
1F (tW.EQ+11 RETURN
NMP=FP ¥ INJPAR
JHFSOR={2.DOF{H¥P=NP) —{P>=KP2DLOGI (NMP-NP4+PPI/FO) } /{ LL-MP I %GAMH )
IF {rWeEQe31 RETURY
CAPDE=PP#{L-MP) /25 [HIPAR* (1o +INJPAR=NP ) /{1o~NP+Z o ¥ [NJPAR}
IF {INUPERWNT 40} C2PDFR=1, /CAPDF %%}
CAPS(=DSORT (ER/{2,#(~PSIUP)* (1.4PP/NNIT)
CAPSIR=14/CEPSESD
WRITE {64101 MIeMI XNXPsINIPAR S INFSOR,CAPDF s CAPDFR+CAPSK 4+CAPSKR
RETUIN
99 WRITS 16351621 PSIMP
190 FORMAT (IM1,41H ERROR IN THE SPECIFED APPLIED VOLTAGE 7851 THE
$TEST ON ITS MAXIMUM ALLOWID VALUE 1 SUBROUTINE FSTORD FalLS YIELD
SING PSIMP = 4E16.8//)
Kpz=39
RETURN
END
SIBFYC 503 DECK
SURRDUTINE STPSEL {JRETIREADLIPRINT}
R EE N R E R IR RIS A NP R R F RN F R IR RS ER AR SR LAZERRF SIS ARSI R LR &K EERBREEREFEERREZRTE
(44 THE SUBROUTINE fSTPSELt PERFORMS THE SELEITION CF THE
C* STEP DISTRIBUTICR THRGUGHOUT THE DEVICE FOR A SPICIFIED TOTAL NUMBER OF
€* POINTSe THT SELECTED STEP JISTRIBUTION wILL BE CONSISTENT wiTH THE REQUI-
€% REMENT OF CONSTAHT ERRCR AT EaCH STEP OF THE INTEGRATICHN O THE FUNCTIONS
C¥  ExP(PSL) OR EXP{-PST) THROUGHOUT THE JUNCTION.
Cw
C= THIS 2DUTINE USES AN TRFERPOLATICN SCHEME O% THE FUNCYION
C*®  ERRCR VERSUS NUMBED AF PRINTSY  TOGETHER wITH THE SUBRQUTINE  'XSTEP2!
Cx  WHICH rIELCS THE STEP DISTRIBUTION 2XD THE TOTAL NUMBER OF POINTS FOR A
C*  SPFCIFIED ZRRL2
{* SUBPRCGREMS NEEDED 4RE
c= SUBRQUTYINE 1XSTER2!
C» SUBROUT INE  ISLAGR?
[ SUBROUTINE PSTPADJY
C=
C= IRPUT PARAVETERS ARE
C*  IPRINT=PARAYETER THAY CONTROLS THE PRINTCUT OF 1HE INFORMATION REGARDING
Ce THE STES SELECTION AS FOLLCWS
c* IPRINT = PRINTOUT TAKES PLACE
C* IPRINT = O PRINTCUT DIES NOT 14KE PLACE
C*» IREAD= PARAMETEIR THAT CONTROLS THE I°UT OF THE PARAMETIRS LISTED BELOW
Cc* A% FALLOWS
<* T 5= 1 THE DATA ARE REZAD FROM TrE DATA CARD
T IREAD = O THE DATA ENTER ThRIUGH COMMON STATEMENTS

LS¢



€* IRRL = SUGGFSTEN E£RROR TO START THE INTERPOI ATION SCHEME

» IF OMITYED, & STANDARD VALUE 15 CHOSEN BY THE ROUTINE

C¥  RATMY = UPFER BOUND FOR THE RATIO OF CONSECUTIVE STEPS

ce 1F (MITTEDs A STANDARD VALUE 1& CHOSEN BY THE ROUTINE

C* RSMX = PARZMFTER RELATFO TO THE UPPER BOUND SMX FOR THF STEP THROUGH
(<] THE RFLATION SMX = L / RSMX

s IF €MITTEDs & STANDARD VALUE 15 CHOSER BY THE ROUTINE

C* [LW = TOT/L NUMBER OF POIKTS SPECIFIED

€+ ILRG = PRINARY YOLERANCE RANGE ON  ILWe. MUST BE GREATER THAN ZERO.

C*  [LRG2= SECCNDARY TOLFRANCE RAMGE ON ILW

C* THE FOLLOWING RESTRICTION HUST BE OBSERVED

Ce {TLW=I11RG)LT.MDIN

¢* YHERE MDI* IS THE vAXIMUM HUMBER OF POINTS PERMITTED.

C+# FAILURE 10 DO SO CAUSES THE PRINTOUT OF AN ERROR YESSAGE ANDP RETURN YC
C* THE CALLINC PROGRAM,

(4] OUTPUT PARAMETERS ARE

C¥ STEP = ONE-DIMENSJONA_ ARRAYs NON-UNIFORM STEP MAGNITUDE AT EACH POINT
Ce M = LAST POINT OF IKE N REGION AT THE METALLURGICAL INYERFACE

[< S = TOTAL MUMBER OF POINTS

€x  JRET = INDFX OF PFRFOIMANCE OF THIS ROUTINE

C» JRET = 0 THE STEP SFLECTYION HAS BEEN ACKHIEVED

(<2 JRET = 1 THE STEP SELECTION HAS NOT BELN ACHIEVED.
C* PRINTOUT OF AN ERROR MESSAGE AND FETURN TO
C THE CALLING PROGRAM TAKES PLACE.

€* IF THE N AND P REGION WIDTHS ARE SMALLER THAN THEIR RESPECIIVE DEPLE-
C* 1ED REGION WIDTHSy THF STEP SELECTION MAY NOT BF ACHITVIDs THEREFCRE THE
C¥ PARAMETER JRET IS SET TO UNITY AND THF PRINTOQUT OF AN ERROR NESSAGE

C® ALND RETURN TO THE CALLING PROGRAM TAKES PLACE.

cx THE ARRAY 5TEP 1$ OF DIMENSION 10600 AND I[N DOUBLE PRE-

C* CISION.
AR A F AP RN N N R R AR SN A E XA AR RN AR E R SRR SRR AN CRRE A AR LR RIRIREI R NN T

DOuBLE PRECISION STEP{1000})

IR R R RN R N RN RS N E R EEREE RN E RN

3 ND sNA NN PP NP s PNsVD ML
REAL PNT{ICI-ER(1D) sMN+MP 4 INJPAR S JNFSOR
COMMON #STRC/ MDsHA)NN2PP NP sPNsVDsMsLs IMs IL s VT s GAHNsGAMP
s /XSY 7/ STEP
s 7SSTEP/ SMI2RATHMX ¢MDIM
s FFSO /XNWXP MR s MP ¢ INJPAR 4P STMP » JNFSOR
3 FSYSEL/ERRL sRSMX ¢ [LW, ILRGe ILRG2
7 FORMAT (3010.8,3110
] FOPMAT (1H1 +49HTHE PARAMETERS CONCFRNING THE STEP SELECTIOR ARE

S F777F7777771Xe9H RATMX = 3F643510Xe THERRST =5 E13464+10Xs SHSMX
€= ,FB8,22//7/12X «2BHNUMBER OF XSTEP [ITERATIONS =,14//17

SIZX+4HILN s[5 10X SHILRG= 315 INXs3HIL=0 1577777777

$68H CHECK ON THE STRUCTURE POINTS M AND L AFTER THE STEP SELEC

$TION 220% s
S LM M =023416 /7 88Xy WM L = $D23016/7/72/F771774005117014)
1n FORMAT (140, 23HERROR IN STPSEL M = 4D17.10s 19H SMALLER THAN

SXN = » E15.8//)
12 FORMAT (140s 23HERROR IN STPSEL L-M = +E15.8 & 19%H SMALLER THAR
$XP =y E15.8/7)
JRET=0
MDIM=1040

CEEFARSBEXFEFRANURXOBTAIN PARAMETERS FROM DATA CARD. IF OMITTED SET STANDARD *
€% VALUESs TEST CONGIOSTOACY M das ra s du i p gt S R A A S SRR I R A AR E R R MR AT RSR R RN RR
1F {IREABDWEQ.11 READ (5273 FRRLRATMX»RSMX+ILWsILRGSILRGZ
IF {MeGELXNY GO TO 14
WRITE (6101 MsXh

GO T0O 8GO

XLM=L-~-M

IF (XLMJGF.XP) €O TO 16
WRITE (64121 XLFMsXP

GO TO eno

PNG2= I1LRG2

MLGR=0

FCT=2a

IL=1Lw

PNW=ILW

ILWMX=TLW+1LRG
TLWMN=ILW-1LRG .

IF (ILWHH-GELMDIMY GO TO 723
IF (ILWMXeGTWAMDIM) ILWMXaM)IIH
IF {RATMX2FQa0a) RATMX=1.0%
IF (RSMX.EQ4C.) RSM 0D«

IF (KRRL#£Qefs) ERRL=14E~4

CHREXZRRUF AN SR RENKREEXECUTE TMTERPOLATION STHEME RS RSN SRS XX NSNS RN ER XU R XS LR SRS F AT H

17

55

&0

70

80

100

105

195
200

205

300

302

DO 500 UM=1,20

SMX=L /RSMX

IF (JMeEQel) INC=5
KMDIM=1

ERRST=ERRL

CALL XSTEP2 (ERRSTSIRET)
IF (IRET.EQ.1: GO TO 195
MI=JM

IF (ILaGTILUMXY GO TO 208
IF (TLLY«TLWMK) €3 TO 100
CONTINUE

CALL STPADY {NeDN4M35141%)
CALL STPADJ [MsbsIMeIL)
M=n,

IMP1=TM+1

DO 60 1=2,1M
MxM4STEP(I-1}

L=M

DO 70 I=1MP1aiL

L=L+ STFP{1-1)

IF {IPRINTWFGaTl} WRITE {622} RATMXSERRSTHREMXsMI o ILWsTLRGyIL Mot
RETURN

IF (INCLNEL11 GO TO 105
FCT=FCT /3«

MLGR=21

INC=0

ERRL=ERRST/ {1e+FCT)

G0 TO 300G

KMDIM=2

IF (INC.KREL0) GO TO 205
FCT=FCT/3e

MLGR=21

INC*1

ERRL=ERRST* (1,+FCT)

IF (KMDIM.EG.2) GO 10 17
MD =M

MMz M

IF (JM.LTe6) GO TO 203
MD=5

MM=1

DO 302 LS=2.5

IF (ABS{PNTILS)-PAw)+GT ABSE PNTIMMI-PNW}]  MM=LS

8G¢E



305 ER{MM}I=ALOGIERRST}
PNT (MM} =1(
IF (UMaGTWMLGR) GO YO 500
DC 310 K5=2.,MD
DO 310 KK=K35.MD

310 IF [ABS{PNT{KK)~PNT{KS-11)21T..5) GO ID 550
CALL SLAGR(FKTs»ERPNWXD+ERRL )
ERRLTEXP{ERFL}

500 CONTINUE

CHXEXRHRRFXXXX XN A% INTERPOLATION SCHEME TERMINATED WITHOUT HAVING REACHED THE %
C* PRIMARY TOLERINCE RANGE« FTEST ON THE S5LCCONDARY TOLERANCE RANGE 1S PERFOR~ =+
C# MEDSERREE R Ry A b RN F R KT R A AT AR AR XA AR T AR ERIRE RN S A RN A AR AR AR AR AR LR L AR
550 LM=1

DO 3555 LS=2.%
555 IF (ABS(PNT(LS)~PNW).L =ABS{PNT(LM}~PN®W)} Lu=LS

IF {ABS(PNTILM)-PNW1.G +RNGZ) GO TO 580

ILzPRT LMY

ERRST=EXP{ER(LM})

GO TO 55

CHERUXEAREAA NN €% a0 TRROR MESSAGES PRINTOUT FCR ABNORMAL CONDITIONSH*:*¥*¥*X%xsxxsx%
580 WRITE (65500}
600 FORMAT (1HO.23HERROR I# ILRG TOO SMALL /)
GO TO 800
700 WRITE {6+701)
701 FORMAT (1HO,2CHERROR I# ILW GY MDIM 71
8no JRET=1
RETURN
END

SIBFTC 504 DECK
SURROUTIRE JSTEPZ (ERR3TSIRET}
ERRXENER NN U TR AE R BRI KR E R R FFEF KRR R AN FERNRAF XA RS R TR R R R A HF
(4.4 THE SUBROUTINE tXSTEP2' COMPUTES THE STEP DISTRIBUTION.
C* AND THE TOTAL NUMBER OF POINTS FOR A GIVEN ACCURACY DESIRED OMN THE INTE-
C* GRATION OF THL FUNCTIONS EXPEPSI) AND ExPI-PSI) THROUGHOUT THE CEVICE.

C* THIS ROUTIKE OPERATES ON THE F RST-ORDER TRIAL POTENTIAL
C* FUNCTION ONLY AMD IS BASED ON THE EXPLICIT ANALYTICAL RELATIONSHIP BE£T-
C* WEEN THE STEP AT EACH POINT AND THE SPECIFIED ER2W0R.

(43 INPUT PARAMETERS ARE
€% ERRST = MAXIMLY ALLOWED ERROR ON THE INTEGRATIONS

PR SRR O B R TR O B B B IR B N B A N

C* SMX = UPPER BOUND FOR THL STEP

C+ RATMX = UPPER BOUND FOR THE RATIO OF CONSECUTIVE STEPS

C* MDIM = MAXIMUM NUMBER OF POINTS PERMITTED

C# STRUCTURE PARAMETERS(INCLUDED IN THE LABELED COMMON /STRC/  WITH EXCEP-
Cx TION OF THE PARAMETERS 1M AND  Il)e

C* FIRST-ORDER THFORY PARAMETERS(INCLUDED IN THE LASELED COMMON /FSO/ ).
C=

c* QUTPUT PARAMETFRS ARF .

C* STEP = ONE~DIMENSIONAL APRAY, NON-UNMIFORM STE? MAGNITUDE AV EACH POINT
C# IM = LAST PCINT OF YHE & REGION AT THE M{TALLURGICAL INTERFACE

C* IL = TOTAL MUMBER OF POINTS

C* JIRET = PARAMEICR THAT DETERMINES THE €XIT OF "HE ROUTINE

24 IRET =1 IF IL 15 GREATER THAN MDIM

c* IREY = 0 IF IL 1S MOT GREATER THAN MDIM

c* .

= ALL THF ARRAYS ARF OF DIMENSICH 1000 AND IN DGUB.E PRE~

C* CISION. .
Cx -
* ALLOWAMCE FOR ONE  DOUBLE PRECISION ARRAY {WORKINS LOCA- *
C*¥ TIOM5) FOR TE“PORARY STORAGE MUST BE MADE. THIS 1S AVAILABLE EXFERNALLY A
C* THROUGH THL LABELED CCYMON /WORK/. -
(R R I R R R i Al it e R N R I RS nd 2 T T T L oy

REAL M yMPs INJPAR s JNFSOR
DOUBLE PRECISION STEF{1n60).TSTEP(1020)DUMMY (1000}
SyXsXA sX5 0 SNTRSPTSSPRT
$e = NDsNA BN PP AP, PH,LVD s M5 L
COMMON /STRE/ NDaNAsNi PP NP s PHoVD sMsL s IMy IL VT o GAMN s GANP
JSSIEP/ SMXSRATHMX eM01M
JTHOIKZ TSTER s DLMMY
JFSD /7 XNeXPsPNyMPy INJPARSPSIMP ¢ JNFSOR
/XST 7 STEP

[RTRTITN

CHRERXIRRXKARFRXFFFRARI THMETIC FUNCTIONS DEFINITION FOR THE RELATIGHSHIP EBET- *
C*%  WEEN THE STEX AND THE SPECIFIED ERROR IN THE VARIOUS REGIONSHAX%xtxAasfsyxns

SNTR(X3= DSORT{ERZI2Z{ (NO®{X—Mi4) ) *¥*2+ND})

SPTR(X)= DSORTIERRLIZA (NA®(MP-X) ) %%2+KA))

SPNT(X%)= EIRSR*(W-X]

ERR12=ERRST#12s

ERRSR= SORT (6<¥FRRST]

W=l,E10 E

IF TINJPARLGTWNP) W= {L-MD)/{ INJPAR=NP*NP}+L

CHRRIIF S 2 u R LU XRRXCRTAIN THE STEP DISTRISUTION IN THE
IRET=0
IBR=]
I=2
XapM
TSTEPL1)=SRTR(M)
IF (TSTEP{L)eGTeSMX] TSTEP{1}=SMX
TSTEPL2)=T3TEPL1}
50 X=X~YSTEP(!}
I=1+41
IF {1.GT.MDIM) GO TO 430
TSTEP(I1=5KX
55 IF {X«GTeMdY GO TO 65
TF {XeGT{TSTEP(1-13/241) GO TO (70.50),18R
GO 7O 75
65 TSTEP(1)=SKTRIX)
70 SMXT=TSTEP I-11*RATMX
IF {TSTEP(L)WGTeSMXI)Y TSTEP{I ) =5MXI
IF {TSTEPI[).LT.5%X) GO TU 50
18R=2
TSTEP{1)=54X
GG Y0 50
75 IM=1-1
IMI=Tv-1
DO 80 I5=1.1M1
IT=IM-I5+)
80 STEPIIS)=TSTEPLITY

N-REGION®#2utssenrren®s

CHNRFIXRALXK ARSIV RNOBTAIN THE STEP DISTRIBUTICON IN TRE DEPLETED P-REGION®#E*stx
1=1M
X=n
STEPTII=STFP{I-1)
150 X=x+STEP(T
I=f+1

66¢



170

175

IFf (I1.GT.MDIM} GO TO 400

STEPLT 1=3MX

TF {XLT/MP) STEP(11=SPTR(X)
SMXT=STE>(T-1)1*RAT¥X

1F (STEP(I)«GTaSMXIY STEP(I)=53MX1
IF (STEP(I).LT.54X) GO TO 15¢
IA=I-1

CHEXFEFRRR*RENEXNXOBTAIN THE STEP DISTRIBUTION IN THE NEUTRAL P~REGION#R%2xsx

250

260

300

310

320

400

963

XA=X

MDIMA=MDIM=TA

1P=2

x=L

TSTEP(1)=5PNT (L)

1F (TSTFP{1)eGTaSMX) TSTEP(1)-SMX
TSTEP(2)=TSTEP(1)
X=X-TSTE>{IP}

1P=IP+1

IF (1P.GT+MDIMAY GO TO 400
IF {X.LTeXA) GO TO 500
TSTEPLIPI=SPNT(X)
SMX1=TSTEP (IP—1)*RATMX

I1F {TSTEP{IP)4GT.SMXT) TSTERIIPI=SMX]
IF (TSTEPLIP).LT.SMX 1GO TO 250
SMXB=S5V%X

XB=X-SMXB/2e

X=¥Xa

IF (X%X.GTeXB) GO TO 310
STERP(T1=5YXB

X=X+STEP(])

I=l+1

IF (1.GT.MDIM) GO TO 400
GO TO 300

1P1=1P-1

DO 320 11=2,1P1

15=1+11-2

1T=1P1+42-11

1F {1S.GE-MDIM) GO TO 400
STEPI1ISI=TSTEP(ITY

IL=15+1

WRITE (65963)TL+ERRST
RETURN

IRET=1

1=MDIM+1

WRITE (62963) I+ERRST
FORMAT (1HO»I5510X+E1547)
RETURN

Comxuysyuutnnxxx s ¥ 2MATCH THE STEP DISTRIBUTIONS BETWEEN P-DEPLETED AND P~ *

c*
c*

500
510

NEUTRAL REGIONS TC SATISFY THE REQUIREMERT DICTATED BY THE UPPER BOUND *
OF THE RATIO OF CONSFCUTIVE STEPS.##¥ys¥is tétx s s i frres il ik id et esiss

SMXB=TSTEP (1P)
XAxX8=STEP(1A}
jA=fA~1

IF (STEFtIA)4GTe SMXB
1=T1441

GO TO 260

END

} GO TO 510

SIBFTC $NS DECK
SURROUTINE SLAGR (JUTsVAIT»JTW,MMyDP)
CHERE RA AR AR ELREENF AT R R FEE R IR L AR AR R AR F RV AR R R BRI X FL AR RN AR S H AR A AN E RN RS AL RN N

(4 THE SUBROUTINE ' SLAGR! EXECUTES A LAGRANGIAN INTERPOLA-
C* TION ON TWO ONE-DIMEKSIONAL ARKRAYS NOT UNIFORMLY SPACED.

(€3

(4.4 THIS ROUTINZ CONSTRUCTS THE PLRTIINENT MATRIXSTRIANGU-ARI-

C* ZES 1T WITH THE GAUSSIAN ELIMINATION PROCESSs SOLVES ThE SYSTEM BY 2ACK-
€% SUBSTITUTION TO OBTAIN THE COEFFICIENTS OF THE INTERPOLATING POLYNCALALSs
C* AND COMPUTES THE YALUE OF SUCH POLYNOMIAL AT THE DESIRED POLINT.

C* DOUBLE PRECISION ARITHMETIC IS USED.

cx
(4] INPUT PARAMITERS ARE

c*  JT = ONE-DIMENSTOMAL ARRAY, ABSCISSA OF THE GIVEN POINTS (DIMENSIDNS1O0)

C#* VAIT = ONEF-DIMENSIONAL ARRAY, ORDINATE OF THE GIVEN POINTS (DIMENSION=10)

C*  JTW = ABSCISSA OF THE DESIRED POINT

c* MM = NUMBER OF PQINTS GIVEN (THE ORDER CF THE INTERPCLATING POLYiOMIAL

(4] IS MM-11. MAXIMUY MM VALUE = 10

cx

C* OUTPUT PARAYETERS ARE

C* DP = ORDINATE OF THE DESIRED POINT

c#

cs ALL THE INPUT AND QUTPUT QUANTITIES ARE IN SINGLE PRECISICN

xRk R R kN ok ok b ok ok kN ko ok ok ok kRN

CRAREXEAARKE AR AR AR AL AR EFF RN AR S AR U FEAREA FRERAA A S RSN F TR R RN A SRR EF R AR AR R RN
REAL JT(10),VAIT(1D) +JTW
DOUBLE PRECISION JTM{10,11)92Z4SU4sCF{10Y
1 FORMAT (1Xs//1%+8D16.8)
IF (MM LEL10) & TO 100
WRITE (64+10)
10 FORMAT (49H ERROR IN SUBROUTINE *SLAGR'.
$ 30HFXCEFDS THD MAXIMUuM PERMITTED  /7/4)

THE PARAMETER MM=, 164

cli}il‘*‘*l*i-%‘&il‘&leD THE PERT[NENT MATRIX&!*l‘lili(—ii*llii*l‘l‘i!(ibilli{ii!iii
100 MIT=wM4]
200 DO 205 I=1.MM
JTMITe1r=1,
205 JTMITWMIT)=VALITY)
DO 210 [=l.vM
DO 210 K=2sMM
210 JTMULsKI=JTMIIK=-11%JT(])

CHREXARARNER XA XX ENETRIANGULARIZE THE MATRIX BY GAUSSIAN ELIMINATIONS##aEexdssass
Ml=MM=]
DO 300 KK=1,M1
TL=14KK
D0 300 IR=IL+MM
ZZ=JTMIIRKK) /ITMIRK KK ]
DO 300 K=ILsMIT
300 JTM{IRSKITITMIIR$KI-ZZ*ITMIKK KD

CHIRTXXAXRRFRAXFAFRGOLVE THE MATRIX BY BACK=SUHSTITUT[ON*ssasx¥sssssssabsrsasany
CF MM = JTM MMM T ) £ JTME MY M)
DO 320 I=2,0:M
TR=MIT=1
IRP1=1R+1
SUM=D,.
DO 310 JUxIRP1 MM
310 SUMSJTMIIR y J) #CE{ N +SLH
320 CRUIR) = (JTM(IRsMITI-SUMIZITMITIRSIR)

09¢



CANSRFRRSRARIRNRSEXCOMEYTE THE VAUE OF THE INTERPOLATING POLYNOKIAL AT THEwxsss
LA DESIRED POINTFFXR N ans mad ke n s ¥ h sk XA R NN RS AT EARA XL RS AN P AR RNRRREERN AR R R AR S
DP=CF (MM)
DO 350 1=2+8KM
IR=MIT=]
. 350 DP= JTW*DP+{F{IR)
RETURN
END

SIBFTC 506 DECK

SUBROUTTINE STPADJIXINsXFIN,IST+IFINPL)
tl""!l!Ii’*i!lil"l.lﬁ*!“il’*i!‘!ii!‘!* FREEFRRBARFARRRFREER R AR AR FRAFRA AR AR R NER
ca THE SUBROUTINE 'STPADJ' PERFORMS A MINOR AD_USTMENT GF
Ce THE PRELIMINARY NON-UNIFCRM STEP DISTRIBUTION IN A CERTAIN REGION IN ORDER
C% 10 IMPROVE THE ACCLRACY OF THE RELATION

e SUM OF THE STEPS = LENGTH OF REGION i1}
g
(4] THIS ADJUSTMEN? IS5 ACHIEVED 8Y DETERMINING,wITH AN INTERPO-

¢4 LATING PROCEDURE. A MULTIPLICATIVE FACTOR FOR THE 3TEP SIZE SUCH THAT THE
€A RELATION (1t 15 SATISFIED WITHIN & CERTAIN TOLERANCE (SPECIFIED AS

C® TOLER = SMX*1.E~5 }o THIS TECHNTOUE MAINTAINS UNIHANGED THE RATIO OF

€® CONSECUTIVE STEPS CF THE ORIGINAL STEP DISTRIBUTION.

<n

<% SUBPROGRAM NEEDED

(<] SUBROUTENE  "SLAGR*
=

* INPLY PARAMETERS ARE

C®  XIN = ABSCISSA OF THE LEFT BOUNDARY OF THE REGION {(DOURLE-PRECISION)
C® XFIN = ABSCISSA OF THE RIGHT BOUNDARY OF THE REGION {DOUBLE-PRECISIORN)
C% ISTN = INDEX IDENTIFYING THE STEP AT XIN (FIRST STEP)

C* IFINP1= INDEX IDENTIFYING THF STEP AT XFIN

C# STEP = ONE-DIMENSIONAL ARRAY) NON-UNIFORM STEP MAGNITUDE AT EACH POINY

Cx {T0 BE ADJUSTED!

c*

c* OUTPUT PARAMETERS ARE

€* STEP = ONE~DIMENSIONAL ARRAY: NON~UNIFORM STEP MAGNITUDE AT EACH POINT
Cx (ADJUSTED}

£

C* THE ARRAY STEP 1S OF DIMENSION 1000 AND IN DOUBLE

MOk R ok ok ok ko bk kK ok R kR ok ok o ok kK & kK

C* PRECISION,

AR F RN EE AR IR NN R TR AR AR AR IR IR AR R EFREEFRARRH RS L RN S AR R AR RHERRSETE R AT Rk X
DOUBLE PRECISION STEP(1000) XX INSXFIN
DIMENSION DIFF(10},FC{10}

COMMON FXSYs STEP
s 2SSTEP/ SMXsRATMX sMDIM
FACT=1+E~3 +1,

IFIN=IFINP1=2

NRP20

TOLER=SMX®]E-5

NRPMX=5

25 X=XIN
DO 30 I=ISTSIFIN

30 X3X+FACT#STER (1)

NRP=NRP+1

FCINRPI=FACT -1,
DIFF{NRPI=X-XFIN

IF {NRP.GT+1} GO TO 33"
FACTeFCINRPI®]0.+10

IF ({X-XFIN'.GTena) FACT=FCANRPI/ 1004414
GO 1O 25
313 IF [DABS{X-X7 IN}«LT o TOLER.ORWNRP 4+ GT.NRPNX) GO TO 35
CALL SLAGR (DIFFsFCs0,sNRP»FCIHPR)
FACT=FCIPVPR31.
GO TO 25
35 NRPpM=1
00 37 I=2+NRP
37 1F tABSIDIFF{NRP})4LTABSIDIFF {NRPMI})} NRPMI=NRP
FACT=FC{NRPMN}+1a
D0 40 1=1ST»IFIN

40 STER{I)=FACT*5TEP])
RETIRN
END

$IBFTC 507 DECK

SUBROUTINC DOPING (NI#)
I e R R L s T

Ce THE SUBROUTINE 'COPING' FURNISHES THE IMPURLYY DISTRIBU~- #
C*  TION THROUGHOUT THE DEVI(CE. *
C* *
Co THIS ROUTINE YIELDS A STEP DOPING PROFILE WHICH CHARACTE-~  #
C# RIZES AN ARRUPT JUNCTICH WITH THE N~REGION OW THE LEFT SIDE. *
(4 *
Cx INPUT PARAMETERS ARE *
[ ¢ ] = LAST POINT OF THE Y-REGIGHN AT THE METALLURGICAL IATERFACE o
[ T $ 8 = YOTAL NUMBER OF POINTS *
C* ND = DONOR CORCERTRAIION IN THE N~ REGION {DOUBLE PRLCISION) -
Cx  NA = ACCEPTOR CONCENTRATION IN THE P— REGION (DOUBLE PRECISION) -
C= *
Ce QUTPUT PARAMITERS ARE *
C®  NIM = ONE-DIMENSIONAL ARRAY, IMPURIYY DISTRIBUTION {SINGLE PRECISIONS *
Cs DIMENSION 1000) *

-

ci-llll!lIi"1'!!**Qiﬁiii*l&&ﬁ{ll&ﬁ-‘ilﬁlll“‘ﬁﬁa&&l#‘i{’.l’ﬁi‘&il#qlﬁﬁ‘&l#lliill
DOUBLE PRECISION
3 ND sNASNN 3PP 4 IP 4PN VDML
REAL NIM(1000}
COMMON /STRC/ HDeNASKN3PPINP +PH VD s sl a8, TLsVT 1 GAMNIGAME
DO 10 I=xisIM
10 NIM(I}=ND
IMP1eIM+]1
DO 20 I=IMP1»IL
20 NIM(I)=-NA
RET(RN
END

SIBFTC S08 DECK
SUBROUTINE PSITRL (PSI»vA)

[ A L L N L L e R L P e 2]

c* THE SUBROUTIKE IPSITRL' FURNISHES THE TRIAL POTERTIAL *
C* FUNCTIDHN. - *
(4] »
(44 THIS ROUTINE YIELDS THE FIRST-ORDER THEIGRY FOTENTIAL DIS- *
C* TRIBUTION FOR AN ABRUPT JUNITION,WITHOUT RESTRICTIONS ON THE JNJECTIOY *
Ce LEVEL IN THE LOW CONDUCTIVIIY (P} REGION, *
» *
cs INPUT PARAMETERS ARE *

19¢



C+ YA = APPLIED VOLTAGE {(NORMALIZED,DOUBLE PRECISION} *
¢+ 1L = YOTAL NUMBER OF POINTS *
C#  STEP = ONE-DIMENSIONAL ARRAYs NON-UNIJFORM STEP MAGNITUDE AT EA(H POINT *
C*  STRUCTURE PARAMETERS(INCLUDED IN THE LABELED COMMON /STRC/Z ) *
€* FIRST~ORDER THEDRY PARAMETERS{INCLUDED IN THE LABSELED COMMON /FSO/ ) »
C# »
C* QUTPUT PARAMETERS ARE *
€% PS1 = ONE-DIMENSIONAL ARRAY, TRIAL POTENTIAL FUNCTION »
(43 »
c ALL THI ARRAYS ARF OF DIMENSION 1000 AND [N DOUBLE PRE~ *
C* (I1S10H. ) -
[ R e g A L R I e N I T T I

OOUBLE PRECISION STIP{1000)}sPS1{10001+X

S, RO sNAS N PP sNP sPNsVD sMyL 2 VAD

REAL MN s MP, INJPAR » JNFSOR

COMMON  /5TRC/ NDyNAJNNsPPINPsPNoVDsMaLs 1Mo TL o VT s GANNSGAMP.
s IF50 /7 XN»XPyMNsMP s INJPAR»PSIMP s JNFSOR

s /XST 7 STEP

CSTi= ~PSIMP/{XP¥* (X4+XP))

C512= ~PSIMP/(XN¥ (XN+XP})

MN=pM=-XN

MP =M+ XP

VAD=VA-VL

CONST={ INJPAR-NP/PP) F{L-MP)

IF {TRJPAR.GTs14E-4) CONST= (DEXP{VAD-PSIMPI-1.}/{L-MP}

X=0e

PST(11=0.

DO 20 I=2s1L

X=X+STEP(I~1)

PSIILY=0.

IF (XeGTeMNARDLX.LIsM] PSI(T)=-C5712 ®(X-MN)*#*2

IF (X=GTeMoANDeXLE.MPI PST{1)= CST1 *{MP-X)**2+PSIMP

IF (X«.LEMP) GO TO 20

PSI{1}=viD

IF {INJPARLGT414E-4) PSI{I)®= -DLOG(CONST®{L-X)+1.1+VAD
20 CONTINUE

RETURN

END

3IBFTC SO% DECK
SUBROUTIME MOBCAR {PSI,VA}
R R B R RN R AN R R AR AR RSN R TN R AR R AR R I RN AR BRI RRE R FAXRI LA N A RN RUNER

(<] THE SUBROUTINE 'MOBCAR' COMPUTES THE ELECTRON AND HOLE *
€* PISTRIBUTICNS THRQUGHOUT THE DEVICE. GIVEN THE POTENTIAL DISTRIBUTION =
C* PSle -
fo 3 =
cs THIS ROUTINE USES A PROCESS OF DIRECT INTEGRATICN. SUBPRO~ *
C€*  GRAMS REEDED ARE »
= SUBROUTINE " INTGSF!* »
(<] SUBROUTINE 'INTEGR® *
C%  DOUBLE PRECISION ARITHMETIC IS USED. -
C* »
cn INPUT PARAMETERS ARE *
€% ?S] = ONE-DIMENSIONAL ARRAYs POTENTIAL DISTRIBUTION =
€% VA = APPLIED VOLTAGE (NORMALIZED,DOUBLE PRECISION) -
C* STRUCTURE FARAMETERSIINCLUDED IN THE LABELED COMMON /STRC/ § L
(< ] R -
(<2 ’ OUTPUT PARAMETERS ARE L
[£ 2 | = ONE-DIMENSIONAL ARRAY, ELECTRON DISTRIBUTION «

s P = OME-DIMENSIONAL ARRAY, HOLE DISTRIBUTION

€% - TIONS) FOR TEMPORAZY STORACE 4UST BE MADE. THESE ARE AVAILABLE EXTERNALLY
C#%  THPOUGH THE LARELEDS COMMON  /WORK/
CHERE SRR R I A L FFE R R LR EIZR AR AN B P R AR IR il{l&!!‘!*&i I ERIRIEZ T EL IR 2T T22 2222022 22 d
REAL JH o JP
DOUBLE PRECISION VA,PSILLIN00%y N(10001+P{10001,EPSII10001s
SEMPSI{1093),FIP(I000) +FPL10DG)sFINIL000)s FN(1000)s CHaCPITHETAS
SFPR([D@O)»‘hR{lGon1.”NpC(P.7FcTA1-PS oL
ND sNA NN PP o NPy PN VO sMsL
COMMON JSTRC/ NDHASKHsPPKP s PN VD sMals IMe IL s VT2 GAMNIGAMP
[ MEARYS Neb s INsJP
s JWORK/ EPSIHFIP
EQUIVALENCE {EPSIEMPSLSs (FIPFINSFPRyFARIS(FP3P )y (FHsN)
IF (VALLT.0.3 GO YO 360

-
C# JUN v ELECTRON CUFRENT »
C* JP = HOLE CURREN] *
Cx -
Cx ALL THE ARRAYS ARE OF DIMENSION 1000 AND IN DOSBLE PRE~ *
¢* CISION -
< *
s ALLOWANCE FOR TWO DOUBLE PRECISTON ARRAYS (WORKING LGCA- *

*

*»

CHERRRARF RS ER RS HAFOR FQRHARQ BIAS ONLYill{!&l*k*iiil*}!llll‘l! REERFRFFREREEER
D0 110 1=1,1t

110 EPSI(1}=DEXPIPSIIII}
THETANNSPP /FPST 1) ¥EPST{TLI
CALL INTEGRI{EPSI,FIPsIMsTLa~11}
CALL INTEGR{EPSIFPoi™sIls 13
JP=(PPREPST(IL)I-EPST(1)#PN)/{FIF{1}*GAMP)
CP=FIP(1)*¥NN/EPSI(1)
DC 120 I=lsIL

120 PUI)=(FIP(II+THETA®FP(L}I}/(CP*EPSItIY)
D0 210 I=1sIL

210 EMPSI(I)1=1,D0/EP3I(T)
CALL INTEGRUIEMPSIFINIMa1Ls—1]
CALL INTEGRIEMPSIFNsIMyILs1}
JN= (NNSEMDSTI1)—XPREMRST{IL} )/ IGAUNSFN(TL) )
CN=FN(ILI#PP/EMPSTIIL)
DO 220 1=1.1L

220 NUIY=(FNII}+THETA*FINCI 1) Z{CN*EMPSTL D)}
RETURN

CHERARARARIRARUEFKAFOR REVERSE BIAS ONLYRSSRE SR EIur K s Radn s ¥ S b S F SR RERXARRRF KRN RAS

cx COM2UTE THE ELECTRON DISTRIBUTION NiI} =
300 PS10L=PSIE1)-PSTILILY
THETA1=1.D0
IF (PSIOLeLE«70s! THETAI=1.,DO-NN®*PP/OEXP{PSIOL])
CALL IMTGSF (PSI,EVPSTsFNRsIMs1L,1}
CN=DPeENR (TLIZEMPSTLILY
CCN=CNFNN
DO 340 [=1,1IL
IF (IPSI(1}-PST{I}1.6TaT0.! GO TO 335
N{D)={THETAY#FNR{TI4CCNY 7 (CN*EMPSTILTY)
GO 1O 348
335 N(L)aFNROI)Z{CNIENPSTI(IY)
340 CONTINUE
JN® ~EMPSTICILYONP Z(GAVN®FRR(IL}Y
IF (PSIOL2LE«7Ds} JR=JININNEEMPSTI{11/{GAMN®FNR{ILY)

C» COMUTE THE HOLE DISTRIBUTION PLD) hd

29¢



CALL INTGSF (PS1+7PSIHFPRaTHaTL+~1)
CP=NN*FPR{1)/EPSI{1}
CCP=PPeCP
DO 440 T=1,1L
IF (IPSI{I1-PSI{I_11.6T.70.! GO T0O 435
PIIT={THETAI#FPR{I}+CCP) /{CPREPSTI (1))
GO TO 447

435 P{T)=FPRE{TY/(CP*EPSI(I}}

440 CONTINUE
JPr ~ERST{11%PN/{GAMP*FPRIL1!)
IF {PSICLJLE.TNe} JP=JP+PP/IGAMPX¥FPR{L))
RETURN
END

$IBFTC S104 DECK

SUBRCUTINE INTEGR(YsQs1MsIL4ID}
[ L L I I oI T T e
(4 THE SURROUTINE 'INTEGR' COMPUTES THE INTEGRAL OF A FUMC—
C*¥ TION GIVEN IN DISCRETIZED FORM THROUGHOLT THE POINT INTERVAL 1 - IL
C* L IMITS OF INTEGRATION BEING ONE BOUNDARY AND EACH OF THE IL POINTS.

* THIS ROUTINE USES A LINEAR INTERPOLATION AT EACH POINT
C* { TRAPE20IDAL RULE OR TWO POIKT FORMULA } o
C* DOURLE PREZCISION ARITHMETIC I3 U3ZED.

(23
c* - INPUT PARAMETERS ARE

L I 4 = ONE-DIMENSIONAL ARRAY ~O BE [NTECRATED

c* M = IRRELEVANT PARAMETER FCR THIS ROUTINE

<+ 1L = TOTAL NUMBER OF PCINTS

<* 1D = INDICATES THE DIRFCTION OF INTEGRATTION AS FOLLOWS
c» ID GREATER THAN ZERG FOR FORWARD DIRECTION

c* ID LESS THAN ZERQ FOR REVERSF DIFECTION

C¥ STEP = ONE-DIMENSIONAL ARRAY. NOMN~UNIFOSM STEP MAGNITUDE AT EACH POINT

c* OUTPIIT PARAMFTIRS ARE
C¥ © = ONE-DIMENSIONAL ARRAY RESULT OF THE INTEGRATION AT EACH POINT

s ALL THE ARRAYS ARE OF DIMENSION 1000 AND IN DOUBLE PRE-
¢» CISION.
[ R e e LT ST T T T T PR
COMMON FXST/ STEP
DOURLE PRECISION Y(1060)4»Q{1000},STEPI1000}
IL1=JL~1
IF (IDeL T4G) GO TO 15

N R I I P R R R I N S P

CHEREZFEXTFANLAXI XX INTEGRATION TN THF FORWAFD DIRECTION ONLY#EFXEFAXXRRAEFINNBAE
Qlli=N.
DO 10 I=1,1L1

10 QUI+1I=iY(T+1)+Y(1)11/2.D0%STEP{[)+01 11
RETURN

CHRERFFRANIERRRA S22 X% [NTEGRATION IN THE REVERSE DIRECTION ONLY®SXXFEXN N X R XRKIT NS F 2
15 QUILY*0.

DO 20 l=l,itd

1R=1L=~1
20 QUIRI® {Y{IRI+Y{IR+1))}/2.D0STFP{ IR} 4QLIR+1)

RETURN

END

$IBFTC S108 DECK

SUBROUTINT  INTEGRIYSQs 1%y 10,1D1
("l"*"‘("‘}‘Ii“‘*l‘&“’!‘l-l“’!‘.ii‘ti(ldffde!fltli!iIf‘f**!‘i"f‘iQl’l*’*}'&'i
Cx ThE SURROUT NE  TINTEGR' COMPUTIS THE INTEGRAL OF A FusC-
C* TION GIVEN IN SISCPETIZED FORM THROUG-OUT THE POINT INTERVAL 1 - [L s
C* LIMITS OF INTEGR2TION BLIAG ONE BOUNDARY AND EACH OF THE IL  POINTS.

C* THIS RGUTINE USES A CLBIC INTERPDLATION SCHEME AY EACH
C*  POINT (FOUR POINT FOPMULA).
C¥ A DISCONTILUITY 2T 1% OF & DERIVATIVE OF THE FUNCTION 1S ALLDWED.

Cs SUBPRGGRAM MEEDE

(44 DOUBLE PRECISIUN FUNCYION DET!
€« DOUBLFE PRECISION ARITHW TI( 15 USED,

fat 4

c THPUT PARAMITERS ARE

<*x Y = ONE-DIMENSIONAL &%R.¥ YO BE INTEGRAYED

LS I 1 = POIHT OF DISCONMTINUITY OF A DERIVATIVE OF THE INTEGRAND
€« 1L + TOT2L KUVBER OF POIATS

C* ID = INDICATFS THE DIRECTION OF INTEGRATION AS FOLLOWS
Cs ID GREATER THAN ZERO FOR FORWARD DIRECTION

(44 ID LESS THAN ZERND FOR REVERSE DIRECTION

C*  STEP = ONE-DIMENSIONAL ARRAY. NCHN-UNIFORM STEP YAGNITUDE AT EACH POINT

Cs CUTPUT PRRAMETERS ARYT
C+ Q = ONF-DIYFNSIGHAL ARRAY RESULY OF THE INTIGRATION AT EACH POINT

s ALt THE ARRAYS ARE OF DIMENSICON 1000 AND IN OGUBLE PRE-
= CISTON.
[ R R R R N T T T R T 1 % T T v e

L0GICAaL fACY

LR R B BRI NE R B N O BN B N NN B BRSNS

DOURLF PRECISICK  YI1 ts Q{1 Y STEP(]Y Jo XI131s US(545)
SUAE2s205 1121242)
$474D9OCLVALTA BT TAWGAMMADELTA WY sQIN

COMMON  fX5T/ STEP
POLIZY » 720 290 29[ IRALFAZL.0DO 4 BETA/3.0D01 + GAMMA/2.000) +

s DRLTA)y
IMP = M &+ 1}
Ly = 1L - 1
L2 = 1u - 2
M2 o= (M - 2
MY o« IM - 1
Qf{1r=h,
CUIL=2e
ACE = JFALSES

TF (IDWLTafll BACK = 2TRIE.
DD 100 J=2.1L2
1 =4
1F (8aCK1 I = It -~ J
I¥ [1.EQa1¥140% [eEU.IM 3 GO 10 100
2 = STEPLDY
{11 = ~5TEP(I-11
X2y = 2
x{3y = STEP (11} + 7
D ox (X{2I-XL111 * {X(31=X(11} * {Xi31-X{2})
DL 30 IR=14%
IV = I«1+IR
IF fIVeEnat1 1y = tv=1
US{IRs1) = X{IR}
US IRa2) = {Y¢Iv) = YUl})/ X{IR!
30 us (12,3 Xt1R) = x{la
D3 52 IR = 2.2

£9¢



DO 50 IC = 12
ICP1 = 10 + 1
UALIRWICH = USUIRLIC) — USI3sIC)
50 UBLIRSTICY = USCIRSICPI) — US{3,yICP1)
ALFA = [UA(2s1) * UA{L192) « UA(1s]) *UA(2s2}) / D
BETA = (UB(2s1) + URB(1+2) — UBL1.1) # UB(2+2}) / O
GavuA = -DET (US)3) / D
DELTA = Y(I)
11 = 1-1 -
1P} = I+1
1P2 = 1 + 2
1F "{«NOT«BACK} 60 TO 70

CHERBend ey b st ux X INTEGRATION IN THE REVFRSE DIRECTION ONLY®¥ERHEXLEXREXN U HNELKX
IF [eNOTe (IeEQ.IM2 JOR. 1.2Q.1L2)) GD TO 60
w2 + STEP{IPY!
0{IP1) = POLIW) ~ QIIP2) - POL(Z}
60 ity = POLIZ)Y + QUIPL)
IF {oNOTe{14EQe2 »ORe l.FQ.IMP1}} GO TO 100
w = =STEP{I1)
Q{I1) = -PoLiwW) ~ Q(I)
GO TO 100

CHENREP XX ¥ KRN XXM INTEGRATION IN THE FORWARD DIRECTION ONLY¥*SRXXXXKEXRRAKIUNEE
T0 IF («NOT«{14EQs2 «ORe 1.FQ.IMP13) GO TO 80
W s -STEP(11})
Q{ly = ~POLEW) - QUIY)
8e Q{IP1) = PCLIZ} - Q(1)
1F {e«NOTs t14EQsM2 4ORe T4EQ.IL2)) GO TO 10O
W o= 2 & STEP{IPL)
Qi1P2) = POLEW) - O(I)
100 CONYINUE
RETURN
END

$IBFTC S11 DECK
DCUBLE PRECISION FUNCTION DET (Y4M)
CO!IQI!!Ililillii!!lvl&!l‘!&*!&4*lll**l****l****l*!i{*{!iki*i*iiﬁ*l*ii!!Q{f{i{‘&

c+ THE DOURLFE PRECISION FUNITION fDETY COMPUTES THE DETER~ *
C+ MINANT OF A MATRIX, *
c+ *
(4.4 THIS ROUTINE USES A SCHEME BASED ON TRIANGULARIZATION OF *
€+ THE MATRIX BY GAUSSIAN FLIMINATION AND {ROSS MULTIPLICATION OF THE DIA~ *
€+ GONAL. *
C+ DOUBLE PRECISION ARITHMETIC IS USED. *
C+ *
(44 INPUT PARAMETERS ARE *
[ 2 4 & YWO-DIMENSIONAL ARRAY, MATRIX WHDSE DETERMINANT I5 SOUGHT *
C+ M » S12E OF THE MATRIX Y o MAXIMUM S5IZE = 5 -
() *
(44 OUTPUT PARAMETERS ARE *
C+ OET = VALUE OF TH[ DETERMINANT OF THE MATRIX Y . *
cfiI'ilI!I'l‘!"'* RUREFLEERBERTEKSRB R TR W X6 3N I 36T TR

COUBLE PRECISION Y(5 45 ) +2Z
M1 aM—]

DEY=Y (141}

DO 25 MCr1,M1

MCP1eMCal

DO 23 MR=MCP1sM

ZZ=Y{MRyMLY/Y (HC MO
DO 23 I=MCPL.¥

23 FEMRoT I sY MR 13=Z22 % (80 1)
25 DET=DET#Y(MCP1sMCPI )
RETURN
FND
$IBFTC 51! DECK

SURROUTIHE INTGSF (PSI»Y QeIMaILsI0Y
(lfﬁ&!Sil&i&it!l!&ﬁ”!*;*’;&i&t.!&-Clio;i&l!!1‘I¥litfi;!f**kii*l*l*!iiil!lil&l*i
(4] : THE SUBROUTINE 'TINTGSF® (OMPUTIS THE EXPONENTIAL OF A
C*  FUNCTION GIVEN T DISCRETIIED FORM AND THE INTESRAL OF SUCH AN EXPONIN-
C*  TIAL THROUGHOUT THE POINT INTERVAL 1 — IL «LIAITS OF INTEGRATIOH BIING
C*  CNME ROUNDARY AND E£CH OF THE 1L POINTS.

C*  SCALF FACTORS ABF INTIRADUCED IN CASE THE INTEGRAND EXCEEDS THE MAXIMUM
C%  ALLOWFD RANGF. 8OTH THT EXPONCHTIAL 28D THE [NT:GRAL WILL BE SCALED AC~
C* CnPDINGLY.

C#

(44 THIS ROUTIHE USES A LINEAR INTERPOLATION SCHEME AT EATH
C*  POINT { TRAPEZCIDAL PULE OR TAOD POINY FORMULA ) .

C¥ DOUBLE PRECISIGHL ARITHMETIC IS USED.

(<]

[« ] INPUT PARAMITERS ARE

Cc# PSI ONE-DIMFERSIGNAL ARRAY 70 BE INTEGRATEC

(€ I £ * IRRELEVART DPLPs“ETER FOR THIS ROUTINE

c* It TOTAL MUMZER 0F POI4TS

(o SN 31 IMDICATES THE [NTEGRAND AND T+E DIRECTIGA OF INTEGRATION A§ FOL-
[ LOWS

(&) ID GREATFR THAN 2FRG FOR FORWARD DIRELTION AND INTEGRAND DEXPI-PSI)
(€] ID LESS THAN ZERD FOR REVERSE NIRTCTIGHN AND INTEGRAND DEXP(PSI)

C* STEP - ONE-DIMELSIONAL ARBAY, NON~UNIFORM STDP AAGNITUDE AT EACH POINT
s

< CUTPUT PARAMETERS ARE

[ = CNE-DIMERSICHAL ADDRAY,INTECTAND

< G + ONE-DIMFLSTONAL AR2LYLRISULT CF THE TATESRATION AT EACH POINT

Wk KK kR ok K K ok o ko oW ok kA ow A ko

P R R e e e R e Rt L
COMPON /XST/ STES
DOURLE PRECISION PSI(10)0).Y(1030),001060),57EP(1C00)
WL W VOIRNLOWYSLE
SCLF2 DEXP(TNDO%
IF [1DLTe5) 26 TS 10635

Cressnr¥erx s Renrou [NTEGIATION IN THE FORWARD OIRECTION AND FOR THE INTEGRAKD ¥
£x DEXP{-PSI) ONLY¥ S E skt Fa b kit i A i N E R F R RN T U S r A AN A AT R RN RN RN NA RS RN ERT

VG=2511(1}

Yi1)=1.00

Gily=Ce

DO 10 I=2.1L

onLY=0(1-1)

YoLI=Y (I-1)

IF ({VO-PSItI1)«LE.TD.Y GO TO 8

VOrvD=140,00

YOLI=DEXO(VO-PSTii-11}

GOLI={0(I~711/5CLFI/7=CLF

& Yi{lr= DFYP(VO-PS51L{IN}
10 GED={YOLD+Y {1131 /2.00#5FERP(I-1)+20LD
RETIRN

CREFXsS e r 4 R4 244 [ TEGRATION IN THE REVERSE BIRECTION AND FOR THE INTEGRAND *

bo¢



e

1A

DrXP{PSI} ONLY RN R AR R R R R RN R e R AR A AN I I R PR EREE X R IR AR KPR R EE R R AARNR
VOsPSIUIL)
Y{ILI=1.00
QEILI=D,
00 117 I=2,1L
K=ell+1l-1
QOLD=0{K+1)
YOLD=Y K]y
IF tI2ST(RYI-VC).LE.TCs) GO TO 108
VOrV0+140.00
YOLD=DEXP{PSI tX+1)=V0)}
COLO=10(K+1)/SCLF}/STLF

IN8 (K }=DF¥DISL] (K )-VO)
110 Q(X)=(YOLD+Y(K))/2.DN*STEP{KI+QOLD

RETURN

FND
SIBFTC 513 DECK

SURROUT INE POTSSN (DELTAM,ILY
CREEXAASFERSFFAEIREF AR NN **ili#illK!4}!’!**!ii**i*i*.}i*i%ii*i**!«l!%-l&**l*iiili**
cx THE SUBROUTINE 'POISSN' SOLVES THE SECOND ORDER DIFFE- *
Cx RENTIAL POISSON'S EQUATION, FOR GIVEN ELECTROM AND HOLE DISTRIBUTIONS. *
C* *
C* THIS ROUTINE USES FINITE DIFFERENCES TO APPROXIMATE THE *
C*  AMALYTICAL CFRIVATIVFS AND SOLVES A TRIPLE~DIAGONAL SYSTEM OF ALGEBRATIC »
C*  LINEAR FOUATIGNSS *
C%  SI'GPROGRAME NEFQED APE *
e SUBROUT INF tCURV? =
Cx SURROUT INE tTRIDUL® *
C*  DOYBLE PRECISION ARITHMETIC IS USEDe *
Ci *
(4 INDUT PARAMETERS ARE *
C¥ PSI = ONE-DIMENSICNAL ARRAY, UNCORRECTED POTENTIAL FROM PREVIOUS 1TERAT JON*
c* N = ONE-DIMENSTONAL ARRAY, ELFCTRON DISTRIBUTION FROM PREVIOUS ITERAT JON*
[ = ONE=-DIMENSIONAL ARRAY, HOLE DISTRIBUTION FROM PREVIOUS [TERATION*
C* NI = CNE-CIMENSIGNAL ARRAY, IMPURITY DISTRIBUTION *
C* IL = TOTAL NUMBFR OF PGINTS *
C* STFP = DNT-DIMFNSIOMAL ARRAY, NON-UNIFORM STEP MAGNITUDE AT EACH POINT *
(<€) *
<] 011TPYT PARAMETERS ARE *
C*» DELTA = ONF-DIMFNSIONAL ARRAY, CORRECTION FOR THE POTENTIAL P35I *
C* PSL = GRE-DIMENSIONAL ARRAY, CORRECTED POTENTTAL *
€% DFLTAM = MAXIWMUM ABSOLUTE VALUE OF THE CORRECTION DELTA »
C* *
< ALL THE ARRAYS ARE OF DIMENSION 1000 AND IN DOUBLE PRE~  #
C* CISIGN WITH EXCEPTION OF THE ARRAY NIM *
C» *
C* ALLOWANCE FOR TWO DOUBLE PRLCISION ARRAYS (WORKING LOCA- *
C* TIONS) FOR TEMPOPARY STORAGE MUST BE MADEe THESE ARE AVAILABLE EXTERNALLY
C¥  THRY THE LA&RTLED COMMON  /WORK/ =

*

(S s ad AL S A SR S et A e R R R e e L Y R s T T 222 T T TR Ws Ry ey

REAL MIMLIANNy 4 M JP
DOUSLE PRECISION PST(10N0},PSICVI1CC0)sA(1000},8110001+DELTAIL1000)
$ HD(I7ANIGALFALETA »STEP( 10001 sN11000) +P(1000)
COYVON /XST/ STEP
7TRDG/ D
IWORK /8 4R
SMCARY MWPUN P
JPSNM/ PS1,NIM

CRURR")

EGUIVALENCE {PSICVDDELTAY
TLi=I_~1
CALL CURV (PSTWFSICY,iLY
DC 50 [=2,1L1
ALFA=STES{}/STEP {11}
ETA=STEP{1 /2. D #({STEP{ 1 143TED{ =2}
AfT)=RLFA
BUI)=-ALFA=1DO-ETA#(NIT I+ (I )

L D{Ty=(-PSICVl TN (T3 -PITI~{IMIT I %ETE
CALL TRIDUL (IL)
DEL TA=0w
DO &0 1224101
PSI(I1=PSICI4DELTAC])
ABDEL=DABSIDELTLI1))

£n TF (DILTAMGLYLASDFLY DFLTAY=ASDEL
RETURY
EXD

SIBFTC St4a DECK
SUBRCJTINE CURY (Y4YCURYSIL)

(S e N R ey I T I TP e T P ey

* THE SUBROUYIN:  'CURY' COMPUTES T4 CURVATURE OF A FUNC~
€% TION GIVEN IN DISCRETIZED FO™ THROUGHOUT THE POINT INTERVAL 2 = {IL-1l.

* THIS RGUTINE JSES A PARIBOLIC INTERPOLATION SCHEYE AT EACH
(¥ POINT {THREE-POINT FORMULA) SUTTARLE FOR KDN-UNIFORM STEPS. THE CURVATURE
(% AT EACH POINT IS5 THATY OF FHE PARABOCA TRACED THROUGH THE POINT ITSELF
¥ AND THE TWQ ADJACEUT POINTSG

€* DOUBLF PRECISION PITHMETIC 1S USFD,

<]
(4 INPUT P2RAMETIRS ARE
(£ I 4 = DNE-~DIMENSIGNEZL #RRAY WHOSE CURYATURE 1S SOUGHT

o I = TOTAL NUNMBER OF POINTS
(*  STEP = ONE-DIMENSIONAL ARRAYs NOH-UNIFGRM STEP MAGNITUDE AT EACH POINT

N
(2] OUTPUT PARAMETERS ARE

C*  YCURY = ONE-DIMENSICMAL ARRAY, SECOKDS CERIVATIVE AT EACH POINT OF THE

(= GIVEN ARRAY Y :

(43

* ALL THE ARRAYS ARE OF DIMENSICN 100D  AND % DOUSLE PRE-

(* CISTON.

[ e e S L s e e R T I T2

COUELE PRECISION Y{1000) +YCURVI15001:STEP{1000eaLF 2

COMMON /XST/ ST

TL1=1t~1

DO 12 t=2.1L1

ALFA=STEP(1)/STERII-1)

n YCURVITI=24D0%( Y(1+11-(ALFA+1.DOIRY(JI+ALFARYIT-1)}/( STEP{[)%

i STEP{I-1}+ STEPEINY)

RETURY

END

SIBFTC S14B DELK
SURRDUTINE CURY [Y,YCUTV. I

LR R R R B A B B L B S O N R O

(S R R R e L e s R s T2

(4 THE SUBRSUTING  sCLRys COMPUTES THE CURVATURE OF A FUA-~
{* TION GIVEN T4 DISCRETIZED FORM THRCUGHIUT THE PDINT INTERVAL 2 - {IL-lle

»
=

Gog



c* THIS RDUTINE USES A LAGRANG AN INTERPCLATION SCHEME AT
C* FACH POINT 14 FIVE POINT FORMULA) SUITABLE FOR NON-UNIFORM STEP,.

C*  THFE CURVATURF AT FACH POINT 18 THAT OF “HE FOURTH ORUER POLYNOMIAL
C* TRACFD TROUGH THE POINT ITSELF AYD THE TOUR ADJACENT POINTS.

C¥ DOURLE PRFCISIO® ARITHMFTIC 1S USED,

C*

Cx INPUT PARAMETERS ARFE . -

[ = ONE-BIMCNSIORAL ARRAY WHOSL CURVATURE IS SOUGHY

C¥ HN = TOTAL HUMBIP OF POINTS

C* STFP = OKE-PIMENSIONAL ARRAY. NON-UNIFORM 3TEP MAGNITUDE A1 EACH POINT
C»

C* CUTPUT PARAMETERS ARE

C¥  YCURYV = ONE-DIMENSJONAL ARRAY, SICOND DERIYATIVE AT EACH POINT DF THE
C* GIVFN 2RRAY Y

(<]

(23 ALL THE ARRAYS ARI OF DIMENSION 1000 AND IN DOUBLE PRE-

LR B IR B B B N I B I B B B B O BN N B 3

C* CISION.
c;!i*‘ililﬁi‘&l{i}{!’i&%*iil{&v*{;Qii&!*l‘i‘%,&&l{&;Q*ui*b*!—*&&!!*}*llii*&!iili!

DOURLE PRECISICN STEPLIONN)YCJIRVILIQUO)Y{1000}

SsWCsBCIWALFASRLS 51,11 3,55)

COMMOK sXST7 STEP

ILz=1L-2

Li={L-3

R{1+2)=-5"CP(11-STEP{2Z}

RU1£3)=1400/R1142}

R(2+2)==-8"EP(2}

RIZ331=Y.00/R(292)

H(8e2)=~S"EP{2¥~STEP{3)

R(5:3)=100/R(592}

50 50 K=4.5

RE1eKI=RII$K~11¥R(1s3}

R(3+K)=R{24X~-11%R12+3)
50 R(5:K)=R{5sX~11%R(5+3)
c.*ﬂ“!i‘bb—ll{»-lf{-i}v"!**ii)*i‘!i**&i*k*&l!illil!!!:il!!&x!*(ﬁ{fl WRNERNRH X TRA AN

DO 309 I=3slt2 N

R(322)= STEPIT)

R{&4s2)=STEPITI+STER(T+])

R(343121.00/Rt342)

R{443)=T.D0/R{4421)

R{3s4)=R11431#2(3,3)

R{4e4)=RIC3IXR(443}

R{3s51=R{1,4}#R{3,3}

R{435)=R{4s61 %R {443}

Bll:13=EY 1 1-2)-Y{I11¥R{1,5}

F{2:112Yil-13=Y(11}*R{2,5)

R{3-11=(YIT41-Y{I1}*¥R{2,5}

RE4s11={YI142)-Y{111%R 14,5}

DO 200 [R=1+3

DO 2010 1) +4
270 ULIRGTCI=R{ IR TCI=R{4»IC)

WR=UI242 14U 03431 ~U1342)%UC243)

WCU{222 14013 +41-Ul3:21%U(2+5)

BCIUL221130(342)-U1341)1%U(2,2]

WxI{1s21% tUT2s3)%U13443~U1343 020411~ UlL+31%0C 4U(1447%WB

YCURVIII® =2.00% (U{1s11%WC ~U( 1523 %{UI2.1)%UL{3441-UI3:1)%U{2:4)014

T UtIs&1+BIY/W

00 257 X315

R(I+K) =R 5K}

R(2:K1==R 2K}
251 R5eK)}=~R &X'}

REZ2&a3==R(2 441
RIS, 61=-R(5 41
310 CONTINUF
[ R N R e R T R Y T 2]
DO 490 1=24IL+IL3
ALFA=SYFRITI)/ATRR(I-1)
400 YCURVIT)= 20080 Y{141)—tALFL+1 00 %Y (I 14LLFA¥YI =131/ {SIEPII)*
$ {STFPUI-LI4STEPCINY)
RETURK
ERD

TIBFTC 515 DECX
SUPROUTING TRIODUL (TL}
[ R R R e T T TS T P PPN

{+ THE SUPRQUTIME  *TRIOUL' SOLVES A TRIPLE~DIAGONAL SYSTiM *
C+ OF THE FORM T * DELTA = D HW&HERE T 15 & GIVEN TRIPLE-DIAGUNAL *
CF MATRIX WITH UPPER DIAGHNIL ENTRIES EGUAL TO UNITY, DELTA IS THL UNKHNDwN #
€3 VECTOR, D 15 THE EKGWN VECTOR,. *
(g L
(4 THI3 ROUTINE USIZS A DIRECT METHOD B8ASED ESSEATIALLY ON -
€+ GAUSSTAN ELIVINETION ANT BACKSUSSTITUTION wRIZH REDUCES IN THE CASE O~ %
<% STOERED 1D & SFT C7 RICURSION RELATIONS. *
€3 DOUBLE FPECISION ARITHYITIC 1S USED, *
c *
Cr INPST PaRIUITERS ARE -
C+ A = ONE-DIMENSIONAL ARPAY, LOWER DIAGOHAL OF THE TRIPLE-CIAGUNAL MAFRIX *
¢+ R = ONE-DIMENSIONAL ARPAY, DIAGCNAL OF THE TRIPLE~DIAGONAL MATRIX *
<+ D = ONE-DIMENSIONEL APRAY, KMOY VECTOP *
€+ (IL-2) = NMPER OF EGUATIONS (SI72 OF THE TRIPLF-GTAGONAL MATRIX ) *
L+ *
(4] OUTRUT PLEAMETERS ARE =
C* OFELTn = CNE-DIMENSIGHAL ARRAY, ORIGINALLY THE UKKAOWN VECTOR *
C* E 3
T* ALL THE ARRAYS ARE CF DIMENSION 1000 AND IN DOUBLE PRI- *
¢ CI1s1ON : ®
C* *
L4 KO 4ORY LG ARRAYS ARE NEEDED. THIS IS ACHIEVED THROUGH *
Ce  USF OF FQUIVALERCF STATTMENYS, ODURIAG THE EXECUTION OF THIS ROUTINE THE *
€3  ARRAYS H AND D APE RRASED, *
Cil’*ilil!!i—?}*ifiil’!(!!fi**!i!i}&l!l}}ii.‘***!!il!lﬂ"1&9!!?;!“4‘5}]I*i!ﬁfi}!l

DOURLE PRECISION A(1070)»53010001.DI1CCH1,BELTALIN0NC)GE1C8D)
THyH{IN)

COMMON /TRDG/ D
s FHORK /4,8

EQUIVALENTE (D2DFLTA,5) s (H,WB)

ILI=1t-3

TL7=iL->

CreEnsanavy NOTE THAT H{21=8125 FROM EQUIVALENCE STATEMENT SRR REIE TN

GU2)=DI2)/R{2)

00 20 I=3,.111

HIT3=R{1)~A( 1 /HI1=1)

20 GEI)={D(TV=ACTI*G({1-11)/H{T)

Cosnrnxs NOTE THET DELTAIIL1)=G(IL1) FROM EQUIVALENCE STATEMENT srerarnas
DG 30 I=2,112
K=ip-1

30 CELTA(K)=G(K)-DELTA(K41} /R(K)

OELTA (13=0.
DELTA (IL¥=0.
RETURN

END
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<Ly DFCY .
SUSDUTINE PRINT (1WR) ITER5VASDELTAMSERRPS) )
TEA NI R R R R R RN R R R T R A Y R R AN E AR R R F AR AR IR A F RS R F LI A AR AU XA FERARL B R R R RSN
THZ SUBROUTINE *PRINT' WRITES ON THE PRINTOUT SHEET THE
CLEVANT PARAMETERS AND DISTRIBUTIONS (PERTINENT TO OBE VALUE OF APPLIFD
AOLT\GE) . THAT REPRESENT THE SOLUTION OF THE PRCBLEM.

2F POINTS CONTROLLED oY THE PARAMETER  IWR o  EVERY (IWRITR POINT IS
SRINTED OUTs IF THE PARAMFTER IWR IS OMITTED, A STANDARD VALUE {IwR=
T WILL BE CHOSEN BY TRIS ROUTINE.
AR e R R R s Y R Y N 22222223
FOURLE PRFCISTON STEPIIANC) »PSTII000)sN(1000)»PL1000;
34 ND «HA NN PO HNO 4PN VD 3Mal
SVASDELTALINAN) WDELTAT{INNN} 4X110N0) sPSITRILDANT
REAL NIMIINNC) s N5 0305 JUORM, JNA s JPASJASNINT
COMMOR /STRIZ NDsNASNEsPP NP sPR VD sMsL s IMs TL VT 2 GAMN.GARP
IRCARZ NaPy N IR
ZXST / STEP
/TRD3/ DELTA
/PSNU/ PST,NIM
/WORC/ XaDELTA™
EOUIVALENCE [PSITR.DELTAT)
”5 FORMAT (1H1»,5RH THE EYACT PARAMETERS AND DISTRIBUTIONS ARE THE FOL
SLOWING JI7PFI7 5287777 F25H APPLIED VOLTAGE VAL = 3 Fl4,.8,
STH  VOLTS 541Xy 4HVA =4D24.16, 14H  (NORMALIZED) /747
s AUH NUMBER OF POISSNHS ITERATIONS =, 13, 2iH TO ACHIEVE
S DELIAM = ,712.5+ 10X, 255FOR A REQUESTED ERRPS = +£12.5//777/
S32H ELECTRON CURRENT SENSITY  UNA = +F16.8,3%s 27THANPERES / SGUAR
ST CENTIMFTEY 4]6XsaMHIN = 2E16.8, 14H (NORMALIZED) /
$33H HOLF CURRENT CENSITY  JPA = »E16.833xs 2THANPERES / SOUAR
SE CENTIMETE? 316X,4HJE = ,E16.84 14H (NORMALIZED) /
$33H TOTAL CURRENT CENSITY  JA = 5E164833%Xs 27HANPERES / SQUAR
SE CENTIMETIR «16X44H) = sF1648s 14H (NCRMALIZED) /)
107 FORMAT {1H1, X RDs 10X s4HX (1) s 19X»6HPSIEI) s 12229HDELTAT(I}y
$ BXeBHDFLTAIT)y 14X 4FNE1)s 20Xs4HP(1)/ /7
F {15+D23.1610264416,2D16.842024,16))
IF (IWR.FQ«Y) [WR=in
TLCH=1 60205519
NINT=2.5F113
PERM=8,8543:E-16%16,
JNORM=ELCH®HINT /SORY (PERM/ELCH#®VT/NINT)
JEIN+IP
JNA=JN*INORY
JPA=IP* JNORH
JA =) ®UNGRY
VAA=VA#YT
WRITE (64251 VAA,VACITERsDELTAMERRPSy JNAs N, PALJIPJAJ
CLALL PSITRL {PSITR,vA)
X{11=0,
DI 110 f1=2,.0L
110 XtI1=X{1-11+3TFP(1-11
D} 12° I=140%
120 DELTATLII=PSI41)=~PSITR (1)
[4RM=TWR450
N2AGES=Tt /IWRM
[T EMOD(TL o IWRM) oNC a0t NPAGES2NPAGES+]
DD 207 x=1+MPAGFES
1.MD=IWRYHK
9 {ILMDLGT IL) ILMD=]IL
TEN=TWRME(K-1) +1

3
3
3
3
THE DISTRIRUTIONS OF INTEREST ARE PRINTID QUT IN A NUMBER *
3
.
*
3

IR S TN

LR R R R}

260 WRITE (641001 {15201 «PSICT) »DELTATIDI SDELTACII AN TP (T I=1Th,
% TLMDyI%RY
RETURN
END

SIBFTC SP2 DFCK
SURROUTINF PUNCH iVASDELTAMIFXP S ITER)
e R e R e e e L n ]

C* THE SUBRGUTINE *PUNCH' RECORDS CN PUNCHED CARDS ThE RE-  #
C¥  LFVANT EXACT PARAMCTTRS AND DISTRIBUTIONS (PERTINENT TC CikE VALUE OF Ap- =
C* PLIED VOLTAGE)s THA™ RFPRESENT THE SOLUTION OF THE PRO3LEMa *
£ »
g* THE AUMSER OF (A%DS DUNCHED FOR EACH APPLIED VOLTAGE IS .
c* IL 4+ 6 *
C* WHERE IL = TOTAL NUMBER OF POINTS *

CG*“’I!'Y'I'*K!I&I'll'l!’!!lQ!l{lll IR B EAERFLRS AR EAFFEEF A FAAP R R IAFFIRAFF IS FRICASS
DOURLE PRECISION STEPLIOAN)LSICING0IHLI000)+PILI00C) VA
Sy NDsNAGHN PP ¢ NP PR VD 3¥ L
REZL NIMUINNOY s ML UP s Js™M Py [NJSPAR § INFSOR
COMMON 7STRC/ *iDsh2 s aPO NP PN VD o MaL, [ My IL VT s GAYH GAMP
SHMCARS MHaP SN P
JPENMy PST.NIM
FXS5T s STE?
FESO [ XNeiD a4y MP L IRIZAR (BSTHP, UNFSOR
20 FORMAT {3D76416/3024.15/3D26.167 D25+16319:2520.87 4E2087
S4E20.8/ (4D20.13)
&% FOPMAT 15C156.81
JEIR+IP
PUNCH 2N 5 KD+HASTKsPPINP PNy YD s VA ML T TE» TTERVFXPDELTAM VT
3 NSO 4 S MA s MD  THIPAR (PG TMP
T+ (STEP{IISPETILIINLTYP{TYWI=1,11)
PUNCH 404 NIWM
RETURN
END

WA A

SIBFTC SP2D DFLK
SURROUTIRF PUNCH DUM¥Y)

MR RN R F RN R RN K F N s P F AR R BN NS S S AR A IS IR EF R AR IR IR R RES AR N B LN AL XN XS FIN IS

Cx THIS DECK  1SP20% (Drvvy SUEROUTILE  'PUNCHY | MAY BE IN- *

C* SERTED IN PLACE OF "HE DECK *18P2r  [ACTUAL SUBRQUTIRE  TPUNCHT ) *

Cx IN CASE RECORDING 01 PUNCHED CARCS 1S5 NOT REGQUESTED. :

Cl

(4.4 THIS TECHNIGUT DECREASES THE &MOUNT OF CORE STORAGE REGJI- *
-
*

C¥  RED RY THE wunLE PROGRAV
P S AR R S S e R L R A A SR it bl
DIMFHSION DUMMY {5}
RETURN
END

S$IBFTC 5P3O DECK

SURROUTINE PLCT {Dpuvwy)
I e R Ry e R g L R RS LR
= THIS DECK  #8P3D7  {SUVYY SLBROUTINED 9LOTr )} May BE IN- %
C+ SERTED IN PLACF OF “HE DECK  *5P3: 5 £ 'PLOTY ) *
C* IN CASE DISPLAY OF THE DISTRIDUTIONS €% GIAPHS IS ADT REIQUESTED. *

L9¢



= »
(4.4 THIS TECHNIQUE DECREASES THE AMOUNT OF CORE STCRAGE REOULl- ¥
C* RFD RY THE WHOLE PROGRAM, -

(il R s T IR LI P T T E N P T Yy
DIMERSION DUMMY (3}
RETURN
ERD

SI1BFTC SPo DECK
SUBRCUTINE TAPE (VADELTAMMITERSIDTPINTAPE)
[ 2 R g R e S e e i e e T

<) THE SUBROUTINE 'TAPE® RECORDS ON MAGNETIC TAPE PARAME- *
C* 1ERS AND DISTRIBUTIONS OF INTEREST (PFRTININT TO ONE VALUE OF APPLIED *
C* VYOLTAGEY o THAT REPRISENT THE SOLUTION OF THE PROBLEM. .
C* SUBPROGRAM NEEDED *
[ EILE DFFINITION DECK 1SPS¢ (IN ASSEMBLER LANGUAGE 18MAP} =
CH *
C% THE MAGNETIC TAPE IS DEFINED AS  'UNIT 25 « *
Cx *
cr *
C THF PROCEDURE 15 CONTROLLED BY THE PARAMETER INTAFE (READ *
C* FROM A DATA CARDs FOR EACH APPLIED VOLTAGE, IN THE CALLING PROGRAM) IN *
C* THF FOLLOWING FASHION *
c INTAPE = 0 RECORDING WILL NOT OCCUR. NO OPFRATIGN WILL *
C* BE PLRFORMED OV THE TAPE, *
(4] *
4 AT THF FIRST CML OF THIS ROUTINE INTAPE MUST BE FEITHER 1 OR 2 #
C# INTAPE = 1 RECORDING STARTS AT THE BEGINNING OF THE TAPE *
c INTAPE = 2 SEARCH FOR THE FLAG IDTP=0 (LOCATED ON THE *
c TAPE AFTER THE LAST RELEVANT LOGICAL RECORD)  #
c* 1S PERFORMED. TO INITIATE THE RECORDING AFTER #
c* THE LAST REIEVANT LOGICAL RECORD ALREADY PRE- #
cx SENT ON THE TAPE. »
[« 3 »
c FOR OTHER THAN THE FIRST CALL OF THIS ROUTINE [INTAPE MUST BE 3 *
C» INTAPE = 3 RECORDING OCCURS 8Y DIRFCT ADDITION OF ONE LO- ¥
C* GICAL RECORD *
Cw *
C THE EXECUTION OF THE MAIN PROGRAM TERMINATES WITH A LAST CALL OF *
C* THIS ROUTINEs FOR WHICH *
C* INTAPE = & (AUTOMATICALLY SCT BY CALLING PROGRAM) *
ce TO SEY THE FLAS IDTP=0 AFTER THE LAST LOGICAL RECORD WRITTEN. *
Ce R »
(<] *
(4] IN CASF RECORDING OCCURSs A MESSAGE 15 WRITTEN ON THE *
C* PRINTOUT SHEFT FOR FACH APPLIED VOLTAGE. .
Ce »
C THE NUMBER OF WORDS IN EACH LOGICAL RECORD 1S 8#IL + 30 o *

[ T N L T T T T e i s s T T T T L R Y T T T Y
DOUBLE PRECISION STEP(100014PSTI11000)sN(10001-P(1000},VA
S NDoNASHNSPP 3 NP 3PN o VD oML
REAL NIM{1000) s NaIPsd
COYMON /STRC/ NDyRAINNSPPINP 4PN VD sMoL o IMs ILaVT +GAMNSGAMP

b 1 IMCAR/ NoPyJisdP
b3 ZPSNM/ PSTN[M
$ FXSY 7 STEP
4 FORMAT (1HO+ 34HMAGRETIC TAPE RECORDED WITH IDTP = »14/////7)
8 FORMAT (1HOs 42H ERROR ON MAGNETIC TAPE 2ARAMETER INTAPE = +16/7/)

TF (INTAPE L TaNORWINTAPELGT4) GO TO 10)

IF {IATAPELEQ.OY GO YO 200
GO T™ (105153304601, INTAPE

1n 1DTP=1%
G0 70 30

15 IDTP=-1

20 READ 125) IDDUM
1DTP=IDTP+]

IF {I0DUMZNELD) GO TO 26

BACKSPACE 25
3n 1IDTP=1DTP+1

J= NS P

WRITE (25) IDTPND«NA NN PP oHP PN, VD YA ML IMe Lo ITERSFXP DELTAM

SaVT s IP, )

Sy (STEPUINSPSI{IN-N{II-PLI}el=1s]IL}

WRITE (6:4 ) IDTP

RETURHA
62 wRITE (25} IDTP

RETURA
o WRITE {648) INTAPE
2nc RETURK

EXND

SIBFTC 594D DECK
SURRODUTINE TAPE  (DUMMY)
(a2 ey Yy L T T RE s

(4] THIS DECK 'SP4D!' (DUMMY SUBROQUTIHE *TAPE* ) MAY BE IN-~ #
Cr  SERTED IN PLACE OF BOTH DECKS .
(<] DECK 'SP4r  (ACTUAL SUBROUTINE 'TAPE' ) *
c* DECK 'SPS5'  (FILE DEFIN!TION SUBPROGRAM»ZMAP)} *
C*  IN CASE RECORDING OH MAGNETI4 TAPE 1S KOT REGUESTLD. *
C* *
(4 THIS TECHNIOUE DECREASES THE AMOUN™ OF CORE STORAGE REGUI- #
C*»  RED AY THE WHOLE PROGRAY, -
Clﬁil!l&il%’ll!lli*l*lt !‘ll‘*G‘—G!*i-ilib*{li**’ii**‘ii;ll»l*lil.—i!.’if&!!i.ilil!!i

CIMENSION DUMMY (63

RETURHK

END
$IRMLD £P5
EEE TR AR IR AR AR R B F AR SR A E RN AT F IR R AR FENR ISR R R AR P EF R I RS AR RS R PR AP AT RS R RIS REANERY
L THIS SUBPROGRAM DEFINES THE FILE (4ND RELEVANT PARZMETERS) #+
®+  FOR ONE MAGNFTIC SAVE TAPE FOR DATA RECORDING PURPOSES. *
4] -
L1 THE TAPE IS OEFINED AS  *UNIT 25* ON CHANNEL A{1l) .
b *DATA® = TITLE GIVEN TC THE Tapf *
bl ‘RING = OPT CN THAT SPECIFIES BIHARY RECORDING »
*w SINCUTY = OPTION THAT SPECIFIES BO'H READING AND wRITING *
e ON THE TAPE : *
e 1BLK ! = QPTION THAT SPECIFIES THE LENGTH OF ONE RECCRDING *
b BLO(K *
BPEES AR E RN R R FF A PR NN R F F AR F B IR PR R R R AR R R FZ R AR F RS RS AFFRRFRF R R AR RRERANE RN SR

ENTRY «UNZ%

+iN25. PZE UNTIT25
UNIT25 FILE DATASA(1Y+BIN» INGUT»BLK=258H3LD
END

89¢
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APPENDIX D

COMPUTER PROGRAM FOR THE CALCULATION OF TiF TOTAL

INCREMENTAL CAPACITANCE

In this Appendix the computer program (in Fortran IV, version L)
for the calculation of the total incremental capacitance is reported,
The method and the mathematical formulation are described in Section
3.2, Two successive solutions of the direct problem for two slightly
different applied voltages are required.

The program consists of a main program (deck 'PNC'}, a first set
of subprograms (decks 'SOL' to 'S15' of Appendix C, and 'Si6C'), and a
second set of subprograms (decks 'SPLC', and 'SP2' to 'SP4' or 'SP5!
of Appendix C), organized with the same criteria of Appendix C. A

nagnetic "scratch'" tape is required for temporary storage.

Main program,

Deck 'PNC'. The main program drives the subprograms actually pere

forming the required caleulations,

Decks 'SOl* to S15'. As in Appendix C.

Double precision function 'QSIMP’,

Deck 'S16C', Computes in a certain region the integral of a
function given in discretized form at unevenly spaced points., Parabolic

interpolation (three-point formula) is used,
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Subroutine 'PRINT',

Deck 'SP1C', Wriltes on Lke printout sheet the results of

interest,

Decks 'SP2' to 'SP5', As in Appendix C.




EIBFTC PRC

DECK

C{IIli&‘llilQolli*ill*!ll;&*‘illli‘I!li&*i.*ll**ﬁl(Ii}ll!!fl&&f}l’l}!i{*lifﬁ!‘i!

cn

MAIN PROGRAM {CAPACITANCE + DIRECT PROBLEN}

*

F i e e e A s e 2 a2 e ety

I

R AR AR E R LA RN E AR R R AR R R I TR A SRR R R PR AR F AR AR LRI AR AR AR TR R AN R R AR AN RSB N *

<
I

THIS PROGRAM SOLVES THE BASIC TWO-CARRIER TRANIPORT EQUA-
TIONSs GOYERNING THE REHAVIOR OF SEMICONDULTOR DEVICESs APPLIED TO AN N-7
JUNCTION UNDFR THE FOLLOWING ASSMUMBTIGNS
(A} NOH SFGENERATE CONDITIONS
{R) CONSTANT TEMPFRATURE
{Cy  YIME INDFPEMNDERY IMPURITY DISTRIBUTION
{D} FULL IOMTZATION OF THE IMPURITIES
{E} ONF-DIMENSIONAL STRUCTURE
(F} STEADPY-STATE CONDITIONS OALY
{G) OHMIC CONTACTS
{H)  ABSENCE OF GENERATION-RECOMBINATION IN THE [NIERIOR
t1y CONSTANT MOBILITIES
{31 DIRE(Y PROBLEM. SPECIFIED AN APPLIFD VOLTAGE, THE TOTAL CURRENT
THROUGH THE NEVICE 1S ORTAINED (TOGETHER WITH ALL THE PARAMETERS
ARD BISTRIBUTIONS OF INTEREST)
KO APPROXMATIONS IN THE SET OF EQUATIONS HAVE BEEN INTROOUCEC.
THE N-RFGION 15 ASSUMED LOCATED ON THE LEFT SIDE OF THE METALLURGICAL
INTERFACE M,

IN ADDITION TO THE ABOVE THIS PROGRAM COMPUTES THE TOTAL [NCREMENTAL CA-~
PACITANCF OF THE DEVICE THROUGH DIRECT INTEGRATION OF THE INCREMENTS OF
ONE TYPE OF MOSILFE CARRIERS GERERATED BY AN INCREMENT OF APPLIED VOLTAGE,

THIS PROGRAM USES AN ITERATIVE SCHEME BASED ON THE (OMPU-
TATION OF THE MOBILE CARRIERS FROM A POTENTIAL DISTRIBUTICN THROUGH DIR-
ECT INTEGFATION FOLLOWED BY CORRECTION OF THE POTENTIAL DISTRIBUTION
THROUGH THE SOLUTION OF POISSON'S EQUATION, A TRTAL POTENTIAL DISTIRIBU-
TION TS RFOUIRED TO START THF 1TERATIONS,
TWO SOLUTIPNG OF THE DIRECT PFOBLEM ARE REQUIRED FOR ACHIEVING ONE VALUE
OF CAPACITANCF FOR A SPECIFIED APPLIED VOLTAGE.

E NG
PRBGRAG-ErbL ThG. SEvERAL SUBSROteAmS " TN PAVER oF SR QR TER TR S AN
ARD SIMPLICITY OF LOGIC ORGANIZATION.

SUBPROGRAMS EXPLICITLY CALLED EY THIS MAIN PROGRAM ARE

SUBRDUTINE  *STRUCT!' (DEFINES THE STRUCTURE PARAMETERS)

SUBROUTINE FSI0RD! (COMPUTES FIRST-ORDER THECRY PARAME-
TERS)

SUBROUTINE  $STFSEL' (SFLECTS THE STEP DISTRIBUTION}

UBROUTINE DORING? {FURNISHES THE IMPURTIY DISTRISUTION}

SUBROUTIKE *PSITRL! {FURQ{SH 5 THE TRIAL POT%QTIA: F RCL
TIONY

SUBROUTINE *MOECAR' ({YIELDS THE MOBILE CARRISR CONCEN-
TRATIONS FOR A GIVEN POTENTIAL )

SUBROUTINE *POISSNt ({FURNISHES AN IMPROVED POTENTIAL DI~

STRIBUTION BY SOLVING POISSON'S

EQUATION FCR GIVEN MUBILE CARRIELRS:

(COMPUTES THE INTEGRAL
OF A FUNCTION BET&ZEN
THE LIMITS 1 s 1L

DOUBLE PRECISION FUNCTION tQSIMP!

SUBROUTINE  *PRINT ! {WRITES QUTPUT DATA ON PRIRTOUT
SHEEZT)
SURROUTINE  tPURCH! {PUNCHES ON OUTPUT CARDS RFLEVANT
' QUANTITIES)
SUBRCUTINE  ¢PLCT* {EXECUTES PLOTS OF RELEVANY CUANTI-
TIES)

R R KR R K R R R R K R K K ok w ok R Rk R ko ok ok ok ok ok kR ok ok R R ok R K R ok ke ke & ok o kR x &

SUBROQUTINE  PTAPE® {RECOPDS OGN MAGRETIC IAPE RELEVANT
QUARTITIFS)
OTHER SUBPROGGRAMS MAY BE CALLED 3Y THE ABOVE SUBROUTINES.

DOURLE PRECISION ARITHMETIC IS USED,

INPUT PARAMETFRS ARF

DATA C3RD 1» PABAMETERS COMCERMNING THE SYRUCTURE ARE READ IN THE SuUE~
ROUTINE  *STRUCT® (SEE SUBROUTINE *STRULT'

DATA CARD 2+ PARAMETERS COHCERNING THE MATERIAL PROPERTIES ARE READ IN
THE SUBROUTINE *STRUCT ${SEE SUBROUTINE  FSTRUCT' )

DATA CARD 3. PARAMETERS CONCERNING THI ACTUAL ZPPLIED VOLTAGE AND THE
APPLIED VOLTAGE INCREMERT (FOR CAPACITANCE COMPUTATICK)
ARE READ IN THIS MATH PROGRAM 45 FOLLOWS
VAA = APPLIED VOLTAGE GIVEN IN  NORMALIZED FORM IF THE (BELCW) INPUT
SARAMFTER IVAA 1S EQUAL TO OXNEsIN UNIHORAALTZED FORM OTHERWISZ.
Fx® = {ORTINNAL)Y MULTIPLICATIVE CORRECIION FACT/R TC THE FIRST-CROER
#IDTH OF THE OFPLETED REGIOH I THE LOW-CONDUCTIVITY SIBE (IF CMIT-
TENs NO CORRFCTIAN S BFRFORMED:
DELVAR=DPAPAMETER DETERMINING THE APPLIED VCLTAGE INCREVENT FOR CAPACITAN-
CE COMPUTATION ACCORDING TO THF RELATION
VOLTAGE INCRESENT = DELYVAR * POTENTiIAL DROP 0% THE BARRIER
iF DELVAR = C COMPUTAYIUR OF THE CAPACITANCE WILL NOT OCCUR.
ONLY THE S0LUTION OF THE CIRFCT PROSLEY WILL THEN TAKE PLACE.
ITMAX= vAXIMUM RUNBER OF PGISSON'S ITERATICHS
ERRPS= YAX{®yUv ERPOR ALLOWED ON THE FINAL POTENTIAL FUNCTION. THE fitM-
3ER OF POISSON®S ITERATIONS 1§ DETERMINED EITHER BY ITYAX OR BY
TRROC, WHICHEVER APPLIES FIRSTe
PRIMPR={RTQUIPED AT TXTREMOLY HIGM INJECTION LEVOLS. OPTIONA
SARAMFTER THAT DFTFPNINES THE VALUE OF THE FIRST-ORDER
IRNSTATIC FOTFRTIAL AT THI INTERFACE BETWEEN THE DEPLE
TRAL REGIOH IN THE LOw-COBDUCTIVITY SIDEL(IF OMITTED, ,3 CORD-CTItn
1S PERFORMFD),
[WR = PARSMETER JHAT CONTRCLS THE PRIATOUT Ih THE SUSROUTING
{SEE SUBRONTINEG  PRINT!
INTAPF=22RAVETFR THAT CONTRCLS THE PROCEDURE OF RECORDING DATA DR MAGNE-
TIC TAPE (SEE SUBRGUTINE ‘*TAPL¢ }
IVaA = (INTEGFR) PARAMETER THAT CONTROLS THE
vOL TAGE VAA  {SEE ABOVE).
SERAMETER THAT CONTROLS THE REPITITION OF THE SOIUTION FOR SEVERAL
EPPLIED VOLTAGES AS FOLLOWS
1S10P = 0 THE STRUCTURE AND MATERIAL PAPAMETERS ARE
CHANGED FOR THE FOLLOWING APBLIEC WOLTAGE
INEW STRUCTURE AND MATERIAL DATA CARDS 1

PPRINTE

IRPUT OF THE 22PLIDD

1S70P=

2. MUST NO1 BE INSERTED FCR TRE FOLLOWING AP~
PLIED vOLTaGE)

1870P = 1 LAST APPLIED VCLTAGE OF THE SET

1870P = 2 THE STRUCTURE AND MATER[AL PARAME ARE {HAN—
GED FOR THE FOLLOSING APPLIED v [NEw
STRUCTURE AND MATER[AL DATA CAR AND 2.

MUST BE INSERTED FOR TAE FOLLOWIND APPLIED Vui-
TA6E)

naTA a3 L. PREAMFTEPS CONCFRNING THE AUTCVMATIC STEP SELECTIC
DUREs INCLUDING THE TOTAL NUM3ER OF POINTS DEST
READ IN THE SUSRCUTINE *STRSELY (528 SUSRCUTIN 'SiPSH A
ONE DATA C2RD FOR FACH ZPPLIED VOLTAGE MUSY BE FURNISHED
IN THE APPROPPIATE OFCER.

I R R R R R N R O O R R I I R I A N U I
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%  NsPHRDELTA 4 TwO WORKING ARRAYS IN THE LABELED COMMON  SWORK! 1} AND
C* ONF SINGLE PRECISION ARRAY {NI4}s ALL OF DIMENSION 1000s HAS BEEN MADE.
CRE PN LT R R N R N LR AR AP XN NN R RSN AR F I AR I XF AR IR E RN R RR AR RS RS FRRRREXARRRER
DOUBLE PRECISION STEP{10006}+PSI{1000)9Va
$:N(1000)1,P{1N00) +DELTAL2I0C0)
SIRINCT10001,PINCI10001s DELTANE1000) sDELTAP (100G
s NDoNASNN+PP sNP PN VD oML s QS IMP
REAL NIM{IDOO] pINJP
COMMON /STRC/ NDsNAJNN2PPyNPsPHaVDsMsLs IMs IL+ VT s GAMNGAMP
MCAR/S NP 3 INsIP
/%57 / STEP
FHORK/ NINCPINC
JTRDG/ DELTA
/PSNM/ PSTaNIM
FCAP 7 CAPNSCAPPDELC +DELVARSDELVA
EQUIVALENCE [MINC,DELTAN) s {PINCDELTAPY
10 FORMAT {3E10.05110,2E10.0,415}
15 FORMAY (IH1. 54H THE APPLIED VOLTAGE AND RELATED INPUT PARAMLTEIRS
SARE  S/7877477F700H VAA = sF94577 108 FXP = yF9<5/77
$ 10H DELVAR = sF9.5// 10H ERRPS = 4E13.5//10H ITMAX = 213/7/7/7/}

cy *
(44 OUTPUT PARAMETERS ARE *
Cce *
€= PSI = ONF-DIMENSIONAL ARRAY, EXACT POTENTIAL DISTRIBUTION *
[ ] = ONE-DIMENSTONAL ARRAY, EXACT ELECTRON DISTRIBUTION -
cx P = ONE-DIMENSIONAL ARRAY, EXACT HOLE BISTRIBUTICN *
x X = ONE-DIMECNSIONAL ARRAYs ABSCISSA OF EACH POINT THROUGHOUT THE JUNC- #
s TIon *
C¥ STEP = ONE-OIMENSIONAL ARRAYs NON UNTFORM .STEP MAGNITUDE AT EACH POINT *
* UN = ELFCTRON CURRENT *
Ce JP = HOLE CURRENT *
[ N = TOTAL CURREN »
€x CAPN = TOTAL INCRUMENTAL CAPACITANCE ORTAINED BY INTEGRATION Of ELECTRON *
< INCREMENTS *
C* CAPP = TOTAL INCREMENTAL CAPACITANCE OBTAINED BY INTEGRATION OF  HOLE *
(S INCREMENTS - *
(4.4 *
c» IN CASF COMPUTATION OF THE CAPACITANCE TAKES PLACEs TEMPO- *
C# RARY STORAGE OF 4,700 WORDS ON ONE SCRATCH TAPE {ON UNIT 1 | IS REQUI- +*
C* RFD, *
C» . *
o ALLOWANCE FOR SEVEN DOUBLE PRECISION ARRAYS (STEPSPSIs *

*

*

*

A A WA

CTRXIFEXRRRRREX> 2R FSTRUCTURE AND MATERJAL PROPERTIES DEFINITICNSH Reaaaassnaaanses
1n0 CALL STRUCT

CovsarannnesmukxxaXREADING OF THE APPLIED VOLTAGE.ITS INCREMENT, AND CONTROL *
€% PARAMETERS FROM DATA CARD B ¥f¥iad st s hiaigifissadadanaser i st bantensdinabzsnes
120 READ 15.+10}) VAASFXP,DELVAR, ITYAXLERRPSs PSIMPRs IWR4INTAPEsVAA
$,IsTOP
VA=VAA VT
IF {IVAA.NE.11 GO YO 130
VASVAA
VAATVARVT
130 CONTINUE
WRITE (6+151VAASFXP,DILVARSERRP S, 1THAX
IF (1WR1.EQ.0} IWRI=10
IBRCAP=0
IF IDELVAR.NE«Ce} REWIND 1

ot A R e T e N L A s

C» BASIC PROGRAM FOR THE DIRECT PROBLEM +

(R g e R T L2 T Y R TR os
Kw=1
CALL TSTORD (VA $7FXP¥WsPSINPR)
IF (KVaLTa®) GO TC 9599
CALL STPSEL (JRET.1,1)
IF {RET.E0.1Y GO T 9399
CALL DOPING {NIM)
Kw=2
150 CALL FSTORD (VA 3FXP KW P5IMPRY
CALL PSITRL (PSlsVAY
DELYAN=1,E2D
ITER=0
170 CALL MOBCAR (PSI4VAY
IF (I EREG.ITMAX.ORs DELTAMLLESLERRPS } GO 1D 300
CALL POTISSH (DELTAM.ILY
TTER=ITER+]
GO TO 1790
300 CONTINUF
IF (TRRCAPLEQ.1) GO TO 450

CHREEFZS AAR+ R %5 A9 LISPLAYING AND RECORDING RESULTSS# X s sk xahkasstxdNXB1assaw
CALL PRINT (IWRSITERWWASDELTAMJERRPS)
CALL PUNCH (VASDELTAM,FXP,ITER)
CALL PLOT (VAsIL)
CALL TAPE (VADFUTAMSITERSIDTP, INTAPE
IF {DELVARGEQD4) GO TO 9999

(r¥¥rssurndsrnerasyDETEQMINATION OF THE INCREMENTED AFPLIED VOLTAQEX¥*xaveisnasy
WRITE (1) NsP
FSIMIA=PSIt])
DO 49% I=2aIL

400 IF (PLIMINGGTLPSI(I1) PSIMIN=OSTL])
DELVA-DELVARSABSIPSIMING
VA=VA-DELYS
IBRCAP=1
Kw=13
PINCL=PSTIIL}~PSICIL~1}
PINCO:PSI(21-P3T(1}
REWIND 1
GO 7O 1s5C

CHRFEAXFXXRNASENBXICOPUTATION OF THE MORTLE CARRIER [KCREVENTS AND THEIR IN- 2
C*  TEGRATION®®¥x%¥ CHECKX WITH THE RESULT OF AN ALTFFNATIVE FCRMULATION (THE *
C% DIFFERCATIATICN OF THE DIFFERENCE OF THE ELECTRIC FIELD AT THE EXTERRAL *
C*  COMTACTS WwITH RESPECT 10 THE aPPLIED VOLTAGE ) 1§ ALSQ PERFCRYED. AAR A
“5 COMTIAUE

READ (1) MINC4PINC

DELC= ((PIRCL-(PSI{ILI-PSI{IL-13t)/ STEP{IL-11}-

% (PINCO—(PSI(2)-PSI(L1)1¥)1/STERP(L) )} /DELVA

DO 484 I=141IL

DELTARCTI=NITI-NINCLD) N
480 DELTAPLTI=P(11=-P1CE )

CALL TASE (VASDILTAYSITERSIDIP,5)

CAPN= QSIMD (DELTENSILI/DELVA

CAPP= QSTmo (DELTAP,ILI/OFLVA

CALL PRIMT (1WRs -1 JVASCELTAM,ER2PS)
[ N R A e R e e s R TR g
9992 IF {ISTOP.FQe2} GO YO 100

IF {IS$TORPFQ47Y GO TO 123

CALL TAPZ {VADELTAMSIIERy Qs &)

2lLE



sT6P
END

FEARERLRIRIRIRESI SRR IR REEEREF RS ER R RS RA ST IR NS5

DECKS 1501t ¥ 15157

SIBFTC S16C DECK
DOUBLE PRECTISION FUNCTION QSIMP (YL
[ i R T s R e T

c* THE DOUBLE PRECISION FUNCTION 'QSIMPt COMPUTES THE INTE- *
C* GRAL OF A FUNCTION GIVEN IN DISCRETIZED FORMs LIMITS OF INTEGRATION BEING +
¢* THE POINT BOUNCARIES s 1L *
Cx *
C* THIS ROUTIND BSES A PARABOLIC INTCRPOLATION AT EVERY OTHLR
{# POIRTs SUITABLE FOR NON-UNIFORM STEP Si2f. SPECIALIZFD FGR YHE CASE CF *
C* UNIFORM STEP, THE SC(HEME REDUCES TO SIMPSON'S RULE. *
C* DDUBLE PRECISION ARITHMETIC 15 USED, *
(] *
cx _INPU~ PARAMETERS ARE *
[ 4 = CHNE-DIMENSTONAL ARRAY TO BE INTFGRATED *
<*  IL = TOTAL AKUMBIR OF POINTS *
€+ STEP = QHE-DIMENSIONAL ARRAYs NON-UNIFORM STEP MAGNITUDE AT EACH POINT =
[ »
(S OQUTPYT PARAMETER 1S *
C¥ Q5t1MP = RESULT OF THE INTEGRATION *
[ *
(44 ALL "HE ARRAYS ARE OF DIMENSION 1000 AND IN DOUBLE PRE- *
Cx  C15ICN. : *
CRBERENETRRBEL R R RXLEENENFRRER T A SRR R RS AR FAIEY * ARREIRERY

COMMCN 7 XS8T/ STEP

DOUBLE PRECISION STEPL100714Y{100019ALFAL(2,4C3
1L2=1IL-2

QSIMP=0,

DO 10 I=1s0L242

K=It-1

ALFA=STEPIK I/STERIK-1Y

C1=2+D0-ALFA

C3=2.00-1.007ALFA -

10 QSIMP= { CIEY{K=1i+(£.D0O-CI-CI*¥Y(K)+TI*YIK+]} IR{STEP(KI+STER(K-1}

5} 7 6400 + QSINP

IF (¥.E2.3) QSIMP=(Y{2)+Y{1)IASTEP(]I] / 2.DO + QSIMP
GETURN

ERD

SIBFTC sPIC DECK

SURROUTINE PRINT IWRITERVADELTAMSERRPS)
2 e T e s r T e Y T
s THE SUSROUTINE IPRINTt WRITES ON THE PRINTOUT SHEET THE *
T* RELEVANT PARAMETERS AND DISTRIBUTIGHS {(PERTINENY TO THE VALUE OF APPLIED . ®

25

1592

112
126

VOLTAGE SPICIFIED SN THL DATA CARD)s THAT REPRESENT THE SOLUTION OF THE
PROBLEM,
RESULTS CONTERNING THTAL INCREMENTAL CAPACITANCE CALCULATIOAS ARE ALSO
INCLUDED «

THT DISTRIBUTIONG OF INTEREST ARE PRINTED OuT N A& NUMBER
OF PCINTS CONTROL.ED RY THE PARAVETER IWR EVERY (IWR)TH POINT IS
PPINTED DUT. 17 THF PARAKETER JWR IS5 COMITTECs & STANDARD VALUE (1WR=
163y WILL BE CHOSIN 8Y THIS ROUTI

*
e e e R R e A R e A I RS e L A s

DOUBLE PRECISICY STEP(LODCIsPSI(1000)N{10801,F11000}
S5 NDotiA shl aPP o tP o PL YD WML
SsVASDELTA(INNCY4DELTATIIOMO) +X{1C00) H»PSITRI1I0CO)
REAL NIMOINNOT M IP s 32 JRCRY s JNA» JPA S JA S NIET
COMMOR /STRE/Z NI 418 2% PR AP 3P VD e MLy T3y TL aVTs GAMN S GAMP
FHCARZ MaP g JH 2 U0
7%8Y /7 51Z¢
/TRDG/ DILTA
/PS5t PSTRNIM
FHORK Y, XWLF( TR
FCAD 7 CAPI,L,CAPP,DELL +DFLVARSDELVA
EQUIVALENCE (PSITRDELTAT)
FORMAT (1H1,58H THE EXACT PARAMETERS AND DISTRIBUTIONS ARI THE FOL
SLOWING PEITFPTIIFE L7 725H APPLIED VOLTAGE  VAA = » Flé.8.
$TH  WOLTS »41%y &5IVA =2D2L.164 144 {NORMALIZEDY /447
;3 I4H RUMACR OF POISRCH1S ITCRATIONS =, [3, 22H TO ACHIEVE
& DFLT2M = +E12e5s 17Xs 25FFOR A4 ROEQUESTED ERRFS = #E12.5777/7/
$33H ELECTROMN CURRINT DENSITY JNA = yE16eBe3Xs 2THAMPERES / SQUAR
BF CENTIMETFR $18X,6HUft = £156,85 165  (NORIMBLIZED)Y /
$33H HOLE CURRENT DINSITY JPA = 9E18.8:3Xs ZTHAMPERES / SQUAR
ST CEMTIMOTER W16X,44M0P = E15648, 148 {NORMALI2ED) /
$33H TOTAL CURRENT DENSITY  UA = »E16.8,3X, 2THAMPERES / SQUAR
SE CERTIMETER +16XKe6HJ = £16.8s 144 (NORMALIZEDY / 1}
FORMAT (1M1 453HEXACT CAPACITANCE CALCULATION RESULTS FOR
= 9 €1548s 20X» BHDELVA = (E15,8/7/777//72777
5 9r CAPN = $E15.8, 20%Xs98 CAPP = ,£15.8/
£ 9H CEPNR = 3E15.8s 27X+ 9H CARPR = WE15e8/ /1407747471
$ 5H WITH +20X+8HDELCA = ,E15.8, 20X» THRELC = E15.877/7}
FORMAT {1H1, IXeIHIUNXGLRXET T s 19X 28HPSITs 12Xs9HEILTATIIY Y
T BXsBHOELTALI) s 14XaaHNII s 2CXsHP(IN///
§ {155D2%.16+D264155201£48:20244161)
IF (ITERLTL2F GO TC 400
1F (IWRLECLD) 14R=10
ELCH=1+60205E~19 .
NINT=2.%5£13
PERM=848543LE-16¥16,
SNORM=ELCHENINT/SSAT (PIPX/ELCHAVT/RINTS
Ju N+ P
INATIN* JHORY
JPA= P ORY
JA =2 *ORORM
VAA=VA YT
WRITE (£225) VAAVALITERSPELTAMSERANS s JNASIN,JPALIPsJA G
CALL PSITRL [PSITR,vA)
X{1)=2e
DD 11D I=2.1IL
X{I)eX{F-1}+STEPTI-1}
00 120 1=l.1IL
GELTAT(TI=PSI{D}-PSITR (1)
WR*5T
=IL/Twsw

LR R ]

CELVAR

PEE R

€Le



TF(MOD(TLaTWRM) oNE. D) NPAGLS=NPAGFS+1
DO 200 K=1s+NPAGES
TLYD=TWRM*K
IF (TLMDGTWILY TLMD=IL
TIN=TWRME (r~1) +1
2a0 WRITE {65100) (T4X(I11sPSTC(T} 4DECTATUI}sDELTACTISWNCIISP(I)sI=11INs

$ 1LMDsIWR)

RETURN
Cr¥¥ssunsxsdsdnsxsx*ODRINTOYT OF RESULTS CONCERNING TOTAL INCREMENTAL CAPA~
C* CITANCE CALCULATIONS. CHECK ON THE IDENTITY
ce DELC = DELCA
¥ IS5 PERFORMEDs WHERE
C» DELC = DERIVATIVE OF THE DIFFERENCE BETWELN THE ELECTRIC FIELD AT
4] THE EXTERNAL CONTACTS WITH RESPECT TO THE APPLIED VOLTAGE
(4.4 DELCA= TNTEGRAL OF THE DIFFERENCE BETWEEN HOLE AND ELECTRON [MCRE-
Cs MENTS FOR AN [NCRFMENT OF APPLIED VOLTAGE HERARKKIN A F XN
4no CONTINUE

CAPNR=14/CAPN®%2 .

CAPPR=1,/CAPP*#2

DELCA=CAPP-CAPN

WRITE (6430) DELVARDELVASCAPN,CAPP3CAPNR,CAPPRyDELCASDELC
RETURN

END

*®
»
*
-
®
-
*
*

FEEEREEERRSERE AR LA AR o DECKS 1SP2s  TO  15P5¢ L T I TR P Y

bLE
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APPENDIX B

COMPUTER PROGRAM FOR THE REVERSE STEADY-STATE PROBLEM

In this Appendix the computer program (in Fortran IV, version U)
for the solution of the reverse steady-state.problem is reported. The
method of solution is described in Section 3.3 and in Fig. 3.1.
Successive solutions of the direct problem are required.

The program consists of a main program (deck 'PNR'), a first set
of subprograms (decks 'SOL' to 'Cl5' of Appendix C, and 'S16R'), and a
second set of subprograms (decks 'SP1! fo 'SPL' or 'SP5' of Appendix c),

organized with the same criteria of Appendix C.

Main program,

Deck 'PNR', The main program drives the subprograms actually per-

forming the required calculations,

Decks 'SOL' to 'S15'. As in Appendix C.

Subroutine 'VOLTIN'.

Deck 'SLlOR'.  Furnishes the volbtage at the terminals of the devi;é
approximately corresponding to a specified total current. This is per-
formed initiglly by an estimation on the basis of the first~order theory
(Appendix A) and subsequently by a Lagrangian interpolation on the

exact current-voltage characteristic.

Decks 'SPL' to 'SP5'., As in Appendix C.




SIBFTC PRR

DECK

AR T Ry R Ry R R Ty L R L e R g A A R R R T R T L A

+

cr

“AIN PROGRAMN (REVIRSE PROBLEM)

<
[ e L R g s e R Y L ad

3

3

Fd i L L R g e g AR S I T T s

THIS PROGRAM S53LVES THE BASIC TWO-CARRIER TRAASPORT ECUA~
TINKS, GOVFRNING THE REHAVIOR OF SEMICONDUCYIOR DEVICES. APPLIED TO AN N-P
JUNCYEON UNNDFR THE FOLLOWING ASSMUMPTIONS
LA}  NON DFGFNERATE CONDITIONS
(B} CONSTANT TEMPERATURE
(€)  TIME INDFPENDENT IMPURITY DISTRIBUTION
(D} FULL TONIZATION OF THE IMPURITIES
tE) ONE-DIMENSIONAL STRUCTURI -
{F} SYEADY-STAYE CONDITIONS ONLY
161 OHMIC CONTACTS
(H] ABSENCE OF GENERATION-RECOMBINATION IN THE INTERIOR
{13 CONSTANT MOBILITIES
tJ1  REVERSE PROSLEM. GIVEN A TOTAL CURRENTs THE VOLTAGE AT THE TER-
MIKALS IS OBTAINED {TOGETHER wWiITH ALL THE PARAIMETERS AND DISTRIBU-
TIONS OF INTFREST)
N APROOXIMATIONS IN THE SET OF EQUATIONS WAVE BEER INTRODUCED.
THE N=-REGION 1S ASSUMED LOCAIED ON THE LEFT SIDE OF THE METALLURGICAL
INTERFACE M,

THIS PROGRAM USES A SUCCESSIVE APPROXIMATION SCHEME BASED
ON AN INTERPOLATION PROCEDURE ON THE FLNCTION 'VOLTAGE VERSUS CURRENT®
ARD CON TME USE OF THE BASIC PROGRAM FOR THE DIRECT PROBLEM. ESTIMATION
t8Y FIRST OYDFR THEORY, IF APPLICABLE! OF THE FIRSY FEw PUINTS ON THE
CURVE  sVOLTAGE VFRSUS CURRFNT® |5 NECESSARY. (SEE SUBROUTINE *VOLTIN'),
THF WHOLE PROGRAM IS RUILY IN A HIGHLY MODULAR FASHION, FEATURING A MAIN
PROGR #% CALLING SEVERAL SUBPROGRAMS, IN FAVOR OF A GREATER FLEXIBILITY
AND SIMBLICITY OF LOGIC ORGAN[ZATION.
SUBPROGRAMS FXPLICITLY CALLED BY THIS MAIN PROGRAM ARE

SURRDUTINE  *STRUCT* {DEFINES THE STRUCTURE PARAMETERS!

SUBROUTINE *FSTORD® ICCUPUTES FIRST-DRDER THEORY PARAME=~
TERS)

SUBROUTINE  ¢$°PSELY (SELECTS THE STEP DISTRIBUTION)

SUBROUTINE fDOPING' (FURNISHES THE IMPURITY DISTRIBUTION)

SUBROUTINE *PSITRL* (FURNISHES THL TRIAL POTENTIAL FuNC-
TION}

SUBROUTINE *MOBCAR* (YIELDS THE MOBILE CARRIER CONCEN-
TRATIONS FOR A GIVEN POTENTIAL )

SUBROUTINE *POISSNt (FLRNISHES AR IMPROVED POTENTIAL DI~
STRIBUTION BY SOLVING POISSON'S
ECUATION FOR GIVEN MOBILE CARRIERS)

SUBROUTINE *VOLTINt ({ESTIMATES THE VOLTAGE AT THE TERMI~-
NALS CORRESPONDING TO A SPECIFIED
VALUE OF TOTiL CURRENT}

SUBROGUTINE *PRINT! {WRITES OUTPU"™ DATA ON PRINTOUT
SHEET)

SUBRCUTINE  *PLOT? (EXECUTES PLO™S OF RELEVANT GQUANTI-
TIESY

SUBROUTINE  'PUNCH* (PUNCHES ON OUTPUT CARDS RELEVANT
QUANTITIES)

SUBROUTINE *TiPE? ERECORDS ON MAGNETIC TAPE RELEVANT
QUANTITIES)

OTHER SUBPRNOGRAMS MAY BE CALLED BY THE ABOVE SUBROUTINES.
DOUBLE PRECISION ARITHMETIC IS USED.

®E P RSP RER AR T R R S SRS R R R R KT KSR EFCEEY T R EE AR R NN EE RS

IAPUT PARAMEIERS ARE

DATA CARD 1. PIRAMETERS CONCERNING THE STRUCYURE ARE READ IN THE SuB~
ROUTINE ¢STWCT*  (SEE SUBRCUTINE *STRUCT' )

DATA CARD 2. P/RAMETFRS CONCERNING THE MATERIAL PROPERTIES ARE READ 1IN
THE SUARQUTIKE  fSTRUCY® (SEE SUBROUTINE  *STRUCT' )

DATA CARD 3¢ PIRAMETFRS CONCERNING THE ACTUAL SPECIFIED CURRENT ARE

READ IN THIS MATN PROGRAM &S FOLLOWS

Js » SPECIFIED YOTAL CURRINT {NOPMALIZED)

FXP = (ORTIQNAL) MULTIPLICATIVE COPRECTION FACTOR TG THE FIRST-ORDER
WIDTH OF YHE DEPLETED RFGION IN THE LOW-CGHDUCTIVITY SIDE (IF OMIT-
TED« NO CCRRECTION 135 PERFORMED)

ERRJ = TOLERAKCE PARAMETER FOR THE SPECIFIED CURRENY

ITHAX= MAXTMUM KLMBER OF POISSON®'S ITERATIONS

ERRPSx MAXIMUM ESROR ALLOWED ONM THE FINAL POTENT AL FUNCTION.
RER OF POISSONIS ITERATIONS IS DETERMINED EITHER BY  1TMAX
ERAPS  WHICHEVER APPLIES FIRST,

PSIMPR=(REGUIRED AT EXTREMELY MIGH [RJUECTIOR LEVILSs OPTIONAL OTHERWISE)
PARAMETER THAY DETERMINES THE VALUE OF THE FIRST-OROFR TRIAL ELEC-
TROSTATIC POTENTIAL 4T FHE INTERFACE BETWIER THE DEPLETED AND NEU-
TRAL RESION IN THE LOW-CONDUCTIVITY SIDE.1IF OMITTEDs NO CORRECTION
15 PEPFORNED) .,

IWR = PARAMETER THAT COKTROLS THE PRINTOUT IN THE SUBROUTINE
TtSEE SUBRCUTINE  'PRINTS )

INTAPE*PAREMETER THAT CONTROLS THE PROCEDURE OF RECORDING DATA ON MAGHE-
TIC TAPE {SEE SUBROUTINE *TAPE® 3

18T0Px BAPAHMETER THAT CONTROLS THE REPETITION OF THE SOLUTION FOR SEVERAL
SPFCIFIED CUARFNTS AS FOLLOWS -

THE NUM~
OR BY

TPRINT

I1STOP = 01 THE STRUCTURE AND MATERIAL PARAMETERS ARE NCT
CHANGED FOR TWE FOLLCYING SPECIFIED CURRENT
INEW STRUCTURE AND WATERIAL DATA CARDS le AND
e MUST ROT BE INSERTED FOR THE FOLLOWING SPE-
CIFIED CyURRENT)

1STOP = 1 LAST SPECIFIED CURRENT OF THE SET

ISTOP = 2 THE STRUCTURE AND MATERIAL PARAMETERS ARE CHAN-

GED FOR THE FOLLOWING SPECIFIED CURRENT (NEW
STRUCTURE ARD MATERIAL DATA CARDS 1s ARD 2,
28T BE INSERTED FOR THE FOLLOWING SPECIFIED
CURRENT} .

DATA CARD 4. PARAMETERS CONCERNING THE AUTOMATIC STEP SELECTION PROCE~
OBURE. INCLUD'NG THI TOTAL NUMBER OF POINTS DESIREDs ARE
READ IN THF SUBRDUTINE ¢STPSEL® (SEE SUBROUTINE 'STPSEL!)
ONE DATA CARD FOR EACH SPECIFIED (URRENT MUST BE FURNISHED
IN THE APCPROPRIATE ORDERs

OUTPUT PARAMETERS ARE

ONE-DIMENSIONAL 4RRAYs EXACY POTENTIAL DISTRIBUTIOM

PST =

N « ONE-DIMENSIONAL ARZAY, EXACT ELECTRON OISTRIBUTION

4 = ONE-DIMENSIONAL ARRAYs EXACT HO.E DISTRIBUTICN

X » ONE=DIMFNSIONAL ARRAY. ABSCISSA OF £ACH POTNT THROUGHOUT THE JUNC-
Tion

STEP w ONE~DIMENSIONAL ARRAYs NON UNIFORM STEP MIGNITUDE AT EACH POINT

IN = ELECTRON CUSRENT

JP = HOLE CURRENT

VA w VOLTAGE AT THE TERMINALS CNORMALI2ED)

VAA = VYOLTAGE AT THE TERMINALS FURNORMALIZEDY

I R R R N R R N NN I I R A N N N RN NN TR NN RN TR

9.¢



C» . *
(42 ALLOWANCE FOR SEVEN DOUBLE PRECISION ARRAYS (STEPsPSIs ®
C*  NoPoDELTA + TWO WORKING ARRAYS TN THE LABELED (OMAON /WORK/ ) AND *
C®  ONE SINGLE PRECISION ARRAY (NIW)» ALL OF DIMENSION 1000s HAS BLEN MADEC. *
ettt e ey e R R e e R s s e N I Ll

DOUBLE PRECISION STER(1000)+PS1(1000) VA
$NE1I000)PLINONY DELTAL1AG0 ) $DUMMY {2000)

L ) ND sMASHN 3PP yNP Pl VD oM oL

REAL NIM{INNO0) #JNWJP o JsJTCINEWAT{I1Y +HI[10] 4JS

COMMON /STRC/ NDsNA>NKsPP yMPyPN5VDsMal o Iits IL s VT » GAUN s GAMP

3 IMCARZ NyPoJne P
s /XSY /7 STEP
3 JWORK/ DUMMY
3 /TRDG/ DELTA
3 /PSNM/ PSIWNIM
s IVTINZ HIVALZHMAX»THRRLDELHT L ITV]
1n FORMAT {3E10a0+110+2E10.0:215,5%X515}
15 FORMAT (1H1+32H FOR A SPECIFIED CURRENRT JdS = »E16.8//7TH ERRJ =y
8F12437 TH FXP  =4F10.5/ TH ERRPS=4 E124%/ TH 1TMAX:s [47/7717)
20 FORMAT (1H1, 32H CURRENT VOLTAGE ITERATIOM DATA sz
$5Xs1HI 215X o SHITITIs20Xs6HYALL{) /7 (16.7025.81)
30 FORMAT (IHN/ /777747174772 /3"H SPECIFIED CURRENT JS = »El6.8

$3AX413HINORMALTZED) /7 27H EXTERNAL VOLTAGE VA = 3D16.Bs3Xs
$ 13H(NORMALIZED) $30Xs 4HVAA=  ,E16+8,3X+7TH(VOLTS) 177/
$ 46H RELATIVE TOLERAMCE FOR THE SPECIFIED CURRENY [/ 20H OBTAINED
$ ERRJA = 4E1245, 20X» 20H SPECIFIED ERRJ = ¢ E1245///7//7)

90 FORMAT (1H1,47H ERROR IM THF SIGN OF THF SPECIFIEC CURRENT JS
$E1648 /32H ONLY POSITIVE CURRINTS ALLOGWED

CHERF RS RRRAXXXRARXXSTRUCTURE AND MATERIAL PROPERTIES DEF NITIONSHERR XSRS XN SRR KRR
100 CALL STRUCT

CHERAIXEZRBXAXAAXSRREADING OF THE SPECIFIED CURRLNT AND (ONTROL PARAMETERS *
Cx FROM DATA CARD RN s s T 1 1]
120 READ (55103 JSsFXP,ERRJs ITMAX,ERRPS+PSIMPR » [WR 2 INTAPE ISTOP

WRITE (6315) JUS+ERRISFXPERRPS, [ TMAX

IF {JSeLE«OIWRITE {65301 JS

1Tv=0

IREAD=1

IPRINT=]

IBR=1

HS=ALOGUJS)

J=Js
130 CALL VOLTIN {(JsVAHSWITV)

IF (ITV.LT.0) GO TO 9932
CK"!".’CI'lil!ﬂ**l&*l‘ll"**"lilill-‘ii'i*l**ii)**ll.ﬁ*!*i HRREBERAABAERS AR SR GE Y
C= BASIC "ROGRAM FOR THE DIRECT PROBLEM *
[ g Y e I Y Y YR ]

KW=l

CALL FSTORD (VASFXP,KWsPSIMPR]

IF {KW.LT.0) GO TO 79593

IF (ITVWGT43) GO TO 150

CALL STPSEL (JRET,IZEAD, IPRINT)

IF (JRETWEQel) GO TD 9999

CALL DOPING (NIM)

150 CALL PSITRL (PS1.va)

CELTAM=1,.E20

ITER=D
170 CALL MOBCAR (PS1,4VA)

1F (ITER.EQ.ITMAX.02s DELTAMJLEERRPS 3 30 TO 300

CALL POISSN (DELTAMMIL}

lillii!!&i!l*§¢;§¥|§ldi{ DECKS 1501t TO  1515¢

ITER=1TER+1
GO 10 176G
3nn CONTIRUE
JaJH4 P
IF {ITVL.FQ.r) 6O TO 450
IRFAD=0
IPRINI=N
CRERREFFSAKIN 0¥ RS JCCURACY TESY RP KRB R A E S ORI AN R AR S S AU AR A NN AT RN SR IS H IR AII IR ¥
IF (AES{{JS-J1/J5).6TLERRI) GO T 13C

CHEREUERRRRITRLRPURDIEOLAYING ANT RECORDING RESULTSI AN MEA ¥ ¥ X A A A F R A AF AN X HRF RN F
430 ERRUA=(JS-1)/JS
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VAA=VA*YT
TTV=1Tvi+1
VAL{1IVI=VAR
JUITY)=d
WRITE (64203 (TeI3T(I3»VAT(I)s1=1s1TV)
WRITE (64301 JS»VAsV2ZARERRLAVEPRY
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END
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(<] OF TFE CLRRENT ON THE £XACT CURRERT - VOLTAGE CHARACTERISTIC .
C* VAL = ORE-CIMENSTONAL ARRAY, VARIABLE REPLLFNTING THE VOLTAGE AT THe *
(@) TERWINALS ON THT EXACT CURRENT - VCLIAGE CHARACTFRISTIC *
> J = EXACY CURREHY (OvPUTED WIYH THE BAS(L PROLRAM FOR THE OIRECT PROB-
Cx LEM  CORRLSPONDING TO THE VOLTAGE GOTAIRED 8Y WHE PREVIOUS CALL *
(4] OF THIS ROUTINE *
C* ITVv = ITERSTION TALLY. MUST BE SEY TO ZERO BEFORE THE FIRST CaLl Or *
c* THIS ROUTINE,  THE ™AXIMun ALLOWED YALUE IS ITVv = 10 *
Cx »*
c* QUTPUT SARAMETCRS ARE *
c* VA = VOLT?GE AT THE TERMINALS *
c* 1Ty = ITERZTION TALLY. AS AN OUTPUT PARAZETER 17 ALS0 REPRESENTS AN *
c» INDEXY  OF PERFORVANCE OF THIG RCUTINIY  AS FOLLOWS L]
c* 1TV  «6fe  2ERO GOGD PERFORMANLCE OF THE ROUTINE 1]
c* 1TV «fD3s  ZTRO THE SPECIFIED TOLERAMNE ON THE SPECIFIED #
c# CURRENT  HS HAS NOT BEEN REACHED. *
c* PRINTOUT OF AN ERRO® MESSAGE [NDICATLES *
c* THE CAUSE. TRE BLSY SOLUTION OBTAINED *
= 15 FURN[S5H:D. *
(&4 1TV  «Lle ZERD EXECUTION DF THE ROUIINE IS ABORTED. *
cx PRINTOUT 07 AN ERROR MESSAGE INDICATES *
L THE CAUSE. NO SOLUTION IS FURNISHED. *
cllli%1";&‘!*i*ii*#*il##ﬂlli’Iﬁii‘-}li*&!liﬁ!"In-i‘v!il'*lihIi—‘ivi*il-b{il&&ll-!.,kg&;

DIMENSION VAT (11),VATSO{ 201 sHFSO{ 203 sHI {12} sDUMMY (S]]
DOURLE PRECISION va
S, ND s NA 4N s PR NP s PN VD WMl
REAL UNFSORSJ . R
COMMON JFS0 7 DUMMY,UNFSOR
78IRC/ KDy NASUNIPP NP o PH YD s Mol s IMy TL VT GAMN S GANP
JVTIN/ HI.VALHWAX,IBRSDELHISITVY
ITuslTV+l
ITvl=17Vv=]
HTAL GG}
IF (ITY. 17 RITITVIIEH
GO 1O (1} 1042201, IBR
n IF (1TV,.L1:3) G2 10 20
15 TF eHI IV oGl HRLAND L HT L ITV=21 ,LE-HSY IR,
5 THIETTIVID GLELHSANDLHITITV=-2),6F-HSY 1 GO TO 140
7?0 IF (1Tv.3Te5) GO TO 320
H2{HS-HT LI #FLOATLITVI+HS
IF [HoGTLHMAX) HeHMAX

"

CH¥SX U unpr IR XIXRIFIRST-ORDER THEQRY ESTIMATION OF THE VOLTAGE AT THE TER~ *
€* MINALS FOR 4 GIVEN CURRENT  J=EXP(H)« A SUCCESSIVE APPROXIMATION SCHIME »
€* IS USED TO SOLVE THE RELEVART {MPLICIT RELATIONS, #¢#3exasixyaaes s rtadranik
129 1PR=2

R=1s

VAUAX=].98¥(VD-DLOG(PP) !

KL=l

VAFEA(1yeh,

HE Nt )=

VAFSO(2)=72MAX

DO 3157 k=1s2C

VEaVAF LN}

CALL FSTORD {VAsles3>04)

HFSO(K ) =ALOGIUNFSOR)

IF (x.GT«23 GO TO 122

IF (HS.GT.HFSQ(2))y GO TO 9ng

127

167
1eF

1091

TELARSIRFINIY =1/ 4L T a1 a7 -4} 6D TO 155
Qa0

1F (HESD(V) o TaHY GO
VAFINEY $ 1 V=AM Ok ) -t
Kif=v

5010 135

VAFSOUL 41 1 =YAFR SDH(K) VALK IR

L=y

IF {¥aGTe6) VATSG (41 )s{H-HT50 (KLY (VAFSOTKUI-YAR SCIKL) S ZIHFSE
S (KU -HFSNIRL Y bYLFSNILL Y

CONTINE

HMLYSHT IOty

GO TR 400

TAR=3

(ruX XX A e ¥ FRIFSRRSATIIT O THE PERFAYMANLE OF THIC BOUT L, ek st s ssenpnnt

o

717

»2r

IF 41TV,LT.S) ©0 10 230

IF JARSIHIEITVID-HSILLTLDELHI Y GO 1D 220
YASYATEITY-21)

JEEXPIHILITY=-21)

WRITE (649671

1Tv=9

RETURMN -
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APPENDIX F

ON THE NUMERICAL SOLUTION OF SECOND ORDER PARTTAL DIFFERENTIAL

- EQUATIONS OF THE PARABOLIC TYFE.

Terminology, definitions, vasic concepts and criteria available
from the theory of numerical analysis, concerning the selection of a
"sound" discretization scheme for the numerical solution of second-
order partial differential equations of the parabolic type, are

briefly summarized and relerences are given,

F-l. dencerolitics,

A partial differential equation of the second order, linear in

the second partial derivatives, in two independent variables x and

t, may be written as:
3%y (x, ¢) %7 (x, t) 2% (x, ) N
A il PB etmmided () eemiidet = known function ffj—— , =~ ,Y,x,t)
X i x Jt at ax ot

where A, B and C are known coefficients and Y(x,t) is the un-
known function. The equation is called parabolic if 32 = AC, The
present interest is for the case B = C = 0, in which the parabolic

equation may be written in the form:

2

(b)) _ g _@_%’é_g,Y’X,t (r-1)
3t = x

If Eq.(F-1) is taken to represent'a physical phenomenon, x represents
usually the position coordinate and t +the time coordinate.

A typical physical initilal value problem specifies boundary
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conditions of the open type, i.e. it assigns the function Y(x,t) on

an open rectangle defined by

v
(@]

X, , any t

[\
(@]
~—

X =%, , any 1 (F=2)

t=0 |, X] £X £X

where x, and x, are two spatial boundaries determining the range

1
of interest of the position coordinate x, and t =0 is taken as the

Initial Lime, The koown distribution Y(x,0) is then also referred to

as the initial condition of the problem., Other types of boundary

conditions may be specified, but only the above is here of interest.

satisfy-

The distributions Y(x,t), for =x, <xSX,and t 2 0,

L [
ing both Eq.(F-1) and the boundary conditions (F-2), are sought. Two
conceptually different techniques may be used to approach the numericﬁl
solution of the problem:

(a) the spatial derivatives of Eq.(F-1l) are approximated by finite
difference schemes to obtain a system of ordinary différential
equations, solved numerically by conventional methods;

(b) both spatial and time derivatives are approximated by finite
difference schemes to reduce the problem to the solution of a
system of algebrailc equations,

Tne former method is particularly suitable for linear partial differen-

tial equations [Ref, 29, p. Zhl], whereas the latter is equally well

applicable to more general cases. Also in consideration of the

present interest for systems of non-linear partial differential
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equations, the attention will bve focused on the above technique (b).

A grid or mesh is obtained by discretizing the originally

continuous spatial line (xl <£xXx €£X constant t) and time line

2)
(t 2 0, constant x) in a finite number of points. The distance
between consecutive spatial points and time points is referred to as

spatial step Ax and time step At respectively. Constant (nen-

constant) values of Ax and At throughout the mesh generate a
uniform (non-uniform) mesh.

Examples of finite difference formulae are avallable in Appendix

B for the case of non-uniform mesh, and, for instance, in Ref. 30

(p.284) for the simpler case of uniform mesh.

A two-level (mulllilevel) finite dlfference scheme 1s obtained, if
a two (threé or more)-point finite difference formula is used to approx-
imate the time derivative of Eq.(F-1l) at a given point.

An explicit (or implicit) finite difference scheme is obtained
depending upon the capability (or lack of capability) of every single
algebraic equation, generated by the discretization of Eq.(F-1) at one
time point, to yield, iIndependently of the other equations, the valuc
of Y(x,t) at the following time point. The implicit scheme requires

in general the solution of a system of simultaneous algebraic equations.

The following nomenclature is adopted:

e

D = exact solution of the partial differential equation (F-1)

e

exact solution of the partial difference eguations generated

by Eq.(F-1)

ne

numerical solution (actually achieved) of the partial differ-

ence equations



. . . A
discretlization error

8

1}
o

i
>

nurerical error A-N

The finite distance of the mesh points is responsible for the

discretization error. This is often referred to as truncation error

since 1t usually arises from the truncation of a Taylor expansion of
the function Y(x,t) at a given point, in the stage of generating
finite difference equations, The numerical error is occasionally
referred to as round-off error, although this is in general only one
of the contributions to the numerical error.

The problem of convergence deals with the conditions under which
A-D for Ax, At - 0. The problem of numerical stability deals with
the conditions under which (A-N) is small throughout the entire
region of solution (Ref. 31, p.223).

The knowledge of the conditions of convergence and stability of
a partlcular dlscretizatlon Scheme 1s a problem of fundamental nature
in the numerical solution of partial differential equations of the
parabolic type. Attention to this topic is given in the following

sectiona,

F-2. On convergence and stability theories.

The basic concepts of convergence and stability have been
described for the first time in Ref. 31 (p.223), based on previous
results obtained by Von Neumann regarding a general method to test
stability, easily applicable to linear equations with constant
coefficlents, with ﬁossibility of extenéion to the more general case,

in some instances, Von Neumamn's method is based on the assumption
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that weak* stability (instability) implies strong* stability (insta-
bility), and uses a Fourier expansion of a line of error,

L close relationship between convergence and stability is proved
in Ref. 32, and it is shown that one implies the other if certain
conditions on the original differential equation are satisfied. The
evaluaﬁion of the convergence is in these cases achieved by examining
the behavior of an "amplification. factor” (or amplification matrix in
the more general case), obtained with the aid of a Fourier expansion
of Y(x,t). The theory is limited to linear equations and reduces, in
the simplest cases, bthe analysis of the error to the test on the dis-
cretization error, expressed in terms of A4x and At. These results
are also available in Ref. 20 (pp. 38-73), and the highlights are
gathered in Ref, 33 (p. 69). A slightly different approach, based on
vector and matrix operators, is given in Ref. 34 (p. 222), and summar-
lzed In Rel, 29 (p. 222). A wmore couclse lrealmenl of Llhe abuve’
theory is presented in a modern form in Ref. 35 (p. 103).

A different definition of stability, requiring a growth of the
numerical error (4-N) not faster than some power of the reciprocals
of the step lengths, is presented in Ref. 36 (p. 95). Although differ~
ent stability criteria are obtained, it may be shown that this
definition of stability is closely related to the previous ones.

Ref, 36 (p. 92) and Ref. 32 (p. 13), among others, describe a very

elementary method (based on the extreme value prirnciple) to prove

*  Weak or strong stability (or instability) refers to the effect of a
single error introduced at one point of the solution or of the
overall error, respectively.
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convergence, applicable solely to a limited number of simple cases.
Coavergence and stability conditions for specific equations and
discretizavion schemes, resulting from the available theory, are

sumarized in the following Section,

F-3. Analysis of specific equations and discretization schemes,

F-3.L. Linear equations,

F-3.1.1. Linear equations with constant coefficients.

(a) The heat equation

(e, t) _ o 3°¥(x, )

3t x°

, U = comsbtanl > O (F-3)

is the simplest linear parabolic equation and is treated by most
authors [Ref. 29 to 33 and 36]. Ref. 20 (p. 91) gives a collection of
finite difference equations approximating Eq.{F-3). Convergence ard
stability problems are analyzed and the truncation error is given. A

few examples are reported below. The following notation is used:

i = spatial index (i =1, 2, 3, *=* )
k 2 time index (k =0, 1, 2, 3, *** )
A
iy = Y(xg.,t)
2oy A
MR FIE R STC R S A

A .
€y = truncation error

In addition, a diagram of ‘the type

(i-1,k+1) (1,k+1) (ir1,k+l1)

( i'l: k) ( i) k) ( i+l: k)
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is used to indicate the number and the position of the mesh points
involved in each finite difference equation. For conciseness, the
indexes identifying the points will be omitted,

1. Explicit:

2 .
1T 1 (870)5 I

At ' (Ax)2

F't = O([\t) + O[(AX)ZJ

oAt

(Ax)
2. Crank-Nicholson (implicit):

= constant < = as At, M&x - O,

Stable if 5 S

2 2
T ((87T) e, 1 (87D

At Z(Ax)d .

e, = O[(at)%] + o[ (ax)?]

t
Unconditionally stable,

3. DPure implicit:

2
% 1717601 . w1(870)y

At (ax)®
e, = 0(At) + O[(Ax)zj

Unconditionally stable,

L, Richardsocn:
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2
kelli k-171 5 x(07T)y

20t (Ax}d

Unconditionally unstable.
5. Du Fort-Frankel (explicit):

IR SO I 10 I O iy s B e

2At (Ax)2

with %% -0 as Ax, At -0

e, = O(4t) + ol (ax)%] + o(%%]

Unconditionally stable.

6. A three-level implicit scheme:

LY. Y, Y.~ Y. (8Y),
(o) BLAEL o XiTkl’i kel > Vi

At AL (ax)?

where 6 = constant > 0, cAt/(Ax)2 = constant

——————— g

ey = o(at) + o[(Ax)2]

Unconditionally stable.
The value 0 = 0 generates the two-level implicit scheme 3.

It may be observed that unconditional stability is featured by
two-level formulae solely of the implicit type, whereas explicit
schemes unconditionally stable are available if a three-level formula

is used.
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(b) The complete second-order linear equation with constant

coefficients
~ 2 +
OY(X, t) I ! Y(}é) °) + a .?E(.Zc.z.f‘..)_ + b Y(X,t) 3
3t Por's &
o = constant > O (F-4)

is analyzed in Ref.2([p.98], which shows that stability conditions are
not dependent upon the lower order terms, so that the same schemes
described in (a) for the heat equation {F-3) are applicable %o Eq.
(F-4), with a straight forward modification to incorporate the lower
order terme in the finite difference eguation.

The use of implicit methods leads to the solution of a system of .
simultaneous finite difference algebraic equations, which may be
reduced to the solution of a tridiagonal matrix equation. Since the
entries of the tridiagonal matrix are time independent (a consequence
of the assumed constancy of the coefficients of Egs.(F-3) and (F-4))
only one inversion of the matrix during an entire solution is-
necessary, .

3.1.2. Linear equations with non-constant coefficients,

() The simplest linear equation with non-constant coefficients

AV (x, ) BZY(Y +

L) - a(x)

; O(x) >0 ' (¥-5)
3t

is analyzed in Ref. 36 (p.107), 20 (p.96), and conclusions are '

summarized in Rel. 33 (p.Th).
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It may bc shown that discretization schemes of the type

Y- Y, o[ (s%). ]+ (1-8) (6%%).
Eliki a(x;) E&+l 1] 5 &: J , © = constant > 0 (F-6)
At (Ax)

are unconditionally stable and convergent for % < 8 < 1, whereas

for 0 < 8 <'% they are stable and convergent if

At

2(1-26) o(x) —— < 1
bx)

(b) The more general equation (Ref. 20, p. 97)

2t - ) %;[v(x) winnl *")] (7-7)

with p(x) and v(x) positive and known functions, may be reduced to

Eq.(F=-5) wlth the change of variable

y(x,t) = fql;; dx

and therefore may be éimilarly treated.

An interesting example of numerical computation for this case is
shown in Ref, 33 (p.80), including the program in AIGOL. An implicit
method of solution is described in Ref, 20 (p.10l), with an efficient
method of solving a tridiagonal matrix equation.

{c) The complete equation

X 2
OY(XZ'C) _ U(x’t) d Y(gzt) + a(x’t) M + b(x,‘t)Y(X,t) - C(X,t)

3t (5-8)
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with o, a, b, ¢ known functions, ie treated in Ref. 36 (p.107) and
Ref. 29 (p.2h5), among others. For finite difference schemes of the
explicit type it is shown that stability (and convergence under certain

conditions) is satisfied if

AL

(ax)°

o(x,t) >0 and 2 o(x,t) <1

For implicit schemes, conditions of stability are not available, with
exception of the case of time independent coefficients o, a, b, c.
Stapility conditions may then be analyzed with matrix methods, Ref.
29 (p.246) investigates this case, for various types of boundary
conditions.

F-3.2. Non-linear equations,

F-3.2.1. Quasi-linear equations.

The guasi-llnear partilal differential equatlons represent a
particular class of non-linear equations that are linear in the
highest derivative of the unknown function Y(x,t).

(2) The eimplest typc of quasi-linear equation is the semi-

linear equation, which is linear in all the derivatives of

Y(x,t):
Y (x, t) %Y (x, t) 3 (x, t)
——r = o(x%,t) __wn_%_m + a(x,t) ===~ + b(x,t,Y) , o(x,t) >0
3t ax
(F-9)
Under certain restrictions on the known funetions g,a,b, existence,

convergence and stability conditions have been investigated in Ref.

37 (p.155) for explicit discretization schemes., For the simplest
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explicit scheme, of the type (a)l -described in Subsection 3.1.1,

stability is conditioned to the ineqguality

lToab. o(x,t) 2 <33: (F-10)

(ax)"
This result is consistent with the intuitive extrapolation of the
constant coefficients case. Conclusions are also summarized in Ref,
20 (p.109) and Ref. 36 (p.137).

(b) A rather extensive analysis of the more general quasi-linear

equation
3 Y(x,t Y
2 [p<x,t> é—g—}?—l] - a5, 1) = 2(1,v) I (F-12)

is given in Ref. 38 (p.L84) with proofs of convergence for
several explicit and implicit finite difference schemes,
under certain conditions on the known functions p, g, r of
Eq.(F-11).

An itcrative proccdure of solution is usually reguired at each
time step to cope with the non-linearities, although special schemes
(Ref. 39, p.167) may occasionally be used, based on the solution of
tridiagonal matrix equations, to avoid the iterative procedure.

F=3.2.2. Non-linear equations of the general type,.

The general non-linear parabolic equation

BZY(xzt)'= F{BY(x,t) , Y (x,t) , Y(x,t), x,t} (F-12) -

BXZ at X
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is considered in Ref. 39 (p.l67). Convergence is proved under certain
conditions of regularity of the coefficlents, and the discretization
error For a special implicit difference scheme is given, In addition;
an example of an iterative procedure is presented and its convergence
to the exact solution is proved. Conclusions are also summarized in
Ref. 33 (p.98). Remarks of general nature are available in Ref. 36
(p.139) and Ref. 29 (p.249).

A few examples of particular non-linear eguations avallable in

the literature are listed below. The equatilon

[3v]

¥(x,t) _ 3
ot BXZ

[¥(x,t)]° (P-13)

is investigated in Ref. 20 (p.104). A numerical computation is given
for a particular difference scheme, together with stability considera-
tiong, For the more general equation .
JY(x, t) ° n '
22 2 2 1y(x,1)] (F-14)
ot Jar:s

an explicit scheme is analyzed in Ref. 29 (p.250), and stability is

proved for

AL n-1 _ 1
g TP

Ref, 36 (p.14l) gives only suggestions for linearizing the finite

difference equations generated by the equation
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AW(x, %) _ 43 Y(x%t) - _?% [BY(X',t) + a(x,t) , 9 = constant >0
at x ‘ ax

(F-15)
where a(x,t) is a periodic function of x. Stability or convergence

considerations are not given., Some attention to the system

Y (x,t) _ ¥ (x, 1) ) ciaZ(x,t)
3t x4 ot
{ . (F-16)
_B.Z.%J.l - - oZ(x,t) expl- A/¥(x,t)]

where d, ¢, A are constants > 0, ~is given in Ref. 29 (p.250) and
Ref. 36 (p.14l) for specific boundary conditions. Only considerations
on truncation errors are presented for various methods of solutions.

F-3.3. Conclusion.

A few basic concepts and results of the numerical analysis theory
concerning convergence and stability problems for various discretization
schemes gencrated by parfial differential equations of the parabolic
type have been summarized, and references cited., Whereas the theory
is complete for the case of linear equations ﬁith constant coefficients,
it ié rather incompiete for the non~constant coefficient case, and only
fragmentary conclusions are available for the non-linear case. The
problem of convergence and stability is of fundamental importance,
since both features represent a prime requirement for the success of

- numerical solutions of equations of the parabolic type.
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APPENDIX G

CCMPUTER PROGRAM FOR THE TRANSIENT PROBLEM

In this Appendix the computer program (in FORTRAN IV, version i)
for the current—driveﬁ and voltage-driven transients is reported, The
method of solution and the mathematical formulation are described in
Chapters VII to IX, and illustrated in Figs. 8.3 and 9.3. The gener-
alized pure implicit discretization scheme has been selected.

The program consists of a main program (deck 'PNT') and a set of
subprograms (deck 'TOL' to 'T1O') each performing logically different
operations of the algorithm., This modular organization oflthe programn
has the same motivations outlined in Appendix C.

Double precision arithmetic has been mostly used. The size of the
vectors and matrices has been chosen according to the memory size of the
machine availsble (32,000 locations). A magnetic "save" tape is re-
quired for permanent storage of the initial conditions and of the
solutions at each instant“of tine,

Main program,

Deck 'PNT'., The main program reads the éontrol parameters from a
set of DATA cards, and the initial conditions from a magnetic save |
tape; drives the subprograms actually performing the required calcula-~
tions and records on.peripheral eguipment solutions and parameters of
inlerest,

Subroutine 'TAPE',

Deck 'TOLl'. Reads from, and records on, magnetic tape distribu-

tions of interest,
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FPile definition subprogramn.

Deck 'TO2'. (Written in Assembler language IBMAP.,) Defines the
?ile for one magnetic save tape needed by the deck 'IOL',

Subroutine 'TPRINT'.

Deck 'T03', Writes on the printout sheet the results of interest,

Subroutine 'TSTEPK'.

Deck 'TO4', Furnishes the time step at the next instant of time,
according to the automatic time step adjustment algorithm described in
Section 8.4,

Subroutine 'DIFFEQ'.

Deck 'TO5', TFurnishes an improved solution of the system of the
ron-linear partial differential equations 8,15 to 8,17 from trial dis-
tributions of the electric field and mobile carrier densities at each
instant of time. The mathematicai algorithm is described in Subsection
8.2.1.

Subroutine 'SICV2'.

Computes. the spatial slope and curvature of two functions given
inn dalscretlized form, at each Internal polnt throughout the interior of
the device. Iwo versions are avallable. Only one must be inserted in
the actual progran,

Deck 'TOGA'. Three point formulae (parabolic interpolation) are
used, according to relations (B-11) and (B-12) (Appendix B).

Deck 'TO6B', Five point formulae (lagrangian interpolation with
fourth-order polynomials) are used, according to the formulation of
Subsection B-2.3. The relevant matrices are slightly rearranged in

this routine in order to achieve a higher efficiency.
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Subroutine 'EQUAD'.

Deck 'TO7'. Computes the guadrature of the electriec field spatial
distribution given in discretized form at unevenly spaced points in
the interior of the device. The three-point formula (B-3) (parabolic
interpolation) is used,

Stbroutine 'TRDULY,

Deck 'TO8'., See Deck 'S15!' of Appendix C.

Subroutine 'INTERP®.

Deck 'TO9'. Furnishes, at a given time, a value of the total
current approximately corresponding to a specified value of terminal
voltage during the voltage driven transient procedure, according to
the algorithm of Section 9.2.

Subrovtine 'STAGR',

Deck 'T10'. BSee Deck 'S05' of Appendix C,



SIRFTC PNT DECK
[ L R R e s Y P ey ]

c*

#» & T N PROGRAM

*
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®

[ R T D R T R T T T R R T P T e Y )

c*
(<3
Cc*

THIS PROGRAM SOLVES THE BASIC TuWC -CARRIER TRANSPORT EQUA-
TIONSs GOVFENING THE REHAYIOR OF SEMICONDUCTOR DEVIZESs APPLIFD TD AR N-p
JURCYIDN UNRER THE FOLLOWSING ASSMEMBTIONS
tA1  NON DECGENERATE CONDITIONS
{R}  COMSYART TEMPERATIRE
103 YIME ISDFPENDENT IMPURITY DISTRIBUTICK
DY FULL TONIZATION OF THE [UPURITIFS
1E3  ONF-DINFNSTONAL STRUCTURE
[Fy ARBITRIRY TRANSIENY CONDITIONS
(G} OHMIC (ONTACTS
{4}  ABSENCE OF GENERATION-RECOMBINATION [N THE INTERIOR
{13 CONSTAXT MOBILITIES
GIVEN AN APPLIFD FXTERNAL TXCITATION OF FITHER CURRENT OR
VOLTAGE AS £ FUNCTION OF TIMU. THE RESPONSE OF THE DEVICE AND THE RELE-

VANT INTERMZL DISTRIBUTIONS AS FUNCTIONS OF POSITION AND TIME ARE OBTAINED.

KN APPROXTW2TIONS IN THE SET OF FQUATICNS HAVE BEEN INTRODUCED.
THE  N~REGTIGN 15 ASSUMIND LODCATED ON THE LEFT SIDE OF THE METALLURGICAL
INTERFACE  ¥a

THIS PROGRAM USES AN ITERATIVE SCHEME AT EACH INSTANT OF
TI¥E FOR THE SOLUTION DF A SYSTEM OF THREE NON~L[NEAR PARTIAL OJIFFEREN~
YIAL ECUATICNS IH THRED UNKHOWNS, THE GENERALIZED PURE IMPLICIT SCHEME
15 CHOSEN FCR THE DISCRETIZATION OF THE TWO PARABOLIC EQUATIOANS. A SET
OF INITIAL CISTRIBUTIONS FOR THE UNKNDWNS IS5 RECUIRED.
THF WHOLE PROGRAM IS RIILT IN A HIGHLY MODULAR FASHIONs FLATURING A MAIN
PROGRAM CALLING SFVFRA. SUAPROGRAMS, IN FAVIR OF A GFEATER FLEXIBIIITY
AND SIMBLICITY OF LOGIZ ORGANIZATION.
SUBPROGRAMS FXPLICITLY CALLED BY THIS MAIN PROGRAM ARE

SUBROUTINE  'TAPLs (READS FROM AND RECURDS ON MAGNETIC
TAPE THE RELEVANT QUANTITICS)

SUBROUTINF  *TPRINT' ({WRITES OUTPUT DATA ON PRINTOUT
SHEET!

SUBROUTINE 'TSTEPKX! (DETERYINES THE 1IME STEP AT EACH
INSTANT OF TIME)

SUBROUTINE 'DIFFEQ' (FURNISHES AN IMFROVED SOLUTICN BY
SOLVING THE SY31FM OF DIFFERENTIAL
EQUATICONS FROM 2 TRIAL SOLUTION)

SUBROUTINE. YINTERP! ({EXECUTES A LINEAR IHTERPOLATION ON

THE [~V CHARACTERISTIC FOR THE
VOLTASE-DRIVEN TRANSIENT

OTHER SURPRCGRAMS MAY 3F CALLED BY THE ABOVI SUBROUTINESs

DOURLY PRECISION ARTTYHUETIC IS USED,

INPUT PARAMETERS ARE

DATA CARD 1e

TSTEP1= MAGNITUDE OF Til INITIAL TIMP STEP

TIMEX = INSTANT OF TIMS A7 WHICH THE TIME 3rEP IS CHAKGFS TO TSTEPX

ISTEPY= MAGNITUDE OF THE TIME STEP IMMEDIATILY AFTER THE INSTANT OF TIME
TIMEX

RMAX = UPPER BOUND FOR THE RATIO OF (ONSEQUTIVE TIMI STEPS

TSTHAX= UPHER BOUND FOR THE TIML STEP

TSTMIN= LOWER BOUND FOR THE TIME STFP

Fory = JTFRATION RELATIVF FRROR AT FEACH INSTANT OF TIME FOR THE TERMi-
RAL VOLTAGF

IE RN RN E RS NS EEEEEEEE RN EENEE RN EREEE RIS I NI I B

c»

ERRYV = TOLERANCE EREOR  ON THL TERMINAL VOLTAGE AT EACH INSTSNT OF TIME
IN A VOLYALE-DRIVFN TRaNSIENT

DATA CARD 2.
SITMAX= MAXIMUM NUMBER OF €YCLES IN YHFE ITERATIVE PROCEDURE AT EACH IN-
STANT OF TIMFE {MaXIMUM JITMAY 2 100}
KMAX = INDEX IDENTIFYING TRE "NSTANT OF TIME AT WHICH THE PROGRAM STOPS
(MAXIMUM  XMAX = 200)
IWR = PARAMETER TreT CONTROLS THE PRINTUUT IW THE SUBROUTIHE YTPRINIDS
[SEE SUBRGUTINE *TPRIN™?)
1O0TIN = PARZMITER THAT IDDNTIFIES THF POSITION OF THE [WITIAL DISTRIBU-
TIONS ON THE MAGNETIC TAPE {SEE SUSBROUTINE fTAPES
ITEPE = PRRAMFTER THAT CONTRGLS THE PROCEDURE OF RECORDING DATA ON MAGNE~
TIC TAPE {SFE SUBRUUT.AE  #YAFRED)
IPUNCH= PARAMTTER THAT CONTROLS THE PRGCEDURE OF RECORDING DATA ON PUNCHED
CARDS AS FOLLOWS
IPUNCH.EGal RECORDING ON PUNCHED CARDS OCCURS
IPUNCHLHE1 RE(ORDING GH PUNCHED CA2DS DOES NOT OCCUR
ICURR = PARAMETER THAT SELECTS EITHER THE CURRENT-DRIVEN GR THE VOLTAGE-
ORIVEN TRANMSIENT PROCESURE AS FULLOAS .
ICURRLEG.1 CURRENT-BRIVEN TRANSIENT
ICURRWNESl VOLTAGE-DRIVEN TRANSIENT

DATA CARDIS) 35445+ aea HNTIF XU(KMAX-11/8+43) .

JUIaT=1eXMAX = DISCRETIZED EXTERNAL EXCITATION AT THE INSTANTS OF IIME
1 10 xMax  [ACLUDED

DATA CARD HNN+1, {CNLY REQUIRED FOR THE VOLTAGE-URIVEN TRANSIENT)sA TRIAL

VALUE FOR THL CURRENT IN THE PREDICTION PHASE AT THE

FIRST INSTAN™ OF YIME IS READ IH "HE SUBROUTIME ¥ INTERP®

STRUCTURE PARAMETERS AND [NITIaL DISTRIBUTIONS ARt READ FROM MAGNETIC

TAPE {SEE SUBROUTINE 'TAPE' )

QUTPUT PARAMETERS ARE

£ = ONE-DIVENSTONAL ARRAY, EXACT POTENTIAL DISTRISPTION AT A CERTAIN
THSTANT CF TIME
N = ONE-DIMFASIONAL ARRAY, FXACT FLECTRGN OISTRIBUTION AT A CERTAIN

INSTANT OF TFIME
P © ONE~-DIMEMSIONAL ARRAY, EXACT HOLE
INSTANT OF TIME
VAA (OR J ) = TERMINAL RESPONSE UOF VOLTAGE
OTHER QUANTITES AS IN SUBROUTIKE *IPRINT'.

DISTRIBUTION AT A CERTAIN
{OR  CURRENT 3
ALLOWANCE FOR TEN DOUBLE PRECISIGN ARRAYS § EsNsP>XSTEPHEK

+ FIYE WORKING A2ZAYS TH THE LABELED COMMON /DWORK! 1 AND Twl SINGLE
PRFCISON ARREYS IDN,DP)ALL CF DIMERSTON B8I0s HAS BEEN MADL,

DRI I A S SR N A AR A O B B L B R O N B R B IR N N N BB R R R B I B N R

e R e L R R et

1in
15

DOURLE PRECISICN E(813)+%(8101,P(B101,XSTEP{8161»IK(810}
SaNDaNASYD VA $DUMMYILI50)

REAL DN{B17)+DP{BI01 11 200),YAA{203) s VAARI2001DELVAALLOD}
B, TIMELZA0), TETEP (200}
COMMON FTSTRP/ RYINSRMAY,

FEXT /7 JaVAR
ZXST / XSYEP
FIP 7 NDsMASVDHIEsN-P IM, 1L IDT«K,TSTEP]L
FTERMY DELVAASDVARWDELYR
/DWORK/ DUWMY, DNJDP
FOPSAT {BZ1D.0 /FIl10/(8E10,.03)
FOPAT [6E1346¢2X1)

TS MINsTSTMAXs ICTST »TIMESTSTEP

AN A

96¢



C ErsrFrEs * ¥
GEMPE] 4 f4k.
BOGM=93 4 ¥GAMP
1€18121
KRELAX=1 .

Cxswrxsnsrsvsrannses READING OF THE FIRSY NN= TFIX {{KMAX-13/8+3} CARLS
READI5s10) TSTEP]. TIMEX<TSTEPX JRMAX 9 TSTMAX s TSTMINSERRK sERRY
34 JITMAX oKMAX» TWR 5 IDT (s ITAPE , IPUNCH,. ICURR
$s (JE1)e1=1aRMAX)

IF (JITMAX.GT100) JITMAX=100
IF tICURRMEQe1) GO FC 40
DO 20 I=1+KMAX

29 VAARIT)I=J(1)

40 IF {IWREQeO1 IWR=10
RMINz1e fRMAX

Crewxsrrsxsrnnsxxs® READING OF THE STRUCTURE PARAMETERS AND INITIAL DISTRI-

C* BUTIONS FROM A MAGNETIC SAVE TAPE AND WRITING RELEVANT QUANTITIES CR

C#% TVHE PRINTOUT SHEET
CALL TAPE (IDTIN.1}

CALL TPRINT {IWR,.IIT.ICURRs11
tislt-1

CI‘

CHFRRFERER XN R X NE NS INITIATE [ 4 LOCP

75 0O BO Inl.lt

an EXITI=E(T}

IF {TIME{K) LT TIMEX.ORLKRELAXWNEL1) GO TO 90
KRELAX =X
TSYEP1=TSTEPX

90 IF (1CURRGEQ41) CALL TSTEPY (TSTEP1sKsKRELAXsVAA)
IF {TCURRWHNE.1} CALL TSTEPK {TSTEPL+KsKRELAXsJ }
GPDY=GAMPTSTERY
GNDT=GPDT /BGM
K=K+1
IF {JCURRWERQe1} GO TO 97

CEEnexyxsrrisuvesx YOLTAGE-DRIVEN TRANSIENT ONLY
KT=0
GG TO 9%

92 CONTIRUE
DO 94 Tw2.It1
N{I}=H{I}-DN{I}

94 PLI=P(1I-DP(]}

96 CALL INTERP (KsKT3VARIK) sVARRJH»TIME)

REEKFEFRRATRFRREEE RN IN IR N T KRNI 3N RN

-

*

[ N N I N I I I LI I T Ty e

97 DO 98 I=lsIL
DN(I1a0,

98 OP(I)=0.
TGAMPJ=GAMPR 3K}
J1T=0

(<3
CReEpmsnsaannsar®nzs INITIATE J LOOP
100 JIT=sJIT+1
CALL DIFFEQ(BCMGPRTGAMPIIVAAIVAALVEKSJIT)
DELVARIJITI=VAA{K]I-ViAL
DVAASVAAIKI~VAA{K~1)
DELVR=DELVAALJIT) /DVAA
IF {1CURRNE«1¢ARD. JITeLT«JITMAX) GO TO 100
IF (ABS{DELVR)«GT.ERRKeANDy JITJLTLJITMAXLAND ICURRGEQsL} GO TO 100
IF (ICURRWLEQ.1} GO Y0 200 -
CALL TPRINT {IWRJIT.ICURRs4}
IF  {(ABS (VAAIK)I=VALRIX]1.GTFRRV}+AND. KT.LT410} GG TO $2
cs

CHREREBRXEESARNILXN¥* RECORDING RELEVANT QUANTITIES AFTER THE TERMINATIGN OF
= A K LOOP
200 {F (ITAPESED.1) CALL TAPE (0+0)

CALL TPRINT (IWRsJIT+ICURRs2}

IF {¥aL7.XMAX)Y GO TO 7%
C»
Cosixrserssydinsx® RECORDING THE EXTERNAL RESPONSE PRICR THE TERMIMATIOR
(¥ OF THE PROGRAM

CALL TPEINT {(IWR.JIT,ICURRy3)

IF {IPUACHLEQL 1) PUNCH 15 (TIME(IY+3{T1sVAALT)s1=1,:K)

sTOP

£ND

SIBFTL YOI DECK
SURRDUTINE TAPE (IDTINs IREAD)

L]

CREE RS A F R AN RN RN T N AR NN R RN RN RN R AR RN AN AR AR S R F RS R I RRREX AL AU TS

C» THE SUBROUTINE TAPE® RIADS FRGM #ND RECGRDS ON MAGNE-  #
Ce¢ TIC TAPE PARAMETERS AND DISTRIBUTIONS OF INTEREST. *
C*  SUBPROGRA% KEEDED .
Cc* FILE DEFINITION DECK 'TO2* (IN ASSEMBLER LANGUAGE IBMAP) #
(<3 »
C* THE MAGNE™IC TAPE IS DEFINED AS fUNIT 30 . »
C* #*
C» »
C# AT EACH CALL OF ThIS SUBROUTTNE THE PROCEDURE 15 CONTROLLED *
C* BY THE PARAMETERS [IREADsIDTINsITAPE A4S SGLLOWS »
C» *
Cx IRFAD.EQ.1 READING OF ThE STRUCTURE PARAMETERS AND INI- €
[ TIAL DISTRIBUTIONS OCCURS b
[ IREAD.NE.1 READING DOES NOT OCCUR *
(<2 Ll
[<] IOTIN = PARAMETER THAT IDENTIFIES THE PCSITIGN OF THE NI~ #
C* TIAL DISTRIBUTIONSs BY INDICATING THE LOGICAL RE- ¢
Ce CORD OF INTEREST *
C* *
<] ITAPE.EQ.]1 RECORDING OF THE SOLUTIOMS AT EACH INSTANT OF =
Ccx TIME OCCURS »
Cs ITAPELNE.] RECORDING DOES NOT OCLUR *
c& B -
(<3 IN CASE RECORDING AT EACH INSTANT OF TIME OCCURS: A MESSAGE *
C* 1S WRITTEXR ON THE PRINTOUT SHEET, -
[< *
<2 THE NUMBER OF WORDS IN THE FIRST LOGICAL RECGRD (WHICH ALSD #

CT* CONTAINS THE STRUCTURSE PARAMETERSY 1S BEIL + 13 « AND IN EACH OF THE FOL-#%
-

C* LOWING RECORDS IS &%TL + 6

CRER R ES R PR E A N R NE AR IR R RS H T R R RS R NN AR N AR E R B AR TR REF RN RIRAIRER A RENER

DOUBLE PRECISION E(810)4N{B10)»P{810)+XSTER({B13) KDwNAIVYD
REAL TIME(200)15J(270)4VAA(20014TSTEP(20D)

COMMON JTSTP/ RMINSPMAXs TSTMINsTSTHMARs ICTST ATIMESTSTERP
s TEXT ZJsVAR
3 JXST 7 XSTEP

[TP /7 KDyNASVDEsNP o IMy 1L IDTH(TSTEPL
10 FORYAT 11M0s//7/7F7717/77446H MAGNETIC TAPE RECORDED wWITH
SOT  wy & /38Xs6HK Te 14 F3BX36HTIME =3E16.7 /)
IF {IREZADNE.I} GO TO 110
C=

L6¢



Croussxusunwxezsexs® READING ONLY -
30 READ {30] TDTsKeTIMI(KI+VAAIKIsJIKIoNDsNAIVDIMsIL
% S {XSTEP{IISELII NI 4P{I)eI=141L)
IF (IDTI¥.EQ.1) GO G 50
DO 40 I1= 2 sIDTIN
READ {307 IDTWK,TI! K} eVAALK I J{KIsTSTEPIK-1)
S (E{L1NIT)+PIT) o120 0L }
YSTEPI=TSTEP(K-1)
a0 CORTINUE

50 IDT=10T+1

RETURK
C» »
CERAERNAXERESRRIXI XN WRITING ONLY *

1106 WRITE (303 IDT9KeTIAE(KIsVAA(K)sJ(K)»TSTEPIK~1}
Sa (ELITANITNeP(IYoI=1410)
WRITE {6110} IDTHKslIME(X)

GG 10 50

END
SIBMRP TO2
NN R H BT AN A F R AR R AR T FE RN R E I N AR AR ERAEARE RN AR R AN XA AN B XN AR A F IR EF R XN UAN
L THIS SUBPROGRAM CEFINES THE FILE (AND RELEVANT PARAMETERS; %
®% FOR ONE MAGNETIC SAVE TAPE FOR CATA RECORDING PURPOSES. *
»x *
- THE TAPE IS DEFIMED AS  SUNIT 30' ON CHANNEL 8(1) *
L *DATATI*= TITLE GIVEN TO THE TAPE *
xx © 'BINY = OPTION THAT SPECIFIES BINARY RECORDING *
L] tINOUT! = OPTION THAT SPECIFIES BOTH READING AND WRITING *
e ON THE TAPE -
s SBLK' = OPTION THAT SPECIFIES THE LENGTH OF ONE RECORDING *
- BLOCK *
R R R R E R AR B S F RN A RSN R AR E N NS F A SRR NS H R FRFE AR A A F A F RN RS IR XA AR REE NS

ENTRY «UN30e

«UN33. P2E UNIT30

UNTT3ID FILE DATATRB (11 sBINsINOUT+BLK=256+HOLD
END

SIBFTIC 703 DECK

SUBROUTIRE TPRINT ([WR »J1TsICURR,IPR}
[ R R R R e L s e s R g

(44 THE SUBROUTINE *TPRINT' WRITES ON THE PRINTOUT SHEEY THE =
C# ELEVANT P2RAMETERS AWD DISTRIBLTIONS (AT EACH INSTANT OF TIME: » THAT *
C* REPRESENT THE SOLUTION OF THE PROBLEMs *
(42 &
c THE DISTRIBUTIONS OF INTEREST ARE PRINTED OUT IN A NUMBER ¢
C* OF POINTS CONTROLLED 3Y THE PARAMETER IWR « (EVERY (IWR)TH POINT 1S *
C* SPRINTFD OUTI. IF THZ PARAMCTER IWR 1S OMITTEDs A STANDARD VALUE (IWR= =
C* 10) WILL SE CHOSEN BY THIS ROUTINE. *
CRRsrisREsRanNssn P E AR RN R B E R F R AEF AR EFF AR AR XA R R ER SRR B R ARG R R F IR IFERF R AT RS

DOUBLE PRECTISION E(310) +N(81015P(810)2XSTEP(810), X{(810)
SsDELN{BICIDELPI81IN),DUMIIBIC),DUNZIBID)Y

30

5
£n
£9

B Myl NI NASYD

RELL J{2001,VALI200),TIME(200)sTSTEP(2001+DN{810),DPEAI01WDELVAA
S (YN DVAAVIZON)

COPMON JTSTP/ RMINIRMAXs TSTMINSTSIMAXKs ICTST »TIMESTSTEP

s JEYT F3aVEA
: FTP 7 NDsNASYD»F oNoP o I¥Ms 115 IDT e K« TSTER]
b3 IXST / XSTEP
s /DYORE 7 DELN»XoDUML W DELP s DUM2sDNSDP
$ JYFEMZ DELVAADVAALCELVR
FOPMAT {1H1l, 7TTHCURRENT~DRIVEN TRANSIENT FOR YHE ABRUPT HN-P STRU
SCTURE IDCNTIFILG BY 122NN
FORMAY {1H1» TORVOLTAGF«DRIVEN TRANSIENT FOR THE ABRUPT N-P  STRU
S$CTUPE IDERTIFIFD BY 777 )
FORMAT (IHDy SHND = 4 D24.415/
S 6H NA = 3 D2a4l5/
£ &N ¥ = 5 D24.157
§ 6H L = » D24a15/
S 6H VD = » D24415/
S 6H 1M = 4 I5 s/

$1Hls 3CHTHE INITIAL DISTRIBUTION ARE rr7

IHOs 3HK =:513+20X»
b3 3HJ =9815.7920Xs 4HVAA=s F15.8.20X,THIINE =sE15.8//7/
$ SXs1HIs 11X IHXS21X,5HXSTEP, 22X 2 THE 22X 1HN 22X 1HP/ /711645023412
t 1)

FORMAT (1H146H K =144 29%s12HJ =, E15.8

s 1%y 6H JIT =214429Xe127V2A =3F1548
$260Y s TFTIME  =3E1547/40X,12HDVAA =,F15.8 4400 THTSTEP =3El4e7
$/60X s 12HDEL VAL =4F1548540X e THR =, El4e7/

£ 7 40Xy 12HDELVAA/DVAA=oFL1548+40Xs

$ THRMIN =5 C16e7/10TXs THPMAX =y E1&aT/

% ICTX,THTSTMIK=s E164T7/107Xs THTSTMAX= +E1&eT /777

55X 1HI» 211X 1IHE 924X, 18N 13Xy ZHON G 11X94HDELN 121X 24P+ 16X 5 2HOPYS X
SLHDTLP /77 (1630200109D25¢109E13451013.5:025.105513455D13.5 3}
FORMAT (YHDs///777) .

FOPMAT {50YBRDELVAA [ » 13, 4H 1 = o Fl5.8)

FORMAT {1M1,44HTHE TERMINAL RESPON AS A FUNCTION OF TIME IS//777
S1HT 33X THE s 10K » THTIME(XN ) s 10X »6HVARIK) s 12K 14HI(K1»20X+BHISTEPIKY s
€ 10XsTHDVAAIKY /// UI53E20.70F15.84E18474E25474E204731)

CANEF R AR FE NI R F P AR F S A AT IR RN IR I XS RN A AR R RIS IR ERIEFF IR RS H S SE R TR SRl ¥

103

1

140

IF {IWF.EQ.01 IwR=1n

GO TO (10551405170,1601s IPR

x{11=1,

DO 114 1=2.1L

XC11=X{1-1)+XSTEP (1-1)

IF (T<EQaIM) M=X{I) -

L=x{TL)

IF {ICURR.EQ.11 WRITE (6410)

1F (ICUPRNEW1) WRITE (6,15)

WRITE 16420 HDsNAMeLaVD,IMsKs JIRY,VARIK) sTIMNE(K)
Sy f1eX{I3sXSTEPLIISE(T V1 4N(T)4PI1o1=1ILs1WR)
RETURN

R=0e

IF (KaGT223 ReTSTEP(K-1)/TSTEP(K-2)

WRITE (65303 KaJdiX)sJIToVAALK Y, TIME(K)2DVAASTSTEPL,DELVAALSITY
T RIDILIRYRMINS QYA TSTMINS TSTMAX
Sy LTHEAII-NITFeOALT)ADELNII ISP T} DPUIISDELPLLIs1=1s LS INR)
WRITE 164451

WRITE (6+50) {1+DELVEACL) o115 J1T)

RETURY

DVAAVI]Y=0.

DO 180 [=24K

86¢



180 DVAAVIT}=Y¥AA(T)~vaAL]-1)
TSTEPE{K)=Da
WRITE 164600 (1oTIMEC(I)oVAALTI)»J{T3TSTEPIE) sDVAAVIIILI=14K)
RETURN
END

SIBFTC TO& DECK

SUBROUTINI TSTEPK (TSTEP1.K4KRELAXsVAA)
CEF AR PR ER E AR AR IR RN A XA R ER R R E A RL LSRRI AN AL EHRERE X R ERE B R NN AR RE XN RS

(<3 THE SUBROUTINE *TSTEPK'Y FLRNISHES THL TIME STEP AT THE
C* INSTANT OF TIME K.

<3

Cs AN AUTOMATIC ADJUSTMENT OF THE TIME STEP AT IHE INSTANT X

€% HAY BE EMPLOYED. BASED ON MATNTAINING CONSTANT TRUNCATION £RROR IN THE
€= IIME DOMAIN OF THE FIRST TIME DERIVATIVE OF THE TERMIHAL RESPONSE OF THE
C* DEVICE. :

C»
[« ]
(<3 INPUT PARAMETERS ARE
[« 2
C* x = INDEX IDENTIFYING THE INSTANT OF 3IIME
Ce¢ KRELAX = PATAMETER WHICH EXCLUDES THE AUTOMATIC TIME STEP ADJUSTHMENT PRO-
C* CEDURE {FOR A FEW INSTANTS OF TIME AFTER AN ARBITRARY TIME STEP
cs - SIXE IS IMPOSED BY THE PROGRAMMER) AS FOLLOWS
cy IF KelLTo (KRELAX+3) THE AUIOMATIC STE> SELECTICON 1S EXtuU-
Ce DED AND THE QUANTITY TSTEPI IS TAKEN AS THE VIME STEP AT
Ce THE INSTANT K o
C*  VaA = ONI-DIMENSIONAL ARRAYs EXTERNAL TIME RESPONSI OF THE DEVICE
-
g'
(] SUTPUT PARAMFTER
(<]
€% ISTEP1 = TIYE STEP AT THE INSTANT K
(<3
c*
c= A FEATURE THAT PREVENTS OSCILLATIONS ARISIAG FROM FEEDBACK

€+ OF THE ITERATION ERROR AT EACH INSTANT OF TIME IS INCORPORATED+ AND CON-

C* TROLLED BY TME PARAMETER 1CTST.

CRAR IR AR R R AR R P E TR ISR E BRI R RFRFECERAZEARR AR SRR R FE R E S S RA RN RS FREZEIRRRAR R R RS RR
DIMENSTON VAAL200),TSTEP(200) s TIMEI200}4F{4)
COMMOXR ZT1STP/ RMIN,RMAX, TSTMIN,TATMAX. 1CTST
VA&CY=04
TSYEPIK)=TSTEP]

IF (KaLTL.(KRELAX+3)) GO TO 200

IF {ICTSY.GT-14ANDICTST.LT L4160 TO 110
1CT8T=1

ALFASTSTEP(K-2} /TSTEP(K~3)

VAACVI=2.¥ (VAA(K—1)-(ALFA+]1 . I #VAA(K-21+ALFA®RVAALIK-3)1/ {TSTEP|
SK=2}%TSTEP {K~3))

ALFA=TSTEP{K=-11/TSTEP(K=2)

VAALY22 4 #{VAA(K )~ {ALFA+1. 1 #VAA{K~1 ) +ALFAIVAA(K=21 )} /(TSTEPL
X ~1)*¥TSTEP(K-2})

DVAASVAA(K] -VAA(K-1)

DVAALSVAAIK=11~VAA(K~2)

DEN=VAACVIOVAAL

1F (DEN.ED. 04} DEN=1.E-20

+TIMESTSTER

*

CEE IR B S N B I I N B O TR N O B N B N I

PRESQRT(ABS (VAACVI/DEN*OVAAL)
TSTEP{K)=RR*TSIEP{X~1)

IF (RR.LT.RMIN) TSTEPIKI=RMIN*TISTEPIK-1]
1F (RR.GT«RMAX) TSTEP(K)}=RMALXTSTEPIK-1
IF (TSTEP(K)eLTWTSTMINY TSTEP(K}=TETMIN
IF (YSTEP(X)JGT TSTMAXY TSTEP(KISTSTMAX
1F (XJLTL(KRELAX+6)} GO TO 230

ok R o R W ok ok ok k kxR RN A

CO 50 f=z1.4
IND=V =141
344 REIY=TSTEP(IND)/TSTEP{IKD~1}
IF {uNOTo{(R{1)eLTeR{2} LAND, R{21eGTRI3)2AND. RI31aLT.R{4)}L0HY
% RU1IeGTARI2} «AND: R{21«LTsRI31.ANDs R 3)eGToR{41}1}
$ GO TC 200
TSTAVE (TSTEP(K~114TSTEP(K~2I+TSTERP{KR=3T4TSTEP (K=4) /4. -
Yio ICTST=1CTST+1
TSTEPIK)=TSTAY
200 TSTEPL=T1STER(K)}
TIME(K+1)=TIME(K)I+TSTEP{K}
RETURN
END
SIBFYC TOS DECK
SUBROUTINE DIFFEQ (BGMsGPDT $BAMPU VAASYAAY JEKJIT
Cll’!i'&iliiiil EEFRFF IR BRI LI LA AR R RS S HFF R FE R IR RSB REIRF A F RN AR AR AR LR REF EXEFE
Cx THE SUBROUTINE 'DIFFEQ' IMPROVES T+E SOLUTICH OF THE
C* SYSTEM OF THREE NON-LINEAR PARTIAL DIFFERENTIAL EQUATIGHS FROM A TRIAL
C* FUNCTIONs AT EACH {JY ITERATION AT EACH INSTANT OF TIME.
C*
= THIS ROUTINE USES A FINITE DIFFERENCE SCHEME B2SED ON THE
C*  SCLUTION OF TWO TRIPLE-DIAGONAL MATRICES WITH A DIRECT METHOD.
e .
(<4 SUBPROGRAMS NEEDED ART
[ £SLev2 Y
Ce SEQUAD!
c* ¢TRDU ¢
C‘
C.
C* INPUT PARAMETERS ARE
(44 .
¢* EX = ONE-DIMENSIONAL ARRAYs ELECTRIC FIZLD SPATIAL DISTRIBUTION AT
C* THE PRIVIOUS INSTANT OF Y¥IME K-l
s E = ONE-DIMENSIONAL ARRAYs INACQURATE ELECTRIC FIELD SPATIAL DISTRI-
(44 BUTION AT THE INSTANT OF TIME
e N = ONE-DIVENSIONAL ARRAYs INACCURATE ELECTRON DENSITY SPATIAL DI~
Cc STRIBUTTON AT THE INSTANT OF TIME «
cs P = ONE-DIMENSIONSL ARRAYs INACCURATE  HOLE  DENSITY SPATIAL DI~
c* © STRIBUTICN AT THE INSTANT OF TIHE K
cl
(€4
(44 OUTPUT TARAMETERS ARE
[
c* E * ONE=-DIMENSIONAL 2RRAYs IVMPROVEC FLECTYRIC FIELD SPATIAL DISIRIBU-
ce TION AT THE INSTANT CF TIME X
[ ] = ONE-DIMENSITNAL ARRAY, IMPROVED ELECTRON CENSITY SPATIAL DISTRI-
(<4 AUTEON AT THE (KSTANY OF TINE
cs P * ONE-DIMENSICKAL ARRAYs IMPROVED  HOLE

CENSITY SPATIAL DISTRI-

L N N N ]

66¢



(€]
(]

BUTION AT THE IASTANT OF TIME K

DELN = ONE-DIMENSIONAL ARRAY» CORRECTION FOR THE ELECTRON DENSITY SPA~
TIAL DISTRIBUTION AT THE COMPLETION OF EACH {J) [ITERATION

DELP = ONE~DIMENSIONAL ARRAYs CORRECTION FOR THE « HOLE DENSITY SPA~
TIAL DISTRIBUTION AT THt COMPLEYION OF EACH {J) [ITERATION

D& & ONE~DIMENSTONAL ARRAYs TOTar CORRECTION FOR THE ELECTRON DENSITY
SPATIAL DISTRIBUTION AT THE INSTANT K

o = ONE-DIMENSIONAL ARRAYs TOTAL CORRECTION FOR THE HOLE ~ DENSITY
SPATIAL DISTRIBUTION AT THE INSTANT K -

VAA = ONE-DIMENSTONAL ARRAYs TERMINAL VOLTAGE OF THE DEVICE

THE ARRAYS EXsE4N+P DELN,DELP ARL IN DOUBLE PRECISION
AND OF DIMENSION 810. IHE ARRAYS ON,DP ARE IN SINGLE PRECISION AND
OF DIMENSION B810. THE ARRAY VAA IS IN SINGLE PRECISION AND OF DIMEN~
SION 2004

L I

CREANB ARG RRERE AL AR A R R EERREI R R R IR XL AR EFRE AR LRI F R FF XN FRRFERREX RN RRA N RN E

110

130

150

DOUBtE PRECISION E(B101sN{8101+P{B10)XSTEPIBLO}. £x(8lo}
sDELN(B10)sDELP{BI0IsAN(B10)+AP(BLC! +BN{B10)1+BP{E10)+NSL

S(llOloPSL(SID)oVNtéIO):VP(SlO)y NCURY( 810} »PCURV(B10}

Ts ZoZESALFADOPING,CNs (P RO PNA,YD,VA

DIMENSION DK{B8101.DP{810),VAAL200)

EQUIVALENCE (VNsNCURVDELN) s (BNsNSL 12 {BPsPSL)» {VPs PCURV,SDELP)

S+ {ANAP)

COMMON #XST /XSTEP
s 7TP  f NDsNAVDIEsNsPsIMsIL»IDTsK4TSIEPL
3 ZDWORC/ NCURVSNEL s PSLePCURVIANSDN,DP
Wi=iL~1

IMPI=IM+1

CALL SLLV2 {NsNSL JNCURVWPPSL+PLURV,IL}

DO 110 1=1.1L_
E(IIw({PSL{I)-BGMANSL ([ )1~GAMPJ+EK{ I3 *GPDT)/{P{1)+N{ [} *BSM+GPDT )
VAAI=VAALK]

IF tJITLEQ.1) VAAL=VAA(K-1)

CALL EQUAD (ZsVDsVALVAZ(KIIL])

DOPING =ND

DO 130 I=2.I.1

ALFA=XSTEPL I} /XSYEP(I-])

252.D0/XSTEPIT)

ZE=E{1}

IF {1.EQ.IMPL} DOPING =-NA

RHOTP{13}-N{11+DOPING

CN=Z4ZE/ALFA

YN{TI=s ~ (NCURVIII42E®NSL{1)+N{ 1) ¥RHO-GNDTRINUI} ) /CN¥IKSTEP(TT+
SXSTEPLI-11)

BN{1)=({RHO-NII)~GNDT) # XSTEP{I~1)+ZE-CN] /CN*(ALFA+1,00)
AN¢11=(Z~2E }/CNRALFA

CALL TRDUI UARWBNVN.IL}

00 140 1=2s+1L1

ONtT1=aDN{IJ+DELN{TY

N{1)=N{1}+DELN{T}

CHERFRAUEFRARERRFRCRRNEEN X RRFERRH R FRKEREEFRER AR AREXRA R RUACERE R X RRXREEE RN R R

220

DOPING ND

DO 230 I=2,1L1

ALFA=XSTEP (I} /XSTEP(I-1}

2=2.00/XSTEP!T}

ZE=ELT)

IF {1.EQ.IMPl}) DOPING =~NA

RHOSP{13~N(1I+DOPING

CP  =Z-ZE/ALFA

VPLI)x —(PCURVIII-ZE#PSL{TY-P{11*RHO-GPDT*DF(111/CP *(XSTEP(I}

S+XSTEP(I~1)}

BP{11==( IRHD+P{ [} +G DTI#XSTEP{I~1} + ZE+CP)/CP X(ALFA+1,DO}
230 APL13=(24ZF/7CP*ALT Y,

CALL TRDUL (AP#BP.V3.IL)

DO 240 1=2,1L1

OP({I1=DP{1)+DELPI I}
240 P{TI=P{I1+4DELPI(T}

RETURN

END

SIBFTC TH6A DECK
SURROUTINE SLCVZ 1Y) YSLeYCVaTeISLeTCVsIL)
I e e N e ey e s LT P

s THE SUBROUTINS  FSLCv2¢ COMPUTES THE SPATIAL SULOPE AWD *
¢* (URVATURE OF TWO FUNCTIONS GIVER IN DISCRETIZED FORM THROUGHOUT THE POINT #
C* [NTERVAL 1 - IL » *
e *
(44 THIS ROUTINE USES A PARABOLIC INTERPOLATION SCHEME AT EACH
Ce¢  SPATIAL POINT (THREE-POIKT FORMULA)Y SUITABLE FOR HON-UNIFGRM 3TEPS. *
T% "HE SLOPE AMD CURVATURE AT EACH POINT ARE THAT OF THE PARABOLA TRACED *
€%  "HROUGH THE POINT ITSILF AND THE Tw0O ADJACENT PGIMTS. *
C¥ DOUBLE PRECISION ARITHMETIC IS USED. *
(<3 *
(<4 . *
C* INPUT PARALETERS ARE »
c* R *
L4 = ONE-DIMFNSIONAL ARRAY WHOSE SPATIAL SLOPE AND CURVATURE ARE SOUGHTH*
[« S = ONE~DIMENSIONAL ARRAY WHOSE SPATIAL SLOPE AND CURVATURE ARE SOUGHT*
< L = TOTAL NUMBER OF SPATIAL PCINTS *
C# XSTEP = ONE~-DIMENSIOiAL ARRAY» NON-UNIFORM SPATIAL STEPR SIZE Al EACH »
(42 SPATIAL POINT *
[<3 *
f<] *
Cx OUTPUT PARAMETERS ARE -
(<4 =
= vsi = OME-DIMENS{OMAL ARRAYs FIRST SPATIAL DERIVATIVE AT EACKE SPATIAL *
(4.4 POINT OF THE GIVEN ARRAY ¥ -
C® st = ONE-DIMENSICHAL ARRAY, FIRST SPATIAL DERIVATIVE AT EACH SPATIAL *
(44 POINT OF THE GIVEN ARRAY T *
c*®  voy = ONE-DIMENSIONAL ARRAYs SECGND SPATIAL DERIVATIVE AT EACH SPATIAL *
c* POINT CF YHE GIVEN ARRAY Y A
<*  TCY = ONE-DIMENSIONAL ARRAYe SECOND SPATIAL DERIVATIVE AT EACH SPATIAL #
(42 POINT OF THE GIVEN ARRAY T *
(<3 *
Cw *
c» ALL THE ARRAYS ARZI OF OIMENSICN 816 XD IN DOUBLE PRE- *
C* (ISION. *
(R e T e T Py

DOUBLE PRECISION XSTERP{1)sYSLIIJ+YCVI1ll,svil}
S+ALFASALFAF JALFAPI X2 ALFAL
$»TIIIeTSLITI»TCVIL)

COMMON /XST 7 XSTEP

ILi=it-1

DO 400 I=2,1L1

ALFA=XSTEP(I}/XSTERPII-1)

ALFAP13ALF2+41.00

ALFAL=ALFA=1,D0

0]6) 4



ALFAF=ALFA/ALFAPL#*ALFA
XZ=2eDO/IXSTEPLT ) ¥ IXSTEPITII4XSIEP (=111}
TSLITY= (T(I141)/ALFAPL +ALFAJ¥T{1}-ALFAF *T{I=-11}/XSTER(I}
¥SLtli= (Y({I+1)/ALFAPYL +ALFAIRY ([} -ALFAF *YLI-113/XSTERLDY
TOVLID)=(T(1+]))-ALFAP} ¥T(I)+ALFA *T{1-1)1%x2

. YEVIII=(Y(T41)-ALFAPL  *Y{I)+ALFA  *Y{I-113}*XZ

400 CONTINUE

YSLL1Y= {Y{2)=-Y(1})/XSTEP{]}
TSLLIY= (Y(2)-T(1))/XSTEP(1})
¥SLETL ¥=4Y{IL)=-Y{IL1 }I/XSTERP{IL] )
TSLOIL =4 TCIL)~TIILY JI/XSTEPLILY )
RETURN
END

STBFTC TO8ER DECK
SUBROUTINE SLCV2 (Ya¥YSUsTCVeT» " SL.TCVAILY

CRREAR RS ERE R BRI AR ER SR F R ARG FRF RI AR R R KR X RAR RS RN LR ARSI AR A AR AN RER DKL G2 H N

Ce THE SUBROUTINE 5LCv2t COMPUTES THL SPATIAL SLOPE AND *
C* C(URVATURE OF TWO FUNCTIONS GIVEK [N DISCRETIZED FORM THROUGHOUT THE POINT *
C* INTERVAL 1 = IL *
s “
(24 THIS ROUTINE USES A LAGRANGTAN INTERPOLATION SCHEME AT *
C¥ EACH SPATIAL POINT ( FIVE POINT FORMULA) SLITABLE FCR NON-UNITORM STEPS.  *
C» THE SLOPE AND THE CURVATURE AT EACH POINT ARE THAY OF THE FOURTH ORDER *
€% FOLYNOMTIAL TRACED THROUGH THE POINT ITSELF AND THE FOUR ADJACENT POINTS. *
C* DOUBLE PRECISION ARITHMETIC 1S5 USED, *
C= *
(4.4 -
C* INPUT PARAMETERS ARE *
c* L]
cE Y = ONE-DIMENSIONAL ARRAY WHOSE SPATIAL SLOPE AND CURVATURE ARE SOUGHT*
c* 1 = ONE~DIMENSIONAL ARRAY WHOSE SPATIAL SLOUPE ARD CURVATURE ARE SOUGHT*
s L = TOTAL NUMBER OF SPATIAL POINTS *
C# ¥STEP x ONE-DIMENSICHNAL ARRAY. VOM-UNTFORN SPATIAL STEP SIZE AT EACH *
c* SPATIAL POINT *
c* #
ce *
cs OUTPUT PARAMETERS ARE *
= *
C* ¥SL = ONE-DIMFNSTONAL ARRAY> FIRST SPATIAL DERIVATIVE AT EACH SPATIAL *
c POINT OF THE GIVEN ARRAY ¥ *
Ce  °SL = ONE-DIMENSIONAL ARRAY, FIRST SPATIAL DERIVATIVE AT EACH SPATIAL  *
fa POINT OF THE GIVEN ARRAY 7 *
ce  YCV = ONE-DIMENSIONAL ARRAY», SECGND SPATIAL DERIVATIVE AT EACH SPATIAL *
(<3 SOINT OF THE GIVEN ARRAY Y *
cs  TCv = ONE-DIMENSIONAL ARRAY, SECOND SPATIAL DERIVATIVE AT EACH SPATIAL *
(4] POINT OF THE GIVEN ARRAY T *
(£ 4 -
C# L 3
(4 ALL THE ARRAYS ARE Gt DIMENSION 810 AND IN DOQUSBLE PRE- -
C* (1510K. *
c&‘vfiillililﬁil!lllllldli5{*5'!}!!ili*{‘*'i*lbl(iléil&**ﬁ!ll‘*!{!l{i!&*l{ﬁl{l&’

DOUBLE PRECISION XSTEP(1).¥SL(I},YCV{lY.v{1}
SIWEWWCBCoW sALFA  ,YI
SHTI1NTSLILIeTCVIL) 4 TLBCT
$» RITSR12+R13,R14,R15, UllaUiz,ul3.uls
$s R21sR22sR234R24«R254 U21,U22,U23sU24

$+ RITSR324R33,R34.R35, U31sU32sU33sU3%
Ty R41IRL2 R4S RLL4RLS
$ 2R524P534R544R55
Sy S1195219531,541, V11.v21sv3l
COMMOK /XST 7 XSTER
(ll!ll!IIlﬂl‘!!li!’i*li'i!l!l*lif‘l09{*!&!*!i!*!l*iif*il*&ll!%lll¥llil**'ki!il'*

L2=1L-2

IL3=iL-3

R12>=XSTEP{1)-XSTEP{2)
R13=1l.D0sR12

R22=~XSTEP {2}

R23=1.007R22
R52=-XSTEP{2)-XSTERP {3}
R53=1.D0/R52

R14=R13%R13

R24=R23%R21%

R54=R53%R53

R15=R14%R13

R25=R24%723

R55=R542R53

c&’f"’*iiiti!i‘(lﬁﬁﬁﬁlli"iii!-l‘!{!l‘l*ll*{**ill!*&***&o*'iti;i&{lll‘tlIl-&llll"

DO 300 1=3,iL2

R32:XSTEP( ()

R&42=R3I24XSTEP{1+1)

R33=1.D0/R32

R43=1.00/Rs2

R34=R33%¥333

R44=R4INRLY

R35=R34%R33

R4S=2R44L%R43

YI=Y(1}

RII={Y(f-23~YI1*RS
R21=1Y(1-1}~YI)%R25
R3I1=(Y{1+11~-YI)*R35
R4I=(Y{142]}~Y]})¥R45

Ul1#R11-R41

U12=2R12-R4Z

U13=R13-R43

Ul4=R14-R44

U21=R21~R41

U22=R22-R4Z

U23=R23-R43

U24=R26~R44

U31=R31-R&1

U32=R32-R42

U33=R33-R43

U34=R34-R44

WB=U22%U33-U32su23

WC=U22 43413202
BC=U21%032-031%U2?

WaUL2# (U23%U34-U33Pu2a) — UII%«l + Ulbswe
YSLIIY= (ULII#WB=UIZ* (U21#U33-U31#0231 + UI3#BC) / W
FOVIT)e -2.DO#(UII#WC~U12% (U21%U34-U3L*U24) + ULL2BCY / W
Ti=T(I3

SII=(T(1=23-T1}*R15
S21=(TeI-13-TI1#R25
S31=(T(1+11-T11#R35

561w (T{I+23-T1}%R6S

V11=$11-541

V21x521-5S41

Vv31=531-S41

0%



BCT=V21¥U32-V31%U22
TSLEII=IVITWE~UL2%{Vv2I®U33-V314(23) + UI3*BCT) /7 W
TCVM{T = ~2.00%tVEIRWC-UI2%{V21#U3a-Vv31¥U24)+ UL4*BCT } /7 W
R122R52
R13=R53
R14=R5&
#15=R5%
R22=-R32
R23=-R33
R24= R34
R255-R35
RS27=R42
R53=-R43
R54= R4Y4
B55=-R4S
3N0  CONTINUE
Cq-‘il&ldcotul':iliil*!ilJl!l*ll!*!*l**ii*}lﬁlli*lll*!—i&i{l*l*i&ll!lllii***l'lil‘l
00 400 =2s1LsIL3
ALFA=XSTEP{ 1) /XSTEPI I-1}
TSLUIY= {T{l+1)/(ALFA4L, DOY+(ALF2-1,D0)% T(I}~ ALFA*¥2/(ALFA+1,D0)
% =T{{-1y)/7 ASTEP(I}
TCV  1E322400%¢ TUI4+11~{ALFASL.DOINT{IIHALFAXT(I-1 ) ZUXSTEP()#
SIXSTEP(I-1)+XSTEP (1))}
YSLEII= (¥CI141)/{ALFA+LLDOI+IALF2-1.001% Y{I)~ ALFA#*2/(ALFA+1.D0}
S ¥YI1-1337 XSTEP(1}
400 YOV [131x2.00%( Y{TI+41}-{ALEA+1.DCI*Y (1) +ALFA*Y(I-1))/(XSTEP(])*
SIXSTEP(I~11+XSTEP(I))}
YSLET)={Y(2'-Y(1))/XSTIP(1}
TSLEE V=T (2 =T(1})/7%STIPLL)Y
YSLETL Y= (Y LIL}=Y(TL~21} /XSTEP(IL-1}
TSLUIL =T EILI=TOIL=1}) /XSTEP{IL-1}
RETURN
ERD

SIBFTC TO7 DECK
SUBROUTINE £QUAD ¢ EvvDaVASVAA(IL)
R R RN R RS F S T LR R N IR P R S S S RN S RN H B RU N B E R AX LR RRNNAA AT AR R R RN BRI XK ARRER

= BE INTEGRATED

s IL TOTAL NUMBER OF SPATIAL POINTS

C* XSTEP = ONE-DIMENSIONAL ARRAY, NOA-UNIFORM SPATIAL STEP SIZE AT EACH
(<] SPATIAL POINT

c« VD

DIFFUSION POTENT JAL

c» THE SUBROJTINE fEQUAD® COMPUTES THE QUADRATURE OF THE *
¢% ELECTRIC FIELD SPATTAL DISTRIBUTIOM, LIMITS OF INTEGRATION BEING THE L4
C* POINT BOUSDARIES 1 - IL. *
(<2 *
s THIS ROUTINE USES A PARABOLIC INTERPOLATION AT EVERY CTHER #
C* SPATIAL POINT. SUITABLE *OR NON-UNIFORM SPATIAL STEP DISTRIBUTION. SPE- *
¢x CIALIZED FOR THE CASE OF UNIFORM S1FP THE SCHEME REDUCES TO SIMPSON'S *
C* RULE,. *
cs *
c* »
Cx INPUT PARAMETERS ARE *
(<] *
c* € « ONE~DIMENSIONAL ARRAY, ELECTRIC FIELD SPATIAL DISTRIBUTION TO »
*
*
»
*
*
-*
-

C OUTPUT PARAMEYERS ARE *
C* »
C* \A = TERMINAL VOLTAGE [NORMALIZFD) L]
C*®  \ps = TERMINAL VOLTAGF  (UNNORMALIZED) *
* *
(<] . *
C» ALU THE ARRAYS ARE OF DIMENSION 830 AND IN DOUB.E PRECI- =
C*  <SION. *

(4 R T e e e P e e Y Ty
DOUBLE PRICISION XSTER{1} sE(1)sVDsIVA+ALFALGLG3,0V
COMMOR 7XST / XSTEP
te=It-2
DV=0,
DO 410 1=1,10242
Keli~]
ALFA=XSTE> (K} /XSTEP{K~11
Ql=2.D0~ALFA
03=2.D0~1sDO/ALFA
8§10 DV= (OI¥E(K-1)14{6.D0-01~031#E(K)+Q3%E(K+1) 1 /6.00% (XSTEP(KI+XSTIP
®{K-1}14DV
VA=VD~DV
VAA=VA*,025875
RETURN
£ND

$I3FIC 708 JECK

SUBROUTINE TROUI (4,8sC,T0L1
(€ e R e e P e ety
o THE SUEROUTINZ  fTRDU1! SOLVES A TRIPLE-DIAGUNAL SYSTEM
C®  OF THE FORM T # DELTA = D 4WHERE T IS A GIVEN TRIPLE-DIAGONAL
C#*  NATRIX WITH UPPER DTACONAL ENTRIES EQUAL TC UNITYs DELTA IS THE UNKNOWN
Ce VECTORs O IS THE KNOWN VECTOR. ) :

C* THIS ROUTINE USES A DIRECT METHOD BASED ESSENTIALLY ON

C*  GAUSSTAN ELIMINATION AND BACKSUBSTITUTION wHICH REDJCES IN THE CASE {CN=-
C*¥ STDERED TO A SEY OF RECURSION RELATIONS.

C* DOUBLE PRECISION 2RITHMETIC IS USED.

Cx

(<3 INPUT PARAMETERS ARE

Ce A = ONE-GIMENSIONAL ARRAYs LOWER DIAGONAL OF THE TRIPLE-DIAGINAL MATRIX
C* 8 = ONE-DTMENSIONAL ARRAY, DIAGCONAL OF THE TRIPLE-DIAGSNVAL MATRIX

C* D = OHE-DIMENSIONAL ARRAYs KNCWN VECTOR

€% i11=2) = NUMBFR OF EQUATIONS (ST2f OF THE TRIPLE~DIAGONAL MATRIX )

=

Ce QUTPUT PARAMETERS ARE

(S 2] = ONE-DIMENSIONAL ARRAY, ORIGINALLY THE KNOWN VECTCR

Cs

(£ ALL THE ARRAYS ARE OF DIMENSION 1000 AND IX OCUBLE PRE~
= (ISlon

Cs

(<4 NO WORILING ARRAYS AREZ NEEDED. THIS IS ACHIEVED THROUGH

R R EEE R R TR N I I NN

C*  USE OF INTRINSIC EQUIVALEXCE. DURING THE EXECUTION OF THIS RGUTINE THE
€¥ ARRAYS B AND D ARf ERASED.
g T L T R r T T Tt g S S a2 T YT T LS TS 2 T e
DOUBLE PRECISION Ar11aB(13.0(1)
IL1=TL-1
2= -2

0P



DI23=DI2Y/RI2}
02 20 I=3,It1
B(Iy=B{I}-AL{)/BLI-1}
20 DUI3={DE1~2L 1I¥DIT —21))/B(T}
DO 30 I=2,1L2
Kelt-1
30 DIKI=D{KI-D(K+1)}/B(K)
DI11=0«
DIIL$=0,
RITURN
END

$IBFTC To% DECK
SJBROUTINE INTERP (KsKTsVAA,VAAR1J+TIME)

[ X X e e T e e Y e e R IRz e 22T 2 LT

{» THE SUBROUTINE ¢#INIERP' FURNISHES AT THE TIME K A VALUE #
C*  OF TOTAL CURRENT APPROXIMATELY {ORRLSPONDING TO A SPECIFIED VALUE OF TER-

C*¥ MINAL VOLTAGEs DURING THE VOLTAGE-DRIVEN TRANSIENT PROCEDURE

C*

T THIS RQUTINE USES EITHER A PREDICTION SCHEME ON THE AVAIL~

€Kk ABLE CURRENT VERSUS TIME RESPONSE {J VERSUS TIME)s OR AN INTERPOLATION
£#  SCHEME ON THE CURRENT-VOLTAGE CHARACTERISTIC FROZEN AT THE INSTANT OF

C* TIME K {JTR VERSUS VTR}.

C SUBPROGRAM NEEDLD

c= *SLAGR?

C*

[« 3

cs INPUT PARAMETERS ARE

C

¢ K = INDEX IDENTIFYING YHE INSTANT OF TIME

L N = ONE~DIMENSIONAL ARRAY» TOTAL CURRENT AVAILABLE AT THE INSTANTS

C 19243 eee K-1

€% TIME = ORE-DIMENSIONAL ARRAY, INSTANTS OF TIME

C¢ VAAR{K}= SPECIFIED VALUE OF TERMINAL VOLTAGE AT THE INSTANT
C* JIR(1} = INITIAL GUESS FOR THE TOTAL CURRENT AT THE INSTANT

C* FROM A DATA CARD

(<]

(<]

Cx OUTPUT PARAMETER

c*

< ) = TOTAL CURRENT AT THE INSTANT K, CORRESPONDING TO THE SPECIFIED
C* TERMINAL VOLTAGE VAARIK)

[T 2 R R s R e S e R R e a st s i st el sy

REAL JTR{101sVIR{1IN} +» (20001 4VAAR 2001 sTIMEL200) #X(31+Y (3}
COMMON ZINTP/ JTR,VTR
2 FORMAT {E10.0%
KT=KT+1
IF {KT.NE=1l} VIRIKT=-11=VAA
TF (X +F0+3,28D.KT.EQ.1) GO TO 60
IF (X «GEes4} GO TO 100
IF (XT<EQe1} GO YO 10
IF (XT.EQ.2} GO 7O 20
IF {XT.EQ.3) GO TO 130
GO TO 140

K
K=2s READ IN

WK W K Kk K K K B Rk N K K K K K R R

10 READ (5,21 JTR(1)
GO TO 500
20 FFY-Z.

IF  ABS/VTRII))«GT.ABSIVAARIK ))} FCTw,5
JIR{21=JRILIFFCT

LR N B I I )

GO YO Sce
&0 JYRLII=3 (K-1}%
G0 TO 50¢
100 IF {KTeE0+1) GO TO 110
VIRIKT~1'=vAA
IF {XTeF0.2)} GO TO 120
IF {KT4EG«3} GO TO 130
GO TO lad ~
110 JTR{YI= ITIMECK  J-FIME(K-21) 7 (TIME(R-1i-TIMEC(K-I)3®1{J(K-1})~
s tJik-211) + (JIK=-21)
GO 10 500
120 00 125 1:=1,3
INDX=K~]
X{T)=TIMECINDX}
IF {JUINDX3«EQaOe) J{INDX}=1E-7
125 Yi{l= LIEINDX Y
CALL SLAGR {XsYyTIMI{X )s33JTRIZ2})
RAT=JTR{21/JTR{1}
TF (RATWLT+1e001 +2MDeRATGTea999 ) JTR{2)=JTR(1I* 42
GO 1O 500
120 JTRE3I= [VAARIK J-VTRI11}} /IVTRI{ZI=-VTRIL)1*{ JTR(DI-JTRIL1}) +
$ JTR(1} - .
GO TO 508
145 IF (KTeEC.4) GO TO 160
I=1
IF {ABSIVTRIZ}-VARRIK ) «GT. A3S (VIR(1}-VAAR(K 11y 1I=2
1F (ARSIVTRIZ)I-VAARIK 1) oGT. A8S (VIR{II=-VAAR(K )31 1I=3
VIR{II=VIRIKT=1}
JTR{TI=JIRIKT~11}
160 DO 170 11,3
XI1I=VIR(])
170 Y{11=J3TRLIY
CALL SLAGR {XeYaVAARIK 1+3+JTRIKT}}
500 JUIK  y=JIRAKT}
KTl=KkT-1
KP=K
IF IKTeEDs1} WRITE (65505)IKPRTsKY 4 JTRIKT)
505 FORMAT {IHIs &4H 2y Tha/74H KT=e147/775%1HI» 19X 3HITR 7/ 165E25.81
IF (KTeNI-1} .
SWRITE (6+s51CIKP»XTy (TsJTRUI)2VTR{T14I=1:KT11s KT JTRIKT)
510 FORMAT (IXe/f2//244f
s 4H KrTolba/74H KTes 14/7775Xs 1HIs13Xs35UTR» 22X 43RV
STR /7116:2625.8)31
RETURN :
END
SIBFTC T10 DECK
SUBROUTINE SLAGR (JTeVAIT»JTW 4, 0P)
[ R e T R e Y e T ST s
C= THE SUSROUTINE  FSLAGR' EXICUTES A LAGRANGIAN IRTERPOLA-
Cx TION ON TwD ONE-DIMINSIONAL ARRAYS NOT UNIFORMLY SPATED.
(€3
Cs THIS ROUTINE CONSTRUCTS THE PERTINENT MaTRIXsTRIANGULARI-
C# Z2ES IT WITH THE GAUSSIAN ELIMINATION PROCESSs SOLVES THE SYSTEM BY BALK-
C* SUBSTITUTION TO OBTAIN THE COEFFICIENTS OF THE INTERPCLATING POLYNOMIALS

€0b



C* AND CCMPUTES THE VALUE OF SUCH POLYNOMIAL AT THF DESIRED PUINT. *
C* DOUBLE PRECISION ARITHMETIC IS USED. *
C »
(4] INPUT PARAMETERS ARE *
C*  JT = ONE-DIMENSIONAL ARRAYs ABSCISSA CF THE GIVEN POINTS (DIMENSION=10) #
C® VAT x ONE-DIMONSIGNAL ARRAY, ORDINATE OF THE GIVEN POINTS (DIMENSION=1G) =
€% JTW = ABSCISSA OF THE DESIRED POINT *
€ MM = NUMBER OF POINTS GIVEN (THE ORDER OF FHE. INTERPOLATI{NG POLYNOMIAL *
(42 IS MM-1). MAXIMUM MM VALUE = 10. *
(4 *
x OUTPUT PARAMETERS ARE *
* pp = ORDINATE OF THE DESIRED POINT *
C *
[ ALL THE INPUT AND OUTPUT WUANIITIES ARE IN SINGLE PRECISION

[ e e R R Ry )

REAL JT{10YVATT(IN} JTW

DOUBLE PRECISION JTM{10s11}+2Z+SUMSCFL1D)
1 FORMAY {1X3//1Xs8D1648}

IF(#M.LEL10) GO TO 10€

WRITE (6,10} MM
10 FORMAT (49H ERROR IN SUBROUTINE 'SLAGRI, THE PARAMETER MM=s 1694

$ 30HEXCEEDS THE MAXIMUM PERMITTED 172y

CHRRERANRE S % 25 ¥ ¥ FEXRUILD THE PERTINENT MATRIXEXEIRAFRIRS XXX ERE AR XN EERERXX RN X X%
100 MIT=pMma] :
200 DO 205 1=14M
JTRLTA1)=1.
205 JTMITSMITY=VALITIT)
DO 210 1=1,u¥
DO 210 K=ZsuM
210 JTMUT e =JTH(LaK=13%0T{ 1}

CHRzY e Nwx N3O RNTRIANGULIRIZE THE MATRIX BY GAUSSTAN ELIAINATION®¥ ¥rskssseews
M)lxMM=1
DO 300 KK=1.M1
TL=14KK
D0 300 IR=ILsMM
ZZ=JTHEIR»KCY/JTHIKK sXK)
DO 300 K=IL+MIT
300 JTMIIRSKISITHUIR K ~22% JTMIKKK)

CERBRERI NN R X F#bES0LVE THE MATRIX BY BAUK=SUBSTITUTIONSFEERERERNEXABRERNE KN ERE
CFEMMI =TI MIT I ZJTV MM MM Y
DO 320 1=2eu0
IR=MIT-}
IRP1=IR+1
SUm=0,
DO 310 J=IRPLMM
310 SUM=JTMUIR »JIXCF { 514 5UM
320 CFLIR)S{ITMITIRSMIT) =SUM) FSTMIIR D)

CHEERRERAEXAFI SR 4*COMPYTE THE VALUE OF THE INTERPULATING POLYNOMIAL AT THE¥#x*x
€2 DESIRED POINTHEd s A r rr s ns R R A N A R RN I P RN A AR R R R IR IR RN AR R RN R R RN RN R AEN
DP=CF (MM)
DD 350 I=242M
TR=MIT-1
350 DP= JTWaDP+(F (IR}
RETURN
END

1740} 7
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LIST OF PRINCIPAL SYMBOILS

material) in thermal equilibrium

Symbol Description FORTRAN
notation

A Cross-sectional area of the device A

B external contact of the base of a B
transistor

C total incremental capacitance per unit area| CAP

Cd incremental diffusion capacitance per unit | CAPDF
area

Ct incremental transition region capacitance CAFCK
per unit area

i spatial index (integer) I

Il external current IEXT

J iteration index (integer) ITER

J,Jn,Jp,JD total, electron, hole, displacement J,JN,dJP,JD
current densities

JB’JC’JE base, collector, emitter total current JB,JC, JE
densities

JSat saturation current density JSAT

k time index (integer) K

4 total number of spatial points (integer) IL
[index identifying the point L]

L exlernal contaclt on the right side of the L
device

M(MC) metallurgical interface between the Ne M (MC)
material and P-material (at the
collector junction of a transistor)

MN(MP) interface between the neutral and depleted | MN (MP)
N-region (P-region)

n electron density N

nN(nP) electron density in the N-material (P- NN(NP)



N,NA, b

RATMX
s1.(5)

S (or Ax)

Vo (Vpg)

Vg (Vg)
Wy ()

XN(XP)

Yo (¥y)

4o6

net impurity, acceptor, donor densities

external contact on the left side of the
device

hole density

hole density in the N-material (P=-
material) in thermal equilibrium

electric charge of one polarity per unit
area

external resistor

upper bound for the ratio of consecutive
steps

‘'surface recombination velocity at the

external contact I (0)
spotial step
upper bound for the spatial step
time coordinate
generation-recombination rate
general (specific) applied voltage
diffusion (or barrier) potential

diffusion potential at the collector
(emitter) junction in a transistor

base-to-collector (base-to-emitter)
voltage in a transistor

external voltage source (battery)

neutral region width in the N-region
(P-region)

spatial coordinate

transition region width in the N.region
(P-region)

ratio between consecutive spatial steps

reciprocal of the electron (hole)
nobility

NTM, NA, ND

P

PN (PP)

R

RATMX

SL (S0)

STEP (or X3TEP)

SMX

TIME
v (VA)

VDG (VDE)
VBC(VBE)

VS(VB)

WN(WP)

XN(XP)

ALFA

GAMN(GAMP)



An(4p)

Lot

correction for the electrostatic potential
in the iterative scheme

in Part I: increment of electron (hole)
density for a small increment of applied
voltage

in Part II; correction for the electron
(hole) density in the time-dependent
iterative scheme

time step

spatial step

truncation error

net electric charge density

corductivity of the material

surface charge density at the external
contact L(0)

dielectric relaxation constant

steady-state transit time of minority
carriers

electron (hole) quasi-Fermi level
injection parameter

electrostatic potential

Dimensioned quantities

unit of carrier diffusion constant
electron (hole) diffusion constant
electronic charge

Boltzmann's constant

intrinsic Debye length

intrinsic carrier density

absolute temperature

DELTA
DELTAN{DELTAP)
DELN(DELP)

TSTEP

STEP (or XSTEP)

RHO

COND

IR

IT

FERMIN(FERMIP)
INJPAR

BT

- EICH

NINT
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Vt thermal voltage vT

3 permittivity of the material PERM

“nmp) electron (hole) mobilities MOBN, MOBP
Special Symbol

iy

defined as
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