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DIRECTED ELECTRON VELOCITY DISTRIBUTIONS

IN RARE GAS DISCHARGES USING GUARD RING PROBES

Robert H. Bond

Abstract

An experimental technique for determining detailed properties

of anisotropic electron veloclty distributlons is described. For a

planar Langmuir probe it is shown that g(vz) = - E§<§vg where

€ P
v, = 2 % Vp and g(vz) gives the density of electrons with velo-
cities normal to the probe in the range v, to vZ+ dvz - This

expression is valid for any distribution function making it possible
to study anisotropies merely by changing the orientation of the
probe. If the distribution function is isotropic the above expres-
gion is valid for cylindrical and small spherical probes as well.

This technique is applied to the measurement of the directional
properties of electron velocity distributions in the positive column
of neon and helium hot cathode discharges. The necessary planar
probe conslets of a 0.0l inch diameter circular probve surrounded by
a 0.090 inch square guard-ring. The measured distributions were
Druyvesteyn in form except that all electrons were shifted in energy
(in the direction of the external field) by an amount proportional
to Ex(vz) . Here E 1is the magnitude of the external electric
field and X(VZ) the electron mean free path as a function of v, .
The experimental conditions are shown to be identical with those

necessary in the derlvation of the Druyvesteyn distribution.
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I. INTRODUCTION

1.1 History of Problem

It 1s known that conducting probes were used by Crookes in the
elghteen«nineties to explore ionized gases. Also, J. 3. Townsend dis-
cussed the use of such probes in the early nineteen-hundreds. However,
it was not until the work of Irving Langmuir in 1923 that the operation
of these probes was understood. Langmuir presented his probe theory in
a series of articles in the General Electric Review (1-5). 1In these
articles Langmuir assumed that the plasma electrons had a Maxwellian
energy distribution and with this assumption found that the current

drawn by the probe as a function of negative probe potential is
(1.1)

Here Kl’ K2 and a are constants, while Ip is the electron cur-
rent and VP the absolute value of the probe potential with respect
to the body of the plasma. Because of the exponential nature of this
relationship it was (and still is) common practice to plot 4n Ip

versus Vﬁ . The constant a can then be determined from the linear
plot. However, soon after Langmuir's publication;wit became evident

that many of the in Ip versus VIJ plots were not linear (particu~

larly if taken to sufficiently high values of Vﬁ)- Assuming that the

(1) T. Langmuir, H. Mott-Smith, General Electric Review 27, hkg (1924).
(2) 1pid. 538

(3) Ibid. 616
(k) Tbid. 762

(5) Ivid. 810
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probeé were functioning "properly"” this means that the distribution
| functions were not Maxwellian as Langmuir assumed.

In 1930 Druyvesteyn (6) devised a scheme for overcoming this
problem in the uée of Langmuir probes.' He developed a fheory vwhich
showed that for planar, cylindrical, and small spherical probes the
actual electron velocity distribution function could be obtained from

the probe voli-ampere characteristic as follows:

hme BQIP (1.2)
f(V) = - —— 1.2
A e avp2

vhere f(v) 1is the speed distribution of the electrons giving the
_pumber of electrons with speeds in the range v to v+dv, A 1is the
collecting érea of the probe, and m and e are the mass and charge of
the electrons. The one major assumption necessary to arrive at the
above result is that the distribution function is isotropié. Because
it has become more and more evident that in many cases the electrons do
not have a Maxwellian distribution, this technique for measurling distri-
bution functions has gained increasing favor. At first the second
derivatives of the probe curves were obtained grap%}cally. This was
quite unsatisfactory in that the original curves wvere subject to many
errors and the graphical differentiation multiplied these errors to an
intolerable point.

In 1934 (at the suggestion of K. G. Eme].éus) R. H. Sloane and

E. I. R. MacGregor (7) devised an ingenious method to overcome the need

(6) M. J. Druyvesteyn, Z. Physik 64, 781 (1930).
(7) R. H. Sloane, E.I.R. MacGregor, Phil.Mag.18, 193 (1934).
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of graphical differentiation. Their technique involved superimposing
a small a-c potential on the d-c probe potential. This causés the d-c
probe current to increase over the value .it would have with no a-c
applied. The amount of increase is proportional to ‘the second deriva-
tive of the probe characteristic. This can be understood by consider-
ing the Taylor series expansion of the probe current when the probe

voltage has the form

V"p =V + e where e - A cos ot (1.3)
This gives:
. e2
I, = £(V)) = £(Ve) = £(V) + ef (V) + 5 £7(V)+ -+~ (1.4)

On substitubting for e this becomes

‘ 2 b ,
{f(V)+ .“;‘1_ £ (V) + %I £ (V)4 - }

-
i

+

3
{Af'(V)+ % (V) + oen } cos wt

-+

2 L
{%— (V) + %8' Sl 10 WU } COB 2t +=s oo (1.5)

which shows that for sufficiently small applied a-c voltages

L ‘ 2 ,
[%ﬂ £"(V) <« %—- £"(v)] the chenge in the d-c probe current is pro-

portional to the second derivative of the probe curve.

This technique was used by Sloane and MacGregor (8) and later

(B)1pig.
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by Emeléus, Montgomery and Grieves (9), Emeléus and Ballentine (1C) and
Grieves and Johnston (11) to measure the velocity distributions in low
pressure glow discharges. The vwork of these people in the field repre-
sents the most extensive work done until the early nineteen-fifties.

One other piece of work deserves mention. This is the technique
developed by A. H. van Gorcum (12) in 1936. Van Gorcum again used a
small a-c voltage applied to the probe, but he also devised a unique
and ingenious bridge circuit which made it possible to determine the
second derivative of the probe curves, point by point. It is probably
because the technique was slow that it did not see greater use. Van
Gorcum's circuit is shown in Figure 1.1. The following is a summary of
his technique. The voltage appearing on the vertical plates of his
ogecilloscope was gg(Vy - Vy) where Vy is the average value of V
The horizontal deflection was proportional to gl(Vﬁ - V%) . By

Kirchheff's voltage law we see that

vV =k. IR-kV 1.6
v l'p 2'p (1.8)

but V. =V_+ K cos wt and if we again expand I = £f(V ) in a
Y p b P b

-

Taylor's series and substitute this into the above cxprecesion, we

obtain

- 2 3
Y = a + al X + a2X + a3X + e

(9) K.G. Emeléus, F.D. Grieves, E. Montgomery, Proc.Roy.Irish Acad.Ak3,
35 (1936).

(10) K.G. Emeléus, R.J. Ballantine, Phys. Rev. 50, 672 (1936).

(11) F.D. Grieves, J.E. McF. Johnston, Phil. Mag. 21, 659 (1936).

(12)A.H. van Govcum,Physica 3, 207 (1936).
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wh Y = v -V X = vV -V
ere gg( y y) 2 gl( p p)
and
a = gg(klRf - kgvp - vy)
g .
— 2 1
a, = gl(klRf - ke)
€o
- & " .
a, = > klRf (1.7)
z.gl

Thie is the equation of the curve plotted on the osclllioscope. We see

that for sufficiently large only the first four terms of this

g1

series need he considered.

Van Gorcum adjusted kq and k2 such that a, was zero, by

1

noting when %% = 0 . Having done that, a, could be determined
from the express§32
a, = % {Y(—l) + Y(+1) - QY(O)} (1.8)
or 2
o= L {Y(-l) + Y(41) - EY(O)} (1.9)
ggklR

Using this technique van Gorcum studied distribution functions near the
cathode in neon discharges.

In 1951 Kagan, Fedorov, Malyshev and Gavalles (13) swept the

d°T
probe voltage linearly in time so that ——EE was proportiocnal to
dalp 4°r dvp
— They then obtained -mw% by using two R~C differentiating
dt dt

circuits. This method shows great promise in theory but is guite

(13) J.M. Kagan, V.L. Fedorov, G.M. Malyshev, L.A. Qavallas, Dokl.Akad.
Nauk.SSSR 76, 215 (1951).
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difficult to implement experimentally due to the inherent nolse present
in the plasmas Dbeing probed. It 1s speculated that for this reason the
technique was dropped.

In 1953 Malyshev and Federov published a paper {14) in which
they described an improvement on the Sloane and MacGregor technigue.
This conslsted of superimposing a small sinusoidally modulated a-c
voltage on the probe voltage such that the e of equation 1.3 becomes

A(l+ cos wpt) cos wt . This leads %o

- 3 \2pn ..
Ip—f(V)+8Af(V)+.

2
A 7 4
4 { - (V) 4 AT (v r CO8 W b 4 ++- 1.10
(L e« e ) (1.10)

Here we gee that if A is pufficicntly small, the component of the
current at ab is proportional to f"(V) . Malyshev and Federov took
advantage of this by building narrow band amplifiers tuned to mp .
The output of these amplifiers is then proportional to f"(V) . The
advantage over the Sloane and MacGregor technique is that here, assum-
ing ideal filltering, the only error is due to neglecting the terms
involving f™, etc. which is quite valid for small A . With no
modulation on the a-c volkage one must measure the change in the d-c
probe current as the a-c is switched on and off. This is subject to
large errors because very slight drifts in the d-c¢ plasma cqnditions

can cause f(V) to vary the same order of magnitude as the guantity

(14) G.M. Malyshev, V.L. Federov, Dok.Akad.Nauk.SSSR 92, 269
(1953) -
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2
being measured [namely, %T £9(V)1]

At nearly the same time (1954), R. L. F. Boyd and N. D. Twiddy
(15) developed an almost identical technique. However, there were
four major differences.

1. Boyd and Twiddy used square wave modulation instead of

sinusoidal. This is of no consequence and merely changes
the constants in the expansion of [

2. Synchronous detection was used to select the current com-
ponent at mp rather than narrow band amplifiers

operating at wp

3. A sensing probe was placed at a point near the measuring
probe so that fluctuations in plasma potential could be
measured. These fluctuations were then compensated for

in the applied probe potential. Thus the probe tracked
any plasma potential varlations.

4., The small a~c signal was applied to the discharge rather
than to the probe. This made it possible to keep the
probe grounded.
The second of these differences merely exchanges filtering at low fre-
quency for filtering at w® . It is felt that with easily obtainable
equipment the synchronous detection scheme would yiéld a better signal
to noise ratio.
The third point is an interesting attempt at taking into account
the fluctuations which always occur in plasmas. Although 1t does not
compensate for density changes, temperature changes, etc., it is a

step in the right direction. It should be pointed out that even with

(15)R.L.F. Boyd, N.D. Twiddy, Nature 173, 633 (195k)
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this type of compensation, probe curves taken in oscillating plasmas
are not easlily interpreted.

der
This technigue for determining —L has been used by R.L.F.

dvg
Boyd and N. D. Twiddy (16,17), N. D. Twiddy (18), J. B. Thompson (19)
and N. D. Twiddy (20) to amass the most comprehensive set of measured
distribution functions available.

In 1963 A. Garscadden and R. S. Palmer (21) developed a unique
technigque for obtaining the first derivalive of the probe curve in a
noise-free form. Because the signal was noise free, they were able to
use R-C differentiation to obtain the second derivative. Two identical
probes were used but they werc biascd ot potentials differing by AV.

A differential amplifier was used to measure the difference in the

currents to the two probes. Since AV was held constant, the output

AT dr
- of the differential amplifier was proportional to L - _2,
AVp de

Because voltage fluctuations are well correlated over the distance
between the probes, the noise output of the differential amplifier was
found to be an order of magnitude less than the noise appearing on the
individual probe curves. This technique is only valld in a plasma
which is quite homogeneous because the basic assumption is that there
is no variation in the plasma parameters over distances equal %o the

probe separation.

Twiddy, Proc. Roy. Soc. A275, 338 (1963).
arscadden, R. 5. Palmer, Aeronautical Research Labs., USAF
Report No. ARL63-50 (1963).

(16) R. L. F. Boyd, N. D. Twiddy, Proc. Roy. Soc. A250, 53 (1959).
(17) R. L. F. Boyd, N. D. Twiddy, Proc. Roy. Soc. A259, 1L5 (1960).
(18) N. D. Twiddy, Proc. Roy. Soc. A262, 379 (1961)

(19) J. B. Thompson, Proc. Roy. Soc. A262, 503 (1961)

(20) N. D.

(21) A

. D
G
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During this same period of time, G. R. Branner, E. M. Friar and
G. Medicus (22) instrumented another technique for determining the
second derivative of a probe characteristic. They also superimposed a
small a~c voltage on the probe, but instead of noting the change in d-c
current they detected the second harmonic probe current. Eguation 1.5
shows that for a small a-c potential this freguency component of the

de1
probe current is proportional to ——EE . The second harmonic current
av

wag measured using band pass filtering and synchronous detection. The
instrumentation necessary for this technique is much simpler than that
necessary when using modulated a-c and the accuracy of this system seems

to be as good, making this a very promising technique.

1.2 Object of This Experiment

The work presented here was flrst discussed by the author in a
paper presented in 1962 (23). At that time it was shown that for a
planar probe the first derivative of probe current with respect to probe
voltage is proportional to g(vz) . Here g(vz) is the directed elec-
tron veloclity distribution giving the density of electrons with =z
directed velocities in the range v, to vZ+ dvZ .- The derivation of
this result is given in Section 2.3. The most important point in this
derivation ie that it is not neceésary to assume that the distribution
function is isotropic. It was also shown in the previous paper that a

guard-ring probe could be constructed such that it exhibited planar geo-

metry.

(22)G. R. Branner, E. M. Friar, G. Medicus, Rev. Sci. Instr.3L, 231
(1963) ‘"
(23) R. H. Bond, Bull. Am. Phys. Soc. 7, 631 (1962).
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This thesis extends the above theory to show that if the distri-
bution function is isotropic the first derivative of the probe curve is
proportional to g(vz) for cylindrical and small spherical probes as
well as planar probes. The advantage in using planar probes is that it
is then possible to measure any anisotropy of the elcetron distribution.

The experiments described here use a guard ring probe to measure
(for the first time) the detailed directional properties of electron
distributions. The plasma probed is the positive column of neon and
helium hot cathode discharges. These experimental distributions are
then compared with theoretical distributions calculated for plasma con-
ditions similar to the experimental conditions. Since it was only
necessary to obtain the first derivative in this work, the probe volt-
age was swept linearly in time and the time derivative obtained using
an operational amplifier.

Section 2.2 presents the solution of the Boltzmann eguation under
conditions applicable to the experiments described here. This leads
to the theoretical distribution functions which are later compared
(sections 4.3 and 4.4) with experimental results. Sections2.3 and 2.h4
discuss the theory behind the application of probes to electron distri-
bution measurement.

Chapter III describes the experiment and experimental apparatus,
while Chapter IV discusses the results obtained. Finally, Chapter V

consists of conclusions and recommendations for further work.
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TI. THEORY

2.1 Introduction

This section will be divided into two main parts. The first of
these will deal with the solubtion of Boltzmann's equation under condl-
tions in which we are interested. This analysis yields the electron
velocity distribution in terms of an expansion in Légendre polynomials
in velocity space. The remainder of the section deals with the theory
involved in experimentally verifying (or refuting) this distribution
function. This second section can again be divided into that portion
dealing generally with measurement of velocity distribution using
probes, and & portion looking more closely at the technique aclually
used for these experiments.

MKS units are used except where 1t is specifically indicated

othcrwice.

2.2 Solution of Boltzmann's Equation

As stated previously, we are interested in measuring the
directed velocity distributions of electrons in rare gas discharges.
We will see (a posteriori) that the plasma used in the experiments
described here has the following properties. First, it is very weakly
ionized (of the order of 10”u%) so that the dominant interactions or
collisione between particles are those between electrons and neutrals.
This allows us to neglect electron~electron and electron~ion collision
terms in the Boltzmann equation. Second, in the positive column of the

discharge there exists a relatively high electric field directed along
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the axis of the tube. ©Since there is no magnetic field applied, this
electric field will be assumed to produce the only external force on
the electrons. We will further assume that the distribution function
has reached a steady state cbndition and 1s spatlially homogeneous.
Picking a coordinate system with the z axis along the axis of the tube
(in the direction of the electric field E), we arrive at the following

form for Boltzmann's eguation:

el of of

-2% - % (2.1)

collisions

Here £ is the distribution function for the electrons. That is,
£(v) av gives the density of electrons with velocities within
v = dvzdvydvZ s E 1s the magnitude of the electric field, e 1is the

electronic charge, m 18 the electronic mass, v, is the z~directed

of

electron velocity, and = is the time rate of change of the

collision
distribution function due to collisions. This collision term can be

written in many ways; however, we will write it in the form derived by

Chapman and Cowling (1) and others. This gives

of

3t = ]‘f [£(v') F(v') - £(v) F(v)’] ucdQ dv (2.2)

Qv

collisions

where f is as defined previously and ¥ 1is the distribution function
for the particles with which the electrons collide (in this case,

neutral'gas molecules). Primes denote veloclties after a collision

(1) S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform
Gases (Cambridge University Press, 1953), pp. 54-65.
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while unprimed guaentities indicate initial velocities. V willl be used
to denote neutral velocities, while v represents electron veloclitles.
The quantity u is the magnitude of the difference in velocity of the
particles before collision; u = |v-V| . The quantity o(6,u,§)an =
o(e,u,f)sin ©d edf 1s Just the function relating the number of elec-
trons per second scattered into solid angle do by a single scattering
, 2
center to the flux of electrons arriving per sec per m at the scatter-

ing center with relative velocity wu,

dNout dNin
i.e., rraal o(9,u,d) 4an T (2.3)

Figure 2.1 shows the angles © and ¢ measured in a coordinate system
moving with the scattering center. The expression is integrated over
all scattering angles (dQ) and over all initial scatterer velocities
4av = dVXdVdeZ . This form for the collision term is valid ﬁnder the
assumptions of binary, elastic, short-term collisions-~collisions in
wnich no énergy goes to excite internal degrees of freedom in the col-
liding bodies and the collision takes place in a time interval short
compared with 4t . This rules out collisions where excitation or
ionization takes place. Electron-electron and ion-electron collisions
must also be ruled out because the forces involved in these cases are
long range and involve interaction times long compared to dt . In
addition, these collisions are not strictly binary. A review of Chapman
and Cowiing's derivation of this form of the collision term is presented

in Appendix A.
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2’ PARALLEL TO u

Fig. 2.1 Collision Geometry in Frame Moving with Scatterer
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Inserting this form for the collision term, Boltzmann's

equation becomes

"'%? %%. = jrjr (£(v') P(v') - £(v) £(V)] uo da av (2.4)
Z QEY
We will solve this equation by expanding f in a series of

Legendre polynomials (2) giving

f = ZE: fz(v) Pz(cos Ql) (2.5)

where Gl is the angle between v and the z axis, or alternatively,
the angle between v and E . Substituting this expression into the
Boltzmann equation, multiplying by Pi(cos Gl), and integrating over

dg, we obtain

el 9 .
JPi(coa Gl) = 3y }:8: fﬂPz(cos Ol) aa, =
z

J(Pi(cos 91) S aq, (2.8)

where S has been substituted for the collision term. Since the
fz‘s are explicit functions of v , not vZ , we use the relatlonshlps

v =V cos 6 and v2 = v8 + v2 + v2 to show that
Z 1 X ¥y Z

S afﬁ fzsingel oP,
S’v'"z" {fz P'e(cos gl)} = Pﬂ(cOS 91) cOs gl av + v a(COBG

1)
(2.7)

(2) w. P. Allis, Vol.XXI Handbuch der Physik, Ed, S. Flligge (Springer-
Verlag, Berlin 1956), pp. LOL-L06.
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Making use of this and the following well-known properties of

Legendre polynomials:

(28+1) cos ) P, = (4+1) P,  + 4P, ;
oP
2 y;
. - - P
(2£+1) sin CN S(oos 91) 2(8+1) [Pg—l z+1]
(2£+l)j PEPmdQl = Ly Bzm (2.8)
we obtain
e Z[dﬂP (e+1)1r»2+l+ ®, | afﬂ . 3(g+l)[P -p ]f_li
m 5 i 24+1 ov.  2p+1)Le-1 f+l) v
_
='[APiS dﬂl = Si 21+ 1 (2:9)

where we have now expanded the collision term in a series of Legendre

polynomials, i.e.,

s = Z s, P, (cos ) (2.10)

We obtain a single equation for each value of 1 substituted

inte 2.9. The first two of these are

2
g —CE lafl+§fi _zem O E) (2.11)
o m )3 fﬁ? 3V - 3mv2 v )
3
o (% 2% sf2) (¥, 2 ) (2.12)
S R A S - R
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V. L. Ginzburg shows (3) that in the second of these equations
the term involwving f2 can be neglected. In particular he shows that
of 1 O(v3fp) m
iti — — — wher is th
the condition Sv >> 3 v reduces to m << 1 ere M 1 e
mass of the scatterer and m the mass of the scattered particle. Since
we are talking aboubt electron-neutral scatbering, this condition is met
and equations 2.11 and 2.12 reduce to two equations for fo and fl .

We will assume that all higher order terms f f3, fh’ etc. are reg-

2’
ligible and that the distribution function can be written

f(v,gl) = fo(v) + cos 6, fl(v) - (2.13)

The validity of dropping the higher order terms is discussed by Ginz-
burg (4).

It would be well to note what the terms fo and fl represent
physically. The first term fo(v) represents an isotropic distribu-
tion whereas the second term cos Qlfl(v) represents an anisotropy
which we will see can be interpreted as a drift velocity in the direc~
tion of the applied force on the electrons.

To solve the two equations, 2.11 and 2.12, it is necessary to
determine SO and Sl . In Appendixz B it is shown that the SO
equation is directly related to an energy balance equation, while the
Sl equation represents the balance of z directed electron momentum.

We would therefore expect 804 to be a strong function of the change

in energy (Av) of an electron during a collision. On the other hand,

(3)V. L. Ginzburg, A. V. Gurevich, Usp. Fiz. Nauk.70, 201 (1960)
(b) Ibig.
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the change in the z dlrected momentum can be approximated very well by
setting AV = 0 and merely considering the change in direction of the
electron. This is true because we are discussing the case of rela-
tively heavy scatterers so that very little energy is transferred to
them during a single collision. With these facts in mind let us

write down an expression for Si . From equations 2.9 and 2.2 this is

21+1

il LN f f anavuo [£(v') F(V') - £(v) F(V)]

[o2]
It

or

2141 ' 1 t !
1= T dﬂlPi(cos Gl)Ji/nd QgKuo'{F(V ) }% fz(v )Pz(cos Ql)

[ 03]
]

- F(V £,(v) P, (cos 6.)
(v) % AN A 1}

(2.14)

Noting the collision geometry as shown in Filgure 2.2, again with the
coordinates moving with the scatterer, we see that cos Oi =
sin Ol sin © cos ¢l + cos Ol cos & 80 1In the expression for Si we

have terms of the form

P,(cos ©,cos @ + sin 6. sin © cos ¢l)

ﬂ( 1 1

£ (£-K)! 4

| MR % k
” Pz(cos e) Pﬂ(cos 91) - 2 g;l (7k) ! Pﬂ(uos el)P£<COB Q)QOSB#&

see reference (5).

(5) P. M. Morse, H. Feshbach, Methods of Theoretical Physics--Part II
(McGraw-Hill Book Company, Inc., New York 1953) p. 1327.
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Fig. 2.2 (Collision Geometry Defining O, Ql, 9'1, and ¢l
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All the terms containing cos k¢l will yield zero when inte-

grated over dQl so we are left with the following:

S =~[‘ d0dvus(u,8) {'F(V')fi(v‘)Pi(cos 8) -F(V)f(v)} (2.15)

We will now apply the assumptions that the energy lost per collision is

iR

small (i.e., v ¥v' and VEV') and that uw v . The latter comes
from assuming thal the energies ol the neutrals and eleclrons are come

parable so that V << v and therefore u = |v-v¢ ~ v . This gives

8, =Jf dedvvo(v,e) F(V) fi(v)[Pi(cos e)- 1]

or

S, = Nfiv_fﬂd(v,g)[Pi(cos )~ 1] da = -fiv {(2.16)

i i

N is the demnsity of the neutrals and v, are collision frequencies

defined by

v; = NV-[~U(V,Q)[1 - Pi(cos Q)] an (2.17)

As expected SO is zero in this approximation.

It is necessary to look at the collisicon in some detail to
determine SO . This has been done by Desloge and Matthysse (6) for
the case we are interested in. They assumed that the gas molecules
vere not affected by the electric field and had a Maxwellian distribu-

tion, i.e.,

(6) E. A. Desloge, S. W. Matthysse, Amer.Jour.Phys.28, 1 (1960)
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2n kT

where T 1s the gas temperature and k 1s Boltzmann's constant.

They find the same value for 8, as given by 2.17 and

1

Emve 8‘
5, = ziz gvi' = ! [kT ~, * vf }} (2.18)

Substituting these values of Sl and SO into 2.11 and 2.12 we obtain

2 2
er QT gy (EmVivy g O .
— 75 = 25—' M [’i'l" a + VfO (’-—'19)
3mv" OV ay= oV v
- afo
—d e = . y.f 2.20
m  ov Vit ( )
Multiplying 2.19 by v2 and integrating from O to v glves
of
eE 2. _ ™1 rmr %o ]
512-[1‘ fl i [—ﬁi— --5; + Vfo (2-21)

We can now substitute 2.20 into 2.21 and solve for fo . This leads to

v
Jﬂ mv dv
kT+e2E2M
£,= Ae b (2.22)
22 i‘l‘f
e EM T DKT
For KT >> —5 we obtain a Maxwellian distribution f = Ae .
3m vy 5 2M
However, if the electric field is "strong" such that ”E§E?f~ >> kT, the
3m v
1

distribution will in general not be Maxwellian. It is impossible to

evaluate its exact form in this case unless we know v as a function
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of v . One reasonable assumption is that the mean free path (x) be

independent of v . This leads to v:L = % , and for this condition we
have
- BmBVLL
)+7\.§62E2M _hj*v)"
£ =he = A e (2.23)

This is the Druyvesteyn distribution first derived by Druyvesteyn in
1930 (7).

The above function can be put in a more concise form by using
as parameters the energy gained by the electrons per mean free path (in
the direction of the field) and the electron energy. These will be
denoted respectively as Wx =eBA and W= % mve. ‘Using these quanti-

ties we can write

_3m ¥,
M Wy _hk 4
fo = A e = A e v (2.2’-‘-)
80 3
h* - ———5%—— (2.25)
M W,
From 2.20
m, W
£, ==6 ﬁ(ﬁ-) £, (2.28)
A
giving
u W2
omW M Wx
£ =f +cos 0 f = Ail—ﬁ-—w-): cos Olge (2.27)

(7) M. J. Druyvesteyn, Physica 10, 69 (1930)
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The "strong field" condition can be written as

W, M
——— >> kT ‘ (2.28)

om W

The constant A will now be evaluated by noting that the integral of

f over all velocities gives the electron density n , i.e.,

022 AL
-h v
Jﬂ av J[ d¢“[-d9 { l 32 o €08 Gl]e vTsin Qlf

A

This yields
nh3
ﬂP()?’;)

(2.29)

————

We can novw calculate the mean energy % mvz and the mean value of the

z velocity V; . The latter will be termed the drift velocity. The

mean energy is given by

3 P Lok We
_%%vagf dv = EEE~ afuvhe“h Voav = i ix)
- TR 2n°T(3)
or
r (&
% we - W ’ (u) = L ( ) W (2.30)
" om (g 20°r(3) 3 I‘(E) »

In the same way we obtain ;;

L [ox wlx/g

?=%ﬁfﬂ=’% 3 (2.31)
z nj =z M hP(H) P(%)[3mM]l/h

Since directed distributions g(vx), g(vy), g(vz) were measured, we
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will now calculate these functions so that the theory and experiment
can be compared.

Let us first calculate g(vz). Thig function gives the density
of electrons with z directed velocities in the range v, to vz+dvz
irrespective of their x or y velocities. Therefore g(vz) can be
found by integrating f(v) over all possible v, end vy This

yields

% b2 2 2.2 3oy
- +v
g(v) = A Jﬁjﬁ o™ (v +vy+vg) 1- 2 [EivEiv? b avav
Z wa X y z Xy
-®

(2.32)

2 2
or in terms of polar coordinates (r2 =V o+ vy)

o) L 2 2.2 2
~h (r“+ v%) 3m v 535
g(v ) = 2nA f e z {l— = r+ v rdr  (2.33)

2
0

It is seen from this equation that for sufficiently large v, the
term arlsing from fl wlll dominate. We show in Appendix C that
this does not happen for small enough energy to be of interest.
Therefore we may ignore this second term except for calculating the
drift velocity. That is, we have & nearly isotropic distribution with

a superimposed drift.

Integrating the first term of 2.32 yields

alv,) 2 .E_%.IL {1 - erf(hgvi } (2.34)
21‘(]:)

where erf is the error function defined by
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X 2
2 -
er:f‘x=-———je at
Uﬁ

0

The other two directed distribution functions can be calculated in the
same fashion. They will both entail an integration over all v, From
equation 2.32 we see that the term due to fl will be zero and both
g(vx) and g(vy) will be glven exactly by equation 2.3h.

We can approximate the error function for large argument by the

following asymptotic series: (8)

- .
erf(x) = 1 - S {1 NN i;_g - ...}
JP;.X 2x2 ng
This gives
--hh"vlF
g(v) = : - v arge hv .
z 2nr(3) vi 2n ;sz z

For small hvz we can expand the error function in & power

series (9) giving

22 22,2

hv (h"v%)

g(v) :\/}Fnh 1 - Z l....._.-.....z.'.m_+ o small hv (2'36)
Z 21‘(13;) 3 ’

We see that for large v, the directed distributions fall off very
Loh
-h7v,

rapidly, going as K§-g-— . While for small . they vary
v
7

(8)H. B. Dwight, Tables of Integrals and Other Mathematical Data, (The
MacMillan Co., New York, 1957) p. 129.

{(9)1Ibid.
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quadratically with v, -
Summarizing the above theory we see that the electron distri-

bution function should be Druyvesteyn rather than Maxwellian if

1. The degree of ionization is low so that only electron-

neubral collislons need be consldered.
2. The external electric field is strong, i.e.,
ezEeM
3111'2 vl2

>> KT

3. The mean free path is independent of velocity so that

4, We ignore inelastic collisions.

Having derived this form for the distribution function it
would be interesting to compare it with a Maxwellian one with the same
electron density and mean energy.

We would like to compare

2
v
Maxwellian g(vz) = n(EEEE-)l/2 e € (2.37)
™
Druyvesteyn g(vz) =n Vx_h {l - erf(hevi)} (2.38)
2r(3)
h 3 17 me(%) (2.39)
where = = .39
2 e oy P(%)

2
Setting EE%— v, equal to the dimensionless variable x2 and
e

normalizing the Maxwellian distribution so that its maximum amplitude
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is 1 , we obtain

2
Maxwellien g(x) = e~ (2.40)
5 5
Iz r(s)
Druyvesteyn g(x) = T 4 {i - erf {’__E7_ XZJ (2.41)
r@ | er) 2r(y)

il

0.90 {l - erf(0.493x2)}

These two functions are plotted in Figure 2.3. We see that the Druy-
vestyn distribution contains fewer low and high energy electrons. That
is, the electron velocitles have less spread about the mean for the

Druyvesteyn case.

2.3 Measurement of Distribution Functions Using Probes

The preceding discussion demonstrates that from a theoretical
point of view there is no reason %o expect a slightly ionlized gas
always to have a Maxwellian velocity distribution. For this reason it
is interesting to measure the distribution functions for various experi-
mental conditions in order to determine what distribution actually
exists. With this end in mind we will now discuss the theory of
Langmuir probes and its spplication to the measurement of distribution
functions.

Let us look at the volt-ampere characteristic of a planar probe
(an infinite plane conductor in a semi-infinite plasma). We will assume

the following conditions:
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Fig. 2.3 Compsrison of Maxwelllan and Druyvesteyn Distributions with Same Density and Mean Energy
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1. The probe is negative with respect to the plasma so
that a sheath of positive charge covers the probe

surface.

3}

The electrons undergo no collisions in the sheath.

That is, A 1is much greater than the sheath thickness.

3. No electrons are produced in the sheath (including the
probe surface). This means we neglect all ionization

in the sheath, secondary electrons, photoemission, ete.

L, v, represents electron velocities normal to the probe
surface. This convention will be followed from this
point on.

For this case the differential current density to the probe due to
electrons in the velocity class v, to vi+dvz is merely

‘dJe(vzﬂ = edn(vz) v, = vzeg(vz) dvz (2.heg)

where dn(vz) is the density of electrone in the veloecity range v, to

v +dv_ . Therefore
Z Z
|9 = j dJ(vZ) (2.43)
all
possible
v

»
The limits on v, are determined from energy considerations. That is,
the electrons must possess sufficlent energy normal to the probe to

overcome the negative probe potential (% mvi 2 eVp) . Vp is the abso-
lute value of the probe potential with respect to the plasma potential.

Plasma potential is the potential at the probve location with the probe
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removed. Thus we have for the electron current density to the probe

o0]

|Je|=f e ve(v) dv, (2.1k)

/2~‘V
np

The ion current is determined in exactly the same way. The only dif-
ference is that for negative probe potentials the ions have no potential
hill to overcome and therefore all ions moving toward the probe are col-

lected. Thus the ion current density to the probe is
[¢'e]
|Ji]= J( e VZFi(VZ) dvz (2.45)
0

Fi(vz) is tne distribution function for ions, giving the density of
ions with velocitles in the range v, to VZ+dVZ .
We will call electron current to the probe positive so that for

the total current density to the probe we have

ooy
Jp =]JeL4Ji|= Jf e vzg(vz) dvz - J( evZFi(vz) v, (2.46)
\/ﬁ ©
np

If both the ions and the electrons have Maxwellian velocity distribu-

tions this leads to
eV
P

kT
- kT , kTe e 2 .
Jp eNi —EE% +en/ 5= (2.47)

This is the commonly seen form for the volt-ampere relation of a ILang-

muir prooe. If it is applicable, a plot of zn(Jp+Ji) versus Vp



-32-
would yleld a straight line. The slope of this line would give Te .
Experimentally, 1t is found that this plot is not always linear and it
is therefore of interest to determine g(vz) in terms of the probe
curve. This can be done guite simply. Taking Lhe derivatlive of 2.L6

with respect to Vp we obtain

aJp 62 e
= oa e Ev
v o &( 2 m P J
or
m oJ e
=L _p. = Yo £ 2.48
a(v,) oo ov_ V2 m'p (2.46)
P

Thus we see that for a planar probe the distribution of velocities
normal to the probe surface can be determined from the first derivative
of the probe current wlth respect to the probe voltage. We are assum-
ing, of course, that the probe current ls equal to the area of the
probe times the current density and that the probe area is constant.
For a planar prote the area is constant, whlle for finite geometries
the area is generally a funection of V?

The above anelysis wlll be uged to interpret the data presented
in this thesis.

To point out the differences between this theory and that
developed by Druyvesteyn (10) which is usually used, we will present
the Druyvesteyn analysis for the same case of a planar probe. The only

difference 1s that Druyvesteyn did the analysis assuming an lsotropic

(10) M. J. Druyvesteyn, Z. Physik 64, 781 (1930).
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speed distribution f£(v) rather than the directed distribution g(vz).
To carry out this analysis it 1s necessary to cbtain dn(vx) in terms
of £(v) instead of g(vz) . This can be done by noting that elec-
trons arriving at the probe with the same speed v and angle € with
respect to a normal to the probe surface have the same v, (i.e.,

v, =V cos 8) . Thus we have

dn(vz) = dn(e) dn(v) (2.49)

where dn(@) is the percent of the electrons arriving at the probe at
an angle © with respect to the probe normal, and dn(v) d1s the
density of electron; with speeds in the range v +to v+dv . For an
isotropic distribution dn(@) is the ratio of the differential solid
angle dQ at © +to the total solid angle 4n . The quantity dn(v)
is hﬁvgf(v) dv from our previous definition of f(v) . Here agaln we

have assumed an isotropic distribution. Thus,

ox sin ©
an(v,) = _1_3%%__@2 b (v) av (2.50)

and the electron current density to the probe is

J = J(,[‘ ev_ 2 sin 6 d8 sz(v) dv (2.51)

(&
all possible
v and ©

Again the limits are determined by energy considerations. That is,

l



Therefore we have

Q0 COS_l ESY_E
mve 3
J, = dv a6 ev cos © 2rt sin 6f(v)
p, °
mp
or
. *© 2eV
J == j~{l— 2}vﬂv)wr (2.53)
e 4 z
my
/2§V
mp
Differentiating this expression twice with respect %o VP we
obtain
2 3%5
£(v) = 3 u~7§ (2.54)
2ne” OV
P
, . ‘-
vhere v 1s the velocity corresponding to Vp (1.e., v o= (/2 aVﬁ) .

This f{v) 1is not the distribution function that is usually meant when
speed distributions are being discussed. The usual one, £1(v), is the
function such that f£'(v)dv gives the density of electrons with
speeds between v and v+dv . From the discussion leading to equation

2.50 we see that
2
£1(v) = bavE(v) (2.55)

Thus in terms of the probe curve we have

hmy BQJ
f'(V) - p__ P (2-56)
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Since all measurements cited in the literature give f'(v) or
the energy distribution function, we will compare the above result for
ft{v) with that found earlier for g(vz) in equation 2.48.

First we note that the Druyvesteyn analysis requires the second
derivative of the prohe curve while the g(vz) eguation involves only
the first derivative. It is therefore much easier to implement the
g(vz) theory experimentally.

Second, the expression for f'(v) contains Vb explicitly along

421

with _—EE . Thus to obtain the correct functional form for f'(v) it
av

P
is necesgsary to determine VP accurately. BSince Vp does not appear

in the expresslon for g(vz) the incorrect determination of Vp wlll
merely shift the g(vz) curve in velocity but will not alter its shape.
This point is of interest because it is not in general easy to determine
experimentally the plasma potential, and therefore VP « Mott-Omith and
Lengmuir (11) have shown that for a Maxwellian distribution the probe
curves for planar, cylindrical and spherical geometries all have an
inflection point at Vb = 0 . Therefore in the work described here

this Inflection point is taken to be Vp = 0 on the plasma potential.
More recent work by Wehner and Medicus (12,13) and Waymouth (14) has

shown that this may be in error due to the variation of the work function

(11) H. M. Mott-Smith, I. Langmuir, Phys. Rev. 28, 727 (1926).

(12) G. Wehner, G. Medicus, J. Appl. Phys. 23, 1035 (1952).

(13) G. Medicus, Proc. of 5th Internation Conference on Tonization
Phenomena in Gages, Vol.II, Ed., H. Maecker (North Holland Pub~-
lishing Co., Amsterdam 1962), p. 1397.

(14) J. F. Waymouth, MIT Research Laboratory of Electronics Technical
Report 406 (1962).
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over the probe surface and the perturbing of the plasma by the probe.

A third point of comparison is that the Druyvesteyn analysis
assumes an isotropic distribution function. If the distribution is
anisotropic the analysis is not wvalid. On the other hand, no such
assumption was necessary in the analysls using g(vz) . In fact the
anisotropy of the distribution can be measured by changing the plane of
the probe.

The above derivations were carried out under the assumption of a
planar probe. However, Druyvesteyn showed equation 2.54 to be valid for
cylindrical and small spherical probe geometries as well. The only
assumption was that the distributions were isotropic.

We will now show that equation 2.48 giving g(vz) is also valid
for cylindrical and small spherical geometries. We know that f(v) and

g(vz) are related as follows

Q0
g(vz) = jrjf f(v) dvxdvy (2.57)
-0
Writing this in terms of a set of polar coordinates r2==v§ + V§ s
v
0 = tan”l L glves:
Vi
25 00
g(vz) = Jf ae J( rdr £(v) (2.58)
0 0]

which for an isotropic distribution becomes

o

®
g(VZ) = 2x Jr f(v) rdr = 2ﬂ-jﬂf(v r o+ VZ) rdr (2.59)
0

0
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2 2 2
Setting u =r + v, Wwe obtain:
00
g(vz) = 2x ff(u) udu (2.60)

v
2

Taking the derivative of this equation with respeect to v, gives

dg(v,) 3
= 27 —— vi(v) dv = -2 v £(v_ )
sz av Z Z
v
4
80
1 dg !
f = - —
(v) T S (2.61)
% 2 |v. =7V
Z
Combining this eguation with 2.5k we obtain
2
2 0
-1 %g N S (2.62)
e v, v v =V oned Ao
or 2
1 og(v) _ m? 0 Jp
voo o3 Wt
b
but v = /2 vy so we can write this as
Vo omr
2
A"
. _om _p (2.63)
v 2 .2
P e~ Qv
P
waich, when integrated once, ylelds
n ¥
= - —§-§vg + constant (2.64)
p

The constant must be zero because the integral of g(vz) over all v,

must give n and any non-zero constant in g would produce an
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infinite value for this integral. This expression (which is identical
to that found for g(vz) in our planar probe theory) was derived
assuming only that the distribution is isotropic and that Druyvesteyn's
analysis is correct. Since Druyvesteyn's analysis is only correct for
isotropic distributions, the above expression for g(vz) is valid
whenever Druyvesteyn's second derivative theory is valid. This is
guite interesting because it means that for isotropic distributions

the expression g(vz) = - E#'éig is valid for planar, cylindrical and

ee avp

small spherical probe geometries.

We see then that 1f we are dealing with isotropic distributions
either theory can be applied depending on whether f(v) or g(vz) is
wanted. However, in the more common case of anisotropic distributions
the f(v) theory 1is incorrect and we are forced to resort to a planar

probe and the theory for the directed distribution g(vz) .

2.4 Analysis of Planar Guard-Ring Probe

In the preceding discussion a planar probe has meant an infi-
nite plane conductor. In practice this never exists but we can approxi-
mate it by using a finite planar probe with a guard ring. Such a probe
is shown in Figure 2.4. The probe collecting surface is divided into a
small center section and the guard ring which completely surrounds this
section. In using such a probe both sections are set at the same poten~-
tial Eut only the current to the center section is measured. Thus we
find the‘volt ampere characteristic of only the center section. The
guard ring serves merely to remove the effects of the edges from our

probe curve; that is, we assume that any effect due to the finite probe
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gize influences only the current to the guard ring and not the center
section.

To determine the validity of this assumption we must discuss
one other aspect of plasma dlagnostics using probes. This is the fact
that the potential on the probe produces a field which penetrates into
the plasma. In Figure 2.4 the distance the field penetrates from the
probe is denoted by s and will hereafter be called the sheath thick-~
ness. Thias sheath thickness 1s not well deflned--in fact, it can be
shown that the field penetrates an infinite distance. However, for
sufficiently high electron density and high enough probe potentials
the sheath 18 a meaningful concept (15). For these conditions the
sheath region is the same as a space charge limited diode. That is,
there exists a sheath of positlive space charge around the probe and,at
the outside of the sheath, the potentisl and the field are zero. TFor
these conditions, in a planar geometry, we can write the following
expression relating ion current density to the probe, probe potential,

and sheath thickness:

i}

2.335 x 1070 |/ B y3/2 -2 (2.65)

IJil M p

or

i
It

1.53 x 10”313";:1/2 vg/u(ﬁ)l/l*

but for a Maxwellian distribution for the ions and negative probe

- : . ) [&T
potentisls, equation 2.47 gives ]Jii— eN, 5}% . Therefore

(15) S. Self, Phys. Flulds 6, 1762 (1963).
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-3 e-l/e(gy_cg_x)l/h V3/l+ N_-l/e (2

s = 1.53 x 10 kTi b i 2.66)

Iet us now calculate the probe current due to electrons which are col-
lected by the center section of the probe and pass througn the planar
portion of the sheath; that is, the electrons which pass through the
cone shown dotted in Figure 2.4. The ratio of this current to the
current collected by the same area of an infinite planar probe is a

reasonable criterion as to the effectiveness of the guard ring probe.

We can find the nuwber of electrons passing through the cone
by noting that these are defined by having a transit time across the
sheath {ts) which 1s less than the time it takes them to move a

distance d tangential to the probe. Calling the latter t, we can

d
write
4
t € %, = 2.67)
8 4 2 o (67)
v O +V
X b
0
but kY = - jﬂ EE
8 v
z
Z=8
where 2 e
v, = V/Vz(s) -2= v{z) | (2.88)

If the potential in the sheath V(z) varies as the pth power of =z

we can write
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0]

- dz
t = Jf _ (2.69)
S \/vi(s) -2—:% Vp(l--g—)P

We are interested in the greatest value of ts and this occurs for

the electron which reaches the probe with zero velocity. For this

2
electron v (g) =25 V_ so we have
z m p

(2.70)

8
& "J( - dz _ 1 Jf /2 44
. =
max \/e-e-v \/1- (1-2F \/EEV S VR
mp s mp
We can evaluate this for p =1 and p = 2 obtaining

m
= 2
ts (p=1) S\ 2e V

max p

8
-1 1 m 7T m
1, (p=2) s sin — —~ . / = w8 | (2.71)
8 s 2eV 2 2
max 0 P eVp

If the potential in the sheath follows the space charge limited diode

il

condition (V(z)ex¢ ZL/S), t will lie between the two values found
max
above. Taking the worst condition (largest Ty ) our inequality
max
becomes
25 z e & _ 8 (2.72)
2e V T r
P \/v + v
d e
< = <
aor r £ = 2 - Vp .

The current due to electrons which meet this criterion is
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ap %
28 m
2.
el f deVZ [f dvxdvyf(vx, Vy, VZ) ( 73)
2 -y v24-V =0
P X

@ 00
eA j v, av, [ [ dvxdvyf(vx,vy,vz) (2.74)
P o 2
2—V =
V oD VXA—ﬁY 0

If we assume a Maxwellian dilstribution function the ratio of these two

currents is
2eV

d p mr2
28 ¥ m " 2T 5 eV
e (;1, P
e rdr 55) T
= -11
— 10 e = f e (2.75)
[ oo ;
e rdr
r=0

(2.78)

and if we substitute equation 2.66 for s we obtain

2
) [ dZNi T’l
. -6, .
9.34 x 10 Te \/ 21rmkvp

1 -e
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or
N, 42
3.09x1077 1\ /I
r'I"e VP
1-e (2.77)
We would like this ratio to approach 1 . For small Vp this
is the case because the sheath thickness is very small. However, as

stated before, the space charge limited equation is not valid for small
VP . In fact, it takes Vp of the order of at least 529 to form a
stable sheath (16). This planar criterion is therefore suspect for
voltages less than Eg— .

Even though the approximations used here (Maxwellian distribu-
tion, space charge limited diode sheath) are not applicable in all cases,
equation 2.77 shows what parameters control the usefulness of a guard
ring probe. It is basically a statement Lhat Lhe sheath thiickness
should be small compared to the guard ring width. The required ratio
of these dimensions depends on the number of high energy electrons,
here specified in terms of Te . We will return to this expression

when discussing the experimental results in order to determine whether

or not the guard ring probe used can be assumed planar.

(16) D. Bohm, Characteristics of Electrical Discharges in Magnetic
Flelds, Fd., A. Guthrie, R.K. Wakerling (McGraw-Hill Book Company
Inc., New York, 1949) p. 77.
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ITIT. EXPERIMENTAL TECHNIQUE

3.1 Description of Discharge Tubes and Vacuum System

The experiments to be described in the remaining sectlons of
this thesis were performed in hot cathode rare gas dlscharges. A
schematic drawing of the type of tubes used is shown in Figure 3.1.
The tubes had a pyrex glass envelope 50 mm in diameter and 80 cm long.
Ports with o-ring gland seals were provided at two points along the
length of the tube so that probes could be inserted. This type of
port allowed the probe to be moved radially within the tube and also
to be rotated about its axis. The hot cathode consisted of a colled
tungsten wire which was directly heated by passing approximately 25
amperes of d-c or a-c current through it. Most of the data were taken
using d-c heater power, but it was found that the probe curves were
not altered when a-c was used. The tube anodes were shallow stalnless
steel cups. A valve was provided at the gas inlet to the tube so that
it could be fllled and then valved off.

These tubes werc placcd on a vacuum system consisting of
mechanical fore pump, oll diffusion pump, and absorption trap filled
with activated alumina. This system was capable of pumping the tubes
dovn to a pressure of ZLO”7 mnHg. While on the vacuum system, all
parts of the tube which could be baked were heated to 30000 using a
heating tape. The o-ring seals in the ports made it impossible to
bakethi8portion of the tubes. However, this was not felt to be
important, as the discharge did not enter this unbaked portion. The

tubes were then filled with whatever gas was to be ugsed (neon or
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Fig. 3.1 Sketch of Experimental
Discharge Tube
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helium) and the discharge was run at or above the highest current used
experimentally for approximately one-half hour. This procedure was
repeated several times (usually six to eight). In this way the dis-
charge was used to clean the tubes further and the contaminants were
pumped and purged from the system. The success of this system for
processing the tubes is demonstrated in the fact that data taken several
months apart under the same conditions yielded resulis which agreed

within ten percent.

3.2 Description of Probe

The probe used to measure the directed distribution functions
consisted of three orthogonal planar guard ring probes as shown in
Figure 3.2. This probe was placed on the end of a 0.092-inch stainless
steel tube. Four wires were run from the probe through the tube to the
instrumentation provided for analysis. The ends of three of the wires
were the three active probe surfaces, while the fourth wire was
attached to the guard ring. The wires were 0.0l inches in diameter so
they provided a probe area of 5.07 x 10-8m2. Molybdenum was used for
the wires and the guard ring. The four wires were insulated from each
other and the tube by passing them through four-hole ceramic tubing
which ran the full length of this stainless steel tube. The wires were
then positioned in the 0.015~inch holes of the guard ring, and the
guard ring attached to the end of the tube using bonding agent number
R313 manﬁfactured by the Carl H. Biggs Company. In the resulting com-
posite probe the d-c resistances between probes, probes and guard-ring,

proves and tube, and guard-ring and tube, were all of the order
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109-10lo ohms. As much as possible the bonding agent was kept out of
the space between probes and guard rings. This was done so that hydro-
carbons from this material would not contaminate the discharge due to
bombardment by energetic particles in the discharge. ¥Finally the probe
surfaces were hand lapped and polished. The probe was then immediately
placed in a vacuum to reduce the possibility of surface contamination.
In order to determine whether the probe surfaces were clean, two of the
probe surfaces (with the same orientation) were used to obtain volt-
ampere curves at the same point in the discharge. The probes were
consldered clean and the rest of the apparatus assumed to be operating
properly, if these two curves agreed within a few percent. This was
found to be.a highly useful technique in that it brought to light many
times, probe contamination and instrumentation problems which might

otherwise have been overlooked.

3.3 Instrumentation

A block diagram of the experimental setup is shown in Figure
3.3. The three probes and the guard ring were all swept with a one-~
tenth of cycle per second triangular voltage waveform. This allowed
the derivative of the probe curve to be obtained by taking a time
derivative of the probe current because time and voltage were linearly
dependent. A switching arrangement was provided so any one of the
probe currents or the guard ring current could be measured. The sens-
ing resistors for the probes‘were 30 kQ , while that for the guard
ring was 100Q . This was so the difference in currents to the probes
and guard ring (due to their different areas) would not cause the two

to be at different potentials. The stainless steel tube was usually
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left floating so that it drew no current. The effect of this tube on
the probe curves was checked by blasing it at various potentials with
respect to the plasma (5 to %0 volts negative) and then taking a set
of probe curves. Over this range of potentials the effect on the probe
curves was negligible.

The voltage developed across the sensing resistors was fed to a
d-c amplifier with a gain of 30. From here the signal passed through a
low pass filter and then either directly to the y-axis of an x-y
recorder, or to a Tektronix type O operational amplifier where it was
differentiated and then applied to the x~y recorder. The x-axls of
the recorder was driven by the triangular voltage which was used to
sweep the probes delayed by 28.6 milliseconds. This delay was to com-
pensate for a similar delay in the y-axis due to the low pass filter.
We see than that with this system it was possible to plot either the
probe curve or the derivative of the probe curve directly on an x-y
recorder.

The filter was necessary only to rid the signal of noise due to
60 cycle pickup in the leads and noise from the d-c amplifier; that is,
the noise level due to the discharge was no greaber than the system
noise. Data were taken only in current~pressure regions of the dis-
charge where no oscillations could be detected optically with a silicon
solar cell, or seen as valtage fluctuations acrosas the discharge tube,
or discerned when viewing the derivative of the probe curves on a 30
megacycle oscilloscope. In the operating regions of the discharge where
data were taken there was no discernable change in the noise seen on the

derivative of the probe curve when the discharge was turned on and off.
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The obvious gquestion is, why the filter? The answer is that for plot-
ting probe curves only (volt-ampere characteristics) it was
unnecessary, but the differentiator enhanced the high frequency noise
to a point that even with no input to the d-c amplifier the x-y
recorder was unstable.

The filter consisted of two RC "twin-tee" networks and an RC
low pass filter in cascade. The two "twin-tees" had transmission
zeros at 60 cycles and 400 cycles, giving a transmission curve for the
filter as shown in Figure 3.4. Also shown on the figure is the circuit

diagram.

3.4 Data Taking Procedure

Data were taken in necn and helium discharges in the range of
pressures from 0.4 to 1 mmHg. The discharge current was adjusted so
that the discharge wae quicscent as described in the previous section.
This quiescent region was obtained for currents in the range of 50 to
100 milliamperes.

In the following discussion the three orthogonal probes will be
designated by number as shown on Figure 3.2. The probes lying in
planes parallel to the axis of the probe support tube are numbered one
and two and the probe lying in a plane normal to the prohe axis 1s
nuwber three.

When it had been ascertained that the probes were clean and the
instrumentation was operating correctly, the tube was fllled wlth gas
at the desired pressure (this pressure was measured using & Piranni

gauge). Next the current was set and data taken in the following
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sequence. The probes were set so that one and two were 0.5 cm from
the tube wall. Then probe curves were obtained for probe one facing
the cathode, the anode, and in an azimuthal direction in the discharge
tube. The same three curves Were then taken with probe number two.
This was done to insure that the results were never a function of which
probe was used. Next, two curves were obtained using probe nunber
three. The difference between these curves was that the probe was
rotated by ninety degrees. Again rotating the probe by ninety degrees
between measurements, two curves were obtained for the guard ring.

This led to a set of ten curves as shown in Flgure 3.5. The same ten
measurenents were then made again, only this time the derivative was
plotted versus probe potential (Figure 3.6). Next the probe was set

so that probes one and two were 1.0 cm, 1.5 cm, and Z.0 cm from the tube
wall. At each pogition the same ten probe curves and ten derivative
curves were obtained. This same procedure was carried out for at least
three different gas pressures and three different tube currents for
each pressure. The probe was then moved to the other tube port and the
same set of curves obtained. This led to a set of curves which

coarsely covered varlation of the following parameters:

Gas pressure

Tube current

Orientation of probe surface
. Radial position of probe within tube
. Longitudinal position of probe

(IR SV NV

As stated previously, these data were obtained for neon and helium dis-

charges. Argon was tried but 1t was found that no guiescent discharge

existed within the obtainable range of discharge conditions.
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1IV. EXPERTMENTAL RESULTS

4,1 Data Reduction

Preliminary data reduction consisted of perusal of the wealth of
curves to determine general features and any noticeable peculiarities.
Then semi-log plots of approximetely one~fourth of the probe curves were
made to ascertain whether or not the distributions were Maxwellian. At
this time groups of g(vz) curves (derivative curves) which were found
to be typlcal were replotted versus v, instead of Vp so that they
could be compared with the theory presented in Section 2.2. For these
curves the Vb = 0 polnt was taken as the point where the probe curves
had an inflection point or the derivative curves a maxlmum. However,
this inflection point would be at V? = 0 only for a distribution with
no drift veloclty normal to the probe. For this reason the me 0
point was determined from probes one and two when they were looking in
an azimuthal direction. As the probe surface did not contain the center
line of the probe supporting tube, rotating the probe about its axis
also moved it longitudinally along the discharge tube. Since there
exists a fleld along the tube, the Vp==() point for the azimuthally
looking probe is not the same as for the same probe when it 1s pointed
toward the anode or the cathode. This was taken into account by deter-
mining the axial fleld from corresponding probe curves taken at the two
tube ports. Knowing this field and the probe geometry it was possible
to calculate the change in Vp due to probe rotation.

The electron density was then obtained by graphically integrating

the curves g(vz) with a polar planimeter. This number was compared

with the one found by using the ion saturation current. The g(v,)
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curves for velocities parallel to the tube axlis were then multiplied
by v, and the resulting curves integrated in order to calculate the
tube current from the measured distribution functions. This number was
compared with the measured tube current.

Beyond this, the experimental curves were compared with those
derived in the theory section (and others) to see if they could be
simply described analytically. Calculations were made to determine
whether the low lonization, high field assumptions of the theory sec-
tion were valid. Also checked was the planar probe criterion as

discussed in Section 2.4.

.2 General Properties of Measured Distributions

Iet us look first at the general properties of the measured
distribution functions. Most significantly, none are Maxwellian. This
is shown by the nonlinearity of the semi-logarithmic plots and by
curve fitting on the g(vz) curves plotted versus VZ . Sufficiently
far from the cathode the distributions are found to be nearly
Druyvesteyn. The deviations from Druyvesteyn can be explained in
terms of the high longitudinal field which produces an anisotropy and
the fact that the mean free paths for neon and helium are energy
dependent.

The effect of the dependence of the mean free path on energy
is qualitatively gimple. If thekmean free path increases with energy
(helium) the high energy electrons will gain more energy per mean free
path than the low energy ones. This tends to increase the number of

high energy electrons above that found for a constant mean free path.
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The opposite case where the mean free path decreases with energy

(neon) has the effect of concentrating the electrons about the mean
energy. That is, there are fewer high and low energy electrons than
are found for the constant A case. Both of these effects are
observed in the measured distribution functions. The above qualita-
tive argument has been shown to be valid theoretically by Allen (1).
This was done by numerically solving equation 2.22 for the correct
dependénce of A on energy.

The anisotropy produced by the field is usually discussed in
terms of a drift velocity. The measured distributions show that it
would bec morc accurate to say that the distributions are shifted In
energy. The‘magnitude,of the energy shift is nearly the mean free
path of the electrons times the longitudinal field. This is seen by
shifting all points on the distribution functions by an awount of the
order of the‘longitudinal field times the mean free path for the energy
class being considered and noting that the resulting curves are sym-
metrical sbout zero velocity. This was done for approximately one-
| fourth of the data and in all cases the resulting curves were very
nearly symmetric.: Because the product of the mean free path times the
field gives only an order of magnitude value for the energy shift, the
needed energy shift was determined by ndting how far the peak of the
measured functions was shifted from zero. This gave a value for the

zZero enefgy‘shift and the shift necessary for any other energy class

(1) Harriet W. Allen, Phys. Rev. 52, 707 (1937).
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of particles was found by using this number and the ratioc of the low
energy mean free path 4o the mean free path at the energy in guestlon.
As far as the author can determine, this is the first time it has been
shown that a strong field shifts the electron distribution in energy
rather than merely imparting a drift velocity (i.e., a velocity shift).
Before presenting specific curves showing the above properties
it is in order to give some experimental support for their wvalidity.
The one measured discharge parameter that can be calculated directly
from the measured distribution functions is tube current. The value

of tube current density flowing at a particular point is given by

00

Tiupe = © ]ﬂ vzg(vz) v (L.1)
-00

This integration was carried out graphically at points located 0.5,
1.0, 1.5 and 2.0 cm from the wall of the tube. The radial current dis-
tribution was then plotted and the average current density found. This
number was then multiplied by the cross-sectional area of the tube and
the results compared with the measured tube current. The results of
these calculations are shown in Table L.1.

This table brings out the possibility of a systematic ervor in
the data in that all the values obtained by integrating g(vz) are
low. It is felt that this is due to the rather large size of the total
probe consisting of three planar probes. At low probe potentials the
probe draws currents of the order of one to two milliamperes.  This

much current may tend to decrease the electron concentration and
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TABLE k4.1

Comparison of Measured and Calculated Tube Currents

Discharge Neon Helium Helium
Description P = LoOu P = 1000u P = 500u

Distance from probe

to cathode (cm) 69 6L.5 69 61.5 69 61.5 | 69  61.5

Measured tube

current (ma) 100 100 75 75 75  |100 100
Integrated tube ~

current (uma) 95 Tk 66 51 70 ok Th
% error 5 26 12.5 32 1.5 7.3 | 5.7 26

distort the curves in this energy range. The table also shows that
the agreement is much better for curves taken far from the cathode.
This would be expected because the distributions close to the cathode
contain an excess of high energy electrons and therefore in this
reglon the planar probe criterion is not as well satisfied. For the
distributions found at the port farthest from the cathode the agree-
nment 1s very good-~the error ranging from 1.5 percent to 12.5 percent.
This much error is very small when all sources of error are considered.
Some of the more obvious sources are:

1. ©Space potential must be determined. As discussed pre-

viously, this 1ls somewhat difficult in general and

further complicated here due to the longitudinal field

. and probe rotation.

2. We tacitly assume that the probe merely rotates about

its axis and is not cocked. Actually the o-ring gland
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seal allows some other motion begides rotation and

linear movement through the seal.

3. The integration involves taking the relatively small
difference between two areas as measured with a polar
planimeter. This in itself can account for 5 percent
error in all cases.

This excellent agreement between integrated values of tube

current and measured valueg certainly supports the supposition that

this is a valid means for obtaining electron velocity distributions.

4.3 Neon Distributions

The data presented here will be specified by five parameters:

Type of gas

Gas pressure (P)

Discharge current (I)

Longitudinal distance of probe from tube cathode (I.)
Radial distance of probe from tube wall (R)

o ow o

We will first look at g(vz) for v_ parallel to the tube axis.
Figure 4.1 shows these distributions at four radial positions in a
neon discharge. TFor these curves the probe was located at the port
nearest the cathode (L = 61.5 cm). We see that these distributions
are certainly not Druyvesteyn or any other simple function. This was
found to be true for all neon curves taken at this port. Figures 4.2
through 4.5 show the same set of curves for the same discharge condi-
tions except the probe has been moved to the port farther from the
cathode (L = 69 cm); Also shown on these later curves are the same
curves shifted in energy as described previously. (Any discontinuity

in the curves at v, equal to zero was removed by sketching in a



NEON

P=400u -

I= 100ma | — ';”2'2;’2

L=61.5cm - Rs |.0cm
— e R20,5cm

NEGATIVE VELOCITIES
REPRESENT VELOCITIES

TOWARD THE ANODE

L 9(v2)

1 i ] | | d i | ~
-25 =20 -15 ~10-05 O 05 0 i85 20 25
: | vy x 108
1 1 1 | | I N S | 1 1 1 j R - | | i 1
20 15 10 7 5432 | 0 | 2345 7 10 15 20
ENERGY IN eV

Fig. k.1 g(vz) Curves for Neon, Near Cathode End of Positive
' Column.




Bl

MEASURED CURVE

NEON

P=400y. —— FNERGY SHIFTEQ CURVE
I1=100 ma o'sz g (0) e~0-0992V

L=69 ¢cm s=g(Ole :
R=22.0¢cm

g (v,)

1 A 1 1 ] 1 1 1
-25 -20 -5 -1.0 -05 lo__60.5 10 15 20 25
1 1 i Ll |J|._|v 1 Vz X F RS B A S ! ] 1
20 18 10 7 543 | 0) 1 2345 7 10 15 20

ENERGY IN eV
Fig. 4.2 g(vz) Curve for Neon, Far from Cathode



=65

NEON

MEASURED CURVE
P =400 L == ENERGY SHIFTED CURVE
I=IOO ma ) o's:g(o)e-o.lllevz4,
L=69 cm
R=1.5¢cm

| 1 1 H
-25 -20 -15 -10 05 g05 10 15 20 ‘25
~ ' vz x 10

A 1 | 1

1 1 1 ] bkl L | Lot 1 . |
20 15 10 7 543 2 | O 1 2345 7 10 15 20
ENERGY IN eV

Fig. 4.3 g(vz) Curve for Neon, Far from Cathode




-8 -

NEON MEASURED CURVE

P =400 1 ———ee ENERGY SHIFTED CURVE
I1=100 mo 0'sz -0.152v,%

L=69 ¢cm s2g(0le z.
R=z1.0 cm

25 20 -15 -10 -05 510 15 20 25

T | j U S W S T |

2015 10 75432 | O | 2345 710 15 20
- . ENERGY IN eV

Fig. b.b g(vz) Curve for Neon, Far from Cathode




BT

NEON MEASURED CURVE
P=400u ————— ENERGY SHIFTED CURVE
I=100 ma , -0.198v}

L=69 cm o] 830(0)3

R=0.5 ¢cm

(o]

00

1 i

25 -20 -5 -0 05 O 05 10 15 20 25
v, 1078 ‘
1 3} 1 I 111 1 1 ] 1 1 .11 [ ] 1 1
“20 15 10 7 5432 | 0 | 2345 710 15 20
ENERGY IN eV

Fig. 4.5 g(vz) Curve for Neon, Far from Cathode



~58-

continuous curve.) It is seen that the shifted curves are very

nearly symmetrical about zero. It was found that these symmetrical

h oL
curves could be fitted very well by a function of the form Ae > 'Z
This function for g(vz) corresponds to an f(v) of the form
% Abuvge'b V. A can be determined from the condition that
oo
n = Jr g(vz) dv, (4.2)
-0
which gives A = Ebg Thus we have
P(E)
b 4
2on Y
I‘(E)
The mean z-directed energy is
o0 3
- ml(+)
= 1 2 m 2 L
WZ = "é‘ va = "2"5 f V'Z g(’VZ) de = '-"'-é'"-—z" ()4-.)4-)
w00 2b F('{I)

Figure 4.6 shows this g(vz) plotted along with a Druyvesteyn distri-
bution which has the same n and mean energy. ZFrom this figure we see
that the function which fits the neon data has fewer high and low
energy electrons than the corresponding Druyvesteyn distribution. This
is as expected, since the mean free path for neon decreases with
increasing energy.

Curyes of the above form were matched to the neon data taken
at the port farthest from the cathode (L = 69 cm). ‘The circles on
Figures 4.2 through 4.5 represent these calculated curves. It is seen

from these figures that the agreement is quite good near the center of
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the tube and for energies above seven eV. The disagreement is in a
direection to make the measured curves tend toward a Druyvesteyn dis-
tribution. The value of b found to match esach curve was used to
calculate the electron mean energy (ﬁz) as given by equation 4.h.

The simple theory presented in Section 2.3 gives the ion
saturation current density as

kT
i

el _—
i 20M

However, several theoretical treatments, which assume a Maxwellian
electron energy distribution, have shown that the filelds penetrating
from the probe produce on ilon flux proportional to VEE;“ rather than
J?E; (2) . To apply these theories to the determination of Ni it is
necessary to obtaln a number for Te . Since the measured distributions

are not Maxwellian, this X@lue for Te is somewhat arbitrary. Here we

2W
will replace Te with —EE . That is, we will assume a temperature

which would produce a Maxwellian distribution with the measured mean
energy. Since Ni is approximately equal to n , the sbove considera-
(Here we use n to

sat
denote explicitly that this is the density calculated {rom the ion

tions lead to the following expression for LY

saturation current.)

I,
¥ - L
“sat - Ny T eA V W (k.5)
z

(2) A review of this work is given by F.F. Chen in the following lecturc
notes: F.F. Chen, Lecture Notes on Probe Techniques for Plasma
Physics Summer Institute, Princeton University (1962).
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It should be noted that the experimental ion saturation current
was well defined. The probe characteristics showed a constant value of
ion saturation current over a range of 15 to 20 volts. This is an indi-
cation that the guard ring probe was exhibiting planar geometry, because
Tor any other geometry tie current lnereases with increasing negative
probe potential (due to the increase in sheath thickness which increases
the effective collecting ares of the probe).

Table 4.2 summarizes the measurements made using neon at )iCOu
pressure with tube currents of 75 and 100 milliamperes. Shown are the
values of N along with the value of n found by graphically inte-
grating the g(vz) curves. Also shown are the values of the mean
electron energy, the energy shift necessary at low energles to produce
symmetrical distributions, and the low energy mean free path times the
longitudinal electric field.

The most outstanding things shown in Table 4.2 are

1. The value of n_ is approximately 3.9 times n for

the 100 ma curve:tand 5.5 times n for the 75 ma curves.
Since the values of I calculated from the distribution
functions agree quite well with the measured values, it
is felt that the values of n are accurate. This means
that the ion saturation current is even greater thean
would be expected assuming the ions have a Maxwellian

distribution with ¢ = gg& .
i

2. The energy shift necessary at low energies agrees well
with the value of the longitudinal field times the low
energy mean free path. As seen in the table, the shift
is always greater than the product; but both quantities

generally vary in the same fashion. Tt is seen that
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TABLE 4.2

Measured Neon Parameters

Discharge -1 215 — Energy
Description R(em) nx 10 N gy ¥ 10 W (eV) Shift(ev) Er(eV)
Neon 2.0 k.53 17.5 3.03 0.9 0.67
P= LOOu 1.5 3.71 1.5 2.80 0.8 0.62
I = 100ma 1.0 2.99 9.70 2.45 0.4 0.56
L=69 cm 0.5 2.02 7.77 2.15 0.7 0.55
Neon 2.0 2.90 Curves were not simple symmetrical
P = 40ou 1.5 2.48 curves with energy shift, so these
T= 100ma 1.0 2.08 parameters werc not found.
L=6l.5cm 0.5 1.47
Neon 2.0 2.7h4 15.0 3.03 1.1 0.72
P =Loou 1.5 2.31 12.5 2.77 0.7 0.68
I=75 ma 1.0 1.88 9.43 2,47 0.9 0.6k
L=69 cm 0.5 1.24 7.37 2.00 0.7 0.62
Neon 2.0 2.55
P = hoop 1.5 1.77
I=75 ma 1.0 1.40 See above note
L =61.5cm 0.5 0.88

there is some scatter in the measured energy shift data.

This scatter is of the order of tenths of an electron

volt.

This magnitude of error is not surprising in that

the experimental value of thls energy shift is directly

dependent upon the correct determination of the Vp= 0

point of two derivative curves.

The mean free paths used in the above calculations were calculated

from the experimental curves giving the microscopic cross section, as




-73=
given by R. B. Brode (3).

Having this information we can now see whether the approxima-
tions made in the theory section are valid. First, we assumed very
low percentage ionization. For gas pressures used in the experiment
(0.3 to 0.5 mmHg) the neutral density is of the order of 1022 per m3.
Table 4.2 shows that the electron density is of the order of 10%7 per
m3. The percentage ionization is therefore :LO—5 s0 this approximation
is valid.

Second, to obtain a Druyvesteyn distribution the "strong field"

condition must be met. This condition is

WM

A s> oup ‘ (4.6)
omW

A stronger condition is

W2 M

S | (4.7)
MPGmWhaX

where wﬁax is the maximum electron energy considered. The distribu-

13

tion curves show that a reasonable value for vi is 1077, Using
this value for evalpating wmax in the left-han?a:ide of the above
inequality we obtain 3620 >> 1 80 the "strong field" condition is
met. The value for the electric field used for the calculation is

2:x1.02 volts per meter, whereas the measured longitudinal field ranged

from 140 to 180 volts per meter.

(3) R. B. Brode, Rev. Modern Phys. 5, 257 (1933).



=74

A third necegsary check is to determine whether the planar probe

criterion 1ls met. This cun be written as

5 eV
- & w
-5 e « 1 (4.8)

where we have assumed a Maxwellian distribution. To evaluate the
left-hand side of this inequality we must first determine s , the

sheath thickness. Equation 2.65 glves

-3 V3/lr

)1/h -1/2
P

s = 1.53x 10 173 (+.9)

m
(5

Substituting the smallest measured values of ,Jil into this expression

we obtain
5 = 5.54% x lC>-5 Vg/h meters (4.10)
W _
Again setting Te = -EE and using WZ = 3eV the inequality becomes
v/
e p << 1 ()'I"ll)

Most of the distribution function is obtained for Vb £ 25 volts, and

for this value we have

e~11/5 0.11 << 1 (4.12)

We see that the inequality is met, but not too strongly. This is still
quite good when it is remembered that the worst case was taken at all

points in determining the planar probe criterion. Also, the assumption
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of a Maxwellian distribution wlth an electron temperature equal to
Eﬁé/k leads to a stronger condition than actually needed. The actual
distributions have much fewer high energy electrons than the assumed
dlstribution, and it is the electrons with high velocities tangent
to the probe surface which cause i1t to behave in & nonplanar fashion.

We see that the theory developed should he applicable as long
as we stay below the excitation potential of neon and take into account
the effect of the variation of the mean free path with energy. The
first excltation potential for neon is sixteen volts, so most of the
distribution function lies below excitation potentials and is therefore
not affected by inelastic collisions.

Thus all of the assumptions (except A = constant) made in
the theory section are valld for these experlments and the agreement

between the theoretical and experimental distributions is Justified.

4.4 Helium Distributions

Figures 4.7 through 4.10 show the measured distribution
functions for velocities parallel to the tube axis as found in helium.
Curves are shown for the probe located 0.5, 1.0, 1.5 and 2.0 cm from
the tube wall. The gas pressure is lmmHg while the tube current is
75 ma. These curves are typical of all the curves found in helium.
There was no functional difference between the curves taken at the port
nearest the cathode and the port nearest the ancde. This is quite 4if-
ferent from the results obtained in neon, but it can be easily
understood. In the helium case the positive column extends much
farther from the anode (i1.c., the dark space is shorter) so that both

probe ports were located well within the positive columm. In neon this
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Fig. 4.7 g(vz) Curve for Helium, Far from Cathode
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was not true, as one port was quite close to the cathode end of the
positive column.

Also shown in Figures 4.7 through 4.10 are the energy shifted
curves as described in the previous section. These shifted curves
wvere found To agree quite well with a Druyvesteyn distribution. The
major differences are those expected due to the increase of the mean
free path with energy. That is, the measured distributions have fewer
low energy electrons and more high energy electrons. However, this
excess of high energy electrons exists only up to the first excitation
potential (nineteen volts). Above this energy the measured curves lie
below the theoretical ones. The circles on these helium curves are
best fit Druyvesteyn distributions (i.e., of the form K[l - erf(hgvi)]).

As in the case of the neon curves, the value of h found in
matching the experimental curves was used to calculate the mean elec-
tron energy. This mean energy was found using equation 2.30 which is
ur(2)

i 6h2I“(-23:)

(k.13)

These values of ﬁé were then used to find n as described pre-

sat
viously.

Table 4.3 summarizes the helium data for two discharge conditions.
Tt is seen from Table 4.3 that the helium densities (n) lie in the same
range as Tor the previously presented neon data. Also, the mean

energies are in the same range, but do not vary as much with radial

probe position. Again the same discrepancy exists between n and
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TABLE 4.3

Measured Helium Parameters

DiSCh&I‘ge ! 0_1-5 10-15 e Energy E)\‘ V
Description Rem) |nx 1 Boat ™ WZ(eV) Shift(eV) (ev)
Helium 2.0 4,11 21.6 2.67 0.65 0.152
P= 1000u 1.5 3.60 17.5 2.64 0.55 0.151
T =75 ma 1.0 2.72 13.9 2.46 0.45 0.149
L =69 cm 0.5 1.79 9.6 2.41 0.35 0.149
Helium 2.0 3.08 16.7 2.68 0.8 0.152
P =1000u 1.5 2.68 15.0 2.52 0.7 0.151
I=75 ma 1.0 2.06 11.5 2,34 0.8 0.14%9
L=61.5cn 0.5 1.37 g.2 2.09 0.5 0.149
Helium 2.0 4.05 23.6 2.96 0.7 0.295
P =500u 1.5 3.48 20.1 2.85 0.6 0.295
I =100 ma 1.0 2.72 16.4 2.75 0.65 0.292
L =69 cm 0.5 1.83 11.0 2.70 0.45 0.282
Helium 2.0 3.10 20.2 2.49 0.65 0.295
P = 500u 1.5 2.82 18.7 2.38 0.6 0.295
T =100 ma 1.0 2.16 1ik.0 2.h1 0.55 0.292
L=61.5 em| 0.5 1.47 10.7 2.31 0.5 0.282
nsat . The ratio of nS + to n goes from 5.1 to 6.5

The values of the energy shifts necessary to produce symmetri-

cal distributions are a factor of 1.6 to 4.3 greater than the product

of the mean free path times the longitudinal flelds.

here is not as good as that for neon.

The agreement

However, except for the energy

shifts found for L = 61.5 cm, P = 1000p and I = 75 ma, the qualita-

tive varlation of these two quantities with position and discharge
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conditions is the same. Again, we can check the validity of the assump-
tions made in the theory section.

The percentage ionization is the same as in the neon case and
thus gquite low.

The strong field condition ls not met as strongly since the
relation contains the mass of the neubtral scatterers and in this case
the mass is a factor of five less. It is still well satisfied giving
725 >> 1 with an assumed longitudinal field of 200 volts per meter.

The actual fields were 220 tn 230 volts per meter.
The planar probe criterion is met to a higher degree because

the sheath thickness is less, being glven by

s = 4.2 x 1077 vg/u meters (4.14)

Thus we see that the assumptions made in the theory section are Justi-

fied for all of the data presented here.

L.5 Movable Cathode Tube

In the last section it was pointed out that the helium distri-
butions taken at both probe ports were functionally the same. To see
whether the electron distributions in helium near the cathode end of
the positive column were similar to those found in neon, a tube with a
movable cathode was constructed. Since the length of the dlscharge tube
merely altered the length of the positive column, this made it possible
to probe continuously along the positive column. This also made it
possible to determine whether the field in the positive column was

uniform. The latter was of interest because the data reduction
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presented previously depends on knowing ﬁhe longitudinal field
accurately, and this field Was found by‘assuming a uniform field
between the probe ports.

The movable cathode fube was constructed in the same way as
the fixed cathode tubes except tﬂat a sliding o-ring seal driven by
a threaded rod was provided as shown in Figure h.1ll. Since sliding
o-ring seals leak when they are moved and also because moving the
‘cétho&e'changé& the tube volume and thus the gas pressure, it was
nepessary to pump out and refill the tube after only slight cathode
movenent. Thus this tube was only suitable for obtaining a rather
limited amount of qualitative data. It did'serve its purpose by
demonstrating that the distributions in helium do contain an excess
of high energy electrons near the cathode end of the positive column.
- A set of curves p;otted versus distance from the cathode is shown in
Figure 4.12; It was also found that while the cathode was moved a
distance of & cm, the.difference between the anode potential and the
probe space potential vapied only five percent. Thus the field was

guite uniform over the distance probed.

4.6 Other Properties of Measured Distribution Functions

‘All of the prévious diséussion has been concerned with the
distributions as a function of the velocity component parallel to the
axis ofvthe discharge tube. it will not be necessary to discuss the
distributions obtained for azimuthal and radial velocities to any
great extent because they fit logically with what was found for the

longitudinal velocity distributions.
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The distributions involving azimuthal velocities were found
to be ldentical with the energy-shifted longitudinal curves found at
the same point under the same discharge conditions. This is as
expected, since the cylindrical symmetry of the tube and discharge
rules out any azimuthal field which would energy shift these curves.

Since only one-half of the radial distributions was obtained,
it wag difficult to interpret these curves. However, it was found
that these curves had the same form as the energy-shifted longitudinal
curves when shifted in energy by the proper amount. The direction and
order of magnitude of the necessary shift was in agreement with the
measured radial field. This ficld was found by plotting the radial
space potential as determined from probes one or two when they were
oriented in an azimuthal direction. The radial field ranged from
zero at the center of the tube to approximately LOO volts per meter
at 0.5 cm from the tube wall. In most cases the field varied linearly
with radius near the tube center. This implies a constant charge
density. Simple Gauss' law calculations show that the difference in
lon and electron densities necessary to produce the measured fields

is

12 -3

N,-n =~ 10°m (k.15)

Another interesting set of curves 1s that which shows the
percentage of the tube current carried by the various veloéity classes
of eleétrons--that is, curves of the difference between v, g(VZ)
for electrons moving toward the anode and vzg(vz) for electrons

moving toward the cathode. Figure 4.13 shows typical curves of this
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type} From these curves we see that in neon near the cathode the
tube current is carried equally by a large velocity class of electrons
while farther from the cathode the curves are peaked about
v, = 1.4 x 10° m/sec. Thus, as we move away from the cathode the high
energy electrons become less important in carrying the tube current.
This 1s a graphlc display of the change from a directed electron beam
at the cathode end of the positive column to an anisetropic Druyvesteyn
distribution far from the cathode. Figure 4.14 shows the directional
properties of the distributions in neon near the cathode end of the
positive column. We see that the anisotropy of the distribution at
this position is not merely a general energy shift, but rather a group
‘of electrons directed predominantly from cathode to anode.

The distribution of tube current over the variocus velocity
classes of electrons in helium is similar to that for neon far from
the cathode except that the peak is less pronounced. This is shown in

Figure 4.13.
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V. CONCiHSIONS AND RECOMMENDATIONS

5.1 Conclusions

There are three important conclusione to be drawn from this

work:

1. If one is dealing with isotropic distributions, the
first derivative of Langmulr probe curves obtained
with planar, cylindrical, and small spherical probes
all yield the directed velocity distribution g(vz).
It is not necessary to take the second derivative of

the probe curves in order to deftermine electron velo-

city distributions.

2. TFor a planar probe the anisotropy of the distribution
- can be studied using the theory which gives

sv,) =-S5
e” Tp

The validity of this technique lg demonstrated by thc

experimental results presented here.

3. The electron distributions in neon and hellium hot
cathode discharges are nearly Druyvesteyn. Their
non-Druyvesteyn nature 1s due to the high longitu-
dinal electric field (this produces an energy shift
of the order of the mean free path times the field
strength) and the distortion of the distribution
due to the dependence of the mean free path on

~ energy.
The main stumbling block in applying the planar probe theory
to the determination of anisotropic distributions is building a planar

probe. The excellent agreement between the measured and calculated

distribution functions plus the agreement between the tube current
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found by integrating vzg(ﬁz) and the measured tube current demon-
strates that a‘guard ring probe can be built such that it exhibits
planar geometry.

On the negative side this experiment demonstrates that the ion
saturation current is not a reliable measure of the electron density.
It was shown that thé ion saturation current 1s greater than would be
oEﬁained for ions with a Maxwellian distribution whose temperature is
8;5 . In Tact in these experiments using the simple theory which gives

kT

T = AeN 1 Jeads to a value of N which is approximately a
1 i ¥ omm 1

factor of 50 toolarge.

This thesis deals mainly with the specific problem of determin-
ing distribution functions using probes. For this reason many of the
standard problems in the use of probes are not discussed. Very complete

discussions of these are given by Loeb (1), Chen (2), and Francis (3).

5.2 Recommendations for Further Study

The work reported here was done in order to verify that a probe
demonstrating planar geometry could be built and,once built, directed
electron distribution functions could be measured in detail. It has
now been shown that this can be done. A logical extension would be to

determine these distributlons in other types of plasmas in order to

(1) L. B. Loeb, Basic Processes of Gaseous Electronics, (University of
California Press, Berkeley 1960) pp.361-370.

(2) F. F. Chen, Lecture Notes on Probe Techniques for Plasma Physics
Summer Institute, Princeton University (1962).

(3) G. Francis, Vol.XXII Handbuch der Physik, S. Flugge, Ed., (Springer
Verlag, Berlin 1956) p.65.
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detefmine the effects of various external and internal parameters on
the distribution functions.

All successful applications of Druyvesteyn's theory for deterw
mining distribution functions involve applying small a-c potentials
on the probe. It is sometimes argued that these produce oscillations

in the probe sheath or plasma proper and thus alter the electron

dr

energy distribution. It is possible to measure —£ by applying a

av.
b
small a-c signal to the probe and synchronously detecting the a-c
probe current. This could be done and directly compared with measure-

ments made as described here to determine whether or not the a-c signal

does alter the energy distribubtions.
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APPENDIX A

In order to determine the form of the collision term which
appears in the Boltzmann equation we must first look at the geometry of
a binary colllsion. Figure A=l deplcts such a collision in a frame
moving with the scatterer. V(v) are the original velocities of the
scatterer (scattered particle) in the laboratory frame, while primes
denote final velocities. k is a unlt vector along the apse line
directed toward the scatterer, and b is the impact parameter.

We know energy must be conserved, therefore

2
mv© o+ MV = mv'T o+ MV' (A-1)

Writing the initial veloclties in terms of the velocity of the center

mv + MV
of mass (VCM =

—=——=) and the relative velocity u we have
—i. m+ M -

X = VCM o — (A'-Q)

m
Y= Vou~ am?2

Similarly the final velocities can be written

M

' = Wh——— u.‘

I ch t M — (A-3)
v LB

Y'= Vom - o ¢

aw——

Substituting these expressions into A=l we obtain

o mM ) {2 M )
(I[H-M) {V + ——— } =(m+M) {V 4 —! }
cM (m+M)2 oM 2

or u = u' (A-4)
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m, u’= -Y.,“-\-/'

Fig. A-l1 Geometry of Binary Collision
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Thus we see that in this coordinate system as 1n the center of mass
system the velocity of the particles is constant and merely changes

direction.

We are dealing with a central force problem se k biscets the

scattering angle © . Therefore we may write
u-u' =2u-kk=- 2u' “kk (A—S)

Using this expression and equations A-2 and A-3 we can write the change

in velocity of the particles as Tollows:

T v = M oy .
z L7 mwm (' -u) = m+M (-2u k) k

I -ut) = B (g - -
V-V = = (u-u) = — (2 k) k (A-6)

Let us now look at the statistics of the collision. We need an
expression for the number of encounters occurring within dr , in a
time dt , between particles of mass m in velocity range dv and
particles of mass M . Here we assume that 4t i1s short in terms of
the time necessarﬁ for macroscopic changes in the distribution func-
tions, but long compared to the duration of an encounter.

Flrst we will look at the number of such encounters with par-
ticles of mass M 1in the velocity range dv , impact parameters in the
range b to b+db , and @ 1in the range ¢ to @+df . If only one
encounter can occur in a time dt +the particle of mass must lie in the

volume YadP db udt at the beginning of dt for such an encounter to
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occur (see Figure A-1l). There is such a volume element for each par-
ticle of mass M . The number of volume elements is F dV dr . This
gives F dV dr bdg dbudt for the total volume in which a particle of
mass m may reside at the begimning of d4dt in order that this par-
tlcle undergo one of the abuve described encounters during the time
interval dt. The total number of such encounters will therefore be
given by the number of particles of mass m occupying this volume.

From the definition of the distribution functlon the number is

fF ubdbd@ dv dv dr dt (A=7)

Thie can be written in terme of the microccopic scattering

cross section (o¢) which is defined as follows:

d Nout(g’¢) {:number'} _ d Nin(u,b) { number

dt second at } a(e,P,u) dq (A-8)

m - sec

Noting that we can also write

an_ (6,8) d N, (u,b)
out in*
— 2 . DALAP e—R -
dt ¢ dt (A 9)
we have

bdbdg = o(e,@,u) dan (A-10)
and equation A-7 can be rewritten as

fFuodQ dv 4V dr dt (A-11)
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We originally set out to find the total number of encounters
irrespective of the velocity of the scatterers and the impact param-
eter {or scattering angle). This number‘is merely equation A-11
integrated over all scatterer veloclities and scattering angles. Since
each of these encounters changes the velocity of the scattered par-
ticle, this number represents the number of particles of mass m
scattered out of the volume dv dr in a time dt . However, this is

of

Just the negative contribution to 3% dv dr 4t . That is,

collision —

of

s dv dr dt
ot — =

collision

i

number scattered into Qx dr in time dt

- jfﬂfafFu.o dQ dv dv dr dt (A-12)
aQ av
We must now find the number scattered into this volume element.
These particles come from inverse encounters--those in which the final
velocities are v and V . These encounters involve the following

changes from the direct encounters

V! -y v o~ vt

V' -V vV - V!

u! - u u - u'
and k - =k

Thus the equatlons for the change in energy are identical for direct and
inverse encounters. That is, for indirect encounters we have

v! v = M

A m+M (-2u - k) k



Vi -V = — (2u - k) k (4-13)

showing that the change in velocity for an inverse encounter is
equal In magnitude and opposite in direction to that for a direct
encounter.

By reasoning similar to that presented above, we can then show
that the number of particles of mass m scattered into dv dr in a

time dt is

Jf.jp_jﬁf(v') F(V') ubdb df dr dt &

db ag dav

or

'/
J £(v') F(V') uodQ dr dt & (A-1h)
304y

where © is the six-dimensional differential volume element in v',V'
space related to dv dV by the dynamic equations of the encounter,

i.e.

5 = |J| av av (A-15)

where

vt Av' ov'  dv' dv' Jv!
x b X X X x
EavX ov dv, OV, avy ov,
gl = (A-16)
5v§
el ete.
avx

It is not necessary to evaluate {J\ directly because from the



equations of motion we see that

ov,  ov!
J J
theretore |J|" = |J]
where dv av = |J|'s =|J|' |o| av av
2
so  |Jl'lal= 1 = |7 or gl =1

and the number of inverse encounters 1s

f jf‘(v') F(V') uo do dr dv 4V dt
aa v

The collision term can now be written as

of
vy

collision: f‘[ {f(v’) F(V') - £) F<V)} vodg dv

a0 av

which is the form given in Chapter II.

(A-17)

(A-18)

(A-19)

(A~20)

(A=21)
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APPENDIX B

E - 4j (where d4j 1is the differential current density) repre-

-

sents the energy glven Lo the electrons (in the energy range W to
W+dW) by the field per m3 per second. Since the fileld is in the =z

direction E + dj = E djz and

2
d'jz :-[f ev, fv sin Oldv d@ld¢ (B.1)
% e

the integral over fo 1s zero, so this becomes

300620 a1

a] =-

J, ff ev’cos @ sin 6,% dv d@ld¢
g e

or
hre 3
—— Tt av (B.2)
djz = 3 1
giving
_lgeE 3 LneEv £,
= v dv = dw .
E-dj=—73viHLw e (3.3)
Multiplying equation 2.11 by lL:rcvg and integrating over v we
obtaln 5
o ~ hgeBv £
dwunfv 8 AV = = gw (B.4)
0 3m

The right hand side of this equation is just E - dj so we see that
equation 2.1l is directly related to the above energy balance eqguation
vwhich is a statement that the energy gained by the electrons due to the

field is lost due to collisions. The energy loss term is a function of
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So and we would therefore not expect to be able to determine SO by
neglecting the loss in energy of an electron during a collision.

Let us now look at the time rate of change of the z directed
momentun for electrons in the energy range W to W +dW due to the
electric field. This is dnT%;(va) which is equal to dn times the

3

force on a single electron. This change in momentum per m~ per

second is therefore

2
-eRdn =-eR ijr fvgsin Gldgldv d¢ =—eRln fov dv {B.B)
g oy

which can be written

bneR fo vdW

-— (B.6)

Totegrating equation 2.12 with vespect to v and then multiplying by

hyvdW we obtain

- hpeRvawe
havdW [ 8,dv = ___—E__-‘l (B.7)

Here the fg term has been dropped as explained in Section 2.2. The

right«hand side of the above equation is exactly the time rate of

increase of z directed momentum per m3

per second for electrons in
the energy range W to W+dW due to the electric field. 8Since we
are assuming an equilibrium condition, the left~hand side of B.7

represents the corresponding loss in z directed momentum duc to col-

lisions. Because of the large ratio M/m this term, which is a
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function of Sl , can therefore be well approximated by neglecting
the change in electron energy during a collision with neutral gas

molecules.
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APPENDIX C

We have shown that f can be written in the form (see equations

2.13 and 2.26)

EmW
f=f +cos@f, = A3l —-— cos @ f (c.1)
o 11 MW, 1 o}
A
We woflld now like to show that for the experiment described here
81V o5 6. << 1 (c.2)
MW 1
A
A stronger inequality is
SmW <1 | (c.3)

wa

This ineguality is certainly not met 1f W is too large or W, too

small. This means that our assumption that f. represents a small

1
perturbation on fo is not valid for small fields or large energies.
The fields encountered in the experiment described here were of

the order of 200 volts per meter. The inequality will be the weakest

for helium so substituting numerical values for this case we obtain:

M,

W —=
om

= 316 ev (c.h)

Inelastic collisions become important an order of magnitude below this
energy.A The theory therefore bresks down long before the second term
becomes important, and in the region of interest (W £ 30 eV) , £ is

dominant.



