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DIRECTED ELECTRON VELOCITY DISTRIBUTIONS 

IN RARE GAS DISCHARGES USING GUARD RING PROBES 

Robert H. Bond 

Abstract 

An experimental technique for determining detailed properties 

of anisotropic electron velocity distributions is described. For a 
0.Jp 

g(v ) = - !!... - where z 2 ?JV 
planar Langmuir probe it is shown that 

e P 

v = v2 ~ v z m p 
and g(v ) 

z 
gives the density of electrons with velo-

cities normal to the probe in the range v z 
to v + av z z This 

expression is valid for any distribution function making it possible 

to study anisotropies merely by changing the orientation of the 

probe. If the distribution function is isotropic the above expres-

sion is valid for cylindrical and small spherical probes as well. 

This technique is applied to the measurement of the directional 

properties of electron velocity distributions in the positive column 

of neon and helium hot cathode discharges. The necessary planar 

probe consists of a 0.01 inch diameter circular probe surrounded by 

a 0.090 inch square guard-ring. The measured distributions were 

Druyvesteyn in form except that all electrons were shifted in energy 

(in the direction of the external field) by an amount proportional 

to EA.(v ) 
z 

field and 

Here E is the magnitude of the external electric 

A.( v ) 
z 

the electron mean free path as a f1.Ulction of 

The experimental conditions are shown to be identical with those 

necessary in the derivation of the Druyvesteyn distribution. 

v z 
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I. INTRODUCTION 

1.1 History of Problem 

It is known that conducting probes were used by Crookes in the 

eighteen-nineties to explore ionized gases. Also, J. s. Townsend dis-

cussed the use of such probes in the early nineteen-hundreds. However, 

it was not until the work of Irving Langmuir in 1923 that the operation 

of these probes was understood. Langmuir presented his probe theory in 

a series of articles in the General Electric Review (1-5). In these 

articles Langmuir assumed that the plasma electrons had a Maxwellian 

energy diotL·ilru.tiun C1.nd with th.io Cl.oournptiun .found thC1.t the cw-rent 

drawn by the probe as a function of negative probe potential is 

I p 
(Ll) 

and a are constants, while I p 
is the electron cur-

rent and VP the absolute value of the probe potential 'With respect 

to the body of the plasma. Because of the exponential nature of this 

relationship it was (and still is) common practice to plot .en I 
p 

versus v . p 
The constant a can then be determined from the linear 

plot. However, soon after Langmuir's publication, it became evident 

that many of the versus V plots were not linear (particu
p 

larly if taken to sufficiently high values of V ). Assuming that the 
p 

(1) I. Langmuir, H. Mott-Smith, General Electric Review 32, 449 (1924). 
(2) Ibid. 538 
(3) Ibid. 616 
(4) Ibid. 762 
(5) Ibid. 810 
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probes were functioning "properly" this means that the distribution 

functions were not Maxwellian as Langmuir assumed. 

In 1930 Druyvesteyn (6) devised a scheme for overcoming this 

problem in the use of Langmuir probes. He developed a theory which 

showed that for planar, cylindrical, and small spherical probes the 

actual electron velocity distribution function could be obtained from 

the probe volt-ampere characteristic as follows: 

f(v) (1.2) 

where f(v) is the speed distribution of the electrons giving the 

number of electrons with speeds in the range v to v+dv, A is the 

collecting area of the probe, and m and e are the mass and charge of 

the electrons. The one major assumption necessary to arrive at the 

above result is that the distribution function is isotropic. Because 

it has become more and more evident that in many cases the electrons do 

not have a Maxwellian distribution, this technique for measuring distri-

bution functions has gained increasing favor. At first the second 

derivatives of the probe curves were obtained graphically. This was 

quite unsatisfactory in that the original curves were subject to many 

errors and the graphical differentiation multiplied these errors to an 

intolerable point. 

In l934 (at the suggestton of K. G. Emele'us) R. H. 81.oane and 

E. I. R. MacGregor (7) devised an ingenious method to overcome the need 

(6) M. J. Druyvesteyn, z. Physik 64, 781 (1930). 

(7) R.H. Sloane, E.I.R. MacGregor, Phil.Mag.18, 193 (1934). 
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of graphical differentiation. Their technique involved superimposing 

a small a-c potential on the d-c probe potential. This causes the d-c 

probe current to increase over the value it would have with no a-c 

applied. The amount of increase is proportional to the second deriva-

tive of the probe characteristic. This can be understood by consider-

ing the Taylor series expansion of the probe current when the probe 

voltagehas the form 

V = V + e where e - A cos mt 
p 

This gives 

2 
I = f(V ) = f(V+e) == f(V) + ef' (V) + ~ f" (V)+ 
p p 2! 

On substituting for e this becomes 

2 4 
rP ={rev)+} f"(v)+ ~ f 1111

(v)+ ···} 

+ {Af'(V)+ ~ f"'(V)+ ••• } cos mt 

2 4 
+ { 4- f" (v)+ ~ f 1111 

(v)+ ••• } cos aot +-· •• 

which shows that for sufficiently small applied a-c voltages 

(1.3) 

(1.4) 

(1.5) 

4 2 
[A f 11 "(v) << !:__ f"(V)] the change in the d-c probe current is pro-64 4 
portional to the second derivative of the probe curve. 

This technique was used by Sloane and MacGregor (8) and later 

Ibid. 
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by Emeleus, Montgomery and Grieves (9), Emel~us and Ballentine {10) and 

Grieves and Johnston (11) to measure the velocity distributions in low 

pressure glow discharges. The work of these people in the field repre-

sents the most extensive work done until the early nineteen-fifties. 

One other piece of work deserves mention. This is the technique 

developed by A. H. van Gorcum (12) in 1936. Van Gorcum again used a 

small a-c voltage applied to the probe, but he also devised a unique 

and ingenious bridge circuit which made it possible to determine the 

second derivative of the probe curves, point by point. It is probably 

because the technique waa slow that it did not see greater use. Van 

Gorcum's circuit is shown in Figure 1.1. The following is a sUlillllary of 

his technique. The voltage appearing on the vertical plates of his 

oscilloscope was g (v - i ) 2 y y 
where i is the average value of V 

y y 

The horizontal deflection was proportional to 

Kirchhoff's voltage law we see that 

81(v - i ) . 
p p 

By 

but V = V + K cos rot and if we again expand I = f(V ) in a 
p p p -~ p 

Taylor's series and substitute this into the above expression, we 

obtain 

(1.6) 

(9) K.G. Emeleus, F.D. Grieves, E. Montgomery, Pree.Roy.Irish Acad.A43, 
35 (1936). 

(10) K.G. Emeleus, R.J. Ballantine, Phys. Rev. 50, 672 (1936). 
(ll)F.D. Grieves, J.E. McF. Johnston, Phil. MaS:- 21, 659 (1936). 
(12)A.H. van Gorcum,Physica l' 207 (J936). 
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and 

Y = g2(v - v ) , y y 

g2 . 
k2) al = -(k Rf' -

gl 1 

g2 
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2 l 
2g 
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x g
1
(v - v ) 

p p 

( 1. 7) 

This is the equation of the curve plotted on the oscilloscope. We see 

that for sufficiently large g
1 

only the first four terms of this 

series need be considered. 

Van Gorcum adjusted k1 and k2 such that a1 was zero, by 

noting when dYI = 0 • Having done that, a
2 

could be determined 
dX X=O 

from the expression 

a2 l { 2 Y(-1) + Y(+l) - 2Y(o)} (1.8) 

or 

f" ei {Y(-1) + Y(+l) - 2Y(O)} = 

g2klR 
( 1.9) 

Using this technique van Gorcum studied distribution functions near the 

cathode in neon discharges. 

In 1951 Kagan, Fedorov, Malyshev and Gavalles (13) swept the 

voltage linearly in time so 
d 2I 

They then obtained _g 
dt2 

a2r 
that ~ was proportional to 

dVIl 

by using two R-C differentiating 

circuits. This method shows great promise in theory but is quite 

(13) J.M. Kagan, V.L. Fedorov, G.M. Malyshev, L.A. Gavallas, Dokl.A.kad. 
Nauk.SSSR 76, 215 (1951). 
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difficult to implement experimentally due to the inherent noise present 

in the plasmas being probed. It is speculated that for th1.s reason the 

technique was dropped. 

In 1953 Malyshev and Federov published a paper (14) in which 

they described an im:provement on the Sloane and MacGregor technique. 

This consisted of superimposing a small sinusoidally modulated a-c 

voltage on the probe voltage such that the e of equation 1.3 becomes 

A(l+ cos ro t) cos mt . This leads to 
p 

IP= f(V) +~A2fn(v) + .•• 

+ {A: f"(V) + ~ A4
f"" (V) + • • • ) cos ill t + ••• 

p 
(1.10) 

Here we oee that if A io oufficicntly small, the component of the 

current at m is proportional to f"(V) • Malyshev and Federov took 
p 

advantage of this by building narrow band amplifiers tuned to rop 

The output of these amplifiers is then proportional to :f" (V) . The 

advantage over the Sloane and MacGregor technique is that here, assum-

ing ideal filtering, the only error is due to neglecting the terms 

involving f 1111
, etc. which is quite valid for small A. With no 

modulation on the a-c voltage one must measure the change in the d-c 

probe current as the a-c is switched on and off. This is subject to 

large errors because very slight drifts in the d-c plasma conditions 

can cause f(V) to vary the same order of magnitude as the quantity 

(14) G.M. Malyshev, V.L. Federov, Dok.Akad.Nau.k..SSSR 92, 269 
(1953). 
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A2 
being measured [namely, 4 f"(V)] . 

At nearly the same time (1954), R. L. F. Boyd and N. D. Twiddy 

(15) developed an almost identical technique. However, there were 

four major differences. 

1. Boyd and Twiddy used square wave modulation instead of 

sinusoidal. This is of no consequence and merely changes 

the constants in the expansion of .[ 
p 

2. Synchronous detection was used to select the current com-

ponent at ru 
p 

rather than narrow band amplifiers 

operating at m . 
p 

3. A sensing probe was placed at a point near the measuring 

probe so that fluctuations in plasma potential could be 

measured. These fluctuations were then compensated for 

in the applied probe potential. Thus the probe tracked 

any plasma potential variations. 

4. The small a-c signal was applied to the discharge rather 

than to the probe. This made it possible to keep the 

probe grounded. 

The second of these differences merely exchanges filtering at low fre-

quency for filtering at m • It is felt that with easily obtainable 
p 

equipment the synchronous detection scheme would yield a better signal 

to noise ratio. 

The third point is an interesting attempt at taking into account 

the fluctuations which always occur in plasmas. Although it does not 

compensate for density changes, temperature changes, etc., it is a 

step in the right direction. It should be pointed out that even with 

(15)R.L.F. Boyd, N.D. Twiddy, Nature !I.d' 633 (1954) 
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this type of compensation, probe curves taken in oscillating plasmas 

are not easily interpreted. 
d2r 

This technique for determining __ P has been used by R.L.F. 
dV

2 
p 

Boyd and N. D. Twiddy (16,17), N. D. Twiddy (18), J. B. Thompson (19) 

and N. D. Twiddy (20) to amass the most comprehensive set of measured 

distribution functions available. 

In 1963 A. Garscadden and R. S. Palmer (21) developed a unique 

technique for obtaining the first derivative of the probe curve in a 

noise-free form. Because the signal was noise free, they were able to 

use R-C differentiation to obtain the second derivative. Two identical 

probes were used but they were biased o.t potentials differing by 6. V • 

A differential amplifier was used to measure the difference in the 

currents to the two probes. Since 6V was held constant, the output 
6I dI 

of the differential amplifier was proportional to :::...R. = __g . 
6Vp dVP 

Because voltage fluctuations are well correlated over the distance 

between the probes, the noise output of the differential amplifier was 

found to be an order of magnitude less than the noise appearing on the 

individual probe curves. This technique is only v~lid in a plasma 

which is quite homogeneous because the basic assumption is that there 

is no variation in the plasma parameters over distances equal to the 

probe separation. 

(16) R. L. F. Boyd, N. D. Twiddy, Proc. Roy. Soc. A250, 53 (1959). 
(17) R. L. F. Boyd, N. D. Twiddy, Proc. Roy. Soc. A259, 145 (1960). 
(18) N. D. Twiddy, Proc. Roy. Soc. A262, 379 (196lr---
(19) J. B. Thompson, Proc. Roy. Soc. A262, 503 (1961) 
(20) N. D. Twiddy, Proc. Roy. Soc. A2~338 (1963). 
(21) A. Garscadden, R. s. Palmer, Aerc;nautical Research Labs., USAF 

Report No. ARL63-50 (1963). 
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During this same period of time, G. R. Branner, E. M. Friar and 

G. Medicus (22) instrumented another technique for determining the 

second derivative of a probe characteristic. They also superimposed a 

small a-c voltage on the probe, but instead of noting the change in d-c 

current they detected the second harmonic ~robe current. Equation 1.5 

shows that for a small a-c potential this frequency component of the 
d2I 

probe current is proportional to -;::;f2- . The second harmonic current 
avp 

was measured using band pass filtering and synchronous detection. The 

instrumentation necessary for this technique is much simpler than that 

necessary when using modulated a-c and the accuracy of this system seems 

to be as good, making this a very promising technique. 

1.2 Object of This Experiment 

The work presented here was first discussed by the author in a 

paper presented in 1962 (2j). At that time it was shown that for a 

planar probe the first derivative of probe current with respect to probe 

voltage is proportional to g(v ) z Here g(v ) 
z 

is the directed elec-

tron velocity distribution giving the density of electrons with z 

directed velocities in the range v 
z 

to v + dv ,· The derivation of z z 

this result is given in Section 2.3. The most important point in this 

derivation is that it is not necessary to assume that the distribution 

function is isotropic. It was also shown in the previous paper that a 

guard-ring probe could be constructed such that it exhibited planar geo-

metry. 

(22)G. R. Branner, E. M. Friar, G. Medicus, Rev. Sci. Instr.34, 231 
(1963) 

(23) R.H. Bond, Bull. Am. Phys. Soc. J_, 631 (1962). 
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This thesis extends the above theory to show that if the distri-

bution function is isotropic the first derivative of the probe curve is 

proportional to g(v ) 
z 

for cylindrical and small spherical probes as 

well as planar probes. The advantage in using planar probes is that it 

is then possible to measure any anisotropy of the electron distribution. 

The experiments described here use a guard ring probe to measUl"e 

(for the first time) the detailed directional properties of electron 

distributions. The plasma probed is the positive column of' neon a.nd 

helium hot cathode discharges. These experimental distributions are 

then compared with theoretical distributions calculated for plasma con-

ditions similar to the experimental conditions. Since it was only 

necessary to obtain the first derivative in this work, the probe volt-

age was swept linearly in time and the time derivative obtained using 

an operational amplifier. 

Section 2.2 presents the solution of the Boltzmann equation under 

conditions applicable to the experiments described here. This leads 

to the theoretical distribution functions which are later compared 

(Sections 4.3 and 4.4) with experimental results. Sections2.3 and 2.4 

discuss the theory behind the application of probes to electron distri-

bution measurement. 

Chapter III describes the experiment and experimental appa~atus, 

whll~ Chapter IV discusses the results obtained. Finally, Chapter V 

consists of conclusions and recommendations for further work. 
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II. THEORY 

2.1 Introduction 

This section will be divided into two main parts. The first of 

these will deal with the solution of Boltzmann's equation under condi-

tions in which we are interested. This analysis yields the electron 

velocity distribution in terms of an expansion in Legendre polynomials 

in velocity space. The remainder of the section deals with the theory 

involved in experimentally verifying (or refuting) this distribution 

function. This second section can again be divided into that portion 

dealing generally with measurement of velocity distribution using 

probes, and a portion looking more closely at the teclmique acLUCLlly 

used for these experiments. 

MKS units are used except where it is specifically indicated 

otherwise. 

2.2 Solution of Boltzmann's Equation 

As stated previously, we are interested in measuring the 

directed velocity distributions of electrons in rare gas discharges. 

We will see (a posteriori) that the plasma used in the experiments 

described here has the following properties. First, it is very weakly 

-4 ionized (of the order of 10 i) so that the dominant interactions or 

collisions between particles are those between electrons and neutrals. 

This allows us to neglect electron-electron and electron-ion collision 

terms in the Boltzmann equation. Second, in the positive column of the 

discharge there exists R relRtively high electric ~ield directed along 
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the axis of' the tube. Since there is no magnetic field applied, this 

electric field will be assumed to produce the only external force on 

the electrons. We will further assume that the distribution function 

has reached a steady state condition and is spatially homogeneous. 

Picking a coordinate system with the z axis along the axis of the tube 

(in the direction of the electric field E), we arrive at the following 

form for Boltzmann's equation; 

eE df 
mdv' z 

df 
= dt (2.l) 

collisions 

Here f is the distribution function for the electrons. That is, 

f(v) ~ gives the density of electrons with velocities within 

dv = dv dv dv , E is the magnitude of the electric field, e is the z y z 

electronic charge, m is the electronic mass, v is the z-directed z 

electron velocity, and ~1 is the time rate of change of the 
ot collision 

distribution function due to collisions. This collision term can be 

written in many ways; however, we will write it in the form derived by 

Chapman and Cowling (1) and others. This gives 

df 
Ot collisions 

= ff [f(v') F(v') - f(v) F(v)] uadn dv 

n dv 

(2.2) 

where f is as defined previously and F is the distribution function 

for the p!:trtic.:les with which the electrons collide (in this case, 

neutral gas molecules). Primes denote velocities after a collision 

(1) S. Chapman, T,G. Cowling, The Mathematical Theory of Non-Uniform 
Gases (Cambridge University ~ress, 1953), pp. 54-65. 
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while unprimed quantities indicate initial velocities. V will be used 

to denote neutral velocities, while v represents electron velocities. 

The quantity u is the magnitude of the difference in velocity of the 

particles before collision; u :::: I!- Y.I . The quantity o(g, u,¢)a.n = 

cr(9,u,¢)s1n €ld 9d¢ is just the function relating the number of elec-

trons per second scattered into solid angle an by a single scattering 
2 

center to the flux of electrons arriving per sec per m at the scatter-

ing center with relative velocity u, 

1.e., 
dN 

out 

dt 

dN 
cr(9,u,¢) dQ d;n (2.3) 

Figure 2.1 shows the angles Q and ¢ measured in a coordinate system 

moving with the scattering center. The expression is integrated over 

all scattering angles (dn) and over all initial scatterer velocities 

dV = dV dV dV x y z 
This form for the collision term is valid under the 

assumptions of binary; elastic, short-term collisions--collisions in 

which no energy goes to excite internal degrees of freedom in the col-

liding bodies and the collision takes place in a time interval short 

compared with dt This rules out collisions where excitation or 

ionization takes place. Electron-electron and ion-electron collisions 

must also be ruled out because the forces involved in these cases are 

long range and involve interaction times long compared to dt • In 

addition, these collisions are not strictly binary. A review of Chapman 

and Cowling's derivation of this form of the collision term is presented 

in Appendix A. 
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z"' PARALLEL TO u 

x' 

Fig. 2.1 Collision Geometry in Frame Moving ~ith Scatterer 
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Inserting this form for the collision term, Boltzmann 1 s 

equation becomes 

~ ~ [f(v') F(V') - f(v) f(V)] ua dO. dV 

n. dV 

(2.4) 

We will solve this equation by expanding f in a series of 

Legendre polynomials (2) giving 

f (2.5) 

where 91 is the angle between v and the z axis, or alternatively, 

the angle between v and E • Substituting this expression into the 

Boltzmann equation, multiplying by pi(cos 9
1
), and integrating over 

dn, we obtain 

(2.6) 

where S has been substituted for the collision term. Since the 

are explicit functions of v , not v , we use the relationships 
z 

2 2 
v = v x 

2 
+ v 

y 
2 

+ v z 
to show that 

= p ./cos gl) cos 

2 
of;, f £8 in g 1 oP p, 

g -+ ----
1 dv v d( cos 9J) 

(2.7) 

(2) w. P. Allis, Vol.XXI Handbuch der Physik, Ed, s. Flugge (Springer
Verlag, Berlin 1956), pp. 4o4-4o6. 
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Making use of this and the following well-known properties of 

Legendre polynomials: 

(2£+1) cos gl p J, = ( £+1) p .£+1 + £ p £-1 

2 dP t [ 
(2£+1) sin 91 = .£(£+1) P.£-l - P.£+l] 

a( cos 9
1

) 

(2£+1)~ P£Pmd0l = 4rc B£m (2.8) 

"We obtain 

eE Jan p f [ ( £+l)P .e+l + ,.ep £-1] df .e + £( .e+l) Ip - p J .f' .£ } 
m ~ 1 i 2£+1 dV 2£+ 1) l J,-l £+1 V 

J 
4rc 

pis d.01 = s i 2i + 1 (2.9) 

where we have now expanded the collision term in a series of Legendre 

polynomials, i.e., 

s = ( 2.10) 

We obtain a single equation for each value of i substituted 

into 2.9. The first two of these are 

(2.11) 

(2.12) 
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v. L. Ginzburg shows (3) that in the second of these equations 

the term involving r
2 

can be neglected. In particular he shows that 
dfo 1 o(v3f2) m 

the condition ov >> v3 dv reduces to M << 1 where M is the 

mass of the scatterer and m the mass of the scattered particle. Since 

we are talking about electron-neutral scattering, thio condition io met 

and equations 2.11 and 2.12 reduce to two equations for f 
0 

We will assume that all higher order terms f
2

, r
3
, f 4, etc. are neg

ligible and th.A.t the diRtribution function can be written 

(2.13) 

The validity of dropping the higher order terms is discussed by Ginz-

burg (4). 
lt would be well to note what the terms f 

0 
and r

1 
represent 

physically. The first term f (v) represents an isotropic distribu
o 

tion whereas the second term cos 9
1
f

1
(v) represents an anisotropy 

which we will see can be interpreted as a drift velocity in the direc-

tion of the applied force on the electrons. 

To solve the two equations, 2.11 and 2.12, it is necessary to 

determine s
0 

and s
1 

• In Appendix B it is shown that the s 
0 

equation is directly related to an energy balance equation, while the 

s
1 

equation represents the balance of z directed electron momentum. 

We would therefore expect s
0 

to be a strong function of the change 

in energy (6.v) of an electron during a collision. On the other hand, 

(3)V. L. Ginzburg, A. v. Gurevich, Usp. Fiz. Nauk.70, 201 (1960) 
(4) Ibid. 
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the change in the z directed momentum can be approximated very well by 

setting t::.v = O and merely considering the change in direction of the 

electron. This is true because we are discussing the case of rela-

tively heavy scatterers so that very little energy is transferred to 

them during a single collision. With these facts in mind let us 

write down an expression for s1 . From equations 2.9 and 2.2 this is 

or 

91) J J d U!'!ua [F(V') ~ f /v')P ico• Qi) 

- F(V) ~ f /v) P /cos G1 )} 

(2.14) 

Noting the collision geometry as shown in Figure 2.2, again with the 

coordinates moving with the scatterer, we see that cos Q' = 
1 

sin G
1 

sin Q cos ¢
1 

+ cos G
1 

cos Q 

have terms of the form 

so in the expression for S. we 
1. 

.e 
= p /cos e) p /cos rci 1) ",.. 2 E 

k=l 

see reference (5). 

(5) P. M. Morse, H. Feshbach, Methods of Theoretical Physics--Part II 
(McGraw-Hill Book Company, Inc., New York 1953) p. 1327. 
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z E: E e z -

mu" ,_ 

8 

y 

Fig. 2.2 Collision Geometry Defining 9, 9
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All the terms containing cos k¢
1 

will yield zero when inte-

grated over a.n1 so we are left with the following: 

( 2 .15) 

We will now apply the assumptions that the energy lost per collision is 

small (i.e., v ~ v' and V ~ V') and that u ~ v . The latter comes 

from assuming that the energies of the neutrals and elect.runs are com-

par ab le so that V << v and therefore u = Iv -VI ~ v . This gives 

or 

(2.16) 

N is the density of the neutrals and v
1 

are collision frequencies 

de:fined by 

v. = Nv J cr ( v, Q) [ 1 - P . ( cos Q) ] dn 
l 1 

As expected S is zero in this approximation. 
0 

It is necessary to look at the collision in some detail to 

(2.17) 

determine S 
0 

This has been done by Desloge and Matthysse (6) for 

the case we are interested in. They assumed that the gas molecules 

were not affected by the electric field and had a Maxwellian distribu-

tion, i.e., 

(6) E. A. Desloge, S. W. Matthysse, Amer.Jour.Phys.28, 1 (1960) 
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MV2 

( M )3/2 - 2kT 
F == 2n: kT Ne 

where T is the gas temperature and k is Boltzmann's constant. 

They find the same value for s1 as given by 2.17 and 

(2.18) 

Substituting these values of s1 and S
0 

into 2.11 and 2.12 we obtain 

(2.19) 

Multiplying 2.19 by 
2 v and integrating from 0 to v gives 

= 
kT df J 

[ - __..£ + vf 
ID OV 0 

(2.21) 

We can now substitute 2.20 into 2.21 and solve for f . This leads to 
0 

For kT >> 

v 

J 
mv dv 

kT e2:E2t4 
+ 2 2 

A e 3m v1 

2 2 
e EM 

'.),..,2 2 
y.u vl 

we obtain a Maxwellian distribution f =Ae 
0 

(2.22) 

mv2 
-M 

e2E~ However, if the electric field is "strong" such that ---- >> kT , the 
:i,.,.,2 2 
_,,... vl 

distribution will in general not be Maxwellian. It is impossible to 

evaluate its exact form in this case unless we know v1 as a function 
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of v . One reasonable asswµption is that the mean free path (A) be 

independent of v . This leads to v
1 

= ~ , and for this condition we 

have 

f :::: A e 
0 

= A e 

l+ li 
-h v 

(2.23) 

This is the Druyvesteyn distribution first derived by Druyvesteyn in 

1930 (7). 

The above function can be put in a more concise form by using 

as parameters the energy gained by the electrons per mean free path (in 

the direction of the field) and the electron energy. These will be 

1 2 
denoted respectively as WA = eEA and W = 2 mv • Using these quanti-

ties we can write 

so 

From 2.20 

giving 

f 
0 

4M w2 
A 

f = -6 ~(..!'.!..) f
0 1 M WA 

(7) M. J. Druyvesteyn, Physica 10, 69 (1930) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 
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The "strong field" condition can be written as 

w2 
M 

-1_ >> kT 
6mW 

(2.28) 

The constant A will now be evaluated by noting that the integral of 

f over all velocities gives the electron density n , i.e., 

n 

This yields 

A = (2.29) 

12 We can now calculate the mean energy '2 mv and the mean value of the 

z velocity v 
z The latter will be termed the drift velocity. The 

mean energy is given by 

mf 2 2mh3 
2ii v f dv = r(-~) 

or 

1 mv2 
2 (2. 30) 

In the same way we obtain vz 

_- {2; w;:12 

- r(~)[3mM] 1/4 
(2.31) 

Since directed diatributiona g(v ), g(v ), g(v ) were measured, we 
x y z 
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will now calculate these functions so that the theory and experiment 

can be compared. 

Let us first calculate g(v ). This function gives the density 
z 

of electrons with z directed velocities in the range v to z v +dv. z z 

irrespective of their x or y velocities. Therefore g(v ) z 
can be 

found by integrating f(v) over all possible v and v 
x y 

yields 

g(v ) z 

or in 

g(v ) 
z 

OJ 11 ? 2 ? 2 f 3m
2

v JJ e -h ( v x + v y + v z) 2 2 2} A 

-ro 

terms of polar coordinates 

2nA 
CD h4( 2 2)2 

J - r + v 
e z 

0 

1- z v + v + v 
MWA. x y z 

(r2 2 2 = v + v ) x y 

2 

{ 

3m v 
1--z 

MWA. 

It is seen from this equation that for sufficiently large 

This 

dv dv 

v 
z 

x y 

(2.32) 

(2.33) 

the 

term arising from f
1 

will dominate. We show in Appendix C that 

this does not happen for small enough energy to be of interest. 

Therefore we may ignore this second term except for calculating the 

drift velocity. That is, we have a nearly isotropic distribution with 

a superimposed drift. 

Integrating the first term of 2.32 yields 

g(v ) 
z 

~ {i nh 

2r(t) 

where erf is the error function defined by 
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erf x 
-t2 

e dt 

The nthe~ two directed distribution functions can be calculated in the 

same fashion- They 'Will both entail an integration over all v . From 
z 

equation 2.32 we see that the term due to fl will be zero and both 

g(v ) and g(v ) will be given exactly by equation 2.34. 
x y 

We can approximate the error function for large argument by the 

following asymptotic series: (8) 

erf(x) - 1 

This gives 

g(v ) z 

For small hv 
z 

series (9) giving 

{;( nh {i -g(v ) = z 2r(t) 

2 
v 

z 

we 

l 
--+ 

2x2 

{
1 - ---.-,:1......--

2h '+ v 4 
z 

... } large hv z 

can expand the error function in a power 

2h2v2 

[ l -

(h2v2)2 

+ • • ·] } small hv z 
z z 

v-rr 3 

(2.35) 

(2.36) 

We see that for large v z 
the directed distributions fall off very 

-h4v4 
e z 

rapidly, going as K 2 
vz 

While for small v they vary z 

(8)H. B. Dwight, Tables of Integrals and Other Mathematical Data, (The 
MacMillan Co., New York, 1957) p. 129. 

(9)Ibid. 
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SUillil1arizing the above theory we see that the electron distri-

bution function should be Druyvesteyn rather than Maxwellian if 

1. The degree of ionization is low so that only electron

neuLr1::1.l colli~ions need be considered. 

2. The external electric field is strong, i.e., 

e~2M kT 
2 2 >> 

3m v
1 

3. The mean free path is independent of velocity so that 

4. we ignore inelastic collisions. 

Having derived this form for the distribution function it 

would be interesting to compare it with a Maxwellian one with the same 

electron density and mean energy. 

where 

We would like to compare 

Maxwellian 

Druyvesteyn 

J. kT 
2 e 

g(v ) 
z 

= n( m )1/2 
2kT 1C 

e 

e 

2 mv 
z 

-~ e (2.37) 

(2.39) 

m 2 
Setting 2kT vz equal to the dimensionless variable x2 and 

e 
normalizing the Maxwellian distribution so that it~ mB.xirnum amplitude 
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is 1 , we obtain 

2 
Maxwellian g(x) -x (2.40) = e 

t2 fl -erf [ r<%; x
2 J} Druyvesteyn g(x) 11'. 

6r~i}l (2.41) :;: -
r(~) 2r(4) 

; 0.90 [ 1 - erf(0.493x
2) J 

These two functions are plotted in Figure 2.3. We see that the Druy-

vestyn distribution contains fewer low and high energy electrons. That 

is, the electron velocities have less spread about the mean for the 

Druyvesteyn case. 

2.3 Measurement of Distribution Functions Using Probes 

The preceding discussion demonstrates that from a theoretical 

point of view there is no reason to expect a slightly ionized gas 

always to have a Maxwellian velocity distribution. For this reason it 

is interesting to measure the distribution functions for various experi-

mental conditions in order to determine what distribution actually 

exists. With this end in mind we "Will now discuss the theory of 

Langmuir probes and its application to the measurement of distribution 

functions. 

Let us look at the volt-ampere characteristic of a planar probe 

(an infinite plane conductor in a semi-infinite plasma). We will assume 

the following conditions: 
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1. The probe is negative with respect to the plasma so 

that a sheath of positive charge covers the probe 

surface. 

2. The electrons undergo no collisions in the sheath. 

That i~ ~ is much greater than the sheath thickness. 

3. No electrons are produced in the sheath (including the 

probe surface). This means we neglect all ionization 

in the sheath, secondary electrons, photoemission, etc. 

4. v represents electron velocities normal to the probe 
z 

surface. This convention will be followed from this 

point on. 

For this case the differential current density to the probe due to 

electrons in the velocity class 

edn(v ) v z z 

v 
z 

to v +dv 
z z 

is merely 

v eg(v ) dv z z z (2.42) 

where dn(v ) z is the density of electrons in the velocity range v to z 

v +dv z z Therefore 

J 
all 

possible 
v 

z 

a.J(v ) 
z 

(2.43) 

The limits on v are determined from energy considerations. That is, 
z 

the electrons must possess sufficient energy normal to the probe to 

overcome the negative probe potential (l::, mv2 ~ eV ) • V is the abso-
2 z p p 

lute value of the probe potential with respect to the plasma potential. 

Plasma potential is the potential at the probe location with the probe 
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removed. Thus we have for the electron current density to the prone 

e v g(v ) dv 
z z z 

(2,44) 

The ion current is determined in exactly the same way. The only dif-

ference is that for negative probe potentials the ions have no potential 

hill to overcome and therefore all ions moving toward the probe are col-

lected. Thus the ion current density to the probe is 

e v F. (v ) dv z 1 z z (2.45) 

Fi(vz) is tne distribution function for ions, giving the density of 

ions with velocities in the range v to v +dv z z z 

We will call electron current to the probe positive so that for 

the total current density to the probe we have 

00 

JP =IJel-IJ1I = f 
~ 

00f ev F
1

(v ) dv z z z 
0 

(2.46) 

If both the ions and the electrons have Maxwellian velocity distribu-

tions this leads to 

(2.47) 

This is the commonly seen form for the volt-ampere relation of a Lang-

If it is applicable, a plot of .8n(J +J.) 
p l 

versus 
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would yield a straight line. The slope of this line would give Te 

Experimentally, it is found that this plot is not always linear and it 

is therefore of interest to determine g(v ) in terms of the probe 
z 

curve. This can be done quite simply. Tak.lug Lhe derivi::l.tive of 2.46 

with respect to v 
:r:: 

we obtain 

or 

dJ 2 
_g - =- g( v 2 ~ v ) 
dVP m m P 

dJ 
g(v ) = - ~ ___£ 

z 2 dV 
e p 

v = y2 ~ v 
z m p 

(2.48) 

Thus we see that for a planar probe the distribution of velocities 

normal to the probe surface can be determined from the first derivative 

of the probe current 'With respect to the pro"oe voltage. We are ass um-

ing, of course, that the probe current is equal to the area of the 

probe times the current density and that the probe area is constant. 

For a planar probe the area is constant, while for finite geometries 

the area is generally a function of V 
p 

The above analysis will be used to interpret the data presented 

:In this thesis. 

To point out the differences between this theory and that 

developed by Druyvesteyn (10) which is usually used, we will present 

the Druyvesteyn analysis for ~he same case of a planar prohe. The only 

difference is that Druyvesteyn did the analysis assuming an isotropic 

(10) M. J. Druyvesteyn, z. Physik 64, 781 (1930). 
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speed distribution f(v) rather than the directed distribution g(v ) . 
z 

To carry out this analysis it is necessary to obtain dn(v ) 
x 

in terms 

of f(v) instead of g(v ) • This can be done by noting that elec
z 

trans arriving at the probe with the same speed v and angle 9 with 

respect to a normal to the probe surface have the same 

v = v cos Q) . Thus we have z 

dn(v ) = dn(9) dn(v) 
z 

v z 
(i.e., 

(2.49) 

where dn(9) is the percent of the electrons arriving at the probe at 

an angle Q with respect to the probe normal, and dn(v) is the 

density of electrons with speeds in the range v to v+dv • For an 

isotropic distribution dn(9) is the ratio of the differential solid 

angle an at Q to the total solid angle 4rc . The quantity d.n(v) 

2 411'.v t'( v) dv "from our previous definition of' f'( v) 

have assumed an isotropic distribution. Thus, 

2rc sin 9d9 2 
dn(vz) = 4rc 4rcv f(v) dv 

and the electron current density to the probe is 

J = e f J 2 
ev 2rc sin Q dQ v f(v) dv 

z 
all possible 

v and Q 

Here again we 

(2.50) 

( 2. 51) 

Again the limits are determined by energy considerations. That is, 

1 2 
2 m(v cos 9) ~ eV 

p 
(2.52) 
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Therefore we have 

or 

obtain 

J 
e 

J 
e 

e 
i+ 

dv 

-1 j2eVp cos J mv2 dfl 

0 

ev3cos 9 2rc sin g f( v) 

oof { 2eV 
1 - ~}vf(v) dv 

mv 
.b5" v-m p 

Differentiating this expression twice with respect to 

f(v) = 
2 

m 

2rce3 

v p 

(2.53) 

we 

(2.54) 

where 
. I e I 

v is the velocity corresponding to V (1.e., v = ii 2 -V ) • 
p V m p 

This f(v) is not the distribution function that is usually meant when 

speed distributions are being discussed. The usual one, f'(v), is the 

function such that f'(v) dv gives the density of electrons with 

speeds between v ann v+dv . From the discussio4 leading to equation 

2.50 we see that 

f'(v) = 2 4:rrv f(v) (2.55) 

Thus in terms of the probe curve we have 

f 1 (v) (2.56) 
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Since all measurements cited in the literature give f'(v) or 

the energy distribution function, we will compare the above result for 

f'(v) with that found earlier for g(v ) 
z 

in equation 2.48. 

First we note that the Druyvesteyn analysis requires the second 

derivative of the probe curve while the g(v ) 
z 

equation involves only 

the first derivative. It is therefore much easier to implement the 

g(v ) theory experimentally. 
z 

Second, 
d2I p 

dV2 with 

y 

the expression for f'(v) contains V explicitly along 
p 

Thus to obtain the correct functional form for f'(v) it 

is necessary to determine V accurately. Since V does not appear 
p p 

in the expression :fo.r: g( v ) the incorrect determination of V will 
z p 

merely shift the g(v ) curve in velocity but will not alter its shape. 
z 

This point is of interest because it is not in general easy to determine 

experimentally the plasma potential, and therefore v p 
Mott-Dmith and 

Langmuir (11) have shown that for a Maxwellian distribution the probe 

curves for planar, cylindrical and spherical geometries all have an 

inflection point at v = 0 . 
p 

Therefore in the work described here 

this inflection point is taken to be VP = 0 on the plasma potential. 

More recent work by Wehner and Medicus (12,13) and Waymouth (14) has 

shown that this may be in error due to the variation of the work function 

(11) H. M. Mott-Smith, I. Langmuir, Phys. Rev. 28, 727 (1926). 
(12) G. Wehner, G. Medicus, J. Appl. Phys. 23, 1535 (1952). 
(13) G. Medicus, Proc. of 5th Internation Conference on Ionization 

Phenomena in Gases, Vol.II, Ed., H. Maecker (North Holland Pub
lishing Co., Amsterdam 1962), p. 1397. 

(14) J. F. Waymouth, MIT Research Laboratory of Electronics Technical 
Report 4o6 (1962). 
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over the probe surface and the perturbing of the plasma by the probe. 

A third paint of comparison is that the Druyvesteyn analysis 

assumes an isotropic distribution function. If the distribution is 

anisotropic the analysis is not valid. On the other hand, no such 

assumption was necessary in the analysis uslug g(v ) • In f'act the 
z 

anisotropy of the distribution can be measured by changing the plane of 

the probe. 

The above derivations were carried out tmder the assumption of a 

planar probe. However, Druyvesteyn showed equation 2.54 to be valid for 

cylindrical and small spherical probe geometries as well. The only 

assumption was that the distributions were isotropic. 

We 'Will now show that equation 2.48 giving g(v ) 
z 

is also valid 

for cylindrical and small spherical geometries. We know that f(v) and 

g(v ) are related as follows 
z 

g(v ) 
z =ff 

-ro 

f(v) dv dv 
x y 

Writing this in terms of a set of polar coordinates 

-1 Vy 
9 = tan - gives: 

v :x: 

g(vz) = J dQ 1 rdr f(v) 

0 0 

which for an isotropic distribution becomes 

g(v ) 
z rdr 

(2.57) 

2 2 2 
r v + v x y 

(2.58) 

(2.59) 



Setting 
2 2 2 

u = r + v z 
we obtain: 

co 
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g(vz) = 211: f f(u) udu 

v z 

Taking the derivative of this equation with respect to 

so 

f(v) = 

co 

= 2:rc 0~ J vf'(v) dv = 
z v 

1 
21( v 

z 

z 

v 

Combining this equation with 2.54 we obtain 

or 

but 

-1 ag 
-21f_V_ CV = 

z z v v 

v = 

1 dg(v) 
v dv 

/2 !v 
V m P 

og m 
- ov = 

P e2 

z 

so we can write this as 

which, when integrated once, yields 

g 
m d.JP 

- ~ 6V"' + constant 
e P 

-l:'.1! v f(v ) 
z z 

v gives 
z 

(2.60) 

(2.61) 

( 2.62) 

(2.63) 

(2.64) 

The constant must be zero because the integral of g(vz) over all vz 

must give n and any non-zero constant in g would produce an 
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infinite value for this integral. This expression (which is identical 

to that found for g(v ) in our planar probe theory) was derived z 

assuming only that the distribution is isotropic and that Druyvesteyn's 

analysis is correct. Since Druyvesteyn's analysis is only correct for 

isotropic distributions, the above expression for g(v ) z is valid 

whenever Druyvesteyn's second derivative theory is valid. This is 

quite interesting because it means that for isotropic distributions 

m dJP 
the expression g(vz) = - """2 av is valid for planar, cylindrical and 

e P 
small spherical probe geometries. 

We see then that if we are dealing with isotropic distributions 

either theory can be applied depending on whether f(v) or g(v ) is z 

wanted. However, in the more common case of anisotropic distributions 

the :r( v) theory is incorrect and we are forced to resort to a planar 

probe and the theory for the directed distribution g( v ) • 
z 

2.4 Analysis of Planar Guard-Ring Probe 

In the preceding discussion a planar pro-be has meant an infi-

nite plane conductor. In practice this never exists but we can approxi-

mate it by using a finite planar probe with a guard ring. Such a probe 

is shown in Figure 2.4. The probe collecting surface is divided into a 

small center section and the guard ring which completely surrounds this 

section. In using such a probe both sections are set at the same paten-

tial but only the current to the center section is measured. Thus we 

find the volt ampere characteristic of only the center section. The 

guard ring serves merely to remove the effects of the edges from our 

probe curve; that is, we assume that any effect due to the finite probe 
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size influences only the current to the guard ring and not the center 

section. 

To determine the validity of this assumption we must discuss 

one other aspect of plasma diagnostics using probes. This is the fact 

that the potential on the probe produces a field which penetrates into 

the plasma. In Figure 2.4 the distance the field penetrates from the 

probe is denoted by s and will hereafter be called the sheath thick-

ness. This sheath thickness is not well defined--1n fact, it can be 

shown that the field penetrates an infinite distance. However, for 

suf'ficiently high electron density and high enough probe potentials 

the sheath is a meaningful concept ( 15) . For these conditions the 

sheath region is the same as a space charge limited diode. That is, 

there exists a sheath of positive space charge around the probe and, at 

the outside of the sheath, the potential and the field are zero. For 

these conditions, in a planar geometry, we can write the following 

expression relating ion current density to the probe, probe potential, 

and sheath thickness: 

or 

s 

but for a Maxwellian distribution for the ions and negative probe 

potentials, equation 2.47 gives jJil = eN1 ~ • Therefore 

(15) S. Self, Phys. Fluids~' 1762 (1963). 

(2.65) 
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s 
-3 -l/2(2nm)l/4 3/4 -1/2 

1.53 x 10 e kT. VP Ni (2.66) 
). 

Let us now calculate the probe current due to electrons which are col-

lected by the center section of the probe a.."ld pass through the planar 

portion of the sheath; that is, the electrons which pass through the 

cone shown dotted in Figure 2.4. The ratio of this current to the 

current collected by the same area of an infinite planar probe is a 

reasonable criterion as to the effectiveness of the guard ring probe. 

We can find the number of electrons passing through the cone 

by noting that these are defined by having a transit time across the 

sheath {t ) which is less than the time it takes them to move a 
s 

distance d tangential to the probe. Calling the latter td we can 

write 

t ~ td 
d (2.67) 

s 

~ v 
y 

0 

but J dz .... = v s v z 
Z=S 

where (2.68) 

If the potential in the sheath V(z) varies as the pth power of z 

we can write 
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- dz 
(2.69) 

s '/v2(s) -2~ V (1- .::./ V z m p s 

We are interested in the greatest value of t and this occurs for 
s 

the electron which reaches the probe with zero velocity. For this 

electron so we have 

0 

J~ s m p 

dz 

\ji-:(;_ ; ) p 

j ll2 
du 

· ~ ---::J=l=-=up=-
V "- mvp o 

(2. 70) 

We can evaluate this for p = 1 and p = 2 obtaining 

t (p=l) = 2~ s 
8

1 2e VP max 

s 

t (p=2) -1 u / 2:v = 
11'. j 2:v = s sin - 2 s s s max 0 p p 

(2.71) 

If the potential in the sheath follows the space charge limited diode 

condition (V(z)CX: z4/3), t
8 

will lie between the two values found 
max 

above. Taking the worst condition (largest t
8 

our inequality 

becomes 

or r~~5 ~ 

d 

2 
+ v 

y 

= 
a 
r 

max 

The current due to electrons which meet this criterion is 

(2.72) 
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dv dv f(v ,v ,v ) 
x 'J x 'J z 

whereas the current to the same area of an infinite probe is 

co 00 

eA 1· v dv J f dv dv f( v , v , v ) z z x y x y z 

v2 ~v v2+ v2=0 
m P x Y 

(2.73) 

(2.74) 

If we assume a Maxwellian distribution function the ratio of these two 

currents is 

~J2eVP mr2 
2s m .. 2kT"" eV 

f e d 2 ---1: e rdr (2s) kTe 
r=O J -u = e du mr co -~ 

f e rdr 0 e 

(2.75) 

r=O 

Thus the ratio is 

d 2 eVP 
- (2s) kT 

1 - e e (2. 76) 

and if we substitute equation 2.66 for s we obtain 

e2a2Ni I 2rtmT~ V 9.34 x 10-6T e p 
1 - e 
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or 

l - (2.77) 

We would like this ratio to approach 1 . For small V this 
p 

is the case because the sheath thickness is very small. However, as 

stated before, the space 

V In fact, it takes 
p 

charge limited equation is not valid for small 
kTe 

V of the order of at least ~- to form a 
p e 

stable sheath (16). This planar criterion is therefore suspect for 
kT e voltages less than -. e 

Even though the approximations used here (Maxwellian distribu-

tion, space charge limited diode sheath) are not applicable in all cases, 

equation 2.77 shows what parameters control the usefulness of a guard 

ring probe. It is basically a statement l...hal.i the sheC1.\.;)1 1.ihickness 

should be small compared to the guard ring width. The required ratio 

of these dimensions depends on the number of high energy electrons, 

here specified in terms of T e 
We will return to this expression 

when discussing the experimental results in order to determine whether 

8r not the guard ring probe used can be assumed planar. 

(16) D. Bohm, Characteristics of Electrical Discharges in Magnetic 
Fields, Ed., A. Guthrie, R.K. Wakerling (McGraw-Hill Book Company 
Inc., New York, 1949) p. 77. 
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III. EXPERIMENTAL TECHNIQUE 

3.1 Description of Discharge Tubes and Vacuum System 

The experiments to be described in the remaining sections of 

this thesis were performed in hot cathode rare gas discharges. A 

schema.tic drawing of the type of tubes used is shown in Figure 3.1. 

The tubes had a pyrex glass envelope 50 mm in diameter and 8o cm long. 

Ports with o-ring gland seals were provided at two points along the 

length of the tube so that probes could be inserted. This type of 

port allowed the probe to be moved radially within the tube and also 

to be rotated about its axis. The hot cathode consisted of a coiled 

tungsten wire which was directly heated by passing approximately 25 

amperes of d-c or a-c current through it. Most of the data were taken 

using d-c heater power, but it was found that the probe curves were 

not altered when a-c was used. The tube anodes were 8h~llow ot<:1.inleos 

steel cups. A valve was provided at the gas inlet to the tube so that 

it could be filled and then valved off. 

These tubes were placed on a vacuum system consisting of 

mechanical fore p~, oil diffusion pump, and absorption trap filled 

with activated alumina. This system was capable of p~ing the tubes 

-7 do-wn to a pressure of 10 mmHg. While on the vacuum system, all 

parts of the tube which could be baked were heated to 300°c using a 

heating tape. The o-ring seals in the ports ma.de it impossible to 

bake this portion of the tubes. However, this was not felt to be 

important, as the discharge did not enter this unbaked portion. The 

tubes were then filled with whatever gas was to be used (neon or 
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helium) and the discharge was run at or above the highest current used 

experimentally for approximately one-half hour. This procedure was 

repeated several times (usually six to eight). In this way the dis-

charge was used to clean the tubes further and the contaminants were 

pumped and purged from the system. The success of this system for 

processing the tUbes is demonstrated in the fact that data taken several 

months apart under the same conditions yielded results which agreed 

within ten percent. 

3.2 Description of Probe 

The probe used to measure the directed distribution functions 

conslste<l uf three orthogonal planar guard ring probes as shovm in 

Figure 3.2. This probe was placed on the end of a 0.092-inch stainless 

steel tube. Four wires were run from the probe through the tube to the 

instrumentation provided for analysis. The ends of three of the wires 

were the three active probe surfaces, while the fourth wire was 

attached to the guard ring. The wires were 0.01 inches in diameter so 

-8 2 they provided a probe area of 5.07 x 10 m . Molybdenum was used for 

the wires and the guard ring. The four wires were insulated from each 

other and the tube by passing them through four-hole ceramic tubing 

which ran the full length of this stainless steel tube. The wires were 

then positioned in the 0.015-inch holes of the guard ring, and the 

guard ring attached to the end of the tube using bonding agent number 

R313 manufactured by the Carl H. Biggs Company. In the resulting com-

posite probe the d-c resistances between probes, probes and guard-ring, 

probes and tube, and guard-ring and tube, were all of the order 
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9 10 
10 -10 ohms. As much as possible the bonding agent was kept out of 

the space between probes and guard rings. This was done so that hydro-

carbons from this material would not contaminate the discharge due to 

bombardment by energetic particles in the discharge. Finally the probe 

surfaces were hand lapped and polished. The probe was then immediately 

placed in a vacuum to reduce the possibility of surface contamination. 

In order to determine whether the probe surfaces were clean, two of the 

probe surfaces (with the same orientation) were used to obtain volt-

ampere curves at the same point in the discharge. The probes were 

(.!UU::>idered clean and. the rest of the apparatus ass1.Ulled to be operating 

properly, if these two curves agreed within a few percent. This was 

found to be a highly useful technique in that it brought to light many 

time5, probe contamination and iustrUlllentalllun J:JI'ul:Jlelllli which might 

otherwise have been overlooked. 

3.3 Instrumentation 

A block diagram of the experimental setup is shown in Figure 

3.3. The three probes and the guard ring were all swept with a one-

tenth of cycle per second triangular voltage waveform. This allowed 

the derivative of the probe curve to be obtained by taking a time 

derivative of the probe current because time and voltage were linearly 

dependent. A switching arrangement was provided so any one of the 

probe currents or the guard ring current could "be measured. The sens-

ing resistors for the probes were 30 kn , while that for the guard 

ring was lOOn This was so the difference in currents to the probes 

and guard ring ( d.ue to their dif'f'erent areas) would not cause the two 

to be at different potentials. The stainless steel tube was usually 
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left floating so that it drew no current. The effect of this tube on 

the probe curves was checked by biasing it at various potentials with 

respect to the plasma (5 to 4o volts negative) and then taking a set 

of probe curves. Over this range of potentials the effect on the probe 

curves was negligible. 

The voltage developed across the sensing resistors was fed to a 

d-c amplifier with a gain of 30. From here the signal passed through a 

low pass filter and then either directly to the y-axia of an x-y 

recorder, or to a Tektronix type O operational amplifier where it was 

differentiated and then applied to the x-y recorder. The x-axis of 

the recorder was driven by the triangular voltage which was used to 

sweep the probes delayed by 28.6 milliseconds. This delay was to com

pensate for a similar delay in the y-axis due to the low pass filter. 

We see than that with this system it was possible to plot either the 

probe curve or the derivative of the probe curve directly on an x-y 

recorder. 

The filter was necessary only to rid the signal of noise due to 

60 cycle pickup in the leads and noise from the d-c amplifier; that is, 

the noise level due to the discharge was no greater Lhan the system 

noise. Data were taken only in current-pressure regions of the dis

charge where no oscillations could be detected optically with a silicon 

solar cell, or seen as voltage fluctuations across the discharge tube, 

or discerned when viewing the derivative of the probe curves on a 30 

megacycle oscilloscope. In the operating regions of the discharge where 

data were taken there was no discernable change in the noise seen on the 

derivative of the probe curve when the discharge was turned on and off. 
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The obvious question is, why the filter? The answer is that for plot

ting probe curves only (volt-ampere characteristics) it was 

unnecessary, but the differentiator enhanced the high frequency noise 

to a point that even with no input to the d-c amplifier the x-y 

recorder was unstable. 

The filter consisted of two RC 11 twin-tee 11 networks and an RC 

low pass filter in cascade. The two 11 twin-tees 11 had transmission 

zeros at 60 cycles and 4oo cycles, giving a transmission curve for the 

filter as shown in Figure 3.4. Also sho'Wl:l on the figure is the circuit 

diagram. 

3.4 Data Taking Procedure 

Data were taken in neon and helium discharges in the range of 

pressures from o.4 to 1 mm.Hg. The discharge current was adjusted so 

that the discharge was quiescent as described in the previous section. 

This quiescent region was obtained for currents in the range of 50 to 

100 .milliamperes. 

In the following discussion the three orthogonal probes will be 

designated by number as sbo'Wl:l on Figure 3.2. The probes lying in 

planes parallel to the axis of the probe support tube are numbered one 

and two and the probe lying in a plane normal to th~ probe ~xis is 

number three. 

When it had been ascertained that the probes were clean and the 

instrumentation was operating correctly, the tube was filled with gas 

at the desired pressure (this pressure was measured using a Piranni 

gauge). Next the current was set and data taken in the following 
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sequence. The probes were set so that one and two were 0.5 cm from 

the tube wall. Then probe curves were obtained for probe one facing 

the cathode, the anode, and in an azimuthal direction in the discharge 

tube. The same three curves were then taken with probe number two. 

This was done to insure that the results were never a function of which 

probe was used. Next, two curves were obtained using probe number 

three. The difference between these curves was that the probe was 

rotated. by ntnety degrees. Again rotating the probe by ninety degrees 

between measurements, two curves were obtained for the guard ring. 

This led to a set of ten curves as shown in Figure 3.5. The same ten 

measurements were then made again, only this time the derivative was 

plotted versus probe potential (Figure 3.6). Next the probe was set 

so that probes one and two were 1.0 cm, 1.5 cm, and 2.0 cm from the tube 

wall. At each position the same ten probe curves and ten derivative 

curves were obtained. This same procedure was carried out for at least 

three different gas pressures and three different tube currents for 

each pressure. The probe was then moved to the other tube port and the 

same set of curves obtained. This led to a set of curves which 

coarsely covered variation of the following parameters: 

1. Gas pressure 

2. Tube current 

3. Orientation of probe surface 

4. Radial position of probe within tube 

5. Longitudinal position of probe 

As stated previously, these data were obtained for neon and helium dis-

charges. Argon wa5 tried but it was found that no quiesct:mt disd1arge 

existed within the obtainable range of discharge conditions. 
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IV. EXPERIMENTAL RESULTS 

4.1 Data Reduction 

Preliminary data reduction consisted of perusal of the wealth of 

curves to determine general features and any noticeable peculiarities. 

Then semi-log plots of approximately one-fourth of the probe curves were 

made to ascertain whether or not the distributions were Maxwellian. At 

this time groups of g(v ) curves (derivative curves) which were found 
z 

to be typical were replotted versus v instead of V 
z p 

so that they 

could be compared with the theory presented in Section 2.2. For these 

curves the v = 0 point was taken as the point where the probe curves 
p 

had an inflection point or the derivative curves a maximum. However, 

this inflection point would be at v ::: 0 
p 

only for a distribution with 

no drirt velocity normal to the probe. For this reason the v = 0 p 

point was determined from probes one and two when they were looking in 

an azimuthal direction. As the probe surface did not contain the center 

line of the probe supporting tube, rotating the probe about its axis 

also moved it longitudinally along the discharge tube. Since there 

exists a field along the tube, the V = 0 point for the azimuthally 
p 

looking probe is not the same as for the same probe when it is pointed 

toward the anode or the cathode. This was taken into account by deter-

mining the axial field from corresponding probe curves taken at the two 

tube ports. Knowing this field and the probe geometry it was possible 

to calculate the change in VP due to probe rotation. 

The electron density was then obtained by graphically integrating 

the curves g(v ) with a polar planimeter. This number was compared 
z 

with the one found by using the ion saturation current. The g(vz) 



-58-

curves for velocities parallel to the tube axis were then multiplied 

by v and the resulting curves integrated in order to calculate the z 

tube current from the measured distribution functions. This number was 

compared with the measured tube current. 

Beyond this, the experimental curves were compared with those 

derived in the theory section {and others) to see if they could be 

simply described analytically. Calculations were made to determine 

whether the low ionization, high field assumptions of the theory oec-

tion were valid. Also checked was the planar probe criterion as 

discussed in Section 2.4. 

4.2 General Properties of Measured Distributions 

Let us look first at the general properties of the measured 

distribution functions. Most significantly, none are Maxwellian. This 

is shown by the nonlinearity of the semi-logarithmic plots and by 

curve fitting on the g(v ) z 
curves plotted versus v 

z 
Sufficiently 

far from the cathode the distributions are found to be nearly 

Dru;yvesteyn. The deviations from Druyvesteyn can be explained in 

terms of the high longitudinal field which produces an anisotropy and 

the fact that the mean free paths for neon and helium are energy 

dependent. 

The effect of the dependence of the mean free path on energy 

is qualitatively simple. If the mean free path increases with energy 

(helium) the high energy electrons will gain more energy per mean free 

path than the low energy ones. This tends to increase the number of 

high energy electrons above that found for a constant mean free path. 
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The opposite case where the mean free path decreases with energy 

(neon) has the effect of concentrating the electrons about the mean 

energy. That is, there are fewer high and low energy electrons than 

are found for the constant A case. Both of these effects are 

observed in the measured distribution functions. The above qualita

tive argument has been shown to be valid theoretically by Allen (1). 

This was done by numerically solving equation 2.22 for the correct 

dependence of A on energy. 

The anisotropy produced by the field is usually discussed in 

terms of a drift velocity. The measured distributions show that it 

would be more accurate to say that the distributions are shifted lu 

energy. The magnitude of the energy shift is nearly the mean free 

path of the electrons times the longitudinal field. This is seen by 

shifting all ~oints on the distribution functions by an amount of the 

order of the longitudinal field times the mean free path for the energy 

class being considered and noting that the resulting curves are sym

metrical about zero velocity. This was done for approximately one

fourth of the data and in all cases the resulting curves were very 

nearly symmetric. Because the product of the mean free path times the 

field gives only an order of magnitude value for the energy shift, the 

needed energy shift was determined by noting how far the peak of the 

measured functions was shifted from zero. This gave a value for the 

zero energy shift and the shift necessary for any other energy class 

Harriet w. Allen, Phys. Rev. 52, 707 



-60-

of particles was found by using this number and the ratio of the low 

energy mean free path to the mean free pa.th at the energy in question. 

As far as the author can determine, this is the first time it has been 

shown that a strong field shifts the electron distribution in energy 

rather than merely impA.rttng a drift velocity (Le. 7 a velocity shift). 

Before presenting specific curves showing the above properties 

it is in order to give some experimental support for their validity. 

The one measured discharge parameter that can be calculated directly 

from the measured distribution functions is tube current. The value 

of tube current density flowing at a particular point is given by 

m 

J = e f v g(v ) dv (4.1) 
tube z z z 

-oo 

This integration was carried out graphically at points located 0.5, 

1.0, 1.5 and 2.0 cm from the wall of the tube. The radial current dis-

tribution was then plotted and the average current density found. This 

number was then multiplied by the cross-sectional area of the tube and 

the results compared with the measured tube current. The results of 

these calculations are shmm in Table 4 .1. 

This table brings out the ~ossibility of a system.a.tic error in 

the data in that all the values obtained by integrating g(v ) z 
are 

low. It is felt that this is due to the rather large size of the total 

probe consisting of three planar probes. At low probe potentials the 

probe draws currents of the order of one to two milliamperes. This 

much current may tend to decrease the electron concentration and 
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TABLE 4.1 

Comparison of Measured and Calculated Tube Currents 

Discharge Neon Helium Helium 
Description p = 4oOµ p = 1000µ p = 500µ 

Distance from probe 69 61.5 69 61.5 69 61.5 69 61.5 to cathode (cm) 

Measured tube 
100 100 75 75 75 75 100 100 current (ma) 

Integrated tube 
95 74 66 51 74 70 94 74 current (ma) 

% error 5 26 12.5 32 1.5 1.3 5,7 26 

distort the curves in this energy range. The table also shows that 

the agreement is much better for curves taken far from the cathode. 

This would be expected because the distributions close to the cathode 

contain a.u excess of high energy electrons and therefore in this 

region the planar probe criterion is not as well satisfied. For the 

distributions found at the port farthest from the cathode the agree-

ment is very good--the error ranging from 1.5 percent to 12.5 percent. 

This much error is very small when all sources of error are considered. 

Some of the more obvious sources are: 

1. Space potential must be determined. As discussed pre

viously, this is somewhat difficult in general and 

further complicated here due to the longitudinal field 

and probe rotation. 

2. We tacitly assume that the probe merely rotates about 

its axis and is not cocked. Actually the a-ring gland 
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seal allows some other motion besides rotation and 

linear movement tbrough the seal. 

3. The integration involves taking the relatively small 

difference between two areas as measured with a polar 

planimeter. This in itself can account for 5 percent 

error in all cases. 

This excellent agreement between integrated values of tube 

current and measured values certainly supports the supposition that 

this is a valid means for obtaining electron velocity distributions. 

4.3 Neon Distributions 

The data presented here will be specified by five parameters: 

1. Type of gas 

2. Gas pressure (P) 

3. Discharge current (I) 

4. Longitudinal distance of probe from tube cathode (L) 

5. Radial distance of probe from tube wall (R) 

We will first look at g(v ) for v parallel to the tube axis. z z 

Figure 4.1 shows these distributions at four radial positions in a 

neon discharge. For these curves the probe was located at the port 

nearest the cathode (L = 61.5 cm). We see that these distributions 

are certainly not Druyvesteyn or any other sing;>le function. This was 

found to be true for all neon curves taken at this port. Figures 4.2 

through 4.5 ::;how the same set of curves for the same discharge condi-

tions except the probe has been moved to the port farther from the 

cathode (L = 69 cm). Also sho-wn on these later curves are the same 

curves shifted in energy as described prcviouGly. (Any discontinuity 

in the curves at Vz equal to zero was removed by sketching in a 
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continuous curve.) It is seen that the shifted curves are very 

nearly symmetrical about zero. It was found that these symmetrical 
4 4 

curves could be fitted very well by a function of the form Ae-b Vz . 

This function for g(v ) corresponds to an f(v) of the form 
4 4 z 

g Ab4v2e-b v A can be determined from the condition that 
J'( 

co 

n = J g(v ) dv z z 
-co 

which gives Thus we have 

g(v ) z 
2bn 

=-e 
r(~) 

The mean :::;-directed energy is 

00 

w l 2 m J 2 
g(v ) dv = - mv v z 2 z 2n z z 

-oo 

mr(t) 
= z 

2b
2r(i) 

( 4. 2) 

(4.3) 

( 4.4) 

Figure 4.6 shows this g(v ) 
z 

plotted along with a Druyvesteyn distri-

bution which has the same n and mean energy. From this figure we see 

that the function which fits the neon data has fewer high and low 

energy electrons than the corresponding Druyvesteyn distribution. This 

is as expected, since the mean free pa.th for neon decreases with 

increasing energy. 

Curves of the above form were matched to the neon data taken 

at the port farthest from the cathode ( L = 69 cm) . '£he circles on 

Figures 4.2 through 4.5 represent these calculated curves. It is seen 

from these figures that the agreement is quite good near the center of 
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the tube and for energies above seve.n eV. The disagreement is in a 

direction to make the measured curves tend toward a Druyvesteyn dis-

tribution. The value of b found to match each curve -was used to 

calculate the electron mean energy Cw ) z as given by equation 4.4. 

The simple theory presented in Section 2.3 gives the ion 

saturation current density as 

However, several theoretical treatments, which assume a Maxwellian 

electron energy distribution, have shown that the fields penetrating 

from the probe produce o.n ion flux proportional to .J"T; rather than 

VT; (2) . To apply these theories to the determination of N. it is 
J. 

necessary to obtain a number for Te Since the measured distributions 

are not Maxwellian, this value for Te is some-what arbitrary. Here -we 
2wz 

will replace Te With k . That is, we will assume a temperature 

which would produce a Maxwellian distribution with the measured mean 

energy. Since N
1 

is approximately equal to n , the above considera-

tions lead to the folloWing expression for nsat' (Here we use n t to sa 

denote explicitly that this is the density caleu.lated from the ion 

saturation current.) 

n 
sat 

~ N. 
l. 

= (4.5) 

(2) A review of this work is given by F.F. Chen in the following lecture 
notes: F.F. Chen, Lecture Notes on Probe Techniques for Plasma 
Physics Summer Institute, Princeton University (1962). 
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It should be noted that the experimental ion saturation current 

was well defined. The probe characteristics showed a constant value of 

ion saturation current over a range of 15 to 20 volts. This is an indi-

cation that the guard ring probe was exhibiting planar geometry, because 

for any other geometry the current increases with increasing negative 

probe potential (due to the increase in sheath thickness which increases 

the effective collecting area of the probe). 

Table 4. 2 summarizes the measurements made using neon at ltOOµ 

pressure with tube currents of 75 and 100 milliamperes. Shown are the 

values of 

grating the 

n t along with the value of n sa found by graphically inte-

g(v ) curves. 
:l 

Also show are the values of the mean 

electron energy, the energy shift necessary at low energies to produce 

symmetrical distributions, and the low energy mean free path times the 

longitudinal electric field. 

The most outstanding things show in Table 4.2 are 

1. The value of n t is approximately 3,9 times n for sa 
the 100 ma curves and 5.5 times n for the 75 ma curves. 

Since the values of I calculated from the distribution 

functions agree quite well with the measured values, it 

is felt that the values of n are accurate. This means 

that the ion saturation current is even greater than 

would be expected assuming the ions have a Maxwellian 

distribution with T = 2"Wz . 
i k 

2. The energy shift necessary at low energies agrees well 

with the value of the longitudinal field times the low 

energy mean free path. As seen in the table, the shift 

is always greater than the product, but both quantities 

generally vary in the same fashion. It is seen that 



Discharge 
Description 

Neon 

P= 4oOµ 

I""" lOO:ma 

L= 69 cm 

Neon 

p = 400µ 

I= lOOma 

L= 6L5cm 

Neon 

p = 400µ 

I= 75 ma 

L 69 cm 

Neon 

p = 400µ 

I= 75 ma 

L = 61.5cm 
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TABLE 4.2 

Measured Neon Parameters 

-15 -15 Energy 
R(cm) nx 10 n tx 10 Wz(eV) Shift(eV) EA.(ev) sa 

2.0 4.53 17.5 3.03 0.9 0.67 

1.5 3,71 14.5 2.8o o.8 0.62 

LO 2.99 9.10 2.45 o.4 0.56 

0.5 2.02 7. 77 2.15 0.7 0.55 

2.0 2.90 Curves were not simple symmetrical 

1.5 2.48 curves with energy shift, so these 

l.0 2.08 parameters were not found. 

0.5 1.47 

2.0 2.74 15.0 3.03 1.1 o. 72 

L5 2.31 12.5 2.77 0.7 0.68 

LO l.88 9.43 2.47 0.9 0.64 

0.5 1.24 7. 37 2.00 0.7 0.62 

2.0 2.55 

1.5 1.77 

LO 1.40 See above note 

0.5 o.88 

there is some scatter in the measured energy shift data. 

This scatter is of the order of tenths of an electron 

volt. This magnitude of error is not surprising in that 

the experimental value of this energy shift is directly 

dependent upon the correct determination of the V O 
p 

point of two derivative curves. 

The mean free paths used in the above calculations were calculated 

from the experimental curves giving the microscopic cross section, as 
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given by R. B. Brade (3). 

Having this information we can now see whether the approxima-

tions made in the theory section are valid. First, we assumed very 

low percentage ionization. For gas pressures used in the experiment 

22 3 (0.3 to 0.5 mmHg;) the neutral density is of the order of 10 per m . 

Table 4.2 shows that the electron density is of the order of 1015 per 

m3. The percentage ionization is therefore 10-5 so this approximation 

is valid. 

Second, to obtain a Druyvesteyn distribution the "strong field" 

condition must be met. This condition is 

>> kT 

A stronger condition is 

2 M 
WA. 

kT6mW max 

>> l 

(4.6) 

( 4. 7) 

where w is the maximum electron energy considered. The distribu-
max 

tion curves show that a reasonable value for v 
2 
z max 

is io13 . Using 

this value for evaluating W max in the left-hand side of the above 

inequality we obtain 3620 >> 1 so the "strong field" condition is 

met. The value for the electric field used for the calculation is 

2 2 xlO volts per meter, whereas the measured longitudinal field ranged 

from 14o to 180 volts per meter. 

(3) R. B. Brode, Rev. Modern Phys . .z., 257 (1933). 



-74-

A third necessary check is to determine whether the planar probe 

criterion is .IIEt. This c!:l.Il be written as 

e (4.8) 

where we have assumed a Maxwellian distribution. To evaluate the 

left-hand side of this inequality we must first determine s , the 

sheath thickness. Equation 2.65 gives 

(4.9) 

Substituting the smallest measured values of jJ
1

J into this expression 

we obtain 

= 

Again setting T 
e 

5.54 x l0-5 v314 
p 

2w 
z and using =--

k 

e 

-llV-l/2 
p << 1 

meters (4.10) 

W
2 

= 3eV the inequality becomes 

( 4.11) 

Most of the distribution function is obtained for V ~ 25 volts, and 
p 

for this value we have 

e -11/5 0.11 << 1 (4.12) 

We see that the inequality is met, but not too strongly. This is still 

quite good when it is remembered that the worst case was taken at all 

points in determining the planar probe criterion. Also, the assumption 
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of a Maxwellian distribution With an electron temperature equal to 

2W /k leads to a stronger condition than actually needed. The actual 
z 

distributions have much fewer high energy electrons than the assumed 

distribution, and it is the electrons With high velocities tangent 

to the probe surface which cause it to behave in a nonplanar fashion. 

We see that the theory developed should be applicable as long 

as we stay below the excitation potential of neon and take into account 

the effect of the variation of the mean free path With energy. The 

first excitation potential for neon is sixteen volts, so most of the 

distribution function lies below excitation potentials and is therefore 

not affected by inelastic collisions. 

Thus all of the assumptions (except A = constant) made in 

the theo:ry sectiuu are valid for t.hei:;e experiments and the agreement 

between the theoretical and experimental distributions is justified. 

4.4 Helium Distributions 

Figures 4.7 through 4.10 show the measured distribution 

functions for velocities parallel to the tube axis as found in helium. 

Curves are shown for the probe located 0.5, 1.0, 1.5 and 2.0 cm from 

the tube wall. The gas pressure is lmmHg while the tube current is 

75 ma. These curves are typical of all the curves found in helium. 

There was no functional difference between the curves taken at the port 

nearest the cathode and the port nearest the anode. This is quite a.11·-

ferent from the results obtained in neon, but it can be easily 

understood. In the helium case the positive column extends much 

farther from the anode (i.e., the dark space is shorter) so that both 

probe ports were located well within the positive column. In neon this 



HELIUM 
p = 1000µ 
I =75 mo 
L=69 cm 
R •2.0 cm 
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MEASURED CURVE 

-- ENERGY SHIFTED CURVE 

o•s= 6.0 [1-erf (0.264 v~)] 

5 

4 

2 . 

-2.5 -2.0 -1.5 -1.0 -0.5 10-6 0.5 1.0 1.5 2.0 2.5 
Vz X 

20 I 5 I 0 7 5 4 3 2 0 I 2 34 5 7 I 0 15 20 

ENERGY IN eV 
Fig. 4.7 g(vz) Curve for Helium/ Far from Cathode 



HELIUM 
p = 1000µ. 
.I=75 ma 
L = 69 cm 
R •I. 5 cm 
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----- MEASURED CURVE 
-- ENERGY SHIFTED CURVE 

o's= 5. 3 (I- erf ( 0.266 vi} J 

-2.5 -2.0 -I .5 -I .0 -0.5v z x I 
0

_6 0.5 1.0 1.5 2.0 2.5 

. 20 I 5 I 0 7 5 4 3 2 I 0 2 3 4 5 7 I 0 I 5 20 

Fig. 4.e 

ENERGY IN eV 

g(v ) Curve for Helium, Far from Cathode z 



HELIUM 
P=IOOOµ. 
I=75 mo 
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----- MEASURED CURVE 
-- ENERGY SHIFTED CURVE 

o's= 4. 13 (1- erf ( 0.286 v ~ )] 

g (vz} 

3 

2 

-2.5 -2.0 -1.5 -I .0 -0.5 
6 

0.5 I .0 1.5 2.0 2.5 
Vz X 10-

. 20 15 I 0 7 5 4 3 2 I 0 I 2 3 4 5 7 I 0 15 20 

ENERGY IN eV 

Fig. 4.9 g(vz) Curve for Helium, Far from Cathode 



HELIUM 

P=IOOOµ. 
I =75 ma 
L=69 cm 
R=0.5 err 
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--- MEASURED CURVE 
--- ENERGY SHIFTED CURVE 

o's= 2.75 [1 .. erf (0.291 v~ >] 

-2.5 -2.0 -1 .5 - I .0 -0.5 6 0.5 I .0 I .5 
Vz X 10-

20 15 I 0 7 5 4 3 2 I 0 I 2 3 4 5 7 I 0 I 5 20 

ENERGY IN eV 

Fig. 4.lO g(vz) _Curve for Helium, Far from Cathode 
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was not true, as one port was quite close to the cathode end of the 

positive column. 

Also shown. in Figures 4.7 through 4.10 are the energy shifted 

curves as described in the previous section. These shifted curves 

were found to agree quite well witt~ a Dru:yvesteyn distribution. •rhe 

major differences are those expected due to the increase of the mean 

free path with energy. That is, the measured distributions have fewer 

low energy electrons and more high energy electrons. However, this 

excess of high energy electrons exists only up to the first excitation 

potential (nineteen volts). Above this energy the measured curves lie 

below the theoretical ones. The ~ircleg on these helium curves are 

2 2 
best fit Druyvesteyn distributions (i.e., of the form K[l- erf(h v )]). z 

As in the case of the neon curves, the value of h found in 

matching the experimental curves was used to calculate the mean elec-

tron energy. This mean energy was found using equation 2.30 which is 

w z 
w = = 
3 

mr(l) 
4 (4.13) 

These values of W were then used to find n t as described pre-z sa 

viously. 

Table 4.3 sUIIJIDarizes the helium data for two discharge conditions. 

It is seen from Table 4.3 that the helium densities (n) lie in the same 

range as for the previously presented neon data. Also, the mean 

energies are in the same range, but do not vary as much with radial 

probe position. Again the same discrepancy exists between n and 



Discharge I 
• R( cm) 

Description 

Helium 2.0 

P= 1000µ 1.5 

I = 75 ma LO 

L = 69 cm 0.5 

Helium 2.0 

p = 1000µ 1. 5 

I= 75 ma LO 

L = 61.5cm 0.5 

Helium 2.0 

p = 5001-t 1.5 

I= 100 ma LO 

L = 69 cm 0.5 
I 

Helium 2.0 

p = 500µ L5 

I= 100 ma LO 

L =6L5 cm 0.5 

-8·1-

TABLE 4.3 

Measured Helium Parameters 

-15 x 10-l5 W (eV) nx 10 I1 sat z 

4.11 21.6 2.67 

3.60 17.5 2.64 

2. 72 13-9 2.46 

1. 79 9.6 2.41 

3.08 16.7 2.68 

2.68 15.0 2.52 

2.06 11.5 2.34 

1.37 9.2 2.09 

4.05 23.6 2.96 

3.48 20.1 2.85 

2. 72 16.4 2.75 

L83 11.0 ?. 70 

3.10 20.2 2.49 

2.82 18. 7 2.38 

2.16 i4.o 2.41 

L47 10. 7 2.31 

Energy 
Shift(eV) 

0.65 

0.55 

o.45 

0.35 

o.8 

0.7 

0.6 

0.5 

0.7 

0.6 

0.65 

o.45 

0.65 

0.6 

0.55 

0.5 

n . The ratio of n to n goes from 5.1 to 6.5 
sat sat 

EA.(eV) 

0.152 

0.151 

0.149 

0.149 

0.152 

0.151 

0.149 

0.149 

0.295 

0.295 

0.292 

0.282 

0.295 

0.295 

0.292 

0.282 

The values of the energy shifts necessary to produce symmetri-

cal distributions are a factor of 1.6 to 4.3 greater than the product 

of the mean. free path times the longitudinal fields. The agreement 

here is not as good as that for neon. However, except for the energy 

shifts found for L = 61.5 cm, P = 1000µ and I = 75 ma, the qualita-

tive variation of these two quantities with position and discharge 
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conditions is the same. Again, we can check the validity of the assump-

tions made in the theory section. 

The percentage ionization is the same as in the neon case and 

thus quite low. 

The strong field condition is not met as strongly since the 

relation contains the ma.so of the neutral scatterers and in this case 

the mass is a factor of five less. It is still well satisfied giving 

725 >> 1 with an assumed longitudinal field of 200 volts per meter. 

The actual fields were 220 tn ~30 volts per meter. 

The planar probe criterion is met to a higher degree because 

the sheath thickness is less, being given by 

s = 4.26 x 10-5 v3/ 4 meters 
p 

(4.14) 

Thus we see that the assumptions made in the theory section are justi-

fied for all of the data presented here. 

4.5 Movable Cathode Tube 

In the last section it was pointed out that the helium distri-

butions taken at both probe ports were functionally the same. To see 

whether the electron distributions in helium near the cathode end of 

the positive column were similar to those found in neon, a tube with a 

movable cathode was construcLed. Since the length of the discharge tube 

merely altered the length of the positive column, this made it p~ssible 

to probe continuously along the positive column. This also made it 

possible to determine whether the field in the pooitive column was 

uniform. The latter was of interest because the data reduction 
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presented previously depends on knowing the longitudinal field 

accurately, and this field .was found by assuming a uniform field 

between the probe ports. 

The movable cathode tube was constructed in the same way as 

the fixe.d cathode tubes except that a sliding o-ring seal driven by 

a threaded rod was provided a.s shown in Figure l1.ll. Since sliding 

a-ring seals leak when they are :m:oved and also because moving the 

cathode changed the tube volume and thus the gas -pressure, it was 

necessary to pump out and refill the tube after only slight cathode 

movement. Thus this tube was only suitable for obtaining a rather 

limited amount of qualitative data. It did serve its purpose by 

demonstrating that the distributions in helium do contain an excess 

of high energy electrons near the cathode end of the positive column. 

A set of curves plotted versus distance from the cathode is shown in 

Figure 4.12. It was also found that while the cathode was moved a 

distance of 8 cm, the difference between the anode potential and the 

probe space potential varied only five percent. Thus the field was 

quite uniform over the distance probed. 

4.6 Other Properties of Measured Distribution Functions 

All of the previous discussion has been concerned with the 

distributions as a function of the velocity component parallel to the 

axis of the discharge tu.be. It will not be necessary to discuss the 

distributions obtained for azimuthal and radial velocities to a,ny 

great extent because they fit logically with what was found for the 

longitud.inal velocity distributions. 
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The distributions involving azimuthal velocities were found 

to be identical With the energy-shifted longitudinal curves found at 

the same point under the same discharge conditions. This :!A FLA 

expected, since the cylindrical symmetry of the tube and discharge 

rules out any azimuthal field which would energy shift these curves. 

Since only one-half of the radial distributions was obtained, 

it was difficult to interpret these curves. However, it was found 

that these curves had the same form as the energy-shifted longitudinal 

curves -when shifted in energy by the proper amount. The direction and 

order of .magnitude of the necessary shift was in agreement With the 

measured radial field. This field wao fo1.llld by plotting the radial 

space potential as determined from probes one or two when they were 

oriented in an azimuthal direction. The radial field ranged from 

zero at the center of the tube to approximately 400 volts per meter 

at 0.5 cm from the tube wall. In most cases the field varied linearly 

with radius near the tube center. This implies a constant charge 

density. Simple Gauss' law calculations show that the difference in 

ion and electron densities necessary to produce the measured fields 

is 

N - n ::o::: 
i 

(4.15) 

Another interesting set of curves is that which shows the 

percentage of the tube current carried by the various velocity classes 

of electrons--that is, curves of the difference between v g(v ) 
:.'.. :.'.. 

for electrons moving toward the anode and v g(v ) z z for electrons 

moving toward the cathode. Figure 4.13 shows typical curves of this 
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NEON 
p. 400µ. 
I •75ma 
L • 69cm 
R• 2.0cm 

VERTICAL SCALE ARBITRARY 

0 0.5 1.0 1.5 2.0 2.5 
-6 

Vz X IQ 

HELi UM 

p = 1000,u. 
I= 75ma 
L = 69cm 
R • 2.0cm 

0 0.5 1.0 0.5 2.0 2.5 

Vz X 106 

0 0.5 

NEON 
P= 400µ 
I= 75 ma 
L=61.5cm 
R= 2.0 cm 

1.0 1.5 2.0 
-6 

Vz x 10 . 

HELi UM 

P= 1000 ,U. 
I= 75 ma 
L = 61.5cm 
R = 2.0cm 

2.5 

0 0.5 1.0 1.5 2.0 2.5 

Vz X 106 

Fig. 4.13 Discharge Current Versus Electron Velocity 
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type. From these curves we see that in neon near the cathode the 

tube current is carried equally by a large velocity class of electrons 

while farther from the cathode the curves are peaked about 

6 
v = 1.4 x 10 m/sec. Thus, as we move away from the cathode the high 

z 

energy electrons become less important in carrying the tube current. 

This is a graphic display of the change from a directed electron beam 

at the cathode end of the positive column to an anisotropic Druyvesteyn 

distribution far from the cathode. Figure 4.14 shows the directional 

properties of the distributions in neon near the cathode end of the 

positive column. We see that the anisotropy of the distribution at 

this position is not merely a general energy shift, but rather a group 

of electrons directed predominantly from cathode to anode. 

The distribution of tube current over the various velocity 

classes of electrons in h?.lium is similar to thA.t for neon far from 

the cathode except that the peak is less pronounced. This is shown in 

Figure 4.13. 
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Fig. 4.14 Directional Properties of Neon Distributions near 
the Cathode End of the Positive Column 



V. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

work: 

There are three important conclusions to be dra"Wl:l from this 

1. If one is dealing with isotropic distributions, the 

first derivative of Langmuir probe curves obtained 

with planar, cylindrical, and small spherical probes 

all yield the directed velocity distribution g(v ). 
z 

It is not necessary to take the second derivative of 

the probe curves in order to determine electron velo

city distributions. 

2. For a planar probe the anisotro~y of the distribution 

can be studied using the theory which gives 

dJ 
g( v ) ::; - _!!:_ ~ 

z 2 'dv 
e p 

The validity of this technique is demonstrated by the 

experimental results presented here. 

3. The electron distributions in neon and helium hot 

cathode discharges are nearly Druyvesteyn. Their 

non•Dru:yvesteyn nature is due to the high longitu

dinal electric field (this produces an energy shift 

of the order of the mean free path times the field 

strength) and the distortion of the distribution 

due to the dependence of the mean free path on 

energy. 

The main stumbling block in applying the planar probe theory 

to the determination of anisotropic distributions is building a planar 

probe. The excellent agreement between the measured and calculated 

distribution functions plus the agreement between the tube current 
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found by integrating v g(v ) and the measured tube current demonz z 

strates that a guard ring probe can be built such that it exhibits 

planar geometry. 

On the negative side this experiment demonstrates that the ion 

saturation current is not a reliable measure of the electron density. 

It was shown that the ion saturation current is greater than would be 

obtained for ions with a Maxwellian distribution whose temperature is 
2wz 
k . In :ra.ct in these experiments using the simple theory which gives 

AeN f"k!i: leads to a value of Ni iV~ which is approximately a 

factor of 50 toolarge. 

This thesis deals mainly with the specific problem of determin-

ing d:l.stribut:inn f'unctions usine probes. For this reason many of the 

standard problems in the use of probes are not discussed. Very complete 

discussions of these are given by Loeb (1), Chen (2), and Francis (3). 

5.2 Recommendationsfor Further Study 

The work reported here was done in order to verify that a probe 

demonstrating planar geometry could be built and, once built, directed 

electron distribution functions could be measured in detail. It has 

now been shown that this can be done. A logical extension wouJ..d be to 

determine these distributions in other types of plasmas in order to 

(1) L. B. Loeb, Basic Processes of Gaseous Electronics, (University of 
California Press, Berkeley 1960) pp.361~370. 

(2) F. F. Chen, Lecture Notes on Probe Techniques for Plasma Physics 
Summer Institute, Princeton University (1962). 

(3) G. Francis, Vol.XXII Handbuch der Physik, s. Fliigge, Ed., (Springer 
Verlag, Berlin 1956) p.65. 



-92-

determine the effects of various external and internal parameters on 

the distribution functions. 

All successful applications of Druyvesteyn's theory for deter-

mining distribution functions involve applying small a-c potentials 

on the probe. It .is sometimes argued that these produce oscillations 

in the probe sheath or plasma proper and thus alter the electron 
dI 

energy distribution. It is possible to measure dVP by applying a 
p 

small a-c signal to the probe and synchronously detecting the a-c 

probe current. This could be done and directly compared with measure-

ments made as described here to determine whether or not the a-c signal 

does alter the energy distributions. 
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APPENDIX A 

In order to determine the form of the collision term which 

appears in the Boltzmann equation we must first look at the geometry of 

a binary collision. Figure A-1 depicts such a collision in a frame 

moving with the scatterer. ~(!) are the original velocities of the 

scatterer (scattered particle) in the laboratory frame, while primes 

denote final velocities. k is a unit vector along the apse line 

directed toward the scatterer, and b is the impact parameter. 

We know energy muAt be conAerved, therefore 

2 2 2 2 
mv + MV = ruv' + MV' (A-1) 

Writing the initial velocities in terms of the velocity of the center 

mv + MV 
of mass (VCM - -) and the relative velocity u we have 

m+M 

v = VCM + 
M -u 

m+M -
(A-2) 

v m 
= VCM - --u m+M -

Similarly the final velocities can be written 

M 
v' VCM +-u' 

m+M - (A-3) 

V' 
m 

VCM - - u' m+M 

Substituting these expressions into A-1 we obtain 

(m-tM) ( V~-1: + mM 2 u2} 
l (m+M) 

=(m+M) {'v~M + mM 2 u' 2} 
(m+M) 

or u :::: u' (A-4) 



x' 

Fig. A·l Geometry of Binary Collision 
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Thus we see that in this coordinate system as in the center of mass 

system the velocity of the particles is constant and merely changes 

direction. 

We are dealing with a central force problem so k. bisects the 

scattering angle Q . Therefore we may write 

u - u' = 2u · k k = - 2u' · k k (A-5) 

Using this expression and equations A-2 and A-~ we can write the change 

in velocity of the particles as follows: 

v' - v 

V' - V 

m~M (E; 1 
- E;) 

m (u _u') = 
m+M - -

M 
m+M ( -22; • .!:) k 

m (22; • _k) k 
m+M 

(A-6) 

Let us now look at the statistics of the collision. We need an 

expression for the number of encounters occurring within dr , in a 

time dt , between particles of mass m in velocity range dv and 

particles of mass M . Here we assume that dt is short in terms of 

the time necessary for ma.crosco~ic changes in the distribution func-

tions, but long compared to the duration of an encounter. 

First we will look at the number of such encounters with par-

ticles Of mass M in the velocity range dV , impact parameters in the 

range b to b+db , and ¢ in the range ¢ to ¢+d¢ . If only one 

encounter can occur in a time dt the particle of mass must lie in the 

volume bd¢ db udt at the beginning of dt for such an encounter to 
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occur (see Figure A-l). There is such a volume element for each par-

ticle of mass M . The number of volume elements is F dV dr • This 

gives F ~ .9E. bd¢ dbudt for the total volume in which a particle of 

mass m may reside at the beginning of dt in order that this par-

ticle undergo oue or the above described encounters during the time 

interval dt. The total number of such encounters will therefore be 

given by the number of particles of mass m occupying this volume. 

From the definition of the distribution function the number is 

fF ubd.bd¢ ~ ~ ~ dt (A-7) 

This ca.n be written in termc of the microocopic ocuttering 

cross section (a) which is defined as follows: 

d N t(9,¢) 
OU 

dt 
d Nin(u,b) { n

2
umber 1 

dt a(9,¢,u) dO 
m - sec 

Noting that we can also write 

d N t(9,¢) 
OU 

dt 

we have 

bdbd¢ 

d Ni (u,b) = bdbd¢ __ n __ 
dt 

= a(9,¢,u) a.n 

and equation A-7 can be rewritten as 

fFu aa.n dv dV dr dt 

(A-8) 

(A-9) 

(A-10) 

(A-11) 
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We originally set out to find the total number of encounters 

irrespective of the velocity of the scatterers and the impact param-

eter (or scattering angle). This number is merely equation A-11 

integrated over all scatterer velocities and scattering angles. Since 

each of these encounters changes the velocity of the scattered par-

ticle, this number represents the number of particles of mass m 

scattered out of the volume dv ~ in a time dt • However, this is 

just the negative contribution to Ml dv dr dt That is, 
collision - -

ofl dv dr dt = number scattered into 
ot collision - -

dv dr in time dt 

' 
dQ dv dV dr dt (A-12) 

dO dV 

We must now find the number scattered into this volume element. 

These particles come from inverse encounters--those in which the final 

velocities are v and V . These encounters involve the follo1rlng 

changes from the direct encounters 

VI -+ V v...,.. v' 

V' -+ V V _,. V' 

u' _,. u u...,. u' 

and k...,. -k 

Thus the equations for thechange in energy are identical for direct and 

inverse encounters. That is, for indirect encounters we have 

v' - v = _.!!__ (-2u · k) k 
m+M - - -
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(A-13) 

sho'Wing that the change in velocity for an inverse encounter is 

equal in magnitude and opposite in direction to that for a direct 

encounter. 

By reasoning similar to that presented above, we can then show 

that the number of particles of mass m scattered into dv dr in a 

time dt is 

Ul' 

J J Jr(v') F(V') ubdb a¢ dr dt o 
db d¢ dV 

ff f(v') F(V') ua an dr dt o 
<illdV 

(A-14) 

where o is the six-dimensional differential volume element in !' ,y 1 

space related to dv dV by the dynamic equations of the encounter, 

i.e. 

0 = IJI dv dV -- (A-15) 

where 

ov' ov' ov' ov' ov' ov' x x x x x x 
ov dv dVZ dVx ovy avz x y 

IJ.I = (A-16) 
dv' 
_J_ etc. 
dvx 

It is not necessary to evaluate \ J \ directly because from the 



equations of motion we see that 

dv' 
i 

dv. 
J 

there1'ore 

so 

etc. 
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or IJI 1 

and the number of inverse encounters is 

f f f(v') F(V') ucr dQ ~ ,9;y 9;,Y dt 

dn dV 

The collision term can now be written as 

¥ti . = ff {r(v') F(V') - f(v) F(V)} u cra.n 5£:!. 
collision ctn dV 

which is the form given in Chapter II. 

(A-17) 

(A-18) 

(A-19) 

(A-20) 

(A-21) 
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APPENDIX B 

~ • dj (where dj is the differential current density) repre-

sents the energy given 'Lo the electrons (in the energy range W to 

W+dW) by the field per m3 per second. Since the field is in the z 

direction E • dj = E dj and 
- - z 

dj z 

the integral over f is zero, so this becomes 
0 

or 

giving 

obtain 

dj =-I I ev3cos 
2~\sin G

1
f'

1
dv d9

1
d¢ z 

¢ Ql 

dj 
- 41te v3f dv 

= 3 1 z 

2 
- 4:n:eE 3 - 41CeEv f 1 

E • dj = -
3
- v f

1
dv 

3
m dW 

Multiplying equation 2.11 by 

dW41t J v2s
0 
dv = 

2· 
- lhceEv f 
--=---l dW 

3m 

2 
4:rcv and integrating over 

(B .1) 

(B.2) 

(B. 3) 

v we 

(B .4) 

The right hand side of this equation is just ~ • dj so we see that 

equation 2.11 is directly related to the above energy balance equation 

which is a statement that the energy gained by the electrons due to the 

field is lost due to collisions. The energy loss term is a function of 
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s 
0 

and we would therefore not expect to be able to determine s by 
0 

neglecting the loss in energy of an electron during a collision. 

Let us now look at the time rate of change of the z directed 

momentum for electrons in the energy range W to W +dW due to the 

electric field. This is which is equal to dn times the 

force on a single electron. This change in momentum per m3 per 

second is therefore 

- eEdn =-eE ff 
¢ Ql 

which can be written 

4neE f vdW 
0 

m 

{B .5) 

(B .6) 

Integrating equation 2.12 with respect to v and then multiplying by 

4nvdW we obtain 

(B. 7) 

Here the f 2 term has been dropped as explained in Section 2.2. The 

right-hand side of the above equation is exactly the time rate of 

increase of z directed momentum per m3 per second for electrons in 

the energy range W to W+dW due to the electric field. Since ~e 

are assuming an equilibrium condition, the left-hand side of B.7 

representc the corresponding loss in z directed momentum due to col-

lisions. Because of the large ratio M/m this term, which is a 
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function of s
1 

, can therefore be well approximated by neglecting 

the change in electron energy during a collision with neutral gas 

molecules. 
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APPENDIX C 

We have shown that f can be "Written in the form (see equations 

2.13 and 2.26) 

(C.l) 

We wo&d now like to show that for the experiment described here 

(C.2) 

A stronger inequality is 

This inequality is certainly not met if W is too large or WA too 

small. This means that our assumption that f
1 

represents a small 

perturbation on f' 
0 

is not valid for small fields or large energies. 

The fields encountered in the experiment described here were of 

the order of 200 volts per meter. The inequality will be the weakest 

for helium so subst:itnting numerical values for this case we obtain: 

MWA. 
w << = 316 ev 

6m 
(c.4) 

Inelastic collisions become important an order of magnitude below this 

energy. The theory therefore breaks down long before the second term 

becomes important, and in the region of interest 

dominant. 

(W ~ 30 eV) , f is 
0 


