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DIRECTED ELECTRON VELOCITY DISTRIBUTIONS

IN RARE GAS DISCHARGES USING GUARD RING PROBES

Robert H. Bond

Abstract

An experimental technique for determining detailed properties

of anisotropic electron veloclty distributlons is described. For a

planar Langmuir probe it is shown that g(vz) = - E§<§vg where

€ P
v, = 2 % Vp and g(vz) gives the density of electrons with velo-
cities normal to the probe in the range v, to vZ+ dvz - This

expression is valid for any distribution function making it possible
to study anisotropies merely by changing the orientation of the
probe. If the distribution function is isotropic the above expres-
gion is valid for cylindrical and small spherical probes as well.

This technique is applied to the measurement of the directional
properties of electron velocity distributions in the positive column
of neon and helium hot cathode discharges. The necessary planar
probe conslets of a 0.0l inch diameter circular probve surrounded by
a 0.090 inch square guard-ring. The measured distributions were
Druyvesteyn in form except that all electrons were shifted in energy
(in the direction of the external field) by an amount proportional
to Ex(vz) . Here E 1is the magnitude of the external electric
field and X(VZ) the electron mean free path as a function of v, .
The experimental conditions are shown to be identical with those

necessary in the derlvation of the Druyvesteyn distribution.
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I. INTRODUCTION

1.1 History of Problem

It 1s known that conducting probes were used by Crookes in the
elghteen«nineties to explore ionized gases. Also, J. 3. Townsend dis-
cussed the use of such probes in the early nineteen-hundreds. However,
it was not until the work of Irving Langmuir in 1923 that the operation
of these probes was understood. Langmuir presented his probe theory in
a series of articles in the General Electric Review (1-5). 1In these
articles Langmuir assumed that the plasma electrons had a Maxwellian
energy distribution and with this assumption found that the current

drawn by the probe as a function of negative probe potential is
(1.1)

Here Kl’ K2 and a are constants, while Ip is the electron cur-
rent and VP the absolute value of the probe potential with respect
to the body of the plasma. Because of the exponential nature of this
relationship it was (and still is) common practice to plot 4n Ip

versus Vﬁ . The constant a can then be determined from the linear
plot. However, soon after Langmuir's publication;wit became evident

that many of the in Ip versus VIJ plots were not linear (particu~

larly if taken to sufficiently high values of Vﬁ)- Assuming that the

(1) T. Langmuir, H. Mott-Smith, General Electric Review 27, hkg (1924).
(2) 1pid. 538

(3) Ibid. 616
(k) Tbid. 762

(5) Ivid. 810
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probeé were functioning "properly"” this means that the distribution
| functions were not Maxwellian as Langmuir assumed.

In 1930 Druyvesteyn (6) devised a scheme for overcoming this
problem in the uée of Langmuir probes.' He developed a fheory vwhich
showed that for planar, cylindrical, and small spherical probes the
actual electron velocity distribution function could be obtained from

the probe voli-ampere characteristic as follows:

hme BQIP (1.2)
f(V) = - —— 1.2
A e avp2

vhere f(v) 1is the speed distribution of the electrons giving the
_pumber of electrons with speeds in the range v to v+dv, A 1is the
collecting érea of the probe, and m and e are the mass and charge of
the electrons. The one major assumption necessary to arrive at the
above result is that the distribution function is isotropié. Because
it has become more and more evident that in many cases the electrons do
not have a Maxwellian distribution, this technique for measurling distri-
bution functions has gained increasing favor. At first the second
derivatives of the probe curves were obtained grap%}cally. This was
quite unsatisfactory in that the original curves wvere subject to many
errors and the graphical differentiation multiplied these errors to an
intolerable point.

In 1934 (at the suggestion of K. G. Eme].éus) R. H. Sloane and

E. I. R. MacGregor (7) devised an ingenious method to overcome the need

(6) M. J. Druyvesteyn, Z. Physik 64, 781 (1930).
(7) R. H. Sloane, E.I.R. MacGregor, Phil.Mag.18, 193 (1934).
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of graphical differentiation. Their technique involved superimposing
a small a-c potential on the d-c probe potential. This causés the d-c
probe current to increase over the value .it would have with no a-c
applied. The amount of increase is proportional to ‘the second deriva-
tive of the probe characteristic. This can be understood by consider-
ing the Taylor series expansion of the probe current when the probe

voltage has the form

V"p =V + e where e - A cos ot (1.3)
This gives:
. e2
I, = £(V)) = £(Ve) = £(V) + ef (V) + 5 £7(V)+ -+~ (1.4)

On substitubting for e this becomes

‘ 2 b ,
{f(V)+ .“;‘1_ £ (V) + %I £ (V)4 - }

-
i

+

3
{Af'(V)+ % (V) + oen } cos wt

-+

2 L
{%— (V) + %8' Sl 10 WU } COB 2t +=s oo (1.5)

which shows that for sufficiently small applied a-c voltages

L ‘ 2 ,
[%ﬂ £"(V) <« %—- £"(v)] the chenge in the d-c probe current is pro-

portional to the second derivative of the probe curve.

This technique was used by Sloane and MacGregor (8) and later

(B)1pig.
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by Emeléus, Montgomery and Grieves (9), Emeléus and Ballentine (1C) and
Grieves and Johnston (11) to measure the velocity distributions in low
pressure glow discharges. The vwork of these people in the field repre-
sents the most extensive work done until the early nineteen-fifties.

One other piece of work deserves mention. This is the technique
developed by A. H. van Gorcum (12) in 1936. Van Gorcum again used a
small a-c voltage applied to the probe, but he also devised a unique
and ingenious bridge circuit which made it possible to determine the
second derivative of the probe curves, point by point. It is probably
because the technique was slow that it did not see greater use. Van
Gorcum's circuit is shown in Figure 1.1. The following is a summary of
his technique. The voltage appearing on the vertical plates of his
ogecilloscope was gg(Vy - Vy) where Vy is the average value of V
The horizontal deflection was proportional to gl(Vﬁ - V%) . By

Kirchheff's voltage law we see that

vV =k. IR-kV 1.6
v l'p 2'p (1.8)

but V. =V_+ K cos wt and if we again expand I = £f(V ) in a
Y p b P b

-

Taylor's series and substitute this into the above cxprecesion, we

obtain

- 2 3
Y = a + al X + a2X + a3X + e

(9) K.G. Emeléus, F.D. Grieves, E. Montgomery, Proc.Roy.Irish Acad.Ak3,
35 (1936).

(10) K.G. Emeléus, R.J. Ballantine, Phys. Rev. 50, 672 (1936).

(11) F.D. Grieves, J.E. McF. Johnston, Phil. Mag. 21, 659 (1936).

(12)A.H. van Govcum,Physica 3, 207 (1936).
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wh Y = v -V X = vV -V
ere gg( y y) 2 gl( p p)
and
a = gg(klRf - kgvp - vy)
g .
— 2 1
a, = gl(klRf - ke)
€o
- & " .
a, = > klRf (1.7)
z.gl

Thie is the equation of the curve plotted on the osclllioscope. We see

that for sufficiently large only the first four terms of this

g1

series need he considered.

Van Gorcum adjusted kq and k2 such that a, was zero, by

1

noting when %% = 0 . Having done that, a, could be determined
from the express§32
a, = % {Y(—l) + Y(+1) - QY(O)} (1.8)
or 2
o= L {Y(-l) + Y(41) - EY(O)} (1.9)
ggklR

Using this technique van Gorcum studied distribution functions near the
cathode in neon discharges.

In 1951 Kagan, Fedorov, Malyshev and Gavalles (13) swept the

d°T
probe voltage linearly in time so that ——EE was proportiocnal to
dalp 4°r dvp
— They then obtained -mw% by using two R~C differentiating
dt dt

circuits. This method shows great promise in theory but is guite

(13) J.M. Kagan, V.L. Fedorov, G.M. Malyshev, L.A. Qavallas, Dokl.Akad.
Nauk.SSSR 76, 215 (1951).
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difficult to implement experimentally due to the inherent nolse present
in the plasmas Dbeing probed. It 1s speculated that for this reason the
technique was dropped.

In 1953 Malyshev and Federov published a paper {14) in which
they described an improvement on the Sloane and MacGregor technigue.
This conslsted of superimposing a small sinusoidally modulated a-c
voltage on the probe voltage such that the e of equation 1.3 becomes

A(l+ cos wpt) cos wt . This leads %o

- 3 \2pn ..
Ip—f(V)+8Af(V)+.

2
A 7 4
4 { - (V) 4 AT (v r CO8 W b 4 ++- 1.10
(L e« e ) (1.10)

Here we gee that if A is pufficicntly small, the component of the
current at ab is proportional to f"(V) . Malyshev and Federov took
advantage of this by building narrow band amplifiers tuned to mp .
The output of these amplifiers is then proportional to f"(V) . The
advantage over the Sloane and MacGregor technique is that here, assum-
ing ideal filltering, the only error is due to neglecting the terms
involving f™, etc. which is quite valid for small A . With no
modulation on the a-c volkage one must measure the change in the d-c
probe current as the a-c is switched on and off. This is subject to
large errors because very slight drifts in the d-c¢ plasma cqnditions

can cause f(V) to vary the same order of magnitude as the guantity

(14) G.M. Malyshev, V.L. Federov, Dok.Akad.Nauk.SSSR 92, 269
(1953) -
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2
being measured [namely, %T £9(V)1]

At nearly the same time (1954), R. L. F. Boyd and N. D. Twiddy
(15) developed an almost identical technique. However, there were
four major differences.

1. Boyd and Twiddy used square wave modulation instead of

sinusoidal. This is of no consequence and merely changes
the constants in the expansion of [

2. Synchronous detection was used to select the current com-
ponent at mp rather than narrow band amplifiers

operating at wp

3. A sensing probe was placed at a point near the measuring
probe so that fluctuations in plasma potential could be
measured. These fluctuations were then compensated for

in the applied probe potential. Thus the probe tracked
any plasma potential varlations.

4., The small a~c signal was applied to the discharge rather
than to the probe. This made it possible to keep the
probe grounded.
The second of these differences merely exchanges filtering at low fre-
quency for filtering at w® . It is felt that with easily obtainable
equipment the synchronous detection scheme would yiéld a better signal
to noise ratio.
The third point is an interesting attempt at taking into account
the fluctuations which always occur in plasmas. Although 1t does not
compensate for density changes, temperature changes, etc., it is a

step in the right direction. It should be pointed out that even with

(15)R.L.F. Boyd, N.D. Twiddy, Nature 173, 633 (195k)
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this type of compensation, probe curves taken in oscillating plasmas
are not easlily interpreted.

der
This technigue for determining —L has been used by R.L.F.

dvg
Boyd and N. D. Twiddy (16,17), N. D. Twiddy (18), J. B. Thompson (19)
and N. D. Twiddy (20) to amass the most comprehensive set of measured
distribution functions available.

In 1963 A. Garscadden and R. S. Palmer (21) developed a unique
technigque for obtaining the first derivalive of the probe curve in a
noise-free form. Because the signal was noise free, they were able to
use R-C differentiation to obtain the second derivative. Two identical
probes were used but they werc biascd ot potentials differing by AV.

A differential amplifier was used to measure the difference in the

currents to the two probes. Since AV was held constant, the output

AT dr
- of the differential amplifier was proportional to L - _2,
AVp de

Because voltage fluctuations are well correlated over the distance
between the probes, the noise output of the differential amplifier was
found to be an order of magnitude less than the noise appearing on the
individual probe curves. This technique is only valld in a plasma
which is quite homogeneous because the basic assumption is that there
is no variation in the plasma parameters over distances equal %o the

probe separation.

Twiddy, Proc. Roy. Soc. A275, 338 (1963).
arscadden, R. 5. Palmer, Aeronautical Research Labs., USAF
Report No. ARL63-50 (1963).

(16) R. L. F. Boyd, N. D. Twiddy, Proc. Roy. Soc. A250, 53 (1959).
(17) R. L. F. Boyd, N. D. Twiddy, Proc. Roy. Soc. A259, 1L5 (1960).
(18) N. D. Twiddy, Proc. Roy. Soc. A262, 379 (1961)

(19) J. B. Thompson, Proc. Roy. Soc. A262, 503 (1961)

(20) N. D.

(21) A

. D
G
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During this same period of time, G. R. Branner, E. M. Friar and
G. Medicus (22) instrumented another technique for determining the
second derivative of a probe characteristic. They also superimposed a
small a~c voltage on the probe, but instead of noting the change in d-c
current they detected the second harmonic probe current. Eguation 1.5
shows that for a small a-c potential this freguency component of the

de1
probe current is proportional to ——EE . The second harmonic current
av

wag measured using band pass filtering and synchronous detection. The
instrumentation necessary for this technique is much simpler than that
necessary when using modulated a-c and the accuracy of this system seems

to be as good, making this a very promising technique.

1.2 Object of This Experiment

The work presented here was flrst discussed by the author in a
paper presented in 1962 (23). At that time it was shown that for a
planar probe the first derivative of probe current with respect to probe
voltage is proportional to g(vz) . Here g(vz) is the directed elec-
tron veloclity distribution giving the density of electrons with =z
directed velocities in the range v, to vZ+ dvZ .- The derivation of
this result is given in Section 2.3. The most important point in this
derivation ie that it is not neceésary to assume that the distribution
function is isotropic. It was also shown in the previous paper that a

guard-ring probe could be constructed such that it exhibited planar geo-

metry.

(22)G. R. Branner, E. M. Friar, G. Medicus, Rev. Sci. Instr.3L, 231
(1963) ‘"
(23) R. H. Bond, Bull. Am. Phys. Soc. 7, 631 (1962).
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This thesis extends the above theory to show that if the distri-
bution function is isotropic the first derivative of the probe curve is
proportional to g(vz) for cylindrical and small spherical probes as
well as planar probes. The advantage in using planar probes is that it
is then possible to measure any anisotropy of the elcetron distribution.

The experiments described here use a guard ring probe to measure
(for the first time) the detailed directional properties of electron
distributions. The plasma probed is the positive column of neon and
helium hot cathode discharges. These experimental distributions are
then compared with theoretical distributions calculated for plasma con-
ditions similar to the experimental conditions. Since it was only
necessary to obtain the first derivative in this work, the probe volt-
age was swept linearly in time and the time derivative obtained using
an operational amplifier.

Section 2.2 presents the solution of the Boltzmann eguation under
conditions applicable to the experiments described here. This leads
to the theoretical distribution functions which are later compared
(sections 4.3 and 4.4) with experimental results. Sections2.3 and 2.h4
discuss the theory behind the application of probes to electron distri-
bution measurement.

Chapter III describes the experiment and experimental apparatus,
while Chapter IV discusses the results obtained. Finally, Chapter V

consists of conclusions and recommendations for further work.
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TI. THEORY

2.1 Introduction

This section will be divided into two main parts. The first of
these will deal with the solubtion of Boltzmann's equation under condl-
tions in which we are interested. This analysis yields the electron
velocity distribution in terms of an expansion in Légendre polynomials
in velocity space. The remainder of the section deals with the theory
involved in experimentally verifying (or refuting) this distribution
function. This second section can again be divided into that portion
dealing generally with measurement of velocity distribution using
probes, and & portion looking more closely at the technique aclually
used for these experiments.

MKS units are used except where 1t is specifically indicated

othcrwice.

2.2 Solution of Boltzmann's Equation

As stated previously, we are interested in measuring the
directed velocity distributions of electrons in rare gas discharges.
We will see (a posteriori) that the plasma used in the experiments
described here has the following properties. First, it is very weakly
ionized (of the order of 10”u%) so that the dominant interactions or
collisione between particles are those between electrons and neutrals.
This allows us to neglect electron~electron and electron~ion collision
terms in the Boltzmann equation. Second, in the positive column of the

discharge there exists a relatively high electric field directed along
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the axis of the tube. ©Since there is no magnetic field applied, this
electric field will be assumed to produce the only external force on
the electrons. We will further assume that the distribution function
has reached a steady state cbndition and 1s spatlially homogeneous.
Picking a coordinate system with the z axis along the axis of the tube
(in the direction of the electric field E), we arrive at the following

form for Boltzmann's eguation:

el of of

-2% - % (2.1)

collisions

Here £ is the distribution function for the electrons. That is,
£(v) av gives the density of electrons with velocities within
v = dvzdvydvZ s E 1s the magnitude of the electric field, e 1is the

electronic charge, m 18 the electronic mass, v, is the z~directed

of

electron velocity, and = is the time rate of change of the

collision
distribution function due to collisions. This collision term can be

written in many ways; however, we will write it in the form derived by

Chapman and Cowling (1) and others. This gives

of

3t = ]‘f [£(v') F(v') - £(v) F(v)’] ucdQ dv (2.2)

Qv

collisions

where f is as defined previously and ¥ 1is the distribution function
for the particles with which the electrons collide (in this case,

neutral'gas molecules). Primes denote veloclties after a collision

(1) S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform
Gases (Cambridge University Press, 1953), pp. 54-65.
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while unprimed guaentities indicate initial velocities. V willl be used
to denote neutral velocities, while v represents electron veloclitles.
The quantity u is the magnitude of the difference in velocity of the
particles before collision; u = |v-V| . The quantity o(6,u,§)an =
o(e,u,f)sin ©d edf 1s Just the function relating the number of elec-
trons per second scattered into solid angle do by a single scattering
, 2
center to the flux of electrons arriving per sec per m at the scatter-

ing center with relative velocity wu,

dNout dNin
i.e., rraal o(9,u,d) 4an T (2.3)

Figure 2.1 shows the angles © and ¢ measured in a coordinate system
moving with the scattering center. The expression is integrated over
all scattering angles (dQ) and over all initial scatterer velocities
4av = dVXdVdeZ . This form for the collision term is valid ﬁnder the
assumptions of binary, elastic, short-term collisions-~collisions in
wnich no énergy goes to excite internal degrees of freedom in the col-
liding bodies and the collision takes place in a time interval short
compared with 4t . This rules out collisions where excitation or
ionization takes place. Electron-electron and ion-electron collisions
must also be ruled out because the forces involved in these cases are
long range and involve interaction times long compared to dt . In
addition, these collisions are not strictly binary. A review of Chapman
and Cowiing's derivation of this form of the collision term is presented

in Appendix A.



-15-

2’ PARALLEL TO u

Fig. 2.1 Collision Geometry in Frame Moving with Scatterer
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Inserting this form for the collision term, Boltzmann's

equation becomes

"'%? %%. = jrjr (£(v') P(v') - £(v) £(V)] uo da av (2.4)
Z QEY
We will solve this equation by expanding f in a series of

Legendre polynomials (2) giving

f = ZE: fz(v) Pz(cos Ql) (2.5)

where Gl is the angle between v and the z axis, or alternatively,
the angle between v and E . Substituting this expression into the
Boltzmann equation, multiplying by Pi(cos Gl), and integrating over

dg, we obtain

el 9 .
JPi(coa Gl) = 3y }:8: fﬂPz(cos Ol) aa, =
z

J(Pi(cos 91) S aq, (2.8)

where S has been substituted for the collision term. Since the
fz‘s are explicit functions of v , not vZ , we use the relatlonshlps

v =V cos 6 and v2 = v8 + v2 + v2 to show that
Z 1 X ¥y Z

S afﬁ fzsingel oP,
S’v'"z" {fz P'e(cos gl)} = Pﬂ(cOS 91) cOs gl av + v a(COBG

1)
(2.7)

(2) w. P. Allis, Vol.XXI Handbuch der Physik, Ed, S. Flligge (Springer-
Verlag, Berlin 1956), pp. LOL-L06.
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Making use of this and the following well-known properties of

Legendre polynomials:

(28+1) cos ) P, = (4+1) P,  + 4P, ;
oP
2 y;
. - - P
(2£+1) sin CN S(oos 91) 2(8+1) [Pg—l z+1]
(2£+l)j PEPmdQl = Ly Bzm (2.8)
we obtain
e Z[dﬂP (e+1)1r»2+l+ ®, | afﬂ . 3(g+l)[P -p ]f_li
m 5 i 24+1 ov.  2p+1)Le-1 f+l) v
_
='[APiS dﬂl = Si 21+ 1 (2:9)

where we have now expanded the collision term in a series of Legendre

polynomials, i.e.,

s = Z s, P, (cos ) (2.10)

We obtain a single equation for each value of 1 substituted

inte 2.9. The first two of these are

2
g —CE lafl+§fi _zem O E) (2.11)
o m )3 fﬁ? 3V - 3mv2 v )
3
o (% 2% sf2) (¥, 2 ) (2.12)
S R A S - R
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V. L. Ginzburg shows (3) that in the second of these equations
the term involwving f2 can be neglected. In particular he shows that
of 1 O(v3fp) m
iti — — — wher is th
the condition Sv >> 3 v reduces to m << 1 ere M 1 e
mass of the scatterer and m the mass of the scattered particle. Since
we are talking aboubt electron-neutral scatbering, this condition is met
and equations 2.11 and 2.12 reduce to two equations for fo and fl .

We will assume that all higher order terms f f3, fh’ etc. are reg-

2’
ligible and that the distribution function can be written

f(v,gl) = fo(v) + cos 6, fl(v) - (2.13)

The validity of dropping the higher order terms is discussed by Ginz-
burg (4).

It would be well to note what the terms fo and fl represent
physically. The first term fo(v) represents an isotropic distribu-
tion whereas the second term cos Qlfl(v) represents an anisotropy
which we will see can be interpreted as a drift velocity in the direc~
tion of the applied force on the electrons.

To solve the two equations, 2.11 and 2.12, it is necessary to
determine SO and Sl . In Appendixz B it is shown that the SO
equation is directly related to an energy balance equation, while the
Sl equation represents the balance of z directed electron momentum.

We would therefore expect 804 to be a strong function of the change

in energy (Av) of an electron during a collision. On the other hand,

(3)V. L. Ginzburg, A. V. Gurevich, Usp. Fiz. Nauk.70, 201 (1960)
(b) Ibig.
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the change in the z dlrected momentum can be approximated very well by
setting AV = 0 and merely considering the change in direction of the
electron. This is true because we are discussing the case of rela-
tively heavy scatterers so that very little energy is transferred to
them during a single collision. With these facts in mind let us

write down an expression for Si . From equations 2.9 and 2.2 this is

21+1

il LN f f anavuo [£(v') F(V') - £(v) F(V)]

[o2]
It

or

2141 ' 1 t !
1= T dﬂlPi(cos Gl)Ji/nd QgKuo'{F(V ) }% fz(v )Pz(cos Ql)

[ 03]
]

- F(V £,(v) P, (cos 6.)
(v) % AN A 1}

(2.14)

Noting the collision geometry as shown in Filgure 2.2, again with the
coordinates moving with the scatterer, we see that cos Oi =
sin Ol sin © cos ¢l + cos Ol cos & 80 1In the expression for Si we

have terms of the form

P,(cos ©,cos @ + sin 6. sin © cos ¢l)

ﬂ( 1 1

£ (£-K)! 4

| MR % k
” Pz(cos e) Pﬂ(cos 91) - 2 g;l (7k) ! Pﬂ(uos el)P£<COB Q)QOSB#&

see reference (5).

(5) P. M. Morse, H. Feshbach, Methods of Theoretical Physics--Part II
(McGraw-Hill Book Company, Inc., New York 1953) p. 1327.
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Fig. 2.2 (Collision Geometry Defining O, Ql, 9'1, and ¢l
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All the terms containing cos k¢l will yield zero when inte-

grated over dQl so we are left with the following:

S =~[‘ d0dvus(u,8) {'F(V')fi(v‘)Pi(cos 8) -F(V)f(v)} (2.15)

We will now apply the assumptions that the energy lost per collision is

iR

small (i.e., v ¥v' and VEV') and that uw v . The latter comes
from assuming thal the energies ol the neutrals and eleclrons are come

parable so that V << v and therefore u = |v-v¢ ~ v . This gives

8, =Jf dedvvo(v,e) F(V) fi(v)[Pi(cos e)- 1]

or

S, = Nfiv_fﬂd(v,g)[Pi(cos )~ 1] da = -fiv {(2.16)

i i

N is the demnsity of the neutrals and v, are collision frequencies

defined by

v; = NV-[~U(V,Q)[1 - Pi(cos Q)] an (2.17)

As expected SO is zero in this approximation.

It is necessary to look at the collisicon in some detail to
determine SO . This has been done by Desloge and Matthysse (6) for
the case we are interested in. They assumed that the gas molecules
vere not affected by the electric field and had a Maxwellian distribu-

tion, i.e.,

(6) E. A. Desloge, S. W. Matthysse, Amer.Jour.Phys.28, 1 (1960)
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2n kT

where T 1s the gas temperature and k 1s Boltzmann's constant.

They find the same value for 8, as given by 2.17 and

1

Emve 8‘
5, = ziz gvi' = ! [kT ~, * vf }} (2.18)

Substituting these values of Sl and SO into 2.11 and 2.12 we obtain

2 2
er QT gy (EmVivy g O .
— 75 = 25—' M [’i'l" a + VfO (’-—'19)
3mv" OV ay= oV v
- afo
—d e = . y.f 2.20
m  ov Vit ( )
Multiplying 2.19 by v2 and integrating from O to v glves
of
eE 2. _ ™1 rmr %o ]
512-[1‘ fl i [—ﬁi— --5; + Vfo (2-21)

We can now substitute 2.20 into 2.21 and solve for fo . This leads to

v
Jﬂ mv dv
kT+e2E2M
£,= Ae b (2.22)
22 i‘l‘f
e EM T DKT
For KT >> —5 we obtain a Maxwellian distribution f = Ae .
3m vy 5 2M
However, if the electric field is "strong" such that ”E§E?f~ >> kT, the
3m v
1

distribution will in general not be Maxwellian. It is impossible to

evaluate its exact form in this case unless we know v as a function
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of v . One reasonable assumption is that the mean free path (x) be

independent of v . This leads to v:L = % , and for this condition we
have
- BmBVLL
)+7\.§62E2M _hj*v)"
£ =he = A e (2.23)

This is the Druyvesteyn distribution first derived by Druyvesteyn in
1930 (7).

The above function can be put in a more concise form by using
as parameters the energy gained by the electrons per mean free path (in
the direction of the field) and the electron energy. These will be
denoted respectively as Wx =eBA and W= % mve. ‘Using these quanti-

ties we can write

_3m ¥,
M Wy _hk 4
fo = A e = A e v (2.2’-‘-)
80 3
h* - ———5%—— (2.25)
M W,
From 2.20
m, W
£, ==6 ﬁ(ﬁ-) £, (2.28)
A
giving
u W2
omW M Wx
£ =f +cos 0 f = Ail—ﬁ-—w-): cos Olge (2.27)

(7) M. J. Druyvesteyn, Physica 10, 69 (1930)
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The "strong field" condition can be written as

W, M
——— >> kT ‘ (2.28)

om W

The constant A will now be evaluated by noting that the integral of

f over all velocities gives the electron density n , i.e.,

022 AL
-h v
Jﬂ av J[ d¢“[-d9 { l 32 o €08 Gl]e vTsin Qlf

A

This yields
nh3
ﬂP()?’;)

(2.29)

————

We can novw calculate the mean energy % mvz and the mean value of the

z velocity V; . The latter will be termed the drift velocity. The

mean energy is given by

3 P Lok We
_%%vagf dv = EEE~ afuvhe“h Voav = i ix)
- TR 2n°T(3)
or
r (&
% we - W ’ (u) = L ( ) W (2.30)
" om (g 20°r(3) 3 I‘(E) »

In the same way we obtain ;;

L [ox wlx/g

?=%ﬁfﬂ=’% 3 (2.31)
z nj =z M hP(H) P(%)[3mM]l/h

Since directed distributions g(vx), g(vy), g(vz) were measured, we
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will now calculate these functions so that the theory and experiment
can be compared.

Let us first calculate g(vz). Thig function gives the density
of electrons with z directed velocities in the range v, to vz+dvz
irrespective of their x or y velocities. Therefore g(vz) can be
found by integrating f(v) over all possible v, end vy This

yields

% b2 2 2.2 3oy
- +v
g(v) = A Jﬁjﬁ o™ (v +vy+vg) 1- 2 [EivEiv? b avav
Z wa X y z Xy
-®

(2.32)

2 2
or in terms of polar coordinates (r2 =V o+ vy)

o) L 2 2.2 2
~h (r“+ v%) 3m v 535
g(v ) = 2nA f e z {l— = r+ v rdr  (2.33)

2
0

It is seen from this equation that for sufficiently large v, the
term arlsing from fl wlll dominate. We show in Appendix C that
this does not happen for small enough energy to be of interest.
Therefore we may ignore this second term except for calculating the
drift velocity. That is, we have & nearly isotropic distribution with

a superimposed drift.

Integrating the first term of 2.32 yields

alv,) 2 .E_%.IL {1 - erf(hgvi } (2.34)
21‘(]:)

where erf is the error function defined by
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X 2
2 -
er:f‘x=-———je at
Uﬁ

0

The other two directed distribution functions can be calculated in the
same fashion. They will both entail an integration over all v, From
equation 2.32 we see that the term due to fl will be zero and both
g(vx) and g(vy) will be glven exactly by equation 2.3h.

We can approximate the error function for large argument by the

following asymptotic series: (8)

- .
erf(x) = 1 - S {1 NN i;_g - ...}
JP;.X 2x2 ng
This gives
--hh"vlF
g(v) = : - v arge hv .
z 2nr(3) vi 2n ;sz z

For small hvz we can expand the error function in & power

series (9) giving

22 22,2

hv (h"v%)

g(v) :\/}Fnh 1 - Z l....._.-.....z.'.m_+ o small hv (2'36)
Z 21‘(13;) 3 ’

We see that for large v, the directed distributions fall off very
Loh
-h7v,

rapidly, going as K§-g-— . While for small . they vary
v
7

(8)H. B. Dwight, Tables of Integrals and Other Mathematical Data, (The
MacMillan Co., New York, 1957) p. 129.

{(9)1Ibid.
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quadratically with v, -
Summarizing the above theory we see that the electron distri-

bution function should be Druyvesteyn rather than Maxwellian if

1. The degree of ionization is low so that only electron-

neubral collislons need be consldered.
2. The external electric field is strong, i.e.,
ezEeM
3111'2 vl2

>> KT

3. The mean free path is independent of velocity so that

4, We ignore inelastic collisions.

Having derived this form for the distribution function it
would be interesting to compare it with a Maxwellian one with the same
electron density and mean energy.

We would like to compare

2
v
Maxwellian g(vz) = n(EEEE-)l/2 e € (2.37)
™
Druyvesteyn g(vz) =n Vx_h {l - erf(hevi)} (2.38)
2r(3)
h 3 17 me(%) (2.39)
where = = .39
2 e oy P(%)

2
Setting EE%— v, equal to the dimensionless variable x2 and
e

normalizing the Maxwellian distribution so that its maximum amplitude



~08.

is 1 , we obtain

2
Maxwellien g(x) = e~ (2.40)
5 5
Iz r(s)
Druyvesteyn g(x) = T 4 {i - erf {’__E7_ XZJ (2.41)
r@ | er) 2r(y)

il

0.90 {l - erf(0.493x2)}

These two functions are plotted in Figure 2.3. We see that the Druy-
vestyn distribution contains fewer low and high energy electrons. That
is, the electron velocitles have less spread about the mean for the

Druyvesteyn case.

2.3 Measurement of Distribution Functions Using Probes

The preceding discussion demonstrates that from a theoretical
point of view there is no reason %o expect a slightly ionlized gas
always to have a Maxwellian velocity distribution. For this reason it
is interesting to measure the distribution functions for various experi-
mental conditions in order to determine what distribution actually
exists. With this end in mind we will now discuss the theory of
Langmuir probes and its spplication to the measurement of distribution
functions.

Let us look at the volt-ampere characteristic of a planar probe
(an infinite plane conductor in a semi-infinite plasma). We will assume

the following conditions:
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Fig. 2.3 Compsrison of Maxwelllan and Druyvesteyn Distributions with Same Density and Mean Energy
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1. The probe is negative with respect to the plasma so
that a sheath of positive charge covers the probe

surface.

3}

The electrons undergo no collisions in the sheath.

That is, A 1is much greater than the sheath thickness.

3. No electrons are produced in the sheath (including the
probe surface). This means we neglect all ionization

in the sheath, secondary electrons, photoemission, ete.

L, v, represents electron velocities normal to the probe
surface. This convention will be followed from this
point on.

For this case the differential current density to the probe due to
electrons in the velocity class v, to vi+dvz is merely

‘dJe(vzﬂ = edn(vz) v, = vzeg(vz) dvz (2.heg)

where dn(vz) is the density of electrone in the veloecity range v, to

v +dv_ . Therefore
Z Z
|9 = j dJ(vZ) (2.43)
all
possible
v

»
The limits on v, are determined from energy considerations. That is,
the electrons must possess sufficlent energy normal to the probe to

overcome the negative probe potential (% mvi 2 eVp) . Vp is the abso-
lute value of the probe potential with respect to the plasma potential.

Plasma potential is the potential at the probve location with the probe
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removed. Thus we have for the electron current density to the probe

o0]

|Je|=f e ve(v) dv, (2.1k)

/2~‘V
np

The ion current is determined in exactly the same way. The only dif-
ference is that for negative probe potentials the ions have no potential
hill to overcome and therefore all ions moving toward the probe are col-

lected. Thus the ion current density to the probe is
[¢'e]
|Ji]= J( e VZFi(VZ) dvz (2.45)
0

Fi(vz) is tne distribution function for ions, giving the density of
ions with velocitles in the range v, to VZ+dVZ .
We will call electron current to the probe positive so that for

the total current density to the probe we have

ooy
Jp =]JeL4Ji|= Jf e vzg(vz) dvz - J( evZFi(vz) v, (2.46)
\/ﬁ ©
np

If both the ions and the electrons have Maxwellian velocity distribu-

tions this leads to
eV
P

kT
- kT , kTe e 2 .
Jp eNi —EE% +en/ 5= (2.47)

This is the commonly seen form for the volt-ampere relation of a ILang-

muir prooe. If it is applicable, a plot of zn(Jp+Ji) versus Vp
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would yleld a straight line. The slope of this line would give Te .
Experimentally, 1t is found that this plot is not always linear and it
is therefore of interest to determine g(vz) in terms of the probe
curve. This can be done guite simply. Taking Lhe derivatlive of 2.L6

with respect to Vp we obtain

aJp 62 e
= oa e Ev
v o &( 2 m P J
or
m oJ e
=L _p. = Yo £ 2.48
a(v,) oo ov_ V2 m'p (2.46)
P

Thus we see that for a planar probe the distribution of velocities
normal to the probe surface can be determined from the first derivative
of the probe current wlth respect to the probe voltage. We are assum-
ing, of course, that the probe current ls equal to the area of the
probe times the current density and that the probe area is constant.
For a planar prote the area is constant, whlle for finite geometries
the area is generally a funection of V?

The above anelysis wlll be uged to interpret the data presented
in this thesis.

To point out the differences between this theory and that
developed by Druyvesteyn (10) which is usually used, we will present
the Druyvesteyn analysis for the same case of a planar probe. The only

difference 1s that Druyvesteyn did the analysis assuming an lsotropic

(10) M. J. Druyvesteyn, Z. Physik 64, 781 (1930).
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speed distribution f£(v) rather than the directed distribution g(vz).
To carry out this analysis it 1s necessary to cbtain dn(vx) in terms
of £(v) instead of g(vz) . This can be done by noting that elec-
trons arriving at the probe with the same speed v and angle € with
respect to a normal to the probe surface have the same v, (i.e.,

v, =V cos 8) . Thus we have

dn(vz) = dn(e) dn(v) (2.49)

where dn(@) is the percent of the electrons arriving at the probe at
an angle © with respect to the probe normal, and dn(v) d1s the
density of electron; with speeds in the range v +to v+dv . For an
isotropic distribution dn(@) is the ratio of the differential solid
angle dQ at © +to the total solid angle 4n . The quantity dn(v)
is hﬁvgf(v) dv from our previous definition of f(v) . Here agaln we

have assumed an isotropic distribution. Thus,

ox sin ©
an(v,) = _1_3%%__@2 b (v) av (2.50)

and the electron current density to the probe is

J = J(,[‘ ev_ 2 sin 6 d8 sz(v) dv (2.51)

(&
all possible
v and ©

Again the limits are determined by energy considerations. That is,

l



Therefore we have

Q0 COS_l ESY_E
mve 3
J, = dv a6 ev cos © 2rt sin 6f(v)
p, °
mp
or
. *© 2eV
J == j~{l— 2}vﬂv)wr (2.53)
e 4 z
my
/2§V
mp
Differentiating this expression twice with respect %o VP we
obtain
2 3%5
£(v) = 3 u~7§ (2.54)
2ne” OV
P
, . ‘-
vhere v 1s the velocity corresponding to Vp (1.e., v o= (/2 aVﬁ) .

This f{v) 1is not the distribution function that is usually meant when
speed distributions are being discussed. The usual one, £1(v), is the
function such that f£'(v)dv gives the density of electrons with
speeds between v and v+dv . From the discussion leading to equation

2.50 we see that
2
£1(v) = bavE(v) (2.55)

Thus in terms of the probe curve we have

hmy BQJ
f'(V) - p__ P (2-56)
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Since all measurements cited in the literature give f'(v) or
the energy distribution function, we will compare the above result for
ft{v) with that found earlier for g(vz) in equation 2.48.

First we note that the Druyvesteyn analysis requires the second
derivative of the prohe curve while the g(vz) eguation involves only
the first derivative. It is therefore much easier to implement the
g(vz) theory experimentally.

Second, the expression for f'(v) contains Vb explicitly along

421

with _—EE . Thus to obtain the correct functional form for f'(v) it
av

P
is necesgsary to determine VP accurately. BSince Vp does not appear

in the expresslon for g(vz) the incorrect determination of Vp wlll
merely shift the g(vz) curve in velocity but will not alter its shape.
This point is of interest because it is not in general easy to determine
experimentally the plasma potential, and therefore VP « Mott-Omith and
Lengmuir (11) have shown that for a Maxwellian distribution the probe
curves for planar, cylindrical and spherical geometries all have an
inflection point at Vb = 0 . Therefore in the work described here

this Inflection point is taken to be Vp = 0 on the plasma potential.
More recent work by Wehner and Medicus (12,13) and Waymouth (14) has

shown that this may be in error due to the variation of the work function

(11) H. M. Mott-Smith, I. Langmuir, Phys. Rev. 28, 727 (1926).

(12) G. Wehner, G. Medicus, J. Appl. Phys. 23, 1035 (1952).

(13) G. Medicus, Proc. of 5th Internation Conference on Tonization
Phenomena in Gages, Vol.II, Ed., H. Maecker (North Holland Pub~-
lishing Co., Amsterdam 1962), p. 1397.

(14) J. F. Waymouth, MIT Research Laboratory of Electronics Technical
Report 406 (1962).
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over the probe surface and the perturbing of the plasma by the probe.

A third point of comparison is that the Druyvesteyn analysis
assumes an isotropic distribution function. If the distribution is
anisotropic the analysis is not wvalid. On the other hand, no such
assumption was necessary in the analysls using g(vz) . In fact the
anisotropy of the distribution can be measured by changing the plane of
the probe.

The above derivations were carried out under the assumption of a
planar probe. However, Druyvesteyn showed equation 2.54 to be valid for
cylindrical and small spherical probe geometries as well. The only
assumption was that the distributions were isotropic.

We will now show that equation 2.48 giving g(vz) is also valid
for cylindrical and small spherical geometries. We know that f(v) and

g(vz) are related as follows

Q0
g(vz) = jrjf f(v) dvxdvy (2.57)
-0
Writing this in terms of a set of polar coordinates r2==v§ + V§ s
v
0 = tan”l L glves:
Vi
25 00
g(vz) = Jf ae J( rdr £(v) (2.58)
0 0]

which for an isotropic distribution becomes

o

®
g(VZ) = 2x Jr f(v) rdr = 2ﬂ-jﬂf(v r o+ VZ) rdr (2.59)
0

0
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2 2 2
Setting u =r + v, Wwe obtain:
00
g(vz) = 2x ff(u) udu (2.60)

v
2

Taking the derivative of this equation with respeect to v, gives

dg(v,) 3
= 27 —— vi(v) dv = -2 v £(v_ )
sz av Z Z
v
4
80
1 dg !
f = - —
(v) T S (2.61)
% 2 |v. =7V
Z
Combining this eguation with 2.5k we obtain
2
2 0
-1 %g N S (2.62)
e v, v v =V oned Ao
or 2
1 og(v) _ m? 0 Jp
voo o3 Wt
b
but v = /2 vy so we can write this as
Vo omr
2
A"
. _om _p (2.63)
v 2 .2
P e~ Qv
P
waich, when integrated once, ylelds
n ¥
= - —§-§vg + constant (2.64)
p

The constant must be zero because the integral of g(vz) over all v,

must give n and any non-zero constant in g would produce an
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infinite value for this integral. This expression (which is identical
to that found for g(vz) in our planar probe theory) was derived
assuming only that the distribution is isotropic and that Druyvesteyn's
analysis is correct. Since Druyvesteyn's analysis is only correct for
isotropic distributions, the above expression for g(vz) is valid
whenever Druyvesteyn's second derivative theory is valid. This is
guite interesting because it means that for isotropic distributions

the expression g(vz) = - E#'éig is valid for planar, cylindrical and

ee avp

small spherical probe geometries.

We see then that 1f we are dealing with isotropic distributions
either theory can be applied depending on whether f(v) or g(vz) is
wanted. However, in the more common case of anisotropic distributions
the f(v) theory 1is incorrect and we are forced to resort to a planar

probe and the theory for the directed distribution g(vz) .

2.4 Analysis of Planar Guard-Ring Probe

In the preceding discussion a planar probe has meant an infi-
nite plane conductor. In practice this never exists but we can approxi-
mate it by using a finite planar probe with a guard ring. Such a probe
is shown in Figure 2.4. The probe collecting surface is divided into a
small center section and the guard ring which completely surrounds this
section. In using such a probe both sections are set at the same poten~-
tial Eut only the current to the center section is measured. Thus we
find the‘volt ampere characteristic of only the center section. The
guard ring serves merely to remove the effects of the edges from our

probe curve; that is, we assume that any effect due to the finite probe
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gize influences only the current to the guard ring and not the center
section.

To determine the validity of this assumption we must discuss
one other aspect of plasma dlagnostics using probes. This is the fact
that the potential on the probe produces a field which penetrates into
the plasma. In Figure 2.4 the distance the field penetrates from the
probe is denoted by s and will hereafter be called the sheath thick-~
ness. Thias sheath thickness 1s not well deflned--in fact, it can be
shown that the field penetrates an infinite distance. However, for
sufficiently high electron density and high enough probe potentials
the sheath 18 a meaningful concept (15). For these conditions the
sheath region is the same as a space charge limited diode. That is,
there exists a sheath of positlive space charge around the probe and,at
the outside of the sheath, the potentisl and the field are zero. TFor
these conditions, in a planar geometry, we can write the following
expression relating ion current density to the probe, probe potential,

and sheath thickness:

i}

2.335 x 1070 |/ B y3/2 -2 (2.65)

IJil M p

or

i
It

1.53 x 10”313";:1/2 vg/u(ﬁ)l/l*

but for a Maxwellian distribution for the ions and negative probe

- : . ) [&T
potentisls, equation 2.47 gives ]Jii— eN, 5}% . Therefore

(15) S. Self, Phys. Flulds 6, 1762 (1963).
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-3 e-l/e(gy_cg_x)l/h V3/l+ N_-l/e (2

s = 1.53 x 10 kTi b i 2.66)

Iet us now calculate the probe current due to electrons which are col-
lected by the center section of the probe and pass througn the planar
portion of the sheath; that is, the electrons which pass through the
cone shown dotted in Figure 2.4. The ratio of this current to the
current collected by the same area of an infinite planar probe is a

reasonable criterion as to the effectiveness of the guard ring probe.

We can find the nuwber of electrons passing through the cone
by noting that these are defined by having a transit time across the
sheath {ts) which 1s less than the time it takes them to move a

distance d tangential to the probe. Calling the latter t, we can

d
write
4
t € %, = 2.67)
8 4 2 o (67)
v O +V
X b
0
but kY = - jﬂ EE
8 v
z
Z=8
where 2 e
v, = V/Vz(s) -2= v{z) | (2.88)

If the potential in the sheath V(z) varies as the pth power of =z

we can write
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0]

- dz
t = Jf _ (2.69)
S \/vi(s) -2—:% Vp(l--g—)P

We are interested in the greatest value of ts and this occurs for

the electron which reaches the probe with zero velocity. For this

2
electron v (g) =25 V_ so we have
z m p

(2.70)

8
& "J( - dz _ 1 Jf /2 44
. =
max \/e-e-v \/1- (1-2F \/EEV S VR
mp s mp
We can evaluate this for p =1 and p = 2 obtaining

m
= 2
ts (p=1) S\ 2e V

max p

8
-1 1 m 7T m
1, (p=2) s sin — —~ . / = w8 | (2.71)
8 s 2eV 2 2
max 0 P eVp

If the potential in the sheath follows the space charge limited diode

il

condition (V(z)ex¢ ZL/S), t will lie between the two values found
max
above. Taking the worst condition (largest Ty ) our inequality
max
becomes
25 z e & _ 8 (2.72)
2e V T r
P \/v + v
d e
< = <
aor r £ = 2 - Vp .

The current due to electrons which meet this criterion is
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ap %
28 m
2.
el f deVZ [f dvxdvyf(vx, Vy, VZ) ( 73)
2 -y v24-V =0
P X

@ 00
eA j v, av, [ [ dvxdvyf(vx,vy,vz) (2.74)
P o 2
2—V =
V oD VXA—ﬁY 0

If we assume a Maxwellian dilstribution function the ratio of these two

currents is
2eV

d p mr2
28 ¥ m " 2T 5 eV
e (;1, P
e rdr 55) T
= -11
— 10 e = f e (2.75)
[ oo ;
e rdr
r=0

(2.78)

and if we substitute equation 2.66 for s we obtain

2
) [ dZNi T’l
. -6, .
9.34 x 10 Te \/ 21rmkvp

1 -e
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or
N, 42
3.09x1077 1\ /I
r'I"e VP
1-e (2.77)
We would like this ratio to approach 1 . For small Vp this
is the case because the sheath thickness is very small. However, as

stated before, the space charge limited equation is not valid for small
VP . In fact, it takes Vp of the order of at least 529 to form a
stable sheath (16). This planar criterion is therefore suspect for
volt