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ABSTRACT

The problem of calculating the frequency of the wave
scattered by a body moving in a medium is formulated from field-
theoretic considefations. The Doppler equation for a homogeneous
dispersive medium is obtained on the basis of the fact that the
frequency and the wave vector of a plane wave form a Y-vector. It
is found that the solutions of the Doppler equation can be clas=~
gified into two kinds. In one kind, the solutions are close to
the frequency of the incident wave. In the other kind they appear
near the poles of the refractive index of the medium on the w-axis.
In the case of an isotroplic plasma, the monochromaticity of the
incident wave is shown to be preserved after the wave is scattered
by a moving body. However, in the case of a magneto-active plasma,
the scattered wave contains more than one frequency for a
monochromatic lncident wave. The physical lnterpretationsof these
frequencies are given. In an Inhomogeneous medium the Doppler
equation has to be derived from a different starting point. The
crucial point of the derivation is to perform spectral decomposi-
tions of the transformed fields and then to apply, under the
assumption of gradual inhomogeneity, the method of stationary phase
0 determine the critical points. It is shown how the phase func-
tions of the fields can be obtained by transforming Maxwell's
equations into equations of Riccati-type. Approximate solutions
of the Doppler equation are obtained for isotropic as well as for

gyroelectric stratified medis.
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I. INTRODUCTION

When a wave implnges on a moving body, the frequency of the scat-
tered wave is known to differ from that of the incident wave. This is
called the "Doppler effect". This effect has been calculated by the
conventional method of ray optics in which the wave properties of the
fields are completely ignored. In using this method most authors (1,2,3)
have not, however, taken into account the presence of a medium through
which the wave is propagated. In so doing,scme interesting phenomena
which result from the dispersive character of the medium,disappear. To
account for these phenomena it is necessary to extend the conventional
method to include the properties of the medium which, in phenomenological
description, are expressed by its refractive index. This can be easily
done in the ray optice analysis and the extension of the conventional
method 1s outlined below*.

In the treatment of ray optics the concept of instantaneous fre-
quency is used. That is, the frequency of a wave 18 given by the time
derivative of the total phase whlch is equal to wt - Lm/c , Where
is the frequency of the transmitted wave, c¢ +the speed of light in
vacuum, L the optical path length between the transmitter and the point
of observation. The optical path length L between two polnts in space
is defined as ¢ times the minimum time for a light wave traveling from

one point to the other. In mathematical language, L. is given by
o
e - 4dr
L = c //— —— s (lol)

I

*One part of the problem, i.e., the Doppler effect from a transmitter
moving in a refractive medium, has received extensive study in the
literature. See, for example, Ref. (k).



where r, and r, are the position vectors of two spatial points, v

1 2
the velocity of light in the medium, e the unit vector tangent to the
ray which is determined by Fermat's principle. By introducing the refrac-
tive index n of the medium defined by n = c/v ; eq. 1.1 can also be

written as

L = f ne- d£ (1‘2)

which is the optical path length between £l and r, in a medium whose
properties are characterized by the function n(r,w).

By using the concept of instantaneous frequency, the extension of
the conventional method is then easily made. The Doppler shift is Just
given by the time rate of change of the difference between two optical
path lengths measured in wavelengths (See Fig. 1). One of these paths
is from the transmitter (which is assumed to be at infinity) to the
scatterer and from the scatterer to the recelver, the other being from

the transmitter directly to the receiver. With expression 1.2 for the

optical path length, one then has

0 r(t)
wid[ % 4 (r'm, )e, -dr
= - o mm— — » 1 e e e n{r,w e,°
MO =@ = 0y == FE n(r'e) g,- dar c at S0 R
fo's) (0 0]
m 0
8 4 ' '
-~ n(r',w ) e, dr (1.3)
r(t)

where ‘”; and are respectlvely the frequencies of the scattered and

i

the 1ncident waves; E(t) is the poslition of the scatterer; &, e, and

e are defined in Fig. 1.
-—s



Fig. 1. g2 &4 and &, are unit vectors tangent to the

indicated paths. 0 18 the observer (receiver)
sliuated ot the orligin.
with velocity v .

5 1is the scatterer moving
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Carrying out the differentiations, one obtains

w

- L—é? n(w,,r) e, (x) * v(z) + = nlo,r) e (x) * w(z), (1.4)

W - Wy =
vwhere v(r) is the velocity of the scatterer.

In the treatment of these authors mentloned above, n 1is set equal
to unity, and in this case w, can be easily obtained by solving eq. l.h
with n =1 . With the medium taken into account, however, eq. 1.4 has
as yet to be solved for a given n .

This method of deriving the Doppler equation 1.4 is quite simple,
nevertheless it 1s not at all clear how good 1t is to use the instantane-
ous frequency to define the frequency of a wave. Furthermore, it is not
obvious how far the approximate equation 1.4 1s valld in the microwave
range which is of comcern to us here*., Thus the treatment of the problem
by ray optics is unsatisfactory.

An acceptable approach to the problem is found from field-theoretic
considerations. Because of certain inherent difficulties in this approach
it has not been recognized in the literature. It is the purpose of this
paper to show how the problem can be treated rigorously from the field-
theoretic point of view, that is, we shall apply Maxwell's equations and
the special theory of relativity to treat the problem as fully as pos-

sible.

In past years some related problems have been solved by the field-
theoretic approach. Frank (5) [1943] solved the problem of a radilating

dipole moving in a homogeneous medium and demonstrated the existence of

*Eq. 1.4 is approximate since in obtaining the equation the phase func-
tion is found from the laws of ray optice rather than from Maxwell's
equations and since the former can be obtained from the latter as a
limiting case, i.e., by letting A -0 .
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"complex Doppler modes". He then concluded that the dispersion of the
medium splits the frequency. ILater Rydbeck (6) solved the same problem
for a stratified dispersive medium, first by the treatment of ray
optics and then from field-theoretic considerations. In the latter
approach he showed the mathematical difficulties involved in the prob-
lem. The inverse problem, l.e., the observer is moving and the source
of radiation is stationary with respect to the medium, was first
attacked by Tischer (7) in 1960. However, he treated only the case of
an isotropic stratified medium. ILee and Papas (8) solved the same
problem from a different starting point and thus avolded the mathemati-
cal difficulties involved in Tischer's treatment. Moreover, they were
able to study the more general case where the medium Is anisotroplc in

addition to being inhomogeneous.

The text of thls paper is divided essentially into two parts and
each part 1s again subdlvided into three chapters.

In the first part, homogeneous dispersive media are considered.
The Doppler equation is derived in Chapter IT on the basgsis of the fact
that the frequency and the wave vector of a plane wave form a 4-vector.
The general method of obtaining the approximate solutions of the Doppler
equation is given in Chapter III and is applied to the case of an
isotropic plasma where exact solution can be obtalined. The approximate
solution 1s shown to be in good agreement with the exact one for
v << ¢ . In Chapter IV gyroelectric media are treated. The resulting
four Dopﬁler equatlions are solved by the method developed in Chapter IIT.

The two kinds of roots thus obtained are discussed.

The second part is devoted to the study of the Doppler effect in

inhomogenecus media. The Doppler equation is obtained in Chapter V



under the assumption of gradual Inhomogeneity. It is shown that the
séattered wave consists of a continuous spectrum. The Doppler equation
ié first solved in Chapter VI for the case of an isotropic stratified
medium. By defining the fields in terms of the exponentials of a set
of complex guantities, Maxwell's equatlons are transformed into equa-
tions of Ricecati-type which are suitable for successive approximations.
In Chapter VII the case of a gyroelectric medium is studied. The tech-
nigue glven in Chapter VI is‘used to obtain a set of coupled nonlinear
equations. These equations are rearranged into the forms which can be

solved by the method of lteration.
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ITI. THE DOPPLER EQUATION IN HOMOGENEOUS DISPERSIVE MEDIA

2.1 Statement of the Problem

Conslider a scatterer of arbitrary shape traveling with constant
velocity v through a homogeneous dispersive (isotropic or anisotroplc)
medium of infinite extent. A plane monochromatic electromagnetic wave

of frequency w, and wave vector Ei is incident on the moving scat-

i
terer and is subsequently scattered.

At any point r in space, the scattered fields can be represented
as a sum of plane waves by the following Fourier integrals:

i(_lgso E-mst) 3
[E (w_,k )e dw d’k
-5 B8'=8 S s

E_S(E:t)

( (2.1)
i(k,* r=-w_t)
=1 = dw_ a3k

8
Jr Eﬁ(ms,§€)e S s

-]-3-8 (E_J t)

Here g%(ms’Es) and §S(ms,gs) are related by one of the Maxwell equa-

tions

r,t)

o)
VvV x ES(E'_;t) Y E’S(—

and the relationship is given by

k xE (o ,k )
B (0 k)t 8 878
- 8’=s @

where wg and Es denote, respectively, the frequency and the wave
vector of the scattered wave.
Physically, equations 2.1 say that at any point in space the field

vectors (electric or magnetic) are given by the sum of plane waves coming



-8~

" from all directions. However, if the observatlon point is far away
from the scatterer, the scattered wave there is practically a plane
wave coming from the direction Qs (see Eig. 2). It is required to
find the frequency W of this plane wave in terms of ;5 Vs and

the propertles of the medium.

2.2 Derivation of the Doppler Equation

In the frame S*' where the scatterer is stationary, the fre-
guency of the scattered wave remains equal to that of the incident

wave, l.e.,

wl = o (2.2)

where the primed quantities are measured in S' . Eg. 2.2 can be
obtalned from the following argument. Since Maxwell's equations are
covariant in all Lorentz frames, in S' we simply have (in a source-

free region)

OB
VIxE' = -
(2.2")
an!
VIEE =

These equations hold regardless of the state of the medium. Across the
surface of the scatterer, the tangential E' and the tangentlal H'
have to be continuous, as can be easily seen from the Maxwell equations
2.2', It thus follows that mé = mi in order that these boundary con-
ditions be satisfied for all time.

The questlon then remains as to how this information 2.2 can be

carried over to the laboratory frame § vhere the medium is stationary.



Fig. 2.

® o
(Eﬁ’:L?%) and (EE, 115) are respectively

the lb-vectors of the incident and the scat-
tered waves. v 18 the velocity vector of

the scatterer B .
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Let us recall that the frequency o and the wave vector k of a
plane wave form a L-vector in Minkowski space (see Appendix A). Denote
this L-vector by KM :

iw i
KU- = (kx’ky’kz’ </ = (_l_i: = (2.3)

where c¢ is the speed of light in vacuum and uy varies from 1 to 4

(in the following all Greek letters used as subscripts are understood
to vary from 1 to 4). Let us now construct another L4-vector Uu for
the velocity of the scatterer. As is well known (see Appendix B), Uu

is gilven by

u, = (vyv, ive), (2.4)

2
-1/2
where vy = (1 - Xﬁ) / 5 vV being the ordinary velocity of the scat-
Cc

terer. Since the scalar product of two L-vectors in Minkowski space is
invariant under the Ilorentz transformation, KH Uu is then an invariant
scalar product and eq. 2.2 can be written in the following covariant
form

(S)' T (i)' 1
K .U“ = K7 u (2.5)

1

1) (%, i(nj'_/c) , and Ul'l = (0,1¢) .

(S)' — t 1 (
where KH = (Es,ixus/c) s KH
After we have translated eq. 2.2 into a covariant form 2.5, in the

laboratory frame S we simply have

(1)
KLl Up . (2.8)

Writing eq. 2.6 out into components, we obtain
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w, -k *v = o -k -V (2.7)

vhich is the required Doppler equation. Other methods of derilving this

equation are given in Appendix C.

2.3 Dispersion Relations

In deriving the Doppler equation 2.7 the medium was assumed only
to be homogeneous so that k and o form a 4-vector. We did not,
however, specify whether the medium was isotropic or anisotropic. Thus
equation 2.7 is applicable both for isotroplc and for anisotropic media.
Before we are able to solve eq. 2.7 for w, , We first have to find the
relationship between ® and k , l.e., the dispersion relation, and
then solve eq. 2.7 algebraically. To obtain this dispersion relation we
resort to Maxwell's equations which, in a source-free region, take the

following forms:

B 2.8
VXE=--B—£— (.)

oD 5
vV x E = SE— . ( -9)

In addition we must have two constitutive equations which describe the
electromagnetic properties of the medium. In the following we shall use

exclusively a non-magnetic medium whose permittivity tensor is a function

of w . Thus for the constitutive equations we take
B = pog (2.10)
t
D =f e(t-1) + E(r,r)dr (2.11)
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where o is the free space permeability and € is a tensor of nine

components. Taking the curl of eqg. 2.8 and by virtue of eqs. 2.9,

2.10 and 2.11, we obtain

t
VXVXE=-u —5 f £(t-1) - E(v,x)ar . (2.12)

=CO

Substitution of

ikrr-owt), 43

E(r,t) = fE(E,w) e w d°k

into 2.12 glves

f {1_‘ x (kxE) + uowefjw) ‘ E} HEZ 0% gp k- o (2.13)

where

@
&(w) =f (x) HO¥ 4y . (2.1h4)
0

Frdm eq. 2.13 we conclude that

kx(kxB) +pp’cw +E = 0

or
2 2
(k- Bk + (uo” €-XKT) +E = 0,
or

' 2
(kk +po'c - KI) B = 0 (2.15)

where T 1is the unit dyad.
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For E # 0 we must set the following determinant equal to zero,

viz.

) P
-k = .
det kikj + U eij 513 0 (2.18)

where sij is the Kronecker delta. Eq. 2.16 1s the dispersion relation

for a homogeneous medium whose permittivity tensor is given by eij(m) .

(i) Isotropic Media

In this case € reduces to a scalar € and hence E -E=0
because V - €E = €V E =0 . We immedlately obtain
2 2

as the dispersion relation for an isotropic dispersive medium.

(11) Anisotropic Media

In the following we shall limit ourselves only to the case where
the anlsotropy of the medium 1s caused by a magnetostatic field 20 as

in the ionosphere. 1In this case g(m) takes the following form¥:

el ig cos € ~-ig s8in @
5 5 € -el
- - i 2.
< €, ig cos © €,C08 6 + €,8in"0 5 sin 20 (2.18)
E_-€
\ ig sin © 22 1 sin 20 elSingg-F€2COSQO

where eo is the free space permittivity. © 1is the angle between the
direction of propagation and the direction of go . Moreover, in expres-

sion 2.18

*
See, for example, C. H. Papas, Unpublished Class Notes on Electromag-
netic Theory, Calif. Inst. of Tech.
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2
ab
el = 1 - 5 5
® - ®
g
2
mP
€2 = 1 - ——é' (2.19)
o
2
W W
alo ™= o)
&

Here mp is the plasma frequency of the medium and wg its gyrofre-

guency. Substituting eq. 2.18 for € into eq. 2.16, and after some

iJ
manipulations, we obtain, noting that k has been assumed to be in the

z-~direction,

2 2
= €
#i m HO o
2 2 2 \/ 2 2 2 i 22 2
y (Gl g - el€g)sin 0+ 2¢.€, & (el-g - 6162) sin 6+ 4g €, cos 0
2 2
2(elsin 6 + e,cos Q) (2.20)

as the dispersion relations for a gyroelectric medium. For 6 = 0 and

® = n/2, egs. 2.20 are reduced to considerably simpler forms:

k2 = w2u € (e, +g) ; Pparallel case (2.21)
+ oo 1
- (6 = 0)
€2 g2

ki = mguoeo - €

1 perpendicular case (2.22)

(6 = =/2) :
2

o= ongS

By virtue of the dispersion relations just obtained, Es and Ei

can be eliminated from the Doppler equation 2.7, and the resulting
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equétion will contain only the unknown Wy . In subsequent chapters
we shall solve the resulting Doppler equation for isotroplc as well as

for gyrolelectric media.
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III. SOLUTIONS OF THE DOPPLER EQUATION IN ISOTROPIC, TRANSPARENT

AND DISPERSIVE MEDIA

The electromagnetic properties of a medium are usually described

by 1ts index of refraction n(w) defined by

n(w) = = = - (3.1)

vhere vp(m) is the phase velocity of a plane wave of frequency o .
According to the dispersion relation 2.17, n(w) is then equal to
\/e(m)/eo » vhere ¢ is the permittivity of a vacuum. To determine
n(w) or e(w) of a given medium, one actually has to consider the
interactions of the charged particles of the medium with the self-
consistent electric and magnetic fields. However, we shall not go into
this, since the determination of n(w) of a given medium is well known.

Substitution of eq. 3.1 into the Doppler equation 2.7 yields

®g Bswsn(ms) = 0 Bimin(mi) (3-2)

where

™
]
ol<

v
cos OS = B cos GS and Bi =3

cos 91= p cos 6,

Oi and OS being, respectively, the angles of incidence and scattering
with respect to the velocity v of the scatterer. In general n(w) is
a complicated function of w and hence it is not always possible to
solve eq. 3.2 analytically for @, - However, hecause of the fact that
8 1s & small parameter, we are able to find approximately all the roots

2
of eq. 3.2 up to the order of B, and the method of solution wlll Dbe

given in the next section.
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2.1 Method of Sclution of the Doppler Equation

For simplicity we shall replace W, by o in the following and

rewrite eq. 3.2 as

n(w) = (3.3)

where Ei =, - Bfnin(mi) . In order to get some idea as to how to

solve this equation, we shall first examine the properties of the func-

tion (@ - 51)/38m . Differentiating it with respect to o , we obtain

Bt S R S (3:)

Thus Wwe see that this function is monotonic increasing or decreasing
depending on the sign of 53 + Moreover, at E& it starts to rise
rapidly for BS > 0 and decreases rapldly to zero for Bs<< 0 , since
its slope given by eq. 3.4 is a large quantity. The properties of the
function n(w) for transparent media are well known (see Ref. {9)):
ne(m) is always a monotonic increasing function and may possess poles
and zeros on the w-axis. These poles correspond to the resonant fre-
quencies of the medium under consideration.

With this information about the functions n(w) and (m-ai> /B
we can draw some conclusions about the roots of eq. 3.3. Here there

are two kinds of roots to be distinguished (see Fig. 3).

(i) Roots near 51

To obtain this kind of root we rewrite eq. 3.3 as

® = o +Bw ) (3.5)
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Plg. 3. Graphical solutions of eq. 3.3 for n(w) having three poles

¢ -~~- solutions of the first kind

O -~-~ solutions of the second kind, two of which are not
shown in the flgure




-19-

where BS can be positive or negative. The second term on the right
hand side of eq.3.5 can be treated as a small perturbation, since it
contains the small parameter ﬁs « By iterating eg. 3.5 one easily

gets

g
il

o, + B, @ n(mi) 4 e

o, - (B, - B,) », nlw,) +0(p%) . (3.6)

In the following we shall refer to this kind of solution as the root of

the first kind.

(ii) Roots near the Poles of n(w)

It is always possible to express ng(m) in the following form:

2 Pw)
n S 2 ) — (3.7
(w) - (ﬂ§ D )

J
where P(w) is a polynomial of the same degree as H(Q? - mz) so that
n2 -1 a3 o - . Squaring both sides of eq. 3.3 and using 3.7 for
n2 we have

- .2

2
(@ - &) :

rjx(:z? Py - B2 ePRw) . (3.8)

Since the right hand side of this equation is very small, this suggests
that we write

o = a(l-35) (3.9)

Where §k<< 1l and Qk is one of those QJ’E . Substituting 3.9 into

3.8 and after a straightforward manipulation, we find
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P(Q )
k 2
8, =~ B (3.10)
k 2 2 2 s
2(a, - ,)° I (@7 - a9)
k i J%k J k

which is indeed a very small quantity of the order of ﬁg . Hence, for

this kind of root we simply have

oy = a,- 03(32) (3.11)

2
vwhere OJ(B ) denotes a term similar to expression 3.10. In the fol-

lowing we shall refer to this kind 68 root as the root of the second kind.

3.2 Exact Solution of the Doppler Equation for an Isotropic Plasma

We take an isotropic plasma to be a completely ionized gas without
a blasing magnetostatic fleld Eo + Thus the medlum consldered here
exhibits no resonant frequencies and hence the roots of the second kind

do not exist. Since n(w) in this case is given by the simple form

’ (3.12)

we shall first solve the Doppler equation 3.2 exactly and then compare
the exact solutions with those obtained by the short-cut method given in
the previcus section.

Before proceeding to solve eq. 3.2 analytically, one should note
that there is only one solution for each sign of BS , since n{w) glven
by 3.12 is a monotonic increasing function of w (Fig. 4). Rewriting

eq. 3.3 as

= w - ﬂ)i (3'13)
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f

Pig. 4.

wy

Graphical sglution of the Doppler equatlon for
n(w) = /1 - mg /dof .



and squaring both sides of eq. 3.13 we have

(1 - B2 - oo+ (@ +Boad) = 0 . (3.14)

The roots of eq. 3.1l can be easily found to be

1 2 2
® = 5 |97 Pr\/oL -y
1- B,
2 2 o2
x B \/(l+ﬁi)(w§—m§) - &niﬁivmf— m§ + By mﬂ.

(3.15)

One can easily verify that only the solution with the "+" sign in 3.15

satisfles the original equation 3.13, and thus we have

1 o |2 2 \/ 2,2 2. [2 2 22
W = —-—;5 [mi Bi Wy -+ Bs (l+[31)(<ni-u)p)- Emiﬁi wi-mp + BS pr
8

1~
(3.16)

as the only root for eq. 3.13. Expanding 3.16 in powers of B we get

o= - (f-8) \Jol-af - w (-8 )8, +0(8}) . (3.17)

Let us now solve eq. 3.13 by the short-cut method, i.e., the method of

iteration. To do this, let us rewrite eg. 3.13 as

o 2 2 2 2
© = - fii\/mi-mp+ﬁs\/m - o . (3.18)

In the first approximation we take w = Wy - B:Is wg - ‘DS . In the next

approximation we substitute this value of ®w 1into the third term on the
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right hand side of 3.18 and obtain

2 2 P 2 2
== By\/@y - @y + By \/(mi' By Vo - o)™ - oy

o (By- By |fu - o - w,BB, + 0(87) . (3.19)

1=
!

1]

Comparing 3.17 with 3.19 we see that the two expressions agree with each
other up to the order of B . In practice B << 1 and we can neglect
terms of orders higher than £ . It 1s therefore sufficient to use the

short-cut method to obtain a very good approximate solution.
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IV. SOIUTIONS OF THE DOPPLER EQUATION IN GYROELECTRIC MEDIA

4.1 The Four Doppler Equations

. When an ionized gas is subject to an external magnetostatic field
go , 1t becomes an anisotropic medium such as the lonosphere. As has
heen shown in section 2.3, a plane wave propagating in such a medium is
split into two waves with different indices of refractioﬁ. Bach of these
waves, after being scattered by the moving scatterer, 1s again split into

two. Hence there result four Doppler equations:
® - Bsu)niﬂm) = o, - By, gi(mi) , (4.1)

where, as before,  denotes the frequency of the scattered wave. Fig.
5 shows schematically the splitting of the incident and the scattered
waves and the coupling between them. In the following section we shall

solve these four equations 4.1 by the technique developed in section 3.1.

4.2 Solutions of the Four Doppler Equations

Substituting expressions 2.19 into egs. 2.20 and using

2 2, 2
?i = k+/0) B €y s Ve get
2
gi(m) =
20)(&)2— mg) (m2- mg- “D:) - mmﬁm: s1n°6 imzwg \ﬂugu): sinhg + h(m?- ms)zcosge

2 mh- (wg + mz) Wit mi wz coszg]

(4.2)

The denominator of eqs. 4.2 vanishes when ® = 0 and
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The incident wave

The scattered wave

Fig. 5. The splitting of the incident and the scattered
waves
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I
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2
Fig. 6. Curves of n, vs. o for arbitrary o
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ms + w: * Vng + wg)z- hm§ m: cos6 o
; o = g+ . (1*.3)

2
4 VI—

As shown in Appendix D, nf has simple poles at w =0 and w=g ,

while n? has simple poles at w =0 and ® = Q+ . Curves for ni

and n? versus o are shown in Fig. 6; and Fig. 7 illustrates the
graphical sclutions of egs. 4.1, from which we see that the roots of the
first and the second kinds exist for ﬁs <0 . For ﬁs > 0 only the
root of the first kind appears since we have sssumed that W, > 9+ .

By employing the technique developed in section 3.1 one can imme-

diately write the roots of egs. 4.l

(1) Roots of the First Kind

There are four roots for ﬁs >0 or BS < 0 , viz.

>
U

o = (By= BY) @y n (@) + 0(87)
(h.h)
e [Bi n (o) - B, n‘-’:'(‘“i)] + 0(8%)

Where n,_ are given by expressions L4.2.

As W, > 00, both n, and n_ reduce to unity and the medium
behaves like a vacuum. In this case the four roots given by 4.k coincide

and become
® = o - (B-B,) o +0(8°) o (wB)

as one would expect.

(11) Roots of the Second Kind

To each pole of n+(w) there correspond two roots for BS‘< 0 .

Since there are three poles at w = 0 and Q, , we then have six roots



2T

w-i3" ® ---- root of the first Xkind
Ro © ---~ 100t of the second kind

Wy

Fig. 7. Graphical solution of egs. 4,1 with n, glven by eqs.
L.2. In the figure,

+
@y~ = o, Bi @ ni(wi)
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of the second kind (see Fig. 7). By using the method in Section 3.1 we

can write the roots as

2) \

£
!

a_ - o(p

' 2
o= q -0(B) .
- for the extraordinary wave

2 with refractive index n (4.6)
w= 0(p) +
2
o= 0(p)
and
2
w= 0 =-0(B")
+ for the ordinary wave with (4.7
2 refractive index n -7)
®= Q- o(p") 8

where Q+ are given by expressions 4.3 .

The two epecial cases, namely © = O and © = n/2 , can be easily
treated in the same way, and the graphical solutions of egs. 4.1 are
gshown respectively in Fig. 8 and Fig. 9. The analytic solutions will not

be given here, since they are of no particular interest.

4,3 Discussions of the Roots

In the preceding sections it has been shown that in a magneto-active
plasma there result four Doppler equations, the solutions of which can be
classified Into two kinds. The roots of the first kind are close to the
frequency wy of the incldent wave, and the scattered waves correspond-
ingrto these frequencles are propagated freely in space, since the
refractive lndices at these frequencies are very close to that of a

vacuum. The roots of the second kind are shown to lie in the immediate

neighborhoods of the resonant frequencies of the medium where absorption
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B>

ps>o

g e

Fig. 9. Graphlcal solution of egs. 4.1 for @ = x/2
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pfedominates and the intensity of the wave decreases exponentially with
distance. Thus, the scattered waves corresponding to these frequencies
are attenuated in space. One then may say that part of the scattered
energy 1s lost in "heating up" the medium.

In the casé of an isotropic plasma it has been shown in section 3.2
that there is only one root of the first kind for the Doppler equation.
This means that the scattered wave is also monochromatic for a plane
monochromatic incldent wave, ¥For other kinds of isotﬁopic dispersive
media such as a rarefied gas, the refractive indices may exhibit poles
on thé w=-axis. In these cases roots of the first and the second kinds
exist at the same time. The above method of analysis can be similarly

applied to any specific case under conslderation.



-31-

V. THE DOPPLER EQUATION IN INHOMOGENEQUS DISPERSIVE MEDIA

5.1 Introduction

In golng from a homogeneous medium to an inhomogeneous one we
immediately encounter one serious difficulty: plane waves are, in
general, no longer solutions of Maxwell's equations. We recall that
the defivation of the Doppler equation in a homogeneous medium is based
on the fact that the wave vector and the frequency of a plane wave form
a 4-vector. We lmmediately see that this method no longer applies to
an inhomogeneous medium. However, the difficulty is resolved if the
following assumpéion is made:

The free-space wavelength X of the incident wave is much

smaller than the length scale { of the inhomogeneity of the

medium*.
An immediate consequence of this assumption is that the distance the
scatterer has traveled during one period of the incident wave is small
compared to £ , l.e., vx/c‘< £ , where v 1s the veloclty of the
Bcatferer and c¢ the velocity of light in vacuum. Thus the scattering
occurs in an essentially homogeneous medium.

With the preceding assumption one may treat a wave as plane wave
over a small spatial reglon whose maximum linear dimension is less than
£ . This suggests thattthe electric and the magnetic vectors should be

1y (;,t)} iﬂr(z,t)}

represented by the forms Re {§0<3’t)e and Re {go(z,t)e

respectively, where Eo(f’t) and go(g,t) are slowly varying functions

*By the length scale { of the inhomogeneity of the medium we mean that
the properties of the medium do not change appreciably over a distance

smaller than £ .
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1y

of position and time and e is a rapidly oscillating term*. With
these forms of representation of the flelds the Doppler equation can
be derived for a slightly non-uniform medium. The essential feature

of the derivation is to perform spectral decompositions of the trans-
formed fields in the moving frame. The method of stationary phase is
then applied to determine the staticnary points from which the required
Doppler equation follows.

The resulting Doppler equation contains the function w(z,t)
explicitly. Hence, before proceeding to solve this equation for the
frequencies of the scattered wave, one must know the explicit form of
¥ In the frame where the medium is stationapy. Finding this function
¥ amounts to solving Maxwell's equations in an inhomogeneous medium.
This, as one knows, gives rise to certain mathematical difficulties.

We shall overcome these difficulties by defining three complex quanti-
ties whose real parts represent the phase functions of the field
components and whose ilmaginary parts correspond to the negative logarithms
of the field amplitudes. In so doing we will obtaln from Maxwell's equa-
tions, equations of Riccati-type which are suitable for successive
approximations.

In the following chapters we shall first derive the Doppler equation
and then solve it for the frequencies of the wave scattered from a body
traveling in an isotropic stratified medium and in a gyroelectric strati-

fled medium such as the ionosphere.

*A detailed discussion will be given in next section.
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5.2 Derivation of the Doppler Eguation in an Inhomogeneous Medium

The electric and the magnetic vectors can be represented in the

most general forms:

¢ g i¢z}

x y
E(r,t) = Re [ ey T tefe T rele

i 19 ig
x y + Esze Z}

Re{:e B e + e B e
- X X -y Vv

(5.1)

td
—~
L}
-
ct
N
I

where Ex’¢x and Bxﬁg , etc. are real functions of position and time.
In a slightly non-uniform medium, waves can be considered to be
Plane in each small spatial region whose maximum linear dimension is
less than the length scale of the inhomogeneity. We therefore transform
the representation of the fields 971 to the forms similar to those of
plane waves. To do this let us factor out the raplidly oscillating part

eiw from eqs. 5.1 and write

1y 15X id i&z 1y
E(E,t) = Re {e [ExExe -+EyEye y+—3 Eze ]} = Re {Eoe
(5.2)
. i 18 1%
B(r,t) = Re~{e1¢[§x3xe x4—3 B e y+33 Bze z]} = Re {Eoeiw}

where Eo and Eo are complex functions defined respectively by the
expressions inside the square brackets in 5.2; 6x, E;, etc. are, respec-
tively, equal to ¢X— ¥, %(- ¥ , etc. In the case of a plane wave, E_
and Eo become complex constants, and ¢ = k- r-ot, kK and ® being
constant. .In the case of a gradually inhomogeneous medium we may say
that Eo and Eo are slowly varying functions of position and time in

comparison with the rapidly oscillating term eiw .
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To see the physical impliication of the Tunction W(E:t): let us
transform the representation 5.2 to the k - o space by the usual

Fourier integral technique:
iflwt - k«r
Beo) = [T E D refp et e 65y

and a similar expression for B(k,w) . Since Eo(z,t) is almost con-
gtant, the major contributlon to the value of the integral 5.3 arises
from the vicinity of those points where wt - k- r + ¥(r,t) is sta-

tionary, i.e.

k= v¥(r,t) and ® = - a‘*’é_z_:t) (5.4)

from which the stationary points (E’t) can be determined in terms of
k and o . It is easily seen that in the k - o space E(k,») and
B(k,») bhave their maximum values at k =V§y and @ = - Oy/dt . Within
each small region in space it is therefore permissible to treat the wave
as a harmonic one movingin the direction k = V§ with frequency
w = -0Y/dt . In the following we shall call this wave the main spectral
component and restrict ourselves only to the consideration of this com-
ponent.

Before proceeding to derive the Doppler equation, we should bear
in mind the fact that in the frame §S' where the scatterer 1s stationary,
the electric and the magnetic fields must satisfy certain boundary condi-
tions on the surface of the scatterer for all time +t' . Tt thus follows

that the frequency of the scattered wave must equal that of the incident

wave at each point on the surface, i.e., mé = wi + We shall assume that
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the length scale of the inhomogeneity of the medium is larger than the
maximum linear dimension of the scatterer so that the medium in the
1mmediate neighborhood of the scatterer is essentially homogeneous.
Then one may say that

mé(ﬁ':t') = wi(z':t') (5.5)

where r' is the position of the scatterer in 8'. It should be empha-
gized that eq. 5.5 holds only at the position of the scatterer, i.e., at
the place where the scattering occurs. Moreover, since the moving
inhomogeneous medium changes its properties with time at any fixed
spatial point in 81, mi and mé should in general depend on t!
explicitly.

Eq. 5.5 suggests that one éhould look at the scattering process in
the frame S' . In the laboratory frame $ , we take the fields to be
of the forms 5.2, and the transformation of the incident fields from S

to 8' 1is given by eq. B-5 for v < c¢ , viz.,

iy, (z,t)
B (x,50) - Re{e P R @) vy Eoi(z,t)]} , (5.6)

and a similar expression for the scattered Eé(g‘,t‘) . We now take

the Fourler transform of eq. 5.6 and obtain the spectrum Ei(st’mi)

7 @ o’ 1y, (z,t)
:E-i(-z"@i) = [ dt' e Re {e : [Eoi(z’t) +y_x§_01(5'_,t)]}

(5.7)

and a similar expression for the spectrum Eé(zf,mé) .« We now apply

the method of stationary phase to the integral 5.7, and find out where
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the main spectral component of Ei(z',wi) is located on the w; - axls.

It 1s easily seen that it is situated at

' aWi(z,t) _ . . (5.8
CHE Sor = ’ 5.8)
awi
and wi —~§—— = 0 1s extraneous. Since r and t are functions of
! -

t' and they are given by the ILorentz transformations B-10 for v << ¢

we then have

3
Ov oy 9% oxy 0¥ ~ oV,

1

1 = t + 1 -
ot' dt' ot 4T ot axj ot

+X Y ‘lfi . (5'9)

However, we are only interested in the portion of the wave which is inci-
dent on the scatterer. We therefore replace V Dby V& in eq. 5.9, where
V& is the gradient operator taken along the direction of incidence. The

frequency of the main spectral component of the incident wave is then

given by

. (5.10)

Simlilarly, the frequency of the main spectral component of the scattered

wave is found to be

' aﬂ/s
msz-—-a-E--X°VsWs (S.ll)

where V;' is the gradient operator along the direction of scattering.
By virtue of eq. 5.5 we then obtailn the required Doppler equation

in the lsboratory frame S :
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?jf.i+v.’i7\lf——-i'+v-V\lr (512)
o — 8 s~ 3 -— i7i )

which, of course, holds only at the position r of the scatterer. In

the case of a homogeneous medium, eq. 5.12 reduces rigorously to eq. 2.7.

5.3 The Doppler Equation in the w-Domain

The Doppler equation given in eq. 5.12 is described in the time
domain. It is desirable for later calculations to transform the equation
to the frequency domain. To do this we recall from Maxwell's equations

that the electric vector E satisfles the following equation:

2
VxVxEr,t) = - —:—— &(x) - E(r,t) (5.13)
£2 =
where
1,
g(g) © E(x,t) = f ;(g,t- T)+ E(xr,7)dT = D(x,t) (5.14)
~-00

which is the constitutlive relation between D and E 1in an anisotropic,

dispersive, and inhcmogeneous medium. If one writes

® i¢(_1_':w) - 1wt
E(z,t) = [ B(r,0) o w (5.15)

-0

substitution of eq. 5.15 into eqg. 5.13 shows that each spectral component

E(r,m)ei¢--

satisfies the following equation:

v x ¥ x g_(;_,m)em@"") = kg__e_(_l_',m)- E_(_x;,w)em(-li’“’) (5.16)

where k2 = meu e , and
[o s
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&(r,w) = f_e_(}"_,t) et ap .
0

In the case where the incident wave is monochromatic, there is only one
spectral component. However, as has been shown above, the scattered
wave contains a spectrum and the function WS(E,t) of the main spectral
components satisfy the Doppler equation 5.12. Hence, substituting

Vg = ¢s(£’ws) - wgt and Y, = ¢i(£7wi) - @;% into the Doppler equation

one immediately obtains the Doppler equation in the w~domain:

w -V eV @ (r,ms) = ®

s - s fg'= -y vi ¢i(-r"mi) . (5.17)

i

The number of the spectral components contained in the scattered wave

depends therefore on the number of roots of o in eq. 5.17.

5.4 Calculations of @5 and @4

It is necessary to know V;¢s and V&¢i as functions of frequency
before one is able to solve eq. 5.17 for ®, Since the scattered and
the incident waves satisfy the same differential equation, namely eq.
5.16, we shall focus our attention on this equation for the solution of

¢(£,m). For convenience, we write, in rectangular coordinates

in i in
B(r0)e PE®) _ o o x ee Viee ™, (5.18)
vwhere
n, = g +8 - 1inE
ny‘ = ¢ + Sy - 14nE (5'19)

-
N
[}}
=
+
o
~
3
e
=
=]
o]
M
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Here E , E , E are real quantities, and & , & , & account for the
x" Ty Tz Xy z
phase differences among the components. Substitution of eq. 5.18 into
eqg. 5.16 ylelds the following three partial differential equations
2
d 2 a2  dq ¥

nx X X
(—'—— + (-—a—i) - i(—_ +

9y ay2 oz

2
. ar‘y aqyaqy 1(1\y-1})
3xdy o

=)

. %, dn, dn Jogmn)
Bxbz B Bx Bz

- )
= keel+ ik2g cos Q@ e ny x

i(n - 1)
- ikzg s8in 0 e z x (5.20)
o2 32 % ¥
( ay) + (—g-) - 1 Ly Z)
X dz? ox
a n, anz aqz i(q - )
+(ayaz 5 5 °
o
O7n,  dny Omy  iln - m)
+ (1 §§§§ - ;; a:) ﬂy =k 6100329 + k2e231n29
i(n.- 1)
_ikg cos e * ¥
2 g - n)

k .
+ = (62- El)sln29 e

(5.21)
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Z

2
i'a'z_nz‘ikan ) eihy- ")

2 2 2
4 = €.8in €_Cos
+ 0zdy oz Jy k(e)sine + 2 °)
2 i(T]"Tl)
+ikgsinee * %
2 i(q.- 1)
k Tly z
+ 5 (62- el)sin 20 e
(5.22)
where f(g}w) has been assumed to take the form 2.18 with El’ €2 and
g Dbelng functions of position through the plasma frequency o . In

P
general, these eqguations cannot be easily handled. To make them mathe-

matically tractable we shall assume that the medium is plane stratified
i.e., the stratification i1s perpendicular to one of the coordinate axes.
The following chapters will be dévoted to solving these equations in iso-

tropic and anisotropic plane stratified media.
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VI. SOIUTIONS OF THE DOPPIER EQUATICN IN ISOTROPIC,
PLANE~-STRATIFIED MEDIA

In an isotropic, plane-stratified medium the tensor £ becomes
€(z)I , where I is the unit dyad and the stratification is assumed to
be perpendicular to the z-axis. A linearly polarized wave propagated
in such a medium must be one of two kinds. In one kind the electric
vector 1s perpendicular to the plane of Incidence, while in the other
kind the electric vector is parallel to that plane. These two cases of
polarization are Independent and must be treated separately. The normal
incidence is Just the special case of these two and, therefore, needs no
additional consideration. In the followlng sections we shall first find

the phase function ¢ for these two separate cases and then solve the

Doppler equation for the freguency w of the scattered wave.

6.1 The Electric Vector Perpendlcular to the Plane of Incidence

Consider a monochromatic wave whose electric vector is linearly
polarized parallel to the x-axls propagating in the positive yz-direction
(Fig. 10). Since the medium is homogeneous in x and y , Ty will
then be a functlon of z plus a term linear in y . To see this, we

start from the equation

2
VxVxE-Xke(z)E = 0. (6.1)

In the case consldered here E = ExEx . Hence, from the divergence condi-

tion V - [E(z) gﬂEx] =0, we have V - e B =0, and eq. 6.1 becomes

BEE %r

X
X4

ayz az 2

+ kze(z)Ex = 0. (6.2)
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of scattering and Incidence.

are unit vectors in the directions
v does not neces-

gsarily lie in the yz-plane.
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Assuming Ex(y,z) = Y(y) Z(z) , we see that Y 1is of the form 1P 5
where p 1is a constant which describes the inclination of the direction
of propagation with respect to the zsaxis, and that 7(z) satisfies the

follovwing equation

2
LZ, [xPe(z) -5z = 0 . (6.3)
dz

ipy + inZ inx
e = e

Thus one can write Ex = , and this proves our assertion.

From the above consideration we see that eg. 5.20 reduces to

Bn 2 823
<__}§> - Pe(z) -p° 41 = (6.)
Z

Since the medium has been assumed to be slowly varying, the term
2 2
anx/az is small compared to the others. 1In the zeroth approximation

2 2
vwe neglect 9 qx/az and obtain

3q(©)

X - JxPe(z) - 7. (6.5)

In the next approximation we use eq. 6.5 to calculate Beqx/aze in eq.

6.4 and get
1)
Bn(
x 1 ax
oz o(z) +1 2% dz ’ (6.6)
where k(z) = V k?e(z) - p2 . The recursion formula is easily seen to be
(n) (n-1)
anx anx

Yal k(z) + 1 5%— —— , (6.7)
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from which we obtain

(0)
M, © 4 g pOm D 14
=L @@ m L Ga e, (8.8)

In order that expression 6.8 be valid, the derivatives of «x(z) of all
orders must exist, and the medium is assumed to be a smooth one such that

this is the case. Tt should also be noted that the infinite series 6.8
1 dyn
2x dz

and converges to zero as n - 0.

is convergent because {( n} is an alternating decreasing sequence

We shall now sum the series 6.8 in a closed form. To do this, let

- " ~ (6.9)
Thus, by the theory of operators we have
nijo (g:-%z " k(z) = (nifo DY) k(z) = I%ﬁ k(z) . (6.10)
Let us denote
F(z) = l}D k(z) .

We thus have a differential equation for F(z) :

DF - F = - k(z) ,

or

dF 2
S— QiKF = 21 . .
iz T K (6.11)

By the theory of elementary differential equations we find F(z) to be
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Z b4 .
F(z) = 21 exp{-EiJ( K(Z')dZ{]x n2(z') eXp[EiJf K(Z")dz"} az' .

(6.12)
Hence we obtain
3 z 5 z'
—32 = 2i exp[-Eijr n(z')dz{]x k (z') exp[Qi'jr n(z")dz"} dz'.
(6.13)

If the medium were homogeneous, x would reduce to a constant and the
integral in 6.13 could be evaluated in a stralghtforward manner. Then we

would have

anx
>z T F

as one could have expected.

Separating expression 6.13 Into its real and imaginary parts we

get
anx s o ‘ 2 —
Re 5 - 2 sin EKJf k (A) cos 2k(A) dAr
zZ
- 2 cos Zx jﬂ K2(x) sin 2k(A) dx (6.14)
an _ 2 5 _
In — = 2 sin 2n’[sn (M) sin 2x(X) dr
’ z
— 2 —
+ 2 cos 2k Jf k (A) cos k() dr (6.15)
z

vhere r(z) :Jf k() an .
Integrating 6.1% and 6.15 by parts and noting that dk = k dz ,
one can easlly obtain

o 2
Re —52 =g - sin EK‘[‘ k'sin 2g dA - cos QEJF k'cos 2k dA (6.16)
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an . z Z
x K 1 - k' — 1 —~ k' —

— — L = 2 —_— 1 - — 2 -t
Im—~= = —5- - 5 sin nf( =) 'sin 2k d) 5 cos nf (rc )'cos 2k dr

(6.17)
where the primes denote differentiations.
Since the medium has been assumed to be slowly varying, we then have
o n
' " e e x x . - 7 -
K>r' >x and consequently Re =z >> Im 5z from 6.16 and 6.1
From the definition of Ny given by 5.19 with SX =0 , we imme-

diately obtain

Z an
g, =opy +f (Re —Eg)dz (6.18)
Z d
E, =exp [-—f (Im —E—n};)dz:l (6.19)
on o1

where Re —g)zf and Im —-3}-2{- are given by 6.16 and 6.17, respectively, and
¢ n denotes the phase function of the wave whose electric vector is per-
pendicular to the plane of incidence. We see from 6.17 and 6.19 that Ex
is indeed a slowly varying function of positlon.

One can also obtain the magnetic intensity vector H from the equa-

tion im “oE =V xE . Its components are simply glven by

o
H = L eirI ——E
v WU oz
in
Ho
HE = 0
X

We see that H, has a phase function equal to Re n_, i.e., @, . But

Hy has a different phase function which is given by ¢_L+ A@ , where
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o 0
AP = tan™" (Im -g}Z—C) (Re —g}-z(-) .

However, as shown in egs. 6.16 and 6.17, zs¢ is very small in comparison

with ¢J_ and may be neglected. In fact AP reduces to zero in a homo-

geneous medium. Thus one can say that all the field components have

approximately the same phase function, namely ¢J_. This agrees with

the assumption we have made in deriving the Doppler equation for a

slightly non-uniform medium.

6.2 The Electric Vector Parallel to the Plane of Incidence

In this case 1t 1s easier to deal with the m&gnetic intensity
vector E than with the electric field vector E . From Maxwell's equa-

tions we have

2
Vx(-Jngg) = kH . (6.20)
Consider novw a monochromatic wave with H perpendicular to the plane of
incidence, i.e., the yz-plane, traveling in an isotropic medium stratified

in the z-direction. For convenlence, let us write
H = e e (6.21)

vhere h = ﬁ‘ -iMnE , ¢” being the phase function of the wave whose
electric vector is parallel to the plane of incidence.

Substitution of 6.21 into 6.20 ylelds

®_, W, n, Fn oo
(—-a—&_-) + (——a-E) =k€(Z) +i(ae+—'—a—z§"—;—‘a—£) s (6‘22)

y
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Where €' = de/dz . Since the medium is homogeneous in the y-direction,

hX then depends linearly on y , and eq. 6.22 reduces to

2
oh 0"h oh
%y 2 2 . x €' "x
(——a—-z-) = K + l(—g-z—é' P ——az> (6.23)

2 2 2
Here, as before, k =k €(z) ~p . Eq. 6.23 can be solved by lterations

as in the previous case, and the solution is simply given by

S FUE SN b
dz n= o x dz € K
z z z
€' 2 . €' .
= 21 exp {—[(21& - ?)dZ‘} fn (z1) exp{f(hn -?)dz'j{dz'.
(6.24)

Separating 6.24 into real and imaginary parts and then integrating by

parts, one can easily obtain the following:

dh B _
Re --a—)zc = kg - € sin 2k j (—'E__--)' sin 2«()) dx
z
- € cos 2—»:‘/, (Ee')' cos 2x(A) ar (6.25)
dh z ,
Im—é5 = __2%_(%)' - ?]2'- € sin 2_;:[ (% (%)') sin 2x(A) axr
. .
Z
- -:25 € cos 2?[ (-} ('—“e-)')' cos 2k(A) dr _ (6.26)

A
where k() = j, k(z)dz and the primes denote differentiations. From

the definition of hx we get
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z dn_
¢” = py +I(Re —,)dz (6.27)
Z  dn
X
= - N d,Z . 6.28
H, = exp [ _[”(Im aZ) ( )
oh oh
where Re —— and Im —=X are given respectively by 6.25 and 6.26.
dz. oz

The electric vector E 1is related to H by the equation —lwe€E =

enlmm vV x H , and its components are simply

ih oh

E = - -—l— e X ——}—{

NA e aZ
1 1151x

s
It
L]
[\

Agein we can see that E and H have approximately the same phase

function ¢” in a slightly non-uniform medium.

6.3 Solutions of the Doppler Equation

In the previous two sections we have obtalned the phase functions
¢l and ¢” for the two cases of polarization. These phase functlons
are functions of w, r and p , and become equal when p 1s equal to
zero, i.e., when the wave 1s propagated perpendicular to the plane of
stratification. 1In this section we shall obtain Wy from the Doppler

equation

w -v-VB(w)= o -v - V&¢1(mi) . (5.17)
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Introduclng QS and Gi as angles of scattering and incidence with

respect to the veloclty of the scatterer and noting that ¢s and ¢i

can be either ¢J_ or ¢f| , We write eq. 5.26 as
®, - v cos QS‘V’¢u(ps,ms)‘ =, - v cos 8, \V’¢v(pi,mi)| s
where uw,v = | ,|| . (6.29)

Here ps and Pi are constants which describe, respectively, the
directions of scattering and incidence with respect to the z-axis.
Egs. 6.29 can be solved by iteration since the second term on

the left side is of the order of PB . The solutlons are given by

Wy = -V cos Qilvyév(pi,wi)l + v cos @ ¥V¢H(ps,wi)\

+ o(f%) (6.30)

where

op
98, | |en® e G

and ¢H:V are given either by expression 6.18 or by expression 6.27.
It should be noted that the right hand slde of 6.30 is
evaluated at the position y of the scatterer, and the value of ®y
thus obtained remaina constant when the scattered wave 1s propagated
away from the scatterer. This is due to the fact that the medium con-
sidered here 18 a stationary one, i.e., its properties at each point
in space do not change with time. To show this we see from eq. 5.4

that k and o satisfy the following equation:
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Bki ow :
St 0 i=1,2,3 . (6.31)
J

Since o = w(k(r)), 1.e., ® is treated to depend on r implicitly, we

ow Ow akj
axi Bkj Bxi ?

get

n

where the summation convention is used. Moreover,

because of the irrotational property of k, i.e., V x k =0 , we have

ok, ok
J

4. 1
and

Bo_ W %

Bxi akj bxj

On substituting into eq. 6.31 we get

iii_+§5’-élii_= o, (6.32)
ot Ok, ox
J
from which we obtain
dx,
_3 .
dt ok, : (6.33)
Jd
The total time derivative of the frequency 1s given by
dw _ dw N dw 4 . ow aki (6.34)
at ot ox%; dt ok, 3t )

By virtue of 6.31 and 6.33 we see that the last two terms of 6.34% cancel.
Since the medium is stationary, @ does not depend on time explicitly and
hence ow/dt = 0 . Thus we have dw/dt = 0 .

There is another important point which should also be mentioned.

The angles ©g and 641 in 6.30 are measured at r . .But, in practice, the
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scattering and the incidence angles are measured at other points which
are usually far away from the scatterer. BSince the medium considered
here is inhomogeneous, the scattering or the incidence angle changes
from point to point along a given ray. The connection between the mea-
surements of these angles at two different points on the same ray can
be easily obtained from the Snell law. However, we will not go into
this consideration.

Finally, it should be remarked that we have given above only
solutions of the first kind for the Doppler equation. Solutions of the
second kind can be easily written down according to eq. 3.11 1if the

functions V ¢v “(m) exhibit poles on the w-axis.
3
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VII. SOLUTIONS OF THE DOPPLER EQUATION IN GYROELECTRIC
PLANE-STRATTFTED MEDTA

In a gyroelectric inhomogeneous medium Ny ny and 1, are
coupled in a very complicated fashion as shown in egs. 5.20, 5.21 and
5.22. In general, these equations are not solvable. To make them
mathematically tractable we shall assume that the direction of propaga-
tion is always perpendicular to the plane of stratification. Hence,
only the case of backward scattering from a moving body will be consi-
dered. We shall treat in detall the following three separate cases:
the direction of propagation is oriented (1) perpendicular, (2) parallel,

and (3) arbitrarily with respect to the biasing magnetostatic field Eo .

7.1 Perpendicular Case

9.9
ox Oy
medium is homogeneous In x and y . Egs. 5.20, 5.21 and 5.22 then

In this case (Fig. 11) 6 = n/2 and =0 , since the

become, respectively,
2

dn_ o a™y 1 - 1)

(5" -1 azz - kzel(z) - ik%g(z) e * X (7.1)
2

dn 2 d 5

(-.T-l%) - 1 g = K2€2(Z) (7'2)
dz

i(n.- n,)
el(z) + ig(z) e = 0 (7.3)

Eliminating n, from eq. 7.1 by means of eg. 7.3 we obtain the follow-

ing equation for My

2 d2n € g

X g 2 (7.4)
2 £
dz "1

x
( dz -1
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Fig. 11. Perpendicular case

ei and 59 are the unit vectors in the directions
of incidence and scattering. Xyz 1ls the velocity
of the scatterer projected on the yz~-plane. The

€(z) tensor is a function of z only.
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Thus we see that in the perpendicular case Thy? ny and N, are un-
coupled.

Egs. 7.2 and 7.4 are of the same form except that the right hand
sides are glven by itwo different known functions. Again we can solve
them by the method of iteration. Following section 6.1, we obtain for

eqgs. 7.2 and 7.h4

d.‘q o8] n
dz n=0 Enl dz 1
-81%(z) A 5 2iv1 (%)
= #1 e Ky A) e an (7.5)
dn @ i 4d.a
= = L Gom sl
n=0 2

kS(X) e axr (7.8)

where

21,2(2) = fnl’z(x)dx

k\/ez(z)

\/e§(z) - &°(2)
K‘.2(Z) = k el(z) .

From eq. 7.3 we can express n, in terms of n, 8s follows:

0y (2)

n o= n -i(mE&E.I . . (7.7)

Since g and €, are real functions, we then see from 7.7 that

1
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Re n, = Re Ny l.e., Ex and EZ have the same phase Zunction. Thus,
in the perpendicular case, there are two distinct phase functions, one
associated with EX and Ez and the other with Ey .

Having found dn/dz and dqy/dz , We now proceed to obtain the
frequency of the scattered wave from the Doppler equation; Let @
denote the angle between the direction of incidence and the velocity of

the scatterer. The Doppler equation 5.17 then becomes *
w, + Vv cos @ ‘V¢ (u)s)l = -V cos (@ lV¢ (mi)\ (7.8)

where ¢ has been used to replace ¢i and ¢s since they have the
same functlonal dependence on frequency and position.
By the method of iteration we solve eq. 7.8 up to the order of B

and obtain

Wy = Wy - 2v cos (@ \V¢ (mi)l + O(BE) . (7.9)

Using the real parts of 7.5 and 7.6 for |V@| we finally have
Z

— 2
Wy = Wy - hv cos@(sin Enl[nl(X) cos zwl(x)dx

+0(8%) (7.10)

: — 2 —
- cos 2K1fnl(>”) sin 2nl(x)dx
for one wave, and

z
g 2 _
oy = @ - bv cos @ |sin 2E2fn 2(x) cos 2n2(x)dx

z

- cos Qi'gj-ng(x) sin 2?2()\.)51)‘,) + O(BE) (7.11)

for the other wave. Here and are known functions of , ;

K1 Ko 1

* See the footnote on p. 67.
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2z which occurs in the limits of the integrals depends on the position
of the scatterer which is, of course, a linear function of time.

As in the case of homogeneous gyroelectric media, because of the
presence of a pole in the phase function ¢ on the w-axis¥, there are
in the Doppler equation other solutions of g different from those
given by expressions 7.10 and 7.11. However, as has been shown before,
these solutions are very close to the resonant frequencies of the
medium and hence they are indignificant in this sense. In the following,
Ve shail therefore ignore completely this kind of solution and calculate

only the meaningful ones such as those given by expressions 7.10 and 7.11.

7.2 Parallel Case

We now go on to & consideration of the case where the biasing field
Eo and the direction of propagation are both perpendicular to the plane
of stratification (see Fig. 12). In this case 6 =0 and egs. 5.20 and

5.21 become, respectively,

2
dn, 2 ATy 1(n = 1)
(=X -1 —% - X% +ikge T (7.12)
2 1
dw dz
2
dn_2  dmy 5 o 1ln- 1)
L -1 —L = ke -1xge * 7 (7.13)
dz

To make eq. 5.22 consistent, one has to set Im N, = 0 , and this implies
that EZ = 0 . Thus the wave 1is completely transverse.
There is a symmetry between eq. 7.12 and eq. 7.13. If one replaces

Ty by qy + % , or vice versa, the two equations become identical. In

*Flg. 8 shows that the extraordinary wave possesses a finite non-zero
pole on the w-axis. The other pole at w = 0 1is insignificant.
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other words, the electric flelds Iin x and y components are in
phase quadrature. This consideration suggests the following change
of the dependent variables:
in in,  i(n x5 in
e < e *re 7V 27 e +tie ¥y . (7.1h4)
From egs. 7.12 and 7.3 one can easily see that q+ and 1 satisfy the

following equations:

2

dn+2 d N, k2

—) -1 5 = (el + g) (7.15)
dz
2

dn_ 2 d . o

<_d'E - 1 dZE = k (El - g) . (7-16)

By the method of iteration the solutions of these equations are given by

dn ® i d \n
% - n§0 (EE;‘E) “4(2)
-2ik, F oo 21k, (1)
=21 e —f ni(x)e - ax (7.17)
where
6, (2) = fni(x)dx
Ki(z) = k\/el(z) + glz) . (7.18)

We can now solve the Doppler equation for o,  and obtair¥

* See the footnote on p. 67.
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Flg. 12. Parallel case. The notations are the same
as in Flg. 11.
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zZ
— 2
sin Enif Ri(x) cos zzi(x)dx

» +

= o - 4v cos @

Z
- cos 2@[ ni(x) sin 2¥+(x)dx + 0(52) (7.19)

7.3 General Case

In the preceding two cases we were able to uncouple egs. 5.20, 5.21
and 5.22 into equations of Riccati-type. This 1s due to the fact that in
the perpendicular case the component of the electric fleld along the
direction of go can be separated out from the start, and in the parallel

1(ng= ny)
case the polarization defined by e

is constant and equal to
+1. However, this 1s no longer the case when the dlrection of propaga-
tion is oriented arbitrarily with respect to B_ (see Fig. 13). Here

eqgs. 5.20, 5.21 and 5.22 bhecome

dq_ o d®q i(n - 1) i(n -n.)
(__’15 -1 X K€ +ik2gcosge y T]x-ikzgsinee 2
dz dz2 1
(7.20)
2
dn_ 2 d i(ne- ny)
AR Yy = kee c0s°8 + k%€ 8ino - ikeg cos6e Y
dz dZE 1 2
2 i(n,- n,)
k A
+ 5 (€,m €, )sin % e y (7.21)
i(n =~ 1) - ¢ i(n - n )
ig sin Q9 e x 24 2 sin 20 e T\y z +€lsin29+€200329=0.
(7.22)
o in,
Solving 7.22 for e we have
i in, ey~ € in
e % == 1 5 (ig sinee *+ Ezlsinlee N, (7.23)

2
elsin e +€2cos 2]
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Jo

1<

Yz

Fig. 13. General case. The notations are the same
ag in Filg. 11.
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in
Eliminating e ~ in 7.20 and 7.21 by means of 7.23, We obtain
dn o dgn kg(e2 - g2)51n29-+k25 € cos29
X X 1 12
() -1—3-= > B
z dz €,51n"@ + €,cos"0
2
kgg € cos 6 i(n. - 1)
+ 1 e Y X (7.2h)
€ sin2Q + € cosee
1 2
2
dn 2 d e
"y Yo Kee
(—=2) -1 =
dz d22 o o
elsin e + €,Cc08 [~
k? e
) g €,cos i(nx- ny)
-1 e (7.25)
i 29 c0529
€8in 0 + g,
These equations can be rewritten in the following forms:
2 in in i
- E—E e *= Alz) e * +1iB(z) e y (7.26)
dz
2 i i in
- EFE e y = C(z) e y - iB(z) e * (7.27)
dz
where
0, 2 2, .2 2 2
k“(€e1- g )sin € + k €1€ncos O
A(z) = (&1 ) 12 (7.28)
€.81 20 € 00329
181070 + ¢,
k2g €2cos o
B(z) = 3 (7.29)
in2Q + €,c08 @
€1% o
kgelez
o(z) = 5 > . (7.30)
elsin e + egcos (4]

Unlike the case of parallel propagation, there is no symmetry between
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egs. 7.26 and 7.27 and hence one cannot uncouple them. However, we
can put them into the forms suitable for successive approximations by
a proper change of the dependent varisbles. To this end let us assume
momentarily that the medium 1s homogeneous. In this case, plane waves
would be solutions of egs. 7.26 and 7.27. Denoting by N the index

of refraction, we would obtain

in in iq

KN e * = pne *iiBe ¥ (7.31)
in i in

k.amzey:ceny-uaex . (7.32)

For nontrivial solutions we must set

k21\12 - A - iB
= 0
iB kENE -C
from which
o A+C =+ \/(A-c)2+1+132
KNC = (7.33)

s 2

where A, B and C were constants.

Defining in the ususl way the polarization factor P by
n - ny)
P = e ﬂy x

we get from eq. 7.31 or &¢g. 7.32

2
P = _ﬁ:—f or iB o ( 7. 321-)
* 1B C- KON
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On substituting 7.33 into 7.34, we have

¢ -4+ V(a-0)° 4 42
21 B

(7.35)

I+

Thus a wave propagating in a homogeneous medium will, in general, be
split into two elliptically polarized waves rotating in opposite senses.
Let us now go back to the gyroelectric medium stratified in the
z-Girection. We see that the homogeneity in x and y is preserved
and hence P+ are agaln given by eq. 7.35, but now are functions of z .

Let
iq iy in
e £ = & *- P+(z) e v . (7.36)
Multiplying eq. 7.27 by P+ and subtracting the resultling equation from

eq. 7.26, we get

2 inq 2 i in
~E e *ip Lo y = (A+1BP ) e —
2 + 2 +
dz — dz -

in
v (7.37)

+[A—C+iB(l + Pf)] e
Using eg. 7.35 and noting that P+P = 1 one can easily show that
2
A-C+1B(1+P+)= 0

Moreover, from eq. 7.36, e =

Eq. 7.37 then reduces to
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i i
2 ig ig 1 N
d -
- E;Q e *. (A +1iBP )e o opr == =
a + x£dz p -P
Z - +
i i
o n, e .
+pn S - & (7.38)
x P ~-F
- +
where the primes denote differentiations with respect to =z . Since

from eq. 7.3+ A + iBP, k2NE , egs. 7.38 can also be written as

2 iy in in

d 2 + + -
(;;5 + k2N+)e = L(e " -e ) (7.39)

2 in in in
(§;§ +K%e "= Lle -e ) » (7.40)

dz
where
i P" 2P'(P' - PL)
L, - %E =2 - _F = : ) (7.41)
- Pi - P gi - P (gi - PI)

In the case of parallel propagation the polarization factors P+ reduce
to +1 and Ni reduce to vﬁ;IiE—é_ as can be shown respectively from
eg. 7.35 and eq. 7.33. Hence, L+ vanish identically and eqgs. 7.39 and
7.40 become eqs. 7.15 and 7.16. It can also be easily seen that these
two equations are respectively reduced to eqs. 7.4 and 7.2 in the case of
perpendicular propagation.

To put egs. 7.39 and 7.40 in the forms for successive approxima-

tions, we rewrite them as

dq, 2 5
(—2) - kN, = F (n,0) (7.42)
dn_ 2

(=) - N2 - F_(ny,n.) (7.43)
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where

2
d -1 i i
U] Y Y e
- + + L
?i(n+,n_) =1 — e L, (e e ) . (7.4k)

Now we use the assumption that the medium is slowly varying. Thus F+
are small compared to the terms on the left hand sides of egs. 7.42 and

7.43. In the zeroth approximation we neglect F+ and obtain

dn(o)

;Z = kN (2) (7.15)
dT}(0)
& = EN(2) . (7.46)

Next approximation simply yields

(1)
L (2?50 (7.47)
dz + kN T+ M, o0 )
(1)
dn
iz KN_ + Eﬁﬁ‘ F-(ﬂio):ﬂfo)) . (7.48)

This process can be continued as many times as one pleases. But, as one
can see, the computations become rather tedious as the order of approxi-
mation is increased. We shall not therefore carry out the calculations
higher than the zeroth order. -

Substituting egqs. 7.28, 7.29 and 7.30 into egs. 7.33 we obtain,

after a simple manipulation
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4 _
dz N+ T
1
2
2 2 2 52 .2 & 5 5 2'7;
k{(el- g - eleg)sin 94-2e1e2_¢erl- g - 5162) sin 6 +lhg e  cos5 0
2 2.\
2
v/(elsin 6 + e co8 9)
+ootoo-c (7.)4.9)

where € & and g are functions of 2z .

We now go on to solve the Doppler equation 5.17. As before we

solve the equation by the method of iteration. A straightforward calcu-

lation ylelds¥

a
W, = 0 - 2V cos @ Re = qi(mi,z) 4 oteeeen (7.50)

where Re é% u are given by egs. 7.49, and @ is the angle between the

direction of incldence and the veloclty of the scatterer.

*Here, for simplicity, we only give two solutions of the Doppler equa-
tion, The other two solutions which arise from the conversion of the
ordinary incident wave to the extraordinary scattered wave, and vice
versa, can be easily written down by using the appropriate $ on
each side of eq. 5.17.
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VIII. SUMMARY AND CONCLUSIONS

The problem of calculating the frequency of the scattered wave
from a body moving in a medium is considered from field-theoretic view-
point.

It is shown that the Doppler equation for a homogeneous dispersive
medium can be derived by three different methods. The essential feature
of each derivation is that in the frame where the scatterer is stationary
the fréquency of the scattered wave remains equal to that of the incident
wave and that the wave vector and the frequency of a plane wave form a
h-vector. In general, the Doppler equation does not lend itself to direct
manipulation for exact solutions. A general method is therefore glven as
to how the approximate solutlions of the Doppler equation can be obitained.
It is found that, for a gyroelectric medium such as the ionosphere, the
scattered wave contains more than one frequency for a monochromatic
incident wave. Some frequencies lie very close to the resonant frequen-
cles of the medium and waves corresponding to these frequencies are
damped exponentially in space. Other frequencies are just the normal
Doppler frequencies modified by the presence of the medium.

The Doppler equation for an inhomogeneous dispersive medium is
obtalned from a different approach, since plane waves do not in general
exist in such a medium. TUnder the assumptions of gradual inhomogeneity
and slow veloclty of the scatlerer, the Doppler equation 1s derived by
performing spectral decompositions of the transformed fields in the frame
where the scatterer is stationary. It is found that the resulting
Doppler equation contains explicitly the functions vi and WE of the

incident and the scattered waves. The method of obtaining these functions
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is first to transform Maxwell's equations into a set of coupled equations
of Riccati-type and then to rearrange them in the forms suitable for
successive approximations. The case of an isotropic stratified medium
is discussed and approximate solutions of the Doppler equation are
obtained. In the case of a gyroelectric stratified medium, three
separate cases for the orientation of the biasing magnetostatic field
with respect to the direction of propagation are studied in detail. It
is found that, in the perpendicular and the parallel cases, the
polarization factor does not depend on position, while in the general
case it is a function of space. Thus, the former two cases are easily
handled, since the transformed Maxwell equations can be uncoupled
rigorously. 1In the latter case, however, they remain coupled and there-
fore the method of solution is considerably involved. Nevertheless, it

1s shown how the approximate solutions can be obtained formally.
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APPENDIX A

ON THE 4-VECTOR KJl

In this appendix we shall prove that the frequency o and the

wave vector k of a plane wave form a h-vector. To do this we write

K. X i(kr - ot)

F = a e = a e (A.1)
187 [VRY Hv

where K, = (E,fg) > X = (r,ict) , and FHV is the field tensor of

second rank and takes the form:

EX
0 B -B -1 X
zZ y c
E
-B 0 B -1 L
4 X [&]
F o= E
BV B -B 0 -1 2
y X 1 c
B E E
1% 4L 42 0
[¢] C [64

In eqg. A.1, auv is constant in the case of a plane wave and represents

the amplitudes of the field components. From cne of the Maxwell equations
g

Vx E = - py B , we have

oF oF oF

BV vo o

x x Tx - ° (4-2)
o i v

which is a tensor equation of third rank. Substitution of A.1l into A.2

gives
3K, X, X

A
K =+ F K —=— K = 0 . A.
Fuv A O Vo A aXu * Fau XSXV (a-3)
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3.
But Eil = 6xc (Kronecker delta). Eq. A.3 then takes the following form
b}
K F +K F +X F = 0 . (A4)
o pv uovo v o

Since eq. A.4 is of third rank, it follows that KH must be a L-vector
and transforms like the 4-vector XM » However, if auv were not a

constant, Ku would no longer be a U-vector.
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APPENDIX B

ON CERTATN TRANSFORMATION LAWS

Here we give some useful transformation laws for the electric vector
E , the magnetic vector B , the k-vector Xu , and the k-vector Ku
The transformation rules can be put into generalized form without speci~
fying a coordinate system. ITet S8 and S' be the two frames of
reference moving with a constant relative velocity v . Then, by the

Lorentz transformation we have

(B.1)

B’ E +vxB
vf_LL ¥ x B)

vhere || denotes components parallel and 1 components perpendicular to

v . The first of egs. B.l can also be rewritten as
B' ¢« v)v E « v)v
(_ __)__ - (__ _)__ . (B-e)
2 2
v v
Since E' =E' - E' and E =E-E , by means of eq. B.2 we can

1 = 1 l
write the second of eqs. B.l in the following generalized form:

E'-E—%=Y[E-£§—;2—p—l+lx§] s

or

B - yErvxn e -y 2L (5.3)

v

Similarly,
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B' = y(B-= Xég) +(1-7) EE;;;%ll : (B.k)
c v

At low velocity, i.e., v << ¢ , egs. B.3 and B.l reduce respectively

to

(B.5)
B' = B

We shall now find a similar transformation rule for Xu = (z,ict) . It

is known that

! . ro
r' =y(r -wt), or 1'(£ 5 A = v(= éz'l - vt) (B.6)
~ - v v
and
(r'+ v)v (r » v)v
E'J_ = E_L s or r' - ._-:-_..V_2=-_= =r - vg—)— . (B.7)

Substituting B.6 into B.7 we have

r o« v)v
r' = r-yvt+ (y-1) £=——§=l= . (B.8)
v
Moreover, we have
Y-uv :
= 7t - ——2'—-') . (B.9)
c

At low velocity B.8 and B.9 reduce respectively to

r'= r - vt and t' =t . (B.10)

The transformation rule for Ku = (E,fg) follows immediately from

that for X = (zr,ict) . Replacing r by k and t by ®/c° 1in B.8
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and B.9, we obtain

k«v)v
k= k-rv5v+(r-1) gy -2')—. ’ (B.11)
c A
and
w'= yvl@-v -k . (B.12)

At low velocity these expressions reduce to
k' = k , and ®'=w-VvV--k . (B.13)

Let us now demonstrate that Uu defined by 2.4t is a h-vector. We

have

[
fl

(yv,1rc) in 8

(0,1c) in 8 .

<
|

Replacing in eq. B.8 r by yv, t by vy, and r' by O, ve see
that the right hand side of B.8 vanishes identically and is therefore

equal to its left hand side. Thus Uu is L-vector.
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APPENDIX C

OTHER DERTIVATIONS OF THE DOPPLER EQUATION

In Section 2.2 the Doppler equation was derived by transforming

the equation

(c.1)

in 8' to S by means of a scalar invariant formed from the 4-velocity

U of the scatterer and the 4-wave vector K of a plane wave. In
H H

this appendix we shall give two other approaches to arrive at the Doppler

equatlion, and each approach has its own domain of interest.

C.1 The Indirect Method

This method of attacking the problem is shown schematically in Fig.
C.1l. We start with the information in S and carry it over to S' by
Lorentz transformations. Then we compare the transformed frequency of
the scattered wave with that of the incident wave and obtaln the Doppler
efjdation.

In the mathematical language we have, from eq. B.12,

I<

w! = vlo -

i k) (c.2)

e‘-
il

) . (c.3)

vlo, - v - k

Since wé =vw£ s by equating the right hand sides of egs. C.2 and C.3

we lmmediately arrive at the Doppler equation:

(c.h4)



~76-

S S’ 3
Lorentz ’ ) Lorentz £
. i L= ) [72)
, & Transformation “ s Transformation ¥
The incident wave The scatbered wave

Fig. C-1. Schematic diagram of the indirect method

!
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The incident wave The scattered wave

Flg. C-2. Schematic diagram of the direct method
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which is just the same as eg. 2.7. Although this method is very simple,
it is quite indirect, because the very physical fact, i.e., wé = mi )

is exploited only at the final step of the derivation.

C.2 The Direct Method

The more natural approach to the problem is perhaps to start with

the incident wave in S and transform it to 8' . In 8' we then have
a scattering process with an incident wave of known frequency and wave
vector. Since we are interested only in the frequency of the wave, we
need not solve this scattering process as a boundary-value problem.
However, the dispersion relation has to be found in S' before one can
proceed from S' back to S . This method is shown schematically in
Plg. C.2.

Let us now go on to the derivation of the Doppler equation
according to the procedure outlined above. We have, from eqg. B.1l2

wf = vlw, - ¥ - k) (c.5)

@ = y(wé +v o« k') . (c.6)

Since mé = mi , substitution of C.5 into C.6 gives

2 v -k
CU=T((D1"1.Ei)(l+ )

. (c.7)
(D'
5 .
In eq. C.7 it remains to find kéﬁmé in S' where the medium is moving.
To do this we have to solve Maxwell's equations in a moving homogeneous

medium. Tn the following, tensor notations will be used, since we wish
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to write Maxwell's equatlions and the constitutive equations in covari-
ant forms which hold in all Lorentz frames.

Maxwell's eqguations are

F +0 F O F = 0 c.8
ax uv BovA * v ( )
d ¢ =0 (c.9)
Vv oOuy =
where
o) o ) 1 93 1 9
= _— —_— ) = (V -~
0 s s - Vsy
E
0 B -B -1 X
z y c
E
- . 2L
BZ 0 Bx i p
Fw = E_
By —Bx 0 -1 =
Ex B E
1 = 1 L 31 2 0
c c c
and
0 H -H -i ¢D
Z Y X
-H 0 H -1 ¢D
o _ pA X y
wy
Hy --Hx 0 -1 cDZ
icD iceD ich 0
b 4 ¥ z
The constitutive equations are
2
@ U = cerF U ; (C.10)
TRVERNRY TRV T
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F U +F U +F U = pl@ U_+6 U +G
v pv @ Vo u

U C.11
uy 0 vo n Ol ou v) ( )

vhich reduce to D =€¢E and B = uH , respectively when the medium is
at rest. Here one should not confuse the permeability p with the

2
subscript . Multiplying C.11 with Uo and noting that UUUG = =C

we have

F +F UU +F UU =-cyug +u(G UU +G UU)
ny Ve B O opva UV VOU O Op Vo

(c.12)

Substituting C.10 into C.12 and making use of the antisymmetrilc proper-

ties of F and G, we get
MV uv

- ch +F UU-F UU = -Cep G+ 02 w(F UU-F UU)
MV Vo OM MooV py YVoou MooV

Solving this equation for Gpv we obtain

F 2
_ _Hy (cep - 1) - U
Gy = T 2 (FvGUuq' FH6UG ) (¢.13)
pe

Substitution of C€.13 into C.9 yields

3, B+ [av(FWuouu) - av(FwUGUv)] -0 (C.14)
wh N C2€ -1 _ nE_ 1

ere K = 5 = ) e
[ed c

In eq. C.14 the second term vanishes identically, i.e., BV(FWUU)Uu = 0.

To see this, we note that
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3D 2
BV(GVUUU)= TY - -(5x-vxE +rc vV-D . (Cc.15)

Since each term on the right hand side of C.15 vanishes identically in

the source-free region, we then have

av((}“f u) =0

and by virtue of C.l0 we conclude that
o(r U) = 0 .
vV Vo O
Thus C.14 reduces %o

F =~k O{(F UU = 0 . Cc.16
av A% v( po o V) . ( )

The field tensor Fu is also defined in terms of the Y-potential
v

A = (A igs by the following equation:

m 2
F = OA -0A (c.17)
wv BV VR

which automatically satisfies eq. C.8.

Substituting C.17 into C.1l6 we get
2
- kU A = 3 (9 - kU . .18
(av k vagBd)“ u( WA VBVUUAG) (c.18)
Now we impose on Ap the subsidiary condition
avAv - 'QUQBVUGAU =0 (c.19)

which takes the following form in the ordinary space:



=81~

"V - A+ %5-2% - K YE(X .V + g%)(z -A-8) = 0 . (Cc.20)

When v =0 , C.20 reduces to

V-é+€p%%=o

which is just the Lorentz gauge in the frame where the medium is at

rest. When x =0, i.e., in vacuum, C.20 becomes
1 o
v . —— < =0
é‘*czat

as it should. Thus C.19 is the covariant lLorentz gauge in a medium,

and eq. C.18 becomes

2
(3, -k UBUBIA = O . (c.21)

Writing C.21 out in components, we have

-~ 2 q
Vz'%%;ﬁ’"YE(X'VJ'%Eé: 0 (c.22)
- Q -
(2.1 g, 002 g 2
__Eg.t_e_ ‘r X +—a-€) ¢-— O . (C' 3)
L C -

We note that these equations reduce to the ordinary wave equations when
either ep=1/c” or v=0.

To find the dispersion relation we substltute

(ke r - wt)
A(r,t) = Re {éb e }

into eg. C.22 and obtain
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-(Ck)2 + 0)2 + TQ(ng- l)(l(: -V - a))2 = 0 . (c.2k)

Solving this equation for ck/w , we get

ck yg(ne- 1)B cos © + Vi + Yg(nz- 1)(1 - Becosgei
— = (c.25)

w
2, 2 2 2
vy (n - 1)Bcos 6 - 1

where 6 1is the angle between v and k .
When v =0, ck/w should reduce to n and hence we have to

take the "-" sign in expressions C.25, i,e.,

)/1 + rg(ne— (1 - BQCOSQG)‘ - Tg(ng- 1)B cos ©

® 1- yg(nz- l)Becoseg

ck

——

= (c.28)
It should be noted that n 1is the refractive index of the medium when
the medium 1s at rest. When the medium is in motion, the refractlve
index 18 likewlse defined by expression C.26 which, however, depends
on the direction of propagation. At low velocity, i.e., v << ¢ , the
refractive index takes the approximate form

ck 2

— = n-(n-1Bcoso6 . (c.27)

In the case of a dispersive medium, n 1is a function of
r(m-—X.-E) and becomes a function of frequency only when v = O . Thus
the right hand side of C.26 depends implicitly on w as well as on k .

To each given « there correspond, in principle, several values of k ,

and in this sense the motion of a dispersive medium splits the wave.
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Replacing © by ~8' 1in .26 and then substituting the resulting

equation into C.7, we cobtain

5 1+B cos ©' [/l+72(n2- 1(1- Bgcosee’)
oy =1 (0= ¥ k) 2 2 22 (c.28)
1 -y (n"- 1)B cos O’

Now it remains to find how ©' 1s transformed to 6 , which is the angle

between v and k in the S frame. To do this we have, from eq. B.ll,

k' = T(k _0_)..@) ’ (0-29)
S ] (c.30)

Egs. C.29 and C.30 can also be written as

k' cos 8' = y(k cos @ - %’-3) (c.31)
k' sin ®' = k siﬁ 0 (c.32)
from which we immedistely get
fan 07 = Té ici:sleg-a) ’
and consequently
cos o' - —Y{n cos® - B) : (¢.33)

2 2 2
\[n sin 6 +y (n cos 6- 5)2

Substitution of C.33 into C.28 yields, after some manipulation,
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2 1
( 2
Y (1 - np cos 6)

2

or

(c.34)

which is the same Doppler equation as eq. 2.7.

In this derivation three interesting points have been brought
out.

(1) In a moving medium the vector potential A and the scalar
potential ¢ no longer satisfy the ordinary wave equation, but rather
they satisfy the more complicated equations, namely eqs. C.22 and C.23.

(2) The refractive index of a moving medium depends not only on
the velocity of the medium, but also on the direction of propagation.

(3) The motion of a dispersive medium splits a wave of given
frequency into several waves of the same frequency. It can also be
stated that to each fixed k there correspond several values of w in

a moving dispersive medium.
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APPENDIX D

ON THE POLES OF ni AND n?

Here we shall examine the singularities of ni and n? defined
by egs. 4.2 .

For convenience, let

2 2 2 2 2 2 2 2
p = Em(w-mp)(m-mp-mg -mmpmgsing
(D.1)
= m2 w VAD2 m2 sinhg + h(mg mg)gcosgg‘
1= P % ™ %% P
Eqs. 4.2 can then be written as
2 w) + gl
n, (@) = p() £ a(®) . (D.2)
- L 2 2. 2 o2 2 2]
2m[w - (mp+wg)m +op @ cos e
Since
4 2 2, 2 2 2 2 ][ 2 2 2 2 2 2 2
-q) = |- + 0 - o - - °)-
(p+a)(p-a) I:m (mp+mg)m Wy @, cOS (w @y mg)(m wp)-a o
(D.3)
we then have
(p+a)(p-a) = 0 st ®=0a, ,

where

Qi =

2 2 \/2 2,2 2 2 2
o w, Wy (wp+a>g) -lwopmgcosg
2

In what follows we shall prove that p +q #0 at o =0 , and
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p-qf0 at w= Q-

To prove that p +q # 0 at o =Q_, it suffices to show that

p=20 at w=0 . because g 1s always positive. Evaluating p at

w =0 Wwe have
5: = wi Lmﬁ + VQ;; + wZ)Q- hai)wz c08°0 - wé cosze]
>w§Lm§i(m§-m§) -wz] 3 0 , for 6#0
vwhere the "+" and "-" signs are for cup > wg and wp < mg , respectively.

Moreover, -Q_ 1s always positive and it follows that p = 0 . Thus,

P+q#0 at w=90_ . Similarly, p - g £0 at w-= Q. But

(p+a)(p~aq) =0 at ®=Q .

This implies that

]
o

P-q at w=0Q ,

and

1
(@]

P +g at w =0 .

In view of D.2 and D.3 we can also write

(wE 2 2)( 2 2 2 2
2 _ - oy - o) (o - mp) - @ ©g
* 2w (p - &)
and
(w?— @l - me)(m2~ me) - o° oo
- P ‘g p’ " p 8

2w(p + q)

Hence nf has simple poles at w =0 and w=0 , while n2 has

gimple poles at w =0 and o = n+ .
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