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C h a p t e r  3  

STRONG CONFIGURATIONAL DEPENDENCE OF 

ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL 

METALLIC GLASS 

 

We report the strong dependence of elastic properties on configurational changes in a 

Cu-Zr binary metallic glass assessed by molecular dynamics simulations. By directly 

evaluating the temperature dependence and configurational potential energy dependence 

of elastic constants, we show that the shear modulus dependence on the specific 

configurational inherent state of metallic glasses is much stronger than the dependence on 

Debye-Grüneisen thermal expansion.  

 

3.1. Introduction 

Bulk metallic glasses (BMGs) have acquired considerable attention from scientific and 

technological viewpoints in the last two decades [1-9]. BMGs have very high yield 

strength, at least double that of ordinary commercially used crystalline materials, and high 

* Part of this chapter is reproduced from Strong Configurational Dependence of Elastic Properties for a 
Binary Model Metallic Glass, by G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, W.A. Goddard III, 
T. Cagin, and K. Samwer, Applied Physics Letters, 89, 151901 (2006). Copyright 2006 American Institute 
of Physics. 
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elastic strain limit, roughly 2 % in tension or compression, due to their disordered atomic 

structure [1-4]. Upon yielding, BMGs tend to form highly localized shear bands, where one 

observes large local plastic strains [10-12]. To describe the yielding in metallic glasses, a 

Cooperative Shear Model [13] has been developed for the glassy state based on Potential 

Energy Landscape (PEL) / Inherent State (IS) theory [14-16]. A scaling relationship among 

the shear flow barrier, a universal critical yield strain, and the isoconfigurational shear 

modulus G was constructed. The model reveals that for a fixed glass configuration, the 

barrier height for shear flow is proportional to the isoconfigurational shear modulus G, 

which makes the elastic properties of great importance in fully understanding the 

mechanical behaviors of BMGs. A wide variety of experimental work has been performed 

to measure the elastic properties of BMGs [4, 17-18]. Molecular Dynamics (MD) 

simulations have been extensively utilized to calculate the elastic stiffness coefficients in 

crystals [19, 20]. In this work we present the Debye-Grüneisen thermal expansion effect, as 

well as the strong configurational inherent state dependence of the elastic properties for a 

model binary metallic glass.  

 

3.2. MD Simulations 

    In order to obtain numerical results for the elastic stiffness coefficients, we perform MD 

simulations using an interatomic many-body Rosato-Guillope-Legrand (RGL)-type 

potential model developed for the Cu-Zr binary alloy system [21]. The original simulation 

cell contains N = 2000 atoms, arranged in a random bcc structure with periodic boundary 

conditions. At the beginning, the system was heated to 2400 K and the structure of the 
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liquid phase was allowed to equilibrate. The system was then cooled to 50 K under zero 

pressure using a range of quenching rates from 1 to 10 K/ps (1 ps = 10-12 seconds) to 

generate glass configurations. This yielded the reference shapes and size matrices, h0, in 

Parrinello-Rahman formalism [22] to calculate elastic stiffness coefficients by constant- 

temperature and constant-volume (NVT) simulations. The glass transition temperature 

occurs at 700 K under the cooling rate of 5 K/ps, and there is a slight difference among the 

glass-transition temperatures when varying the cooling rates. 

    Upon determining elastic stiffness coefficients, NVT simulations for each state point 

were carried out. After equilibration of 20,000 steps (20 ps with a time step of 1 fs; 1 fs = 

10-15 seconds), we calculated the elastic stiffness coefficients at different temperatures and 

at different potential energies, after collecting statistics over 100,000 steps for the 

convergence of the fluctuation terms. The elastic stiffness coefficients were evaluated using 

the following statistical fluctuation formula [23]: 
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where <> denotes the averaging over time, and 0Ω = deth0 is the reference volume for the 

model system. The first term represents the contribution from the fluctuation of the 

microscopic stress tensor, the second term represents the kinetic energy contribution, and 

the third term is the Born term. The thermal relaxation effect on the elastic stiffness 

constants were simulated to guarantee that the calculations performed in this work reached 

the steady states. For instance, at the highest temperature 500 K, the shear moduli for the 
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samples obtained by the cooling rate of 10 K/ps are respectively 9.5 GPa, 8.0 GPa, and 8.2 

GPa when collecting statistics by 50000 steps (50 ps), 80000 steps (80 ps), and 100000 

steps (100 ps) for the convergence of the fluctuation terms. 

 

3.3. Debye-Grüneisen Thermal Expansion Effect 

We first analyzed the Debye-Grüneisen thermal expansion effect on the elastic stiffness 

coefficients for the model glass under the same configuration. The calculations were 

carried out under zero pressure at different temperatures below the glass-transition 

temperature Tg to ensure no configurational changes happen. Figure 3.1 and Figure 3.2 

present the temperature dependence of the shear modulus G and the bulk modulus B for the 

binary Cu46Zr54 metallic glass prepared at two different cooling rates, 5.0 K/ps and 2.5 

K/ps. The shear modulus Debye-Grüneisen slope was measured to be [dG/dT] = -18 ~ 20 

MPa/K and the bulk modulus Debye-Grüneisen slope [dB/dT] = -37 MPa/K. The MD glass 

samples quenched using different cooling rates have different but fixed configuration 

states; the linear fits to the low-temperature modulus data have essentially the same slope, 

which demonstrates that the low-temperature modulus dependence (both G and B) is 

intrinsically independent of the configurational states. This is truly the expected Debye-

Grüneisen effect of thermal expansion on elastic constants for an isolated configuration 

state. 

In order to verify the temperature dependence of the elastic properties of the binary Cu-

Zr metallic glass, the following procedure was adopted: Starting with the cell volume V set 
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at the equilibrium value V0 (corresponding to zero pressure and minimum potential energy) 

at 300 K, we equilibrated the system at incrementally larger and smaller values while 

strictly maintaining constant temperatures by velocity rescaling after each time step. During 

the calculations, we limited the volume change within ±2% to make sure that the 

simulation system remained in the elastic regime and no configurational change occured. 

Another issue of concern was that the pressure would show up at different scaled volumes. 

The above fluctuation formula is for the systems at zero pressure only. An additional 

pressure-dependent term was added to get the correct elastic stiffness constants. Figure 3.3 

presents the volume dependence of the elastic constants, G and B, for the Cu46Zr54 binary 

model glass at a cooling rate of 2.5 K/ps, in which 1.0 represents the equilibrium volume 

for the x axis. Both G and B drop linearly with increasing volume. The volume slope of 

shear modulus is measured to be [dG/dv] = -17.5 MPa, and the volume slope of bulk 

modulus, [dB/dv] = -41 MPa, where v stands for V/V0.  This suggests that the temperature 

dependence of shear modulus G and bulk modulus B can be primarily attributed to the 

Debye-Grueneisen thermal expansion effect if we take the thermal expansion coefficient 

(~1×10-4 1/K) into account for this binary alloy. Wang et al. measured the hydrostatic 

pressure effect on the elastic properties of a Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass by 

acoustic methods and found that both G and B increase monotonically and linearly with 

increasing pressure, which strongly supports our MD-simulation results.  
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Figure 3.1. Temperature dependence of shear modulus G for the Cu46Zr54 metallic glass prepared at 

two different cooling rates (2.5 K/ps and 5 K/ps). The MD glass samples quenched using different 

cooling rates have different but fixed configuration states; the linear fits to the low temperature 

modulus data have essentially the same slope, showing that the low temperature G dependence is 

intrinsically independent of the configurational states.  
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Figure 3.2. Temperature dependence of bulk modulus B for the Cu46Zr54 metallic glass prepared at 

two different cooling rates (2.5 K/ps and 5 K/ps). The two different configurational states are 

indistinguishable, demonstrating that B is not as sensitive as G to the configurational inherent state 

changes.  
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Figure 3.3. Volume dependence of bulk modulus B and shear modulus G for the Cu46Zr54 metallic 

glass prepared at a cooling rate of 2.5 K/ps. This suggests that the temperature dependence of shear 

modulus G and bulk modulus B can be primarily attributed to the Debye-Grueneisen thermal 

expansion effect. 
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3.4. Configurational Dependence 

The configurational inherent state dependence of the elastic constants was further 

considered. By means of the same MD simulation model we calculated the elastic stiffness 

coefficients at five temperatures for different configurations (with different potential 

energies) obtained by quenching the system at different rates from the same liquid state 

under no pressure. It is found that at five temperatures (300 K, 350 K, 400 K, 450 K, and 

500 K) the slope of shear modulus G with respect to the total potential energy is nearly the 

same: ~750 GPa/(eV/atom) (approximately three times larger than the Debye-Grüneisen 

effect). The volume change at each temperature due to different cooling rates is negligible. 

It is noted that the volume difference at all five temperatures between the highest cooling 

rate 10 K/ps and the lowest cooling rate 1 K/ps is less than 0.15 %, which means that the 

Debye-Grüneisen thermal expansion effect here is negligibly small.  

According to PEL/IS theory, the liquid enthalpy could be separated as the vibrational 

and configurational contributions, hL = hV+hC. The glass transition can be identified with 

the freezing of configurational inherent states. The vibrational contribution to the enthalpy 

is 3kBT/2. Therefore, to the first approximation, the configurational enthalpy can be directly 

obtained from the total enthalpy, which is the total potential energy in this work 

(considering the fact that the calculations were made under no pressure). After subtracting 

the vibrational enthalpy from the total enthalpy, we plotted all the shear modulus data with 

respect to the configurational potential energy. As indicated in Figure 3.3, a dramatically 

strong configurational dependence of shear modulus G can be observed, and the 
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configurational energy slope of G is noted to be ~720 GPa/(eV/atom). This direct 

evaluation of configurational inherent state dependence of shear modulus G from MD 

simulations shows that G strongly depends on the specific configurational changes of the 

glassy states, while it weakly depends on the Debye-Grüneisen thermal expansion effect. 

Recently Lind, Duan, and Johnson experimentally measured the isoconfigurational 

elastic constants of the Zr46.25Ti8.25Cu7.5Ni10Be27.5 (Vit-4) samples using the pulse-echo 

overlap technique [24]. The samples were isothermally annealed and quenched near the 

glass transition temperature. It is found that the shear modulus G has a strong dependence 

on annealing temperatures and, thus, on the specific configurational potential energy of the 

equilibrium liquid, although the low temperature dependence of G of the configurationally 

frozen glasses shows linear temperature dependence. Our simulation results presented in 

this work are consistent with the experimental progress obtained from Vit-4 (see Figure 

3.5).  
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Figure 3.4. Strong configurational potential energy dependence of shear modulus G for the Cu46Zr54 

metallic glass when varying the cooling rates to obtain different configurations. This direct 

evaluation of the configurational inherent state dependence of shear modulus shows that G strongly 

depends on the specific configurational changes of the glassy states, while weakly depending on the 

Debye-Grüneisen thermal expansion effect. 



 

 73

32

34

36

38

40 (a)

100

104

108

112

116

120

124
(b)

S
h
ea

r
M

o
d
u
lu

s
(G

P
a
)

B
u
lk

M
o
d
u
lu

s
(G

P
a
)

quenched from 665K
annealed

quenched from 567K

Measuring/Annealing Temperature (K)

100 200 300 400 500 700600

 

 
Figure. 3.5. The shear and bulk modulii of Vit-4 as measured in-situ from -78 to 298 K and 

measured from samples quenched from the equilibrium liquid around Tg. (Reproduced from Ref. 

24. Copyright 2006 American Physical Society.) 
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3.5. Chapter Concluding Remarks 

In summary, the temperature and configurational dependence of elastic properties for a 

binary model metallic glass have been obtained from MD simulations. It is shown that the 

shear modulus dependence on the specific configurational inherent state of metallic glasses 

is much stronger than the dependence on Debye-Grüneisen thermal expansion. 
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