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ABSTRACT

A theoretical and experimental investigation has been made fcr
the problem of two-dimensional viscous, incomprceasible, steady, slightly-
siratified flow towards a line sink. The analytical solulion was obtained
irom the Navier Stokes equations, thce coniinuity equation, and tae
diffusion eqguation by {irst making a boundary-layer-typc assumption and
then using a small perturbation technique based on a perturbation
parameter proportional to the sink strength ¢ . The effects of the
viscosity, the diffusivity, and the gravity have been included while the
inertia effect is neglectec in the zeroth order solutior. The solution
incicates that there exists a withdrawal layer which grows in thickness
with the distance % from the sink at the rate xl/3 and that the velocity
cistributions u{y) are simiiar {rom one station x Lo another.

Twenty-five tank experiments were performec using water
stratificd by means of cither salt or temperature. Detalled measure-
ments of tne velocity field were made by means of photographs of ver-
tical cye lines. The experiments verify the shape ¢f the velocity pro-
files as well as their similarity in x as precicted by the theory.

Except for scale, this is very similar to the nroblem of selec-

tive withdrawal from a reservoir.
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CHAPTER 1

INTRODUCTION

In large bodies of water such as lakes or oceans, the density of
the water often varies slightly from one lcvel to another. This density
variation can be caused by seasonal changes in atmospheric temperature
and solar radialicn, or the intrusion of saline or muddy water into fresh
water reservoirs, 5Such density stratifications also exist in the atmosphere.

Stratified flow may be defined as the flow of fluid with a density
stratification. The ruusl interesting cases of stratified flow are those
where the stratification plays a primary role in the mecharics of flow.
It will be seen presently in section 1-2 that gravity plays an essential
role in making such stratified flows much different from the flow of
hémogeneous fluids.

Intercsting cases of stratified flow are to be found in oceanography,
hydrology, and mcteorclogy., Soume common examples are the motion
of cold and warm fronts, smog layers, and ocean currents. Another
example is the phenomenon known as selective withdrawa., It is the

main topic in this thesis and is exaplained in the following sections.

1-1 Selective Withdrawal

Consider a reservoir filled with water whuse deusity /0 changes
with depth (for example, because of a temperature stratification) wita
an outlet through the dam at the depth a below the water surface, as
shown in figurce 1-1, discharging at the rate, g . If the watcr werc not
stratified, the equations of motion of incompressible homogeneous
fluids would show that the discharged water would originate from through-

out the entirc dopth of the reservoir and the velocity distribution a



2
fair distance upstream of the ocutlet would be as illustrated in figure 1-1A.
If the water is stratified, however, it is obscrved both in the laboratory
and in the field that for a small enough value of q . the discharge ori-
ginates only from a layer of limited depth at the level of withdrawal.
The velocity distribution at some distance upstream might be as illus-
trated in figure 1-1B. Since certain properties of the water such as dis-
solved oxygen, temperature, dissolved salts, and turbidity vary with
depth, it is therefore possible by choice of outlet depth to seiect water
of the desired quality, hence the term selective withdrawal. For exam-
ple, an outlet near the water surface would gencrally withdraw water
with higher temperature, higher dissolved oxygen content, lower dis-
solved salts and lower turbidity than an outlet near the bottom in the
same reservoir. The technique of selective withdrawal affords an casy

means of controliing the quality of water.

1-2 An Important Property of Stratified Flow

Corsider an incompressible stratified fluid such as water with
a slight density gradient caused by temperature, salinity, or suspended
materiai. Assume further that the density decreases with elevation anc
hence that the stratification is stable. {indeed if the fluid is unstably
stratified, there would be overturning which would eventually lead to
a stably stratified fluid.) For such a fluid in an external force field
such as the earth's gravitational ficld, only very limited vertical motion
is expected, for reasons cdiscussed below.

Consider a fluid parcel of volume V and density [ (5!0) at the
level 9o in the envirorment of a stably stratified fiuid with density
distribution Pl as illustrated in figure 1-2. For this parcel to move

to a new level Y, &anamount of work
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must be done on_the fluid parcel. Note that this work is always positive
regardlesé of whether 9‘, > Yo or 5!, < a“’ provided that the slrati-
fication is stable, i.e. p(y) is monotonically non-increasing with vy

g—& <o ) . Hence in order for two fluid parcels each of volume
V at levels 5[0 and ‘6‘1 to exchange posilivns, a lolal amount of work
2W must be performed on the system. In other words, any vertical
motion requires an addition of energy no matter how slowly the motion
is carried out. TI'or a homogeunecovus fluid, p is a constant and this work
would, of course, be zero and a fluid parcel may move from one posi-
tion to another quasi-statically within the fluid without doing any work.
Therefore, the existence of 4 density stratification together with a
gravity field tends to inhibit vertical motion in the fluid.

Certain strange phenomena occur because of this stable strati-
fication. For example, in two-dimensional flow, an object moving
slowly in a stably stratified fluid acts somewhat as a piston. Not only
is there a wake behind the object, the fluid in front of it also moves
slowly forward. In the exireme case illustrated in figure 1-3, all the
fluid in the horizontal layer within the two dotted lines moves forward
at the same speed as the object. The explanation is that if the fluid did
not move as shown, then the fluid particles immediately inifront of the
object must move around the object and this implies vertical motion
which is inhibited by stratification. At higher speeds, when the inertia
effect overcomes this gravity effect, the fluid would be able to move

around the object.
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Selective withdrawal is another example of such strange pheno-
mena. The fluid at a large distance vertically from the outlet does not

fiow because of the resistance to vertical motion due to stable stratifi-

cation.

1-3 Two-~Laver Systems

The simplest example of a stably stratified fluid is the two-layer
syste.m: a layer of lighter fluid on top of a slightly heavier one. Typical
examples are fresh water on top of sea water or oil above water. One
of the first attempts to perform systematic though qualitative experiments
to study the flow of stratified fluid was made by Bell (1} in the early
1940's . He used distinct la.ve.rs of fluids of different densities. Since
then various special cases of selective withdrawal and other problems in
stratified flow, such as flow over obstacles, have been solved for the
two-layer case. These are summarized and ekplained in Harleman (2)
and Long (3}. It should be noted that in all the selective withdrawal

problems solved heretofore, inviscid flow was assumed.

1-4 Continuously Stratified Systems

Physically, it is more reasonable to have a continuously strati-
fied body of water than one with a sharp interface separating two distinct
layers since in most cases, diffusion or heat conduction would smooth
out any sharp density variations.

For two-dimensional, inviscid, steady, incompressible,continuous-
ly stratified flow, Liong (4) has derived a first integral to the equations

of motion



i 1 (VG ) |
T j_ _B K . (
(1-1)
where ’[/f' = stream function,
= density,

il

gravitational acceleration,
= horizontal rectangular coordinate,

vertical rectangular coordinate,

T da 2 a0 D
1]

= Laplacian operator,
and = an arbitrary function of the stream
function.
. g kg .
It is seen that the terms '%1:) +(%) are non-linear and would

render the solution to the equation difficult. By a transformation dis-

covered by Yih (%)

(1-2)
where (Jo is a characteristic density, Long's equation mavy be sim-

plified to

. . dp ,
T 33;51*“.(*}”.
(L-3)
- - near since S ,
Of course, equation 1-3 may still be non-linear since dV" and H,(‘yf')
may be non-linear, The transformed stream function 4//" is called,

by Yih, the stream function of an associated flow.

Assuming further that the density is linearly distributed far



upstream:

P = Fo - éﬂ;? s
| (1-4)
where Ao and &  are constants and assuming that far upstream,

the velocity U is entirely in the horizontal direction and is given by

the relation

z

f'Uz= A = constant |

(1-5)
Yih (6) solved the problem of inviscid, incompressible, steady, linearly
stratified, two-dimensional flow towards a line sink at the corner as
illustrated in figure 1-4. Note that the assumption on the upstream
velocity distribution in equation 1-5 means an essentially constant velo-
city distribution with respect to depth for the case when the density is
nearly constant, i,e. small € . A Froude number F 1is

defined as

A SV

(1-6)
where d = depth.
The solution obtained exhibits an eddy in the corner (see figure
1-4) which grows upstream as the Froude number decreases toward ‘/7[ .
For F < "¢ , the solution ceases to be applicable because the eddy
would extend all the way to upstream infinity, and thus the assumption
in equation 1-5 breaks down,

Kao (7) extended Yih's solution to be applicable to cases where
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Figure 1-5 Kao's method of solution.
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Froude number is legs than 4/1.1:. in the following way. Hec assumcd a
sink distribution on the vertical wall in addition to the line sink at the
corner and obtained the solution to the problem with both the line sink
and the sink distribution. ‘There will then bhe a dividing streamline 'l,l"s
above which the flow leaves by way of the distributed sinks and below
which the fluid comes out of the line sink at the corner. He required
the sink distribution to be such that on the dividing streamline ”?VS ,

the Bernoulli equation is satisfied

z {s)
L) + 'ﬁ,fS) + ,P—‘“"' = (_ens{'av\f 3
2 ¢ f
(-7
where S = distance along the streamline,

w

tl

magnitude of velocity along the
streamline,

+

and p{s) , the pressure along the streamline, is prescribed to be

It

vertical height of the streamline,

equal to the hydrostatic pressure distribution as if the portion of the

fluid above the dividing streamline is stagnant. That is,

d
’[o(s) = [ (Jia) a d‘-a = (d—'e\-)f'gg -
his)
(1-8)

All the assumptions made by Yih have also been made. The solution
was oblained numerically by trial and error. After the solution is
obtained, the flow in the upper portion of the dividing streamline may
simply be replaced by sta'gnant fluid and a vortex sheet at the dividing

streamline. The conclusion reached by Kao is that the Froude number

is a constant equal to 0.345. That is
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(1-9)
where ‘ﬁ;o is the value of h(s} infinitely far from the sink. Recalling
the definition of A, in equation 1-5, and letling g = unit discharge,

equation 1-9 may be rewritten for small density gradients

SV F
ﬁ,Jg'Ef: ﬁZJg?

2

(1-10)
Thus given the discharge g and the density gradient & , the thickness

of the flowing layer ’If)‘, may be calculated by the formula

) T
ho = (0.3451«@?

\

(1-11)

Debler {8) performed experiments in an attempt to verify Yih's
results. The working portion of his tank was 8 feet long, 1/2 foot wide,
and 2 feet deep. By using alternately-colored layers of water, he was
able to observe the separation of the flow into a flowing layer and a
stagnant layer above. A total of cighteen experiments were performed.
The values of the density gradient € used were approximately

€ = 0.00015 cm“l, 0.0003 cm™, and 0.0009 cm ". In three of
these eighteen experiments, the flowing laycr cxtended all the way to
the water surface, and hence there was no selective withdrawal. The
values of the Froude number F as defined by equation 1-10 for the

remaining runs varied from 0.187 to 0,274 with an arithmotic mecan of
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0.236.

Gariel (9) also performed experiments in the withdrawal from
a linearly stratified fluid. His tank was 6 meters long, 0.3 meter wide,
and 0. 6 meter deep. He prepared his linear stratification by filling
his tank with two layers of water of different densities using salt water
and fresh water and agitating the systern suitably. After several such
agitations, he claimed a linear stratification was very accurately
realized. The values of the density gradient used varied from approxi-
mately € =, 00()2(;rn_l to approximately € = 0.005 crn-l.

Withdrawal from this medium was through a slit 2 mm high
and 50 mm long at the end of a withdrawal box which congisted of two
vertical glass plates 50 mm apart and 1. 2 m long placed in the tank.
The slot was not at the corner as in Debler's experiments, but at about
mid-depth.

For flow nhservation, small dye particles were dropped into
the flowing region between the glass plates. He observed that there
was a principal current flowing towards the sink bounded by two small
retrograde currents. He also observed that the thickness of the currents
increased gradually upstream. No detailed measurements were made
in the flow field and the slight variation of current thickness with dis-
tance and the retrograde currents were considered secondary by him.

The net result of his experiments is the empirically obtained formula

f.€6 = K@ [‘%E:] N ’

Ia

(1-12)

where /go is the thickness of the principal current measured 1.5 m
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upstréam of the sglit and K(€) is a function of & . He concluded that
because of this variation of K(e) with € , viscosity must play an
important role thqugh no atternpt was made to investigate this variation.

Note that according to equatioh 1-12, for a fixed density stratification

€ ., the thickness of flow ’If,o is proportional to qU'zj. This, of
course, is contradictory to the result by Kao that ’
~_%—— = <onstant
1 =
'ﬁu,‘,'\/aé
(1-13)
C s . . . 0.5 .
which implies that £, is proportional to g for fixed € ., The

reason for this apparent discrepancy is rather clear. Kao's solution
is for the inviscid case while for Gariel's experiments, as he pointed

out himself, the viscous resistance played a primary role.

1-5 Purpose and Scope of the Present Investigation

All the previous analytical work on selective withdrawal has
been for the inviscid case. For linearly stratified fluids, the results
of Yih and Kao have been the only analytical solutions on selective
withdrawal. Kao's solution predicts the value 0. 345 for the densimetric
Froude number based on the flowing depth as shown in equation 1-9. On
the other hand, experimental work by Debler and Gariel seem both
contradictory and inconclusive. Moreover, limited amounts of field
measurement (10) indicate that densimetric Froude numbers are only
about one-tenth of the value 0. 345, It is obvious, therefore, that more
work on this problem, both analytical and experimental, needs to be

done.

In the present study, the problem of selective withdrawal at
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very low Reynolds number will be investigated. In this case, viscous
resistance, heat conduction, and molecular diffusion play primary
roles. The present analysis together with the results of Yih and Kao
form a bracket of the two e'xtfeme cases, between which it is hoped real
cases will fall.

Loong {11) was the first to study the motion of stratified fluids
where viscosity and diffusivity play primary roles. He investigated
the problems of the creeping boundary layer flow of a linearly stratified
fluid over and behind a flat plate. Besides the Prandtl boundary layer
assumptions. he also neglected all the remaining non-linear terms.

A similar theoretical approach based on the same assumptions
is used here to solve the problem of the creeping flow towards a hydro-
dynamic sink. The deviation from the idealized case is investigated.
Experiments were performed in an attempt to supplement the analysis.
In these experiments, detailed measurements of the flow field were

made. These are presented in detail in the next three chapters.
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CHAPTER 2

ANALYTICAL CONSIDERATIONS

In this chapter, an analytical solutior for the viscous stratifiec
flow lowards a line sink is presented. Based on three suitable assump-
tions which will be deseribed in the next section, the basic equations
arc first derivec. Then a boundary-layer-type assumption is made
and the equations simplified accordingly. Since, as described at the
end of Chapter 1, the limiting solution for very low flow rates is sought,
a perturbation analysis based on a perturbation parameter praoportional

to the flow rateis carried out and the zeroth order solution obtained.

21 The Basic Equations

The fellowing three assumptions will be made immediately:

i} The coriclis effects are negligible.

11} The amount of stratification is small. This mcans that
the relative change of density within the relevant Zlow field is much
iess than unity. This is almost always true in prototyoe examples.

iii} The parent fluid (fluid if there were nc stratification) is
incompressible., In other words if there were no stratification, then
*he motion of the narent fluid could be described as ordinary incom-
pressible flow. This assumptior is also very good in most practical
cases.

With these threc assumptions in mind, the basic equations will
now be obtained,

i) Continuity Equation

The continuity equation for pure fluid flow is
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ot
(2-1)
— .
where T = velocity vector,
P - density,
t = time,
V: = divergence operator.

If the stratification is due to temperature variations alone, then
equation 2-1 is the continuity equation for the flow. If, however,
there is a foreign substance in the fluid such as dissolved salts in
water, then there is the additional transfer of mass duc to molccular
diffusion of the salt through the water. If ¢ is the concentration of

the salt, then assuming Fick's Law of diffusion, the net efflux of mass

from a closed fixed geometric surface S is

- J('DVC)"?L de ?
S

where D = diffusion coefficient,
e .
y = untt cutward normal to S 3
V = gradient operator,

and the integral is over the entire closed surface § . It is readily seen
that a diffusion term must be added to the equation of continuity, yield-

ing

»

‘B " - . C
5% + q.(/;vbt,) = ¢ [ZDU ]

(2-2)
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This may be rewritten

d -
<+ AL = DY
Frpvt = prel,
(2-3)
where —d'"‘ = 5 1 (”1 ' V) = material derivative
d.t 3{: = Im, .

ii) Equation of State

The equation of state for the flow of an ordinary incompressible

fluid is, of course,
/O = consfant.

For a stratified fluid, one obviously no longer has the above simple
relation. Instead, the continuity equation for the substance or agent
causing the stratification and a relation between the concentration of
this agent and the density must be considered. If salt or some other
dissolved substance is the agent, and if c is its concentration, then
conservation of mass gives

&~ g (pec) |

at
(2-4)
Here, it has been assumed that the salt does not enter into any chemical
reaction, that there are no sources or sinks of salt, and that the diffu-
sion is Fickian.
If the stratification is due to a temperature variation and if T

is the temperature, then it must obey the heat conduction equation

4T
EE = - (KQT)

(2-5)
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where

(2 6)

A

Fourier heat conductivity,

™
—
I

= gpecific heat.
Again, no sources and sinks of heat and Fourier's Law of heat conduc-
tion have been assumed.
Remembering the assumption of small density variations, it is
| R A

= —— = constant and D T constant.
CPF

Equations 2-4 and 2-5 then become

reasonable to assume

e

z
——=D9cC

dt ? (2-7)
&1 1
at - KT (2-8)

In order to tie these two equations in with equation 2-3, a rela-
tionship between the density p and the variables ¢ and T must be
obtained. Again based on the assumption of small density variations,

it will be assumed that a linear relation exists between them.

X
Pofo= 3 (FT) +ple-c),
(2-9
where /.)o P e - S and/g are constants. At this point

it will be assumed that the stratification is due either to the presence
of salt or temperature variations, but not both. Thus for the case of

the salt-induced stratified flow, equation 2-9 becomes
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'/’_—/% =p(c-¢,)

(2-10)
and equations Z2-3 and 2-7 reduce to
d — q) FA
. = — v
;{ + /0—\7 w {g F ,
(2-11)
and
Qﬁ 2
iod <
at = PYfF
(2-12)
respectively. These may be combined to give
- i i d
s = T l) -
v ( 2 r J’%
| (2-13)

In the case of the temperature-induced stratified flow, equation

2-9 simplifies to

A
e-e, = 7 (T-T) -

and equations 2-3 and 2-8 reduce to

{ a_tﬁ -
— + AL =0
P dt v (2-15)
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and
2
K Ve
(2-16)
It is seen that equations 2-13 and 2-15 are both of the form
- _ 4
J-umw = constant — C.j.ﬁ
fat

Since /5 defined in equation 2-9 is of order unity, so is the constant
in the above equation. For steady state and in cartesian coordinates
the equation may be written

% {_’a_g + . csns{‘o.nt&

ox oY D lﬂ—;ﬁ

’d

‘*u\ﬁ
@
P4
‘3!%

If U is a characteristic velocily and L is a characteristic length it may

be verified that the left hand side is of order

U/L
while the right hand side is of order
A
)%

where é{% is the total relative change in density in the relevant
flow field. But this is assumed from the outset to be much less than

unity. Thus

~ |~
el

<< 1

L
=1

for the steady state case. Hence the continuity equation mavy be
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written in this case as

Vo:t.'—fo
' (2-17)

This is the continuity equation which will be used in the next section.

1i1) Momentum Equation

The general momentum equation may be written

i >
@=-V19+<7-'c+'oé- ’

f

(2-18)

where external force field,

q 4y

gtress tensor,

and ’P pressure.

For a Newtonian fluid where there is a linear relationship between

the stress and the rate of strain, the following relation is true:

T = /u [vﬁ +Lv<1)*] + AL vl

{(2-19)
where A and /UL are the two viscosity coefficients,
T is the identity tensor ,

and ¥ denoteg thetranspose,

For steady flow of a slightly stratified fluid, equation 2-17 is applicable

and equation 2-19 reduces to

T = 5 [Va + (QC{,]*]

- (2-20)

Substituting equation 2-20 into equation 2-18 gives
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;‘% = —V10+]u. 9 «r(v,x}[m’i t (VE)*] 1-66:

f

(2-21)

This is the momentum equation which will be used in the next section.

2-2 A Boundary-Layer-Type Assumption and the Reduced Equations

The basic equations for the steady flow of a slightly stratified

incompressible fluid derived in the previous section, are as follows:

J. wm =0 ,
(2-17)
(J %Z‘ = -9 +,,LQ1LT. + {DC:- -+ [QEI+ Cvﬁ)*](v#) 5
(2-21)
%% =D v?"f
(2-22)

The constant D in equation 2-22 is understood to be either the diffusion
coefficient or the heat diffusivity depending on the agent causing the
stratification. These equations will now be applied to the problem of two
dimensional steady flow towards a sink, that is, to the problem of
selective withdrawal. It will be assumed also that the fluid occupies

all the right half plane but that even though the flow field ig infinite in
extent, the bulk of the motion occurs within a withdrawal layer (like a
"boundary layer') whose thickness §(x) is much smaller than the dis-

tance x from the sink. The flow field and the velocity distributions
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might be as illustrated in figure 2-1. This is the same type of assump-
tion that Prandtl used in obtaining his famous boundary layer equations.

In the present case, eguations 2-17, 2-21 and 2-22 reduce to

D U
=+ 22 =0 ,
2y (2-23)
¢ 7 ? 0, u
(o(u5§+~U3?)+ 3(F93) ,
(2-24)
e
??% “TrE
(2-25)
2w 50
7 - ‘
u_iﬁ ‘1”0-’33 Da?a_ ?
(2-26)

where X, y are the rectangular coordinates

and u, v are the velocity components in the x and y directions respec- |
tively. Terms of the order -(;? and higher have been neglected.
For a more detailed account of the process of this simplification, see

Schlichting (12}.

Equation 2-23 implies the existence of a stream function W

such that

_ N 4
%_'0"& ? Ar = S

(2-27)

Let perturbations of the density and viscosity be defined as
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thxng) =f soc?) + slxy) -,

(2-28)
flew) = pot G + 0 (k)
(2-29)
where ﬁ) = densily of the undisturbed [luld atl the siuk level,
Ho = viscosity of the undisturbed fluid at the sink level,
ﬂ’ + 3, (1&) = density distribution if there were no
motion ,
and /Ao + B, (1(1) = viscosity distribution if there were no

motion .
Substituting equations 2-27, 2-28, and 2-29 into equations 2-24, 2-25,

and 2-26 gives

WIS WMWY op . D W
((3 1‘5 {'S)[‘BH@ -é—;“{‘j ] —'D_E 'l'?? [(./‘lo'rgo"'a)fa?z] J

(2-30)
%ﬂf_= —(ﬁ,+—5‘,+8)8 )
ﬁ (2-31)
WS W 25 ctso
Y M DK [0"3 ?’3] [ ] i

The pressure terms may be eliminated between equations

2-30 and 2-31 by cross differentiation. This gives
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28 _ 2. f LA AN A

85,’2 = ﬁg '[(ﬁ’ +5S) [?3 2y 7% ’0'31
. @1]

W W H

,’az
_ ’O_ﬁ."{ (ﬁo+90+9)

P .
' . ’3 (2-33)
But it has been assumed from the outset that the stratification 1s small.
That is
S+ 8
2= << 1
[
{2-34)
A, + B
\ ¢ t << 1
and fro (2-35)

in the region of flow. Hence equation 2-33 may be simplified to

25 W W) I

S ? ] Y
8’5%— ﬁ”by[?g 2y ?X ?H‘ /“’fa 4
{2-36)
Thus equations 2-32 and 2-36 are two equations for the two unknown
functions 4{"(’):,’3) and 5(:‘(,'3_) . They have been obtained based
on the three assumptions listed at the beginning of this chapter and the
following two further assumptions:

(i} Steady, two-dimensional flow in an infinite field.

{ii} A boundary-layer-type assumption; i. e. the relevant flow
field is a zone or a withdrawal layer whose thickﬁess 8(x) is much
smaller than the distance x from the sink.

’i’hese assumptions, of course, pose certain limitations on the
applicability of any solution to these equations. First of all, in any
physical situation, the fluid is not truly infinite in extent. In particular,

in a reservoir, there is always a water surface. However, as long as
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the relevant flow field given by the withdrawal zone of thickness S(X)

is well within the reservoir (i.e. S(X) << depth), the assumptions are
valid. The greatest ob;jectirm ig perhaps the third assumption (i. ¢. the
boundary-layer-type assumption), which is based on physical observa-
tion and intuition and must, therefore, be verified a postiori. It will be
seen later that firstly, a solution may he obtained which satisfies thig,
and secondly that this assumption is also valid for the experiments,
provided one excludes the neighborhood of the sink. In the neighbor-
hood of the sink, x ‘is small and the houndary-layer-type assnumption

would certainly break down.

2-3 Normalized Equations

Before normalizing the equations, it is convenient at this point
to specify the parent density distribution, i.e. the density distribution
existing if there were no motion. Assume that the hydrostatic density

distribution is linear:

S,Cg)= "‘6@"3— ’

(2-37)
where € = constant = — — il
fo "3—

{(2-38)

Note that since the fluid is assumed to be infinite in extent, this density
distribution implies negative density for large enough y. However,

the "withdrawal laver' of thickness S(X) is assumed to be small in the

) . .
sense that é—% << 1 . Thus the density at large y 1is not important
to the main flow when éi._x} << 1.

To non-dimensionalize the equations, define new variables as

follows:
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(2-39)
where 96. = unit discharge
and V= A: = kinematic viscosity.
The significance of this normalization will be clear later. Substitution
of the above into equations 2-32 and 2-36 gives
2 % 5
b, V¢ _ F [@‘i?ﬁ. ,@%X
% " oy T e loveny g oy
(2-40)

and
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(2-41)

-4 The Boundary Conditions

The physical problem to be solved is the problem of the flow
towards a sink as depicted schematically in figure 2-1. A hydrodynamic
line sink is situated at x=0, y = 0. The fluid which is linearly strati-
{fied cccupies the exﬁire right halfl plane. Hence the boundary conditions

which must be satisfied are

oD

S 'U.(x’?) dg = -—-% = a:nstan't 5
~ o (2-42)
2u
S‘UJM]_‘J- - 0 A4 fH—ba‘:b@J x>o ,
s ~o0 as K o (2-43)

Expressed in terms of the non-dimensional variables, they may

be written

) o (2~ 44)

2
’2@_)?_12)1(9 — ol "VL"‘"-tW,§7°,

¢ — 0 as § oo | (2-45)
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Thus the equations 2-40 and 2-41 are to be solved subject to the boun-

dary conditions, equations 2-44 and 2-45.

2-5 A Perturbation Scheme

The equations 2-40 and 2-41 are non-linear and of high order.
Even though the boundary conditions are fairly gsimple, the complete
solution to the problem as posed so far is beyond the present status of
applied mathematics. The non-linear terms in the right side of the
equation 2-40 and 2-4] are multiplied by thé constants Fz/léus and
/_5 respectively., Both of these contain the unit discharge g . Inasmuch
as this thesis is mainly concerned with the case of very low velocities
and hence low unit discha'rge, these terms might conceivably be neglect-
ed as a first approximation. Rather than straightforwardly neglecting
them, however, a perturbation scheme will be set up based on a pertur-
bation parameter proportional to q and the zeroth order solution obtain
ed.

Since the flow field is infinite in extent there is no geometric
characteristic length. The boundary conditions arc also of such a

nature as to suggest a similarity type solution. Let Z-: “1/2,;3 and

¢l = £{7) + -S@:ﬁtz) + (1?‘:/;) £+,

(2-46)

G—Cg,"fl) = 'é—“",;{’ﬁo(Z) + ng; ﬁ,(@) + ( 7?-%)9{1(;) pone i

2

(2-47)
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and substitute them into the equations 2-40 and 2-4l. Assuming
%% << 41 , the terms may be grouped according to their order.
The net results are:

i) Zeroth Order

'ﬁ:f-l' ‘%i;:'-o

(2-48)
e
1 ‘ —
£ - 3[Cﬁo+ ﬁa] =0
(2-49)
where primes denote differentiation with respect to Z' . ’]:0 may he
eliminated by combining equations 2-48 and 2-49 giving
6 V4 '
.d_;!.g-ri{zz'é—o +QZ£’§}$O
age " g ag T
(2-50)

The boundary conditions, equations 2-~-44 and 2-45 become

(2-51)
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T
6, dé bJ dgz' ——
(2-52)
ii) First Order
o y P / ’
ﬁ, +§[Zﬁ+2+l]=—§£ﬂo 2
(2-53)
L4 4 / 2 YR
;E - E[Z’ﬁ, +3£,] =~g?£1ﬁo ,
{(2-54)
Fz/a D
where A = 5= 5 1:, may be eliminated from these

equations by combining them, giving

ARG
2 [
S-dlc' d"’l‘u { dﬁdv‘f{u_ids;éﬁ;_lgzd_&é_‘o
R -0 A £k ol A

dt 4% af a%
*‘5’7‘{ &ELJES d;d;"‘}

(2-55)

The boundary conditions are



33

a4,
j iz 4 = :
—pe
(2-56)
PR 2,
I;dé’;g'z'*o Mg-—b—t‘bﬁ.
(2-57)
Similarly one may obtain the equations for fz, f3, e e,

although these will ﬁnt he carried out here., In fact, only the merath
order equations will be solved. The purpose of this perturbation analy-
sis is primarily to show the effect of the neglected quantities. Note that
the perturbation parameter is fs/gzls which is inversely proportional
to the 2/3 power of the distance from the sink. Thus, the greater the

distance from the sink, the better the approximation.

2-6 Solution to the Zeroth Order Equations

We begin by rewriting the differential equation 2-50 and the

boundary conditions equations 2-51 and 2-52.

4% L . d, “dﬁ&

PO S TE T2 B
(2-50)
o=
daf,
o gz = - 1
Jd:“ ’
(2-51)
af, AL
— w0, 2 ey as { - £b=

(2-52)
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Note that the differential equation does not contain 'f, explicitly and it
is linear and homogeneous. Hence a solution is determined up to an
arbitrary additive constant. Without loss of generality one may. there-

fore, put
]Co(o) =0
(2-58)
Next observe that by putting

L= -0,

(2-59)
the differential equation and the boundary condition in equation 2-52

remain unchanged while the boundary condition in equation 2-51 becomes

Tat
j;‘gdl = |

(2-60)
Therefore,
flg)=-4.(-2) |
{2-61)
In other words, 5E, is an odd function of Z . Thus
#”
= 0
f, o) ’ (2-62)
oy
‘-Fo (D) =0 - (2_63)

The ditferential equation Z-50 is a sixth-order linear one and hence it
has six linearly independent solutions. One of those is, of course,
‘E, = constant. These six solutions will be denoted by K,i (Z,) , 1=0,

1, ..., 5, with, as mentioned before, K,(¢) = constant. The
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solutions K{ (E) will now be obtained in the form of power series.

The origin (=0 is an ordinary point of the differential equa -

tion 2-50. Hence let

(Y= 2,a. 0"

(2-64)

Substituting into the equation 2-50 gives the recursion relation

am% i N(Nnt3)
-a:_ = — ZI’ (M+6) (M+5) (i 4) (M+3) (Me) (1)
(2-65)
from which it may be demonstrated that
= (em-2)Ul  abm
T )
I, (2) = Zmé’ (bn+i)! (C? ’
(2-66)
= Com-l , T5\™
2 n =
K:L(Z) = Z Z.(_J) (bm+2)) ( 1 ) ?
m=o (2-67)
2, N
= (1) P »
Ky (2) Zméo (bm+3)] (‘?) (2-68)
(2 = qu?’:,(#r)% Cowne)tt! éa)m
4t e Clom+4)! *9 7 (2-69)
T 6
3, yv Lem 2N Lo
Kg(é) = ¢ ,né( ) (bm+5)! (?) y
(2-70)

where the triple factorial is defined by the formulae
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oM - 4N = o o= 4,
M = (m)[(’n-—a)f.’.’J
(—%JH!: 1
(2~71)

where mn 1s a positive integer.

The normalization of the series for K,; [;) is by the condition

d‘K,;Co) _
4yt

1, i=1,2,5.

(2-72)
These series are found to be absolutely convergent for all finite g
It is seen from equations 2-67 and 2-69 that K;@) and Q(g) are even
functions of é . Hence they cannot appear in the solution. Moreover,
in view of the normalization expressed in equation 2-72, the solution to
our problem is
iy

£ = £ K (@) + £ K@) + £ Ks @) |

(2-13)
e e

where the constants fF;’(D) , ]Co (&) , and ](b () Aare to be determined
by requiring that the solution satisfy the boundary conditions. The most
vbvious way of obtaining the numerical values of the K{(i) is, of
course, to sum the series. However, since the convergence of the
series becomes poorer for larger Z , one needs progressively
more Lerms as Z increases. Also the terms of the series becomae
very large and the value of the functions are differences between these

large terms. Without resorting to double or triple precision, even

computers cannot handle these large terms. The series being alternating
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and the size of each term becoming very large as & becomes large,
it is expected that the solutions Kt(‘;) are oscillatory functions with
rapidly growing amplitude. The most logical way then, to compute the
functions K;(Z) is as solutions to the differential equation by using
a numerical integration subroutine.

The functions [G(Z) were obtained by numerical integration
of the differential equation 2-50 with the initial conditions

{m)

£ ) =0 , mE i,
)
L () =1

(2-74)

They were found to be oscillatory functions of rapidly growing amplitude,
The numerical integration was performed on an IBM 7090 digital com-
putcr using a fourth order Runge-Kutta method with partial double
precision in the form of a subroutine called SCOOT originally program-
med by Fred Lesh and adapted to FORTRAN by Wilson Sileby. This is
a modification of D222 RW F. P. SHARE Distlribution No. 450 (Interna-
tional Business Machines), The step size used was 0. 002.

In order to determine the constants ]Cof(o) s ‘FomCo) , and

DK”E;) in equation 2-73,an asymptotic solution of the equation 2-50

will be obtained. For large Z , one may neglect, as a first approxi-

mation, the first term in equation 2-50. Thus the differential equation

reads

dzacg 4 df
— +  — =0 5
T2

“(2-T75)

which has the simple solution
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(2-76)

where A = constant. The neglected term is then

Lﬁ
e~ o %)

which for large Z is truly a higher order term. Successive approxi-
mations may be obtained by iteration. We shall, however, make use
of only the one term asymptotic representation, equation 2-76.
Vi I
In order to determine the valucs of the constants 'P,, (e}, ]t; (o},
et

and 'Fo (o) in equation 2-73 so that 7{,({) would satisfy the boundary
conditions, one matches the solution as given by equation 2-73 with

the asymptotic represeniation, cquation 2-76, at an appropriate value of

Z , say ZD . Thus one has the set of algebraic equations

I

Lo K/(2)+ £ k(L) + £ KSl) = ﬁf’ ,

! " F7 ” ey 1 4_ H
o Kg) + £00 K1) 1R ks@)=-5

4 " e L4 HHE I H
T k1g) + £0) Ky (2) + £ Ko (3) - ZE"; )

(2-77)
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INOR £ (o)
to be solved for the two constants of = y and 'b’ = - .
. 7 £ Ce) 1503
These were done for the three values of éo of 10.0, 15.0, and
20.0. They are found to be as follows:
P2 frrer
£, <o) £ (o)
o = . = —
Z1:! :FD (ﬁ) (_Y :é,(b)
10.0 -0,373282 0.336978
15. 0 -0.373282 0.336978
20.0 -0.373282 0.336978

The solution of the equation 2-50 subject to the set of boundary condi-

tions

Ler=0o
J:o (e) ==1 >
L% = o .

" ) = 0373282

?



4.0

ey

£l =

Irery
[ ) = —0336978

(2-78)
was obtained from an IBM 7090 computer using the same program as
before. From this solution, it was found that _fo.,, 1.762 as {— oo
Thus the solution should be normalized by multiply ing by the number
-1/2(1. 762) in order to satisfy the boundary condition in equation 2-51.

The normalized solution is listed in table 2-1 and plotted in figure 2-2.

2-7 The Dengity Field

In the previous section, the zeroth order solution for the stream

function was obtained. The velocity as a function of space is also presen-

/
ted in the form of jc'o {(Z) . Another interesting function is, of course,
the density function § or “,(Z) . Equation 2-48 for 4, and the
boundary conditions fﬁo -0 as [ -» o may be used to obtain

the solution. It may be shown from equation 2-48 and the boundary

conditions that

L. ¢ /
PR & )
a z.a) = - _"'-_5—_—' dZA le

°© o - (2-79)

The functions ‘]:b(;) and ﬁn, (Z) were computed numerically
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Table 2-1 The Non-dimensional Stream Function ££§J
and its Derivatives, £(§) = '1!/'6?(."50/ ,

A y
N

i,

4 £y - £l - £
0.0 0. 0000 0.2838 0.0000
0.1 0.0284 0.2832 _0. 0106
0.2 0. 0566 0. 2817 ~0. 0211
0.3 0. 0847 ©0.2790 ~0. 0313
0. 4 0.1124 0.2754 -0. 0414
0.5 0.1397 0.2708 ~0. 0510
0.6 0.1665 0. 2652 -0, 0602
0.7 0.1927 0.2588 ~0. 0689
0.8 0. 2182 0. 2515 -0.0769
0.9 0. 2430 0, 2434 -0, 0843
1.0 0. 2669 0. 2346 -0.0910
1.1 0.2899 0.2252 -0. 0969
1.2 0. 3119 0. 2153 -0.1020
1,3 0. 3329 0. 2048 -0.1063
1. 4 0. 3529 0.1940 -0.1098
1.5 0,3717 0.1829 ~-0.1124
1.6 0. 3894 0.1716 -0.1142
1.7 0. 4060 | 0. 1601 ~0.1151
1.8 0. 4214 0.1486 _0.1152
1.9 0. 4357 0.1371 -0.1146
2.0 0. 4489 0.1257 ~0.1132
2.1 0. 4609 0.1145 -0, 1111
2.2 0. 4718 0.1035 | -0.1083
2.3 0. 4816 0.0928 -0.1049
2.4 0. 4904 0. 0825 ~0.1011
2.5 0. 4981 0. 0726 -0, 0967
2.6 0. 5049 0. 0632 -0, 0920
2.7 0.5108 0. 0543 -0, 0869
2.8 0.5158 0. 0458 ~0. 0815

2.9 0.5200 0. 0380 ~-0.0759



3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4,0
4,1
4,2
4,3
4.4
4,5
4.6
4.7
4.8
4,9
5.0
5.2
5.4
5,6
5.8
6.0
6.5
7.0
7.5
8.0
9.0
10. 0
12.0
14. 0

- *

°

O O O O O O o O o o o o 0O o O O O O oo c 0O oo o 000 00 0000 o

£

. 5234
.52601

. 5282
. 5297
. 5306

5311

. 5312

.5309
.5303
. 5295
.5284
. 5271

. 5257
. 5242

5227

. 5211
. 5194
. 5178

5163

. 5147

5133

. 5106

5082

. 5062
. 5045
. 5030
.b020
. 5016

5013

. 5010
. 5007
.5005
. 5003
. 5002
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~-£12)

0. 0307

0. 0239

0.0178

0.0122

0.0072

0. 0028

~-0. 0011
-0.0045
-0.0074
-0.0098
-0, 0118
-0.0133
-0, 0145
-0.01lb3
-0.0158
-0. 0161
-0. 0161
-0. 0159
-0.0155
-0, 0150
~-0.0143
-0.0128
-0, 0110
-0. 0092
-0, 0074
-0.0058
-0,0027
~0. 0014
-0. 0007
-0, 0004
-0. 0002
-0. 0002
-0, 0001
0. 0000

F
-£,(2)
-0.0702
-0, 044
-0. 0586
-0, 0529
~-0.0472
-0. 0417
-0.0364
-0.0312
-0, 0264
-0.0218
-0.0176
-0. 0136
-0. 0100
-0. 0067
-0,0038
-0. 0012
0, 0011
0.0030
(0.0047
0. 0060
0. 0071
0.0085
0.0091
0. 0090
0. 0D&B
0. 0076
0. 0048
0.0023
0. 0007
0.0002
0. 0001
0. 0001
0.0000
0.0000
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4 - 1) ~£ ~-£12)
20.0 0, 5001. 0. 0000 0.0000
25.0 . 0,5000 0. 0000

0. 0000
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Figure 2-2

The

non-dimensional stream function and its

derivatives.
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on an IBM 7090 computer in much the same way as the function JC,, ).

They are tabulated in table 2-2 and shown graphically in :Eigufe 2-3.

2-8"  The Withdrawal Layer

From figure 2-2, the velocity distribution may easily be visuali-
zed. The flow field indeed 1ooks like the one shown in figure 2-1 with
the withdrawal layer growing in thickness like x"™ . If one defines

the 3 as the thickness of the forward flow, then from figure 2-2 or

table 2-1,

T 14 x
S0 = ———
«

[

{(2-80)

The significance of the houndary layer assumption may now be

readily seen. From equation 2-80 .

¢ 714
x
% X (2-81)
For large enough x, % may be made as small as one please provi-

ded o, 1is not zero. The region of validity of the boundary laver
assumption is thus strongly dependent on both x and o
The other parameters assumed small for the validity of the
solution are : §éo<¢, xz/3 , which is the perturbation parameter;
%/Vo(o x?la , which occurs disguised as A= ’%— in the first order equations
(equations 2-54 and 2-55}; and €é , which is the total relative change

in density in the relevant flow field,
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Table 2-2 The Non-dimensional Density Function ﬁ,,cg)

. ¥
and its Derivative. ’fw (2) = glsd'cg;»z) = = 2&:%'5_

' ' if e g
L%t ()
' Dy :

L £.(2) %,(2)
0.0 0.0 _. 1426
0.1 -, 0142 -. 1421
0.2 -. 0284 -. 1407
0.3 -, 0424 -.1384
0.4 -. 0560 -. 1351
0.5 -, 0694 -. 1310
0.6 -. 0822 -. 1261
0.7 -. 0946 ~.1205
0.8 -.1063 -. 1141
0.9 - 1174 . 1071
1.0 - 1277 -. 0995
1.1 - 1372 -. 0915
1.2 -. 1460 ~. 0830
1.3 -.1538 _. 0743
1.4 -.1608 -. 0653
1.5 -.1669 -. 0562
1. 6 -.1720 -. 0470
1.7 -, 1763 . 0379
1. 8 -.1796 -. 0289
1.9 -.1821 -, 0201
2.0 -.1837 -. 0116
2.1 -.1844 -. 0034
2.2 -.1844 . 0044
2.3 -.1835 . 0118
2.4 -.1820 . 0187
2.5 -.1798 . 0250
2.6 -.1770 . 0308
2.7 . 1737 . 0359
2.8 -.1699 . 0405
2.9 -.1656 . 0445
3.0 -.1610 . 0479
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4 $,(2) 1.0
3.1 _.1561 . 0506
3.2 . 1509 . 0528
3.3 ~.1455 . 0544
3.4 -.1400 . 0555
3.5 -.1344 . 0561
3.6 .. 1288 . 0562
3.7 -.1232 . 0558
3.8 - 1177 . 0550
3.9 - 1122 . 0539
4.0 -. 1069 . 0525
4.1 1017 . 0508
4.2 . 0967 . 0489
4.3 -. 0920 . 0468
4:4 -. 0874 . 0445
4.5 -. 0831 . 0421
4.6 -. 0790 . 0397
4,7 - 07H1 . 0372
4.8 -. 0715 . 0347
4.9 ~.0AR2 .0322
5.0 -. 0651 . 0298
.2 -. 0596 . 0282
5.4 -. 0550 . 0210
5.6 -. 0R1Z2 L0173
5.8 ~. 0480 . 0142
6.0 -. 0455 . D116
6.5 -. 0409 . 0073
7.0 -, 0379 . 0055
7.5 -. 0353 . 0047
8.0 -. 0331 . 0041
9.0 -. 0294 . 0033
10. 0 -. 0265 . 0027
12. 0 - -.0221 . 0018

15,0 -, 0177 . 0012



Z

20.0
30.0
50.0
100, 0
1000. 0
10, 000. 0

1. (0)

-, 0133

-. 0088

-. 0053

-. 0027
. 0003
-, 0000

48 -

1.

. 0007
. 0003
. 0001
. 0000
. 0000
. 0000
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2-9 Summary

The solution to the problem of selective withdrawal from a
stratified reservolr for very low flows has t‘hus been obtained. The
neglected terms in the equations may be shown to be of order ?/po(ongs )

%/Vo(o x’z’? , S/x , and &b or higher by simply using the
geroth order solution and calculating the neglected terms.

The theoretical solution by Kao indicates that as the discharge
decreases to zero, the thickness of the withdrawal layer also decreases
to zero which is, of course, not very realistic. This is because Kao's
solution, being for the inviscid case, is not applicable as the discharge
decreases to zero since viscosity and diffusivity become increasingly
more important. It is rcasonable to expect that as the discharge tends
to zero, the flow field would tend to a limiting flow field. The solu-
tion presented herein is exactly this limiting solution of the stratified
flow toward a line sink as the flow rate tends to zero. Kao's solutiouw,
on the other hand, may be thought of as the limiting solution for the
other extreme of infinite Reynolds number.

To supplement this analysis, a series of experiments were

performed. These will be discussed in the next two chapters.
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CHAPTER 3

APPARATUS AND PROCEDURE

To supplement the analytical solution, a series of experiments
were perf(')rmed.in the laboratory which consists of withdrawal from a
slit on the side of a tank filled with a stratified liquid. The zeroth order
solution developed in the previous chapter is strictly applicable only
when the parameters €8 %éh,o,f”—' s ?/Pdaxz’; ,and 9% are much
less than unity. Experiments were performed in an attempt to see how
much less than unity they must be for the validity of the zeroth order
solution and to investigate the departures from the solution when they
are no longer small. The experimental results will be discussed in
the next chapter.

In this chapter the procedure and apparatus used for the exper-
iments will be discussed. In these experiments, density gradients were
achieved in two different ways: i) by means of a temperature gradient
(these runs are designated as T-series r‘uné), ii) by means of dissolved
salt (designated as N-series runs).

T'he experime ntal procedure will first be described in a gener-

al brief way to give an overall picture. The apparatus will then be
described in greater detail. Finally, the individual steps in the experi-

mental procedure will be explained in detail.

3-1 General Description of the Procedure

For the N-series runs, the experimental reservoir was first
filled with layers of water containing appropriate quantities of salt (NaCl)
to give a linear gradient of density from top to bottom. This water was

then allowed to stand for one evening or about 15 hours so that the density
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distribution would become smoothly linear by molecular diffusion. The
next morning the density profile was measured indirectly by measuring
the electrical conductivity of the solution at various levels in the rcscr-
voir., The discharge valve was then opened and the flow rate regulated.
After a.bout five to ten minutes for the system to reach a quasi-steady
state, dye particles were dropped into the reservoir at different stations
upstream of the slit. As the dye particles féll, they left distinct verti-
cal traces. Photographs were taken at time intervals so that the hori-
zontal motions of the vertical dye lines were recorded intermittently.
Typical photographs are shown in figure 3-1. Approximately ten min-
utes after the time the first set of dye particles were introduced, a
second set was intréduced in the same way and photographs taken as
before. The discharge valve was then shut off and the remaining liguid
in the reservoir saved. After the dye had disappeared by diffusion
(about 24 hrs. ) a density profile was taken again and another experiment
could be performed with the remaining liquid at a different flow rafe.
For each filling of the reservoir, three experiments were performed.
After that, the color of the water became so blue from the dye that no
further dye streaks could be readily distinguished.

For the T-series runs, the reservoir was filled with layers of
water at appropriately varying temperatures. A temperature profile
was then measured with a thermometer and the experiment was performed
immediately in the same way as for the N-series runs. Only one experi-
ment was performed for each filling of the reservoir.

The discharge was measured volumetrically for both series.
Velocity profiles were measured from displacements of the vertical

dve lines on photographs taken at different times, (figure 3-1).
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Figure 3-1

Typical time lapse photographs of dye lines
(Run N-50-0, 5)
(A) attime t =t

O
(B} at time t '—'tD-F hf gac

(C) at time t

o

tD+ 110 sec
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3-2 The Experimental Reservoir

The reservoir for the selective withdrawal experiments was
a long tank constructed of clear lucite, 3/8" thick. A schematic
drawing and a photograph of the reservoir are shown in figure 3-2 A
and B respectively. A detailed drawing of the discharge end of the
reservoir is also shown in figure 3-2 A. It is 45 ¢m deep, 250 cm
long, and 26 cm wide with a milk-white lucite partition in the middle
along the length of the tank extending from one end to a point 13 ¢cm from
the opposite end. This partition essentially doﬁbles the Iength of the
reservoir. On the discharge end was a slit 0.15 cm wide located 16 cm
from the bottom and extending the width of the tank as divided (12. 6 cm).

Two valves in series were connected to the slit through a diffuser.

3-3 The Conductivity Probes and the Sanborn Recorder

Two conductivity probes were used in the N-series runs to
measure the electrical conductivity of the salt solution as a measure
of its density. These probes were developed by the Hydrodynamics
Laboratory at the Massachusetts Institute of Technology. The probes
are shown schematically and photographically in figure 3-3, The elec-
trodes were 1/8" x 1/8" x 30 mil platinum plates 1/8' apart. They were
platinized so that polarization and capacitance effects were minimized.
The longer one was used for the measurement of the conductivity pro-
file of the stratified liquid in the reservoir, The shorter one was instal-
led at the discharge end of the tank for the continuous measurement of
the conductivity of the diséha.rging water as a function of time.

The longer one was calibrated, although the shorter probe was

not. The calibration was by means of a sct of standard solutions made
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Figure 3-2 A  Schematic drawing of tie experimental reservoir.
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up by carefully weighing out the amounts of salt to make solutions of
specific gravity L. 00, 1. 0005, L. 001, 1.002, 1,005, 1.010, L.015, 1.020,
a.nd 1.025 respe.ctijvely at a temperature of 22 1/2° C. The solutions
were stored in tightly stoppered ground glass bottles. This calibration
was. performed before each run. It was not necessary to calibrate the
short probe because the conductivity of the discharging water was found
to be constant throughout each experiment. The conductivity of the
discharge was measured by collecting some discharged water and
measuring its conductivity by the long probe which was calibrated.

A Sanborn Two-channel Recorder (Model 150) with 1100 AS
Carrier Ampliflers were used for the measurement of the conductivity.
A circuit diagram showing both the half bridge elements used in con-
junction with the conductivity probe and the connections to the internal
Sanbourn elements is shown in figure 3-4. The measurements are quite
accurate for the range of conductivity encountered in the experiments.
The error in the parameter € , the density gradient, is estimated
to be less than three percent, making only 0, 5% error in the parameter

X, attributable to € .

3-4 Dye Particles

| To trace the motion of the fluid, a blue dye (Blue A-5-G-3
obtained form Krieger Color and Chemical Co.) was used. Dye parti-
cles were droppedat various stations along the reservoir simultaneously
with the aid of a special long triangular wooden trough on the top of the
tank, Drye particles of about 0,5 mm to 1 mm diameter were selected
and placed about 10 to 25 cin apart along the trough, and then turning it

over by hand, all the particles could pbe made to drop into the water in
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recorder for the measurement of the conductivity.
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the reservoir at the same time.

3-5 Photography

A Nikon F single lens reflex 35 mm camera was used to photo-
graph the dye streaks in these experiments. It was equipped with a
135 mm £/3.5 Auto-Nikkor lens. Kodak Plus X film was used al ASAI60
and developed in D-76 diluted ;1. The rcason for the telephoto lens is
to minimize parallax error which was calculated tc be less than 2% for
the setup used.

Since the tank is 250 cm long and only 45 ¢m deep with a length
to depth ratio of about 5 to 1, and since the length-width ratio of a
35 mm frame is 1 1/2 to 1, threc photographs were taken for the com-
vlete coverage of the tank so that the film frame was fully utilized.
This is so that tne degrce of enlargement was kept at 2 minimum with-
out resorting to a larger format camera. Thus the first photograph
would cover from x =0 to about x = 80 ¢m, the next x = 80 ¢m to x
= 160 cm;, .and the last one from 160 cm to 250 cm. An ordinary tripod
was thus not suitable to position the camera. For correcil suserposition,
the camera must be brought back to the same position for the photographs
of the same location in the reservoir. A special camera stand was made
of woor and was clamped onto a table which was never moved; on the wood
are tnree blocks against which the camera may be rested for its correct
positioning. Thus the camera could be quickly and easilly moved among
the three positions. A schematic drawing is shown in figure 3-5 and a

photograph of the stand and camera in use is shown in figure 3-6.

3-hA Fi.lli.ng the Reservoir
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Figure 3-5 The photographic setup
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Figure 3-6 The camera and camera stand in use.
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A schematic diagram of the operations followed to produce a
density-stratified reservoir is shown in figure 3-7. Before the begin-
ning of the filling operatié.n, a stock solution of NaCl was made by dis-
solving six pounds of Na C1 in distilled water to make eighteen liters of
stock solution. The amounts of salt necessary to produce 20 liters of
solution of the desired densities were computed and the corresponding
volumes of the stock solution calculated. This volume for the lowest
layer was then measured out from the stock solution and poured into
a 20 liter plastic bottle with a bottom drain used for filling the reser-
voir, Distilled water was then added to make up 20 liters in the filler
bottle; the liquid in this bottle was then thoroughly mixed by blowing
air into it through' a glass tube 50 that the air bubbles rose from the
bottom of the bottle, The thoroughness of this mixing was checked by
inserting the conductivity probe into the solution and checking the con-
ductivity at various positions. The bottom drain of the filling bottle
was then opened and the liquid was allowed to drain siowly onto the
floating filling device and into the reservoir. This filling device is
shown in ﬁguré 3-8. The water first entered through a hose, then
went through the many holes in the lucite tube and the screens. Finally
it floated onto the Watef already in the reservoir. It took about half
an hour to drain ane bottleful in this way. When all the liguid in the
filler bottle was drained the process was repeated for the next layer.
Since a total of twelve or thirteen layers were used, it usually took one
working day to fill the tank,

For the T-series runs where the density stratification was due
to temperature variations, a direct connection between the laboratory

water tape and the filling device was established., The faucets were
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adjusted so that the water filling the reservoir was of the predetermined
temperatures. Two sets of faucets were used in such a way that when
one set was filling the tank, the other one was on standby or adjusted to
the correct temperature for the next layer. It usually required five
hours to fill the reservoir this way.

Because of heat losses and daily changes in temperatures in
the la.boratory, it was found in both the T-series and the N-series
experiments that there was a layer on the surface which was homoge -~
neous. This layer was the extent of vertical convection. In the T-series
runs this might be as much as 10 cm thick. In the N-series runs, this
was rarely over 5 cm. As long as the withdrawal layer was well within
the properly stratified zone, however, this homogeneous top layer
would have no effect. This layer may be seen in figure 3-1 by the dye

diffusion through overturning.

3-7 Measurements of Conductivity Profiles and Temperature Profiles

When the reservoir was filled with a salt-stratified fluid in the
N-series runs, it was allowed to stand for approximately fifteen hours or
overnight so that diffusion would render the density distribution smoothly
linear. The density profile was measured indirectly by measuring, in
tilis case, the conductivity profile. After the calibration, which was
done before each run, the longer probe was mounted on a point gage and
the conductivity préfile ta ken by measurements at 0, 05 ft intervals, first
with the probe going down from the free surface to the bottom and then a
second traverse in the othér direction, A very slight difference was
observed between the two measurements and the average was taken as

the correct value., From the calibration, the specific gravity
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may be obtained directly. The density profile may then be plotted and
the gradient of dens.ity,, € , obtained. A typical density pr.ofile is
shown in figure 3-9. A photograph of the pr'_ocess of measuring the
conductivity profile is shown in figure 3-10.

F.or the T-series runs, the temperature profile was taken at
the beginning and end of each experiment. These were almost identical
and the mean was taken as the correct value. The specific gravity of
the water corresponding to the observed temperatures were obtained

ifrom the table in the Handbook of Chemistry and Physics, 38th Edition,

p. 1990. The value of the specific gravity so obtained is, of course,
slightly incorrect since the table is for distilled water and tap water was
used, However, the important parameter ¢ , the density gradient,

is essentially correct.

3-8 Measurement of Discharge

After the conductivity profile (in N-series runs) or the tempera-
ture profile (in T-series runs) had been measured, the valve at the dis-
charge end of the tank was opened and the flow rate adjusted. The flow
was by gravity., The discharge went through the slit, the diffuser, the
valves and through a three-foot length of plastic tubing. The end of the
tubing was inserted in a beaker and the discharge overflowed over the
rim of the beaker, thus maintaining a relatively constant head during
each experiment; The discharge was measured volumetrically by
allowing the flow to go into another beaker for an interval of time and
measuring the volume. This was done three times during each experi-
ment, once at the beginning, once just before the introduction of the

second set of dye particles and once at the end of the experiment. In
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Figure 3-10 Measuring the conductivity profile

with the conductivity probe and the Sanborn recorder.
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all the N-series runs and two of the T-series runs, these three measure-
ments agreed to within 0, 5% of one another. In the other two T-series
runs, T-16-0.6 and T-18-2.0, because of a slight lecak in the plastic
tubing connection, these measurements varied about 5%.

The discharge measurements were not used directly in the
calculation of any regults which will be prescnted in the next chapter.
They were made merely to establish the fact that the discharge was
constant during each experiment. The reasons for not using the dis-
charge measurements ag measured volumetrically are: (i) the sidewall
effect and (ii) the effect of the finite length of the tank. These will be

discussed fully in Chapter 5.

3-9 Measurement of Velocity Profile

After waiting a period of 10 minutes for the flow to reach a
quasi-steady state, the dye particles were dropped from the trough and
vertical streaks were formed at various distances upstream from the
sink, This process may be readily visualized with the help of figure 3-1.
Photographs were taken with the camera succes gively in the three camera
stations. After roughly fifteen pictures over a 15-minute period, ano-
ther set of dye particles was dropped and another series of photographs
taken.

When the film was developed, the negative of the first picture
was then placed in the enlarger in the darkroom and the magnification
adjusted so that the projected image was either full or half of frue size.
A dye streak was then traced on a sheet of paper. Reference marks in
the shape of crosses on the front side of the tank at various distances

upstream were also traced onto the paper. A horizontal line at the
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level of the sink had also béen drawn on the side of the tank and was also
traced. The negative for the next bhotograph taken at the same position
was then projccted on the same paper, which was lined up with the help
of the various cross marks and the horizontal line at the level of the
sink. The new image of the same dye streak may then be traced onto
the same piece of paper. This tracing was repeated for other suitable
profiles. Approximately ten profiles were selected with locations bet-
ween about 15 cm to about 175 ¢m from the sink. The velocity profiles
may then easily be calculaled from these traces by measuring the dis-
tance travelled by the dye lines in known time. The station or distance
from the sink, =x, may be determined from the scale fixed to the side

of the tank.

3-10 Measurement of Time between Pictures

To measure the velocity by using the dye traces, it was neces-
sary to know the time interval between pictures. This was accomplished
by using the flash contact on the camera and the remote time marker on
the Sanborn Recorder. The ctamera flash contacts were connected
through a relay (since the internal contacts in the caméra should not
be subjected to too much current or voltage) to the remote time marker
L:l;JIl[;dLll,S on the Sanborn Recorder. When the picture Wa,s. taken, a mark
was produced on the recording paper. This measurement was checked
against a stop clock and found to be very accurate. Typical time inter-

vals measured were 20 seconds and the accuracy was within 0, 2 second.
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CHAPTER 4

EXPERIMENTAL RESULTS

The analysis presented in Chapter 2 for withdrawal from a
stratified reservoir is valid provided that eé, %/:Dd., X3 %/Vo(,)(ﬂa , and
$/x are all much smaller than unity. These conditions are satisfied
when the flow rate is small and when x is large as discussed at the end

of Chapter 2. In the experiments performed, ¢5 was less than 0. 01,

4 o™ varied from 107! to 103, Yvu x"® varied from 1072 t0 10, and %
from 0.03 (v 0.3. Nolice again that three of these parameters are neces-
sarily large for small x, that is, near the sink. Therefore, in the
experiments no data were collected from the region close to the sink.,

In this chapter, the experimeunls will first be outlined in general
wi—th regard to the ranges of the parameters covered. Then the signifi-
cant experimental results will be presented one by one and finally the

conclusions derived [rom these experimenls will be sununarized.

4-1 Basic Data for the Experiments

A total of twenty [ive experlments were performed with waler
as the fluid. The density variations were achieved by either a tempera-
ture variation or a variation in the conceniration ¢f salt (NaCl). The
values of the pertinent physical parameters involved are listed in table
4-1. This tabhle will now be explained column by column.

Column 1. Run number. The letter N beginning the run number implies
salt-induced density change and the letter T implies temperature-induced
density change. The number in the middle is a nominal rough estimate

of the density gradient in 10_-5cm-1. The last number is a rough estimate

of the total discharge in cc/sec (total discharge Q = gx width of the tank]).
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Thus "Run no. N-8-1,7'" means that the density gradient is induced by

salt, that the hydrostatic density gradient é=1£' is roughly

] dj
0.00008 cmnl, and that the total discharge is roughly 1.7 cc/sec.
Column 2, e ="?’>- ;-’-‘;-(-" is the density gradient, which is measured at

the beginning of each eicperiment. The method of measurement has
already been described in section 3-7.

Column 3, q |, 'the unit discharge, ié obtained by dividing the total
discharge, measured volumetrically at the outlet, by the width of the
tank. The local unit discharge may be different from this due to the
sidewall effect and the effect of the finite length of the tank. These will
be discussed in sections 5-1 and 5-2,

Column 4. D, the diffusivity, is either the molecular diffusivity of
salt in water or the thermal diffusivity of water. These values have

been obtained from the International Critical Tables, Vol. V, p. 67,

and the Handbook of Chemistry and Physics, 38th Edition, p.2257

respectively.

Column 5. T , the temperature, was measured by a thermometer

at the end of each experiment in the N-series experiments. For the
T-series experiments, in which the temperature of course changed with
depth, the ranges of temperatures are given.

Column 6. ) , is the kinematic viscosity. These values are for pure

water taken from the Handbook of Chemistry and Physics, 38th Edition,
p. 2030,
Column 7. d , is the total depth of the water measured at the begin-
ning of each experiment.

. €q e | . )
Column 8. :-.(5—};-) is a parameter computed from the previous

2

columns. In all the N-series runs VY =0~ cmzlsec was used in this
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calculation. In the T-series runs, the means of the range of the -/

values were used.

4-2 ‘Measurement and Calculation of Data from Velocity Profiles

Besides the basic measured quantities listed in table 4-1 and
the velocity profiles discusscd below in section 4-3, the following
parameters were measured from selected dye traces {(refer to figure
4-1):

i) x , c¢m, the distance of the dye traccs from the sink.

ii) umax(x) , ¢cm/sec, the maximum horizontal velocity on a vertical
profile at distance x . This is found to be always along the level of the
sink .

iil) ¥, (x), cm, half the thickness of the withdrawal layer as measured
by the intersection of the dye images. This measurement is not very
accurate since it is strongly influenced by any misalignment in the pro-
cess of superposition of the dye images.

iv) q {x) ., cmzlsec, the forward flowing unit discharge as measured
by the area enclnsed.by the dye images. Throughout the calculations
leading to the experimental results, d; > the measured local unit for-
ward discharge, has been used instead of the average unit discharge

q . measured at the outlet. More detailed explanations of the reasons
for using de rather than q will be discussed in Chapter 5. Suffice it
to mentién that the finiteness of the tank in length and width is the primary
reason for this choice. Thus q was never used in the calculation of any
experimental result.

To facilitate comparison between the experimenfal result and

the analytical solntion, the same change of q to qp may be
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acéomplished in the analytical solution, Referring to table 2-1 and

figure 2-2, it may be verified that

i
<o
[

% £,(357) o531
E

LY.T-
theery £ (w)

(4-1)

From these measured quantities, the experimental parameters

such as
e} 2" %
Y% = = - ’ ———
= & Do, X

9: %, (0-267)

may easily be calculated.

4-3 Similarity in the Velocity Profiles.

As has been discussed in sections 3-1 and 3-9, a number of
velocity profiles were measured for each experiment. These velocity
profiles were for various distances upstream, i.e. various values of
x ., From the experimental observations, it {xras noted that there was
similarity among these velocity profiles; in other words, when the
velocity profiles were plotted in the form u/umax— vs. y/¥, , the curves
were the same for all the runs and all the values of x except those very

near the sink. Here umaxis the maximum velocity which was found tao

be always at the level of the sink and ir'o is defined to he

- %
g, = lmyl(O'%S) ,

(4-2)
where q is the forward flowing unit discharge; and the factor 0.955

is used to facilitate comparison with theory, as described below (see



79

figure 4-1). In plotting the data this way, all the velocity profiles pass

through the point 1-;&-— =1at L = 0. Also, in defining §, by
' : max Ys

equation 4-2, the area under the curve from y = 0 to the point where

” 1. crosses the . axis is forced to he a constant, since

!
J 0958 ?-F = (09552

v,
(%
| ?

The purpose of the dimensionless velocity graphs, figures 4«2
to 4-30, is to demonstrate the similarity in the shape of the velocity
profiles for the various experiments. Approximately three to five
profiles were selected at random from each experiment and plotted in
this way. This similarity in the velocity profiles is one of the most
significant results of the experiments.

Although strictly speaking the analytical solution for the velo-
city distribution should not be applied to the majority of the experiments,

Vs, ._-.Z- . In fact the num-

max Yo
ber 0. 955 in the definition of 37° in equation 4-2 was so chosen that the

it may also be represented in the form

analytical solution represented in that same way, would pass through the

point -0 al 2 =1. Asa comparison, the analytical solution

o
has bée;ngfawn in each of the figures 4-2 through 4-30, as the solid line.
It is readily seen that as far as the shape of the velocity profiles is con-
cerned, the experimental results fit the analytical solution extremely well
even though the analysis was carried out for values of €§ 5/04 ;
%/:Dd,xw; , and %'/dex‘”& all small compared to 1,

From figures 4-2 through 4-5, where complete velocity profiles
were shown, it may be seen that the profiles were symmetrical about

the line y = 0 . Thus, in figures 4-6 through 4-30, oniy' the mean of

the measured profiles above and below the level of the sink y =0 was
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presented.

From these graphs it may therefore be concluded that the shape
of the velocity profiles u(y) , obtained from the experiments, is the

same as that predicted by the analvsis presented in Chapter 2.

4~-4 An Extension of the Zeroth Order Solution

In section 4-3 {equaiion 4-2}, 7y, was defined to be a length
by which the vertical coordinate v was normalized so that the area
under the curve would be constant. bBut there is another way that this
- length ¥y, may be interpreted which will have direct bearing on the
conclusions which will be drawn from these experiments later.

In the zeroth order solution cobitained in Chapter 2, the principal

result is

ok g

ttg, "o Wy
X

1LC%;%) =

(4-3)

!
where, as defined before, o, = (".c'j) ke

5 The function -ﬁ(l) is tabu-

lated and illustrated graphically in Chapter 2 (table 2-1 and figure 2-2}).

/
‘Fo (Z) is symmetrical about / = 0 and hence

oly oo .
Umax = :%}, ﬁ:(o) =-(02p4) ',Z?/Ia g

(4-4)
where the number-0, 284 is the value of f,fh) as obtained in Chapter 2.

In terms of qF {as defined by equation 4-1), eguation 4-4 mavy be

rewritten

—-(0.267) 22k

AL ¢ rf
mayx = xug .
(4-5)
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-]

Now in equation 4-5. the only gquantity which is not kinematic is of

The kinematic qua.xititie's u

max 9 and X may very simply be

measured in the dye traces. Let one postulate that in cases when
%/.’P'd_.,x% is no longer gmall, the same zeroth order solution may be
applied provided one allows the quantity «, to vary. Hence define

% = O,Z(o where o is the value obtained from the experimental velocity

profiles. Then

!
g/ x
_ { l max‘

f
% %f (0"%’7) }meaSur-ed )

(4-6)
There is, however, another way of obtaining S{ , Yl Yione hased on
qﬂ'o , which is half lhe thickuness of Lthe withdrawal layer as rueasured

from the dye lines. ¥From the analytical solution in figure 2-2, for

d°0
£(%L)=0
-] X;

we find

(4-7)
Now y, and x may be measured and another S( may be computed by

the formula

0
= D(, P D(
0 30
14-8)
4 —
It turns out that S{ = SC and y, = ¥y, within experimental error. Thus,

the zeroth order solution may be applied in all the cases obtained in the

experiments provided one uses the appropriate value of «



111

4-5 The Experimental FParameter éC = D(/o(a

As explained in the previous sections and as may be seen in
figures 4-2 through 4-320, the meroth order solution ubtaiued in Chapter
. 2 is remarkably accurate provided the value of o, is replaced by o ,
even though %/’Do(g;(% and %/,go(ox""? are no longer small, It is
therefore of the utmost importance to investigate how the value sf—_-%
is related to the other physical parameters since once /yf_is known, the
flow field is known. In these experiments, when ‘{/W’xzfs , 1/70(9 ;("/5
are much smaller than unity, one expects % to be unity sincc the zcroth
order solution would then be directly applicable. The value % as
computed using the equation 4-6 was plotted against the variable ‘%‘/p,(af@.
For each of the experiments separately they are as shown in figures 4-31
through 4-35. A straight line is drawn through each group of points and
these lines are compiled in figure 4-36. The points representing the
T-geries runs are slightly displaced from those of the N-seriea runs.
This is because the quantity D/V was 1.25 x 107° for the N-series runs
and 0.150 for the T-—s‘eries runs. However, this displacement is not
very large and is in fact within the experimental scatter. The experi-
mental scatter may be attributed to several causes which will be des-

cribed and discussed in Chapter 5.

4.6 Summary

The conclusions from the experiments may be summarized as
follows:
i) When the conditions €4 , %/Dd.,x% ) %/Woxz'a s g/x << 1 are
satisfied (- Q‘ZWG;/; < 1 in the experiments), the zeroth oi‘der solution

in Chapter 2 describes the flow field quite well (within approximately 10%).
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11) When these conditions are not satisfied {1 < q/ %(log in the experi-
Dol X
ments), the zeroth order solution may still be applied providec one now
replaces o, by o@=%o . 5{ as a function of qa‘/ 2/3 is presen-
] 73l X
ted in figure 4-36.

iii) In all the experiments, the vclocity profiles are similar.
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CHAPTER 5
DISCUSSICN OF RESULTS

In Chapter 2 anamlysis was presented based on the assump-
tions that the parameters ¢ , f% , %d.,‘f“’ , anc %’/4/.:.{, x:..'s
arc small. The fluid was assumecd to be linearly stratified, and to
extend to infinity. In Chapters 3 and 4, a series of experiments have
been described. In these experiments, an atlempt was rmade to dupli-
cate the geomelric conditions assumed in the analysis, but, of course,
the fluid region in the tank is not infinite in extent. Also, because of the
inherert difficulty in recirculating a miscible stratified fluid, the flow
wa s not steady. These various effects will be discussed individually
in greater detail in this chapter.

A discussior of the errors involved in the measurcments of the
various quantities will also be included in this chapter. The technique
of the dye-streak tracer is the only reasonable one to use in this secries
of experiments sincc it was necesgary to measurc the velocity field
{vertical velocity profiles at varicus horizontal stations) in a short
time (about 20 minutes).

Discussions of the thecretical solutien, its validity, its relation

to Kao's solution, ancd its applicability are also presented.

5-1 Discussion of the Firite Length anc Depth of the Experimental

Tank

In this section it will be demonsirated that the errcrs due 1o
the finite length and depth of the tank are sccondary and that the experi-
mental reservoir is an adequate one for the range of experiments per-

formed. It was both assumed in the analysis and observed in the
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experiments that the bulk of the flow is confined to a thin layer of
thickness 8(:&). One may, therefore, neglect the effect of the finite
depth in the experiments if b is much smaller than the depth, This
was observed to be the cas;e in almost all the experiments, as the lar-
gest value of % observed was about 15 em (in Run N-8-11.7) com-
pared to the total depth of about 45 cm. Since 45 cm is the maximum
depth possible, no experiment was performed especially to investigate
the depth effect. In all the runs and for each velocity trace, there
always ewist two finite regions, one near the water surface and the
other at the bottom where the dye traces did not substantially move.
This may be seen clearly in figure 3-1. Thus, it is believed that the
depth effect is gecondary.

The length of the tank is also finite, Since the flow was simply
drained out, the water surface in the reservoir dropped progressively
during each experiment. Thigs had an effect of varying the discharge
along the length of the tank. If q(x) = unit discharge at station x,

h = depth of water in the tank, x = distance along the tank measured
from the sink and t = time, then from continuity,

dh, = 4‘% = _a = Constant

dt Ax c

(5-1)

where (Q = total discharge and C= total surface area of the tank. The
effective total length of the tank is 500 cm but ninety percent of the
velocity profiles were taken between 15 and 175 cm. Thus the total
variation of q in the experimental section was roughly 30%. In cal-
culating the experimental results, the local unit forward discharge, -

obtained by integrating the positive portion of the velocity profiles, was
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always used.

A typical case of the variation of unit discharge is presented in
figure 5-1, where Uy is ploited against x , the distarce along the tank.
It may be seen that most of the values are above the value of the unit
discharge gq mcasured at the outiet. This is because of a nearly
parabaolic velocily distribution in the korizontal plane across the width
of the tank due to the sidewall effect which will be discussed in the
next section. A line is also drawn so as to best fit the pcints and to
extrmpdate Lo zero at x = 500 cm. It may e secn that this {its fairly
well indicating that maost of the dye particles have been dropped in the
same planc. A fiew of these points which {all well below this line must
have been dropped close to the side walls. Within a small region of
x , (say x =201to 30 cm, or x =100 to 120 c¢rm) the variation of qg
is small. Thus it is reasonable to assume that the flow is quasi-steady
and the tank is gquasi-infinite in length in the sense that the flow at a
certain station x with the local unit forward discharge Ug in this
experimental tank is the same, or ncarly the same, as the flow in an

infinitely long tank with uniform unit forward discharge Ay

52 The Effect of the Finite Width; the Sidewall Effect.

Although the flow in the laboratory tank was intended to repre-
sent a two-dimensional flow, obviously it was rot, becausec of the wall
effects., Since the flow was laminar, and since there was no density
variation across the tank (in the =z-direction,) it is expected that there
would be a parabolic velocity distribution in the z-direction., Moreover,
therc might be some cross flow, i.e. w, the velocity component in the

z-direction may not be zero. To investigate the extent of this, time
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lapse photographs were taken from atop the tank after dye particles
were dropped in at various locations across the tank (various distances
from the wall}, 7This was done for only one case ( € = 0, 000336 1/cm,

2
cmz/sec, q=0.227 cmz/sec) at three stations { x = 50, 115,

Vv Z10
150 ¢m). In this way, the velocity distribution in the z-direction for the
plane vy = 0, the plane of the sink, may be obtained from the time lapse
photographs, The velocity profiles are plotted in figure 5-2. It was
checked by measuring the derivatives that these are nearly parabolas.

Figure 5-3 shows a photograph taken in the timc lapsc scquence.
Since the dye streaks are parallel to the side walls, it may be conclu-
ded that there is no cross flow, it.e. w=0,

The effect nf the velocity digtribution in the transverse or the

z-direction is the introduction of additional shear. This effect may

most readily be seen by returning to the basic equations. On the right

2
hand side of equation 2-24, instead of simply %’L , one must now
T i =z
&
put o ;—2’, +%v.) The values of %7_ were computed for the

three profiles measured and they are tabulated as follows:

y x e -
cm cm {cm-sec)
0 50 0. 0019

0 115 0. 0023

0 150 0.0022

-
The values for ‘3“'/19%"' may be obtained from the corrected theory
(inasmuch as the vertical velocity profile could not be measured simul-

taneously with the horizontal):
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~Umax

Q.010

x =|50cm

0.005

z S5cm 0 -5¢cm

£

Figcure 5-2 Velocity distribution in the z-direction

for the investigaiion of the sidewall effect.



8 5 67 8 91001 2 3 4 5 6 7 8 91101 2 3 4 5 6 7 &8 91201 2

Figure 5-3 Photograph taken from atop the reservoir showing

the dye lines for the investigation of the side wall effect.
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X -

In this case, ¥V

- - - a
10" %m%/sec, D=1.25x10 Jcm‘/sec, g =0.227
cmzlsec, € = 0.00033%6 cm_l, and g = 981 cm/senz

llb
O(o=(.§%) = -8 Cm—ﬂ-l‘s

Hence

Thus %/Dm’,'a(‘h' = 50 to 100. Hence sf = 0.5 from figure 4-36.

Therefore,

‘Bq-u. - 59- 14
"jgz = +O(Z)

(L)
The function 3:0 (L) is plotted in figure 5-4. It is seen that for
Z = 0, i. e. on the level of the sink, | ;o”to)l ~ 0.1 go that
T
)% 2 ™ "'1 . -
Y = 0,1, 0.04, 0.03 (cm-sec) respectively for the present

case at x = 50, 115, and 150 cm. These are about 20 times the mea-

17
Away from the y = 0 plane, £ () becomes smaller but so
does /3* . A good assumption is to take Qi away from the y= 0

plane to be proportional to ?o/(g) . Thus,

I
_— t)
— = p.002
(ks £/f0)

o, T N . .
To compare 2 with 2“' in this example, it therefore suffices
to compare
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figure 5-4. It may be seen from the figure that 3%3" is much smaller

Tines of (0. 00004x) for x = 50, 115 and 150 are also drawn in
than ’j-u"/?)aa" , except in a small region around = 1.75, which is

the inflection point of the vertical velocity profile, At l =1.75, Dz%gl
= 0 since om(l. 75) = 0. This does not mean that two-dimensionality
is lost. It only means that both 'a"‘u/zq,,_ and 31“'/‘&?’ are very small
in this region. This comparison is doﬁe for the particular run perform-
ed especially to investigate the sidewall effect. It may be seen how-
ever that this is representative of all the experiments.

Therefore, one concludes that the only significant correction
required by the sidewall effect is the apparent change in the unit dis-
charge depending on the location of the plane in which the dye particle
is dropped. In all the experiments, the dye particles were carefully
dropped so that they were all within the central 30% of the width of the
tank. Since the measured local unit discharge qe was used through-
out the calculations of the results, it is believed that the sidewall
effect has been satisfactorily accounted for.

The three effects due to the finite size of the tank all point to
the necessity of using a local discharge rather than the discharge
measured at the outlet. The unit forward flowing discharge qr as

discussed before in section 4-2, measured by planimetering the area
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enclosed by time lapse images of dye traces, is the logical choice.
These effects, though secondary, do contribute to errors in the experi-
mental results, especially on x-dependent quantities. 't'his will be
diétussed and summarized with all the other errors at the end of this

chapter.

5-3  The Effect of the Transient.

Since the flow is not recirculated, it cannot be steady, although
the experiments were supposed to represent a steady staté case. Thus
it was necessary to assume that the flow was at least quasi-steady and
that the actual quasi-steady flow approximates the assumed steady flow
There is no way to truly and exactly investigate the effects of the tran-
sient without either the solution of the complete uﬁsteady hydrodynamic
equations or the performance of experiments where the fluid is recir-
culating and the flow steady. Either of these is by no means readily
attainable. One is then left to do the next best thing.

In almost every experiment, {except N-25-5, the first one done)
al leastl (wou sels of dye pariicles were dropped, The [irsl sel was
dropped after a 5 or 10 minute period during which it was believed that
steady siate was achieved and the next set about 10 minutes after that.
By a comparison of data obltained from these two sels, it was found that
the transient had sgbsided. Run N-50-1, the same one used in figure
5-1 for the variation of g with x, is selected as a typical case.

The graph of &: %o VS, %‘/Ddox"’ﬁ is plutled fur that cun to
figure 5-5 where the first and second sets of dye measurements are
represented separately. It may be seen that the transient has died out

sulliciently and the experiments do represeni a4 quasi-siecady case,
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5-4 Summary of Experimental Errors

It is seen from the previous sections in this chapter that these
experiments are subject to quite a few errores, secondary ag they may
seem. The most significanf errors should be in x-dependent results
since the error producing items such as the length effect are x-depen-
dent. Besides these gystematic errors, there are, of course, random
errors., A few of the more important ones will now be discussed.

In the measurements of the velocities by means of the dye traces
the steps involved included the tracing of images from the negatives
onto the paper. In so doing, the various images must first be aligned
with aid of various reference crosses on the front side of the tank.

Then the scale of the photograph had to be established by matching the
scale in the photograph on the front side of the tank with a scale in the
darkroom. Moreover, the distance in from the wall to variocus dye
streaks was slightly variable making glight errors in the photographically
measured lengths. It is believed that these errors together with the
systematic errors discussed earlier are the cause of the scatter shown

in figures 4-31 through 4-35 (roughly 15%).

5-5 Discussion of the Validity of the Theoretical Solution

The analytical solution presented in Chapter 2, (tabulated in
tables 2-1 and 2-2 and shown graphically in figures 2-2 and 2-3, as the
zeroth order solution}, is valid provided the founr quantities s 5/9( s

1A3o(o){”3 , and %/’Vdn x"’—’* are all much smaller than unity.

The first quantity €é is the total relative change in density from

the top to the bottom of the relevant flow field ( in other words, the

withdrawal layer)., Since 3 grows with x , the quantity e§ will be
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small when € is very small and § not very large. This means that

the solution should not be applied when x is too large since $ would

! “
then be too large. From the solution, 2 « - e . Thus, ef« X -
: A uo X 0(0

The second quantity’ 5& , is, by virtue of the solution, the
same order as ’/,(Dx"'? as seen in Chapter 2. For o, #o , this
may be made very small when x is large.

The third and fourth quantities %‘/Ddbxi’?' , %dax% are
very small when q is very small._ The solution presented in Chapter
2 is taken to be the limiting solution when g -» 0. Thus, as long as
D, VY ,of , and x are not zero, these two parameters are truly
negligible for small enough q .

Thus, to summarize the limitations imposed by the various
assumptions on the validity of the theoretical solution: one may apply
the zeroth order solution if &€ 1is very small, x is neither small nor
exceedingly large, and ¢ very small. In a given problewm in the

stratified flow towards a line sink, one would be given €, q , D,

VY , and hence o, . One can then calculate the quantities 1/0(0 Vol B
l[;
%/l)az,,)(”% : %/‘)Jo(‘, le?’ , and 6%0 for various x . For those

values of x where all these quantities are small, the zeroth order
solution may be applied provided no further complications such as
#urbulc—:ncc, nonlinear density distribution, and complicated geometry
come into the problem. The validity of the theoretical solution is
thus confined to a range of the variable x, that range within which the
Tour yuanlities above are very small. In any given case, the extent of
this region may be very large or there may not be any value of x at
which the solution is valid, It all depends on the magnitude of the

parameters g, D,V , and &
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5-6 The General Problem of Selective Withdrawal

It is enlightening now to examine the general problem of selec-
tive withdrawal and how the phenomenon may be divided into several
regimes of flow depending on the relative magnitude and importance of
the various flow parameters (i.e. inertia, gravity, viscosity, and
diffusivity).

Assume first of all that gravity is of primary importance. It
may be verified that if gravity were not included, then the flow of
slightly stratified fluids is not very much different from the flow of
homogeneous fluids. Thus most of the interesting cases of stratified
flow and in particular, the phenomenon of selective withdrawal may
be divided into the following three regimes:

i) Regime I, the inviscid regime. In this regime, viscosity and
diffusivity are not important. Only the inertia and the gravity enters
the problem. Selective withdrawal into a corner sink in this regime
was solved by Kao (7). The solution is given by equation I-9. In this
case, ¢, a measure of inertia, and g€ , a measure of gravity are
the important quantities.

ii) Regime 1II, the genecral regime. In this regime, all the
four effects (inertia, gravity, viscosity, and diffusivity) are impozrtant,
Depending on the physical properties of the fluid and the agent causing
the stratification, the diffusivity may be unimportant. The phenomenon
of seleclive withdrawal in this regime has not been examined either
analytically or experimentally for the continuously stratified case.

‘iil) Regime III, the viscous regime. In this regime, the inertia
effect is unimportant (very slow motion, low Reynolds number) while

the viscous forces may be quite large. The diffusive effects may be
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important or unimportant depeﬁding on the properties of the fluid and
agent of stratification. In the present thesis, the problem is solved in
this regime.assuming the diffusive effect is important. The solution is
giv.en in Chapter 2. 1t is c;)nceivable that in certain cases, the diffu-
sive effect may be neglected even though the viscous effect is important.
This and the role of the diffusivity will be discussed in the next section.
With the notion of these regimes of flow, it is now possible to
discuss the phenomenon of selective withdrawal. Assume that there
is a lé,rge body of slightly stratified incompressible fluid with a density
| dss

gradient €=-=

& ag A line sink withdraws {fluid at the rate q .

Very near the sink, the velocities are necessarily large. The inertia
effect dominates and the flow is certainly in Regime I near the sink.
f‘ar away from the sink, where the vorticity has had a chance to diffuse
outward, the velocities are necessarily small and the flow must be in
Regime III. At inlermediale dislances from the sink, the flow would be

in Regime II.

5.7 Discussion of the Rolc of Diffusion in the Theoretical Solution

The theoretical solution obtained in Chapter 2 is based on a
viscous diffusive model for the fluid. The diffusion coefficient in
equation 2-26 is multiplied by the highest order derivative. Thus
transition from the present solution to the viscous non-diffusive case
is a case of singular perturbation. The present solution is useless
for that case. Yet it is physically reasonable to expect that in certain
fluids with density stratifications due to certain causes, the flow should
be adequately described by a viscous non-diffusive modél.

To examine the viscous non-diffusive model, one must return
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to the basic equations. Making exactly the same assumptions through-
out as in the viscous diffusive model presented, but letting D = 0,

equations 2-23 through 2-26 may be written

W, W
N ’ (5-2)
u g 2 Ju
w— + )+ = v 3
(s ag) % /"'93 -
5o
{5-4)
) 2P
‘U.,ax +4"?? = '
(5-5)

Introducing the stream function ¥ , eliminating the pressure p and
neglecting the inertia terms gives
M*" .0
Fogr T 0 ’ (5-6)

2 2S  2Y

By kL),

(5-7)

subjcct to the same boundary conditions as given by equalions 2-42

and 2-43. It was not possible to find any simple similarity solution

to this problem. Thus these equations must be solved as partial differen-
tial equations. This implies that one must now impose an upstream
boundary condition which unfortunately is not known.until the unsteady

problem is solved. Equations 5-6 and 5-7 may be combined to give

23‘* dyr 2x (5-8)
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which is the fundamental equation for incompressible viscous non-

diffusive stratified flow at low Reynolds numbers.

5-8 Discussion of the Practical Applicability of the Solution

‘The results of this investigation, both analytical and experimen -
tal, must be vused with care wheun ;pplylllg o actual cases in the field.
In a natural reservoir, there is no reagson to expect that the, flow is
laminar. In all probability, the flow is turbulent. The turbulence
structure in a density stratified fluid is very different from that in a
homogeneous fluid. The turbulence is necessarily non-isotropic since
the vertical {luctuations are suppressed by the density stratification.

The problems of stability of wiscous stratified flow, of the onset
of turbulence in stratified flow and of the nature of turbulence in strati-

fied flow all await investigation.
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CHAPTER 6
SUMMARY OF CONCLUSIONS

A theoretical and experimental study of two-dimensional incom-
pressible, steady viscous flow towards a line sink in a stably stratified
fluid was made. The major conclusions will he summarized as follows:

l. The limiting solution applicable for very small discharge
was obtained analytically by first making a boundary-layer-type assump-
tion and then a perturbation based on the parameter aﬂ/-m(o ¥ . Itis
a similarity-type solution, based on the similarity variable { = %5 .
This solution is presented in Chapter 2,

2. According to this solution, the thickness of the withdrawal

layer grows wilh dislance x upsiream like x1/3 and is inversely
/ . 69\ e . :
proportional to the parameter o, = :[—J-H) ; the equation for 8 is
»
“3
§ o ez’
= vy

3. Also according to this solution, thc vclocity ficld is given

o/, rol, / .
by ’u(x,'g) = —;3& :Jt; (7,%5) where £ [g) is tabulated and shown
graphically in table 2-1 and figure 2-2 respectively. For y =0,

W = U 73

=-(0284) 3(;1

4. Twenty-five experiments were carried out where the range
of variation of the parameter %‘P/_-p,,,a «? was 107! t0 10°. It was found
that within the region of applicability of the analytical solution { %ﬂa <1
in the experiments), the experimentélly determined velocity profiles
agree Within 10% with the analytical.

5. However, outside the range of direct applicability of the

. . 3. . .
analytical solntion, ( | < %%%x%< lo  in the experiments), experimental
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observations show that the shape of the velocity profile is still the
same as predicted. By vérying oL, to &% by means of an experi-
mentally deteri;nir_led coefficient ¥ = D,Z(o , these experimental
results may also be made to fit the equations of the analytical solution.
The coefficient ¥ was found to be a function of 1‘7@%;’5 as given

in figure 4-36.

6. For all the experiments, the local velocity profiles are
.. . " Y-

gimilar in the sens‘e that /,,,'n_.wm‘< = ¥( /go) .

7. For all the experiments, using () = S(g(b , the for-
mula for S(x) is

!
é 7“"/ X &
X(x)

H
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APPENDIX

SUMMARY OF NOTATIONS

For simpl'icity, symbols of secondary importance which appear
only briefly in the text are omitted from the following list.
The page numbers opposite the symbols refer to the page where

the symbols first appear.

Page

c = concentration of solute in the stratified
fluid 16
d = depth of flow 8
D = diffusion coefficient 16
'-T-O(Z,) = zeroth order non-dimensional stream function 30
%(;) = first order non-dimensional stream function 30
¥ = %/»ﬂ:{g_é = Froude number 8
g = gravitational acceleration 7
ho = depth of the flowing layer in Kao's solution i1
*ﬁutl) = zeroth order non-dimensional density function 30
4,(Z) = first order non-dimensional density function 30
K = thermal diffusivity 17
Ki. (Z) = ith solution to the differential equation 2-50 34
P = pressure 10
q = unit discharge 1
Ag = unit forward discharge 76
8, = I;io;b;iiziit::t_pirt in hydros_tatic density .

hydrostatic Po ‘
s = density change due to motion = P=P,78 25
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time - 16
temperature 17
- velocity Ve.ctor 16
velocity component in the x-direction 23
maximum value of u for given x 76
velocity component in the y-direction 23
velocity component in the z-direction 121

horizontal rectangular coordinate; distance
from the sink 7

vertical rectangular coordinate 7

half the measured thickness of the withdrawal
layer 76

q,!f /'u,m .{(0. 955} = half the thickness of the
withdrawal layer, as predicted by the theory based

on the measured a and Woax 78

rectangular coordinate 121

]
(GQ/DV) le = dimensional stratification

parameter 45

experimentally determined value of o, 110
2,8 £l

thickness of the withdrawal layer 2z

4 ds, B . .

7 a4 = density gradient 8
density of the fluid 1
reference density | 7
stream function 7
ql’/%. = non-dimensional stream function 28

i-/s
:("Dﬁeaify) 5}?, = norrnalized s, 28
-]
= normalized s 28

3/,
= (:Dg/éz,v ) Ss/ﬁ
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viscosity coefficient
reference viscosity coefficient
Dfy
ﬂ' /P, = kinematic viscosity
0(/0(0
o
4re’
1.%’5 L/
(851 es
>3

"l,f 5”5 = d’-"':j/.y_"; = gimilarity variahle

normalized x

normalized vy

gradient
divergence

Laplacian
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