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ABSTRACT

The problem of the excitation of an infinite array of parallel,
semi-infinite metallic plates by a uniformly moving point charge is
gtudied by the Wiener-Hopf method. It is treated as a boundary value
problem for the potentials of the diffracted electromagnetic fields.
The formulation of this problem mekes use of the well-known conditions
on the electromagnetic fields at a metallic boundary. A method is used
to translate these boundary condiitions on the fields into boundary con-
ditions on the potentials. In this way the problem is formulated in
terms of a set of dual integral equations for the current densities
induced on the plates by the point charge. These integral equations
are exactly soluble by the Wiener-Hopf technique. The solutions are
found to satisfy the famous edge conditions for diffraction problems,
snd are therefore unique. From these sclutions exact expressions for
the diffracted fields are derived in the form of Fourier integrals. It
is seen that these fields represent a radiation of electromagnetic
energy. The metnod of steepest descent is then used to obtain expres-
gions for the radiation fields, the Poynting vector, the frequency
spectrum and the radiation pattern. The radiation shows that the array
of plates behaves both like a diffraction grating and a series of

parallel-plate waveguides.
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I. INTRODUCTIOK

1.1 Historical Development

The phenomencn of diffraction occurs when light passes close by
the edges of an opaque obstacle. The shadow of the latter is not found
to have a sharp boundary as predicted by geometrical cplics or Lhe
corpuscular theory. Instead there appears a series of alternately dark
and bright bands extending into the geometrical shadow region. These
fringe structures were probably first observed and recorded by CGrimaldi
(1616-1663) who gave the phenomenon the name "diffraction'. Of all the
diffraction problems, the simplest and at the same time most fundamental
are those involving semi-infinite plane screens. The history orf such
problems is practically identical with the history of diffraction
itself. As is true with other branches of physics, the development of
tke theory of diffraction can be divided into two periods. 1In the
first period the true nature of the phenomenon Is sougnt; while in the
second period, one is concerned with the construction of & deductive,
mataematical formulation of the theory--preferably in the form of one
embracing principie--and its application to particular problems.

Durirg the céntury and a helf after Grimaldi's discovery,
nurerous cbservations on diffraction were made, but no interpretations
were offered until <he beginniﬁg of the nineteenth century. In the
meantime two physical theories of light were created; Huygens (1629—
1695) formulated a geometrical wave theory and Newton (1642-1727) a
corpuscular theory. Huygens thought of light as a longitudinal wave

in the aether. Every point of a wave front could be considered to be
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a center of a secondary disturbance which gave rise to spherical wave-
lets. The wave front at any later instant might be regarded as *he
envelope of these wavelets and could be constructed geometrically.
Newton suggested that light consisted of a stream of particles emitted
rectilinearly from the source. In view of his great reputation his
theory dominated in the field of optics for almost a century. Huygens
was apparently unaware of Grimaldi's discovery, and so his theory did
not deal with diffraction, although it could have covercd at lcast a
crude theory of this phenomenon.

Between the years 1801 and 1804 Young (1773-1829) published a
series of papers in optics in which he put forth his principle of
interference. With the help of this principle he gave a gqualitative
explanation of diffraction in terms of the wave theory. However, his
Llieory was nol wldely circulaled. TIUL was a period when lhe corpuscu-
lar tneory was in vogue. Diffraction, being a deviation from recti-
linear propagation, was considered a thing apart--an apperndage to the
subject of optics. In fact, the Paris Academy of Sciences was so
dominated by supporters of the ccrpuscular theory that it offered in
1818 a prize for an essay on diffraction. Undoubtedly most academi-
cians had in mind the prospects of receiving a brilliant treatise in
the spirit of the corpuscular taeory, thereby dealing a fatal blow to
the wave theory. Such prospects were blighted when the prize was

awarded to Fresnel (1788-182T7). In his Mémoire courcnné {1) Fresnel

extended Huygens' gecmetrical theory by adding periodicity in space and

time to Huygens' wave fronts. Thereby the waves were allowed to
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interrere. In this way, by supplenmenting Huygeus' principle with
Young's principle of interference, Fresnel correctly explained diffrac-
tion phenomena as being due to the mutual interference of the secondary
waves emitted by those portions of the original wave front which were
not obstructed by the diffracting obstacle. He was then able to
account quantitatively for various diffraction patterns. In particu-
lar, he calculated the diffraction pattern of a half-plane. His
results were expressed ir terms of the definite integrals which now
bear his name.

Now that the nature of diffraction was understood, a period of
mathematical investigations followed. The first attempt was to give
Huygens' principle an analytical expression. Following Fresnel's idea
of regarding light as a periodic wave motion in space and time,
Helmholtz (1821-189L) considered the wave field as a solution of the

2 1«:2) u=0 . With the help of

partial differential equation (v
Green's theorem he succeeded in expressing a wave field at an observa-
tion point in the form of a surface integral over the field and its
normal derivative on a closed surface surrounding the point. This
formulation of Huygens' principle was adopted by Kirchhoff (1824-1887)
in his own thecry of diffraction. In hies work Kirchhoff had to make
certain rather arbitrary assumptions about the values of the field and
its normal derivative on the enclosing surface. DMore specificall&,
these boundary values were assumed to be not appreciably diffcrcent
from the values cbtained in the absence of the diffracting screens.

In addition, the boundary values on the screens were taken to be zero.

This method is therefore only approximate. Poincaré (1854-1912) later
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showed that Kirchhoff's bouﬁdary conditions were not in general self-
consistent. Nevertheless his calculations showed good agreement with
observation in a great variety of problems where the characteristic
dimension was much larger than the wavelength.

Hitherto light was taken to be representable by a scalar wave
field. With the appearance of Maxwell's (1831-18T79) electromagnetic
theory of light, it became evident that an exact treatment of a dif-
fraction problem had to take into account the polarization of light as
well. A problem in diffraction now counsisted in finding a solution to
Maxwell's equations satisfying appropriate boundary conditions. Butb
the transition from a scalar to a vector field added much to the mathe-
matical difficulty of the problem. Tt is no great surprise that the
first exact solution of a diffraction problem did not appear until the
last decade of the nineteenth century.

In 1896 Sommerfeld (1868-1951) published the solution of his
diffraction problem (2). He treated the case of a monochromatic plane
wave incident on an infinitely thin, perfectly conducting half-plane.
He took the incident wave to be polarized parallel to the edge of the
half-plane, thus reducing the essentially vector problem to a scalar
one. Here the boundary conditions were unambiguously provided by the
electromagnetic theory. Assumptions like those made by Kirchhoff were
not necessary. Sommerfeld had the ingenuity to perceive the similarity
of this problem té the electrostatic probiem of an infinite conducting
plane, and proceeded to synthesize a solution by the method of images.
Because he was dealing with a half-plane, the imaging was done on a

two-sheet Riemann surface of a double-valued function. In this fashion
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he constructed an exact solution to the problem, namely, one which
satisfied both Maxwell's equations and the boundary conditions. Tails
soluticn provided not only a check on the accuracy of previous approxi-
mate methods but also an insight into the behavior of the slectromag-
netic fields in the neighborhood of the edge of the conducting half-
plane where previous methods failed.

From this point on, one had to wait almost half a century before
the next significant advance in diffraction theory took place. In the
meantime several variants of Sommerfeld's problem were solved. The
technique of solving partial differential equations by separation of
variables was applied to cobtain series soluticng of several plane-wave
diffraction problems, for example, that of a finitely conducting
sphere, a slit, or a circular aperture in a conducting plane. The
utility of such solutions depends on the ease with which computation
of the relevant functions can be carried out and the rapidity with
which The series converge, For & long time the Sommerfeld-type
problems remained the only ones whose solutions could be obtained in
closed forms.

In the early 19L0's diffraction problems were studied urder the
approach of integral equation formulations, as first suggested by
Rayleigh and Poincaré (3). A number of workers, notably Schwinger (L),
Magnus (5), and Copson (6), found that certain problems involving
gemi~infinite metallie structures yielded integral equaticns which
might be exactly soluble by the Wiener-Hopf methcd. In particular,

Sommerfeld's half-plare problem was re-solved under this new approach.
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It is of interegt to note that whereas the approaches of Sommerfald
and Schwinger are very different In techniqﬁe, their fourdations are
traceable to the analytic continuation of analytic functions of a
singlc complex variaoblc. In Sommerfeld's work the mathematical tool
is the continuation of a double-valued functior from one sheet of a
Riemenn surface to the other. In the method of Wiener and Hopf, one
finds gunolher versilon of apalylic cvontlivuallon. Here one encounters
two analytic functions that are analytic in two different halif-planes
and these two half-planes have a commor strip of analyticity. These
analytic functions do not arise from representations of solutions of
the wave equation, as is the case in Sommerfeld's approach, but rather
from the Fourier transforms of known and unknown functions in the
formulated integral equations.

Since the introducticn of the Wiener-Hopf method to diffraction
problenms, great interest in this field was aroused. The impetus came
both from the mathematical challenge and from the possibility of
applyving the results to radio microwave technology. In general the
development proceeded along two directicons., On the one hand, one
studied the single-plane problem for more sophisticated sources of
excitation (7),(8). On the other hand, one attempted milti-plane
problems (9),(10). 1In the latter cases the authors have hitherto
considered only two-dimensional cases, namely, the sources of excita-
tior were two-dimensional and so oriented with respect to the half-
planes that the problems remained essentially two-dimensional in
nature. The advanﬁage of this choice was that the vector problems

could be scalarized.
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In this work ore solves a multi-plarne diffraction problem when
the scurce of excitation is a moving point charge. This is the first
three-dimensional problem of its kirnd. As will be seen later, this
three-dimensionality of the source compels one to work in terms of
the electromagnetic potentials instead of the fields. Part of thce dif-
ficulty of the problem also consists in the interlocking of the two-
dimensionality of the ha_f-planes with the three-dimensionality of
the point charge. This manifests itself in the fact that whereas the
half-planss are naturally described by a rectangular coordinate system,
the moving point charge is more conveniently described in terms of

cylindrical ccordinates.

1.2 Statement of the Problenm

In the present problem we investigate the excitation of an
infinite array of parallel metallic plates by a uniformly moving point
charge. The plates are taken to be infinitely thin as well as
infinitely conducting. They are equally spaced and semi-infinite in
extent with their edges lying in a plane which is perperndicular to the
plates. The trajectory of the point charge lies at a constant dis-
tance above the edges and is perpendicular to them.

We assume that the point charge moves with a uniform velocity.
This either implies that the uniform velocity of the‘point charge is
maintained by an external agent, or that the interaction between the
plates and the point charge does not alter the motion of the latter
appreciably. The second statement 1s clearly not true, for since the

plates are infinite in numwber, any effect of the force exerted by the
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plates on the point charge, however small, will multiply indefinitely
as the charge traverses the plates in succession. Nevertheless, in
the laboratory we can only construct a finite array cof plates to which
the infinite array in our celculations is a convenient approximation.
So in practice when the transition time of the point charge across thae
finite array of plates is short, the veloccity of the point charge may
well be considered uniform.

We set up a right-handed rectangular coordinate system as shown
in Fig. 1. The positive direction of the z-axis is taken to point out
Lfrom Lhe plane of the paper. The array of plates lies in the lower
half-space y < 0 . The plates are separated by a distance d from
one another. Thus they are located at x =nd , n=0, £ 1, 2, «+-,
Their edges all lie in the z-x-plane. The point charge carrying a
charge e moves in the positive x-direction with velocity v . Its
trajectory lies at a constant distance a above the x-axis.

We can foresee roughly what happens during the motion of the
point charge. The moving point charge generates time-varying electro-
magnetic fields which act on the free charges on the plates to give
rigse to induced current densities whose existence 1s required to
satisfy the boundary ccnditions of the electromagnetic fields on
metallic surfaces. The central point of the problem consists in cal-
culating these induced current densities from which the induced
electronmagnetic fields can be derived. Unlike the fields of a
uniformly moving point charge, these induced fields represent an

outTlow of radiation. This situation is similar to that of Cerenkov

radiation where the point charge is taken to move uniformly; the
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Fig. 1. Geometry of the problem., The array of
plates extends to infinity in both
directions of the x-axis.
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radiation is totally attributed to the excited medium traversed by the

charge.

1.3 Notations and Conventions

Throughout this work we will be working mostly with the rela-

tivistic four-potential Au , = 1,2,3,4. Written out more explicitly

oS
ols

A = (A, 1

' )=(AX,A,A,i

N2 VA

where A 1is the electromagnetic vector potential and # the scalar
potential. It is noticed that we use the Minkowski metric with metric
tensor g = § , so that it is not nccessary to diffcrentiate

uv uv
betweer covariant and contravariant indices.

s - A . . total
Frow the principle of superposition the total potential A

u
at a point in space can be expressed as the sum of the potentlial Aﬁ

due to the point charge ard the potential Au due to the currents

induced cn the plates. Thus

Atotal - Ao + A
U H H

From the geometry of the problem we easily see that

o) o Qo
A° = (A, 0,0, 1)
u X c
A =(O,A,A,1Q—)

u yooz

The latter equation follows from the fact that the current demsity

J induced on the plates has no component in the x-direction, that
u

is, ro current flows out of the plates:
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3, = (0, 3., 3, icp)

Ir *he subsequent chapters the technique of Fourier transforma—
tion will be used extensively. The convention we will adopt in the
transformation from space-time coordinate space to energy-momentum

space or vicc verse will be as follows:

{r,t) = J J J g(k,w) e dk_dk_dk dw
(2“)2 _l Fr Xy Z
1 o] o0 o] o —il_{:; + j_wt
glk,n) = J J J J f(r,t) e dx dy dz dt
- 2 iy
(2m)

-_— =00 w00 =00

where T = (X,y,z) and k= (kx,ky,kz)
A collection of other symbols, defined at various stages of the

problem, will be found in Appendix A,
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IT. TFORMULATION OF TEE PROBLEM

In this chapter we shall derive integral equations for the
current densities induced on the metal plates. Use is made of the
periodicity of our system to relate the current on any plate to those
on one particular plate, for example, the one at x = 0 . The integral
equations are established by imposing the boundary conditions on the
total 4-potential. These conditions are deduced directly from the
well-known conditions on the total electromagnetic fields at a
metallic boundary. The reascn we choose to work in terms of the bound-
ary condivions on the potentials, rather than those on the fields, is
that In the former case simpler integral equations result. The price
we have to pay is the introduction of unkrown constants into the
equations. These will De determined in the future after the solution

of the equations by the boundary conditions on the induced currents.

2.1 Treatment cf the Source

Consider Maxwell's eguations:

VeDdD = p
VB = 0
3B
Vv x E = - ey
3D |
VxXHE = 4+ (2.1)

These fields satisfy in addition the reiations

D = ¢E , B = wE
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and

Introduce the electromagnetic potentials through the relations

o4
-8 - 5T

| &=
1]

B o= VxA

Then in termg of the potentials Maxwell's equations bhecome

0
2 1 %A : 1 3¢, _
VA- 55 -V s Ax o) =gl
¢ 9t c
o, _ 1 3%, 3 L 3y _ e
VG-t (VA ) = - g
¢ ot c o)

If we prescribe between the pctentials the Lorentz condition

1 3¢
Ve a zat'o

+

C

(2.2)

(2.3)

the potentials then appear as the solutions of an irhomogenecus wave

equation with the current densities as sources:

2
2 1 9
(V-5 a = -
i
C2 ate H o
Let us perform Fourier transformations on the z,t ccordinates:

1 P ikzz - iwt
t) = —=— !
Au(x,y,z, ) o J J L\u(x,y,KZ,w) e dk dw

- oo

(2.k)
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<o
J 3 (x,y,kz,w) e ? dk_ dw (2.5)
w0

These transformations are necessary in the present approach to the
problem in order to obbtain simple integral equations that are soclublc
by the Wiener-Hopf method. I the transformations are not perfcormed
our formulation will result in equations involvirg multiple integrals.

Substituting (2.5) into (2.4) we obtain

32 32 2
(——§-+ —5+ 0D ) A (x,y,kz,w) = - uoju(x,y,kz,w) (2.6)
ox oy H

where we have put

2 .2 2
P = k¥ -k (2.7)
Z
k = w/c .
2 2 .
For the case k > kz we define
_ P L2
P = k™ - k

The case ke < ki will be examined shortly. Let us for the time
being return to equation (2.6). The particular solution of the equa-
tion can be tound with the help of the Green's function G(X,y,x',y")

of the two-dimensionel Helmholtz equation:

e 21 clayxtyt) = - bn s(eex!) S(y-y!)
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Glx,y,x',y') = im Hél)[p V?x—x')g + (y—y')g] (2.8)

(1)

Here Ho is a Hankel function cf the first kind whose asymptotic
behavior is

2D (5) ~ (2912 ooy m
J.o Z o e

when |z| is large. Taus if p is real and positive G(x,y,x',y')
satisfies the outgoing wave condition at infinity. Or the other hand
if p is purely imaginary, we must take its imaginary part to be
positive so that G(x,y,x'y') might not behave singularly at infially.

So for k2 < ki we are led to set

p = 1 /ﬁi - k2
Summarizing the two cases we define

p = /K -k , mp>0. (2.9)

Finally, the particular solution of (2.6) assumes the form

" BT
= O (1) N 7
AU(X’y,KZ’M) = —E J J 1T :IO [P /(X—X ) + (y_y ) ]

X ju(x',y',kz,m) dx'dy’ (2.10)

Tor our point charge e moving uniformly in the x direction
with veloeity v = v [ and at a distance a above the x-axis, the

current density is given by
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Ji(x,y,z,t} = ec 8(x-c t) 8(y-a) 8(z) (B,0,0,i) (2.11)

where 8 = v/e . As in Section 1.3 the superscript here indicates

quantities associated with the source. Without loss of generality it

is assumed that at t = 0 the charge is at the point x=0, y = a,
Z - 0 . Bubstituting equation 2.11 into the inversiorn formula
o] o] . .
o - o -1kzz + 1wt
ju(x,y,kz,m) = :2'? J J ju(x,y,z,t) c dz dt
_0 O
we getb
)
o) e v
jp(x,y,kz,w) =55 °© §{y-a) (B,0,0,i) (2.22)

The polential Aﬁ due Lo Jﬁ will be Lhe parlicular solulion given
by equation 2.10. The complementary solution is not needed. Putting

2.12 into 2.10 we obtain

u
o o e . (1) N
AU(X’y’kz’w)z LI 2m8 J lﬂHo [p V (x=x")" + (y-a)" ]
T
l;;x
X e dx' (S,U,U,i}

Now we have the relation
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oo

i Sx0
J iﬂHél)[p //(X—x')2+ (y—a)2] e ' ax!
8, -]/ )T
= 2m e v =
/—p2 + (m-)2
v

In arriving at the above result we made use of the fcrmula

o L la| /pPr t°

—%—- iﬂH(l)[p 22+ a2] eltzdz = =

=T © V/__§——_7§
) -p + &

wnich we will derive in Appendix B. Thus if we defire

Q@
1

/S 2 Wyl  _ 2.2 2
-p + (v) = o kK + kZ

1. g

B

where o =

we obtain

u i%x - q|y—a|

o _ Toe .
AU(XsY:kzow) = Iq 38 e (B,0,0,l)

(2.13)

(2.1k)

(2.15)

(2.16)

As a check we see that Ai(x,y,kz,w) satisfies the Lorentz condition

2.3. Expression 2.16 can be derived alternatively by Fourier trans-

forming the Liénard-Wiechert potentials of a uniformly moving point

charge.,
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The electromagnetic fields associated with the point charge can

now be computed from equation 2,16 according to the relations 2.2:

L2
2 i,jx- q|y—al

'IJ .
.0 _ O 1e0 w
Ex(x’y’kz’w) T T L g ©
W
u i=x - qly-a|
0] O ec v
= 4 o= ——
Ey(x,y,kz,w) s e

Mg iec kz i%x - qu—al

o
EZ(X,YskZ:w) - - T*-’I_T. qg €
B;(X,y,kz,w) = G

. .Q _ -
o ¥ iec kz iy¥ q‘y a|
(k3,5 ,0) = = —e
¥ Lo g

W

o _ Mg i=x - q|y-8| (2.17)
BZ(x,y,kZ,w) troee

In the above the upper and lower signs refer to the half-spaces

vy < a and y > a respectively. It is easy to see that E? . §?= 0 .

2.2 Treatment of the Plates

We now turn to expressing the induced L-potential AU in terms
of thne induced current density ju . Unlike the case with the point
charge, the form of ju ‘g not known. But much information about it
can be derived from the geometry of our system. As in the last sec-

tion, let us perform Fourier transformabions on the z,t coordinates:



1 7 ik z - iwt
Ju(x,y,Z,t) = 5= J [j“(x,y,kz,w) e dk_dw (2.18)

With the help of Dirac's delta-function we can express ju(x,y,kz,w)
in the form of an infinite sum of surface current densities induced on

the plates:

x

ju(x,y,kz,w) =n_z jun(y,kz,m) §(x-nd) (2.19)
where jun(y’kz’w) is the surface current density on the plate at
X = nd .

We now make use of the periodicity of our system of plates to
derive a relation between the surface current densities induced on two
different plates. Suppose we have a relevant physicel quantity

Qn(y,z,t) defined on the plate at x =nd . It is easily shown that

Q (7,258 = ¢ (7,2,0) (2.20)

This equality asserts that the value of the quantity @Q measured on
the plate at x =0 at t =0 1is the same as that measured on the
plate at x = nd af a later time t = nd/v . For at t = 0 the
charged particle is sbove the edge of the plate at x =0 . After a
time t = nd/v it is above the edge of the plate at x = nd . Thus
at t = nd/v the relation of the charged particle tc the plate at

x = nd is identical to its relation to the plate at x =0 at t=0,
Since any relevant physical quantity on the plates is produced by the

passage of the charged particle, equation 2.20 follows. In particular
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. nd .
Jun(y’z’_v—) = Juo(yaza()) (2~21)
Writing
o5 [oe]
1 ikZz - 1wt
jun(y,z,t) = J J jpn(y,kz,w) e dk_dw (2.22)
_—C0 a0
we cbtain from 2.21 the relation
i%ﬂd
J o, (¥ik su) = e 3,007k, 0) (2.23)

Thus all the surface currents differ from that on the plate at x = 0
vy @ plhiase faclor only.
Turning to the induced potential we first write

A (x,7,k u) e z ax dw  (2.24)

1 T 7 ik z - iwt
AU(XQY9Z:,t) = 5T J J

In analogy tc 2.6 Au(x,y,kz,w) and ju(x,y,KZw) are connected by

the equation

2 _ s .
—_2— + 2 + p ) Au(xsy:kz}u) - = UOJP(-‘-:Y’RZ,N) (2-25)

M PR —
AU(X,YakZ,w) = E;)f J J i'rrH(()l)[p/(x—x')C(Y—Y')C}
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Again the compiementary solution is not needed. Substituting 2.23 into

2.19 and carrying out the x'-integration ir 2.26, we easily get

- W <o
K o i=-nd .
A (x,3.k ,0) = —%— Yoe " J iﬂH£L>[p\/(X—nd)2+ (y=y")°]
N=w-

-—C0

30ty ok, >w) ay! (2.27)

In the present form the summation cannot be performed sirce n occurs
in the argument of the Hankel function. For the purpose of bringing

n out we use the following device. First let

. 1 . lkyy
JuO(y’kz’w) = = J guo(ky,kz,m) e dky (2.28)
Then
Yoov 1;nd = T . .
Au(x,y,kz,w) = HE£=§w e = i JuO(k ,Kz,w)
- o (2.29)
J iﬂHél)[p V(x-nd)+ (y—y')%] elkyy ay! &,

In analogy to 2.13 we get

ik y' ik y eiw]x_ndl
- 1w

(2.30)
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where we have defined

w =V p~ - ky R Imw >0 (2.31)
Thus 2.29 becomes
UO Y

- O w

Ap(x,y,kz,w) oy en i J Juo(k Sk )

LW . ik y

0 1;ﬂd + 1W|X—nd|e v
. e dk (2.32)
oo w v

The summation can now be carried out since n occurs only in the
exponential factor.

Consider the infinite sum

o i%nd + iw|x-nd]
v

Assume md < x < (m+l)d for some integer m . Then

lx - nd|

[IN
=]

(i) for n x - ad

v

(ii) for n 2 m+l , |x - nda|l = na - x

We therefore split S 1into twe partial sums:

m jwx + i(%6 - wd)n
v
S = 2 e
N= o
o ~iwx + i(gd + wd)n
+ z e

n=m+1 .

Now we can easily show that
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i%)md iwlx=(m+1)a]

T jwx + i(24 - wd)n e e
L e v = . -i%
= e-—le _ v
w 3 v 3
- civx + 124+ wa)n i—(m+l)d  -iw[x-md]
z e v - e e
n=m+1 ~iwd 19
e -ev

Combining the two partial sums we get

W
13na - e
s=ie? sin wlx - (m+1)d] - e ' sin w[lx-md]

w
cos wd - cos ;d

2.32 finally reduces So

U 1@d % 3, A(k Lk W)
u 2 3
A (x,7,k ,0) = - = /o1 e " 0 vy’ z
I 7 Yo v
144 .
sin wlx - (m+1)d] - e = sin w[x-md 1LY
[ (m+1)d] [ ] R el
U.) y
cos wd - cos ;-d
(2.33)
We recall this expression holds fer md < x < (m+1)d . We notice

that, like the induced current densiiy in 2.23, Au(x,y,kz,w) has the
1%md

phase factor e V | In this final form the induced potential

depends entirely on the Fourier transform of the surface current den-

sity on one singie plate at x = 0

2.3 Boundary Values of the Ianduced Potentials

In the previous two sections we derived expressions for the

Fourier transforms of the electromagnetic potentials of the moving
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point charge and those of the current densities induced on the plates.
We rccall that in arriving at 2.16 we used mainly the oubgoing wave
conditicn at infinity, and in arriving at 2.33 we employed the periodic
property of our system. In the present section the main tool will be
the conditions on the total electromagnetic fields at the boundary of a
conductor.

In our case the bourdary conditions on the electromagnetic

fielas assume the following form

Etotal = 22 +85 = 0
y y y
Etotal = B +F = 0
Z z Z
Ot . g% 4g = 0 (2.34)
X X X
at x=md, m=0, #1, 2, «-+. . Here E?, E? are the fields of

the charged particle and I,H those of the induced currents. The
first two equations express the vanishing of the tangential component
of the total electric field on the surface of a metallic plate, while
the third equation expresses the vanishing of the ncrmal compcnent of
the total magnetic field. We must keep in mind that 2.3k hoids only
for y <0 . For y > 0 another set of boundary conditions must be
employed. This is supplied by the fact that no induced currents exist

outside the plates. hence for y > 0 ,

J ¥k u) = 0 (2.35)

where m = 0, +1, 2, .-+ . By 2.23, equation 2,35 1is equivalent to
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3 sk, s0) = 0 (2.36)

Equations 2.34 and 2.36 then constitute a set of integral equations
for the unknown components of jpo(ky’kz’w)' This can be seen as fol-
lows: the [ields _E_O,EO are known through 2.17; the induced fields
E,H are derivabie from 2.33 according to the relations in 2.2; substi-
tution of the fields into 2.34 yields a set of inhomcgeneous integral
equations for jpo(ky’kz’w) valid for y <0 . For y > 0O the com-
bination of 2.28 and 2.36 results in a set of homogerneous integral
equations for jpo(ky’kz’w)'

However, a difficulty arlses in thils formulation. Since eacl
field component depends on two components of the lh-potential, the
inhomogeneous integral equations derived from 2.34 will involve two
unknown compcnents of juo(ky,kz,w) in one equation. This makes the
system of integral equations difficult to solve. One would like %o
find a method to separate the unknowns so that each equation would
contalin one unknown quantlty only. This suggests that we work
directly with the k-potential, since by 2.33 each component of the
potential depends on one current density component only. The first
step in our new approach will be to translate the boundary conditions
on the fields, as given by 2.34, into boundary conditions on the poten-
tials. As will be seen in the following, this translation is possible
due to the tfact that we have plane boundaries.

Let us start out with the Lorentz condition and the relation

between the electric field and the potentials:
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E =-vf- 57
N
V'A+ 123_%:0
¢

These relations hold separately for both the induced potentials and
the potentials of the source. Let us take the case of the induced

L-potential and recall that its x-component is zero. Then the above

relations become:

) 3 .
Ey(Xsya-&st) = - W ¢(X9y:kzaw) T lw Ay(xayakznw)

EZ(x,y,kZ,w) - i kZ¢(x,y,kZ,m) + iu)AZ(X,y,kZ,w) (2.37)

., W d .
i ;§'¢(X,y,KZ,N) = —5§-Ay(x,y,kz,w) + i kZ AZ(x,y,kz,w)

In the following the analogous expression for Ex(x,y,kz,w) is not

needed and is therefore ~suppressed. From tThese we easily obtairn

3 L
sy-Ey(x,y,kz,w) + i kZ gz(x,y,kz,w)

= - ( an - ki) ¢(X,Y:kzaw)

[ 38 . !
+ 1w[ Sg-Ay(x,y,kZ,w) + 1k AZ(X,y,kZaw)j

The expression inside the bracket on the right-hand side is just the

right-hand side of the Lorentz condition in 2.37. Eence
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9 .
e Ey(—)&ayakzaw) L kZ EZ(Aa.‘/ sk-zaw)

oy
32 2
- = (=5 7)) Blxysksw) (2.38)
ay
where, as in 2.9,
p = k2 - ki , Imp >0 .

Equation 2.38 holds for all points in space. Suppose now we
chooge a point on one of the plates, say the one at x = md . On <his
plate the electric fields E? and E are related by the boundary

conditions 2.3h4

These conditicns provide a means to express the ooundary values of
Ap in terms of those of AE through the application of 2.38. From

2.3L4

3 .
—gg-Ey(md,y,kZ,m) +1ik, EZ(md,y,kZ,w)

a

_ o_‘O' Y s O
= -3 Ey(md,y,kz,m) ik Ez(md,y,kz,w)

Using 2.38 we obtain

2

d 2
( _2- + D ) ‘ﬁ(mds}rskzaw)
Ay ’
9 e} , SO, . i
= 5§-Ey(md,y,kz,w) +ik E_(md,y,k_,w)
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Or expressing the field E? in terms of the potentials, we get

(5 + p°) Blmd,y .k 0) = (- = + 55) ¢%(nd 5.k, ) (2.39)

oy oy
where use has been made of the fact that A; = AZ = 0 . We therefore
see that on the plates the induced scalar potential satisfies a second-
order differential equation. The right-hand side of the equation can

be easily evaluated with the help of 2.16, keeping in mind that we

consider the case y < 0 , x = md. We finally obtain

w
) u 2,2 i~ mwmd + gy - a)
2 ec gk
(25 + 5°) glma,yk 0) = - 2 —— e (2.40)
y ap

The solution of this equation is

m ,w) = c . e +c e
¢( d,y 3kZ ) 1py 10y

ml m2
LW
Yo ec d2k2 1§'md taly - 8) (2.41)
“Trg 7 2° '
4 Ppta

Here Ch1° Smo are constants of integration which may depend on
md, kZ and w.

Furthermore we note that since ¢(md,y,kz,m) is a quantity
defined on the mth plate, it must satisfy a periodicity condition

similar to 2.23. 'This infers that the constants of integration must

be of the form



w
i— md
Cpl T 1 ©
w
i—md
Cp = C, ®
where Cis S, may depend orn kZ and ¢ . We can then write
-w -
v oy ~ipy
¢(md,y,kz,w) = e [cle + ce
M 2 -
.2 b aly-a)] (2.42)
L a

in analogy to 2.23. Here use aas been made of the identity

With the derivation of 2.42 we have succeeded in cbtaining the

boundary value of the induced scalar potential for x =md, y < O .
We now turn to obtaining the corresponding boundary velues

of the other non-zero components of the induced LY-potential. These

can be calculated with the help of 2.42 and the boundary condition in

the form of 2.3k, From 2.3L4 and 2.37 we have

5 . _
- By ¢(md,y,kz,w) + 1U)Ay(md,y,kz,w) = Ay(md,y,kz,w)

w0 - ,
- - ﬂ'y(md- 2 ’K-Zu ,Lﬂ)

- ikz¢(md,y,kz,w) + iU)QZ(md,y,kZ,u) = EZ(md,y,kZ,w)

C
= - E (md,y,k_,uw)



-30-

© We immediately obtain expressions for A (md,y,KZ,w) and
Az(md,y,kz,w) since the other quantities in the above equations are
elready known. We here summarize the boundary conditions in this

section as follows:

. - P ipy 2 -ipy
Ay(md,y,hz,w) e [cl o ° e, Te
Yo jecp  qly - a)J
-
1§-md r z _ipy kz ipy
k = — e’ " — e
Az(md,y, Z,w> e Lcl —e te, —e
ech k
+ M, GCB k) aly - a)]
— e
47 qw
g me ipy ipy
¢(md,y,kz,m) = e [cl e tc, e
u 2
oeca B qly - a)}
a Tl (2.43)
These expressions hcld for y < 0 . We also recall that AX is

identically zero. As a check we see that 2.L43 satisfies the Lorentz
condition.

At this stage we have brought in two constants of integration
cq and s which are so far unknown. In the next chapter they will
be determined by imposing the outgoing wave condition and the require-

ment that the y-component of the induced current density at the edges

of the plates be zero.



-31-

2.4 Derivation of the Integral Equations

We are now in the position to combine the results In the pre-
vious three sections to derive integral equalions for our problem.
With tae help of equations 2.33, 2.36 and 2.43 we can at once write
down the integral equations we look for. Let us first set x = md

ir 2.33. Then

0 sin wd 1

; v
Au(md,y,xz,w) =g, vene

= -
[y
|
B
o
——, 8

w
cos wd - cosg ;-d

. "

ol K, e) e T dK (2.h4)

Equating tae expressions for Au(md,y,kz,w) in 2.43 and 2.4k4 we

obtain

2w wvaw
(o]
lkyy
{ s -
J K\ky) JZO(.{y,KZ,w) e dky
kz i kZ -1 ecp kz (y = a)
= Ci ~e Py 4 c; e Py L VY
' quw v 2m
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ikyy
J Kk ) ¢ po(k k Lw) e aky
ipy Lipy e 9°B g(y - a) (2.45)
ci e =Y + cé e -— e ’
q vV 27

where the kernel K(ky) is defined by

K(K ) _ =in wd 1 (2.&6)
y W . w
cOs Wwd - CcOs ;—d

For brevity we have also defined

1 1‘lO /—‘
cl = c1 ey 2m
1 uO J B
- = /2
€2 Co L i

The equations 2.45 hold only for y < 0 . They are not sufficient to
determine the unknown gquantities Jpo(ky’kz’w)' We must supplement
them by other conditions holding for y > 0 . These conditions are

given by 2.36 which says that there are no induced currents in the

upper helf-space y > 0 ; that is
juo(Y:kZ:w) = 0 > v >0

<

Or, expressed in terms of *uo(ky,kz,w)

o

. ixly
J juo(ky,kz,w) e ¥ &k =0 ,y>0 (2.47)

—oo
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Equstions 2.45 and 2.47 constitute three independent pairs of integral

equations in the three unknowns (ky,k ,w), u=2,3,% , each pair

uo Z

containing one unknown only. Each pair has the following form

T 1kyy
(k)3 (k .,k ,0) e Y d& = , ¥ <0
[ECRERCa e, s

5 1kyy
J Juo(ky,kz,w) e dky = 0 y >0

Such a pair is called a dual integral equation in the sense that the
unknown satisfies one equation for one range of wvalue of the parameter
y , and another equation for another range (11).

To conclude this chapter we remark that by utilizing the fact
that we have plane boundaries, we have succeeded in obtaining the
boundary values of the induced potentisls on a plate. This enables
us to formulate our problem in terms of three relatively simple dual
integral equations. In the next chapter these equations will be

solved by the Wiener-Hopf method.
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IIL. BSOLUTION CF THE INTEGRAL EQUATIOKS

In this chapter we are conéerned with the solution of the dual
integral equations given by 2.45 and 2.L(. This is done through the
application of the Wiener-Hopf method (12). In this method the first
step is to convert the dual integral equations into algebraic equa-
tions, holding within a horizontal strip in the complex plane. By
examining the analytic properties of each term of the algebraic equa-
tions we then analytically continue the terms into the upper and lower
half planes. The soluticns of the algebraic equations are obtained
through the imposition of definite asymptotic behaviors on the

unknowns.

3.1 Derivation of the Wiener-Hopf Equation

The dual integral equations we derived in the last chapter

are of the general form

r ik y
K(ky) f(ky) e ¥ a_= gly), y <0

Y
£(k dk_ = 0, 0 1
(y)e Y v > (3.1)

dere f(ky) represents any component of the induced current density
jpo(ky’kz’w) and g(y) 1is a known function of y . The kerrel
K(ky) is given by 2.46.

The first equation of 3.1 can be easily converted into an

algebraic equation in ky . Let us write it in the following form
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o ' ik y gly) , vy <0
J K(ky) f(ky) e Y ax = (3.2)

- 00

hiy) , vy >0
In this equation the function h(y) is unknown; but g(y) is given
explicitly by 2.45 and has the general form

gly) = A e™™ + 8 TPV 4 oo VY

where A, B, C are iandependent ol y .

Taking the Fourler lnversion of 3.2 we oblalu

1 P -ik y 1 2 -ik ¥
k) o) = [pw e Ve [en e T 63
0 w0

Since the form of h(y) is not known, let us simply define

-ik vy
n(k ) = %ﬂ— hiy) e ¥ ay (3.4)

Or———— 8

Turaning now to the second term on the right-hand side of 3.3, we find

1 0 —ikyy
wr J gly) e day
o . .
1 ipy ~ipy w] Y
= 57 [A.e + B e + Ce e dy
. . . 0

1 [ a ey g g etk )y C
= + —_—

2 © ot kg © -: r a- ik,
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- For real values of p the expression insid¢ the bracket is undefined
at the lower limit y = -». In a situation like this the common prac-
tice is to give p a small imaginary part. This imaginary part is
2llowed to tend to zero after the evaluation of the expression.

We now wish to give a physical argument for the origin of this
imaginary part and to show that its sigr is positive. Hitherto we have
considered our system to be immersed in vacuum. Suppose that we replace
the vacuum by a slightly dissipative medium. Then instead of equation
2.4, the L-potential satisfies a wave equation with damping:

2
o]

i £ 2 - :
-3 3t2 - c2 at) AU(X,Y,Z,t) = —poJu(X,y,Z,t) (3.6)
c

where ¢ 1is the damping coefficient greater than zero. The Lorentz

condition 2.3 is ncw modified to

38

v +59 =0 (3.7)

1
v . §_+ >
c c

An exsmple of a damping medium is a slightly conducting material. The

damping coefficient is then given by

e = Cguo (3.8)

where g is the electrical conductivity of the material. If we

write

«©

J A (X.7.2.0) €
o

00

1
vVar

—lwt dU.) [

A (x,v,2.t) =
u Yy
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. 1 . -iwt
Ju(xayazst) = J JH(X:YaZSU-O € v dw
v an o

the equaticn for AU(X,y,z,w) then reads

2, .
4
(VE + ‘Uu—;'@"e‘) AU(X9Ys£‘:(U) = - UOJ]J(X,'Y ,Zaw) (3.9)
c

This is formally the same as the undamped equation except that the

frequency o is given a small positive imaginary part; that is,
w > w + is . e >0 (3.10)

This imaginary part is passed on to p according to 2.9

p > p + ie , € >0 (3.11)

It is understood that arfter i(he calculallons ¢ is allowed to tend to
zero, In this way we recover the undamped vacuum case. In what
follows we will see that the introduction of a nonvanishing positive
£ greatly simplifies the mathematical analysis of the probiem.

Now let us return to 3.5. Replacing p by p + ie we find
that the first term inside the bracket diverges at the lower limit
y = =% , To remedy this we must require Lhal A = 0 . This is

equivalent to putting the constant of integration c in 2.42 equal

1

to zero. Hence

c. = 0 (3.12)

What this means physically'is that there is to be no disturbance

propagating from y = - toward the edges of the plates. The
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evaluation of 3.5 is now straightforward, namely

T -ik y .

1 1 B 1 C

on J gy) e Vo= 5= t oy T (313

p +k_ + ie 4 'y
-G y
Combining 3.3, 3.4 and 3.13 we get

K(k ) £(k ) = bk ) + = —= = (3.11)

y y y il p + ky + j—E m q -1 y

Equaticn 3.14 is the Wiener-Hopf equation of the problem. It is the
algebraic counterpart of the integral egquation 3.2. It contains two
unknown functions f(ky) and h(ky) . To solve the eguation we need
information on the analyticity of these functions. This information

is supplied by the second hal?® of the dual integral equation 3.1.

3.2 Anelytic Properties of the Wierer-Hopf Equation

In the derivation of 3.l4 we considered only real values of
ky . Now we want to check the validity of the eguation for complex
values of ky . In other words, we want to continue 3.1t analyti-
cally beyond the real axis. TFor this purpose we need to examine the
analytic properties>of each term of the equation closely.

Let us go back to the second equation of 3.1

An immediate consequence of this equation is that f(k ) is analytic

in the upper half of the complex ky_ plane. TIn anticipation of this

fact we write



k) = f (ky) (3.16)

where the plus sign indicates analyticity iIn the upper ky plene. This
can be seen as follows. Equation 3.15 holds for y > 0O . Suppose for
y < 0 the right-hand side of the equation is equal to a function of

y,Fly)

T ik y
J f{k)e Y ax = Fly) , y <0 (3.17)

0 .
1 —1kyy
f+(k ) = —§E'J Fly) e dy (3.18)
Now let us assume that
le
|F(y)|zv Ae , V> =
where A and Tl are resl coanstants with T, >0 . Then from a

well-known theorem on the Fourier transform in the complex plane (13)

f+(ky) is analytic everywhere inside the half plane

- 1, < Imk <o
v

That is, in addition to being analytic in the upper ky plare,

f (ky) is also analytic in a horizontal strip of width =

extending
+

1

from the real axis into the lower ky plane. The situation is depicted

in Fig. 2. Tke assumption we made about the asymptotic behavior of
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F(y) will be justified later on after the solution of the Wiener-Hopf
equation.

In a similar manner we see from 3.4 that since the range of
integration is y > 0 , h(ky) is finite for Im ky <0 . It then
foliows that h(ky) is analytic in the lower ky plane. Let us there-

fore define, in analogy to 3.16,
h(ky) = h (x ) (3.19)

where the minus gign indicates anslytiecity in the lower k _ »plane. Tf

>

furthermore, we assume that

|h(y)| ~ B e 2 , ¥ >

where B and T are real constants with = > 0 , wc decducc that

2 2
h_(ky) is analytic for

-0 < ITmk < T
y’

2

The situation is depicted in Fig. 2. Again the assumption we made
asbout the asymptotic behavior of h(y) will be justified later on
after the solution of the Wiener-hopf equation.

The analytic properties of the last two terms in 3.1k are
obvious. These terms have simple poles off the real axis at
ky = -p - ie and ky = - igq . These poleg are shown in Fig. 2. As

for the kernel we will show in the next section that its only singu-

larities are isclated poles, but that it is analytic within the stirip
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Wiener-Hopf equation. Poles of the kernel K(ky)
" are not shown.
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-e < Imk < ¢
Yy

where ¢ 1s the same small imaginary part of p in 3.11.
The conclusion from &1l the above discussions is that there

exigts a horizontal strip S defined by
-0 < ITm k < ¢«

within which all the terms in 3.1k are analytic, as shown in Fig. 2.
Thus the Wiener-Hopf equation 3.14 holds not only along the real ky

axis, but also within a horizontal strip containing the real axis.

3,3 Tactorization of the Kernel

In the last section we have treated one particular feature of
the Wierer-Hopf method, namely, the establishment of a common region
of analyticity for the terms in the Wiener-Eopf egmation. In the
present section we are going to deal with another particular feature
of the method. This turns out tc be the separation of the kernel
K(Ky) into two factors, one analytic in the upper half ky plane and
the other in the lower halZf ky plane. 7o be more specific, we want to

write K(ky) in the following form:

K {k ) K (k)
i (3.20)

2
k™ o+
v q

where K+(ky) is analytic and has no zeros in the upper ky plane and

K_(ky) is analytic and has no zeros in the lower ky plane.
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We recall the definition of the kernel in 2.u46

sin wd 1

X(k ) =
y cos wd -~ cos ;-d

with

We first rewrite K(ky) as foliows:

d w d w
= - = = + —
2 1 ginwa_ 293 3wr3) 5
Kk ) == - - (3.21)
v 4242 v g L (w-YY sin Q(W + 9
Ty 4 2 v 2 v

In this form the singularities of the kernel are most easily exhibited.
It will be seen that the only singularities are isolated poles.
We may wish to object at this stage that, since in 2.46 K(ky)
. . _ /f 2 .2 .
contains the radical w = P - ky , we should expect the existence

of branch cuts as well as poles in the ky plane. However, X(k ) is

¥
an even function of w . A change in the sign of w does not produce
any change in K(ky) . Thus the branch behavior is only apparent. To

be more specific, if we expand K(ky) in a power series near the
points ky = *p (w = 0), the series will contsain only even powers of
w which are single valued.

We notice that in 3.21 K(ky) contains factors of the form
sin z/z which is an entire function. Its zeros are those of sin z

In analytic function theory we know that such an entire function can

be written as an infinite product:



. o 2
sin z Z
e N L
n=1 n T
o R
= 1 (1-Z%29) BT (3.22)
= ~co B

where the prime over the product sign indiéates that the factor with

n =0 1is to be excluded. In the‘second line of 3.22 the purpose of

the introduction of the exponential factor is to insure the conver-

gence of the product. It can be shown that a necessary and sufficient

condition for the absolute convergence of the infinite product
§(1+an)

is the absolute convergence of the series (1L)
L &y
n

In 3.22 for n large

Z 7
V4 nmw
(1-m)e AV 55

and the series

e
2

n n

converges. Hence the product in 3.22 converges. Un the other hand,

if the exponential term is absent the product becomes divergent since

the series

o3 |
B

diverges.
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We first examine *“he factor sin wd/wd in 3.21.

o0

sin wd _ wd,?2
wa - nzl[ 1 - (nﬂ) ]
® a,2 d s
=1 [1- B2+ (5P
n=1 nmw nmw
= F(x ) F(—ky) (3.23)
where
@ = k d i
F(k_) = I [ l—(Eg')g—i_y—-}e o (3.2L)
g n=1 nm nm

Again the exponential factor is iumserted to insure convergence. It
is easy to see that F(ky) is analytic and has no zeros in the upper

Ky plane or, more precisely, inside the strip
-0 <Imk <=
y

provided that the sign of the sgare root is so chosen that

m /1 - % < ¢ (3.25)

nm

Let us first call this strip S, (see Fig. 2). Tae fact that F(ky)
is analytic iInside S+ is obvious. And if nwm > pd for all n ,
no factor in 3.7L vanishes inside S_I_ . O the other hand, if

nr < pd for some rn , then by our convention 3.25



46—
/1o B2 o s /SR DS
n nm nmw

Here we recall that p » p + ie . Substituting the square root into

3.24  we have

k d
o i3
Pk ) = T [—i (%%)2 -1 -1 %;—(k + ie)} e BT
J n=1 ¥y
which again does not vanish inside S+ since € > ¢ . In exactly

the same manner we can show that F(—ky) is analytic and has no zeros

inside the strip

-0 < Imk <g
y

which we will call S (see Fig. 2.)
Turning to the other factors in 3.21 and proceeding in the same

way as above we get

. d o
sin E{w - —J sin E{W + ;

o W d w

2(w - v) 2(W + v)

© k d
wd 2 pd,\2 v
= nEl [ /kl * Qnﬂv) - (Enﬂ) 2nﬂ]




= o(x ) a(-k ) (3.26)

where

d jw .
o kd] -7—(=- ik )
Gk ) = | /(122 (RYE g LTy Y
v n=1 ennmv enw onT
d s w .
w kd] ==+ ik )
wd 2 pa.2 . Y 2nm v Yy
nz [/%l_QmW) %mﬁ —lEmJe

(3.27)

If in analogy to 3.25 we adapt the following sign conventicns for the

square roots

wd (2 pay2
tm //(l + 2nﬁv) - (2nﬂ) <0

Im //(1 _wd 2 pd 2

2nmv 2nmw (3.28)

we readily see that G(ky) is analytic and has no zeros inside 5

+

whille G(-ky) possesses the same properties ir S
Summarizing 3.21, 3.23 and 3.26, we can write

F(k ) F(-k_)

2 1 Vi y

K(k ) = = (3.29)
a .2 2 Gk Gl -k
y L2 W)

In this form we may tentatively make the following identifications:
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K (x ) = —L_
+y G(ky)
F(-k )}
K lxg) = 6(-k,)

Then K+(ky) and K_(ky) will have the analytic properties quoted at
the beginning of this section, namely, K+(ky) iz analytic and has no
zeros in s, and K_(ky) is enalytic and has no zeros ia S_
However, such an identificatior is not unique. For if J(ky) is an
entire function which does not vanish in the entire ky plane, the

following definitions of K+(ky) and K (ky) will still possess the

aforementioned analytic properties:

J(k ) =(x )
K+(k) = A A
v 6(k_)
v
F(-k )
k (k) = ——— (3.30)
J(ky) G(—ky)

It is therefore seen that the mere specification of the analytic prop-
erties of the functions K+(ky) and K_(ky) is not sufficient to fix
the forms of these two functions. Te determine the unknown factor
J(ky) in 3.30, additional conditions must be applied. These condi-
tions appear in the form of specified asymptotic behaviors of

K+(ky) and K_(ky) . We require that K+(ky) and K_(ky) should
behave like some finite powers of k as Iky| » o  that 1is,

K+(ky) and K (ky) should have algebraic growth as compared with
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exponential growth. We shall see in the next section that such speci-
ied asymptotic behavior is important in the solution of the Wiener-
Hopf equation. We now show that the funection J(k ) 4in 3.30 can he

so chosen that this asymptotic behavior is achieved.

Consider the limit [ky| -~ o . By 3.24
k d
oo kdl] i-
F(k )~ T [1_1% e
v n=1 o
kd
iy 4%—
= = (3.31)
k d k d
-i L T(-1 _X_J
T T
where vy = C.5772 -++ 1is Euler's constant. and we have used the
infinite product representation of the gamma function:
— LS e’ mo(1+ 32 e_Z/n (3.32)
“(z) n
n=
Now the asymptotic behavior of the gamma function 1s giver by
Stirling's formula
r(z) ~ //EE_ 7% ® |z]| + = (3.33)

7 b

From 3.31 ard 3.33 we obtain



F(Ky) —~ e =
vV oor (3.34)

Proceeding in the same way we get

b2 n= 2nw

alk ) ~ { ; [1 -1 EXE;] ei 2nm }2

-
o
o

= = (3.35)

Or, using Stirling's formula 3.33,
k d k d
~i(1 - y) 2 k d -(-i —%;-+ 1)

1 T .
Gk )~—5 e (-1 -5 (3.36)

Therefore combining 3.34 and 3.36 we get

Flk ) i
— Y constant x k;/g e m (3.37)

G(ky)

Comparing this with 3.30 we see that if we choose

kd
_il_znf)

=4

Jr) = e T (3.38)

' which is a nonvanishing entire function as we required, we can make

. . 1/2 : - e

K, (x_) behave 1like Xk as |k | =« , that 1s to say, K _(k_) has
+ 7y y ¥ Ty

algebraic growth. DNoticing that



: = J(-k )
J(k )
v ¥
. . A . 1/2
we can show in like manner that K_(ky) behaves like ky as
|k]—->oo
y
To sumr up the results of this section we have
o X (k) K (k)
Kk ) = =
J d k2 + g
J
kd k d
1 m2 e [ ka] 1 -
e T m|/1-E)° -4 e "
n=1 nm am
K+(ky)=
d ,w
® k 4 (£ -1k )
I { /(14-rwd )2 _ (Ed )2_ s Y j , eng v
2nnv 20T 2nT
n=1
4w
] ;/(1- wd 2 (o )2 Xﬁ Ta k)
n= 2ngv 2nq 2nT
K (k) = K/(-k)
- ¥ + y
K (k) ~ constant x kl/2 R |z | + = (3.39)
A J y

3.4 Solution of the Wiener-Hopf Equation

With the establishment of the results in Sections 3.1, 3.2 and
3.3, we are now in Lhe posillion Lo solve bhe Wiener-Hopl eguation

3.1k:
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Z(k ) £.(k) = b (k) + =3B b C
+' Ty - mn . .
p+ k + ie a - ik
¥y y
Let us first rewrite this equation in the following form:
K (k)£ (k) (k -ig) b (k)
s_gj;ﬁy”,f,y S AR A A
k + iq. K- (k)
y 4 ( y
. k- 1iq
== l: = - — l (3.140)
" K (k)

k + + ig x +1i
v P v q

We notice that on the left-hand side of 3.40 the Ffirst term is
analytic in S, ; the second term is analytic in S_ . As for the
right-hand side, we orly know that it is analytic irn S (see Fig. 2).

The next task we are facing is to separate the right-hand side
into two terms: oane analytic in S+ and the other in S5_ . For

brevity we define

k - 1q
(k) = - [ S = (3.11)
ViEy 2 K_(ky) X+ p+le k_+ig
and write
= [ .)42
o(k, ) )+ oy (k) (3.Lk2)

where w+(ky) is analytic in 5 _ and w_(ky) is analytic in S_

To calculate ¢+(ky) and w_(ky) we consider a closed rectangular

contour C TPounding the region S as shown in Fig. 3. Since

m(ky) is analytic within S we can represent it as a contour
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ky-PLANE

CONTOUR C

X =iq

Fig. 3. Contour C ﬁsed for the separation of the
analytic function w(k&) .
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integral around C . Thus
v (&)
wk ) = Zii % bi k! (3.43)
y X' - k y
c ¥ y

From the asymptotic behavior of K - (ky) in 3.39 we deduce that

-1/2

w(ky) tends to zero like ky &s |ky| +~ o , Hence we can neglect

the end sections of the contour ¢ at infinity and 3.43 becomes

©-ig

w(k!)
= —l— _—_.;Y—_.. 1
w(ky) 2ri dky
. k' - k
—®-10 Yy N
oot
o7 e
+ === J —JL gk’ (3.L4)
27l k' - % ¥
—oodi g v v

We recall that in the above expression ky is a point within the
contour C , that is, inside the strip S . However, we can actually
analytically conlliue the terms in 3.44 beyond S . Let us examire

the first term on the right-hand side of 3.kb,

o-jg

1
1! P(k!) -
2ni J. Kook y
—®=iC Yy ¥
In the integral Im k& = -0 ; 50 the integral is well defined if
Im ky > -0 . We can therefore continue the integral analytically

beycnd S5 1irnto tne upper k& plane. Thus the integral actually
defines a function that is analytic in S+ . In a similar way we can
show that the second integral in 3.44 defines a function that is

analytic in S8 . Returning to 3.42 we gee that we may identify
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v (k& ), ¢_(ky) as follows:

Y
T ey
R (3.15)
v 2mi ' vy
. k k
-=-io0 "y ¥
(k) = —x Ty
k = — dk!
v_ v a2mi . k' - k ¥
-1 g vy v

rom 3.41 and 3.45 it is straightforward to evaluate ¢+(ky)
We complete the contour by a large semicircle in the lower KV plane.
The contribution from this semicircle to the integral is zero, since
=1/2

k ~ Ak k > o
W) . , Iyi

where A 1is a constant. Our contour will include poles of y(k_) at

¥

k = wp = de and k = =ig . The wvalue of k ) is thereforc just
v = 7P ¥ 4 (AL 3
the sum of the residues at these poles. Thus

p(k!') p(k!')

w+(x ) = - Res [ ki } - Res [————X——
1 t 3
K ky k' = -p-ie ky Sy X' = -iq

The two minus signs come from the clockwise sense of the contour.

Evaluating the residue we get

v (k) = —i.{F_ B( ) p + ig + 2iC q (3.46)
Lt PR K+ p o+ e K- (-iq) E g+ i

In this final form the anelyticity of w+(ky) in 8, is explicitly

confirmed.
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Let us rewrite 3.40 in the following form:
K, (k) £ (x ) (k- iq) b (k)
+ + =
. g () = = F— 4y (x)

: + y 3 - y
k 4+ 1 K (x
, T 1 _( y)

o

Since each term in the equation 1s analytic in the strip 8 , each side

defines a function I(ky) that is aralytic in 8

. \
- _ 2 i{-l-(ky' f+(ky>
I(ﬁy) =3 - w+(k )
k_ + ig J
J
(k_-ig) h (k)
= =7 Iy (k) (3.47)
K (k
( y)
So far we confine the region of definition of I(ky) to S . Let us
examine the analyticity of K(ky) in the entire ky plane. As we

have seen, the first line in 3.47 is analytic in S+ . We can regard
it as the analytically continued value of I(ky) in the upper %k
plane. In the same way the second line of 3.47 is analytic in S_
We can regard it as the anslytically continued value of I(ky) in the
lower ky plane. Thus we see that I(ky) ig analytic over the entire
ky plane. Consequently it is an entire function.

To evaluate I(ky) we consider the limit lky' >
I(ky) is enalytic over the entire ky plene with the possible excep-
tion of the point at infinity which can be a singularity. Let us
therefore examine the behavior of I(ky) at the point at infinity.

Now f+(Ky) is the Fourier transform of a component of the surface

current density ju(y) . It must approach zero for Iky| > » T
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ju(y) is to be integrable, as is required by physical considerations.
The asymptotic behavior of K+(ky) and w+(ky) being already known,
the first line of 3.47 shows that I(ky) is asymptotic to zerc ir the
upper ky plane. Similarly the second line shows that Z(ky) is
asymptotic to zero in the lower ky plane. Thas T(ky) is asymptotic
tc zero in &ll directioms. Since I(ky) is an entire function and,
by the maximum~-modulus theorem, the modulus of an entire function
attains its maximum at the point at infinity, I(ky) must be identi-

cally zero. Therefore

(k)= © (3.18)

From this we immediately obtain the solution of the Wiener-Hopf

equation 3.1h4

- 9 vy "
f+(ky) = 3 ¢+(k )
I<;+(ky)
_-ie 1 [B(p+iq)§y+:’q 21 Cg
b K (k) L K _(-p) k +PH e K (-ig)
(3.49)
. ; . =1/2 .
We see that f (k ) tends to zero like k as |k [ > , in
oy y ¥

agreement with our previous assumption.

At this stage f+(ky) still contains an unknown constant of

integration cé which is absorbed in B . To determine what cé is

we must inserl Curlher condilions on our solubion. Lel us Lherelore

consider the current density component jyo(ky,kz,m). Comparing 2.45



~58-

with 3.1 we see that jyo(ky,kz,w) car be obtained from 3.49 by

setting

Therefcre

( ) id 1 [ c) plp + iq) ky + iq

j k k 0 = R
oy z? bpw X (k) K (- kK +p+1
youy mo K, (ko (-p) y Pt ie

- __gﬁiiggh___ e_qa] (3.50)
/E;-K_(—iq)

arnd

jos} . k
i
= 5k ,k ,w) c
[o yo vz
m

-0

7
Jyo(y,kz,w) - dky (3.51)

The additional condition we are going to use for the determination of

the constant of integration cé is that no induced current should

Zlow out of the plate., Mathematically this is equivalent to putting

Jypo(¥sk, 0l = 0,y =0 (3.52)

Or by 3.50 and 3.51

+ 7y 3 K (-p) k+tp+ie
2ecpq Bt ] gk = 0 (3.53)
27 K_(-1Q) y



From the asymptotic behavior of K+(ky) as lkyl + » we see that the
integrsl diverges unless the expression inside the bracket tends to

zero sufficlently rapidly as lky‘ + o . This is the case if we

adjust cé so that

o bPlptiq) _ _2ecBg .-z
K (-p) Vor K _(-iq)

With this condition the left-hand side of 3.53 becomes

[oo]

J -iecpd o]
(21)3/2,

(o - ig) e ¥

dky
K_(—lq) K+(ky) (ky +p + ig)

which is convergent. The value of the integral is in fact zero in
agreement with 3.53. For since K+(ky) is analytic and has no zeros
in the upper ky plane, the integrand is analytic in the entire upper

ky plane. Upon completing the contour in the upper ky plane we

readily see that the integra’l has value zero. Hence we have

_—iecpd q (p - ig) e

j (k 3k :w) -
oo (2m)3/2 K (-ig) X, (k) (k+p+ ie)

yo

Tc get the other eomponents of the induced currents all we
need to do is to take the corresponding values of B and C from
2.45 and substitute “hem ir 3.49, using the calculated value of cé .
To summarize the results of this section we give the explicit forms of

the solutiors of the set of integral eguations given by 2.45 and 2.47:



. -qa
B A (p - iq) ¢
dJ O(k ,k_,CU) = - = 3/% <
yoo y© = (21)"" wK (-iq) K+(ky) (k. +p + ie)
_=—-1iecpd kz e~ q k.t ig
JZO(ky, Z,w) 3/2 b i + 1
(27) uKA(—lq) K+(ky) D ky+ p+ ig
s -gqa x + ig
Cpo(k ,kz,w) = le;;; = = [ﬂ. - 1a0}
Y (2m)° ek (-1q) K (s) L¥ i+ p+ ic

(3.54)

As & check we firnd that these current densities satisfy the equation of

continuity. Tncidentally we notice in 3.54 that whereas j y,kz,w)

yo(

vanishes at the edge y = 0 , (y,kz,w) and Cpo(y,kz,u) diverge

Jzo
there. This singular behavior of the current densities at the edge is

also present in Sommerfeld's half-plane diffraction problem. We will

discuss this point further in the next section.

3.5 Properties of the Solution

In this section we are going to examine the behavior of the

solutions in 3.5h4 in the two limiting cases:

(i) ¥y » - (asymptotic behavior)
and (ii) y » -0  (edge behavior).

The asymptotic behavior appeared as an assumption in Section 3.2,

namely,

yY :
f+(ky) e dky v A e y, ¥ > - (3.55)
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where A and T, are real constants with 2o 0 . Now we wish
to justify such an assumpticn. In the latter case the edge behavior
is intimately connected with the unigueness of the solutions.

In 3.55 f+(ky) represents any one of the current density com-
ponents jyo(ky,kz,w) . jzo(ky,kz,w) or Cpo(ky,kz,w) . From the
general form of the current densities in 3.5L4 we see that the singu-
larities of f+(ky) in the ky plane are poles. In the lower ky piane

it has a pole at ky = -p - 1e . The other poles are those of

l/K+(ky) . These are located at

. 2 ni,2 . 2 nq,2
(1) ko =-7 pT- (FPT -die 2 o> (5P
2 2 2 b2
and (11) ky = -1 (Eg) - P s p < (Eg)
where n = 1,2,3 »++, Thus if we clocse the contour in 3.55 by a

semicircie in the lower ky plane, the velue of the integral will be
given by the sum of the residues of the integrand at the poies of

f+(ky) inside the contour, the contribution of the semicircle to the

value of the invtegral being zero by Jordan's lemma. The y-dependence
ik vy

of the integral is exclusively given by the factor e Y. At the

poles at
. 2 . Y 2
ky =.-p-ie , - //pg— (E%) -ie , -1 /(E%J - D

this factor gives respectively contributions proportional to e R

/(nn>2 _ pgy
ey d . . .
e , € . These factors immediately confirm the

asymptotic behavior in 3.55, since ¢ > ¢ > O
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The edge behavior of the induced current density can easily
be derived with the help of a well-known result concerning the
asymptotic relations between functions and their Fourier transforms.

Suppose we consider the component jyo(y kZ,u)
b

7 ik ¥y
i (v k ,w) ( k ) e 7o
yo s 4 2_” j ¥
The corresponding inversion formuia is
0 i
( - e (3.56)
j k ,k W) = ] k ,u) e d 3.5
Jyo 3520 - J Jyo NEE Y
The range of integratior in 3.56 is from y = -« to y = 0 sgince

Jyo(y,kz,w) =0 for y >0 . It can be shown that if

. -V

Jyo(ky,kz,w) voA ky , ky >
where v > 0 , then (15)

Jyo(akysw) v BT,y > 0
From 3.54 we see that uyA(k ,k ,w) R jzc(ky,kz,w) and

-3/2 -1/2 -1/2
cp (k ,k ,w) behave respectively like k s K and k as
o Yy = ¥ ¥
ky > o ., Hence, according to the above relation jyo(y,kz,w) R
- _1/2 .

Jzo(y,kz,w) and cpo(y,kz,w) behave like yl/g, y 1/2 and vy 1/ in

the neighborhood of the edge (y = 0). Therefore the component of the
induced current density that is normal to the edge vanishes at the

edge, while the component parallel to the edge diverges like the square
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root of the inverse distance from the edge. The induced charge
density has a similar divergent behavior.

In certain approaches to diffraction problems involving
obstacles with sharp edges, the above edge oehavior of the induced
current density is imposed on the solution as the so-called edge
conditions to ensure the uniqueness of the sclution. EFow the edge
conditions affect the uniqueness of the solution is a very complicated
question. Without going into great mathematical detail, we can
describe the situation as follows. The idealizaticn of an infinitely
sharp edge results in the appearance of a singularity for the charge
density and the parallel component of the current density at the edge.
It is precisely this edge singularity which prevents the establishwment
of a uniqueness proof for the solution of the problem. As a result it
is possible to produce more than one solution to the problem every one
of which satisfies all the boundary conditiors, except that they have
singularities of different orders at the edge. Among these solutions
the one involving the singularity of lowest possible order is to be
taken as representing the solution to the physical provlem. This, in
fact,'rules out any singularities of order greater than y_l/2 as
vy > 0 at the diffracting edge. “he physical implication of this
chosen order of singularity is that the edge neither radiates nor
absorbs energy. We may regard the edge conditions as additional energy

conditions which suffice to make the solution of & physical problem

unique (16).
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The possibility of a multitude of solutions having been seen,
we may be inclined to ask why the Wiener-Hopf method apparently yields
a unique solution which is, moreover, the correct one judged by the
above-mentiored criteria. The answer is that we assume from the
outset the possibiliiy of representing the components of the induced
current density as convergent Fouriler integrals. This precludes them
from having singuiarities of too high an order.

Finally we remark that the achievement of the correct edge
behavior for our solution is also a direct consequence of our imposi-

tion of algebraic growth for the function K+(ky)
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IV. INDUCED POTENTTALS AND FIELDS

4,1 Induced Potentialsg

The central point of the present problem is to scolve the set
of dual integral equations for the induced current density formulated
in Chapter II. In Chapter III these equations were solved and the
solutions were given in 3.54. From the induced current density *he
induced potentials and fields can be obtained by well-known procedures.
However, since the results in 3.54 appear as Fourier transforms,
additional steps must be taken to perform the inversion transformations
as far as possible. In this section we will first perform the ky
inversion to obtain expressions for the induced potentials as functions
of x, v, kZ and o .

Our starting point is 2.33:

) e~ & ;== O
Ap(xaygkzgw) - h‘ﬂ' ‘/ 21 e

. a o . (— k )
R i= m 3 iy, o
W

(o]

<ie

i=a .o
sin wlx-(mt+1)d] - e gsin w[x-md] leyy

ik,
cos wd - cos “ g y
-

mi < x < {(m+1)d .

Using 2.33 and the identity

1 = 2 - v
wK (k )(cos wd - cos ¥ 4) d sin wd 2 2
+y v

we write out explieitly



U ~ga i—md
A (X,y,kz,w) = H%-leig 9 € e
7 wkK (-iq)
. i%d
. sin wix-{m+1l)d: - e sin wix-nd] K (k )} ik vy
J p - ig =y Y s
k +p + ie ; 4 2 2 v
LY sin w ky+'q
A (x,y.k ,w) = — i = e
h ' wK (-iq)
LW -
=) 1= C -
J[ o KA+ tq } sin wlx-(m+l)d] - e V' sin w[x-md] I\‘—(k‘y)
L P k +p+ ic sin wa k2+-q2
Y
ik y
x e Y dk
y
LW
(S -3Ja 1— md
y - .0 iecg _e v
¢(X’y’kz°w) e K (-ig) €
LW
. i=d ]
o0 k. + - - y
( g ¥ 4 5| sin wix-(m+l)dal - e ©  sin w[x-md] K_(‘y)
| — - ia
PP g +p+ie sin wd k24-q2
ik y
X e J dk
¥y
md < x < {(m+l)d (4.1)

Tec evaluate these integrals we have to treat

for y < 0 and the other for y > 0 . This

considerations, since the half-space y < O

metalllc plates while the half-space y > O

two cases separately: one
is clear from physiceal
is occupied by the

i1s, except for the polint
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charge, empty. We would expect to find the behavior of the fields in
cne half-space quite different from thcse in the other.

Let us first consider the case y < 0 ; and let us further
focus our attention on the space between two particular adjacent

plates, that is, we consider the restriction on the x-coordinate

md < x < (m+l) d

Then the contour of the integrals in 4.1 may be closed by a semicircle
in the lower ky plene. By familiar arguments in contcur integration
tne semicircle makes no contribution to the vaiue of the integral. The
integral is then determined by the singularities of the integrand
inside the contour. These singularities will be seen to be simple
poles. Thus the value of the integral is simply the sum of the residues
at the poles.

The poles of the integrals in 4.1 arise from three sources,
namely, from the factors k; + q2 . ky+ p + ie and sin wd In the

denominator of the integrand. From these we find there are poles at

(i) k¥ = -i
v q
(ii) ky = -p - ig
‘s / 2 a2 .
('_'ll) ky = - P - (Tﬂ) - 1le n=1,2,3,"""
How we come tc conclusion (iii) can be seen as follows. Recalling
that w =+ o°- 1«:5_ we see that sin wd = 0 implies that

—— e

k=2 /% T n=1,2,3,"
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The case n = 0 can be discarded here since it is already included in
(i1). Giving p & positive imaginary part and taking the minus sign
we obtain (iii). The radical w = V P - ky does not give rise to
branch cuts since the integrand is an even function of w .

Let us consider these three sets of poles one by one and
calculate their separate contributions to *the irduced potentials. The

results are summarized below.

(i) Contributior from pole at ky = -iqg :

Yo ecB -ig i% x + qly-a)
A}r(x’y,kz,w) = I:TT T [ W ] e
w
u k i—x + q(y-a)
_ o0 ecB wm v
AZ(Xay:kaﬂ) = L "‘q"' [w ] €
w 1
u iL z + q(y-a) (4.2)
_ _© ecB 2 v
Bx,y,k 5w) = - e [-a"] e
(ii) Contribution from pole at k = -p - ie
v b
1 qa 12 md
v _ o 2ecBe q ) v
Ay 0) = g2 SEEET 13 (p - i) o
i% a (
[x-(m+1)d] - e [x-md] == e—ipy
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5 - ” i— md
8,y ,u) = g SEEBE B (54 g)] e
K_(-iq)
i d K (
[x=(m+1)d] - e [x-md] =" - -ipy
G p2+ q
o 2 ecge™@® g iy md
¢(X,y,kz,w) _h_'n_- K_('—iq) [5 (—p + lCl)] €
iE' d K {-p)
[x-(m+1)d] = e V' [x-md] AP -ipy
. — ¢
el
d pt+a
(i1ii) Contrioution from pole at ky = — /pg— (%)2
u -qa 12 mg
(x,y,% ,0) = 2 22288 L
z STk (tig) a2k Y k4
_ a vn yn 1Y
LW X
i=d K (k_ ) ik _y
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where we have used the notation
2 2
kyn = -V p - (E%) - ie (4.5)

and the relation

r -1
Res -1 = l-—g— sin v p2— k; %
sin wd ¥ k =k
k =k ; n
v yn y ¥

As a check we find that in the above three cases the potentials
separately satisfy the Lorentz condition.

We now proceed to evaluate the integrals in 4.1 for the case
vy >0 . Now the contour of the integrals may be closed by a semicircle
in the upper ky plane. The contribution from the semicircle to the
values of the contour integrals can again be shown to be zero. The
only contributions to the integrals are from poles of the integrands

in the upper ky plane. There are two classes of such poles located at
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(ii) ky = \/pz - (@ - g) t+ie , n=+1,42, £3,°

Poles of the second class are those of K_(ky) in the upper ky plane
as can be seen from 3.39. It is to be noted that no contributions come
from the zeros of the factor sin wd in the denominator, since on
examining 3.39 we find that Llhese are exaclly cancelled by the zeros
of K_(ky) in the numerator.

We again evaluate the integrals in 4.1 by the method of

residues and summarize our results ag follows:

(1) contribution from pole at Ky = 1iq :

b X (iq) : i® x - q(y+a)
A(Xayak :w)='l'l£’e.c°§_?_"—'[—q_-u] v
Y z Toid g (g lw P tia
A (x,y,x ) = ig_____ecs ————-{_(lQ) l—ié[gﬁ 219 + w'] elgx - alyra)
7 :ya‘zsw = L iq - © +
X (-iq) p+igq
u K_(id) s iZx - aly+a)
Blx,7.% u) = "o ecB [ q _2ig iac] oV
9] 9 L] - h - .
# o K (-iq) P p+igq (4.6)
(ii) Comtribution from pole at ky = V/pz - (ggﬂ-— %)2 +ie
n=3%1,+2, +3:-:
Mo pecp o794 HES K—(k§n)
Ay(xsyakzaw) = r K_(—lq) "{'2 R )
At
LW _ 2nm cqy
[‘9 o - 1g el(v —a—d X elkyny
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yn
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w
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Q2R Y yn

is the residue of K (k) at the pole X% = k'
-y ¥ yn

. It is to be noted that for y > 0 the solutionc are independent

of the integer m , so that the restriction md > x > (m+l)d can be
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removed., This is evident since the upper half space is not divided up
by the plates. As & check we find that the twc classes of potentials
separately satisfy the Lorentz condition.

To find the total induced potential we need only add up the
contributions from all the poles. We should furthermcre perform the
Fourier inversion for the z coordinate. However, the kz integration
turns out to be far more difficult than the Ky integration. Whereas in
the ky plane the integrand has only isolated poles, 1t kas branch cuts
in the kZ plane. In the next chapter we will evaluate the kz integrals
only approximately.

However, in the preoent stage, even without performing the kZ
inversion, the nature of the solutions is already evident. This we
will discuss in the next section after we have calculated the inducead

fields from the potentials.

4,2 Induced Fields

In the last secticn the ianduced potentials were explicitly
calculated. It was found that they had different forms in the two
separate half gpaces y < 0 and y > 0 . Furthermore in eaca of the
half spaces the potentials might be expressed as the sum of different
classes of terms. In this section we will calculate the induced fields
cerresponding tc each class of induced potentials in accordance with

the relations

E

B(x,y,k,,0)

d
X:Y’kz)m) BX

L

- _ 9 , .
Ey(XQY:kzaw) - ¢(X:y:kzsv‘)) + 1~0Ay(xsy,kzsw)
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E (xv.k .0) = -1kx @(xv.k w0 + iwd (x.7.k, ,0)

d ..
BX(X:yakzaw) I AZ(X=Y:kZ,w) _lKZ Ay(Xay:kzsw)

3y

3
By(xayakzaw) - E—}EAZ(X,y’kZ’w)

3, (55755 0) = g—x CHERR I (4.10)
Let us first consider y < 0 . The results are summarized as
foillows:
(i) Contribution from pole at Ky = -iqg
T - iz x + aly-a)
____O_ ecf 3 o W
EX(x,y,kZ,m) =T g [ic” =] e
.
M il = + aly-a)
. Yo ect (o,
Ey(x,y,kz,w) “Ir g [Bgl e
. @
N )=_u—gﬂ[lk_z]elvx+Q(y—a)
AR A Ly q 2
g
BX(X,y,kZ,w) = 0
- = x 4+ -
B (x,y,k_,w) = Lo ech [ = ] el x+aly-e)
y 2V 58y 50 Ly Q. v
u i=x + qly-a)
) _ 0 ecB rg v
BZ(X’_‘Y’kz’w> b g [vl © (k.11)

Upon comparing 4.11 with 2.17 we see that these parts of the induced
fields exactly cancel the fields of the moving point charge in the

lower half space. Such a cancellation 1s obviously necessary to

satisfy the boundary conditions for the total fields.
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(ii) Contribution from pole at ky = - p - ie :
w
! i—d
- K (~ i— md v ) .
E (x,y,k ,u) = ;2_2ec Be ~ _( v e l-e [q] TRV
b H 5
x : p+ig K_(~iq) a P
Ey(xayakzaw) = 0
EZ(Xayakzaw) = 0
B (x,y,k, ,0) = 0 (L.12)
w iz d
s < o tmeg e Sy S
2d 9 H - §
v § T p+ig £ (-iq) d “p
w
i—a
u —qa K (-p) i= md v —
B, (x,7,k, ,u) = 1= =28 eV Iz ()W
p+ig X (-iq) c

Thege filelde have the following propertiec:

E+B = 0

w
=
i

cE .

The interpretation is that they represent a wave propagating between

the plates at x = md and x = (m+l)d, with propagation vector

x = (0, -», kZ)

From the fact that E - k=B - k = 0 , it ie clear that this wave cor-

responds to a TEM mode of propagation.
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(iii) Contribtution from pole at %X = - p2_ (9-3-)2 - ie
n=1,2,3,"""
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These fields satisfy the conditions
E-B= 0 , E =2¢B

p® > (22

If k =-Vp - (—EJ is real; and the fields rep-

a ? VI

resent a wave iravelling down the space between two adjacent plates,

at the same time being reflected back and forth by them. They



-78-

correspond to higher excited modes than the TEM mode considered in

Ly 2 s nm e 2
EDE Lk, = -1/ (BDT -

(ii) above. If p2 < ( and the fields
are exponentially damped in the negative y direction.

In the half space y > 0 the fields take on the following

forms:
(i) Contribution from pole at k = iq :
g w
u K (iq) . 1L 5 . q(y+a)
EX(XaYakZ,w) = u—o-e;:-—B —_— |i:‘:_)_ (9_ ilg - &C)} e v
T g (~ia) P P
U K (1q) - ) ) .
E(Xayak 3(1)):)4-—0‘32@ e 1q9-_ q + P - 13 o ).
v Z To1q p (-iq) D p+ ig p + iq J
.0
12 x - qly+a)
s e
Mo ecp _(id) k 15 %= aly+a)
EZ(Xs:VskZ,(D) = ET.T___—— [__ __é_] e

Z w P ptig P+ ia”]
LW
:L:]_-X
. e - qly+a)
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e ) = ot Y[R g s ] B a0
DAL br ig K (-ig) | v 'p p+ig

ccp K_(10) [i q p- iq}e%—x— gly+a)  (b.1h)
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These fields satisfy the relation

|t
1]
O

b

They are attenuated exponentially ir the positive y direction. Hence
i
they do not represent radiation fields. From the factor e vE we
find that
kK = =
x v

From this we can calculate the group velocity of the wave in the x

direction:

whick is identically the same as the velocity of the point charge.

Thus these fields are simply dragged along by the moving point charge

in 2.17.
(9] ) (3]
(ii) Contribution from pole at ky = //pL- (Lgﬂ - %)L + ie ,
n=+1,+2, +3,
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Again these fields satisfy the relations

E-B= 0 , E=c¢cB

2 s
For p~ > (ggl-— u)2 , they represent a wave with propagation vector
_ 4w 2nm o,
ko= (v da’ Kyn i kz)
2 W 2 .
Fer p2 < (—%E-— i)a , the fields are exponentially damped in the posi-

tive y direction.

Summarizing the results we see that in the evaluation of the
integrals in 4.1 each pole of the integrand gives rise to one charac-
teristic solution of the wave equation. The solutions are of three
types. In the first type the waves propagate at equal pace with the
point charge, end thus do not represent radiastion. In the second type
the waves propagate freely into both half spaces y <0 and y > 0 .
In the third type the waves are damped exponentially in the y direction;

they thus cling closely to the z-x plane.
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V. ASYMPTOTIC PROPERTIES OF SOLUTIONS

Up to the last chapter the results we obtained are exact. The
objecticn we can raise against them is that they are expressed as
functions of x,y,kz and 4 . An exact performance cf the Fourier
inversion for kZ is impossible due to the complex structure of the
integrand which contains infinite products. In this chapter we will
use the method of steepes:t descent (1T7) to derive an expression for
the far fields. From the fields the form of Poynting's vector can be
computed. In this way we obtain informaticn on the rediation emitted

by the excited conducting plates.

5.1 Method of Steepest Descent

Let u be a complex variable and let us consider a contour
integral of the type

i sz— u2 y + iuz

I= = J f(u) e

du (5.1)
/ on

where ) is a positive real constant. However, for convenience in
the analysis, we give ) a small positive imaginary part, that is,

A > ) + ig . Assume that the cnly singularities of the function

f(u) are branch points lying exclusively inside the first and third
quadrants in the complex u plane. Furthermore, assume that the branch
points in the first quadrant either lie immediately above the real
axis or immediately to the right of the imagirary axis. Similarly in
the third gquadrent the branch points all lie immediately below the

real axis or immediately to the left of the imaginary axis. We note
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at this point that the amplitudes of the induced fields calculated

in Chapter IV possess Just sucn a property. The branch culs can
therefore be drawn entirely inside the first and third quadrants. The
situation is depicted in Fig. L.

We introduce polar coordinates through the relations:

y = pcos§
2z = psin @ , - % <@ < % (5.2)
Then 5.1 becomes
g T £(u) 278 4y (5.3)
N

wWhere
g(u) = v Ag— u2 cos P + u sin @ (5.4)

We want to evaluate the integral approximately for very large
values of the parameter o .

Consicer the following conformal transformation:

u = ) sin 8 , - %—< Re 6 < g- (5.5)

Under this transformation the entire u plane is mapped into a vertical

strip - = € Re 6 € of the © plane as shown in Fig. 5. Comparing
p

o=

ISIE

with Fig. 4 we see that the real axis of the u plane has been mapped

into the broken line ABCG. We can now write 5.3 in the form

1 } ) o1he cos(e - @)

f() sin ©
V2T apoa

I= )\ cos © 48 (5.6)
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Fig. 4. Singularities in the complex u-plene
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Fig. 5. Image of the u-plane under the conformal trans-
formation '

u= A sin @ , --Z—ﬁReoﬁ-g-

The dotted line is the path of steepest descent.
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Here the integral is to be taken along the contour ABCG in the O
plane.

If X 1is finite and o 1is very large, it is clear that any
change in <cos(6 - @) will produce a large fluctuation in the
exponential factor. If f(A sin 6) is a slowly varying function,
such a large fluctuation will tend to oroduce an average value of zero
for the integral. The main contribution to the integral comes from
the vicinity of points oa the contour at which cos(6 - @) has the

least tendency to change, that is, at waich

—%5 cos{(® - @) =0

Tnis equation has the solution 6 = @ . It can be shown that such a
point is not an absolute maximum of cos(® - ¢) , rather it is a
saddle point.

The idea of the present approximate method for the evaluation
of the integral 5.6 is to deform the contour ABCG ccntinuousiy into

one which passes through the saddle point along a path of "

steepest
descent”. Through a saddle point there are two characteristic paths:
one of steepest descent, the other of steepest ascent. BSuppose we

put

]
1

&£ + in

cos(6 -@)

v+ iy

The two characteristic paths are given by the equation

(g .,n) = constant.
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We note that along such z path the exponential term in 5.6 does not

fluctuate. Calculating ¢{(&,n) directly we find the equation to be

cos(g& - @) coshn =1

The constant is taken to be unity so that the curve passes through the

saddle point £ =@ , n =0 . At the saddle point we find that

o
=3

|

=_-_i-_l

a
Uy

An examination of cos(6 - @) in the neighborhood of the saddie point
shows that the wlnus sign corresponds to the path of steepest descent.

In Fig. 5 we indicate that the contour ABCG is deformed into the
dotted contour wanich passes through the saddle point at an angle of
135% with the real axis. When 1t 1s necessary the branch cuts are
circumvented.

It can be shown that along the path of steepest descent the
exponential factor ir 5.6 decreases monotonically and rapidly on
either side of the saddle point. Making use of this fact we can

replace f{A sin ©)X cos 8 in 5.6 by its constant value at the

saddle point. Thus

T 2 £(A sin ¢))\cos¢Je

vV or

iXo cos(6 - @)

ao (5.7)

Now we can deform the dotted contour back into tae original contour
ABCG. The 1integral in 5.7 becomes identical to an integral represen—

taticn of a Hankel functicn of the first kind: (18)
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) i (g -
(1 %_ f Jidp cos{(e - ¢) a0

ABCG

Therefore we have

1
v 27

) (1)
m £(A sin @) A cos @ H (xo)

Since p 1is large we can further use the asymptotic formula for

(1)

e}

H rp)

(1) /2  —iwn/h i
io {x0) . e e s Ap > @

Finally we obtain our approximate formula for the integral 5.1:

I = V/x e_iﬂ/h (A sin @) cos ¢ LA (5.8)
)

This has the form of a cylindrical wave.

From 5.2 we see that in the above derivation we have assumed ¢

to be in the range (- %3 %) . Hence we were only considering the
case y > 0 . For y <0, 5.2 beconmes
y = -p cos ¢
. T i
v = p sin @ . -5 ¢ < 5 (5.9)

that 1s, @ is now measured from the negative direction of the y-axis.
A glance at the results of Chapter IV shows that when y < 0 we will

be considering integrals of the type 5.1, but with Vv A - u replaced
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by - VA™- u2 . Hence the function g(u) in 5.4 remains the same.

And we arrive at the same asymptotic expression as in 5.8.

5.2 Far Fields and Poynting's Vector

In Chapter IV the induced fields were calculated and the results
were expressed ag functions of x,y,kZ and w . In order to inveeti-
gate the radiation properties of our system, it 1s necessary to express
the fielas in terms of x,y,z and w. Results of this form cen boe

oblalned by performing the 1lnverse Fouriler Kz transformation:

E(x,y,2z,0) = gjx,y,kz,w) e dk (5.10)

Z

.

1 T ik z ,
Such an integral is of the form 5.1 and hence, at very large dis-
tances (p - =), the integra’ for the far fields in 5.10 can be
approximated by 5.8. In the following we will calculate the asymptotic
expressions for the far fields as well as the Poynting vector.

It is clear from 5.10 that the far fields we obtain in this way
are only the frequency cormponents of the actual fields. Therefore the
Poynting vector corresponding to them will be a function of the fre-
quency w . We would like to gi&e a physical interpretation for the
Poynting vector obtained in this manner. Let us consider the defini-

tion of the Poynting wvector

s(r,t) = E(r,t) x H(r,t)

and let us resolve the electromagnetic fields into their frequency
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components:

H(r,t) = - J H(r, ) et a

These fields are real; their frequency components must satisfy the

conditions

i
N
R
i
g
|
m

Then

s(r,t) = —}_.J f E(r,uw) x Ef(EJM') e—i(w— w' )t dy dy'

From this we get

(r,t) dt = J s(r,u) du (5.11)

gr——28
|,

where we have defined

*(r,n) (5.12)

i
j =
=
[
X
o

s(r,w)

From 5.11 we see that s(r,w) represents the total electromagnetic
enefgy per unit frequency interval at  passing through one unit
area at the point r during the entire time interval (= o)

We now return to the task of calculating the asymptotic fields

and Poynting's vector. Let us begin with the half space y < 0O , and
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take md < x < {m+l)d . Recalling 5.9 we define
y = —p cos §
X T T
z= psing s — 5 < @ <3

In our calculations it is only necessary to consider the unattenuated

part of the solutiorn. The results are summerized as follows:

(i) Contribution from pcle at ky = -p - ie
" 12 ma i2 g
5/l
E(r,uw) = : QeEB e v (1-e ' ) /& e in/h cos
. {K_(—p) q &% } 1 ikp
K (-iq) P PHIA |y ok sin g Vo %

E(r,w)|
s(r,w) = k
WH
u 2 4 , A
=228 Y (1 _cos £a) (o2 sin’g)
ol v
md~ pwc

K (-iky a2 + sin2g)

2 . [} i 2
K (-k cos @) -2|k|a ¥ o + sin“¢
e

where

e

(5.13)

(5.1k4)

(5.15)
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(ii) Contribution from pole at ky = - p2- (n—:{)e -ie,
(o)
o - 15293""3 P2 >(%){— .
k s
e @K+ L[(—Z-) - a2 ok n]
Ex(ﬁpw) = f(&yn) [m —3 L
p(kyn+ p) k= vk _(%) sin ¢
2 1
1 e (r_g)gp
/_ 2 COos _Ti— X
P
2 ,nT\2 1fiz 2 nm, 2
a P(“a) + ('-B_) (k _ D)+ iQ(—&')
E (r,u) =4 f(k_) J
T " plk,, *+ P TR
e k. =/2-(B5)%i1n ¢
z d
. /2 z
1 LvE - (%}4;) nyg
— e sin ry X
/o
“k_
E (r,0) = {f(k y - } ’
2 nto g2 k= |k -(%) sin ¢
, Wk —(E%) P
— e sin —— x
/P
1T\ 2 2 . N2
i, (57 -() (e + p) - 19(7])
B (r,w) = f(kyn) - ,
plk_+p
ya kZ=,/k —(-I-l—g-) sin @
2 2]
1 1Vk —(%) P nf
— e sin 5 X
Vo
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1% nd i2 g
f(x ) = 12— 2ecB ¢ Vo o _qynlarl) e ye-l YT
yn il (902_ (nﬂ)E ‘K
v d yn
. K—(k}_’n) aa [12 (M)le/h c ) e—iﬂ/u (5.17)
K_(-iq) a4

From these fields we obtein the following expression for the Poynting

vector:

; 2 n 1 2 2., nm\2

sX(_Jw) = {.f(ky3| -f% 5 1(%& D [pa (—%&L

M WP (k ot D)
k
N2 1 nf
+ e— — —— pRouSiL
2(8 ) (kyn+ p)} % _ 0 gin g X 58 =7 X



Z

k‘z

_ 2 ,np.2
s, (z.0) -{1 )| O o [ax, +

k
+ i((B—Z)Z— puzkyn>] . [qkyn— i((%)2+ pkynﬂ}
2

o

% =/ k -(=)sin ¢

Z

k
[ 2% (220 v 0) + 10D ] [p(E? -
- %k ¢ p) + iq(%)g]} - sin”

2 5
k,= /K" =(*) sin g

2z

d

(5.18)
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In the above form the significance of the Poynting vector is not
apparent. However, one thing is to be noticed: its x component is
purely imaginary which indicates zero energy flow in the x direction.
This is evident from the fact that the metallic piates blcck the trans-
portation of electromaghetic energy. In order to gain more insight
into the property of the Poynting vector s(r,w), let us integrate it

over the x coordinate. We first define

(m+l)d
Ly,z,w) = s(z,w) dx (5.19)
md
Then we find
UO 620.) (%)2 I w K—(k Il) 2
Iy.z.0) =075 ~o7 212[l - (-1)7cos T d] K (~iq)
[(;7 - (—E) k
-2ga k
— 2[ oﬁ%—)ﬂ 2(—2)2(1;yn p)] , e
p(Kyn+ ) k= /kg-(%—“—)gsi @
(5.20)

It is to be noticed that in the above cases the Pcoynting vector is
independent of the integer m . Tais is clear from the definiticn of
§ﬂ£Jw) in 5.11. For, since the point charge is moving uwniformiy, the
total energy radiated down the space between two adjacent plates at
x=md and x = (m+l)d from t = -« tc t = » must be the same for
all values of m .

Proceeding in the same way, we can calculate the forms of the

fields and the Poynting vector in the half space y > 0
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(i) Contribution from pole at k_=Vp - (—E—-— -7 +ie
2 2nmw wy2
+ 2. + e —_ . =
1 3 — ? —-35 > p > ( d v)
k! ig
B (r.0) = {guc' [-1(2 - 2y e 1”)
x = yn v d "'p .,
k n *p k = k%{é&ﬂ_tmg. 0]
h = 3~ sin
. 2 /2 2 2
| BT e am,
. 777 e e
ki +1iq 5 e -iq
Ey(zﬁw) = {g(k&n) [—ik'n i = - ia%)+ ig J
1
yio p kyll + D k;;-n-‘- P
_b2 2nm w2
kz— k- d -_V)
x gin @
>
. 2 ,2nm 2 LAl
1 l/k-(-a——g)p l(v d)X
— e e
/e
—kz
i { = t —
Lrs0) g(kyn) 2
_ 2 2000 w o
kZ— k- (—Ef-— v) gin @
. 2 2nT Wy 2 w 2nt
o1 el/k‘(d -y pel(v" g ) *
v.p
k
B(r,w) = — x E(r,u) (5.21)
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2 2nm w,2 .
e (2 1
) = ﬁg_eQM L 3 v) Res K_(K n>‘ 2
== T hmow 2 ,2nm 2.2 .
(% (5 - PF] K _(-ia)
k
1 2 2 T X 2
s (o (BT - 9% 2(-0)7 (k) ¥ p)]
1
p(kyn+ p)
2
. e-2qa cos ¢ K (5.22)
=/2_ Znﬂ_22. 2_2I17T__ug2
kz k (—a— v) sin ¢ V& 3 v)
where we have defined
- = 1]
ek ) = Eg_EecB ™4 Res I{—(kyn)
yn L k&i + q2 K_(-lq)
. [RE _ (2%’1 _ %)EJU“ cos ¢ e iT/H (5.23)
and
_ (W 2nT 2 2nm w,2
R = - ) (5.2%)

5.3 Properties of the Radiation

We are now in the position to examine <he properties of the
radiation emitted by the excived plates. In the last section the
Poynting vectors are given explicitly in 5.14, 5.20 and 5.22. From
them we get an expression for the profile of the radiation pattern in

a plane paraliel to the y-z plane:

1(¢) = o s(r.w) - (5.25)

e
-
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where 92='y2+ zg . As we recall in the half space y <0 , @ is
measured from the negative direction of the y axis toward the positive
direction of the z axis; and in the half space y > 0 , it is measured
from the positive direction of the y axis toward the positive direction
of the z axis. The dependence of I(@#) on @ Is very complicated

due to the fact that s(r,w) contains infinite products. Techniques

of computation and limited tables for this type of infinite products
can occasionally be found in the literature (19),(20)}. In any case,
only a few factcrs in the product sequences in 3.39 need be computed

to obtain setisfactory accuracy, since the factors approach unity quite
rapidly as n increases. More discussions on the radiation pattern
will be found ir the next section.

In the lower nalf space y < 0 atv fixed frequency w , the
radiation consists of a superposition of modes of electromagnetic waves
that can exist inside & parallel-plane waveguide. These waves appear
to be generated from a fictitious source situated along the x axis
(p = 0) . We notice that the coatribution to the Poynting vector from

cach mode is proportional to

1 - (-1)" cos % a ., n=0,1,2,-+-

Thus for some va.ue of the frequency such that

<le

d = mr (5.26)

where m is an integer, the factor vecomes

1 - (_l)n+m
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which vanlshes 1f m and n are both even or both odd. We therefore
find that at certain frequencies some waves are not excited at all
between the plates. The explanation of this phencmenon is as follows.
From 2.1T7 we see that the source of excitation is proportional to

i2x

v ~ . L] ]
e . Let us expand this factor as & serieg in terms of the eigen-

functions cos E% X and sin E%~x of the region between two plates:

,.J
|

b

=

o
Q o . X
= ——— + — + - ———
e 5 Z (Ancos ) X an-n x)

- i—d
_ 2 =1 v ]
AO = 3 5 [l - e
i &
v
2 L 5' n iﬁid
A = 3 @2 ()2 [1 - (-1)" e J
v 7 d
nmw W
- = i—d
_ 2 d AL v J
3 T3 2[1 (-1)7 e

The amplitudes of the fields excited in the lower half space rmust be
proportional tc these coefficients. From 5.13 and 5.16 we see that
thig is actually the case. In 5.1k and 5.20 the Paynting vectors are
clearly proportional to the absolute square of these coefficients.
Thus the phenomenon that at frequencies satisfying 5.26 certain waves

are not excited in the lower half space is due to the fact that at

these frequencies the source does not contaln these waves.
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o

Let us proceed to discuss the radiation in the upper nalf space
v >0 . In this region, at fixed frcgucney w , the clcetromagnetic
waves also appear to be generated from a source along the x axis

(p = 0), but with propagation vector

where
W 2nT
k = =
X v d
2
x =/ ko (& 2Bmy2 (5.27)
0 v a
end n=4+1, +2, +3, *** such that k is real. If we examine the

prefile of the radistion pattern in the x-y plane, we see that the
radiation exists cnly in a finite number of discrete directions, the

angles these directions make with the y axis being given by

kx
tan E—- = tan

Thig phenomenon is easily explained if we regard the edges of the
plates as forming a one-dimensioral crystal lattice in the x direction.
In crystal diffrazction theory we know that the intensity of the elec-
tromagnetic waves diffracted from a crystal lattice is appreciable

only in those directions which satisfy the von Taue condition

- k = 2
L nrE

where Ei is the propagation vectcr of the incident wave, Ed that of
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the diffracted wave, and p is a period of the reciprocal lattice. 1In

our case the system is periodic only in the x direction, and we have

I
< je
o]

io]

]
Q-
j o
]

The von Laue equation therefore gives

. / 2n

k. o= (8 _ =T

—d (v d ) Ex
which is just what we have in 5.27.

Suppose now we let the frequency  vary and observe the radia-

tion in a fixed direction, making an angle 6 with the x axis. UThen

k =%kcos 8= £_ anm
X v d
Since k = %- we get from above
2nmv
w =“-%}~“*’, n=+1, 2, £3--- (5.28)
1 - E—cos A}

Therefore the frequency spectrum of the radiation cbserved at a fixed
angle 8 consists of a sequence of evenly-spaced lines. We can

identify in 5.28 a fundamental angular freguency

Ly =

2V
o a

Thie is Just 21 times the number of plates traversed by the point
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charge in one second. Thus from 5.28 we find that the frequency spec-
trum of a point charge moving at a uniform speed over & linear pericdic
structure is equivalent to that of a uniformly moving harmcnic oscil-
lator, each frequency component being shifted by the Doppler factcer

1 - g-cos 8 ir the denominator.

5.4 Reduction to the Single-Plate Case

e

5t is possible to get further information on the properties of
the radiation by considering a limiting case in which the separation
of two neighboring plates is large; or more specifically, kd >> 1 .
Consider equation 2.33 which relates the induced potential To the

induced current density on the plate at x =0

u l'—' md P J (k Y sw)
= _ _© O ¥y 2
Au(x,y,kz,m) = -1 Vom e J -
1; d

sin w[x-(m+1)d] - e gin w[x - md] ik y

e v dk (2.33)
cos wd - cos ¥4 J
v

where =md < x < (m+l)d . Suppose we take an observation point clecse to

the zeroth plate 0 < |x| <d (m =0 or -1). Ia the limit kd » e
the above equation reduces to

fec]

T

1w |x] ik y

_F : . v
Au(x,y,kz,w) = I /orm i J ——;r—*‘Juo(ky,kZ,w) e dxy (5.29)

-0

which is the equation for the diffrecticn problem of one conducting
half plane (8). The reason is that when kd is large, many waves can

be fitted into the space between two adjacent plates, and the mutual
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interactior of the plates is small compared to that vetween the point
charge and the plate closest to it. In arriving at 5.29 the fact that
i =\/p2— k§ has & small positive imagirary part has been used.

If we supplement equation 5.29 with equation 2.47
o©
ik y
J Ttk k) e Voak = 0,y >0 (2.47)
we get a set of dual integral equaticns which can be solved by the

procedures of Chapter III. The solutions are simpler than those of

the multiplane case in that they do not contain infinite products:

. -qa .
. -ie . -
Jyolk ok, s0) = _&_Eé%g___., o+ ig S
(2m) w v ky+ D (ky+ iq)
-Qa k + i vk +
I (& L,k ,u) = -lecge p+lqkz[9‘y : i} J a
3 5 ’ — .
zo y iz (gﬂ)3/2 © q jpky+ D ky+ iq
-gé& k + ig vk + p
ep (k Lk ,uw) = =0 53‘;2 Yo+ ig _C-[EL - 10,2} L
s (2m) w eLp s P ky+ iq

As in the multiplane case these current densities satisfy the edge
conditions: Jyo(y,kz,m) vanishes at the edge y = 0 while Jzo(y,kz,
w) and cpo(y,kz,w) become infinite.

At this stage we may substitute 5.30 into 5.29 to get an exact

expression for the induced polenbtlal. Bul since we are interested in

the radiation properties, an asymptotic expression will be adequate
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for the purpose. Let us begin with the particular solution of the wave

equation 2.k4:

o
AP(X,y,Z,w) = T J 1o

J o J (x',y',z',w) dx'dy'dz’ (5.31)

where

Introduce spherical polar cocrdinates through the transformations:

Xx =1 sin 6 cos §
v =r sin 6 sin @

7z = r cos O

Then in the radiatior zone

r'=~r - sin 8 cos ¥ x' - sin © sin @ y' - cos & z'
Writing
juo(X',y',Z',w) = §(x") J;O(y’,Z‘,u) (5.32)
we get
My eikr T 7 -ik(sin © sin @y' + cos 9z')
AU(X9YDZNH)2 ﬂ—’l_\'- - J J S
-0 =0
. JHO(Y',Z',w) dy' dz'
Hy eikr
= — 21 J (k sin 6 sin @, k cos 0,u) (5.33)
I uo

which is in the form of a spherical wave. The induced potential is
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therefore directly proportional to the Fourier transform of the

induced current density.

From the potential in 5.33 we can easily compute the electric

field
. I3A
E o= - =
E=-Y-5
Keeping only terms oproportional to r —, we cbtein thc results:
Mo —2mi eikr
- - —-Z2T1 W .
Lx(gﬁw) T [cpo sin © cos @]
U . ikr
o —2riwe . .
E {x = c in 6 sin - J!
y(_,u) - - [ep, s ¢ Jyo]
. k
E (r,u) = Mo 2riwe™ gin
7" = by r

_ . + )
pp— [ co sin 6 3, sin @]

(5.34)
where the dependence orf cpo, Jyo on Ky’ KZ, w is suppressed and we
have used the continuity equation

3p A
oy + vV . j = 0
‘o eliminate the z component jzo The magnetic field is found to be
given by
B(r,w) = i-e x B(r,w)
_= c = ==

From these fields the Poynting vector is obtained

s

[

1
,UJ) = S(_{_:w) EI‘ =

After some lengthy calculations we get
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cosgg(l + sin @) + (1 - Bgsin29)(l - sin @)

sin 9(1 - B sin"06)(1 - 37sin“o cosa¢)

. exp[— @J’—(&J— /l - stingg J (5-35)

A plet of s(zﬁw) as a function of © and @ gives the radiation
pattern at frequency w . Traces of the pattern on the y-z, x-y, and
z-x planes are sketched in Figs. 6, 7 and 8 respectively. In general
the radiatior is concentrated along the y-axis at high frequencies,
along the z axis at low frequencies, and along the x axis at high velo-
cities {R=1) . The infinite pehavior of the Poynting vector along
the z axis is due to the singularities In the current densities at the
edge.

If we integrate rgs(zju) over the frequency w we get the

angular distribution

2y° coszg(l + sin @) + {1 - stingg)(l - sin @)

v
8v2a sin 6(1 - Bgsin29)3/2 (1- Bgsingg cose¢) (5.36)

aw
2

e

o
= =
3o

where W 1is the radiated energy. Finally if we integrate 5.36 over

the solid angle & , we obtain the total energy radiated by a single

plate
U 22
o 3e v -
W= = (5.37)
b B8a v 1-8
Suppose now we have N plates evenly spaced at x =nd, n=0,1,2,""",

N-1 . In the approximation of no interaction among tae plates the
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NY

Fig. 6.

Radiation pattern for the single-plate case for

62 = .8 and -2-3-“1=5.
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b X

Fig. 8. Radiation pattern for the single-plate case for 62 = ,8

and 280 = 5 ,
v



-110-

radiation fields due to these plates can be synthesized frcm those of
a single plate. Instead of juo(x',y',z',w) in 5.32, the induced

current density is now a sum of N terms:

N-1
I (xhythet,e) = ngo 8(x'-nd) & (y',2",0)

Or using the periodic condition 2.23, we get

ju(x’,y',z',w) = z _(x'-nd) e j (y',2",w) (5.38)

Substituting this current density into 5.31 we obtain the induced

potential
v eikr
Au(x,y,z,w) i e AN(Q,¢) QWJPO(k sin © sin @, k cos O,w)
(5.39)
This potential differs from that of a single plate in 5.33 in the
"array factor"
N-1 w
AN(G,¢) = z exp[-in(kd sin 8 cos @ - ;-d)]
n=0
sin[H-(kd sin 8 cos @ -2 a)]
_ 2 v
.ol . W
31n[2 (kd sin 8 cos @ - - a)]
-+ expl-i —%i-(kd sin 0 cos ¢ - %-d)] (5.540)

Thus the Poynting vector in 5.35 is modified by a factor |AN(Q,¢)|2 .
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Various patterns of the function

k(0,0) = T |a(e,0)]

for © = w/2 and different values of kd are given in Reference (21).

The function is sharply peaked in directions satisfying

kd cos @ - $~d = - 207

where n 1is a non-zZero integer. Taking kx= k cos @ , we recover
the von Laue condition in 5.27.

We can also obtain the rate of energy loss of the point charge
from equation 5.37. Suppose there are N plates extending over a dis-
tance of (N-1)d along the x axis. For N large the loss of energy

per unit distance is on the average equal to

u 22
dw Q 3e v (B.ll-l)

AT

Finally we can establish a criterion for the uniformity of the motion
of the point charge. Suppose in the laboratory we set up a stack of
N plates. From 5.37 the total energy radiated during the passage of

the poinlt charge is

uo 3N cevg

b 88,/1 - B

If the motion of the point charge is to remain uniform, this loss of
energy must be small compared to the kinetic energy of the point

charge. We must therefore require
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2.2

"o 3N ev << m02< 1 1)

" 8a /1 - g° 1-8

=

ar
3 Yo 1-/1 - @°
5 e Y T
3

where ro = 2.82 x 10-15211 is the classicel electron radius.
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VI. SUMMARY AND CONCLUSIONS

In the present work the problem of the diffraction of the fields
of a moving point charge by an infinite array of parallel conducting
half-planes is sclved by the Wiener-Hopf method.

The problem is treated as a boundary value problem for the
potentials of the diffracted electromagnetic fields. A special
feature of this approach is the calculation of the values of these
potentiels cn the conducting half-plianes. By virtue of the periodicity
of the system of analf-planes the potentials are found to depend only on
the current densities induced on one single half-plane. The problem is
then formulated in the form of integral equations for these current
densities. The integral equations so obtained are dual integral equa-
tions.

The integral equations are first converted into algebraic equa-
tions through Fourier transformation. These algebralec equations are
solved by the Wiener-Hopf method. The solutions appear as exact
expressions for the induced current densities, which are shown to
satisfy the edge conditions reguired in diffracticn problems involving
sharp edges. Exact formulas for the potentisls and the diffracted
electromagnetic fields are derived in the form of Fourier integrais.
The asymptotic values of these integrals are caliculated by using the
method of steepest descent. Expressions for the Poynting vector are
thereby obtained.

The radiation in the region of the half-planes is found to con-

sist of a superposition of modes of electromagnetic waves that can oe
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excited in a parallel-plane waveguide. The radiation outside the
half-plane regicn displays characteristics that are expected of a
system with a linear periodic structure. The diffracting effect of

the edges of the half-planes i1s comparable to that of a one-dimernsional
crystal lattice. The frequency spectrum of the radiation at a fixed
angle of observation is found to consist of a sequence of discrete
lines. This latter property makes it possible ©o use the parallel-
plane system as & charged particle detector and velocity measuring

device,
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APPENDIX A

SUMMARY OF SYMBOLS

For reference purposes we give a list of the symbols most fre-

guent.y used in the main text.

g = v/e

u:—-;;____s—z
B

k = w/c

14 kg— ke = in/k2 - kg
z Z

p _
a=/ -5+ (7= a2k2+£§
2 2 2
W= // -k = i k™ -
P v v 1Y
_ 2 am, 2 . nm,2 2 - N9 e
kyl’l = - /p - ( d) = l‘/( a - P s n 1,2,3,
2 2nm wy 2 . a2nT Wy 2 2
' - - —— e 3 — =3 -
.'i_y_n / ( a ) ‘/( a V) P .1 O:ils+2s
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APPENDIX B

DERIVATION OF A FOURIER TRANSFORM FORMULA

In this appendix we derive a Fourier transform formula used in
Chepter IT, namely
o e 2
1 (1), /2.2, itz el Vs
—— B T [pVzT+ a"] e dz =
2 o /"PE“' t2

-0

The branch of the radical is fixed by the definition

2 5]
[T P e 1 /212

when p2 > ta . The above integral formula can be rewritten in the

equivalent form

7 Q—Iaiv..p+ t
J ) ©
/ 2 2
-0 -p + T

"2 4y = in Hél) [pV/ 2%+ a° ] (A.1)

The latter form turns out to be more convenient to prove.

Let us give p a small imaginary part (see Chapter III):
prp+ it (A.2)

Then on the complex t-plane the integrand ir A.l has branch points at
t =p+ie and t = -p - ig . The branch cuts can be drawn from
these branch points to infinity parallel to the real axis, as shown
in Fig. 9. These cuts are the only singularities of the integrand
on the complex t plane.

Let us first transform to polar coordinates through the equa-

tions
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t PLANE

Fig. 9,

Singularities and contours in the complex t-plane.
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z = pcos ¢

|al psin g , 0<@ < (A.3)

Consider the following change of the variable of integration

t = - p cos(@ + iu) , — <Y < @ (A.L)

Equation A.l4 represents one tranch of a hyperbola as shown in Fig. 9.
For C < @ < w/2 we have the branch on the left; for m/2 <@ <

we have the branch on the right. The direction of algebraic increase
of u 1is indicated by the arrow. The change of the variable of
integration from t to wu through A.4 is equivalent to a shift in
the contour From the real t-axis to a branch of the hyperbola. Since
the real t-axis can be deformed continuously into the appropriate
branch of the ayperbola without crossing a singularity, the two cor-
responding contour integrals are equa..

Now we have
/C p2 + 15 = - ip sin(@g + iu)

- itz - |alV—p2+ t~ = dipp cosh u

dt = ip sin(@ + iu) du

Therefore
i e"'lal v —p2+ t2 —itz T inp cosh u
e dt = e - du (A.5)
/ 2, .2
- -p + T o



~119~

By a well-known integral representation of the Hankel functicn (22)

inél)(pp) - J oipe cosh u

-0

du

A.5 reduces to the formula we set out to prove, since
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