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ABSTRACT

In this thesis the Dashen~Frautschi method is applied
to find shifts from SU(2) symmetry of NN and TINN*
coupling constants. Three new features of this type of
calculation are discovered. FPirst, we observe that the
same A matrix used to connect s channel and u channel
fesidue shifts also relates u channel contributions
such as those due tb ¥N exchange to analogous processes
in the s channel. Secondly, under the assumption that all
photon masses are the same (for fixed AI), we note that
for linear D functions the A matrix has one eigenvalue
exactly equal to ‘one (for each AI), but the corresponding
component of the driving term vanishes. This result
depends essentially only on Clebsch-Gordan and crossing
coefficients. The third discovery is that when viewed
in a space of larger dimension, eigenvalues near one and
"no enhancement" are easy to understand. We also note
that ﬁhen including infrared corrections, residues are not
in general proportiomal to products of coupling constants.,

Since the driving terms are approximately orthogonal
to the eigenvectors with eigenvalues near one, there is
no simple dominant pattern, and thus our numerical results
are sensitive to details which are poorly known. We do

believe that our calculation gives correct order of
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magnitude estimates; the observable parts of the SR/RO‘S
are found to be less than one percent. The experimental

data are presently unclear but at least do not decisively

indicate larger residue shifts than this.



TABLE OF CONTENTS

Acknowledgments

Abstract

I.
II.

Introduction

Basic Dispersion Formulas

III. Infrared Divergences

IV, Definitions and D Functions

V. The ARR Matrix

VI. N, N*, and 7 Mass Shifts

VII. One-Photon Exchange

VIII. p, w, and ¢# Meson Contributions

IX. = ¥m Cut

X. The Right ﬁand Cut; TN and ¥N Intermediate
States '

XI. The Right Hand Cutj; Additional Contributions

XII. The Left Hand Cut - Relation to the Right
Hand Cut - YN and wN Exchange

XIII. Analysis of Contributions -~ No Enhancement

XIV. A Larger Space |

XV, Residues and Coupling Constants

LVI. Comparison with Experimental Data

XVII, Comparison with Related Analyses

Tables |

Figures

References

ii
iii

10
22
28
30
37
41
42

44
56

58
6F
72
81

91
%2
100
102



I. Introduction

Recently a self-conslstent S-Matrix method for
calculating perturbations on strong interactions has been
proposed by Dashen and Frautschi.(;) This method has been
applied with considerable success in determining mass and
coupling shifts and has provided a dynamical enhancement
mechanism with a wide variety of applications.(a-es) The
basic ingredient in this method is the "bootstrap”
hypothesis, in which particles are thought of as being
bound states of each other. Mathematically one then
expects parﬁiclefs to appear as poles 1n scattering
amplitudes. In the absence of symmetry-breaking effects
certain masses are degenerate, and coupling constants
satisfy certain symmetry relations. In the presence. of
symmetry breaking, however, one has mass splittings and

residue shifts. We then expect equations such as (6)

fR=a SR +ARMSF\/7A1 + 7, (1)

—p R
where &§M/M 18 a vector containing mass shifts, A and ARM
are matrices, D is a "driving term" arising from

processes which were not presentvin the original unper-



turbed case, and gﬁ is a vector containing residue
shifts. The Dashen-Frautschi method gives us equations
of the type (1) and presents us with a way oif calculating
AR AR ana T, |

In this thesis we apply the Dashen-~Frautschi method
to calculate deviations from SU(2) symmetry of TNN and
TNN* coupling constants. Our calculation includes .the
"bootstrap" terms in which residue shifts act on each
other, as well as all driving terms found %o contribute
in the cnergy recgion under consideration, Three ncw
features of this type of calculation are discovered. The
first discovery (Sec. XII) is that the matrix ARR which
connects residue shifts in the u channel to residue
shifts in the s channel also serves to relate u channel
processes such as ¥N exchange to the analogous processes
in the s channel. DMore explicitly, if fi is a vector
arising due to the existence of intermediate states in

the s channel, then

'EE;'ARRETQ) N (I‘-A“)_D?, o (mass shift and

+ channel terms).

I.e., o
(I___Anaxga “—D—T) g (mass shift and 2)

-+ channel terms).
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Although Dl

that sore of the c¢omponents of'ﬁa are not small (namely,

thus cannot cause enhancement, it is found

those with I=0 and 1I=2) and hence should not be
neglected in calculations of this type.

The second discovery (Sec. XIII) is that even though
"each of our 'self-consistent" matrices has exactly one
eigenvalue equal to one (or near one), the corresponding
elgenvector is not enhanced when considering ohly the
lowest mass processesl This result depends essentially
only on crossing and Clebsch-Gordan coefficients and is at
first quite surprising, éspecially when we considexr the
good agreement with experiment that has been obtained
in previous caléulations under the assumption that the
eigenvector with eigenvalue near one (if there is only
one such eigenvector) is enhanced46’4'7’16’17919> \We do

find, however, that mass shifts are enhanced in our

model. Most of the previous successful calculations
involved enhanced mass shifts, or mass shifts driving
coupling shifts. In our present problem the mass shifts
happen to have a small effect.

The third discovery (Sec. XIV) is that the occurrence
of eigenvalues near one and thgvno enhancement conclusion
can be understood qualitativeiy by looking at a larger
space which is physically 1es$»appropriate but



mathematically simpler; 1n this larger space these
properties are easlily seen to hold., This also makes
clearer the occurrence of eigenvalues near one in
previous residue shift studiles. An additional technical
point we note is that when infrared terms are included in
the scattering amplitude, it is no longer correct to
assume the residue.of a pole in this amplitude 1is propor-
tional to a product of two coupling constapts (see Sec,
XV). |

Since the driving terms are approximetely orthogonal
to the eigenvectors with eigenvalues near one (i.e., "ho
enhancement"), there is no single dominant pattern, and
thus our numerical results are sensiltive to details which
are not well known., Thus the humerical results of our
calculation are not reliable, but we expect that the
theory does at least produce reliable order of magnitude
estimates. Our numerical results are small (partly as
a consequence of no enhancement); we predict TN P~
wave resildue shifts of less than one percent of the
unperturbed values. Experimentally there are no
measurements preclse enough to compare with predlctlons as
"small as ours, though at least there is no definite
evidence for much larger residue shifts.

The planycf this thesis is as follows: Sections II
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and IV give the Dashen-Frautschi dispersion relatlons
used, as well as definitions and a discussion of D
functions. These ftwo sectlions are included for complete-
ness and do nbt represent new material. Sec. III contains
a discussion of the infrared divergence problem arising
in this type of calculation, Sectlons V through XII
describe the explicit evaluation of the disperslon
integrals, using as input both '"bootstrap" and driving
terms. The relation of lntermediate states such as YN
exchange in the u channel to contributlons due to the
existence of direct channel intermediate states 1is
established in Sec. XII. In Sec. XIII we find an
analysis of the results and the conclusion of no enhance-

ment. The numerical results of the computation are found

in Tables II - VIII. Sec. XIV contains a discussion of
residue shifts in an expanded space,-which, as mentioned
above, 1s helpful in understanding some of our results.
Sec, XV examines the relation betweén residue shifts and
coupling constants, In Sec, XVI we have a discusslon

of experlmental data. In Sec. XVII we compare our

calculation with related analyses.
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"~ 1I. Basic Dispersion Formulas

In this section we review the derivation of the DF

(1,6) used in our calculation of 1NN

dispersion relations
and 'WNN* residue shifts., We temporarily neglect
consideration of the infrared divergence in the
amplitude associated with virtual infrared photons; this
problem will be dealt with in the next section. We
consider the J=++* and J=%+ partial wave projections of
the plon-nucleon scattering amplitude and note that near
the poles due to the "direct channel" processes in Fig.

1l we have

M1 I, I 1,742 R(IiI?IJg,}J”:") (near WeM);
| WM (3)

ALIAT,I,;T-39% RET S TT 3039 (near w-nY),
W - m*

Here I; and I, represent the initial and final total
lsospins of the TN system; I% is the third compdnent of
isospin, W is the center of mass energy, M is the nucleon
mass, M* is the N*(1238) mass, the R's are (constant)
dimensionless residues, and the A's are N scattering

amplitudes with the normalization

A=2 =1 | ; P q,[(W-—-M)1 -)f]

ai‘: i w?
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(¢ is the center of mass momentum, and/u 1s the pion mass).
In the absence of symmetry breaking (i.e., in the "unper-
turbed case') the scattering amplitudes would not depend
on I} and total iséspin would be conserved, Since we are
assuming symmetry breaking dﬁe to electromagnetism, how-
ever, the amplitudes depend on I,, I;, and I, (I, 1s still
conserved, of course), ‘

We now write the analogues of (3) for the unperturbed
m-N "amplitudes and subtract the two cases, obtalning (to
first order in small quantities)

SALI I T=4 9% SRATPIL,T=54) + RoLpdy =H)SM )
. W~ M, (W = M,)
(near W=M,; an analogous result holds for the J=2+ case).
(Here §a, for example, means the perturbed minus the
unperturbed amplitude, and zero sﬁbscripts 1ndicate
unperturbed values.,) Now let D, (W) be any function of W
which has a zero at WeM,. Then |

a i |
D, (W) SAMLI~> T I, T=4+ ;W) 2 R(T,~I; ;72 4) §M

and )
Y R (IpI TddsMO M) (5)
i-_[o,,(w).SA(I;I{»LI;;;,%”W)] 2 |
w - 4'5R(Ii1f*Ii13;J=§+)

(near wW=M; an analogous result holds for the J=%+ case),



D, (W)
(We have assumed for convenience that ~Ww_ LR

the normalization of D(W) would cancel in the final

formulas in any case.). Next we write integrals for each

of the left hand sides of (5) as a function of W:

D, (W’) SAW?) iw’

J

D, (w) SAW) = ‘”'”f
c

w/-w
4 [q’,‘(w)SA(w)] - | g Da W) SAW) s
d aTrL (W,“W)l

c
(C 1s a contour in the counter-clockwise direction around
W.) Evaluating each of these integrals at W-M and com-

bining this result with (5), we obtain
S 1T SLT . ToLe. W’
R(L4;T=kdSM = — D, (WISA(:T; ai;,llia:,,W)Aw.,

c
(6)

SRELPAT, T4 = L.(Q' G BAGTY fI"H"’W') [l- qf’(M)(wam)]
J (Wh-m) ‘ :

(Analogous relations hold for I; = If%‘; J=3+)).
When I.#I, we use a simpler form (note that R=0 for

this case). Here

DWID, (W) SA(T B> T, Tg = £9) . SR (z&I?ﬁIﬂU:‘H) %"w():{:\a”r W=M).
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Hence (writing a Cauchy integral for I%AW)DH(W)SA(W))

D, WISATI T 344w/ ()

o (w’)
SR(IiI?T“fINT’J"’)'mJD“ /
C WM

(Analogous relations hold for the J=3+ case.) Here D, (W)
‘is any function of W which has no poles or zeroes at W=M;
we are setting D3|(M)=1.

The next step is to expand each contour in the above
integrals around all the singularities of the lntegrand
except the initial direct channel polé at wW=M (there will
also be a contour at infinity). The specific D functions
used are discussed in Section IV and will prove convenient
when integrﬁting over the right hand cuts of the integrand.
Before delving further into the disperslion integral
formalism, however, we need to discuss the infrared
divergences arising in a calculatlon of residue shifts,

This problem is dealt with in the following section.
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IITI. Infrared Divergences

The scattering amplitude for mN-> TN will contain an
infrared multiplicative correction arising from virtual
Infrared photons?ﬂzywe shall first discuss the relevance
of infrared factors to residue shifts in scattering
amplitudes and then to cross sectlons. Our conclusions
‘are summarlized at the end of this sectilon,

For purposes of orientation it will be useful first
to consider a non-relativistic example. We look at the

asymptotic form of the wave funetlion for a charged,

spinless particle scattering in a potential

V = Vshort-range + VCoulomb <

Then the scattered wave is (see for example, reference
(26)) |

tkn -7 Anakn ’(8)
o) ! 2 2 § (@) + 5
—("L—% [ Coul ‘ )

scattered

where g . =t v sin'§ ¥ 2%
Coul 2R sin'g
fror « sog 27 (ae) &1 (1= ByLeose)
6 = scattering angle ~ hR = momentum
T, = arg F(L+! + %) Vv = velocity

¥ = &%y
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»
We next note that if the P wave has a resonance at W= M ,

then

Qam'—l o~ (W—M)z—)lLl R

~ LK
W=M ),
aikR w2 w—m¥* ( )

We set R=R, + AR (since R and R, are finite, AR is

#*
finite). Thus, near W=M ,

y ' . ,'.q; 2
\Ij (ﬂr&ﬁb) lL\Qn -Q-—ny!ﬂ 'lhn S (e) +-€ BP&MM).}L’A\ Ra+AR ‘[
scattered — Coul e /W-M* J

il

Expanding to order «, the coefficlent of 'WT'M—’ is hence

e W R (i—'ﬂ%&\%)( Ro+4R ) (8)

n Wt

. The effective residue at the pole is thus seen to contain
a finite piece (AR), as well as an infinite piece
(-R,1¥4n2kr) arising from the infinite Coulomb phase of
the scattered wave.,

Using the above exampie as a guide » W€ now examine
the relativistic case. The total TN—» TTN scattering
amplitude A is é. product of a non-infrared plece (A°+ AAR)

and an infrared pilece arising from infrared virtual
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photons.(24’25> To first order in the fine structure

constant o,
L L
AT I LI = A, + AA +Z A B

where Btincludes the contributions of virtual infrared
photons.(zu’zs) (The sum 1s a linear combination of terms
arising from T,N,>T,N, amplitudes,) We can take the P
wave projections of this amplitude according to a standard

formula for such proJections(27 28)

+1

_%A(I;I?I;I;;I)--J{J‘ [rcmz W+Ex) R, (x]ct ,

=1

where F{ and Fp are standard expressions involving
Legendre polynomials, and x 1s the cosine of the scattering
angle. We easily obtain

AlT tI—>I T;,F) A, (T>1;7) + A AT, T, I,Is,s)

+ X & gu{& ‘Bf(x)+ 57 "¢ 2, m]

-

- . *
Assuming a resonance in A at W=M , for example, we write
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4\

< Ro M'T
A(I"I)_) I-; Ial a-) ;, R° + A(__R_ ) "" '75 mgﬁs[ljz E,Yz

-m¥ WM
W- M:| (Q)
_R+AR TR Cdx(3B L R SMT (wam’)
Y — WMy (W. g)
W-m]

The infrared divergence is contained in the integral
involving B. AR is finite. (The reader will recall that
the analogous situation held in the non-relativistic
example above.) |

We next note that the separation of the total
scattering amplitude into a non-infrared term and an
infrared term (involving B) was not unique, If we write
B(s,t)=a(s,t)én A\/b(s,t) () 1is a fictitious photon
mass), then the function b(s,t) is not uniquely determined
(a(s,t) is uniquely defined, however, and can be found by
explicitly computing the divergent part of the relevant
. Feynman diagrams), For convenlence we choose b(s,t) =
constant = m P . With this choice of B, equation (9)

takes the form
. .
T ) +AR + o R ,me dx(ax*+1)a
iz )x dean s g Rl (iror )
| w-MF

+ RoSM™ o (wam¥),
(wW-mJ)
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Thus the total residue of the simple pole of A is given

by | '
R =R, + &R + dM)hm >\/"m€ )
total
where
AIxr 4t

dtw) =% R°S“‘“( | ')QL o8

p o
+ +
S’

“1
We now wish to use Dashen-Frautschi dispersion inte-
grals to calculate residue shifts. We will show how to
calculate AR this way; the d(M*)ﬁn X/mr piece (if desired
\ explicitly) could be obtained directly frpm the TFeynman
diagrams. The reader will recallvthat in deriving the
dispersion integralé (6) and (7), no properties of $A

other than its pole were actually used. Thus, if we write

SA ;'"A "Ao
SA=A-A, —F(w),

where A, A, énd F(W) refer to (11134>I§I3;J‘), and where
F(W) is some function of W, then one could equally well

use the dispersion relations (6) and (7) (written with §2A
amplitudes) to obtain the residues corresponding to SKLGQ
In expanding the contours of the dispersion integrals, we

would then need to integrate around any cuts Of'DLDsF in

addition to those involved in the &A integrals.
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One could in principle choose Sﬁ amplitudes free of
infrared divergences or infinite phase shifts and use thils
type of amplitude in the dispersion integrals (6) and (7).
We shall instead use amplitudes whiech do not have any
infrared divergent terms in_the residue at the pole, but
which still could give spurlous infrared divergences 1in an
approximate evaluatlion of the dispersion integrals, The
amplitudes we shall use in writing Dashen-Frautschi
dispersion integrals are

W, dlB g W4
5 (W) = (A-Ad) = Ao &5 S AAm, 1)
(I;I;—)I,I»T{i:%) ARy Set T/ =Th=T,
Near the pole in A our amplitude equals (in the case J=%+

)
for example):

| %

W- M ° (w=r)*
| . |
= AR : + Ro sM ‘ (12)
W-m¥ (w- M)}

writing a dispersion integral for AR, we have (for I;=I,

=2, for example):

AR = X (iswl:*)f‘* w) [x -~ D;;(M”)(W—M*)] dw ;

awi
c
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‘AR = t( D:,(w) (A~A,) [L- pa” (M*)(W-M“')] dw
. :m'i.,}c (\N—-M‘:Y‘ 3

v A\ D, (wMo(W)[(- y (M*XW-M“] W,
~ dim )(ﬁn;“-r)m ( e )| 4

° C

The first integral on the right hand side (and 1ts
analogues for other spin and isospin processes) will be
studied in detail in the followlng sections. This €ype
of integral gives us (Rtotal - Ro)’ which we will denote
by &R, and it will be evaluated by expanding the contour
.C. The second integral on the right hand side will not
be evaluated by expanding the contouy, but instead is
trivially‘séen (by direct evalﬁation about the pole of A,
enclosed by C) to give ~d(M)n X/mf . Thus

44

AR = SR — d g})ﬂn Ao (w- g). (13)

‘Now since AR is finlte, an exact evaluation of the
dispersion relation for AR should give a finite result.
In evaluating the integrals approximately, however, a
spurious infrared divergence, similar to the spurious
“infrared divergence of mass shift calaulations(2), may
arise., We shall use a prescription to eliminate such

spurious infrared divergences. There has been some
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discussio (2’29)in the lliterature about possible prescrip-
tions. The method we use is simply to set mx = £n1n;29)
in each of the dlvergent parts of our residue shifts AR.
This prescription can at least be expected to give correct
ordér of magnitude results, although the detalled values of
the residue shifts -~ even thelr sligns -~ are questlionable,
Thus, 1f our approximate calculation gives Sfi=a1+bl£nh/cl

then we set

AR = (a|+b\,@“"“%‘)—d\§&,@n%( =a b dmmps (14)
= SR ‘

lﬂhxk Inoen,

Hence the total residue of the polec in the partial wave
amplitude A 1s:

R

total

= R, +(a+bﬂwyc)+&( ),Q'Y\me :

In general, the total scattering amplitude will be given by

[R +<a +b.Qm'W\/= )J' gnnctlon ot B(S;*)
o5 o

.+‘Q L ,0.
W — (Aﬂor)
m* TN, N,

ACTEN T M) =

)

where we must remember that AR depended on the cholce of
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B, so that we must use B=a(s,tlﬂ11k/hf in the expres-~
sion involving B. , |

In our method of solving for AR=a; + bl,én@(:/cl) , AR
is not a function of energy. B(s,t) is a function of W.
Thus the effective residue of the amplitude does depend
on the energy. In our calculation the portion of the
effective residue depending on energy debends on the
convention chosen for B. A different choice of B would
give different‘values for the residue of the pole in the
amplitude as a function of W, whereas the W dependence of
the residue is in principle uniquely defined. This
difficulty arises because in our method of calculation we
do not derive the energy dependence of AR, and away from
the value of W at the pole it represents an uncertainty
in the final answer obtained for .AR.‘ .

Having thus looked at residue shifts in amplitudes,
we now examine a typical cross section. The TN->WN
scattering cross section will éontain corrections due to
real as well as virtual infrared photons, and the
resonant piece of the differential cross section for

A>T, is

do oz (1+3x) (P (R, +4R) r( | 4 adﬁ-& Re 8])
da Flw-m1)| (w2 m¥)
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(Here B 1is the correction from real infrared photons; 1ts
infrared divergence cancels that of Re B.) Hence the

resonant part of the total cross-sectlion 1s

3

) |
Y e

- 23w | P (Ro¥AR) |+_°l_§ dx (3x*+1)(8 +ReB)
2

(16)
| w-m¥ ] |

~1

when expressing A R(wW,N~m, N,;J=3+) in terms of
AsR(IiIZ—»IfIZ; J ) 's, we must include pieces with Ifif.
We now summarize the conclusions reached in this
section, We first examined a non—relativistic example
and noted that the residue of the pole in a scdttering
amplitude contained an infinite plece. We then noted that
the residue in the relativistic case will also be the sum
of a finlite and an infinite plece, and that the separation _.
into these two pileces 1s not unique. We chose a certain
convention for separating the‘two pleces and then wrote a
Dashen-Frautschi dispersion relation for the finite piece
A R, using as input an amplitude having AR as the
residue of its direct pole. We then chose a prescription
to eliminate the spurlious infrared divergence arising in

an approximate evaluation of the dispersion integral for

A R, This prescription yielded
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AR = SR (where SR=R, , —R,)  (14)
.ﬂhx==ﬁ“ N“f toial

and we saw that the total scattering amplitude 1is glven by

Sunction .. (14 B(s,k))) (15)

Al NSmN,) = [R_°f_.A_R1 0§ o

" (%)
M#

where we need to remember the convention chosen for the

M N>T N,

finite part of B. Finally, we noted that

A

4
2 ST PR |[1+2( dx (524D

2
TNATN, 4 W—M¥ J

(1%)

wam*),

In the following sections we shall evaluate the
residue shifts &R corresponding to the amplitudes
SA=4A - A,. These residue shifts are given by lntegrals
of the form (6) and (7). After finding the §R's, we
take the piece which does not vanish as A->0 and
evaluate 1t at ,\:m{, to obtain the AR's (AR=§RIM)‘=E“W(,).
Before doing the disperslon lntegrals for R, however,we

shall first discuss various definitions that will prove
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convenient 1n dealing with our residue shifts.
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IV. Definitions and.Q Functions

Since SA is the difference between the perturbed
and unperturbed =N scatteriﬁg amplltudes, 1t receives
contributions from changes in the parameters of the
orlginal symmetric theory as weli as from additional
processes which occur only in the presence of electro-
magnetism. Thus 5A contains pieces proportional to
shifts in residues as well‘as pleces arising from such
quantities as mass shifts, one-photon exchange, and in-

elastic intermediate states. 1In general, then, we may

write(G)'
A AA M T2 3
RM RR -
=/ \A" AT L SR D, / ,  @an

where SR is a vector with components SR(I; I~ IpI5T ),
g_n?/m, has components Sm(I,Ig »J)/m,, the A's are
matrices, and the D’ 's are vectors (ecalled "driving
vectors") containing the contributions from quantities
other than residue or mass shifts,

As has been shown previqusly,(63 there is a basis in

. | "
which A R is block-dlagonal; since this greatly simpli-

fies the arithmetic, 1t is the basis we shall use,€6’7)

We deflne
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al v/ )
SR (I£—>I§53')=Z<1LI3',IO|I§I3> 3T, SR(TH:}‘"I;: .T)
1

I3

+ (18)

(Actually, a minus sign is inserted in front of the
summation for the case of SRI(%— > 4 ;J=%+).,) Here
{LI; I OIIfIZ7 is a Clebsch-Gordan coefficilent for
coupling the initial isospin state with the isospin state
| I 07 to form a state of final isospin IIfIZ> . We use
the Condon-Shortley phase conventions for the Clebsch-
Gordan coefficlents aé, for example, employed on the
wallet cards of A. Rosenfeld et a1§3°) SmI and
SAI(Ii%If; J; W) are defined in exact analogy to SRI.
The SRI¥S are listed explicitly in Table I.

The matrices defined by

T, 0 \[AT+T
o = <I,I3)I°\IIT‘3> AT, 41

x, I,

are orthogonal in the sense that Tr[mroltranspose[mt'o]
= S;:r,, and hence it is not sux'px'isfi.ng1 ’;;hat ARR 15 bi’oz}c-
dlagonal in the new basls, (One could verify explicitly
that mass shifts and residue shifts only contribute to

‘resid'ue shifts with the same subscript I; a proof‘ of this

is found in reference (6),) Thus



AN W W T N RS
m, - . 0 +
5T, A A TR, Toe | (19)

Since we have already found dispersion relations for
the quantities OSR(I;I-¥I.I ; J ), we can take sultable
linear comﬁinations (using the definition of the SRI'S)
to find dispersion relations for the residue shifts
SRy(I;>In; J ). We easily obtain for the residue shifts

under consideration
2 ! L ST law’ " ’
J._Y 0L, WIS, (424 kW) [\ - D, (M)(WLM)LW.'
ami (W'-—M)’.
(r=0,1,2)

SRI(T'*%;T=**)=

S

(W) D, wW)SAL(32 4, T=4uW)
SR @ T ) L [(BOIRWES aw

w'-m
(x= I,a)

(20)

RS il [ spnetst] g
L

' » 3 2 =2 &)=
SR (35529 ) (wm¥)? L

(I-0,1,2)

D) D, (w)SA (31T 24w) dw’

sRE%730-L |
amt W‘—M"

(T=1,2).
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(Here the 8A;'s are defined in analogy with (18).) 1In
doing these integrals, we will find that often contribu-
tions in one integral are simply proportional (via Clebsch-
Gordan coefficients) to similar contributions in other 1n-
tegrals with the same I;, I, and 221+32:6) thus much
of the work will be simplified,

The next step is. to evaluate the above integrals.
Each SAI is (by definition) a linear combination of
partial wave amplitudes. The reader 1s referred to
references (27) and (28) for projection formulae for
obtaining the partial wave contributlons and the location
of cuts in these . amplitudes. There will be additional
cuts arising from new processes such as one-photon
exchange and the ¥ N intermediate state., In doing the
integrals we shall investigate the 'near-by" cuts; since
we are unable to evaluate most of the "far-away" cuts, we
shall neglect all distant singularities., The main
reasons('?) that this may not be such a bad approximation
are the belief that the dispersion integrals converge
rapldly (assuming the nucleon is not elementary) and the
success of past "bootstrap" calculations ineluding only
near-by contributions.

Before evaluating the actual contributions to the

dispersion integrals (20), we discuss the D functions we
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shall use. There has been some discussion regarding the
explicit form that such D's should take.(34’19> Thé
derivation of our dispersion integrals did not depend on
the form of the D functions (except that they have certain
- zeroes), and the choice of the explicit form of the D
functions is a matter of convenience. A discussion of

this question is found in reference (19), and the essential
points are és follows? We wish our D functions to
deemphasize those pieces of the left hand cut corresponding
to (less well-known) exchanges of higher mass particles.

It would also be convenient if in the low energy region
above threshold the D functions had approximately thé
negative of the phase of the écattering amplitude (i.e.,
phase of D=—Re'Q:, where 'ins the unperturbed phasé shift
of the m-N partial wave scattering ampilitude). It is not
easy to satisfy both these criteria at once; the Balazs

(2

D function represents a fairly good compromise,

On the other hand, for certain theoretical discussions
linear D functions are most convenient. Thus we shall do
the dispersion integrals twice - once with Balazs curved

D functions and once with linear D functions. Bxplicitly,

we use

D, (W)=l D,, (w) = |
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D“ (W) = W—M D‘33 (W)= W"'M ¥
("linear D functions")
and
D,3 (W)= | 2 o, (W)= |
| X
D. (W)=(W-M)(_/!\:M/g_) 0y, W)+ (W—M*)(M -w,>
W-Wo W- We
(Wo =l§&) ("curved D functions"),

We now proceed with an evaluation of the dispersion

integrals (20).



V. The ARR patrix

In this sectlion we obtain the ARR

matrix relating
residue shifts 1n the crossed channel to residue shifts in
the direct channel, The method for thls has been
explained in references (6) and (7) and is included here
for completeness., We consider the contributlions to the
integrals (20) from the diagrams in Flg. 2; to evaluate
the contribution from the nearby short cuts (treated as
poles) of these dlagrams, we shall use crossing symmetry.
“(Consistent wlth using the Condon-Shortley phase conven-
tions for Clebsch-Gordan coefficlents, we let IT{»ll il) 3
T = 110> ; T 5 -|1 £1); Tl 0) .) We expand
each §A (I3I2IpI,;J ) in terms of TN amplitudes, cross
the pions to obtaln amplitudes that are a function of the
energy in the crossed (u) channel, recombine the resulting
m-N states to states of total I and I, , and finally take
the appropriate linear combinations of the 5A(Iilz*1flﬁﬂ)'s
to obtaln linear relations between the dJA 's in the direct
(s) channel and the éA;'s in the u channel, Taking the
low-energy approximation W' 2 2M - WS (where W& , for
example, is the energy in the u channel), we then express
the poles in the u channel amplitudes in terms of W® and
perform the integrations around the poles in (20), keeping

the terms proportional to residue shifts, The results of
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this analysis are presented in Table II. The ARR matrix
for linear D is determined completely by crossing and
Clebsch~-Gordon cdefficients; the ARR matrix for curved D
is quite similar to the one for linear D. The ARR matrix
for linear D has three eigenvalues exactly equal to one

(one each for I=0, 1, and 2), and the ARR

matrix for
curved D has three corresponding eigenvalues near one

(see Mable III). Thus, from Equation (17) one might
expect the corresponding eigenvectors to be enhancéd, but,
as will be seen in Sec. XIII, the relevant components of
the driving vector'ﬁ'are negligible, and no such enhance-
ment occurs. The occurrence of eigenvalues near one and

the phenomenon of no enhancement from low-mass states will

be made more understandable in Sec. XIV.
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VI. N, N, and 7 Mass Shifts

We must, of course, also conslder the effect of
mass shifts on our residue shiffs. There are two types
of mass shifts, namely exchanged mass shifts (arising from
internal particles) and external mass shifts (arising from
external plons and nucleons)f%aihe effect of exchanged

mass shifts Sm®¥Ch i5 ecasy o find, using the analysis

of the preceding section. we again express the s channel
8 AI's in terms of u channel SAI’S. A pole in the u

channel at qumexch gives rise to a pole in the s channel

at W= 2M - m*°" . Thus a u channel term such as
Iy ( R h) . equals
Wu\mexc ) .
/ R B —SR i + Ro gwexc»\
_— P < e
kw‘_ (-)M_'W‘QXC}\) W’—- (QMO‘W\:,‘ ) (w\r - (1 Mo- ""'IQ: "p .

We agaln perform the integrations around the poles in the
integrals (20), this time keeping the terms proportional
to Sme*°" | The results of this analysis are presented
in Table IV and are seen to depend strongly on the choice
of D function, |

To oblaln the contributions from external mass shifts
to our residue shifts, a sliéhtly more elaborate method 1s
necessary. We shall use a relation obtained from mass

invariance arguments(6’51’32%o obtain the I=0 effects,
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Some of the I=1 and I=2 effects will then be related to
these via Clebsch-Gordan coefficients§6’31‘32) the
remaining I=1 and I=2 effects wlll be calculated by
considering the appropriate integrals directly.

First we look at the I=0 contributions from external
masses to our residue shifts., We shall use two relations
derived from mass invariance (for an explicit derivation,
see reference (6))., We assume negligible cbn‘cributions
from mass shifts other than those of the pion, nucleon, or
N* resonance (see Sec. VIII for a discussion of L+ W s

and ¢ effects). Then mass invariance implies

0< AR(%*';;L%'J,MVT+ARU£-»{-;T=%+,/a\[? +AR (%é%;y’%*);M*e“:}Tp
1=0 AL, v .
and , (21)
R GAR s s T
(The A 's are defined by (19); they are simply

I=0
quantities gliving the contribution of mass shifts to our

residue shifts.,) Since the nucleon mass shifts can occur
elther wlth exchanged nucleons or wlth external nucleons »
we see that each contribution from nucleon mass shifts

actually is a sum of two terms:
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ext
g(Ir"Iﬁ,M R(T‘-;IQ'MQXC\‘ R(I;"Iﬂ,M

A <A + AL . (22)

We next make the assumption that compared with the
nucleon terms A?igeXt , the pion contributions A?;g'
can be neglected., This 1s Jjustified as follows: The plon
terms ARI'J:O can arlse from the left hand short cuts (which
we have been treating as poles) and from the right hand
cut. (We are neglecting_external mass contributions to
"t-channel" processes such as P, ), or ¢ exchange
(see Sec. VIII). The one-photon diagram is already of
first order in o (the fine structure constant), so any
mass perbturbations on thls diagram would be of second
order in small quantities and are hence also neglected.)
We shall neglect pion contributions from the left hand
short cuts (see reference (7) for a discussion of this
approximation), On the right hand cut the external mass
contributions come from g(J (see Sec., IX), and the relative
magnitude from this source of the nucleon external mass
pleces A§Qg¢Xtcompared with the pion contributions A?gG‘
should be about 5:1. Thus we see that as a lowest order
approximation we can neglecﬁ the pion term A?gG’ compared

with the external nucleon mass term, Using this approxima-

tion, together with (21) and (22) (setting I=0), and
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employing the results for exchanged mass shifts (TablewIII)

AR, MEXY
I=0

(The analysis is done twice; once for linear D functions

we solve for the external nucleon term (see Table V).
and once for curved D functilons.)

Having thus obtained the I=0 contributions from
external mass shifts, we now turn to the I=1 contributions
(from external mass shi’fts) to our residue shifts. There
is no pion cbntribu’cion, since §J.I= '=V1:(~mn;-%“-) =0 (mw?
and 1~ have the same inertlial mass). We shall express
the nucleon terms A?(“ ¥ éJ')MeXt and Az ( q%"a-‘;")’Me“
in terms of the corresponding AI=O'S by means of Clebsch-
Gordan coefficlents. (6) There are two equivalent ways of
doing thls. The first is to note that there is a direct
analogy to the actlon of external mass shifts on mass

shifts; we take as an example the external nucleon mass

shifts., Then (33)

(comstant)V§ [( 'V‘g)d.-l- 5%,},)1’( S +%‘-S~%q

gfmza ?

]}

= (comstant) | S0
~4 Sz,
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xt ext
hence AD]’:I;Me - Al\:ggM = - 1/3. Exactly analogous steps
can be taken for residue shifts having Ii=If .

&»gv bJM
The second (equivalent) way to find. A?

R(3+3 ;5°24) mOxt
and Ag-3 18 to 100k at the integrals (20)
directly. We expand each SAI=0 amplitude in terms of
SA(I4I,> IpI,;J )'s and expand these latter amplitudes
in terms of initial and final T-N particle amplitudes
> A(MN, >, N.;J ). (The contribution from SA(T\'*'IP-—W*WT'-%Q

due to external nucleon mass shifts, for example, will be

-g—A—el‘—i(ﬂ*lP-)T\""rp/ = 34) S ext The next step is to reex-
press the 5Ao(TF.N-9WzN ; T )'s in terms of total

isospin amplitudes QAo (I, 1,57 ). The result for

3 phext
$ RI(%-?{— ;J=14), for example, is
SR, (—-ﬂ; 7= 44) _de D (w’)E 0, M M):l 3A (54T ) m-
2 aMeXt
L) |
(23)
SMI:O M
—L EMiyM

so that the same conclusions are obtained as by method one
(described in the previous paragraph). The numerical
results are to be found in Table V.

o find the contributions of external nucleon mass
shifts to residue shifts with I=1, buf with Ij_#If, we no

longer have the mass analogue (or the corresponding
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Mext

's) of the I,=I, case described above., Thus, %o
R(i-" 357k, MO R(%>£,T~%+) mext
and AL T,

AT20
find the nucleon terms Ag
we must do the corresponding integrals in (20) directly.

In evaluating the integrals, we note that there is no
contribution from the right hand cut (see Sec., X). To

find the contribution from the left hand cut, wé expand as
in the previous paragraph to obtain the analogue of (23)
for the IL¢:IJ residue shifts., Next we use crossing to
relate the A 's to A 's of the crossed channel; we approxi-
mate the crossed channel cuts by means of poles, redxpress
the poles in terms of the integration vafiable, and do the
integrals around. the poles, The results are again to be
found in Table V.,

Finally, we turn to the I=2 external mass shifts
(these are just pion mass shifts). When L=I, =24), we
again use Clebsch—Gordén coefficients to find the ratio of
the pion terms ARI(Z) LT %Jf)/' and ﬁf% I”H/‘ . Since
the latter term is assumed small, the former one 1is also
small, and we shall neglect it even though é/“"’:::: is not
small; hopefully this is not a bad approximation. When
ILE* I§ there is no integral over the right hand cut
(see Sec. X), and, in analogy with a case for I=0 mentioned
above, we néglect any contributions from the integral over

the short left hand cuts.
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In conclusion, then, we have evaluated the contri- -
butions to our residue shifts from exchanged and external
mass shifts. The results, which depend strongly on the
D functions used, are listed in Tables IV and V.

| The remaining contributions to our residue shifts
will come from “t-channel processes, modifications in
intermediate s channel states, and from u channel processes
such as ¥N exchange. We now proceed to evaluate these
pieces. First we look at the “t-channel’ process of one-

photon exchange.
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VII. One-Photon Exchange

The diagram whose contribution we wish to conslder
is shown in Fig. 3. This diagram will contribute a fn\
term () is a fictitious photon mass) to our residue
shifts, and we shall use a prescription (discussed in Sec.
III) to eliminate this spurious dilvergence. The one-
photon exchange diagram also gave a spurious divergence %o
the neutron-proton mass difference,(22 and there the
numerical contribution (and even the sign) of the P wave
projectlion of the diagram depended strongly on the
prescriptionrused to eliminate the spurious dlvergence,
Since we do not have a unique way of choosing the preserip-
tion to eliminate the zn>\ divergence in our calculation,
we expect that the numérical contributions (as well as the
signs involved) of the one-photon exchange diagram to our
residue shifts are particularly unreliable, although the
order of magnitude of the contributions should be correct.

We now discuss the input used in evaluating the one-
photon exchange dlagram, In writing the amplitude, we use
approximate low-energy orfe-;pole form factors, derived from
‘the (two-pole) results of Haﬂd, Miller, and w1lson.(§5)
We neglect the (small) scalar anomalous-magnetic moﬁent

(@)

of the nucleon, More explicitly, we set
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(We also use Er =_™ )

Here t=-2q2(1 - cos eﬁl), where 6,6%/ is the center of mass
scattering angle; K* and K" are the nucleon anomalous
magnetic moments (K*=1.79 and K =-1,91 Bohr magnetons);
F1 and F2 aré the (Dirac and Pauli) nucleon form factors;
and F__ is the pion form factor. In doing the analysis, we
glve the photon a mass A s as discussed in Sec. I1II. We
set mé = mg =m2 =20 mar (2) and m, =763 Mev.

1 3 d
We shall use the projectlon formula(27'28)

SAMN=> MmN, ; J= ;::)= || W) o (d,+(W—M)(8,>

R (wem) -\ (25)

+ (" @g + (W4m) 83
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Here @=S+'dx%(x>d, @= fﬂdeA(X)(B (x= cos e%f.),
-1 =1 A 7

where @ and (B are obtained from
: ‘ Y
Spo= Sgp + P OMINNGS (fs"ﬁé)ﬂc j (26)

- ' »
T.. = u‘P {d + _@f (%L+%£}“X}u'f’1 ) (27)

where S £ is an S matrix element, the N's are normalization
factors, and we use the metric B.Lb/u= agb -_g,.'ﬁ (pf, Pi>
qar, and g4 are the final and initial nucleon and pion
four-vectors, réspectively).

In doing the integrals (20) with one-photon exchange
as input, we use the static approximation (q* = (W-M) - j&z )
for Qg (this eliminates the far-away left hand cut
(in the region W= -M) of ﬁ’% ), since we do not wish to
include the far-away left hand cuts of the integrand
(the factors which multiply CZ,}@.) B,,and B, tena to
deemphasize these left hand cuts anyway, so no static
approximation is made here). (The basic method used in
evaluating the one-photon exchange integrals is due to
Dashen.(‘e.).) The next step is simply to expand the contour
around the right hand cut to infinity (this makes evalua-
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tion easler)., For linear D functions we then evaluate

the contribution along the path at infinity, while for
curved D there is an additional contribution coming from
the pole (of the D function) at W=W, , encountered in
expanding the contour, Thelresults from the above analysis
are presented in Table VI.- The results do depend on the
form of D. We note that for linear D and fixed I, the
ratios of the one-photon contributions depend only on
Clebsch-Gordan coefficients, while modifications occur

for curved D functlions. The values of the one-photon
contributions depend on the (fictitious) photon mass A H

- the effective value of k 1s discussed in Sec., III.

We note (Table VI) that for fixed T and linear D the ratios
of the components of the one-photon exchange contributions
are lndependent of the values of the nucleon anomalous
magnetic moments, the positions of the simple poles in

the form factors, and the value of the photon mass

(as long as A 1s assumed the same [or each residue

shift with the same I value).
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VIII. ]& oy and éMeson Contributions

In this section we consider the contributions to our
residue shifts from f’ w, and gf meson exchange. gmf"I=l
vanishes and hence does not give any contribution. Since
the w and 95 do not couple to two pions in the unperturbed
case, the only w and g’ contributions could come from
changes in the WTT or p’mr couplings; hence any contribu-
tions from Qs Wy or 52{ exchange would come only from Sm/‘I;ﬁl
and from shifts in ON¥N, (311‘77‘, wnT, and g couplings.
These mass and coupling shifts, however, are not knownj;
thus we are unable to determine the contributions to our
residue shifts due to ps Wy OT 55 exchange.

Our procedure will be to neglect any such states
(except, of course, that we use the /J in form factors
for one-photon exchange). We do this in the hope that
higher mass states such as the F’ w, and ;/, when done
in a complete analysis (including form factors at all
vertices), do not contribute as.much as lower mass states
such as the photon., Some further comments about (o y W,
and( /d exchange (with respect %o the "enhancement

mechanism™) &re %o befound in Sec. XIV.
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IX. ¥ Cut

As the last low mass t-~channel process, we look at
the Y 77 exchange state (36)(see Fig. '4), The possible
importance of this state will be studled by examining the
¥ inelastic state in the processes. (—‘%w (Fig. 5) and
L7e (These processes segm natural when one uses
form factors at the TW-fT . and Y¥T— NN vertices.) We
shall compare the discontinulty in the L7 (and adly )
amplitude arising from the YT intermediate state with Gt
the discontinulty in the same amplitude due to the Y
intermediate state., The discontinuity of the total (J—‘vw
- scattering amplitude is given by unltarity of the §
matrix ((16), (17))=

o, .
wf-(’ = _'Ef')—-[;*“"’—[;"'( 4 h;(
2""3 €'s | T G
(28)
# T dRy 4o
i 'ZSS%? 2T T T
ﬂ«— ¥4
Ay g, e
' M ¥ o T
We set T, /,); and 'gﬂ‘_: f{'m?e/wﬂk, ko €; € . Here “(l,y
and f{nﬂ, are constants; the k's are four-momenta (see
reference (37)); we use analogous expressions for Tw_w
and T ; the analogue of (28) is written for Im T .

YTew ~ . | ¢ g »
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Performing the summations and integrations in (28), we have:

3
Q'm—r%?'-‘— Tr\;w)’w,g_%) + (x-V) /u.u ,5%”&“,“.4....

e c————ra

a X (x= 7).

But f(,ﬂy /‘KN, and £, v/ ¥,y can be found from reference
(34), and thus . |

3
(x-1 + ---
e .

I,

=“§}Ly&ﬁvfu5*5ﬂﬂiﬁf
¢ M M
The first term in this sum is from the V¥ intermediate
state, while the second term arises from the ¥T intermedi-
ate state., Since the ébqve YTT contribution to Im T, ¢
is so small compé.red to the ,contrib.ution of the Y inter-.
mediate statve, we are motlvated not to keep the YT
exchange state in TNy .scattering when computing AI =1
residue shifts. An exactly analogous study can be made
for the ()—;p t channel amplitude, and thus we also neglect .
any YT | exchange contributions to residue shifts with
A I=O or AI=2, | | '
Having np/w considered the "t-channel processes in the
low energy region, we turn to the right hand cut and find

1ts contributions to our residue shifis,
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X, [The Right Hand Cut; N and ¥N Intermedia. States

In this sectlion we shall examine the contribution to
the dispersion integrals (20) arising from integration
around the right hand cut. A typical integrand in (20)
is proportional to DKDJSAI,'and when integrating around
the right hand cut we remember that the D functions as
well as the $A's have right hand discontinuities, The

(3§> First we shall compute Im SA

plan is as followss
by use of unitarity, including (in principle) all possible
1ntermed1ate‘states. (In actuallty we only include the
TTN and YN iIntermediate states; other possible
contributions to Im SA are discussed in Sec. XI.) This
will give us a relation between Tm A and Re 3 A.

We shall then first invéstigate the general case
where the D functions have phases along the right hand
cut. We note that Im D;D;SA = Im D;D;Re SA + Re DDy Im SA.
Combining this equatioﬁ wlth the above relation between
ImSA and Re $A, we then obtain an expression for ImDiDJSA
which involves (if one were to assume certain phases for
the D functions) a possible ép ferm and a term containing
photoproduction multipoles. The SP term was already
implicitly incorpSPaped in Sec. V, and thus we would only

need to integrate over the term contalining photoproduction

multipoles,
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The plan of thils section 1s different from that of

previous sections 1n that we conslder all the contributions

to Im S A simultaneously and then integratépver Im D, D45A
(times appropriate functions of W; see (20)). SA does
indeed involve a sum of terms, but we’do not calculate tie
contributions of each term separately to Im D D Sa (although
this could be done in principle), instead 1t seems easier

to consider all of Imé A at once,

We shall novaroceed with the above program. First
we obtain the discontinuity of SA(ILI3e'I&Ia;J ) across the
right hand cut. The T-N partial wave scattering amplitudes
‘ have a right hand cut due to direct channel intermediate
states, and the discontinulily of the amplitudes across this

cut is given by employing'unitarity of the S matrix.(38)
More explicitly, we have

&)“; <s| $0) +1 (G, xFL) ¢@ LY

\—q*’*"—‘?:‘\ ‘ (30)
am's LS (-2 T, Tﬂ,
(HHNV> :Ei
where |1y and If? are two-component spinors,'?;

: —>
denotes the 2x2 Pauli matrices, q, and'ad: are the initial
[

J
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and final pion momenta, f(6) and g(e) are standard linear
combinations of partial wave amplltudes and Legendre
polynomials, and the Tjk's are T matrix elements (defined
by (26). Equation (30) does not involve any approxima-
tions, | ) |

The contribution of thé TN iﬁtermediate state to
Im A (I;I>I3I,;7 ) is (with our normalization for the
amplitudes A) o

2

P ]Acx..rs-»xi 5T (31)

- When I#I,, the corresponding contribution (obtained in a
straightforward way from (30))to ImA(I;I;»I.I,;J ) is

(32)

.+ Aw(I;E,") I;Ih'T)A (I;I;"’Ia I; 9 ):l .

Another state which can contribute to the discontinuity
across the right hand cut is the YN intermediate state. To
obtain this contributlion, we insert the general fonéag)




T 0) +2 g, FREG0) 1+ (FRG 2 )+ TG 3,2 (0)
ko kg

of the photoproduction amplitude into the right hand side .
of (30). (ky, is the photon momentum,) (The above form for
photoproduction can be obtained by'aSSuming Lorentz
invariance énd gauge invariance.(qoa Summing'over
photon spin states and taking various linear combinatilons
of the nucleon spin states |1y and |f) , we can
separate the pleces contributing to f(é) from those
contributing to g(6), and from this we can find the
contribution to the Imaginary part of our partial wave

amplitudes A(I,I:?I-.I_;J ). The contribution to
1z" £~z ,

ImA(IiI£+IfIz;J ) for the case I, =1 13(41)
ILI;ln
3 Ry & lMIt s | Eiy . (33)

r

(Here Mhtgnd,Elt are photoproduction multipoles; "1+" means
J=1t £ . DNaturally, E, =0, o

| Wnen I.# I, the résult}at first sight appears more
involved, but we can simplify if we note thmt the T
matrix element for mNowN 1is symmetric (this assumption was

already used in writing (30), thus



L N ¥ A
by = S Tt g = GO NSRBI TRt Tils| (34)
\
2 a ™ 2 :

Using (34), we find that the contribution %o ImA(Iilszfég)
from photoproduction is
¥ I ,

LT o 5,
U, ¢ Re | My M,  +3E: " Ey (35)

while the contribution from the TN state is (this replaces

(22))
P Re [ A*(IJ I3—91;I3;ZY)A(I+I3-7 T I,;7)

# r T, ~ LT ) (36)
T, I.:[)A(I‘ﬁﬁ:cx‘r; J
-+ A ( I;‘»I; 3, 3 / (Ii':ﬁI‘).

Conbributions to ImA from states other than TTN and N
will be discussed in a later section,

Since in the integrands of (20) we actually have
functions of the form DLD_sA, we now linvestlgate the
giscontinuity across the'iight hand cut of such quantities,
We filrst investigate the general case where the D functions

have phases along the right hand cut.
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We set

2o (37)

where "1:). and m, ¢ are (unperturbed) phase shifts, and the

5& are real., Flrst We conslder the case I_,L:If. Then

b S8 (LT, — 1Ty 7) = S Im AT T,»TiT, ;7 )

IL "
By ” (38)

= 5((> lA(I‘-I;—?I(I,,-U)r) 4MHMII;I]| +3
P

But

g<(3 1A1*) = 5(’ 1A V" + afo[ReAcRe SA £ DmA, S SA ] (39)

Now In D SA=ImD™ ReSA + ReD” ImSA; solving (38) and (39)
for Re SA and using (37), we find that
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Qrm 6(1;"1”3) SA(IaIf"I;I,)T) =

[o (xor, )T)lz O SAGT:T 1.3, T) sim A [Remd - 5:)
sim(aRem?)

(%0)
° a 2 TiLp
‘o &ml’sm l&{gf(]:;'[?rit})“\o (T0T;7)) +3_\3,&(Mf’| +3\Etr")1}
F
(I't = I&) .

When I.# I., a modified result 1s obtalned. Here
¥
InsAGTpLT ) = S(f Re [A (T, LT 1) A (LI T T T)

+ A*(Ig:,a LI, T ALTPLT ;Ti )

LR oY T
+ 3% ¢ Re [Mt: M +3 Ev: E!tI) (41)
| ¢

= f Re[gA(I;If;I*Ij}Uél[ﬁe(A.(T?R)‘\T) +A°(1~;—»I;,-a§]

+Om [SA (TI» LT, ;3‘_)] [OVH(AD(I?L}W)+ Ao(LﬁIt}U)

%
T T ¢ 1T % :t.-r;J

+ Ak, ¢ Re [/V\,t M, +3E; Ey
F



Using ImDD. 5A = ImD;D, RedA + ReD,D; IndA together

with (37) and (41), we obtain

v D (It—)I;;I)D(I;"’I&}T) 8/31(1:1'-'_-‘3_7 I;I“U')

| | (42)
ID(I(“’I‘ J) D(I*_)I‘F/'T)l 55 &mSA(I;I}eIfIJ;U) g :
svﬂa&rn;jf“°""\z+svnu&mﬁﬁra "

: [sm (aRegl- 5= 808 ¥ %, simfilhurt]- 5 S;)z‘“‘""l?] |

1% ¥
43 TiT. T T

i43 3
[M‘t M“_- + BE‘I Elt :\

+ls 't"n(S;-FSs)a\‘.r% RQ
B
(T, #I,).

(Indices 1 and f denote initial and final isospilns,
respectively.) We see that (except for a Sfterm) this

expression would reduce to (40) when I,=TIg.
Now we see the simplification that would arise on the

right hand cut if we had %: Re fqz ; we then would have

&Lﬂ‘;(If9IQT) SA(I;Iﬁ_’IiI%,)?)



\D(I i—>Ii/' T) ‘z—ﬁa 9"“"]? { gc (I @I;") Ii I})le (t;"l‘;} :r)ll (43 )

T3, 2 T n
+3he § Ii‘/\/\rl\:’l 1 3\E‘fr\ 3'] } ('I;‘-‘-If))
/J

and

O D(Ii""Ia,':r) D(T>Ts,T)SA(TI{T T, T)

i

]D(Iﬁri,-:r) D(T4Fy; :r)} 2 sim Re(m)+ %)

-5 dwmmy . —-admmn?
sinafem; ML sim I Rem? 2 K

¥ ¥
-Re [M 'j' ‘t + 3 E\t Elt

(I;?‘I}) .

(If S,} were to deviate slightly from Re Y\:, this would
only produce a second order effect in (40) and (42).)

Now the expliclt D functlions we have been using
(linear D and curved D) have no phases along the right
hand cut. Thus we would set ImD DéSA = D;D;Im SA along
this cut. But unitarity only gives us Im $A in terms of
Re 8A (Equations (38), (39), and (41)), and we have no
model with which to make an independent estimate of Re SA.
Thus we do not have any way tb find numerical ‘values for
mgA. This situation is described 1in terms of gphase
shift) in an appendix of reference (19). What we shall do



~53a

here to estimate ImDiDJSA 1s to set = &; (the phase of
the D fu.ncb:i.on)::«Re'vlf;J into (40) and (42) (we also let
W;~° in the curved D functions) and thus use Equaﬁions
(4¥3) and (44) when actually doing the numerical integra-
tion along the right hand cut. This is admittedly only an
approximation, and can only give us an ldea of the order
of magnitude of the terms involved, The approximation is
not so bad for amplitudes with small phase‘shifts, but 1s
doubtful whenever a (3,3) phase shift 1s involved.

The next question 1is clearly what to use for the
photoproduction multipoles entering in (43) and (44)., 1In
principle we could use either experimentally or theoreti-
cally determined multipoles., (Of course, for M£W<M +um
it 1s not possible to obtain direct measurements.) We
simply use the largest (N¥resonance and Born part of Ml_,__
from the e amplitudes) parts of the CGLN(ig)multipoles.(q'a)
These multipoles are éxpected to be valld up to the N¥
(1238) resonance region, and the dominant parts thereof

¥

(N 7 resonance and pole term) are well established

experimentally.(4o’43’44) (Recen’c work on photOproduction
(off protons) by Hthler and ‘Schmid’c(%)indicates that for
}E\‘, 4 500Mev, keeping only the N * resonance and the pole

term 1s indeed a good approximation in M:{:% » while

keeping only the pole term 1n Mj;. , for example, may
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introduce an error of about 30% at E, = 222 Mev. Thus
we expect that integrals involving only M,,* will

be more accurate than the (numerically smaller) integrals
involving additional multipoles, In dolng the integrals
- over the right hand cut using (43) and (44), we shall set
all absorption parameters (due to complex unperturbed
phase shifts) equal o one, which is a good approximation
for T, £ 300 MevG+o N phase shifts are obtained from
the analysis of Roper et al.(45) In using the dominant
parts of the CGLN multipoles, we remember to insert
appropriate minus signs when applicable, since their
phase conventions differ from ours.(qz)

Since the residue shift integrals (20) actually
involve 5A1;s, we next take appropriate linear combina-
tions of the quantities in (41) or (42) to obtain the
input due to the wN and 'TN. intermediate states. We
do the integrals over the pleces containing multipoles
numerically (integrating to W = 1.37M); the results are
presented in Table VII.

The term in (40) involving <5p contains contributions
from external mass shifts. This type of contrlbutlion has
already been included in Sec. V.

The photoproduction results can be explained

qualitatively by noting that for residue shifts with I=1,
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one 1lsoscalar vertex and one 1isovector vertex are neededga)
whereas for I=0 or 2 no isoscalar vertex 1s required.

The avallable isoscalar vertex (nucleon spin flip) is
small, and hence the I=1 contributions from the ¥N

" intermediate state are expected to be :sma.ll..(2> For I=0

and I=2 larger contributions are expected, especlally for
Iy = Ip =34, since the photoproduction amplitude here is

large due to N * resonance effects,



XI. The Right Hand Cut; Additlional Contributions

In the previous section we analyzed the contribution
(to the residue shifts) of the right hand cut, keeping
only the TN and YN intermedlate states in the unitarity
condition for Im A, An additional intermediate state to
consider is the TNV direct channel intermediate state.

To obtaln an ideca of the relative sizes involved, we
compare the cross section for TN-*TNY with the cross -
section for wN->¥N at a typical energy (the ratio of these
cross sections is just equal to the ratio of the respective
contributions to the imaglinary part of the forward
TTN->TN  scattering amplitude).

We could use either theory or experiment to obtain
the WN>TN¥ cross section. The theory developed by
Cutk.osky(qe) was used by-Carruthers, <47). but the numerical
results do not agree withzexperiment.(ug’q'% Hence it 1is

preferable to use experimental data, even though these

are meager. Uslng data at 224 Mev (48) we see that (48)
o~ -
Teps>wp¥ 04 b /
& -—

b mb - 23

o:r‘/)a ¥

(The cross -section for '\T_'Y)-b Tl’/p?f is measured directly

(with Ey 2 50 Mev); is found by using detailled

c%?hvvn
balance arguments,) Since our calculation is not
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expected to be accurate to one part in fifteen, we simply
neglect the TNY intermediate state.

We also neglect the N*¥ intermediate state. This
state is expected to give only a small contribution to
.]migAq both because the WNY dontribution is small, and
because the available phase space for TN->N'Y is quite
small at the energies we are considering.

The remaining contribution to the unitarity condition
for ImSA (in the low-energy range we are considering)
will come from the TN inelastic intermediate state.
Similarly to the analysis of the mNY state, we compare

total cross sections to obtain an idea of the magnitude

. ; (50) 4 o~
involved. Experimental data give qﬁpaf?m."l’4mb
and.ﬂ%quwOP = J4mb at By osgen™ 400 Mev (laboratory

energy). Since these are small compared with 7T N> T N

cross sections, we neglect the 1 T N intermediate state.
Having thus completed the survey of contributions

to the residue shifts from the right hand cut, we turn

to the remaining contributions, namely those parts of the.

u channel cut not coming from N or N* exchange.
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XII. The Left Hand Cut - Relatlon to the Right Hand

Cut - ¥N and TN Exchange

Up to now we have analyzed contributions to our
residue shifts coming from N and Na'exchange, one~
photon exchange. and related "~t-channel ™ processes, and
from the right hand cut, The'remaining contributions to
the residue shifts will come from ﬁrocesses such as
wN, YN, ¥wN, and ¥N* exchange, and wwN exchange (l.e.,
from the analogues of the intermediate states contributing
to the right hand cut). These remaining contributions
(which contribute to the left hand cut) will now be
simply reléted to quantitlies on the right hand cut.

We shall see that if 7?‘ denotes the contribution
to our residue shifts due to the presence of intermediate.
states in the direct channel, then exchange of the same

states gives the approximate term -ARRﬁi s wWhere ARR is

the A matrix connecting u channel residue shifts to s

channel residue shifts. I.e.,

E—R) AM 8_R_> + (I - ARR)'D_)‘ + [mass shift and

t channel terms]

P4

Herice



(I_ARQ)(S—Q_—D%D 2 (mass shift and )

t channel terms).

This result for exchanged states such as TN, ¥N
an,'{N’, and wTN is approximate but holds for curved as
well as linear D functions. We shall assume the static
crossing relationsi this appfoximation will be sufficient
to derive (2) in the linear D case. For curved D functions
we make the additional approximation of evaluating the
coefficient of ImSA én the integrand of the dispersion
~ integral) at W=M (when J=i4) or at W=M* (when J= 3.+). Thus
we will derive (2) for curved D functions as well.

We shall now proceed with the explicit proof of
Equation (2). The method for the sample case SRI(%-7‘;;'\Y’2~9

is illustrated as follows:

W/—Wa}

SR_(3>4;T=4) =L j(”"%\ SA, (w) dw’

(o represents I, I;4Ip, and J)

AT flw+M-Wo

= _'j(cﬂi”ij} B,((@rie)-— ) B,,@-i 6)] dw

(w=W-M; B(wstie€)=A(W+ie) )

- 4 ([ M-We \[33&(.%(&)-53“(—-3(—“)] d X
M d\—x +M-Wo)
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(x= - w)
~ ! M'Wu i | _ I _
N C“‘FWKHM-WJ[SB@ (x-i¢e) é%(xue)}( d x)

(amplitudes in the s channel are
related to amplitudes in the u

channel via a matrix denoted by

c)

x4 M~W,

M-Wo \
C“P'Tlfi( )@rmgB@(xHe)dx

2M-W-Wo
M

= --C'.,,rsnL (M e )le SA (weic)aw .(45)

(W=x + M).

In relating s and u channel amplitudes (all with £=1), we

are using static crossing relations. This approximation

is valid, since we intend to keep only‘ contributions

from pleces of the left hand cut fairly near the nucleon

First we look at the linear D case, Then (45)

reduces to

ll

m_L SA_(W Ndw' = C -‘—-S‘@nm. SAﬁ(W-He)&W (46)

L.H. Cu‘t uchdnnel
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If @ represents (I;=Ip =J) or (I3#Ip;J ), then the

factor multiplying -C is‘just the contribution of the

L
right hand cut to our 1Pn‘cegrals (this contribution was
estimated in a previous section). When (I, =L#J ), on
the other hand, we did not previously calculate the
corresponding integral over the right hand cut, since

the residues with this type of [3 would be of second
order in symmetry brfeaking. Thus for these 3 's we now
look at the ‘right hand side of (46) directly. Numerically
these terms are .not expected to bevlarge. The multipoles
due to the 3IN intermediate state are not large, and the
I 3 J phase shifts are small., In addlition, these terms

numerically have no component along elgenvectors of ARR

with eigenvalue equal to one, Thus
S
SR. < -C., [D»],g , (47)

where [—1_)),](5 1s the contribution to the direct channel
residue shiffts due to direct channel intermediate states.
But now we observe that the crossing coefficlents C“{3

have already been used previously. We shall now show
explicltly that (ARI?«P-—' (c)“ ¢ when linear D functions are
used, To obtain this relation, we turn back to Sec. V and

show in more detail how APR was derived., For linear D
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functions the dilspersion integrals (20) are very simple:

SR, = § SA (W) AW

AT i ) (48)
In Sec, V we then reexpressed (via mN-uN crossing and
Clebsch-Gordan coeff‘icienta) the s channel amplitude SA_‘(WS)
in terms of u channel amplitudes. I.e. (in the static

1imit),

5A, (W)= Cog SAWY .

The C“ in this expression are Jjust the C, encountered

4 ¢
previously in this section. Next we noted that the
amplitudes in the u channel, SAP(WH), had poles as a
function of W“ (the relevant s channel diagrams are shown

in Flg. 2). Ic€s,

SA (WY = S( Re
f wY - (M oR M*) .
Since in our dispersion integrals we acftually integrate
over W' , we reexpressed the poles of SAP(W“) in terms
of the variable of integration W' . I.e. (in the static
1imit), | "



.

Rp

WS+ (’AM— TA?!“.

ShAgw) & &

Thus for the linear D case we had

sRe>—L{ Cuy SAG(W?) aw*

AT
o

| S S Ra dw*
4f ami W (am- /‘;)\gtr) |

i

+ mass terms

¢

Co((s BR@ + mass terms,

By definition of.ARR , we hence see that (ARR = (C}qg

when using linear D functions. Hence we now see that

ds

SRy <> - (ARRLP ['\3]{3 | (49)

when using linear D functions. 63; is the contribution:
due to the existence of s channel intermediate states.)
Next we must consider the situation for cur#ed D
functions. Looking at (45) and its analogues, and evaluat-
ing the quantity in curved brackets at W=M when J=4++ and

at W=M* when J=4,, we find



—Glbm

3R, < -(A“)P_;rg O ShWHLE) dw!  (50)
o
M

Here (ARR)‘* is the (e(,(s) element of the ARR matrix for

curved D o‘bisained in Sec. V and tabulated in Table I. (50)
'is valid for any o . In writing (50) we are neglecting
those 3's for which 1= If:,éJ, as in the previous case of
linear D functions.

Now -I_))l (for curved D functions) is approximately
equal to
L[ A (wiriedaw,

M

and thus (50) implies

SR‘<:J—> “(ARR)«@ XW]@ ~ (curved D).

Thus, for BOth linear and curved D functions,

‘ SR, & - (/sf““)o‘@[o.](s

is the contribution.from TTN, W, YwN, IN¥, and wwN
exchange. Since in finding_f)z (Sections X and XI) we
neglected the YN, KN*' and TN states, these states are
negligible.
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XIII. Analysis of Contributions - No Enhancement

In the preceding sections we have investigated all
the near-by contributions to our residue shifts and have
found numerical values for all the significant states,
using first linear and then curved D functions. The
complete numerical results of this study have been pre-
sented in Tables II - VII.

A discovery we shall make is that even though the
matrices A?R each have one eigenvalue equal to one (or
near one), the'corresponding eigenvectors are not en=-
hanced! For the linear D case there is one eigenvalue
exactly equal to one (for each I), but the relevant
driving terms have exactly zero component along the
enhanced eigenvectors. This result.depends only on
crossing and Clebsch-~Gordan coefficients and is indepen-
‘dent of the values of'the nucleon magnetic moments, the
positions of the simple poles in the nucleon form factors,
and the value of the vanishing photon mass A (as long as
)\ is assumed the same for each residue shift with the
same I value). These résults are derived below and will
Be made gqualitatively more plausible in the following
section.

We now investigate whether the "enhancement



mechanism", which has been so successfully employed in

(3,4,7,16,17,19)

other studies, , is also relevant to our

case, By "enhancement mechanism" we mean that if the

RE has one eigenvalue near one, then it is likely

- matrix A
that the corresponding eigenvector is enhanced compared
to the other eigenvectors of this matrix. The analysis

of the preceding sections has shown us that

- . RR=> RM —> — RR\ |
SR = AL SR+ A Swg + 0 + (1-A") D | (52)
Mo
where ARE and A®! are defined by (17), v 1s the

contribution to our residue shifts from one-photon
exchange, and Dl is the contribution due to the exis-

tence of s channel intermediate states. Thus

R ~ o7 Y |

(I A“ X SR-DNZ A S+ Doy . (53)
Mo

Denoting the eigenvalues and eigenvectors of ARR by )4 and

?% , we can find vectors'ﬁz with the property';;f$3= 51

We then define a matrix F by |

Fo; = (),

‘4 { , (component i of vector j);
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then (F'l)ij: (W,); » end (53) implies

- (54)

where /\ is a diagonal matriN: Ai)}: )\1 Si)} (no summation
convention).

If A?R has exactly one eigenvalue near one, then
(SRI --?l) will lie mostly along the corresponding eigen-
vector, unless the component of (A§”1§37m0 +fﬁi¢) along
that eigenvector is very small. Numerical results for
the eigenvalues, eigenvectors, and "reciprocal eigen-
vectors"'ﬁa of A?R (these are listed in Table III) show
that when D is linear, there is one eigenvalue of A?R
exactly equal to one (for each I). But the right hand
side of (54) has no component corresponding to this
eigenvector, as can be seen by explicitly inserting the
linear D results for F , Ei-v , and A?M into (54) (using
the assumption that for fixed I the numerical value of the
"photon mass™ A is the same). Thus we are led not %o
expect any enhancement mechanism for linear D! This
result depends only on crossing and Clebsch—Gordan
coefficients, since A?R and» Ehe ratios of the components
of'ﬁiv (for fixed I) depend only on these coefficients

(A¥M equals zero for the linear D case).
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Turning to the curved D cése, we see from Table III
that there is one eigenvalue of A?R near one (for each I).
The right hand‘side of (52) is modified from the linear
D case, but a precise estimate is difficult to obtain,
since not all of the N* masses are known. (See references
(51) and (52)’ for available N* mass differences.) We
shall take the hint of "no enhancement" given us by the
linear D case and shall simply use equations (53) directly
to find the residue shifts «SRI (see below).,

This conclusion of "no enhancement'" for linear orxr
curved D functions is at first sight quite surprising,
when we remember. that previous studie§3’4’7’l6’l7’19)
(which did not calculate as many driving terms, howevef)
where enhancement was assumed have led to very good
agreement with experiment. Actually, our result is not
in direct contradiction with the previous successful
‘applications of the enhancement mechanism. Most of these
calculations involved mass shifts, or mass shifts driving
coupling shifts., The only successful case not driven by
masses was the case of the weak parity-violating coupling
shifts, where the driving term is not known. Now in our
model the mass shift contribﬁtions for curved D are non-
zero and will indeed be enhanced. This effect does not

determine the direction of symmetry breaking in our case,
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however, since our mass shifts are either small (nucleon
masses) or are assumed small (N* masses).

Before solving equations (53%) directly to find our
residue shifts, we need to investigate whether these
equations change much under projecting out states with the
wrong charge conjugation propert}.s. 3)1.3., we require
gg(Tfpan)=- gn->p) (i.e.,C=+1), and we wish to project
out states satisfying Sg@pon)- +Sg('ns>p) (C=~1). These
conditions can be translated into conditions on residue
shifts (since residues are in general proportional to

products of coupling constants):
SR__(5k; To44) = v SR, EOEIT ) (cohi)
| :

SR, (14, T 44)= -0 SR B2 4,TH) (‘5“‘)'(55)

‘We want to satisfy (55) and wish to project out states

satisfying (56). Forming the matrix P which satisfies

this requirement, we then find that numerically P A?flP
is quite different from A%fi (P does not affect states

with I=0 or 2). I.e., the matrix A%Bl ig not at all charge

conjugation invariant. Thus we expect that the numerical
results for I=1 will be especially unreliable. Keeping

this in mind, we now solve (53) for our dJ&R's.
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For the curved D case we set

P— -1 — —_
R0+ A R T

- When using linear D functions, we note that A?R has an

eigenvalue equal to one; thus (I - A:I[{R)'l does not

exist, and we see that

SR, = D o+ a X, v % (58)

Here a1 is an undetermined constant,72£ satisfies
(I - AII{R )??h-:o (i.e.,’:?h is the eigenvector with eigen-
value equal to one), and‘?% is a particular solution of
(I-22)%=D ;. |

The results for'SRI, found from (57) and (58), are
shown in Table VIII. SRI=0 is undetermined for the
curved D case, since the I=0 mass shifts are of course
undetermined (5RI=0 for the linear D case does not depend
on maéé shifts). We have evaluated the {n )\ pieces of the
§R's at )«,:m/J , as discussed in Sec. III. The constants
"aI" for the linear D case (I=1,2) were fixed by setting
the components of SRI for this case equal to the
compor_ients of SRI for the curved D case and taking

the average values of the aI:s thus obtained. We have

set all N* mass shifts equal to zero (see references (51)

~
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and (52)for available experimental N* mass shifts).

We see that the values of the‘&Eﬁ's for linear and
curved D functions agree fairly well. The absolute
numerical values obtained are, however, very strongly
dependent on the value of the photon mass A chosen.
Another source of uncertainty is of course that we have
simply set all N*” mass shifts equal to zero. We note
that there is no enhancement of the eigenvectors with
eigenvalues equal to (or near) one, and the residue
shifts are all approximately of the order of the tine
structure constant o . The conclusion of no enhancement
and the order of magnitude of the final numerical results
are both probably qualitatively correct, in spite of the

uncertainties of the calculation.



XIVv. A Lérger Space

In this section we shall consider a larger set of
residue shifts.than in the previous sections. This larger
set is physically less appropriate, but mathematically
simpler., We shall find that in this larger space some of
the empirical properties of the previous calculation
become more transparent., In particular, we shall galn an
understanding of why one might expect eigenvalues of ARR
near one and why the corresponding componenﬁs of some of
the driving terms.vanish, This understanding applies to
SU(3) calculations as wéll.‘

We first note that in the previous sectlions we
calculated only ten of the twenty residues shifts in
pion-nucleon P wave amplitudes. (There is a total of
twenty such amplitudes, since there are two P wave
projections, corresponding to J=4+ and J= 2+, for each of
the ten pion-nucleon scattering amplitudes.) We assumed
(in the previous sectlons) that some of the residue
shifts (namely, SR(3+2%;7-2+) and SR(E>%; T=t+) were
small. These resildues correspond to symmetry breaking at
both vertices simultaneously; they would arise in a first
order symmetry~-breaking calculation such as ours if there
were physical particles with (I=}+,J=34) and (I=% ,J=1+).

The assumption of time-reversal invariance in the above
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sections further reduced the number of residue shifts to
be calculated., If we had calculated all twenty residue

shifts, we would have obtained an equation of the form

AP:: 'AC\: 5Ra- Ve wmass shist amd

+ t channel terms

= "e
$R,-0)  \Awa Aly /\3Re~ Dy | A
)

SRa_" D\,a.

where SRO~ is the set of resldue shifts we calculated in
the previous sections,SRb ls the set of ten additional
residuc shifts, and the ARR‘s are matrices. AI}E is

related to the matrix we called ARR

in the previous
sections.
We note from the way in which ARR is calculated that

for linear D functions ARR

1s Jjust the crossing matrix
relating scattering amplitudes in the s channel to
scattering amplitudes in the u channel. We now choose a
basis in our twenty-dimensional space in which the
crossing matrix (denoted'by C) takes on a particularly

simple form. We choose as our basis the twenty linear

combinations
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-

SROTp>wtp) T=44) + SR(T -7 p. T= 4 +)
SR(umamtm; T=%4) £ SR (MM T> 4 +)
SR s nop,; T=41)t SR(TMaT7P; T=44)
SR(Mp>mom  T=44+) &+ SR(TTOP —Ttm, J=14)
SR (T°prmep, Toiw)

SR (TI'OM_;-n-om) T 44) (60)
SR (TT+’P—)‘T+ y J= %+)i~ SR (17',‘(_)97]";?/« J=324)
etc.
Then the crossing matrix C is
!
-1C Y ¢ -, O
3" 3 -1 (b))

C = , where (C, = -

2 }
Fo e o

(The numbers ‘-'3'/ 533 %  and 4 in ¢ are just the

static crossing coefficlents relating the spin states J=i+

and J=%3 of the s channel to those of the u channel.)‘

This matrix has eigenvalues’ >\£= +1. The elgenvalues



75w

\=tl are actually to be expected, since )\:tl is a
general property of crossing matrices relating complete
~sets of states, The complete set of states in our speci-
fic case is the set of all P wave TFN scattering amplitudes
in the static limit.

The eigenvalues encountered in the previous sections
were those of %ﬁﬁ) , namely, the eigenvalues of a
"truncated" matrix. By "truncated" we mean that the space
of residue shifts is only ten-~dimensional; residue shifts
with symmetry breaking at both vertices simultaneously are
not ineluded, and the assumption of time-reversal
invariance further reduces the number of residue shifts.
Since the untruncated ARR matrix for the linear D case
has many eigenvalues equal to one, it is thus perhaps not
80 surprising that the truncated matrix for linear D also
has (some) eigenvalues equal to one, Thus it is now not
80 surprising when in calculations in a truncated space,
one obtains eigenvalues equal to one (or near one, when
D is curved).

The next step is to examine enhancement of eigen-
vectors with eigenvalues equal to (or near) one. We
égain‘ look at the linear D case in our twenty-dimensional

space. We recall that in the truncated (ten-dimensional)

space the driving term due to one-photon exchange had no



76

component along the eigenvector with eigenvalue equal to
one. We now see whether the analogous conclusion is true

in the larger space. In this larger spaceaﬁ has a very

-7
simple form. The components of-g;v are given (in our
formalism) by a contour integral using the one-photon
exchange amplitude, SA -y » as input. SAM‘ has opposite
signs for m* and T scattering off the same nucleon and is
zero whenever at least one of the external pions is neutral.
One finds by explicit calculation that SAFJ- does not

depend on whether J:=i+ or J= %+. Thus we see that in our

basis systém

—_ . ‘ o)
D\,I-T - ;:..
B . = where D y=| 24
D, s 0 (€2)

and a and b are numbers.

But now we note from (61) and (62) that C Dkf=-D,_,, and
RR RR

>
since C=A , we see that D _¢ is an eigenvector of A

with eigenvalue minus one. Hence_B}_v does not have any

component along eigenvectors of ARR that have eigenvalues

RR

equal to plus one. I.e., the eigenvectors of A™ with

eigenvalues equal to plus one are not enhanced by the one-

photon exchange contribution. We thus are no longer
surprised by the fact that one-photon exchange in the

truncated ten-dimensional space also did not cause
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enhancement of eigenvectors with eigenvalues equal to one

(or near one, when using curved D functions).

One might ask how general the no enhancement conclu-

sion is. I.e,, would the driving terms for P exchange

or w or ¢ exchange also not contain any components along
eigenvectors of ARR with eigenvalues equal to one?

Writing the analogues of (62) for f and w or 55 exchange,

we note that

-
—> Dl,{’

D, = <

5 L ° ) (63)

&

since this form depends only on spin propérties (not on
mass or isospin properties) and is hence the same as for

one-photon exchange. For P exchange we find

o
2Qa

o
—> aﬁ/
be 8
/
ad (64)

g (a”y ¥, ¢7, and 4”7 are

/

numbers),

and thus C 99== -D(J y» in exact analogy with the one-

photon exchange case. For w exchange we obtain a
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similar expression:

ol/
Q.
o)
EEE e
1w O (65)

(a” and b7 are numbers),

and thus C D 7~D, . Similarly, C D¢=-D¢ . (We note
that in the absence of any symmetry breaking there would
be no w or 52{ exchange, since w and ;15 do not couple to two
pions in this case.) The way the above vectors (_51(, ,-ﬁ),,w
and _1?‘,¢ ) were deduced is as follows: First we note that
C invariance implies that the Ps w, and ¢ do not couple to
wew®. The Pauli principle and angular momentum conserva-
tion imply that the two pions at the vector meson- T |
vertex are in a relative I~1l state. This state is anti-
symmetric in charge space, and we are able to deduce the
relative signs of appropriate vector meson-tW couplings.
In this manner we arrive at (64) and (65).

For “fﬂ exchange we note that C invariance again implies
no M’ coupling to the exchanged state. The incoming
and outgoing pions would still be in a relative I=1 state
and thus the conclusion of "ﬁo enhancement”" is valid for
¥T exchange. The reason that I must equal one is that
if one assumes G parity conservation of that part of the

2
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photon which couples, then G parity is not conserved

- - . = =l
at the (Kisovectoéﬁ vertex: Gc“'xisovector) 1;

GGTT) =+1'., We note that exchange of a C=+1 meson

(such as the £° and A2) could cause enhancement, since
the two external pions would be in an I=0 or I=2 state,
and these states have the opposite symmetry to the I=1
states encountered above, v

Thus we see that while P W #, and 5ﬁ'exchange do

not cause enhancement of eigenvectors of ARR

with
eigenvalues equal to one (or near one), exchange of C=+1
mesons couid indeed cause enhancement.

The arguments of the preceding two paragraphs were
made in the framework of the twenty-diﬁensional space.
It would not be surprising if the conclusions of no
'enhancement from P w, or ¢ wer® to hold approximately
true in the truncated, ten-dimensional space as well.,
Explicit expressions for exchange of the P’ W, and g{
confirm this expectation.

Viewed in a larger, extended space, the eigenvalues
near one encountered in previous SU(3) residue shift
calculations(17’19) also appear less surprising. Since

the ARR

matrix for linear D functions is again just the
crossing matrix, we might indeed expect eigenvalues near

one, Of course, in SU(%) calculations one has an
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additional parameter, the F/D ratio of BBTT coupling, so
things are not quite so simple. But qualitatively we
can understand the occurrence of eigenvalues near one in

the SU(%) residue shift calculations.
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XV. Residues and Coupling Constants

We have now obtained our predictions for residue
shifts in the wNsnN P wave scattering amplitudes, and we
have aiso gained a qualitatiye understanding of the
occurrence of elgenvalues near one and '"no enhancement"
from one-photon (or vector meson) exchahgé. In the next
section we shall wish to oompare’our results with experi-’
ment. Before doing this, however, we first examine the
relation of our residue shifts to coupling constants. We
shall discover that coupling constants are not applicable,
and that when including infrared corrections to scattering
amplitudes, it ié not correct to say the residue 1s propor-
tional to a product of twé coupling constants., We now
examine this in more detail.

Consider the three processes
a) TOp > WP
g) TRSTIM
¢) Tim-atm

Then the J=4+ partlal wave amplitude contains a pole term

(Equation (9) modified for J= 4+):

+
A(mM9W1N1;3-:J£+): [Ro'{'AR'*"%RoS‘(QY 8:l 4o
W-m




We take the limlt of low center of mass energles, so that
the nucleon is almost stationary. Then the B function

in the lintegrand will contain a poséible infinite phase
(which we do not consider in the following) and (aside

from finite terms) a /n )\ term arising from virtual
photons connecting to'external plon lines. We now consider
this ,en>\ termv, In process a) there 1s no such term,
since the T° is uncharged. Iet us now make the
assumption that residues are proportional to products of
coupling constants. Then g(w°p-rp) has no fn ) term. Now
we look at process b); since g(n%->#) has no fn\ term,
the zn)\ term in b) ‘contributes only to g map), Thus
we have found the fn A part of g('rr+'v\—7/p). But if we use
¢) to obtain this Znuk part, we get a different answer,
The reason is easy to see: the fn A terms can come from

a virtual photon connected to one external pion line or
also from a virtual photon connecting (in case c¢)) the

initial and final pion lines. It is this latter type of

.en)\ that causes the discrepancy between the /In >\ pleces
of g(nw'msp). What is happening is that a branch point
(of a box diagram) overlaps The pole term 1n the scattering
amplitude as A—>0., Thus wé must conclude that when
infrared contributions are included, 1t is not advisable

to speak of coupling constants; residues do not factor in




this case.

We note that if residues of scattering amplitudes do
not factor, then it is not clear whether one can equate
the non-infrared pieces of residues in NN—>NN amplitudes
" (or any other amplitudes) to non-infrared pieces of
similar residues in TN>TN scattering. Eguating such
quantities would be straightforward only in the limit
where corrections from infrared photons are negligible.

Armed with the above knowledge, we now look at.
experimental results to see if any precise comparison

with our predictions can be made.
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XVI. Comparison With Experimental Data

Precise experimental information on TN residue
shifts is scarce. The experimental error bars on direct
determinations of residues are large, and no definite
-conclusions can be reached. Other (theoretical) work on
charge independence indicates that the residue shifts
should be small.

We shall now proceed with a more detailed examination
of the experimental and theoretical work that has been
done under the assumption that infrared corrections can
be neglected. Under this assumption it is permissible to
deal with coupling constants; first we look at the data
concerning sﬁNN .

There are several ways which in principle could be
‘used to obtain ga from experiment. The most accurate
method has been to use dispersion relations together with
pion-nucleon scattering result%(Ba’ss) this yields
a value of f2==.081 + .0018,.

Another way of determining g2 is through the use of
N-N scattering data; by varying g2 a best fit for pp
phase shifts is obtained. The value of g2 determined in
this way from pp and np data agrees with the value found
by using the pp data alone (the np data by itself would

56) 2

not be oomplete).( The value g°=1%.8 + 1.9 is
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(56)

obtained. In an article by Seamon et al it is shown

(using a model potential) that inclusion of electrostatic
effects in the analysis could raise this value of gg by
about 5%. (57)

One can also determine 32 by multiplying .%%i
by the pole denominator and obtaining a best fit to N-N
scattering data. Such analyses yield a value of'g2=
14,7 + .9, (58)

One could use photoproduction data to obtain f2 (oy
extrapolating to the pole), but H8hler and Schmidt (43)
point out that the errors are so large that it is better
to treat the pole as a measured pointﬁ45’59)

In summary, then, there are several ways to obtain
32 from experiment, but the error bars are fairly
large. One cannot, thus, yet determine any ég's from
experiment. Our results are consistent with the experi-
mental situation in that they predict only small viola-
tions of SU(2) symmetry; very large effects would contra-
dict the experimental evidence.

.We may next ask about the relevance of a prediction
of T-N fesidue shifts to other work on charge independence
in nuclear physies. Evidencé for charge independence of

the nucleon-nucleon interaction can be obtained in several

’ 60
ways. Wilkinson( )has examined properties of mirror
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nuclei to conclude that charge symmetry of the N-N inter-
action holds quite well; the same author has also studied
energy levels in light nuclei to conclude (60,61) that
complete charge independence probably holds to within

. one percent.

More direct evidence on charge independence comes

Ifrom the lso nucleon-nucleon scattering lengths.
BExperimentally these scattering lengths are; (62-65)

8on = «16.4 + 1.9 fm

app = =7.81% + 0,008 fm (&£ =17 fm for the

nuclear part).

The nuclear part of these quantities would be equal if
charge independence were exactly true, and various
calculations have been performed to explain the observed

discrepancy between a and a,ne Heller et al(66) con-

, np
clude that this discrepancy can probably be explained in

2
0

and to use this in the corresponding one-pion exchange

‘several ways, one of which is to assume gf / g =1.0%5
potential (g+ is the coupling to charged pions, and 8,
is the coupling fto ncutral pions; these quantities would

be equal in magnitude under exact charge independence).
(67)

E

Moravesik points out that the scattering lengths are
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very dependent on the potential. Schneider and Thaler(68)
include form factors and pion mass shifts; they conclude
that charge independence is not contradicted. Noyes(69>
uses pion mass shifts and finds that‘gip / gg ?

- 14.636/14.002 would explain 81p? but he notes that other
effedts (in additien to Sga) could be of equal importance,
and thus one cannot reach any definite conclusions
concerning ng. Henley and Morrison(65)include pion mass
splittings and find they can explain anp in several ways,
one of which is to assume lg+/go|25.98. Goldberg(lz) uses
the Dashen-Frautschi method to calculate a.,. - 80 and
finds that nucleon and pion mass shifts, together with

TNN coupling shifts, give a prediction of 80 = anp in
qualitative agreement with experiment. |

A third way to obtain information on charge inde-
pendence comes from (3 decay. Dlin-Stoyle et 31(70)
conclude that if one assumes a conserved vector current,
then the experimental results are consistent with a few
percent of charge independence violation.

Thus we see that the observed deviations from charge
independence are not larger than several percent€7lboupling
constant shifts of this order of magnitude could, accord-
ing to some of the calculations, explain the difference

between a and a but other effects could also account

nn np’
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for the difference. Thus we are unable to reach any
definite conclusions about the splitting of N-N residues
needed to explain deviations from charge independence in
nuclear physics. The only thing one can say is that the
-effects are small, and this is indeed congsistent with our
prediction of small residue shifts. Thus, with respect

to residue shifts for =44, we must conclude that while
our residue shifts are consistent with experimental reéults,
there is no measurement available for precise numerical
comparison with our predictions.

Having thus examined the situation when J=i14, we
now turn to experimental evidence on TN residue shifts
with J =2+. The corresponding residue shifts are
directly related to total cross sections in the manner
described at the end ofvSec. III. As a complication we
note that the N* resonance experimentally does not have
a pure Bfeit-Wigner shape. Thus even when neglecting
any infrared corrections (which one should include, however,
since the theoretical residue shifts AR are of the sane
order of magnituqu the usual resonance formula

: a
~ 8T |=-DA

' (2
3* . |w- ReM¥+ilA (66)

a—t
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is not adegquabe when considering effects of SU(2)
symmetry breaking. This can easily be investigated
mathematically for the sample case of ﬂ%haﬂip (where Ii=

If=*%fL We write the J=2*partial wave amplitude near W=M=*

SNy RERDIHT L 53 (wra®)
aip W —Rem¥ + i0A
where n. is the phase shift, and SB is & small correction
term. Expanding about the unperturbed SU(2) values at W-

ReM* , we have
- (Q—Q thfv‘l'aﬁg(ﬂk--ﬂ;—)-" \) — Ro + S R
ai(ps +5p) yg(r+sr)

Collecting zero order and first order terms,

+ 88,

~L/A = foRe
‘—SI%=S((JR)+ o858 4 [-Qwu L(”(-’—af)]%_ )
PR .

Since(ﬂ/2)1m~lis of the same order as PSE§72}or example,
we cannot conclude that;%CQKpR), and hence it is not
correct to set -F/2=FR in the numerator of Equation (66).
Analysis of Tfp data (51) using the effective
assumption that residue shifts are large compared to terms

like Imwland neglecting infrared corrections, has
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ylelded a value of

rx %) -raé '%) = b4 4+ 3.1 Mev

mE i) - m(E-4) =-.45 + .85 Mev.

Study of the inelastic processes nn-ynpT and pp—anpﬂ*

has g1Ven§52)

PG -%) -TEF 4) =25 4 23 Mev

m(F-%) -m (%2 2) = 7.9 + 6.8 Mev.

Both of these results are consistent with small residue
shifts, but the error bars are too large to permit
numerical comparison with the theory.

~ We thus see that our predictions of small residue
© shifts for J=32 + are consistent with the experimental
situation, For any further comparison between theory
and experiment, however, available data would have to be
anal&zed taking into account very small correction terms,
and the error bars would have to be smaller, Additional
experiments which could give information on N* parameters
»are(51’73) 11° photoproduction (ylelding information on

s \
the N ¥ ) and pion scattering on neutrons.
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XVII. Comparison With Related Analyses

In this section we compare our calculation with

(17,19)

related work by Dashen et al. The calculations

- by these authors have also included predictions for TTNN
and TTNN* coupling shifts. These predictions were
obtained(l7’19%y calculating an SU(%) symmetric ARR
matrix and also evaluating mass shift contributions to
residue shifts. A double enhancement of the octet
eigenvector with eigenvalue nearest one was found, and
this eigenvector was then used (together with experimental
baryon mass splittings) to predict the coupling shifts.
This calculation differs from ours in that it predicts
only the I=l part of the coupling shifts and also does

not calculate driving terms other than mass shift contri-
‘butions. Dashen et al obtain I=1 "NN &g/g ‘s which are
very small (of the order of .1« or less) and the

estimate SM(N* - N**+)521NEKOur SR/Ro ‘s are roughly

of order « j; this result agrees with the &I estimate

but is larger than the §g/g] ~ results of Dashen et al.
TTNN ’
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Table I. Linear combinations of resldue shifts

uged 1In the analysis,

SR ok~ 4;T=kd = VI T SR(4> 44749 &
1 : . :
SR(L -5+ ;0=44)]
SRiQB>357=1) = VEL SR(EZ> 2% 5724) &
SR(25%24;7-3) + SR(ETI%TL
+ SR(FE»3%;7-39)]
8R1.1($532:7:349) = VT[3SR (3332 ;0234) +

SR(?* + ;B -oR(2%23T

-35R(% "—>—Z— ~3;7=1+)]

- YT[ JR(Q'%:"-%{;&%*) +

SR1.) (T T4)
- | SR(—*—‘--& +;T=5+)]

\t

SR-1(E> ;) VEL ;R@.:i.,ﬂ ;T34 +
2. . _

SR( -+ 3’—1+)]
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Table IT. The matrix ARR.

a) Linear D functions

b) Curved D functlons

a —
=0 Teo T=i T wt T = Tt
bok) (308 [od] (3ok) 203 22
i+ ,,—i-+ 1+ L4 %.0- X
L hAFd
i o
u;g -5']-
4V VA = HVEC
-3 £y Ll
~28 ~30  4V®
an ‘;‘\57 an F¥]
- -10 -Va
O %%5“ T _asT a‘?
~aVige 48 -V g
7 a7 EY a1
b))
T_#_ 64\
ns O
s ar
1 e _g® —iasvE -3Hg
ST 2 2xs 435
-aVvT -5 ~16_ 16¥30
O Vi Y3 Py 1385
-V ~5 + Y3
T a% ‘#‘ ug
—£V@ @ -~ =1
7 36 . 228  2as

_ul‘.

i

oo of

O

|
o
o~

& ak 3

<)
7
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Table III.

Eigenvalues )\;, elgenvectors -\-l’i, and

reciprocal eigenvectors (defined in the

text) W; of ARR,

a) Linear D functions

2)) Curved D functions

I=0 A- v =VF (vT, 1)
M=% v VE(va,-)

Top M=t usVE(EA L E)
I LRI
A IR (XY ,-VE)
JUER! q,=\g'(4va’;a,i,a\l?)

Tsa A =1 V= (3, -2)
VM= v {F(1,3-1)
bz =t = VE (4 0,0)

b)

T=o A =95 u=(.33,.57)
A ==Y s (.83,-.53)

T=1 MN=35 u= (55 .u5-.5,.66)
MMS p= (8,29, =53—.16)
Ao = (.55,,93,.35,~13)
Xﬁ—ﬁi q=(75~ALAg.sﬁ

T=a AT g=bes.a7.10)
A="08 g -(,38,.83,~43)
A==31 . (.9,.03,.73)

(7 =1.)

w,= g (V—";, ‘)

w,= & (VF )

w, e V5 (BVE-1,1,2E)
e 5 o133
w,= ‘f—%’ (\Fi, Y, 4, -V?P')

wy= V"_l-g_,_(li’f "W, V?)

o = Z(1,-1-1)

UJ:L 2 % (‘)HI-|)
w; = X (1,91)

w, = (-6l 91)

g,;= (.61,~.33)

w, = (=39.61~.43.72)
w = (.37.2¢,-1.20 ~.16)
wy=(-23.7Y .76, =.19)
wy={(.52,~39, .4l,.%1)
w, = (~.64 .60, .59)
w, = (.20, Loa,~.2l)

u};c("“'l)'o’, '68)
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Table IV. Contributions of exchanged masses to

residue shifts.

a) Linear D functions

b) Curved D functions

a) All exchanged mass contributions equal zero.

0) A?’M*EXCh Ag,mgxch.
SR o (4> & 5T=49) 1.79« 0.00 o
SRio($-237=3) 24 1,96 o
5RI=1 (5> 4 5044 -1.33« 0.00
SRy (¥ % 5749 2.36 « ~.87
SRIzl(%-',-L— 37224 A -1.31%
SRy 4 (2> %;5%9 -.08 -1.46u
SRy o (k- & ;57:4) -3.16 & o ——

AR p(E T=39 59 & -——

SRio(%> %3739 .2k ——
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Table j&_ Contributions of external mass shifts fto

residue shifts,

a) Linear D functions

b) Curved D functions

a) All external mass contributions equal zero,

b) . ARiMeXt AI; pext
SR_o (5 % 5T+4) -2,53 0
SRro(%» ¥3024) -2,300 0 o
SRp_1 (> % ;:;’-h) 84 —
SRp1 (k= +304) 4,70 -—
§Ry o (3 %57 29) 2,36 R
SR (3> 35749 ~1,71 o ———
SRy o (5> +;7-49 - - 0
SR (3= 4 ;7-39 --- 0
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Table VI. Contributions from one-photoﬁ exchange,
a) Linear D functions
b) Curved D functions

a) b)

SR,.o 5 4, =4 EV (S,- 3 Q) (9305 +08)

SRi @23 P2 =2 (v ) (- 4]
SReo k>4, ™) 2@« (2) o w6 B +.28)
SRy, (3508 5 - v «(-1.43Gn 2} 41.31)
SRhl (%——*f&;?=%*) --—-53‘—‘- « () — o[-1.01 gm%u.os)
SRe. (3035030 =E( ) —efmla i)

SRy N R (S5 R) - of-1.58m B +109)
SRyca (41,734 - ¢ = ) sof=1.18 Ben K14131)

SRy (3%, 734 *55—“‘( ") -ot(-u.ea,Qmﬁ”wm)

S.=UI0 Lo, Qo= 3702, , B,k [A.%MB%W +C ]
1y

! 2 a\\ !
(A= (Nﬂ('ml) ) B= ('W‘; (‘W\;-W:’)) P C = (’Yn} ('VY\""W( )) ))
thus 2= [~gnd+.09.



Table VII.

SRy_o(k=>+5F4)
SRy_o(k+2;73)
SRy_1 (k24 ;349
SRy_q (35
SRy_q (35749
SR, (3»351)
) RI~2( 2% ;7=4)
§ Ry o (545719

SRI-'E ('i""% 33-'%’

~98=
Contrlbutions due to the existence
of the YN direct-channel intermediate

state.

T2 o
3.35q
-35«
13 o
~.22 o

0.00 «

2
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Table VIII. Residue shlfts AR (neglecting N mass

differences), obtained by evaluation of
the N, N*, ¥ N, TN, and ¥ exchange
diagrams and the TN and ¥N direct channel
intermediate states, |
 a) Linear D functlons

b) Curved D functions

a) b)

SRPO('{‘ > 43d= %'*‘) V—Fawﬁ 2.2 undetermined

3RI=0(:%">%;J=%+) 3130“.89“ "

SRpy (ko £37=44) -2.9« 2.7«
SRy (%> 433~ £+) 4;6d 4.9

SRy (F> 45722 4) -2.9 « - -a,ga
SRy.1(2»2;T=23+) 4,;0« 4,1

Slegg(%-e{-;J=J£+) -2;5& ~-2.3«
SRr=2(%->4 ;J=%_+) 2.1 2.2 «
SRy=p(%-=>2;J= 3+) -2.3 _ -2, bw

a7_o = undetermined constant

13

Ro(-'s'* +3;J=4+)

Ro(2»2;J=3+) £ -5.6

-11,1
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Figure 1 Pole terms in the direct channel
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Figure 3  One-photon exchange
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Figure 5 Intermediate states in the t channel
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