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ABSTRACT

The determination of the set A of values of A for which a
family of operators {Ak} on a real, partially~ordered Banach space
has positive fixed points and the description of the behavior of the
fixed points as functions of A are considered. The operators A}\ are
usually assumed to be compact monotonic operators which satisfy
A)\O > 0, and the elements Aku are assumed to be continuous in=-
creasing functions of A for every positive u. It is shown that A is
an interval, that for each A the operator A>\ has a smallest positive
fixed point u®(\), and that u°(\) is an increasing function of A which
is continuous from the left in-A. Conditions are given which guarantee
the uniqueness of the fixed point of A)\ for each A and permit the pre-
cise determination of the set A.

When sup A€ A and AKU‘ satisfies certain differentiability
conditions, the behavior of u®(A) for near sup A is described and the
existence of a second positive fixed point for A near sup A is proved.
The asymptotic behavior of Aku for large positive u is used to deter-
mine the behavior of the fixed points of large norm and the existence
and value of a number My such that the norms of a sequence of fixed
points approach infinity as thc corrcsponding values of A approach
My The existence of a second positive fixed point is proved under
various conditions, including the case when the operators A)\ are
Fréchet differentiable and 0 < My < sup A€ A. More precise results
are obtained when the operators _A)\ are concave Or convex.

These results are used to study the eigenvalue problem for

Hammerstein integral equations and nonlinear ordinary differential
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equations. For certain ordinary differential equations with convex
nbnlinearities, the existence of precisely two positive fixed points is
proved. | Finally, an independent treatment is given of the eigenvalue
problem for the equaﬁon u'+Af(u) = 0 with the boundary conditions
u(O) = u(l) = 0 ; use is made of the first integral of the differential

equation and a study of the equation in the phase plane.
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INTRODUC TION
The following nonlinear partial differential equation arises in
the study of the steady-state temperature distribution of a physical
medium in which heat is being generated nonlinearly:
Au(x) + Af{u,u(x)) = 0, x€0,

albcdalx) + Blo) 22 () = 0, x €00,

where A denotes the three-dimensional Laplacian operator, (i is a
bounded domain in three-dimensional space with a boundary 901, and
8/6n denotes the outer normal derivative on the boundary. The un-
known u(x) represents the non-negative difference T(x) - TO bhe -
tween the temperature T{(x) at a point x of the medium and the
ambient temperature To , A 1s a positive parameter which can be
varied by varying the conditions under which the material is being
studied, and f(x, u) represents a physical property of the material
which is causing heat to be generated at a point x of the material in
a way which depends on the temperature T = u + TO at that poeint
(Chambré 1952*, Kaganov 1963, Jakob 1959, Joseph 1965).

In each of the references cited, the functions o and B are
non-negative, and f(x, u) is a positive monotonically increasing
function of u ; in particular, f(x, 0) is in general not zero. The
latter fact distinguishes these examples from physical problems

which give rise to similar kinds of equations in which f(x, 0) = 0

A name followed by a date is used to refer to an entry in the list
of references.
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and which have been extensively studied (see the references in Sec-
tion I. 2). A study of this type of equation. (with the Laplacian A re-
placed by a more general self—adj'oint elliptic operator) assuming
specifically that f(x,0) > 0 has been made i-ecently'by Keller and
Cohen (1967) under the assumption that the problem can be reformu-

lated as an equivalent integral equation

ulx) = A %G(x,y)f(v, uly))dy ,

with an appropriate Green's function G(x,y). Thus, the problem be-

comes one of finding the fixed points of the operators AX defined by
Ayulx) = A [ Glx, vy, uly))dy
Q

on the set of non-negative functions in some function space. For the
most part, the methods of Keller and Cohen depend on only four
properties of thé operators AX : (1) the operators are compact on
the set C({I) of continuous functions on [ = QU 80 (see the definition
<A, and non-

1 2

negative function u, Ak u < Ak u; (3) for any positive number A ,
1 2

in Section L. 1); (2) for any positive numbers A

AXO >0, where 0 denotes the zero function on £ ; and (4) for any

positive number A and non-negative functions Uy < U, s A)\ul <A u

A2T

In this thesis. we consider operators A, satisfying these

)\
conditions on a real, partially-ordered Banach space and investigate
the number of fixed points for a given A and the behavior of the fixed

points as functions of A . In addition to the results of Keller and

Cohen, we obtain information on the behavior of the fixed points near
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bifurcation points aﬁd the existence and behavior of fixed points of
large‘ norm. We are also able to prove iﬁ certain cases the exist-
‘ence of exactly two positive fixed .p oints. A method of proving the
existence of at least n fixed points for a given A , where n= 2,

is given by Krasnosel'skii and Stecenko (1966). For a different
method of treating eigenvalue problems for nonlinear elliptic partial
differential equations, see Berger (1965a, 1965b) and the references
given there. |

We have divided the material of this thesis into two parts.

In Part I, our principal results are stated and proved for the ab-
stract operators Ak ; in Pért II, we apply these results to a discus-
sion of differential and integral equations of the type described
earlier. We assume in Part I that the reader is familiar with the
elementary theory of Banach spaces, in particular the notions of
continuity, compactness, and the dual space, and the rudiments of
the spectral theory of continuous linear operators. Itis hqped that,
except for the proofs of most of the theorems, Part Il can be read
independently of Sections I. 4 fhrough 1. 10.

| Sections I. 1 through L. 3 are introductory, and their contents
are adequately déscribed ’by their titles in the Table of Contents. In
Section I. 4 we use the methodé of Keller and Cohen to generalize
their results to the minimal positive fixed points of operators AA.
satisfying conditions (1) through (4) above; various simple iteration
procedures are obtained for constructing solutions. In Section L 5
we apply the methods of Krasnosel'skii (1964a) to prove the unique-

ness and continuous dependence on A of the fixed points of a large
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class of operato;s A)\ which satisfy the condition of equation (I. 5. 1)
of Seétion 1. 5. Section I. 6 discusses the Fréchet derivative and the
‘abstract form of the implicit function theorem; this material is
well-known and is included for the sake of completeness. Assuming
the operators AK are differentiable, we are able to describe the
behavior of the solutions as functions of A in more detail in Section ’
L. 7. Most of this section is devoted to a study‘of this behavior near
a value )\O for which there are two fixed points for A near XO which

converge to a single fixed point of A as A approaches A _; this
g g P A PP o

o
includes, in particular, the behavior of the solutions near the max-
imum value )\* of A for which there are solutions (if there is such
a maximum) (Theorems I.7-3, I.7-5, and I. 7-6). The behavior of
the solutions of large norm is described in Section I. 8 ; denoting by
u(A) a fixed point of A)‘ , we are able to give conditions under which
there exists a number (i, such that kl-i.m [ux)]| = c© (Theorems

1. 8-1 and 1. 8-6) and describe how the belhavior of Aku for large u
and small Epl - A l can be used ’;o determine whether the fixed points
of large norm exist for A greater than U, or for A less than My
(Theorems I. 8-3 and 1. 8-6). Conditions under which one can prove
the existence of at least two fixed points for a given A are described
in Section I. 9. In Section I. 10, we consider operators which are
convex or concave. Using the results of Section I. 5, we prove the
uniqueness of the fixed point for concave operators, and we give a

condition for the uniqueness of the fixed point for convex operators.

A characterization is given of the maximum value A" (if any) of
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of those A for which there are fixed points of convex operators A, ,
and it is shown that if there is more than one fixed point correspond-
ing to 2 » there are infinitely many (Theorems I. 10-15 and 1. 10-16).
Finally, two examples of convex operators are given for which the
fixed points can be found explicitly.

In Section II. 1, we apply the results of Part I to study the‘“"
eigenvalue problem for the nonlinear Haminerslein integral equation.
The development of Section IL. 1 largely parallels that of Sections
I.4 - 1.5and I. 7 through I. 10, and consists of deriving the behavior
of the eigentunctions by stating properties of the function f which
imply corresponding properties of the Hammerstein integral oper-
ator. Occasionally we are able to extend the results of Part I or
give alternative methods of proof by using the specific form of the
integral operato.r.

The results of Section II. 1 are able to be improved when the
kernel of the Hammerstein integral operator is the Green's function
for an ordinary differential equation, and we discuss some of these
improvements in Section II. 2. Here, we are able for the first time
to give conditions under which there are exactly two eigenfunctions
for certain values of A , and most of Section II. 2 is devotad to the
statement and proof of these results. The simplest such condition
is that the function f(x,u) is independent of x, convex, and twice
differentiable. Section II. 3 is independent of the preceding work, and

derives by different methods somc of the results of Section II. 2 for

the ordinary differential equation u'" + Af(u) = 0 on the unit interval
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(0, 1) , with the boundary conditions u(0) = u(l)= 0. We study the
equation in the phase plane, making use of the first integral of the _
differential equation and the symmetry of the eigenfunctions about
the point 1/2 . A more detailed discussion of the contents of Sec-
tions II. 1 through II. 3 can be found at the beginning of each of these
sections.

We will now say a few words about the notation employed.
Equations are numbered in the form (x.y), where x iridicates the
section in which the equation occurs, and y is the numbér of the
equation in that section; when it is hecessary in Part II to refer to
an equation in Part I, the notation (I.x.y) is used, indicating equa-
tion (x.y) of Part I. A similar system is used for numbering the-
orems, propositions, etc., except that the symbol x-y is used.
These numbers do not distinguish between theorems, propositions,
lemmas, and corollaries; for example, Theorem 4-4 follows Lemma
4-3, which in turn follows Proposition 4-2 (in Section L. 4). We
label as a ''theorem!'' a statement which is concerned with the fixed
points of operators or the values of A for which there are fixed
points; ""propositions" are auxiliary results which describe conditions
under which operators c;r functions have certain properties. The end
of a proof is indicated by the éymbol /. The words "function," "map-
ping,'' and 'operator''are used in the following different contexts: a
function has as its domain a subset of R (n-dimensional Euclidean

space) and as its range a subset of R (the real numbers); an opera-

tor has as its domain and range subsets of a Banach space; a map-
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ping is an operator to which we do not give a specific name, e.g.,
the mapping A - A)\u of a subset of R into a Banach space 8, where
the A>L are ’operators on 3 depending on the real parameter A . The
notation = is usually used to indicate that the symbol on one side of

= is being defined by the expression on the other side; occasionally,

it is also used in the sense of "identically equal to. "
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PART I. FIXED POINTS OF FAMITIES OF MONOTONIC
FORCED OPERATORS

I. 1. Definitions and Notation

Let 8 be a real Danach space; the norm of an element u€fR

will be denoted by I]ull We say that B8 is partially ordered if there

is given in B a subset C , called the positive cone of B , with the

following properties:

(a) C is a convex cone; i.e., for any u,v in # and any non-
negative real numbers o, B, aqutpveC.

(b) If both u and -u are in C , then u= 0.

(¢) C is closed. i
The cone C defines a partial order € in # in the following way: us<v
ifv-u€C. Ifu<vand u#v,we write u<v. If 0<u, then u is
positive. Conditions {a) and (b) imply that < is indeed a partial order
on B (a reflexive, anti-symmetric, transitive relation on 8 )} which is
compatible with the linear structure of 8 (inequalities are preserved
under addition of an arbitrary element of 8 to both sides of the ine-
quality and under multiplication of both sides of the inequality by a
positive number). Céndition (c) implies that one may pass to the limit
in a sequence of inequalities.

For convenience, we shall always assume, unless the contrary
is specifically indicated, that the norm is a monotone function on C
and that C spans 63 ; that is,

(d) If 0<u<v, then ||ull < ||v||. (This condition implies that the

cone C 1is '"normal"; see Krasnasel'skii. 1964a.)
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(e) B = C-C ;i.e., for any u in B , there exist u+,u- in C
.such that u = u+-u_ .

We denote by et the cone ¢ with 0 deleted. For any posi-
tive number r = o, ¢t - {u€c: Hu“ <r};C Tt c'n G+. Thus,
GOO_= ¢ and c®T=cT, Similarly, 8% = {u€8: [lull <r}. .

For any u,v in 8 with u< v, we define

fu,v] = {(weB:usw= v}.
Suppose that g8, 0; we say that u > 0 is g, " measurable if there are
| positive numbers a{u) and B(u) such that ue[a(u)go, ﬁ(u)go]. The set
of go-measurable elements in ¢ will be denoted by G; .

An example of a partially ordered Banach space isothe space
C(ﬁ) of continuous functions on a bounded closed set I of Euclidean n-
space, R". The norm in C(fl) is defined as

lall = max{|u(x)|: =0} .
Unless otherwise mentioned, the positive cone G in C(Q) is always
understood to be the set of non-negative functions in C(Q); the condi-
tions (a) through (e) are readily verified. Note that in our notation,
u>0 for uEC(a) means only that u is not the zero functiqn and u(x)=0
for all x . in {; u(x) may be zero for svome, but not all, points x of (.
The set of all functions in C which are never zero on Q1 form the in-
teriox; Int C of C

Other possible choices for the positive cone in C(Q) are the set
of all non-negative convex functions on {1 or the set of all non-negative
concave functions on 1.

I.et S be a subset of a real, partially ordered Banach space

B 17 A an operator mapping S into a real, partially ordered Banach
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space ﬁz, and go a positive element of ﬁz. We say that A is
" bounded on S if A maps every closed bounded subset of S into

a bounded subset of 032 ;

compact (or completely continuous) on S if A is continuous on

S and maps every closed bounded subset of S into a set with compact
closure;
monotonic on S if uz v (u,v € 8) implies Auz Av;

strictly monotonic on S if u> v (u,v € 8) implies Au> Av;

positive on S if u2 0 (u € S) implies Au=z 0;

strictly positive on S if u> 0 (u € S) implies Au> 0;

_go~bounded below (above) on S if for any u € S there exists a

positive nﬁmber ¢(u) such that Au = Cx.(u)gO (Au < a(u)go). If A is g,"
bounded above and below on .S » we say that A is go—bounded on _S_
If the set S is the positive cone C, we will often omit specific
reference to 3.
If 0 €3 and A is positive on S, then we say that A is forced
if AG>0;if A0 =0, then A is unforced.

If J is an interval on the real line and {uk} , A&€J, is a family

of elements of 8, then {uk} is said to be an increasing (strictly in-

creasing) family if, whenever 2\1,)\2 are in J and k1<X2, then u

<
M
u, (u, <u, ). If {A,}, €T, is a family of operators defined on a
subset S of B, then {A?\} is said to be an increasing (strictly increas-

ing) family on 8 if, for each u in S, the family {A u} is increasing

A

(strictly increasing).

A decreasing family is defined similarly.

. N P . _ - L] L4
I A maps a subset 8 the Danach space @ into 8, and il
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thexre exist u/ 0 in 5 and a real number A such that Au = \u, then

we say that u is an eigenvector and A is an eigenvalue of A; if A #0,

then we call )\-1 a characteristic value of A, If A is a linear opera-

tor defined on 8, then we may extend A to a linear operator A de-
fined onthe‘ ‘complex extension @ = ® + iB of 8. The spectrum of A
consists of all complex numbers A such that A-\I (where I is the i-
dentity operator on 8 ) dues not have a continuous inverse defined on .

By the spectral radius rO(A) of A we shall mean the spectral radius

of K‘, i.e., the supremum of the absolute values of the elements of the
spectrum of A. We set p,O(A) = rO(A)-l. (Kantorovich and Akilov 1964,
Schaefer 1966) _
Positive linear contipuous operators which are go-bounded have

the following important properties: .

1-1, Theorem. (Krasnosel'skii 1964a, Chapter 2) Let T be

a positive linear ‘continuous_ operator with a positive eigenvector d)o:
’I‘cbo = ‘Aocbo. For an integer n2 1 and g, € C+, let T" be go—bounded
on Cg . Then T is ¢O-bounded and T has no other linearly independent
positi\?e eigenvectors; the eigenvalue )‘o is simple and greater thap the
absolute value of any-other eigenvalue of T.

If there is a non-zero u € C and a number A such that Tus< Au,
then X =) ;if A = A_s then Tu = Au and there is a number @ such that
u = Ot,rcpo.‘ If there is a non-zero u€C and a number A such that Tu >
‘u, then A < A _;if A =)_, then Tus= A u and there is a number a

such that u = u.cbo .

For any pbsitive continuous linear operator T on B, if 0< )\ <
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“o(T) then (I-XT)-I exists and is a positive operator; i.e., u-ATu= 0
impliés u = 0 {obviously, then, u-ATu > 0 implies u>0)for 05X

<1 (T) (Schaefer 1966, Appendix 2.3 ; the proof uses conditions (d)
and (e) which we have imposed on the positive cone C).

Certain positive linear operators T satisfy the following posi-
tivity assumption (PA), which is a partial converse of this fact:

(PA) If there exist u€G+, A ER , such that u-ATu > 0, then
A< “o(T)'

If T is a compact positive operator and p.O(T) < oo, then by the
Krein-Rutman Theorem (see Theorem 1-2 below), the operator T*
adjoint to T has an eigenvector E’o’ which is a positive linear
functional on 8, corresponding to the eigenvalue rO(T) = uo(T)—l.
Assuming u € ct and A are such that u-ATu > 0, we have 0 < go(u)-
)uio(’l’u) = [l-)\/;,;O(T)]go(u). Thus, a compact operator T satisfies
(PA) if £_ is strictly positive, i.e., if u€C’ implies £ (1)>0. With-
out using the linear functional go, Theorem 1-1 and the Krein -
Rutman Theorem show that a compact linear operator,some power of
which is go—bounded, satisfies (PA)., The identity operator I is an ex-
ample of a non-compact positive linear operator which satisfies (PA).

Related assumptions which we shall at times wish to impose on
a positive linear operator T are the following:

(PAl) If there exist u € G+, A €R, such that u-ATu >0, then
A F M (T).

(PAZ) If there exist u € 8, A €R, such that u-ATu > 0, then
A # M (T).

It is easy to see that if the adjoint of T has a strictly positive
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eigenvector correspdnding to the characteristic value uo(’I‘) < oo, then
| T satisfies (PA?). Proposition 1-1 implies that any compact linear
operator, some power of which is 'go-bounded, satisfies (PAl).

We conclude this section by stating the Krein-Rutman Theo-
rem (Krein-Rutman 1950, Theorem 6. 1; Schaefer 1966, Appendix
2. 4), since we shall refer to it several times in the sequel:

1-2 Theorem. {(Krein-Rutman Theorem.) Let T be a com-

pact positive linear operator on B . If the specliral radius ro(T) is
positive (i.e., if T has a non-zero eigenvalue), then ro(T) is an
eigenvalue of T corresponding to a positive eigenvector and an eigen-
value of the adjoint T.'-F of T corresponding to a positive eigenvector

(i. e., a positive linear functional on 8 ).

Unless otherwise mentioned, we assume in Sections 1. 3 through
I. 10 that we are considering a real, partially-ordered Banach space
B with positive cone C having the propertics (a) through (e) stated at

the beginning of this section.



L. 2. Examgle s

In this sect'ion we shall give some examples of operators on the
space C(Ql) introduced in Section I. 1; the properties of these operators
will guide us in the choice of hypotheses made on the abstract opera-
toré considered in Sections I. 3 through I. 10,

2-1. Example. We consider the Hammerstein integral equation

with a weakly singular kernel

(2.1) u(x) = xg K(x, y )iy, u(y))dy ,

where (] is a bounded open connected subset of r™, K(x,y) is con~

tinuous in (x,y) on 1XxQ except possibly when x =y ,

(2. 2) | Kix,y)] < —%2—,
|-y |®

with 0 £ ¢ <n, and the function f is continuous on (X [0, r) for some
number r > 0. This problem has been considered by many investi-
gators, among them Hammerstein (1930), Tricomi (1957, §4.6), Dolph
and Minty (1963),' Schaefer (1963), Kolodner {1964), Krasnosel'skii |
(1964a, §7.1, and 1964b), Vainberg (1964, Chapter VII), and Pogor-
zelski (1966, Chapters IX and X).

In the remainder of this section, all integrations are carried
out over {lI unless otherwise noted.

We recall some of the properties of integral equations with
weak singularities (Mikhlin 1964, Miranda 1955, Pogorzelski 1966 ,
Smirnov 1964a). The operator T : Cc(@) - C({Q) defined by
(2.3) Tux) = [ K, yulydy

is a compact linear operator on C(Q) by Arzéla's Theorem, and is
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positive if K(x,y) =2 0. We inductively define the mth iterated kernel

K as

m
K xy) = K y)
and
Km(x, yv) = IK(x, z)Km_l(Z, y)dz
for m>1; Km is the kernel of the compact operator '™ = TFm-l.

Each of the kernels Krn is continuous except when x =y, and all
kernels Km are continuous on 0% 0 for m > -r_fa' It is possible to
choose m > ;{I—_}a so that the eigenfunctions of K corresponding to a
given eigenvalue of K (characteristic value of "), i.e., the non-zero
solutions of
(2. 4) h(x) = uCh(x) = ufKx, y)hiydy
for a given U, are precisely'the same as the eigenfunctions of Km;
then A is an eigenvalue of Km if and only if one of the mth roots of
A is an eigenvalue of K. In what follows, we denote by m such a
value of m .

In general, the operator T may have no characteristic valuggs.
However, if the kernel K is positive on XQ, then it has an eigen-
value. This is seen as follows (cf. Jentzsch 1912): all iterates of K

are positive, in particular K , and therefore, IK3m (x,x)dx >0.
Q o)

3m
o
Since Km is bounded, it follows from the Fredholm theory for inte-
o
gral equations with bounded kernels that Km has an eigenvalue
o

(Pogorzelski 1966, Ch. VII, §5) and hence K does also. The Krein-

Rutman Theorem implies that K has a non-negative eigenfunction ¢

corresponding to the eigenvalue pO(T) (the largest eigenvalue of K
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and the reciproc@.l of the spectral radius of the cqmpa.ct operator I' ),
Since K(x,y) >0 for (x,y)€ QxQ, it is easily seen that ¢{x}) > 0 for
x € Q. The arguments of Jentzsch (1912) applied to the kernel Km
show Lthat ;J,O(F) is a simple eigenvalue of K (for the simplicity of °
[uo(f‘)]mo as an eigenvalue of Km implies the simplicity of p,o(l“) as
an eigenvalue of K), p,O(I‘) is la.rg(e)r than the absolute value of any
other eigenvalue of K, and the positive multiples of ¢ are the only
positive eigenfunctions of K. The same reasoning shows that the ad-
joint kernel K*(x, y) = K{y, x) has a continuous eigenfunction §, posi-
tive on {), corresponding to the eigenvalue pO(T) . We suppose that ¢
and | are chosen so that Hd)[l =1 and f({:(x)ﬁ;(x)dx =1. We refer to
po(f‘) as the principal eigenvalue of K 0(32: of the linear equation {2. 4).

Any function u € C(Ql) can obviously be represented in the

form

u = £{u) + Pu,

where
Ew) = [ypGulxlax

is a continuous linear function on C(ﬁ) , and

Pu = u-§£(u)¢
is a projection operator on C({l) (qu = Pu ) which commutes with T
(PTu =TPu). It follows from Fredholm's Theorems that for any
function v € PC(Q) = {h€C({): h = Ph} , the equation
(2. 5) : h - uO(I‘)I‘h = v
has a unique solution h€ PC(Q) ; conversely, for any h€PC(Ql) , the
function v of equation (2. 5) is in PC(Q). Thus, I-u,o(I‘)I‘ restricted

to the subspace PC(R}) has an inverse on PC(Q) (cf. equation (7.8)
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below).

Using the fact that the eigenfunction | of the adjoint kernel is
non-zero on {1, it is easy to verify that ' satisfies the assumptions
(PA) and <PA2) of Section I. 1, i.e., if there exists a function h€C
such that '

(2.6) h(x) - A[ K(x, y)h(y)dy = 0,

and this expression is actually positive for some x€({), then A <_u,0(1“);
if h is any functién in C({l) and inequality (2. 6) holds, with strict in-
equality holding for some x€(}, then A # u ) .

The positivity requirements imposed on the kernel can be
relaxed somewhat. For example, let p be a function in C which is
not the zero function. Then there is a non~empty open subset \’21 ca
such that p(x) > 0 for xeﬂl , p(x)=0 for x€ QO = Q-Ql . The kernel
N{x, y) = Ki{x, y)ply) is positive when x€Q , yEQl , if K(x,y) is posi-
tive for x€0Q0, y€Q, and it is easily seen that all iterates Nm(x, V)
are also positive for x€Q, yEQl . Thus, VIN3m (x,y)dy >0, and
the kernel N(x,y) has an eigenfunction which is 200 on () correspond~
ing to the eigenvalue uO(T) < o, where T is the compact positive
linear operator

Th(x) = [K@ ylply)h(y)dy -
Any positive eigenfunction satisfies
$(x) = WK yp(y)ely)dy ,
for some number 4 # 0 ; if ¢(x)= 0 for some x€(}, then for this x,
K(x,v)> 0 for all y&€Q, and therefore p(y)dly) = 0 for all yE€Q; but

then &(x) = 0 for all x€Q, which contradicts the fact that ¢ is an

eigenfunction. Thus, any poéitive eigenfunction of N is strictly posi-
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tive on . Similarly, we see that any positive eigenfunction of the
adjoint kernel N*(x, y) = p(x)K(y, x) is zero at a point x € 0 if and
only if x € Qo. Again, the arguments of Jentzsch (1912) show that
the kernels N and N* do not have more than one linearly independent
positive eigenfunction, and that p,O(T) is a simple eigenvalue of N
which is smaller than the absolute value of all other eigenvalues.

The assumptions (PA)} and (PAZ) are not satisfied by the op-
erator T unless OO is empty. However, the following weaker forms
of the assumptions (PA) and (PAZ) hold:

Suppose that
(2.7) hix) - A[K(x, y)p(y)h(y)y = 0,
with strict inequality holding for some x € 0; sif h€C, then
A< uO(T) ; if h € C(Q), then X\ # HO(T) . Notice that if strict inequal-
ity holds in equation (2. 6) for h € C and x = X €0, then h(xo) >0.

We return now to the nonlinear equation (2. 1), assuming
henceforth that K(x,y) > 0 for (x,y) € QXQ and f(x, p) > 0 for (x, p)
€0X[0,r), with 0 <r< oo. The continuous function f induces an
operator f defined by fu(x) = f(x, u(x)) on

¢t = fu€Cc(@): 0< ﬁ(x) <r, x€Q} ,
and f is a bounded operator on C* as defined in Section I. 1. The op-
erator A =T{ defined by
(2.8) Aulx) = [Kx, y)ly, uly))dy
is therefore compact on ¢, since I''is compact on C(]) . The oper-
ator A is obviously positive on ¢*, and it is monotonic if f(x, p) is
a non-decreasing function of p . Furthermore, A is go—-bounded,

where



-19-.
g(x) = [KGy)dy ,
since for any function u € €%,

[ 13 g ) € [Kbe yily, uly)ay

< max{f(x, p): x€0, p€l0, |u|l 7} g x) .

min{f(x, p): x€Q, p€ [0,

We will return to a discussion of equation (2. 1) in Section I 1.
If the boundary 00 of 0 is sufficiently regular, the methods
used to study equation (2. 1) may also be used to study equations of the

- form
(2.9) ulx) = A[ K, (x yIE, (v, uly)dy+] K, 6 y)E, by, uly)dy
0 ' _ {2

+[ K (% y)gly, uly)dy

90
where Kl’ KZ’ fl, and f2 have the properties discussed previously, g
is a positive continuous function on 80X [0, r) , and the kernel K3(x, v)
is continuous on (1X({] except possibly when x =y and satisfies

K, (x.v)| s —%—
3 |x-y|P

where # >0 and 0< B<n-1,

Integral equations of the form of equation (2. 1).can be used to
treat eigenvaluc problems for nonlinecar clliptic partial differential
equations of the form
(2. 10a) Lu(x) = Af(x, ulx)) , x€Q,
with the boundary conditions |

(2.10b) Bu = g:

]

alxhu{x) + -g—%(x) g{x, u(x)) , x € 801 )

o , x € o

u(x) 2
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where I, is the uniformly elliptic operator

n n n
Lu(x) = - Z Za..(x)D.D.u(x) + Zb.(x)D.u(x) + c(x),
i=1 =14 1 =1t 7
with Di = _8%- ; 0 is a bounded open connected subset of R™ with a

i
boundary N = 801 U BQZ which has an outer normal vector {ni(x)} and

the inside sphere property (Friedman 1964, p. 55) at each point x€ 8{21

(either SQI or SQZ may be empty); 8u/0y is the conormal derivative

n n
du _ B .
ENY (x) = 5_2-_-1 JE::ln.l(x)aij(};)Dju(x} , %€ 801 ;

a’ij s bi , and ¢ are continuous functions on [}, with {aij(x)} uniform-
ly positive definite and c(x) 2 0 for x€{J; « is a non-negative contin-
uous function on 801 , with afx) > 0 for some x€ 801 if 802 is empty
and c(x) = 0 for all x € 0 ; f is a strictly positive continuous funection
on UX[0,r); and g is a non-negative function which is continuous on
801 X [0, r) and zero on 802 X [0, r} (cf. Keller and Cohen 1967). If
the boundary 9{) and the functions appearing in the operators L and B
are sufficiently smooth, then the operator L with the boundary condi-
tions Bu = 0 has a Green's function G{x,v) which is continuous for

x # y and satisfies condition (2. 2) with o = n-2 ; any solution u(x) of

equations (2. 9) satisfies the integral equation

(2.11) ulx) = ”;f‘"" Vs u(Y))dV+,% Gbe Vgly, ulydy
1

i

A}LU(X) 3
which is of the form of equation (2. 9); if £ and g satisfy additional

smoothness conditions, then any solution of the integral equation (2. 11)

is also a solution of equations (2. 10) {Gevrey 1930, Giraud 1932,
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Mikhlin 1964, Mir_andé 1955, Pogorzelski 1966, Sternberg 1924; see
also Leray and Schauder 1934, and Example 2-3 below). Moreover
G{x,y)>0 forall x€Q, y€Q (Protter and Weinberger 1967, p.88).
When g = 0, equation (2.11) reduces to an equation of the form (2. 1).

As a simple example, suppose L is the negative of the n-
dimensional Laplacian, L = -A ; the boundary conditions are Dirichlet
conditions, wu(x) =0 for x € 80 ; and f is uniformly Hdlder continuous
on OX{0,r). I 980 is sufficiently smooth, then the Green's function
G(x, y) exists (Hellwig 1964, p. 223) and for any continuous function u,
IG(X, y){y, u(y))dy is a continuously differentiable function of x on I
(?—Iellwig 1964, p.173; Miranda 1955, §13). If u satisfies

a(x) = A [Glx, y)ity, u(yhdy ,

then u is continuously differentiable on 0, i(y, uly}) is a uniformly

Holder continuous function of Vv on 0, and thus u satisfies equations

(2, 10) (ibid. ).

2-2. Example. Let the elliptic operator L , boundary opera-

tor B, domain 1, and functions f and g be as in the discussion of
equation (2. 10). We consider the boundary value problem
Lu(x) -~ Ap(xhu(x) = f(x,ulx)), x€Q,
(2. 12)
Bu(x) = glx, ux)) . x € 8,
where p is a positive function on 2. The positive eigenfunctions and

eigenvalues of this 'problem can be studied by seeking those A for

which the operators Ak s
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(2.13)  Aulx) = .xfn Glx, y)ply July)dy + gﬂc(x,y)gmu(y»dy
1

+ J; Glx, y)(y. uly)dy .
4

have positive fixed points.

For A2 0, {AX} is an increasing family of compact positive
monotonic forced operators on C(Q) ; moreover, for A >0, {A—le}
is a decreasing family (cf. Lemma 5-5 and Theorem 5-6). It follows
- from the Positivity Lemma of Keller and Cohen (1967) or Schaefer
(1966, App. 2.3) that positive eigenfunctions can exist only for values
of A less than the principal (smallest) eigenvalue Uy of

Lo(x) - upx)e(x) = 0, x €0,
Bélx) = 0 , x € 90 .

(2. 14)

In contrast with Example 2~1, we may expect positive eigenfunctions
for A £ 0 ; however, our results are not in general applicable to the
investigation of the existence and behavior of these fixed points, since
AK may not he a positive or monotonic operator for A < 0. If we
choose numbers A <0, Pe ™ 0 such that

JGlx, y)IE(y, ) + Aply)p Jdy
is a positive increa.sirig function of p forall x€Q, 0<p< Py
A >A", then {A)\} , A >\, is an increasing family of compact posi-

tive monotonic forced operators on C ° in cm).

The problem (2. 12) can also be treated by using the Green's
function G(x, yi;h) of the operator L-Ap subjcct to the boundary condi-
tions Bu =0, Since we are interested only in A less than the princi-

pal eigenvalue p, of (2, 14), Glx,y:A\) is positive on OXf}, A < My
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for A £ 0, this is proved just as for the Gréen‘s function G(x,y) =
G(x, y;0) above, while for A > 0, it follows from Schaefer (1966, Ap-

pendix 2.3). Thus, the operator AX defined by

(2.15) Ay ulx) = J;G(x, vid My, u(Y))dy+£§r(x, yia)gly, uly))dy
é 1

is a compact, strictly positive monotonic operator on C(Ql) for A <uy-
The operators {A}\} » A< By o form a strictly increasing fam-
ily. To see this, suppose for simplicity that g = 0 . Since

L(A)\u)(x) = Ap(x)A, ulx)+f(x, ulx)) ,

we have
A;\u = >\T(Aku)+f1(u) )

where i
Tv(x) = IQ G{x, yp(yIvly)dy = Tpv(x),
£(u)x) = [ Gl y)ly, uly)dy = Tfu(x),
. 0

and
Gx,v) = G(x,y:0) ;

thus,

(2. 16) Ayu = [I-ATI 7V () = RODEw

if A <ul ;.i.e.,

%G(x,y;)\)f(y, ulyDdy = A julx) = RO Dfulx),

-1 "
where R(A) = [I-AT] ~ . Using the easily verified functional equation
for the resolvent,
R(Xl)-R(kZ) = (A l-KZ)R()\ 1)TR()\Z) ,

we have
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Aklu-AAZu = (A ROG)TRO ) (w) = (M"‘z)R(Kl)Tszu

= (" h) RO DIpA u]

where we have used equation (2. 16). Since

RO ETpAy ul(x) = J; Glx, &3 1>p<§>f7 G,y 3, )ily, uly))dydé > 0,

for x € 0, whenever >‘2 <>\1 <M we have

u > A, u .
A')\l }‘2

This result may also be derived by using the fact that under
appropriale smoothness conditions, the partial derivative of G{x, y;\)

with respect to A is given by_
8G o
(2. 17) T (viA) = [ Glx 230Gz, yid p(z)dz

(cf. Mikhlin 1964, p. 48). Equation (2. 17) may be obtained formally
by differentiating the bilinear expansion of G(x,y;\A) in terms of the
eigenfunctions of L with the boundary conditions Bu = 0 and compar-
ing with the bilinear expansion of the right hand side of equation (2.17).

In this case, the family {X-IA)\] , D<A < My » 1s not decreas-
ing, since X—lG(x,y;}\) - +oo as A — i, from below.

If we extend fhe domains of definition of f(x,u) and g(x,u) so
that they are defined for all u negative and sufficiently close to zero,
and ‘if the extension is carried out so that f remains strictly positive
and g remains non-negative, then the operators A). of equations
(2.11) (if g # 0), (2.13), and (2.15) have the following property:

For any XO 2z 0 and any function U € ¢¥, there arve positive numbexrs

6, ¢ such that if u € C(Q), I[u-}loll <e¢, and lk-lo] £ &, then A)LuEC.
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This result also holds for the operators A)\ = AA , where A is defined
by equation (2. 8), if >\o > 0. Thus, the families {A}\} satisfy the

condition (SP) of Section I, 6.

2;-3. Example. Again, let L, B, and Q be as in the discussion

of equations (2. 10). Let h be a continuous real-valued function of
2n+2 variables defined on RUXRXTIXJ, where J is a subinterval of R ,
and let g be a continuous real-valued function of nt+l variables de-
fined on (XJ . A very general problem which includes Example 2-2
and the partial differential equation of Example 2~1 when the boundary
conditions are linear is the following non-linear boundary value prob-
lem for the unknown function U :

~

Lulx) = h{va(x)u,xA) , x€0 , A €T,

(2. 18) ~
Bu(x) = g(x;\) , x€ o0 .
If we let u = Lﬂﬁ’,‘ so that
(2.19) Ulx) = B, ulx IG x,y)u(y)dy+f G(x, v)gly;h )dy
Ql

0
+] Wﬂ G(x, y)gly;r)dy ,
o0, "y

then solutions of equations (2. 18) are fixed points of the operator Ak
defined by
(2. 20) Ayulx) = h(VB, ulx), Byulx).xh).
Here, VBku(x) denotes the n~-component veétor whose ith component'
is DiB}\u(x) .

Under rather general conditions, the components of the opera-

tor VBK are compact, as well as the operator Bk {see the discussion



-26-
and references in Example 2-1). Under these conditions, if

h(vl, ceea VU xi, cens xn;)\) is strictly positive, then A)\ is a com-
pact positive forced operator on C(Q) (the cumnpactuness may be
proved by a simple application of Arzéla's Theorem). It will not in
gepera.l be monotonic because of the dependence of A}\ on the deriva-
tives of G(x,y). If, however, all the derivatives —8—3—- G(x, v) and, if
g(x;A)# 0 on 802 , the derivatives —é—\?—G(x,y) and 56}:_ %G(x,y) are
positive, and if h(vl’ cees VWX e xn;K) is an incxl'eassifng function
of each of the variables Vipeees Vool for all non-negative values of
these variables and all (x;,...,x ) €0, X €J, then A, is a posi-
tive monotonic operator on C, and the family {A}\} , A €7, is in-
creasing if g(x;A) and h{v,u, x;A) are increasing functions of A .

As an example in which the operators A)\ are monotonic, con-
sider the boundary value problem for the ordinary differential equa-
tion |

[pe)u'(x)]" + h(T'(x), Tx),xh) = 0 , 0sxs1,

(2.21) N ~
u(0)=- (coss)p(0)u'(0)= Y] u'(l) = Y,

where 0< 9 < nw/2, Yi and Y, are non-negative constants, p is a
strictly positive function in C[0, 1], h is continuous on
[0, @)X [0,0)X[0,1]%X T, and h(v, u,x;\) is increasing in v, u, and A
for 0= v<+oo, 0<u<+ow, 0<x=<1, and A € J. The appropriate
Green's function is
’cose-t-lg—p—(—z-)dz » O=x<y=<l
Gx,y) =

L
COSB"“gE—(Z—de ., OSyéxSl,
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S0 ‘
1 D=x=<ys1l
8G p(x)
Bx (x,y) =
0 O0sy=x<1
Letting u = Ly = —(p:f')‘ , we obtain for the operator BX = B defined
above:
1
Bu(x) = J"G(x,y)u(y)dy toy,x Ty + yzp(O)cos e .
0
and

1
B 1
VBU.(X) = ;{m U.(y) dy + 'YZ

Each of these operators is positive and monotonic on C[0, 1], and thus
the operators Ak defined by gquation (2. 20) are compact positive
monotonic operators on the positive cone C in C[0,1].

Since any solution u(x) of (2. 21) satisfies u'(x) > 0 for
0<x<1,the problem (2. 21) may also be treated as follows. Let

hl(uz’ Uy, XA) = h(uz/p(x), uys x;A); h. is well-defined since p{x)>0 on

1
[0,17. Let {C[O, 1]}2 denote the space of ordered pairs of continuous
functions on [0,17, i.e.. {C[0,17}%=C[0,11XC[0,17, let

C = {(u,u,)e{C[0, 1]}7-; u (x)20, u,(x)20, 0sx<1},

and let [[(ap, )] = fuy [+ [u, | for (uj.u,) € {C[o, 173, If we de-
fine the operator'Ak on C by

Ay (upuy) = (vp vyl
where

1
vl(x) =OfG(x, y)hl(uz(y),ul(y), yiA My + YZX+ Yq + yzp(O) cos B

and

‘ 1 _
v,x) = p(X)g %—i—(x,y)hl(uz(y), u(y), yirldy + plx)y,
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for any pair of functions (ul, uz) € C, then the equations (2. 21) are
equivalent to the equation
(ul, uZ) = A)\,(ul’ U‘Z) ’
with u; = U and u, = pu' . The family {A,}, 1€J, is an

increasing family of compact positive monotonic operators on

c c{cro,17}%.

An alternative method of treating equations (2. 18) is given by
Pogorzelski (1966, §§7, 13); sece also Leray and Schauder (1934). This
method does not assume the existence of a Green's function for the

general elliptic operator L. with boundary conditions Bu= 0.

2-4. Example. The problem of finding the positive fixed

points of the operators
1

(2.22) Aku(x) = 14+ J'u(y)u(y-x)dy

x
in C[0, 1] has been considered by Pimbley (1967). The family {AX} ,
X > 0, is an increasing family of strictly positive monotonic opcra-
tors on the positive cone C of C[0,1”7 . Some properties of these

operators are described in Proposition 4-2 and at the beginning of

Section I. 10.
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-I1.3. General Theorems

Before investigating specifically families of positive monotone
operators, we shall cite some general principles concerning the set of
fixed pointS'of more general families of operators {AX}’ where A is
an element of an interval J S R. The proofs of the theorems are
omitted; the proofs are simple and may be obtained, e.g., by minor
modifications of p‘roofs given by Krasnosel'skii (1964a, Chapter V)
 for theorems on the set of eigenvectors of an operator A.

3-1. Theorem. Let {Ax}, X €J, be a family of opera-

tors defined on a closed set S, and let J be closed and bounded. Let

the mapping (A, u) - Axu be continuous on JXS. Then the set of fixed

A is closed. If the operators A)\ have the

form A)\ = AA, then the assumption that J is bounded may be re-

points of the operators A
moved.

3-2. Theorem. Let {Ak}’ A €J, be a family of opera~

tors on a closed bounded set S such that the mapping (A, u) - Aku is
compact on JXS. Then the set {A\ € J: J u€S Du= A}\u} is closcd
relative to J.

3-3. Corollary. Let {AX}’ A €J, be a family of operators on

a subset & of the ball BF which is closed relative to BT , and let

the mapping (A, u) - Aku be compact on JX3. If a point )\o €J is an
accumulation point of {A € J: Ju€SDu= Axu} , then either AX has

o)
a fixed point in S or

lim inf{”u“:u‘zAluGS for some A € TN\ -5, A +8)} = r.
80+ : : / © ©
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Proof. Suppose the indicated limit (which certainly exists and
is € r)is less than r. Then there is a positive number p < r such

that for any integer n = 1, there is a Kn € (\_- '1_11-’ )\O+ %) and a fixed

(o]

point u_ of A>\ such that || unll < p. Applying the Theorem 3-2 to
n
the set § NgP (which is closed and bounded), we see that

1im»xn=>\o€{>\€J:3 uESBu=A>\u}. Vi

n-
A set & of fixed points of a family {Ak}’ A € J, of operators

defined on a set S is said to form a continuous branch of length r in S

if the boundaxry of every open set containing 0 and contained in the ball
8" contains a point of &. Note that according to this definition a con-
tinuous branch of fixed points ‘need not be connected; e. g., the union of
two (possibly disjoint) continuous branches of length r is a continuous
branch of length r.

The next theorem states conditions under which, from the ex-
istence of a continuous branch of fixed points of a family {Ak}’ A€ J,
one can infe: that (A € J: Judu-= Aku} contains an interval (see also .
Krasnosel'skii 1964a, Section 5.1).

3-4, Theorem. Let {Ak}’ A € J, be a family of operators

defined oﬁ a closed set S containing elements of arbitrary norm; let

J be bounded and contain either A~ = inf J‘ or )\+ = sup VJ'. Let the
mapping (A, u) - A}\u be compact on JXS. Suppose that the set of
fixe(i points of the upera.(.ors A>L conlains Qbra.nch & of infinite length
in 5, and that there are numbers A _, A _ in T such that the norms of
the fixed points of the operators Ak in & approach 0 as A approaches

)\o and approach oo as A approaches >‘oo' For any Kl strictly be-~
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tween kn and )\m, let the norms of the fixed points of the operators

AX in ¥ be bounded above for A between }\O and 7\1 and be bounded

away from 0 for A between A, and loo' Then for every )\G(XO,KOO)

the operator A;\ has a fixed point in &. If Ak = XA, J may be taken

to be (0, o).

Conditions for the existence of a continuous branch of fixed

points for operators A}\ = AA are given by the following theorems
(Krasnosel'skii 1964b, Chapter V, Theorems 1. 2 and 2. 4; Schaefer
1943).

3-5. Theorem. L.et A be a positive compact operator on

I ..
C”. If for some positive number r, < r,

1
sl || auls w0, [u] = ;3 >0,
then A has eigenvector u > 0 such that ”u“ =7,
If
inf{||Au]: uéc* N 8G} > 0
for any connected open set G which contains 0 and is contained to-

gether with its boundary 8G in the ball g' = {u: |ull <z}, then the

eigenvectors of A form a branch of length r in C¥.

3-6, Theorem. Let A be a positive compact operator on

cr, Suppose there exists a compact positive linear T with a non-zero
eigenvalue such that for every u in C° we have

Au =z Tu.
Then the eigenvectors of A form a continuous branch of length r in

cr. Any eigenvalue A of A satisfies )\ = ro(T) if T is g -bounded.
. o]
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I. 4 Minimal Positive Fixed Points

In this section we begin our study of the set of positive fixed
points of a family {Ak}’ A € J, of positive monotonic operators. Our
primary interest is in the case that the operators are compact on er
for some r > 0; however, for the discussion of minimal positive fixed
points in this and the following three sections, it usually suffices that
the operators satisfy the following weaker hypothesis (H). We say
that an operator definqd on a subset S of the cone C satisfies (II) on
S ox has the property (H) on S if

(H) The operator is a continubus positive rmonotonic operator
on & such that the image of every monotonic sequence contained in a
closed bounded subset of § is a convergent sequence.

The requirement that the image of every monotonic sequence be
convergent can be replaced by the requirement that the image be
weakly convergent, since any monotonic weakly convergent sequence
is strongly convergent, by the generalized Dini's Theorem (Schaefer
1966, p. 251). Since any monotonic sequence with compact closure is
convergent (Krasnosel'skii 1964a, p. 40), the convergence require-
ment may also be replaced by the requirement that the image of a
monotonic sequence have compact closure. This observation implies:

4-1. Proposition. If A is a compact positive monotonic oper-

ator on a subset S of C, then A satisfies (H) on S.
This proposition can be used to deduce that operators of the
type considcred in Examples 2-1 through 2-3 of Section L. 2 satisfy (II)

on any subset of C. We shall give a direct proof that the operator of
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Example 2-4 satisfies (H) on C.

- 4-2. Proposition. Let A be the operator on the space

C[0, 1] of real valued continuous functions on the interval [0, 1] de-
fined by

1
(4. 1) Au(x) = Jh u(yluly-x)dy
x

(see Example 2-4). Then A satisfies (H) on the cone C of non-nega-
tive functions in C[0, 17.

Proof, Let {un} be a bounded monotonically increasing se-
quence in C (the proof for decreasing sequences is similar). Then we

can define a function u on [0, 1] by u(x) = lim un(x) , and by the Le-
n— oo
besgue monotone convergence theorem,

1

1
[ uly)uly-x)ay = im [ u (y)a (y-x)dy
X n—t oo xX

]

v(x)

for each x in [0, 1]. Since the function u is bounded, it follows from
the continuity in the mean of the Lebesgue integral (Goldberg 1962, p.
4) that v is a continuous function on [0, 1] (cf. Doetsch 1937, p. 159).
Thus, the monotonically increasing sequence of continuous functions
{Aun} converges pointwise to a continuous function v; Dini's Theorem
impliés that the convergence is uniform, and therefore the sequence
{Aun} converges in C[0,17.  /

Pimbley (1967) asserts that the operator A of equé.tion (4. 1) is
not compact on C[0, 17.

The following lemma, which fcllows immediately f{rom property

(H), is fundamental for the subsequent material in this section.
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4-3. Lemma. Let the operator A have the property (H) on a

set SS C. Suppose there are elements u, v, in S such that

O0su = Au £ Av =v_ .
o) o o o)

Then A has a fixed point in [uo, voj. Each of the sequences defined
by

n Au'n---l :

o]
i

nzl,
and
v, = Avn_l, n=zl,

converges to a fixed point of A .

If u°>0 is a fixed point of an operator A such that for any

fixed point v>0 of A, W< v , then u® is called the minimal positive

fixed point of A, or the minimal positive solution of u = Au.

We shall investigate the minimal positive solutions of the equa~
tions u = Axu using the methods of Keller and Cohen (1967). The
family {A)\} will be considered for A in some interval J of real num-

bers; we define A~ =inf J, AT = sup J. If A, = AA, the interval J is

A

(0, o) unless otherwise noted.

understood to be J

44, Theorem—. Let the forced operator A have the property

(H) on C* (0 < r £ o). Define the sequence {u } by u_=0;for nz0,
e sl n o

w o =Aw if Ju f<r,u g =u if luf=r.

Then the following statements are equivalent:
(i) The sequence {un} is bounded in norm by a number r<r.
(i1) A has a fixed point in C”,

(iii) lim u exists in 7 and equals the minimal positive fixed
n- co
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point of A.

"Proof. (i) implies (ii). Since A has the property (H), the
bounded monotonic sequence {un} is mapped into a convergent se-
quence {Aun} ; then 11m u = lim Aun = A lim u , SO A has the

fixed point lim u_> 0, |[lim u “ <r,<r.
v n n

1

(ii) implies (iii). Let v be any fixed point of A in ¢*. Then
0<AO0= Av = v, so we may apply Lemma 4-3 to conclude that A has
a fixed point uo = lim U’n with 0 < uo £ v; thus, uo is the minimal

positive fixed point of A.

(iii) implies (). {lu_{| = |[lim w |l <r. I
n— co

The following Theorem 4-5 and Corollary 4-6 are the funda-
mental comparison theorems for establishing the existence of minimal
positive fixed points of a family {AX} and for obtaining bounds on the
values of A for which A)\ has positive fixed points.

4-5. Theorem. Let A be a forced operator satisfying (H) on

C*. Let the operator B defined on C* have a fixed point v >0 in ¢t

such that v = Bv 2 Av., Then A has a positive fixed point u = lim Vo
in Cr, where Vo=V and v, Avn—l for n= 1, and the minimal posi-
tive fixed‘point u® of A satisfies uCsu<v.

If, in addition, B is a forced operator satisfying (H) on ¢t and
Bu® = Au® = u°, then the minimal positive fixed point v° of B satis-
fies v° = lim u_ 2 ilo, where u_= u° and u_ = Bu .

n . o] n n-1

Proof. Since 0 < A0s= Av< Bv=v, A has a fixed point u =

lim v, in [0, v] by Lemma 4-3. By the preceding theorem, A has a

L e - - o . -
minimal positive fixed point u” s u s v,
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If B satisfies the additional hypotheses, then it is easy to see
that lim u converges to a fixed point of B which is less than or equal
to any other positive fixed point. Thus, lim un = vo, the minimal
positive fixed point. I

If {Ak}’ A €7, is a family of operators defined on ¢t, 0<rs<’
o, we set

A;: = {)&JEJ:H uecr-}-BA}\u:u}
and let AA?— AAOO.

4-6. Corollary. Let {A)\} and {BX}-' A €J, be two families

of operators on ¢ such that for each A € J, A, is forced and has

A
property (H) on c®, and for each u> 0 in C7, B)\uz Aku. Then
r T
C
Ag & A,

and for each A € ABr , the minimal pésitive fixed point of A)‘ is less

than or equal to any positive fixed point of Bk .

4-7. Corollary. Let {A\}, A€ J, be a family of forced oper-
ators satisfying (H) on C*. Suppose that for each A € J there is a
b?\ > 0 and a linear continuous positive operator 'I‘)\ on B such that

Aush

A )\+T>\u

A
o -1
for all u in C*. If y (T,}>1 and r> [[(I-T,) b, ||, then ) € NS

For each such A, one of the fixed points of A?\ is lim Voo where

v_= (I—T}L)—lb

andv.=Av for n= 1.
o} n

A A n-1 .

If there is an operator T such that Tk =\T, then A €T N
(0,12 (T)) and I (I-xT)‘le | <xr imply A € A;.

Proof. If “‘o(T)\) > 1 for some )\, then (I—T}\)_l exists and

the equation
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v o= b)\-{.TXV

has the unique solution (I-TK)-lbk > 0 (Krasnosel'skii 1964a, p.64;
Schaefer 1966, App. 2.3). By Theorem 4-5 or Corollary 4-6, A EA;
-1 . . . .
if »> | (I-T)\) b)\“ » and lim v is a fixed point of Ay
If Tk = AT, then uO(T) = kuO(Tk) for A > 0, so the second as-
sertion of the Corollary follows from the first. 7

4-8. Corollary. Let {Ak}’ A € J, be a family of operators on

T

C”. 1f for each X € J there is a b?\ ¢ ' and a linear operator T, on

A
B satisfying (PA) and (H) on C such that u € Gr+ implies
g .
A>\u bk + Txu s
then A G/‘\j;x implies HO(T?\) > 1 and any positive fixed point vy of A in
c’ satisfies
- -1

v, (I_TX) b)\ .
If, in addition, Ak satisfies (H) on C¥ for each A €J, then for any
A€ AR the minimal positive fixed point of AK is given by u®(\) = lim a s

-1
= - = =
where u (I TA) bk and u A)\un__1 for nz 1.
If there is a linear operator T such that T?\ =AT for A >0,
then
r :
Ay M0, 0} € TN (0,4 (T)).
Proof. According to Theorem 4-5, whenever A>\ has a posi-

tive fixed point in G* (i.e., whenever A € Ai ), the equation v = b>\+T>\v
has a positive solution; since TA satisfies (PA), this implies that

1< “o(T)\)' The rest of the Corollary follows immediately from

Theorem 4-5. v

The next two theorems describe the behavior of the set of mini-
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mal positive fixed po;nté {u®(A)} of an increasing family {Ak} of op-
erators satisfying .(H) on C¥. The theorems show that {uo(k)} is an
increasing family, and if Axu is continuous in A uniformly for u in
any subset of C° of the form [0,v], then u®(A) is continuous from the
left in A at all points of AZ . Note that these hypotheses are satisfied
by operators A>\ = AA, A€(0, ), if A satisfies (H) on c*. Theorem

4-9 also shows that the set Az is an interval.

4-9. Theorem. Let {AA} , AEJ, be a (strictly) increasing

family of forced operators which satisfy (H) on C©. If kOEAZ, then
TN AT, Aoj c Ai; and the minimal fixed points {u°(\)},
1S A;L, form a (strictly) increasing family. For any A€JN[A", kO] ,
the sequence {vn(k)} , n 2 0, defined by

vod)=uRh ) . v A=Ay (), nzl,
is a monotonically decreasing sequence converging to u°(A), and the

sequence {un(k )}, n=2 0, defined by

u () =u) un()\)zA}\oun_l()\), nzl,

: . . : T
is a monotonically increasing sequcnce converging to u (?\0) .

"Proof. The conclusion of the Theorem for an increasing family

A, } follows immediately from Theorem 4-5 by identifying A of The-
)\J‘ y . _ ying

orem 4-5 with A, for any kEJﬂD\_,AO] » B with A, , and v with
o
the minimal fixed point uo()\o) of Ak
)
If {Ak} is strictly increasing, then {u"(A)}, XEAX , is strictly

increasing, since for any }\I,XZEAZ such that A’l < }\2 » we have

uo(k l) < uO(KZ) by what has already been shown, and therefore
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uo(xl) = A')\lu"(xl) < A}\Zuo(lz) = w0

4

4-10. Theorem. Let {A,}, A€J, be an increasing family of
forced operators which satisfy (H) on C*. For )\OEAZ ) }\0 >\, let
the mapping A - Axu be continuous from the left at KO uniformly for
u in [0, uo(%.o)] . Then the mapping A - u®(\) is continuous from the
left at )\o .

Proof. By Theorem 4-9, Ai contains the interval A -,KO:I if
it contains A, so there are minimal positive fixed points u’(\) with
A < }\o . To prove the theorem, we show that for any sequence {)\n} ,
nzl, in(A, Ko),monotonically increasing to )‘o » the corresponding
minimal positive fixed points ~{u°(xn)} converge to u’(A J) - By
Theorem 4-9 the sequence {uo(kn)} is-increasing and bounded above
by uO(KO) ; since A}\ satisfies (H), {AK uo(kn)} converges to a limit
W Given ¢ > 0, v:rDe can choose an inteoger n such that for all

nz n, s and for all u = uo(Xo) in CF , we have

“WO—A)\ uo(hn)]f <g/2 and HA)\ u-Ay ull <e/2 .
O O n

Then n = n_ implies

o o o
Hué(ln)e'wo“ < “Aknu (Xn)—Akou )+ [[Alou A )-w | < e
and therefore
lim uo(k ) = w
n o
n— o
Since O<uO(K )Suo()\ yforalln, O<w <u®)A ). But A, w =
n o o o 0
Ay lmu®( ) =lim A w®h ) =w_, so limu’(h )=w_=u} ),
e}
since uo(}\o) is the minimal positive solution. Vi

The mappiag A - uo(k) is not necessarily continuous from the
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right ;‘t ?\.O » even if the mapping A —"A)\u is . In Part II, we shall
give an example of a cAompact operator on C for which the minimal
eigenvectors u°(A) are discontinuous :f.rom the right at a point
AOGAR » even though the mapping A - Aku = AAu 1is continuous uni-
formly for u in any bounded subset of C.

The method of proof of Theorem 4-10shows that if {A}\} , A€,
is an increasing family of operators satisfying (H) on ¢’, and if for
any 3-06 J and w€CY the mapping A = A;\u is continuous at ?_0 uni-
formly for u€ [0, w] , then the mapping (A, u) =~ Aku (which obviously
may be considered monotonic) has the following property analogous to
(H): if {?\k} and {u.k} are bounded monotonic sequences whose clo-
sures are contained in J and C%, respectively, then {A;\kuk} con-

verges in cr. Similarly, we have:

4-11. Theorem. Let {Ak} » A€J, be an increasing family

of forced operators satisfying (H) on et (0 < r= ). Let Ai contain

the open interval ‘Tl = (A, ?\.O), with }\* < XOE J, and let the minimal

positive fixed points {u°(A)}, A € J,» be bounded in norm by a positive
number ry<r. If, for any wé€CY, the mapping A - Ahu is continuous
from the left at A _ uniformly for u€ [0, w], then A € AT and lim uo(?\)
exists and is the minimal positive fixed point of A?\ e
o
To study the minimal positive eigenvectors of a forced operator
A (i.e., the minimal positive solutions of u = AAu), we set AX =AA

in the preceding theorems; ii A satisfies (H) on Cr, then {A?\} , A>0,

1s an increased family of forced operators which satisfy (H) on ct. It
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0<h_E€ Aj; ; then by Theorem 4-9, the interval (0,A ] is in AZ and

the minimal positive eigenvectors uo(

A} satisfy uo(k) < uO(KO) for any
A€(0,A ). Since 0 <u’(h)=rAu’() <Aau’(A ) for 0< A < Ao

li,m w®A)=0. If A is bounded on C*, then for any sequence {un} of
};chc):nvcctors of A in C° which are bounded in norm by a number ry<T
and which correspond to a sequence of characteristic values converging
to zero, we have limu_= 0. Thus, if {un} is a sequence of eigen-

n- oo
veclors of such an operator corresponding to characteristic values

converging to zero, then either lim “ u “ =71 or {un} contains a sub-~
n— oo

sequence converging to zero. This implies:

4-12, Theorem. Let the forced operator A satisfy (H) on o

(0 < r < o). Then the minimal positive eigenvectors (w3 satisfy
lim uo(}\) = 0. If, in addition, A is bounded on G, and there are posi-
?c\llvg numbers p and. & such that for 0 <A <&, AA has at most one
fixed point in CP, then for any sequence {un} of non-minimal eigen-~

. . r . e
vectors of A in C° which correspond to a sequence of characteristic

values converging to zero, we have lim H un]| =r.
n— o

4-13, Corollary. Let the forced operator A be bounded, sat-

isfy (H) on ¢’ , and satisfy a uniform Lipschitz condition on CP for
some positive number p < r : i.e., there is a positive number vy such
that for u,v & cP ’

(4. 2) |Au-Av] = yilu-v| .

Then there is a positive number & such that (0, 8) C Aj; , and any se-

. s . . r .
quence of non-minimal eigenvectors {un} in C” corresponding to char-
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acteristic values converging to zero satisfies lim I[ unH =r.
n- oo

EI;O_Q_:E. If A satisfies a uniform Lipschitz condition on Cp,
then there is a positive number & = \(P—‘*E‘Wﬁ such that 0 <A < § and
u, v €cP imply KA.U.IE cP and

| [AAu-rav] < Ayllu-vi
with Ay < 1. Thus, AA satisfies the hypotheses of the contraction
mapping principle (Krasnosel'skii 1964b) on CP and therefore has a
unique fixed point in CP for 0 <A < &. I

If we replace the Lipschitz condition (4. 2) by the condition
A?\V_A?\u < T}\ (v-u) , where T}\ is a continuous positive linear oper-
ator and 0 < u< veECET , we a;'e able to obtain the much sharper esti-
mate of Theorem 4-14 and Corollary 4-15 for the values of A for
which Ak has only one positive fixed point. This result cannotbe im-
proved without further restrictions on the Ak . We shall see in Part
II that there are operators A)\ = AA which satisfy (4.3) for all u,v€C
with u £ v for which A has more than one positive eigenvector in C
corresponding to characteristic values A € (HO(T), sup AA) . A simpler
example 1s obtained ’py taking A to be the continuously differentiable

~real valued function Au = e for Ofu<r, Au=c'(utl-z) for r < u,

and taking Tu = eru, where r is a positive number. Then equation

-T

(4. 4) holds, and p,D('I‘) =e For r =1, A has infinitely many eigen-

vectors (all ux 1) corresponding to A =u0(T)=e—1,. and for r>1, A has

s et e ).

4-14, Theorem. Let {AK} , A€J, be a family of forced op-

two eigenvectors corresponding to each A € (m (T)e

erators satisfying (H) on ol (0 <r= ). S'uppose that for each A €J
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there is a continuous positive linear operator Tk such that whenever
r r '

u€C  , v&€C, and u< v, then

(4.3) AKV-AKU’ < Tx(v—u) .

Then AK has only one fixed point in ¢’ for each A ‘5!\2 such that
1 <~u0(T}\)-

Proof. If A& f\j;L , then AX has a minimal positive fixed point
u®(\) and any other fixed point vE€C* satisfies v= u®(A). Since

v-u’(\) = A v-A,u°() = T, [v-u®Q)],

A A A
or
[u®0)-v] - T, [u®)-v] 2 0,

for any fixed point vECT of A)\ , we have u®(A\) = v if 1< p,O(T}\)
(Schaefer 1966, Appendix 2.3). Thus, AK has only one fixed point
uo(?\) in CF. /!

4-15, Corollary. Let the forced operator A satisfy (H) on

Cr, and let T be a continuous positive linear operator such that
(4. 4) Av - Au £ T(v-u)
whenever u,vE€C’ and u<v. Then for each X\ € AR for which

A <go(’I‘), A has only one eigenvector in ct.

Another condition for the uniqueness in CP of the eigenvectors

of A will be given in the next section.
If the operators A}\ have the form Ay =ctt LA (L.e., Au =
c + AAu), where c€C and A satisfies (H) on Gr, then we take J =

[C,0) if ¢ >0 or J=(0,c0) if ¢ = 0. It is easily seen that the mini-

mal positive fixed points satisfy uo(?\.) Z ¢ for A >0, and lim u°(A) = c.
AV 0
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Consequently, if there are any positive fixed points of AX =c+AA in
c* for X > 0, we must have c£CY., For c€CY and A > 0, thc problcm
of finding the positive fixed points of ¢ + AA is equivalent to the prob-
lem of finding the positive eigenvectors of the operator B defined on
{u€C: utc écr} by Du = A(ctu) ; Ul is a positive fixed point of cth A
in C¥ if and only if u ¢ is a positive eigenvector of B in {u€C:
utc €CT) corresponding to the characteristic value A. Thus, any as-
sertion concerning the positive eigenvectors of an operator (such as
Theorem 4-11 and Corollary 4-12) implies a corresponding statement
for the positive fixed points of a family of operators {AK} of the form

A}\=c+>\A for A >0, -
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I. 5. A Special Class of Operators

We can obtain a rather complete description of the set of posi-
tive fixed points of a large class of families {A}\} of operators satis-
fying a condition of the form

(5. 1) Ay (@) 2 a(l+m)ayu

for every real number a between 0 and 1l; the positive number 7 may
depend on &, u, and A. Our discussion of such operators follows

Krasnosel'skii (1964a, Chapter 6; 1964b, p. 277), who calls such op-

erators '

'concave.'" We prefer not to use this terminology, since in-
cluded in this class are certa}n'operators which we call "convex' (see
Proposition 10-6), as well as operators we call''‘concave.'" Krasno-
sel'skii considers only operators A}\ of the form AA. = AA ; we gener-
alize his results to increasing families {AX} such that {K—IAA} is a
decreasing family, where A > 0 (Theorem 5-6).

If A is a monotonic operator such that
(5. 2) A(au) 2 aAu
for all ¢€(0, 1) and some u€G+, then gAu s A(gu) £ Au; thus, A has

the following continuity property:

lim A(ou) = Au.
atl

Similarly, if f is a monotonic function on (rl, r2) C R and f{gu) =
af(u) for all u€ (rl, r2) and all ®€(0, 1) such that gu€ (rl, rz), then
f is continuous on (rl, rz). If {A)\.} , A€ET, 0<A7€ J, is an in-
creasing family of operators on a subset S of 8 such that {)flA}\} )

A €J, is a decreasing family, then for any u€Ss, Aa)\u 2 OLA}\u



—-46—
whenever A~ <ok £ A€J, and the mapping A - Aku is continuous on
J for each u€S.
The following propositions will give an indication of the im-
portance of this class of operators.

5-1. Proposition. Let 3 be an open connected subset of R™

and r a positive real number. Let the non-negative function f be
continuous on ax o, r), and for each x€0Q, let f(x,u)/u be a strictly
decreasing function of the realvariable u, O <u<r. Let K be a
non-negative function on Q X @ such that J{;K(x, y)dy exists for each

x €0 and such that the operator A , defined by

Au(x) = {{K(X;Y)f(ys u(y))dy

{for any function u€@® C C(M), maps CF into C(Q). Then for any num-
ber a.€(0,1) a.ﬁd any function w€CY there is a positive number M such
that A(au) 2 a(l+n)Au. |

Proof. The fact that f(x,u)/u is a strictly decreasing function
of u is easily seen to be equivalent to the following: for any x€Q
and any numbers a€(0,1), p€[0,r),

f(x, ap) - af(x, p) > 0.

Let u be a function in CT¥; by continuity, for fixed a€(0, 1), there are
numbers ¢ >0, M >0, such that for all x€0, p€[o0, “u”], we have

f(x, op) - af(x, p) 2 ¢

0 < f(x,p) < M.

Choosing N < ¢/M, we have for any x€11,



-47~

Alan)(x) - a(1+n)Au(x)

= ['Kix, y)ily, auly)) - all+n)i(y, uly))Idy
Q .

2 (e-nM) [ Kx,y)dy = 0.
0
Thus, '

A(au) & a(l+n)Au . Vi

5-2. Proposition. Let 1 and r be as in Proposition 5-1. Let

f be a strictly positive continuous function on 0 X [O; r) which satisfies
the one-sided Lipschitz condition
f(x, p) = £(x, 0) s y(p~0) (y>0)
uniformly for x€0, 0s0Sp<r. Then there is a positive number
Ty <r such that for each x€0, f(x,u)/u is a strictly decreasing
function of u for 0 <u < ry -
Proof. For any a€(0,1) and any p€(0,r), we have

f(x, ap) - af(x, p) = (1-a)[i(x, p) - vp].
Since f is positive and continuous, we can choose Ty € (0, r) such that
p€[0,r;] implies f(x, p)-yp > 0 for all x€Q. Then for all x€0,
«€(0,1), and p€[O, rl] ’
f(x, ap) - af(x, p} > 0O.
Thus, f(x, u)/u is a strictly decreasing func’t.ion of u for each x€7,

0<u5r1» I

If, in addition to the hypotheses of Proposition 5-2, f(x,u) has

a partial derivative fu(x, u) , then f(x, u)/u is a strictly decreasing

function of u for all u such that

2 9 f(x,u) > 0
u -

fix,u) ~ ufu(x, u}) = -u -
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The next three lemmas are preliminary to the prinecipal theo-
rem of this sectioﬁ, Theorem 5-6. Lemma 5-3 is a comparison the-
orem similar to Theorem 4-5; we will use it in the proof of Theorem
5-6 by taking A1' and AZ to be opcrators from an incrcasing family
{AX ] Observe also that the hypotheses of Lemma 5-3 are satisfied
if we take A; = )‘lA and A, = ?\ZA, where 0 <>\1 <?\2 and A is a
monotone go-bounded operator on ct satisfying equation (5. 2). Thus,
if uy and u, are any two eigenvectors in ¢* of such an operator A
corresponding to characteristic values >‘1 < ?\2 » then u,; < u, (since

AlAul < }\ZAul) .

5-3. Lemma. Let A; and A, be positive operators on ct
(0 < r < ) having positive fixed points Uy and Uy respectively, in
¢*, such that uy = Alu1 < AZu1 . Let A2 be monotone and g,"
bounded for some gOEC+ . For any number a€(0,1), let there be a
positive number 7 such that Az(c,ul) 2 (1+n)O(A1u1 « (This condition

is satisfied if for any a€ (0, 1) there is an 1 > 0 such that either

Az(aul) z (l+n)A1(a.u1) and ~A1(au1) = c:t,Alu1

or

| Az(aul) = Al(aul) and Al(a'u.l) z a(l+'r])A1u.1 . )

Then either u; = u, and Alul = Azu1 » OT uy < a, .

Proof. Suppose uy ‘F u, . Since AZ is go-bounded, there are

ositive numbers o and such that qg = A and A u, S .
P Eo 1 o

242 2
Thus,

u, = AZU’Z = O‘go 2 (q,/[B)Azul 2» (q,/p)Alu:l = (C(./p)ul .

Since we are assuming u, :f u,, there is a largest positive number
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L, = t:f.Ou1 . But, since A, is monotone,

o < 1 such that u
e} 2

2
u, = Azu2 2 Az(d,oul) Z_C"o(Hn)AIul = (X,o(l+'r])u1 H

1 2

1= .A2 in Lemma 5-3, we obtain the following

this contradicts the maximality of 6 . Thus, u, <u,. /
If we set A
uniqueness result (Krasnosel'skii 1964a, p. 188):

5-4. Lemma. Let A be a positive monotonic operator on v

which is g -bounded on C* for some gOEC+. Let A have a positive
fixed point uy in T, and for any a€(0, 1), let there be an > 0 such
that A(G.ul) = t'x.(l-i-'r])Aw.l,1 « Then u; is the only positive fixed point of

A in CT.

The following theorem gives conditions for the existence of a
family of fixed points {u(A)} of a family of operators {Ak} in the
neighborhood of a given fixed point u(A ) ; this result is of pacticular
interest because it does not require the Fréchet di:fferentia;‘bility of
the operators A)\ (cf. the discussion following Theorem 6-5). Equa-
tions (5. 3) and (5. 4) are satisfied for all };OEAX if A satisfies equa-
tion (5. 1) for all u€e®,

 5-5. Theorem. Let {A)\} , A€J, A 20, be an increasing

family of operators satisfying (H) on C” ; let the family {kﬂlAK} be
decreasing(for A > 0) on e¢¥. For some )\o in J, let A?\ have a
positive fixed point g(}\o) in C¥, and suppose that for a.nyoch (0, 1)
there is an 1 > 0 for which

(5.3) AK (cu(h 0)) > cx.(1+'q)A>\ u(Xo)
o] o

and
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(5. 4) | Akou(ko) > a.(1+n)Ak0(a_1u()go))

if o™ tuph ) € c”.

Then, given ¢ > 0, there exists a neighborhood N in J of ?xo
such that for each XGN there exists a fixed point u(A) of A?\ with
Jud)-ur ) <e.

Proof. Suppose XO >\ . For any fixed a€(0,1), choose’
n>0 suff)\iciently small that A~ < }\0/(1+'n) and (5. 3) holds. Then, for

any A € (T-i?ﬁ , )\0) we have

Alosi gl = oy (@0)

[0}
A(l+m)
= _T;lq‘A)\ou(ko)
2 i),

since {X_lAK} is a decreasing family. Since {AX} is an increasing
family, Ak (u(ko)‘) < AAOuO\O) =.u(>\o) . Thus, we may apply Lemma
4-1 to the ope:;é.tor A}\ on [au(: 0), u(AO)] and conclude that A;\ has a
fixed point u(\) in [o.u(ko), 110\0)]'

Similazrly, i‘f ?\O < )\+ , then for cach A such that KO <A<
k0(1+n) < k+ , the operator AX has a fixed point in [u(A o oc-lu()\ 0)] R
provided o has been chosen large enough that ||a” 1u(}\O)H <r. The
theorem follows from the fact that ¢ may be chosen arbitrarily close
to 1. j

The preceding lemmas provide the following description of the

set of fixed points of the family {A)‘} :
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5-6. Theorem. Let {AK} , A€J, A~ 20, be an increasing

family of operators satisfying (H) on ¢T (0<r< o), and let {)\_1

Al
0 <A €J, be a decreasing family on .Cr. For each A €J, let Ay be
g, ~bounded for some g, CC'. Suppose that A} is not empty and that
for each )\OE AZ (with a corresponding positive fixed point u(ko) of
A)\ ) and for each number o€ (0, 1), there exists a positive number %
sucoh that equations (5. 3) and (5. 4) are satisfied.

Then AZ 15 an interval which is open relative to J; to each
A Ej\‘,l;L there corresponds a unique fixed point u(A) of A, » The map-
ping A — u{\) is continuous on AZ and the family {u{rA)}, A EAX, is an

increasing family. If we let )\='= = sup AZ and X* = inf AL , then either

A.’

M =\" or lim JJu(\) || =7, and either A, =A™ or lim  Ju(\)]| = o,
AE i W |

(Recall'that A" = sup J and A = inf J.)

ness of the fixed point of AK in C* follows fltom Lemma 5-4, the
continuous dependence’of u(A) on A and the openness of AZ in J fol-
low from the uniqueness and Lemma 5-5, and the fact that the family
{u(A)} is an increasing family is a consequence of Lemma 5-3. Thus,
only the last sentence of the theorem remains to be proved.

If )\* ¢ J, then clearly K* =at ; thus, we assume Aes.

Since [|u(A})|| increases as A increases, lim*uu(k)ll exists or.
is infinite and is < r. Suppose l/;m* ”u(?&)“ <r. Choose a mono-
tonically increasing sequence {)iL })Lconverg'mg to A" €J. Then u()\n)

n

.
1Ta o 0
AT Cb kiilsid

the sequence {A}L*u()\n)} has a limit w (since A , satisfies (H) ).
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Since the family {}\-IA)\} is decreasing, A < . implies

A
n o] o (o]
z-;‘;; Ax *\1 (xn) < A;\ nu_ O\n) s A}L *u ()\ n) .

Passing to the limit, we obtain

. (o] . o] :
;in;ou a) = IJ;irréo A}\nu )= w
and
Iwll = tim [u®0)] < r.
APA
Thus,

€
I

lim A *uo(Xn)
n~co A

il

A L limua®} ) = A w ,
n— oo

so that K*EAZ and hence K* =t , since AR is open relative to J.

A similar argument with a decreasing sequence {kn} converging
to A, shows that if lim ||u()|| > 0 and A, €J, then A*EAz, which is
possible only if A, =X " 7

The hypotheses of Theorem 5-6 are satisfied by operators A.)\

of the form

u = A u+ AAu, KQJ = (0, o),
o o

if A and A satisfy (H) on Gr,. and one of the operators A , A is g _-
bounded and satisfies equation (5. 1), while the other satisfies equation
(5.2) {c.g.» a posit:ive linear operator). If either Ao or A is forced,
then A}\ is forced for each A €J, and A}; , if non-empty, is an open

sl %
interval (0,A )}, 0<\A £ .
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We mention one more important propérty of positive monotonié
go-bouﬁded operators satisfying equation (5. 1) (Krasnosel'skii 1964a,
p. 192). If the operator A is compact, then the positive fixed point
of A (if any, there is only one by Lemma 5-4) can be obtained by suc-
cessive approximations, and one may use any u0€0r+ as the initial
approximation ifthe successive approximatians u = Aun_1 remain in
the domain of definition C* of A. This result is true even if A is un-

forced and thus has 0 as a fixed point.
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1. 6. Fréchet Derivatives and the Implicit Function Theorem

Let {A}\} » M€J, be an increasing family of forced operators
satisfying (H) bn cr. According to Theorem 4-9, if XOGAX, then
all A in J less than }\o are also in Az ; thus, inf Af\ = inf J=A",
For values of A in J larger than Xo, it may happen (as in Theorem
5-6) that there are minimal solutions as far as there possibly can be;
i. e., either Af& exhausts J or the minimal fixed points have norms
which approach r as A approaches A* = sup AZ s X+. It is also pos-
sible that the minimal fixed points are bounded in norm by a number
less than r and that k* < >\+ . In the latter case, one is interested in
the behavior of the minimal fixed points as A approaches )\*, whether
}.* € Afx » and whether there may be non~-minimal fixed points for A <7\*
which approach the minimal fixed points as A approaches k*. We are
able to answer these questions by assuming that the operators A)\
have certain differentiability properties; this is the subject of the next
section. At the same time, we discuss the behavior of the solutions
near a value of A at which the minimal solutions uO(M are discontinu~-
ous (from the right)in A. In general, one would like to deterrﬁine the
value of K* and determine for what values of A, if any, there are non-
minimal fixed points. | Some progress in this direction can be made if
r = 0 and we again assume certain differentiability properties for the
operators AK . This matter and the behavior of the fixed points of
large norm are discussed in Sections 8 and 9. ..

In order to have at hand the facts concerning differentiable op-

erators which shall be useful later, we give in this section the defini-
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tion and some of the properties of the Fréchet derivative and then state
and discuss the implicit function theorem for equations in a Banach
space. The Fréchet derivative is discussed in all the books referred
to in this section.

Let ﬁl,ﬁz be Banach spaces, A an operator mapping a suhset
of B into B,, and u_€8,. The operator A is said to be Fréchet dif-

ferentiable at u if A is defined on a neighborhood of u and if there

exists a continuous linear operator A'(uo): ﬁl - 632 such that
- - Al
HA(uo+h) Auo A (uo)hu

(6. 1) lim
Iafl-0 =]

The operator A'(uo) is called the Fréchet derivative of A at u If
A is defined in a neighborhood of a set S and Frechet differentiable at

each point of S, then A is said to be Fréchet differentiable on S. A

is continuously differentiable at u if A is Fréchet differentiable on a

neighborhood 7 of u and if the mapping A': u ~ A'(u) is continuous
at u_ as a mapping from 7 into the Banach space .S(ﬁl,@z) of continu-
ous linear operators from 031 into 032. If A is Fréchet differentiable
on a neighborhood N of u_ and if the mapping A' is itself differcnti-

able at u_ , then A is said to be twice Fréchet differentiable at u .

The Fréchet derivative of A' at u_ s denoted by A“(uo), is a continu-
ous linear operator from 331 into £(ﬂ31, 032); it may also be considered
as a bilinear operator from B, into B&,.

If A is compact on a neighborhood of U and Fréchet differ-
entiable at us then A'(uo) is compact. If A is monotonic on a neigh-

borhood of u and Fréchet differentiable at u_ s then A‘(uo) is a posi-
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tive operator (Krasnosel'skii 19643.);
Let S be a subset of a Banach space # containing elements of
arbitrarily large norm, and let A be an operator mapping a subset of

S into 8. We say that A is S-asymptotically linear if there is a

positive number r and a continuous linear operator A'(m): 8 -8 ,

called the S - asymptotic derivative of A, such that A is defined on

{u€s: ||ul| 2 r} and

(6. 2) lim dAusAlo)] _ o

() -

where the limit is taken over all u€S such that ”u” 2 r., We shall
always take S to be either 8 -(in which case we shall omit the refer-
ence to the set S = ) or the positive cone C of a partially ordered
space #. Under the assumptions we have made on thé cone C in Sec-
tion 1, we have:

If A is defined and compact on a neighborhood of {u€g: ||ul =
r} and if A is §- asymptotically linear, then A'(co) is compact on
B;if A is a positive operator, then A'(co) is a positive operator .
(Krasnosel'skii 1964a).

Let {Ak} s AEJ, be a family of operators defined on a subset
S of B. We define the norm on RX8 as ||[(x,u)| = |A] + lul| and
consider the differentiability of the mapping (A, u) - Aju at apoint
(A o’ uo) € JXS . Suppose that this mapping is Fréchet differentiable

at ()\o, uo). Then the above definition implies that the operator AK

o
S5 = # is Fréchet differentiable at u_, and that the mapping A - Aug

of J into B is Fréchet differentiable at }\o; the derivative of the lat-
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ter mapping may be represented in terms of an element B?\ u €RB as

o
the linear mapping 6§ = BB)\ u_ s §€R. According to equation (6. 1),
o
we have
y A, gl +h)-A, v -As (u_)h-8B, u_l
1m’ [e] fe) 0 o - 0.
el dnl=0 o+ [al

It is easily seen that if the family {AX} has the form

n
- _ k, (k
AX—Z)\A()
k=0

for A €J and some integer n 2 0, then the mapping (A, u) ~ A)\ﬁ is
Fréchet differentiable at (A o uo) for any AOE Int J if each of the
operators A(k) , k=0,1,...3n, is Fréchet differentiable at u_ .

In the definition of the Fréchet derivative of an operator A at
a point u, it is assumed that A is defined on a neighborhood of u.
Whenever we speak of the Frechet derivative in the following, this is
assumed to‘ be the case, even if not explicitly mentioned. Thus, a
statement such as: "A is Fréchet differentiable on C¥," is to be in-
terpreted as: A is defincd on a neighborhood of C* and Fréchet
differentiable at each point of et v

It is possible to define a Riemann integral for continuous

Banach space valued functions of a real variable. The Fréchet de~

rivative and this integral are related by
1

(6. 3) A{ut+h) - Au = fA'(u—i—a.h)thL s
o=0

where it is assumed that A is Fréchet diffcrentiable at each point

utah€B®, 0% as 1, and that the mapping & =~ A'(utah)h of [0, 1] into



-58-

# is continuous on [0, 1] (Liusternik and Sobolev 1961).

As an example of a Fréchet differentiable operator, consider
the family of ‘opera.tors {A}\} on C(Q1) defined by

ayut) = Koy, utydey -
0

We assume that f is a continuous real-valued function on X (-o0, +00),
and that the kernel Kix,y;\) is such that the linear operator 1“)\ de -
fined by

I‘}\u(x) = K(x, y;A Ju(y)dy
0

is a continuous oi:era.tor on C(Q) for each A in an interval J. Then
{Al} , A€J, is a family of continuous operators on C({I). If, in ad-
dition, £f(x,u) is continuously differentiable with respect to u with
derivative fu(x, u), for x€Q and & <u< B, then each operator A?\ is
continuously Fréchet differentiable on {u€ C(Q): a<u(x)<p, x€0} ; the

Fréchet derivative is given by

A i) = [Kee yik )Gy, ulyDbiy)dy -
0

These assertions are simple to verify; see, e.g., Krasnosel'skii
(1964a, 1964b) and Kantorovich and Akilov (1964).

If, in addition, the kernel K(x, y;A) has a partial derivative
K, (x, y;A) with respect to A which is continuéus in (x, y;A) on OX0XJ
except for a weak singularity when x =y (Example 2-1),then the map-
ping (A, u) =~ Ay u is Fréchet differentiable at (A o uo) for all A €7 and

uOE C(Q) such that a < u_(x) < B for x€Q. The Fréchet derivative is
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given by the linear mépping (6, h) - BB}\ uO+A.)'\ (uo)h for 8€R and
hGC(—ﬁ)‘, where ° °
By, u_(x) = JPKK (x, yid My, u_(y)dy .
o © J o o

If f(x, u) has a second partial derivative fuu(x, u) which is con-
tinuous on {1 X (4, B) , then each operator A)\ is twice Fréchet differen-
tiable,and A;\'(u) is the bilinear operator which sends any pair of con-
tinuous functions h, k € C({l) into the function A.;\‘(u)hk = A.;\‘(u)khE c(f)

defined by

APIEG) = [Kle yid )i (s uly DRy Jkiy)ay
Q

for any function u such that & < u(x) < B for x€1Q1.

We remarked earlier that a differentiable positive monotonic
operator A has a positive (hence monotonic) Fréchet derivative which
is compact if A ié compact, and a C - asymptotically linear positive
operator A has a positive C- asymptotic derivative which is compact
if A is compact. The next two propositions show that the property (H)
also is inherited by the derivatives of operators satisfying (H). In
view of the preceding remarks, it suffices to show that the derivatives
map any bounded monotonic sequence in C into a convergent sequence.

6-1. Proposition. Let the positive monotonic operator A be

defined in a neighborhood 7 of a point u€C, satisfy (H) on NNC, and
be Fréchet differentiable at u. Then A'(u) satisfies {fi) on C.

Proof. Assume the given neighborhood 7 is closed (otherwise,
take a smaller closed neighborhood). Let {hn} be a monotonic se~-

quence in C bounded in norm by the number y> 0. Given ¢ >0,
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there is a positive number p such that k|| € p implies u+k€7 and
!|A(u+k)-Au- Atk < e k| /3y .
Let a be a fixed positive number less than p/y. Since {u+ahn} is a
bounded monotonic sequence in 7 MNC and A satisfies (HHon T NC,

{A(u+ahn)} converges, and therefore it is possible to find a positive

integer n  such that n,m = n_ implies
I A(utoh) - Afutoh )| s ea/3.

Thus, n,m= ng implies
” A'(u)hn--A'(u)hm “

< = || A(utah )-Au-A'(uloh || + = || Afutah )-Au-Alu)uh_|

+ %i I A—(u-mhn)-A (u+cx.hm)“

< g.

Therefore, the sequence {A'(u)hn} converges. Vi

The proof of the corresponding result for A'(oo) is similar:

6-2. Proposition., Let the positive operator A satisfy (H) on

{u€C: |lu]| 2 r} (0= r < ) and be C-asymptotically linear. Then
A'(oo) satisfies (H) on C.

A well-known application of the Fréchet derivative of an opera-
tor A such that A0 = 0 is to the determination of the possible values
of A from which eigenvectors can bifulrcate from the trivial zero solu~
tion of u = AAu ; if A'{0) exists and is compact, these bifurcation val-
ues must be characteristic values of A'(0) (Krasnosel'skii 1964a or
1964b). Theorem 6-3 is an analogous result for the positive eigen-

vectors of a family {A}\} of positive operators, and the simple proof is



-5l

omitted (cf. Krasnosel'skii 1964a, Section 5. 3.5).

6-3. Theorem. Let {A)\} . AEJ, be a family of positive un-
forced continuous operators on c* (0 <r=< w). Suppose there is a
sequence {A_} in J converging to A € J such that the operators {ay
have fixed points u()\n) in CF with lim “u()\n)H = 0, and let there be

n— oo
a compact linear operator B such that

| A, u-Bul|
(6. 4) lim -l—AA:X-—-———-——I—

lafl~0,ueet  [lul
A=A

Then 1 is an eigenvalue of B corresponding to a positive eigenvector.

Since the limit in equation (6. 4) of Theorem 6-3 is taken only
over elements of C, the operator B may be interpreted as the deriva-

. ' .
tive AXO((H-) of A)‘o from above at (:

l]Al u - AL (0+) ul
(6.5) 2 2

lim
[ull -0 [Ju|
uecet
It is easily seen that the hypotheses of Theorem 6-4 are satis-
fied by a family {A}\} of the form
N . .
(6. 6) A = ):l‘il)A(l) :
i=1
where for each i=1,2,..., N, A(i) is a continuous positive operator
v} .
on C° for which A(l) (0+) exists, 1";\1) is a continuous linear operator
. . .
on B, either A(l) (0+) or 1‘?(\1) is compact, and the mapping A = 1"}(\1) is
(o)
continuous at A'O {i. €.,

, 1) _plidy 2
lim ||[IV™ -T = Q0 ).
117\0 “ A XOH
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If A is continuously differentiable on a set S and the norms of
the Fréchet derivatives are uniformly bounded on S, then it follows
from the integral formula (6. 3) that A satisfies a Lipschitz condition
on S . If the derivatives satisfy inequality (6. 7) below, then condi-
tion (e) of Section L. 1 and the uniform boundedness principle (Dunford
and Schwarz 1958) imply that {A'(u) : u€C] is bounded; moreover, A
satisfies inequality (4. 4) on C*. We therefore obtain as a corollary
of Theorem 4-14:

6-4. Theorem. Let A be a continuously Fréchet differenti-

able forced operator which satisfies (H) on cY. Let T be a continu-
ous positive linear operator such that for each uwéct , h€C,

(6.7) A'lu)h £ Th .

Then A has at most one eigenvector in C* corresponding to a char-

acteristic value A € (O,uO(T)) .

One of the most important uses we shall make of the Fréchet
derivative is in connection with the implicit function theorerm; various
formulations of the theorem are given by Dieudonne (1960), Graves
(1965)5 Hildebrandt and Graves (1927), Krasnosel'skii {1964b), Liu-
sternik and Sobolev (1961), and Nirenberg (1961). If one seeks to
solve the equation &{x,y)=0 for y in terms of x, and if it is known
that @(xo,yo)=0, this theorem gives conditions under which one may
solve for y as a continuous function of x in a neighborhood of X,

We cite the form of the theorem as given by Liusternik and

Soboleyv. In the statement of the theorem, we will use the Cartesian

product ﬁl X 632 of two Danach spaces 031, 332, which is to be assumed
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equipped with the product topology; this is the same as the direct sum
B, @ 032' of the two spaces and may be given the norm | (x, v = “x“ +
ly| for x€@, and vy€8,. For any open subset G S 8 X8, containing
a point (x,y), there are open subsets ng B, QZ'E 032 such that
(x,y) € GXG, &G

6-5. Theorem. (Implicit Function Theorem.) Let B, 8,8

3

be Banach spaces (not necessarily partially ordered), let Ql’ (}2 be
open subsets of ﬁl,@z » respectively, and let ¢ be a continuous map-
ping of leqz into 0‘33. Let (xo, yo) € leqz. Suppose that

(a) 2(x_,y . )=0;

(b) for each XGQI » the mapping y - &{x, y) of (}2 into 033 is
differentiable; we will denote the derivative mapping by Dzé (x,v);

(c) the mapping (x,y) -~ Dzé(x, y) of leqz into S(BZ, 033) is
continuous;

(d) the invérse mapping [Dzé (xo, yo)]-1 exists; that is,
Dzé(xo, yo) is a one-to-one mapping of B, onto 0’33 .

Then, for any sufficiently small neighborhood ??2 ©G, of Y,
there is a neighborhood 7?1 c Ql of X and a continuous operator
F: 7?1 ~ 8, such that -
() Flx )=y

(ii) if x€ 7?1 , then ¥(x, F(x)) = 0;

0!

(iii) if (x,vy) € 7?1X 7?2 and %(x,y)= 0, then y = F(x) .
If, in addition, & is continuously differentiable on QIXQZ , then
7?1 may be chosen so that F is continuously differentiable on 7?1 , and

Fi(x) = -[D,8(x, Fx)1 ' D #x, Flx))



-Bd -

for x€7?1 .

We shall use this theorem w.ith B,=R, B,=08, =8, and

1 2 3

d(A,u) = u-A,u. At any u for which A, hasa Fréchet derivative
A;\(u) » D,8(A, u) exists and D,2(h,u) = I-Ai (u) , where 1 is the
identity operator of 8. Thus, DZQ (A, u) has an inverse on f if and
only if 1 is not in the spectrum of A,'\(u) .

Let {A)\} » A€J, be an increasing family of forced operators
satisfying (H) on (e Suppose that for >\1€ J , the operator A)\1 has
a positive fixed point u()\l) and a Fréchet derivative A>‘\ 1(u(k l)) at
u(A 1) . If the implicit function theorem is applicable to the cquation
u-AKu = 0 for (A, u) near ()\1, u(kl)) [so that 1 is not in the spectrum
of A)'Ll(u(}\l))] , then there is a neighborhood N1 of >‘1 in J for which
we can conslruct a continuous family {u(A)} , with A € N1 , of fixed
points of A‘k . I ﬁ(kl) happens to be on the boundary of C, then with-
out imposing further conditions we have no assurance that the fixed
points obtained in this way belong to C. We shall see below, however,

that if we impose the following stronger positivity condition (SP) on
the operators A)\ » then the fixed points u(A) constructed by using the
implicit function theorem lie in C if the neighborhood N; of 3\1 is
taken sufficiently small; this condition says roughly that A)\. maps a
neighborhood of the cone C into C.

(SP) Let {A)\} , AE€J, be a family of operators defined on an

open set containing the point uoe C and let XOG J. Then {Ak} satig-

fies (SP) at ()\o, uo) if there is a J-neighborhood N of Ko and a neigh-
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borhood N of u, such that for all (A, u) € Nx% , A.}\u is defined and

A)\uEC.

If the operators AK are defined in a neighborhood of a point

u C€C and if A, u_€IntC, then this condition is satisfied at (A ,u )

o )\0 o} o' "o
if the mapping (A, u) - Aku is continuous at (A o uo),since there is a
neighborhood ??o of A.}\ u_ such that 720 C C ; by continuity, there is

o)

therefore a neighborhood NX% of O‘o’ uo) such that (A, u)€ Nx?
implies Axue nce.

If A

A has a positive fixed point u()\l) and the operators A)\

1
have fixed points u(A) for A in some neighborhood N, of Ay such
that -

lim u@) = ufA;),
A=hy
LEN
o

and if the condition (SP) is satisfied by {A)‘} at (kl, u(h 1)) , then we
can choose a neighborhood Nx7 of (A 1 u(>\1)) such that (A, u) ENXZ
implies AquC. We can assume N .so small that A GNHNO implies
u(A)€7 , and therefore, )\GNF\NO implies u(A) = A}\u()\)EG. Thus,
application of the implicit function theorem at (A 1’ u(i l)) will yield

positive fixed points u(?\) for A sufficiently close to )\1 .
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I.7. Behavior of Fixed Points Near the Maximum of A

We are now able to describe morc completely the behavior of
the minimal positive fixed points {u®(A)} of an increasing family {A}\}
of Fréchet differentiable operators satisfying (H): the fact that 1 <
HO[A;\ (uo(k))] (Theorem 7~1), their continuity and differentiability
with respectto A if 1 < uo[A;\(uo()\))] (Theorems 7-1 and 7-7), and
the precise dependence on A as A approaches a value ko at which
1= “’o[Ai (uo(}\o))] (Theorem 7-3). Roughly speaking, we find that
the minimz.l fixed points are continuous and differentiable with respect
to A unless 1= HOEA)'\(UO(K))]W: and that 1 = “‘o[A)‘. (uo(}\))] can occur
only if a certain expression involving the second Fréchet derivative
A;\'(uo(l )) is non~-negative. If this quaﬁtity is positive at a point ’Xo at
which 1=y [af 0(u°(>\ N1 and 1< uO[Ai(u%\))] for h -8 <k <h_,
then we have what is known as a '‘bifurcation point, ' "branch point, "
or 'limiting point" (see, e.g., Krasnoscl'skii 1964a and 1964b,
Cronin 1950, Bolotin 1963); there is a second positive fixed point for
all A less than and sufficiently close to KO , these fixed points ap-
proach uo_(ho) as A approaches 7\0 » and there is a neighborhood of
_uo(k c’)v in which there are no fixed points of A)\ for A > 7\0 .

Suppose that the operator A}\, on C* has a positive fixed point
u €C¥ and that the mapping (A, u) - X}\u is Fréchet differentiable at
(\ u_). Then from Section I. 6,
(7. 1) Aku = A')g u +. Ai (uo)(u-uo) + (A -?\O)BA u

o o o
+ CA =\ o;u—uo) )

where
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CA-A ,u-u)
(7. 2) Lim 9 o =
s u)A s uo) lk-)\ol + Hu-uoH

Consider a sequence {ln} , n21, in A;. converging to A  such that

there are corresponding fixed points u # u, of A)\ with lim u_ = u .
n n= co
If Ay (u ) is assumed to be a compact linear operator, then there is
o

, ) _ -
a subsequence {)\nk} such that A)\O(uo)(uo unk)/” u unk” has a limit
w . Since u = - (A.)\ u . - A)\ouo) s

u -u A A Cy A A u-u) A A |
(o) nk nk o < e} Q o] nk
Tag, T "8 Y Ta =, TH TN, X TiTe. =o.T " To=. T
uO nk o O nk nk (o) nk (o] u0 nk

u_-u C)\o(kn —Xo,u -u

(o} nk k nk (o] )

= Ay u_-u TN u_ ~u :
[IER nkll Ink ol Tl n ol

A (uo)

(o]

and the right hand side of this equality converges to w as Ry o0,

Thus, the numerical sequence

_ o nk
(7.3) (e, } ={—x}

hag=u, |l
k

is bounded, and we may assume that {kn } has been chosen so that
k
(B, } converges to a number B - '

Then

u _-u
O n

(7. 4) h = lim k
S

“k

= poBkouo+A' (u )h .

pOBA U.O-i-w

A

(o]

This equation for the case where the u(l) are minimal positive

solutions leads to the following theorem.
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7-1. Theorem. Let {A)\} » A€J, be a strictly increasing

family of forced operators which satisfy (H) on et (0 <rs ) for
r . r _ 0
each A€J. Let AOEAA , A’o > inf AA , and let U= u ()\O) be the

corresponding minimal fixed point of A,)\ . Let the mapping (A, u) =
o
A)\u- of JX CT into C be differentiable at (A o’ uo) » the mapping A -

’ » ° l
Aku be continuous at )\o uniformly for u in [0, uO] , and A.)\o(uo) be

A

0]
(PA) and have a unique positive eigenvector of unit norm. (The Krein-

a compact linear operator. If |.10[A>'\ (uo)] < o0, let Al (uo) satisfy
o)

Rutman theorem shows that the unique positive eigenvector of
A}‘\ (uo) must correspond to the characteristic value “o[A)!\ (uo)] .)
)
1 -
Then 1 < HOEA)\.O(uO)] :
If 1< uO[A)'\ (uo)] » then the mapping A = u®(\) is differenti-
o

able from the left at ko; the derivative is the unique solution § = w(}\o)

of
(7. 5) V-Al (a)y = B, u .
(o] O
If 1= U‘o[A}'\ (uo)] » then
°© a - uo(k)
. o
lim

AMA, Ju, - w00

exists and is the unique positive eigenvector of unit norm of A}’\ (uo)

o
corresponding to the eigenvalue 1.

Proof. In the considerations leading to equation (7.3), choose
the sequence [)\n} to be a monotonic sequence in Aj; increasing to
XO. Then lim uo(kn) =u by Theorem 4-10. Since {A}\} is a strictly

n- oo

increasing family, uo(}\n) <u_. so h in equation (7.3) is well-

Py uOZO-,

defined and positive. Since B,z 0 and B
. o
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(7. 6)  h = Aio(uo)h .

Suppose po[Ai (uo)] < oo. If equality holds in (7. 6), then
1= p,o[Ai (uo)] by theoKrein-Rutman ‘theorem. If inequality holds,
then by (ij) 1< “oEA)'\ (uo)] . Hence, we always have
1< po[AiO(uo)] . °

Iflc uO[A)i (uo)] » then 1 is not a characteristic value of
A)'\ (uo) and ﬁoB)\ uz > 0. Hence, we may write equation (7. 4) as

O 0

h _ h
(7.7) p—o- = A)io(uo)-ﬁ: + BX ug -

o
That is, any sequence {Kn} increasing to A | contains a subsequence
{)\n } such that the limit in equation (7. 4) and the limit of the sequence
k

{ﬁn } » equation (7. 3), exist, and therefore
k

u =-u

lim ° Pk
k=00 A A
-0 nk

also exists and equals the unique solution q;()\.o) = h/[30 of (7. 5) or

(7.7). Thus,
u -uo(X)
lim = ¢ )
ATA Ao =R e

as asserted.
If 1= uOEA;\ (u )], then it follows from equation (7. 4) and
o
the fact that A>'\ (uo) satisfies (PA) that ﬁoB}\ u_ = 0 . Thus, any
o o

sequence converging to )\o contains a subsequence: {)\n } such that

: k
the limit in (7. 4) exists and is a positive eigenvector of Ai (uo) of

o
unit norm. If it is assumed that such an eigenvector is unique, then

lim [uo-uO(X)]/"uo-uo(k)” exists and is this eigenvector, with
A

[e]
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characteristic value 1. /

if 1= “o[A)'\ O(u.o)] and 1 is a simple eigenvalue of Aio(uo) )
then, since A):_ (uo) is a compact operator and the simple eigenvalue
1 corresponds (’:o a positive eigenvector ¢, every u&® may be
represcnted in the form
(7.8) u = Pu+ £(u)d ,
where P is a continuous projection operator onto the invariant sub-
space PR such that I-Ai (uo) restricted to PB has an inverse on
PR, and £ is a positive zontinuous linear functional with £(¢) = 1 and
£(Pu) = 0 for all u€B (Dieudonné 1960, Krasnosel'skii 1964b, Niren-

berg 1961). .

7-2. Corollary. Let the hypotheses of Theorem 7-1 hold with

1= LJ,OEA;\ (uo)] ,» and let 1 be a simple eigenvalue of Ai (uo) cor-
o

o)
responding to the positive eigenvector ¢ of unit norm. Let £ and P

be the linear operators defined above. Then

£lu -u"(r)]

-2 crTEC R
Q O
and
Plu_-u®()]
. 100 N+ u -ou°(>\)ll )
() (o]
Proof. Theorem T-1 shows that
u_-u®QA)
(7.11) o

lim ——— =
AMAL u et
The Corollary follows from the continuity of £ and P . V4

We consider in more detail the case 1 = p,o[A)'\ (uo(ko))], as-

suming this is a simple eigenvalue and that A’k is twice Fréchet dif-
o
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ferentiable at u s i.e., we have in place of equation (7. 1),

- . 1 - 2
{7.12) A)\u = A)\ Ouo'i-()\ -\ o)B}\ 0uO+A.)’\o(uo)(u-~110)+ ?_Ai'o(uo)(u uo)
+ WX -A 0;u-uo) .

where W satisfie's
w (8, h)

. | ) im ——t
o olelnj~0 Tol+[n]?

By replacing u by u®(A) in (7. 12) and using
(7. 14) w’)-u, = EOh)-u )¢ + P’h)-u)
and
E[Aio(uo)(uo(k)-uo)] = £[uR)-u ],

we obtain
(7.15) 0 = (k-lo)&[B}\ouo]+%(&[uo(k)—uO])ZE[A;CO(uO)CbZ]
+£TAY (u )£ )-u PR )-u_h 1P 0 )-u_))*)]
0

+EIw (A, u®M)u )] .

If we divide this equation by ||uo-uo(k)|[ 2 , let A approach }\O from

the left, and use Corollary 7-2 and equation (7. 13), we obtain
2
tt
- | BTAL ()07
0 £ lim — = 3 2
M‘)\O Huo-u (X)” g[Bk u J

(o]

if g[BA u0] #0. If g[A)'\‘ (uo)cpZ] # 0, it follows from equations (7.9)
O (o]
and (7. 11) that '

1

E[u_-u®()] [By w1 J°
(7. 16) lim 2 = {2 ° 5
AtA WA A é[A{o(qu ]

and
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', ;uo(}\) E.[B}\ uO]
(7.17) lim —2—— = |2 —
AMA, WA LAY (ughe"]

Since {A,} is an increasing family, if €[By u ]1#0 then §[Bx0u0]>0,
and therefore g[A;\' (uo)cbz:l 2 0. °
From the pr?aceding arguments we can deduce that the minimal
fixed points uo(l) are discontinuous in A from the right at }‘o if
g[Bk u0] §[Ai' (uo)¢2] # 0 (and therefore > 0). For if we suppose
thereoare minir;al fixed points for A > 7\0 such that }\1;1’{1 u’(h) = u
then the proof of Theorem 7-1 for 1 = “o[A}l\ (uo)] can %e carried
through with appropriate changes of sign to c%nclude that
u’(A)-u
e
o o

From equation (7. 15) we can obtain the relation analogous to (7. 16),

€Lu®n)-u, )2 8[B, u,]

0 =2 lim = 2 9
A=A " 2
A o §EA)\O(uO)¢ ]

But we have assumed that the right hand side in this equality is posi=-
tive. This contradiction shows that, if there are any minimal positive
fixed points for A > }\0,, then there is a positive number ¢ such that
for any A > )‘o in AZ , there is a number &€ (O,X-Xo) such that
o . ‘
- 2
[ (A +8) uO” e. Since

0 = u°(xo+5)- u s u°(x)-uo

by Theorem 4-9, we have

Tu®00 = ull = e

. r . ’ : — J
for all A > >‘o in AA" This result shows also that if 1 = MoiAlo(uo)]
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and the minimal posi’cive fixed points ‘uo(}\) are continuous (from the
right as well as from the left) in A at )\0, then we must have
047 (ag0e"] = 0.

Equation (7. 17) tells us the behavior of the minimal fixed
points u®(\) as A approaches from the left a point Ko such that
1= U’o[A)!\ (uo()\o))] and &fA;\' (uo()\.o))d)zj > 0. Since 1 is an eigen-
value of tk?e operator A>'\ (uo()\oo)) and since ”uo(ko)-uo(}\)” = O(J)TEX)
as A increases to lo’ with §[uo(}\)—uo()\o)] < 0, we expect a branch
po.int at (A o’ uo(ko)) and seek a second fixed point u(\) of A)\ for
)\O-X small and positive such that ”uo(ko)-u()\)]l = O(m } and
§lu()-u’( )]1= 0. Our method of obtaining this solution and proving
its uniqueness is modeled after the work of Krasnosel'skii (1964a) on
equations of the form AAu = u, where A0 = 0 (cf. Nirenberg 1961,
Ch. VIiL; Pimbley 1967; Cronin 1950). We prove the existence of posi-
tive fixed péints of the opera;tors Af , where

(7.18) Afh = A}\[uo(k.)+h] - Akuo()\).

The equation Afh = h is equivalent to the two equations

(7. 19) P[Af(Ph+g(h)qf>)]-Ph = 0
and |
(7. 20) E[AY(PhtE(b)$)]-Eh = 0.

Making use of the representation (7. 12), equation (7. 19) may be writ-

ten as

(7.21) y= P{A;\o(uo)y-i-A}'\'o(uo)[uo()\)-uojh+%A)'\'o(uo)hz

+w-A L, u®Ah-u ) -0 (A, u®h)-u )
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where y = Ph. The operator I - A}'\ (uo) restricted to the invariant
subspac.e PR has an inverse, RP , on PR ; we set R = RPP . Then
(7. 21) is equivalent to
(7.22) y = T(BA)y ,
where B = £(h) and

(7:23)  T(BA) = ROAL (u)w00-u, Ty +B61+ 3AY (u,)y+89)°

+ w (A -A o’ uo(k )+h—u0) - W i)\ -A o uo(}\ )-U-O} .

We assume that the remainder W satisfies the following Lipschitz
condition: for any sufficiently small positive numbers §, p, there is a
positive number qw(ﬁ, p) such that

(7. 24) | Hw(x-xo, hy)-w- , byl = qw(ﬁ,p)”hl-hzll

whenever ”th <p, |]h2|[ < p, and ]k-}\ol < §, where

qw(6: P)
(7. 25) Iim ————— =0
&+p—0 VB + p

(Lt A)\ = AA, then equations (7.12), (7.13), (7.24), and (7. 25) are
satisfied if

(7.26)  Au = Au _+A'u )(uu )+ A" Ya-u )+ Bla-u ),

where
. w(h)
(7. 27) lim 2B)
Inf-0 ||n]}?
(7. 28)‘ ”’(};(hl) - ?u'(hz)” < f(\iw(r)”hl-hzil
for [yl € v, Inyll = x. and
q. . (r)
(7. 29) lim 2 _ = 0.)

r
r=0

The expression w(\ -\ o’ h) is indeed well defined by equation (7. 12) for
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all h of sufficiently small norm, since the differentiability of the map-~-
ping (A, u) - Axu at (7\0, uo) means that A)\u is defined for all A suf-

ficiently close to }\o and all u in a neighborhood of u

O

The implicit function theorem as given by Nirenberg (1961)
then implies that (7. 21) has a solution Yﬁ, z which is unique in some
sufficiently small ball about the origin, whenever IIS' and IK-XO! are
sufficiently small. We shall give a constructive proof of this fact by
showing that T(B,A) is a contraction mapping on a sufficiently small
ball, if |f3] and |>\-}\oi are small, since we will later wish to use.
some of the estimates obtained in the course of the proof to prove the
uniqueness of the solution h(A) of A}c\)h = h.

From equations (7.13), (7.24), and (7. 25), it is clear that it is
possible to choose positive numbers & and p suchthat 0 < XO—K <696,
iyl <p, and |B| s p imply || T(B. A)y|| < p. Similarly, since
T(B )y, - T(B )y,

= RIAY (5 )%, 10y -y, T —;:A;o(uo)(yf—y;)
+BAI (u_)oly,-y,)
O

T =A , u®(A )ty +80-u )-wh -k, uTA Hy,TBé-u )},

equations (7.24) and (7. 25) show that we may assume & and p have
been chosen so that

(7.30) I T8 Ay =T MY, | = als p)lv -y, &

if [B] <p, ”y1||£p, ”yzllsp, OSKO-XSG,where 0 < q(d,p)<l

and lim q{(6,p) = 0. Thus, for each such B,A, T(B,\) is a con-
&+p—0 _
traction mapping of BP = fy: {|y|| < p} into itself and therefore has a
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fixed point Yﬂ, Al this fixed point depends continuously on 8, A for
Bl sp, O< A -A s &, since the constant q(§, p) in (7.30) is inde-
pendent of B and A and T(S,A)y is a continuous function of B and A
for any y€8P .

For later use, we note the following inequalities. From the
triangle inequality,

I vl < T2 0] + T8 A)-T(B.A) O]

and therefore equations (7.23) and (7. 30) imply that for any fixed

point yﬁ,)\_ = T(ﬁ:)\)Y§’)\ 2
. 1
(7.31) 1y 2= 1810012 61(5 p) + B%0,(5. p)

if Iﬁl <p and 0< XO-X < &, where 91(6, p) and 62(6, p) are positive
bounded functions of (8§, p) for &§ and p sufficiently small.
If p and 6 have been chosen small enough, then Yﬁ A is

Lipschitz continuous in P, since

Tk TR
= T(pdvg ) - T
* Ty Mg\ HBy-By)0] - TlBydlyg
so
||y51’>\-yf32’>\ I'< ale, S)HYF;I,;\-YF,Z,;\ I+ a3p, 8)]8,-8, |
" Thus,

(7.32) “ypl’K-yﬁZ’k“ = Tq%%%i 18,-8,

Having established the existence of a solution Yﬁ \ of equation

(7.22) for |B] <p, Os A, A < &, we seek BE(0,p] so that



iy Ay 8
(7.33) B[A g, F B0 - B = O

for X €(0,8] (see equation 7. 20). According to equation (7. 12),

equation (7.33) is equivalent to
(7.34)  £{A} () )[u0)-u Ily g, +Be1+ JAN (u )yy , +B¢1%]
o o

o o
{00 A s u )ty g o B6-u )-wlh-h 0% )-u )}
= 0 .
Using arguments similar to those used above, and assuming that

§[B>\ uo]f;[A)‘\' (uo)cbz:l >0, we write equation (7. 34) in the form
(o] (o]

(7.35) %a[Hfl(a,xo-x)] = §0[1+£2(a,ko-k)] » B=awk -k,

where the continuous functions fi ,» 1=1,2, satisfy

[£ (A M| < g (0 8)

if Osko-}\sﬁ, and for any a0>0,

lim g.{a, 8) = O
540 ©

uniformly for a€ [0, c:.o] , and

£[B, u_] 2
= lim g[uo—uO(k)] = >\° °

g‘o 2 2-
A, VK ELAY (u )6%
o

(o]

Choose o = 6§O and & so small that 0 <)\.0'}\. < &= pz/ﬂ.i and
0<qs= a, imply gi(a, §)< %+, i=1,2. For any such A and 6, Eos
! v al - 1 =
2§,Ofl+f2(q1,>\o A)] o< 3§0 ; since a0[1+f1(a0,)\_0 A= 20 3§0 , the
function a[l'lfl(q,}\o-k)] assumes all values between 0 and 3§0 as a

varies between 0 and o for each A C [kO-B,K). Thus, for each

such A, equation (7.35) has a solution a{A), 0 < a{\) < a -
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It follows that B(A) = a(X)ﬁ_;—-_f = o:OA/_S < p, and therefore
h(A) = yp(}\ )}}L+f3()\ )¢ provides a non-zero solution of Afh = h for each
A, O0< XO-K ..< 5; thus, uf{A) = uo(k Hh(}) provides a s‘econd solution of
A>\u = u. Moreover, since it is possible to make fl(a,)\o—)\) and
fz(cc,Ko-)\) as small as desired for 0 < g< a 0< )\o-k < &, by
taking & sufficiently small, it is clear from (7. 35) that it is possible
to choose the solutions g(i) of (7.35) so that lim q(A) = Zéo.

AT A
From equation (7.31), ©

AR Ypooa e = 0
o

and therefore : -

u(\) -u_ = h()+ u®(\) - u

= E /TR ¢+ 2(h)

where [[z(A)] = O(W ).

In order to be assured that the solutions h(A) are positive
(which they must be if uo(}\ J*h(A) is to be positive) for )\O-—}\ sufficient-
ly small, we assume that the condition (SP) of Section I. 6 is satisfied
by the operators {Ak} at (A o’ uO().o)) « Then the fixed points u(\) =
A)\u(K) are in C° for 0 < }\O-)\ £ & if & is sufficiently small.

We summarize the results of the construction of the fixed

oints u(A) = uo(k Jh(\) in the following theorem.
P

7-3. Theorem. Let {A)\} ,» AE€J, be a strictly increasing
family of forced operators which satisfy (H) on C* for each A €J.
r o £ . N -
For )\OEAA s Xo > inf Ay let the mapping (A, u) Alu be differenti-

o : . :
able at (A o U (ko)), the mapping A A.)\u be continuous at )\0 uni-
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formly for u in [0, uo(}\o)] , and Ak be twice Fréchet differentiable
o

at uo()\o), so that equation {7. 12) holds,with the remainder w satisfying

equation (7.13). Let Ai (uO(K 0)) be compact, satisfy (PA), and have a
o
unique positive eigenvector ¢ of unit norm corresponding to the simple

characteristic value }J,O[Ai (uo(lo))] , so that equation (7. 8) holds.
o
o
Assume that EEBX u (}\o)] >0, If uO[A}'\O(uO(XO))] =1, then

[0}
£[A (@O0 )¢%1= 0;if E[A) (u°(_))¢?] >0, then the minimal posi-
O o

°i o) satisfy

tive fixed points u

of

O
(7. 17) lim “Oo‘o)“uo(}‘) g[B)‘ou %o
: 2l
Mo ETAI (%0 )e%]
o]

o

and there is a positive number ¢ > 0 such that for )\o <\ €J, any
positive fixed point u(A) of A;\ satisfies

lap-u || = e.

If, in addition, the remainder w in equation (7. 12) satisfies the Lip-
schitz condition of equations (7. 24) and (7. 25), then for each A < }'o
with ko—}\ sufficicntly small, thc opcrator A>L has a sccond fixed

point u{A) , which is positive if {A}\} satisfies the positivity condition

(SP)at (A ,u°(A )), and :
(o] Q o %
a()-u®( ) ELB, u ()]
(7.36) lim ° = {2 ° = 5 ]
MA, VIR £ LAy (%0 e
. (o)

We now investigate the uniqueness of the fixed point h(A)} of

A, which we have found above. Let p and & be small positive

A

o .
numbers chosen as above, and let
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(7.37) O‘=min{-ﬂ-i])—-l-rp,-ﬂ-§—1”p} .

If A; has a fixed point h with [|h|| £ 0 for some A€ [A =82 T, then

HPhH < p and IE(h)I-s‘p , so Ph= Ve (), A * the unique fixed point of

T(&£(h),A) in the ball BP (equation (7. 22).

We first show that uo(lo) is an isolated fixed point of A}\
o
Any fixed point h of Af in the ball B° satisfies equation (7. 31) with
o
Bp=£(h ) A=X_, and Yiﬂo = Y&(ho),}\o =Ph_. Thus, h_=0 if and

only if =€(h_ )= 0. If equation (7.34) had a solution B#0 for A =k,
with |B| s p, we may divide through by -;-[32 to obtain

(7.38)  £TAJ (u %]
O

= -£0A] (u {200y, , /B)tlvg, /8%
Q (o] (0]

B A

u )
-2pEL ? w(0, Vg, >\o+ Bo)]

But according to equation (7.31), || Yf3:>\ = }3262(6,p) » so by choosing
p sufficiently small, the right hand sideoof equation (7. 38) could be
made less than the left hand side g[A;\' (u0)¢2] (which is assumed pos-
itive). Thus, for all sufficiently smallop > 0, the only solution § of
(7.33) or (7.34) for \ = }\0 with }B‘ < p is B=0, and therefore 0 is

the only fixed point of A}? in 9 » with ¢ defined by equation (7.37)

o
for sufficiently small p . Thus, uo()\o) =u is an isolated fixed point

A}\o .
Consider next the operator Af for fixed A €[A 0—6, )\O) . If

A)? has two fixed points hy h2 in B° , then from equation (7. 32) we

have
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(7.39) |Pry-Pr, | < 22080 ek, )-6my)] -

We prove that Af has at most one non-zero fixed point in B9 for suf-

ficiently small p by using this inequality and the following lemma
(Krasnosel'skii 1964a, p. 207).

7-4. Lemma. Let A be a positive monotone operator defined

on a subset S of a Banach space B with a positive cone C. Let either
of the following two conditions be satisfied: |

(a) for every number t€[0,17], tSCS, and for any u€sS and
any number t€(0, 1), there is a positive number 7 (which may depend
on u and t) such that

Altu) € (1-m)tAu ;

(b) for every number t=1, tSC 3, and for any u€S and any
number t > 1, there is a positive number 1 (which may depend on u
and t) such that

A(tu) = (14n)tAu .
If A has two non-zero fixed points Ups U, in 8, then neithex

u;-u, nor u,-u; are interior points of C.

(It is possible to strengthen the hypotheses of the lemma
slightly and conclude that neither u;-u, nor u,-u,; are positive; see
Krasnosel'skii (1964a) for details. )

Thus, to prove the uniqueness of the non-zero fixed point of
Af, er assume the existence of two fixed points hl’ h?_ and attempt
to show that ecither h —h2 or hz—h1 must be an illt¢rior element of the

1

cone C; if Af satisfies the condition (a), this would contradict the



—-8 2

lemma. T'he principal difficulty here is proving that the ditference of
two fixed points of A}? is either positive or negative. It is possible,
however, to introduce new cones relative to which this is trivial; one
then must show that Af satisfies the hypotheses of Lemma 7-4 rela-
tive to at least one of these cones. The Lipschitz condition (7.39) sug-
gests the introduction of the cones C(¢, y) defined by
(7. 40) Clp, v} = {u:||Pull < v&(u)] (y>0).
(If B is a Hilbert space with inner product { , ) and if £(u) = {d,u) ,
then C(¢, y) may be interpreted as a cone having its axis in the direc-
tion of ¢ and consisting of all u€RB such that 0 < tan(u, ¢) < vy.)

We note the following properties of the cones C($, y). Clearly,
C(d),yl) C C(d, yz) if 0< Y1 <Yy Also, if ||[Pul < yE(u), then u is an

interior element of C(¢,y), since |Pull < vy&(u) and

) < 3 oo TPl
“ wel - el

imply uth € C(4, y) .
However, we cannot expect Af to be monotonic relative to any
of these new cones without further modifications. To see this, we ob-

serve that for small (}\O-K) and for elements h of small norm, we

have Afh:Ai (uo)h . But u

(o]

< ylA! (u)l| &{u,-u.), wh Al () = su A! (u )Pul: =1};
YH >LOU-O ”P 2"y ere ” Kouo "P s p{” )\Ouo ul| ”Pun 1}

57ug € C(¢, v} implies " A)'\O(uo)P(uZ_ul)iE

hence, A;\ (uo)(uz—ul) € C($, y) (and therefore A}'\ (uo) is monotone) if
o) o

HA>'\ (uo)” < 1. This will not be true in general; however, it is pos-

o} P

sible to introduce a new norm, equivalent to the old one, for which this
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inequality holds, and then we can expect A>'\ (uo) and Af to be mono-
tone on elements of sufficiently small norm relative to the cones
C(¢, y) defined by using the new norm.

To define the new norm, we assume that 1 is larger in abso-
lute value than all other (real or complex) eigenvalues of the compact
operator A‘ (u ) (since the corresponding eigenvector ¢ is positive,
this will be true if A.)'\o(uo) is go—bounded for some g0€C+ by The-
orem 1-1). Since this eigenvalue has been assumed to be simple,
the largest eigenvalue of A;\ (uo) restricted to the invariant subspace

o
P@ is less than 1. Then it is possible to introduce a new norm ” ” o’
equivalent to the old one, such that

lay wpul < a Pull , x <1,
(o] O (o]

lally = [Pull + [E@)] .
and

IPal < [IPull ) < m [Pu]

for some positive number m (Krasnosel'skii 1964a, pp; 88 and 217).
We denote the cones defined by equation (7. 40) using this new norm
I 1y by €.t v). Note that C_(¢, v) S Cld, y) SC_(¢m_v).

Now Lemma 7-4 may be applied to the operators A}? for an
a.ppropriafe choice of the cone Co(¢, v}. To show this, we use the
following two assertions.

(I) For any positive numbers Yir V3 s there are positive num-
bers r _,e such that for all y€ [yl, V3] and all A € D\O—e, Ko] )

h2 ec o(® v) whenever h,-h, € C (¢, v) and ”hlll Sr_,

Ayhy-Ay
I, 0l < = _ .

1

2|
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(II) {We are assuming that £(A" (uo)cpz) > 0.) There are
positive numbers Yir Y22 Yy T and ¢ such that for y = Yy
h€C(d, vy, Inll < ros A € D\O—G,XO] , and t€(0, 1), there exists a
positive number M such that (1-ﬂ)tAfu_-Af(tu) € (4.v)-

The proofs of these assertions are slight modifications of the
proofs of Krasnosel'skii's Lemmas 6.6 and 6.8 (1964a); we
omit the simple verifica.tion..

Choose Yyr Yopr T s and ¢ as in (II) with r 0 (equation 7.37)
and € £ 8. Assume T, and ¢ small enough so that for any fixed
point h of A)? with ”h“ ST 0< )\O-K = ¢, we have (see equation
7.31)

vy
[Pn| = ‘r';;o"ﬁ(h):
so that

IPall_ = v,E@),
T
i.e., hEGOO(¢,y1)= {uEGo(ci),yl): Hu”sro} . Choose

q(3p, 6)
Y3 7 max {VZ’ T-q(p, )

(see equation 7.39), and assume that T and ¢ have been taken small

enough that the conclusion of (I) holds. Then for 0 < }\o-k <e, Af
r
has at most one non-zero fixed point in the ball B ©. Forif AL had

A
T
two non-zero fixed points hl’ h2 in B ° , then, as we have just seen,
T

both h1 and hZ would be in Coo(cf:, yl). According to equation (7. 39),
if hy-h, # 0, either h;-h, or h,-h; would be an interior point of

C (9 Y3)» since [a(3p, 6)1/[1-qlp, 8)] < Y5+ But we can apply Lemma

T

7-4 to A)c:, taking 3 = C’OO(<{>, \/1) and using Co(cb, \(3) as the positive

cone, for assertions {(I) and (II) show that Af satisfies condition (a) of
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o
Lemma 7-4 on C’.O (¢, v;) relative to the ordering generated by
Co(cb, \(3). Thus, neither h;-h, nor h,-h; canbe interior to
Co(¢, y3), so hy = h2 and Af has only one non-zero fixed point in
T

B . We have, therefore, the following uniqueness resunlt:

7-5. Theorem. Let the hypotheses of Theorem 7-3 be

satisfied, and let 1 be greater in absolute value than all other eigen-
values of A>‘\ (uo). Then the;re is a ball B P centered at uo(}\o) and a
number ¢ > (;) such that uo(k o) is the only fixed point of A)\ in §°,
and for each A € ()\O-e:, )\o) s A}\ has exactly one fixed point L:J.(}\)>1.J.o(>\)
in B8P .

The preceding existence and uniqueness proofs do not depend
in any essential way on the positivity or monotonicity of the operators
.Ak . We shall briefly describe the modifications necessary to prove
results corresponding to Theorems 7~1, 7-3 , and 7-5 for more
general operators, no longer assuming that the given set of fixed
points are minimal positive fixed points. We return to equation (7. 4),
assuming that {AK} , AEJ, is an increasing family of continuous op-
‘erators defined on an open subset S of B and having a set of fixed
points {u(A)} depending continuously on A for A in a closed interval
T+ with A_€J, , either A= max J; or A = min J , and u() # ult )
for XO # A€ J;- We denote by I}m a limit taken as A approaches )\o
in Jl . We assume that A)'\ ('uo) 1 is compact and has the simple eigen-
value 1 corresponding to an eigenvector ¢ of unit norm, so that equa-
tion (7. 8) holds for any u€®, and we assume that from equation (7. 4)
it follows that h is an eigenvector of A)‘\ (uo) corresponding to the

o

eigenvalue 1 (i.e., ﬁoB)\ u = 0).
o
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Then any sequence in Jl converging to )\O contains a subse-
quence {Xn] such that hn = [uo-u()\n):}/lluo-u(kn)n converges either
to +¢ or to -¢ ; thus, g(hn) converges either to +1 orto -1, and
]lj,(hn)l converges to +1. Consequently, |t’;[uo-u(?\)]/”uo—u(>\)”l con-
verges to +1 as A approaches XO in Jl » 50 we may assume J, has
been chosen small enough.that IE[uo-u(K)]/Huo-u()\)H I is boundéd be-
low by a positive number for all A € J’l . Any sequence converging to
)"o therefore contains a subsequence D\n} such that g[uo—u()\n)]
either is positive or is negative,but is never zero (at least for suffi-
ciently large n); since g[uo—u()\)] is a continuous real-valued function
of A on Jl which is never zero, we clearly must have &[uo-u(kn)]
positive for all sequences {}‘n} in J'l converging to )\O, or g[uo-u(kn)]

negative for all sequences {?\n} in ‘Tl converging to )\0. Thus, either

o Elu-u()]
l}m oo = 4+ 1
1 °
. L Elagun)
1M ———
3, Jug-at)]
and either
lim uo—u(k)

M1 Ja-un)
or
lim uo—u(?\)

—— = -¢,
1 Ju-u)]

All the considerations of Theorems 7-1, 7-3, and 7-5, for the case
1= uO[A;\ (uo()\o))] » can now be carried through in the present case.
o

Thus, we have:
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7-6. Theorem. Let {AX} » AET, be a strictly increasing

family of continuous operators defined on an open subset S of 8 and

having a set of fixed points {u(A)} depending continuously on A for

A EJl, with )‘o = max J, or }“o =min J,, and ufA) # u()\o) =u_ for

)\o #FAE Jl . Let the mapping (A, u) - Alu be differentiable at ()\o, uo),

and let A>‘\ (uo) be a compact linear operator with the simple eigen-
o}

value 1 corresponding to an eigenvector ¢ of unit norm; let the re be

no u€R® such that u - A,)'\ (uo)u> 0. Then
[e]

uo-u(}\)
Iim —— o4 o = T]‘i):
Cd “uo-u()\)“

where m is either +1 or -1.7
Let £ be the linear functional of equation (7. 8). If, in addi-
tion, equations (7.12), (7.13), (7.24), and (7. 25) hold, and if

é[Ai’o(uo)(l)z] 40, then

0B, u,]
(7. 41) (A -A) - 5= 2 0 M€
ELA) (u )9"]
(o]
and
w suh) | oA BBy w1 )3
(o) (o] (]

(7. 42) lim

—— = 2
7, TR A1 6Lay (a6

nd. A FAET.

If E[B;\ uo] # 0, then for each A in J, sufficiently close to KO ,
o
A # )\O » the operator AK has a second fixed point u(z)(l) # u{\) such

that :
uo-u(z)(K) U-O"u(;\-)

(7. 43) lim ——— = . lim 2~

ey A e
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The fixed point u_ = u(Xo) is an isolated fixed point of A?\ , and if 1

is greater in absolute value than all other eigenvalues of Zi (uo) )
then there is a neighborhood 7 of u()\o) and a number ¢ > 0 such that
for each A in Jl with 0 < l}\o-—kl <g, A)\ has exactly one fixed point
different from u(A) in 7.

If the fixed points u(l) are positive and condition (SP) is sat-

isfied at (A o’ uo) » then the fixed points u(z)(}\) are positive for

[A =) ol sufficiently small.

The preceding theorem can be applied in particular to the
case of most interest to us, when the forced operators A)\ satisfy (H)
on C¥ and the fixed points u(A) are not necessarily minimal fixed
points. If A)\ is Fréchet differentiable on C* for A €J, and if the
mapping (A, u) — A}'\(u) is continuous on JXCGY , then the implicit func-

tion theorem and the fixed points uo(K.)+h()\) of Theorem 7-3 can be
(1)

used to construct a new branch of fixed points u' '(A) for decreasing

A, provided 1 is not in the spectrum of A.)'L(u(l)(K)) for any of the
fixed points u(l)(}\) used in the construction; the fixed points will be
positive if the family {A)\} satisfies the condition (SP) at all points of
IXCT. If the mapping (A, u) - Aku is compact, the construction can be

continued until either lim || u(”(x)n =z or 1 is inthe spectrum of
A>'\1<u(1)(>‘1)) for somyx)\l € J (see Theorem 3-2). If at such a Ay
1= “o[A}!\ (u(l)(kl))] and this is a simple eigenvalue of A)'\l(u(l)()\l)),
and if Ail(u(l)()\l)) satisfies (PAZ) (Section 1. 1), then Theorem 7-6

applies and the eigenvector ¢ and the linear functional £ (equation
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@),

l
(7. 41) of Theorem 7-6 shows that we must have «E,[A" (u(l)O\ ))d) ]=<o0.

7.8) may be taken to be positive; if £( B A )) > 0, then equation
If §[A” (u(l)O\ ))¢ < 0, then there is a new branch {u( (A)} of
fixed pomts satisfying equation (7. 43) for A increasing from Xl . (It
follows from Theorem10-15 below that for convex operators A_)\ for
which all derivatives Ai (u) satisfy (PAZ) , any value of A such that
1 = 'uo[A)‘\ (uf’))] is the maximum of AZ » and thus the situation just
described cannot occur. )

We return to the consideration of the minimal positive fixed
points u®(A). So far, we have shown continuity from the left in A
(Theorem 4-10) and differentiability from the left in A if
1< pO[A)‘\ (uo{}\))] (Theorem 7-1), Stronger results on the continuity
and the difoferentia.bility may be obtained by using the implicit function

theorem. We first prove the following:

7-7. Lemma. Let {A}\} ., L€J, be an increasing family of
forced operators satisfying (H) on ', Let XOEAR and suppose there
exists a number & > 0 such that for each A € {\ o’ A +6) the operator
A}\ has a fixed point v(A) € ¥ w1th)\l41r>f1 viA)=u (X ) Let the map-
plng A -*Aku be continuous uniformly £8r u in [0,u (KO)]. Then
(A o,}\o+6) EAZ » and the mapping A - uo(k) is continuous at >‘o

Proof. It is clear that (A o ko+6) EAZ, and it follows from
Theorem 4-10 that the mapping A - uo(k) is continuous from the left
at >\o (if A‘o > inf AZ ). The continuity from the right follows immedi-

ately by letting A decrease to A o in the inequalities

u°(xo)s Loy vr). /4
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7-8. Theorem. Let {A}\} , A&€J, be an increasing family of
forced operators on a neighborhood of c’ (0 < r < w) which satisfy
(H) on C*. For A_ €Ay N(A",A7) (where A = inf 7, AT = sup 1),
let the mapping A - Aku be continuous uniformly for u€ [0, uO(X O):I;
for some neighbor}}ood N1X7?1 of (ko, uO(KO)) , let A)\ be Fréchet
differentiable on ??1 for each A ENl and the mapping (A, u) - A;\(u)
be continuous on N, X7?1 . Let the family {Ak} satisfy condition (SP)
at (A o’ uo(ko)). If 14 uo[A)'\ (uO(XO))j » then for any sufficiently small
neighborhood 7 of uo(ko) theore is a neighborhood N of >"o such that
N EAZ , and for each A €N, uo()\) € 7. The mapping A - u®(\) is
continuous on N. If, in addition, the mapping (A, u) = Aku is con-
tinuously Fréchet differentiable on N1 X721 » then the neighborhood N
of >\o may be chosen so that the mapping A - uo(K) is continuously dif-
ferentiable on N, and the derivative at )\o is

u®(h)-u’(h )

. o -1 o
YA )= lim ~ = [I-A) (W™ NI "B, u (),
o .kd’}‘o A )\O }\O o )\0 o
i. e., the solution of the equation
VoA Wl = B w0,
o o

where
' o o
) Au (AO)-AkOu O‘o)
u (A ) = lim .
o °© ?\""Ko 7\-}\0

Proof. Since 1 # p.o[A;\ (uo()\o))] » it follows from Theorem
o
7-1 that 1 <|_J,O[A)‘\ (uo(ko))] ; thus, the operator I—Ai (uo(Ao)) has an
o o
inverse. The implicit function theorem 6-5 implies that, given any

sufficiently small neighborhood N of uo(ko) . there is a neighborhood
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N of ko such that for each A € N the equation u-A.ku = 0 has a solution
u = v(A) which is unique in % and continuous (or continuously differen-
tiable under the additional hypothesis) with respect to A . Condition
(SP) guarantees that v(A)€C for sufficiently small N. From Lemma
7-7, the minimal fixed points u°(\) are continuous in A at A, . There-
fore, we can choose the neighborhood N of )‘o so small that u®(\) =
v(A) for all A €N. The last equation of the Theorem follows from the
implicit function theorem or by differentiating u° (X)-A}\uo(k )=0. /1
If the operators Ak have the form AK = A0+)\A , then the dif-
ferentiability requirements of the preceding theorem are satisfied if

Ao and A are continuously differentiable in a neighborhood of uo(ko).

If it is known that the continuity and differentiability hypothe-
ses (including the condition (SP)) of Theorem 7-8 are satisfied for all

KEAZ and u°(‘,\)ecr, and if >\o € AZ ﬁ(?\-,k-l-) is such thal

1 # “o[A}‘\ (uo(}\o))] » then the preceding theorem shows that there is a
O

neighborhood N <& J of >‘o such that N C“:A.Z and uO(K) depends con-
tinuously on A for A € N. From Theorem 4-11 we see that either

sup N = sup AZ = >\+ 6‘? J, or lim ”uo(k)ll =r, or sup N € AZ. If
AT supN

)\+ > supN € AR » then we can reapply Theorem 7-8 at sup N if

1 # p.O[A;\ (uo()\o))] to conclude that there are minimal positive fixed

points u®(\) for A ina neighborhood of supN . Proceeding in this

way, we see that there is a maximal open interval ‘Tl containing }‘o

such that Jl EAZ and the minimal positive fixed points u®(\) depend

continuously on A for A€ .Tl . At the right endpoint }\1 = sup Jl s

either A, = Az, or}\l/;r}fl fu®) =z, or A€ AZ » 1= LAy 1(110(7\1))],
1
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and lim uo(}\) = uo()\l). If the last alternative holds and A)\ is twice
ATA 1

Fréchet differentiable, we may use Theorems 7-3 and 7-5 to investi-

gate the behavior of the set of fixed points of A}\ for A near A;.
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1. 8. Behavior of Fixed Points of Large Norm

In this section, we develop necessary and sufficient conditions

for the existence of a number u, € J such that the family {A, ], LET,

A

has a set of fixed points {u(A)} whose norms approach infinity as A
approaches My We shall see that if the operators Ak have a behavi-
or on veéctors of large norm which can be expressed roughly as

lim [A,u-Al{oju-b] = 0,
lufr0 » * A

where the mapping A - A;\(oo) is differentiable at By o then the opera-
tors A.)\ have positive fixed points u(A) such that ”u(}\)[[ = 0 as k"ul
if and only if ALIJ«I(OO) has the eigenvalue 1 corresponding to a positive
eigenvector. Moreover, the fixed points exist for A > My i bH1 <0
and for A <y, if b|.1 >0.

1
Our first theorem gives a necessary condition for the existence

of fixed points u(\) such that ”u(?\)H - o as A approaches a number
M-

8-1. Theorem. Let {AX} » AE€J, be afamily of continuous

operators on C. Suppose that there is a sequence {Xn} in J converg-
ing to {; € J such that the operators AX have fixed points u(kn) in C
n

with lim || u(kn)H = o, and A}J has a compact C-asymptotic deriva-
n- co
tive A},‘J. (c0) such that
1
A u - A' {(oo)u
. A H1
1im
lall~ o [l
u
A =y

(8. 1)

Then 1 is an eigenvalue of AL (o) corresponding to a positive eigen-
1
vector.



-94~

Proof. Since A;:J. (o) is compact, we can suppose that the
1

sequence {kn} has -been chosen so that AL:J. (oo)un/”un“ {where u =

since

< lim
n- o

u(Xn)) converges to w, say. Then un/HunH also converges to w ,
A u A' (oo)u
” )‘n n _ My n
IEN

A' (oo)u
s |y R
im - w + -w .
n- co Y ”un“ Un
Hence, AL-'l (o)W = w ,'and 1 is an eigenvalue of AL:L (00) correspond-
1 1

ing to the positive eigenvector w . A

Note that if w is the unique positive eigenvector of ALL (00) of

1
unit norm, then lim u(kn)/ Hu(}\n)” = w for any sequence u(?\n) such
n- oo :
that lim ”u(Kn) = o0 and lim )\n =g
n- co n- oo

Theorem 8-1 has the following well-known corollary (see,
e. g., Krasnosel'skii 1964b, IV. 3).

8-2. Corollary. Let A be a continuous operator on C with a

compact C-asymptotic derivative A'(c0). Suppose there is a conver-

gent sequence {kn} of positive characteristic values of A corre-

sponding to positive eigenvectors u(kn) such that lim ]]u()\n)” = .
n- oo
Then lim A is a characteristic value of A'(co) corresponding to a
n— oo

positive eigenvector.
Proof. The Corollary follows from Theorem 8-1 if we show

that 1lim }\n > 0. This is shown by passing to the limit in the follow-
n- oo
ing inequalities:
I T N N N LN

no o T Tl a1l a,

| A -Atcodu|

IENI

At
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where u_=ulr ). Vi

The next theorem describes in more detail the behavior of a
sequence {un} of fixed points with ElunH - . It is easily seen that
the hypotheses of this theorem imply that the conditions of Theorem
8-1 are satisfied. We omit the proof of the theorem, since it is quite

similar to the proofs of Theorems 7-1 and 7-3.

8-3. Theorem. Let {AX} » A€J, be afamily of positive con-
tinuous operators on C. Suppose there is a Mg €J and a sequence

{}\n} in J converging to M such that the operators A}\ have fixed

points u_ in C with lim || unH = co. If the operators Kk have the
form e -

(8. 2) A.ku = A"Hlu+()\ —ul)BH1u+C>\u+D>\u+w>\u ,

where the C-asymptotic derivative Ku] = A}i](oo) of Au1 is compact

and has a unique positive eigenvector ¢ of unit norm, the character-

istic value HOEA}L (00)}] is simple, BH is a continuous linear opera-
1 I
tor, {C}\} is a family of operators on C homogeneous of degree s

(i.e., for h€C, X€T, a>0, C}\(c(.h)=a,SCXh) for some number

s €[0,1), the mapping (A,u) = Cku of JXC into C is continuous, the

family {D)\} of continuous linear operators satisfies
D, |l

(8.3) lim )"“1

A=y

and the family [wk} satisfies
]l

(8. 4) lim -
Fell = oo Jlull

uniformly for A in an open subset (relative to J) of J containing My

then
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E(C  ¢)
(8. 5) lim (A_-u,)||w ”1-3 = - E_(__ul T
- n—t oo n 1 n BH]_ ’

where £ is the positive linear functional of equation (7. 8).

If §(Bu &) # 0, and s'= (1--5)“1 , then
~1

(8. 6) 1im|>\n-u1|s,u Lim [ |\ -ul[ (u Y1

n— oo n=

It

$) s'
‘E(B"M’ ¢
and, with R = [I-A ]‘1P ,

9]
by TE £(c, ¢
(8.7) lim —2— = Rg ETB'—ETB <p+c ¢} .

]
n=oo [luf

If E,(BL‘l ¢)§(CH ¢} # 0, then there are positive numbers r and
1 1

5 such that for all A with

(8:8) 0% (o)) sgn [E(B, @)(C, $)]= 5,

the operator Ak has no fixed points in C with norm greater than r.

If we take Ak = AA for A > 0, where A is C-asymptotically
linear, then AL'.L (0} = p,lA'(oo) ) BH = A'(o0) , and the number My
1 1 '
must be uO[A'(oo)] by Corollary 8-2 (if A'(oo) has a unique positive

eigenvector of unit norm). Thus, we obtain:

8-4. Corollary. Let A be a positive continuous C-asymptotic

linear operator on C which has the form
(8.9) Au = A'(o)ju + Cu + wu
where A'() is a compact linear operator which has a unique positive

eigenvector ¢ and simple characteristic value [A{c0)], C is a
g Mo
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continuous operator which is homogeneous of degree s€[0,1), and

the operator w satisfies

lwtw)]]
(8.10) lim  ——— =

oo fuf®

If {Xn} is a bounded sequence of characteristic values of C to which

there correspond eigenvectors {un] with lim Hun“ = 00, then
n- co
3 = |
Iim >\.n = “OEA ((D)] 2
n- co
and '

lim (A_-u [AN@) Do |17 = - @ [AN@)] FECH) .
n-— o

If £(C¢)> 0, then for any positive number p > HO[A’(m)]
there is a positive number r such that A has no positive eigenvectors
with norms greater than r corresponding to A € [“O[A'(oo)], pl; if

£(C¢) < 0, then there is a positive number r such that A has no posi-

tive eigenvectors with norms greater than r corresponding to

€0, i [A00)] ]

When s = 0, the conditions (8. 4) or (8. 10) on the remainder
w or w are not appropriate for the applications we shall wish to
make of the results of Theorem 8-3 and Corollary 8-4. For e}iample,
in Proposition 8-8 below, the operator A is the integral operator of
Example 2~1, and
f(x,u) = mix)u+ b(x)+ o)

as u— 1o, uniformly for x €0 ; in this case, the operator w defined

by
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wlu)x) = J"ch,y)tf(y. uly))-mlyuly)-bly)ldy
Q

does not satisfy equation (8. 10) in general. To see this, take Q

[0, 17 CR,

_ 1
flx,u) = mu+c +T+_G

({independent of x) for x€[0,1], uz 0, and
K(x,y) = min (x,y)

for x,y € [0,1], so that

1
w(w)(x) = ftmin<x,y)1£1+u(y)1‘ldy :
0

If we consider the sequence {un} of positive continuous functions

nn’x , Osxsmn’l
un(x) 0 n-l <x<1
then a simple calculation shows that lim Hw(un)ll # 0, although
n—++ oo
lim Hu H = o0. In other words,
n—-+co

lim [f(x, p) - m(x)p - b(x)] = 0,
p~+oo

uniformly for x€{, does not necessarily imply

lim  max ’ JPK(X,Y)[f(y,u(y))-m(Y)u(Y)-b(Y)]dY = 0.
l|uQ—'oo x€Q A ‘ :
utC

The difficulty here is that, although Hunll - 00 as N - +too,
the functions u.,ﬂ are non-zero only on an arbitrarily small subset of
Q=100,1] as M=+ o0 ; hence, the operator w acting on the functions
u’q is not able to take advantage of the asymptotic behavior of f(x, p) as

p~too. We need to restrict the limit in equation (8. 4) or (8. 10) to
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functions u which become large as Hu” - oo on a subset of (I which
is sufficiently large that the asymptotic behavior of f(x, p) as p—-+ o
determines the asymptotic behavior of Au and w(u) as Hu” - .

In order to obtain a more appropriate condition for w o, we
observe that if we replace equation (8. 4) by the requirement that
i wkuH / Hu“s be uniformly bounded for u€C’ and A in some J-
neighborhood ot My » then equation (8. 1) of Theorem 8-1 still holds,
and the order of magnitude estimates of Theorem 8-3 remain valid if
§(Bul¢) # 0 (also when s > 0); i.e., as }\n Ty the quantities
A By 1270 Dy | Tew)1™ L [P | Te( )17, ana

!
IPu [l 3 -n) 1°°

remain bounded. One easily sees that consequent-
ly the results of Theorem 8-3 hold if, in addition to the boundedness
of | wkuH /Hu.“S » we replace equation (8. 4) by the following condition:

for any posilive number r ,

(8. 11) lim B7°|lw, (Be+E°n)|| = ©
-+ _

uniformly for ”h” < r, provided [3¢+ﬁsh € C for all sufficiently large
B.

The condition (8. 11) can be verified for operators of the form
of equation (2.8 ) or (8. 19) for suitable functions ¢; e. g., if ¢ is
positive almost everywhere on {1, then for all h in any bounded sub-
set of C(Q), ﬁ¢+ﬁsh can be made arbitrarily large except on an arbi-
trarily small subset of {3, if P is sufficiently large (see Proposition
8-8 below for the verification of equation (8.11) when s = 0),

8-5. Theorem. Let the conditions of Theorem 8-3 hold, ex-

cept that the condition (8. 4) is replaced by the fdllowing: for A in a
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neighborhood N (relative to J) of My in J,

(a) the set {” wKuH/]lu” 5. u€ C+ , A€EN} is bounded, and

(b} for any positive number r , the limit in equation (8. 11)
exists uniformly for A € N and h€8" such that h+B¢€C for all suf-
ficiently large 3> Q.

Then all the conclusions of Theorem 8-3 are valid.

Proof. Since equation (8. 1) of Theorem 8-1 is satisfied by the
operators A)\ and Kul = Aklll(m) , 1 is an eigenvalue of Kul cor-

responding to the positive eigenvector ¢ = lim un/Hun% . From
n- co

W= Ay u = K w0 B

+
) . u C}\ un+D}\ un-i-w)\ u

1 n n n

we obtain

0 = (Kn-p,l)g(B“lun)+§(C>\ un)+§(D)\ un)+§(w>\ un) .
n n n
Dividing by (Kn-—ul)llun “ and letting n = co , we have
u

|].-S g(c}\ 2 )+ . g((ﬂ)‘. u )

nfu ] fu° *a®

0=E(B )+ lim 1

1 n=oo (}\.n-,.tl)H un!

If E’(Bu $) # 0, it follows from hypothesis (a) that
1

lim sup ikn-p.ll I U’n” 1-s . oo . Similarly, if we divide
n = o :
Pun = R{(}\n-ul)Bulun+ Cknun+ Dknun-i- w}\nun}

by HunHS , we obtain
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Pun I-s B“’lun v
ot ROl 1 g ()
o, S I N
a w, u
1 n l-s n
+ D, (— ) _-u,)|u el (I
o P el e ]
n n
S0
_ 1P|
lim sup ——F < .
nroo u |
Since lim £(u_)/||u_|| =1, we also have
oo | D n
1P|

lim sup —— < ®©.
n~ oo g(un)

Let §_ = f_:',(un) ; hn = Pun/ﬁnEL . Then there is a positive number r
such that “ hn H = r for all n. In view ‘of the uniformity of the limit in
equation (8. 11), we have
im0, = lm 2%, 8,008, <

Equations (8. 5), (8.6), and (8.7), and the condition assécia.ted with
inequality (8. 8) then follow from the equations above. Vi

We next show that if G, u is a constant b, for u€C, and if the
operators Wy satisfy the asymptotic condition (8. 11) with s = 0, then
we can establish a converse of the preceding results for opera.fors of
the form of equation (8. 2): if A  has the simple characteristic value
1 to which there correspond's a plositive eigenvector, then the opera-

tors AX have fixed points of arbitrarily large norm for A near My -

8-6. Theorem. Let {AK} » AEJ, be a family of continuous

' operators on a cone Gl containing C+ in its interior, with A}\Cl cc
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for A €J, and let the operators A, have the form of equation (8. 2)

A

for some ule J, where A—“ and BLJ- are continuous linear operators,
1 1

Cyu = b, € B for all u and all A € J, the mapping A = b, of J into &

A
is continuous, D)\ is a continuous linear operator which satisfies
equation {8. 3), and the operators w, satisfy conditions to be specified
later. Let A-.“l have the simple eigenvalue 1 corresponding to a
positive eigenvector ¢ such thal every u€®# is representable in the
form
u = g(u)p + Pu,
where P 1s a projection of B onto the subspace P#, invariant under
K“l , on which the operator I‘-A—Hl has an inverse RP , and £ is a
positive continuous linear functional with £(Pu) = 0 for all u€f and
E(¢p)y=1. Let wy satisfy the following conditions for any sufficiently
small number r > 0 and for A in an open subset N (relative to J) of
J containing K
(8.12) lim || w (Be+h)| = 0
B+ :
BER
uniformly for h€@F = {u€B: |ull <z} and A €N ; and

(8.13) w, (Byé+hy) - w (B,0+h,)[|
< q (B Byshys hysh) [[(B) o+h )-(B,4+h, )|
where qw(ﬁl’ Boihy, hz;h) is a real-valued positive function of the num-

bers Bl, BZ , the vectors hl’ h2 , and the number A , such that

(8. 14) lim gq (B,:B,sh,,h A) = 0
ﬁz—'+oo w1212
B8,

uniformly for h, h, €R" and A € N.
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- Then there exists a number §>0 such that for each A €J with

(8.15) 0 < (by-r) sgn[E(b, ) £ (BM1¢) 1<8

1
A)\ has a fixed point u(}\n)EC+ , and for any sequence {An}, the ele~-
ments of which satisfy relation (8. 15), the corresponding fixed points
u(kn) =u of A}\ satisfy equations (8. 5), (8.6), and (8.7), with s=0.
Proof. ;he proof is very similar to that of Theorem 7-3, and
we shall give only a brief outline. We seek a solution u of the equa-

tion Alu—u = 0 in the form u = y+Bé by first attempting to solve

(8. 16) P{Ayu-u) = P[A (y+Be)-(y+Be)] = 0

for y in terms of B, and then choosing B so that the equation

(8. 17) E(Ayu-u) = E[A (y+p9) - (y+B9) =0

Y

is satisfied. Then u = y+B¢ will satisfy A)‘u-u =0,
Equation (8. 16) is equivalent to

(8.18) z = T(a,A)z,

where

Qo = (k‘ul)ﬁ H] z = Pu—ku,k )

_ 1. .
Ky y = GA-dp) RL()L—HI)B“1+D>\]¢+ Rb,

and

(8.19) T(a,A)z =R[{(A -pl)Bul(zi-ka, ?\HD?\ (z+ka’ )\)

oy i Falnu ) )]

For any positive number 8§ and sufficiently small positive 71, it is
possible to find a neighborhood N, of My in J such that for ch.l £ 0,

XEN, and O’.(X—}_ll) >0, T(a,)) is a contraction mapping of &7 into
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itself. Thus, equation (8.18) has a solution Zy N which depends con-
. 2

tinuous'ly on o for each \ € N1 .
Setting ya’ A ZO_L, >\+kc" o\ and substituting for y in equation
(8.17), we find that for N1 sufficiently small, [cr.! <9, and

g = q()\—p_l)—l > 0, equation (8.17) has a solution a(\) for A € N with
ICL(X)I £ 6 and

sgn a() = sgn (A-u;) = -sgnfé(bul)é(Bulwl )

for appropriate choice of §. Thus, there is a positive number & such

that for any A satisfying inequality (8. 15), the operator A)\ has a
fixed point

I L afd)
u(d) = YG'(A-)’A-+}\'U1¢.
From equations (8. 12), (8.13), (8. 14), and (8. 3), the solution a{\) of

(8. 17) may be taken arbitrarily close to --&,(b!“L )/&(Bu ¢) for A suffi-
1

1
ciently close to ui . Then

lim &,[u(?\)]()\—ul) = lim QA) = -E(b  )/E(B o).

Similarly, equation (8.7), and thence equations {8.5) and (8. 6), may be

obtained from equation (8. 17). /

We now give some conditions under which Hammerstein inte -

gral operators have the properties assumed in Theorems 8-3, 8-5, and

8-6.

8-7. Proposition. Let the operators AX’B}\ defined by _

(8. 20a) A ulx) = é; K(x, yih Ely, uly))dy
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(8. 20b) By ulx) = u{f;K(x,y;k Jgly, uly))dy

be continuous operators on C(Q) for each A in some interval J. Here,
0 is a bounded domain in Rn » £ and g are continuous functions on

X (-0, ®©), and there is a positive constant . such that

n
|Ke, yik)| € —2—-
ESd

for some number o € [0,n), all x,y € 0, and A in a subset N of J.

Let

lim [f(x, p) - g(x,p)] = O
p—too

uniformly for x€{l. Then for any function ¢€ C({l) which is positive
almost everywhere on (), and for every positive number r , we have

lim ||A>\(@¢+h)-B>\(ﬁ¢+h)|| = 0
p—+co

uniformly for A €N and h€ C(Q) such that ”h” <r.
Proof. Let

fm(r)=max{lf(x,v)1 :x€0, 0sv<r) ,

gm(l') = max{lg(x,v)l :x€0N, 0sver} ,
and

'y = sup{ [ |Kx, y;A)|dy : €T, A €7}
Q

Let ¢ and r be given positive numbers and choovse ' > 0 such

that |£(x, p)-g(x, p)l £ e/y for p2 r' and x€Q. Choose § > 0 such that

. t I -1
jix-y[ﬁé‘ K(x, y;d)|dy < elf (z)g (r')]

for x€Q, and choose B, > 0 such that
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. = r'tr € &%
meas {(x€Q: ¢(x) < B, } o= w, I +g_(r7) °

If g= ﬁo and Hh“ £ r, then u(y)= Bé(y)th(y) < r implies
aly) s 87 [r'-n()] = g xtr] s

setting
Q,={y€Q:uly)< ', |x-y| >5},
ﬁz ={y€Q:uly)<r', |x-y| <8},

and
03 = {y€Q:uly)>r'} ,

we have

|, (Bé+h)(x) - B, (Bé+h)(x)|

< [+ ] + [ |K(t s)£(s, u(s))-gls, uls))]|ds
Ql QZ 03
éq
T ETg FT

%0 ™ 1 €
= -57;' [fm(r )+gm(1‘ )] 7{;

+ €
1 [
fm(r )+gm(r

p L6 g )] +§y.- Y

= 3e
Thus, lim [lAk(p¢+h)-Bk(;3¢+h)|| = 0 uniformly for A €N and
B-+oo
In] <r. V

8-8. Proposition. Let the kernel K(x, y;A), the function f,

and the operator AK have the properties described inthe first two
sentences of the previous proposition. Let f(x,u) have a continuous
partial derivative fu such that

lim [f (x,p)] = m(x)
p=+0o v
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uniformly for x€{Q. Define the operator w, on C(l) b
\ Y

w, ulx) =(J;K(x, vih ) [y, u(y )-m(y)uly)-bly)]dy .

Then Wy satisfies conditions (8. 12), (8.13), and (8. 14) of Theorem 8-6
for any function ¢$€ C({l) which is positive almost everywhere on {0 .
Proof. The preceding proposition, with g(x, u) = m(x)utb(x),
shows that wy satisfies condition (8. 12). Condition (8. 13) is proved in
a similar way: using the mean value theorem, we have for any func-
tions uy,u, € c@),
[ £(y. uy (v) = mlylug(y) - £y, uy(y)) + m(y)u,(y)]|
= [, (v, uly)) - m(y)] {uy(y) - u,y)]
where
min{u(y), u,(y)} € Uly) € max{u;(y), u,(y)} -

As in the proof of the preceding proposition, we can then show that,
given positive numbers e, r , it is possible to find a number BO such

that whenever 8, 2 3,20 _, th | <z, HhZH £ r, we have
D, (Byo+h;) - D, (B +h,)

< sup J(;IK(xaysX)l £ (v, Wy )-mly)| [u, (y)-u,ly)|dy
X

(where u, = ﬁi¢+hi , 1=1,2). This shows that conditions (8. 13) and
(8. 14) are satisfied. /

8-9. Proposition. Let the kernel K(x,y;A), the function {,

and the operatox A)\ have the properties described in the first two

sentences of Proposition 8-7. For functions m€C{(Q), ¢ € C(@),
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and a number s , O<s<l, let

im [f(x, p) - m(x)p - c{x)p°] = 0
p~+oo

uniformly for x € I . Define

C}\u(x) = éK(X, ViA )c(y){u(y)]sdy

and

Wy ulx) = g K(x, yih ) Lily, uly))-m(yuly)-c(y)uly)]® 1dy

for u€ C{Q1). Then C}L is homogeneous of degree s and Wy satisfies
both condition (8. 4) of Theorem 8-3 and condition (8. 11) of Theorem
8-~5,
Proof. See Proposition8-7 and Krasnosel'skii (1964a, p. 242). /
The final theorem of this section and its corollary treat opera-
tors {AK} » A&J, which may be described as asymptotically super-
linear; equation (8. 21) of Theorem 8-10 holds for arbitrarily large S
and appropriate bk, 8 In this case, if we have a convergent sequence
{}\n} such that the operators {AX } have fixed points {u(ln)} with
lim {[u( )| = e, then lim X ¢nJ. The conditions of Theorem 8-10
n- oo n= co
are quite similar to the conditions of Corollary 9-2, in which we prove

the existence of non-minimal positive fixed points.

8-10. Theorem. Let {A;\} » A€J, be a family of positive

operators on C. Suppose there is a positive number r and a family
{Tk} » A&€J, of positive linear compact operators for which the map-
ping A = T)\ is continuous on J » such that for any positive number f

there exists b € B so that
A, B

(8.21) Au = ﬁTXu+b

)\. )\.,ﬁ
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for all u> 0 with ||u]| 2 r. For each p and any closed bounded sub-
set J, of J, let the set {b}\ g A€ Jl} be bounded in norm. If there
is a convergent sequence {)\n} in J to which there corresponds a

sequence {un} of positive fixed points of the operators A)\ such that
n

lim ||unH = 0, and if thereis a g € ¢t and an integer m 2 1 such
Py oz lu_|lg, for each A € J, then lim A_ is notin J.
A n n' S\ oo D

Proof. Suppose lim A _ = }“oo is in J. Then the numbers >‘n

n- co
are contained in a closed bounded subset J, of J. Since TK is
00

compact, we can suppose that the sequences {Kn} and {un} have been

n- oo
that T

chosen so that {‘Tkooun/”un[l} converges, say to h, and Hun |z r.

m

Since for each n . T;\ u, = |lunll g it follows that h> 0. Choose
oo
B> l/”h“ Then
u A)\nun u u b)\ » B

n o _ - n n n
o o I W W oy Wi o i o
SO “ “b

1+ plTy -1y Bl Ty rer -

ol
o]

Letting n — oo, using the continuity of the TX in A and the bounded-

ness of {b)\ ﬁ: AE J'l} » we obtain the contradiction:
L= glnf .

Thus, lim xn is not in J. I
n— oo

Corollary 8-11. Let A be a positive operator on C. Sup-

pose there is a positive number r and a positive linear compact oper-
ator T such that for any positive number @ there exists bcc €RB so

that

(8.22) Au = qTu+ b
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for all u> 0 with |u]| = r. If there is a sequence {un} of positive
eigenvectors of A such that lim H unH = 00, and if there is a gOEC+
and an integer m = 1 such thr;: OoTmun z Hun” g, for every n, then
the correcsponding sequence of characteristic values {kn} (u.n = A Au )
converges to zero.

Proof. Taking J = (0, @) in Theorem 8-10, we see that any
limit point of the sequence {Xn} must be either 0 or co . If the se-
quence {kn} is not bounded, then there is a subsequence {Xnk} con-
verging to oo such that {Tu_ /“un |} converges to a positive vector

k k
h (since T is compact and Tmunk/“ unkH = g, ). But

= ||Aunk|l .. “Tunk”__ 5|

for any positive number « ; taking the limit in this inequality, we ob-

tain
lim inf A7) = aln| > 0,
k~ Tk
which contradicts lim A_ = o . Thus, the sequence {kn} is bounded

n
k- Tk
and has 0 as its unique limit point. Vi
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I. 9. Existence of a Second Fixed Point

In the follow'ving theorem and its corollaries, we develop further
criteria for theexistence for forced operators of positive fixed points
larger than the minimal positive fixed points. The general method
ma& be described as follows: given a positive monotonic forced op~
erator A with a minimal positive fixed point u®, we seek a positive
fixed point of the unforced operator A® defined by A%h = A(u®+h)-Au°
for h= 0. A positive fixed point ho of A provides us with a posi-
tive fixed point uo-i-ho >u® of A.

The significance of the hypotheses of the following theorem
may be understood by conside—ring the unforced operator A to be a
positive real-valued function. A positive linear operator T may be
interpreted as a straight line through the origin of slope HO(T)—l .
Then condition (a.‘o) states that at u = roo the graph of A lies below
that of a straight line through the origin of slope LJ,O(TO)_1 <1, and
condition (aoo) states that the graph of A eventually lies above that of
a straight line of slope uo(T)-l > 1. Itis then clear geometrically
that the graph of A intersects the straight line through the origin of
b’lopev 1 at some positive value of u., This argument also shows that
the condition A0 = 0 cannot be dispensed with. Conditions (bo) and
(boo) can be given a similar graphical interpretation.

Lhe requirement that T h = | k| g, given under condition (a_)

is needed to assure that the sequence ’Jl‘vi / ]lvi |, constructed in the

next to the last part of the proof, does not converge to a limit 0.
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9-1. Theorem. ILet A be a compact positive unforced opera-

tor on C. Suppose that either of the following conditions is satisfied:
(ao) There exist a continuous positive linear operator T0 with
po('I‘o) 21 and a positi\}e number T such that

(9. 1) Au £ T u
O .

i

for all u€C with fuf = rs
(bo) A has a compact Fréchet derivative A'(0) at the origin,
and p [AY(0)]> 1.
Suppose further that either of the following conditions is satisfied:
(a'oo) there exist a compact positive linear operator T , with
p,o(T) <1, satisfying (PA) and having no positive eigenvector with
eigenvalue 1 ; a positive vector g, and an integer m such that for
all h € C for which there is a positive number a(h) such that
h= oc(h)gO » we have

(9. 2) T™h = Inlg, s

and a positive number r., and a vector b € 8 such that

1
(9. 3) Au 2 Tutb
for all u€C with [lull 2 ry;
(b‘oo) A has é. compact C-asymptotic derivative A'{oc) , with
pO(A‘(oo)) < 1, which has no positive eigenvector with eigenvalue 1.
Then A has at least one fixed point in C+ ; if condition (a.o) is
satisfied, then A has a positive fixed point with norm greater than
r

r s if equation (9. 1) is satisfied for all u in C © and if uO(TO) >1,

then A has no non-zero fixed point in C with norm less than T
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Proof. (C.f. K’rasnosel'skii 1964a, Theorem 4. 16.) The idea
of the proof is the following: for sufficiently large integers n, we
construct new operators An which differ from A on elements of large
and small norm in C, but agree with A on elements of "intermediate"
norm. The operators An are constructed so that we know they have
fixed points in et . Using condition (ao) or (bo) , we show that for
sufficiently large n, these fixed points do not occur among the ele-
ments of small norm on which An differs from A ; using condition
(a.oo) or (boo) » we show that these fixed points also cannot occur
among the elements of large norm on which An differs from A, for
sufficiently large n. Thus, for large n, the fixed points of An oc-
cur among those elements u such that Anu = Au, and therefore A
has at least one positive fixed point.

The proof under conditions (bo) and (boo) is given by Krasno-
sel'skii (1964a, 'fheorem 4,10, or 1964b, Theorem V.3.4). We car-
ry through the proof under conditions (ao) and (aoo). Since the proof
concerning elements of small norm and that concerning elements of
large norm are indépendent,. the other cases may be handled by using
a combination of Krasnosel'skii's proof and ours.

Without loss of generality, we assume that r, > ro . For

1

n = max{3, rl} , we define
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ZHU‘“ = ol "o < <
P AR
Au , ros ”u” =n
A u =
n lull x (.nu z2_%o n 1 Snz

[EVIESEL Y PSRRI 2 3

S0 <l <
3 ”” -H—g—o-n', n I'U. n .

The operators An are compact positive operators defined on the set of
3

all C such that ro/ZS ”u" <n When ﬂu” = rO/Z s ”AnuH =90

<z _/2; when |uf = n> , then [l A u [ = (n®-n)? >n>. It follows from
the theorem of Krasnosel'skii (1964a, p. 147) on operators expanding
the cone that each An has a éositive fixed point u in its domain of
definition.

We now apply condition (ao) to show that we cannot have rO/Z

< | u | =< r,. For if this equality were satisfied by some u s then

we would have

r u
(9. 4) 0 <« v, T m = OLnAVn < q‘nToVn’
where
2u ff-=,
a =
s ” un”

As in the proof of Theorem 4-13, it follows that po(To) < o < 1,
which contradicts the assumplion HO(TO) z 1. Thus, all fixed points
. S )
of the operators .An satisfy “ unH N
Suppose next that there is a sequence {un } of fixed points of

i
! = n.2 . Then

the operators A_ such that n. = ”u l
n. i n. i

1 1
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Vi & go
g

1 ) Iivi vi b
; = — A ( ) + . = T( ) + =+ e Y
[EZUERR 7 RS P I T KRSk PN
where v. = u and
i n

(v, ] - np*

, = = O;
* vl
thus
= &o
(9- 5) Vi = “ Vi “ pl ‘"'Eo—ﬂ—
Since T is a positive linear operator,
6 Vi 2 Vi 1
(9. 6) T = T + — Th
vl Ivill 2

Using the fact that T is compact, we may assume that the sequence
{un } has been chosen so that {Tvi/u v.l”} converges to w ; from

1
equations (9.5) and (9. 2), w > 0. Passing to the limit in equation

(9. 6), we obtain

Since T satisfies (PA) and does not have a positive eigenvector cor-
responding to the eigenvalue 1, w2 Tw implies p.O(T) > 1, which
contradicts the assumption of the theorem that p _(T) < 1. Thus,
there are no fixed points of An with n = ” un” = n2 for sufficiently

large n.

Finally, suppose there is a sequence {un } of fixed points of
1
A such that n” < |u_ | < n> . With v, = u , we have
n, i n, i i n,
i Goa beg (T —irtb) 46
= + &. < Y. + + 0. ’
vl TVl vy i%o A ifo

1

where
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RS

L 1

(m%n)%  (n-1)?

0 £ §, = = - o as it .
1 vl n;
But’ '
0 < & < Vi {T Vi b)
.2 - Y. +
| 1o AR EA
implies

5 = [§] = 1+ T| + [oll .

which contradicts 51 - o as i~ oo. Thus, there are no fixed points
of A with n < | w || < n’ for sufficiently large n .

Hence, for sufficiently large n, all fixed points U of A,n
satisfy T < U un” < n, and they are therefore fixed points of A .
If Au< Tou for all u in Cro , then any fixed point U of A in
Gro satisfies u < Touo » and it follows as in the discussion of equa-
tion (9. 4) that uo(TO) < 1. Thus, if ;.LO(TO) > 1, A has no positive
i‘ixed points with norm less than r_ . Vi

If A is a compact positive monotaic forced operator on C with
a positive‘ fixed point'uO » then the preceding theorem may be used to
‘deduce the existence of a second positive fixed point > u® by applying
it to the opei'ator A° as described just before Theorem 9-1. The fol-

lowing corollaries are applications of this type of argument.

9-2. Coroll:ary. Let {AX} » A€J, be a family of compact

positive monotonic forced operators on C satisfying the conditions of

the first paragraph of Theorem 7-1 for each Xo € AA . For each
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A€ AA , let ’I‘)\ be a compact positive linear operator satiefying (PA),

z 2z 1 with T:\n)\

= ”h“ g for every h for which there is a positive number a(h)

such that there is a gXECT and an integer m h

with h 2 a(h)g, . Suppose that for any number >0 and any A € A, ,
g}\ P ¥ A

there'is a bk, B € % and a number Ty

(9.7) Axu = 13T>\u+b

such that

A, B
for all u € C with [jul| = =,

Then, for any A € Ay , A >infA, , with 144 [A'@A)D],
the operator A>L has a second positive fixed point.

Proof. If 1+# p.o[A}'\(uO(}\)):l , it follows from Theorem 7-1 that
1< p,O[A;\ (uo(}\))] ;'therefore,ﬁ condition (bo) of Theorem 9-1 holds for

the operator Af defined by Afu = AX (uo(K Hu) - Akuo()\) , since

o! o . oy .. ,
AX (0) = A;\ (u’(L)). Since T)\ g =2 ” g, ” g T)\ has a positive eigen-
value (Krein-Rutman 1950, Theorem 6. 2), and therefore uo(ﬁT)\) =

8" 1L_J,O('I‘>\) can be made less than 1 for sufficiently large B. Equation

O

(9. 7) implies that Aku = A)\ (uo(X Hua) - A uo(

\u )= ﬁTxh+[ﬁT>\uo()\) +

bk p-uo()\)] ; thus, Af also satisfies condition (aoo) of Theorem 9-1

if we take T = [:'S'I‘)L for sufficicntly large B. Therefore, A;\) has a

positive fixed point and Ak has a second positive fixed point. J

If we use condition (boo) instead of (a.oo) , we obtain

9-3. Corollary. Let the family {A)\} satisfy the conditions of

the preceding corollary. Then for any A €A A > inf A, » for which

A ]
AK has a C-asymptotic derivative A;\(oo) having no positive eigenvec-
tor with eigenvalue 1, Ak has at least two positive fixed points if

BolAg (@) T <1<y [A] ((AN] .
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9-4. Corollary. Let A be a compact positive monotonic op-
erator on C, let c€C, and let c+XAO >0 for A >0 ; for each
PS Ay = {A\>0: Jue€ et 3 u = ctrAu} , let A have a Fréchet deriva-
tive- A’(uo(}\)) which satisfies (PA) and has a unique positive eigen-
vector of unit norm. Let T be a compact positive linear operator
satisfying (PA) and the condition associated with equation (9. 2} of
Theorem 9-1. If there is a number ry > 0 such that for any number
@ there is a vector ba € B so that

(9. 8) Au z aTu+ ba

for all u€C with |uf >z, , thenfor any A € A, with A # u JA'(X)],

the equation u = ¢tAAu has at least two positive solutions.

9-5, Corollary. Let A be as described in the first sentence

of the preceding corollary. Let A have a compact C-asymptotic
derivative A'(oo) having no positive eigenvectors except those corre-~
sponding to the characteristic value p,o[A.’(oo)] (assumed finite). Then
for any A € Ay such that A > pO[A'(oo)] and A # HOEA'(uOO\))] , the

equation u = ¢ctAAu has at least two positive solutions.
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I. 10. Concave and Convex Operatoré

Let the operator A be defined on a convex set 5. Consider the
following inequality for elements u # v of S¢
(10. 1) Alau + (1-a)v) € aAu+ (1-a)Av,
where a € (0,1). If equation (10.1) holds for all & € (0, 1) and all u, v

in S such that either u<v or v<u, we say that A is convex in the

direction of C on 8 ; if (10.1) holds for all u,v in 8, then A is convex

on 8. If (10.1) holds with < replaced by < for all &€ (0, 1), then the
convexity of A is described as strict. If an operator A on S is such
that -A is convex (in the direction of C) on 8, then A is called con-
cave (in the direction of C) on S.

An (inhomogencous) linear operator A = c+T , where T is
linear and c is a constant vector (# 0),is both concave and convex.
Thus, all results of this section on (forced) concave and convex positive
monotonic operators are valid for positive operators c+T (with c¢>0).

The operator of Exarhple 2-4 provides an example of an opera-

tor which is convex in the direction of C, but not convex, on C. Let

1
Au(x) = fu(y)u(y"-X)dY

X

on C[0,1]. Then

(10. 2) Afaut(l-a)v)(x)-aAu(x)-(l1-a)Av(x)
. 1
= —a(l-a) [[uly-x)-v({y-x)][uly)-v(y)ldy .
X

Thus, if either u> v or u<v, we have

Alaut(l-alv) = cAut(l-a)Av
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for 0<a<1l, i.e., A is convex in the direction of C. Suppose,
however, we choose u,v such that

u(x) > vix), OSx<% ; u(?:)<v(x), %<x$ 1
Then u(y-3)-v(y-3)>0 for 1 <y<1, and u{y)-v{y) <0 for 3<ys1,

SO

1
—a(l-cc)[[u(y-%)-v(y-%)][u(y)—v(y)]dy >0

and therefore (see equation (10. 2))
Aflaut(l-a)v) § aAut(l-a)Av .
The following propositions give some of the properties of dif-
ferentiable convex or concave operators which will be useful in our
later discussion of the set of fixed points of families of such operators.

10-1. Proposition. Let the operator A be Fréchet differenti-

able on an open convex set S. Then A is convex (in the direction of
C)on S if and only if
(10. 3) A'(uf{v-u) £ Av - Au
for everyu,v in S (suchthat u<v or v<u)
The convexity of A is strict on S if and only if
(10. 4) Al(u)(v-u) < Av - Au
for every u,v in S (such that u<v or v<u).
Proof. If A is convex (in the direction of C), then

. Af{utgh)-Au
m

Allu)(v-u) = 1 (h = v=-u)
. s
< lim oA(uthH(l-a)Au-Au
a
a-0
£ Av - Au

for any u,v in S (such that uS$ v or v<u). (So far, we have used
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only the differentiability of A at u.)
| Conversely, if (10. 2) holds, then
(10.5)  afAu-A(out(l-a)v)] + (1-a)[Av-A(aqut(l-a)v)]

z alA'(out(l-a)v){u-ou-(1-a)v)]

+ (1-a)[AYaut(l-a)v)(v-au-(1-a)v)]

= 0,
whenever u,v are in 3 (and u< v or v < u); this proves the convexity
of A (in the direction of C) on S.

If A'(u)(v-u) = Av-Au, then by equations (10. 1) and (10. 3),
(1-a)XAv-Au) 2 A{out(l-alv)-Au= A'(u)(l-a)v-u) = (1-a}(Av-Au) ; thus,
the existence of any a € (0, 1) such that strict inequality holds in (10.1)
implies equation (10.4); a fortiori, strict convexity implies (10. 4).

The converse follows by replacing = in equation {10. 5) by >. Vi

10-2. Proposition. Let the operator A be defined and Fré-

chet differentiable on an open convex set SSCRB. If A is convex in the
direction of .C‘. on S, then A'(uta(v-u))v-u) (which is defined at least
for ¢ € [0,17) is an increasing function of ¢ for any u,v in S with
u<ve.

Conversely, if A'(uta{v-u))(v-u) is a continuous increasing
function of & whenever u,v are in S and u < v, then A is convex in
the direction of C on S.

Proof. Define {(a) = A(uta({v-u)) for u,v in § with v > u. Then
q;'(a,) = A'lata(v-u)lv-u). If A is convex, then { is convex, and by an
easy generalization of thg well-known result for real-valued functions
(Choquet 1966), {' is an increasing function.

Conversely, if ' is increasing and continuous, then for
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O<cac<l,
| 1 1
Alavt(l-a)u)-Au = a[§'(Ba)dp < ofy'(B)Ap = alAv-Au] ,
0 0

which proves the convexity of A in the direction of C. VA

10-3. Proposition. Let the operator A be convex in the di-

rection of C on C and C-asymptotically linear. Then whenever
O0=susv,
Av-Au = A'(o)(v~-u).

Proof. Let h=v-u, a>1. Then from equation (10. 1),

A(u+é(ah))-—Au < é—A(u+ah)+(l——é—)Au-Au - é[A(u-(-ah)—Au] )
If h>0, we let a = +oo and obtain
A(uth)-Au £ AY{oo)h . /

10-4. Proposition. Let the operator A be Fréchet differenti-

able on C, convex in‘ the direction of C, and C-asymptotically linear.
Then for any u and h in C, we have A'(u)h £ A'(oo)h .
Proof. From Proposition 10-3, for any @ > 0 we have
é [A(utah)-Au] £ A'(co)h .
Letting ¢ = 0, we obtain
A'fu)h £ A'(o)h . 7
Results analogous to Propositions 10-1 through 10-4 hold for

concave operators.

In Theorem 7-3, the sign of E:,(A”(u)d)z) , where £ is a positive
linear functional and ¢ € C+ , is important. For convex and concave

operators, we can determine the sign of this quantity (see also Theo-
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rem 10-14).

10-5. Proposition. Let A be Fréchet differentiable on a con-

vex neighborhood 7 of a point u€C and twice Fréchet differentiable at
u, and let h€C . If A is convex in the direction of C on 7, then
A"(u)hz 2 0, if A is concave on 7, then A”(u)hz £0.

Proof. If, e.g., A is convex, then A'(utah)h is defined for
sufficiently small ¢ 2 0, h >0, and is an increasing function of

by Proposition 10-2. Thus,

A'wh? = L Aturan)n . 0

2
da =0

for sufficiently small positive h and consequently for all positive h. /

Our next result shows that the theory of Section I. 5 can be ap-
plied to monotonic go-bounded forced operators which are concave in
the direction of C.

10-6. Proposition. Let A be a monotonic forced operator on

C* which is concave in the direction of C. Then for any number
0€(0,1) and any uée’ s Alou) > oAu . If, in addition, A is 8"
bounded on CF for some go€C+ , then for any &€ (0, 1) and u€C",
there is a number m > 0 such that A(au) = a(l+n)Au .

Proof. From the concavity in the direction of C, we have

Alau) 2 aqAut(l-a)A0 > gAu

since A is forced. If A is go-bounded on CY, then there are positive
numbers B and B' such that A0 = [Bgo 2 B'Au, and therefore

Alau) = gAuH(l-q)g'Au = all+a '(1-0)p'JAu ./
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The theory of Section L 5 also applies in certain cases to con-
vex operators.. For any operator A which is Fréchet differentiable
at u, we define Au = Au-A'(u)u. (If A is a real-valued function of
a real variable, then Au is the intcrscction with the vertical axis of
the tangent to the graph of A.) If A is convex in the direction of C
- and Fréchet differentiable, then, using Proposition 10-1, we have

Alou)-aAu 2 A'(u)(qu-u)+ (l-a)Au = (l-q)Au,
if 0<a=<1. This gives us the following:

10-7. Proposition. Let the operator A be convex in the di-

rection of C and Fréchet differentiable on CF . If A is a positive
operator on G, then A(qu)= qAu for any u in C* and any «€[0,1].
If, in addition, both A and P’; are go-bounded on C+ , then for any u
in ¢¥ and any a€(0, 1), there exists a positive number 1 such that

Alau) =z a(l+n)Au .

Theorem 5-4 implies that an operator A satisfying all the hy-
potheses of Propositions 10-6 or 10-7 has at most one positive fixed
point in C'. We can also prove uniqueness for differentiable concave
operators or convex operators for which A is strictly positive if we
replace the requirement that A (and A) be g_-bounded by the require-
ment that the derivatives A'(u) satisfy (PA). The following simple
lemma is the key to the uniqueness proofs.

10-8. Lemma. Let A be a positive monotonic operator on c*

which has a positive fixed point W€CY . Let the Fréchet derivative
A'(u) exist and satisfy (PA), If Au>0, then 1< M LA )], I Au

2 0 and A'(u) has positive eigenvectors only for the characteristic
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value p,O{A'(u)] , then 1< “O[A'(u)] .

Proof.. If u = Au€ c*t and Au = u-A' (u)u > 0 ; then it follows
from (PA) that 1 <p,o|:A'(u)] . If Au= 0, then either u-Al(uju >0
(whence 1 <1.J,O[A‘(u)j by (PA)), or u-A'{fulu=0, so 1 = po[A'(u)]
if A'(1) has positive eigenvectors only for the charactcristic value
p LA ()] . 7

10-9. Theorem. Let A be a monotonic forced operator on

C* which is concave in the dircction of G and has a fixed point u€CY,
Let A'(u) exist and satisfy (PA). Then A has no fixed point greater
than u in C*.

Proof. Since A is concave in the direction of C and Fréchet
differentiable at u, Ay = Au-A'(u)uz A0 >0 (cf. Proposition 10-1).
By Lemma 10-8, 1< uO{A'(u)] . If A had-a fixed point v = u, then

u-v = Au-Av = A'(u)(u-v)
(Proposition 10-1). The argument used in the proof of our Theorem
4-13 (Schaefer 1966, Appendix 2.3) shows that 1 < uo[A'(u)] implies
u-vz 0, sou=v. Vi

10-10. Theorem. Let A be a monotonic forced operator on

C* which is convex in the direction of C and has a fixed point uOECr.
For any fixed point u of A, let A'(u) exist and satisfy (PA), and let
Au>0. Then A has no fixed point in ct greater than u .

If, instead of Au > 0, we have Auz0 for any fixed point
u €t » if A'(u) has positive eigenvectors only for the characteristic
value uo[A'(u)] » and if A is strictly convex in the direction of C,

then A has no fixed point in ¢t greater than u
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Proof. The proof is similar to that of Theorem 10-9, using
Proposition 10-1 and Lemma 10-8. Vi
If the operator A of Theorem 10-9 or 10-10 has a minimal

positive fixed point (Theorem 4-4), then it is the only fixed point of A

. T
in C° .

Propositions 10~1 through 10-4 can be used with Theorem 4-5
and its corollaries to obtain better estimates of the size of AZ for
differentiable concave or convex operators {A}\} . Assuming that the
indicated derivatives exist, we have
(10.6) AYv)utAv € Au < Ao ){u-v)+Av
for convex A, and |
(10.7) Ao} u~v)+Av £ Au < A'(v)u+Av
for concave A,

10-11., Theorem. Let A be a forced operator satisfying (H)

on CF .

If A is convex (in the direction of C ) and has a fixed point u
in €Y, and if there is a v (2w or < u) in CF with Av >0 such that
A'(v) exists and satisfies (PA), then 1 < uo[A'(v)]. .

Let r = oo |

If A is convex in the direction of C and C-asymptotically
linear, then uo[A’(oo)] > 1 implies that A has exactly one fixed point
in C.

If A is concave in the direction of C and has a fixed point in
C, and if A'(o0) exists and satisfies (PA), then 1 < p,o{A'(oo)] .

If A is concave and there is a v&C such that A'(v) exists and
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uo[A'(v)] > 1, then A has a fixed point in C.

Proof. Since A'(v) and A'(oo) satisfy (H) on C by Propositions
6-1 and 6-2, the theorem follows from the inequalities (10.6) and (10.7)
and Corollaries 4-7, 4-8, and 4-15, » 4
Theorem 4-5 and its corollaries also provide iteration pro-
~ cedures for obtaining fixed points of A, starting with the solution h of
one of the linear equations
A(vlh+ Av = h
or
A'(co)h + A0 = h,
and using the inequalities (10. 6) and (10. 7).

10-12. Corollary. Let A be a positive monotonic operator

satisfying (H) on C¥ , let Ay =cthA, A >0, where c is a constant
vector in C°, and suppose that AKO >0.

If A is convex (in the direction of C)and XA € AZ , and if there
isa v (= uOO\)) in ¢© such thé,t A'(v) exists and satisfies (PA) and
Av>0, then A < uo[A'(v)] ; thus, sup AZ < HO[A'(V)] .

Let r=o00.

If A is convex in the direction of C and C-asymptotically line-
ar, then uO[A'(oo)] > X >0 implies A € Ay s thus, sup AAZp,O[A'(oo)].
Ak has exactly one positive fixed point for each A € (O,uO[A'(oo)]) .

If A is concave in the direction of C, C-asymptotically linear,
and A'(oo) satisfies (PA), then X € AA implies X <HO[A'(m)] ; thus,
sup = 1 [A'(0)] .

If A is concave and there is a v in C such that A'{v) exists,

then U,OI:A.‘(V)] >X >0 implies A EAA; thus, sup Ay = uo[A'(v)] .
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Proof. For concave operators, sup Ap = p,o[A‘(oo)] follows
from Theorem 10-11, and then sup Ay = HO[A'(Q)):I follows from the
discussion at the end of Section I.4, Theorem 3-5, and Theorem
8-1. The remaining assertions are immediate consequences of Theo-
rem 10-11, /

In Theorem 7-1 we have shown that for a minimal positive
fixed point u®(\) of an'opera.tor AX we have 1 < uo[Ai (uo()\))] . I
A>\ is convex, we have the following partial converse of this result.

10-13. Theorem. Let A be convex and monotonic on CF and

have a fixed point u in G such that the Fréchet derivative A'(u) ex-
ists and 1 < uo[A'(u)] . Then u is less than any other fixed point of
A in CT,

Proof. Let u be any fixed point of A in cr. Using Proposi-
tion 10-1, we have

u,-u = Au,-Au =2 A‘(u)(ul-u) .

1 1
Since 1 <gO[A‘(u)] » u;-u=0 (cf, the proofs of Theorems 4-13 and
10-10). VA

From Proposition 10-1, Theorem .10-13, and assumption (PA),

we obtain:

10-14, Theorem. Let the monotonic operator A on ¢' have

two fixed points uy < u, in ¥ and have a Fréchet derivative A'(ul)
at Uy which satisfies (PA). If A is strictly convex in the direction of
C on C‘r , then 1 <p,o[A'(u1)j , and thus ug is less than any other
fixed point of A . If A is convex in the direction of C on C* and

A'(ul) has positive eigenvectors only for the characteristic value
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- “o[Al(ul)] , then 1< "‘Lo[A'(ul)j .

Under the conditions of Theorem 7-3, if 1 = uo[Ai (uo(ko))] for
for some )\OEAZ, then there are no positive fixed points o?f A}\ close
to uo(xo) for A >\ . The next theorem shows that if the operators

A}\ are convex, then such a KO must in fact be the maximum of AZ .

10-15. Theorem. Let {AK} , A€J, be a strictly increasing
family of forced ope‘rators which satisfy (H) on ¢* for each A€J.
Suppose that there is A* € AZ with a corresponding minimal positive
fixed point u* = uo()\ *) such that A , is convex in the direction of C
and has a Fréchet dorivative Al (u”) satisfying (PA,), with
1= uo[A’*(u*): . Then )\* is the maximum element of Az . If, in
addition, A , is strictly convex in the direction of C, then u* is the
only positive fixed point of A}\ w+ I, for each A € AZ ) AK is convex
and has a Fréchet derivative Ai (u(A)) satisfying (PAZ.) at any positive
fixed point u(A), then there is at most one number A such that
1= p A ()], and such & A is the maximum of Ay .

Proof. Suppose there were a A > )\* in AZ ; let u_ = u®(\)
be the corresponding minimal pos itivg fixed po;lnt. Then u > u* and
from Proposition 10-1 ,

u o

S

_ =:<- ' b . b -
(10, 8} u_-u A}\*(u )(u.o u ) =z A)\uo A

Since {Ak} is a strictly increasing family, the right hand side of

(10,8) is positive; this violates condition (PA'I) . If A, has a second
A

positive fixed point U and is strictly convex in the direction of C,

then the left hand side of (10,.8) is positive, which again contradicts

condition (PAl) .
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If the derivatives Ai (u(A )} each satisfy (PAZ) » then an argu~-

ment similar to that used in connection with equation (10. 8) shows that

3k . '3
any number A such that there is a corresponding fixed point u(A )
with 1 = uO[A)i (u(A" )] (whether or not it is the minimal positive

fixed point) is the maximum of AZ » and hence there is only one such

. )\* . //

If the operators A)\ are unforced and we take u>:< = 0 in the
hypotheses of Theorem 10-10, then the proof shows that K* Z sup Ai )
where AR ={A€J: 3 wéCfyu= Aku>0} .

From Theorems 10-13, 10-14, and 10-15, we obtain:

10-16. Theorem. Let {Ak} » A € J, be a strictly increasing
family of forced operators which satisfy (H) on C* and are convex in
the direction of C. Let A)\ have a Fréchet derivative A.)'L(u()\)) at each
positive fixed point u{(A) of Ak , A€ Az , and let Px’(u(k)) satisfy (PA).
If, for some A € AZ with A < sup Ai R A>\ has a fixed point u(l)()\)
>u®(), then A}\ does not have a third fixed point u(z)(K) such that
.u(z)()\) > u(l)(X) if either of the following conditions is satisfied:

(a) A.}\ is strictly convex in the direction of C ;

(b) A>'\ {u{A)) satisfies (PAZ) and has positive eigenvectors only
for the characteristic value “o[A;\ (w7 .

AT 2% = sup AK € z , the operators A}\ are Fréchet dif-
ferentiable on C* for A ina neighborhood N. of A , the mapping
O\, u) - A;\ (u) is continuous for A € N and u € CF, and all derivatives
Al (u), w€ct, satisfy (PAZ), then k* = max Ai , and the existence

A £ e
of two fixed points u(l)()\ ) = w and uC(A") = u implies that all vec-
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tors uCt = auy + (1--(:;,)uo » 0sa<1, are fixed points of A % 3 more-
over, in this case, all vectors Kua are neither positive nor negative.
__P_r__g_gif_.. If A <sup A; » then by Theorem 10-15,
1< “o[A)'\ (u®( N. A, had two non-minimal fixed points u(z)(l)
> u(l)(k) , then 1 < uo[u(l)(M] by Theorem 10-14 if (a) is satisfied,
and by Theorem 10-13, u(l)()&) is minimal, which contradicts the
assumption u{l)()\) > 1100\) - If (b)is satisfied, then Theorem 10-14
implies that 1 < “o[Ai (u(l)(}\))] ; since Ai (u(l)(}\)) satisfies (PAZ) ’
Theorem 10-15 implies 1 < “otAi (u(l)(k ))], and we reach a contra~
diction to Theorem 10-13 as before. |
AT s }L* = sup AZ € Ai and the mapping (A, u) = A;'\(u) is
continuous, then the implicit function theorem implies that 1 =

p,o[A)\*(uo)] . For convenience, we will denote A % PY A for the

rest of the proof. If A has two fixed points u.,u , then
I’ %o

. 1
LR Aul-AuO =JA'(ua)(u1-uo)da = A'(uo)(ul-uo)

by Proposition 10-1. By (PAZ), we cannot have inequality here, and
thus

1
(10.9) u-u = g”A'(ua)(ul-uo)dq: Altu Mu-n )

By Proposition 10-2, A'(ua)(ul-uo) is an inecreasing function of @ ; if

for some @, €(0,1), A'(uq )(ul-uo) > A'(uo)(ul-uo) s then
1 % . ° 1
{A'(ua)(ul-uo)dq = JA'(uo)(ul-uo)dc(. +6{‘A‘(uao)(u1-uo)du.
o

> A'(uo)(ul-uo) )

which contradicts equation (10. 9). Thus, for a€fo0,1),
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A'(uo+a(ul-uo))(u1-uo) = A'(uo)(ul-uo), '
and by continuity,

- = ! - = -
(10. 10) U -u A (uu')(u1 uo) Au1 Auo .

for 0 s a< 1. By Proposition 10-1,
1 - - ! -
A (uu‘)c,(u1 uo) 2 Au(1 Auo z A (uO)cx,(u.;l uo) s
so {rom eqguation (10, 10),
= ! - = - = .
Aua Au0+a,A (uo)(u1 uo) u0+c,(u1 uo) S,
We also have
= - 1 - =] - 1 - - 1 A .
u v, oA (uo)(u.1 uo) u va.A (uq')(u1 uo) A (ua)uo+Aua ;
since 1 = uo[A‘(ua)] by the implicit function theorem, assumption
(PAZ) for A'(ua) implies that we cannot have Aua >0 or Aua <0
(we must have, in fact, Ea(ﬁua) = 0 for any eigenvector ga of the
adjoint of A'(ua) corresponding to the characteristic value
I .
holA'u )] ). 4 |
The proof of the theorem shows that any fixed point of A *
A

*
must have the form u®(\ Ha¢, where a2 0 and ¢ is a positive

* ,
eigenvector of A' *(uo(}\ )) corresponding to the characteristic value

A
1= uOEAi*(u°(X* I

If A is convex and has a minimal positive fixed point u®,
then the operator A° defined by A°h = A(u®+h)-Au® satisfies
| A°@h) s aA’h |
r O _ . .0 r
for any a € [0,1], h€C'-u = {u€C:u+u€C’}. I, for any

@ €(0,1), h€C"-u’, there is a number m > 0 such that
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A°loh) £ a(l-q)A°h ,
then one may establish results similar to those of Theorem 10-16 on

(@) 5 (1)

the non-existence of non-minimal positive fixed points u
using Lemma 7-4 (Krasnosel'skii 1964a, §§6.3.2, 7.1.11). We shall
apply this type of argumeht in Section IL. 2 to the eigenfunctions of

nonlinear ordinary differential equations.

In Part Il we shall see that when A is the Hammerstein inte-
gral operator of Example 2-1, and the kernel is the Green's function
of certain boundary value problems for ordinary differential equations,
then the convexity in u of f(x: u) implies that A has at most two
eigenvectors for any characteristic value A ; if, moreover,

lim f(x,u)/u = o, then A has exactly two eigenvectors for each A\ in
::ll:e+§;en interval (0, sup AA) . We shall now give two examples to
illustrate other types of behavior for convex operators.

Let f be a continuous function on [0,1]X[0,r), 0<r< oo,
and let f(x,u) be convex and monotonic in u. Then the operator A

defined by

X
Au(x) = gf(y, u(y)dy ,

is a compact positive monotonic convex operator on et cC[0,1]
(Example 2-1), and u € ¢’ is a fixed point of A if and only if ﬁ'(x) =
f(x, u(x)), u(0)=0. Since f(x,u) is convex in u,

0s f(x,u) - f(x,v) < fu(x,,u+)(u-v) s
where fu(x, ut) is the partié,l derivative from the right of f(x,u) with

respect to u (Choquet 1966). If for all positive numbers r<r,
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fu(x, ut) is bounded for 0 s x<1, O0<us ry then from the well=-
known uniqueness theory for the initial value problem for ordinary dif-
ferential equations {Ince 1956), A has at most one fixed point in C,
This uniqueness result also follows from Corollary 4-15, since we

have

Au s T(rl)u

r
forall u€C 1 » where T(rl) is the linear operator

x
T(r1 hu(x) = ‘gM(rl Ju(y)dy

and M(rl) = sup {fu(x, ut):0<x<1, 0<us< rl} . The operator
T(rl) has p.o[T(rl)] = +o00 , s~ince p,T(rl)u(x) = u{x) implies u(x)= 0,
0=x=1, for any finite number u. Thus, the operators AA
have at most one fixed point in Cr1 for any r, <r, and thus at most
one fixed point in C¥ , for each A > 0.
As a particular example, consider the Riccati differential
equation
w'(x) = Al+ul(x)), O0s<xs1,

with the initial condition |

u(0)=0 .

This can be written as the integral equation

ulx) = A)\u(x) = AAulx) = X};{1+u2(y)}dy , 0sx=<1.

It is easy to verify that this equation has continuous positive solutions
only for 0 <A < w/2, and that the solutions are
u®(hix) = tan(Ax) .

Thus, for each A € Ay = (0, w/2), there is exactly one eigenfunction
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u’(A), and lim [ uo()\)” =00,
ATw/2

For any function u€C, the forced operator A has the com-

pact positive Fréchet derivative A'(u): C[0,1] ~ C[0, 1] given by

. . b4
A'(uh(x) = 2 [uly)h(y)dy .
0

Clearly, there are no eigenfunctions h such that h = MA'(u)h for
finite | ; thus, uo[A'(u)] = 00, and A'(u) satisfies (PA) and (PAZ)'

The operator-}t is given by
A X 2
Au(x) = [[1-u”(y)ldy .
0

Thisisnota positive operator on C, yet the eigenfunctions of A are
unique for each \ € AA H thus,“ the converse of Theorem 10-10 does
not hold. For the eigenfunctions uO(K) we have

Auo()\;x) = Zx-l-ltan}\x .

The operator A is not C~asymptotically linear, for if il had a
C-asymptotic derivative A'(co) , then lim o lA(ah) = A'(co)h for any
function h€C. But lim a 1A(C(,h)(x) Sﬁo’;ozor all x€(0,1]. This
shows that the exist:r_l.c-I-ea:)f a C-asymptotic derivative is not a neces-

sary condition for the existence of a number M; > 0 such that

lim H u(?\)" =loo (cf. Corollary 8-2).
A=y

We shall now give an example of a convex forced operator
which has four eigenvectors for small values of A\ ; this is a modifica~
tion of an example 'given by Krasnosel'skii (1964a, p. 206).

Let 8 = R,Z ’ i e. » the vector space of two-component vectors,

and take as the positive cone C the first quadrant, i.e.,
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(€ 6062820, €,2 0},
Take _
MGy 6,) = 24,4052, o lE24e? veta?),
where ¢ and a are arbitrary fixed positive numbers. It is easily
verified that A is strictly convex on C. The eigenvectors of A satis-
fying x = \Ax are x°(\) = (g‘;(x ) _g—,g(x)) defined by
6900 = 100y o TP ]

E50) = eET0)

for 0 <A s\” = (¢+2a e) (1)(7\) (E(ll)(l).g(zl)(k)) defined by

1 2 2

ey = o -e)+»_/<x‘1-e>2-4a e? ]
ePoy = e

for 0 <A < )\*; and x(i)(h) = (€ 1(*)(}\ ) §z(*)(k) defined by

£ B0 =110 o) 2/ o) 136 )- 402

6,50 = ot Fn)

]

ek - -1 el
for O0<\ A =g 1[1'+-2~/1+a2] <) . (These eigenvectors may be
. . . -1 -2
obtained by making the change of variables my = € gl » M, =€ gz,
A = ek inthe equations (£;,€,) =AA(E,, €,). The equations in n;, 1,
so obtained are the equations for determining the eigenvectors of A

when ¢ = 1.) Notice that
lim x°0) = lim x0) = x°0%) = %" = call, o)

AT )\Tl
and
lim x( )()\)— 11m x( )(?\)"lzm x( )(A.)" =e[1+;\/1+a.2](1,e).
AMAKE S A ASA*

If we define || (gl, gz)]] = mak(gl, E,z), and assumé 0 < e<1,

then a graph of the norms of the eigenvectors against A has roughly
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the appearance shown:
=)

N

1o(1)
Do) 1Mo

I=°0) |

If we represent the elements of RZ by column vectors, the
Fréchet derivative A'(x) of the operator A at any point x = (E.l, f;z)

€ Rz is the linear operator which is represented by the matrix

2t 1
Alx) = .
* 2 23—152

The second Fréchet derivative A''(x) is a bilinear operator on RZ ;

for any vector d = (61, 62) € R, A'"(x) generates the linear operator

A'(x)d represented by

261 0
AMx)d = o
0 2625:

The eigenvalues of A'(x) (A'(x)h = 4~ 1h) are
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W= g reTle, 2 e e e ) e

fbr the solution's‘xo(;\) and x(l)(}\.) s gl = e-lgz = ux“ y 80

b [x°0)7"!

20 +e = p [A="0]"!

I

w17 = 2] x| -e

and similarly for x(l)()\) . Thus,

u Ix°00170 = At ooy eaae? < A7

* ' % £ .
except for X =X , when y.lf:xo(k: }1=X (see Theorem 7-1). Also,

1 = At e e 4a%e? > 2!

for 0< )i < )\¥ (see Theorem {0-13). _
The eigenvectors h, and h2 of A‘[xo().)] corresponding to the
eigenvalues “l[xo(?x)], uz[xo(k)] are

hl = (193) ) hz = (1’ '3)3

respectively, and the linear functional {which we have denoted by £ in
Theorem 7-3) corresponding to the positive eigenvector h1 is the map-
ping
: "
z = (Cy,0,) ~ (eCy+C,)/2¢ = hy -2z,
. :
where h1 = (g, 1)/2¢ is an eigenvector of the transposed matrix
A'(xo()\))t corresponding to the characteristic value (2||x0()\)”+"=:)-'1 s
% ®
and h, 'z denotes the dot product of h, and z. Thus, any vector
z=(C > gz) € RZ has the representation
&

where
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(see equation (7. 8)). It is straightforward to verify that

5% b3 3
, a
. x*-—xo(k) o 9. x(])(}\)-x>=< - hl %
11rr§‘ ———— T 11mi< — 2~z 7 ' hl
(10. 10) = Jae h1

{Theorem 7-3).
For the non-minimal eigenvectors x(l)(k) s the second char-

acteristic value uz[x(l)()\)] is related to A by

w01t = A ze /0T o) 422 2

S0

>\ for }\**<)\S)\*

i1 {1 = gor A =a®

sk
<A for O0<X <)

As predicted by the implicit function theorem 6-5 and Theorem 10-15,
the bifurcation point at A = X** < )\* occurs when A is a characteristic
value of A'[x(l)(k. )] different from p.OEA'(xO()\ )):I-1 , l.e.,

A= uz[x(l)(k)] ; this case is not covered by the theory of Section L 7.

¥ L2
If h, is the eigenvector of A'(:c>‘<“)t corresponding to pz[x ], then
B B33 5 (1) . skl
[} 1" -
hZ Ax )hzh2 0, and X (A) exists at A ., On the other
e
hand, the eigenvectors x(i)()\) are not differentiable at A , but
+ e
lim oy . pofe Jlral
A AR SR by

which is similar to equation (10. 10) above for the behavior of x°(\)

and x(l)(X).when A is near k* .
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PART II. 'EIGENVALUE PROBLEMS FOR NONLINEAR
INTEGRAL AND DIFFERENTIAL EQUATIONS

II. . Hammerstein Integral Equations

We shall consider.in detail how the results of Part I can be ap-
plied to the investigation of the behavior of the eigenfunctions of the

~ nonlinear integral equation of Example L 2. 1,

(1. 1) u(x) = A ‘{[;K(X:Y)f(}’a u(y))dy ,

where {} is an open bounded domain in g2 ; K(x,y) is positive for
(x,¥) € 2XQ, continuous on (UXQ except possibly when x =y , and for
a positve number % and a non-negative number @ <n,

(1.2) 0 < K(x,y)— < N
|x-y |

for (x,y) € X0 ; and for some positive number r, 0<r < o, f is
apositive continuous function of n+l variables on {i% [0, r) such that

0 <f(x,p,) < £(x, p,)

whenever x€Q and 0 < Py s p2'< r. We set
fmin(p) = min {f(x, p) : x€0}
and

f (p) = max {f(x, p): x€Q]}

max
for 0sp<r. | Since frnin(o) >0, we may assume that f is extended
to a continuous positive function T detfined on Tx (-r, r) , and that the
extended function T retains ail the continuity and. differentiability
properties of f at or near the origin which we may later impose on f.
For example, suppose that f(x, u) has a continuous partial derivative

fu(x, u) for (x,u)€ OX [0, r). If we define
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flx, u) , D<uc<cr

A 2f (x, 0)

-;—f(x, 0)[1+exp(—f—lé-‘—,—vru)] , u< 0

then f and 'f‘u are continuous and positive on {IX (-0, r), with
ﬂmmzﬁmma%mwpo.

Henceforth we denote the extended function I by f. These
assumptions on the set O, kernel K, and function f in equation (1. 1)
are retained throughout Section II. 1 unless the contrary is specifically
indicated, and all integrations are to be carried out over the set ()
unless otherwise noted.

As noted in the Introduction, the development of this section
closely parallels that of Part I. We first prove thé.t (1. 1) has
eigenfunctions of arbitrary norm (Theorem 1-1). Theorem 1-2 shows
the uniqueness of the eigenfunctions for each A when f(x, u)/u is a
decreasing function of u. When f(x,u) is twice continuously differ-
entiable with respect to u, Theorem 1-5 describes the behavior of
the minimal positive eigenfunctions for A near the maximum . of
the eigenvalues A of (1.1) (if there is such a maximum), and it
proves the existence of a second fixed point for X near X* .

Theorems 1-7 and 1-8 describe the behavior of eigenfunc-
tions of large norm; if f(x,u) ~m(x)u + c(x)uS for 0 s <1, we are
able to determine the value p; > 0 such that Xl‘i’m [uh)|| = o (where
u(l) denotes an eigenfunction of (1. 1} corresponding to the eigenvalue

A ), and using the sign of c{x) we can describe whether the eigen-

: *
functions of large norm exist for A > My or A <p;. HEA >p, >0
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and f(x,u) is continuously differentiable with respect to u, Theo-
rem 1-10 shows that there are at least two eigenfunctions for all A
such that u, < A< k* . By putting further restrictions on the kernel
K(x,y), we are able to state in Theorems 1-12 and 1-14 conditions
under which there are at least two eigenfunctions for each A with
0<X <X*, and p,1=0.

The rest of the section is devoted to a discussion of equation
(1. 1) when f{x,u) is convex in u, usually under the assumption that
f(x, u) is continuously differentiable with respect to u. Theorem
1-15 describes the general properties of the eigenfunctions u(l) as
functions of A and characterizes the maximum value }\.* (if any).
Theorems 1~18 and 1-19 show that for a given A there cannot be
‘2 u, 2 u®. This re-

2 1
sult can be obtained by using the methods and results of Section

three distinct eigenfunctions satisfying u

I. 10; we give here an alternative derivation for the case when K(x, y)
is symmetric. We will use this result in Section II. 2 to prove that
in certain cases (l. 1) has at most two eigenfunctions for each A .
These theorems also show that there is either only one or infinitely
many eigenfunctions coi'responding to )\* + Theorems 1-23 and 1-24
give conditions under which there is only one eigenfunction for )\* ;
these conditions have the very simple form given in Theorem 1-24
when f{x, u) is independent of u. In Section II. 2 we shall show that
the non-existence of three eigenfunctions u, = uy 2 u® can be proven

for f(x,u) convex in u without the differentiability assumption if the

kernel satisfies condition (2.7 ) of that section.
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The results of Keller and Cohen (1967) on nonlinear elliptic
partial differential equations can be easily generalized to apply to the
problem (1.1). In the following discussion we shall therefore empha-
size results which are not included in the work of Keller and Cohen.

We denote by C(Q?) the partially ordered Banach space of con-
tinuous functions on Q, with the norm

[u| = max{|u(x)| : x€Q}
for any function u€ C(Q), and set

BT = {uwec@): lull <=1,

C = {u€C@l):ulx)2 0, x€0},
and -

¢t = gNe.
Then the operator A defined on BY by
(1.3) Aufx) = [K(x, y)ly, uly)dy
is a positive monotonic operator on c* which, as we have seen in Sec~
tion 1. 2, is compact on 8" , and the problem of finding the positive
eigenfunctions of equation (1. 1) is equivalent to the problem of finding
the positive fixed points of the strictly increasing family {AX} » A>0,
of positive monotonic operators, where 'AX = AA . Since f is positive,
A)\ﬁrC_Z -C for A £ 0 and A}\Brg C for A > 0 ; thus, A}\ has no posi-
tive fixed points for A £ 0, and any fixed point of A}\ in 8% for \>0
is positive. The operator A is go-bounded on C° ; i.e., for any func-

tion u€C({l) , there are positive numbers a(u) , p(u} such that

alulg < Au = Plu)g »

where g, is the continuous non-negative function defined by
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go(x) = IK(x, ydy .
Since go(x) >0 for x€Q, all eigenfunctions of equation (1.1) are

strictly positive on Q1.

For any function u€C’ , we have
fAu] = Jlao] =1 . (0)]g,ll >0,

- and therefore, by Theorem I. 3-5:

1-1, Theorem. The problem (1.1) possesses a continuous

branch of eigenfunctions of length r (see Section I. 3)} in particular,
for any positive number p < r, there is an eigenfunction whose norm

is p .

The assumption that £ is monotonically increasing in u can be
dispensed with if f(x,u) is uniformly bounded below by a positive num-

ber for x€0Q, 0= u<r.,.

We denote by A; the set of positive numbers A for which (1. 1)
possesses a positive solution with norm < r , and refer to the elements
of A: as either eigenvalues (of the problem (1. 1}) or characteristic
values (of A). If r and f are fixed thrdughout a discussion, we will
replace the notation A;. by A . Since for any eigenvalue A and cor-
responding eigenfunction u we have A = [[ul /] Aull = |u] /] A0 ,
it is clear that as the norms of the eigenfunctions go to zero, the
corresponding eigenvalues approach 0. It follows from Theorem 1-1
and Theorem I.4-9 that A; is a non-empty interval with inf Af -0

¢ A; , and that for each A € A; the problem (1. 1) has a minimal posi-
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tive eigenfunction u®(\) such that for any other eigenfunction u(\)
corresponding to the eigenvalue A , uo()\) < ufd); if f(x,u) is a strict-
ly increasing function of u for all x€0Q and 0 <u<r, then uo(k;x)
<ufA;x) for all x€Q. The minimal eigenfunctions u®(A) are continu-
ous from the left in A and increase as A increases by Theorems L. 4-9
and I. 4-10; from the assumptions that we have made on the kernel
K(x.v) . we actually have u()\l;x) < ufi Z;Sc) for all x€(} whenever

0< 7\1 < AZ € A; . The minimal eigenfunctions uo()\) may be con-
structed by a simPle iteration procedure (Keller and Cohen 1967, or
our Theorem I 4-4). Various restrictions on the size of A; can be
obtained from inequalities satisfied by f with the help of Theorem

1. 4-5 and its corollaries; the most general one is that if f(x, u)< g(x, ﬁ)
for x€Q, 0<u<r, then A; c Af (Corollary L. 4-6; Keller and |

Cohen 1967, Theorem 3. 3).

We consider first the case when the function f satisfies the
condition
(1. 4) fx,oqu) > af(x,u), 0<a<l, x€0Q, 0O<u<r
{see Section L. 5). We have shown in Proposition I, 5-2 that if £ satis-
fies a one-sided Lipschitz condition
(1. 5) f(x,u) - f{x,v) < glx)(u-v),
for x€Q and 0 <v<u<r, where g€C, then there is a number
Ty € (0,.r) 'such that equation (1. 4) is satisfied for 0 <u < Ty . Geo-
metrically, condition (1. 4) says that a line drawn to the origin from
any point on the graph of f(x,u) against u (for fixed x) lies strictly

below the graph of f(x,u) against u. This condition is easily seen
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to be equivalent to the condition that, for each x€ Q, f(x,u)/u is a
strictly decreasing function of u for 0 <u<r ; if f has a partial
derivative with respect to u , this is true if f(x,u) - ufu(x, u) > 0 for
x €0 and 0 <u<r. Since f(x,u)/u is a decrecasing function of u,
it has a limit m(x) as u = +o00 (if r = c0o). If this limit is approached
uniformly for x € 1, then A has a C-asymptotic derivative A'(co)
(see Section L. 6) given by

(1. 6) A'w)h(x) = [K(x, y)m(y)h{y)dy

for any h € C(1) (Krasnosel'skii 1964a, §7.1.5; cf. our Propositions

I. 8-7 and 1. 8-9); the operator A'(co) satisfies

. lAn-Aeom|l _
||hﬁlfloo Ik
'h&C

As shown in Example I.2-1, if m(x) > 0 for some x € 1, then A'(c0)
has a simple characteristic value uOEA‘(oo)] = p,l(oo) ; ul(oo) is a
positive eigenvalue of the linear integral equation

(1. 7) hix) = pf K y)m(y)h(y)dy ,

to which there corresponds a unique positive eigenvectoro - of unit
norm, and ul(oo) is smaller than the absolute value of all other eigen-
values of equation (1.7). Using Theorem 1. 5-6 , we obtain:

1-2, Theorem. Let f(x,p)/p be a strictly decreasing function

of p for each x €10} and 0 < p<r. Thenfor each A € A, the problem
(1. 1) has a unigue eigenfunction u(d) = uo(}\) which increases as A in-
creases and depends continuously on A ; moreover,

lim ufA) = 0 and lim ||u()\)|| =r,
A—0 ATA¥
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&
where A =sup A .

If r =00 and lim £(x,u)/u = m(x) uniformly for x € 0, and
u-+o
m # 0, then )\ = ul(oo) » the principal eigenvalue of equation (1. 7),

and

a)
1i = ¢ .
A ] @

e 3
If lim f{x,u)/u=0 for x€0, then A =+ .
u~+oo ’

Proof. According to Proposition I. 5-1, for any u€C*
a € (0,1), there is an M > 0 such that A(qu) 2 a(l+n)Au (equation
(I. 5. 1}). The remaining hypotheses of Theorem I. 5-6 are easily
verified, and the fi‘rst part of.the theorem follows. The assertions
made for r = o0 and m # 0 follow from equation (1. 6), Corollary

I. 8-2, and the remarks of Example 1. 2-1 . When m(x) = 0 for all

x €0, then A'(0) = 0 and 11rn 1|Au||/|]uu ; since 71 =
A’ /[ u®n)| and lim e = )\*=+oo. 7
ATAH

When f(x, u)/u is not a decreasing function of u, we can
establish the uniqueness of the eigenfunctions for at least a subset of .
A using the Lipschitz condition (1. 5) a.nd Corollary I. 4-15 (cf. Tri-
comi 1957, p.212) |

1-3. Theorem. Let f satisfy the Lipschitz condition (1. 5)

for 0 < vsu<r, for some function g € C{Ql) . Then equation (1. 1)
has at most one positive eigenfunction for each A such that 0<) <p,1 ,
where My is the principal eigenvalue of the linear integral equation

(1. 8) hix) = pfKx, ylglyhlydy .
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(f g=0, uy = oo.)

Proof. When g{(x) > 0 for some x € Q, the theorem follows
- immediately ffom Corollary I. 4-15, with the linear operator T given
by

Thix) = [Kx, y)gly)h(y)dy .

If g{x)=0 for all x€(}, then f(x,u) is independent of u and the re-
sult is trivial. #

With further conditions on f, we are able to extend the unique-
ness interval to include the endpoint | 1-

1-4. Thecorcm. Let f satisfy the Lipschitz condition (1. 5).

Let strict inequality hold in (1. 5) whenever x € Q and 0 <v <u
< r; or let f(x, u) be a strictly increasing function of u for all x€0,
0 <u<r, and strict inequality hold in (1. 5) for some x€{ when
0<v<u<r. Then equation (1. 1) has at most one eigenfunction for
each A € (0,u;], where yu, is defined as in Theorem 1-3.

Proof. The uniqueness for A € (O,ul) is established in Theo-
rem 1-3. If there are two distinct eigenfunctions u and u _ = uo(ul)
corresponding to A = My then there is some y € Q such that uo(y)
< u{y) , and this holds for all y € 0 if f(y,u) is strictly increasing in
u for all y € Q. Thus, under either of the hypotheses of the theorem,
there is some y € {1 such that

£y, u(y))-fly, u_(y)) < gly)luly)-u_(v)] .
By continuity,

ufx)-u (x) < ) [Kee y)gy)luty)-u (y)ldy

for all x € 0. But this is impossible (see the discussion of (PAZ) in

Example I. 2-1). There is, therefore, at most one pos‘itive eigen~
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function for A =y, . 7

It is possible to find functions f and g and a kernel K such
that equation (1. 5) is satisfied (for all x€0}, 0< u< v < w) for which
there are infinitely many eigenfunctions of (1. 1) corresponding to
A= My - For example, take 0= (0,1), K(x,y)=1, f(x,u) = £f(u) =
eu-1 when x€ [(0,1], 0<u<1, and f(x,u) = f(u) = u when x€[0, 1]
and uz 1. Then 0 <v < u implies f(x, u)~f(x,v) <€ u-v, so (1.5) is
satisfied with g(x) = 1 . The principal (and only) eigenvalue of the

linear integral equation (1. 8),
1
h(x) = u | hiy)dy.,
0

is Wy = 1 . The nonlinear equation (1.1),
. 1 '

Mx)=k}f@uﬂyWW'=hfﬂuWNQr,
0 0
has as eigenfunctions the constant functions u(A;x) = Aa(A), where
a(rA) is a solution of o = f(Aa). When A = 1, the eigenfunctions are
all constant fuﬁctions u{x)=q, a=21. (Cf. the discussion preceding
Theorem 1. 4-14.)

Under the assumptions of Theorem 1-4, the interval of unique-
ness (0,;,11] is also, in general, as largé as possible; there are func-
tions f and g satisfying the hypotheses of Theorem 1-4 for which
sup A >, ; and for which there arc at least two cigenfunctions for
all A € (p.l, supA]. For example, take f(u) as above for us< 2, and
f(u) = %-ﬁ_——z&+—é for uz 2; (1. 5) holds with g(x)= 9/8. Then My =
8/9, sup A =1, and there are at least two eigenfunctions for each

X €(8/9, 1]. See also Theorems 1-10 and 1-13.
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We will now assume that f(x,u) has a continuous partial de-
rivative fu(x, u) for x €{l, 0<u<r, and that £, is continuous on
Ox[0,r). Since f(x, u) is an increasing function of u, fu(x, u)=0,
Theorem 1-3 can then be used to investigate the uniqueness of the
eigenfunctions of equation (1. 1). We define

glx;s) = max {fu(x,p) :0s psss}

for 0<s<r and x €T, and

glx;r) = sup {fu(x, pl:0sp<r};

then from Theorem 1-3 or Theorem I. 6-4, it follows that equation

(1. 1) has at most one eigenfuﬁction in C° (0<s<r, and alsos = r
if g(x;r) is finite) corresponding to any positive A less than the prin-
cipal eigenvalue of

h(x)

1

u{ Kix yglyssh(y)dy .
Together with any eigenfunction u(x) of equation {1.1) in o s

we consider the variational equation
(1.9) hx) = ufKix v (v, uly)hiy)dy ;

this problem is the characteristic value problem h = MA{u)h for the
Fréchet derivative of A at u (Section I. 6):

(1. 10) Allu)n(x) = [K(x, y)i_(y, u(y)hiy)My .

Asg discussed in Example L. 2-1, A'(u) is a compact linear
operator; if fu(y, u{y)) > 0 for some y&Q, then the principal eigen-
value of equation {1.9), which we denote by Hl[u] = uo[A'(u)] , 1is

simple and smaller than the absolute value of all other eigenvalues of
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(1. 9), and the unique positive eigenfunction ¢ with "cp“ =1 of (1.9)
_corresponds to the eigenvalue ul[u] . If fu(y, u{y)) = 0 for all y€TQ,
we sct p,lfu] = p,o[A'(u)] = o.

If £u(x, p)>0 for x€Q, 0< p<r, then A'(u) satisfies (PA)
for any function u € CF , and it follows from Theorem I.7-1 that
A s g1[u°(x )] for all A € A. On the other hand, if for some A € A s
fu(x, u®(A;x)) = 0 for all x € Q , then clearly A < ul[uo()\)] = o0, If
fu(x, uO(K;X)) = 0 for some (but not all) x € O, then Theorem L. 7-1 is
not immediately applicable, since A'[u®(\)] does not necessarily
satisfy (PA). The result A < ul[uoO\)j is still true, however, and
can be established using the weakened form of (PA) given in Example
L. 2-1. As in the considerations leading to equation (L 7. 4), for any
A, € A we find a monotonically increasing sequence D‘k} y k=21,
converging to }‘o’ such that

h = BAu_+X A'(u)h,

where u_=u’(\ ),

u -u’(h )

h = lim S
k- oo [[uo-u O‘k)"

and
A=A
B, = lim 2 ok
k=0 [lu_-u”(, )]

- 1 - Lo
If ﬁo > 0, then h(x) kpA (uo)h(x) ﬁOAuo(x) >0 for all x € 0 ; since
A'(uo) satisfies the weakened form of (PA), )‘o < ul[uo()\o)] -
uo[A'(uo)] . I [30 = 0, then h is a positive eigenvector of A‘(uo) )
and therefore )\.o = ulfuo(ko)] .« Conversely, if )\O = ulfuo(ho)] ,

then we must have B, =0, again by the weakened form of (PA).
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' Thus, the conclusions of Theorem I.7-1 and all other thcorems of
Section I. 7 are _va.lid.

We have, therefore, \ < ul[uo()\)] for all minimal solutions
uo(l) s if A = ulfuo()\)] » the minimal solutions are differentiable with
respect to A , the derivative being the unique solution y(A) of the
equation

(L11)  y0ux) - ARG y)E (nu®Riy Dy (iyddy = [Kix, y)ity, uhsyday.

For A < ulfuo(k }1, the minimal solutions are isolated: i. e., for each
~ such A, there is a number 6}\ such that (1. 1) has no eigenfunction u
corresponding to the eigenvalue A with ||u-u°(l)” < &X (Theorem
1. 7-8). N

The set of eigenvalues A;either exhausts the positive real num-~
bers (in which case we must have r = w , since if r < c0 we cbviously
have

1

flx,u) = 3£ . (0) llf-+ 17,

which implies that A;'is bounded by Corolla.fy 1. 4-8), or K* = sup A;is
a finite number at which one or both of the following alternatives oc-
cur: either 1im>"<]|uo()\)” =rs< o, or )\* = ul(uo(}\*)) (see the dis-
cussion of the 1\ii\nplicit function theorem Afollowing Theorem . 7-8).
Since the minimal solutions are continuous from the left in A and in-
creasing in A , we cannot have )\* € A‘fif the former of these alterna-
tives occurs; similarly, there.is no )\o<)\* such thatﬁi)r\r; "uo(k)” =r,
The only points in A; at which uo(k) can fail to be continuous or

differentiable are points )‘o such that ho = ulfuo(lo)] . We now dis-

cuss the behavior of the eigenfunctions and eigenvalues near such a
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point; the discussion will include, in particular, the case that )"o =

)\* = sup 1;'6 A;. Let u = uo(lo) be the minimal solution of (1. 1) cor-
responding to the eigenvalue )‘o » and let ® be the eigenfunction of the
variational problem (1. 9) (with u replaced by uo) corresponding to
the eigenvalue )\0 . In order to apply Theorems I.7-3 and L. 7-5, we
assume that f(x,u) has a second derivative fuu(x, u)} which is continu-
ous on 0x [0, r) ; then, according to SectionI. 6, A has a second Fré-
chet derivative A'(u), which is the bilinear operator given by

(1.12)  (A"(uhk)(x) = [Kx, y)i_ (v, u(y)h(y)k(y)dy

~ for any w€CT and any h,k in C(Q0) .

For simplicity in the i;ormulation of the theorems which follow,
we will assume that the kernel K in equation (1. 1) is symmetric:
K(x,y) = K(y,x). Then the equation adjoint to the linear equation (1. 9)
has the positive eigenfunction m(x)fu(x, ui{x)) .

1-5, Theorem. Let f(x,u) be twice continuously differentiable

with respect to u on {iX(-r, r) . Suppose that there is a point )\o €A
with a corresponding minimal solution U = uo(}\o) such that

)\0 = ulfuoj , and let ¢ be the eigen;ftw;nc‘;ion of the problem (1. 9) cor-
responding to the principal eigenvalue )\0 = p,l[uo] . Then

[& (), (vou vy = 0.

(1. 13) [, (vou tyhay >0 ,

then
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1

0 —
(1.14) lim M _ {2 Iw(x)g‘fu(x, uo(x))uo(x)dx }am |
M‘)\o WA R XOICD (x)fuu(x, U-o(x))dx

o

Moreover, for each A sufficiently close to Ao » wWith A < ko ,» the
problem (1. 1) has a second positive eigenfunction u(\) which for each
A is the only eigenfunction other than the minimal eigenfunction in a

- sufficiently small ball about u_ in C(Q), and

u(d)-u u -u®@R)
lim —2 = lim 2.
Mhy KK M RN

The eigenfunction u  can be enclosed in a ball in C({l) in which it is
the only eigenfunction of (1. 1! corresponding to the eigenvalue XO ’
and there are no eigenfunctions in this ball corresponding to A > A.o .
Proof. Since f(x, u) is twice continuously differentiable with
respect to u, we have
£6e, wih) = £, w) + £ (6 wh + A€ Gk, wh? + glx, uih)h?

for any x €l and any u,h such that -r < u-|h| £ ut|h| < r, where
11

glx, u;h) = fj[fuu(x, ut+afh) - fuu(x/, u)]pdadp .
00 '

Since for any positive number ry<r, fuu is uniformly continuous on
Qx [-rl, rl] , we have

lim g(x,uh) = 0
h-0

uniformly for (x,u) € 0OX [-ryrg].
Moreover,
2 2

2
= {[%fuu(x, u+h2)-%fuu(x, ulg(x, u+h2;hl-h2).:l(h1 -h,)
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+ V(x) u;hz)hz} (hl'hz) ’

where

1
V(x, uih,) = g [£,, (% wtoh)-£ (x,u)]da .

For any positive numbers P1:P s with py <pytp<r, we define
vipys p) to be the maximum of the absolute value of the expression in

{ 1 above for x€ 10, \u\Spl, Ih;l <o, ]hz\sp. Then

. 2 . 2
tg(x, u,hl)h1 - gix, u,hz)hzs < 'y(pl, p)‘hl-hz‘ s
where

vipys p)
lim —————— = 0.
p~0 P
If we set

w, (h)x) = [Kix, v)g(y, u (y)ih(y iy )y

_ e r-u_|
for functions ug €EC”, hecC , then
' uwl(h)“ 1 ax | [K6x, ylgly, u (y)inty)y| = 0
im im max X YiIg\y. u _ty yhayy =
Inf-o CInf® ||hll"'0 x€0 |

and

oy -y i)l % Wl o) o | Pt iy | Iy g |

= Yl(P)”hl”hzn
where v,(p) = y(“uou, p) max ”K(x, y)dy| and

vl(p)

Iim
p-0

We define
w(s,h) = S[A'u )b+ 1 A" J®1 + & 8l (n) 5

then for A >0, u €t
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2
LAu = XoAuo + (A -Xo)Auo + XOA'(uO)(u-uO) + %XOA"(uO)(u-uo)
+ w(l '}\-0: u'uo) ’

and the operators A, =\ A, B
}\o o )\0
Ai’ (uo) = XOA“(uo) » and w have all the properties assumed in Theo-
o

= A, Aio(uo) = )\OA'(uo) ,

rems I. 7-1, I.7-3, and I. 7-5. In particular, the required properties
- of Ai (uo) follow from the discussion above of the properties of A’(uo)

[a]
and the fact that ?\0 = ul[uoj < oo implies fu(y, uo(y)) > 0 for some

yE€N.
The linear functional £ of equation (L. 7. 8) and Theorem

I.7-3 is given by

i 1l

E(h) = Nw) I@(x)fu(x, uo(x))h(x)dx
for any function h € C(fl) , where
- 5 ’
M) = [o%x)E, (%, u_(x))ax ;

since for any functions h,h, € C(n),

J 1) 6| Kix, y)h,(y)dyax = [, ()[K(x, y)h, (x)dxdy
(Smirnov 1964a), we have
ELA" () & o) = [plx)s (x, u () Kix y)E (s u_(y)) ePly)dydx

=22 Sy (s u (y)dy

and

508y u,] = £lAu ] = SRR ) St e, u_fe)u_(x)dx > 0,

the conclusions of the theorem now follow immediately from Theo-
rems I. 7-1, I.7-3, and I. 7-5. Vi
If condition (1. 13) is not satisfied, then information about the

behavior of the solutions near (A o uo()\o)) can be obtained by investi~-
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~ gating higher derivatives of f. This does not seem to be a very
worthwhile endeavor unless fuu(x, u) is never zero for x €0}, O<u<r,
since otherwise in order to know whether {1.13) is satisfied, one
must know the eigenfunction uo()\o).

When )\0= Ky [uo()\o)j » the minimal eigenfunctions cannot

have a finite derivative with respect to \ at )‘o’ for if they did we

would have
2u7 03 )2 Au®n )+ x AT [ )] 2 ()
3N o~ o o v R, 3N o

(equation (1.11)), which is impossible when )\=>\O, since
Auo()\o;x) = )\;1 uo()\o;x)>0 for all x€(Q) (see assumption (PAZ) ).

If condition (1.13) is r;ot satisfied when )\0=|J.1 [uo()\o)] s
then there may or may not be a second solution for k<)\o, there
may or may not be solutions for )\>>\0, and the solution at )‘o may

or may not be isolated. For example, if in the example following

T

4

for m<u, then f is twice continuously

Theorem 1-4 we take f(u) =3 (u-cosu) +

flu) = 1+3F - }e

differentiable. For A\=1, equation (1,1) has the minimal eigenfunction

for Osu<w, and

-utmw

wO N X)E% ; and A=1=p, [u®(N) 7. We have ’[‘1 ©>(x) £'(u®(A;x) ) dx=0
when A=1, since f"(uo(l;x) )=f”(%) =0, There?s no bifurcation at
A=1; for each \>0, there is a unique eigenfunction u’()) depending
continuously on X, and lim |u®(\) || = oo (this follows from
Theorem 1-2, since f(u>;7:(;os. a strictly decreasing function of u
which converges to 0 as u-+o0). The eigenfunctions are

.differentiable with respect to N\ for all A>0, A #1, but have an

infinite derivative with respect to A at A=1.
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On the other hand, if we take f(u) = % (u=-cos u) + Fff for
OSusIrz-' and f(u) -—-'u3 - -3-;- u2 + (1 +—3—Z—‘-2) u - -T%— for uz—} , then
f is twice continuously differentiable, and when A = 1, we have
uo()\;x)-z I’Z_ , A= My [uo()\)] =1, and Ii cp3(x) f”(uo()\;x)) dx = 0,
In this case A = 1 = max A and there are two eigenfunctions for
all XE(O, 1).

s
2
uzg- , then f'" is continuous, \=p, [u®(\)] when X\ = 1, the

If we take f(u) as above for O<us< 5, and f(u) = u for

eigenfunctions are unique for 0<A<1l = max A , and there are

infinitely many eigenfunctions u(x)=q , a 2 -121 » corresponding to \ = 1,

According to Theorem I, 7-6, analogous results hold for the
behavior of the eigenfunctions near any point at which )\=p1 [u(™) ],
whether or not u(}\) is a minimal positive eigenfunction. For
example, if equation (1. 1) has eigenfunctions u(l)()\) for N\ in an

interval [A,, A, + 871, andif lim uP0y=u'P\.) with
10 M 6] i 1

)\l = p.l[u(l)()\l)] , then Icpf(x) fuu

(x, u(l) (\,:;x)) < 0, where ®, is
the positive eigenfunction of equation (1.9} with u(\) replaced by

oY I f el fuu(x,u(”(xl;x)) dx< 0, then for each >\,

sufficiently close to 7\1 there is another eigenfunction u(z)(k) £ u(l)(k),

and

u(l)()\) - u(l)()\l) u(z)()\) - u(l) ()\1)
lim = = lim

N Y A N NN NEEEY

,_rfpl(x)fu(x, u(l)(xl;x)) u“)(hl;x) dx £

P .
‘ lecpi’ (x) fuu(x,u(”(K;X)) dx :
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We now fake r= o, i.e., f is defined on () x (-00, o),
and discuss the behavior of the eigenfunctions of large norm.
The following elementary proposition, whose proof is omitted,
listé some properties of f which will be useful in this connection.

1-6. Proposition. Let f(x,u) be continuously differentiable

with respect to u for each x€0, O<u<omw. I 1lim fu(x,u):—:lm(x)soo
u- +0oo
exists (uniformly for x€()), then lim f(x,u)/u exists (uniformly
u-+0o
for x€0) and equals m(x).

If 1im u"1 [f(x,u) - ufu(x, u) ] = 0 (uniformly for x€0),
u—--+00
then lm f£(x,u)/u and lim f (x,u) exist (uniformly for
- u-+co - +00 u
x€()) and are finite and equal. (The converse is obvious .)

If for some number s€[ 0,1) , lim u-s[f(x, u)-ufu(x, u) ]
u- +o00
= (l-s)c(x) exists and is finite (uniformly for x€Q)), then lim
u= +oo
u”® [f(x,u) - m(x)u] exists and equals c(x) {(uniformly for x€Q).

The functions fl(u) =u+ % sinu, fZ(u) = u2 + u(l+sin 2u)

1 , — 1 sin v .
+ 5 cos 2u, and f3(u) =u+t 3 ‘r; - dv are continuously
differentiable positive increasing functions which show that the
converses of the first and last assertions of Proposition 1-6 are not

valid. We have lim fl(u)/u =1, but lim fi(u) does not exist;

u—+oo . u—-+o00
lim fz(u)/u =+ 00, but lim fz (u) does not exist; and
u~ +0o ' u-+oo -
m= lim f,(u= lim f (u/u=1, lim [f(u) ~mu] = —,
3 3 3 4
u=-+00 u-+00 u-+0o
but lim [ f3(u) - uf:;. (u) ] does not exist.

u—+oo

If f(x,u) is continuous, monotone in u, and strictly positive

for all x€Q, O< u<oo, then it follows from Theorem 1 -1 that
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equation (1. 1) has eigenfunctions of arbitrary norm. Suppose that
| lim f(x,u)/u = m(x) exists uniformly for x€{) , where 0<m(x)<oo
lflc?r-'-(:.:tch x€0. If m(x)= 0 for all x€(, then for any ¢>0, thereis
a p> 0 such that f(x, u)seu for u>p. Thus f(x,u)< eu + fmax(p)

for all uz0, Since the principal eigenvalue of the linear equation
h(x) = p [ K(x,y) € h(y) dy

can be made arbitrarily large by taking ¢ sufficiently small, it
follows from Corollary I. 4-7 (cf. Keller and Cohen 1967, Corollary
3. 3. 3) that in this case equation (1. 1) has solutions for all A> 0;
i.e., A =(0, o) (see also the proof of Theorem 1-2). Since there
are eigenfunctions of arbitrary norm and the minimal eigenfunctions
are increasing and continuous from the left, it follows that if we
associate to each A€ )\ an eigenfunction u()\), then lim fu(M ) =0
if and only if p.1=+ co. e

On the other hand, if m(%X)> 0 for some %€0, then A is
bounded. In fact, we can find a p>0 such that fmin(0)<% m(%) p
and uzp implies‘ f(x,u) 2 2 m(x) u; it is easy to see that f(x,u)>
p(x)(q+p) for all (x,u), where p(x) = min { ?15 fmin(O), 711:- m(x)}. It
follows from Corollary I. 4-8 (cf. Keller and Cohen 1967, Corollary
3.3.4) that A is bounded. Since there are eigenfunctions of

arbitrarily large norm, and since A is bounded, there is a

convergent sequence of eigenvalues {)\n} of {1, 1) with corresponding

eigenfunctions u_ such that lim | u ||= co. It follows from
n- o
Corollary I, 8=-2 that lim _)\n is positive and is an eigenvalue of the
n-»co

linear equation (1. 7) corresponding to a positive eigenfunction;
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i.e., lim )\n = By [oo], the principal eigénvalue of equation (1. 7).
n—-oo o
This establishes the first part of the following:

1-7. Theorem, Let lim  f(x,u)/u = m(x) exist uniformly
_ u— + oo
for x€Q, with O<sm(x)<‘for x€T. Then there is one and only one

number p; o] for which there is a sequence {)\n} of eigenvalues of
eqﬁation (1.1) converging to q [ @] such that the corresponding
eigenfunctions {u } satisfy lim [u_|l= co. If m(x) = 0 for all

x €0, then pl[oo] = oo and A =n(_E)(jooo); if m(x)>0 for some x€(), then
My [co] is positive and finite and is the principal eigenvalue of

equation (1. 7); the corresponding eigenfunction P of (1.7) can be

normalized so that -
. u
lim n__ o
n-c ||u_| o

and cpoo(x)>0 for =x€q.
If, furthermore, for some number s€{0,1),
lim u".’S [f(x,u) = m(x)u]=¢c{x) ex'is‘tsv tuniformly for x€() (where

u—+eo
m(x) > 0 for some xEQ_)’,\ then

lim (\ - wqlod)u | "% =p Tl 6,
n-Qo0 :

where

l+s

_ o ()] c(x) dx

o (0 71% m(xdx

[0 0]

If gm #0 (in particular, if c(x) is not identically zero‘ and does not

change sign on (), then
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bl €& \s' - -
_ 1-7 [ve] _y |8
u, (x) = (“——‘—T——-Ml CHEW ) ¢ (%) + of|u; [eo] =X |77 )
as n— oo, uniformly for X€T!, where g = (l-s)-l. I §O°>0

(or §m< 0), then there is a number r> 0 such that equation (1, 1)

has no positive eigenfunctions with norm greater than r corresponding

to eigenvalues \ in [pl [@],0) (or [0, pl[oo] ], respectively).
Proof, When m(x) = 0 for all x€{), the remarks preceding

the theorem show that A= (0,). When m(x)>0 for some x€0,

then we have

Au =Ai«(oo)u+ Cu+ wlu),

where

A’ (@) u(x) = [K (x,y) m(y) uly) dy,

Culx) = [ Klx,y) cly) [u(y)]® ay,

‘and

w(u) = Au-Al (oo)xi-Cu.

By Proposition 1. 8-8, equation (I.8-12) is satisfied by w(u). Since

[olxm ax £(C o ) = [o_ (xImG) [ K(x,y) c(y) [9_ () T dy ax

7 Lot 170 e ax,

the theorem follows from Theorem I.8-3 and Corollaries I.8-2 and

1. 8-4, Y4
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The requirement that s>0 in Theorem 1-7 is probably un~
necessary; however, when s<0, the integral in the definition of the
operator C becomes improper whenever the function u is zero at
any point of (}, so the above proof does not apply directly, Related
results are given in Theorems 1-9 and 1-13 below.

A's usual, we have assumed without stating so explicitly
that f(x, u) is a strictly positive continuous function which is
monotonically increasing in u., The fact that { is strictly positive
is used only to guarantee the existence of eigenfunctions of arbitrar=
ily large norm (Theorem l=~1)., If m(x)>0 for some x€(), the theorem
holds as stated, even if f(x,0) = O for some or all x€(), when=-
ever the equation (1, 1) has positive eigenfunctions of arbitrarily
large norm and the corresponding eigenvalues of (1. 1) are bounded
above (see Theorems I, 3-5 and I, 3-6, and also Theorem 2-1
below).

Without assuming a priori the existehce of eigenfunctions of
arbitrarily large norm or the boundedness of A, we hé.vc the fol-
lowing result from Theorem I. 8-6 and Proposition I. 8-8 (we do not
assume here that f is strictly positive): |

1-8.Theorem. Let f(x,u) be non-negative and continuously

differentiable with respect to u, with £ (x,u)2 0, for (x, u)€GXx (0, co),

and let the limits

lim f (x,4) = m(x) |
u
u=+0o

and

lim [f(x,u) - m(x) u]=Db(x)
u-+00
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exist uniformly for x€(, where m(x)>0 for some x€0N. Let O

be the positive eigerifuﬁction of unit norm of the linear equation (1.7),
corresponding to the eigenvalue My [e0]. If Iwoo(x)b(x)dx% 0, then
‘there exists a number § having the same sign as d[‘cpoo(x)b(x)dx such
that for each A\ between |J.1 and |J.l+ &, there is an eigenfunction u(i)
of (1. i) such that lim |lu(X)] = oo, and there is a positive number
r such that for eaclr N between By and |J.1—6, there are no eigen-

functions of (1) with norm greater than r. The eigenfunctions wu(\)

satisfy

iy [oo] : -1
u(X;x)=m goo CPOO(X) + 0(“‘1{00]")‘! )

as Aoy [0 ], uniformly for x€Q), where

 Je by ay

£ =
® g2 (y)ml(y)dy

The following theorem gives another non-existence result
for eigenfunctions of 1arge norm; the theorem assumes less about
f but more about the eigenfunctions than Theorem 1-7. The
theorem assumes the existence of a function g, positive a.e. on 0,
such that the eigenfunctions satisfy uz|lu| g; a function g such that
all eigenfunctions satisfy this inequality can be found if further
assumptions are made on the kernel K(x,y); see Theorems 1-12,
1-13, and 1-14 below. When such a function g exists, the

theorem implies that for any continuous function m  which is non-
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negative and not identically zero on I, if f(x,u) - m(x) u is of one
sign and bounded away from zero for all sufficiently large numbers '
u, then all eigenfunctions of sufficiently large norm of equation (1. 1)

‘must correspond to eigenvalues M\ such that

sgn (p.l - \) = sgn [f(x,u) - m(x) u]

for large u. The theorem as stated holds if our standard assumption
f(x,u)>0 for x€Q, u>0, is weakened to f(x,u)>0 for x€0, u=0.

1-9. Theorem. Let m be a continuous non-negative not

identically zero function on I, and let o be a positive eigenfunction
of equation (1. 7) corresponding to the eigenvalue My Suppose there

is a positive number r and an integrable function ¢ on (0 such

that for all u>r, x€(, fm(X) c(x) dx # 0 and
(1.15) v | n [f(x,u) - m(x} u - c (x) ]=20,

where mn = sgn .I’cp(x)c(x) dx. Let g be a continuous function on ()

which is positive almost everywhere on (1. Then there is a numbexr

p>0 such that equation (1.1) has no eigenfunctions u corresponding

to eigenvalues A such that

lalizp,

ux juj g,

and M (7\‘|J.l) = 0.

Proof, Choose B>0 such that
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_(].16) . |f(x.u)-m(x) ngB

for x€0, -0 <usr;. Let Q_= {x€Q: O<g(x)se}. Since g is

positive a.e. on (0, the measure of QE: satisfies lim [ meas Qe 1= 0.
€= 0O
Thus we can choose a number p> ry such that

(1.17) J"

Q o(y) [8+nc(y)]dy < | [oly) cly) dy| .

r,/p

Suppose (1.1) has an eigenfunction u such that u>jju|g= Pg.

Then

n [ oly) [y, u(y)) - m(y) uly) Idy

= -|n| [ oy | fy,uly)) - m(y)uly) | dy

u(y) <ry

+n [ o(y) [f(y,u(y)) - m{y) u(y) ] dy

u(Y)2r1
=-8n] [ olyldy + n [ @ylcly) dy
uly)sr; u{y)zr;
- f  eye+n cy)ldy + n [oly)cly) dy
U/
ry/p

> 0,

where we have used equations (1.15), (1.16) and (1.17), and the fact

that u(y)sr, impli‘es. gly)suly)/flul < rl/p. Since
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& Julxm)ex)dx

Joxm(x) [K(x,y) fy,uly)) dy dx

1
™ [ o) fly,uly)) dy,

we have
(5 - =) [ulx) mix) o) d
nix by ulx) mix) 9(x) dx
=-—;31— [ oly) [fy,uly)) - m(y) uly) ] dy
> 0,
Thus n(p.l-X)>0. //

The hypothesis that m is continuous can be weakened; it suf-
fices to require that m be a non-negative not identically zero
function on (1 such that equation (1. 7) has a non-negative integrable
eigenfunction ¢, with the product o-c integrable, corresponding to
the eigenvalue My and that equation (1. 15) holds a.e.on (0. It fol-
lows from Tonelli's Theorem (Smirnov 1964b) that the product

u-m¢ @ is integrable for any eigenfunction u of equation (1.1), since

[u(x)m(x) ¢ (x) dx

< A IRy £ (ful) dy]m(x) o (x) dx

n

kfméx( falh) .J‘ [IK(Y’ x)m(x) o (x) dx] dy,

Mgl el [ty dylu, .

1l
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and ¢ is integréble by assumption.

- Suppose the functions m and ¢ in Theorem 1-9 are the same
aé the functions m and Oy respectively, of Theorem 1-7. If
[T () j“s ¢(x) dx>0 in Theorem 1-7 or, with s = 0, in Theorem
1-9, then the eigenfunctions of large norm correspond to eigenvalues
A>py [co] and therefore cannot all be minimal solutions, since the
norms of these eigenfunctions approa;::h co as N decreases to by s
while minimal solutions increase as A\ increases. Thus there are
values of N greater than p.l[oo] for which (1. 1) has at least ’mlro
eigenfunctions, and My [o0] <\* = sup A .

This result can be sharpened by using Corollary I. 9-3:

1-10, Theorem. Let f be as described in the first

sentence of Theorem 1-7, with m(x)> 0 for some x€Q, and let f(x, u)
have a partial derivative fu(x, u) which is continuous on ﬁx[o, ).
If the principal eigenvalue My [oo] of equation (1, 7) is less than
)\* = supp , then the problem (l.1) has at least two solutions for all
,)\E(p.l (o], )\*) such that \ # My [uo(k)], and x* = 1y [uo()\*)] €A.
Proof. This last assertion that )\* il [uo()\*)] €A follows
from the.fact that since [oo]<>\f., ){J:rn)}k I uOQ)ll # o (see
Theorems I, 3~2 and 1. 3-3). The rest of tﬁe theorem is an immediate
consequence of the#Fr“échet differentiability of A and Corollary
1.9-3. /
The assumption \# My [uo()\)] of the procéding theorem is
probably not necessary. For example, if Theorem 1-5 is applicable
at a point Xoe(p.l [0], )\*) such that )\O=p.1 [uo()xo) ], then the minimal

positive eigenfunctions uo(k) are discontinuous from the right at Ao



~169-

and lim uo()\) exists and is a non-minimal eigenfunction
AN,

corresponding to the eigenvalue )\0 (see the remarks following

Theorem I. 7-6).

Theorem 1-10 may be applicable also when [' [cpoo(x) ] 1ts

ci{x)dx

<0 in Theorem 1-7, For example, by bounding f above by a
continuous function g for which sup Ag can be determined, and using
the fact that f(x, u)s g(x, u) implies 'supAfz sup/\g, it may be possible
to show that My fool< supA;. Then there will be a second positive
eigenfunction u(l)(k)>u0()\) for all X € (pl o], sup Af) such that
A Hy [u®(A) ], although we will not have )\jimroo] Nu(l)(M I = co
if j[mm(x)]1+s c(x) dx< 0. b

As m(x) increases, the principal eigenvalue Hy o] of

equation (1.7) decreases. This suggests the following conjecture,
which we have been unable to prove in general (but see Corollary

I. 8-10 and Theorems 1-12 and 1-14; also, Levinson 1962,

Berger 1965a and 1965b).

1-11, Conjecture., If lim f(x,u)/u = o uniformly for
_ u-+aoo
x€ 0, then there is a sequence D\n} of eigenvalues of (1.1}

conver.ging to 0 t.o which there correspond eigenfunctions {un}
such that lim llun |l = 0. Furthermore, if fx 1 is any sequence of
eigenvalue::)?o(l. 1) to which there correspond eigenfunctions {un}
such that lim | u_fl= co, then lim A, =0.
n-»oo n- oo
This conjecture can be proved if we make further assump-

tions on the kernel K(x,y). We first consider the case when K(x, y)

is bounded above and below by positive constants.
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max [K(x,y) : (x,v)€ETx 1}
min {K(x,y) : (xy)€0x T}

Tux) = IK(x, y) uly) dy,

and

C = {ué ¢ : Jull < o min{u(x): xéﬁ}}.

Then C is a closed convex cone in C({1) (Krasnosel'skii 1964a), and

the operator A (equation (1.3)), the' operator A;Z defined by
(1.18) AY h o= NA[P(N+h]+ N AUCR)

for any A€ A, and any linear operator T of the form

(1.19) - Tax) = [K@xy) ely)uly) dy,

where p € ¢(Q1) is positive on (), each map the cone C of non-
negative functions into the cone €. Moreover, for any function

~

u€C, we have

Tulx) = j‘K(x,y) u(y) dy
(1.20) -1
>0 ) [ Kixy) dy;
this inequality permits the application of Corollary I~.8_ﬂ-‘10 and

Theorem I.9-1 to prove the following:
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1-12, Theorem. Let f(x,u) have a continuous partial

dérivatiVe fu(x, u) which is positive on O x{0, o), and let ulirfm
f(x,u)/u= uniformly for x€0. Let the kernel K(x, y) be
continuous and uniformly bounded below by a positive number for
(%, y) eﬁ x (1. Then for any \ € A such that \< My [uo()\)'j , the

problem (1.1) has at least two positive eigenfunctions. For any

sequence {u()\n)] of non-minimal eigenfunctions of (1. 1) such that

lim X =0, wehave lim [lu(X )] = oo ; conversely, for any
n-co o n- 0o n
sequence {u(_)\n) }- of eigenfunctions such that lim |[u(\ }|| = oo, we
n-oo n
have limm N = 0.
n- oo

Proof. (Cf. Corollary 1.9-4,) Since f(x,u)/u approaches oo
uniformly, given any positive g there is a positive number
r >=f . (0)/a suchthat f(x,u)>a u for all uzr . Then for any
o} min o

x€Q,

f{x,u) 2 qgu + fmin(O) - c(,ra.

Define the compact positive linear operator 1")\ = AT by

Ty h(x) = A I; K(x,y) h(y) dy

for h€ C(0), and define the function b)\ a €C(N) by

b)\’a(x) = A I(I)K(x, y) [auo(K;y) + fm.

1n(0) - g,ra] dy.

The characteristic value problem pa‘I‘)\h = h for or,l")\ is equivalent
to the eigenvalue problem for the integral equation (for fixed X, q)

h(x) = p [ o X K(x, y)h(y) dy, x€0. All eigenvalues for this problem
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are positive; by choo}s‘ing o sufliciently large, the principal eigen-
value can be made. less than 1. For o so chosen and fixed \, it is
easy to see that all conditions of (aoo) of Theorem I. 9~1 are satisfied
by the operator T)\ = qI‘)\ on the cone E , with the function
b=bx’ 0" u0(7\), and the function 8, defined by go(x)=(a}\/o‘)‘riK(x, y) dy
(see inequality (1. 20)).

Condition (bo) of Theorem I. 9-1 is satisfied by the Fréchet

1
derivative A)o\ (0) given by

A" (0)n(x)

1

A J g K y)i 6, 0°(0y) () dy

A A'(u®(N)) hix).

It h<py [u®0) ], then T<p [AT (0)] = A"l A1) =21, [a®0) 1.

Theorem I.9-1 thus shows that if )\<p1 () ], then the
operator A; has a non-zero fixed point h(\) in E, and therefore
problem (1.1) has an eigenfunction uo()\) + h()\)>u0()\) corresponding
to the eigenvalue X\,

The fact that lim || u()xn) | = co implies lim )\n =0

n-o n- oo

follows directly from Corollary I.8-~10 since the operator A of
equation (l.3) maps C into a and satisfies condition (I, 9. 8) with

the function ba given by

ba(x) = J‘iK(x,y) [fmin(O) -qgr]dy 4

FFor the possibility of removing the condition \ < o [u®(n) ]

when 0< A< A* = sup A, see the remarks following Theorem 1-10.
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-~

The introduction of the cone C is suggested by Krasnosel'skii

1+€+b

(1964a, p. 246), who considers the case that f(x,u)za u
for positive constants a, ¢, and f(x,0)=0. See also Krasnosel'skii
(1964b, p. 276).

When the kernel K(x, y) satisfies the conditions of the
preceding theorem, all eigenfunctions u of equation (1. 1) satisfy
the condition u> Hullg of Theorem 1-9, where g is the constant
function g(x)zo‘_l. Thus Theorem 1-9 provides additional information
about the behavior of eigenfunctions of large norm when lim f(x,u)/u

u— o

# oo . A similar result is given in the following:

1-13, Theorem. Let the kernel K(x,y) in (1.1) be as in

Theorem 1-12, and le¢ m and ¢ be functions as in Theorem 1-9.
Suppose there is a positive number T and a continuous function
c on Ox [rl, o)} such that for each u> Ty c{x,u} does not change
sign on Q, Ic(x,u)[ is a non~increasing function of u for each
XET, [' o (x) c(x,u) dx # 0, and 7 [f(x,u) - m(x) u -~ c(x,u)]=20,
where m = sgn J‘cp(x) c(x,u) dx. Then there is a positive number
p such that equation (1. 1) has no eigenfunctions u corresponding
to eigenvalues N suchthat jullzp and n(:A - p,)20.

| (For example, the function ¢ may have the form c(x,u) =
cl(x) u-s, where 3 is a non-negative or non-positive function
on (I, ,j"cp (x} cl(x) dx # 0, and séO).

Proof. Since u(x)xz |lull /o . it is possible to choose p

such that there is no x€() with u(x)sr1 for Ju| =z p. The proof is

then similar to that of Theorem 1-9. J
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An analogous theorem holds when the domain () is an interval
of real numbers and the kernel K(x,y) is concave in x, i.c., for any
X;,%X,, YE€Q and any number ¢ € [o,17], K(g}{1 +{l-a)x5,y) 2
o K(Xl'y) + (1 ~og) K (xz,y). ( The Green's function for the
operator - __Q;_ subject to homogeneous unmixed boundary conditions
is an examp?: of such a kernel (see Section II1.2).) For convenience,
we will take 0= (0,1). 1In this case, any solution of equation (1.1)
is a non-negative concave function on [ 0,17, and the difference
h(x) between any solution and the minimal positive solution for the

same M\ is also a non-negative concave function, since it satisfies

the equation

h(x) = X [K(x,y) [y, u®(Ny) + hiy)) - £y, u®(Ny) ] dy.

Thus any solution of (1.1) is an element of the cone C. of non-
negative concave functions in C[0,1], and the operators A
(equathm1(1.3)),.A§ (equation (1.18), and T (equation’(l,19)
each map C into CC.

By considering the graph of a continuous non-negative concave
functibn on [0,1], itis clear that such functions satisfy the fol-

lowing impozrtant inequality:

(1.21) - u(x)> "ul]gl(X),

where
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1

gl(x) = % - lx' '5'-
To prove this analytically, we use the fact that by definition a

concave function satisfies

u(axo + (l-a)y)zaulx ) + (1-a)uly)

for any X s Y and o in [0,1]. Taking X to be a point at which
the non-negative continuous function u assumes its maximum,

y=0, and ¢= x/xo if xo;f 0, we obtain

% .
u(x)= ;{-;— Iluﬂ, 0sxsxo '

Similarly, if xo7-[ 1,

1-x
u_(x)z—l—_—x— “uu,XOSXSI.

It is easy to see that fof any x _€(0,1], (l-x)/(l-xo)z - |x=-31|.
This proves equation (1, 21),

Thus for any function u in Cc, 'any pperator T of the form
given by equation (1.19) satisfies inequality (1. 9. 2) of Theorem

I.9.-1 as follows:

Tu(x) = j' ;K(X:Y)P(Y)U(Y) dy

> lal j‘ol K(x, y)p(y)g, (v) dy.
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The proof of the following Theorem is therefore essentially the same
as the proof of Theorem 1-12:

1-14, Theorem. Let the function f be as in Theorem 1-12,

let the kernel K(x,y) be a concave function of x, and let () he a
bounded interval in®, For any M€ p such that )\<p.1 [uo()\)] , the
problem (1, 1) has at least two positive solutions. Any sequence
{u(kn)} of non-minimal eigenfunctions of (1.1} satisfies ;:rr;)

0 u(Xn) I = o if and only if lim )\n= 0,

n-— QO

Note: The cones E and CC doknot satisfy condition (e)
of Section I. 1 in C(1); i. e., r;ot every function in C(7)) can be
represented as the difference of two functions in € or two functions
in cc. However, once we have established that the eigenfunctions
of A and the posi’;ive eigenfunctions of I' must lie in ; or Cc’

then we may restrict our considerations to these cones, and the

condition (e) is unnecessary.

We now suppose that f(x, u) is a convex function of u on
[0,0) ;i.e., forallu, v€ [0, co) and all g €[ 0,1 ],f(x, aut{l-alv)
£ af(x,u) + (1 -0) f(x,v). The following proposition lists
some of the propcrtics of convéx functions which are useful in
the application of Theorem 1-16 below.

1-15. Proposition. Let f be a monotonically increasing

convex function on [0, ). Then f has left- and right-hand

derivatives f'(u-) and f'(ut+) for all u€({0, o0) and these derivatives
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are increasing functions of u; whenever O<v <u,

(1.22) f'iv+) (u-v)<f(u) - £(v) s f'(u-)(u-v) ;
lim f(u)/u exists as a finite number or + ; and
u— +oo :

u-++ oo u u—+co u- | oo

If lim f(u)/u = m<o, then for any number s> 0, u-s[f(u) - mu |
u-+o

is a decreasing function of u. If there is a number r> 0 such that
f is differentiable on (r, ), then for any s>0, u 8 [f(u) - uf'(u) ]
is a decreasing function of u”‘ for u>r, and lim u-s[f(u) - mu ]

_1 -5 u—+0o
=(l1-8) "lim u ° [f{u) - uf'(u) ] for s#1.

u- + oo

Proof., The assertions of the theorem through equation (1. 22)

are proven, e.g., by Choquet (1966). If we divide equation (1. 22) by

u, let u~+o, and then let v- +c0, we obtain

lim  f'(v+) < liminf f(u) _ lim sup f(u) _ lim

1 =)
v-+00 v-+ o a u-+ oo u ‘u-—*+oof(u E

since f'(u-)< f'(ut) for all u, this establishes equation.(l, 23).
The rest of the theorem follows from equation (1. 22) and 1'Hospital's

rule. //

1-15. Theorem. Let f(x,u) be a convex function of u

for x€0, O<u< o, and let lim f(x, u)/u = m(x)<oo exist uniformly
u--+oo
for x€0Q. If f(x,u)/u is a strictly decreasing function of u for
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x€Q, O<u<oo, or if for some number s€[0,1), lirfmu-s[f(x, u)-m(x)ul=
o u-
é(x) exists uniformly for x€() and J"{qooo(x)]HS c(x) dx >0 (where
o is a positive eigenfunction of equation {1.7) corresponding to
the eigenvalue o [ oo_]), then A = (0, Hy [c0]), and for each A€
therg is a unique eigenfunction.
On the other hand, if lim u ° [f(x,u) - m{x) u] = c(x)

u-+oo

exists uniformly for x€7] and J‘[cpoo(x) ] 4o

c(x) dx <0, then
2 = sup A >y [o]. If f has a continuous partial derivative
fu(x, u) on O x[0, o], then for each NE(py (0], )\*) there are
at least two eigenfunctions. The only value of N\ for which there
is an eigenfunction u(\) such that \ = My [u(N)]is 7\*, and N =u1[u°(>\* )1
If f(x,u) is strictly convex in u for all x in (), then there is only
one eigenfunction corresponding to the eigenvalue N (By strict
convexity-, we mean that O<v<u and 0<qg <l imply f(x,qu+t(l-g)v) <
af(x,u) + (I-0)f(x,v).)

Proof. If f(x, u)/u is a strictly decreasing function of u,
the assertions of the theorem follow from Theorem 1-2. The
uniqueness of the eigenfunctions for \ € (0, g [o]) is proved in
Corollary I.10-12, since f(x,u)-f(x, v)sm(x) (u-v) for Osv<u,

If J'[qom(x) ] lts c(x) dx>0, then Theorems 1-1 and 1-7
show that there are eigenfunctions whose norms approach infinity
as N approaches My [0] from below, Since the eigenfunctions are
unique for )\<p1 [0o], these must be minimal positive eigenfunctions;
i.e., lim | uo()\) " = 00. Therefore there can be no minimal eigen-

J’\”1 o
functions for sz,l (o], since u (\) increases as N\ increases,
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and thus A= (0, p; [o0]).
"When r [cpm(x) 1 l+s c(x) dx<0, the rest of the theorem fol-
lows from Theorems 1-7, 1,10-12, and I, 10-15, 4
When the assumptions of Theorem 1-12 or Theorem 1-14
are satisfied by the kernel K(x,y) and the function f, and f(x,u) is
alsé convex in u, then we can obtain a result similar to Theorem

1-16 for the case 1im f(x,n)/u = oo:
u-~+o

1-17. Theorem. Suppose that in either Theorem 1-12 or

Theorem 1-14, f satisfies the following additional hypothesis:
f(x,u) is a convex function of u for x€{), u>0. Then there is a
number N = maxp with the foilowing property: For any \€(O0, 7\*),
there are at least two positive eigenfunctions; for \ = )\* , there is
at least one positive eigenfunction; and for )\>>\*, there are no
positive eigenfunctions. If to each )\E(O,)\*) we assign a non-

minimal eigenfunction u(\), then lim {lu(\) ": co if and only if
A=A
1

We will consider the question pf the uniqueness of the eigen-
functions corresponding to 2" more carefully below (see Theorems
1-23 and 1-24).

The assumption that f(x,u) is continuously differentiable
with respect to u in Theorems 1-10, 1-16, and 1-17 is used only
to assure .that the Fréchet derivatives A'(uo()\) ) exist, so that
condition (bo) of Theorem I.9-1 holds. If f is not differentiable,

condition (ao) of Theorem I. 9-1 may be applicable, in place of
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condition (bo). Another approach which does not necessarily require
' differentiability is fo use Theorems I.3-4 and 1.3-6, If for fixed N\,
one can show that the operator A;: defined by equation

(1. 18) has a set of positive eigenfunctions corresponding to
characteristic values in an interval which contains the .number i,

0

then A)\ has a positive fixed point h(\), and uo()\) +h{\) is a

second positive eigenfunction of A corresponding to the character-

istic value \.

Further information concerning the behavior of the eigen-
functions of (1.1) when f(x,u).is convex in u is contained in the
following theorem., The theorem follows directly from Theorem
I,10-16 if fu(x,u) is strictly positive on () for each u, so that the
Fréchet derivatives A'(u) satisfy (PAZ)‘ The proof under the
weaker condition fu(x,_u)z 0 is given below. In this theorem, we
again assume f(x,u) defined only for u<r, where 0<r<+oo.

1-18. Theorem. Let f(x,u) be convex in u and have a

continuous partial derivative fu(x,u)z 0 for all x€(], O<u<r.

Then for any )\<supvl\=)\*, equation (1. 1) does not have three eigen-
functions uo()\), ul()\), uz(k) in ¢F satisfying u2(7\)>u1()\)> uo(k).

If x”‘ € A, and equation (1.1) has more than one eigenfunction in

Cr. corresponding to K*, it has an infinite number, and all such
eigenfunctions have the form uo()\*) + ap*, where 020 and o* is
the positive eigenfunction of unit norm of the linear variational

equation (1. 9) with .u replaced by uo()\*); moreover,
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there is an o,OE( 0, 00 ] such that all functions w0 + g,cp* with
.0§a<ao are eigenfunctions of equation (1.1), If we denote by cp’;
the positive eigenfunction of unit norm of equation (1. 9) with u

replaced by u’; = u° (7\*) + g,cp*, then we must have

[o¥* () £ (xu? (x) dx=o.

for O<q <q .«
a (10

Since we are assuming that the kernel K(x,y) is symmetric,
these results can be derived by using the variational characterization
of the smallest eigenvalue of equation {(1.9). This rnethod of
proving Theorem 1~16 does not require that fu(x,u) be strictly
positive. The proof is based on the following theorem; in this
theorem, we assume only the conditions on f explicitly stated in
the theorem, but retain the assumption of symmetry of the kernel
and the assumptions on the kernel made at the beginning of this
section.

1-19, Theorem. Let the function g be continuous on (1.

For real numbers a<b, let f be continuous on Qx[a,b) and have
a continuous derivative fu(x, u)20 with respect to u for x in

(0 and a<u<b. Suppose that whenever vy and AL satisfy
a<v<v,< b, then fu(x,vl)sfu(x, VZ) for all x€0(. ~ Then there do
not exist three distinct functions u, i=0, 1, 2, defined on 0

and satisfying
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(1.24) ulx) = [K(xy) fy,uly)) dy + gl=)
and
(1. 25) asuo(x) < ul(x) < uz(x) < b, x€0,

unless the linear equation

(1. 26) hix) = [K(x,y) f (y, a (y)) hly) dy

‘has a positive solution,

If equation (l.26) does have a positive solution ¢ for a
function u_ satisfying equatic.ton (1. 24)‘, then either u is the
only solution of equation (1. 24) or this equation has an infinite
number of solutions u all of which are of the form u = u_ta o,

where 0<q< o for some number aoe (0, o ].

The proof of Theorem 1-19 will be established with the

help of the following two lemmas. We will use the notation

g;(x) << g,(x), x€Q,

if g1 and g, are two functions on (0 for which gl(x)sgz(x) for
all x€( and strict inequality holds on a subset of () of positive
measure. Thus, if g8, and g, are continuous on (), gl(x) << gz(x),
x€(), is equivalent to g81<8, in the notation of Section L. 1, and

in this case [ [g,(x) - g;(x)]dx>0,

1.20. Lemma. Let r, and r, be continuous non-negative

functions on ( satisfying
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0< rl(x) << r,(x), X€Q.
Then the principal eigenvalues p.(l) and p.(z) of

(1.27) h{x)=p [Kix,y) r.(y)hly) dy, i=1,2,

. 1 '
satisfy }L( s M(Z)- (If r{(x) = 0 for all x€N, then we take p(1)=oo-)

Proof. The lemma is obvious if rl(x) = 0 for all x€(),

(2) p(H)

since then p < o = . If rl(x) 22 0 for x€(, the smallest

eigenvalues of (1.27) are also the smallest eigenvalues of

h(x)

w [V Kix, y)/FIY) hiy) dy

b T (x;) h(x) ;

since all iterates of the kernel ,/ rilx) K(x, y)A/ri(y) of the linear

integral operator T(ri) are symmetric, we have

(1.28) 0< [‘Tll_)"] 2 max (h, [T(z;) 1h)
, M

for a sufficiently large integer m, where (h,k) denotes the
inner product (h, k¥ .=J‘ h(x)k(x) dx, énd the maximum is taken
over a suitable class of functions h satisfying (h, h) = 1
(Mikhlin 1964)., If we let ¢, be a positive eigenfunction of
equation (1.27), then cpl(x)> 0 for x€Q, and, setting h=hIEJ?lcp1

in (1. 28), we have
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[—J%T]m = (hy, [T 1™ B

< (b (TE)1™h) s [—le—,-}m
Thus p,(l)> p.(z). //

1-21,L.emma., Letf and g be as in Theorem 1-19; let

u and uy be distinct functions defined in 0 and satisfying
(1-24) and (-25); let u? and V) be the first eigenvalues of

the linear boundary value problems (1. 9) with u replaced by

u and ug s respectively. The;n uO(x)< ul(x) for all x€(, and
either p.(o) =1= u(l) or p.(o) >1 > p(l). If }L(O) =1= p(l),

then ul(x) = uo(x) + o, where o is a positive solution of equation
(1.26) for i=0 or 1, and all functions uo(x) + aw, Osqg<l, are

solutions of equation (1. 24),

Proof, Let

Tl = [ 1,00 au () + (1-0) u () da.

Clearly, for any x€(), either fu(x, uo(x)) < ?(x) <fu(x,u1(x))

or fu(x, uo(x)) = ?(x) = fu(x, ul(x) ). From equation (1, 24),

(1.29) uyx) - u (x) = [Ky)Ty) [o(y) ~u (N] dy, xeq;

~

thus 0<<f(y) < £, ysui(y)), y€Q, andu; -u_ is a positive eigen-

function of the linear equation (1, 27) with ri(y) replaced by?(y),
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corresponding to the eigenvalue 1, Hence uz(x) - ul(x)>0 for all
x€0. If £ (x,u;(x)) = F(x) = £ (x, u, (%)) for all x€Q, then

p(o) =1= }1.(1). If not, then

~

(1.30) Osfu(x, uo(x)) < <f(x)=s fu(x, ul(x)) , XEN,

and the preceding lemma shows that

(0)

>y >1>

(1)

0y _ ., _ (1) e T = .

If '’ =1=p"", then fu(x, uo(x)) = f(x) = fu(x, ul(x)),

from equation (1. 29) it follows that u; - u is a positive solution

of equation (1. 26) and just as in the proof of Theorem I.10-16, it
follows that uo(x) + = aul(x) + (1-¢) uo(x) is a solution of

equation (1.24) for Osqgx< 1. /

Proof of Theorem 1-19, If three distinct functions satisfying

(1.22) and (1.23) were to exist, then by Lemma 1-19 we would have
(0)

either p' "> 1 > |J.(l) >1l> p(z), which is clearly impossible (here

p(l) are the first eigenvalues of the problems (1.27) fori= 0,1,2),
or w0 o1 (D @

, and then the assertions of the theorem

follow from Lemma 1-21, /

1-22. Corollary. Consider the non-linear eigenvalue problem

(1.31) u(x) = glx) + \[K(x,y) {(y, uly) dy,

where f and g satisfy the conditions of Theorem 1-19. Suppose that
for each fixed A\> 0, any two solutions u, and u; of (1. 31) satisfy

ug (x)< ul(x) {or ul(x)s uo(x)) , X€EQ. Then for ahy A> G such that the
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linear equation (1. 9) does not have M\ as its principal eigenvalue,
there exist at most two solutions of (1.31), and if for some such
A> 0, there are two solutions ug and U, then uo(x)< ul(x) (say)

for x in 0, and p(o)>_)\ >p(”, where }x(i) are the first eigen-
values of the problems (1.9) with u replaced by u,, fori=0,1.

Proof of Theorem 1-18, Theorem 1-19 and L.emma 1-20,

together with the fact that \ = Hq [uo()\) ] if and only if A= max A,
imply all of Theorem 1-18 except the last equation of this theorem;

this equation follows from

w0kix) = N [ y) £0y,uk(y) w0F; y) dy

+\F J'K(x, y) £{y, u;(y)) dy

(see equation (1.29)), V4

Since by Lemma 1-21 any two solutions u<u of (1.24)

1
satisfy uo(x) < .ul(x) for all x€(Q, it is clear that if there is an
x€ () such that fu(x, u) is a strictly increasing function of u for
0<u< r, then equation (1. 30) of Lemma 1-21 is satisfied, and
therefore Uy - uo is not a positive solution of the linear equation
(1. 26), p(o)>1 >|¢(1) , and there is no function u, satisfying
equations (1. 24) and (1. 25). By imposing further conditions on

the kernel K(x,y), we are able to relax the assumption that fu(x,u)

is a strictly incréasing function of u for some x€(), and still

(0) (1)

conclude that if there are two solutions u zu then p' '>1>p

and there cannot be three functions satisfying (1. 24) and (1. 25).
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For simplicity, we will specialize the conditions of Theorem 1-19
.to the case f(x, u).20 for x€0, O<u<r, g{x) = 0 for x€(, and
[a, b) = [0, r). Then (l.24) reduces to (1.1) with A = 1,

Suppose that the kernel K(x,vy) is zero at some point
xOEBQ for all y€0. Then all solutions of (1. 24) are also.zero at X
I 0sf (x,v) S (%, u), whenever x€() and 0<v<u<r, and if there
is an open connected subset 0y of () with X € 801 , and a number
p€(0, r) such that fu(x, v) < ‘fu(x,u) whenever xEQ1 and
0<v<u<p, then equation (1.30) of Lemma 1-20 is still valid, and
A1)

therefore p' '> 1> for two solutions u1> u of equation (1. 24).

The validity of equation (1.30) in this case is shown by the following
argument: Let u,v be continuous functions on (! such that O<v(x) <
u(x) for all x€(, and v(xo) = u(xo) = 0. Then there is a number

e > 0 such that v(x)<u(x)<p whenever x€ Qe = {xEQl: lx-xol< e},

and Qe has positive measure. When xEQe,

fu(X._V(X)) < fu(x, u{x) ),
and therefore

fu(x, v(x)) =< fu(x, u(x)) , x€0.

The monotonicity requirement on fu(x, u) can be modified
in another way when K(xo, y) = 0 for xoeaﬂ and allye(l. We
assume that some point x€{) can be joined with X, by a continuous
curve y such that {y€vy:y# x’o} - Q;l we will then describe x  as

attainable from x in (), or simply as attainable from ( (since the
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open connected set () is arcwise connected, X, is attainable from

any point in Q), and say that y attains x, from x in Q. If f(x,u)

is a non-homogeneous linear function of u for all u€[0,r), say

f(x,u) = b(x)u + f£(x,0), with f(x,0)22 0 for x€{), then the unique-
ness of the positive solution of (1. 1) or (1. 24) follows from the
theory of linear integral equations. If f(x,u) is linear for small u,

say

f(x, u) = b(x)u + f(x, 0), Ogusp<r,

where f(x,0)= =20, and if

fu(x, p) < fu(x, v) Sfu(x, u)

whenever x€() and 0<p <vs<u<r, then equation (1.30) holds for any
two solutions of equation (1.24) with ul(x) >uo(x).xEQ.l To see this,
we first note that equation (1.24) has at most one positive solution
with norm < p, Thus in equation (1.24), uul > p, and for all

a.< 1 sufficiently closeto 1, | au; + (1-a) uoH > p. Then equation
(1.30) is proved by the following argument: Let u,v be continuous
functions on O with O<v(x) <u(x) for x€Q, lull >p, and let

u(xo) = v(xo) = 0. We consider first the case ||v||>p. Using the
continuity of u, v and the fact that X is attainable from (), we can
find a point X €0 and a continuous curve y which attains X from
X in 0 such that for all x€v, x%xo,xl, we have 0=v(xo)< v(x) <
vix;p<ulx)) = p+2c. We can find an open ncighborhood N,

of x; in 1 such that u(x)zp+e for xENl; choosing any point

X, € Nlﬂ Y, we have v(xz) < p. Thus there is an open neighborhood
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N2 - N1 of x, such that v{x)< p<pte <u(x) for xeNZ, and
therefore

fu(x, vix) < fu(x,u(X))

for xéNz, 80

fu(x, vix) < fu(x, u{x)) , x€N.

If vl <p, then we take X, to be any point in Q such that u(xl)>p.
'Choosing N1 as hefore, we have v(x)< p<u(x) for xENl, and the
desired result follows,

These remarks imply the following theorem on the unique-
ness of the eigenfunction corresponding to N

1-23., Theorem. Suppose that f(x,u) is convex in u and

has a continuous partial derivative fu(x, u) 2 0 for all x€(, u€ [0,).
If \* = sup p €4, then any of the following assumptions imply the
uniqueness of the eigenfunction of equation (1. 1) corresponding to nE
(a) There is an x€() such that fu(x,u) is a strictly
increasing function of u for O<u<r. ‘
(b) There is an XOEBQ such that K(xo,y) = 0 for all
y€Q), and there is an open connected subset QIE 0, with xoeag)l,
and a positive number p<r such that fu(x, u) is a strictly increasing

function of u for all x€Q 0O<u<p.

1 ¥
(c) There is an onBQ which is attainabie from ( and a

positive number p<zr such that K(xo,y) = 0 for all y€Q, f(x, u} =

b(x) u + (%, 0) for Osu<p, and fu(x, p)=b(x)<fu(x, u) for p<u<r,

all x€0,
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According to the proof of Lemma 1-21, the existence of
two eigenfunctions u, and u; corresponding to A\* implies that
fu(x, ua(x)) is independent of. o, where ua(x) = q ul(x)+ (l—a)uo(x).
If f(x, u) is independent of x (we then write f(x, u) = f(u) and
fu(x, u) = f'(u)), this clearly implies that f'(p) is a constant for p
in some interval contained in the interval [ min_ uo(x), i uy 1.
We can, in fact, show that f'(p) is constant};grﬂall p€ [min uo(x),

x
u, || ]. Choose any x_€(Q and consider the set
1 ¥ %o

A={(a,,x): O<qg<l, x€0, f'(ua (x)) = f‘(u%(xo))}.

Since f'(ua(x)) is continuous™in (g, x), A& is closed relative to
(0,1 Q0. We showthat A is open. For any (al’xl) €A, choose §

such that 0<a1—6< 0.1+6<1§ then
0 <uon1-6(x1) < ual(x1)<ual+6(x1) R

so we may choose ¢>0 such that

m1n{uail+6(x) : |x-x1|< €}> u

and

ma.x{uonl__6 (x): | x-xll < e}< u, (x

For any x such that fx-x1|<€,

<
ual_é(x) <ua1(x1) ua1+6(x),
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so there is an & s Iax'- all < &, such that uax(x) = ual(xl), and
therefore

f'(ua(X)) = f'(uax(X)) = f’(ual(xl))=f'(u% (x_)).

Thus all (g, x) with ,a-- ay | <8, lx—x1 ]<e , arein A, and
therefore A& is open. Since (0,1)Xx (] is connected and A& is both
open and closed relative to (0,1)x(, A = (0,1)x 2. By continuity,
f'(ua(x” = f'(u% (=) = m, say, for 0 sas<l, x€, In particular,

| f'(m}i{n uo(x)) = fY hul )= m, and thus £Y(p) = m and f(p)=m ptb,

say, for m}in u(x)<ps “111" . From Theorem 1-18,

o
Y

j‘cpo(x)[f(uo(x)) - ug(x) f'u (%)) ] dx

b I cpo(x) dx

so b=0, and f{(p) = mp. This proves:

1-24., Theorem. Let f(x, u) = f(u) be independent of x,

convex, and continuqusly differentiable for Osu<r. If \¥€p, then
the equation (1.1) has more than one eigenfunction corresponding to
N only if there are numbers Pys» Pp» and m, with Ox< P;<pys<T and
m> 0, such that f(p)=mp for PI=P <Py all eigenfunctions u()\*)

of (1. 1) corresponding to \* satisfy P1< u(\¥;x) < p, for all XEQ
and are also eigenfunctions of the linear problem (1, 9),with

fu(x, u(x) ) replaced by m, corresponding to the principal eigen-
value \¥,

1-25, Corollary. Let f be as in Theorem 1-24, and let

the kernel K(x, y) satisfy K(x_,y) = 0 for some x €090 and all y€Q. If
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)\* € A, then equation (l. 1) has only one eigenfunction corresponding to
\F

Of course, it is implicitly assumed in Theorem 1-24 and
Corollary 1-25 that £(0)>0. Corollary 1-25 follows from Theorem
1-2.4'since uo()\*; xo) = 0; if there were more than one eigenfunction

for \¥, we would have f(p)=mp, <p<p,, and p <u’(\¥;x ) =0,
Py=P=P2 1 )

i.e., f(p)=mp, O<p<p,, whichis impossible.

Without assuming the symmetry of the kernel K(x, y), the
results of Theorems 1-19, 1-23, and 1-24 may be established by
applying the methods of Section I.10 directly to the integral
equation (1. 1).

If f(x, u) is not differentiable with respect to u, results
similar to those of Theorem 1-18 can be obtained using LLemma L.7-4,
We will make use of this fact in Section II. 2,

Another result on Hammerstein integral equations with a con-

vex nonlinearity is given by Krasnosel'skii (1964a, §7.1.11).
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11,2, Applications. to Ordinary Differential Equations,

We consider in this section the Boundary value problem for the
ordinary differential equation
(2.a) Lu(t) = M(t,u(t)), 0 <1 <1,

where L is the Sturm-Liouville operator

(220 Lu®=- [pOu®] +ql) ),
with the boundary conditions

B (8, )u = 0
(2.1b) {sin 6)u(0) - P (0) (cosB)u'(0) =0

(siny)u(l) + p(1) (cosy)u'(l) = 0,
We assume throughout Section II,2 thaf the function q€C [0,1:] is non-
negative on [0,13; the function peC [0,1:| is strictly positive and con-
tinuously differentiable on [0,1]; the function f is non-negative and
continuous on [0,1] X {-c0,00) and f(t,0)> 0 for some t€(0,1); for each
te [0,1] , f({t,u) is a non-decreasing function of u for all u; and the

numbers 6 and  satisfy

o
A
(=2
N

WSIE
o
I/

=
A
o

and
6+ y>0 if q(t)=0 forall tel[0,1].

Under these conditions, the Green's function G for the operator
I, exists and is continuous on the square [0,1] X [0,1:|, and G(t,s)> 0
for 0<t<1l, 0<s<1 (see Exaﬁple I.2-1),

This section is primarily concerned with the discussion of
equations (2.1) when Lu = -u" and f(t,u) is convex in u, although
some of the results are more general., With these assumptions on L

and f, we show in the discussion leading to Theorem 2-5 that if f(t,u)
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is continuously differentiable with respect to u and non-increasing in

t, andif 6 =0 and y> 0 in the boundary conditions (2.1b), then
equatiéns (2.1) have at most two eigenfunctions for each \ < N sup f\;
the proof uses Theorem 1-19., We then show that a result similar to
Theorem 1-19 can be established without the differentiability assumption
on £ (Theorem 2-6). However, since we no longer have the character-
ization of Theorem 1-16 for \* = max A, a result similar to Theorem
2-5 cannot be obtained from Lemmas 2-3 and 2-4; we can assert
only that (2.13) has at most two or infinitely many eigenfunctions for
each ,)\' We also state in Theorem 2-6 further assumptions which rule
out the possibility of infinitely many eigenfunctions for any \. Theorem
2-5 does remain valid withoué the assumption that f is differentiable
(for the special cases of the boundary conditions (2.,1b) being con-
sidered) if f(t,u) is indepéndent of t; in this case, we are able to

show that if there are infinitely many eigenfunctions for some X\, then
A = \¥ = max A,

In Theorem 2-8 and its proof we construct the solution of the
variational equation associated with equations (2.1) when f(t,u) is
independent of t, Using this result, wé show that if f is strictly
convex and twice continuously differentiable, then there are at most
two eigenfunctions for each \ (for the general boundary conditions
(2.1b) ), and for such f we are able to give a rather complete
deséription of the behavior of the eigenfunctions as functions of \ 'in
Theorem 2-11. We conclude the section by using some of the preceding

results to construct an example showing that the minimal positive

eigenfunctions are not necessarily continuous functions of X\,
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Since the Green's function G is positive on (0,1) X (0,1}, the
theory of Section ILl1 applies to the eigenfunctions of equations (2.1)
if f(t,u)> 0 for all te[0,1}, u = 0; the problem (l.1) is equivalent to

the integral equation
1

(2.4) u(t) = )»5 G(t,s) f(s,u(s) ) ds = NAu(t).

[0
Thus all eigenfunctions of the problem (2.1) or (2.4) are positive on
(0,1). When £(t,u) has a continuous partial derivative fu(t,u) for

0<t< l, -o0o<u< oo, the variational equation associated with {2.4),
1 .

(2.5)  h{t) = “5‘ G(t,s) £ (s,u(s) ) h(s)ds
A N
pAT(u) h(t),

(i

is equivalent to the Sturm-Liouville problem
(2.6) Lh(t) = pfu(t,u(t) ) hit), B(o,P)h = 0.

No non-zero non-negative solution of (2.1) can have u(0)=u'(0)=0
or u(l) = u'(l) = 0 (Protter and Weinberger 1967, p. 7). It is not
difficult to show that for any subinterval I of [0,1] , there is an >0
such that

1

A

1 .
(2.7) S' G(t,s)ds > ¢ S G(t,s)ds, 0 <t
. 1 0
(cf. Krasnosel'skii 1964a,p.258). Thus the linear operator T,
1

(2.8) Th(t) =5 G(t,s) r(s) h(s)ds,
0
where r is a continuous strictly positive function on [O,i] , 18 go -

bounded on C , where
1

(2.9) go(t) = gG(t,s)ds

0
(Krasnosel'skii 1964a, p.259), andthe operator A of equation (2.4)
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'is go- bounded onC, since we have assumed f(t,0)> 0 for some

te(0,1).

7w T .
'2- and 0€¢<-2— in the

boundary conditions (2.lb). Then for any positive solution of (2.1) we

We first consider the case when 0 < g <

must have u(0)> 0 and u(l)> 0, Thus the Green's function for the
operator L with the boundary conditions B(6, y)u = 0 is a strictly
positive continuous function on the closed unit square [0,1}x[0,1], and
the conclusions of Theorems 1-12, 1-13, and 1-17 hold in this case for |
the problem (2.1} (in addition to all those theorems of Section IL1l
which do not make special assumptions on the kernel; we shall see
below that the assumption f(f,O) > 0 for all t€[0,1] can be weakened

to the assumption made at the beginning of this section).

Similarly, if the Green's function G(t,s) is concave in t, then
Theorems 1-9, 1-14, and 1-17 apply to the eigenfunctions of (2.1).
This is certainly the case when L is the second derivative operator,

Lu = -u", since in this case the Green's function is

{cos@+ (sinB)t<] [cosy + (siny) (1-t>)]

Glt,s) =
sin(0+ ) + sinBsiny

where t

<= min(t,s), t

> = max(t,s), and 6+ > 0.

Theorems 1-9, 1-14, and 1-17 also apply when Lu(t)=—[p(t)u'(t)1:
i.e., when q(t) =0, 0 £t <1 In this case we introduce the new
variable ; .

(2.10) 8 = Po &; —;{t—'l-y ,
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where .

-1 de
Po = S‘ I’_(-t—)

0

Then the equation

(2.11) L [pou(ef]+ M(tu(t)) =0, 0<t<1,

is transformed into

(2.12a) E‘%v(s) 1 xp;"p('r(s) y£(T(s), v(s))=0, 0<s <1,

where T{(e) is the inverse of the mapping t — s defined by equation
(2.6) and v(s)=u(T(s) ), and the boundary conditions {2.1b)

" become

(sin8) v {0} - pol(cosB) v{(0) =0
(2.12b)

(siny) v(1) + po(cosy) v'(1) = O.
Thus equation (2.11), with Lu = -(pu')', and all properties of the set
A and the eigenfunctions u for equations (2.11) - (2.1b} can be deter-

mined from the corresponding properties for equations (2.12).

In each of the preceding cases(0 < 9<%and 0= L|J<"72£, or Lu:-(pu')'),

all functions in the cones C or CC (see the remarks preceding

Theorems 1-12 and 1-14) satisfy a relation of the form

uz |ullg,
where g(t)> 0 for 0<t<1l Thus, if ue C or ue C.» and [|u]]=p;

we have
i

Au(t) = 5 G(t,s) f(s,u(s) ) ds
01
> it t(e.0a(s) 1as= gy,
0
so JJAul| = |lg2]] > 0 for all such u, provided f(s,v)> 0 for all

v > 0 and some fixed s€(0,1). From Theorem IL.3-5, we obtain:
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2-1. Theorem., Suppose q(t) =0 for all te[0,1] in (2.2), or

0 £ 6« %, 0 sy« -7% in (2,0b), For some s4,€(0,l), let f(s,,v)>0
for all v > 0. Then for any number p > 0, there exists a number A\>0

and a function u€C[0,1], with u (t) >0 for 0<t<1, which satisfy

equations {2.1) and ||u]|=p.

This result is much stronger than Theorem 1-1, since it holds
also when f(t,0) =0 for all te[0,1].

Since the assumption f(t,0) > 0 for all t€Q which we made in
Section II.1 was used only to establish Theorem 1-1 on the existence
of eigenfunctions of arbitrary norm aﬁd to establish the g, -bounded-
ness of the operator A (equation (1.3) or (2.4)), and since i:hese results
have been established under the weaker hypothesis that f(t,0) > 0 for
some teQ, the results of Section II.1 can be a'pplied to the special

cases just discussed under this weaker hypothesis,

Theorem 1-19 may be used to investigate the number of positive
solutions for a given A of the following special case of (2,1) or (2.7),

u'(t) + M(tbu(t) ) =0, 0<ts<l, \>0,
(2.13)

u'(0) =u(l) + Bu'(l) =0, 0 <B< oo.
The Green's function in this case is

B+l-s5, 0=<t<s <1

(2.14) G (t,s) =
o P+1-t, 0< s <t <1,
Since u"(t) = -\ (t,u(t)) < 0, every positive eigenfunction has
its maximum at t=0 and decreases from u(0) = "u“ to u(l) =

-pu' (1) 2 0, Thus it is possible to define the function T inverseto u
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by T(u(t) )=t and u(T(v))=v, 0<t<1 u(l)<v<u(0) Then
(2.13) may be written in the form
(2.15) Y |
el - el =n {eT v e
u(t)

for any t and t; between 0 and L

2-2., Lemma. Let f; and f, be continuous and non-negative on

(0,1] X [0, p] (p > 0); suppose that

(2.16) £,(0,p)< £,(0,p)
and
C(2.17) fi({ty,v) < f,(t,,v)

whenever 0 <t, <t; <1 and 0 <v < p. Thenthere do not exist

two non-negative functions u, and u, on [0,1] such that

(2.18) ull (t) + fi(t,uiit) )=0, O0<tsl

(i=12)
(2.19) : u;(0) = u(1) + u,(1) = 0
(2.20) u;(0) = u,(0) = p.

Proof. Suppose there were two functions u, and u, satisfying
(2.18) - (2.20). The discussion following (2.14) applies to both u, and
u,; thus we may define the functions T, and T, inverse to u; and
u,. From (2.18) and (2.16) we obtain u';(O)> u;(O); it follows then
from (2.20) and (2.19) that there is an interval (0,t), to <1, in

which u;(t)> u,(t). As in (2.15), we have
£

Lul(te)? = § £, (Ty(v)y v) dv

(2.21) - uy(to)

p
<S £2(Ty(v), v) dv
u; (to)

We may choose
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u,(tg) = u,(ty) or ty =1 and u,(l) = u,(1). Thus we may change the

lower limit in the second integral in (2.21) to u,(t;). Hence

uy ()2 < uj(to)?.
But this is impossible, either if u,(ty) = u,(ty) or, according to (2.19),
if to =1 and wu,(1) > u,(1). //

2-3. Lemma. Suppose that f satisfies a Lipschitz condition

]f(t,ul) - f(t,uz)l < q(p) qu‘uz | for 0 € u;,u, < p, and that £f(t,u)
is non-increasing in t for each fixed u. Then fbr any number p>0,
there exists at most one number \ and one function u, u(0) = p,
satisfying (2.13).

Proof. Two solutions corresponding to different A's would
contradict the preceding lemma; two solutions corresponding to the
same N would violate the uniqueness theorem for the initial value
problem corresponding to (2.13) and u(0) = p, u¥0)=0.//

Using methods similar to those used in the proof of Lemma 2-2,

one may prove (take t=1 in (2.15)):

2-4., LLemma. Suppose that f satisfies the hypotheses of

Lemma 2-3. If, for some A > 0, the problem (2.13) has two non-
negative solutions u; and u, with u,(0)> u,(0), then u,(t)>u,(t),
0<t<L |

Combining the preceding results with Theorem 1-19, we have:

2-5. Theorem. Let f(t,u) be convex in u, continuously

differentiable with respect to u, and non-increasing in t for each u,
0<t<]l u=20. Then for each p> 0, there is exactly one number
A> 0 and one (non-negative) function u which satisfy (2.13) and

”u” = p. For each Ae A, (2.13) has at most two eigenfunctions. If
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¥ = sup Ae A, then there 1is either one or infinitely many eigen-

functions corresponding to \¥. If there are infinitely many eigen-
functions for X = \¥, then they have the form u®\*)+ag, where
a >0 And ¢ is a positive eigenfunction of the linear problem
" +uf (t, u’(M5t) Jg = 0
'(0) = 0 = ¢(1) + Be' (1)
corresponding to the eigenvalue \¥,
Theorems 1-9, 1-16, and 1-17 can be used to determine the

values of N\, if any, for which there are exactly two eigenfunctions.

Some of the results of Theorems; 1-18, 1-23, and 2-5 can be ob-
tained without the differentiat;ility requirement on f by using argu-
ments similar to those used to prove Lemmas L5-3 and L7-4. We
return to the general equations (2.1) - (2.2), assuming that { is
continuous and non-negative and that f (t,u) is increasing and convex
in u for each te[0,1] and u = O.

Sﬁppose equations (2.1) for‘ A=1 have three distinct solutions
u® u®+ hy, and u® + h, , with 0 < hy(t) < h,(t). We first show that
it is poésible to chooée a number ae(b,l) such that h; €< qgh;. If
ho(t) < h,(t), then |

L[hy(8) - ho(t)] = £(6,u(t) + hyft) ) - £ (£,ud(t) + holt) )
=z 0, |
B(h1‘ho) = 0,
so either h,(t) = hy(t) for all tef0,1], or h,(t)>hy(t) for all te(0,1)
(Protter and Weinberger 1967, pp.6-7).Suppose h,(t) > hy(t) for all

te(0,1). At either boundary point, either both h;, and h; are zero,
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or neither is zéro. If both are zero, then each has a non-zero deriv~
ative at that boundary point, and h, —'ho also has a non-zero derivative
(Protter and Weinberger, pp. 6-7). If neither h, nor h; is zero ata
boundary point, then they are not equal at this point; for if they were
equal, the boundary conditions would imply that the derivatives were
equal, and this contradicts h; > ho; L(h;-hy)> 0, by the same

argument as used in the preceding sentence, Thus

lim hg(t) lim hy(t)
t{ 0 h,(t) t{l h,(t)

exist and are less than one. There is, therefore, a number ¢ <1

and

such that hy(t) < oh,(t) for all te[0,1], and we may choose & to be
the smallest such numEer; i.e., ther‘e is no number B < a such that
ho(t) < Bh,(t). i
If f(t,u) is convexin u for all t€(0,1) and strictly convex for
some t€(0,1), then
(2.22)  f(tyue(t) + ahy(t) ) < (1-a) £ (t,up(t) ) + af (t,up(t)+h,(t) ),
and strict inequality holds for some t€(0,1), since h,(t)>0 for all
te(0,1). We set fo(t,O') = f(t, uo(t)+0‘) - f(t,uo(t) )}» Then
ho(t) = glG(t,s)fo(s,ho(s) )ds
< OSIG.(t,s) £%(s,ah,(s) ) de
< ."51 G{t,s) [oltfo(s,hl(s) ) - £%s,ah,(s) }] ds
1 aS G(t,s) £2(s,h,(s)ds
where I is a closed intervoal oﬁ which strict inequality holds in (2.22).
Using inequality (2.7), we can find an ¢ > 0 such that
ho(t) < -¢ EIG(t,s)ds + aS‘IG(t,s) £%(s,h,(s) ) ds
s (o -On)gl(}(t,s) fo(so,hl(s) ) ds

0
= (@-m) hy(t),
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where

_ - -1
n = g[max {f%t,p): 0st <1, 0<p < by 3 *

This contradicts the assumption that « is the smallest number such
that hy(t) < ah;(t). Thus there do not exist three solutions uo(t),
a®(t) + he(t), and u®(t)+ hy(t), with he(t) < h,{t)> 0 for all te(0,1)
cl. Theorems 1-18 and 1-19),

This result holds whenever, for all o€(0,1), there is a te [0,1]
such that strict inequality holds in (2.22). As in the discussion pre-

ceding Theorem 1-23, it is readily shown that this is the case if either

x x
2 2

of (2.1) vanish at a boundary point ty(=0 or 1), and either of the

b= or = in the boundary conditions (2.1b), so that all solutions
following conditions is satisfied in addition to the convexity of f(t,u)
in u:

(a) There is an interval I in (0,1), with t, as one of its
boundary points, and a number p > 0 such that f(t,u) is strictly
convex in u for all tél and 0 < u < p.

(b) There is a number p > 0 and non-negative not identically
zero functions m and b on [0,1] such that

»

f(t,u) = m(t)u+ b(t), 0<u=<yp O0s<tsl
and ’

f(t,au + (1-a)p)< af(t,u) + (1-a)f(typ), u=p, 0t

If there are three distinct solutions uo(t), uo(tH hg{t) , and
uo(t) + hy(t) of (2.1), with 0 < hy(t) < h,{t), then equality holds in
(2.22) for all te[0,1]. Since f(t,u) is convex in u, equality must
hold in (2.22) for all we[0,1]; therefore

£2(t,ah, ()= af(t,h,(t), 0sas<l O0<ts],

. and
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Lah;) () = af®t,h, (1) ) = 2t ah,(t) ).

Thus for 0 S @ <1, u®+ah, is a solution of (2.1). We define
£2(t,h, (t) )

S o

for 0<t<1, and also at the boundary points 0 and 1 if h,(t) is
not zero there. If h,(t) is zero at a boundary point ty, then uyty)=0
and f%(tg, hy(to))= 0, and we define

m(tg;h,) = fu(to, 0 +)
(this exists since f{t,u) is convex in u; Proposition 1-15). The
function m(t;h,) so defined is continuous for te[O,l], and h;, is a
positive eigenfunction of the linear problem

Lh(t) = pm(tsh,) h(t)
(2.23)

Bh =0
corresponding to the eigenvalue 1,
We have proven the following:

2-6. Theorem. Consider the problem (2.1), where f is con-

tinuous on [0,1} X [0, ), f£(t,u) is monotonically non-decreasing and
convex in u, and £(t,0) 2 0. Then for any X > 0, equations (2.1) do
not have three solutions uo()\), u,;(A), uy(\), satisfying 0 < uo()\) <
u;{N\) < uy(A), unless | u,(\) - uo(k) is an eigenfunction of the linear
problem (2.23) corresponding to the principal eigenvalue \; in the
latter case, all functions uo()\) + afuy(\) - uo()\)], Osas 1, are also
solutions of the nonlinear problem (2.1). This case does not occur if
f(t,u) is strictly convex in u for some t€(0,1), or if 0:% or L]JZ%
in the boundary conditions {2.l1b) and f satisfies either of conditions

a) (with t, =0 or 1 according as f=— or q;-'—-l) or (b) above.
0 g 2 )
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If f(t,u) = f(u) is independent of t and equality holds in (2.22)
for all t€[0,1] and some «€(0,1), then

£(u®(t) + ahy(t) ) = (1-a) £(u(t) ) + af(u’(t) + hy(t))
for ali te [0,1]. It follows that f is linear on the interval [uo(t),uo(t)-i‘hl(t)]
for éach te[0,1] (Choquet 1966); as in the discussion preceding
Theorem 1-24, we see that f must have the form

f(p) = mp+b,

~ for all pe [min {&(t): 0 st<1}, “u0+h1” ], where m> 0 and
b 2 0. Thus the functions uo, u0+ hy, and u°+h1, are each a

solution of

Lu(t) = mu{t)+ b, 0<t=<1,
(2.24)

(@assuming A=1 in (2.1) ); therefore h; and h; are each positive

solutions of

Lh(t)

I

umh(t) , 0<sts<1
(2.25)
Bh =0,

for p=1, and 1 is the principal eigenvalue of (2.25). Thus b in
(2.24) must be zero, and uo, O+ hy, and u0+h1 must be eigen-
functions of (2.25) corresponding to the eigenvalue 1. If we remove
the assumption N=1, then the existence of three such solutions uo,
uo+h0, and u + h; for some N implies \ is the principal eigen-
value of (2.25), As in Theorem 1.10-15, it follows that A=max A.
Thus Theorem 1-24 with 2=(0,1) and K=G, the Green's

function for 1, B (equations (2.1b) - (2.2) ), is valid without the
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assumption that f is differentiable, Theorem 2-5 holds for equations
(2.13) if f{t,u) is indei:endent of t without the assumption that f is
differentiable, and we also have:

2-7, Theorem, Let the function f(t,u) in equation (2.1) be

independent of t and cbnvex (in u). If e o= sup Ae A, then the
eigenfﬁnction uo()x*) is the only eigenfunction of (2.1) corresponding
to N* if either of the following conditions is satisfied;

(a) There does not exist a non-empty interval [pI , pZ] , with
0 <p;<p,, in which f has the form f(u)=mu, p; €u <p,, for some
positive number m.

(b) The boundary conditions (2.1b) imply that all eigenfunctions

of (2.1) are zero at one of the boundary points 0 or 1,

Notice that the boundary conditions u(0)- pu'(0) = 0 = u (1)+pu'(l)
can be included in Theorem 2-5 when £ (t,u) is independent of t, since
by symmetry we can reduce this problem to one on the interval [3,1]
with the boundary conditions u'(3) = u(l) + Bu'(l) = 0, which are of the
form of equation (2.13) (cf. Section II, 3).

If vneither of conditions (a) or (b) is satisfied, then it is possible
for there to be infinitely many eigenfunctions corresponding to X\ =X,
For example, let f be the continuously differentiable function
fu)= eu—l, 0<u<l], f(u)=u, 1 Su<r, for some number r >1; let
the boundary conditions be u'(0) =u (1) + pu'{l) = 0, with 0 < B < oo}

and let Lu = -u", Let \* be the smallest positive root of the equation

cob/N¥ = W, and choose r > secyX. Then Arf = (O,)\*] ,
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and all functions u = ”u“ cos«,rﬁ:t are solutions of (2.1} for

secV Mk < lull< r.

When f(t,u} is independent of t and Lu = -u", it is possible
to construct explicitly the eigenfunctions of (2.6) in terms ofagiven
solution u(\) of (2.1) for any value of A€A which is also an eigen-
value of the variational problem (2.6). The eigenfunctions so con-
structed have no zeroes on (0,1) and therefore must correspond té the
smallest eigenvalue g, [u()x)] of (2.6). This result will enable us to
give a proof that in this case equations (2.1) have at most two solutions
for each N when f ié convex; the proof works for the general
boundary conditions (2.1b), whereas in Theorem 2-5 we assumed
the special boundary conditions of the form in equations (2.13). On
the other hand, we must apply Theorem 1-5 in this method of proof
and therefore will need to assume that f{ is twice continuously differ-
entiable and that either condition (a) or condition (b) of Theorem2-7
is satisfied.

The construction of the eigenfunctions and proof that they are not
zero on {0,1) is ca,rl;icd cut in the proof of the following thevrem,
which coﬁsiders the more general equation u" + g{u,u') = 0. We will
use only conclusion (i) of this theorem, but we include also (ii)
through (iv) since they follow immediately from the proof and are of
interest in themselyes. Conclusion (ii), for example, shows that if
f is positive and decreasing in equation (2.29) below, then \ is never

an eigenvalue of the variational problem (2.30).

2-8. Theorern. Let u satisfy
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(2.26) u'{t) +g(u(t)u'(t)) =0, u(t) >0, 0st<],

with the boundary conditions {2.1b), where g(u,v) is positive and
continuous for u 20, ~-w<v< oo,' and has continuous partial deri-
vatives Dj;g(u,v) = -5% g(u,v) and D,g(u,v) = —8% g(u,v). Let
(2.27a) @"(t) + Dyg(ult), u'(t) ) o'(t) + Dy g (ulth w'(t) ) ¢ (t) = O
with the boundary conditions

(2.27b) B@, ) =0,

be the corresponding variational equation, Then

(i) if D;g(u,v) =0 for u=0, -0 <v< oo any non-zero solution
of (2.27) has no zeroes on (0,1);

(ii) if D;g(u,v) <0 for-u=0, -o0<v< oo, then equations
(2.27) have no non-zero solution;

(iii) if either € =0 or ¢ =0 in the boundary conditions (2.1b)
and (2.27b), then any non-zero solution of (2.27) has no zeroes on
[0,1) or (O,l:j , respectively; |

(iv) if either 6 =0 or Y =0 and if D;g(u,v) €0 for u=0
and v <0 or v = 0, respectively, then equations (2.27) have no
non-zero solution.

Proof. If u satisfies equation (2.26), then v = u' satisfies
(2.28) v'" + D,g(u,v)}v' + D;g(u,v)v = 0,
To f_ind the general solution of equation (2.27a), we set ¢ (t) =c{)v(t),

substitute in (2.27a), use (2.26), and solve for c(t):
¢ _
- T'(s)
c(t)=K d
(t) 5; (a7 98

t
t -
- T'(s) _ 1 d I'(s)
T K [ v{s) v'(s) L _ S; vis) ds v!(s} dsJ,
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where K is the arbitrary constant and

s
T(s) = exp i'g D, g(u(t), v(t)dt
0

Thus t

vi(t)e(t) = K[g Digluleh (=) pys)qs - L 323)5((%))J’
: 0

assuming v(0) = u'(0)# 0 (i.e., 6 # 0). Therefore when u'(0)# 0, the

general solution of (2.27a) is

t
o (t) = K,; cropgy + vin | Dagleledoviel p(s)as
0

_%%l§+K2v(t)

_ -v(t) g(u(s), v(s))
" g (0T g a0y, arop * V) 5 g2(u(s), v(s)) [ (84

T (t)
g (u(t), v(t)) g t Ky vit),

where K; and K; are constants.

Using the fact that v satisfies equation (2.28), we obtain

VI(S)Z

. t.
K " D;glu(s), v(s)) }
! = —_— 18 3
o' (t) vr(t){ {07 v {0) + K; + Ky S‘ T'(s)ds
_ 0
We now impose the boundary condition ag(0) - a'¢'(0) = 0 on ¢,
where & = sinf, Q' = cos0; we obtain
al

K, = K,

v E

where

A(vit) = av(t) - a'v'(t) = av(t) + a'g(u(t), v(t))

fnote that A {v;0)> 0). Thus
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_ t
qn{ 1 ) D,g(u(s),v(s) )
Kyv (t){ v(0) v'(0) * v(0) A(v;0) * _S: 1ve(s)2 F(s)ds}

]

e'(t)

(6

Dlg u( S V( i ) )I‘(s)ds}

-K,g (u(t), V(t)’{g(u(o),‘ (OVAT(v, 00" g vi(s)?

Clearly, if D,g(u,v)<0, ¢' had no zeroces on (0,1]; if D,g(u,v)=0
@' has at most one zero on [0, l]

It is easily seen that if any differentiable function ¢ # 0 has a
zero on (0,1) and satisfies the boundary conditions (2.27b), then ¢!
has at least two zeroes on [0,1] . Thus if D,g(u,v) 2 0, any non-zero
sol_ution of (2,27) has no zeroes on (0,1). Similarly (since &=sing#0),
if D,g{u,v) € 0, equations (2.27) have no non-zero solutions.

If u'(0) =v(0) =0, thenwe have @=sinf =0, and u'(t)=v(t)<O0

for 0<t <1; the general solution of (2.27a}) is

'{7('{‘)'7 , t=0,

The boundary condition Be(l) + B'e'(l) = 0 (where P = siny, B'=cosy)

p(t) =

implies K, = - B'T'(1) K;/v(1)B(v;l), where B(v;t) = pv(t)+p'v'(t)

and B{v;l) = pv(l) - p'g(u(l), v(l) )< 0. Thus

1
- Tis)ds . _B'T (1)
va(")“t vi(s) * v(UB(viD| * > °

p(t) =
K

-‘V_'(JU) 2 t=0.

Since v (t) =u(t)< 0 for 12t>0 and v(1)B{(v;l)> 0, ¢ is never O

for 1>t>0 if K,#0,
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The bound‘ary condition ¢'(0) = 0 implies ¢(0)# 0 (otherwise,

0) and

T

@(t)

(0) = - BRI (g (" Ile) Dt utoh vie)
9(0) = - BT ML) (m§ Rislal as

i

= 0.

Since - %%%%7%% >0 and vY0) = -g{u(0), v(0) )< 0, this equation
cannot be satisfied if D;g(u,v)< 0

In this case (& = sin6 = 0), therefore, any non-zero solution of
(2.27) has no zeroes on [0,1), and if D,g(uv) < 0 for u=0, v<0,
then equations (2.27) have no non-zero solution.

A similar argumént shows that when p = siny = 0, any non-zero
solution of (2.27)} has no zeroes on (0,1:], and if D;g{u,v) < 0 for
u=>0, v 20, thenequations (2.27) have no non-zero solution. //

2-9, Corollary. Let u(A) satisfy the differential equation

(2.29) u 4+ Af{(u) = 0, 0t <]
with the boundary conditions B (0, y)u = 0. Assume that f(u) is con-
tinuously differentiable for uw = 0, with f(0)> 0 and f(u)>0, 0 < u.

If N is an eigenvalue of the variational problem

R + uf'(u(n) ) h =0
(2.30) | B(6,)h = 0,

then A is the principal eigenvalue, i.e., X = p, [u(k):l. (If £'{u (N;t))=0
for all te I:O,l:] » then equations (2.30) have only the zero solution, and

A is not an eigenvalue of (2.30); we may take Hx[u()\):l = 0o, )

This result shows that Theorem I.7-6 is applicable whenever \

is an eigenvalue of (2.30) and f is twice differentiable,

If in addition f is convex, then Corollary 2-9 and Theorem 1-16
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imply the following:

2-10. Theorem. Let f be a continuously differentiable function

on [0,00) with £(0)> 0, and let f' be non-negative and non-decreasig
on [0,00) inthe problem (2.29) - (2.1b). If \;e A and u, is any
corresponding eigenfunction, then one of the following two mutually
exclusive alternatives holds: either

(a) Ny [‘H] = maxA,
or

(b) the variational problem (2.30) with X = X, has no
non-zero solution; if u; is different from the minimal solution uo(}\l),
then |

py [u] <A < Hl[uo(h):{ ;
there is a neighborhood N of X\, and 7 of u; such that for each
NEN equations (2.29) - (2.1b) have a solution u(\), depending con-
tinuously on A, such that u(X;) = u,, and u{\) is the only
eigenfunction of '(2.29) -(2.1b) in M .

Proof. Suppose \, # max A Since f is convex, it follows
from Theorem 1-16 that \; < p;[u(\)] and N\ # p,[u,]. ByCorolary
2-9, N, is not an eigenvalue of the variational problem (2.30}, and
the assertion concerning the existence of solutions u(\) for A near
A, follows from the implicit function theorem I.6-5. Since A\, # y, [ul:l,
A > pl[ul'] if u; 1is not the minimal eigenfunction uo()\_l) by Theorem
1.10-13. //

Consider now any non-minimal solution u, for A=A;<X=sup A,
where { satisfies the hypotheses of the preceding theorem. Using

this theorem and the compactness of the operator A (equation (2.4))
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we can construct a continuous family {u(l)(K)} of eigenfunctions of

‘equations (2.29) - (Z.Ib) in a maximal open interval (\;, \;) to the

left of X\,;, such that %:Trr)tlu(l)()\) =u; and either iir{lz u(l)()\) =0 or
im (1) _ m (1), _ )
W [ (N) || = © (Corollary 1.3-3). If AA, (\) =0, then \,=0

(since u(l)()\) = uo()\)>0 for A>0) and some of the eigenfunctions
u(l)(K) are minimal eigenfunctions, since the minimal eigenfunctions
are the only small eigenfunctions for small A (Corollary I.4-11 and
Theorem 1-3}. Since both u(l)()\.) and uo()\) depend continuously on
A\, there is in this case a maximum positive number A; < \; such
that u(l)()\3) = u°(7\3) and u(l)()\) > uo(x) for Ny < X< \,. This, how-
ever, contradicts the last assertion of the preceding theorem applied

to A =X;. Thus we must have

lim {1
N, M) = o
According to Theorems 1-17 and 1-16, this implies that either él_rzof'(u)=oo
i - .
and X\,=0, or ul_rfloof'(u) =m< o and A; = Hy [oo_J, the principal

eigenvalue of

h"(t) + pmh(t) = 0.
(2.31)

- B(6,¢)h =0,
Similarly, there is a maximal open interval (A;, A\y) to the right
of N\ .in which a family {u(l)(k)} of eigenfunctions is defined such
that )&Yi atiny = u, and either ){%r{l llu(l)(R) | = or €A (Corollary
I,3-3),. The former alternative is not possible, since there is at rhost
one asymptotic bifurcation point (either A =0 or A= p.l[oo:] ), and

we have just seen that this is less than A;. Thus MNe€NA; since (A}, Ay)

is maximal, Theorem 2-10 shows that A, = N (otherwise, we could
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continue um()\) for larger values of \).

We now wish to apply Theorem 1-5 to conclude that for each A\
sufficiently close to )\*, u(l)()\) is the only non-minimal eigenfunction
in a sufficiently small ball about uo()\"‘), and that uo(k*) = u(l)()q)

( :{‘11‘;\1 u(l)(X) ); thus we 1rnust assume that { is twice continuously
differentiable and that § qa3(t)f"(uo()\*;t) ydt # 0, where ¢ is a
positive eige-nfunction 0f0(2.30). Since ¢ (t)>0 for 0<t<1 and fis
convex, this integral is zero only if f"(u) = 0 for all numbers

ue [mtin wC(Nt), ”uo( | |. Using the fact that £(0)> 0, it is not
difficult to see that this situation can occur only if both conditions (a)
and (b) of Theorem 2;7 are not satisfied (compare the discussion
following equation (3.21) in Section IL3 below). If condition (b) is
satisfied, then §1¢3(t)f"(uo()\*;t))dt =0 onlyif f%u)=0 for all

ue [0, ” uo()\*) “o] ; but then it is impossible for A* to be simulta-
neously an eigenvalue of I(Z.zf}) -~ {4.1b) and of (2.30). Similarly, it is
impossible for \* to be si'multaneously an eigenvalue of (2.29)-(2.1b)
and of (2.30) if condition (a) of Theorem 2-7 is satisfied and £"(u)=0

for all ue [mtin uo()x*;t), Iiuo( Q) Il

In other words, if there is a second eigenfunction u(l)(K) for
some A<\ then \*¢A; in this case, if either condition (a) or (b)
of Theorem 2-7 is satisfied, then S” e3(t) f"(uo()\*;t))dt >0, An
analysis similar to that given ébove slgows that we cannot have

u(l)()\) = uo()\) for any Ae (N, Ng) = (N, )\*), and therefore (assuming
the conditions of Theorem 2-7) A;=\* =y [u°( 2] ,ﬁ%é‘)()\):u"(x“),
and for each M\ sufficientlyclose to \*, u(l)(}\) is the only non-minimal

eigenfunction in a sufficiently small ball about uo( )\'F).
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Suppose there were a second non-minimal eigenfunction corres-
‘ponding to \;; we could then construct a second family {u(z)()\)} of
eigenfunctions for N\ ;< A< \*. Under the preceding conditions, we

i%ri‘ w®ny = LOF) ana By = W0y for N sutficiently

would have
near )\*, by Corollary I.3-3 and Theorem 1-5. Thus there would be
a minimum positive number X;, A\ < A5 < ).*, such that u(l)( )\5)=u(2)()..5)

and u(l)(k)qé u(z)()\) for Ny < A< A5 ; this contradicts the last assertion

of Theorem 2-10. There is, therefore, only one non-minimal eigen-

function corresponding to \ = \;.
We have proved the following:

2-11, Theorem. Consider the problem (2.29) - (2.1b). Let { be

defined, positive, monotonically non-decreasing, convex, and continu-
ously differentiableon [0,), and assume that either of conditions @ or b

- of Theorem 2-7 is satisfied. Define pl[oo] to be the principal eigen-~
value of (2.30) if O<&inoof'(u)5 m< ; otherwise, let p.l[oo]=m_l.
If f{u) - uf'(u)z 0 for 0 < u< o, then equations (2.29)~(2.lb)
have precisely one positive eigenfunction for each \e (O,M[oo] ) and
no positive eigenfunctions for any other values of \. Moreover,
lim
M [ o]

Suppose now that f is also twice continuously differentiable, If

[P | = oo.

Lim f'(u) = m< oo,
u— o

f(u) - uf'(u)<0 for sufficiently large u and if
then there is a number A\* > pl[oo] such that equations (2.29)-(2.1lb)
have precisely one positive eigenfunction for 0< \ < y, [o] and for
N = N¥; precisely two positive eigenfunctions for piloo] <A< A and
no positive eigenfunctions for other values of A\.

lim

If o f'(u) =00, then there is a number A > 0 such that
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equatimxs (2.29) - (2.1b) have precisely two positive eigenfunctions for
0<A< )\*, precisely one positive eigenfunction for \ = \*, and no
positive eigenfunctions for other values of A.

If we let ¢ (\) be the positive eigenfunction of unit norm of (2.30)
and let pl[ uo()\)] be the corresponding (principal) eigenvalue, then all
minimal positive eigenfunctions of (2.29) - (2.1b) satisfy )\.<|J.1[u0()\.)]
for 0< A< N*, and W=p[WV(\*)]. If we denote by iy,

ploo] <A< A*,  the family of non-minimal positive eigenfunctions,

then the mapping \ — u(l)()\) is continuous on‘ (3,[e0], X*),
Minte) 100 = o0,
and
lim w0 - wr | lim w00
MM MM R
(2.32)

Y

flfp"‘(t)f’[u*(t)] wk(t) dt
- ‘P* [2 2::1 3
M Lo#(e)] £ we(t)] dt

where ¢* = ¢ (A\¥) and u* = ©O(\¥).

Juf ; o

fon]
Ls

)
|
!
l
l
I
|
]
[

b - — = —
"

M1 o]

fu)-uft(u)=0 uljfrgo [ f(u)-uf'()<0, E_‘_Tloofv(uk ™ .
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From Theorems 1-16, 2-5, 2-7, 1.6-5, and the remark following

Theorem 2-7, all assertions of the preceding theorem except equation
(2.32) are valid without the assumption that f is twice differentiable
unless 0,y and 6-y are each different from zero in the boundary
conditions (2.lb). We therefore conjecture that Theorem 2-11 (except
equation (2.32)) holds for the arbitrary boundary condition (2.1b) with-

out the assumption that { is twice differentiable.

We shall conclude this section by giving the example promised
after Theorem I.4-10 illustrating the fact that the minimal positive
eigenfunctions uo(k) may be discontinuous (from the right) in X\ at
some number \g€(0, sup A) at which X\ = w,lu’(Ng)]. (Thus Theorem
4.1 of Keller and Cohen (1967) is i.ncorrect and should be replaced by
a statement similar to our Theorem IL7-1 )

Consider the differential equation (2.29) with the boundary
conditions u'(0) =u(l) = 0. Tt f, bhe any continuously differentiahle
convex function with fl(u)} 0, fl(u) >0 for u=0, and uli’l}poofl(u)zoo
(for example, f,(u) = e ; in this case, the solutions of (2.29) with
u'(0) = u{l) = 0 can be determined explicitly (Bratu 1914)). According
to Theorems 2-5, 2-7, and 1-16, or 2-11 and the remark following it,
if we replace f by f; in (2.29), there is a number )\T and corres-
ponding eigenfunction uo()\*) = u¥* such that )\T= rna,foi—- pluk], there
are two eigenfunctions uo()\) and u(l)(}\) for each positive A less
than N¥, and “u(l)(k) | > |u*| (since there is only one eigenfunction
with given norm; Lemma 2-3 or Theorem 2-5). Let r be any

number greater than “u* “, and let )\.r be that value of A for which
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“u(l)()\r)” =71 (}\r exists by Theorem 2-5), Let g be anycontinuously

differentiable bounded function with gu)>0 and g'(u)> 0 for u=>= 0,
Since g'(u)—= 0 as u— +00, we canassume r chosen so large that
g'(r) < g(r). Define

fiw), 0su=<r
f(u) =

f(r) [gi—l—g'i—lug,(—) z +1-‘, uz=r,

Then f is continuously differentiable, bounded, and f'(u)— 0 as
u-— +o. Thus equations (2.29) - (2.1b) have a solution for every
A >0 (Keller and Cohen 1967, Corollary 3.3.2, or our Corollary 1.4-7),

and there are at least two eigenfunctions for each \€ ()\r, N ;k). Since

' . - . () . lim
for such N the second eigenfunctions u"’(\) satisfy A
T

and since uo()\*) < r, all minimal positive eigenfunctions for o\
1 p 1

ERSTESS

satisty [w°00] > £> u¥] = [u08)]

. Thus the minimal eigenfunctims
uo()\) are discontinuous from the right at )\1 {(This result also follows
[rom Theorem 1,7-3 or Theorem 1-51if f; is twice continuously

differentiable, )

]
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.
.
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II. 3. An Alternative Treatment of u" + Af(u) = 0, u(0) = u(l) = O,

In this section we will give a treatment of equations (3. 1) below
which is independent of the preceding investigations. The treatment is
based on the fact that we can obtain a solution of (3. 1) and an expression
for the eigenvalues A as a function of the norms ”u ” of the eigenfunctions
u of (3. 1) (see equations (3.7) and (3. 8)), and on a study of (3. 1) in the
phase plane (cf. Pimbley 1962). All the results stated in Theorem 3-11
at the end of this section have been obtained previously by different
methods (see, e.g., Theorem 2-11).

We consider the followi;qg non-linear eigenvalue problem:

u' +Af(u) =0, 0=t=1, A=0
(3.1)
u(0) =u(l) =0

where f is a non—negative continuous function defined on (~%, r), with
0< r=<-»0, and f(u) > 0 for 0 < u < r., We assume that f is Lipschitz
continuous on every closed subinterval 0f_(—°°, r). This problem is
equivalent to the integral equation _

(3.2) | uls) = A fol Gy (s, 1) £(u(t)) dt

with the Green's function

. {t(lvs), 0st<s=<1
G; (s, t) =

s(l-t), 0=s<t=<1.

It follows that for non-negative A, all eigenfunctions are non-negative;
moreover, since u''(t) = =Af(u(t)) < 0 for u(t) > 0 and positive A, every
eigenfunction has only one maximum in 0 = t= 1. The system (3. 1) may

be integrated once to give:
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(3.3) O F@2+AF@) = 3@ (0))?

=8

where F(u) = ‘]0 i(x) dx. If u(t) is a solution of (3. 1) corresponding to
some A, then so is u(t) = u(l-t); from (3. 3) it follows that

u' (0)% = u' (1) = G (0)?
so that u' (0) = @' (0), since each of these quantities must be positive.
IFrom the uniqueness theorem for initial value problems, we conclude
that u(t) = U(t) = u(l-t), and any solution of (3. 1) is symmetric about

t =%. Thus (3.1) and (3. 2) may be reformulated as the half-interval

problems
| u' +Affu) =0, 0=t=3,
e u(0) = w'@) = 0
or
(3. 5) - u(s) = A fo% G(s, t) flu(t)) dt

with the Green's function

(t, 0=t<s =
G(s,t):{

1
2
s, 0=s<t=<1%

Problems (3.4) or (3.5) are equivalent to (3. 1) or (3. 2) in the sense
that if u isva solution of (3.1) or (3.2) for some A, then u restricted
tol0=t= % is a solution of (3.4) or (3.5) for the same A, and converse-
1y if u_;z_ is a solution of (3.4) or (3.5) for some A, then u defined by
u(t) = u_%_(t), 0=t=3%, and uft) = us (1-t), $ <t=1, is a solution of
{(3.1) or (3.2) for the same A.

Any eigenfunction of (3.4) is posilive and strictly increasing

on 0 < t=32, Thus (3.4) may be integrated twice as follows:
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(3.6) 3@ + AF () = $(a'(0)* = AF([u])

(3.7) t(Z)t)% = [4 dv
fO VE(JJu) - F&v)

with

- O —

VE(|ull) - F(u)

Here F(u) is defined as in (3. 3) and ”u” denotes the maximum value
of u(t) for 0=t=%. The integral in (3. 8) is improper at the upper
limit u = |ull; near this limit, F behaves like F(u) = F(||u])
+ f(”u") (u—"u”) + o(u-"u”), so the.integral is convergent if f(nu“)
> 0.

We may use (3.7) and (3. 8) to construct a solution of (3. 4).
Given any numberv "u" €(0, r), define A by (3. 8); then (3.7) defines
a one—to—one relation betweent and ufor 0 =t=<Zand 0 <u = ”u”
such thatt = 0iff u=0and t = %_.— iff u = ”u” . The function u(t) so
defined is easily seén to be twice differentiable and satisfy (3.4). We
obtain the following:

3-1., Theorem. For any number p€(0, r), there exists exactly

one number A{p} > 0 and one (non-negative) function u{p} on[ g, 1]

which satisfies (3. 1) and ”u {p}l[ = 0 h{p} is a éor;tinuous function of p.

We have the following comparison theorem for solutions of
(3.1) or (3.4) corresponding to a given A:
3-2, Theorem. Let u; and u,; be two solutions of (1) for a fixed

A > 0 such that ll uy ” < Huz

. Then
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up(t) < uplt) for 0 <t < 1,

Proof. Since |w| < |wl. Ftlw]) < F(]uw]). Then the
existence of a ¢, 0 < ¢ < 3, such that u;(c) = up(c) contradicts (3.7).
since w;(3) = |w || < w@) = |w|, wt) < wit) for 0< t= %, and by
symmetry for 0< t < 1. //

Using the integral formulation (6), we may obtain the behavior

of A for large and for small "u” (cf. Joseph 1965). Eqﬁation (3. 5)

implies

[ull =u@) =2 f()% t flu(t)) dt ,
or _,
(3. 9) X = fo‘% ¢ f(ue)) dt / |ul.

Since u is concave downwards, u(t) = 2t ”u” for 0 <t= 3. The next
result then follows directly from (3. 9).

3=3. Theorem. If ffu}= an +h for 0=<u<r, where a = 0,

b = 0, then for any eigenfunction u and corresponding eigenvalue

Ml or @, e = 2y gy sl <o

In particular, if £(u) >0 for u = 0, then 7\{”11" } —0 as nu“ — 0.

3—4, Theorem. Suppose that f(u)/u — % as u — r from below.

Then'?\{”u” }—0as "u” - T,

| _P__f_o_g{. For any number m > 0, there is a positive number r;
< r such that f(u) > mu for r; < u < r. Choose s such that r; < s <r
and r; < s < 2r;, and set & = r;/2s, so that 3 <@ <3. Then whenever

a=t<3%and ||u] > s, we have ut) = 2t lu] = 2as = Ty, S0
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Az e 3 a
u o

v

2m f:f £ dt

me.

Wl

=
Since m can be chosen arbitrarily large, this shows that A{ “u“ } — 0
" as “u“ - r, /] 1
The next theorem obtains another bound on the wvalues of A for
which equation (3.1) has a positive solution; in this case, the bound
is obtained directly from (3. 1).

3—-5. Theorem. Suppose that for some positive mimbers a,

b, f(u) satisfies f(u) = au + b for 0 > u> r. Then the eigenvalues
satisfy A ]u|} <1r;_ for 0 < Jul] < =,

Proof. Let v{t) = sin Viat , and let u be a solution of (3. 1)

corresponding to the eigenvalue A. Define W(t) = u(t) v'(t) - v(t) u'(t).
If 72/Aa = 1, then

Edjg = u(t)v''(t) - v(thu''(t)

= = u(t) Aav(t) + dau(t)v(t) + Abv(t) = Abv(t)

for 0= t= 7w/VXa, so

u( T _ -1 T -
) = W) - W

_ 1 Nxa  aw
= & T«

<o,
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which is impossible. Thus 72> Aa. /!

Solutions of the boundary value problems (3.1) and (3.4) can
be obtained from solutions U(t;m) of the initial value problem
Ut +fU)y=0, t= 0,

(3.10)
U((0;m) = 0, U'(0;m) = m > 0,

where primes on U denote differentiation with respect to t. We
assume that f is twice continuously differentiable and that f(u) > 0,
f'{u) = 0 for all u. B
Let us consider (3. 10) in the -phase plane by introducing
U'(t) = “V(t')

(3.11) VI(t) = —f(U(t))

U(0) = 0, V(0) =m> 0.

In the phase plane, a solution of (3.11) starts at the point (0, m)
and moves into the first quadrant with its tangenf pointing down and
to the right. The sign of the curvature of this curve is the same as
the sign of
U'(t) V' (t) = VI{t)U"(t)

= —U%(0) - £(0) ;
this is always negative if f'(U) is non—negative, and the curve is concave
as viewed from the origih. Since {(u) is positive, there can be no
horizontal tangents, and therefore only one intersection with the nega~—
tive V—axis. This gives us: |

3-6. Lemma. For each number m > 0, the solution of (3. 10)

has exactly one positive zero z(m) > 0:
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(3.12) U(z(m);m) = 0.

Thus each value of m > 0 yields exa-ctly one solution of (3. 1),
(3.13) | “u(t) = Ultz(m);m),
corresponding to the eigenvalue A = z2(m). For m = 0, we take z(0) A
= 0 and u(t) = 0. |
From (3.10) we obtain (cf. (3. 6)):
2(U')? + F(U) = $(U'(0))* = F(U____(m)),

SO

(3. 14) m = Y2F(U___(m)) = v2F([u]) ,

where u is defined by (3. 13) an;]. Urn'ax(rn) = max {U(t;m}: 0I=t= z(m)}.
This shows that m is a strictly increasing function of ”u” (and con-
versely) for m > 0, and m = 0 iff "u” = 0.

We conclude that the behavior of A as a function of Hu” may
be obtained by studying the behavior of
(3. 15) z(m) = z (2F([[a]l)) =v&
as a function of m. From (3.15) and (3. 8) we see that z is twice
differentiable with respeét to m; from (3.10), U(t;m) is twice differen—
tiable with respect to m Letting p = ”u” » we have

A vy [V ztm _1(p)
=z'(m) | V2 z(m)—= |,

SO

sgn[—%—g—»] = sgn|z'(m)].

It (3.12) is differentiated with respect to m, we obtain
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(3. 16) z‘(m) =.ILI.(_§_§E§1ZE£E)_ s
where
H(t:m) = a?—n U(t;m)
and we have used U'(z(m);m) = —m (by symmetry; see the discussion

following (3. 3)).

If we let x(m)be the value of t at which the unique maximum of
U(t;m) between t = 0 and t = z(m) occurs, we obtain from U'(x(in);m)
= (,

K(x(m);m)

(M) = T Ty o))

where

K{t:m) = % U't;m) = HYt;m)

Moreover, from symmetry we conclude that x(m) = $z{m).
By differentiating (3. 10) with respect to m, we obtain the differ~
ential equation satisfied by H(t;m):
(3.18a) S H"+ N (Utm))H =0, t= 0
with the initial conditions

(3. 18b) o H(03m) = 0, H'(0sm) = 1,

which can be written as
H'(t;m) = K(t;m)
- K'(tym) = =Y (U(t;m)) H(t;m)
. H(O;m) = 0, K(0;m) = 1.
Let the successive positive zeroes (if any) of H and K be a;(m),
az.(m), « « «, and by(m), bp(m),. . .; clearly 0 < by(m) < a;(m), and

none of the zeroes of H can coincide with the zeroes of K = H', by the
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uniqueness theorem for the initial value problem for (3.18a). Since
the zexroes ak {m) are solutions of I—I(t;m) = 0 and we never have
H'(t;m) = 0 for t = ak(m), the implicit function theorem shows that

the zeroes ak(m) depend continuously on m.

3-7. Theorem. For sufficiently small m > 0, z is an increas~-

[, 7\{”11“} is an

ing function of m. (Thus for sufficiently small “u

increasing function of uuu .)
| Proof. From (3.16) we see that it suffices to consider the
sign of H(z(m);m). Keep m fixed and let
W(U, Hit) = UH'(t) ~ HEU'(t) .
Using (3. 10) and (3. 18a), we obtain

S (w, B = HE [£O©) - ue 2 o),

and therefore
(3. 20) W (U, Hst) = j; H(s) [ £(U(s)) - Uls) £(U(s))] ds,
since

W(U, H;0) = 0.

- Because f(u) is positive, f(u) - uf'(u) is 'positi\fe for sufficiently
small \'ul; bthus for O < t = a;(m), the integral in (3. 20) is positive for .
sufficiently small U ax(m)s ice., for sufficiently small m > 0.
Therefore |

W{(U, H;ay(m)) = U(ay(m)) H'(a;(m)) > 0;

since H'(aj(m)) < 0, we must have U(a;(m)) < 0 and therefore z(m)

< a;(m), i.e., H(z{(m)) > 0, for sufficiently small m.
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Hence z'(m) is positive for sufficiently small m, as was to

be proved. /

3-8, Theorem. If f(u) -;u.f'(u) = 0 foru.> 0, then z is an
increasing function of m for all m > 0 (and therefore A{ "u”} is an
increasing function of “u” for all ”u”). |

I'roof. This follows (rom equation (3. 20) of the preceding -

proof. 4

From equations (3. 16) and (3. 17) we obtain the following-

important lemma.

3-9. Lemma. =z'(m) is zero iff z(m) = ai(m) for some i;

x'(m) = 0 iff x(m) = bj(m) for some j.

The 1err;1ma shows that if z'(m) = 0 (i.e., ifii%ei = 0), then
H(t;m) is an eigenfunction of the linear equaﬁon
| H" + uf'(U(t;m)) H = 0

with the boundary conditions

H(0) = H(z(m)) = 0,
corresponding to the eigenvalue i = 1; thus h(t) = H(tz(m);m) is an
eigenfunction of the val"iational problem associailzed with (3. 1),

h't + ,u.f'(u.(t)) h=0,

h(0) = h(1) = 0,
where u(t) is defined by (3.13) and satisfies (3. 1), corresponding to

the eigenvalue .= A = z2(m),
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Suppose ' now that f''(u) = 0 for u = 0.  We wish to investigate
the values of m.(if any) for which z'(m) = 0. For such values of m,

we obtain from (3. 16),

(3.21) | 2'(m) = = SH (alm)m)  (2'(m) = 0).

Differentiating equations (3. 18) with respect to m, we find that

GH 4 = . 3 3
- (tim) = Hm(t,m) satisfies

(3.22) H;n(t;m) + £'(U(t;m)) Hm(t;m) = =t"(U(t;m)) H? (t;m)

Hm(O;m) = I—Il‘m(O;m) =0,

We can have z'(m) = 0 only if z(m) = ai(m) for some i (Lemma -
3-9); since z and a, are cbntimious, z(0) = 0, and'ak(m) < ai(m) for
k < i, we can have an extremum of z only if, for some m, z(m)
= a; (m). The smallest value of m fér which z(m) = a;(m) will be the
smalles‘; value of m for which z'(m) = 0. |
Let us consider an m (if one exists) where z(m) = a;(m); then
H(t;m) satisfies the equation (3. 18a) with the boundary conditions
H(0;m) = H(z(m);m) = 0.
If for this m we also had z'(m) = 0, then (see (3.21)) Hm(t;m) would
satisfy equation (3. 22) with the boundary conditions
Hm(O;m),: Hm(z(m);m) = 0.
Since equation (3. 18a) is the homogeneous equation corresponding to
the differential equation (3.22), this would mean that H is orthogonal
to the right hand side of (3.22) on 0= t =< z(m). Since H(t;m) is
positive on 0 = t<z(m), this orthogonality is impossible unless

''(U(t;m)) = 0 for allt, 0= t=< z(m). But then f has the form f(u)
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=au+h, 0 u= Umax(m),for some constants a = 0, b> 0; in
this case, equation (3.18a) is the homogeneous equation corresponding
to equation (3. 1),’ and therefore b = 0, which contradicts f(0) > 0
(this shows that we cannot have z(m) = a;(m) when f(u) = au + b for
0= us= U ax(™)). Thus z(m) = a;(m) implies z'(m) = 0 and
z''(m) # 0. Moreover, an analysis similar to that of the proof of
Theorem 3-7, applied to (3. 18) and (3.22), shows that in fact
H_(a1(m);m) < 0 for any m if f''(u) = 0 and f'(u) 2 0 for 0< u
< U nas (M) when z(m) = a;(m); therefore z''(m) < 0 (i.e., z has a
maximum) whenever z(m) = a;(m), by equation (3. 21).

Consider now an m (if a-ny) such that, for some k> 1, z(m)
= ak(m). Since U(z'(m)-t;rn) = U(t;m), it is éasy to see that
I—I(ak(m)—-’c;m) = I:I (t;m) satisfies (3. 18a) along with H(t;m); since
I‘:I(O;m) =0 = lH(O;m), H and I:I must be linearly dependent (their
Wronskian van_ishés). Thus for some constant ¢ we have H(ak(m)—t;m)
= H(t;m)c. In particular, if z(m) = éz(m), then 0 = cH(a;(m);m)
= H(az(m)-a;(m);m), so that a,(m)-a;(m) = aj(m) and a;(m) = 2a;(m).
But then x(m) = $z(m) = ta,(m) = a;(m), and x(m) = bj(m) for some j
by equation (3.17), Lemma 3-9, and the fact that x'(m) = 1z'(m) = 0.
As pointed out above, we cannot have a;(m) = bj(m), and therefore we
cannot have z(m) = a,(m); by continuity, there is no m such that z{m)
= ak(m) for k> 1, |

The preceding two paragraphs imply the following:

3-10. Lemma. Suppose f(u) is positive and f'(u) is non-ncgative

for all u, and £"(u) is non—negative for positive u, Then z has at most
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one extremum, which must be a maximum.

Proof. Since for no m do we have z(m) = a(m), we must
have 0 = z(m) < a,(m). Hence z cian have extrema only if, for some
m, z(m) = a;(m). The condition on f'(u) implies that any of these

extrema must be maxima, and therefore there can be at most one. Y/

From Theorems 3~1, 3-4, 3~7, and 3~8, and Lemma 3-10,
we obtain the following description of the set of eigenfunctions of
équations (1. 1) (we use the notation of Theorem 3-1); note that if
f(u)> 0 and f'{u) = 0O for u = 0, then { can be extended to a differen—

tiable function on (-, ), which we also denote by f, such that f(u)

> 0and f'(u) = 0 for all u.

3—-11. Theorem. Let f be positive and f' be continuous and

non-negative on [0, ). Then )\{p} — 0 as p—> 0 and is an increasing
function of p for small p. If f(u) ~ uf'(u) = 0 for all u> 0, then A{p}

is an increasing function of p, and for each A > 0, equations (3. 1) have
at most one (non-negative) solution. If f'"(u) = 0 for all u = 0, then
h{p} has at most one maximum for p= 0. Iff(u)/u—90as u— o, then
Mp}—0asp—w, Iffi(u) = 0foru= 0 and f(u)/u— © as u — ©,
then A{p} has exactly one maximum, say R{p*} = A%, and for each

A€(0, X*), equations (3. 1) have exactly two eigenfunctions, while for

A= 7\'*, equations (3. 1) have exactly one eigenfunction.
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INDEX OF SYMBOLS USED AS LABELS FOR SPECIAL CONDITIONS

Label Page
(H) 32
(PA) 12
(PA;) 12
(PA,) 12
(SP)

64
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