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ABSTRACT

This investigation is concerned with those fluid-mechanical
problems in which the pressure distribution is determined by the
interaction between an external, supersonic inviscid flow and an
inner, laminar viscous layer. The boundary-layer approximations
are assumed to remain valid throughout the viscous region, and the
integral or moment method of Lees and Reeves, cxtended to include
flows with heat transfer, is used in the analysis.

The general features of interacting flows are established,
including the important distinctions between subcritical and super-
critical viscous layers. The eigensolution representing self-induced
boundary-layer fl ow along a semi-infinite flat plate is determined,
and a consistent set of departure conditions is derived for determining
solutions to interactions caused by external disturbances. Complete
viscous-inviscid interactions are discussed in detail, with emphasis
on methods of solution for both subcritical and supercritical flows.
The method is also shown to be capable of predicting the laminar
flow field in thc ncar wakc of blunt bodies.

Results of the present theory are shown to be in good agree-
ment with the measurements of Lewis for boundary-layer separation
in adiabatic and non-adiabatic compression corners, and with the
near-wake experiments of Dewey aﬁd McCarthy for adiabatic flow
over a circular cylinder. Extensions of the method to flows with

mass injection at the surface and to subsonic interactions are indicated.
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I. INTRODUCTION

In the ‘usual formulation of boundary-layer theory, as proposed
by Prandtl, (1) the distribution of static pressure along the surface is
determined by the inviscid flow over the body in the absence of a
boundary layer. In this sense, the effects produced by the viscous
stresses are assumed to result in perturbations on an existing flow
field. There are many important problems in fluid mechanics, how-
ever, for which the static pressure distribution cannot be specified
a priori but is determined by the interaction between the outer, in-
viscid flow and the inner viscous layer near the surface. One of the
most interesting problems of this type is the viscous-inviscid inter-
action induced by a rise in static pressure in the external supersonic
stream. This pressure rise may be generated, for example, by an
incident oblique shock, a compression corner, or by causing the flow
to turn parallel to the wake axis downstream of the body. The rise

~

in pressure in the external flow is propagated upstream through the
subsonic portion of the viscous layer, and often induces boundary-
layer separation far upstream of the location of the disturbance, This
type of interaction, where there is a strong coupling between the outer
inviscid flow and the inner boundary layer, requiring the simultaneous
' development of both solutions, is the subject of the present theoretical
investigation.

The boundary-layer approximations are assumed to remain
valid throughout the entire viscous region, although v/u may not be
small for separated flows. If the appropriate Reynolds number is

sufficiently large, however, rapid streamline curvature can only
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occur in regions of low dynamic pressure, such as in the near wake,
for example, and 8p/0y ~ 0 everywhere. Because of the complexity
of this type of viscous-inviscid interaction, an integral or moment
method is used in the analysis. A physical description of the flow
pattern and a discussion of some of the theoretical considerations are
provided in Section II.

The governing differential equations for adiabatic and non-
adiabatic flows are developed in Section III, and the nature of the
solutions of these equations are discussed in Section IV, Section V
contains a description of specific methods of solution for various
configurations, while the results of some num erical computations
are given in Section VI and in Appendix B. A brief discussion of

possible extensions of the present method is provided in Section VII.
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II. PRELIMINARY CONSIDERATIONS

II.1. Flow Description

As an interesting example of the type of viscous-inviscid
interaction considered in this investigation, it is instructive to ex-
amine the physical features of the interaction between an incident
oblique shock wave and a laminar flat-plate boundary layer, shown
schematically in Fig. 1. Additional configurations are described
in Section IV and in Appendix B.

Because of the presence of the subsonic viscous layer near
the wall, the pressure rise across the shock wave approaching the
surface is diffused inside the boundary layer, and unless the shock
is very weak, separation occurs upstream of the location of impinge-
ment. The effect of the incident shock wave decreases continuously
in the upstream direction because of viscous dissipation in the bound-
ary layer, and at some point, which can be considered the beginning
of the interaction, the pressure rise communicated by the shock be-
comes negligible, Upstream of this location, the pressure gradient
along the plate is induced by the rate of growth of the boundary layer
itself and not by the external disturbance.

Because the laminar boundary layer cannot support a sudden
rise in pressure, the incident shock wave is reflected as an expansion
fan at impingement such that there is no pressure discontinuity along
the surface. The thickness of the viscous layer increases ahead of
the iﬁcident shock and decreases behind the expansion fan, generating
convergent compression waves in the inviscid flow field and causing

the external flow to turn. The boundary layer downstream of the
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impingement point reaches a minimum section, or neck, and eventu-
-ally approaches a weak interaction region at the new free-stream
Mach number. Far from the surface of the body, the two families of
compression waves and the expansion fan coalesce to form a shock
wave corresponding to reflection from a solid wall in inviscid flow.

This physical description of the laminar boundary-layer/shock-
wave intcraction remains qualitatively unchanged for highly-cooled
flows. The major effect of surface cooling is to increase the fluid
density in the viscous layer near the wall, decreasing the boundary-
layer thickness. As a result, the upstream distance of propagation
of the pressure rise associated with the incident shock wave is con-
siderably reduced. The beginning of the interaction approaches the
separation point, which itself is located closer to the point of im-
pingement, and the transition from undisturbed to fully-interacting
flow occurs over a shorter distance than in the adiabatic case. This
same phenomenon has been observed in turbulent flows, where the
subsonic portion of the viscous layer is much smaller than it is in
the corresponding laminar interaction.

In the moment method formulation, adiabatic flat-plate flows
are subcritical, whereas highly-cooled (SW = -0.8) flat-plate flows
are supercritical. As a result, there is a fundamental difference
in the analysis of the two situations. This question will be discussed
in greater detail in Section IV.

I1.2. Theoretical Considerations

In the solution of many boundary-layer problems, a method

utilizing integral relations is often required. The basic advantage
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of this approach is that it allows the partial differential equations
describing the flow to be integrated across the viscous layer and
reduced to ordinary differential equations. In order to do this, how-
ever, it is necessary to make certain assumptions about the velocity
and total enthalpy profiles, and many of the difficulties previously
encountered in the use of integral methods can be traced to poor or
inappropriate profile representétion. Lees and Reeves(z) have shown
that the solutions of the Falkner-Skan(3) equation for similar flow,
including the reversed-flow profiles found by Stewartson(4), can be
successfully used to represent the flow quantities. This procedure
has been followed here for flows with heat transfer, using the Cohen-
Reshotko(S) analogs of Stewartson's solutions {Section III. 2).

In addition to the three conservation equations for mass,
momentum and energy, it is necessary to use at least one moment
of the momentum equation in order to avoid the semi-empirical fea-
tures inherent in methods such as the Crocco—Lees(é) mixing theory.
The use of this additional equation is not unusual, but was first pro-

(7), and was used by Walz(s), Tani(g), and more re-

(2,10)

posed by Sutton
cently by Lees and Reeves. The energy equation, which was

not employed by the authors cited above, assumes an important role
for the case of flows with heat transfer, especially for highly-cooled
flows. The use of this equation in the analysis provides additional
flexibility and permits the introduction of a new independent parameter
related to the total enthalpy profiles.

When the moment method was first applied to slightly cooled

(or heated) viscous flows along a solid surface, the procedure of
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linking the enthalpy and velocity profiles was adopted, and the energy
" equation was not used. A more general method was later attempted
in which the enthalpy flux was regarded as an independent parameter,
while all other quantities, including those directly related to the total
enthalpy, were associated with the velacity profiles. In this manner
the introduction of a second profile parameter was avoided, yet the
energy integral equation was satisfied and some of the required flex-
ibility was obtained. This method was not satisfactory because the
prescribed relationship betwéen the thermal and velocity layers proved
too restrictive, particularly for flows in the presence of a positive
pressure gradient.

The only consistent approach to the analysis of flows with heat
transfcr is to allow the vclocity and total cnthalpy profiles to be
represented independently. At least two parameters are therefore
required, one to describe the distribution of velocity through the
boundary layer, and the other to describe the distribution of total
enthalpy. For a given value of SW, the most appropriate profile
representation can be obtained from the family of Cohen-Reshotko
solutions. Using these similar solutions to average all flow quantities
across the boundary layer, the governing equations for flows with
heat transfer can be reduced to a system of four simultaneous, first-

order, non-linear differential equations.
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III, THE GOVERNING EQUATIONS

. III. 1. Basic Integral Equations

The basic partial differential equations describing a steady,

two-dimensional, compressible boundary layer are:

]
(o)

(pu, + (pv), (1)

puu_ + pvuy -p, T (uuy)y (2)

(I_h,:T hoy)y - EJ. (‘1‘% -1)u uy:]y (3)

A fourth equation for the rate of change of mechanical energy

is obtained by multiplying Eq. (2) by the velocity u, i.e.,
2
u_ + = =-up_ + u(Mu 4
puu, ¥ puvuy P, * ulu y)y (4)

Integrating these equations across the viscous layer and assuming

h, = constant, one obtains:
e
dinp_u v
doe e e _ e _
o - (8-6%) g = H; = tan 0 (5)
du
d 2 e _ Bu) :
E(peue 0) + 6*peue dx (“’ By o (6)
du ) 2
d 3 2" 7e _ du
Tx (P Uy O%) + 2(8%-6 )p u~ g5 =2 Sou(g;> dy (7)
o - B AE)]
Tx (PU™) = ‘[Pr dy o, / ®)
where 6 5
&5 = dy 6% = 1 . _ku_ dy-
p.u
o o e e
: 5 u 4 ) a uZ
o= § - (-Fay ovs § E(- ey o)
oPee e o Pe e Ye
)

[eg)
o
]
2
(o]
VS
[y
1]
Clg
S
Q.
v
D
w
*
1
(]
[o)
t-;
N
&
o]
]
S
o,
<
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The boundary-layer functions appearing in Eqgqs. (5)-(8) can be
related to equivalent incompressible quantities by assuming a viscosity

law of the form:(ll)

Mo T ~(10)
v T
0 0
. . (12)
and by using the Stewartson transformation
a_ P, a,
dX = C = & 4x dY=é_-——-9—-dy (11)
aco o0 0 POO

In this transformation the relation between the transformed and
physical velocities is

aOO
U = 2y (12)

2e

With these assumptions, Egs. (5)-(8) can be written

ds > a M gE M. _ L+m_
X j X == Se =
P "5 @~ dx]+6i s P tTrm ) ten®  (13)
ds,* &M M
! x G A - € = © P
¥ gt 6" g t 8T (AH-E) 0 = ﬁC‘M’e‘ Re, » (14)
i
dsi* dJ on e Mco R
F* - Lo - tod = o
T3z 18" a5 78T (31-2T%) —— B CMe Reg » (15)
; i
ds,* don M M
x 2 x dT% * T e - 0 Q
ot T % PCx m—wre, (1O
w 6i
where
a P_-
= ¢ ‘e = Y21 M2
‘3 B a'oo QD me 2 Me
a (17)
= 2 %
R"ai* Ve Mo 5
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and the transformed profile quantities are:

S, 5.
_ (i x i - V]
5 = ) dY 8, = (1 ﬂ-—>dY (18)
o o e
6. 8. 2
- i U ¢ U x iU - U
0 = § o (- gHay o = \ o (! 5—2)‘”
o e e o e e
G 8. ™ 6.
_ 1 i 1 1 U
¥ s gw R A = B
i i i ) e
5. 2
. 89 (U 9/ U
R—ZD*SI (-——):IdY P=6.*[ ( :\
i), Ly \T, ~ (o) Y=o
5 §
0S -1 -1 U
b oY Y=0 8 o 61 Yo €
1+me
F = :&(+-~m (1-E)
N 2

1 3y-1 Mg -1

The profile quantities depend on both the velocity and total
enthalpy distributions through the viscous layer; hence at least
two parameters must be used in their description. However, it is
not necessary to specify the actual detailed shape of the profiles
since only relations among the different boundary-layer functions
are required in the integral method. For example, if two parameters
a and b are used to denote the velocity and total enthalpy profiles
respectively, functional relations of the form ¥ = ¥(a), J = J(a),
E = E(a,b), T* = T*(a, b) etc. must be determined. One means for
obtaining these relations is to assume that they can be approximated
by cdrresponding relations among profile quantities obtained from
the similarity solutions of Cohen and Reshotko! ° ) for both forward

and reversed flow. In other words, the functional dependence
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J = JW;SW), for example, is assumed to be equivalent in non-similar
- and similar flows, and at a given Sw, all quantities which depend on
the velocity profile (%, J, Z, R, P) are determined by the particular
value of ¥ alone. In the same manner, the relations among the vari-
ous functions of the total enthalpy distribution are assumed identical
with those obtained from the similarity solutions. It should be em-
rhasizcd that this procedure is entirely different from the so-called
"method of local similarity" in which the profile shape is related to
the local value of the pressure-gradient parameter 3. Here there is
no such dependence, and the similarity solutions are used only to
specify relations among the different functions of the velocity and
total enthalpy distributions.

By expressing all required profile quantities in terms of two
independent parameters (Sections IIl. 2-1Il. 3) the number of unknowns
in the system of differential equations, Eqs. (13)-(16), is reduced to
five: Me, (Si*, ® and the two profile parameters. An additional flow
relation for the streamline inclination ® is obtained in Section III. 4.

IIl. 2. Velocity and Total Enthalpy Profiles

For a perfect fluid, the compressible boundary-layer equations,
Eqgs. (1)-(3), can be transformed into an equivalent low-speed form
by using the Chapman-Rubesin(ll) law, Eq. (10), and the Stewartson

transformation, Eq. (11). The resulting equations are:

89U vV _
5% T3¢ = O (19)
du 2
oU U _ e 9°U
Ugg * Voy = (S0 o +v_— (20)



2 m 2
as 8s Vo 8°S (1 ) e 8<U)
UL vy - 2 ey (e - 1) 2 2 (L (21)
X 3Y Py g2 o \Py Trm_ 02\,

Cohen and Reshotko showed that the compressible flow analog of the
Falkner—Skan( 3) equation can be generated provided SW = constant

and P, = 1. For these conditions and for a similarity variable of the

form:

U EY
_ m+l e )°
n =Y ‘T“\');Y"] (22)

the partial differential equations, Eqs. (19)-(21), reduce to a system

of ordinary equations:

£ 4 £ + p(1+5-£'%) = 0

(23)
s” +8'=0
where
U_~x™
e
(24)
£ = di _ U
~d 0,
and the pressure-gradient parameter 8 is defined as
Zm
P =mFr (25)
The boundary conditions are:
f(0) = £(0) = 0 _ f/(0) = 1
‘ (26)
S(0) = SW S(e0) = 0

The similarity equations, Eqgs. (23), were solved by Cohen

and Reshotko for selected values of SW and B, including a few of the
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reversed-flow solutions first found by Stewartson(4 ) along the lower
~branch of the Falkner-Skan family. For the purpose of this study,
additional solutions were obtained for both adiabatic (SW = 0) and
highly-cooled (Sw = -0.8) flows for the entire range of the pressure-
gradient parameter $. A discussion of the procedures used to per-
form the numerical integration and some examples of the resulting
velocity and total enthal'py profiles are given in Appendix A,
The similarity solutions can be used to determine the profile

quantities appearing in Eqs. (13)-(16). For example, since the
similarity variable n, Eq (22), and the Y-coordinate are linearly

related, the transformed displacement thickness can be written:

5.
~l U
5.% = 1 - —)dy
i 'Bo ( Ue>
n(&,) u
_Y¢ _ __)
- L <1 7= ) dn (27)
(0] e
_ Y
- an

hence dY = aﬁi*dn

5.
1 —
ad - Ex T 9Mg9
N.99 =1
* U
where a =[SO (1 - —[Z)d'f]_] (28)

and  n(s,) = (“)U/Ue=. 99 =M. 99

i. e., the edge of the boundary layer is arbitrarily taken at the point

where the velocity u = 0.99 .

Using the quantity a = 1-11- SX’F‘ as the scaling parameter, all
1

non-dimensional profile functions can be related to equivalent
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similarity expressions. For example:

B I (O PO IS T
8, =) g \l-g)d¥=03; g - g/dn (
o e e o e e
hence n
8. .99
- i U .U
Ko ogh o= oa Ug(l Ue)dﬂ
i o
Similarly,
_ 8 (U 1fd/ U £7(0)
e [R(B)], ER)], 5
i BY(Ue) v=0 © dn (Ue) =0 a
R M. 99
E = (W>S Sdy = —QS Sdﬂ (30)
i (o} (o}
as 1 /ds 57(0)
Q = 6.% (<= = = =
» i (8Y>Y=O a <Hﬁ>n=0 a

As discussed in Section III. 1, the eight non-dimensional pro-
file quantities must be expressed as functions of at least two indepen-
dent parameters. These parameters can be selected from any of the
quantities appearing in the similarity solutions provided only that they
remain single-valued and finite for all profiles. Also, in order to be
able to treat problems in adiabatic flow, one of the parameters should
be independent of the distribution of total enthalpy. Following the

(2)

procedure of Liees and Reeves » the parameter chosen to specify
the velocity distribution is as follows:

Attached velocity profiles (f/(0) 2 0):

8(U/U )
= :] (31a)
Y=0

0 < a < 4
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Separated velocity profiles (f/(0) < 0):

(nerg Y
a(x) = - =Y = -— (31b)
n.99 (51>U/Ue=0

D<a<l

Although the quantity a(x) satisfies the conditions mentioned
above, it is not the best possible parameter because it must be de-
fined differently for attached and separated flows. As a result, deriv-
atives of the profile quantities with respect to a are discontinuous at
the separation and reattachment point. Also, since a is an arbitrary
parameter not appearing in the differential equations, Eqs. (13)-(16),
one more curve-fit that would otherwise be necessary is required
(see Section III.3). It is suggested that for future work one of the
single-valued integrals appearing in the equations, such as ¥ or J,
be selected as a more appropriate velocity parameter,

The second parameter was chosen to specify the distribution

of total enthalpy as follows:

b(x) = S'(0) = a(a) [3(99753—1;,—1{ .
1 =

0 < b < .5

(32)

For the case of adiabatic flow in an expansion turn, a diffi-

culty arises from the fact that the integralquantities reach a maximum

3

As shown by Coles( 13), an analytic solution of the similarity equations

for SW = 0 can be obtained in the limit B oo, i.e,,

r _ 2 -1
f° = 1 - 3 sech [En-ftanh /-3-:? ]

hence A ax = [:nw 99 f”(O)] =3.92 .
p-oo

(33)
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When the differential equations are integrated through an adiabatic
expansion turn, a(x) exceeds its maximum value, indicating that
the profiles become non-similar. This difficulty can be avoided by
adopting a new set of profiles for the boundary layer in this region;
however, since the integral functions change very slowly in highly-
accelerated flows, the easiest procedure is to retain the similarity
representation and to assume that all profile quantities remain fixed
at their maximum values for a = 3.92. The parameter a(x) can be
allowed to increase, although it has no physical significance in this
region and cannot be related to the similar profiles., After the com-
pletion of the expansion turn, a(x) begins to decrease, and the simi-
larity solutions can again be used downstream of the location where
a = 3.92. This difficulty does not arise in non-adiabatic flows be~
cause the thermal layer remains finite, even in the limit § - w0, and
the similar functions do not reach a maximum. Also, for a given
expansion corner, the velocity profiles accelerate less rapidly in
highly-cooled than in adiabatic flow, and the parameter a(x) remains
relatively small. This is illustrated, for example, by the difference
between the two strong-interaction solutions given in Section VI. 1.

II1. 3. Curve-Fits of Profile Quantities

The similarity solutions can be used to express all required
velocity~-dependent quantities as functions of the parameter a, and
all enthalpy-depem.ie.nt quantities are functions of the parameter b.
The distributions of a and b as functions of x for any given viscous-
inviscid interaction are then determined by the solution of the differ-

ential equations with appropriate boundary conditions. These
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equations, Egs. (13)-(16), can be written in terms of the two param-

eters as follows:

% 2
» 25 +8*(8Fda+8de>+fai Me | scMo n 31)
dx i \%a dx = 9b dx Me dx Me Feé x
i
ds. *® 6 3 dM M
i *51_1(_ Sl_g._ 2 = o0 P .
¥go— t 6.7 B+ (Wr1-E) g = PC ¥ Ry Y
i
3 3
Jd&i +6*d—‘1 v d 6 dM ) [3CM°° R (36)
dx i a da d M _  Re, ,
e 61
T* i +8 (aT da , 817 d—'?-)+T*6i* Tre. BC e O (37)
dx i \da dx = 9b dx M, dx M, Reé*
i
where
o _ay _MMe s ar | MMepr o 0 (38)
8a ~ da m Ba * b~ Tm ab TP/
€ w
and
Me 1+xne tan @
h = Mmm(l-l-m 7 Re1 - : (39)

When a sufficient number of similarity solutions has been ob-
tained and the required profile-related quantities tabulated, the
easiest procedure is to express these quantities as polynomial func-
tions of the two parameters using a least-squares curve-fit. The
velocity-dependent quantities ¥, J, Z, R, P and the derivatives d¥/da,
dJ/d¥ are functions of the parameter a only and can be curve-fitted
directly. The distributions of these quantities are shown in Figs.

2 - 8 for both an adiabatic (S = 0) and a highly-cooled (S = -0.8)
surface, and the coefficients of the curve-fits are given in Tables 1
and 2 {i.e. & kZO C’k a ). Values of the two derivatives d¥/da and

dJ/d¥ used to determine the polynomial representations were obtained

from the similarity solutions by forming the difference quotient for
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adjacent quantities. For example:

@

R AV R (40)

where a

(a;ta; )/ 2

The remaining profile quantities are functions of both the
velocity and enthalpy parameters a and b. The difficulty of deter-
mining the distributions of these quaqtities can be simplified to some
extent by obtaining the polynomial representation of the function

a = a{a), Eq. (28), and by using the integrals:

M99
ofb) = S S dn (41)
(o]
.99
U
T{a,b) = - ~_ S dn (42)
SO UC
such that
= b/a(a) (43)
E = afa) o(b) (44)
™ = a(a) T(a,b) (45)
and
9E _ da . OE _ do
5z - o)z 5 5 = el Fg (46)
9T da oT
rre T(a,b)a'; + af )55

(47)

8T
o - “gp
The integral quantity T{a, b), Eq. (42), depends on both param-
eters and was determined by multiplying every similar velocity pro-

file by every enthalpy profile, point by point, integrating to the value
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of N, gg corre sponding to the largest profile. The distribution of
T(a, b) was then obtained by using two fifth-order polynomials in the
parameter a, for each value of b, to describe the variation in the
attached and separated regions respectively. These coefficients were
subsequently curve-~fitted as functions of b; hence the quantity T(a, b)
is given by the expression:

5

T(a,b) = ¥

k
T, (b) a (48)
-0 k

where

5
’rk(b) = ¥ D b (49)

The distributions of a(a), da/da, (b}, do/db, T(a,b), 8T/0a
and 8T/3b are shown in Figs. 9 - 14, and the coefficients of the
curve-fits of these quantities are given in Tables 2 and 3. It is evi-
dent that the polynomial expressions obtained in the manner described
provide reasonably accurate representations of the distributions of
the required profile functions.

I11. 4. The Induced Streamline Inclination ®

In most viscous-inviscid interactions, the outer flow cannot
be specified a priori since it is determined by the normal velocity
induced by the growth of the boundary layer. Thus the inclination
@ = tan™ ! ve/ue of the inviscid streamline at y = § is related to the
viscous flow field through. the continuity equation, Eqs. (5) or (34).
The coupling between the inner and outer flows arises from the fact
that the Mach number distribution at the edge of the boundary layer,
Me(x), is related to the induced streamline angie ®(x) by the appro-

priate inviscid solution of the external flow field.
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For two-dimensional supersonic inviscid flow, the change in
Mach number is determined entirely by the local streamline deflec-
tion. In general it is necessary to resort to numerical or graphical
methods, such as the method of characteristics, to determine the
entire flow field. However, if the flow is irrotational, the Mach
number and the streamline inclination can be directly connected
through the Prandtl-Meyer relation. Thus for all two-dimensional
viscous-inviscid interactions in which the local external flow can be
considered isentropic, the following relation between ® and Me is a

good approximation:
@ = a (¥ +uM_) - v(M) (50)

where aw(x) is the inclination of the local tangent to the surface, con-
sidered positive for an expansion turn., The Prandtl-Meyer function

is defined in the usual manner, i.e.:

+ -1 ~1 2 -1
V(M) = oo tan %H—(M -1) -tan” " [M°-1 (51)

The reference condition must be selected such that Moo:l: is the
Mach number which the local external flow either departs from or
approaches through and isentropic process. Thus in boundary-layer/
shock-wave interactions, for example, the Mach number far upstream,
Mno-’ is used as the reference point for the flow upstream of the shock
impingement location, and the Mach number at downstream infinity,
Moo-;-’ is used for the flow downstream of impingement (Section VI.2).

For the case of flow around a circular cylinder, the reference point

is taken in the wake (Appendix B).
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For certain interactions, particularly in hypersonic flow, a
direct relation between ® and the static pressure ratio may be a
better, or more convenient, approximation. In these cases, the

tangent-wedge relation is useful, i.e.:

1
2

(p./p_-1) -
® = aw(x) + == YOI?/IOO [l + -Yé%l-(pe/poo-l)] (52)

This relation is obtained by examining the oblique shock equations for
small deflections and high Mach number and is therefore valid for
non-isentropic flows. However, since the Mach number Me appears
in the differential equations, Eqs. (34}-(37), the external flow must
usually be assumed isentropic. This assumption is valid, however,
provided that the compression waves generated by the boundary layer
coalesce into a shock wave far from the surface and that the effects
of vorticity induced by the curvature of the leading-edge shock can be
neglected. An approximate method for including some of the effects
of the entropy variation produced by the curvature of the leading-edge
shock is discussed in Section V.3,

II1. 5. Final Form of Differential Equations

Once the polynomial representations of the profile quantities
have been obtained and either of the relations, Eqs. (50) or (52), for
the streamline angle ®is used, the only dependent variables in the
differential equations, Eqgs. (34)-(37), are Me(x), ﬁi*(x),a(x) and b(x).
By regarding the equations as a set of algebraic relations for the four

unknown first derivatives and solving simultaneously, the following

convenient form for numerical computation is obtained:
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_ ﬁ(: © —Nl(Me, a, b, h)]
M_ dx Reﬁi* M_ L7D0M_, 3, )

3 — .
ds; _ e M_ - N,(M_,a,b,h) ]
=" Repr Mo LDV =B
o .da  _ _pBC M_ - Ny(M_,a,b, h):|

i dx Reai* M, L7DIM_, &)
xdb G M_  NM_, a,b, h)]
i dx Reéi* Me D(Me, a, b)
_ aT* 8F
D(Me, a, b) = B1 50 " B2 55
! N oT* _B_Ii‘
Nl(Me’ a, b, ) = B3 T B4 55
_ aT* oF
NZ(Me’ a,b,h) = B5 Tl B6 35
_ oTx* oF
N3(M_,a,b,h) = B, 5 - Bg 57
N,(M ,a,bh) = B f+B,F+ B —B—E—Bh
4} e T2 4 6 8 da 2

1 -
_ aT*
B, B Ja T (A,
_ oF
B3 - Az da
B, =

oF

oF dy
A6 55 + (A3f-A8F) ey

dy/
~Ag) T 37

dgy
+(Azh-A F)

aT* sy O
A, 5+ (A36-A4T )EE

_ day
B5 = A7 52 T (A4f-A8h) Iz

(54)

(55)

(56)

(57)

(58)

(59)



-22-

_ dT* A Ty W
By = Agmy T (A TT-ALQ) 57
B, = Ah- (Af+AF)
= - 3
Bg AR - (A, + AT
where
A, = 2+1-E ' (60)
A2 = PI-¥R
_ dJ
‘A3 - Na’z_[' - J
dJ
A4 = P 7 R
—_— -— *
A5 3J-2T
A, = AlR-AsP
_ dJ
As - Ay dv ~ Ag

For the adiabatic case, Eqs. (58) reduce to the following:

D(Me, a) A6 + A3f - A F (61)

8

N,(M_, a, b A, + Ah- AF

4

N,(M,, a, h)

A7 +A4f - A8h

N,(M_, a, h) (Agh - Af - A7F)/(<w/da)

where E = T* = 0 in Eqgs. (60).
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IV. NATURE OF SOLUTIONS

IV.1. Subcritical and Supercritical Flows

In SectionlIl.l, a brief allusion was made to the fact that
adiabatic flat-plate flows are subcritical, whereas highly-cooled
(SW = -0.8) flows are supercritical. In essence, subcritical flows
are those which allow the upstream propagation of the effect of an
external disturbance, such as the pressure rise associated with
an incident shock wave. Supercritical flows, on the other hand,
cannot communicate the effect of a disturbance in the upstream
direction. Thus subcritical boundary layers will respond to dis-
turbances occurring further downstream, while supercritical
boundary layers will not be sensitive to downstream disturbances.

The difference in behavior between the two types of flow
is a consequence of the use of an integral method to represent the
viscous flow field. Since all physical quantities are averaged
across the viscous layer, a boundary layer with a small subsonic
region behaves as if it were supersonic in some sense, and there
is no mechanism by which it can respond to downstream disturb-
ances, To understand how this situation can arise, it is useful
to re-examine the basic equations for compressible boundary-
layer flow,

IV.1.1. Analytical Considerations

(14) and

Following an analysis similar to those of Lees
Lighthill (15) » the combined continuity and momentum equations,

Eqgs. (1)-(2), can be written in the form:
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2
pu (tan ®)Y + u(upx + pr) =P, - 'Ty (62)

where tan ® = v/u.

The energy equation, Eq. (3),can be approximated by:

2
a

71 (upx+pr) + ;\-(-l_(w[ up (63)

(uh. ) = pu(uu_t+vu ) -
o'y X ¥

where the terms containing the mass flow pv in the y-direction have
been neglected.

Combining these two equations with the equation for mechani-
cal energy, Eq. (4), and integrating across the viscous layer, a
relation for the streamline angle at the edge of the boundary layer

can be obtained:

b 2 6 2

1 {dp g 1-M I+(y-1)M
t = ——t i d - e o d
an@6 ¥p Ldx . y v y

MZ IVI2
64
5 " (64)
+ S - (M hoy) dY}
o y

) 2
where M“ = uz/a“.

Although the integrands in this equation diverge near y = 0,

2

all integrals remain finite since (px-r\-y) ~ u” and (u.hoy) ~ U near

y
the wall, as is evident from the momentum and energy equations,

Defining a small sublayer $ << §, Eq. (64) can be written in the form:

) 2
- 1 dP) 1-M 65)
tan@a-w(w dx SS iy (

where @ contains those quantities which are not of particular im-

portance in the present simplified analysis.
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For supersonic external flow, where Me > 1, the integrand
in the integral on the right-hand side of Eq. (65) will be negative
above the sonic line, although the integral itself will remain positive
so long as the subsonic region of the boundary layer is sufficiently
large. When this region becomes small, however, the integral will
become negative and the subsonic portion of the boundary layer will
be effectively suppressed. In other words, in any integral or moment
method, flows in which the distance of the sonic line from the surface
is small behave in much the same manner as purely supersonic
viscous flows,

One of the consequences of this behavior can be seen for the
case where the edge of the boundary layer is a streamline. In this
situation tan ®6 = d6/dx, and Eq. (65) shows that if the subsonic
portion of the boundary layer is sufficiently large, d6/dp > 0, whereas
if this region is small, d6/dp < 0, Subcritical flows can be defined
as those for which dé/dp > 0, while supercritical flows are those
for which d6/dp < 0, a distinction firs-t pointed out by Crocco(lé)
for the case of turbulent boundary layers. Using this definition,
subcritical viscous flows are those which interact with the external
stream to produce a pressure gradient which is consistent with the
deflection of the layer. A thickening subcritical boundary layer,
for example, produces a rise in pressure which causes a still
greater thickening of the layer, A supercritical boundary layer,
on the other hand, cannot generate its own pressure gradient.

Another illustration of the characteristic behavior of sub-

critical and supercritical flows can be obtained from Eq, (65) by
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relating the external streamline angle ®'5 to the local Mach number

Me through the Prandtl-Meyer relation, i.e.:

2
M, de _ 1 dp

> dx =~ yp dx (66)
JMe-l

With this relation, Eq. (65) can be integrated to give an expression

of the form:

8(x)

@, +C exp[K (X-:°>] (67)

where
1 -1

M a2
[Jﬂ%l Ss/zs —1—1\5/147— d<§>]

This equation shows one of the essential differences between the two

K

1

types of flow. When the quantity K in Eq. (67) is positive, the
boundary layer is subcritical and the viscous flow quantities grow
exponentially in the downstream direction. If the flow is super-
critical, however, K is negative and the boundary layer decays

from an initial state to a2 downstream undisturbed, or Blasius,
condition. Thus sinall perturbativons in subcritical flow will be
amplified, whereas all perturbations are damped in supercritical
flow. Physically, this means that the effect of an external dis-
turbance, such as an incident shock wave, is propagated continuously
upstream only so long as the flow is subcritical. An initially super-
critical boundary layer can respond to a pressure rise generated
downstream only through a sudden transition to a subcritical state,
after which the flow proceeds smoothly.

The parameters which affect the location of the sonic line



-27-

can be deduced from the equation for the velocity ratio at that point,

u v-1 1+me _21— 6
(_u_e> =[_.._Y+1 T (l+S)] (68)
M=1

This relation indicatcs that the boundary layer may become super -
critical as the external Mach number is increased, as the wall is
cooled (SW — -1) or as the velocity profile is accelerated. Of course,
the specific conditions under which subcritical-supercritical transi-
tion occurs are determined by the particular choice of velocity and
enthalpy profiles and by the equations used to describe the interacting
flow field.

IV.2. Subcritical-Supercritical Transition

In the moment method formulation, the simultaneous vanishing
of the determinant D and the numerators N, Eqgs. {(61), describes a
locus of singular points at which the derivatives dMe/dx, da/dx etc.
are non-unique. It is this line of singularities of the system of
equations which marks the transition between subcritical and super-
critical flows.

For adiabatic boundary layers, the locus of points D = 0is a
unique function of Me and a, as shown in Fig. 15 . In this case,
the critical points D = 0 lie in the region a > apyp, corre sponding to
velocity profiles which have been accelerated above the zero
pressure-gradient solution, i.,e,, flow in an expansion turn, Self-
induced viscous flow along a flat plate, as well as interactions caused
by compressive disturbances, are therefore always subcritical in

adiabatic flow, and D # 0 everywhere in the interaction region.
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For non-adiabatic boundary layers, the locus of critical points
D = 0 1is a function of Me’ aand b. In highly-c_ooled (SW = -0, 8) flow,
the critical points for Me > 2 lie in the region a < ap;, Fig. 15,
corresponding to velocity profiles between the separation and flat-
plate solutions. Viscous flow aloﬁg a highly-cooled surface is
therefore supercritical unless there is a compressive disturbance
which decelerates the flow toward separation. If such a disturbance
is present, the boundary layer must undergo a transition from a
supercritical to a subcritical state at some location upstream of the
disturbance,

Flows which are supercritical in the moment mecthod formu-
lation are actually flows which have a finite, although high, impcdance
to the upstream propagation oi disturbances, Under these conditions,
the effect of an external disturbance is felt only a short distance
upstream, and the boundary layer at that location changes rapidly
from an undisturbed to a fully-interacting state. Although this change
takes place over a few boundary layer thicknesses, in the integral
formulation the transition from supercritical to subcritical flow
must be approximated by a discontinuity, or jump, occurring in the
flow quantities at some point upstream of the disturbance. The
strength of the jump is obtained by applying the proper conservation
relations to the viscous flow, as discussed in Section V.1, Down-
stream of the jump, the boundary layer is subcritical and the flow
proceeds smoothly through the interaction region.

For flows which are initially subcritical and become super-

critical at some downstream location because of an expansion turn,
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for example, the situation is completely different, Subcritical flows
‘must respond to disturbances occurring further downstream, hence
the transition from a subcritical to a supercritical state must be
continuous. The requirement for smooth subcritical-supercritical
transition is, in fact, one of the boundary conditions for any viscous-
inviscid interaction of this type (see Section IV, 3).

In the moment method formulation, the condition for continuous
transition between subcritical and supercritical flows is given by the
in Egs. (57)-(60)

requirement that the numerators Nl » N N3 and N

2’ 4
vanish when D = 0, It is sufficient, however, for only one of the
numerators to vanish at the critical point since the N'g are nBtained

from the same set of equations and thus are not all independent.

The relation for the singular point, or throat, can thus be written:

dag/ 81" oT* dy 8'1"
hpy = {BA4F - 4,33 o5 T By aﬂ/@s Iz db . (69)
where
1+m
e tan @ ]
h = Re (70)
TH Moo rn;(l+moo) 61* C Ni=D=0

For adiabatic flow, Eq. (69) reduces to the simple expression:
hopyy = [(A4F‘A2) /A ]D=o (71)
These two relations are shown in Fig. 16 .
One result which can be immediately obtained from these
equations is the required sign of the induced streamline angle ® at
the throat. For adiabatic flow, for example, hT > 0, hence the

H

angle @ must be positive at the critical point to allow the boundary
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layer to pass through the singularity. Using the Prandtl-Meyer
relation, Eq. (50), this means that transition can only vccur along

a surface for which

a (%) > v(M,) = v(M_) (72)

Since the adiabatic boundary layer must be accelerated in order to
become supercritical, Me > M _  and the right-hand side of the above
inequality is positive, Smooth subcritical-supercritical transition

is therefore possible for adiabatic flow in an expansion turn provided
lthe throat is located along the curved portion of the body (aw(x) > 0).
An interesting example of this situation is the case of flow around

a circular cylinder discussed in Appendix B.

The inequality given in Eq, (72) also indicates a second pos-
sibility for smooth transition in adiabatic flow. For the case of a
supercritical boundary layer expanding toward a downstrcam Blasius
condition, such that Me < M_,, smooth transition from a supercri-
tical to a subcritical state can occur along a flat surface. This
situation can arise for flow along an adiabatic flat plate downstream
of a blunt leading edge or an expansion corner in which the boundary
layer becomes supercritical, This is one example of a class of
problems for which continuous supercritical-subcritical transition
is possible; in most interactions, as previously discussed, a jump
is required to join the two solutions. Smooth transition occurs in
this situation because the subcritical portion of the integral curve
represents a ''relaxing'' boundary layer rather than flow upstream

of an external disturbance. Since all supercritical flows decay from
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an initial state toward the downstream Blasius condition, the two
branches of the solution can be smoothly joined at the critical point.
The question of relaxing viscous flows will be discussed in greater
detail in Section IV, 4.

TFor highly-cooled boundary layers al moderately supersonic
Mach numbers (Me >2), the induced angle ® must be negative at the

throat. Smooth transition is therefore possible provided
o (%) <M ) - v(M_ ) (73)

Since non-adiabatic flat-plate flow is initially supercritical, Eq. (73)
indicates that continuous supercritical-subcritical transition is not
possible on a flat surface upstream of a compressive disturbance
(Me < .Moo_). Although the inequality impliés that smooth transition
might occur in a gradual compression turn (aW(X) < 0), such solutions
are unstable and therefore of little physical interest, Thus in highly-
cooled flows, any viscous-inviscid interaction caused by a compres-
sive disturbance is initiated by a jump to a subcritical state at some
point upstream of the disturbance. The boundary layer remains
subcritical through the interaction region and can return to a super-
critical state far downstream of the disturbance, where Me > Moo+
and smooth transition along a flat surface is possible,

From the above discussion, it is evident that the different
classes of viscous-inviscid interactions are determined by the sub-
critical or supercritical character of the flow. By considering

specific examples of various types of interactions which occur in

supersonic flow, some of the ideas presented in the previous sections
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can be clarified.

Iv.3, Typical Viscous-Inviscid Interactions

IV.3.1. Completely Subcritical Interactions

An interesting example of subcritical boundary-layer inter-
actions is provided by the case of adiabatic flow in a compression
corner. Typical trajectories for the edge Mach number Me and the
velocity profile parameter a for this type of interaction are given
in Fig. 17 .

The boundary layer along the forward portion of the flat plate
is determined by the leading-edge solution and the subsequent relaxa-
tion toward the Blasius condition corresponding to Moo_ (see Section
V.3). In this region, the flow is identical with the flow which would
have existed along a semi-infinite flat platé‘ in the absence of any
external disturbances. At some location X  upstream of the corner,
however, the boundary layer departs from the flat-plate solution.
This point can be considered as the beginning of the interaction and
is the most upstream location at which the effect of the compression
turn is felt. For sufficiently large turns, the boundary layer passes
through scparation (a = 0), into the plateau or constant-pressure
region, and through reattachment along the surface of the ramp.

Far downstream of the corner the viscous flow approaches the Blasius
condition associated with the new reference Mach number M_ .

This interaction is entirely subcritical, and D # 0 everywhere
in the range of integration. The correct solution curve must satisfy
the boundary condition corresponding to Blasius flow at downstream

infinity for the particular geometric constraint, i.e., the distribution
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of aw(x), imposed. The location of the beginning of the interaction,
X, is not known a priori, hence initial conditions for downstream
integration cannot be specified and an inverse, or iterative method
must be used. The easiest procedure is to select the point X, far
upstream of the interaction and to obtain approximate initial values
for the unknown variables from the solution for self-induced flow
at that location. The correct set of initial conditions can subsequently
be obtained by perturbing the flat-plate solution in some predeter-
mined manner until an integral curve satisfying the downstream
boundary condition is obtained. In practice, it turns out that the
range of possible values of X is restricted for any given configu-
ration because of limitations on the magnitude of the perturbation.
This question will be discussed in greater detail in Section V.1,

IV.3.2. Completely Supercritical Interactions

An example of this type of interaction is given by the case of
highly-cooled (SW = -0.8) flow through an expansion turn shown in
Fig. 18, Since the boundary layer is supercritical, it does not
respond to the downstream disturbance caused by the expansion
corner. The flow approaching the turn is therefore given by the
flat-plate solution, and the integral curve diverges from this solu-
tion only at the beginning of the corner where the curvature of the
surface qw(x) #+ 0. Downstream of the corner the boundary layer
approaches the Blasiﬁs condition corresponding to the new free-

stream Mach number Mo0 Initial conditions can be obtained at

4
any location upstream of the expansion turn from the ecigensolution

for self-induced flow, and since integration in the downstrcam
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direction is everywhere stable, the solution for a given configuration
can be obtained without iteration,

IV.3.3, Subcritical-Supercritical -Subcritical Interactions

One of the most interesting illustrations of this type of inter-
action is given by the case of adiabatic flow through an cxpansion
turn, The Mach number and velocity-parameter trajectories for
this configuration are shown in Fig., 19.

As for all interactions occurring along a surface having a
sharp leading edge, the upstream portion of the flow field is given
by the semi-infinite flat-plate solution. The boundary layer begins
to diverge from this solution at the point X upstream of the corner,
continues to accelerate as it enters the turn and becomes supercriti-
cal along the curved portion of the body. The supercritical flow
expands until the completion of the turn, after which it begins to
decelerate, passes through a second throat into the subcritical rcegion,
and relaxes toward the downstream Blasius condition.

As in the case of completely subcritical interactions, the
location X is not known a priori and an iterative method must be
used to obtain the proper integral curve. For this configuration,
of course, the perturbation of the solution for self-induced flow at
% must be in the direction of an accelerating boundary layer. There
is one fundamental and important difference between the two types
of interactions, however. For all subcritical flows which become
supercritical at some point, the downstrcam boundary condition is
given by the requirement for smooth transition at the throat. The

correct initial conditions at x are therefore those which give the



-35-

trajectory for which Ni = 0 when D = 0 and hence allow the integral
curve to pass continuously through the singularity. Since super-
critical flows relax toward the Blasius condition, the boundary layer
downstream of the corner will pass smoothly back into the subcritical
region and approach the flat-plate solution.

This interaction is entirely analogous to the case of flow
through a converging-diverging nozzle followed by a supersonic
diffuser. The throat of the nozzle plays the same role as the first
singular point in the moment method analysis, and the solution is
uniquely determined by the requirement for smooth transition from
a subcritical to a supercritical state at this station. The throat of
the diffuser is equivalent to the second singular point in the inter-
action, and the flow passes smoothly through this location under
normal conditions. However, if the pressure downstream of the
diffuser is high, colrre sponding to a compressive disturbance in the
flow field following the expansion corner, there will be a shock, or
jump, to a subcritical state at some point upstream of the second
throat. The location of the jump and subsequent flow are determined
by the downstream boundary conditions, while the integral path in
the region upstream of the jump remains uniquely determined by the
requirement for smooth subcritical-supercritical transition. This
type of viscous-inviscid interaction will be examined in considerably
greater detail in succeeding sections.

IV.3.,4. Supcrcritical-Subcritical -Supercritical Interactions

The problem of non-adiabatic (SW = -0.8) flow in 4 compres-

sion corner provides an interesting example of this kind of interaction
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(Fig. 20 ). Since the flow upstream of the corner is supercritical,
a jump is required to initiate the interaction solution. The jump may
be located either on the flat surface or along the curved portion of
the body, depending on the total angle and the radius of curvature of
the turn. The complete solution is determined by the requirement
for smooth subcritical-supercritical transition downstream of the
corner. This solution can be obtained by iterating for the jump loca-
tion which generates the integral path passing through the throat;
the procedure is therefore an inverse one as for the case of initially
subcritical interactions. For supercritical boundary layers, how-
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by the jump relations (Section V. 1), which uniquely determine the

flow immediately downstream of a jump fof given upstream conditions,
The locus of possible initial states for a particular supercritical-
subcritical interaction is therefore obtained by applying the jump
relations to the eigensolution representing flat-plate flow, The
correct jump location is the one associated with the trajectory which
passes smoothly through the throat.

IV,.3.5, Subcritical-Supercritical Interactions

For certain configurations, it is possible to have a flow
field which is subcritical near the leading edge of the body and super-
critical cverywhere clac. Onc crample of this type of interaction
is given by the case of highly-cooled flow over a blunt-nosed body,
as shown in Fig. 21. In the vicinity of the stagnation point MC< 1,
hence the boundary layer is always subcritical in this region. The

velocity-profile parameter decreases in the downstream direction,
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but the edge Mach number Me increases and the viscous layer be-
‘comes supercritical at some point along the surface, Transition

can occur on either the curved or flat portions of the body, depending
on the free-stream Mach number and the shape of the nose., As for
all suberitical-supercritical interactions, the complete solution is
determined by the requirement for smooth transition at the throat,

IV.3.6. Supercritical-Subcritical Interactions

This type of interaction occurs for moderately-cooled boundary
layers (-.8 < SW < 0) where the locus of critical points D = 0 lies
between the value of the parameter a corresponding to the Blasius
solution and the one corresponding to either the strong-interaction
or the stagnation-point profiles., An example of this situation is
given for the casc of flow along a semi-infinite flat plate shown in
Fig. 22 . There are no external disturbances in this problem,
hence the boundary layer is everywhere relaxing toward the down-
stream Blasius condition. Smooth supercritical-subcritical transition
therefore occurs, exactly as in the case of adiabatic flow following
an expansion turn.

If there is a compressive disturbance at some location along
the plate, however, an interesting interaction results. For weak
disturbances loéated sufficiently far downstream of the leading edge,
the effect of the disturbance will not propagate upstream into the
supercritical region. The interaction due to the disturbance is
theréfore completely subcritical, and the method of solution is iden-
tical with the one described for subcritical flows in Section IV.3,1,

As the disturbance is increased in strength or moved forward along
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the plate, however, the location of the beginning of the interaction X
‘moves upstream toward the region of supercritical flow. At some
point a completely subcritical interaction is no longer possible, and

a jump must occur in the supercritical flow field near the leading
edge. The correct jump location is the one which gives the integral
curve satisfying the downstream boundary condition of undisturbed
flow. Interactions along a moderately-cooled flat plate can thus be
initiated either smoothly or discontinuously, depending on the strength
and location of the disturbance.

The various classes of viscous-inviscid interactions de-~
scribed above can be combined to form more complicated situations,
such as the case of flow over a circular cylinder discussed in Appen-
dix B. Solutions for most interactions in supersonic flow are, in
fact, obtained by using the procedures outlined here. DBefore entering
into a detailed description of the actual methods required to obtain
specific solutions, however, it is useful to examine some of the
general features of interacting flows from a different point of view.

IV.4. Solutions in the Phase Space

An understanding of some of the aspects of viscous-inviscid
inter.actions can be obtained from an analysis of the behavior of inte-
gral curves in the Re&*—a-Me phase space, Solutions for adiabatic
interactions along ﬂat 1\surfaces can be examined in this manner,
since for these problems the angle depends only on the edge Mach
numbér Me for given free-stream conditions. The phase-space

representation is of course not complete for adiabatic flows along

curved surfaces, where @ is a function of x, nor for non-adiabatic
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flows, which must be described by the additional parameter b. An
examination of the relatively simple case of adiabatic flat-plate flow
does provide, however, several important insights into more compli-
cated situations.

- In the phase space, the critical points D = 0 define a cylindri-
cal surface parallel to the Rey ,-axis dividing the domain into
subcritical and supercritical r:egions. At a given reference Mach
number, the singular points Ni = D=0, Eq. (71), describe a line
on this surface for each value of aw(x). For the special case of flat-
plate flow (o.w(x) = 0), the locus of singularities represents the
intersection of the critical surface with the surface containing the
Blasius point at downstream infinity. This second surface has been
called the "'relaxation surface'' by Tyson(”.)who demonstrated numer-
ically that all integral paths which relax to the Blasius condition lie
in this surface. Also, an analysis by Kubota( 18) of solutions in the
neighborhood of the singular point at downstream infinity shows
that these solutions all belong to a one-parameter family (Section V, 2)
and as a result must be in a well-defined surface. By using the
proper form of the moment equations (Section V1. 1), the relaxation
surface can be extended to include the leading-edge singularity, hence
the complete eigensolution for undisturbed viscous flow over a semi-
infinite flat plate lies in the surface, With this consideration, the
geometry of the phase space for adiabatic flow appears as shown in
Fig. 23 .

The existence of the relaxation surface is very important in

the analysis of viscous-inviscid interactions, Only those integral
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paths which lie in the relaxation surface can decay toward the down-

- stream Blasius condition, while all other solutions diverge away
from the surface. The diverging solutions, or departure integrals,
correspond to flow upstream of some disturbance, whereas solutions
in the relaxation surface represent flow downstream of a disturbance.
In the supercritical portion of the phase space, on the other hand, all
integral paths converge toward the singular line, hence there are no
departure integrals. These flows can respond to a downstream dis-~
turbance only through a jump from the solution in the supercritical
region to the corresponding subcritical departure integral. In the
absence of external disturbances, however, the solution curves pass
continuously into the relaxation surface on the subcritical side, The

J. ~ D ~ 0 is therefore

for all supercritical-subcritical trajectories, and at every singular

point there is one exceptional nodal path which remains in the relax-
ation surface. All other integral paths leave the relaxation surface
in response to the upstream propagation of the effect of an external
disturbance.

Some of the above ideas can be clarified by considering the
case of adiabatic flow through an expansion turn, previously dis-
cussed in Section IV,.3.3. The phase-space trajectory for this
interaction is shown in Fig. 24 . The integral curve originates
at the leading edge along the eigensolution corresponding to undis-
turbed flat-plate flow at the free-stream Mach number M_ . At

some point (the location X in Fig, 19 ), the influencec of the corner

is felt, and the solution leaves the relaxation surface along a
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departure integral. As the flow enters the expansion turn, the inte-
gral curve passes into the supercritical region through the line of
singularities corresponding to the value of a_(x) at the throat. The
phase-space representation of the interaction is of course not unique
for this portion of this flow-{ield since ® = &x). After the comple-~
tion of the turn, however, the phase-space representation is again
complete, but the relaxation surface must be taken as the one

corresponding to the downstream Mach number M The integral

oot "
curve in this region decays tow.ard the singular line, passes smoothly
through the second throat and remains in the relaxation surface as

it approaches the Blasius point.

If there is a subsequent disturbance far downstream of the
second singular point, such as a compressi'on corner or an incident
shock wave, the solution curve leaves the relaxation surface along
a departure integral and a new interaction begins. If the disturbance
is located close to the expansion turn, however, the beginning of the
new interaction may not occur downstream of the second throat and
a jump will be required to join the supercritical flow with the inter-
acting subcritical boundary layer upstream of the disturbance, A
similar situation can occur if the surface of the body continues to
turn such that the viscous flow separates and enters the subcritical
near-wake region. An analogous interaction is given by the case of
flow over a circular cylinder discussed in Appendix B,

The analysis of viscous-inviscid intcractions in the phase

space indicates an important procedure for obtaining solutions to

many interaction problems, Since all departure integrals diverge
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away from the relaxation surface in the downstream direction, any
infinite simal perturbation of a solution lying in the surface will gen-
erate a departure integral. As a result, it is difficult to obtain an
integral curve remaining in the relaxation surface, particularly if
the trajectory lies in the vicinity oi the line of singularities. Inte-
gration upstream away from the Blasius solution is stable, however,
since the departure integral passing through any point in the phasec
spacc can be traced back to its origin on the rclaxation surface by
integrating in the upstream direction. Thus for the case of adiabatic
flow through an expansion turn, for example, the portion of the
solution downstream of the second throat must be obtained by inte-
grating away from the Blasius point corresponding to the final
free-stream Mach number, The complete integral curve is deter-
mined by matching the upstream and downstream branches of the
solution at the second singular point. The method of iterating for
the correct trajectory in the relaxation surface will be described in
Section V.3.

For highly~-cooled (SW = -0, 8) flows, the Blasius point lies
in the supercritical portion of the phase space. The relaxation
surface therefore contains those integral curves which converge
toward the line of singularities, since these are the only trajectories
which can relax to a downstream Blasius condition. All solutions
in the supercritical region decay toward the Blasius point, hence
there are no departure integrals in this portion of the phase space.
Supercritical-subcritical transition on a highly-cooled flat plate

therefore always takes place through a discontinuity, or jump, in
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the flow quantities. The location of the jump is determined by the
condition that the subcritical branch of the solution downstream
of the disturbance must lie in the relaxation surface corresponding
to Moo+ and subsequently pass through the critical surface at the
singular line. For non-adiabatic flows in smooth compression turns
hgwtx)< 0), the supercritical boundary layer can be decelerated by
the curvature of the surface and the jump may be very weak and
occur close to the critical surface, A jump of finitec strength is
always required to satisfy the boundary condition at the throat,
however.

From the above discussion, it is evident that the eigensolu-
tion representing undisturbed flat-plate flow monotonically approaches
the critical surface with increased cooling, | The determinant D of
the system of equations thus tends toward zero, and as a result all
flow quantities change with increasing rapidity in the vicinity of an
external disturbance. If the surface is cooled below a certain
level, the flat-plate solution becomes supercritical and the change
in the quantities becomes discontinuous, i.e., a jump is required
to initiate the interaction. As the wall temperature is decreased
even more, the beginning of the interaction occurs closer to the
location of the disturbance, and the strength of the jump increases.,
There is therefore a continuous decrease in the overall length of
any viscous-inviscid interaction as the surface is cooled and the
boundary layer changes from a subcritical to a highly supercritical

state.
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V. METHODS OF SOLUTION

V. 1. Departure Conditions

Once the eigensolution representing undisturbed flat-plate flow
has been determined for given free-stream conditions (see Section
VI. 1), the integral curve far upstream of any viscous-inviscid inter-
action is known. This solution must subsequently be used to obtain
the trajectory in the vicinity of the external disturbance by applying
the appropriate departure conditions to the self-induced flow at the
beginning of the interaction.

V.1l.1l. Subcritical Flows

As shown in the previous section, a small perturbation of any
of the integral paths lying in the relaxation surface generates a depar-
ture solution on integration in the downstream direction. If the initial
point in the relaxation surface lies along the trajectory passing through
the leading -edge singularity, the departure integrals form a single-
parameter family of solutions which can be described, for example,
by the extent of departure from any fixed point in the surface. This
family contains those integral pafhs usually referred to as 'free-
interaction'' solutions (see Lewis(lg)). The parameter describing
the departure distance can be determined By linearizing the equations
about any point along the eigensolution representing undisturbed flat-
plate flow.

Kubota(z‘o) has performed this linearization for adiabatic flow
in the.vicinity of the Blasius solution, using the hypersonic form of

the moment equations (see Section VI.1). The method of analysis used

is completely general, however, and the results are valid for all
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initial points except those in the immediate neighborhood of the leading
edge, where the surface derivatives are of the same order of magnitude
as the departure derivatives. The required perturbations for adiabatic

and slightly-cooled subcritical flows are of the form:

1]
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The effect of the perturbation quantity ¢ on the static pressure
ratio upstream of a disturbance in adiabatic flow is shown in Fig. 25.
The integral path ¢ = 0 does not correspond exactly to the unperturbed
eigensolution because the weak-interaction expansion places the initial
point slightly off the relaxation surface. In general, however, ¢ < 0
generates the family of solutions going toward separation, while ¢ > 0
.gives trajectories corresponding to flow upstream of an expansion
corner. As can be seen from Fig. 25, the length scale for accelerating

boundary layers is much shorter than the scale for separating flows.
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Also shown in Fig. 25 is the predicted pressure distribution
upstream of a disturbance nsing the initial conditions suggested by

(2)

Lees and Reeves , l.e., a= ap, and dMe/dx = 0 at the beginning
of the interaction. The difference between the two methods is magni-
.fied when only free-interaction solutions are considered, and for a
given external disturbance, the Lees-Reeves method predicts a
slightly less extensive region of upstream influence than does the
present procedure. The two methods become identical as ReX - 0.
Because of the requirement that ¢ << 1 for the linearization of
the equations to be accurate, the Reynolds number at the beginning of
the interaction must be iterated at a fixed value of ¢ until the approxi-
mately correct trajectory is obtained. The quantity ¢ can then be
varied until the exact solution is determined. The perturbation pro-
cedure described here is useful for determining the correct departure
integral for flows in smooth compression or expansion turns, where
only a very weak perturbation of the flat-plate solution is required at
the beginning of the interaction, and for all subcritical viscous-inviscid
interactions which are initiated in the vicinity of the leading edge.

V.1l.2. Supercritical Flows

For highly-cooled flat-plate flows, the boundary layer is super -
critical and therefore does not respond to disturbances occurring
further downstream. There are no departure solutions in the sense
of the previous section since supercritical flows are characterized
by negative, rather than positive, exponential behavior. As indicated
in Section IV, the transition from supercritical to subcritical flow

must occur over a few boundary-layer thicknesses, Since this rapid
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change in flow quantities cannot be analyzed within the framework of
the integral method, the transition is regarded as discontinuous, and
sudden jumps in the fluxes of mass, momentum and mechanical energy
are allowed.

The flow upstream of a non-adiabatic jump is characterized by
four quantities, Me, 6.1*, a and b; hence four conditions are required
to uniquely determine the flow downstream of the jump. Three of
these relations are derived from the known conservation laws for
mass, momentum, and total enthalpy. In general, the fourth quantity,
the mechanical energy, is not a conservative quantity, but in the limit
of Axl and sz both = 0 (Fig. 26), the volume dissipation vanishes and
approximate jump conditions for this quantity can also be written.

By referring to Fig. 26, one sces that as Axl and Ax, — 0 the

2
effects of skin friction and heat transfer vanish, as well as the volume
dissipation. Also the effect of the streamline inclination at the edge

of the boundary layer does not appear in the continuity equation. With

these observations the three jump conditions derived from the conser-

vation laws are as follows:

MAS
m,-m, = (peue)1 (62-61) (76)
MOMENTUM
_ 2
-1, = (p,u, )1 (6,-81) - 6,(pP,-P;) (77)

TOTAL ENTHALPY

(M_8.*T*) - (M8, *T*) = 0 (78)
2 1
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where
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The fourth jump condition, for mechanical energy or moment
of momentum, is derived from the differential equation for continuous
flow by passing to the limit of a finite change in flow quantities occur-
ring over a very short distance. By integrating the mechanical energy
equation across the boundary layer one obtains

) 3 3
205 EDe]- () £, (3)
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In a supercritical-subcritical jump -g—f—z . g% and the rate of change of

(82)

mechanical energy flux all - o, while the dissipation term and the
term (pv)6 (—l—lzé—) arising from the streamline inclination remain
finite and can therefore be neglected in comparison to the other terms.
Eq. (82) thus takes a form qﬁite similar to the integrated momentum
equation, except that 6 is replaced by gﬁ udy = K. Formally multi-
pPlying Eq. (82) by Ax = Ax1 + sz and talczing the limit as Ax — 0, the

following jump condition is obtained:
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MECHANICAL ENERGY (MOMENT OF MOMENTUM)

G,-Gy = (p, ue3)1 (6,-6,) - 2K,(p,-p,) (83)

where
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An average value of K = K should have been used in Eq. (83), although
the quantity K2 was adopted here by analogy with the momentum equa-
tion, Eq, (77). The difference between K‘2 and K is very small in any
case.

Substituting the expressions for m, I, G, K and § into Eqgs.

(76)-(78) and Eq. (83) the relation:

M & * me. F
r r - 1 1 (86)
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is obtained from the continuity equation, Eq. (82). The subscript r

denotes the ratio of quantities upstream and downstream of the jump,

i.e., Me 61* P, u
2 2 2 2 .
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Utilizing this relation, Eq. (86), in the jump equations for
momentum, mechanical energy and total enthalpy, the following three

expressions are obtained:
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The pressure and density ratios can be determined from the
change in Mach number M, by means of the oblique shock relations,
hence the above equations can be solved for a, b2 and Mez for any
given upstream conditions. The method for obtaining the solution is
to assume Mez = 0.95 Mel’ bZ = 0.20 and to determine a, from Eq.

2
(88) by iteration. The assumed value of M., must then be adjusted

€2
until the second equation, Eq. (89), is also satisfied. The procedure
is then repeated with a new value for b2 until a solution to the system
of three equations has been found. Since the first two relations are
relatively insensitive to the choice of bZ’ this method of iteration is
very effective, and a complete calculation usually takes less than 0.5
second on a high-speed computer. Some typical jumps from the

Blasius and strong-interaction solutions for highly=cooled (SW = -0.3)

flow are shown in Fig. 27.
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The relative change in Mach number M, across laminar super-
critical-subcritical jumps is always small, and the free-stream
quantities appearing in the equations can be connected to the velocity
difference by approximate relations suéh as those used in small
disturbance theory. In the 1imiting case of an infinitesimal jump,
the velocity difference (1 - uez/uel) - 0, and, using the continuity
relation, Eq. (86), the jump equations for momentum and mechanical

energy, Egs. (88)-(89), take the form:

Au
(M 83%), - (M, 6.50) ~ = —2| (Lm X +1-B) M5, | (97)
e 2
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Rewriting the two basic differential equations for continuous flow,
Eqgs. (35) and (36), in the form

dé* W dM dM

dJ dM dM
[M J + M ﬁ ¥* o=t 6 + 2(J-T%) 61* = (RHS)Me (100)
dMe due
and making use of the relation v {l+me) — . it is evident that
e e

the last two equations are identical to the two corresponding jump
equations in the limit Ax - 0 with the RHS =+ 0. It can also be shown
that the continuity relation, Eq. (86), for an infinitesimal jump re-
duces to the equation for continuous flow, Eq. (34), in the same limit.
In other words, the equations for an infinitesimal jump correspond to
the relations obtained from Eqs. (34)-(37) by multiplying by Ax and

passing to the limit Ax = 0.
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Since the equations for an infinitesimal jump correspond
exactly to the homogeneous form of the continuous flow equationg,
non-trivial solutions exist only when the determinant of the matrix
vanishes, i.e., when D = 0. An infinitesimal jump can therefore
occur only at the critical point. The analogy to a normal shock wave
of infinitesimal strength in a nozzle is complete; such a standing shock
occurs only at the throat.

Another interesting point of resemblance between the jump
relations and an ordinary gasdynamic shock wave is the occurrence
of hypersonic freezing. When Me1 - o, the strength of the jump
approaches a constant and a, and b2 become unique functions of the
upstream values. This phenomenon is evident in Fig. 27.

For all jump conditions investigated, the boundary-layer
thickness decreases across the jump, and mass flux is lost to the
inviscid flow. The physical displacement thickness increases slightly,
however, which is consistent with a compression occurring over a
downstream distance of one or two boundary-layer thicknesses. In
all cases the strength of the jump, as measured by the reduction in
Mach number, is very small. Even for Mel = 10, a jump from the
strong interaction solution produces a relative change in Me of less
than 6%, corresponding to a static pressure ratio of 1.48. Changes
in the shape paramecters a and b, on the other hand, are considerable,
although the minimum a, is always far from separation.

The subcritical flow downstream of the jump generates a pres-
sure gradient along the surface which produces separation and the

beginning of a region of reversed flow. The departure integrals,
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consisting of the jump and the interacting boundary layer upstream
' of the disturbance, form a one-parameter family of solutions for
initial states corresponding to flat-plate flow. Thus as a given dis-
turbance moves toward the leading edge, the boundary layer upstream
of the _jurnp becomes more supercritical, the strength of the jump in-
creases and the separation point approaches the jump location. For
supercritical as well as subcritical flows, the correct departure
integral is always determined by the downstream boundary condition
appropriate to the specific viscous-inviscid interaction considered.

V.2. Solutions in the Relaxation Surface

In the preceding section, methods for obtaining the departure
integrals representing flow upstream of an external disturbance were
described. For supercritical flows, the correct jump loc ation is
determined by the requirement for smooth transition downstream of
the disturbance, while for subcritical boundary layers, the correct
departure path is the one generating the trajectory downstream of
the disturbance which lies in the relaxation surface corresponding to
Moo+' For flows approaching the Blasius condition from the separated
region, solutions which lie in the relaxation surface can be obtained
by numerically suppressing the departure integrals appearing in the
downstream integration (see Section VI.2). This procedure cannot
be used for accelerated boundary layers because integral paths in the
vicinity of the line of singularities depart too rapidly from the relaxa-
tion surface for the trajectory remaining in the surface to be deter-
mined. Thusthe downstream portion of the solution must be obtained

by integrating in the upstream direction away from the Blasius pbint.
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In this manner the integration is stable and all integral paths remain
in the relaxation surface. 7The downstream branch of the solution can
be joined to the upstream portion at some intermediate location, such
as the second throat in the interaction due to an expansion turn, for
example. To join the two solutions, however, it is necessary to
iteraté for the correct integral path in the relaxation surface. A
consistent iteration procedure can be developed by making use of

an analysis by Kubotaus)

of the singular point at downstream infinity.
Kubota showed that for adiabatic flow in the neighborhood of

the Blasius point, all solutions are of the form:

¢ = __‘;__l +---]+Clg"[1+c—g—l-+---:\
N . o (101)
h o= [ EE +---]- ClB‘i’gc[l‘L“gé +--_]
where Me ;
¢ = (l'm—>§~[(1W)'§]BL
4 ofoieﬁi*
€ = (y-1)° Mw3C o
2
b= ¥-¥py,
. ndl o -1
pe e ]

The first group of terms on the right-hand side of Eqs. (101)
' represent the weak-interaction expansions, hence these equations can

be rewritten in the form:



M M
€ -Cwr = [(mi) - ('M'e'ng = €87+ ---
Wil ’ (103)
h- by = KWy = clB-i-€°+---

Combining these two expressions, the following nseful relation is

obtained:
a M M
1 e e
W - = _._[___(______ :lg 4 o (104)
WI ﬁl Moo M°°)WI

Solutions in the relaxation surface can therefore be determined

by selecting initial values for integration in the upstream direction

such that:
M = M, +AM
e WI e
Rea.* = (Reﬁ.*) (105)
1 1 WI
a = awI + lda
where
dap dJ _dR o Reg x AM
Aa = 4 da dy “da 4P i ( e)
v-0% | Tw g da M2c) \Me
BL A
(106)
Reg. AM,
~ - 5.63 < )
M 3C Moo
% WI

From the analysis, it is cvidcnt that in adiabatic flow, all integral
paths which relax to the Blasius point at downstream infinity belong
to a one-parameter family described by the value of M_ ata given
Reﬁ.,,,, for example. The derived relations also prove that weak-

i

interaction coupling with the outer flow is not significant in the
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dM
immediate neighborhood of the Blasius solution, and dae -+ 0 as

Reﬁ'* - 0.
i
It is not possible to integrate the equations toward the leading

edge in the physical space because the weak-interaction solution is
obtained in the asymptotic limit y¥ = 0 {(see Section VI. 1) and the initial

value of the Reynolds number Rex is therefore not determined within

a small constant. In the phase space, the equations to be integrated

are:
dM M N
e - e 1
d 86.* eﬁi*NZ
' N (107)
da - 3
dReﬁi* Reﬁi*NZ

The solution can be transformed into physical coordinates by means

of the integral:

Re_ Re6 . M
_ 1 i e D
SR dReX = -C S M B-——l\—].-— Reé* dRe&* (108)
ex Regxy 3 i i
o] 1 WI

wher e the value of ReXo is not known a priori. Initial conditions for
Egs. (107) are obtained from the weak-interaction expansion and are
iterated according to Eqs. (105)-(106) until the integral path which
joins the upstream branch of the solution is obtained. From the value
of ReX at the joining point, the downstream solution can be located in
the physical space. Some of the trajectories in the relaxation surface

determined by this iteration procedure are shown in Fig. 28,
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V.3. The Effect of Finite Length

For many interactions,. it may not be possible to assume that
the body extends far enough downstream for the effect of the trailing
edge to be neglected. In supercritical flow, if the trailing edge is
located downstream of the throat, the solution is independent of the
length of the body. For the subcritical case, however, the effect of
finite length may propagiate upstream into the interaction region.
There is always a rapid expansion of the flow field at the trailing edge,
hence the boundary layer must become supercritical and D + 0 at this
location. The beginning of the interaction and the magnitude of the
perturbation € must therefore be determined such that D = 0 at the
given location of the trailing edge. This boundary condition is often
easier to satisfy than the condition of Blasius flow far downstream
of the interaction and also represents a more realistic physical situ~
ation. The solution for flow over a body of finite length can be ob-
tained by downstream integration using the parameter a as the inde-
pendent variable. The correct solution is the one for which dx/da = 0
at the specified location of the trailing edge.

For the case of adiabatic flow in a smoothcompressionturn, Ko
and Kubota(zn demonstrated that when the trailing edge is sufficiently
far downstream of the reattachment point, the influence on the overall
interaction is small. As the length of the ramp is decreased, however,
the effect of the trailing edge lowers the entire pressure level and
reduces the extent of the separated flow region. For a large variation
in the length of the models examined, the agreement between theory

and experiment was extremely good, even in the immediate vicinity
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of the trailing edge.

V.4. Non-Isentropic Effects

As previously discussed, in order to avoid the difficulty of
calculating the inviscid flow field for every interaction, the external
flow at the edge of the boundary layer is usually taken to be isentropic.
In certain situations this assumption cannot be completely justified,
and it may be necessary to combine the boundary-layer equations
with a characteristics net to determine the entropy level of each
streamline as it crosses the edge of the viscous layer. This is a
complicated problem in itself, and since the primary interest of the
present study is in the general nature of interaction phenomena, a
detailed coupling of the viscous and inviscid flow fields is not attempted.
It is often useful to include some of the variable-entropy effects in an
approximate manner, however. In particular, the entropy variation
caused by the curvature of the leading~edge shock has a strong influ-
ence on the development of the boundary layer and should be consid-
ered in many interactions (see Lees(zz) ). By means of an iterative
. procedure, sume of the effects of this shock-wave heating can be
included in the computation.

If the shape of the leading-edge shock wave is determined from
Schlieren or flow measurements, the calculation is greatly simplified.
If the shock shape is not known a priori, however, it is still possible
to obtain an approximate representation of the rotational flow field by
.first performing the interaction calculation assuming isentropic ex-

ternal conditions. In the vicinity of the leading edge, the shock shape

h(x) can then be obtained from the similarity solution of Stewartson(23)
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for the inviscid rotational flow, or by using hypersonic small-
disturbance theory., For a flat plate, these results can be written
in the form:

h h
h(x) 39- 6*(x) = (8-2)60 x% (109)

¢
1.692 for v = 1.4 (Kubota )

ho
where 5
(]

1]

2.110 for y = 1.67 (Mirelst?4)y
The first-order coeificient 60 can be obtained from the strong-inter-
action solution for the physical displacement thickness derived in _
Section VI. 1.

In the region far downstream of the leading edge, the assump-
tion can be made that the flow conditions between the boundary layer
and the shock wave are constant along Mach waves. Referring to

Fig. 29a, the relation derived from the mass flow balance is

: pwumh(xz) = [peue(é—ﬁ*)] + (peae) L (110)
*1 *1
where L o= (h2-6) (sinp,)-1= Mel [h(xz)—é(xl)]
A Poo Yoo -1
hence h(xz) = & (xl) [1 - ] (111)

peluel

and X

> X, * [h(xz) - 6(x1)] /Mel-l

By combining the results of Eqs. (109) and (111) and joining the solu-
tions in the two regions, a valid representation of the leading-edge

shock shape can be obtained.

* Private communication.
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Referring to Fig. 29b, the mass flow in the boundary layer at
at a given station X, can be related to the free-stream mass flow

through the leading-edge shock, i.e.
P ool %0) = [peue(ﬁ-ﬁ"‘)lx1 (112)

By means of this relation it is possible to locate the streamline at
the shock which crosses the edgec of the viscous layer at the selected

station Xy Since the flow behind the shock expands isentropically

along streamlines, the distribution of Me(x) at the boundary-layer edge

can be obtained. In other words, the shock curvature Bs(x) = g‘-i% is
calculated from the known shape h(x), and the static pressure ratio
E—Z(x) and the Mach number Mz(x) downstream of the shock are ob-
t::'.ned from the oblique shock relations. The Mach number at the

edge of the viscous layer is then given by the isentropic expression:

P2 (x,) | Lo
2 2 -1 2 P Y

p_""(xl)

[s]

where the relation between X and X is determined from Eq. (112).
By dropping the continuity equation, Eq. (34), and using the calculated
variation of Me(x), the remaining boundary-layer equations can be
solved again with new edge conditions, and a second mass flow bal-
ance made. This procedure can then be repeated until convergence

is obtained. For flow over a blunt leading edge, the problem is

complicated by the subsonic region in the vicinity of the stagnation
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point and the first-order isentropic solution cannot be obtained. For
these configurations, the distribution of Me(x) must be taken from a
relevant experiment up to the location on the body at which the inviscid
flow is supersonic. Dropping the continuity equation, Eq. (34), the
remaining boundary-layer equations can be integrated around the body
to thié location and the full set of equations used for the subsequent
downstream integration. An example of this procedure is given in

Appendix B for the case of flow around a circular cylinder.
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VI. NUMERICAL RESULTS

VI.1. Flow Over a Semi-Infinite Flat Plate

For all sharp-nosed bodies in the absence of external distur-
bances, the flow field can be divided asymptotically into two regions,
the strong and weak interaction zones. The strong interaction zone
is chafacterized by the fact that (Mw dé*/dx) >> 1, hence this region
is close to the sharp leading edge. The weak interaction zone is
located far downstream where (Moo d6*/dx) << 1 and the effects pro-
duced by the self-induced pressure gradient are essentially perturba-
tions on an existing uniform flow. Because of the singular nature of
the solutions in these two regions, asymptotic expansions for the flow
variables can be obtained for the interactions in both limits. The two
expansions can subsequently be joined by integrating the differential
equations in the intermediate region by the methods previously dis-
cussed.

VI.1l. 1. The Strong Interaction Region

In the moment method formulation, the leading edge is charac-

4
the velocity and total enthalpy profiles become similar. As shown by
(25) |

terized by the simultaneous vanishing of Reﬁ.*, N3 and N, such that
i

Lees , the behavior of the viscous flow in the strong interaction

region can be obtained by a coordinate expansion in large ¥, where

X = M;’ YT/Re_. In order for the boundary-layer equations to be

applicable, however, the limit ¥ = c0 implies that Moo must become

very large. The integral equations also show that this is the only

appropriate limit, and the asymptotic expansion near the leading

edge can be obtained only for the hypersonic form of the equations,
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i.e., Eqgs. (34)-(37) in the limit

Y- M%551 and Y22 M4 >
2 e 2 el

Assuming isentropic external flow and using the tangent-wedge
relation, Eq. (52), the hypersonic moment equations in the strong

interaction region can be written:

3y-1
dA 9F da  8F db\ 3y-1 Fa dp _ 1 [48s %Y 3Fa
F & x5 - ®EXUmn -] (14)
2y-1
w b, K da y-1 (2y+1—E)A%P=}_[2Pp Vo AHY-1)(wH1-E)
dX da dX ~ 2y ) X XLHR 2y .
2y-1
dA , ,dIdy _y-1 (33-2T%) , dp _ 1 [2Rp™ ¥ _ JH(y- 1) (33- z*r*)
I~ 5 A&%‘Rl}/}“
2y-1
« dA 8T* da 9T%*da)_y-1 T* dp _1[20p ' T*A
TPxtolss x* ‘a‘b‘ax) v 5 t3x T 3& 5 T
where
F = y+1-E
. . YR—e—}; (115)
X M:)/C‘
Reﬁ.* _21_
A = __3_..1 :i Y
M~ C
o0 |
Pe 1
p = "Is—e =
© X

N

=24
il
B
@
H
E
I
ks
1
>~
o+
_<
+
?
ks
B
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Assuming algebraic coordinate expansions for the dependent

variables of the form:
2
p = po(lip X + p, X" + ---) (116)

2
A= 8y(146,X + 5,X° 4 -=-)

: 2
a = a0+a1X+a2X + ---

b = b0+bl

X + byX% 4 -on

and substituting thcsc expressions into Eqs. (114), it is possible to
obtain the coefficients of the expansions from the resulting system
of algebraic equations.

For v = 1.4, the results of the expansions for adiabatic

(S._ = 0) flow are:
w

P, _ . - -2
(5- = 0.50912 % [1.0+1.51542 / ¥ + 0.25274/%° + ~--] (117)
@ s1

Reg * - zl__ 5
_3,1__) = 1.19437% “Y[1.0+0.94786/% - 0.19876/%° + ---]
M°>C

0 ‘g1

ag; = 2.28785 - 1.10976/% + 2. 13581/%> + ---

while for non-adiabatic (SW = ~-0.8) flow :

p ——
(—3> = 0.21628% [1.0 + 3.40242/% + 2.00303/%> + ---] {118)
poo
SI
ReG.* _ _L
1) = 0.79594% “4Y[1.0+ 1.73140/% - 0.23521/%% 4 —-_ ]
3
M °C
- ®@ g1
agy = 1.90245 - 1.12390/ + 3.09669/3ZZ+ ---
= -2
bg; = 0.39880 - 0.14903/% + 0.46129/%" + ---
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From these relations it is possible to obtain all required
boundary-layer functions in the strong-interaction region, i.e., for

adiabatic flow:

L
(M ﬁ) = 0.73400% 2 [1.0-0.82208/% + 0. 77712/§2+ -] (119)
o X SI

= .
1 - _2
(CF /_EE)SI: 0.54352% 2[1.0+0.51672/% - 0.07013/F %+ - ]

and for the highly-cooled (Sw= -0.8) flow:

i - -
(M f’-f‘-) = 0.47840 ¥ % [1.0-1.98462/% + 4-31997/x2 + =-=] (120)
0 X S

e 1
_ - - -2
(CF }%2: 0.27261% 2[1.0+1.82059/% - 0.14139/X“+ ---]

e 1
- - - -2
(CH }TX“) = 0.11484% ?[1.0+2.30072/% - 0.13827/%“+ ---]
SI

The first-order terms in the expansions agree well with the
exact values obtained for similar flow in the vicinity of a sharp leading
edge, indicating that the curve-fits of the profile quantities are quite
accurate. The similarity solution in the strong interaction region

corresponds to the profile for which B = -Y:—!- (Lees(Z()) )}, i.e.,

¥
a=2.275 for Sw =0 and a= 1.897, b= 0.395 for Sw = -0, 8(see Tables
A5 and AlQ).

VI.1.2. The Weak Interaction Region

The Blasius solution is characterized by the condition that N3
and N4 vanish as Re6 % — ®. The behavior of the viscous flow in the
i
vicinity of this point can be obtained by a coordinate expansion in

small ¥, hence the boundary-layer assumption remains valid for all
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Mach numbers and the supersonic moment equations can be used.
A convenient form of these equations, Eqs. (34)-(37), for flow in the

weak interaction region is:

v+1
3
dA 8Fda, 8F dby, £A Ve _ ] Lm 20Y=T) M tan@
Pl (ST de, 88 )+ 2Fa-2(=2) -
dax 2 ax e dY tm m ¥
X X X e X
3y-1
a da, (u+1-E), Me 1 Mmooy Mo P
Wity e BB, e - S a2 (g ME
dy dx e dy X € e
(121)
dM 1+ 3¥-1 M R
Jé—A-ﬂ-A-—-dN _g_ (3J-2T*’A e":"'l"EJA-Z.( moo) Ei‘\/-IS o0
dy & da dy M, dy ¥ tmg oF
»dh (BT*da aT* db7, T*a Me (“m )27"‘13 -1)
+4 + — _.____EI‘*A 2
where
Heyr ;% [Rey
A= —3 ")—( = - ol (122)
X
Moo C
and
-1
tan® ~ 6 = \)(M)-\)(M)—S T del\l\f
1+¥i—ha
The coordinate expansions must be of the form:
M =M (I4m ¥+ m, %%+ --=)
eWI o0 1% 2 X
_ — -2 - -2
Oyip =0t X te, X X+ 6,X" + ---)
(123)

- -2
a'WI a0+alx+azx 4+ -

b

, - -2

1
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The logarithmic term in the expression for A must be included
since the coefficient 62 does not appear when the expansions are sub-
stituted into the equations. The value of 62 can be obtained from the
other coefficients by noting from Eq. (55) that:

1

6. *
i

dﬁi*
dx = Re

Hence there must be an expansion of the form:

dRex a,
= ua, Re + a, + t - 124
dﬁeé.* 0 éi* 1 ’Reé.* ( )
i i
. _ % 2
i. e. Rex = - Reéi*. + a, Reéi* azﬂ/nReai* + mm
or —7 = “o(:> +“1(‘:)+°z~””‘(:)+“'
X X X X
6
but —é— = _:9. (1+51§+32§2m§+ 52§2+ -—--)
X X

Expanding and equating coefficients, the required relation for 62 is

obtained:

o) =

2

2
8)

Nf

- ez@n 60 (125)
The result of the coordinate expansion far the other coefficients

can be written in the following form:

- (Y-l)(l+m°°) 1+rn00
m,; = — ‘:m11+ m le] (126)
4M /M -1
o 00
J™M -1
0

g
i

m
1 2
m m]+[ 2 . ]m
2 M3 A ez lon A
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8y = {d}; - Kpm,
2
ez = (d21 + Kl d22+K2)m1 + (Kl—dZZ)mZ
07 ™
= + K m 2 + )
8y = eyt Kjaymit + (ag) - a,,)m,
bl = bllnl1
b = (b,,+K. b, . )m 2 + (b, -b,, )m
2 21 1722 1 11 22 2
where
m
K - 3y~-1 00
1 Yy-1I 1+ m
00
K _ 3y-1 oo [:1 _5y-3 Moo
2 a(y-1)y 1T+ m_ v-1 l+m°0
For adiabatic flow:
60-= 1.73287 ao = 1.63310 (127)
m11=0°66235 m,, = 1.72387 m,, = 1.61411
d11 = 2.11079 le = -6.07980 dZZ = 3, 73839
ay; = -3.63008 aZl = -8.59653 aZZ = 4.15375
and for highly-cooled (Sw = -0.8) flow:
8, = 1.72403 a, = 1.63284 by = 0.37953 (128)
m11= 0.66210 m12= 0.34260 m21= 1.61275
dll = 1.02236 le = -3,14874 d22 = 2.44135
all = -1.33576 aZl = -3.81059 aZZ = 1,57323
b11 = 0,12736 bZl = -4.90174 bZZ = 2.87405
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The expansion for the pressure ratio is of the form:

(;9) = 1.o+-p1§+—p2§2 T (129)
© wi
wherc
-2y Moo
PL 7 3T Trm ™1
m m
Py = V% ﬁ%[mz+(%‘%%wr%)mf]

The effect of free-stream Mach number on the adiabatic weak-
inter action pressure distribution is shown in Fig. 30.
v-1 2

For hypersonic ﬂow, i, e., L2 Mo s> 1

> © , the Mach number

does not appear in the coefficients and the expansions become inde-
pendent of Moo. Thus in the limit M00 - w0, these relations become,

for adiabatic flow:

Me - -2
(M—) = 1.0 - 0.04790 X + 0.00229 X % + ~-- (130)
® WI
61* e - -2 2
(— ) = 1.72387(1. 0+0. 28106 - 0. 01802 X “fn¥ +0. 0493 1%°+ --)
X C WI
- _2
awy = 1-63310 4 0.17324% + 0.03838% % + ---

hence:
P
(53) = 1.0 + 0.33407% + 0.04783% % + —--
® WI
53 - — —2 -2
(Mw_{) =0.47724%(1.0-0.09290% - 0,.01802% ~¢ny +0.02470% + -~ )
WI

e
(CF / ——’i) = 0. 66235(1. 0+0. 17193%-0. 01802 % 20nX + 0. 00114 > + --)
C w
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and for non-adiabatic (SW = ~0.8) flow:

1\/Ie - -2

(m——> =1.0 - 0.02009% + 0.00040% “ + --- (131)
© wi

61* ReX _ s > ;

(—x_ _—C__) =1.72403(1.0+0.14021y -0.00568% ony+0.00938y "+ --)

Wi )

awi = 1.63284 + 0. 026843(- + 0. 00237';(—2 + -

PWi = 0.37953 - 0.00256% + ---

hence:

p

(-139-) = 1.0+ 0.14066% + 0.00848 X~ + ---
[+ ¢]

WI

(M, &) =0.20094% [1.0-0.04487 - 0. 00568 20 + 0. 00069+ -~ ]
@ X/wi

Re
(CF /—-5’-‘-) = 0. 66210 [1. 0+0. 03049 - 0. 00568% nY - 0. 00039 + -- ]
Wi

e.__
(CH /-..C’.‘.) = 0.33122 [1. 0+0.% - 0. 00568 X “on¥ - 0.00280% “ + -- ]
WI

In these relations, the asymptotic expansion for the enthalpy parameter
b has been terminated at the first term. The reason for this procedure
will be explained in the following section.

VI. 1.3. The Complete Interaction

As previously discussed, in the adiabatic case the eigensolution
for self-induced flow lies in the subcritical portion of the phase space.
Integration in the downstream direction is therefore inherently unstable,
and the integral path originating at the leading edge can be obtained

only by integrating upstream, away from the Blasius point. Using the
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iteration procedure described in Section V. 2, the correct trajectory

is matched to the strong-interaction expansion to determine the initial
value of Rex, and from this the solution in the physical space can be
obtained. The results of this iteration are shown in Figs, 31-34, It
is evident that except for a(i), the two second-order asymptotic series
provide a good representation of the eigensolution for self-induced
viscous flow over most of the region.

For highly-cooled (SW = -0.8) flat-plate flows, integration in
the downstream direction is stable and the solution in the intermediate
region can be obtained directly. Using initial conditions given by the
strong-interaction expansion, Egs. (118), the set of differential equa-~
tions can be integrated away from the leading edge in the physical
space. The results of this integration are shown in Figs. 35-40. The
asymptotic relations are in good agreement with the integral solution
provided only the first two terms of the weak-interaction expansion
for the enthalpy parameter b are used (Fig. 37). This type of behavior
is typical of asymptotic series, and ,since none of the coefficients of
the expansions for the remaining variables depends on the second-order
term bZ’ this term can be neglected. The linear, or first—or;der, weak-
interaction expansion for the enthalpy parameter was used to obtain
the physical boundary-layer functions shown in Figs. 38-40. By im-
plication, the truncated series should also be used for computations
at finite Mach number.

As previously indicated, because of viscous dissipation the
effect of any external disturbance can be considered to propagate only

a finite distance upstream of the location of the disturbance. The
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pressure gradient forward of that point is determined primarily by
the growth of the viscous layer itself and is not influenced by the ex-
ternal distufbance. Thus the interaction caused by an incident shock
wave or a change in the slope of the surface, for example, must be
obtained by first determining the flow field which would have existed
in the absence of these disturbances. The results discussed in this
section, therefore, not anly give a solution to the classical problem
of hypersonic viscous flow on a semi-~infinite flat plate, but also pro-
vide a method for obtaining the locus of approximate initial states for
other viscous-inviscid {nteractions. Interactions caused by external
disturbances can subsequently be obtained from this eigensolution by
applying the correct departure conditions (Sectiion V. 1) to the viscous
flow at a location where the effects of the disturbance are small. The
solution for the interaction caused by an incident shock wave in adia-
batic and highly-cooled (SW = -0.8) flow is described in the following
section.

VI.2. Interactions Generated by Incident Shock Waves

The interaction between a laminar boundary layer and an in-
cident shock wave was shown schematically in Fig, 1, and some of
the more important physical features of the resulting flow were de-
scribed in Section II. 1. The primary difficulty encountered in the
analysis of this type of interaction is the requirement for a simplified
model of the flow field in the vicinity of the shock-impingement loca-
tion. Assuming that the shock wave is thin, however, the incident
wave and the boundary layer can be considered to intersect at only

one location. If discontinuities in the viscous layer are not permitted,
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then the velocity profiles, the enthalpy profiles and the transformed
displacement thickness must be continuous at this point. Also, since
the incident éhock is reflected as an expansion fan, the static pressure
ratio should remain continuous. The conditions at the shock impinge-

ment point can therefore be written:

p = p a, = a
e, e1 2 1

5.% = §.% b, = b (132)
i 2 11 1 ,

where the subscript 2 denotes conditions immediately downstream of
impingement and the subscript 1 those just upstream. With these
assumptions, the local Mach number Me is discontinuous because of
the change in stagnation pressure across the incident shock, and
hence the physical boundary-layer and displacement thicknesses also
exhibit small discontinuities at this location. Of course, the condi-
tions at the shock impingement point given by Eqgs. (132) are not the
only ones possible, and a different model of the flow field could have

been adopted. In the Lees—Reeves( 2)

formulation, for example, the
local Mach number rather than the static pressure ratio was assumed
to be continuous. Except for very strong incident shocks, however,
both assumptions give essentially the same results for the overall
boundary-layer/shock-wave interaction.

The induced streamline angle downstream of impingement

must be related to the free-stream Mach number at downstream

infinity, i.e.,

B, = V(Me,) - v(My, ) (133)
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where 1\/‘.[e2 is calculated from the static pressure at impingement and
from the entropy change across the incident wave. The Mach number

at downstream infinity, M is obtained by assuming that, far from

004°
the impingement point, reflection of the incident shock from the vis-
cous layer is indistinguishable from reflection from a solid boundary.
Thus Mw_'_ is taken to be the Mach number behind the reflected shock
wave which turns the inviscid flow back to a direction parallel to the
surface. In calculating Moo_l_, the t’ota,l Pressure ratio across both
shocks is considered, whereas only the entropy change across the
incident shock is included in the interaction computation. As a result,
the final static pressure ratio obtained from integration in the down-
stream direction is always higher than the corresponding inviscid
pressure ratio, while the Mach numbers are identical. This type of
discrepancy is to be expected, however, since the complicated flow
field produced by the reflected compression waves and by the entropy
variation across streamlines passing through different portions of the
shock system cannot be included in the analysis without considerable
difficulty (Section V.4). Here again it is possible to adopt several
different models of the flow, and a reasonable assumption, for e;c—
ample, would be to take Moo.|. as the Mach number downstream of an
isentropic compression which turns the inviscid flow parallel to the
surface. In this manner the change in stagnation pressure ratio across
the reflected shock would nét appear in the computation, Of course,
the two methods are almost identical unless the incident shock is very

strong.

Solutions for boundary-layer interactions caused by incident
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shock waves can be used to obtain corresponding solutions for inter-
. actions in sharp compression corners. As indicated by Reeves(27),
the two flow fields are similar provided that Re = ReX
corner shock

and that the total pressure ratio poo+/poo_ is identical. Experimen-
tal results for flows in sharp compression turns have been used for
comparison with the theoretical computations of boundary-layer/shock-
wave interactions given in this section.

In most interactions caused by incident shock waves, both the
location of impingement and the strength of the shock are specified
a priori. As a result, a number of inverse solutions must he con-
structed in order to duplicate desired conditions. For adiabatic or
slightly-cooled subcritical flows, the Reynolds number Rex denoting
the beginning of the interaction must be selected far upstream of the
point of incidence. A departure integral leaving the eigensolution for
undistur bed flow and proceeding toward separation can be obtained by
applying a small negative value of the perturbation parameter ¢ to the
viscous flow at that location (see Fig. 25). Integration of the equations
is continued smoothly through separation to the point of shock impinge-
ment, where new initial conditions for the integral path downstream of
the incident shock are determined through Eqs. (132)-(133). If the sub-
sequent trajectory doesnot approach the downstream boundary condi-
tions, the assumed vglue for Rexo must be modified and the entire
procedure repeated. When .the approximately correct integral curve
has been obtained, iteration of the perturbation ¢ can be used to deter-

mine the exact solution. As a general rule, 0 < Ie|<|emax[ where

emax is the value of the perturbation parameter which gives dMe/dx=0
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at the beginning of the interaction.

The results of a typical computation for adiabalic flow are
shown in Fig. 41. The two solutions represent interactions beginning
in the weak-interaction zone for both a finite (D = 0 at the trailing edge)
and a semi-infinite (Nl’ N3 -+ 0 as ReX - o) flat plate. It is evident
that a small change in the value of € can provide very different integral
curves because of the high non-linearity of the equations in the sub-
critical region. The procedure used to determine the solution corre-
sponding o Blasius flow at infinity is to iterate for the perturbation
parametler € until two adjacent trajeclories which leave the relaxation
surface in different directions downstream of reattachment are ob-
tained. For example, one integral curve will depart toward the crit-
ical point (D = 0), and the other toward separation {(a = 0). By linearly
inter polating between these two curves at a point where the difference
in values is relatively small, new initial conditions can be determined
to continue the integration in the downstream direction. This proce-
dure can be repeated at successive locations until the complete solu-
tion is obtained.

For non-adiabatic supercritical flows, the interaction due to an
incident shock wave must be initiated by a jump to a subcritical state
at some point upstream of the location of impingement. The correct
jump location is determined by the requirement for smooth subcritical-
supercritical transition downstream of reattachment. The method of
.solutibon is very similar to the one used for subcritical flows except
that there is only one iteration parameter, the Reynolds number Re

)
denoting the beginning of the interaction and the location of the jump.
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The results of a typical computation for highly-cooled
(S, = -0- 8) flow at the same free-stream conditions as the previous
adiabatic interaction are shown in Fig. 42. Since the throat is a true
saddle-point singularity for the system of differential equations, it is
not possible in practice to obtain an integral curve passing continuous-
ly frofn the subcritical to the supercritical region. The procedure
required is to first iterate for the correct jump location Rexo and then
to linearly interpolate between adjacent trajectories downstream of
reattachment to continue the integration toward the throat. It may
often also be necessary to slightly vary either the strength of the in-
cident shock or the point of impingement in order to extend the inte-
graI curve in the downstream direction. When the location of the
throat has been determined as precisely as possible, the solution in
the subcritical region can be graphically extrapolated through the
singularity into the supercritical region. Downstream of this point
the equations are stable and the integration proceeds smoothly toward
the Blasius condition at infinity.

V1. 2.1, Comparison with Experiment

Figs. 43-46 show comparisons of the present theory with
several experimental pressure distributions in sharp compression

(19).

corners obtained by Lewis In all cases the agreement is quite

good, particularly since the experimental value of the free-stream
S , N

pressure p_ _ Tepr esents an approximate quantity. If the effect of

even a very small flow inclination on the surface pressures is in-

cluded, i.e., if the plate is assumed to be at an angle of attack

3

Lewis, private communication
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a= —%°, the small systematic discrepancies between theory and ex-
periment disappear and the agreement is extremely good (Fig. 43).

VI.2.2. The Effect of Surface Cooling

The effect of a highly-cooled surface can be seen from a com-
parison of the previous figures and from Figs. 47-48, where the
Reynolds number Rea*, based on the physical displacement thickness,
and the skin-friction coefficient CF are shown. The most dramatic
effect of cooling is the marked decrease in the overall length of the
interaction. For example, if the region of influence of the incident
shock is considered to extend downstream to the point where Me = MOO+,
the length of the interaction in highly-cooled (SW = -0.8) flow is reduced
to 40% of the length of the corresponding interaction in adiabatic flow.
From Fig. 47, however, one can see that at a given location, the ratio
of displacement thicknesses is also approximately 2:5. Thus the
propagation of the effect of an external disturbance, in both adiabatic
and non-adiabatic flows, scales closely with the displacement thick-
ness. Another effect of surface cooling is to increase the value of the
skin-friction coefficient CF in the interaction region, as shown in

Fig. 48.

VI.2.3. The Effect of Unit Reynolds Number

Some of the effects of free-stream Reynolds number for fixed
incident shock strength and location of impingement are shown in Figs.
49-51 for both adiabatic and highly-cooled (SW = -0,8) flows. In all
cases, the upstream propagation of the effect of the external distur-
bance increases as the unit Reynolds number is increased. Also shown

is the decrease in the heat-transfer coefficient CH with increasing ]iing'
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VI.2.4. The Effect of Disturbance Strength

Fig. 52 shows the pressure distributions for two interactions
occurring close to the plate leading edge in highly-cooled (SW = -0.8)
flow. The computations correspond to ramp angles of 22. 5° and 27.5°
at a free~stream Mach number Moo- = 16.0. These conditions are
similar to those investigaged by Miller, Hijman and Childs, (28)
although a direct comparison between theory and experiment is not
possible unless the non-isentropic effects caused by the curvature
of the leading-edge shock wave are included in the calculations. It
is evident, however, that the moment method is capable of predicting

the more important features of the flow field, even for interactions

which occur in the immediate vicinity of thc lcading cdgec.
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VII. CONCLUDING REMARKS

The present formulation of the moment or integral method for
the analysis of laminar viscous-inviscid interactions contains four
major assumptions: (1} the boundary-layer approximations are
assumed to remain valid throughout the viscous flow region; (2) two
single-parameter families of similarity solutions are assumed to be
adequate to describe the velocity and total enthalpy profiles; (3) under
certain conditions, a set of jump relations is assumed to correctly
approximate the rapid, but continuous, change in flow quantities up-
strcam of a disturbance, and (4) the cxternal, inviscid flow at the
boundary-layer edge is usually assumed to be isentropic, although
the effects of entropy variation can be included in the computations by
an iterative procedure if necessary.

The validity of these approximations depends on the specific
interaction considered, and in certain situations some of these assump-
tions are not justified. For example, for the case of separating flow
in a sharp expansion corner, it may be necessary to adopt a family of
velocity profiles containing an inflection point near the surface and to
include the effects of the normal pressure gradient in the analysis,
For most interactions, however, a more complicated approac'h is not
warranted, and one of the major advantages of the moment method is
its relative simplicity and ease of application to a wide variety of
Problems. As previously indicat:ed, the moment method described
in this investigation is fully capable of predicting the more important
physical features of a large class of laminar viscous-inviscid inter-

actions in supersonic flow.
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VIIi. PROBLEMS FOR FUTURE INVESTIGATION

Vii.l. Flows with Variable SW

Extensions of the present study to interactions along surfaces
for which the distribution of Sw is specified or for which the heat-
transfer rate is given are not as complicated as might be expected.
In particular, as is evident from Figs. 2-8, the only velocity-profile
parameter which depends strongly on the value of S, is the quantity
P(a) in the separated flow region. Also, as shown by Savage(zg), the
normalized total-temperature distributions for attached flow can be

represented quite well by one universal curve, and Rae(30)

has ob-
tained the family of lower-branch solutions of the Cohen-Reshotko
equations for SW = -0.95 and has indicated that a correlation of the
profiles is possible in this region, at least for SW < -0.8. Thus by
obtaining a2 number of additional similarity solutions for various values
of Sw by the method described in Appendix A, a generalized represen-
tation of the profile functions given in Tables 1-3 for all SW should be
relatively easy to determine. In this manner the computations will

not be restricted to interactions along constant-enthalpy surfaces.

VI 2. Interactions with Surface Mass ‘Addition

For the case of boundary layers with mass injection (or suction),
the procedure is very similar to the one described for flows with heat
transfer. A two-parameter ffimily of similarity solutions can be ob-
tained, using the parameters a(x) and f(0) = fw to describe the profiles.
For 'fw 2 2, the asymptotic solutions of Kubota and Fernandez(?’l) can
be used to determine the profile functions. Similar solutions are dif-

ficult to obtain for separated boundary layers with strong blowing,
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however, and it may be necessary to devise a more appropriate iter-
~ation scheme than the one described in Appendix A. For certain
interactions,. the linearized solutions for small fW discussed by

(32)

Strahle may prove useful.

VIII. 3. Interactions in Subsonic Flow

The integral continuity, momentum and mechanical energy
equations for incompressible flow can be obtained from Egs. (34)-(36)
by taking the limit as M ~ 0. A system of three equations for four
unknowns, &%, a, Ue and @ results; hence an inviscid flow relation
between ® and Uc is required, as in the supersonic case. In subsonic
flow, however, the edge velocity Ue is not determined by the local
streamline inclination, but depends on the distribution ot @ throughout
the entire flow field. Using thin airfoil theory, as suggested by

(33)

Green , the required relation between ® and Ue can be written:

o (x5 [1 - —E—f—(@,oq
o]

1 . a (134)

tan@® = —
™

~ 00 (x—f;',)2 + 6
The continuity equation, Eq. (34), thus becomes an integro-differential
equation, and solutions can be obtained only by an iterative procedure.
One possible method of iteration is to assume a distribution of tan®(x),
solve the full set of equations, determine a new distribution of tan®(x)
from Eq. (134), and repeat the procedure until convergence is ob-
tained. This method has been discussed by Alber(34) for the case of

flow in an incompressible wake.
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~139.
APPENDIX A
" THE SOLUTION OF THE COHEN-RESHOTKO EQUATIONS=‘t

A.1l. Differential Equations and Boundary Conditions

The compressible flow analog of the Falkner-Skan equation for
h
o
Prandtl number Pr = 1 and constant wall enthalpy ratio H—-\ﬁl: 8y is
. Oe
given by the system of ordinary equations:

2
f O+ ff +B(g-f 0
mm * o T BlE - )

(Al)

B + £ 0
m g'ﬂ

subject to the boundary conditions

f(0) .= fn(O) = 0

lim f S
mwo T
and
g(0) = g
lim g = 1
N0

A.2. Numerical Analysis

The basic equations, Eqs. (Al), can be transformed into a

system of first-order differential equations:

f = u
n
u = Vv
n
AR ~fv + Blul-g) (A3)
& = W
W = -fw
ln

3
The author is indebted to Mr. Harvey Buss, now Staff Scientist,

Avco Corp., Wilmington, Mass., for his invaluable assistance in the
solution of this problem.
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The problem of solving Egs. (Al) with boundary conditions given by

Eqe. (A2) can thus bé regarded as the initial-value problem of deter-
mining the quantities v(0) = me(O) and w(0) = gn(O) such that u(n) and
g{n) » 1 as n- eo.

Denoting the values of u and g as n—=w as u_ and g_, respec-
tivély, these quantities can be regarded as functions of the initial
values v{0) = v, and w(0) = wo. A solution of the following set of

equations is therefore required:

uoo(vo, Wo) -1=0

(A4)

it
o

goo(vo, wo) -1
In general, these relations will not be satisfied by an arbitrary
choice of initial values, and it will be necessary to modify v, and W
to obtain the solution. If the changes 6V0 and 6wo in these quantities
are small, the new values of u and g, are given by the first-order
approximations:
ou du

+ + = < 2
um(v0 6vo, W 6wo) um(vo, wo) + 6v0 370 +6w0 5

9g g
gw(vo+6vo, W +6wo) = gw(vo, wo) + 6vo ‘é?;;+ ow

o0
o ow
[0}

If these quantities are to satisfy Eqs. (A4), the changes in the initial

values 6v0 and Swo must be selected such that:

61100 6uo°
Du_ 6Vo * dw_ 6Wo =1- uoo(vo’ Wo)
(A5)
9g g
o0 0 -1 .
ov_ 6v0 Yow O, = ! goo(vo’ wo!

(o]
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The partial derivatives appearing in these expressions can be obtained

by differentiating the system of first-order equations given in Eq.

(A3), i.e.:
N\
B - &
n
(aii)ﬂ - a?:;
R A
n
@) - &
o‘n o] o} s
and
(‘gva') - afi,“ )
O'ﬂ 0
(%‘i) = —f-a%;’;-v%;+ﬁ<2u-a%}-- ?’Vo) > (A7)
n
(7E) = o
o
n
(o) = Tw v B

o)
-

n

To evaluate the required partial derivatives as m = w0 it is necessary to
integrate this system of equations from n = 0, where the initial values

are known, to a point 1 = Neo? where Mo >> 1. The initial conditions
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for these equations at n= 0 are:

ou _ of og ow du ov _ 9dg of

v - Bv. “%v. S Bv " 3w P “ow " dw -0
(o] [o] (o] o] (o] (o] O O
ov _ OwW =1
Iv_ T ow -
(o] o

In certain situations, the value f,rm(O) = VO may be specified
and the pressure-gradient parameter  not known. The analysis is
identical to the one described above with B substituted for v, in Eqgs.
(A4)-(AS5) and with Eqs. (A6) replaced by:

%),

I
=/
7

&), - B BeotacngoB) b w
n
%) -5

The 10 equations for the partial derivatives, Egs. (A6){A7) or Egs.
(A7)-(A8), can be-integrated simultaneously with the basic differential
equations, Eqs. (A3), to the location n = Moo The solution of Eqgs.

(Ab5) then provides new initial values for the subsequent iteration, i.e.,
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(vo). = (Vd). * 6Vo or Fsi+1 = Bi top
i+l _ i
and (w ) =(w ) + 6w
©i+1 %3 °

A.3. Numerical Procedure

A.3.1. Specification of n

Since it is not possible to satisfy the boundary conditions
numerically {Eqs. (A2) ) as n = o, the edge of the boundary layer Moo
must be specified in advance to terminate the forward integration. If
the value of Noo is too small, then fnn(nw) # 0 and Mo will be increased
automatically until the condition fﬂﬂ(nw) <eis sa.tisfied. (see Section
A.3.2). This procedure provides an effective means for avoiding the
oscillations often encountered when the boundary-layer edge is allowed
to vary during the i.teration process.

A.3.2. Termination of Integration

The integration is terminated if the following two conditions

are satisfied

[1-£/(n)1% + [1-g(n,)7% < 1078

[ )1°  +(g'tn ) 1% <1077

A.3,3. Correction Limitation

In certain cases, the initial guesses for Vs and W will be such

that the iteration method described above will be inapplicable, and the
new values of v, and v will give u, and g to lower accuracy than
the previous solution. In these situations, the original correction is

halved and the integration repeated until more accurate values of
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. . 2 2
u_and g are obtained. For this reason, the norm [(1-u )"+(l-g )7]
o0 ) - 0 00
is computed, and this quantity is required to decrease monotonically
during the iteration process.

A.3.4. Program Inputs

The inputs réquired for the program are as follows:
BETA assumed or specified § (see Fig. Al)
FNNO assumed or specified fnn(()) (see Fig. Al)
GNO assumed g,n(O) (see Fig. A2)
DETA integration step size (~ .01 ﬂco)
ETAMAX initial valuc of Moo {scc Figs. A3-A5)
DETAM increment for changing Ty (o 1 'r]oo)

GWALL  specified gy = g(0)

KIT iteration parameter, 1 or 2, i.e., KIT = 1 iteration for
f'rm(O); KIT = 2 iteration for B

A.3.5. Fortran Listing

A Fortran listing of the program used to solve the Cohen-
Reshotko equations (Eqs. Al} is given in Table Al.

A.3.6. Program Outputs

The program gives the solution vectors n, f, fﬂ’ fm’]’ g and g
as well as the profile functions a, %, J, Z etc. used in the moment

method, as shown in Tables A2-All.
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TABLE Al -~ FORTRAN LISTING

€ SOLUTION OF THE FALKNER ~ SKAN EQUATIONS

DIMENSION F{500), FN{500), FNN{500), G(500), GN(500),
TTTITETIUS 0O T T
COMMCN DFLSTR, THETA, THESTR, Hy XJy Zy TSTAR, R, P,
1 SWe A, USTAR, DELTAy SIGMAy Ey SSTAR o
5 REAC (5,1) BETA, FNNO, GNO, DETA, ETAMAX, DETAM,
A CWALL KT WUy GNUs UE1A, EI1AMAX, Ut o
1 FORMAT{TF10.0,11)

BETA PRESSURE GRADIENT PARAMETER

T FNNO = SHEAR AT WALL

GNG = ENTHALPY CRADIENT AT wWALL

" DETA = INTEGRATIUN STFP SIZE

ETAMAX = LOCATICN OF BOUNDARY-LAYER EDGE
DETAM = CHANGE [N CTAMAX FOR [TERATION
GWALL = ENTHALPY RATIO AT WALL

KIT = 1y ITERATE FOR FNNO

KIT = 2, ITERATE FOR BETA

u;u

1

nr¥run¢wnﬁw
?

w|u‘

‘ntﬁ
|

CALL METHL(FyFNsFNN+GyGNyBETA,FNNO s GHALL  GNO + ETAMAX
1 DETA, DETAM,KIT,CON; L)
oGO 1C (10,%), ICLN
C 1CON
€ TTICON

1, NORMAL RETURN
2, ERROR RETURN

T 10 CMIT=L=1 -
ETA=0.
DO 20 I=1,1LM1
ET1(I)=ETA
20 ETA=FTA+DETA —~ 7
CALL INTGRL{LMISETL19yFeFNyFNN,GyGWALL)
SW=GWALL=-T.
WRITH(6,501) BETA, SW
7501 FORMAT(1HL 20X 7HBETA = F10.5, SXS5HSW
WRITE(€,4502)
T 502 FORVMAT(BX3IHETA 1C0X1IHF 11IXZHFN 9X3HFNN B8X1HG 11X2HGN//)

Fl0.4//)

h

< ONE = PAGE PRINTCUY

TE(LML.GE.CYKOUTE1 e
IF{L¥l.GE.52)KOUT=?

TF{LMLI.GELI04IKCUT=q
IFILM1.GE.208)KOLT=5 '

TFOMICGETZ60TROUT = 8
IF(LM1.GEL4]16)KOUT = 10
T IFILMLLGELS20)IKOUT =720 T
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LM2=1LM1-1

DO 45 T=T,yLM27KCUT

45 WRITE{G64503)ETL(I)gF{T}4FNCI)oFNN{T)G(I)4GNIT)
WRITE(69503)ETLILML) F{LML)FNILML)4FNN(LML)G(LML),
1 GN(LM1)

503 FORMAT( 1X7F12.5 )

T PROFILE FUNCTIONS FOR CONVERGEL SOLUTTION™
TTTTTUTUWRITE (69504)
504 FORMAT( /27X18HINTEGRAL FUNCTIONS /)
T OWRITE (69505) DEUTA9ALTSTARZDELSTRyHyRyTHETAXJd P,y
1 THESTR,2,USTAR,SIGMA,E,SSTAR
T 505 FORMATU/SXI0H OFELTA F10.558X5HA
1 F1Ca54/5X10H DELTA% F10.5,8X5HH
T 2 F1Ca5+/75X10H THETA = F1lCe548X5HJ
3 F1Ca5+/5X10H THETAx%

T4 FLC.59/5X10H STGMA = F10.5,8X5HE
S F1C.5 /77 )

F10.593X5HR
F10.5+ 9XSHP
F10.5+9X5HU*
F1l0e59y9X5HS*

monnon

[T I [ T
wooon o

TF10.599X5HT* =

GO0 105
END
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"SUBROUTINE METHL {(F,FNyFNN,GyGN,BETA,FNNO,GWALL ;GNOy -
1 ETAMAX,DETA,DETAM,KIT,ICON,L)

C SIMULTANEQUS SOLUTION OF THE MOMENTUM AND ENERGY EQNS

n— i ot e s e 3. 0 = b

DIMENSION F(200)4FN{200),FNN(200)+G(200),GN(200)y
Tl Y(20),D(20),Qi2c) e
GO 70 (10,20), KIT
IO WRITE (6,2) T

2 FORNMAT(28H1 ITERATION ON SHEAR AT WALL)

GO0 TO 30

20 WRITE {6,4) '
T4 FORMAT(19H1 ITERATION ONHETA)Y e e
30 M = C

Ly . e
NORNM = 1 ’
KNORM = 1
"KCCONT = 0 &
R CON e g e -
o NEWI1 =1 . }
o M = C INITIALIZES THE FORWARD INTEGRATION
C L = ANTINDEX USEC TO STORE THE FINAL SOLUTION
C NORM = 1 INDICATES A NORM HAS NOT BFFEN CUMPUTED
C  NORM = 2 INDICATES A NORM HAS BECN COMPUTED
c KNORM = 1 INDICATES THE INTEGRATION WAS TERMINATED AT
"""""" THE LOCATION ETA = ETAMAX
KNCRM =.2 INCICATES THE INTEGRATION WAS TERMINATED
BECAUSE FN WAS GREATER THAN 1.5 OR LESS THAN -1.0 AT
A PCINT WHERE ETA WAS LESS THAN ETAMAX. IF A NORM

A

[ HAS "BEEN CUMPUTEDL, THE CORRECTIDNS GIVEN BY THE LAST
c ITERATICN ARC HALVED. IF NORM = 1, A CORRECTION IS
C T BASED CN AN ETA LESS THAN ETAMAX ' o
C KCCNT = THE NUMBER OF ITERATIONS, NOT EXCEEDING 50
C NEWT = 1 INDTCATES THE SOCUYTON HAS NOT d8EEN FOUND
C NEWT = 2 INDICATES THE EQUATIONS HAVE CONVERGED
40 K = 2 ‘
T ——_——
DO 42 1 = 1, 15
42 YTy =14,
Y{3) = ENNC
A o G e e
Y{5) = GNO
TG0 T (43,440, KITO T T
43 v(g) = 1.
TT44 Y(15) = 1.
50 D(1) = Y{2)
D2 =UY(3) T T
PI3) = =Y(1) * Y(3) + BETA % (Y(2)%%2~Y(4))
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D{4) = ¥{9)
- D(S) = —v¥{(1l) % Y (5)
DL6) = Y(T7)

TTTOCTY ETYR)D
GU TO {(51+%2), KIT
51 D(8) = =Y(L)XY(B)=-Y(3)%Y(6) + BETA®R{2.2Y(2)%Y(T)-Y(9))
GO 1O 53
T2 0U8) = ~Y(1)eY(a)- Y(3)*Y(6)+Y(2)**2—Y(4)+BETA*(2.*Y(2)
1 *Y(T)-Y(9))
53 0(S) = Y(1IO) -

DI10) = =Y(1)%Y{10)=-Y{5)%Y(6)
‘‘‘‘ D(11) ™= Y(12)
D(12) = Y{13)
““““““ DI13) = =Y{1)*Y(I3)=Y(3)5Y(11)+BETAR{2,.xY(2)%Y{12)~-
1L Y{(14))
{14y =¥Y(15)
DUL15) = =Y(1)*Y{15)-Y{5)%Y(11)

GO TQ (60,70)y K
60 K = MRKSUB (15,Y,09Q,ETAJCETAWM)
N it
70 IF(ETA.GE.ETAMAX) GO TO 100
TIEIYU2)UGELTLE)Y GO0 YO 90
IF((Y(?) + l.).LELOQ.) GO TD 90
TGO T0 160,683, NFWT T T I
65 F(L) = Y(1)
CTTUEN(LY = ov(2)
ENN(LY = Y(3)
GILY = Y(&) T
GN(L) = Y{(5)
T T
GO 10 60
TGO KNORM = 5 e e
100 GO TO (120,1B0),NEWT
F2 = 1.-Y(4)
TENCRM = Flaxe2 3 TEZ2&x%2
GO TO {105411C)y NURM
7105 GO0 10 (112,108, KNORM —~~ 7 — 7 a
112 NCORM = 2
T T ENORMS TETENURM _ B
GO TO 108
7110 60 TC {119,115), KNORM o cormr e mm e
119 IF(ENDRM.GE.ENCRMS) GO TO 115
T ENCRMS = ENORM R
108 DET = Y(7) % Y(1l4) - Y(9) % v¥(12)
T CORFOA T ETIF XY (T4 )=F2%Y{12Y) 7 DET
CORG = {Y(T)*F2-Y{9)%F1) / DET
GO TO (121,122), KIT 77— 77 T
121 CONTINUE
T IF(ENNG LGF LT 0L.0) GO TO 220




TTTTTCORG ETOLY TR CORE
7220 FNNC = FNNO '+ CORFOB

T 122 BETA = BETA + CORFOB
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222 IF(FNNO + CORFOB) 2204221,221

221 CORFCE = 0.5%CCRFOB

GO 102 222

GC 70 123

123 GNC = GNO + CORC

GO 1O (13G,132), KNORM
132 KNORM = 1

GO 10 140
115 CORFOR = .5 * CCRFOB
T TCORE = .5 % CORG o

GO 7O (116,117), KIT

TTI16 FNNO =TFNNO = CORFOB

GO 10 118

TT117 BETA = BETA - CCRFOB
118 GNO = GNO - CORG

"6 FORMAT (1X4F15.6)

o0 10 140 " e
130 IF(FNORM.LE.1.F~ ca) GO TO 150
140 WRITE(E, 61 Y2 s Y(a sV (3 Y8 s Y {71 Y (O Y (12 s Y (147
1 DET,CCRFOB,CORG,ETA B
KNORM = 1
T IF(KCONT.GT.5C) €O TO 142
KCCNT = KCGNT =+ 1

T T60 T 40
142 WRITE(648)

8 FORMAT{39H EXCEEDED 50 ITERATIONS FOR BFTA OR FNN )
149 1CON = 2
= RETURN e

150 IF((Y(3)%%24Y(5)%%2),LF.1.C~07) GO TO 160

T IF(KCON.GTI®)Y 60 YO 165

KCCN = KCON + 1 :
TOETANMAX = ETAMAX 4+ DETAM T
WRITE(64+7)

7 FCRMAT(41HOEQUATIONS CONVERGED BUT ETAMAX TOU SMALL)

NCRM = 1

TTTTTGOTTOT4G - -
165 WRITEL6,3)

3 FORMAT(37H CANNOT LOCATE EOGF DF BOUNDARY LAYER )
GO 10 149

160 NCwT = 2
WRITE(6,11)

1T FURVATTZ2THC FQUATICNS CONVERGED )

ICON = 1°
- S e
180 RETURN
RN e
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TABLE Al (CONT.)

FUNCTICN MRKSUB (NyY,F Q4 XsHoM)

C __RUNGE-KUTTA INTECGRATION ROUTINE
~ DIMENSION Y{20),F(20),Q(20)

M=M+1 ' i

GG TC (1+4+59257),M

T ITo0T 7 IELN
2 Q(i)=0.
A=, S
GO 10 §
3"A=1.7071068
4 X=X+.5%H

5 D0 € I=1,N h
Y{I)=Y(I)+A%(F(1)%H=-Q(]))

e QUI)=2.0%AXF(I)*F+{1.0-3.0%A)%Q( 1)
=.26289322
7760 1009 T

7 DO 8 I=1,N

T8 YU EY (T TE6EEEETH (T )*H=.33333333%Q (1)

M=0
T MRKSUB=2 T
GO 70 10
— G MRKSUB=1 N —
10 RETURN

END



-151-
TABLE Al (CONT.)

TTSUPRUUTINF INTGRLINYET9F9FLleF29G4GW)

€ TRAPEZQIDAL INTECRATION ROUTINE FOR CONVERGED SOLUTION

TTTTTTTTTDIVENSTONTEY(ATCY, FU200Yy FITZ200), F2U2000, GU200)
COMMON DELSTR, THETA, THESTR, Hy XJy Zy TSTAR, R, P,
71 Sw, A, USTAR, CELTA, SIGMA, E, SSTAR o T

SW = GW~1.0
11 = N A
.bo 1o 1 = 1, N .
IF(F1(IT)Y .LE. «.S%9) GO TO 15
11 = 11 -1
TT10 CONTINUE 0 7 T
15 CONTINUE
TTTTTTTLIF {11 LtQ.N) GO TO 50 7
DIF = (.99 - FI{II})} /7 (FL(II+1) F1(I1)
ETSS = 0IF * {FT(TI+1)Y = ET(IN Y + £1(1)
FQ9 = DIF % (F(II+1) - F{II)) + F(ID)
'F992 = LIF #* (F2(II1+41) - F2(11)) + F2(11)
G99 = DIF * (G(II+1) - G(II)) + GLILY)
DELTA = ET69 -~ \ .
IF(F2(1) .LT. C.) GO TO 60
ATETDELCTAREZTI)
USTAR = 0.0
SSTAR = 1.0
30 CONTINUE
TTTTUUDETA = ET(2) - ETH(L)
DELSTR = .5 * {1.00 - F1(1))
T THETA = LY R (FI(IY ST F1I(1) x%2)
THESTR = o5 % (F1{1) — Fl{1l)*%3)
TSIGMA = W5 % {(1.CC - G(L)Y)Y
2 = .5 % F1(1) &
TTUTSTAR = o5 % {F1{l) - F1l{1) ¥ G(1))
R = F2(1) *x%2
S O & SR & SR
DO 40 I = 2, II1 |
T T DELSTR = DELSTR + 1.00 - FI(I)
THETA = F1{I) = FL{I) *%2 4+ THETA
T THESTR = FLLI) = FL(I) *%3 & THESTR
SIGMA = SIGMA + 1.00 - G(1)
T ="7+vF1N N
TSTAR = F1(I) - FI1(1) % G{I) + TSTAR
TR = F2{1)%2%2.C 4 R R
40 CONTINUE
T DETAF = ETG9 - ET{(11)
DELSTR = (DFLSTR #+ .S%{1.0-F1{I1)) ) * DETA + .5 %
T T ORI R TICCEL 99 R DETAF
CTHETA = (THETA + 5% (FL{TI1)=-FL({I1)%%2) )*DETA + .Y %
T AFIID-FIILIIIR#2 ¢ .99-.9801) * DETAF

)
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THESTR = (THESTR + 5% (FL(II)=F1(I1T1)%%3) ) % DETA +

L 5 % (FICTI)=-FL(ID)**3 + ,99-,970299) * DETAF
TTSIGMA = (SIGMA + J5%(1.0~-GI(II)) ) * DETA + .5 %

1 c1 0 = G(T1) + 1.0 = G99) * DETAF
THEYA /7 DECSTR

XJ = THESTR / CELSTR
T TE = SIGMA / DELSTR .
Z (LZ+.5%F1(TT))I*DETA+.5%{F1{11)+.99)%DETAF)/DFLSIR
TSTAR = ((TSTAR+.5%{FI(TIV=FI(IIIXG(I1)))*DETA + .5%
L (FL(II)=FLUII)*G{I1)+.99-.99%G9I9)*DETAF) / (-DELSTR*SW)

R = DELSTR * ((R + F2(IN*%*2) * DETA + (F2U11)Y*%2
1 +FSS2#F992) * CETAF )

P = QELSTR % FZ(I)“‘~_"“"“""_W"M"'“m"w“

RETURN
T80 CONTINUE T
FNO = F1(1)
DO €5 1T = 2411
IF(F1{I).GE.O0.) GC TQ 70

TTTAS CONTINUE
70 CCNTINUE
T TIF{TLEQLIT) GO YO S0
ET0 = FI{I-1)/(FI{I-1)=FL{I))*R(ET{I)=ET(I-1))4ET{I~-1])
A = CTO/DFLTA
FC = F(1)
———mENE = ELOTY
DO 75 I = 2,11
CUIF{FUI).GELOL) GO TO BO T
7% CONTINUE
T80 CONTINUF
IF ( 1.EQ.II) GC 7O 50
USTAR = FUI-DY7(F{I-L)=-FUINY={FLID)-FILI-1)) + FI1{1-1)

SSTAR (FUI-1)/(FCI-1)-F{IN)={G(I)-G{TI-1}) + G(I-1) -
U L A A1 T
GC 10 30

T B0 WRITE (6,500 IT, ETUITT, FI{ITI}
500 FORMAT (/24H SOLUTION NOT FAR ENOUGH 15,2E20.8)
T RETURN T e i A
ENC
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_BETA = -0.00100 SW_= C.
E1a F EN FNN 6 6N
C. G Q. -0.00861 1.00000 0.

T 0. 60000 -0.00267  -0.006357 -0.00782 1. 00000 0.
1.¢€000  -0.,01034  -0.01251  -0.00705 1.00000 0.
2.40000 -0.02254 -0.01787 ~-0.00634 1.60000 0.

i 3.20000  -0.03879 -0.02267 ~-0.,00568  1,00000 0.
' 4.€C030 -0.05868 -0.02698 -0.00509 1.00000 0.

. __4.80000 ~0.C8183 -0.03084 -0.,00456 1.00000 0.
§.¢CL00 -g.1€791 -0.0342% -0,00406 1.00000 0.
6.,4C000  -0.13660  -0.03739 _ =0.00367  1.00000 0.
"7.20000 -0.16765 <0.04017 -0.00329 1.000060 0.

~ 8.00000  -0.20080 -0.04267 -0.00295 1.00000 0.
8.60000 -0.23585% ~0.04490 -0.00264 1.00000 0.
9.£C000 -0.27258 ~0.04689 -0.00235 1.00000 De
10.40600 -0.21081 ~0.04866 -0.00206 1.00000 0.

_11.20000  -0.35037 ~ -0.05019  -0,00177 _ 1.00000 0.
12.00600 -0.39105 -0.05148 ~0,00145 1.00000 0.
12.80000 ~0.42265 =0.05249  -0.00106  1.00000 0.
TTTT13.600600 0 -0.4T494 -0.0531% -0.00057 1.00000 0.
__14.4£000 ~0.51757 -0.05334 0.00014 1.00000 0.
15,20000 =€ .56009 -0.05283 0.00122 1.00000 0.

_ 16.00000  -0.60180  -0.05121 - 0.00296  1.,00000 0,
16 . EC000 ~0.€4155% -0.04779 0.00590 1.00000 0.

17.60000  -0.67741 -0.04119  0,01105 1.00000 0.
18.39995 -0.70%59¢ -0,02901 0 02031 1.06000 0.

. 19.1%999_ -0.72117 -0.00672  0.03706 1.00000 De
15.5¢99¢§ -0.71194 0.03377 0.06697 1.00000 0.

 20.79939  -0.65875 = 0.10592 = 0.11738 1.00000 0.
21.%565% ~0.52914 "0.2279¢ ' 0.1909% 1.00000 0.
22.3%999 ~0.27703 0.41261 0.26713 1.00000 0.

T23.1669987 T T@.14297 C. 64004 Tp.28588  1.70000 -0,
23.5$999 0.74015 0.84172 0.,20327 1.00000 -0,
2475999 1.46542 0.55541 0.08472 1.00000 ~0.
25.5%599 2.24810 0.99258 0.01924 1.00000 -0

) T26.35699 7 T 3,04572 €.99930  ~ 0,00232 " 1.00000 ~ -0.

27.19999 3.84553 0.99996 0.00015 1.00000 -0
T 27.55999 T 4,€4%83 T 1,00000 T 0.00001 1.000060  ~0. -

T INTEGRAL FURCTTONS
OELTA =  2%.46294 7 A a 0.785978 IR £ R « PO
DELTA® = 23.25087 H = 0.00048 R = 9,66991
THETA = G.01124 Ty o= 6.81748 P -0.20107

- THETA® = 0.4C817 7 = 0.09173 Us = 0.57144
CGTENR - T e R e =

TABLE A2-SIMILAR SOLUTIONS FOR S8

3—0.001, SW=O



ETA

0.

"~ 0.2C000
C.4C000
0.€CCU0
0.8C00¢C
1.0€000
1.27000
1.40000
1.€CC00
1.8€000
2.CC000

- 2.2€C00

2040090

24€0G600

2.8C000
3.€€C00
3,2€C00
3.4(C00
 3.€0000
3.80000
4.€C000
4.2(600
4,4€000

 4.60000°

4+8C00Q0

5.€0000

5.20020

S.4CCO0

5.€60000
5.80000
6,000
6426000
6.40000
6.5€030

DELTA
DELYA%
THETA
THETA*
Sicra

TABLE
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A3 - SIMILAR SOLUTIONS FOR f"(0)20, Sy=0

P
|
i

BETA = -0.,19886 . SW = Q. _ e
F FN ~ FNN 6 6N
Q. 0. . 0. 1.0000G Q.

T0.00027 0 T 0.00398 T T0L.03977 1.00000 0.
0.00212 0.01591 . 0.07952  1.,00000 0.
0.00716 0.03578 0.11918 “1.00000 0.
0.01696 0.06356 0.15852 1.00000 0.
0.(3310 0.068914 0.19715 1.00000 0.
0.C5712 0.14233 0423441 1.00000 0.
T0.09052 77T 0419275 0.26937 1.00660 0.
0.12467 C.24584 0.30079 1.00000 0.
0.19084 0.21274 0.32722 1.00000 0.
0.26008 €.3802¢ 0.34703  1.00000  O.
€.34317 0.45100 0.35866 1.00000 0.

_€e.44057  0.52312 0.36080 1.00000 0.
0.55237 0.59464 0.35272 1.00000 0.
0.67825 = 0.66352 0433445  1.00000 0.
C.E1748 0.72781 0.30699 1.00000 0.

056896  0.78583  0.27225  1.00000 0.
1.13137 0.83640 0.23286 " 1.00000 0.

. 1.3c297 .87886 0.19178 1. 00000 0.
1.48231 C.S131¢ 0.15191 1.00000 O
1466774 0.53987 0011560  1.00000 0.
1.£5781 0.55578 0.08446 1.00000 0.
. 2.05127 =~ 0.97404 = 0.05921 .1.00000 0.,
Z.241713 €.98385 " 0.03982 1.00000 0.
2.44455  0.99032  0.02569 1.00000 0,
Z.€64310 0.99442 0.01590 1.00000 0.
2.84225 = (.99691 0.00944 ~ 1.00000 0.
1,0417S 0.99835 0.00537 1.00000 D.
3.24155  0.99%16 0.00293 '1.00000 0O,
3.44143 0.99960 0.00154 1.00000 0.
. 3.€4137 €.99982  0.00077 1.00000 0.
3.84135% $.99993 0.00037 1.00000 O.
404134  (.99998 0.00017  1.00000 0.
4,14134 0.99999 0.00011 1.00000 0.
TINTEGRAL FUNCTIGNS 777 B
=4, TeE 11 AT = 0. T* = -0
= 2.3552¢% H = £e24709 R = 1.25776
‘= 0.53198 " J = 0.37367 P = . T
= c.g8011 =t = 1.03282 o Ux = 0.
= Ca E = 0. S%* = 1000000.—




ETA

0.
C.1€000
0.2C000
0.3CCH0
0.4CC 10
<5020
0.€C0720
0.7€Q00
0.8C010
0.5C000
1.CCC00
1.10000
1.2C000
l.2C000Q
1.4CC00
l1.5C00¢C
1.€C020
1.7C000
1.8C000
1.SC0n0
2.CC000
2.1¢cc00
2.20000
2.3€000
2.4C000
2.500)0
2.¢C000
2.7003¢C
2.80000
2.6(000
3.CCQ00
3.1C000
3.200Nn0
3.3C000
3.4C000
3.5¢010
3.€CCH0
"3.70020
3.80000
3.6CC00
4.,0C000
4.10000
4.2¢010
4.2CCN0
4.4C0)0
4,8C00C
4.6C000
4.7C000
4,.80000
4.500)C
5.0CC00

CELTA
DELIA®
THETA
THETA*
SICHA

BETA =

c.

0.0023¢
C.CCS35
0.C2113
Q.C2755
0.05865
0.08439
0.11475
C.149¢S
€.18912
0.22301
G.2€8123
0.22368
Ce39024
€.45076
€C.21507
0.58200
Ce€S4306
0.72893

€.80651

0.£8686
C.S6678
1.05503
1.14238

1.22162

1.32253
1.41493
1.5C861
1.6C340
1.65614
1.79565
1.89292
1.99072
2.C889¢
Ze1E17061
Z2.2€65¢
428575

T Z.4851377

258467
2.€8432
2418407
2.8838¢
2.58374
2.0836%
3.18358
2.28354
3.38351
2.4834¢
2,58347
2,6834T
3.78346

2.47046€
1.21325
C.4€59¢
0.73135
a.
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0. Sh hd
EN FNN
C. 0.46%64
C.C4696 0.46960
€.C$351 0.4€534
0.14082 0. 46865
0.18762 0.46725
0.23425 0.46507
C.28060 0.46177
C.32656 0.45721"
C.37199 0.45123
C.41675 0.44366
C.46C67 0.43441
€.50357 0.42340
£.54529 0441056
Cs58%563 039601
Ce62443 0.37972
0.€6152 0.36183
C.65675 0.34251
072998 0.32197
0.76111 0.30046
€.75C05 0.27826
0.81675 0.25568
0.8411¢ 0.23302
0.86336 c.21058
€.88332 0.18868
0.90112 6.16756
£.51687 0.14747
€.93066 0.12861
£.54263 €.11112
€i$5263 0.09511
€.96171 0.08063
0.96611 0.06771
€.5753C 3.0563n
€.58042 0.06637
0.58462 0.03781
L.SBBO3 0.03053
€.99076 0.02441
0.59294 0.01533
T C.96466 0.01515
C 99600 0.0117¢6
€.99703 0.00903
€.99782 0.00687
$.59842 0.00518
C.¢9987_ 0.00386
" 0.59620 0.00285
0.99945 £.00208
0.99963 0.00151
C.99576 0.,00108
€.99585 6.00077
€.99691 0.00054
"0.995%6 T 0.0003Y
€.99999 0.00026
INTEGRAL FUNCTIONS
A = 1.62686
H o= 0.38406
J = 0.60280
7 = 1.86C47
E = O,

G GN
1.00000 0. _
T1l.0C0n3 T TTTETTTT
1.170009 Ne
1.00000 Ne
1.000M0 0.
1.30009 O.
1.00000 0.
1.01’000 0.
1.00090 (1%
1.00000 0.
1.0706G0 Oa
1.00009 0.
Jlef0O0Q. 06
1.3C0GD Oe
1.00000 0.
1.00000 0.
1.000C0 0.
1.00000 Ne
_1.00000_ 0,
1.60909 a.
1.70009 0.
1.00000 Q.
1.170000 Do
1.000(0 0.
1.00000_ O,
1.00000 O.
1.0nM000 Nae
1.C0000 0.
1.00000 0.
1.00000 O
11.00000__ o0,
1.00000 0.
1.09000 0.
1.06000 0.
1.00300 O.
1.00000 O
1.00000 0.
10006607 0.
1.00000 O
1.00000 0.
1.00000 0.
1.00000 O.
1.00000 0.
1.00000 T8, -
1.00000 O.
1.00000 0.
1.00000 0.
1.00000 0.
1.00000 Q.
T 1,0000007 T 0. T
1.00000 0,
T* = -0
R = 0,895715
P = 0.56979
Us = O
S* = 1.00000

TABLE A4-SIMILAR SOLUTIONS FOR B=0, Sy=0
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ETa ¥ F&A - FNN 6 6N
C. C. 0. 0.76276 1.00000 0.
T T TTT0LW000T T T 0 00T T e 0T48S 0. 73415 1.6¢000 G.
0.2€C000 0.C1487 0.14682 0.70532 1.00000 0.
0.3C000 €.03303 0.215%0 0.67€0S 1.00000 0.
G.4C000 0.05795 0.28202 0.64634 1. 00000 O«
0.5002¢C C.C8934 0.34514 0.61598 l1.00C00 O.
o __0.6C000  0.12688 _ C.40520 _ 0.58499 1.00000 0.
010070 C.17C27T T T0.46212 0.55339 1.00600 O.
0.8C000 0.2152¢C C.51586 0.52124 1.00000 n.
C.SCC00 C.27334 0.56635 0.48865 1.00000 0.
10000 0.22236  0.61358 0.45577 1.0000c  oO.
1l.1€00¢ 0.29594 0.65750 0.4227¢ l.0600¢C 0.
oo.1eZ6000___ 0.4€375  G.eS8l4. _ 0.38992  1.00000 0.
1.3C00¢C «£3546 0.73550 0.35741 1.00000 C.
1.4C000  G.€1074  0.76564  0.32550 1.00000 0.
1.£0000 0.68628 C.80063 0.29444 1.00000 0.

 1.60€00  €.77077  0.82856 0.264417 1.00000 0.

1.7C000 Ce85490 0.85357 0e23583 l. 00000 (2%
180000 C.<A13S _ 0.87578_ _ 0.20870  1.00000 0.
1.9C000 1.02997 0.89536 0.18327 1.00009 0.

2.£€000 1.12038 0.51250 0.15966 1.00000 0.
2.16000 1.2123¢ . 0.6273¢ 0.1379¢6 1.00000 Oe

2.20000  1.20578  0.94015  0.11821 1.00000 0.
2430000 1.4C03¢ 0.95107 0.10044 1.000C0 0.
240070 _ _ 1.49594 _ €.S6031 ___ 0.08481 1.00000 0.
2.%2C000 1.56237 C.56805 0.07046 1.00000 0.
2.6C000  1.68951  0.57450 0.05848 1.00000 0.
2.7C000 1.78723 0.97981 0.04798 1.00000 Oe
2.8C000  1.88543  0.98414 0.03900 1.00000 0.
2.90000 1.58403 €.98765 0.03142 1.0€000 O.
L 3.00000____ 2.08294 €.99047 __ 0.02508 1.00000 0.
3.1C000 <.1821¢C €.59270 0.01584 1.00000 0.
3.2€000 2.28147  0.95447 0.01555 1,00000 0.
3.30000 2.38098" 0.99584 0.01207 1.00000 0.
3.40000 2048062  0.99690 0.CC928 1.00000 Os
3.f000¢ Z.5803¢ 0.96772 0.00708 1.0c€000 O.
3.€CC0a0 2.£€801¢ 0.99833 0.00534 1.00000 0.
3.76C00 2.78002 0.59880 0.00399 1.00000 Oe

3.80€10 2.67992  0.99514  0.00296  1,00000 0.

3.5CCuU0 2.57984 0.99940 " 0.00217 1.00000° 0.
4.CC00C  3,C797S _ 0.99958  0.00158 1.00000 0.
4010000 3.1767¢ 0.99972 0.00114 1,00000 0.
426000 2,27974 0.99582 0.00081 1.00000 0.
Y P o o] : 1] 2.27872 0.695489 0.0c058 1.00000 0.
4.4C000 3.47971  0.99%93 0.00040 1.00000 [ 8
4.2CCOC 3.57971 0.99997 0.00028 1.00000 D.
4.€0000 3.67570 0.59999 0.00020 1.00n00 (¢ ]

. INTEGRAL FUNCTIONS

DELTA

= 2«GB824] A = 2.27406 T* = -0
DELYA® = 0.51704 H = 0.419S0 R = 0.89661
THEYA = €C.28507 o= 0.67076 P = 069948
THETA® = C.&1511 1 = 2.25222 Us = 0.
SIeMa = g, _E = Oe $* = 1.00000
Yl
TABLE A5- SIMILAR SOLUTIONS FOR B=-1——, S,=0

4



ETA

Qe

0.10000

0.20000
'043C03C
C€.40000
0.50000
€.60000

0.700u0

0.£0000
0.5C020
1.00600
1.1C000
1.20000

1.3C00¢

| 1.40000
1.50000
1.60000

1.7C000

1.80000

T 1.800007

2.00000
2.10000
220000

1 2.30000

2.400)0
2.5¢000
280000
2.70000

DELTA
DELTA®
THETA
THET AN
sIcKa

TABLE A€ - SIMILAR

BETA =

F

C.
0.0122%
0.04578
CeCS615
C.15952
0.2327¢
0.21339

0.29949 7

0.48957
€.58255
067162

0.77417

0.87177
0.S7011
leCo89E
1.1£820
le26768

l.36732

1.46709

1.56693

1.66683
1.7667¢
1.8€671
1.56669

 2.06667

¢016é66
2e2€665
2+3€665

1.2€20€
€.23098

‘O0.15551

0.25540
Q.
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5.00000 . SW = 0, -
FN FNN ' GN
2.61578 1,00000 0.
6‘53651" — 2.124€9  1.006000 0.
0.42642 14871734 1,00000 0.
0+57446 1.29491 1.00000 0.
0.68773  0.98202 1.00000 0, -
C.77303 0.73405 1.00000 0.
0.83641 0.54214 1.00000 0.
0.88299 0.39634 1.00000 C.
0.51650  0.28718 1.00000 0,
€.54137 0.20642 1.00000 0.

 €eS$5890 Uels729 1.00000 O, e
C.57137 0.10437 1.00000 0.

_ 0.98018  0,07348 1.00000 a.
0.58636 0.05139 1.00000 0.
0.95067 0.035%72 ~ 1.00000 Q0.
0.9936¢6 - 0.0246€8 1.00000 0.
0.99572 0. »01€694 ~~ 1.00000 0, o
0.96712 0.01156 1.00000 0.

. 0.99808 0.00784 1.00000 0.

0.99873 0.0052¢ 1.00000 0.
0.99517 0.00355  1,00000 0.
099946 0.00237 1.00000 0.

- 0+99965 - 0.00158 1l.00000 0,
0.99578 0.00105 1.00000 O
0.99987  0.00071 1.00000 0.
€.99%992 0.00048 1.00000 0.

De99997 Q0.00034 1.00000 Oa
1.00000 0.00026 1.00000 0.
INTEGRAL FUNCTIONS
A = 2,61%523 Te = -0.
J = 0.77163 P = 0.86578
z = 3.17569 us = Q.
E = (¢J8 S* = 1.00000

SOLUTIONS FOR B8 = 5.0, 8w=0
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BETA = -0,00400  SW = -(,B0GO
ETA F FN : FAN G GN .
0- 00 O. "0000130 C.20000 0.0000‘0
T 1.68090 T -0, 06352 T<¢.0069C T ~0.00&51 0.20004 0.00004
2.C6000 ~0.01354 -0.01302 -0.00575 0.2000%8 0.00004
3.C01C -0.£2%32 -0.01843 -0.00507 0.20013 0.00004
4.0C000 -0.C5018 ~-0.02218 ~0.00445 §.20018 0.000n5
5.£€020 -0.€7550 ~-0.02736 -0.00392 G.20022 0.00005
... 6CC000  -C.10474  ~0.03104  -0.00345 €.20027 0.00005
- 7.60000° “CL.1374F T L0.03428 0 <p.C030% 0.20033 0.00006
8.CC000 -0.17317 ~C.013714 -0.00269 £.20040 0.00007
9.5C020 -0,21159 -0.C3567 -0.00238 0.20047 0.00009
10.00C00  -0.25240  -0.(4190 -0.00210  0.20057  0,00011
11.L0000 -0.29530 ~0.04387 -0.00184 0.20070 0.00014
e 12e0GC000 ~0.24003  ~-0.C4558 = -0.00159 0.2€086 0.00020
13.06G600 ~0.38638 -0.04704 -0.00132 0.20110 0.00028
14.00000 ~£.43403  -0.04820  ~0.00100  0.20144 0.00042
15.CCC20 -0.48267 -0.C4900 -0.00057 0.20198 0.00067
. 1le.cL000 -0.53185  -0.04526 0.00010  0.20285 0.00111
17.0¢€000 -C.58090 ~0,04864 0.00126 0.20433 0.00194
___18.c0€00 ~C.€2861 -0.04642  0.00342 _ 0.20696 0.00356
15.C1 000 ~C.67273 <C.041T10 0.00773 0.21199 0.00682
20.€0000 -~0e7C873 -0.0294% 0.01668 0422179  0.01363
21.€CCJ0 -0.72724 -C.00446 0.03562 0.24172 0.02799
22.€C000 -0.70847  0.04851 0.07485 0.28283  0.05764
‘23.6000¢C -0.61196 0.15668 0.1478% 0.36554 0.11255
_____ 24.0C05C ~ -0.36503 0.35392 = 0.24690 __ 0.51499 0.18647
25.CCCO0 €.12410 0.63134 0.28661 0.72391 0.21531
_ 26.€€000 C.E8606 0.87386 0.17720 0.90575% 0.13261
" 27.CCCO0 1.823¢3 C.57910 0.0462% 0.98441 0.03452
28.€CC00Q 2.815891 0.59853 0.0045¢ 0.99890 0.0034)
29.€0000 3.81538 0.99996 0.00017 0.99996 0.00013
... 29.7%000 4.5€537_ 1.00000 = 0.0C001  0.9999S __ _0.000n1
INTFGRAL FUNCTIONS
DELTA = 271.2274C A = C.77262 T* = -0.00013
DELTA*® = 2%5.18101 H = 0.00050 R = 10.36634
THETA = C.C1268 o d = 0.01621 P = -0.1837%
TTTUUTYHETAR = UUUTOLECE2TT T e T T 0L 08824 T TR T T o 616 T
SIGFA = 16.2225¢ £ = 0.76735 S* = 0.40174

TABLE A7 — SIMILAR SOLUTIONS FOR B = -0.004, Sy=-0.8
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_BETA = -0.30867 . SW = -(,8000 o -
ETA F FN FNN G 6N -
D. 0.20000 0,22602
""“'o 2(000‘“’“‘t.obﬁo§*‘““0“00133 b.01374 0.24520 0.22602
0.40000 .. 6.8C073 0.00568 0.03027 = 0.29041 0.22600
0.£6030 0.00260 0.01362 0.04958 0.33560 0.22593
0.80000 0.00646  (.02570 0.07161 0.38077_  0.22574
1.00020 0.01319 0.04244 0.09628 0.42588 0.22531
_1.20000 0.02378 0.06437 0.12339¢ 0.47087 Q.22449
"T1.40006 0.03%31 0.09193 6.15259 0.51564 0,22310
1.£0000 . .0eL6095 0.12551 0.18339  €.56005 . 0.22090
1.8000¢C 0.08993 T 0.16535 0.21502 0.60393 0,21762
. 2.00000  0.12751  ©€.21151  0.24645 0, 64701 0,21297
2.:00n0 T 0.1749% 0.26382 0.27632 "0.68900 0.20666
2.40000 €.23342 0.32182  0.30300 072955 0,19843
2. €5000 0.30400 0.38469  0.32468 0.76823 0.18809
2.80€00 =~ 0.38758 ~~ 0.45124 _  0.33945 0.80464 0417556
"3.C0600 0,.48464 0.51592 0.34577 0.83832 S 0.16093
03.20000 ~ 0.59553 0.58889  0.34231 ... 0.86889 = 0,14449
T3, 40000 0.72008 T0.€5616 7 T 0,32669 0.88602 0.12671
we. 3260000 0.£577% 0.71673 0.30548 0.919%2 0.10823
3,806000 1.00761 0.77780 “Q.27414 0.93932 0.08983
_ . 4.0C0N0 1.16841 _ 0.82900 0.23716 0.95551  0.07228
4.2C000 1.73869 0.87248 0.19744 0.56834 0.05626
4040000 1.51687  0,50800 _ 0.15797 _ 0.97815 . 004229
4,¢0000 "1.7C134 0.93586 0.12133 0.98541 0.03065
4280000 1.89076 . 0455685 0.08940 0,99057 0,02141
5.00600 2.68373 0.97200 0.06316& 0.99412 0.01439
5.2C000 . 2427925 ~  0.682%0 ..0.04278 = 0.99646 = 0,00930
5.40000 2.47650 0.98947 0.02777 0.99794 Q.00578
5.60000  2.€7487  0.99391 0.01728 0.99885 0.00345
5.8C000 2.871394 0.9%5662 0.01030 0.99938 0.00198
6. CCOOO_”.V _.C134{L _.._b.qg9820 ...0.00889 ___0.999%8 0.00109
6420000 2,77318 T £.99909 0.00323 0.95984 0.00058
6.4€000 3.47305  €.99957 0.00169 0.99993 0.00030
6.6C000 T 3,6729¢7 T 0.99581 " §.40085% 0.99997 0.00014
6. 80000 3.87297 0.99993 0.00041 0.99999 0.00007
7.€CC30 4.0725& 7 D.59999 "0.00019 7 1.00000 0.000013
e e FERAT EUNC TGN T
DELTA = $.42C09 A = 0. 72 = 0.09636
DELTA* = .62370 H = 0.213%56 R = 145993
THEYA = C.£2438 J = 0.31934 P = 0,
THETAA A ____0.933619 . 2 = ) 0.85385. _u=* - _'03”
" SIGEA = 1.%2008 £ = G.51961 $% = 1.00050 -

TABLE A8 - SlMILAR SOLUTIONS FOR f"(O) =0, Sw=-08
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BETA = 0. SW = ~=C.8000
ETA F FN FNN G BN ~
0. C. O. 0046964 0,20000 0.37571
0.10000 T0.00238 T €.04696 046860 0.237157 0.37568
0.20000 £.CC93% 0.09391 0.46934 0.27513 0.37548
0.3C020 €e02113 0.14082 0.46865 0,3126% 0.37492
C.4CG00 0.03755 0.181762 0.46729 0.35010 0.37383
0.%0C00 C.C5865 0.2242% 046507 0.38740 0.37205
0.€C000  0.C8439 0.28060  0.46177 0.42448 0.36942
0.7C000 " 0.11475 7 '0.32656 = 0.45721 0.4612% 0,36577
_0.8(030 C. 14969 0.37199 0.45123 0.49759 0.36098 -
0.50000 C.18912 C.41675 0.44366 0.53340 0.35493
1.€CC00 €.23301 G.46C67 0.,43441  0.56854 0.,34753
1.1€000 0.28123 €.50257 0.42340 C.60286 0.33872
1.2(000 0032368 0.54529  0,41059 0.63623 0,32848
T 1.3C000 €.29024 C.58563 0.39601 0.66851 0.31681
1.4C¢00 C.45076 0.62443 037572 0.69955  0.30377
1.5¢000 Ce515%07 0.66152 0.36183 0.72922 0.28946
1.€0000 = C€.58300  0.69675 0.34251 0475740  0.27401
1.700)0 C.6543¢ 0.72%98 0.32197 0.,78399 0.25757
1.80000  0.72893  0.76111  0,30046 0.80889 0.24037
1.5C000 0.£80651 €.79C05 0.27826 0.83204 0.22261
2.€C000 C.8€686 0.81675 0.25568 0.8534Q 0.20454
2.1€000 £.56978 C.84119 0.23302 0.87295 0.18641
2.2€000  1.05503 0.86336  0.21058 - 0.89069  0.16847
2.2€000 1.14238 €.88332 0.198868 0.90666 0.15064
_2.40000  1.23162 . 0.50112  0.1615¢ 0.92090 0.13405
2.5€0)0 1.32253 G.91¢87 0.14747 0.93349 0.11798
2.€0000 1.414%93 €.93066 0.12861 0.94453 0.10289
2.70000 1.50861 0.94263 0.11112 0.95411 0.08890
2.80010 1.4C340 0.95293 0.09511 0.96235 0.07609
2.5C000 1.69514 0.96171 0.08063 0.96937 0.06451
3.€0000 1,79569  0.96911  0,06771 0.57529 0.,05416
3.100)0 1.89292" 0.97530 0.05630 0.98024 0.04%04
3.2€000 1.99072 0.98042 0.,04637 0.98434 0.03709
3.30000 2.08698 0.98462 0.03781 0.98770 0.03025
3.4C000 Z.181761 €.58803 0.03053 0.99042 0.02443
3.50000 T 2.28656 C€.99076 0.02441 0.99261 0.01953
© 3,40000 2.38575% 0.99294 0,01933 0.99435 0.015¥e
TT3L.10600 2. 465713 0.9%466 0,01%15 0.9%573 0,0121
. 3,80000 2.58467 0.59600 0.01176  0.99680 0.00941
3,5€000 é.€8432 C.99703 0.00903 0.,99763 0.00723
4.00000 2.78407  0.991782 0.00687 0.99826 0.00550
4.1C000 2.88388 0.9%842 ‘0.00518 0.99874 0.00414
4.26000 .€8374 £.994887 0.003R% 0.969610 0.003006
TT4,30000 T 7T 3,686365 © T T0.99920 T T d.00285 B.999%6 0.00228
© 4440020 2.,18358 0.99945 0.00208 0.99956 0.00167
4.50000C 21,28354 0.99563 ‘0.00151 0.99970 0.00121
4.60070 3.38351 0.99576 0.00108 0.95980 0.00086
~ 4.7C000 1.,4034% 0.9968% 0.00077 0.99988 0.00061
_ 4.BCCO0_ 3.58341 0.99591 0.,00054 0,99993 0.00043
T 4,90000 ENE KT Y 0.49994 T 0.00037 0.99497 0. 00030
5.CCCO0 3,78346 0.9999¢ 0.00026 0.9999% 0.00021
~ INTEGRAL FUNCTIONS
_OELTA = 3.4704¢ A = 1.62986 T3 = 0.238406
DELTA+ = T L2138 T T T TTH T T T 0.38406 R 0.888%7 4
THETA = C.4¢568 Jd = C.40280 P = 0.56979
THETA® a 0.72135 7 = 1.86C47 u*r = O.
SICNA = €.57060 E = 0.8000C §% = 1.00000

TABLE A9~ SIMILAR SOLUTIONS FOR 8=0, S,=-08
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BETA =  y.28571 Sw = ~C.8000 B
E1A F FN FAN 6 GN
0. c. C. 0.58830  0.2000C 0.39460
T 0100007 T TT0LCC283 T T T0.05852 T 0.58199 T T 0.23946 T T 0. Y9656
0.20000 C.01168 C.1163¢ 0.57442 0.27890 0.39429
0.3CCOC 0.C2618 0.1723¢ 0.56545 0.31830 0.39357
0.4C000 0.04632 0.22940 0.55456 0.35760 0.39216
0.5CC0C €.€7202 €.28430 0.54285 0.39671 0.38987
0. €00V 0.1€314 €.33791 0.52907 0.43553 0.38648
TC.7003077 T C.12955T77€,29006 0 04513577 T0L4739¢6 0.38184
0.8CCNQ 0.18110 0.44C57 0.49635 0.51185% 0.37578
0.5C000 0.22760 0.48527 0.47745 0.54907 0.36820
1.£0000 C.27888 0.53600 0.45695 0.58544  0.35900
1.10020 0.33473 ~ (.58061 0.43498 0.62081 0.34817
L.1.200006 0.3%493_ 0.62295  0.41168_ _ 0,65502 0433571
1.3¢00¢C 0.45924 0.66291 0.28728 0.68790 0.32168
1.4€000 0452743 €.70038 0.36200  0.71931  0.30621
1.5C0)¢ 0.56523 0.73529 0.32611 0.74910 0.28944
1.£60)0 C.£744C  0.76759 0.3€991 C0.77716 n.27159
1.76030 0.15267 7 €.79727 0.28367 0.80339 0.25289
_1.8€000  0.83377 _ 0.82434  0.25772 0.82772 0.233¢1
1.5€090 0.91745 0.84883 0,23232 6.85010 0.21403
2.CC€000 1.00345 C.87082 0.20777 0.87052 019444
2.1€010 1.05153 €. 89042 018426 0.88500 0.17510
2.2000 1.1814¢  0.90773 0.1€211 0.90556 0.15629
2.3€000 1427301 €.52289 0414138 0.92028 0.13824
2.4CC00 1.36597 ©,93606 0412223 0.93324 0.12116
2.5C000 1.4¢01¢€ 0.54739 0.10474 0.944%5 0.10519
2.€0010 1.55539 0.95706 0.08856 0.95432 0.09047
2.760)0 1.€65152 C.56524 0.07487 0.96269 0.07707
2.86C70 1.7464C 0.57209 0.06244 0.96978 0.06502
2.5€000 1.84590 0.97778 0.05158  0.97574 0.05432
3400000 = 1.54392  0.58246 _ 0.04223 _ C,98069 0.04495
3.1€000 2.04237 €.98628 770403425 0.58477 0.03683
3.20000 2.14115  0,98935 0.02751 0.58809 0.02987
3.26000 2.24021 0.95181 0.02189 0.99078 0.02400
3,4€000 2433550 0.99376 0.01725 0.99292 0.01909
3.%€000 2.43885 0495529 0.01347 0.95462 0.01503
3.,€CC00 253654 0.99648 0.01042 0.99596 0.01172
3,000 T LE€3E24T O CU9%1407 0, 00798 C.9969% 0,090905
3.EL000 2.73802 0.99810 0.00605 0.99778 0.00651
3.5C000 2.82785 0.99€62°  ~ 0.00456  0.99839 0.00523
4.CC000 2.537174 €.99502 0.00338 0.99884 0.00392
4.16000 2,037657  0.99631 0.00245 ~ 0.99918 0.00291
4ec0000 3.13758 0.99952 0.00182 Cea§9943 0.00213
4.30€00 77 2.2375% 77 770.99668 0 T0.0013177 0799961 TTTT0.001ISE T
4.4C000 2,22753 0.6357¢ 0.00C9% 0.99975 C.00112
4.5CC00 3.42751 0.99587 0.00067 0.99984 0.00080
4.€CC00 3,£3750 0.99652 0.00047 0.99991 0.00056
4.70000 3.63745 . 0.99596 0.00033  0.95995 0.00039
4.860)0 2.73745 €.95%95  0.00023 0.99999 0.00027
INTEGRAL FUNCTIONS
DELTA = 2,2248% A e 1.89717 T = 0.46072
DELYAS = 1.0%922 H = C.40107 R 0.89250
THEYA = 0.42482 J = 0.63504 P = 0,62314
THETA® = 0.67265 I = 2.04455 Coouwa o9, T
SICHA = 0.52781 E = 0.87594 $* = 1.00000

TABLE A0 - SIMILAR SOLUTIONS FOR 8= 7;‘ . Sw =-0.8
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BETA = 500000 © SW = -C.8000
£14 F N FNN G GN 3
Q. Q8. O . 1.28167 0.20000 0.45462
0.10000 "7 0.00623 0.1228% 1L 172¢&7 0.24546 0.45452
0420000 0.02418 0.23420 1.05359 0.25089 0.45388
0.3C000 0.05267 C.33355 0.53409 0,33620 0.45217
0.4C000 0.05050 C.42121 0.82042 0,38127 0,44898
0.%C000 C.13655 Ca49795 0.71623 0.42593 0.44394
0s€CC00  0a18977 = C.564R3 0462317 046998 = 0,43678
.0e71€020 0a24922 0.62297 0.54154 0.51321 0.427
0.800)0 0.31411 0.67350 0.47077  0.55537  0.41547
d.5C000 C.28371 0.71745 0.40980 0.59623 0.40124
1.CC000 0.45741 0.7557% 0.35740 0.63554 0.38472
110000 Ce 234069 0.78918 "0.31230 T0.67310 T 0.36612
1.2C000_  0.€1510_  0.81841 1 0.27333 £.1087¢C 034567
1.3¢03¢0 0.£65825% 0.84401 0.23945 0.74218 0.32371
1.406000 0.78380 C.B6644 1 0.20880  0,7734l 0.30059
1.56000 0.87148 €.886060 0.18367 0.80228 0.27672
1.€0000  0.56094 €.90227 0.16050 0.82874  0.25250 _
1.7C000 1.08203 0.91827 0.13986 0.85278 0.22832
_ 1.8@00me“__1:lﬁi§§____hQ:Q§132WM_M“O.1§}52 0.8!ﬁ42 0.2045%8
1.9C000 1.23824 0.94262 0.,1C493 0.89372 0.18160
2.00000  1.23300 C.95236 0.09019  0.91¢78 0.15670 i
2.10000 l.4286¢ €.56C71 0.071706 0.92570 0.13910
2420000 1.%251C0 - 0.96782 0.C6540  0.93864  0,12000
226000 1.42216 0.57384 0.05511 0.94976 0.,10253
2.40000 1.71983  C.97889  0.04609 095921 Ge0B6T5
2.%0000 1.61794 €.98309 0.03823 0.96716 0.07269
2.¢0000 1.51643  0.98657 0403146 0.97380 0.06031
2.70000 2.01%23 0.98942 0.,02566 0.97928 0.04954
2.80000 2.11429 0.99172 0.0207% 0.98376 ~ 0.04030
2.50000 2421356 0.99359 0.,01662 0.58739 0.03246
3.00000  2.21300 0.99508 0.01320 0.99029 0.02%589
3.10000 2.41257 Ce99625 0.01037 0.99260 0.02044
3.20000 2.%1224  0.99717 0.00808 Ce99441 0.01598
3.2¢000 2.¢1196 7  0.9978e 0.00622 0.96%83 0.01237
3.4€000 2.71181 0.99843 0.00475 0.95651 0.00948
3.%C000 2.£1167T = (.95884 0.00358 0.56774 0.00719
3.£C000 2.91157 €.99615 0.0026¢ 0.,99837 0.00%40
T3.,77C000 T FLO0IYISUTTT T U.95%3E 0.007195 0. 99853 000402
3.€000¢ 3.11145  0.99955 0.00140 0.99918 0.00296
3,S€000 3,2114177 0499966 "0.00098 T 0.,96943° 0.00216
4.00000  3.21138 0.99574 0.00065 0.99962 0.0015%6
4.1C0N0 2.4113¢ €.55580 0.00041 0.96975 0.00111
4.2C000 3.%1134 €.99583 0.00021 0.95984 0.00079
4.30600 7 3,¢1132 T0.99%84 T 0.00006 0295591 “0.060%%
4.40000 3.71130 0.99%584 -0.00006 0.99596 0.00038
4.5%0000 I.8112¢6 0.99683 -0.00017 0.96399¢ 0.00026
INTEGRAL FUNCTIONS
DELTA "= T IVIEE T TN T T TG T = 0.818%57
DELTA%® = C.68528 H = 0.47294 R = 0.95290
THETA = 0.22410 N 077629 P = 0.87830
THETA® = C.53197 1 = 2.97458 Us = C.
SICMA 2 0.81882 E = 1.19487 S* = 1,00000

TABLE All-SIMILAR SOLUTIONS FOR B = 5.0,84=-0.8
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FIG.A3 REVERSED-FLOW VELOCITY PROFILES FOR Sy =0
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FIG. A4 REVERSED-FLOW VELOCITY PROFILES FOR Sy=-0.8
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APPENDIX B
APPLICATION OF THE MOMENT METHOD

TO ADIABATIC FLOW OVER A CIRCULAR CYLINDER*

B.1l. Introduction

An understanding of the flow structure in the near-wake region
behind smooth, blunt bodies at supersonic and hypersonic speeds has
been possible as a resuit of the experimental studies of De:wey(35)
and McCarthy and Kubota(36), and the theoretical analysis of Reeves

and Lees(lo).

The key to the solution of this problem is the strong
interaction between the viscous flow originating in the boundary layer
and free shear layer, and the external inviscid flow (Fig. Bla). Un-
like the situation in ordinary boundarvy-layer theory the pressure dis-
tribution along the wake axis is not known a priori, but must be
obtained as part of the solution. Viscous-inviscid interaction occurs
through the pressure field generated by the induced streamline deflec~
tion at the outer edge of the viscous layer. According to this model
the compression along the wake axis is a smooth process rather than
the sudden compression assumed by Chapman(37) and others.
Because of the complexity of this problem, the integral or
moment method discussed in Section III must be used to describe the
viscous flow. As originally shown by Crocco and Lees(é), this type
of formulation leads to the coﬁclusion that the near-wake flow is sub-

critical at the rear stagnation point, but passes through a throat into

¥
Published as '""Laminar Boundary-Layer Separation and Near-

Wake Flow for a Smooth Blunt Body at Supersonic and Hypersonic
Speeds, " Jean-Marie Grange, John M. Klineberg and Lester Lees,
AJIAA Journal, Vol. 5, No. 6, June 1967.
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the supercritical region somewhere downstream of this location. At
.a given Mach nurn‘ber and Reynolds number, thc base pressure or
flow angle is uniquely determined by the requirement for the correct
trajectory to pass smoothly through the throat. In this sense the
situation is entirely analogous to the interaction caused by a com-
pressive disturbance in highly~cooled flat-plate flow (Fig. Blb).

In order to obtain a complete solution to the base-flow problem
for a blunt body, the near-wake interaction region must be joined to
the boundary-layer separation-interaction region on the body. Since

(10)

Reeves and Lees were primarily concerned with the near-wake

interaction zone behind a circular cylinder, they assumed that the
separation point was held fixed at a location 125° around the body

from the forward stagnation point. By using standard methods. the
boundary layer growth up to this fixed point was calculated on the basis
of a known (experimental) static pressure distribution, and the velocity
profile was allowed to jump to the separation-point profile across a
discontinuity at this locé,tion. Since only a small pressure rise is
required to separate a laminar boundary layer, the external Mach
number Me was assumed constant across the jump. By using mass
conservation, all quantities just downstream of the jump were deter-
mined, and these values provi_ded the initial conditions for the constant-
Pressure mixing region downstream of separation. No attempt was
made to match the shear-layer angle to the induced angle ®6) of the
boundary layer at separation, and the constant-pressure mixing solu-
tion was joined to the near-wake interaction solution by matching

Me [or ®], U*, and the mass flow above the zero-velocity line,
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Actually the location of the separation point on the body surface
is not fixed a priori but moves in response to the pressure rise com-
municated upstream through the subcritical base flow. To this extent
the work of Reeves and Lees is incomplete. In the present study, the
separation-interaction region on the body is treated more carefully,
and this region is subsequently joined to the constant-pressure mixing
and near-wake interaction zones. The numerical example chosen
is the identical case of z;,n adiabatic circular cylinder at a free-stream
Mach number of 6 treated in Ref. (10).

B.II. Differential Equations: Application to Flow Around an

Adiabatic Circular Cylinder

As previously shown, the integral or moment method can be
sunccessfully utilized to describe interacting separated and reattaching
flows, as well as attached flows, provided the velocity profiles em-
ployed as weighting functions have the qualitatively correct behavior.
For flows near a solid surface, the Stewartson(4) solutions of the
Falkner-Skan equation were shown to be the simplest appropriate
fa:mily, including the branch corresponding to rcvér sed-flow profiles,
For adi:_a.batic wake flows, another set of solutions of the Falkner-Skan
equations with zero shear stress on the axis, also found by Stewart-
sons4) is the simplest appropi'iate family. In every case it is essential
to unhook the profiles from the pressure gradient parameter g and to
describe them in terms of an independent profile parameter, a(x) or
#/(x), that is not uniquely related to the local pressure gradient.

For adiabatic flow, the three independent variables of the

problem are Me(x), a{x) or ¥(x), and 6.1*():). The history of these
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three parameters is determined by three first-order non-linear,
ordinary differential equations, which can be written in the form:

dé.* 6.% dM M

i » 9% da i e _ N h
FatS v, & ° PFC o Rep,, (B1).
i
ds,* 5.% dM M
d p
¥ oge 0T g 3ot (D) g 50‘13‘11'\]’1{(36* (B2)
(<] e R
1
3 3
Pk e dd @da g dM@:ﬁcMmN (B3)
dx i d¥ da dx M‘e dx M_

where all quantities are defined in Section III. For most blunt-body
interactions, it is convenient to evaluate the reference conditions in

the vicinity of the neck region in the near wake rather than upstream

of the bow shock. Thus:

. R Me (l+me) tan ®
= Reg (B4)
6i HN me(l+mN) C
a
- _N 2
ae pe
C = (u/)/(T/Ty) and p=— =
: N N

For attached and separated flows near a solid surface, the
independent parameter a(x) is taken as previously defined, Eq. (31),
while ‘n wake flows upstream of the rear stagnation point:

U.-
1y = ph = U (D5)
e

]

a(x)

and U(E
a(x) = £'(0) = =—

U
e

downstream of the rear stagnation point.
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For mdst configurations the Prandtl-Meyer relation connecting
® with Me given in Section III can be. used, taking the curvature of the
surface into account. For the circular cylinder, this relation can be

written in the convenient form:

V(x) - vixg) = ax) - [8(x) - B(x,)] (Bba)

where v(xo) is evaluated at some reference station and a(x) is the
inclination of the local tangent to the surface measured with respect

to the inclination at Xy i. e,
a(x) = x/r - xo/r (B6b)

In this relation and in the differential equations, the independent

variable x is measured along the surface of the body, hence:

X2Ax%IS = r[1-0s(x/r)] (B7)

To obtain the complete solution, the development of the bound-
ary layer starting at the forward stagnation point should be calculated
taking into account the interaction with the external flow. In the super -
sonic region, for example, such a calculation involves a coupling be-
tween the characteristics I;et and Egs. (Bl)-{B3). Since this problem
is a formidable one in itself, and because the main interest in the
present study lies in the separation and wake phenomena, it was
(10)

decided to adopt the procedure of Reeves and l.ees and regard

Me(x) as given to the jump location. The pressure distribution on

the forward part of the cylinder was taken from McCarthy's(S())

measurements, and the variations of M_ and d(Me)/d(x/'r) were



-173-

computed assuming isentropic flow around the cylinder. The con-
tinuity equation, Eq. (Bl), can therefore be dropped and only Eqs.
(B2) and (B3) considered, which can be rewritten in terms of the

variable

= b () () (55)

and solved for the unknown first derivatives, yielding:

am_
do,* B My ( %%-R [3.1 (x+1) 37 6. 7oy N
a=/7) = M. o (B9)
=z Q“aw- 1)
| M _
da ) B MN (Ry-PJ) + J(1-%) 61.* -d—&m (B10)
d(x/r) ~ dy/ dJ
Mo, r (W - T)

Initial values for 61-*(0) and a(0) are given by the requirements for
boundedness of the derivatives at the forward stagnation point, where
Me = 0 and x/r = 0. This condition requires that the numerators on

the right-hand side of Eqs. (B9) and (B10) vanish, i.e.:

3JP = (2+1)R (B11)

or
3stag = 2.967
and
pM P
CRT (B122)
(2a+1) [aM fdlx/7)] /g

According to McCarthy s data [dM_/d(x/r)] ~ 1 and M= 2.5

x/r=0 N
(neck Mach number for a free-stream Mach number of 6.0}, hence

for this case

(tf»r*)Stag = 26.97 (Bl2b)
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One can show by a linearization of Eqs. (B9) and (B10) around astag
and (6][_"‘)stag tha,f the stagnation point is a saddle point in the (a-ﬁr*)
plane; therefore the integration of the equations must be initiated by
perturbing the solution away from the critical point by a small amount.
The results of the integration for the distributions of a, ﬁr* and the

normalized physical boundary layer thickness are shown in Fig. B2,

where:

y+1
5 ay lim Z(v-1)
8 Eomyr = (ﬁr_n_) o (144)+142] Y5 _¥ (B13)

N N
One can see that at (x/r) = 1.20, the param eter a(x) exceeds the maxi-
mum value (3.92) obtained from the similar solutions of the Falkner-
Skan equation, indicating that the profiles are actually non-similar
downstream of that point. In order to continue the solution with this
family of velocity profiles, it was assumed that a(x) remained constant
and equal to 3.92, and that all integral functions retained their values
at a = 3.92, i.e., the profiles were assumed to take a constant shape
for (x/r) > 1.20. Eq. (B10) was therefore dropped and Eq. (B9) inte-

grated downstream of that location; this equation becomes:

a6, ™ 2PMyrior1)R-3TP (B14)
d(x/7r) Me J(1-%) a=3. 92

At x/r = 1,20, the outer flow is supersonic and the angle of the stream-
line at the edge of the boundary layer with the wall can be calculated
from the continuity equation, Eq. (B1l), written in the form:

Y+1

1 1+m fﬁ* dM
tan @ = (l+m

2v-1) 2
m [27?{7?) m_ é‘(¥7?~)
«/(—‘M r)e,* (B15)
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since a(x) is held constant.

It is now bossible to calculate the subsequent development of
the viscous layer starting from an arbitrary point at which the solution
is assumed known from Egs. (B9)-(B15). Returning to the full set of
equations, Egs. (Bl)-(B3), one finds that the viscous flow becomes
supercritical at a = 3. 92 and Me = 2.4, corresponding to x/r = 1.69.
The wake flow is initially subcritical, however. In order to join these
two regions, the flow must experience a sudden jump on the body sur-
face from a supercritical to a subcritical state, followed by a smooth
compression and flow separation leading into the near-wake region.

B.IIl. Adiabatic Supercritical-Subcritical Jump Conditions

The jump conditions for the general case of non-adiabatic flow
have been derived in Section V. The relative change in Mach number
across an adiabatic supercritical-subcritical jump is extremely small,
and in this situation the pressure change can be connected to the veloc-

ity difference by the approximate relation

by - Py~ -3llpgu) Flpgug) ] luep-uey) - (B16)

Using this expression in the jump relations, Eqgs. (82)-(89), Eq. (88)

becomes
ue +pe ue.
[mFaszzr][l- ][-a( 1 22)
e 2p U’e
€2 %2
Poile [ F.+7_ ¥
“‘eze+22)] e, l[::zuez—l:] e, 2 2.] 1 (B17)

while the combination of Eqs. (88) and (89) for adiabatic flow can be

written:



-176-

e, peluel+pez Ve,
3,0, \:1 Ta ] :[Zz‘yz - ( Zpu )‘meZFz"Zz)]Jl
' €1 €2 %2
Ue 2u, Pe Ye +pe Ye -
2 2( €1 %1 €2 %2
-[(1+ue1)(ZZ—J2)~ o ( e )(mcha+Zz)_lN1}(B18)

Since these equations involve the differences between quantities which
are nearly equal, it is possible to obtain an expansion of the down-
slream values i[a and Me in terms of the known upstreamn conditions.

2
Defining the differences n and U such that

n:NI-NZ
B19
Mo, (B19)
Moo= I\'ZE'Z"'

the jump relations, Eqs. (B17)-(B18), can be expanded in terms of

these functions. For example:

€ e
1- uei = (limel)u B l+1ne1[1 -Zil+mtl):]u2 *---
2 2
Jp-Jp = (gé)l“ - (13;)1 1‘12__ t -

Retaining terms to second order, Eqs. (B17)-(B18) can be expressed

in the form:

' 2 . 2
Am+ AN A M AUY AL

f
o

(B20)
2 , : 2
Bln+B2n +B3nu+B4u+% Bsu

1l
o

where the coefficients, evaluated at the upstream station, are:
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Al = J»-g(g% | (B21)
2
1,477
A = 5> —
2 2 dﬁ[z
3 dJ
A3 = ZVEW-- J
A4 = (1-%) J
A [2m J+J+2]| —2 (1)1 + 58
= ﬂ(m++Z[ ]-Jl-ﬂ([i— —-]
5 e (l+rn )2 Zil-l-me)
2
1
t s [(ZN NZ - (1+m _-m N)J] (————2—-‘]
(1+m) -
and
Bl = 1 +me
BZ = 0
B = [1+ by 22 2 1
3 7 merm WW T+rne - 0 +me—me£[]
M %1
B4 = (lW)r1+me—meﬂf)—ﬂrl+me+meﬂ(+Z] [—i—-l-—fen_:_J
m
-i([l+m +m N+Z][l —-—T-—-—-) Me (_Z_:{_lll__e___ 5)]
M‘Z 1
[_'IT'n'{ ]+ o [l+me+meﬂ(][(1+me)(1+%()~z+%[] ""‘“"’2‘
e . (1+m )

Using these relations, solutions of the two algebraic cquations, Eqgs.
(B20), are relatively easy to obtain. Some typical jumps arc shown

in Fig. B3.
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B.IV. Flow Field Downstream of the Jump

Between the critical point on the cylinder at x/r = 1.69 and
the pressure minimum at x/r = 2. 13, the quantities 61*, a and Me
are known (Fig. (B2) ), hence a possible jump to subcritical conditions
can be computed at each location x/r. Also, the streamline inclina-
ti(';n ®1 just upstream of the jump can be obtained from Eq. (B15), and
®2 can be calculated from ®, by adding the turning angle across the
weak compression. Thus at each location (x/r)z = (x/r)l, initial con-
ditions 61*2, a,, MeZ and ®2. required to start the computation of the
interaction between the subcritical viscous layer downstrcam of the
jump and the outer flow are known. These subcritical trajectories
are calculated by integrating the full set of equations, Eqs. (B1)-(B3),
using the Prandtl-Meyer relation including the effect of surface curva-
ture (Eq. (B6) ).

In Fig. B4, two subcritical trajectories through separation and
into the constant-pressure mixing region are shown for the eigen-
solutions obtained in Section B. VI. The positive pressure gradient
decreases rapidly downstream of separation, partly because the body
surface is falling away from the tangent to the local streamline at the
outer edge of the bo—undary layer. For a typical case (Reoo, d=4. 8x104),
the angular turn measured around the cylinder surface from the jump
location to the beginning of the pressure plateauis approximately 13°,

In the constant-pressure mixing region, the basic equations
dM,
dx

and the continuity equation, Eq. (Bl). These reduced equations were

da(8; */r) d(x/r)
a3z 2 =gy

are considerably simplified by dropping both the term containing

solved for and integrated to a value of a= 0.7,
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corresponding to u¥*_. . = 0.56.
mixing

B.V. Near-Wake Interaction Region and Joining Conditions

Since the location of the separation point on the body and the
length of the constant-pressure mixing region are not known a priori,
it is more convenient to begin the calculation of the near-wake inter-
action solution at the rear stagnation point, where a = 0. Starting at
this point with a given value of (éi*/r)rsp and a given value of ReN, g
Reeves and Lees(lo) have shown that there is only one value of Me
at the rear stagnation point which allows the solution to pass through
thc throat in the wake. The procedure adopted was to integrate the
basic equations, Eqs. (Bl)-(B3), downstream of the rear stagnation
point with various trial values of (Me)rsp until a solution was obtained
which passed as close to the singularity at D = 0 as possible. Here
P =0 in Eq. (B2), the curvature term a(x) in the Prandtl-Meyer rela-
tion (Eq, (B6)) is -absent, and the curve-fits to the functions ¥, R, J, Z
for wake flows given in Ref. (10) were utilized in the integration. It
is more convenient to take the reference point far downstream, hence

| = V(Moo‘i') - v(Me), where the conditions M = 6,0, or

free-stream

(M +) = 2.5 were selected. Once the correct value of (M ) is
OF wake rsp

determined for a given choice of (61*/1') and Reoo’ 4 Eqs. (Bl)-(B3)

can be integrated in the upstream direc:isoi away from the rear stag-

nation point in order to generéte a family of possible wake solutions.
At some point in the near-wake region the constant-pressure

mixing solution must be joined to the wake interaction solution. For

a given value of Re and M

o, d free-stream the boundary-layer growth

on the cylinder up to the jump location is determined, but the jump
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can be placed at any point on the body downstream of the critical

‘point (‘~r155 = 1.69). For a given jump location the flow is determined
completely up to the beginning of the pressure plateau, but the length
of the constant-pressure mixing region is arbitrary; any point on the
mixing solution curve corresponding to a certain U¥ is a possible
joirﬁng point to the wake interaction solution. For an assumed value of
(61*/r)r sp the length of the wake interaction upstream of the rear
stagnation point is also arbitrary. Thus, four conditions are required
at the matching point in order to determine the complete solution
uniqucly.

Three conditions can be oﬁtained directly from the requirements
for the continuity of Me, of U*, and of the mass flow above the dividing
streamline, which is proportional to Meﬁi* Z. The fourth condition is
a geometric constraint: the length of the constant-pressure mixing
zone and the wake thickness ? at the joining point must be so deter-
mined that the angle @ of the dividing streamline is compatible with

the Prandtl-Meyer turning angle for (Me) , i.e. (Fig. Bl),

PP

F-3)

NI = [\)(M ) - u(M ):l (B22)

(/) SLTEEe T e

_ mixing.
where

d )

Lo (1 B e (% ] (B23)

r r PP
These four joining conditions uniquely determine the complete solution
for a given pair of values of ReN’ P and Moo+'

B.VI. Complete Solutions

In order to illustrate the method of solution previously de-

scribed, a typical computation is shown for the adiabatic circular



-181-
cylinder at Mco+ = 2.5 and ReN’ qa= 8,000, corresponding to free-

4

stream conditions Mao = 6 and Re = 4.8%x107, A useful diagram

o, d
employed in matching the wake interaction and constant-pressure
mixing regions is given in Fig. B5. For every assumed value of
(6i"‘/r)'rsp , the wake interaction eigeﬁsolution is integrated in the
upétream direction away from the rear stagnation point to produce

a2 locus of pairs of values of Me and U¥; these curves are labelled
"wake solution" in Fig. B5. Every point on each of these curves
also corresponds to known local values of (éi*/r) and Z. For a given
trial jump location on the body surche, the separating flow is deter-
mined to the beginning of the pressure plateau; hence Me = (Me)pp
is known in the constant-pressure mixing region. The horizontal
dashed lines in Fig. B5 represent the constant-pressure mixing solu-
tions for U* as a function of (()i*/r), for each assumed jump location.
At the intersection of these dashed lines and the solid curves calcu-
lated from the wake interaction solution, Me and U¥ are automatically
matched. The correct choice of the remaining two unknowns (x/r),

jump

and (81*/1') is determined by matching the mass [low above the
rsp

dividing streamline and by satisfying the geometric constraint em-
bodied in Eqs. (B22) and (B23).

Fig. B6 shows a comparison between the predicted static

4

pPressure distribution on the circular cylinder at Re = 4.8x10

and McCarthy's(?’é’ 38) experimental measurements at the Reynolds

oo, d

>

number of 4. 7x104. Evidently the computed base pressure [p(180°)]
is somewhat low, but the location of separation on the cylinder is pre-

dicted quite accurately. Of course in practice the jump occurs over
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a distance of one or two boundary-layer thicknesses.

The predicted effect of free-stream Reynolds number is shown
in Fig. B7. As expected, the jump and the separation points both
move forward on the cylinder with increasing Reynolds number, and
this behavior agrees qualitatively with experimental observations.(sé)

| The constant-pressure and near-wake interaction regions
between the pressure plateau and a point near the neck are shown
in Fig. B8. As observed by Reeves and Lees(lo) the predicted rear
stagnation point is located somewhat aft of Dewey's(35) measured
location. Presumably the accuracy of the wake interaction solution
can be improved, especially at low Reynolds numbers, by utilizing
the two-parameter velocity profiles of Ref. (39), rather than the
one-parameter profiles employed here.

As suggested by A, Roshkomo) it is often useful to examine the
limiting case of infinite Reynulds number in order to clarify one's
ideas. In the present problem, the near wake flow consists mainly
of the constant-pressure mixing region in this limit, and U%* approaches
the Chapman value. As shown in Ref. (10), the recompression pres-

sure ratio

also approaches a limiting value, which differs from
b

the value obtained from Chapman's sudden isentropic compression
model. As a result, the angle of inclination of the free shear layer
also approaches a limiting vaiue. Since the pressure rise required
to separate the laminar boundary layer on the cylinder = 0 as Reoo'-'oo,
the subcritical viscous interaction region downstream of the jump
shrinks to zero. The jump and separation-point locations coincide,

and this point on the body is determined by the jump conditions and
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the limiting value of 5"—0-—*- . Once this point is known, the location of
. 7Py

the rear stagnation point is determined by the simple geometric rela-

tion, Eq. (B22) and (B23),

dl _ E
— = M) -v(M),
PP
6 h
where PP and — =+ 0
T T

while M coincides with the value of the Mach number just down-
stream O?Iihe jump. Of course the length of the near-wake interaction
region in the vicinity of this point also shrinks to zero in this limit.
(As observed by Roshko(40) the axisymmetric case is still something
of a mystery.)

This ill

~
£3&

0]
e

approach employing an integral or moment method is fully capable

of predicting the location of separation and the entire near-wake
interaction region for laminar flow without the introduction of addi-
tional ad hoc assumptions. The extension of the calculations to show
the effect of a highly-cooled surface on the location of separation is
presently under investigation at this laboratory. The general method
described here is a[;’»plicable not only to blunt bodies, but also to
slender bodies with smooth bases, provided the radius of curvature

at the base is large compared to the boundary-layer thickness.
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