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ABSTRACT

Let X be a completely-regular topological space and let
C*#(X) denote the space of all bounded, real-valued continuous functions
on X. For a positive linear functional ¢ on C#(X), consider the fol-
lowing two continuity conditions. ¢ is said to be a B-integral if when-
ever {un} c C¥X) and un(x)lo for all x € X, then (p(un)to. © is said
to be B-normal if whenever {uT} c CHX) is a directed system with
uT(x)lO for all x € X, then ¢p(uT) 10, It is obvious that a B-normal
functional is always a B-integral. The main concern of this paper is '
what can be said in the converse direction,

Methods are developed for discussing this question. Of par-
ticular importance is the representation of C¥(X) as a space ')7((X) of
finitely-additive set functions on a certain algebra of subsets of X,
This result was first announced by A. D, Alexandrov, but his proof was
obscure, Since there seem to be no proofs readily available in the
literature, a complete proof is given here. Supports of functionals are
discussed and a relatively simple proof is given of the fact that every
B-integral is B-normal if and only if every B-integral has a support.

The space X is said to be B~compact if every B-integral is
B-normal., It is shown that B~compactness is a topological invariant
and various topological properties of B-compact spaces are investigated.
For instance, it is shown that B-compactness is permanent on the
closed sets and the co-zero sets of a B~compact space, In the case

that the spaces involved are locally-compact, it is shown that countable
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products and finite intersections of B-compact spaces are B-compact,

Also B-compactness is studied with reference to the clas-
sical compactness conditions. For instance, itis shown thatif X is
B-compact, then X is realcompact. Or that if X is paracompact and
if the continuum hypothesis holds, then X is B-compact if and only if
X is realcompact,

Finally, the methods and results developed in the paper are
applied to formulate and prove a very general version of the classical
Kolmogorov consistency theorem of probability theory, The resultis
as follows, ¥ X is a locally-compact, B~compact space and if S is
an abstract set, .then a necessary and sufficient condition that a
finitely-additive set function defined on the Baire (or the Borel) cylin-
der sets of XS be a measure is that its projection on each of the finite

coordinate spaces be Baire (or regular Borel) measures.
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INTRODUCTION

The main objective of this paper is to study the relation be-
tween certain continuity conditions for linear functionals on spaces of
continuous functions., More specifically, let X be a completely-regular
topological space and let C*(X) denote the bounded, real-valued con-
tinuous functions on X, A non-negative lineé.r functional ¢ on C*X) is
said to be a B-integral if for every decreasing sequence {un} c C*¥(X)

with u_(x%)!0 for all x € X, then (p(un)l 0. ¢ is said to be B-normal if

Al
for every decreasing net {uT} c C¥X) with uT(x)l 0 for all x € X, then
@(uT)lo. It is clear that every B-normal functional is a B-integral,
The main concern in the paper will be what can be said in the converse
direction,

The paper is divided into four parts and ten chapters. The
first part is a preliminary section which catalogues the background
information required in the sequel. In two chapters, the basic proper-
ties of Riesz spaces and completely regular topological spaces are
listed.

The second part is devoted to a study of the dual space of
C#(X) and contains chapters three through six, In chapter three, the
dual space of C*(X) is represented as a space of finitely-additive set
functions. In chapters five and six, this representation is used to show
that B-integrals and B-normal functionals correspond respectively to

so-called g-additive and net-additive set-functions., In chapter six,

the concept of support is introduced and studied. Part two culminates



2

with a proof of the very useful fact that all B-integrals are B-normal
if and only if there are no B-integrals which are entirely without sup-
port,

In part three, the methods developed previously are em-
ployed to study the problem posed; namely, when are B-integrals also
B-normal. A completely regular space is said to be B-compact if all
B-integrals on C*(X) are B-normal. In chapter seven, the topological
implications of B-compactness are studied. In chapter eight, the con-
siderations are restricted to locally~-compact, B-compact spaces. It is
shown that countable products and finite intersections of locally com~
pact, B-compact spaces are B-compact. In chapter nine, B-compact-~
ness is studied in relation to other compactness conditions of point-set
topology. For instance, it is shown that if the continuum hypothesis
holds a paracompact space is B-compact if and only if it is realcompact.

In part four, an application of the methods and results de-~
veloped is made to probability theory. Here two very general versions
of the classical Kolmogorov consistency theorem are formulated and

proved,



PART I

PRELIMINARY INFORMATION



4

This section contains the background information required in
the paper. The results here will be stated without proof, As a refer-~
ence for chapter 1, the reader is referred to [14] and [15]., For the

results in chapter 2, the reader should consult [2].

CHAPTER 1
RIESZ SPACES
Definition: ILet L be a linear space over the field R of real

numbers, and let L have a partial ordering <. L is said to be an

ordered linear space if it satisfies the two conditions:

(i} 0<u, v&€ L implies that 0 <u + v,

(i) 0su € L and 0 <g € R implies that 0 < qu.

Definition: If L is an ordered linear space and if L is a

lattice with respect to its partial ordering, then L is said to be a

Riesz space,
e

Let L be a Riesz space, For u € L, let ut = sup(u, 0),

u

+
u

-inf(u, 0), and |u] = sup(u, -u). Then u = ut - u’, |u] = Wt uT,

1]

F(u+ Iul), and u = 5 ( lu] - u), Hence an ordered linear space
is a Riesz space if and only if for each u € L, one of u+, u , or Iul is

in L.

Definition: A Riesz space L is said to be Dedekind complete

if for any set AC L such that there exists v € L, with u < v for all

u € A, thensup A€ L,
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Theorem 1.1, Let L be a Riesz space, L is Dedekind

complete if and only if every set of positive elements in L which is

bounded above has a least upper bound.

The proof of this theorem can be found in [14], Note VI.

Definition: Let L be a Riesz space and K be a Riesz
subspace of L, K is said to be an ideal if u € L and |u| < v for some

v € K implies that u € K,

Definition: Let L be a Riesz space and K an ideal in L,
K is said to be a band if whenever AC K with sup A€ L, then

sup A € K.

The intersection of an arbitrary collection of bands in a
Riesz space is againa band. If L is a Riesz space and AC L, then
the intersection of all the bands which contain A is said to be the band

generated by A.

Theorem 1.2, Let L be a Dedekind complete Riesz space

and let K be a band in L. Then L = K@ K?, where KP = {uelL:

inf (|u}, |v]) = 0 for all v € K}.
The decomposition above is called a Riesz decomposition.

Definition: Let L be a Riesz space. A linear functional ¢

on L is said to be order bounded if for all 0 <u € L, sup' {p(v):

0<v<u, vE€L}<+o. The collection of all order bounded linear



functionals on L is called the order dual of L and is denoted by L.

Theorem 1.3, If L is a Riesz space, then L. is a Dedekind

complete Riesz space.

Theorem 1.4, If L is a Riesz space and if @€ L~, then

for 0<u€L,

sup {p(v):0<v<u, veL},

<p+(u)

@ (u) = -inf {@(V):0<sv<u, veEL},

sup {|ov)|:0<sv <u, v eL}.

o] (w)



CHAPTER II

COMPLETELY-REGULAR SPACES

Definition. A topological space X is said to be completely-
regular if X is Hausdorff and if for each x € X and for each closed set
G c X with x ¢ G, there is a continuous function which vanishes on G

and is 1 on x,

In what follows, C(X) will denote the space of all real-valued
continuous functions on X and C¥(X) will denote the suBspace of C(X)
consisting of bounded functions, C(X) and C#*(X) are both Riesz spaces
with respect to the usual pointwise ordering. Furthermore, C¥(X) is
a Banach lattice with respect to the topology of uniform convergence on

X. The Banach dual and the order dual of C#(X) are identical.

Theorem 2.1, Let X be a topological space, X is

completely-regular if and only if the topology on X coincides with the

weak topology induced on X by C#(X).

Definition: Let X be a topological space. If u € C*(X), the
set Z({u) = {x € X:u(x) = 0} is called a zero set, The collection of all
zero sets on X is denoted by B(X). Likewise, the set U(u) = {x € X:
u(x) # 0} is called a u-set (or a co-zero set). The collection of all

u-sets of X is denoted by Y (x).



Theorem 2.2, Let X be a topological space, X is

completely-regular if and only if ?,((x) (‘}(x)) is a basis for the open

{closed) sets in X,

A finite union or a countable intersection of zero sets is
again a zero set, Dually, a finite intersection or a countable union of

u-sets is again a u-set.

Theorem 2,3, Let X be completely-regular, 'Then there

is a compactification BX of X such that each element of C*#{(X) has a

unique extension to an element of C(§X)., Furthermore, 8X is unique

up to homeomorphism.

The space BX is called the Stone-CeCh compactification of
X, Note that each £ € C(X) also has a unique extension to $X although

the extended function may be +® or -« at some points of BX.

Definition: Let X be completely-regular, X is said to be
realcompact if for each point x € X - X, there is a 0 < f € C(X) such

that the extensionf of f to 8X has f_(x) = to

Theorem 2.4, Let X be completely-regular, Then there

is a realcompact space uX containing X as a dense subspace such that

each element of C(X) has a unique extension to an element of C({uX).

Furthermore, vX is unique up to homeomorphism,

Theorem 2.5, Let X be completely-rggglar. Then X is

realcompact if and only if it is homeomorphic to a closed subspace of
RC




Theorem 2. 6. Let X be completely-regular. Then vX is

the intersection of a family of locally-compact, g-compact subsets of

BX.

For a point x € BX, let }x denote the family of zero sets Z
in X such that the closure of Z in BX contains x, Then %x is a fil-
ter and it is principal if and only if x € X, If the intersection of a
countable number of elements in }x is again in }x’ then }x is said to

be closed under countable intersection.

Theorem 2.7, Let X be completely-regular. Then

vX c BX. Furthermore, x €-uX if and only if }x is closed under

countable intersection.

Theorem 2.8, Let X be completely-regular and let {un}

< C*(X) be a monotone decreasing sequence with un(x)H) for all x € X,

I T denotes the extension of u_ to BX, then"ﬁ'n(t)io for all t € uX,

Proof: Let t € uX and assume that Tin(t) oo > 0. Set Zn =
{x: un(x) 20}. Then {Zn} Sh and % is closed under countable inter-
section by Theorem 2,7, Thus Z = n{Zn: n € N} € 3’1: and so in par-
ticular, Z # ¢ . Butif X, € Z, un(xo) = ¢ for all n. This contradicts

the fact that un(x)¢ 0 for all x € X,
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PART 1I

FUNCTIONAL ANALYTIC PRELIMINARIES
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CHAPTER III

A REPRESENTATION THEOREM

In this chapter, a very useful repreéentation of the dual space
of C*(X) will be given (see Theorem 3, 13), This representation was
first announced by A, D. Alexandrov, [5]; but the proof is rather inacces-
sible in his work, Since it seems not to be readily available in the
literature, a complete proof will be given here., Since the proof is long,
it will be broken into three parts. In the first part a space W(X) of set
functions will be studied; in the second part, 7I[(X) will be imbedded in
[C*(X) ]N; in the third part, it will be shown that 7][(X) provides a very

suitable representation of [ C*(X) ]~

A, The Space W{(X)

In the following X will always denote a completely-regular
topological space, As above, 3,(X) and 7/(X) denote the zero sets and
the u-sets of X respectively. Let & (X) denote the algebra of subsets
of X g.enerated by }(X). (This is, of course, the same as the algebra

generated by U(X).)

Lemma 3, 1. A € F(X) if and only if there is a.positive inte -

gér n and zero sets Zi’ Zil for i=1,...,n with

>
[}
nCs

t
Ziﬂ CZi .

i=1
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Proof: Let 8 denote the family of all sets of the form

n

A = U Z.nGZ.'
1 1

i=1

as in the Lemma., It is clear that RE&(X). Furthermore, }(X) cn
and B is closed under finite unions, If it can be shown that 8 is closed
under complementation, then 8 will be an algebra. It will then follow

that ¥ (X) € # and the proof will be complete,

Let
n T
A= U Z.NEZ. €8 .
i=1 1 !
n . '
Then A= n €z.UZ,
=1 ! 1

Let £ be the power setof {1,...,n}. For S€P, let Ss'={1,...,n}~S,

For each SE€P, set Z. = N 7Z' and 2. = U Z,., Then for each
S iES 1 S iES' 1
ser, Z., Z '63(}{). Furthermore, £A= U Z.n€2z.'. Hence it
S S _ sep S S

is clear that EA € B.

Definition: A finitely-additive, real-valued set function m
defined on & will be called regular if for each A € ¥ and each ¢ >0,
there is a U € U(X) with A< U such that |m(B)| < ¢ for each B € &

for which B < U-A.

Lemma 3.2, Let 0 £ m be a finitely-additive set function

on & (X)., Then the following are equivalent,

(i) m is regular,

]

() For all A€ 3(X), m(a) = inf (m(V): AC U, UeUX].

(iif) For all A € 3(X), m(A) = sup{m(Z):Z C A, Z €2X}.
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Definition: 77((X) will denote the space of all regular real-

valued, finitely-additive set functions m defined on ¥ (X) and such that
sup{[m(A)| : A€ 3]} < =,

For m,,m, € M(X) and o, € R, define (g ml-l-smz} (A)
= ccml(A) + BmZ(A) for all A € F(X). 1Itis clear that am; + Bm, is
again in 7 (X). Furthermore, define m,; <m, if ml(A) < mz(A) for

all A € 3. This relation is a partial ordering compatible with the linear

structure of ')7{(X). Hence 7(X) is an ordered linear space,

Definition: Let m € (X). For A€ 3, define

m'(A) = sup{m(B):BcC A, Be3},
m (A) = -inf {m(B):BC A, BEJF]},
| m[(A) = sup{m(B)-m(C):BUCCcA, BNC = ¢,B,Cc3}.

Lemma 3.3. Let m € M(X). Then m',m",|m]| ¢ mx).

Proof: It is easy to check that m~ = m' - m and that

|| = xa*

+m~, Since M (X) is a linear space, it will thus be sufficient
to show that rn+ € 7’((X). It is clear that m' is a non-negative, real-

valued function on & and that sup {m+(A) A EF(X)} <+,

a) m+ is finitely-additive on & (X).

Let A,B €& and ¢ > 0. There exists C € F(X) with

CcAUB and m'(AUB) <m(C) + c. From the finite-additivity of m

and the_, definition of m+,
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mT(AUB) - e<m(C) = m(C NA) +m(C-4) <m(4) + m(B) .

Since ¢ > 0 was arbitrary, m? is subadditive on F(X).

Now assume that A NB = ¢. There exist A, CA and B, S B

1 1
for which rn+(A) < ¢+ m(Al) and m+(B) < e+ m(Bl). Since A1 N Bl

= ¢ and m is additive,
+ + +
m (A) + m (B) - Ze<m(A1) + m(Bl) = m(A1 UBl) <m (AUB) .

Since ¢ > 0 was arbitrary, the result follows from the last equation

and the subadditivity of m+.

b) m? is regular on &(X).

Let A€ 3 and ¢ >0, Since m is regular, there exist
U € UX) with AC U such that for every B € & with B € U-A,

|m(B)l < ¢. Hence for such a B,
0<m"(B) = sup{m(C):CCB and CE€F}<e.
This proves the regularity of m+.

The next result is analogous to the Hahn decomposition

theorem of measure theory.

Theorem 3.4, Let m € W((X). For every ¢ >0, there exist

sets Zl’ZZ EE(X) with Z1 n Z2 = ¢ such that m+(ZZ) < ¢ and

m (Z 1) < ¢. Furthermore, m+(Zl) > m+(X) - ¢ and m-(ZZ) > m (X)

- € .

1

Proof: There exists Z, € 3(}{) for which m+(X) < m(Z

+ ¢/2 by the regularity of m. Hence,
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m(Z)) = m(Z) -m(Z) <m (Z) -m'(X) + 5 <

Also,

(9 m7(X-2,) m'(X-Z m(X-Z )

l)"

= m7(X) + m(Z ) - m+(Zl)

= m—(X) --% .

Choose Z _C_X—Zl,

- ¢/2, Then m-(Zz) >m (X) - ¢ by (¥). Furthermore, m+(Z

Z, € }’(X) such that m-(ZZ) > m“(x-zl)

5)
< m+(X-Zl) < e¢/2< ¢, Finally, itis obvious that Z1 N Z2 =¢.

Definition: For m € 7/(X), define ||m|| = |m| (X).

It is clear that ||+ || is a norm on N(X). Furthermore,

|m;| = |m,| implies that |[m || < ||m,|].

Lemma 3.5. Let 0<m_¢€(X) for n=1,2,,.. . K

Z flm ]l <=,

n=

then there exists m € 77((X) such that

Proof: For each A€ 3 (X),

n
2 mk(A)

k=1 meEN

is a positive increasing sequence of real numbers, Furthermore,



n n ©
Z m(A) s 2 m(X)s Z ||m| .
k=1 K k=1 ¥ n=1 [0,

Thus define

m(A) = 2 mk(A) .
k=1

It is clear that m is a non-negative, finitely-additive set function on
F(X) and that m(X) < «. The proof will be complete if m is shown to

be regular, Thus let A€ F(X) and ¢ > 0. Choose n large enough so

that
n
m(X) < 2 mk(X) + e .
k=1
n 0
Since 2 m, is regular, there exists U € Y(X) with AC U and
k=1 -
n
2 mk(U—A) < eg.
k=1
Thus,

m(U-A) = m(X) - m(X - (U-4))

n
< 2 mk(X) + e - § mk(X - (G-A))
k=1 k=1

n
< 2 mk(U-A) + ¢
k=1

< 2¢ .

Hence m is regular,
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Theorem 3. 6. 1. P(X) is a Dedekind complete Riesz space.

2. MX) is a Banach lattice with respect to the norm

Hml| = |m] ).

Since the norm in condition (2) has the property that, for
0<my, m, e MX), Hm1+m2|l = Hmlll + HmZH, 7)((X) is an L-

space in the sense of Kakutani.

Proof: To show that ')]Z(X) is a Riesz space, it is enough to

show that for each m € 77((X), m+ = sup(m, 0), It will then follow that
m~ = sup(-m,0) and |m| = sup(m -m).
It is clear that 0 < m+ and that m < m+. Let m' € W((X) with

0<m' and m<m'. Thenfor all A € F(X),

m (A)

sup {m(B): BC A, B¢ 3(}0}

A

sup {m'(B): B C A, B € &(X)}

A

m'(4) ,

since 0 < m' implies that m' is monotone. Thus m+ < m', and so
m' = sup (m, 0},

To see that 7/‘((X) is Dedekind complete, let Q C (X} with
m < mg for all m & () where m € W((X). By Theorem 1.1, assume
that 0 £ m for all m € . Since 77{(X) is a Riesz space, assume with~
out loss of generality that ¢ is directed upward. (Thatis, assume
that O is closed with respect to taking the supremum over a finite num-
ber of elements in Q.)

For A ¢ 3(X), define m'(A) = sup{m(A):m €Q}. Ifitcan
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be shown that m' € 7/(X), then m'= sup Q and the proof will be done.

But m' is clearly finitely-additive and 0 < sup{m'(A): A € F(X) ]}

< mO(X) <+ », Hence all that need be shown is that m' is regular,
Let A€ F(X) and ¢ > 0. Let m € O be such that

m*'X) < m(X) + ¢/2, Since m is regular, there exists U ¢ UX) with

AcCU and 0 < m(U-A) < ¢/2. Hence,

0 £ m'(U-A) miX) - m (X - (U-A))

< m(X) +-§ - m(X - (U-4))
< m(U-A) +%< e .

Thus m' is regular.

(2y If lmll = {mzl, then “mlll < HmZH . Thus all that
need by proven is the completeness under the given norm., Thus let

H m - mkl ] -0 as n,k-=», Without loss of generality, assume that

> ||m

-m H < o,
n=1 1

n+l

By Lemma 3. 5,

[=<]

m= 2 |m _,-m]| € X .

n=1
Define
. n-1
mn = mn-m1+ 2 ikarl-mk!
k=1
. 1 Y_. - -
for n=1,2,... . Since m ., -m  =(m . -m)+ [mn+1 mnl =0

and since m__ , - rnnt <2|m -mnl , it follows from Lemma 3.5 that

ntl n+1l
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- k=1 (Mg ~my) €M)

Set m'"' = m!' -m+m, .
The claim is that H m'" -rnnH - 0 as n -+ o which will com-~
plete the proof, Indeed,

m'"-m =m'~-m+m, ~m
n 1 n

n- H
m' -m+ 2 1m

1 kil " P T ™y
= 2 (mk+l-mk) -z (mk-k-l"mk .

k=n k=n

Hence,

m"-mnl < % {(m

fae]
' !
-m, ) + X |m -m [ .
ktl k k=n ktl k

From the last equation, it is clear that “m” -mnH -0 as n-o o

The proof given of the completeness of 77((X) is due to

Luxemburg and Zaanen (see [ 147, Note VIII).

B. The Imbedding of J7(X) in [C¥(X) ]

The description of the structure of 77[(X) is now complete,
The next step is to show that it can be imbedded suitably in the space
[CHx)T.
| By L(X), denote the Riesz space of step functions on &,

That is, L{X) consists of all functions of the form

n
u = Z‘/c(,

k=1 kXAk '
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where . is real, A, € &X), and X is the characteristic function
k k A

of Ak for k=1,...,n Since ¥ is a ring, each element of L(X) has

a canonical representation such that A’k N AZ =¢ for k£ 2.

Iet 0 £ m € WZ(X). For

n
u:Ea

X
k:lkAk

in canonical form, define

a, m(A)

n
o () = 1:51

Then 0 is a positive linear functional on I{(X). By the usual Riemann
process, ¢ may be extended to a positive linear functional 9, onthe
space &Lm of all Riemann m-integrable functions., The following theor-

em is recalled without proof,

Theorem 3. 7. The following statements are equivalent,

(i) u€ (Rm.

(i) There exist u

u, € L(X) such that u; <u <u, and

2 =

1’
Pm (uZ—ul) < e.
Since every f € C¥(X) can be uniformly approximated by

functions in L(X), the above theorem guarantees that C3#(X) o @m
Let & denote the restriction of s to C¥(X). Then 0sA€ [CHX)T .

| Thus far only non~negative elements in 77((X) have been con-
sidered. For an arbitrary m € W((X), define £ = (m+{\—- (m-{\. Then
€ [Cx(X) :IN The next theorem shows that the mapping > has the

right properties,
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Theorem 3.8. The mapping A:PX) - [CH(X) T~ nas the fol-

lowing properties,

(1) amp+pmy) =af + 8, .
(i) m; < m,=p 1’*?11 < f,.
i) (m = @ @ = @7 (| = A
(iv) @ = fl,=» m, =m,.
) |lml]] = |[&] .

Proof: (i} Let u € C¥(X). Take a sequence {un} < .IX) such

that u ~—u uniformly on x, If

Ké;n)
u_ = o X
n k=1 B k An, K

then

K(n)
lam +p mz)/\(u) = rlllfl k‘él Cp,x @myptBmy) (A L)

K(n)
g+ lim 2 U“n,kml(An,k) +
n—o k=1

K(n)
g+ lim Zl an’ka(An’ »

n—-o k=

Q fﬁl(u) + B r/r\lz(u) .

(ii) ¥ 0 <m € M(X), then the definition of f guarantees

that 0 < A, Letm, < m,. Then by (i),

1

A A A
Os(mz-ml) = m, - m,; .

Iy
Thus ml < fﬁz.
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(iii) Let m € X). By (ii) 0 < (m'V; and, by definition,
A= @ - (Y < (m'". Thus (&)Y < (m™T.

By Theorem 3. 4, there exist Zl’ZZ Eg(X) with Z1 ﬂZz =0

and such that m+(X-Z 1) < ¢ and m'(X-ZZ) <e. Let we€ C¥X) be such

that 0 <£w<1l, w=1on2 and w=0on2Z,.

1’ 2
For 0 <u € C¥X) with 0 <u<1,

(" (u-wew) + (m w0 2 W (X2 ) + mTK-Z,) < 26

Thus,

(m+)/\(u) < (m+)A(w- u) - (m—)A(w- u) + 2¢ = M(w-u) + 2¢

< sup (A():0=vsu, veCKX)] + 2¢

< (& W) + 2¢ .

Since ¢ > 0 was arbitrary, (m+)/\(u) < (1’1\1)+ (u) for all 0 su<l,

u € C¥X), Thus (m+)A < (r’ﬁ)-". Hence from above, it follows that

+N st
(m") = {(m) .
Finally, (m " = (m -m>=m -& = @) -4 = (&),

Also (|m|f = @ +m ™ = @+ @V = @ d) = B .

(iv) Assume that r/r\al = r?lz. Since (ﬁ\ql)+ = (x/ﬁz)+ and
(ﬁ\ul)- = (ﬁ‘mz)', it may be assumed by (iii) that 0 < m, and 0 < m,,.
Furthermore, by the regularity of my and m,, itis sufficient to show
timat ml(U} = mZ(U) for every U € U(X).

Thus let U € Y(X). By the regularity of m, and m,, there

21
is a Z € YAX) with Z € U and such that m,(U-Z) < ¢, m,(U-2) < &,
= 1 2

Take w € C¥(X) with 0 <w < 1 and Xy SW < Xy- Then it follows that,
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ml(U) - mZ(U) < ¢+ ml(Z) - mZ(U)
< e+ ﬁl(w) -f\nz(W) = ¢.

Similarly, mz(U) - ml(U) < ¢; and hence |rn2(U) - ml(U)l < g. Since

e > 0 was arbitrary, ml(U) = mz(U). It follows that m, = m,.

@) & < [/ = (m[YND = |m|X) = ||m]]. Thus
Hﬁ” < “m” . But also,
&[] = sup {|fi)] v e cxx), [Juf|, < 1]

2 sup{[ﬁx(u)l:uEC*(X), 0<usx1l1}
= [A(D = ((m]D) = |m|X) = ||=]].
Thus Hﬁ‘)” = Hm“ and the proof is complete.

C. The Representation of C¥*(X)

In Theorem 3. 8, it has been shown that Y(X) is isometric and
isomorphic to a closed subspace of [C*(X) ]N. The representation will

be complete once it is shown that the mapping A defined above is onto.

Definition: For 0= ¢ € [CHX)] define, for each U € Y(X),

MU) = sup {@(v): 0 s v € CHX) and v < xl.

Lemma 3. 9.

(i) A is non-negative, monotone, and subadditive on Y(X).

(ii} A is additive on Y(X).

(iii) I U € Y(X) and if ¢ > 0, then there exists W € Y(X) with

WC U such that A(U) < MW) + ¢ .
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Proof: {i) A is obviously non-negative and monotone. Let
U,,U, € UX) and let ¢ > 0. Choose 0 < v € C*¥(X) such that
v < and @(v) + € > AU, UU,). Nextset Z = {x:v(x) = ¢} N
XU, U U, © 1- 2
@Uz. Let u € C¥X) be suchthat 0 <u<l,u=1lonZ, andu=0o0n

EU. Then 0 £ v.u < andOS(v-v-u-e)+SX . Hence,
1 Xy, U,

MU, UTU,) < olv) + eselveu) + o (v-v-u-e)t) + 2¢

< x(Ul) + MUZ) + 2¢ .
Since ¢ > 0 was arbitrary, the result follows,

(i) Let U;,U, €Y(X) with U NU,=¢. Let 0<v,,
Vo € C*¥(X) be such that vy s XUl’VZ < XUZ with }‘(Ul) < q;(vl) + e,
)‘(UZ) < ‘0("2) + €. Since U1 N U2 =0, v1+v2 = sup (vl,vz). Hence,

0sv, +v d

< an
17 V27 Xy, u U,
MU + MU, < plvi+vy) + 2¢ < MU, UT,) + 2e.

Since e¢> 0 was arbitrary, MUI u UZ) z )‘(Ul) + A (U This fact to-

o)
gether with (i) yields the additivity.

(iii) Let U € UX)and ¢ > 0 be given., Choose 0<u€C*(X) such
that U< xy and AMU)<p(u) + ¢. Set W={x:u(x)>¢}. Then observe that
-VV_C_:_ U. Set w= (u-e)+. Then 0 s w € C¥(X) and w < Xw+ Hence,

AW) = owW) = p((u-a) 2 MU) - 2¢ .

Thus the result is proved.
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Definition: For AC X, define m¥*(4) = inf {A{U): U € YX)

and AcC U}l

Lemma 3.10,

{i) m? is an outer measure,

(i) If U € U(X), then m*(U) = A(U).

(iii) If U € Y(X), then U is m*- measurable in the sense of

Caratheodory.

Proof: (i) That m* is an outer measure follows immediately
from Lemma 3. 7 and the definition of m*,

(ii) This is clear from the definition of m.

(iii) Let ACX and U € Y(X). It mustbe shown that
m¥*(A) = m*¥{A N U) + m¥(A-U). Let ¢ >0 be arbitrary, Choose
V € U(X) such that ASV and m*(A) > A (V) - e. By (iii) of Lemma 3.7,

choose W € U(X) with W S U and A(W) > A(U) - c. Then,

e + m¥*(A) > V) =A0(V N W) U (V-W)]
> AV N W) A(V-W)

z MV D W) + m*(A-U) .

Thus,
(*) e+ m*A) =z (VN W)+ m*(A-U) .
But
m*¥V N U) £ m¥(V N W)+ m¥*(VN({U-W))
< A(VN W) + m¥U-W) .
Thus,

(#) m*(V N U) £ m¥VNW) +mHU-W) .
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Now choose T € Y(X) such that —T—C_:_W and A(W) < 3 (T) + ¢.
Then
m*(U-W) < m*(U-T) = A(U-T)
< A(U) - A (T)
< A(U) - A(W) + e < 2¢,

by Lemma 3.9, Hence m¥*(U-W) < 2¢. Combining this fact with (%)

and (%) above, it follows that,

e+ m*(A) = AV NTU) + m*(A-T) - 2¢

z m*¥A N U) + m*(A-U) - 2¢ .
Since ¢ > 0 was arbitrary, the result follows,

From Lemmas 3.9 and 3, 10, the following result is im-

mediate,

Corollary 3,11, Let 0 < e[C*(X)] and let m* be the outer

measure associated with . If Z € 3(X), then m*(Z) = inf {((u):

0 <u € C*¥X), u= XZ} .

It is known from measure theory that the family of
Caratheodory m¥*-measurable subsets of X form an algebra Q% and
that m* is a finitely-additive, monotone set function on Qm*. By (iii)
o.f Lemma 3. 10, F (X) c Qm*' Let m(p denote the restriction of m* to

H(X).

Lemma 3. 12, For 0 < ¢e[C*(X) ]~, there is a finitely~

additive set function rn(p on F(X) such that,
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(i) mr,o € M(X) .
U
(ii) rnc'o =¢@.

Proof: (i) m(pis certainly non-negative and finitely-additive
on E(X). The regularity is an immediate consequence of the definition
of m*,

(ii) To prove (ii), it is clearly sufficient to show that, for
all u € C*(X) with 0 su <1, ¢lu) = /n\n(p(u). (u< 1 here means u(x) < 1 for
all x €X.,) But to show this it is enough to show that 0 < u < 1 implies @ (u)
2 p(u). Indeed an application of this inequality to 1 -u then yields the
desired result,

Fix u € C*(X) With' 0 <u< 1, Define Zk = {x:u(x) =z k/n}

for k=0,1,...,n. Then

~ n-1 K
mle) 2 k§0 7 ol Zig)
n-1 K
= zj() E‘ {m(p(zk) = mqo(zk-i'l)}

since u < 1 implies that mqD(Fn) =0,

But by Corollary 3, 11, there are u € C#(X) with Xy <u

k k

and m(p(Zk) 2(p(uk) - 1/n, for k=1,2,...,n. Thus

L3
T

RS> L ol
1 e W e\ o) e “mre

—

n
It is clear that u s-}-- 2 ou, +— .
n k= kK n

1



(,0(11) < m u) - (p .

Letting n tend to », it follows that ¢(u) < r/ﬁ(p(u) and the proof is

complete,

Theorem 3.13, Let X be a completely-regular topological

space, If C*(X) is the space of all bounded, continuous, real-valued

functions on X, then [C*(X)] is isomorphic as a Banach lattice to

W[(X). Moreover, the isomorphism is given by m ~ iy where i de-

notes the Riemann integral of m on C¥*{X),

Proof: By Theorem 3. 8, 7I((X) is isometrically isomorphic
to a subspace of C*(X) under the mapping”. The proof will be com-
plete if ~is shown to be onto. Let ¢ € [C*#(X)]". By Lemma 3, 12,

. + N -
there exists m ., m . € (X) such that &, = and m = .
ot Mo €N ot =@ o-= ¢
Sect m = m<p+ - m(p_ S '”{(X) By the linearity of », o= ¢ and the re~

sult follows,
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CHAPTER IV

B-NORMAL FUNCTIONALS AND B-INTEGRALS

Definition: Let {u_} c C¥(X), {u_} is said tobe a

_mm— T TET"' T

downward (upward) directed system if for every pair uT.. s uT , there
1 2

exists uT3 such that uT3 < inf (uTl,uTz) (u’r3 - sup(uTl,uT .

Definition: Let {uT} - c C*#(X) be a downward (upward)
Zelinition T =

directed system, An element u € C¥(X) is said to be the B-limit of

{uT} if for each x € X, u(x) = inf [uT (x):7 € T} (u(x) = sup {uT(x) T €TH.

This is written u lBu (u_t ).
T TR

Concerning the above definition, it should be_noted that the
‘B-limit of a directed system {uT} is not in general the same as the
order limit of the system {uT}. (An element u € C¥(X) is said to be
the order limit of the downward (upward) directed system {uT} if
u< u_ (u= uT) for all 7, and if v € C*¥X) and v < u_ (v 2 uT) for all
T imply that v < u{v 2 1),) Itis clear that the existence of the B-~limit
implies the existence of the order limit and the equality of the two,
However, the order limit may exist without the B~limit eiisting.

If C*(X)is considered as a Riesz subspace of the space B(X)
of all bounded, real-valued functions on X, then the B-limit of a
directed system {uT} in C*(X) is the order limit of the system {uT]
in B(X).

The notion of a B-limit above gives a meaning ‘'a fortiori’ to

a B-limit of a monotone sequence in C*(X). Because of its importance,
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however, this definition is given separately,

Definition: Let {u_} C C*#(X) be a decreasing
———— NTneN—
(increasing) sequence, An element u € C*#(X) is called the B-limit of

: B
{un} if for all x € X, un(x)lu(x) (un(x)Tu(x)). This is written unl u

The above concepts of convergence can be used to define
continuity properties for elements in [GC¥*(X) 7. These are of central

importance in this paper.

Definition: Let ¢ € [C*(X) 7". Then ¢ is said to be B-normal
if for every downward directed system {uT} C C*¥(X) with uT¢BO, it fol-
lows that lcp} (uTHO. The set of all B-normal functionals in [ C%(X) ]N is

denoted by (C*):{

Definition: Let ¢ € [C#¥X)]™. Then ¢ is said to be a
B-integral if for every decreasing sequence {un} C C¥(X) with un¢Bb,
it follows that |¢| (u )40. The set of all B-integrals in [C¥(X) T is
denoted by (C*): .

Note that ¢ € [C*¥xX)T” is B-normal if and only if uTiBu
(uTTu) implies that l(p] (uT),quol(u) (Igol(uT)?[qa{ (u)). Also ¢ is a B-
. . . B . .
integral if and only if u i u (un’rBu) implies that [cp] (U‘nH |<p| (u)
(ol )t of ().

It is clear that (C*);E (C* Z The converse relation is not

in general true, Consider the following example,
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Example 4, 1. Set X =, where ( denotes the space of
ordinals less than the first uncountable ordinal with the order topo-
logy. Then () is a completely~regular, locally-compact space (sece
[2], p. 72). Furthermore, ( is pseudocompact so that every element

of [C¥X)] is a B-integral (see [6]).

The Stone-CetCh cbmpactification is given by the one-point
compactification o = QU {Q}. Thus for each f € C¥(q), define ¢ (f)
= ;(Q), where f denotes the unique extension of £ to BQ. Since Qis
pseudocompact, ¢ is a B-integral.,

For o € O, define

0, t<qg
£ (t) =
@ 1, t>a
Then {fa} c C*¥(Q) is a downward directed system with fa @BO,

a e
=11

But ¢ fa) or all g € Q. Hence ¢ is not B-normal,
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CHAPTER V

NET-ADDITIVE AND ¢g-ADDITIVE MEASURES

Definition: Let {A } be a family of subsets of X. {A_}
————— T TET T

is said to be downward (upward) directed if for each pair AT A,

T2
with A CcA NA A DA UA . In this case,
To— T1 T3 T3 T2

there is an A
T3 |
A VA (A tA) where A=N{A :7 €T} (A=U{A :7€ T}).
T T T T
Definition: Let m € 7]{(X). Then m is said to be net-
additive if for every downward directed family {ZT} E?,(X) with ZTlcp,

it follows that |m| (Z }i¢. The set of all net-additive ¢lements of

W((X) is denoted by 7}(11.

Definition: Let m € 77((x). Then m is said to be g-additive
if for every decreasing sequence {Zn} Eg_(X) with an‘rgb , it follows
that Iml (Zn)';O. The set of all g-additive elements of 77((X) is denoted

by 7}(c.

It is clear that W{nc 777(:. However, the converse is not true

in generzal, (See Theorem 5. 11 and Example 4. 1).

Lemma 5, 1. Let m € 77{(X). Then the following are equi-
valent.

(i) m is net-additive,

(ii) {Z’J‘} _C__?(X), Z ES.(X), and ZTlZ imply that
|m| (z )¢ m] (2).
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(iii) {UT] cUX), U e UX), and U_tU imply that
!ml (UT)T ‘m{ (U) .
(iv) {0} SYX) and U 1X implies that |m| (U )1|m] (X).
Proof: It is obvious that (ii)=» (iii) S (iv)=>(i). Only (i)=(ii)

need be proved. By the regularity, for ¢ > 0, there is a U € U(X) with

ZcU and m(U) <m(Z) + ¢. Thus Z'T - Ut¢ and hence Im[ (ZT-U)iO.

But
| m| (2,-0) = | m]| (z) - m|(Z) - | m] (z_ N(U-2))
2 [m|(2) - |m](Z) - ¢.
Hence, ¢ 2 lim sup l m| (ZT) - ‘ml (Z) 2 0. Since ¢ > 0 was arbitrary,

the result follows,

Lemma 5.2, Let 0 <m € W((X) Then the following are
equivalent,
(i) m is g -additive,
.o . l l
(1) If {An} C3(X) and An ¢, then m(An) 0.

(i) I {A_} S HX),

A= J A €FX),
n

n=1

a'jnd A ﬂAm=¢ for n# m, then
m(A) = 22 m(A) .
n
n=1
Proof: (i) (ii). Let {An}SE?(X) with Anlgb. Assume that

m(An)lcx > 0. By the regularity of m, for each n € N, there is a
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Z, €UX) with Z_cA_ and m(A_-Z ) < 0 /2% Define
n 1 = n n n

n
1
Zn = le Zn € }(X) .

Then z;m and hence m(z;)m.
However, for each n € N,
H a fod
m(A _-Z ) < kZ=>1 m(A, -Z,) <%, and
o - 1 _ !
m(An~Zn) = m(An) m(Zn) > m(Zn) .

Thus m(Z'n) 2q/2>0 for all n. This is a contradiction and the result

follows,
(1) H(iif). ¥ (A} C 3 is as in (iii) above, define

p oy
B = A~ U .
n o1 M

Then {B_} < &X) and B_lp. Thatis

n " n
m( ;Jl Ak) =2 m(A,)tm(4) .

(ii))=(i). Let {Zn} E?,(X) and Zn~‘,¢. Then

@
Z_ = U (Z
=n

K %)
Hence by assumption,

'm(Z ) = 25 m(Z, -

Z. ).
S kt1
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Since m(Zn) is the remainder after n terms of a convergent sequence,

m(Zn) - 0,

Definition: Let Ba(X) denote the g-algebra generated by

'L{(X) Ba(X) is called the Baire sets of X,

Definition: Let Bo(X) denote the g-algebra generated by the

open sets in X. Bo(X) is called the Borel sets of X,

Note that Ba(X) is the g-algebra generated by FX) or by
F(X). Likewise, Bo(X) is the g-algebra generated by the closed sets of
X, Furthermore, Ba(X) C Bo(X). However, the equality Ba(X) = Bo(X)

is not in general valid.

Definition: Let 0 < m be a measure on Ba(X). Then m is

said to be a regular Baire measure if for all A € Ba(X), m(4) =

inf {m(U): U € Y(X) and AcCU}. (Equivalently, m(A) = sup {m(Z):

Z eg(X) and Z < Al.)

Definition: Let 0 £ m be a measure on Bo(X). Then m is

said to be a regular Borel measure if for all A € Bo(X), m{A) =

inf {m(O) : O is open and Ac O}. (Equivalently, m(A) = sup {m(G):G

is closed and G < A}.)

Theorem 5.3, Let 0 <m¢€ ‘)?[C. Then there is a unique

extension of m to a regular Baire measure,

Proof: By Lemma 5.2, m is a measure on J(X). Hence m
may be extended by the usual Caratheodory process to a regular Baire

measure,



The uniqueness of the extension is an immediate consequence

of the regularity,

Definition: Let 0 < m be a Borel measure. Then m is said
to be net-additive if for every downward directed family {GT} of closed

sets with GTJ,qb , it follows that m(GTHO.

Note the m is a net-additive Borel measure if and only if
for every upward directed family {OT} of open sets with OTTX, it

follows that m(OT)Tm(X).

Theorem 5.4, Let 0 <m € 'mn' Then there is a unique

extension of m to a regular, net-additive Borel measure,

Before a proof of this theorem can be given a series of lem-
mas must be established. The process for extending a measure con-

sidered here is sometimes called the Bourbaki extension procedure,

Lemma 5.6. Let 0 < m € '}ﬁn. Assume that O € X is open

and [UT}, {VO} C U(X) are upward directed with UT?O and V 10

Then lim m(U ) = lim m(V_).
st T T o [*)

Proof: Let m(UT)TOL. For ¢ >0, there is UT such that
0
the net-additivity of m implies

m(U > ~-¢. Since VCJ’ N UTOTU

that
liam m(Vc) = m(U,ro) >Q~€ .

Thus lLim m(Vo_) 20 =lim m(UT) . The result then follows,
o T
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Definition: For 0 <m € mn’ define A{O) = sup {m(U): U e U{X)

and U c O} for each open set O in X,

Lemma 5. 7.

1. X is monotone and non-negative,

2. I OI’OZ are open, then }\(Ol U OZ)S)‘(OI) + MOZ)‘

3. For U €Y, A(U) = m(U).

Proot:

1. This is obwvious.

2. Let {UT}, {Va} S UX) with UTTO and VGTOZ. By

1
Lemma 5. 6, m(UT U VO')“‘(Ol L OZ). Thus,
AMO, U0,) = limm(U UV.) £ im{(m{U ) + m(V_))
! 2 T T ¢ T,C T ¢
< J\(Ol) + )\(02) .

3. This is obvious.

Definition: Let 0 <m € . For ACX, define m*(A)
elinitaon: " = .

= inf {A(O) : O is open and AcO}.

Lemma 5. 8.

1. m* is an outer measure,

2. I OcX is open, then O is m¥*-measurable in the sense

of Caratheodory,

Proof:
1, This follows from Lemma 5. 7.

2, Let Ac X, Take OcCX open. By l, itis sufficient to
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show that m¥*(A) 2 m*(A N O) + m*(A-O). Hence let ¢> 0. Choose an
open set O1 cX with AC C)l and e+ m*(A)>')\(Ol). Let {U'T} < UX)
with U _1O,. Finally, take V € U(X) subject only to V£ O. By the
regularity of m, thereis a Z € %(X) with Z €V and m(Z) + ¢ > m(V).

Thus,

e + m*(A) > }\(Ol) = lim m(UT)
T

> li;n [m(U_r nv) + m(UT-V)]

> )\(O1 NV)+ lim m(UT—Z) - €
T

> MO0 N V) + A(0;-2) - ¢

> MO N V) + m*(0,-0) - ¢

> )\(O1 N V) + m¥A-0O) - ¢ .
Since V € Y(X), V €O was arbitrary, it follows that

2¢ + m*(A) 2 )\(Ol N O} + m*(A-O)

=z m¥(AN O) + m¥*(A-O) .
Since ¢ > 0 was arbitrary, the result follows.

¥ Y denotes the algebra of subsets generated by the open sub-
sets of X, the above lemma implies that m¥* is a finitely~-additive set

function ondf. Let u denote the restriction of m* to,&.

Lemma 5. 9.

. {GT} is a downward directed family of closed sets with

, th L0,
GT$¢ cN p,(GT)

2. ¥ {a}cH, A= ngl A €Y, and A _nA_ =0,
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for n 4 m, then
wla) = 2 p(A)) .
n=1
Proof: 1., Since 9(}{) is a basis for the closed sets in X,
G’I’: nZ:Z E}(X) and GTSZ}' Set § = {Z:Z E?(X) and ZEGTfor
some T}. Since GTHZS, 8ip . Since m is net-additive and since m(Z)
= u{Z) for all Z € 2(X), it follows that 0 = inf {u(Z):Z € §}. Hence by
the monotonicity of y, M‘GT)J'()'

2, Set
U Y
B = A- U ch.
) k:lAk

n

Assume that U,(Bn)La > 0, By the definition of m¥*, there exists a

nt+l

closed G_ B _such that m(B ) <m(G ) +¢/2 Set
n— T n n

Then G;v‘qﬁ; and hence by (1), p,(G;l)lO. However,

n
' ¢4
W(B_-G) = 151 WB -G =%,

and
WB-G1) = W(B)) - wG)) za - WG .

Thus inf p,(G;ﬂ) = q/2>0. This is a contradiction and the result follows.
n

Proof:of Theorem 5. 4: By Lemma 5,9, | is an extension of

m to a measure ondf., Then by the usual Caratheodory process, y can
be extended to a regular Borel measure which again is denoted by u.

Furthermore, i is net-additive by Lemma 5.9,
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The uniqueness of the extension follows from the regularity,
Indeed if A is an extension of m satisfying the conditions in Theorem
5.4, then for any open set O in X, A(O) = sup{m(U): U € U(X) and

Uc O} = u(0). The regularity then implies that A = .

Corollary 5. 10. Let 0 s m € ?ﬂn I p and A are two regu-

lar Borel extensions of m, then p =2,

Proof: Let y be the extension given by Theorem 5,4, For a

closed set G _C_X,

MG) = inf {M(Z):Z € 3(X), Z2G} = u(q) ,
since | is met-additive.
Hence if {GT} is a downward directed family of closed sets
with G _10,
T

OSinf}\(G)Sinfp.(G)=0.
T T r T

Thus A is net-additive and hence X = y by Theorem 5, 4,

In order to extend a measure from the Baire sets to the
Borel sets, net-additivity is in general indispensable. It will be seen
later that there are in general ¢g-~additive elements of ‘}}7(X) which have
no extensions to Borel measures even if the requirement of regularity
is dropped.

There is an intimate relation between net-additive set func-
tions and B-normal functionals. This will be the subject of the next

theorem., Let ¢ € [C¥X)T and let m(P denote the corresponding
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element of M(X) according to Theorem 3, 13, That is, is the
g 2

Riemann integral on C*(X) with respect to the set function m

Theorem 5. 11. Let ¢ € [C¥X)]" and let m, € M(X) cor-

respond to ¢ .

1. ¢ is a B-integral if and only if mm_iic-additive.

2. ¢ is B-normal if and only if m‘p is net-additive,

Proof: Without loss of generality, assume 0 <. Since 1.
is proved in exactly the same manner as 2., only the proof of 2, will
be given,

Hence assume that ¢ is B-normal. Let {Z } c g(X) with

T rerT
ZTl;!). For each 7 € T, take VT_C_C*(X) with 0 < V7_ <1 and Z’r
= {x:vT(x} = 1}, Let S denote the family of all finite subsets of T,

For eachd € S and n € N, define

U,y © [inf{vq_:’réd‘}]n .

It is clear that {u(c n)} C C*(X) is a downward directed system with

lBO. Hence ¢(u n)).LO. Also,

Hea, ) (o,

% olu n)) = m, (n{ZT:TEO'}) .

(@,

Since {ZT} is downward directed, (%) implies that m(p(ZT)lO. Hence
mcp is net-additive,

| On the other hand, assume that m 1is net-additive. Let
{uT} € C*¥X) be a downward directed sys tem with u_ iBO. Further-
more, assume that u <1 for all 7. For ¢ >0, set Z'r = {x:uT(x) = el

1@, ¥ ,
Then {ZT} E?(X) and Z'T ¢. Hence mﬂD(ZT) 0 and
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(p(uT) = IZ u_ dm@ + IX-Z u_ dm(p
T T
o Z .
<1 rn(p( 7_) + e m(P(X) .

Hence 0 < li%'_n sup <p(u1_) S eo m(p(X). Since e > 0 was arbitrary,

<p(uT)lO and the proof is complete,
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CHAPTER VI

SUPPORTS

Definition: Let ¢ € [C¥(X)] . Set ‘LI@ = {u:u € C¥(X),
0<u<l, and || (w) = |p|(1)} . Define S‘P = N{W{u):u € ‘(,((p} , Where
W(u) = {x:u(x)= 1]. Sco is said to be the support ofﬂ ©. I S(p =¢,

then ¢ is said to be entirely without support,

Definition: Let m € M(X). Set T _=N{Z:Z € }X) and

| m|(2) = [m’ (X)3. T, is said to be the support of m. If Tm =¢,

then m is said to be entirely without support,

It is obvious that S‘P and Tm are always closed.

Theorem 6. 1. Let m € W(X). Then x € T_ if and only if

whenever U € UX) and x € U, then [ml (U) > 0.

Proof: Clearly if x ¢ Tm’ then there is a U € YUX) with
x € U and [m] (U) = 0. On the other hand, assume X € Tm and
U € U(X) with x € U. If |m| (U) =0, then T S X-U whichgives a

contradiction.

Corollary 6.2, Let m E‘?}’I(X). Then m is entirely without

support if and only if for each x € X, there exists U ¢ U(X) such that

x €U and |m|(U) = 0.

Theorem 6.3. Let ¢ € [C¥#(X) T and let m‘p be the cor~

responding element in '}'i’(.(X). Then S(p =T, -
— ©
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Proof: Assume that 0 <¢. Let Z € B(X) with m(D(X)

= mqo(Z). Take u € C¥(X) with 0 <u <1 and Z = {x:u(x) = 1}. Then,

(1) = mcp(X) = mqa(Z) < plu) < (1) .

Hence u € 'L{w and so S(p_C_ Z. 1t then follows that S(p CT

m "
®
If Tm = ¢, the theorem is proved. Thus assume that
P
X, € Tm@ - Stp' Then there is a u € ‘U(p such that u(xo) =g <1, Set

v = (u~a)t/l-q . Itis clear that 0 <v s 1. Furthermore,

o(1) = p(v) Z‘P(u);fﬂz(l) = <P(1)1(f;"3'~) = (1) .

Hence v € ‘u{D and v(xo) =0,
Set W = {x:v(x}) < 1/2}, Then %, € W and W € U(X). Hence

by Theorem 6.1, mqD(W) > 0., But,

1
= 1- {1~ d . W 0.
0 = ¢(l-v) 2 IW (1-v) mqo 2= m@( ) >

This is a contradiction and the theorem is proved.

Corollary 6.4, Let ¢ € [C*(X) T and let m(p be the cor-

responding element in 'T/((X). Then ¢ is entirely without support if and

only if m(p is entirely without support,

Theorem 6. 5,

l. Let 0Zm e‘},?z(X). If m is net-additive, then T _ 0.

2, Let 0#p€[C¥X)T . X ( is B-normal, then S(p £o .

Proof: 1, Let§ ={Z:|m|(X) =|m[(2Z), Z ¢ ?(X}}. Then $ is

a downward directed family with 8¢Tm. If Tm = ¢, the net-additivity
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of m implies that inf {ImI(Z) :Z €8} =0. Since m # 0, this is a con-
tradiction. Hence Tm + 0.
2, If ¢ is B-normal, m(P is net-additive by Theorem 5, 11,

Thus T # ¢ by (1). Finally Tm(p = S(p # ¢ by Theorem 6, 3,

®

Theorem 6. 6.

I. ¥ 0#m E?)’((X} is not net-additive, then there exists

0<m'é€MX) with m' = [m[ and m' entirely without support.

2, ¥o # o € [CHX) 1" is not B-normal, then there exists

0 < ' € [C¥(X) ]~ with ' < |<p! and ¢' entirely without support,

_}.2592{: 1, Since m is not net~additive, there exists a
downward directed family {ZT}TE T c g(X) with ZT ‘¢ and im[ (ZT)$OL
> 0. For A€ ¥X) define m'(A) = inf {|m| (A n ZT) :7 € T}, Itis clear
that 0 < m' € 7]'((X). Also m'(X) =q > 0 implies m' > 0, Furthermore,
m' < m, Finally, m'(ZT) = m'(X) for all ¥ € T implies that
Tm, < n{ZT :T €T} =¢. Thatis, m' is entirely without support.

2, Since ¢ is not B-normal, m(p is not net-additive by
Theorem 5, 11, Thp.s there exists 0 < m'< [mgol with m' entirely
without support by (1). Let ¢' correspond to m' according to Theorem
3. 13, Then ¢' is entirely without support by Corollary 6, 4. Since

C<o'= ](pl , the resultis proved.

This theorem is given in a different setting in [15], Note XV,
It is also proved in [17], but the proof given here is essentially dif-

ferent and somewhat simpler.

Let %), and (C#)7 denote the elements of MX) and [CHX) T
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respectively, which are entirely without support. It is easy to show
that ‘77{0 and (C*)'S are ideals in 77((X) and [C¥(X)] . Let {7”0; and

{(C*)la} denote the bands generated by 7}70 and '(C*)r;)‘v respectively.

Theorem 6. 7.

1. ’m; is a band in M(X) and M(X) = ’mn@ {'mo} is a Riesz

decomposition,

2. C isabandin [C¥X)]” and [CHX)T = (CH] @ {(CHT)

is a Riesz decomposition,

: L It " i i .
Proof: It is easy to see that ‘mn is an ideal in '}7[(X)
Furthermore, ’Y)?n = (’)’)?O)p by .Lemma 6. 6 and hence 7,711 is a band.
The decomposition follows from Theorem 1, 2,

2, This follows immediately from Theorems 3. 13 and 5. 11.

Theorem 6. 8. All B-integrals are B-normal if and only if

there are no B-integrals which are entirely without support.

Proof: This follows immediately from Theorem 6. 7 above,

Corollary 6, 9. All B-integrals are B-normal if and only if

there are no 0~additive elements of ‘}'ﬂ(X) which are entirely without

support.
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PART III

B-COMPACT SPACES
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CHAPTER VII
TOPOLOGICAL PROPERTIES OF B-COMPACT SPACES
Definition: A completely regular topological space X is said
to be B-compact if every B-integral on X is B-normal,

Theorem 7.1, Let X and Y be homeomorphic completely

regular spaces, Then X is B-compact if and only if Y is B-compact.

Proof: Let 1:X-Y be a homeomorphism. Then the map
0:C¥X) - C*(Y) defined by o(u) =u- 1'-1 is a Riesz space isomorphism
which preserves B-limits. Hence the mapping v: [CHX)T - [Cx¥)]
defined by vl = ¢ - G'_l is a Riesz space isomorphism which preserves

B-~-integrals and B-normal functionals. The result is then obvious,

The above theorem shows that B-~compactness is a 'bona fide'
topological condition, The following technical lemma will be of con-

siderable usefulness in studying this condition. -

Lemma 7.2, Let X be a completely regular space and let Y

be a subspace of X, Then there is a canonical Riesz space homomor-

phism of em(Y) into ‘)Y[(X) which preserves g-additive and net-additive

measures, Furthermore if m € ‘7)7(Y) is g-additive and if m denotes

its image in ‘)7{(}(), then for all A € F(X), m(A) = m(A N Y).

Proof: The restrictions of elements in C*#(X) to Y form a

Riesz subspace L of C¥Y), If m € ‘7}’[(Y) and ¢ is the corresponding
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functional on C*(Y), it is clear that ¢ may be extended to ¢ € [C*(X) T
Let m € M(X) correspond to ». Then m - m is a Riesz spIace homo-
mozrphism of W[(Y) into 77((X) which clearly preserves g-additivity and
net-additivity,

Now assume 0 <m € M(Y) is ¢-additive., To show that
m(A) = m(ANY), itis sufficient by Lemma 3.1 to show that m (Z)
=m(Z NY) for all Z E}(X}. But if 0 <u € C¥(X) with x, <u and

™m(2) > B(u) - e, then
™m(Z) >pu) - ¢ = @{u]¥) -c2m(ZNY) -¢.

Thus m(Z) 2 m(Z n Y).
On the other hand, let u € C¥X) with 0 £u<1l and Z =
{x:u(x) = 1}. Then un(x)txz as n-», By the monotone convergence

theorem, if m is @~-additive, then (p(unl Y)‘m(Z N Y). Thus,
m(Z) s = eE’Y)
and hence m(Z) < lim (p(unIY) =m(Z N Y). This completes the proof,

n-—o

Theorem 7.3, Let X be B-compact, I YcX is closed,

then Y is B~compact.

Proof; Let 0 <m € 7][(‘1’) be ¢-additive, and take m € %[(X)
according to Lemma 7, 2. Since X is B-compact, m is net-additive,
Let {Z } C?(Y) be downward directed with Z ¢,
T reT— T
Since Y is closed in X, ZT is closed in X for each 7 € T. Define
ST = {Z € 3(}{):2 =) ZT} for each 7 € T. Since 3(X) is a basis for the

closed sets of X, S’r is directed downward with S’riz’r' Hence
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§=U {3_’_:7' €T}c 3,('X) and § is directed downward with §{0. By the
net-additivity of m; inf {m(Z):Z € 8} = 0.
But for each Z € 8§, there exists Z‘TE Z and so m(Z’f‘)

< m(Z NY) = m(Z). Hence m(ZTHO and m is net-additive,

Theorem 7.4, Let X be B-compact. If U € U(X), then

U is B-compact,

Proof: Let 0<m € M(U) be g-additive. Since U € U(X),
there exists a sequence {Zn} c 3(}() with ZnT U. Then m(Zn)Tm(U).
Take Zno with m(Zy ) >0 and define m'(4) = m(A N zno) for A €3(U).
Then 0 < m' € JU) is ¢-additive. Let T € Y(X) according to Lemma
7. 2.

Since X is B-compact, m has a non-empty support T. But,

r_n"(zno) = m'(Zy N U)

m(U) = m"(X) .

Hence T C Zno cu.

Let x € T and W € Y(U) with x € W, Then there is V € Y(X)
such that x € V N U S W. By Theorem 6.1, 0<m'V) = m'(V N U)
< m'(W) and hence x is in the support of m. Thus m is not entirely

without support and the result follows from Corollary 6.9,

Theorem 7.5. Let X1 be B-compact and let XZ be compact,

Then the Cartesian product Xl X X2 is B-compact,

Proof: Let 0 s m € ?Y((Xl X XZ) be g-additive. Assume that

m is entirely without support, For A € 3(Xl), TTzl[A.J € Zj“(Xl X XZ)
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where ™ denotes the projection of X1 X X2 onto Xl' Thus for A € E(Xl),
define ml(A) = m(ﬁ;ltA]) = m(AX X,). Itis clear that m, E??{(Xl) is
g-additive, Since Xl is B-compact, the support of my is not empty.
Let x EXl be in the support of m,.
Set K = {x}x X,. Then K is compact. Since m is entirely
without support, there exists by Theorem 6.1 a cover {ch €A} of K

by u-sets such that m(Ua) = 0 for each o € A, Let {U . ,Un} be a

e

finite subcover, Furthermore, assume without loss of generality that

fori=1,...,n, Ui = Ugl) X ng), where Ugj) E?,{(Xj) for j=1,2. Set

n
uv=n oY eux, .
i=1

i

Then

‘rril[U] =UxX,c

i

Ny

(1) (2)
2 . U.1 X Ui .

Hence

n
m{U) = m(UxX,)< 2 m(U) =0 .
1 2 i=1 i
But x € U and x is in the support of my implies that ml(U) > 0, This

is a contradiction and the result follows.

There is little more to say about the topological properties
of a general B-compact space. As will be seen in Chapter IX, many of
the interesting topological conditions generally fail for B-compact
spaces. For instance, an arbitrary product or an arbitrary inter-
section of B~compact spaces need not be B-compact. It is an open

question whether a finite product or a finite intersection of B-compact
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spaces is again B~compact. However, a fairly complete answer to
these questions can be given in the case that the spaces involved are

locally~-compact. This will be the topic of the next chapter.
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CHAPTER VIII

LOCALLY ~-COMPACT, B-COMPACT SPACES

The considerations in this section will concern locally-
compact, completely regular spaces. The following lemma is very
important. It is precisely this lemma which allows more to be said

for locally-compact, B-compact spaces than can be said in general.

Lemma 8, 1. Let X be locally-compact and let 0 < m € 9(X)

be net-additive. Then there is a sequence {C—n} of compact zero-sets

of X such that m(Gn)Tm(X).

Proof: For eachx € X, let Gx be a compact zero-set
neighborhood of x. Let# denote finite unions of the sets GX. Then &
is directed upward with Y1X. Since m is net~additive, for each kK ¢ N

there is F, € & such that m(X-Fk) < 1/k. Set

Then {Gn} fulfills the conditions of the theorem.

Theorem 8.2, Let X be completely~-regular, If Xl and X2
are locally-compact, B-compact subspaces of X, then Xl n X2 is

B -compact.

Proof: Let 0<m € 'n’((Xl N Xz) be g-additive, For

A€ (X UX,), define T(A) = m(AN X, NX,). By Lemma 7.2, T is
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g-additive. Similarly for i = 1,2, define ?n-i(A) =m(ANX, NX,) for
A€3F(X). Then 0<Tm, € W{(Xi) is g-additive,

The claim is that m is net-additive, Indeed, let {ZT}
c ?(Xl U XZ) be directed downward with Zqub. Then {ZT n X1}4¢ .

Since X1 is B-compact, 31—1 is net-additive; and hence,
m - - m l
m(ZT) m(ZT n Xl N XZ) ml(ZT N Xl) 0.

Thus m is net-additive as claimed.
Let u, by and p, denote the unique regular Borel extensions

of m, ;El and ?n.'z. For A€ Bo(X1 UX,) define )\,i(A) = “Li(A N X) for

i= 1,2, Itis clear that ki is.a net-additive Borel measure on X1 U XZ'
Furthermore, for A € 3(X1 U XZ), AN Xi € E(Xi); and,

Xi(A) ui(A N X)) = “rHi(A N X))

m(ANX; NX,) = u(4) .

If it can be shown that )\i is rcgular, the uniqueness of the extension y
will imply that y = }\i fori=1,2,

The claim is that >‘i is regular. Indeed, let A € Bo(X1 U XZ)
and let ¢ > 0, Since by is regular, there is a closed set F C X1 U X2
such that F N Xi c AN Xi and Ai(A) < }\i(F) + ¢. By Lemma 8.1, there
are compact zero sets {Gn} in Xi with pi(Gn)Tpi(Xi). Thus
“i(Gn nNEN Xi)T p,i(F n Xi) and so there is a compact set G c Xi such
that Xi(A~G) < ¢. But since G is compact, G is closed in X1 U X2
and the regularity of }\i is proved.

Let T be the support of m, Then T is a non-empty closed

subset of Xl U X2 since m is net-additive. The claim is that



55

TN X, N X, # ¢. Indeed, assume that T N Xy NX,=¢. Thenfor
i=1,2, TN Xi is closed in Xi' Hence there is a compact set

Cri cTn Xi with p‘i(Xi nT< p‘i(Gi) + ¢. Thus,

w(T)

< )\i(Gi) + e = p,(G.l) + e .
Since Gl N GZE TN Xl N XZ = ¢, it follows that
2u(T) < WGy U Gy) + 2¢ < u(T) + 2¢ .

Thus u(T) = 0 which is a contradiction since 0 <m. Thus TN X, nx

+ 0.

2

Finally, let x € TﬂXlan and let WE'M(Xl NXZ) with x € W,

There exists V E‘L{(XIUXZ) such that x€VAX, NX, CW; and, hence,
0<TV) = m(V N X, NX,) <m(W) .

By Theorem 6.1, x is in the support of m. Thus m is not entirely

without support and the proof is complete.

Corollary 8.3. The intersection of a finite number of locally-

compact, B-compact spaces is B-compact.

The next theorem concerns products of B-compact spaces,

It will be convenient to have a definition of a projection of a measure,

Definition: Let X1 and X2 be completely-regular spaces.
If m € (X, x X,) and if m, is the projection mapping of X, x X, onto
Xi (i=1, 2), then define mi(A) = m(n.l-l[A]) for A€ 3(Xi). m, is called

the projection of m on Xi'




56

Lemma 8.4, Let Xl and X2 be completely-regular, If

0<m EdﬁZ(Xl X XZ) is g-additive, then the projection m, € M(Xi) and

is g-additive for i = 1,2,

Proof: Itis clear that m, is a non-negative, finitely-
additive set function on 3(Xi). Furthermore, the g-additivity of m, is
obvious. Thus only regularity need be shown,

Let U ¢ U(Xi) and take an upward directed sequence {Zn}

. -1 -1 R
_C_:g,(Xi) with ZnTU. Then {ni [Zn]} c 3,(X1 X XZ) and ™ [Zn];

Tr.l_lfU] € 'b[(X1 XXZ). Since m is g-additive,

mi(Zn) = m(ﬂ;_l[_Zn])Tm(rrgl[U])= mi(U) .

Thus m, is regular by Lemma 3. 1.

Theorem 8.5. If Xl and X2 are locally-compact, B-

compact spaces, then Xl X XZ is B~compact.

Proof: Let 0<m € 'm(Xl X X,) be g-additive. If m is not
net-additive, assume that m is entirely without support. Furthermore,
without loss of generality, assume that m(Xl X XZ) =1. I my is the
projection of m on X, then nﬁl € ?W((Xl) is g-additive. Since X is

B-compact, m, is net-additive., Hence by Lemma 8, 1, there is a

1
compact zero set Gl < Xl such that ml(Gl) >0, For AE€ E(X1 X XZ),
define
_ m(A N Cr1 X XZ)
1
mUA) = ey

It is clear that 0 < m' € 7}((Xl x X,) is g-additive, that m'(X, x X,) =1,



and that m' is entirely without support,
The same procedure may now be applied to m'. Hence there

is a compact zero set G, < X, such that 0 <m" ¢ W’((Xl x X,) is g~

2
additive and entirely without support. Furthermore, for A € 3(X1 X Xz),

m'(AN X1 X Gz)
m'(4A) = m](xl <G

2)

Set H = G1 X GZ' Then H is a compact zero-setin X, x X

1 2°

Furthermore, since m’[(Xl-Gl) X XZJ =0,

1l = m”(xl x G

5) ml(Gl x G,) + m‘[(Xl-—Gl) x G,

1

m’(Cz‘r1 X GZ) .

Thus m"{(H) = 1.

Since m'' is entirely without support, there is a cover of H
by u-sets of m'-measure 0, Since H is compact, a finite number of
these cover H and hence m!'(H) = 0, This is a contradiction, Hence

m is not entirely without support and the result follows from Corollary

6.9.

Corollary 8. 6. The product of a finite number of locally~

compact, B-compact spaces is B-compact.

The next theorem shows that the above corollary can be
strengthened to countable products, First consider the following

definition.,

Definition: Let {Xoc 10 € A} be a family of completely~

regular spaces and let X = H{Xoc ta € A}, A subset KX is said to
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be compact-like if there is a finite subset F C A and a compact subset

K of XF=H{Xa:aEF} with K = Ko X H{XOL:Q,EA—-F}.

Lemma 8.7, Let KCX = H{Xa:a € A} be compact-like,

Then K is closed in X,

Proof: This is clear from the definition.

Lemma 8.8, Let X = H{Xa:cc € A}, _Iif_ ﬂ is a filter of com-

pact-like sﬂets, then NY # ¢ .

Proof: Without loss of generality, assume for each ¢ € A,
there is K« Y with T (K] compact in XOL . Let U be an ultrafilter
finer than,@. For o € A, set 'L(a = {‘ﬂ'a[B]:B € U). Then UOL is an
ultrafilter on Xa and Ua contains a compact subset of ch' Thus ‘b{a

X . = : X.
converges to t €X, Let t {tOL a € A} €
Take BE€ U, I V_ is openin X and t €V , then
a 9 04 o
ﬁc;l[Va] NB # ¢. Thus W(;IEVG] € U Since a basis for the neighbor-
hood system at the point t consists of sets which are finite intersections
of sets of the form ﬂ(;ll:Va] where ton € VCL, it follows that Uis finer
than the neighborhood filter at t. Hence 't is in the closure of every
element of U. But by Lemma 8. 7, the members of & are closed.

Hence t & ﬂ,&! .

Theorem 8.9. Let {X } be a sequence of locally-
N°neEN

compact, B-compact spaces, Then X = H{Xn:n € N} is B-compact.

Proof: Let 0<m € WZ(X) be ¢g-additive and for convenience

assume that m(X) = 1. I Y = H{Xk: 1 <ksn}, let m_ denote the



projectionof m on Y . By Lemma 8.4, 0< m_ € me Y ) is g-additive,
Hence by Corollary 8. 6, m_ is net-additive, By Lemma 8. 1, there
exists G_ CY_ with G_ a compact zero-setand 1l =m (Y )< m (G)
n— "n n n' n n' n
+ 172" Let Tn denote the support of m_ and let Mo be the unique
extension of m_ to a regular Borel measure on Yn’
-1 . . . .
Set K= T [Gn N Tn] where m_is the projection mapping of

X onto Yn. Then Kn is clearly compact-like. Furthermore,

2
n XK #¢
n=1 7
for all £ € N, Indeed,
L -1 .
an K = ﬂ{vﬂ,n[GnﬂTnJ: lsn=g}x O{X :k>14},
where Ty n denotes the projection mapping of Yl onto Yn’ Hence it
?

=1
is enough to show that ﬂ{nz n[Gn N Tn]: l<n<4}+#¢. But

-1
pz(ﬂ{ﬁz’n[GnﬂTn]:l sn<4}) =

=1 *uz(U{Yz-ﬂ;}n[GnﬂTn]:ISns,e})

£
2 1s 2 Y- G T
n=
A
2 1- 2 p (Y -(G NT))
n=1
%
1- -
- n=1 “n Y = G
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)
21- 2 m (Y -G
n' n n

n=1

. _
> 1- 25 1/72% >0 .
n=1

-1
Thus ﬂ{ﬂz’n[Gn ﬂTn]. l<n< g} #9¢.
By Lemma 8, 8,

<«

N K =K #¢..
n=1 o

Let x € K and U € U(X). Then for some n, there is W E?A(Yn) with
x € ﬂ;l[W] c U. Thus rrn(x) € Wn Tn' Thus by Theorem 6. 1,

mn(W) > 0., Hence 0< mn(W) = m(rr;ll[W]) < m(U) and so x is in the
support of m. Thus m is not entirely without support and the result

follows.

An arbitrary product of B-compact spaces is not in general
B-compact as will be seen in the next chapter. (In fact, RS is not in

general B-compact where S is an abstract set of cardinal >X0.)
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CHAPTER IX

B-COMPACTNESS AND OTHER TOPOLOGICAL CONDITIONS

Theorem 9. 1. _I;_f_ X is avLindeIUf space, then X is B-

compact.

Proof: Let 0<m € M(X) be g-additive and assume that m
is entirely without support. Then there exists a cover of X by u-sets
of m-measure 0, Since X is Lindelof, there is a countable cover of
this type. But the g-additivity of m then implies that m(X) = 0 which

is a contradiction. Thus the result follows.

Corollary 9, 2, _I_f X is g-compact, then X is B-compact.

Corollary 9.3, If X is compact, then X is B-compact.

Definition: Let S be an abstract set., S is said to have a

measurable cardinal if there is a non-negative, countably additive

measure defined for all subsets of S which is zero on the points of S
and 1 on S.

It is known that the class of sets whose cardinals are not
measurable is a closed class containing XO' Hénce if measurable
cardinals exist, they must be strongly inaccessible., Furthermore, the
class of sets with an accessible cardinal form a model for Bernays-
Frankel-Gddel set theory, Hence the assumption that tﬁere are no
measurable cardinals is consistent with axiomatic set theory,

Whether the statement is independent is not known,
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Theorem 9.4, Assume X has a non-measurable cardinal.

If X is paracompact, then X is B-compact.

Proof: Let 0<m € #(X) be g-additive and entirely without
suppor’;. Let U= {UX:X € X} be a cover of X by u-sets of m-
measure 0, Let P = {uq :a € A} be a partition of unity subordinate to
the cover Y. (Such a partition exists since X is paracompact. )

Let 0 < ¢ € [C¥X)] correspond to m by Theorem 3. 13,

For BC A, let up =Z{ua:a €B}. Then 0<u, <1 and up € Cx(X),

B
Define y (B) = @(uB). Then p, is a finitely-additive set function defined
for all subsets of A. Since ¢ is a B-integral, p is countably-additive.
Furthermore, for each ¢ € A, u({a}) = <p(ua) = 0 since u vanishes
outside some member of Y. Finally, w(A) = ¢(l) > 0. Hence A has a
measurable cardinal,
X X .
However, card A < card R and card R™ is non-measurable

since card X is non-measurable., Hence card A is non-measurable

which is a contradiction.

Theorem 9. 5. _I_Zf_ X is B-compact, then X is realcompact.

Proof: Assume that X is not realcompact. Let X, cuvX-X,
Since vX CBX, for u € C¥(X), define (u) =H(xo), where U denotes
the unique extension of u to 3X. Then 0 < € [C¥(X) ]N. Furthermore,
¢ is a B-integral. Indeed, assume {un} < CH(X) with un\LBO. Thenby
- . )
Theorem 2, 8, un(xo) 0. That is @(un)to.

However, ¢ is not B-normal. Indeed, let

g ={uc¢ C*(X):E(xo) =1 and O0<usx<l},
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Then B8 is downward directed with ﬁJ.BO. But ¢(u) = 1 for allu € 8.

Hence X is not B-compact and the result follows,

For a long time, it was thought that the above theorem had a
converse. That is, that the B-compact spaces coincided with the real-
compact spaces, Infact, several incorrect proofs of this conjecture
found their way into the literature. (See [7], [11], and [13].) How-
ever, the following example is a realcompact space which is not B~
compact, This example was sent to the author by J. D. Knowles who

had in turn received it from an undisclosed source,

Example 9. 6. Let X = T where T is the following space.

T= {(x,y):%,y € R with y 2 0}. Let D= {(x,0):x €R}. The topology
of T is an enlargement of the product topology. In addition to the usual

neighborhoods for the product topology, for each r > 0, the set
2 2 2
V_ (%0 = {{(x,0) U {{y,2:{y-0" + (z-1) "< "}

is a neighborhood of (x, 0).
The following properties of T' will be required. They are
stated without proof and the reader is referred to (2], p. 50 and p. 122,
1. T is a completely-regular topological space.
2, T is realcompact,
3. Dis a discrete zero-setin T'.

4, Vr(x, 0) is a u-setfor each r > 0 and (x%,0) € D.

It will be shown that I" is not B-compact, The following lemma will

be needed.
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Lemma, Let Z 6}(1“) and Z < D. Then Z is measurable

with respect to Lebesgue measure on R,

Proof: Let u € C¥T), 0su<1l, and Z = {t€ T:u(t) =0} .

T - .
Assume Z < D, For m, n€N, set A = {{x,0) € Z.Vl/m(x, 0)

3

__C_'u—l ([0,1/2n]) }. By the continuity of u,

[>0]
Zc U A
T m=1 m,n

for each n € N,
Let A denote the closure of A in the topology of the
m, n m, n

real line. I (x,0) € Km, 2’ then there exists a sequence {(xn, 0)}

c Am 2n and converging to (x,0) in the topology of the real line. Hence

H

there is a sequence {tn} with t, € Vl/n(xn’ 0) such that tn - (x,0) in T,

This implies that u(x,0) < 1/4n< 1/2n, Thatis Am 2n_C__u-l(EO, 1/2n]).

3

Finally,
® © o <o -1
ZEﬂUAm’anﬂ UAm’ZnEnu ([O,l/ZnJ):Z.
n m n m n
Thus
Z =N U m, 2n
n m

which is obviously Lebesgue measurable and the lemma is proved.

Since D is a zero set, it follows from the above lemma that
all of the zero sets of T° are Lebesgue measurable sets in the plane,
Hence F(T") is a ring of Lebesgue measurable sets,

If A denotes Lebesgue measure restricted to [0,1], define

for each A € (T, m(A) =X (A NI where I={(x,0):x€ [0,1]). Itis
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then clear that 0 < m € J(I') is g-additive,.

The claim is that m 1is entirely without support. Indeed, if
x&€T -1, let B_ be a ball about x such that Bx NI=¢. Then m(BX) =0,
I xel, Vr(x) is a u~set containing x, and Vr(x) N I={x}. Hence
m(Vr(x)) = 0. Thus T canbe covered by u-sets of m-measure 0; and
so, by Theorem 6.1, m is entirely without support. Since m is € -
additive and not net-additive, T is not B-compact.

In view of the above example, it seems natural to ask what
topological conditions in conjunction with realcompactness guarantee
B-compactness. If the continuum hypothesis is assumed, one such
condition is paracompactness. Indeed, Varadarajan in {47 has shown
that if X is paracompact and if every closed, discrete subset of X has
a non-measurable cardinal, then X is B-compact, Furthermore, in
[12], Katétov has shown that a paracompact space is realcompact if
and only if every closed discrete subset XO of X has the property that
the only two-valued probability measure which is defined for all subsets
of XO and which vanishes on points is the zero measure. The con-
tinuum hypothesis (or even the weaker assumption that K is a non-
measurable cardinal) implies that a set S has a non-measurable
cardinal if and only if the only two-valued probability measure defined
on all subsets of S which is zero on points is the zero measure. Com-
bining the above remarks with Theorem 9.5, the following result is

obtained.

Theorem 9. 7. Let X be paracompact. If the continuum

hypothesis holds, then X is B-compact if and only if X is realcompact.
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Corollary 9. 8., Let X be a discrete space, I the continu-

um hypothesis holds, X is B-compact if and only if X is realcompact,

The results in Chapter VIO suggest that possibly a locally-
compact space is B-compact if and only if it is realcompact. However,
this is an open question,

Using the fact that there is a realcompact space which is not
B-compact, it is possible to show that B-~compact spaces do not have
some of the nice topological properties.

If X is a topological space and if X1 and XZ are subspaces

of X with X =X, UX,, then X is said to be the union of X, and X,.

A, The union of two B-compact spaces need not be B~-compact,

Proof: Inexample 9. 6, T-D is a Lindeldf space and hence
B-compact, D is a discrete space of cardinal I, If one assumes the
continuum hypothesis, T is a non-measurable cardinal. Hence if one
assumes the continuum hypothesis, D is B-compact, But ' =T-D U D

is not B-compact.

B. An arbitrary intersection of locally-compact, B-compact spaces

need not be B-compact.

Proof: Let X be realcompact, but not B~compact. Then
*7 is the intersection of a family of locally-compact, ¢-compact sub-

spaces of 8X. (See Theorem 2. 6) But a #-compact space is B-

compact by Corollary 9. 2, This completes the proof.
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C. A product of real lines need not be B~-compact,

Proof: Let X be realcompact, butnot B-compact.

Then X is homeomorphic to a closed subspace of RC(X)

C(X)

by Theorem
2.4, ¥R were B-compact, then X would be B-compact by

Theorem 7. 3. Hence RC(X) is not B-compact,

As a final remark with respect to example 9. 6, note that the
measure m defined there has no extension to a measure on Bo(T'). For
if it did, then the restriction of this extension to the discrete space D
would be a measure defined for all subsets of D which would vanish on
the points of D and which would be 1 on D, Thatis, D would have a
measurable cardinal. But if one assumes the continuum hypothesis,
the cardinal of D is non-measurable,

Before proceeding to the next chapter, a few remarks are in
order with respect to the space C(X) of all continuous functions on X.
It is clear that the notions of being a B-integral or being B-normal can
easily be defined for elements of [C(X) ]N. It is then natural to ask
when B-integrals are B-normal in this new setting. It will be seen that
a complete answer to this question canbe given. (See [97.) The fol-

lowing theorem is given in [157, Note XVa.

Theorem 9.9. I p€ [C(X) ]N, then ¢ is a B-integral.

Proof: Assume that 0 < ¢ € [C(X)]". Let {un} < C(X) with
un(x)io for all x € X, It mustbe shown that @(un) 1 0. Hence assume
= - + :
that (p(un)icx >0. Setv =(u, a/2)*. Then {vn} € C(X) and v (x)10

for each x € X, Infact for each x € X, there is an n(x) € N such that
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vn(x) =0 for n= n(x). Itis easy to see that

v = 2 v ECX) .
n
n=1

However,

K K a a
@(V) = Z (p(Vn) 2 Z > = K"‘é‘ ’
n=1 n=1

for each K € N. This implies that ¢(v) = « which is a contradiction,

Hence ¢ is a B-integral,

If X is not realcompact, let X € uX-X, By Theorem 2,4,
cach u € C(X) has a uniquc extension u € C(uX). Define @(u) = E(xo)
for each u € C(X). Then ¢ is a B-integral by Theorem 9. 19. However,
¢ 1is not B-normal since its restriction to C*(X) is not B-normal.
Thus, as in the case of C¥*(X), a necessary condition that all B-
integrals on C(¥) be B-normal is that X be realcompact. This is

also sufficient in the present case,

Lemma 9. 10, Let 0<¢ €[C(X)] . For each 0 su ¢ C(X),

there is n(u) € N such that ¢ (u) = ¢ (inf{u, n}) for n = n(u).

. = + = : :
Proof: Set u, = (u-n)T40 and let (p(un) =a 2 0. The claim
is that ¢, = 0 for n = n(u). If this is shown, then u = inf{u,n) + u
implies that ¢(u) = ¢{inf(u,n)) for n = n(u).
Hence assume that a, > 0 for all n € N, Let W € C#(X)
with 0 <w < l/an, W= 0 on {x:u(x) £n-1}, and W = l/an on

{x:u(x) 2 n}. Then
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o]
w= 2 w_-u€C(X).
n=1 7

But w_-+u = u /a_ and hence,
n n'"n

k k 1
¢ (W) zzw(wn-u) > 2 T <p(un) =k .

n
Thus ¢(w) = ® which is a contradiction,
The above lemma is due to Gould and Mahowald, [(97.

Theorem 9. 11, Let X be completely regular. The following

are equivalent.

(i) X is realcompact,

(i) All B-integrals in C(X) are B-normal.

(iii) Every functional in [C(X)] is B-normal.

Proof: (ii)=>»(iii)., This is a consequence of Theorem 9.9.

(iii)=> (i). This has been observed above,.

()= (ii). Let 0< ¢ € [C(X)] be a B-integral. By Lemma
9. 10, it is enough to show that the restriction { to C*(X) is B-normal.
If it is not, then without loss of generality, assume { is entirely with-
out support. The extension };- of § to C¥*(pX) ‘has a support which
contains a point Xy € pX - X,

Since X is realcompact, there is 0 < u € C(X) with
ﬁ'(xo) =+ o, Thusif W= {x€gX:u(x) >n}, m(W) >0 by Theorem 6,1
where m is the measure on 3X associated with ; Hence ;p((u-n)'*') >0
for each n € N, Thatis p(inf(u,n)) < ¢(u) for all n € N, This contra-

dicts Lemma 9, 10,
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PART IV

APPLICATIONS
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CHAPTER X

THE KOLMOGOROV CONSISTENCY THEOREM

In this section a generalized version of the Kolmogorov con-
sistency theorem of probability theory will be proved. First recall the
classical theoreﬁn due to Kolmogorov.

If S is an abstract set, a cylinder setin Rs is a subset
AERS for which there exists a finite set F © S5 and a subset B ERF
with A = n;‘l [B]. (nF denotes the projection mapping of RS onto RF.)
If B is a Borel setin RF, then A is said to be a Borel cylinder set.
Let 22 denote the r-algebra generated by the Borel cylinder sets in

RS. The following is the theorem due to Kolmogorov,

Theorem 10. 1. Let S be an abstract set. For each finite

FCS, let m_ be a Borel measure in RF. Furthermore, for GCF,

F
assume that mG(A) = mF(Tr;:G[A]) for each A € BO(RG). (

", G
denotes the projection mapping of RF onto RG.) Then there is a

unique measure m defined on 2J in RS such that the projection of m

on RF _1_s_ m.. for each finite F = S.

F

This section will be devoted to showing that Theorem 10, 1
can be generalized by replacing R by a general locally-compact, B-
compact space. However, some care must be taken since in the gen~

eral case the Baire sets and the Borel sets may not coincide,
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Let {Xa :o € S} be a family of completely-regular topological
spaces and let X = H{Xa:a €S}. ¥ FcCS, then T Will denote the

projection mapping of X onto X = H{Xa:u € Fj.

Definition: Let A C X, A is said to be a Borel (Baire)

cylinder set if there is a finite set F C S and a Borel(Baire) set B EXF
such that A = n%\l[B]. BoC (BaC) denotes the family of Borel (Baire)

cylinder sets in X,

Definition: Let A € BoC (A € BaC), If F is the smallest sub-
set of S for which there is B € Bo(XF) (B € Ba(XF)) with A = ni_,l[B] s

B is said to be the base of A, -

It is clear that BoC and BaC are both algebras of subsets of

X and that BoC € Bo(X) and BaC c Ba(X).

Lemma 10. 2. Let {X, :k € N} be a sequence of locally-

compact, B-compact spaces and let X = [[{X, : k€ N}, Let m be a
P P k — —_—

non-negative, finitely-additive set function on BaC., Then the following

are equivalent,

(i} m is countably-additive on BaC,

(ii) For each n € N, m is countably-additive, where m_ is

——

the projection of m on the space Yn =1 {Xk: 1<ks<n},.

Proof: (i)=»(ii). This follows immediately.

[s<}

ii)y=>(i). Let {A } ©BaC with A=U A € BaC and
2 = - )

AzﬁAkng for k# ¢. Then B =A—UA£€BaC and Bk¢¢. It is

k
enough to show that m(Bk)JvO. Hence assume that m(Bk)iq >0, Itwill
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be shown that this implies [ B £¢ and the theorem will be proved,.

By Corollary 8. 6, m is net-additive., Each Bk has a base
1

Bk-(-:-Yn(k) for some n{k) € N. Since Yn(k) is locally-compact, by

Lemma 8,1 there is a compact zero-set G in Y such that
n(k) n

! : kit 1
CGn1g S Bre 288 Wy (B <mpag (Gppg) +a/277

. a1 . .
Define K, = T (k) [Gn(k)]' Then it is clear that Kk is a

(k)

compact-like subset of X and KkE Bk‘ Furthermore, Kk_C_Z BaC.

Hence

=1 2 fz)
k 1
= 2 g By Gagy)

k
It follows that m(ﬂ KJJ > rn(Bk) ~-q/2>q/2. Hence {Kk: k € N} is a

family of compact-like sets with the finite intersection property. Thus
«© <« o
by Lemma 8.8, N K, ¢, But ¢ # 'WKkEﬂ Bk and the proof is

complete,

Theorem 10. 3. Let {XCL ;o € S} be a family of locally-

compact, B-compact spaces and let X = [] {Xa:a €S}. Letm bea

non-negative, finitely-additive set function on BaC. Then the following

are equivalent,
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(i) m is countably-additive on BaC.

(ii) For each finite set F €S, m., is countably-additive.

F
(rnF is the projection of m on XF =1 {Xa:a € Fi}.

Proof: (i)=>(ii). This is obvious.
(ii)=>(i). Let {Az} C BaC. As above it is enough to show

that A2¢¢ implies that m(Az)io. But each A, has a base A:Z in

=T . 3 31 - . J
XFz l‘{Xa'aEFZ}’ where F,@,-C-S is finite, Set F U{FE.I,EI\}.

If mp is the projection of m on XF = H{X(x:c@ € F}, then mp is a non-
negative, finitely~additive set function on BaC(XF). Furthermore,
since the projection me of mp on XG is the same as the projection

of m on XG’ ™M is @~additive for each {inite G c F. Hence by
Lemma 10, 2, mp, is countably-additive., Thus, if Bz € BaC(XF) with
base A,lﬁ’ then Bj&l@ . Hence m(Aﬂ) = mF(Bz)J, 0 and the proof is

complete,

In the generality considered in this chapter, two consistency
theorems may be formulated-~one for BaC and the other for BoC. Both

types will be considered.

Definition: Let X =1 {Xa:a € S}. For each finite F C S,
let a non-negative, finitely-additive set function mp be defined on
Bo(XF) (Ba(XF)). The family {mF: F © S is finite } is said to be

Borel consistent (Baire consistent) if for every finite F C€ S and every

GE F, the projection of mg on XG is mq.

Theorem 10,4, Let X =1I {Xa:a € S} where XOL is locally-

compact, B-compact for ¢ € S. If {mF: F &85 is finite} is a Baire
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consistent family of Baire measures, then there is a unique measure

m on BaC such that the projection of m on XF is W for each finite

Fcs.

EEES_‘E: Let A € BaC, Then there is a finite I’ < S and
A' € Ba(XF) such that A = 11%,1 [A']. Define m(A) = mF(A‘). By the
consistency condition m(A) is independent of the choice of F, Further-
more, m is a fihitely-additive set function on BaC. Indeed, let Al'
A, € BaC with Al n AZ =¢. Choose F C S finite such that there exists

1 . =10 v . t ro_
Ay € Ba(XFi) with T [Al] = Ai’ i=1,2, Then Ay N A, =¢ and hence

. ! !
m( Al U AZ) rnF(A1 V AZ)

mp(A)) + mp(AL)

m(Al) + m(AZ) .

Finally, it is clear that, for F € S finite, mp is the projection of m on
XF' Thus by Theorem 10, 3, m is countably-additive., The uniqueness

is obvious.

Let X =1 {Xa,:a € S} where X is completely-regular., A
finitely-additive set function y on BoC will be called regular if for

each A € BoC, u(A) = sup {u(G):G € BoC and G is closed in X}.

Definition: y will be called net-additive if for every down-
ward directed family {GT} € BoC such that GT is closed and GT¢¢,

then (GT) ‘0.
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Lemma 10.5, Let y be a regular, net-additive set function

on BoC. Then there is a unique, net-additive regular Borel measure

A on X such that j is the restriction of A to BoC,

The proof of this theorem is exactly the same as the proof of
Theorem 5.4. All that was needed there was that the u-sets formed a
basis for the topology. Since the open cylinder sets form a basis for
the topology of X = H{ch :q € S}, the same proof is valid with the open

cylinder sets replacing the u-sets.

is a locally~-

Lemma 10,6, Let X:H{Xk: k € N} where i

compact, B-compact space. Let |, be a finitely-additive set function

on BoC such that the projection u, on Yn =1 {Xk: 1 <k<n}]is a net-

additive regular Borel measure, Then there is a net-additive regular

Borel measure A on X such that  is the restriction of ) to BoC.

Proof: Since My is regular for each n € N, |, is regular,
If it can be shown that p is net-additive, then the result will follow
from Lemma 10,5, Hence let {GT}TET c BoC ‘be a family of closed
sets directed downward with GTJ, ?. Without loss of genérality,
assume that finite intersections of elements in {GT] are again in {GT} .
For each n € N, let E]n denote the set of bases of those Gq_
with base in Yn‘ Then &n is directed downward to a closed set

. . . Lo -1
Hn_C_Yn. Furthermore, since W, is net-additive, if Gn =T [I—In],

w(G) = p_(H ) = inf {yu (G):G ean}

inf {“f(G'r) : G'r has a base in Yn} .
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Hence,

inf{p,(Gn):nE N} = inf{u(GT):'r €Ty.

It is thus enough to show that p(Gn)‘VO.

Assume I_L(Gn)ia > 0. Since Yn is locally compact, there is

; ntl _ -1
a compact set Lng H]_1 with 'L”n(Hn) < “Ln(Ln) +q/2 . Let Kn =T

[Ln]. Then Kn is a compact-like setin X and

£ 2

M(Gz -n Kn) > 2 p,(Gn-Kn)>a,/2,
n=1 n=1

Hence

L
N Knaécb.

n=1

Since {Kn: n € Nj is a family of compact-like sets with the finite inter-
<)

section property, N K_ #¢ . Butn K SNG < n{ GT:T € T} =¢ . This

is a contradiction, and the lemma is proved.

Theorem 10,7, Let X = H{Xa:a € S} where XOL is locally-

compact, B-compact for o €S. I {p,F:F €S is finite} is a Borel

consistent family of regular Borel measures, then there is a unique

measure . on BoC such that the projection of y on XF is B for each

iinite F C S,

Proof: Let A€ BoC, Then there is a finite FcS and an
A' € Ba(XF) such that A = ﬂ%.l[A’] . Define u(4) = pF(A'). By the
consistency condition y(A) is independent of the choice of F, As in

Theorem 10.4, |, is a non-negative, finitely-additive set function on
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BoC. Furthermore, it is clear that for FC S finite,

e is the projec-

tion of  on XF’ All that is left is to show that , is countably-additive,
Let { A } S BoC with A l¢. Each A has abase A'z in
XF£ = H{Xa:o(, € Fz} where FESS is finite. Let R = U Fz and let

IR be the projection of y on XR. For F CR finite, g is the pro-
jection of pp on XF. If it can be shown that Lp is a net-additive, reg-
ular Borel measure on XF’ then by Lemma 10. 6 that BR is a measure,
Hence M(Aﬂ‘) = MR(-.TR[A £])¢ 0 and the result will follow,

The claim is that b is @ net-additive, regular Borel

measure on X.. Indeed, the restriction mp of up to a(XF) is -
additive. Since XF is B~compact by Corollary 8. 6, mp is net-

additive, Hence W is the unique regular Borel extension of mp by
Corollary 5. 10. Hence T is net-additive by Theorem 5. 4 and the

proof is complete,
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