ELECTRIC DIPOLE RADIATION IN

ISOTROPIC AND UNIAXTIAL PLASMAS

Thesis by

ety '
John J% Kenny

In Partial Fulfillment of the Regquirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1968

(Submitted April 19, 1968)



—ii-

ACKNOWLEDGMENT

The author wishes to express nis indebtedness to his
advisor, Professor C. E. Papas, for his guldance and encourage-

ment throughout the course of this research.

The author acknowledges with thanks a number of helpful
discussions with Dr. K. 3. H. Lee and Mr. P. A. McGovern.
Special thanks are extended to Mrs. Ruth Stratton who typed the
text and to Mr. R. . McCormack for his assistance in editing
the manuscript. The author is grateful for the generous finan-
cial support he received through a Howard Hughes Doctoral
Fellowship awarded by the Hugncs Aircraft Company.

The patience, encouragement, and assistance of the

author's wife, Dianne, are appreclatively acknowledged.



~iii-

Electric Dipole Radiation in Isctropic

and Uniaxial Plesmas

ABSTRACT
This paper describes an investigation of radiation from an

“electric point dipole situated in a colid, collisionless, homogeneous,
electronic plasma medium. Two limiting cases of a gyrcelectric medium
are studied. The magnetostatic biasing field Eo is first taken to
be equal to zero, making tne medium isotropic, and then it is taken to
be infinite, causing & uniaxial anisotropy. The retarded electromag-
netic fields and the instantaneous and averaged values of irreversibly
radigted power Pirr are calculated.

In each medium, the partial differential egquallons resulting
from the two;sided Laplace transformation of Maxwell's equations with
an oscillating electric dipole source and the constitutive equations
(derived trom the appropriate form of the Lorentz force equation) are
solved. A particular path deformation of the Laplace inversion inte-
gral feveals that the electromagnetic fields and Pirr are exactly
expressible in terms of circular, cylindrical, and two-variabled
Lommel functions. Asymptotic expressions and graphical resuits of
numerical calculations of these quantities are presented.

For the isotropic case, it is shown that the retarded fields
are well behaved for all space and time (excluding the origin, of

irr

course). P eventually setties down to the result derived from the

conventional time-harmonic analysis when the dipole oseillation
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frequency W is greater than the plasma frequency mp . Wnen the

value of wo is less than that of wp R prrr

eventu31ly oscillates
at a frequency 2wo with zero average value.

Wnen the medium is uniaxial, the fields are finite.everywhere
except at the dipole. The amplitude of the fields does, however,
" increase with ilncreasing time. This is quite different from the
ordinary time-harmonic solution which ignores all time variations dif-
ferent from emlwQt and which 1s singular on a conical surface
defined by © = arcsin wc/wp for w < wp . The value of piTT ip
a uniaxial medium is found to be equal to the value of Pirr of a
dipole in vacuum. It is also shown that the so-called conventional
expression for time-averaged radiated power will not give a sensible
result since it contains the retarded electric field which never
settles down to a steady-state variation with time. The quantity
Hirr

I , on the other hand, does not increase with time, oscillates only

at the source frequency, and has a well-defined time average.
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1. INTRCDUCTION

In recent yecars radic communication with artificial earth satel-
lites and missiles in the ionosphere has led to an interest in
radiation from sources in gyroelectric media. This has led several
investigators to study this phenomenon.

Using the dyadic Green function method, Bunkin (1) found formulas
for the radiation field of a time-harmonic curreﬁt distribution in an
arbitrary electrically anisotropic medium. Restricting the anisotropy
to ﬁhat of a gyroelectric medium, Bunkin obtained explicit expressions
for the Hertz vector in the far zone, expanded the fields in multipoles,
and finally found the far-zone electric field of an electric dipole.
Although his work represents a great achievement in the development of
the theory of radiation from sources in anisotropic media, Bunkin
failed to recognize in his far-zone calculations the possibility of
multiple stationary-point contributions.

H. Kogelnik (2,3) was the first to investigate the radiation
resistance of a point electric dipole in a gyroelectric medium. He

nsed the expression

Py =-%re | ¥ - L@ @ (1.1)
! _
e}

X toL
to calculate the time-averaged radiated power (P>. E?u is the elec-
tric field which satisfies the field equations with source current J
and which represents an outgoing wave. The asterisk on J denotes

complex conjugation; Vo is the volume enclosing the current J . The
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radiation resistance is then defined by the relation

2(2)

R = m | (1.2)

‘g

To relgte this resistance to an input resistance of the dipole, a
current distribution must be chosen; I is then the input current.
This method which he used will be refcrrcd to as the conventional
method of calculating radistion resistance.

Meecham (4) investigated the VLF properties of the radiation from
sources in gyroelectric media by following the Green function method.
He found the electric field of a magnetic dipole in such a medium when
the source frequency is much less than the plasma and gyrofrequencies
of the electrons but is greater than the ionic plasma and gyrofre-
quencies.

Kuehl (5,6) studied the radiation fields and resistance of an
electric dipole in a cold, anisotropic plasma. His methods were
similar to those of Bunkin, but he corrected some errors made by
Bunkin. Kuehl found expressions for the far-zone electric field of
an electric dipole in directions both parallel to and perpendicular
to the static magnetic biasing field goyfor an arbitrary gyroelectric
medium. In the low-frequency limit he gave expressions for the far-
zone electric fields produced by point electric dipoles parallel and
perpendicular to Eo and by a linear current in the direction of 50 .
In the uniaxial case; i.e., for an infinite gyrofrequency, the elec-
tric and magnetic fields and the Poynting vector were found for

electric dipoles parallel and perpendicular to §0 . On the basis of
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an infinite value of the Poynting vector on a conical surface, Kuehl
concluded tha£ the radiated power is infinite when the source fre-
quency is less than the plaéma frequency. This conclusion was based on
the unjustified assumptions that the fields are time-harmonic and that
the dilvergence theorem relationship applies.

At the Symposium on Electromagnetic Theory and Antennas aeld in
Copenhagen, Denmark in 1962, several important'papers on the subject
under discussion were presented. Arbel and Felsen (7,8) reported on
their analysis of radiation from sources in anisotropic media via a
modal procedure. They refined earlier asymptotic evaluations of the
far-zone tields by employing the steepest descent method rather than
the stationary phase method. They also studied the problem of a
dipole radiating in a gyroelectric medium, with particular attentipn
to the properties of the dispersion curves and the singular field
‘oehavior near the boundary between regions of propagation and non-
propagation. Like Kuehl, they concluded that a point electric-dipole
source will radiate infinite power if such boundaries exist, They noved
the similarity of the field behavior in the neignborhood of one of
these boundaries in a gyroelectric medium to the field behavior at the
boundary between propagating and nonpropagating regions in a uniaxial
medium (EO = ), Arbel and Felsen also gave the steady-state solution
for the fields of a dipole in a uniaxial medium at an arbitrary dis-
tance from the source.

Ciemmow (9) reported his findings regaerding radiation in uniaxial
media. By a scaling procedure, he obtained the fields of a dipole and

of a uniformly moving point charge (parallel to the infinite go ).
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Kogelnik and Motz (10) extended Kogelnik's previous work (11) to
include radiation from magnetic as well as electric currents. Using
a method developed by Lighthili (12), they derived formulas for the
far-zone electric field and showed that the time-averaged Poynting
vector is parallel to the group velocity.

Mittra and Deschamps (13) showed that the exact evaluation of the

fields of a point dipole in a gyroelectric medium could be reduced to

elementary functions and a double integral having a finite range.

Walsh and Weil (14) obtained expressions for radiation resistance
that are based on Kogelnik's work. Balmain (15) calculated the
impedance of a short dipole in a gyrocelectric medium by employing
quasi-static techniques. Staras (16) evaluated the radiation résis—
tance of an electric dipole with finite dimensions in such a medium.
In all of the investigatiocns just cited, it was assumed that after' a
long time the fields eventually settle down to a steady state given
by the time-harmonic solution and that ZEqs. 1.1 and 1.2 should be used
in calculating radiation resistance.

A study of the transient behavior of electromagnetic waves in
plasﬁas was simultaneously under way. The responses to plane waves
ineident upon half spaces of isotropic (17,18) and anisotropic (19)
plasmas were obtained as functions of time. One of the motives For
this study was to use the transient "ringing" of the medium as a
diagnostic technigue. Deering and Iejer (20) were interested in
resonance effects in a warm gyroeiectric medium. They calculated

the fields due to a pulsed electric dipole in the asymptotic limit of

long timeé.
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Recently S. Lee and Mittra (21) reported their solution for the
fields generated by a switched-on, sinusoidally oscillating electric
dipole in a uniaxial medium. Their solution is both erroneous and
misleading. They impose a short rise time 7T on the oscillation of
the source, perform a Laplace transformation, and then take as their
source term a two-term asymptbtic expansion in 1 at 1 + 0 . This
asymptotic expansion is not uniform with respect to the transform
variable and after inverse transformation it bears little resemblance
to the original time variation of the source. They solve and interpret
the problem in terms of potentials. The asymptotic behavior of these
potentials is very different from that of the fields. The processes
of obtaining an asymptotic expression and of deriving fields from
potentials are not commutative. Whereas the potential is well behaved
with increasing time, the amplitudes of the fields increase with time.
Papas and K. Lee (22,23) introduced to the engineering community
a new theory for calculating radiation resistance based on the time-
irreversible power radiated by & current distribution Pirr. In terms

of time-harmonic quantities they use, instead of Eq. 1.1,

irr 1_. 1 ,_out in * oy

(P )-——ReJE(E - EN) - gboav (1.3)

A

o

and then they would use
2<P1rr>
R = e (1.4)
|z, |2
w

instead of Eq. 1.2.
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According to this theory, radiation resistance depends on < Pirr> and
not on < P) . ( Pirr> depends both on the outgoing and the incoming
electric fields. These authors demonstrate the invariance of ( Pirr)
under a time-reversal transformation, thus the superscript irr for
irreversible.

The literature publishéd to date has not questioned the validity
of the use of time harmonic analysis in studying radiation in gyroelec~
trie media. Furthermore, a unanimous decision regarding the relative
merits of the conventional and the Papas-Lee theory has not been
reached. In this paper the fields in isotropic and uniaxial media
are evaluated as functions of time and thﬁs the relationship between
the exact and the time-harmonic fields can be established. From these
fields <:Pirr> is calculated. The simplicity of these calculations
is contrasted with the complexities which would arise in the calcuia—
tion of <fP> . It is shown that in a uniaxial medium <IP> would
always be infinite for a point dipole, whereas <:Pirr> is always

finite.

Statement of the Problems

The two problems solved in the following discussion are concerned
with the radiation due to point electric dipoles in isotropic and
uniaxial media consisting of cold, collisionless, homogeneous, elec-
tronic plasmas in which a z-directed static magnetic biasing field
takes on the values B, = Og, (isotropic) and Eo = we, (uniaxial).

The origin of a rectangular coordinate system is located at the dipole.

The directions of the dipole, biasing magnetic field, and positive



z-axls are the same; see Figure l.l. Cylindrical and sphnerical coor-

dinate systems are aiso shown.

z A
Og, ISOTROPIC
we, UNIAXIAL

(B

Figure 1.1 Configuration and coordinate systems for the

two radiation problems

in each problem the retarded electric anc magnetic fields are
evaluated, and tae amount of power lrreversibly radiated by the dipole
is calculated.

The dipole is taken to be parallel to Bo so that considerations
of how current can flow perpendicular to an infinite magnetic flield do
not enter into the problem. It is believed that the uniaxial medium
retains some important characteristics of a gyroelectric medium. From

an examination of the existing time-harmonic solutions in both media,
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it can be seen that there can be directions in which propagation can
take place and others in which it cannot. On the boundaries between
such regions the time-narmonic fields become infinite. From a study of
radiation in a uniaxial medium this effect should become better under-
stood in a gyroelectric medium. Of course, the gyration or Faradéy
rotation effects are lost in passing to.the limit of. Eo going to

infinity.
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2. IRREVERSIBLE POWER AND RADIATION RESISTANCE

In this chapter the connection between irreversible power and
radiation resistance will be established. Also the computational
advantages of using this method will be discussed.

The time-averaged power radiated by a current distribution can
be calculated either by using the Péynting vector method, according to
which one integrates the normal component of the Poynting vector over a
surface enclosing the source, or by means of the induced emf method in
which one integrates the work of the current distribution on Lhe fields
throughout the source region (24). The Poynting vector method often
takes advantage of the simplifications which result from performing
far-zone calculations. In dispersive or dispersive anisotropic medis
the expressions for the far-zone fields may be extremely complicated.
In addition, one may have difficulty with nonuniformity of the limits
R > » (to be in the far zone) and t » ® (to establish a steady-
state). For these reasons it seems preferable in the present investi-
gation to use the emf method.

‘The conventional formulas for time-averaged radiated power

that are used in the induced emf method are

() = -<J E(r,t) + J(r,t) dv> (2.1)

v
o}

in time domain calculations, and

(p) =~ %—Re J_E_w(g_,t) . g:(;_,t) av (2.2)

v
0
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in time-harmonic analysis. The symbol.< > denotes time-averaging
over a period of the source frequency. Vo is the region of space
occupied by the source. All quantities having a subscript w are
phasors. Most investigators have used the retarded and outgoing
fields in Egs. 2.1 and 2.2, respectively. Such choices for the fields
used in the computations can lead to difficulties, even when the cur-
rent distribution is situated in vacuum. If the spatial dependence of
the source is described by a Dirac § function, the integrals in Egs.
2.1 and 2.2 diverge. However, 1f the source is periodic in time and
if time averaging is performed vefore the volume integration in Eq.
2.1, the resulting time-averaged power is finite. Equivalently, in
time-harmonic analysis, it is the imaginary part of the integral in-
Eq. 2.2 which diverges.

This difficulty can be overcome by modifying Egs. 2.1 and 2.2 to

(2= [(F0) - aze)) av 23
, A
and
. x rout . ¥ .
(p) =- 5 \J, Re{E_w (r) g.w(;)} av (2.L%)
(e}

respectively. The result of any calculation of time-averaged power by
means of these formulas for periodic sources of finite or infinitesimal
size in a vacuum is the same as the result obtained by the Poynting
vector method. In a vacuum taking the real part of the integrand per-
forms two operations at once, i.e. averaging, and the eiimingtion of

the self-reaction of the current upon itself. It appears that this
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second operation is not performed in some anisotropic media.

As a clue to finding a formula which eliminates self-reactiocn,
we look into the calculation of the vpower radiated from an arbitrarily
moving point-like charged particle in vacuum. Averaging loses meaning
for such a source current, and the radiated power based on retarded
fields alone (not averaged) as a function of time diverges. This
question was studied and resolved by P. A. M. Dirac (25) by using his
ragiation field E % = 1/2 (2"~ %) = one helf of the difference
between the retarded and advanced electric fields instead of only the
retarded electric field when calculating the power actually radiated Dby
the particle. Dirac's scheme of using the radiation field results in a
finite radiation reaction for an accelerated point charge in free space.
The power radiated by a current distribution based on Dirac's method is

invariant under a time-reversal transformation and is denoted by

Pirr<t) ]

P (t) = - J é(ErEt(z,t) - E_adv(g,t))-_{(;_,t) av (2.5)

This invariance property means that if one observes this process in a
freme of rcferencc. K' whose time coordinate is reversed with respect
to that of frame K(t'=-t), he then sees that the radiated power in
the X' frame Pirr'(t') equais Pirr(t). Corresponding to Eq. 2.5, we

have, in terms of time-harmonic guantities

Py = Lre - J L%y - B2 @ @ (26
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The relationships among <:Pirr> ,<1P> and radiation resistance
must now be found. The radiation resistance of an antenna is that
value of ohmic resistance which would dissipate an amount of power
equal to that radiated by the antenna, when both have the same current
applied. Because we think of radiation resistance in terms of an
equivalent resistance, it must possess the same time symmetry as a
resistance, i.e. it must be invariant under time reversal. The con-
ventional expression for radiation resistance is

Rraa = 21L%}> (.7)
1]
The expressions for <IP> » Egs. 2.3 and 2.4, possess no special time
syrmetry, although for some simple media and vacuum the value of < P)
is invariant under time reversal. In these exéeptional cases Eg. 2.7

defines a meaningful radiation resistance. We can, however, write

(P = (PM*TY + (P™V) | (2.8)

(P) and <P1rr> are defined by Eqs. 2.4 and 2.6, respectively.

These imply that

rev 1 1, _out in *
- R | 3 . .

(FY) = - dre | M) + 5B 2 av (2.9)
v
o]

Similar expressions can be written for time-dependent fields and cur-

rents. <PreV'> often equals zerc, but in a gyroelectric or uniaxial

medium it may not be. In a lossless gyroelectric medium it has been

shown that (Eﬂlq.> is invariant under time reversal and < Prev>
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reverses its sign under that transformation (26). A radistion resis-
tance based on ( P) when <:Prev> # 0 1is unacceptable according to the
considerations above. Therefore only <E}IT.) is used in the expression
for radiation resistance,

2< PlI‘I‘>

Rrad = —T;TE——— (2.10)

t will be seen later that the volume integration in the calcuia—
tion of Pirr(t), which will be performed in both isotropic ard uniaxial
media, is quite simple, and the subsequent time—averaging is not too
complicated. The conventional method would require that time-averaging
of the product of the current and the electric field be performed before
the volume integration, Eq. 2.3. This would be g formidable task in
view of the complicated time variation of the fields, as will be obvious
once those fields are found. Thus this method, in addition to its
theoretical foundation, is also easier %o use.

In summary, it has been noted that in some complicated media the
conventional method for the calculation of radiation resistance can
result in an answer which is not invariant under time reversal. The
method based on Pirr’ on the other hand, will always yield a resuls
which is invariant under time reversal, at least for a gyroelectric
medium and its limiting cases, i.e. uniaxial and isotropic plasmas,

simple media and vacuum. The computations involved in this method are

also easier to carry out than those of the conventional method.
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3. RADIATION IN AN ISOTROPIC PLASMA

We first consider the radiation by an osecillating point dipole
in an isotropic, cold, lossless, homogeneous, linear, electronic plasma.
The mathematical methods used in solving for the fields in this medium
and for those in a uniaxial medium are the same, but in this case the
expressions are far less complexX.

The field quantities obey Maxwell's equations, i.e.

YxE = -3 (3.1)
VxE = J+D (3.2)
VeB =0 (3.3)

VeD = p (3.4)

A dot above a quantity denotes partial differentiation with respect to
time. The field quantities are further interrelated by constitutive
relations

B = ui (3.5)

D= ¢ E +P (3.6)

The electric polarization P has been introduced to account for the
interaction of the field with the medium. P can be related to the
electric field.

The plasma is composed of neutral molecules, free electrons and
positive ions. It is assumed that the neuural molecules contribute
nothing to the polarization. Also, the ions are assumed to be s0

massive with respect to the electrons that their contribution to the
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total polarization will be negligible compared with that of the elec~

trons. Therefore the polarization will be

P(r,t) = Ng &(r,t) (3.7)

where N is the free electron density, g is the electronic charge,
and E(r,t) 1is the displacement of an electron at time t from ite
mean position r . The equation of motion for & mnow follows from

Newton's second law and the Lorentz force equation.

Mg = No(E + £ x B) , (3.8)

where m 1s the electron mass. Linearizing Eq. 3.8 and making use of

3.7, one obtains the desired relation between P and E .
P = ¢ u E (3.9)

where wp = /qu/meo is the plasma frequency.

Taking the curl of 3.1 and using Egs. 3.2, 3.5, 3.6 and 3.9

yield
2
1w W .
X X + — + — = - .
vV x (V xE) sE+SE W L (3.10)
C C
waere c2 = l/poco . One more equation is requircd for the scalariza—

tion of this vector egquation. Taking the second time derivatives of

Egs. 3.4 and 3.6, and then substituting Eq. 3.9 give

V-E+m2V-E = p/eo : (3.11)
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Equations for B have not been sought, since B can be found from
Egq. 3.1.

The source, an electric point dipole, has a moment which is a
turned-on sinusoid of amplitude p and is z-directed. It is repre-

M - e i t I'I t 8 P4 _)012

Here &{(r) is the three-dimensional Dirac & function and H(t) is
the Heaviside unit step function. The source current J and the

charge density p are related to M by

M(x,t) = e, Pu,cos wot H(t) &(x) (3.13)

il

J(zr,t)

Cp(r,t) = - V. M(z,t) = - psin w_t H(t) —g—; §(z) (3.1k4)

Two-sided Laplace transformation with respect to time is now per-
formed, assuming that, at a fixed position in space, the fields are
identically zero before some fixed time. If A(t) is the function of

M
time under consideration, A(s), defined as

A(s) = J Alt) e_St dt (3.15)
-0
is ils lwo=-sided Laplace lransform. Subject to a few rather minor

restrictions, the original function A(t) is recoverable by means of

the inversion formuls

|-

A(t) =

= [ Als) %% as (3.16)
T
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I' 1s the straight-line path ¢ ~ i® to o + i» , and the path lies in
the strip of convergence which, in the problems under study, is Lhe
entire right-hand s-plane (27), i.e. o > 0 .

The resultsof this transformation of equations 3.10, 3.11, 3.13

and 3.1k are

2
A S + w A ~
Vo (Vo< E(z,s)) ¢ —5 R E(r,s) = - us d(x,s) (3.17)
cC
A 52 ~ .
Ve E(z,s) = ——F—5=o(rs) - (3.18)
e (s7+ w)
" p w8
d(r,s) = e, % 6(r) (3.19)
and ©
A -pWw
plrss) = 52 & o(z)  (3.20)
s + W,

respectively. By using the vector identity Vx{VxE) = —V2_113_+ (V. E)

these equations give, suppressing the arguments r and s ,

2 2
U pw s pWw_ S
Q- © o} )
e, 25 8- 752 5" 3 (3.21)
s+ w e (8+ W) (s%+ wT)
o) 0 o o)

This vector eguation can be considered as three separate partial dif-
ferential equations, one for each of the three cartesian components of

E . The scalar equations are of the form

vt - Kr = - g(x) (3.22)
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" The solutions of 3.22 are

. “ +K|r-z'|
r,s) = j glz,s) e av' (3.23)
v lJ-TTl_r_‘-I_'l
[o]

It has been assumed that the source term é(;) is nonzero only within

a finite volume VO and that the observation point lies outside VO

L 52+ w2 « The
c P

Square root is defined to be positive for real, positive s. For the

A comparison of Egs. 3.21 and 3.22 shows that K =

purposes of the exact inversion technique the definition of the square
root will be continued into the left half plane by Egs. 3.2L4 and Figure

3.1.

Imis) —i—(aﬁ + @)
Js%+ wf] =@e2 1 "2

iy |
" S Lleyg 3
B, 2 1,2 2
Re(s)
b,
‘iwp‘

Flgure 3.1 A definition of

82+ L;)2

P

Inversion of Eq. 3.23 by means of Egq. 3.16 gives

st 2=
c

* 1 B(zhe) o ' (3.25)
£ (r,t) = ==~ J J av' ds
r

L
R brlr - 2t
o]
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By reversing the order in which the two integrations in Eq. 3.25
are performed and by closing the contour T with an arc of infinite
radius in the right half s-plane, one finds that f+ is zero for
t o< - %-times the maximum of [r-x'| , r' within V_ . Similarly £~
is zero for t < %— times the minimum of |r-zx'] , ' within V_ .
f+ and f  are, respectively,solutionséonverging onto and diverging
from the source. They are therefore the advanced and retarded solutions
of the second order partial differential equation from whicah Eg. 3.22
is obtained. If the source is point-like, one solution can be obtained

from the other by a replacement of ¢ by -c .

We are now in a position to find the retarded solution of Eg.

3.21 E%%(r,s) . It is
2
s + w
5 - |-z |
“ret Moo S e ¢
E - r.s) = - —
T2 w2 |z - z']|
o V - =
o]
c2 -, 9
» [gz sz - 52— v 2 s(;_')} & (3.26)
s + wp

Carrying out the indicated integration throughout the volume VO

results in

r 2 2
2 YA
“ret uowop s e
_E_ ('I-."S)=—}-l-'n' E’Z I'
S + w
) _;_52+w2
L Rty (3.27)
-3 Y Y " 3.27
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After performing the differentiations and expressing the components of
~ret

B in spherical coordinates, we have
: r fe, 2z
~ret HoWoP 52 C c2 TcVvs T
Er = I 5 5 2 cos @ + e
S + wo r2 32_‘_ we r3(52+ w2)
P he
(3.28)
r 2 2
nr H WD 2 2 - =ys +t w
Eaet - oh; S sin O %_+ c + c ) e c P
st r2 s + w2 ) r3(s + w2)
Y b
(3.29)
Aret
E¢e = 0 (3.30)

To obtain an expression for @?et, we Laplaceftransform Eq. 3.1.

v x ;E’_ret(_r_,S) = - SErEt(_z;,S) : (3.31)
AI‘
Since E¢‘ and all § derivatives are equal to zero,
: aéret
ret 1 113 .. orety x
E T T s §¢ r {Br(r EQ ) e ] (3.32)
Thus we find that
B = 0 (3.33)
r
£SEt = 0 (3.34)
2 r 2 2
BLEY = 2L 2 sin 9| ———L+—] ¢ P
4 g 2 re 2
s+ w : r
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The radial electric field in the time domain is

ret 1 “ret st
B = g [ ) o o (3.36)
T
1 uowop c 52 1 c
= 2 cos @ = +
2w Lo r2 S2+ w2 5 5 5 o
r o Vs + wp r(s“+ mp)

>st - E-Vs2+ m§

X e ds (3.37)

Performing the transformations of contour and the substitutions indi-

cated in Appendix B for integrals of this type, one obtains

2T )
Eret - HoWoPC €08 ° J (1 + €2) ( + 2ci & )
r 22 2 2 2 -2 W 2
Yn“yp 0 (g°- Eo)(g —EO ) p & -1
x eiq cos v dy H(t-'g) (3.38)

In this chepter 6= r/ct, q = wtl1 - 8% . Y =\/(1-BY/(1+6) ,

— - 2 _ ' :
£ = ve and. £s _.(wo+ w -wp)/wp when w > mp or
. 2 2
= + iV - -
Eo (wo * wp wo)/wp vhen © < wp Partial fractioning of the

integrand yields
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o 2 -2
ret uowop ¢ cos O wo go 6o
B = 22 1 2 2 2 2
by 5 /wi-wi g~ 8 £ g
Ew £ Eltw £ 2w €
ci 0 0 o © jo ig cos ¢ r
T2 3 ( 2 2 2 22 He &y o=
rlug - w) Ve 60 g-g " &=

Using the integration formulas in Appendix C, we find that

U W pc cos & w
ret
00 {Jo(q) + 0

b3 =
2 2

r 2
w_ -

/
-1
LUO(YEOq,q) - U (YE_ "a,a)
2m r
o 'p

e

* 2 2 {wo
r(w” -w®)

] P

Ul(YEOq,Q)+Ul(Y€.;lq,q>) - 2wpUl(Yq,Q)BH(t— %)

(3.40)

See Appendix A for some mathematical properties of Lommel. functions of

two variables Un(w,z) .

By noticing that

M wp sin 8
Eget(g_,t) = 29 s ilianosm (3.51)
Ymr 2 r

in which

1 2 st - f-V32+ m2
J =% e Poas (3.42)

27
s + w
o)

r

some duplication of calculations can be avoided. The behavior of the

integrand of Eq. 3.42 as s > » indicates the presence of a ¢
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function in E, . Treating this behavior separately by using the fact

9
- 2 2
that the inverse transform of e 0 VS T8 38

§(t-b) - -—-aib—-——— Jl(a V2= 12) H{t=b)

a t2- b2

we find that

e ¢ P as (3.43)

The integration technique desecribed in Appendix B gives

rw2 Jl(q)
F= 8(t -5 - —2- H(t - )
c o a c
o 2m iq cos y
S [ ea-i2) e , r -
o T J 2) ap H(t - 30 . (3.LL)

2 2 2 -
0 (‘E - EO)(‘E - go

Partial fractioning followed by the use of integration formulas in

Appendix C yields

=
1

o
ct
1

1
|

o [H0E00) + U0 0] R - D) (3.45)

With this result and Eqs. 3.40 and 3.41, the value of EQ is fournd to

be
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2
U @ p sin 6 w-r J.(q)
Eéet: ° 0. 28(t - &) - B— L [U (YE q,q) +
-1 c Y -1
+ U (ve ] q,q)] < {Jo(q) +\/-—————w2—-F(Ud(YEOq,q)—UO(YEO q,q)ﬂ
o Y
+ ” I (U (YE_a,q)+ U (vt )'] -20 U (Yq,q) | ¥ H(t ~3)
Mg(w2_w2) Lwo 1 ¥ Oqu 1 o Q.9 D o 4,49 ) P
2w =g _

(3.46)

The generalized function identity 26(x) H(x) = &6(x) has been used.
The magnetic induction field B¢ also contains a § function.

This behavior can be treated separately, i.e.

ret HoloP sin 6 r rwg Jl<q)‘ r
B, (r,t) = ———— |5(t-=) - H(t - =)
¢ L c c q - c

mre

+

2, 2
U wpsin 8 SVs*w st-zw/s2+ w2
0 0 cs e c )
8 2, j 2, 2 ]
T i re

(3.47)

Using the integration technique of Appendix B, we obtain

2 .
L wp sin © ro- J.(q) U wp sin &
B;et - .00 [S(t _ Eg __p_1 H(t - 30}_ o) 02
Lhrre ¢ ¢ q ¢ 8r ire
am EE. ~2g2+ gi-&ggg 5. o 1 - gh ig cos Y
x J{_z 22, 5 p, ST E)t T -2}:" v
(g7 g ) (g% ¢ %) (g7-g_)(g°-¢ %)

x  H(t - %J (3.48)
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When this expression undergoes partial fractioning and when the formu~

las in Appendix C are applied, we obtain

rot  MoWoP sin 6 r rmz Jl(q)
B =—-—-———-——-—-—2<S(t--—-—-P— —mYJ(q)
¢ L c c P 1
fre

5 ) -1 1T e
- \/wo - uy [Ul(vaoq,q)-Ul(Yao a,q)| + oy [— Jo(q) + UO(YEOq,q) +

+ Uo(ya;lq,q) } H(t - -Z—) (3.49)

We shall now obtain asymptotic formulas for the fields as Yy = O,
corresponding to times.just after the arrival of the first disturbance.

For small vy , Egs. 3.40, 3.46 and 3.49 give, respectively,

U _w P cos 8¢ :
t 2
B0 (r,t) = —=2 {J (a)+ 2Ly (q)}mt-?-)m(v ) (3.50)
T o} rw. 1 c
- 2mr D
L wp sin 8 J.(gq) 2w
ret 0o ry _r 21 _
By (r,t) . {Zé(t-c) < Y ) — 'YJl(q)
Tr D
23 () + S Jﬁq)} Bt - D) v o) (3.50)
row
B
2 2
u wp sin 6 J.(q) w-2w :
B;et(;_lt) = 2.0 {25(t-—-§)-§ W e 4 Dm O I, (q) +
b re L D

+ 3J0<q)} Ht-2) + o(y)  (3.52)

These equations, which contain Bessel functions with arguments

q = wp tg- rz/ca, represent oscillations having a frequency that is
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initially high but that continually decreases to w_ . This behavior
and in fact the method of obtaining these formulas which is described
in Appendices B and C closely resemble the oscillatory behavior and
the method of anaiysis in calculating the first forerunner found by
Sommerfeld (28) in his work on the propagation of light in dispersive
media. It should also be noted that these expressions are finite when

w, = mp , Whereas Egs. 3.40 and 3.46 appear to be infinite under that

condition.
" The asymptotic behavior of the fields at a point xr as t > =

can be obtained through the use of asymptotic formulas D.37 to D.L45 in

Appendix D. We find for w, > W

p
. r 2 2
et M WP cos 8c wocos(wot - =V - wp)
r oyt /2 2
we - w
: 1Y
+ ———— 1y sinle t - zw/w -w ) =w sinwt (3.53)
2 2 0 0 c o p P P
rl{wS - »7)
0 b
ret u w p 8in 8 r 2 2
ﬁg w20 )y smn(m t - wamo - w )+
Lhny P
" cos(w t - E- wg-wi) 2
ty Yo o | wosinlugt -
/ r(w - w
] P

olw

‘/ - w ) - w sin w t}-% . (3.54)
P ' .
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ret Po¥oP 5in O S r [2 32
B¢ VL SV W - u sin(w t - Pl AU )
Lrre p
c r 2 2
+ — - -
" cos(wot < Vg wp)} (3.55)
and for w < w
o b
L wPp cos B¢ w - = we - we
Bt W 2o -—2— ¢ P ®ginys
21r 2 2
W - w
D o}
rf|2 2
c ey Y% i
+ we sinw t-w sinw t
2 o ]
r{w=w) :
o)
(3.56)
sin © L /e .
ret Ho WP c u)p % .
EO - w_ e sin w t
4 °© -
hina
r 2 2
c W - . wp - W '
- ;- > > e sin w t
w_ - w
P
r /2 2 .
02 - E- w —mo .
+ w_ e P sin wt - wsin wt (3.57)
2, 2 2 o] P
(0~ = D)
P
uwp&un@ - L w2—w2
Bret N y -w + & 4P % os wt (3.58)
¢ )4 . o]
mre
The neglected terms have amplitudes wvanishing faster than ‘51/2
as t »> e« . It is readily seen that the magnetic field quickly assumes

its steady-state value, whereas the electric field has a residual

oscillation at the plasma frequency. This oscillation is restricted
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to the near zone, and hence it does not contribute to radiation. .The
slightest loss in the medium would damp out such an oscillation at the
plasma frequency. Loss, expressed in terms of a collision frequehcy

Wepp would displace the branch cut shqwn in Fig. 3.1 into the left

half plane a distance /2 . Additional branch points would appear

weff

at s =0, - w . If the ion plasma frequency had also been consi-

eff
dered in the problem formulstion, other dranch points would occur near
the origin of the complex s-plane. A limitation on this technique is
for the elliptical path to lie well away from these additional singu-
larities so that the principal contributions to a more inclusive
formulation of the problem would arise from thelpoles of the source at
s = i_imo and the branch points due to the plasma frequency of the

medium at s = i_iwp . If the first unaccounted for effect is due to

collisions, then by Eq. B.T, the condition

w_B8
_eff << S S (3.59)

2 V1- g2
must be fulfilled for the path to be well away from the influence of
the collision frequency. BSince the elliptical integration path
approaches the branch cut as time increases, an upper limit on time

for the neglect of collisions can be established
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the medium is isotropic, the fields were only computed in the equito-
rial plane (z = 0). 1In this plane only the fields EG and B¢ are
nonzero. Figures 3.2 through 3.5 show these fields as a function of
normalized time 1 = mot . The time~harmonic electric field's ampli-
tude is denoted by horizontal dashed lines in each figure. Figure 3.2

corresponds to a condition of low dispersion and long distance from the

source with W, =0.1 w  and r = 1000 c/wO .. In this Figure only E

o} 8]

is shown because the magnitude of CB¢ is only about .5% smaller than
Eg . Figure 3.3 shows the fields for w, = Q.S u, and r = 6Oc/u>O .
Figure 3.4 shows the fie€lds for -w_ = 0.9 w, and r = lOc/wO , corres-—
ponding to the observation of the fields near the source in a dense
plasma. Figure 3.5 shows the overdense case in which wp = l.2wo .and
r = 5c/wO . We examine the near field because cnly there does the por-
tion of the solution which is exponentially damped in space contribute
significantly to the total solution. (See Egs. 3.57 and 3.58.) For
larger distances from the source, the oscillation at frequency up would
dominate the solution for wy < wp « In Figure 3.5 the magnetic field
is only shown during the initial transient period because its amplitude
becomes too small to plot for later times. The beating of oscillations
at two frequencies (wo and mp) can be seen in EO in Figures 3.3
through 3.5.

The irreversibly radiated power will now be calculated by using
Eq. 2.5. As was mentloned whlle solving the equations for the fields,
the advanced fields can be obtained from the retarded ones through a
substitution of -c¢ for ¢ . See Eg. 3.25 and subsequent discussion.

The simplest way to evaluate the radiation field parallel to and at the
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A §-function is denoted by an arrcw.
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dipole is to begin with Eq. 3.27.

= 1 roret ~adv _ S e
EZ (rss) - 2 [EZ ( 3 )""EZ ( s )] - 81T s . 2 L T
Yo
% 52+ m2 5 5 -E‘/32+ m2 % 32+ m2
_ e p__ c 9 (e P _ & p)}
r s+ w_ 2z r r
(3.61)

Expressing the exponentials as hyperbolic functions, we obtain

“ H w?p 2 sinh E-’-Vsz+ m2 2 2(sinh = Vsz+ w2
Erad(r,s) _ oo s L c p__c 3 c B }
z= L .32+ w2 r 52+ w2 3z L
o P
(3.62)
Carrying out the differentiation we find, as r - O
U ow p52
~rad _ 1 0 0 2 2
E, (ms) =gs —5 3 VsTr e, *0lr) | (3.63)
57+

This transform can now be inverted by the same technigue as was
used in finding the retarded fields. As r - 0, we obtain for

t > Isj/c

T1-gh (PR 8 w2

——

2 2,2 -2 2t
(g°- ao)(g - £ )

H_ W p
rad - .20 ' _L
EZ (f_st) G {6 (t) o

O ey O

iw bt cos ¢

x (1= gh)e F dw} +0(iz|) (3.64)



27 2, -2
H W p 2 2 5 +¢
rad e a- 2 o "o 7o
B (Lt) = o {6'(“-7 H‘é‘“? 7
0
2g1;—1 a2£;h—l iw t cos y
Th T2 +_)+' CE) }e ? dl%*‘ o(lz]) (3.65)
€= & € - &
and finally
rad Ho%%P 2 Jl(wpt) o ’
E, (z,t) = Zme %8 () + wy wpt - wg Jo(wpt)

- wo\/w2 -.w§ [UO(Eprt,wpt) —Uo(i‘;;l wpt,wpt)]}+ o(lz|) (3.66)

The same result can be obtained by taking the general expressions for
the clcetric radiation ficld in the z—direction (derivable from Egs.
3.40 and 3.46) and expanding it in a Laurent series in r . The coef-
ficients of all inverse powers of r cancel and the O(l) term in =
is identical to Eq. 3.66.

The irreversible power 1s therefore

. B owp J.(w t)
P(L) = - "&6‘9‘—cos 0t {wg LDt ) - w0 T (wt)
’ e o] P wpt o o0 P
2 2 -1
- g Wy = U [Uo(gompt,wpt) - UO(EO wpt,wpt)]} (3.67)

Wnen the source frequency is greater than the plasma freguency, go is
greater than 1 . We can then use the asymptotic formulas D.1l and

D.14 to obtain the long time limit of PP™(4) . The result is
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2.2
{pr uowop cos mot 5
prTT (L) A - w_ fwT - w- cos w t
t-ro0 bwe ° © P ©

+

wh
P 1
g —w, P

Thus, as ©L » =
uwp2
<P1rr(t)> 0 O mi _ w2
12 7e P
When W= W
o P
4 2
. W p J. (wt)
pIfT(g) = o 0O o4 1 o’ 8 (t)
o) w t 2
6me o) W

and, after a long time,

For w <
0

whence

w
b

<Pi“"(t)> > 0

2 sin(w t - +)
2 2wt wwpt P n

the asymptotic formula D.30 must be used. Thus,

cos wot [w w_ - w_ sin w t
2 . 2
w sin w t w
b o ol
+-—-
T w o wt wt
1- (=2 1Y P
W
b

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)
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Since the limits t »+ ® and r -+ 0 are commutative, the

. | irr> : . .
preceding results for <P could have been obtained by using the
formulas 3.53, 3.54, 3.56 and 3.57, which describe the behavior of the
electric field after a long time. If <P> is calculated from these
expressions, the oscillation of the electric field at the frequency
wp multiplied by the time variation of J does not average to zero

over one period of the source frequency. For mo > wp' s, we find that

H ‘1)3 2
(P) 0" o? w2 _ w2
l27e o} hs)
. m2p2c2w 0
s 20 > P J (2-3 s;n 6) sin wt cos wt §(r) av (3.74)
br(w® - o) r P
o P A

and for W, < W

Uwpe w _ . 2
(P) =0+ -—O—Qé——-—-g—- J -(-g——?’—%}ﬂ—glsin wtcos wt §(r) av
(S - w) ) r P
P o

(3.75)
To keep (P) finite, we must use an average which gives zero for

(sin wpt cos wot> s 2.8

7
(£)' = lim %—Jf(t) at (3.76)
0

T &> w0

Using this definition for average, we find that
. . .
(PY' = (PTTY = (PPFT) BNER )

for an isotropic plasma.

\-
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L. TRADIATION IN A UNTAXTAL PLASMA

The medium in which we now consider electric dipole radiation
consists of a macroscopically neutral ionized gas to which a magneto-
static biasing field Eo of infinite magnitude is applied. Eo allows
the charged particles to move only in directions parallel to Eo .
Thus the induced polarization is also parallel to Eo . Both Eo and
an oscillating electric dipole located at the origin of the coordinate
system are oriented parallel to the z-axis; see Figure 1.1.

Again, as the foundation for the derivation of the differential
equations satisfied by the fields, we begin with Maﬁwell's equations
and the constitutive equations, 3.1 to 3.6. The equation relating the
electric polarization P to the electric field E must now be found.
As before, we assume that the only contribution to 2 1is due to the
electrons. P(r,t) 1is related to the displacement E(r,t) of a

typical electron at time t from its mean position r by
P(r,t) = Nq g(r,t) (L.1)

where N 1s the free electron density and ¢ 1s the electronic
charge.
The equation of motion for £(r,t) can be derived from Newton's

second law and the Lorentz force equation

Mo £ = No[E+ £ x (B+B)] (4.2)

Linearizing Eq. 4.2 and expressing it in terms of P via Eq. L.1
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gives
f = ¢ WCE+P X (L.3)
= °cpT T m
[z, . -
where wy ..J&q /meO and Y = qgo/m are the electron

plasma [requency and gyrofrequency, respectively. In this problem

§0 and hence Eg take on an infinite magnitude. To see the influence
of taking this limit, we take two derivatives with respect to time on
both sides of Eq. 4.3, resubstitute Eq. 4.3 twice and obtain (29)

£+

=eow§{ﬁ+gxﬂg+(_@_.§g)ﬁg} (4.%)

W *w P
=g "8

Assuming that the time derivatives of all gquantities in Eq. 4.L remain

bounded as Qg » ® _ We obtain by taking that limit

.- B
2 = e W —-—-:-g___:g- ()4_.5)
[
Since Qg is parallel to the z axis, we have
=ew E e (4.6)
- op Tz -z
We note that if the fields in Eqs. 4.6 and 3.6 are assumed to have
harmonic time dependence, e*lwt s then they imply that electric dis-

placement Qw is related to the electric field Ew through the dyadic

relation
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Qu) - E: hd ’E"(‘U (]4‘-7)
where g 1is the familiar dielectric tensor of a uniaxial plasma
2
w
e =ecee teee +e (l-—2)ee (4.8)
= o—x=x o=y=y o 2" =z=z ,

B, H, and D can now be eliminated in deriving a differential

equation for E from Maxwell's equations, 3.5, 3.6 and k.6.

L8 |
VX(VXE‘)-‘-;—Q.-E'-FCQ Ez_e_z=-1poi ()4.9)

In a similar way an equation for H can be derived

2

VH -3-HE =-VxJ-Vxp | (4.10)

Omrg

Since both J and P are z-directed, the z components of their curls
are zero. Therefore, HZ = 0 . From this fact and Eq. 3.1 it follows

that

IE BEX
"'y'ax ——-5-3; = 0 (4.11)

Teking two time derivatives of Eg. 4.9, expanding the double

curl'operator, and using the divergence of Eq. 4.9

2
. S 1 -
VE+ W V=-S5 E - 2F g =ud + W (k.12)
c

As it stands, only the z component of this vector eguation is uncoupl-
ed. However, the x and y components of Eq. 4.9 and the relation L.11

can be used to untouple the other two cartesian components of the
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vector equation 4.12. The three uncoupled equations can now be writ-
ten an one veetor partial differential cquation, each cartesian
component of which is the equation for the electric field in that
direction

82

oz

e

V2 ﬁ + m2
- P

N
(o2 L
n

2

W -

E-—SE= uJ+=v (4.13)
C

Taking the curl of Eq. 4.13, using Bq. 3.1, and integrating the result

once with respect tou Lime give an equalion for 3B

' .2
- 3°B
h 4 2 -
_ p 92

- ;§-§_ - 02 B = - uOV x J (Lh.xh)

Each cartesian component of Eg. 4.1l gives an uncoupled scalar equa-
tion for the corresponding cartesian component of B .
Two-slded Laplace transformation of Egs. 4.13 and 4.1L4 is per—

formed to yield

2 2
I R Lo .
VE+ -5 —5E- s—E=us I+ (b.15)
s 02 c o]
and o
o~ wD a2 “ s+ wp - ~
VB + — B - B=-uvVxJd (4.16)
= 2 = 2 = o =
s 9z c

respectively. Since the retarded fields are identically zefo for
t <0, their transforms are analytic in the right half s-plane
We shall solve Egs. 4.15 and L4.16 subject to the retardation condition
by teking s +to be real and positive. Those solutions, ccnsidered as
functions of complex s will be analytic in the right half s-plane.

Therefore, by the identity'theorem for analytic functions (30) those
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solulblions will be the Laplace-lransformed retarded [lelds.

.For s real and positive, we can perform the coordinate trans-

. - - S
formation x=x,y =y, z =

—w—===== 2 . Doing this and using the
Vs + 42
expressions for the current and charge densities, i.e., using Egs.

3.19 and 3.20, Egs. 4.15 and L.16 become

2 3
A ST+ W . WP ws _
PE-—Rp.le % 5(3)_%(_}{%:4-
r X
= ¢ (s%+u2) Vs2r? ©
o P
o 52
+§‘y_%+§—z - _Q:J 5 o — &(x) (&.17)
ay ,/52_+w§ 3z ¢ (8“4 wT)(s+ w7) 9z
and
5 - s+w2A Hopw 5@ §(L)
VCBmw e B ==V xe o (L.18)
r 2 = r 4,2 22 =@
£ ¢ £ {s+ mo) s+ w
respectively.
In obtaining these equations the relation &(z) = %%i 8(z) has

been used. Now each cartesian component of Egs. 4.17 and 4.18 is an
equation like Eq. 3.22, the retarded solutions of which are given by
Eq. 3.23 with a minus sign in the exponent. Therefore the retarded

solutions of Eqs. 4.17 and L4.18 are
_;3]
~pet — M PW, 53 s{x') = -—?r———-VS2+ Wl _
_F.'. (E,S) = J . Y av!
hﬂh/52+m2 (s +w r”--—l

2

pw S . -

v eeﬂ(%ﬁ:*ea—n ) L]

bme (s +m (s ) 7 UL Ay 5242 %z' o9z
o

A(D
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e : P =
x e av? (4.19)
lr-z'|
and
r-z'| 55
DU ® S - o se+w§ )
5" (T,s) = oL J I:v__ xe 8 E_')} & av
1 - !
lm(sgﬂ)e) 5242 A L z -z
(4.20)
respectively.

After carrying out these volume integrations and returning to

physical x, y, z space, we obtain

- {-'-\/52+ w; sin29

- H_pw s ) C
'E_E_ret(g_,s) = ————-—02 02 [-52 et c? VSZJ = (Lk.21)
5 *u Loy \/32+ wi sin29
and
" W 52 - -Z;l/sz+ wg sin29
~ret _ o o . 3 e
Eime) = - 2 2 P o 5. 2 ... : (h-22)
o hﬂr/s+wn sin“e

The otlier solutions to Egs. 4.17 and L4.18, i.e., those with a + sign
in the exponential, are easily shown to be advanced fields, and they
differ from the retarded fields only by the substitution of -c¢ for c
in the formulas for the retarded fields, Eqs. 4.21 and 4.22. In
éylindrical coordinates, the électric field has only p and z com-
pohents and the magnetic field has only a @ component. Carrying out

the differentiations indicated by Egs. 4.21 and 4.22 we obitain for Eiet



- L puw s3cos 9 sin © 32+ w2 r B
Eret . .0~ o e - + 3c
P bnr 82+ wi_ks2+ u2)3/2 r(se+ 2)2
Qc2 - i‘- 52+ u2 (h.23)
+ e
r2(s2+ a2)5/2
and for ﬁget
U_pw 33 2
ﬁret = _ .9 © [ 1 + c + e
z hwr(sg+w§) (52+ u2)1/2 r(52+ a2) r2(s2+ a2)3/2
T 2 2
s cos 6 ( 1 3¢ + 302 ) Te— c s+
52+ o (s2+ 2)1/2 r(52+ a2) r2(82+ a2)3/2 J
(L.24)
ana for éget
. 2 r 2 2
éret = uopwos sin 6 s+ up [ 1 . o ] e— o Vs + o
g Yrre s2+ wi s2+ o r(52+ a2)3/2
(L.25)

where o = wp sin 6 .
The fields as functions of time can now be obtained by using the

Laplace inversion formula, Eq. 3.16. We treat first the inversion of

Ere‘t(z,t)
P . 3,2 2
U pw cos © sin® s (s +w") N
57 et = =2 2 EP[ 2 Et e EE
e 87%ir L STE g (s“+ u2)3 r(52+ a”)
3c2 st--]-c:- s2+ cxa
+ ~ ~ ~ J-lf\_le ds (h-26)
I'C(S'C‘i' ac))/c__]
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Tais integral is of the same form as the one in the'preceding problem
dealing with radiation in an isotropic plasma. It can be solved by

using the method described in Appendix B . After subtracting away the
§ function behavior énd performing the integration contour transforma-

tions and substituticns described in Appendix B, we arrive at

ret
o (

E " (r,t) =

M Pw_cos 8 sin © 2 J,(q)
[G(t _L

I

m 2

. 2 2
uopwocos 6 sin 8 J ol ((E -ctn

£ n
2T 202 By 2y -

+
ngr

3(1+£2)3 (P-ctn® —g—)(gg—tan2 21, 2
+ =+
(6% e2) (P28 (1 - £°)° i

ig cosy ,
e ay H(t-?

(L.27)

air2(l— 52)

where 8 = r/ct, q = at Y1-85, ¥ =\(1-8)/(1+8) , £ =7ve'" , and

3 V- i} - .
EO = (wo+ W a”)/oa when W, > o or EO = (wo+ i Vo wo)/a when
W <o

Q
Partial fractioning of the integrand ylelds
M _pw cos O sin O 2 J.(q)
gty 4) = ~ 0 [a(t-i-)‘-———r‘; -————lq H(t--lé-)]
P Yoy '

U pw cos 8 sin 6 am w2(m - w
400 - S { £ 420 D
87'[21' Ir 2_ 2)3/2
o

0



2 2 2, 2 2 2 -2
. 2wp cos“® oE . & } i __c_[l+mo(mO— wg)( £y . & )
2 2 2 2 2 r 2 2.2 2 2 2 2
wo = (g°-1) -1 (wo-a -8 E- &
8w2c0529 12w2c0529 2m2c0529 2
LTI 2:L 3t TS 23L + —% z b-sec’s + > 2JL
w_ - o (5= 1) w, - @ (E°- lF W - o w_-o §°-1
2, 2 2 ~1
+ 6c2 [‘ctwo(mo- je ( ZEOE - f‘;o ° ) +hw20052g 22‘:_ + 3% )
w2oa?)oirllo(wi-a?)3/2 | 2. g2 Bl 2 (£2-1)* (£2-1)3
) o o o
> o | 2 2 £ 2 2| 2
+ 2w cos 0 {h-—sec o+ 5 5 5+ w_cos G(Q-—sec 8 +
b w - a” ! (%= 1) '
o
u2 £ iq cos V¥ r
+ e ay (s - L) (4.28)
2 2 2 c
wo-a £E - 1

When we carry out these integrations by using the integration formu-~

las in Appendix C, we obtain

U _pw cos B sin A 2 J (q)
B (r,6) = 22 26(t - &) - X4 - ovJ, (q)
p - by c c q 1
2 .
ui(wo-mi) ' -1 o 00529 ’lU
5 5 372|U1 (V8,2-a) = Uy (¥ Tasa)i-—5—— alyU + ¥ 7U,)
(LOO - ) L&)O - {
WP (fe W)
;S _ L o ’ -1
- = [Jo(q) ________p__2 ~ (UO(YEOq,q) + U (vE a,a)
(wo - a°)
w2cos e |
1D 2, 2 -2 -1
"T a7 |¢ (YU_o+ 2u+ v U,) + 2a(yU_y - ¥ TU)
Q
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)

3c2 aui(wi— Lu;) / 1
FT T s | T 2 3/2(U1(YEOQ’Q) - Uy (v&"asa)
olw” -a)r" L(w'= o) :
o o
m2
2 2 o) 2 -
+ wy cos © {—5————§'— tan 9] q(YUO+ Y lU2)
W, - o
wgcoszg \L
+ (q3(Y3U £ 370+ 37U+ YOOU )+ 602(v30 -y 2 Su(t - B)
ol -2 o} 2 )4 -1 31} c

(4.29)

where for brevity we write U for Un(Yq,q) .

By performing the same sequence of operations on Egs. 4.2k and

4,25 we obtain for Ezet and Bget

w_W P 2 3. (a)
EF®% (1) = =22 ( -2 sin®0 8(t- D)+ sin“6 2 2 44 sinfo v ()
z - C cC 1
Loy
wi wi— wz)sinzg -1 a3c0529 -
- o ——
) o

2, 2 2 2 2
. 5 wo(wo- a”- 3u_ cos 9)( -1
+ ;{(1—3 cos0)J _(q) - RN \Uo(YE a,a) +U_(YE_"q,q)
(w_ = a”)
Q
3 u2c0329 2,.2 -2 _lU \
LYz 2 [a°(Fu_gr 20+ Uy w2y - v
c -
20576 1 o0 1 2
G CcOsS o
-12 5 > (l + > 5 5~ C sec O) UO]
w - w - O
o~ . )
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o2 wi(wi- ot 3w§cos29) -1 )
- ...é.[ = 572 (Ul(YEOq,q) - U, (¥£_"q.q)
r (w> - a%)
1 a coseg 3743 -1 -3 22 -2, |
+ gm(q (v U_p+ 3YU_+ 3V UL Y Uh)+ 6a (Y U Y U3))
Q
60 cos°0 1+x o? - x 24 (YU + vy ) H(t -3 (L.30)
22(2226se°q0 2 T Tel
W - O L\)O- ¢}

and
ret uomop sin 8 T r uzsl(q) wo(wg— mi)
B () = 22— (as(y - D). L #2220 Iy (vé_a.0)
Yrnre q we - o
. o
1 2w2c0529aU1 . wo(wi -wg)
- R * N S -
+ U (YE_Ta,q) N + oI (a)+ 2 a2)3/2 U (Y€ a,q)
o) o
5 .
- w-_cos 8 -1 -
- U (e Oq,q)} ¥ —E-——wg R a(Y U+ Yu_ )| ) E(s-2) | (k.31)
o

Near the wavefront, the fields behave lixe

- 2 2 a2 o2
ret  YoHoP €08 8 sin g{[ga(t e op & Jl(q) (24)13 Quo 307)

E = -=)o = + I
P by ¢ ¢ a o ! l(q)
+ 35 ¢ §+§-°—2-YJ( o+ o(v®) ) wE-% (4.32)
r Yo' 2 104 c *
ar
, 2 2 2 2
WU p ) a~J.(q) (2@-2(.3-3«1)
gt . _ 20 {[singe(za(t-ﬁ)- r_ L 4R 0 Yy J (q))
z Loy e ¢ a o 1

e 5 02 1-3 00520 5 r
+ o (1-3 cos )3 (q) += — 2YJl(q)] +0(v7) pH(t-2)

- _
(k.33)
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and
rot UoHoP sin © e deJl(q) w2-w§ -a°
BoC s e ([ 26(t -2)- & +-& 2vJ. (q)
¢ Lare ¢ ¢ q : o 1

+ -I%Jo(q)} +0(r%)) B(s-5)
(4.34)
This initial behavior is quite similar to that found in the isctropic
 medium (see Egs. 3.50 to 3.52) with a = mpsin 6 substituted for wp .
To zeroth order in Y , a uniaxial medium behaves like an isotropic
piasma having a plasma frequency wpsin e .
The behavior of the fields after a long time can be obtained by
using the recursion relation A.5 in Appendix A and the asymptotic

expression D.38 through D.45 in Appendix D. Discarding terms which

vanish as t » « , we obtain for w_ > wpsin e

o
L 2, 2 2
ret  WoH,P cos O sin 8 wo(wo— wp) . s
E T~ - sin{w t - = /w. -0o°)
p 2 2.3/2 o} (o)
by (w. =a%)
o
2, 2 2
- 2
3c wo(mo w‘o) r 3c
t =7 22cos(mt— w-a)+22 5
(W - o r (w - o
o
2 2
mi(wo-—w) r %o 2|
— = — sin{w t=-= Jw_-0o" )+ w. cos“8 —~tan“8|t J_(q)
/2 )3/ o ° 2_ 2

- 7 (q) (4.35)
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RTINS (,02(«1)2 - wz)sineg
ret . 0 O c_9 D i r [f 2
‘Ez' Y Thrr 2 2\3/2 mn(wo‘c TV )
(w= = o)
o
Lu2
o (e A o) st EfE D
(w= - a%)
o)
o) w2(w_2_u - 3w2 cos“0) 2
_ & o C O s]_n(mt_.l.'. ® _a2)_OLCOSg_t2J (Q)
r2 (wi - 2)5/2 ¢ W -a2 1T
2 2 2
+ -——-—-—-——-—62 C0529 (1+%—-—2-9——-—é- - %—seceg) t JO(Q)}’} (4.36)
w - W -0 . ’
o O
and
, | w iy psin ©® [w (w2_ ‘1)2)
pret o"o O P O .. L 2 2
AR S 51n(wot--c‘ mo—a)
bnre w, = @

c mo(wi-—w;) , 3 5. ow cos“o '
+ ;[ (u2-d2)3/2 COS(LOOt—E' wo- o )""'"']2' "“__2 t.;l(q) ()4.37)

w =
O G

When wo < wpsin 8 we cobtain

w3 cos 8 sin 9 (m2 - w2‘
Eret " ouop 0 p) {l + 3¢
P hmr (a2— w2 3/2 T u2- w2
[e] [o]
2 - = 0!.2- u2 3w weu pc2c0539 sin 6
3¢ c Op o
+ e cos w.t +
2 2 o) 3, 2 2
r“ (o= wo) bar” (o= w7)
o - o)
wi 2 at2 :
X [(;—2-:—?-+ tan G)t Jo(q_) +? Jl(Q‘):I . (L.38)
o
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3. 2_ 2 2 2
ret wo”op , 2 2y .. 2 c (o mo+3wo cos"8)
E 55372 (mp— mo)51n G+~;
‘ har(a —wo) 2_ 2
y 2
2 {ae— w2-f3w2 cos29 - a2— w
+ S 2 2 e ¢ © cos w.t
2 | 2 2 o
r o0 - w
o
2 2 2
a w cos 8 u pec 2 _
- SE 5 9 5 [atZJl(q)-+(sec29-6-+—§§E~§J £ Jo(q)} (4.39)
Lrro (0= a - w
(0] Q
and
w ¥ p sin © w2 - m2 - = a2- w2
Bﬁet 9 ( g ED 1+ < \)e ¢ sin o t
h O
TYrC o - W 2
o] ryo - w
o
awow2 M P sin © cosze
+ R t J,(q) (4.40)
2, 2 2 1
bar“(a“- mo) :

In these formulas for the long time asymptotic behaviors of the

fields, we see a definite increase in amplitudes as the polar angle ©

approaches sin—l wo/wp . These asymptotics are not uniformly wvalid

as 0 +sin * wO/wp . The limit © - sin™t wu/wp can be taken in
Eqs. 4.29, 4.30 and L4.31. The result would show that there is no
singuiar behavior of the fields at that angle. However, at that angle
the rate at which the amplitudes of the fields grow is increased by
one more power of t . Thus instead of thé terms oscillating at fre-

1/2

quency wpsin 8 increasing in amplitude like % (as in B) or

t3/2 (as in E), théy will at this angle increase like t3/2 or t5/2

respectively. The two oscillations become inextricably combined when
W, = wnsin 8 . Thnese comments will be borne out in the results of

P

some numerical calculations which follow. Also, as could be anticipsatcd
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by the singularitiesvof the Laplace transformed fields near s = + io ,
We see that the field quantities contain oscillations at a frequency

a = mpsin 8 and that these oscillations increase in amplitude with
time. As noted in the discussion of the fields in an isotropic medium,
there is also an upper time limit on the validity of the solutions
derived here if additional effects, e.8. losses, are taken into
account. The parts of the asymptotic solutions which oscillate at the
source frequency -wo are the conventional time-harmonic solutions to
‘this problem (31).

From the long timé'asymptotic behaviors of the fields, we can
readily recognize that the region of space for which 0 < sin 6 < wo/w
is a regiop of propagation and the reglon described by sin Q > wo/w
is a region of nonpropagation.

For wy > mpsin 6 the Lommel functions which eventually contri-
bute to the oscillation of frequency Wy are UO(Yqu,q) and
Ul(Yqu,q) . By the series definition of Lommel functions of two

variables A.l, these functions are equal to

u_(ve a,a) = 1 (4" (ve )P 5 (a) (1.41)

m=0 n+2m
in which n takes on the valués 0 and 1. For: YEO <1l , the con-
vergence of this series is governed by the coefficients of the Bessel
functions, but when ygo is greater than unity, the convergence of
the series is due to the Bessel functions, In the latter case it is

more convenient to consider the equivalent representation for

Un(YEOq,q)
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, } r [2 2 mmy ., \nv o &, \n-2-2n
U (g a5a) = coslu t-= yu -o” = )+ ( )mzo{ y(ve)

J (a) (L.42)

2m+2-n

in which the convergence of the series is again established by the
coefficients of the Bessel functions Ygo . That series is, according

to Egqs. D.5 and D.15 O(t_l/z) as t + e . The critical condition

YE

Yg

(o]

1l corresponds to two signitficant events. Mathematically,

1 when the elliptical integration path of the integration tech-
nique described in Appendix B crosses the poles of the integrand due
to the source at s = i_imo . Physically Ygo =1 abt time

T = r/vgroup where r 1s the distance from the source to the observa-

tion point, and vgroupv= c V& - (mg sinee/wi) is the group velocity,
calculable from the dispersion relation assoclated with the differen-
tial operator acting on the fields in Egs. 4.13 and 4.14. g = 1
just at the time when the main signal of frequency W arrives at the
observation point from the source.

For w, > mpsin 0 a saddle point technique asymptotic analysis
of the inversion intégral gives the same results as Egs. 4.35 through

4,37. In a saddle point integration the saddle point moves with time

and crosses the poles of the integrand at s = % iwo at the time

T = E—V& - (wg sin29/w§) . At this time the oscillation at frequency
N begins to contribute to the signal and we note that this is also
the time when YE, = 1 if the method followed in this paper is

adopted.
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Numerical calculations of Eg .and B¢ were performed. Plasma
iTequencies of U.9mo and V2 w, were chosen to represent under- and
over-dense plasmas, respectively. The fields were evaluated at
several polar angleé, sc that the effects of the anisotropy could be
illustrated. Figures 4.1l through 4.8 show Ey and B¢ as a function
of normalized time 1t = wét . Figures 4.1 and 4.2 show the fields at
polar angleé MSO and 90O for wp = O.9u)O and r = lOc/wO . In both
figures the beating of the'oécillations having freguencies Wy and
upsin 8 1s quite evident. Tbis is an extremé case,in the sense of
there being a very strong oscillation at frequency wpsin 6, because
the medium is quite dense and because the distance from the source to
the observation point is relatively small. From the asymptotic for-
mulas 4.35 through L.37 it can be seen that eventually the oscillation
at frequency a= wpsin € will dominate the solution. The horizontal
dashed lines show the amplitude of the oscillation at frequency Wy s
i.e., the amplitude of the conventional steady-state solution.

In the over-dense case (wp = VE.wO) the observation point is
taken to be r = SOc/wo (meters) from the source. The fields Eé and
B¢ are shown for poiar angles 15°, 30°, MBO? 60° and 90° in Figures
M.B; L.h, 4.5, L.6, 4.7 and 4.8, respectively. The polar angle at
which the steady state solutions.become infinite is equal to hSo‘for
this choice of wp_. In the reglon of propagation, at polar angles
150 and 300, there is strong beating between the oscilletions at fre-

quencies Wy and wpsin 8. It was not possible to calculate the

fields right at 45° with the formulas derived here. The fields were
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- computed at an angle slightly larger.than hSO, and then again at an
angle slightly less than 45°. The magnetic fields so calculated were
in very close agreement and so they are‘taken to be the values at
MSO. Kumerical difficulties precluded the use.of this methcd for
calculating the electric.field. Only the magnetic field is shown in
Fig. 4.5, and it increases in amplitude very rapidly with time. In
the region of nonpropagation, the fields are shown at polar angles 600,
750 and 900. After a large initial transient, the fields decrease in
amplitude temporérily until the terme of ever-incrcasing emplitude
(see Egs. 4.38 to 4.L0) ﬁegin to dominate the solution. The conven-
tional steady-state solutions corresponding to those shown for

9 = 600,750 and 900 are several orders of magnitude tou small to be
shown with the ordinate scale used here.

irr ad_ 1

To calculate P we must first find EZ = (Eret_ Eadv).

27z Z

As has Dbeen mentioned before, the advanced electric field can be
obtained by the substitution of =-c for -¢ 1in the expression for
E?et. Obtaining Ezdv from Eq. 4.30 in this manner, we find after

many simplifications that

-
u_pw’cos w t
rad _ o0 o) 2 2 . 2.yv. . 4r (2 2
E, (r,t) = - 2._a2)3/2 [(u w  sin 8) 51n(c w, - a )
2 2 2 2
o (wo- o - 3wo cos“8) . 5 5
_c cos(z' wo - o )
r 2 z
w. - o
o
2 (wz- a2 - 3w2 cosBQ)
. 2 S sin(= W - 02) (k. 42)
2 2 2 e
T W - o
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for t > %-. The simplicity of Eq. 4.42 as compared to Eq. L.30 is
amazing. As r =+ 0 , we find that

m3 cos w t
2 Mo P Q

ralire) = - & + o]z (4.43)

)-I-TTC

Therefore by Eq. 2.5, we obtain

L 2

irr _ Hoto 2
(P(5)) = =— (b.Lk)

12mec

whether Wy is greater than or less than the plasma frequency.

iry,

(P (t)> is equal to the time-averaged power radiated by a dipole in
free space. This is the same result which Papas and Lee obtained using
time-harmonic analysis (32).

The computation of <IP> by Eg. 2.3 would entail a time averag-

ret

ing of Ez (Est) multiplied by cos wot . fhe time dependence of the

current distribution. A straightforward, exact evaluation of < ? >
would be a formidable task in view of the complicated time dependence

of 'Ezet(gﬁt) as given by Eq. 4.30. The long-time asymptotic behavior

of Eiet might be used, but the terms containing tJo(q) and t2J1(q)
would ne;er averége to zero except.for speciél polar angles 8 . The
quantity < §?6t° £_> would depénd on © and thus the evaluation o?
this quantity at ]3} = 0 would depen&'critically on how the origin

is approached. In general, one would obtain < P> = o , in contradis-

tinction to the result of steady-state analysis in which the result
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Lk 2
Lo 0w > uw
127c ° p
: =} W < W
\ 0 “ "

has been obtained (33). However, in the calculation of (E’) via
Eg. 2.3, 1I one performs vhe x and y integrations before the time

averaging, one obtains

(p) = (") | (4. 16)
where ( Pirr> is given by Eq. 4.U4. Thus the concept of P-°F pro-
vides an analytically convenient way to obtain the physically meaning-

ful result for time averaged radiated power, given by Eg. L.Lk.
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5. CONCLUSIOHNS

In this paper exact formulas have been derived for the electric
and magnetic fields caused by a turned-on oscillating point electric
dipole in isotropic and uniaxial media. From these formulas the long-
time asymptotic behaviors of the fields were then derived. It was
discovered that in addition to the oscillations of the fields at the
source frequency there are other oscillatory terms which ¢&o not vanish
as f > , In an isotropic_plasma there is a term in the expression
for the electric field which oscillates at the plasma frequency. In a
uniaxial plasma, the expressions for the electric and magnetic fields
contain oscillations at th¢ frequency wp sin 8, and the amplitudes of
these terms increase with time. Thus in a lossless uniaxial medium,
the retarded figlds do not reach a steady-state condition.

Tae terms which do not oscillate at the source frequency cause
difficuities in the calculation of the average power radiated by the
source <P> . However, <Pirr> 1s free of these difficultles oecause

as t > o %{E?et— Eédv) cscilliates only at the source frequency.

irr X . . . - s .
> , the order in which spatial and time-averaging

In calculating (P
integrations are performed is not critical.  Furthermore, the resultis
of this computation do noct depend on the method of averaging. The
calcvlation of <P> does not enjoy either of these two convenient
mathematical advantages. Therefore, in addition to the theoretical

foundation for doing so, the calculation of radiation resistance via

<P1rr> is also easler to carry out analytically than the calculation

via <P> .
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. . . . . irr
Since radiation resistance is proportioanal to ( P > s We

conclude that in an isotropic plasma

0] w < w
o Y
Rrad =< (5.1)
W > w
Q P
\
and in a uniaxial medium
R = R (5.2)

Ro is the radiation resistance of the dipcle in vacuum. If a constant

current flows along tae length £ of the dipole, then Ro is given by

R = - . (5.3)
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APPENDIX A

PROPERTIES OF LOMMEL FUNCTIONS OF TWO VARIABLES

Since it is gquite possible that the reader may not be familiar
with Lommel functions of two variables, some of their properties are

summarized in this appendix (34).

The Lommel functions of two variables for integral orders are

defined by the series

]

Ugriz) = [ (0% T (e) (4.1)
v Grz) = ] (DR TRy (2) (A.2)

m=0

The wwo types of Lommel functions are interrelated in the following

ways:
0 (1,2) -V, (r2) = con(l + & - B (A.3)
n W,2) = -2 W,2) = COS > S - ) .
VGez) = (-DR U (2P/w,) A

It can be easily seen from the defining series that these functions

satisfy the recursion relations

U Gz) + U 0nz) = (DR (2) (8.5)
Vo ea) + Vo (wa) = (9T (a) (4.6)
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APPENDIX B

AN INTEGRATION TECENIGUE (35)

. 'he inversion integrals used in this paper are all of the form

)
A (s, 57+ aQ)_ 8t - g-Vs?+ a”

Alt) = g J e ds (B.1)
r Az(s, 52+ q2)

Al and A2 are polynomials in their arguments. As s goes to infi-

nity, Al/AE Noag t al/s + ag/s2 in the instances encountered here.

Ir agy # 0 , then there is & Dirac 6 function in A(t) . ‘his can
be subtracted away and inverted separately, in view of the fact that

e nav- ) e r o 3p(2)
is 8(t-=) &
¢’ ¢

the inverse of e ©

H(t - =) where

\/'2—55 " oo

g = alt - ;E- . Then Al/A2 - 8y = Al/A2 which is 0(s =) as s
goes to infinity. It should be noted that by the very standard tech-
nigue of closing the contour with a very large arc in the right-hand
plane, A(t) can be shown to be zero for t < r/c .

The singularities in the integrand occur only at s = i_iwo and
s = + ia . They are indicated by crosses in Figure B.1l for the two
cases wo < &« and wo > & . For the purpose of this method, the
complex s plane is cut along the imagiﬁary'axis between £ ia .

Two successive deformations of the integration contour are now
made. First the integral along T 1is shown to be equal to an inte-
gral along a path C around the branch cut plus contribvutions from the
resudies. Figure B.2 indicétes the method of proof.

In Case I, in the 1limit L - « , path C ©Dbecomes the

Yl;

integrals along Ch and C]h’ 06 and 010 and C]Q cancel one ancther,
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Figure B.l.
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Diagrams showing integration contours for Cases I and II
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Diagrams showing integration paths Cj
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== Re(s) — S == Res)
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/>(/ ‘iwo
v /
|7 (e
(O',-i!-) \_ /
—
8
Case II
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~and the integrals C, and Cll have values equal to -2mi +times the

T
residucc of the integrand at & iwo , respectively. The wvalue of the
sum of the integrals along 03 and C15 is zero when L = « for

t > r/c since there are no singularities to the left of Re = -0 .

That the integral along C2 goes to zero as L > = can be shown in

the following way.

S
A st—-r— 52+a2
. 1 1 c Z
lim Py K—e ds | &
L > c 2
2
LA
1 2 \/02+L2 (t--E-)cos ¢
£ 1im o J Me . ag
Lo =0 0 |
=§—X (B.2)

where x = ‘can-':L o/t ‘and M is a constant which arises from the
Y]
asymptotic property. of Al/A2 as s * ® , Changing variables in the

integral on the right-hand side one obtains for that integral

M }J( : (t—':g') V U2+.L2 sin ¢
X

or

e ag!

Using %W £ gin @' € ¢' for O £ @' £ it can be shown that this

o=

integral is less than

- ’ =) I -
- %(t-?c-)tan = z (t -5 Yo% 1% tan + %
M[1l-e : ] M {e ' _17(
- +
2. .2 2. 2

N - L 2n(t - %) o™+ L
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- which vanishes as. L -+ = , Therefore

1 ‘¢ st —'i /s%+ o°
lim 5= J A/A, e ds =0 (B.3)
L »w &
2
Similarly the contribution from the integral on path c16 can be
shown to go to zero as L =+« , It follows from Cauchy's integral
formula that
16 N N . st - %- 2+ o2 (B.L)
= J AJ/A, e ds. = 0
n=1 _
c
n
and
1 n st —% \/52+ a2
A(t) + yey J Al/AE’ e ds
=C_+C _+
C C5 C9 C13
' " st—{- V32+ o2
- ) Res A /A, e = 0 (B.5)
. 172
_'_i-_lwo

In exactly the same way, except for the absence of residue contribu-

tions, it can be shown in Case II that
" .

/A, e Cas = 0 (B.6)
The path of integration about the branch cut is now made to

conform to the ellipse described by

§ = ———— [B sin ¢ +'i cos ¥l , B=rfet >1

1-8°
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‘This path is denoted by C' in Figure B.1l. 1In Case I if the path '

lies outside +iu_ , i.e. of V182 > @ » then

N
1 Al st - '-c- 52+ 0£2
ACt) - 53 J i ©
v ol )
2
If o/ \y1 -8 <w_ , then
,# N
N Al st _;—i— 52+ a2 A
Mt)-g;i-f i ° ds - LRes o
Cl =t (o]
On C!
52+ a2 = — [sin Y + 18 cos IJJ]
2
1-8
and
st '% 52+ o¢.2 = iat Vl-62 cos Y = iq cos y

If we let g = yeiq’ where Y = \/(l-B)/('l+B) s

o a 5
s = 2&_(l+£)

2 2 i 2
s+ o ='g':§'(l-‘€)

- O ‘_.2
ds = 2% (1 - ¢%)ay

Therefore the integral in Eg. B.9 takes the form

'2'"' .¢
- qet?) |

0

(B.8)

(B.10)

(B.11)

(B.12)
(B.13)

(B.1k)

(B.15)
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P and Q are polynomials in el¢ . This ratio of polynomials can be

expanded into partial fractibns

N 'ih¢ M L 1
= nzo an e + mzl QZl bm,ﬂ » 3 ei¢)£ (B.16)

o

The first sum can be integrated term by term by using the inte-

gral représentation for the Bessel function in order n :

27 ‘
emi® g (q) = J TPV 1d cos ¥ ay ' (B.17)
0

Each term in the second sum can be expanded into a Taylor or Laurent

¢

series (geometric series) in e*”, depending on the magnitude of C_ .

H

Ir melél+6,6>(),1tisa@mmaneiMOammrmnmycmwam
‘gent Taylor series or if lCm’zi €1-68, § >0, it is expandable into
a uniformly convergent Laurent series. Thus in either instance the
order of summation and integration can be interchanged. Using the
integral representation for the Bessel function above, one obtains an
infinite series of Bessel functions (a Neﬁmann series) for the value
of a typical term in the second sum of Eq. B.16. This series can be

expressed in terms of Lommel functions of two variables.
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APPENDIX C

EVALUATION OF AN INTEGRAL

In this appendix the following family of integrals is evaluated

am gl eiq cos Y
I, (¢,K) = ay - (c.1)
2om 2 m
0 (-
for % =0,l3m =1%o % wvhen K=1; and m=1 when K=1¢£ >1,
= - = SN
K=¢g <1 or [K] = g | = el =1

First the integrals K = 1,50 with 2 =0,1 and m =1 are

considered. For ¢ =0, m=1 and K left as a variable parameter

2 1 .
am eiq cos 1 am eiq cos Y
IO l(q,K) = J ——Er~;g?—- dy = - EE'J — 5 dy (c.2)
b} - ) .
o & 0 1-% &2
K

For B =r/ct >0 and Y/K <1 , the denominator can be expanded into

a geometric series
2w

o . a2k .
- - Y v iq cos
Io,l(q’K) T2 J Z [ K © ] © dy ' (c.3)
K 0 k=0

When the order of integration and summation is reversed and the inte-

gral representation for the Bessel function is used, we obtain

I, 1 @K = - £ € (-1 (D 7, (a) (c.h)

ol

In terms of Lommel functions of two variables
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| 2T Yq : ‘

I, l(q,K) K2 U (FHa) ‘ (c.5)
I (q,g ) = -2nE U _(ve ta,q) (c.6)
0,1 **70 o o5y *? ’
Io,l(q,l) = —2ﬂUo(Yq,q) (c.7)

The integrals XK =1, £ =0, and m = 2,3,4 can be obtained from
.C.5 by successive differentiations with respect to K . Doing this and

then setting K = 1, we obtain the formulas

- i -1 .
Io,2(q’l) =210 + 3 q(yU_l+ Y Ul) , (c.8)
= _1q -1
3(as1) = -2aU - F(7TYU_; + 5y 7U)
2 2 -2
- BA(vU_j+ 2U_+ ¥7U,) (c.9)

= g -1
Io’h(q,l) emy_ + 7¢ (19v0_,+ 11¥ "U,)

ﬂq2 2 -2
+ 35 (5v U_2+ 8UO+ 3y U2)

5 .
L
+l92(YUj+3YUl+3YlU+Y U)(Clo)

For the sake of notational simplicity, the arguments (yq,q) of the

Lommel functiQns havé been suppressed in Egs. C.8, C.9 and C.10, i.e.

u = Un(Yq,q). The instances IEOY] <1 and IgoYl > 1 must be
_1)

considered separately in evaluating I 1(q,g For |§OY] we have
. ?

as before (from Eq. C.L)
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SR 2 )
I, lag7) = = 2ne U (Y a.q) (c.11)

On the other hand, when IEOYI > 1

2T .
-1 o1 cos U] '
Io’l(Q.sgo ) J £2- g_g d‘w -
0 0
am
o _ip 11 s .
- f 2 i2y Z (y lgol e 1w)2k elq cos ¢ av
k=0 '
0
Y -2 - 2k £k kL \
Eo Y g en(-1)"" g, o(a)
_ 2 -1 -1
= - 2mg U (Y 7 g7 asa) (c.12)
By means of Egs. A.3 and A.4 we obtain
-1,-1 _ ' r /2 2
U (Y 7E Thasa) = U_(YE a,a) - cos(ut - = Vu_ - o) (¢.13)

After combining Egs. C.11 and C.12 we obtain

-1y _ 5 .2 2
I,,1098,7) = -2l U (¥€ a,a) + 2nE] cos(ut

_i"- \/mi - %) H(t-—i— 1-(%—)2) (c.1k)

o
In the Laplace inversion there is also a contribution due to poles in

the integrand. See Eg. B.9. This term appears only for

t > fW/l _,(%_02 s and 1t exactly cancels the second term on the right
o

\

hand side of Eq. C.1lh. Therefore for the value of I, l{q,igl/ we
) ]
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shall formally use Eg. C.11l and the residue contribution will automati-
cally be taken care of.

Similarly, it can be shown that

_ 2mi -1
Il’l(q,K) = -5 Ul(qK | Y,q) (C.15)
I, (g, )= - 2mi g'l U (YE-lq q) (c.16)
1,1'*°70 o 1'% *? :
11,1(‘1’1) = - 27i Ul(vq,q) ‘ (C.17)
- v T -3
;l,z(q,ll = iU+ =3 Q(YUO+ Y*UE) (c.18)
- - _ 3m . _ omi -1
*1,3(Qal) = - M Ul ) Q(SYUO+ 3YA U2)
™mo2,.2 -2
- 15 4 (YU_ + 20+ ¥UL) (¢.19)
1. ,(q,1) = 22y + I g1y + sy 'u,)
1,47 8 "1 16 2770 2
i 2 2 . -2
* 1€ 2 (2y U_q* 30+ u3)
+ mig3 (YU _+ 370 + 3y U+ v3) ) (C.20)
192 -2 o 2 N .
I, (q,E ) = - 2ri £ u (ve1q,q) (C.21)
1,1'*>7o o 1'% = '
) -emi g U (v a,a) g Y| <1 (c.22)
I alegsh) =

ori & U (YETa,0) eyl > 1 (c.23)
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We have denoted Uﬁ(yq,q) by U in Egs. c.18, C.19, and C.20.

Again, using Eqs. A.3 and A.4, we obtain

-1 =1 . e
U (vTETasa) = - Up(YE a,q) +sin(u b -5 W o) (c.2h)
Comblining Egs. C.22 through C.24 results in
-1, . C _
Il,l(q’go Y = - 2mi £OU1(Y€Oq,q)*-2w1 5031n wot
LY R < ( r 8,2 -
-3 wo-a.ht-—c 1 (=) (C.25)

w
o]

Our comments following Eq.. C.1k concerning I, l(q,igl) apply to this
]

integral as well, and formally we shall use

-1, _ .
11,1(q’go ) = - 2mni &OUl(YEOq,q) (c.2§)

l) .

for the wvalue of Il,l(q’go
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APPEFDIX D

EVALUATION OF SOME ASYMPTOTIC FORMULAS

In this appendix, some required asymptotic expressions for Lommel
functions of two variables are derived. In Chapter 3 we need to know
the behavior of Uo(cx,x) as x » o , when ¢ and x are real.

If ¢ <1 , a one-term formula can be obtained from the results
given by Watson (36). However, we need a second term for the calcula-
tions in Chapter 3. The method used by Watson is rather cumbersome,
especially if one attempts to obtain the second term in fhe asymptotic
expansion. A technique using the method of stationary phase is used

here.

By definition A.l we have

g (ex,x) = (%) | (D.1)

Il o~
T
W

[¢)
n
=

oy

k=0

Using an integral representation for the Bessel function, a slight

rodification of Eg. B.1T7

27
T (x) = _;_.J elnG e-lX sin © a0 (D.2)
n 27

O .

we obtain, after the interchange of integration and summation orders,

2T

u (CX,X) = ._1.‘.._. J z (_)k(ceiG)eke—iX sin O a0 (D.3)
o] an
5 k=0

Recognizing that the summation is a geometric series, we can now write
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(D.L)

By the method of stationary phase the first term in the asymptotic

expansion of Uo(cx,x),x > ¢c <1 is

Uo(cx,x) p— 5 ﬁ%-cos(x-%0,~ = 5 Jo(x) (D.5)
l-c¢ 1l-c

This is the result obtained by Watson. To obtain the next term in the

expansion, we add and subtract Jo(x)/(l—c2) in Eg. D.5 using Eq. D.2

2T
- 1 1 1 1 -ix sin 8
Uplex,x) = 5 (=) + 53 ” 5180 - 2}" - ®
l-c 0 l+ce l-c
(D.6)
Integration by parts gives
2w
_ 1 1 sin @ 1 1
U (ex,x) = 7z To(x) + 5% J 2 [ 2 120 2}
l-c¢ 3 cos @ Li+c e l-c
2 1z8
1 [—Eic e ]:} -ix sin 8
+ . - e a6 (D.7)
coSs g (l+C2 elgg )2 4
2T . .
1 02 1 [l-—cgelgg 1elg ~ix ¢in@
= 5 I %) - 2 Tx 2100 ,2 e
l-c¢c l-c 5 [1+c"e ™7 ]
(p.8)

Again, applying the method of stationary phase
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Uo(cx,x)

2
(l"'C ) 2 2 T
. —(—;—'—:-;—2-)-5' o sin(x - -&-) (D.9)

Using Hankel's (37) asymptotic expansion of Jo{x) to two terms

7 _(x) m,/-—%{' [cos(x - P+ §=sialx - {-)] (D.10)

we obtain

2
1 /2 T 16¢° (1+c2) / i
Uglex,x) o 1c2 ¥ mx cos(x - 3) +[1'- (1-c2)2 } = By sinlx-g)

(D-11)

If ¢ =1, then according to Egs. A.3, A.4 and A.5, we have

Uo(x,x) = %{Jo(x) + cos X) ' (D.12)

An asymptotic formula for Uo(x,x) can then be found, to any desired
number of terms, from Hankel's asymptotic expansion for Bessel func-
tions of large argument.

If ¢ >1 , we can obtain the asymptotic expansion via the inter-
relationships beﬁween.iommel functions given in Appendix A, viz. Egs.

A.3, AL, and A.5, along with the result just obtained for c¢ < 1 .

Uo(cx,x) = cos[E(ct+e )] + Jo(x) - Uo(c-lx,x)

2
- 2 2
X -3 1 2 ud 16¢”(1+c°)
~ cos[2(c+c )]+ 5 /nx cos(x-—h)+- l—-————7§7?—-
l~c (1-¢7)

1 1 2 . T
x 5 g;-1/;; sin(x - EJ (D.1Lk)
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1/2

We alsc need Ul(cx,x) for ¢ <1 +to order x . The result

of computations similar to those resulting in Eq. D.5 is

Uo(cx,x) N 2 Jl(x) (D.15)

Another asymptotic formula we nust derive is one for

UO(eléx,x) -U (e-l(S

° X,X) , as x > ®

where x and ¢ are real. To do this we will convert these Lommel
functions back into a Laplace transform inversion integral.
From the definition of the Lommel functions, Eq. A.l, and the

representation of exponentials as sinusoids, we arrive at

U (elsx,x) -U (e~16x,x)
o

. = -2i E (-¥sin[2s(k+1)] 7, (x)

0 2k+g
(D.16)

The following convolution integral is expressible as a sum of Bessel

functions

(z)

Z .
. i(z-t) v, k.
sin § J e Jv(t)dt = 2 z (-)"sin(2k+1) 6J2k+l
0

k=0

+21 7 (-)fsin 26(k+1) T

k=0 2k+z+v(z) <D'17)

Using the imaginary part of Eq. D.17 with v = 0, we see that Eq. D.16

becomes
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X

. id -16 .. I

Uo(e A,X) - Uo(e x,x) = =i sin § | sin[{(x~t)cos S]Jo(t)dt
0

(D.18)

When that convolution is expressed as a Laplace inversion, we have

ié ~id

U (e l. J cos §
o

sX
< ds
i 2 2 2
r S + cos 6 Vs +1

(D.19)

X,X) - Uo(e x,x) = -1 sin 85

Figure D.1 shows the contour I and the path composed of Cj , jJ=1
to 12, to whieh T can he transformed via an argument identical to

that in Appendix B.

Im(s)
A
i ;\97 all
Cq| ¥ |Ce
i cosd Cg<§ \Cs
téﬁ\
Cio[¢ Ca
“ = Re(s)
X
-i cosd CH<2 >:3
Ciz| 4 (C2
4 &)
G

Figure D.1. Diagram showing eguivalent paths I' and one composed of

CJ , 3 =1 to 12.
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Equation D.19 can now be written

iz

ié -i8 _ i sin 6 cos § "% ds
Uo(e X,X) - Uo(e X,X) = - o Z 5 5
J=1 cj 8 +cos § ,52+1
(D.20)
sin 28§ Z
= - I (D.21)
Loy g1 9

Analysis of the integrals Ij - along the paths Cj a5 the complete

path approaches the branch cut shows that

Il + 0 IT + 0

. -7 S
I, =18 = - ;ZE‘EE‘ g 1X €O (D.22)
I =1*% = s ix cos §

9 11 ~ sin 28

By the defirnition of Cauchy principal value, which we denote by P.V.,

we can write
1 .
X a4t

J e
-1 (cos®s -t2) /1-¢°

P.V.

12+Iu+16

1
21 P.V. J cos xt dt (D.23)

o} Vl—tz (c0926~—t2)

and



-1
ixt
- e idt
I8 + IlO + IlZ = P.V. J = .
1 - y1-t“ (cos 5-t2)
1
. cos xt dt
=21 P.V. J (D.24)

0 yi1-t2 (c0526 —t2)
Combining these results, we see that

ig -igd

Uo(e X,X) - Uo(e

1
X,X) = - %-sin 28 P.V. j cos_xt dt
’ 0

Vl-t2 (coses— t2)

(D.25)

Consider the integral

(o]

1 [
P.V. J cos Xt it = D.V. J cos xt dt _ J cos Xt . at (D.26)
0 1

cos 6-—t2 cos 6-t

2 2 o
cos 6=t 0

The first integral 1s tabulated and repeated integration by parts will

yield an asymptotic formula for the second integral.

1
cos Xt _ 0 . Ll sin x -2
P.V. J > ,2dt vy sin(x cos &) + -T~ET-+O(X )
o cos § -t sin &
(D-27)
It is also well known that
1
J. cos xt .. _ E-JO(X) (D.28)

0 Vi-t© °

1

Using Egs. D.27 and D.28 as aids in the asymptotic evaluation of Eq.

D.25 we find that
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| 1 ' 1
t dt | 1
P.V. J COE = P.V. J‘. =
V1t (cos”8-t7) JLv it (cos26-12)

L L + 1 L ] cos xt 4t

sin § cosgé— t2 sin26 \/l-t2

1 m . 1l sin x -2 ™ 1
{2 cos & sin(x cos 8)+ x .. 2 * 0(x % T2 .2, Jo(x)
sin § sin &

(D.29)

Examination of the integrand shows that its singularities have been
removed. The P.V. symbol on the integral on the right-hand side can

now be dropped. This integral can be integrated by parts to reach, as

a final result,

is =16 I I _gos § .
Uo(e X,X) - Uo(e X,X) = -1{31n(x cos §) Iy uO(X)
+__l‘:_cos § sin x 1 . O(X—Q) (D.30)
T o, 2 X .
sin™§ J

To obtain asymptotic expressions for Lommel functions as t - «

when the function argumernts depend on t through
_ _ T T = ot V1 - (59)2 it scems bes
Y 1/(1 Ct)/(l + ct) and g = ot {1 (ct) , it secms best to

convert the Lommel functions back into inverse Laplace transform inte-

grations, redefine the branch cuts, and then evaluate the residue and
asymptotic branch cut contributions to the integral. We l1lllustrale
this approach in detail for UO(Yq,q) and present only results for

the other cases.
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From Egs. C.7 and C.1 it follows that

1 " eiq ces Y
U (Ya,q) = - 5;;J g (D.31)
o &-1% '

Using Eqs. B.1ll to B.1lh we obtain

" r.,2 2

U (Yq,g)= == | = 228 *a s o St—C/SHx a (D.32)

ot T o | T3 2 S AD.

s+ a
Tabulated Laplace inversion formulas lead to
R

= L py 1 1 S c _ st

Uo(Yasa) = 5 I (a) + Fcos ot + 5y J 2 2, o@[e 1} =
r

{D.33)

Instead of the branch cut definition previously used, we now define
the square root by

i,.
=g+ ¢,)
¢52+ a2 = ,/plp2 e2 e , -T £ < 7w (D.34)

1,2

See Figure D.2. It can easily be shown that the integral aleng T is
equal to the sum of the integrals along the branch cuts in the direc-
tions shown in Fig. D.2. The contributions from asrcs closing the con-

tour at infinity and at the branch points are equal to zero.

Writing down these branch cut integrals we obtain
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ALY AR R A -

- R (5)

_— g

NONNNNRNN ~ ~
- ~ia

Fig. D.2. Definitions of branch cuts and directions of
branch cut integrals for asymptotic evaluation

of some integrals.

1 1 elat O: ia ~ x
UO(Yq,q) = 5-'O(q)-+§-cos at - S5 J
. 0 -21i0x +x

r 2 -Xt e—iat 3 -ia ~ X
x sinh(= |/—2iocx + x ) e dx + -

c - 2ni . 2

2iax + x
0

x sinh(-i— ~2iax + x°) e-Xt ax : (D.35)

The two integrals in Eq. D.35 are of the Laplace type and their
asymptotic behavior to any desired number of terms as t -+ «© may be

found using the following theorem (38).
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X

Let 0 < Al < A2 . If (%) = lim Je—tx $(x) dx exists
X > o

for some t = to and if @~ Z anxkn-l to N terms as x - 0 , then

f’SZP()\n)ant " to N terms, uniformly in argt as t - ® in
the sector |arg t] < —g—- A, 48>0,

Retaining bnly the first term in the asymptotic evaluation of

Eq. D.35,according to tals theorem, we cbtaln

U (va,q) n %" Jo(q) + ::Pf- cos ot + -:EL—L—/—Q— cos(oct-%”—) (D.36)

(
0 c Tot

In a similar manner we obtain for Ul(Yq,q)

= L a3 lra [2 -
Ul(‘{q,q) = Zsinat - 5= [~ cos{oat hr) (D.37)

An additional complication arises when a Lommel function con-
tains = go or g;l in its first argument. The integrand of the
Laplace inverse transform then has poles at s = iiuo . Thus, in
additibn to the branch cut contributions, we must also include the
contributions due to these poles. The results for certain combina-

{ions of Lommel functions appearing in this paper are
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: -1
,Ul(Yaoq,q) - Ul(vao 4,9)
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o
r 2 2
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e [0} 2 3T .
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) (D.38)
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-1
UO(YEOq,q) + UO(YEo Q,q)

~ 4

(.

e

2 2 T '
Va - wy cos w t + I/'nat cos(at - b,) > W, <a (D.L0)

o=

AY

i 2 2 2 T '
t - "‘/ -0 | /_ siat - > L1
cos&mo Ty e, —5 0 (o -E) , w, > o (D.41)

-1
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-1
U, (YE_a,a) + U, (YE_"q,q)

o . -
€ sin wot s mo < g (D.LL)

iy 2 2
%t—:wua), wy > o (2.45)
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