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Abstract

Variable hydrogen white dwarfs (DAV) pulsate in a number of low-order gravity-modes with periods
from 100s to 1200s and amplitudes no larger than a few percent. We answer two questions in this
thesis: the driving for these pulsations, and the saturation of their amplitudes.

The surface convection zone in these stars, which adjusts its entropy level instantaneously during
the pulsation, can drive the observed modes. This mechanism (called ‘convective driving’) was
discovered by Brickhill but has been largely neglected so far. We find that modes with periods shorter
than the thermal adjustment time of the convection zone can become overstable, but those with very
short periods are hardly visible at the surface. As the star cools and the convection zone deepens,
longer period modes can be excited. The driving rates increase sharply with period. We relate these
to the time-scale of mode variability. We include complications arising from nonadiabaticity in the
radiative interior and turbulent damping at the convective-radiative boundary. The former limits the
driving and damping rates for strongly nonadiabatic modes, and relates the phase and amplitude of
surface horizontal velocity in a gravity-mode to those of its flux variation. The turbulent damping
results from the horizontal velocity shear below the convection zone, inside which there is little
velocity shear and negligible damping. This suppresses the amplitudes of long period modes to
below detection. The width of the theoretical DAV instability strip is about 1000 K.

The growth of an overstable mode can be saturated by parametric instability, where energy
transfers resonantly into two damped modes of roughly half its frequency. This occurs above a
critical amplitude which depends on the 3-mode coupling coeflicient and the nonadiabatic damping
rates. The critical amplitudes all fall below a few percent, with longer period modes having larger
surface amplitudes. Combined with the amplitude limits due to turbulent damping, our estimates
compare well with observations. Other types of mode couplings are needed to explain the observed
‘mode selection’.

Finally, we show that the combination frequencies found in pulsation power spectra are produced

by the time-varying convection zone which nonlinearly affects mode visibility.
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Chapter 1 Introduction

Asteroseismology provides an excellent window into stellar interiors. While stellar spectra tell us
about photospheres, and binaries about global properties such as mass and radius, the optically
thick interior is best revealed by periodic pulsations; that is, if the star decides it likes to make
music. This branch of astrophysics has already yielded much useful information (see the reviews
by Brown & Gilliland 1994; Gautschy & Saio 1996). On-going and future observational efforts
of monitoring variable stars over longer time spans, in new wavelength bands, and using larger
telescopes promise new knowledge and exciting insights about pulsating stars — if the theory can catch
up with the observations. Theoretical studies of stellar pulsations divide into linear and nonlinear
categories (Cox & Giuli 1968). In the linear approach the equation of motion is approximated
under the assumption of infinitely small pulsation amplitudes. Then adiabatic calculations yield
eigenfrequencies and eigenmodes and the nonadiabatic calculations growth or damping rates. The
identification of observed frequencies with appropriate eigenmodes yields precious information about
pulsating stars. The simplicity of linear theory makes physical understanding of stellar pulsations
accessible. Nonlinear theory, on the other hand, suffers from complications associated with the
infamous word nonlinear. Although more difficult to apply than its linear counterpart, it can be
more fruitful. In particular, it may be used to determine what happens when overstable modes grow
to saturation.

My thesis focuses on pulsating white dwarfs with hydrogen envelopes (ZZ Ceti variables). It
includes contributions to both linear and nonlinear theory. The first part sets criteria for the linear
stability of gravity-modes (g-modes) in white dwarfs with hydrogen envelopes (called DA white
dwarfs). In the second part some first steps are made towards deducing saturation amplitudes of
overstable modes. Along our successful yet tortuous path, a final physical understanding has always

been the goal.

1.1 Overview of Pulsating Stars: Connections

During the evolution of a star, it enters and leaves phases of pulsational instability several times.*

We look at a typical low mass star like our Sun (a G-type dwarf).

IFor a slightly more complicated picture than is given here, see Becker 1987.



1.1.1 Main-Sequence Sun

From the star’s birth till the end of its main sequence life, it is relatively quiet. We do not have
much pulsational information about the earliest stage when it is fully convective. While it is on the
main sequence, we detect only random variability associated with rotation and magnetic activity.
However, the main-sequence Sun is known to pulsate with minute amplitudes in a multitude of
pressure-modes (p-modes). This has spawned a new field of astronomy called ‘helioseismology’.
Searches are being made for similar pulsations in solar-type stars (Gilliland et al. 1993; Brown et
al. 1991; Brown & Gilliland 1990). A report of a successful detection in 7-Bootis (Kjeldsen et
al. 1995) sets off a flurry of theoretical activities, even before this result was soon refuted by Brown
et al. (1997). This illustrates how eager we are to learn from stellar oscillations.

Accurate measurements of solar eigenfrequencies provide detailed information on the sound speed
in the solar interior, on the settling of helium relative to hydrogen close to the core, and on the differ-
ential rotation inside the Sun. The first two results constrain the ‘standard solar model” {Christensen-
Dalsgaard 1996), and severely limit possible astrophysical solutions to the solar neutrino problem
(Bahcall & Krastev 1996). They also enable us to infer the structure of the convective region in
the Sun and thereby calibrate both the efficiency of convective heat transport in the superadiabatic
layer near the surface (Monteiro et al. 1996), and the extent of convective overshooting at the base
(Christensen-Dalsgaard et al. 1995).

The internal rotation of stars is also an unique product from pulsational study. Rotational split-
tings of solar p-modes are consistent with uniform rotation in the solar radiative interior. This
finding bears on the evolution of angular momentum in solar-like stars. The rigid rotation in the
radiative region has led to various theoretical speculations, including a hypothesis of angular momen-
tum transport by gravity waves (Kumar & Quataert 1997). Magnetic fields can also act to transport
angular momentum, with perhaps a role by the weak field MHD instability (Balbus & Hawley 1994).
Moreover, contrary to theoretical expectation based on ideas of momentum transfer in convective
region, the isorotational surfaces inside the solar convection zone are not cylindrical. The absence
of significant differential rotation at the convective-radiative boundary also raises questions about
the role played by magnetic fields and convective overshooting.

With all these excellent works by the helioseismologists, the large scale internal magnetic fields
seem about the only thing left to be measured in the Sun. It is amusing to be able to claim to the
geophysicists that we know the interior of the distant Sun better than we know that of the Earth.

Main sequence stars slightly more massive than the Sun (spectral types A to F') may be unstable
to pressure-mode or gravity-mode oscillations. These are called §-Scuti variables, and their pulsations
are thought to be excited by the opacity-mechanism (k-mechanism). d-Scutis are of particular
interest to us as many of them are multi-periodic, just like the pulsating white dwarfs. Only a few

of their modes are excited to observable amplitudes, out of a large population of similar modes. So
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called ‘mode selection’, this behaviour may well be explained in the same fashion as we do here for
ZZ Cetis, i.e., nonlinear mode coupling including parametric instability and direct resonance (see
also Dziembowski & Krolikowska 1985). The amplitudes of individual modes are typically of order
0.02 mag,? slightly larger than those in ZZ Cetis, and these amplitudes are observed to vary in time
(Korzennik et al. 1995). We may be able to understand the amplitudes of pulsations in é-Scutis
with the same methodology we use for ZZ Cetis. Unlike ZZ Cetis, though, it is possible to observe
high spherical degree, non-radial pulsations (8 < ¢ < 16), at least in rapidly rotating § Scutis using
rotationally broadened lines (Kennelly et al. 1991). Different parts of the stellar surface are projected
to different parts of the line profile, and the high ¢ oscillations can be detected as regular wiggles in
the lines. A similar technique has been applied to rapidly rotating B variables. By contrast, even in
relatively fast rotating ZZ Cetis, pressure broadening disguises the rotational signal, and only £ = 1
and ¢ = 2 modes are observable from photometric or spectroscopic variations.

Some F-type stars exhibit weak pulsation in non-radial g-modes with periods ranging from 5
hours to 2 days (see, for example, Krisciunas et al. 1995). The excitation of these modes is not well
understood. The problem of mode selection exists here too, since these multiperiodic oscillations
exhibit only a few modes out of a whole sea of available modes. Changes in pulsational amplitudes

have been reported. This is another example to which we may be able to apply the results described

in this thesis.

1.1.2 Life After the Main-Sequence

But let us come back to the evolution of a solar-type star. After a long and quiescent main-sequence
phase, it becomes increasingly flamboyant, pulsation-wise.

During the red-giant phase (hydrogen shell burning outside a degenerate helium core), the star
may be observed as a slow, irregular (Lb type) or semi-regular variable showing low Q (quality
factor) oscillations with periods between 20 and 2000 days. Next comes strong mass-loss followed
by an interval spent on the horizontal branch (core helium burning). During part of this time it
may become an RR Lyrae variable, showing regular variations with amplitudes of about 1 mag and
periods of about a day. RR Lyrae pulsations are excited in hydrogen and helium ionization zones.
Besides their astronomical importance as standard candles, RR Lyraes are interesting in the context
of this thesis because convective energy transport plays an important role at the red edge of their
instability strip, much like the ZZ Cetis. From the earliest reports (Baker 1965) to the latest news
(Bono & Stellingwerf 1993), interaction between pulsation and convection and its consequence for
the location of the red edge has been a matter of great debate. For the cooler members of the class,

convective energy transport is most important and the convective turn-over time is much shorter

2Luminosity variations are usually described in the unit of magnitudes. With the logarithmic base, 0.02 mag means
that 6L/L is about 0.02, where 6L is the size of variation in stellar luminosity. Later in this thesis, we introduce the
unit of mma, 1 mma = 10~3 mag ~ 0.1%.
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than the pulsation period in their outer layers and much longer deeper down. Analyses which
ignore perturbations to the convective flux predict a cooler red edge than observed. Recent models
incorporating time-dependent convection appear to remove this discrepancy (Bono et al. 1995). In
these models, the radial extent and the efficiency of convection changes significantly during the
pulsation cycles. Most of these investigations are numerical, which tends to obscure simple physical
understanding. Perhaps when combining the traditional assumption of frozen-in convective flux valid
in the limit of extremely long adjustment. time, with the assumption of instantaneous adjustment in
the other limit (see below), one may be able to find a more transparent way of understanding the
location of the red edge of RR Lyraes.

The horizontal branch stage ends when the star’s hydrogen-burning shell starts to dominate its
luminosity. Shortly thereafter the star metamorphoses into a fluffy asymptotic giant branch (AGB)
star. In this phase it becomes a glamorous Mira variable, pulsating radially with long periods and
large amplitudes. These pulsations are thought to be driven in hydrogen or helium ionization zones
located close to the surface, although the situation is again muddied by the presence of a convective
envelope in which the convective flux dominates the energy transport and the convective turn-over
time is comparable to the mode period (Gautschy & Saio 1996). Mass loss rates of order 1077 to
10~*Mgyr~! (Pijpers & Harbing 1989) are observed for these stars. They are thought to be due
to a combination of mass ejection produced by shocks and radiation pressure acting on dust grains,

the shocks being associated with the pulsations.

1.1.3 Along the White Dwarf Cooling Track
PG1159 Stars: Driving and Rotation

After a few more twists on the H-R diagram, the star finds itself in the domain of this thesis — that
of the white dwarfs. It begins its descent along the white dwarf cooling track as a PG1159 type
star. While oscillating, it is classified as a PNNV star if surrounded by a planetary nebulae, or as a
DOV or GW Vir star once the nebula has dissipated. Observationally, pulsations in low ¢ g-modes
occur across a broad range of temperature; the instability strip is not well-defined. Excitation at
the extremely high photospheric temperature of ~ 10°K is thought to be due to cyclic ionization
of carbon and oxygen (Starrfield et al. 1984). A paradox that remains to be explained is that some
pairs of spectroscopic twins exhibit different pulsational stabilities (Werner 1993). A hint as to the
solution may come from the recent discovery that the photospheric nitrogen abundance is correlated
with the pulsational behavior (Dreizler 1996).

Compared to the important but monotonous Cepheid or RR Lyrae variables, pulsating white
dwarfs play far more interesting music, and their light variations carry more information about their

internal structure. For PG1159-035, 115 individual frequencies are found, with periods ranging from
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3855 to 1000s. The Whole Earth Telescope consortium (for an introduction see Winget et al. 1991)
targets these stars during long and uninterrupted observing runs, obtaining detailed light curves
from which masses, chemical compositions, and possibly even cooling times are deduced (Winget
1991; Kawaler et al. 1995; Bond et al. 1996). The amplitudes of PG1159 stars vary significantly on
the time-scale of months (variables with planetary nebulae) to years (those without). It is difficult to
pin down their exact period structure even with prolonged observations. Nevertheless, the existence
of chemically stratified atmospheres has been inferred for both PG1159-035 and PG21314-066 with
a composition discontinuity around 10™3 M, (measured from the surface), presumably where helium
separates from the carbon/oxygen core. However, it might be best to be suspicious of this claim
at this moment. A conservative estimate for the thermal time at this discontinuity yields at least
a year. This is inconsistent with the assumption that mode excitation takes place in the C/O
ionization zone.

Rotation in the PG1159 stars poses another intriguing puzzle. Measured rotation periods range
between 5.1 hrs (PG21314-066) and 1.6 days (PG0122+200), with a few pulsators closely clustered
around 1 day. Almost every star that has been looked at with sufficient frequency resolution shows
rotational splittings. These results, taken at face value,® have two important implications. First, if
DB stars (and possibly DA stars, both of them will be discussed in detail next) are direct descendants
of these rapidly rotating PG1159 variables, they should all have rotation rates shorter than a day
— assuming angular momentum is conserved during the cooling and shrinking of a pre-white-dwarf.
Such a fast rotation rate for a DA or DB star would be resolved with observations over a couple of
nights. But rotation rates are observed for only four out of two dozen DA variables (with periods
ranging from 8.9 hours for G226-29 to 4.2 days for GD165), and for only 1 out of 8 DB variables (with
a period around 1.6 days for GD358). How can this be reconciled with the rotation measurements
for the PG1159 stars?

The second implication of the rapid rotation rates is related to the question of angular momentum
evolution in low and medium mass stars. In order that a sufficient fraction of the initial angular
momentum be preserved in the white dwarf forming core, the rotational disengagement between the
stellar core and its envelope must occur at or before the AGB phase. We know that this must have
happened for at least some magnetic white dwarfs, another population of white dwarfs for which
rotation can be reliably measured. At least some of these stars are rotating fast, much faster than
they would be if disengagement never took place. The high proportion of fast rotators in PG1159
stars seems to imply that the decoupling happens more often in nonmagnetic stars. Is this process a
sudden one? Are there significant differences between the angular momentum evolution of magnetic
white dwarfs (which might have magnetic Ap stars as progenitors) and pulsating white dwarfs (which

are ordinary except that they are passing through special temperature ranges)? Alas, even small,

3For an example of a rotation rate in doubt, see Bond et al. 1996.



degenerate dwarfs can be enigmatic.

DAs and DBs: Driving the Pulsations

As PG1159 stars cool down and contract, they may become DA or DB stars, with spectra showing
partially ionized hydrogen or helium, respectively. Chemical evolution during this stage and beyond
is an active field with many unsolved puzzles.

Variable DA white dwarfs, the subject of this thesis, are also called ZZ Cetis after the prototype,
or DAVs for short. They are found in a narrow temperature range around 12000K (the ZZ Ceti
instability strip) and show multiple periods ranging from 100 to 1200s. The amplitudes of individual
peaks range from 1 to 100 mma (1 mma ~ 0.1%). Flux variations are produced as pulsations
compress and inflate different parts of the star. Only a handful of modes are excited to observable
amplitude in any particular star; energy stored in such an excited mode may be as large as 10%? erg.
Even before the excitation mechanism is well understood, it is possible to extract much of the
information about the white dwarf from the observed period structure. For details, I refer readers
to the review by Gautschy & Saio (1996), which documents these efforts and their results.

DB variables are physically similar to DAs — substitute a helium layer for the hydrogen layer
and raise the temperature such that the outer electron in a helium atom is beginning to be ionized
in the atmosphere and you transform a DA variable to a DB variable. A significant observational
difference is that power spectra in DBVs tend to show a larger number of peaks than those of DAVs.

For both types (though we will focus on DAVs from now on}, the opacity maximum associated
with H or He ionization causes convection in the outer envelope, and in this region almost all
stellar flux is carried by convection. The depth of the surface convection zone increases sharply
with decreasing effective temperature. The overstability of g-modes is sensitive to the manner in
which the convective heat transfer responds to pulsations. Perhaps because the ZZ Ceti instability
strip is an extension of the Cepheid instability strip (which includes pulsators like Cepheids, d-Scuti,
and oscillating Ap stars) and because hydrogen is partially ionized in the surface layers of these
white dwarfs, it is often stated that the x-mechanism (opacity-mechanism) is responsible for their
excitation. But due to the high gravity, the zone of partial ionization is very thin, and its thermal
relaxation time is orders of magnitude shorter than the mode periods. Driving in this zone falls far
short of overcoming damping from the radiative interior. On the other hand, the thermal time-scale
at the bottom of the convection zone is similar to the mode periods. This turns out to be an essential
feature of the excitation mechanism we discuss below.

The response of a convection zone to pulsations is an unsolved problem. Most investigations
rely on the ‘frozen-in’ approximation (Baker & Kippenhahn 1965), in which the convective flux is
assumed to be unaffected by pulsational perturbations. This assumption is valid in the Iimit that

pulsations periods are much shorter than the typical convective eddy turn-over time. Pesnell (1987)
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shows that when this assumption is valid, the bottom of the convection zone contributes to mode
excitation; this mechanism is called ‘convective blocking’. Application of the ‘frozen-in’ approxima-
tion to white dwarfs has produced overstable modes in the correct temperature range. However, this
approximation is inappropriate in this context. Brickhill (1991a and all his other papers cited here)
emphasizes that the convective turn-over time in even the coolest DAVs is of order a second, much
shorter than the periods of the observed gravity-modes. To understand the convection-pulsation
interaction in this limit, we may either rely on numerical hydrodynamic simulations (Gautschy et
al. 1996), or look for a valid, simplifying assumption. Brickhill (1983, 1991a, 1991b) assumes that
the convection responds instantaneously to the pulsational state. When in hydrostatic and thermal
equilibrium, an efficient, convection zone has an almost Hat entropy profile, thanks to the labor of
turbulent eddies (Schwarzschild 1966). If the energy flux injected into the bottom of the convection
zone varies over a time-scale much longer than the typical eddy turn-over time, the convection zone
maintains its isentropic profile by changing its entropy uniformly. For this uniform entropy rise
(drop), it absorbs (releases) energy from (into) the incoming flux, allowing only part of the flux
variation to emerge at the stellar surface. As Brickhill’s work demonstrates, and ours confirms, this
interaction is responsible for exciting gravity-modes in DAV white dwarfs. The convection zone
functions like a heat engine, absorbing heat when compressed and releasing it when expanded. This

mechanism of mode excitation is called ‘convective driving’ (Brickhill 1983).

1.2 Qutline of the Thesis

1.2.1 Driving of G-modes

After this lengthy preamble, we proceed to describe the outline of this thesis.

Scaling relations for both the white dwarf models and their gravity modes are presented in
Chapter 2. These relations are used throughout the thesis.

In Chapter 3, we derive an analytic criterion for overstability of g-modes based on ‘convective
driving’. The key approximations are the instantaneous adjustment of the convective flux to the
pulsation, and the quasiadiabatic approximation in the radiative interior. We demonstrate that a
necessary condition for ‘convective driving’ to produce overstability is for the mode period to be
shorter than 7., the thermal adjustment time-scale for the whole convection zone. This time-scale
is the ratio between the heat absorbed or released by the convection zone during pulsation and
the perturbation to the photospheric flux; the latter determines the entropy variation in the whole
convection zone under the assumption of instantaneous adjustment. For DA variables, 7. is about
20 times larger than the conventional thermal time at the base of the convection zone, 74; the latter
is approximately the ratio of the internal energy above a given depth to the equilibrium luminosity.

The factor of 20 originates from the increase in photospheric entropy when flux rises, as well as
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from the steepening of the superadiabatic gradient below the photosphere to transport a larger
convective flux. A DA white dwarf enters the blue edge of the ZZ Ceti instability strip when its
effective temperature drops to a value at which its convection zone satisfies wr, > 1 for the n = 1,
¢ =1 g-mode (with a period, p = 2r/w, of ~ 100s).* For modes with wr, > 1, the photospheric
flux perturbation is reduced by a factor of 1/(w7.) <« 1 relative to the flux perturbation entering the
bottom of the convection zone. This reduced visibility of overstable modes is partially responsible
for the red edge of the DA instability strip, where all overstable modes have periods much shorter
than 7.

Clemens (1993) summarizes several observational correlations involving ZZ Ceti pulsators. He
finds that cooler stars pulsate in modes of longer periods and larger amplitudes than hotter ones. The
correlation between effective temperature and mode periods fits nicely into the ‘convective driving’
picture: cooler variables have larger 7., so they can drive modes of longer periods. To understand
the correlation between temperature and amplitudes, one would have to investigate the nonlinear
saturation of overstable modes. This is discussed later.

Turbulent stress in the convection zone presents a complication which is dealt with in Chapter
4. We show there that turbulent viscosity suppresses the shear in the convection zone to the extent
that it gives rise to negligible viscous dissipation. An interesting consequence is the presence of
a finite jump in the horizontal velocity across the lower boundary of the convection zone. We
investigate the Kelvin-Helmholtz instability triggered by this velocity jump and the subsequent
turbulent dissipation. The latter depends on the size of the velocity jump and therefore the pulsation
amplitude. The lowest frequency modes are most strongly affected by this dissipation.

The quasiadiabatic calculations in Chapter 3 suffer from a more serious limitation. Modes which
are both overstable (w7, > 1) and easily visible have w7, < 1 at the bottom of the convection zone.
Thus their dimensionless entropy perturbation (és) is of order the Lagrangian pressure perturba-
tion (dp/p) at the top of the radiative region. This leads us to investigate the fully nonadiabatic
perturbations in Chapter 5. We find that radiative diffusion affects the eigenfunctions of overstable
modes, and stabilizes some long period modes which are overstable in the quasiadiabatic calcula-
tions. But the theoretical prediction for the longest period of overstable modes still lingers around
2000 s, much larger than the 1200 s deduced from observations. When we extend the same nonadi-
abatic calculations to stable modes, we find their damping rates are limited from above to of order
w/(27n), where n is the radial order of the mode. In Chapter 5, we provide a physical explanation
for this relation. These new damping rates can be orders of magnitudes smaller than those derived
from quasiadiabatic calculations, and they are very important for our later results on pulsation

amplitudes.

4From the observational point of view, it might be best to define a blue edge where the n = 1, £ = 2 g-mode starts
being overstable, as this is the shortest period mode that can be readily observed. But in this thesis, we largely ignore
£ = 2 modes for simplicity.
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We rely on models of DA white dwarfs supplied by Bradley to obtain g-mode eigenfrequencies.
We also build our own series of model envelopes; these extend from the photosphere down to a depth
well below the convection zone and cover a range of effective temperature that includes the observed
instability strip. Our models utilize the LLNL hydrogen opacity and equation of state, as well as
a simple mixing-length prescription for convection. They are described in Appendix B. Their fine
gridding in the superadiabatic layer of the convection zone proves to be essential for assessing the
width of the theoretical instability strip. These models are also employed in Chapters 4 and 5 to
study the effects of heat leakage and viscosity. Due to the uncertainty in convection prescription, the
comparison between the observations and the theoretical predictions obtained using these models

needs to be taken with caution.

1.2.2 Amplitudes of Pulsations

Having gained insight into the problem of mode excitation, we turn our attention to the more
challenging issues of amplitude limitation and mode selection in white dwarf pulsations. Here, we
first review some relevant observational results.

As stated previously, ZZ Ceti stars exhibit photometric variations with amplitudes ranging from
1 mma (the detection limit) to 100 mma. Based on observations of over two dozen DAVs, Clemens
(1993) concludes that a star pulsates in longer periods and larger amplitudes as it cools from the
blue to the red edge of the instability strip. He finds an approximately quadratic correlation between
pulsation amplitude and the energy-weighted mean period.

The above correlation is at best statistical. Mode amplitudes at any given time do not appear
to depend on their frequencies or the (n,£,m) quantum numbers in an easily rationalizable way.
Winget et al. (1994) showed this for the DBV GD358, and this appears typical for other pulsators
as well. The pulsational energy in the whole star can be dominated by a few modes, while their
neighboring modes are not detected at all. The process leading to this kind of irregular energy
distribution is often called ‘mode selection’. Moreover, amplitude ratios within rotationally split
multiplets are usually incompatible with the hypothesis of equal excitation modified by the effect of
geometrical projection.

Apart from the correlation between mode periods and amplitudes, Clemens (1993) also finds
that larger amplitudes are associated with stronger time variability. This is clearly seen in ZZ Psc
(G29-38), the pulsational properties of which have been carefully monitored and documented by
Kleinman (1995). We compile a shortened form of his data into Table 1.1 to provide a flavor of the
amplitude variations. Notice the 614 s mode: it dominates the power spectrum at some epochs, but
completely evades detection at others. The same is true for the 860 s mode. Large phase changes in
the 614 s mode have been reported (Winget et al. 1990, Kleinman et al. 1994), and mode amplitudes

are observed to vary on time-scales of months or even days. There is a correlation between mode
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approximate period(s) Amplitudes (mma) at different epochs
Augl85 X2N88 Sep89 XR8S92 Sep93

284 3.5 3.5 6.4 6.9 3.6
400 7.0 5.6 9.7 11.2 6.0
614 31.3 58.0 e 10.6 31.6
860 24.6

Table 1.1: Amplitudes of various modes in ZZ Psc during different observing campaigns (Kleinman
1995). The dots ‘...’ represent non-detection at that frequency.

period and amplitude variability, with shorter period modes exhibiting stronger stability: the 284 s
mode has relatively constant amplitude. Kleiman (1995) reports changes in frequency spacing and
relative amplitudes within close triplets that were interpreted as rotational split multiplets.

These observations raise the following questions. What determines the observed amplitudes of
pulsations? What causes the fluctuations in mode phases and amplitudes? What sets the time-scales
for these fluctuations, or, why are short period modes more stable than long period ones? What is
the cause of mode selection? What determines the different amplitudes within a rotationally split
multiplet? Why does the frequency spacing between rotationally split multiplets vary among modes
in some stars (for example, in GD358)7 Are these stars really differentially rotating? How could
these multiplet spacings change with time as they appear to do in G29-387

In the second part of this thesis, we focus on understanding the physical mechanisms in ZZ Ceti
variables that limit the amplitudes of overstable modes. Our work provides answers to the first three
questions in the above list, and suggest some possible solutions to the fourth question.

Dziembowski (1993) mentions two amplitude limiting mechanisms in pulsating stars, viz., satura-
tion of the driving when mode amplitudes become sufficiently large, and nonlinear transfer of energy
from overstable modes to damped ones. The first mechanism applies to RR Lyraes and Cepheids,
while the second one operates in ZZ Cetis and other small amplitude pulsators.

In Chapter 6, we summarize useful information for understanding nonlinear mode interaction.
For gravity-modes in a stratified medium, the lowest order interaction involves three modes. We
derive the expression for the three-mode coupling coefficient based on adiabatic perturbations. This
coupling coefficient, &, measures the efficiency of energy and angular momentum transfer among
three standing waves at given amplitudes. Later in Appendix G, we take great care to correctly
integrate the above expression for the coupling coefficient; the results are compared with analytical
estimates. We come back to Chapter 6. Here, we derive the amplitude equations, a group of complex
equations that govern the temporal evolution of mode amplitudes. This is followed by the energy

equations (derived in Appendix F), which describe the secular evolution of mode energy due to
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the nonlinear interaction. We then investigate two types of three-mode couplings, viz., parametric
resonance and direct resonance. In a parametric resonance, a large energy mode (the parent mode)
interacts with two lower energy modes of roughly half its frequency (daughter modes). We derive the
criterion for parametric instability (see also Landau & Lifshitz 1976), and verify this criterion using
numerical simulations. In a direct resonance, at least two strong modes couple with another mode
of roughly the sum or difference of their frequencies. We discuss briefly the role of direct resonance
in modulating mode amplitudes. Numerical evolution of the amplitude equations in our work is
vastly facilitated by the application of an efficient numerical integrator, the ‘symplectic integrator’
(discussed in Appendix C).

We devote Appendix E to a more detailed study of the nonlinear dynamics in globally or se-
lectively coupled systems. For conservative systems (with no driving or damping), we discuss cur-
rent understanding on the process of energy equipartition. For dissipative systems (with driven
and damped modes), we estimate the equilibrium energy. In both these studies, we support our
arguments using numerical simulations. Our conclusions in this appendix help to illuminate the
complicated dynamics in a multimode pulsating star.

During our numerical study, we frequently encounter an intrinsic instability in the amplitude
equations. This instability occurs when a system with only cubic nonlinearity (three-mode coupling)
has too large energy. Documented in Appendix D, this instability puzzled us for a long time until
we realize that it cannot happen in physical systems. We provide an analytical explanation to the
instability in order that others will be able to avoid being confused by it as we were.

We describe some of the most interesting results from this thesis in Chapter 7. There, we
demonstrate that parametric instability can stop the growth of overstable modes at the observed
amplitudes. Whenever the amplitude of an overstable parent mode rises above a critical value,
the linearly damped daughter modes are parametrically excited and receive energy from the parent
mode cataclysmically. If energy in the daughter modes can be quickly dissipated, the parent mode
will stop growing at this critical amplitude, also called the ‘parametric amplitude’. For a given pair
of daughter modes, the parametric amplitude scales roughly linearly with the linear decay rates in
the daughter modes, and inversely linearly with the coupling coefficient. In pulsating white dwarfs,
each overstable mode interacts with many pairs of daughter modes, and the pair that give rise to
the lowest parametric amplitude determine the theoretical upper limit for the pulsation amplitude
in the parent mode. We find that the amplitudes of fractional density perturbations in low radial
order modes are limited to lower values, with associated flux perturbations of order a few mma,
while high order modes have higher amplitudes, corresponding to flux variations up to ~ 100 mma.
The sense of the correlation between amplitudes and periods, as well as the numerical values for the
amplitudes, correspond quite well with observations. Effects due to the convection zone visibility

(discussed in Chapter 3), limb-darkening and viewing geometry all need to be taken into accout for
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a more detailed comparison.

Results from the previous chapters are integrated into the prediction for these mode amplitudes.
The nonadiabatic calculations discussed in Chapter 5 produce damping rates that can be orders
of magnitudes smaller than those from the quasiadiabatic calculations. These new damping rates
prove essential for obtaining the correct parametric amplitudes. The discussions and simulations in
Chapter 6 provide theoretical hasis for estimating the parametric amplitudes, and our confidence in
the numerical values of the coupling coefficients originates from the careful study in Appendix G.
Also, turbulent damping at the convective-radiative boundary (see Chapter 4) effectively limits the
amplitudes of many long period overstable modes to below the detection limit. This process seems
to reconcile the theoretical prediction and the observational fact concerning the longest period of
overstable modes.

In Chapter 7, we also briefly discuss the mechanism of ‘mode selection’. We find that the most
important nonlinear couplings for mode selection are parametric resonances in which one or two of
the daughter modes are also overstable. These couplings can effectively suppress the amplitudes of
low radial order modes. More theoretical efforts are obviously needed before we can understand the
complete cause of the irregular energy distributions among overstable modes.

In Appendix H, we expand the concept of parametric instability to include ‘coherent parametric
instability’. We discover that when there are N, pairs of daughter modes ‘coherently’ interacting with
the parent mode, the latter transfers energy unstably to the daughters above a critical amplitude
that is N, times lower than it would be if there were only one pair. Coherent parametric instability
occurs in white dwarfs when the daughter modes are so strongly damped that they are only running
waves inside the star (§7.4).

We can also address the question of mode variability. The equilibrium state of a dynamical
system with a large number of driven and damped modes is most likely a statistical one. On
average, an overstable mode loses energy through mode couplings at the same rate as its linear
growth. The former depends on the energy in this mode, while the latter does not. This determines
the equilibrium energy in this mode. Fluctuations in its amplitude and phase are caused by the same
nonlinear couplings that limit the linear growth. The time-scale of these fluctuations is necessarily
the time-scale of the linear growth. According to results in Chapters 2 and 3, the growth time for
a low-order g-mode (¢ = 1,n = 1) is of order 107 yrs; while it is of order a few days for a higher
order mode (£ = 1,n = 20). This is consistent with the shorter period modes having more stable
amplitudes than the longer period ones.

In summary, we believe that we have obtained satisfactory answers to two basic questions posed
by observations, viz., what determines the amplitudes of the modes, and what determines the time-
scales of amplitude fluctuations in different modes. As Dziembowski stresses, nonlinear studies may

not offer useful asteroseismological information at the present stage, but developing a theory which
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appears capable of rationalizing the observed phenomena is an important step.

1.2.3 Combination Frequencies

This brings us to one practical application of our theory. Cool DAVs share a common characteristic
besides long period pulsations, large amplitudes, and strong variability. This is that their power
spectra all show prominent peaks at linear combinations of frequencies of the real modes. In fact,
this is true not only for cool DAVs; every DA variable which has been observed with sufficiently
high signal to noise ratios exhibits linear combination frequencies (Brassard et al. 1995).

Three distinct hypotheses exist for the origin of these combination frequencies. The first, resonant
mode coupling, is generally dismissed because it is unable to account for the rich spectrum of
the observed combinations. The second, due to Brassard et al. (1995}, is that the photospheric
temperature perturbation is harmonic and that combination frequencies result from the nonlinear
relation between the emergent flux and the photospheric temperature. The third hypothesis is due
to Brickhill (1992). He argues that the pressure and horizontal velocity vary harmonically in the
radiative zone. In his scheme, the nonlinearity arises when the convection zone responds to variations
in the flux entering it from below. Brickhill also provides a quantitative comparison between theory
and observations.

We disagree with the basic assumption of Brassard et al. (1995), and favor Brickhill’s hypothesis.
The flux perturbation at the surface is related to that at the bottom of the convection zone by a
complex visibility factor that involves both the mode frequency and the depth of the convection zone.
The nonlinearity is due to the modulation of this visibility factor corresponding to the variations in
the depth of the convection zone, the latter being affected by the rise and fall of the entropy level
in the convection zone. This modulation is evaluated in Chapter 8. Simple analytical relations are
derived for the amplitudes of the combination frequencies in terms of the amplitudes of the real
modes. These relations account for limb-darkening and disc averaging but neglect the wavelength
dependence of the opacity. Expressions for these ratios involve three physical parameters: the depth
of the convection zone, the convection reaction time, and the inclination of the quantization axis
to the line of sight. We either choose values for the above parameters and compare the predictions
with observations, or deduce these parameters from the observed amplitudes of the combination
frequency peaks. Results are presented for two large amplitude pulsators, GD358, a DBV, and ZZ
Psc, a DAV, both mentioned above. Comparison with observations is satisfactory.

It is noteworthy that while combination frequencies are a prominent feature of DA and DB power
spectra, they are absent in power spectra of PG1159 stars. Perhaps this is evidence that the presence

of a convection zone is essential to the production of these nonlinear features.

It has been a pleasure working with the white dwarfs.
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Chapter 2 Gravity Modes in White Dwarfs

2.1 Introduction

DAV (stands for DA variable) white dwarfs have shallow surface convection zones overlying stably
stratified interiors. Different elements are well separated by gravity; with increasing depth the
composition changes from hydrogen to helium, and then in most cases to a mixture of carbon
and oxygen. From center to surface the luminosity is carried first by electron conduction, then by
radiative diffusion, and finally by convection.

Photometric variations observed in these stars are associated with non-radial gravity-modes (g-
modes); for the first conclusive proof, see Robinson et al. (1983). A g-mode is a standing gravity wave
trapped within a cavity inside the star. The restoring force is gravity which opposes departures of
surfaces of constant density from those of constant gravitational potential. The cavity is the region
where the mode frequency, w, is smaller than both the acoustic frequency (the Lamb frequency, L),
and the buoyancy frequency (the Brunt-Vaisala frequency, N). Every g-mode of a spherical star is
characterized by a triplet of eigenvalues, (n, £, m). Here n is the number of radial nodes in the radial
component of the displacement vector, £ is the angular degree, and m the azimuthal separation
parameter (as in Yy,,). Except for the case of fast rotators (stars that rotate close to break-up and
are not spherical any more), m does not affect the radial structure of the mode, and introduces only
a small additive term to the eigenfrequency. G-modes detected in DAV stars have modest radial
orders, 1 < n < 25, and low angular degrees, 1 < ¢ < 2., Their periods fall in the range from 100s
to 1200s.2

For the convenience of exposition in subsequent chapters, we summarize here scaling relations ap-
propriate to g-modes. These include the dispersion relation, the WKB eigenfunction, the amplitude
normalization, and estimates for driving and damping rates.

Most of the modes we are interested in, i.e., those that are overstable, do not propagate right
below the convection zone. The top of their propagating cavity lies well below the bottom of the
convection zone. We first look at these modes. However, the amplitudes of overstable modes saturate
due to their nonlinear couplings to damped modes. Many of these damped modes propagate right

below the convection zone. So we derive scaling relations for them as well. The velocity shear in the

convection zone is estimated in §2.10.

}The latter is an observational selection effect.
“Mode periods increase with n and decrease with £.
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2.2 White Dwarf Interiors

Electron degeneracy causes the Brunt-Viisild frequency to be very small in the interior of a white
dwarf. As a consequence, g-modes are confined to the outer few percent of the stellar radius. This
makes it convenient to apply a plane-parallel approximation in which the coordinate z measures
depth below the layer of zero pressure, and the gravitational acceleration, g, is considered constant.

We adopt standard notation for the pressure, p, density, p, temperature, T', and specific entropy,
s. Our s is dimensionless; we measure it in units of kg/m,, where kp is the Boltzmann constant

and m, the proton mass. The equation of hydrostatic equilibrium reads

dp
- = 2.1
5 = 9P (2.1)
from which we define the pressure scale-height,
p
H,= X (2.2
= )
We also define the adiabatic sound speed, ¢;, by
dp
==, (2.3
oap|, )
the radian acoustic (Lamb) frequency, L, by
cs\? ,
L2 =0+ 1)(—:—) , (2.4)
and the radian buoyancy frequency, NV, by
dlnp| ds
N? =g¢g—L| =, 2.
9" 55 pdz (2:5)

As discussed above, N? is negative in the unstably stratified, convective envelope, positive in the
stably stratified, radiative interior, and approaches zero in the degenerate core. This is shown in
Figure 2.1.

A few order of magnitude relations to keep in mind are: p ~ gpz, ¢; ~ gz, dlnp/dz = 1/H, ~
1/z, dlnp/dz ~ 1/z. In the upper radiative interior, N> ~ g/z ~ (cs/z)*. Figure 2.1 shows
the deviation from this scaling due to degeneracy in the deep interior. In the convection zone,

N? ~ —(vey/5)?g)z ~ —(vey/2)?, where v, is the convective velocity. We will make repeated use

of these in what follows.
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Figure 2.1: The squares of the Brunt-Viisild frequency, N2, and the Lamb frequency, L?, as func-
tions of pressure inside a white dwarf. We use the DA models provided to us by P. Bradley; this
particular one has an effective temperature of 12,000K (7, = 300s). N? is negative in the surface
convection zone (logp < 9.3), and approaches zero in the degenerate interior (logp > 24.0). Here,
we show only positive N2. The little bump in N? occurring around log(p) ~ 19 is due to the thin
transition layer where the composition changes from hydrogen to helium. The long dashed line is
our analytical approximation, N? ~ (g/z). Notice the deviation as degeneracy becomes important.
G-modes with frequency w can only propagate in regions where both w < N and w < Ly are satisfied,
they are depicted by horizontal dashed lines for both the 134 s mode and the 1200 s mode (both have
¢ =1). The latter propagates immediately below the convection zone.
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The horizontal component of the propagation vector, k, is related to the angular degree ¢ by

(2.6)

where R is the stellar radius. Degeneracy implies that N? < g/R in the deep interior. This ensures

that for each angular degree the frequency of the lowest order g-mode satisfies

2

o <L (2.7)

2.3 Deriving the Wave Equations

We begin with the linearized equations of mass and momentum conservation augmented by the
linearized, adiabatic equation of state. Readers are referred to Unno et al. (1989) for detailed deriva-
tions of these equations. Adopting the Cowling approximation, i.e., ignoring perturbation to the

gravitational potential, these equations read:

) de.

2 -, 2

S = it |2 (2) - g 29)
2, — pd (9P op _dp _ d&

w = ;E(p)—i-g(p p dz)’ (2.10)
bp = cp, (2.11)

where we have assumed a time and horizontal space dependence of the form expi(kpz — wt). Lagra-
gian perturbations are denoted by §. The symbols &, and &, represent the horizontal and vertical
components of the displacement vector. The Eulerian pressure perturbation p' = dp ~ &.dp/dz =
op ~ gpé-.

After some manipulation, equations (2.9) and (2.10) yield

= )T ot [Q;E <?>+(1 gzp> <p>], (2.12)

BB @) ew

Notice that these two equations are independent of the assumption of adiabaticity (see eq. [2.11]).

and

As mentioned previously, gk, >> w? for g-modes.

The linear, adiabatic wave equation for the fractional, Lagrangian pressure perturbation, dp/p,
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follows from combining equations (2.8), (2.12), and (2.13),

d2 (ép d (. p?\ d (ép , [ N? w\?| [dp

— | = — — == Sl — —1 — — | =0. 2.14

d22<p>+dz<lnp)dz<p + kh<w2 * Cs p 0 ( )
The advantages of choosing dp/p as the dependent variable will become apparent as we proceed. An

equivalent, Eulerian form of the wave equation is

dé. g L\ p

rr czéz N (1 w?) pcz 0

1dy .

;ﬁ - B%p' F(N?—wE = 0, (2.15)

where ikpp’ = w?p€;,. These equations are used in actual numerical integrations.

2.4 Gravity Wave Cavity

A g-mode is a gravity wave trapped inside a resonant cavity. The wave propagates within the cavity
and is evanescent both above and below. lunside the cavity, k. Hp > 1, viz., the environment changes

gradually on the scale of the wavelength of the mode.? When k.H, > 1, we can substitute the

WKB ansatz i
% = Aexp (z/ dz k:) ) (2.16)

into equation (2.14), and obtain the local dispersion relation?

A N?
K~ (ﬁ — 1) k3, (2.17)

and amplitude relation inside the propagating cavity (w <« N),

A? x p‘

= (2.18)

M

p
o N
Note that both k. and A vary on scale H,,.
The cavity is bounded from below at z = z; where N = w.
At the top of the cavity (z = z1), either w &= N or w =~ L;. The former pertains if the mode

propagates up to the bottom of the convection zone, where the gravity-waves become evanescent;

otherwise the latter applies. In this case, taking ¢; ~ (92)'/? and r & R, we arrive at

2
W

21~ 2y = —5-
2
gkh

(2.19)

3This condition is violated at compositional discontinuities which are better viewed as separating linked cavities.
4In g-mode’s propagating cavity, w < L;. The (w/cs)? term is negligible for g-modes, although dominant for
p-modes.
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In subsequent calculations we often set z; & z,,. Substituting N2 ~ g/z into the dispersion relation
(2.17) then yields k.z1 ~ 1; z; is identified with the first radial node point of ép/p. Unless stated

otherwise, we agsume z; > 23 in what follows.

2.4.1 Dispersion Relations

The global dispersion relation is obtained from

mm/~ dz k.. (2.20)

1

Carrying out the integration using N? ~ g/z, 21 ~ 2, and equation (2.17), we obtain w? ~ gk /n.
This relation is a good approximation to the g-mode dispersion relation for a polytropic atmosphere.
The proportibnality

w” o — (2.21)

provides a satisfactory fit to the high frequency modes in DAV white dwarfs. However, low frequency
modes penetrate deeply into the interior where the approximation N ~ (g/z)1/? fails because of
clectron degeneracy (cf. Fig. 2.1). As a result of the steep drop in N, z; is nearly independent of w

for w < Q= 10725~ L. This flattens the dependence of w on n such that

kh
3 2.22
W X - ({ )

Numerical results for the dispersion relations are shown in Figure 2.2.

2.4.2 WKB Envelope

Equation (2.18) describes the z-dependence of the WKB amplitude for dp/p within the g-mode
cavity. It has a simple, physical interpretation in terms of the conservation of the vertical energy

flux carried by gravity waves. This flux may be written as®

F m pog.w® (& + €2) (2.23)
where the vertical group velocity
0 w w?

Expressions for £, and . in terms of dp/p and d/dz(dp/p) are given by equations (2.12) and

®Here &, and &, are to be interpreted as envelope amplitudes.
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Figure 2.2: Frequencies of gravity-modes as functions of radial order n and spherical degree £. The
eigenvalues are from Bradley’s white dwarf model (T = 12,000K, 7 = 300s). The upper panel is
for n = 1 modes with various £ values, while the lower panel is for £ = 1 and different n numbers.
The dispersion relation (eq. [2.21]) fits well for low-order (small n) modes; at larger n, a different
scaling applies (eq. [2.22]). We adopt these empirical laws in our analytical studies.
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(2.13). To leading order in (k,z) these read
(2.25)

and
8
-2 (l’) . (2.26)
ge \p
Combining the above relations yields
2 2 /5 2
N — Np? (—p> . (2.27)
g%kn p \p

Substitution of A? for (dp/p)? confirms the constancy of . We note that F decreases with distance

below z; and above z7.
G-modes are relatively incompressible; equations (2.25) and (2.26) imply that ikpp+d€./dz =0

to lowest order in z1/z. Expressed more precisely, we find

bp _pdép gw 2w\ /2
=+ = A Al PN i k& . 2.28
2 @ th ( p ) 14 (2.28)

The amplitude of §p/p, which is of order £, or kp€, at z; drops much faster with depth than that

of either €. or & ; the incompressible approximation works well in the WKB region.

2.5 Upper Evanescent Layer
For the purpose of this discussion, we pretend that both p -+ 0 and p — 0 as = — 0. Then z = 0 is

a singular point of the wave equation (2.14). Since the physical solution is regular at z = 0,

d op N\? ,
This reduces to )
d op Vev 1
Sl {EV ~ () = ,
dz‘in(p>} (CS> 2y (2.30)
in the convection zone where N? &~ — (v, /2)?, and
1
(2.31)

d dp
2 [1“ (?)] ~ T

in the top of the radiative interior where N? ~ (cs/z)%.
We see that 6p/p is nearly constant for z <« 2z, in the upper evanescent layer.® It then follows

8That is why we chose to use it as the dependent, variable in the wave equation.
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Figure 2.3: Radial eigenstructure of a mode with n = 54,¢ = 1, and a period of 1633s. The top
panel, which is similar to Figure 2.1, illustrates how the mode cavity (depicted by the dashed line)
is formed. Note that for this mode z; ~ z,. The WKB energy flux is plotted in the second panel.
The energy flux is constant inside the cavity and decays outside it; this flux can be higher in part

of the propagating cavity if the mode is trapped inside it. The lower two panels display the depth
dependences of &, and dp/p.
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from equations (2.12) and (2.13) that, to leading order in z/z,,

i 6p)
~— (), 2.32
&n o <p (2.32)
and
—w? 5p>
e — | — . 2.33
= gk;, (p (2.33)

Thus the displacement vector is also nearly constant for z < z,. The situation for dp/p is more
subtle since it could vary on scale z should p/(c?p) do so. However, in practice, this quantity is not

only of order unity but also exhibits only mild depth variations. Thus, equation (2.32) implies that
)
—5 ~ —iknn, (2.34)

in the upper evanescent layer. Equation (2.34) should be compared to equation (2.28). It shows
that the relative incompressibility that characterizes propagating g-modes does not extend to their

evanescent tails.

2.6 Combined Expressions for Depth Dependences

Here we combine the depth dependences into unified expressions for eigenfunctions in the the
stably stratified portion of the upper evanescent region and in the cavity. For convenience, let
%3 = Max(z,2,), p = Max(p, p.,), where p, is the density of the star at z,. Following equation
(2.31), when 2z, € z < 2, , the vertical gradient of the eigenfunctions, d/dz ~ 1/z,. In the cavity,
d/dz ~ k. ~ 1/(22,)'/2, as a result of the local dispersion relation, equation (2.17). We combine
the two as d/dz = 1/(%2,)'/?.
The near incompressibility of g-modes relates €. to &, as
%5; ~ (—§>1—/ ~ nth. (2.35)

2z,

G-modes are characterized by nearly horizontal, sloshing motions.

The dominance of &, over &, together with the constancy of the WKB energy flux, lead to the

following scaling for &, within the cavity:
L

En ~ (-Z;“’-)_ <p-/;’—) i £r(0), (2.36)

where &, (0) is the value of &, at z = 0. This expression applies to the region 0 < z < z, where 7 is

the lower boundary of g-mode’s cavity; for 0 < z < z,, & = £/(0).
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Equation (2.35) which relates &, to &, then implies

&~ (i) (%‘")552(0), (2.37)

for 0 < z < z;. The meaning of £,(0) is similar to that of £,(0).

=

Approximating equation (2.12) as

(Mo

1 2 é
tkn&n ~ 1dp (—Z-> 2, (2.38)
gp dz Ze p
gives
1
ép Zu\E 2o\ 3 (po\2 dp
Lo (B) me~ (2) (%) Lo, (2.59)

dp/p s approximately constant for 0 < z < 2.

2.7 Normalization of Eigenfunctions
We conform to standard practice and set
w2 (B y
—2—-/ ridrp (& + &) = L. (2.40)
0

To achieve a simple analytic result, we take advantage of the following: |&] > |£.], &, nearly

constant for z < z,,, and the envelope of pvy.&; nearly constant for z 3> z,, (cf. §2.4.2). This enables

us to write
w? dz
T REGO) (pvge)., [ — w1 (2.41)
Vg2
Using
R
/ = m (2.42)
0o Ygz W
we arrive at
9 2 2
wp w pz ky Fr,
(P’Ug~);w <khN) I:w < k?hC::’ ) - w 3 ( )
where F is the radiative flux, and
z
T & % : (2.44)
is the thermal time scale at z,. Putting these relations together, we obtain
k7 &5 (0) ~ (2.45)

nt,L’
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where L = 47 R? is the stellar luminosity. Moreover, equation (2.32) then implies

(%)

This is the normalization formula we are after. In §2.9, we derive similar estimates for modes which

1
nr,L’

~

(2.46)

propagate immediately below the convection zone. This scaling for the normalization is compared

with numerically calculated values in Figure 2.4.

2.8 Quasiadiabatic Driving/Damping Rates

We can estimate order of magnitude driving and damping rates without detailed knowledge of
what causes the driving and damping. When the perturbed quantities are normalized according to

equation (2.40), the exponential growth or damping rate of the mode energy is given by the work

wz—szdt/ dpkBéT@—: ?{dt/ zgi(‘sF). (2.47)

If we can also calculate the imaginary part of the eigenfrequency, w;, we will find that w; = /2.

integral:

We assume that the quasiadiabatic approximation holds in the radiative interior. Perturbing the

equation of radiative diffusion, we obtain the following expression for the perturbed radiative flux:

oF 6p ST dé.  (dlnT\ ' d (6T
F_—(1+np)p+(4—m)T dz+( dz) =7/ (2.48)

Here r, = 0lnk/01n p|7 with k being the radiative opacity; similarly, kr = dlnx/0InT|,. More-
over, for adiabatic perturbations,
0T 9T

T = gl (2.49)

According to §2.6, the terms on the right-hand side of equation (2.48) are of order

de.(2\'oe
dz 2 p’
dinT\ ' d (6T oz bp
“(Z) ~ ke =27 .
(%) =(7) B ™ G2 (2:50)

Retaining the largest terms in each of the evanescent and the propagating regions, and setting all

logarithmic derivatives to unity, we find

oF 2 op
F (z> » 220

To evaluate the work integral, we substitute equations (2.49) and (2.51) into equation (2.47),
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and adopt the depth dependence and normalization for dp/p given by equations (2.39) and (2.46).

() (%) 0t

This estimate formally applies to the radiative region (eq. [2.48)]), and is the rate of radiative

These steps yield”

damping. But the magnitude of v applies more generally. This scaling relation is compared with

numerically calculated values of v in Figure 2.4.

2.9 Modes Propagating Immediately Below the Convection

Zone

Modes with z, < z; have cavities that are bounded above by z, (21 ~ 2;). Previousty derived
scaling laws must be modified for these modes. Throughout the radiative region, 2 in §2.4.2 takes
the value of z and d/dz ~ k. ~ 1/(zz,)'/%. Within a scale-height below the convection zone,
Hypk: ~ (2p/2.,)"/? > 1.

The constancy of the WKB energy flux below the convection zone leads to the scaling

b~ (2) (%) L6000, (2.53)

for z > zj. The normalization equation (2.40) now yields

(knén(0))* ~ <ﬁ)3/2 L (2.54)

Zw nLty
As usual, & is approximately independent of z for z < 2. Equation (2.38) remains valid so

1/2 _1/4

0p . (2,\1/2 2 b 1/2

Using equation (2.40), the normalized value for §p/p at the surface is

(& k()

For z, < 2, this estimate is smaller than that given by equation (2.46). For fixed w, the mode mass

increases when the convection zone deepens past z,.

From equation (2.50), the dominant terms in §F/F are of order (z/z,)'/20p/p. This, combined

"The contribution to the work integral drops off sharply below z ~ 2.
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with equation (2.53), yields a radiative damping rate

v (ﬁ) : 7 (2.57)

nTy \ 2w

with most of the contribution coming from the scale-height below z,. This equation predicts that ~
decreases sharply in magnitude when cooling causes z; to increase beyond z,,.

Scaling relations from equations (2.56) and (2.57) are compared with numerical results in Figure
2.4.

The estimates given by equations (2.52) and (2.57) require severe modification for modes that are
strongly nonadiabatic in the main driving/damping region. The condition for strong nonadiabaticity

is discussed in §5.3. Nonadiabatic driving and damping rates are also calculated in Chapter 5.

2.10 Velocity Shear in the Convection Zone

Brickhill (1990) argues that turbulent viscosity should enforce a depth independent horizontal ve-
locity in DAV convection zones. Simulations by Gautschy et al. (1996) show that unless &, is nearly
constant, v < 0 for all g-modes.

Efficient convection zones are only slightly superadiabatic. Here we show that the shear associated
with g-modes is extremely small provided that a layer is isentropic in both its undisturbed state and

in perturbation. We proceed by writing the curl of the linearized equation of motion in the form
2 7 | — p
w'V x &= -V x ;Vp +V % —p—V<I> . (2.58)

For an isentropic configuration Vp/p =T'1Vp/p, and for an adiabatic perturbation ép/p = I'1ép/p.
Thus

Vx&E=0. (2.59)
Written in terms of components, this yields
déh . 2w gé.h
L = ik ( R) 2. (2.60)

We consider effects of the mean entropy gradient and nonadiabatic perturbations in §4.2. Both
of these increase the velocity shear in the convection zone. However, even with this enhanced shear,

viscous damping in the convection zone is unimportant (see Chap. 4).
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Figure 2.4: Mode normalization and driving/damping rates. We compare numerical values obtained
from Bradley’s model of Tog = 12,000K (7, = 300s) with estimates derived in §2.7-§2.9. The
eigenfunctions are normalized according to equation {2.40). The upper panel shows the normalized
values of (dp/p)? at z = z, for modes with n = 1 — 100, £ = 1 — 10. We choose the horizontal axis
to be n, since these properties depend on » much more strongly than on £. The solid line represents
the analytical estimates, using equation (2.46) for z, > z; and equation (2.56) for z,, < z,. Here, z,
is chosen to be (37w?)/(2gk}). In the upper panel, numerical radiative damping rates are shown in
triangles, with the analytical estimates in solid lines. For z,, < 2, cases, we choose a slightly flatter
dependence than that in equation (2.57). The assumption about the dominant term in equation
(2.48) is valid only for even higher order modes.



32
2.11 Summary

We derive a number of scaling relations for g-modes in DAV white dwarfs. There are heavily relied
upon in subsequent studies in this thesis.

A g-mode’s cavity coincides with the radial interval within which w is smaller than both N and
L,. Inside this cavity the mode’s velocity field is relatively incompressible. The modal period is
equal to twice the time it takes for a gravity wave to travel the distance between consecutive radial
nodes. The precipitous decline of N in the stellar core caused by electron degeneracy affects global
dispersion relation which relates w to n and £.

The Lagrangian pressure perturbation is an appropriate dependent variable. It is almost constant
in the convection zone and varies slowly in the rest of the upper evanescent region. Its envelope
scales with depth in the cavity so as to maintain a constant vertical energy flux. An equal amount
of energy is stored between every consecutive pair of radial nodes. For modes having z, > 2z, the
value of the normalized eigenfunction at the top of the cavity is approximately given by 1/(n7,L)'/?,
and driving and decay rates are of order 1/(n1,). Modes of sufficiently low frequency have cavities
which are truncated from above by the bottom of the convection zone. As a white dwarf cools, more
modes enter this category. Their normalized surface amplitude and driving/damping rates decrease
as the convection zone deepens. Numerical quasiadiabatic results are compared with the analytical
estimates in Figure 2.4. These estimates are inadequate for modes that are nonadiabatic in the
driving/damping region, as is shown in Chapter 5.

Adiabatic perturbations in an isentropic region are irrotational. This implies a very small velocity
shear which is an important factor in limiting damping due to turbulent viscosity in the convection
zone. However, a more complete analysis is needed to assess the effects on the velocity shear of
both the nonadiabatic perturbations and the superadiabaticity of the mean entropy profile in the

convection zone.
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Chapter 3 G-Mode Stability: Quasiadiabatic

Approximation

3.1 Introduction

Qur aim is to describe the mechanism responsible for the overstability of g-modes in ZZ-Ceti stars.
The basic properties of g-modes are outlined in Chapter 2. We calculate the perturbations associated
with these modes in §3.2. Then in §3.3, we apply these perturbations to evaluate work integrals and
thereby estimate rates of driving and damping.

Our presentation is largely analytical, although we appeal to numerical stellar models and nu-
merically computed eigenfunctions for guidance. Since theoretical details are of limited interest, we
summarize selected results at the end of each section. As an aid to the readers, symbols used in the
paper are defined in Appendix A.

This topic has received attention in the past. Initial calculations of overstable modes are pub-
lished in (Dziembowski & Koester 1981; Dolez & Vauclair 1981; Winget et al. 1982). These are based
on the assumption that the convective flux does not respond to pulsation; this is often referred to
as the frozen convection hypothesis. Because hydrogen is partially ionized in the surface layers of
77Z-Ceti stars, these workers attribute mode excitation to the k-mechanism. In so doing, they ignore
the fact that the thermal time-scale in the layers of partial ionization is many orders of magnitude
smaller than the periods of the overstable modes. Pesnell (1987) points out that in calculations
such as those just referred to, mode excitation results from the outward decay of the perturbed
radiative flux at the bottom of the convective envelope. He coins the term ‘convective blocking’ for
this mechanism.! While convective blocking is responsible for mode excitation in the above cited
references, it does not occur in the convective envelopes of ZZ-Ceti stars. The dynamic time-scale for
convective readjustment in these stars is much shorter than the mode periods. Noting this, Brickhill
(1983,1991a,1991b) assumes an instantaneous response of the convection to the state of pulsation.
He presents the first physically consistent calculations of mode overstability, mode visibility, and
instability strip width. Our investigation supports most of his conclusions. As a result, we hope

that his papers will finally receive the recognition they deserve.

I This mechanism is described in a general way by Cox & Guili (1968), and explained in detail by Goldreich &
Keeley (1977).
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3.2 Perturbations Associated with Pulsations

Here we derive relations that will be used in §3.3 to evaluate the driving and damping of g-modes
in various parts of the star. We start with the radiative interior and proceed outward through the
convection zone to the photosphere. A new symbol, A, is introduced to denote variations associated
with a g-mode at a particular level, such as the photosphere, or within a particular layer, such as
the convection zone. These variations are not to be confused with Lagrangian variations denoted by
d.

This section is replete with thermodynamic derivatives. We take p and T as our independent
variables. Unless specified otherwise, it is implicitly assumed that partial derivatives with respect
to one are taken with the other held constant. We adopt the shorthand notation: p, = dlnp/d1np,
pr =0lnp/0InT, s, =0s/0np, sy =0s/0InT, k, = 0Ink/dInp, kr = 0lnk/OInT.

We only consider modes that do not propagate immediately below the convection zone, z; ~

2y > Zh

3.2.1 Radiative Interior

In an optically thick region, the radiative flux can be expressed as

40 dT*
F=——. 1
3kp dz (3.1)
Its Lagrangian perturbation takes the form
SF bp 6T de.  (dwT\ ™' d [T
—-Q L d—rp)= - == = [=). 2
7= ) e dz+(dz> & \T (32)

Next we express 6F/F in terms of dp/p. This is best done separately for the upper evanescent

layer and the gravity-wave cavity. Within the quasiadiabatic approximation,

op _ p p (3.3)
p cpp’
and
6T S, p O0p
0l _ S0 P 9P A
T ST C3p P (3.4)
1) Upper Evanescent Layer
For z < z,, equation (2.9) implies

dz p p
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dinT -li 5_T o dlnT _li Sp P 6_p 3.6)
dz dz\T )"~ dz dz \srcip) p’ 3.

Because the material in the upper part of the radiative interior is well approximated as a completely

Moreover,

ionized hydrogen plasma, we set p, &~ 1, pr ~ 1, s, &= —2, sy ~ 3, and ¢2p/p = 5/3. This enables
us to discard the term given by equation (3.6), although it is of the same order in z/z,, as the other
terms we retain in 6F/F. With these caveats,

SF (3 — 3k, —2k7) dp

2) G-Mode Cavity
For z > z,, the dominant contributions to 6F/F come from the last two terms in equation (3.2).

The first transforms to
dg. . dp

~ o= kz_—a .
P i o (3.8)

as most easily seen from equation (2.10). It then follows that

6F _ik.p dlnp (6lnT’ B dlnT) op ik N (p )2 dlnp p (39)

F = gp dinT \ dlnp dinp/ »p =~ g gp) dInT p’

where we have again set p, ~ 1 and pr = L.

3.2.2 Convective Envelope

The Lagrangian temperature variation can be separated into an adiabatic and a nonadiabatic com-

ponent. Thus

oT s ]

Ee TN (I T R (3.10)
T STCIp D DPpST — PTSp
The nonadiabatic part is associated with net absorption of heat by the convective envelope in

the amount
kg

AQ = / dz p~k£T ds & Asb/ dz p—T, (3.11)
cvz Mmp cvz My
where sy is the specific entropy evaluated at the bottom of the convection zone. The latter expression
pertains because the convection is efficient, except just below the photosphere, and its response time
is much shorter than the g-mode period.
We treat convection by means of a crude mixing-length model. The convective flux is set equal

to?

kB ds
F ~ pve H—T—, 12
poeH T (3.12)

2Where the convection is efficient, F' is comparable to the total flux.
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with the convective velocity given by

d
P

Olnp
Os

Ugv ~ _gH2

Eliminating vy and solving for ds/dz, we find

ds DpST — PTSp V3 N3 mpF' 23
sp — = —~ f| FV— — 14
e /cvz de dz f ( pbr op kgT ’ (3 )

where we have made use of

Js

PpST — PTSp
="t 0.
Alnp

p pr

(3.15)

Though the entropy jump in equation (3.14) requires integration over the whole convection zone,
most of the contribution comes from right below the photosphere. The right-hand side of equation
(3.14) is to be evaluated at the photosphere. The dimensionless factor f is of order unity. It is
proportional to a~%/?, where « is the ratio of the mixing-length to the pressure scale-height. In
applications, f is determined by comparison with numerical stellar models.

Mode driven variations in s; — spn are given by

Alsp—spn) _ 1 {6+pT(1"‘ﬂp)+“T(1+pP) 4 1

(sp—spn) 12 Pp + Fp pr(PosT — PT5,)
[pT(ppTST + PpSTT ~ PT8pT) — p%"spT — PTTPpST

+ K
4 (pT T
Pp + Kp

AF

) (p%"SPP ~ pr(pppsT + ppspT) + ppPpTST)] }—F‘a (3.16)

where AF is the perturbation to the convective flux. In practice, only a few terms in this complicated

expression make significant contributions.

3.2.3 Photosphere

The photospheric temperature, pressure, and temperature gradient are determined by

F\ /4

T | — 3.17
o o

29
- 18
P (3.18)

and the equation of radiative diffusion,
dI'  3kp

T~ 16013 F, (3.19)
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provided most of the flux in the photosphere is carried by radiation. Combining the above equations

with the hydrostatic equilibrium equation (2.1) vields

dlnT 1
= - 2
dlnp &’ (3.20)
which is to be compared to the adiabatic gradient,
T 3
Oln _ sp (3.21)

Olnp |, B DPTSp — PpST

We find that the convection zone extends up to the photosphere for DA white dwarfs which lie inside
the instability strip. This is confirmed by comparison with Bradley’s models.
Next we relate changes in the thermodynamic variables at the photosphere to changes in the

emergent flux. Thus
AT 1AF

i (3.22)

is an immediate consequence of equation (3.17). Expressions for Ap/p and Ap/p follow in a straight-

forward manner from the thermodynamic identity

Ap Ap AT

=Pp—— +Pr 3.23
P P p T T ( )
and the perturbed form of equation (3.18)
Ap Ap AT
— = —Ky— — K —— 3.24
p P p T T ( )

Together, these yield

A 1 AF
201 (p____T + ”T) 22 (3.25)
p 4\ p,+kKy) F
and
A 1 — AF
ap _t (pTK’p pPK/T) 25 (3.26)
p 4 Pp + Ky F
It is then a simple step to show that
1 pPr + KT AF
As == = - -
° 4 {ST (Pp + Ko ) Sp} F (3:27)

3.2.4 Putting It All Together

We begin by collecting a few key equations obtained in previous subsections. Then these are com-
bined to determine how the entropy and flux variations in the convection zone and photosphere
depend upon the pressure perturbation associated with the g-mode.

1) Key Equations
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The quasiadiabatic flux perturbation entering the bottom of the convective envelope from the

radiative interior is obtained from equation (3.7).

AF, <5p)
25 _ 4 (2) 3.28
" 7). (3.28)
where
a=08= 3“’;) = 2r7) (3.29)

is also evaluated at zp.

We obtain the photospheric entropy variation as a function of AF,y from equation (3.27),

AF
Asyn = B th, (3.30)

where

Il

1 pr + kT
B=- - [ — . 31
1 [ST (;Dp . ) Sp} (3.31)

Equation (3.16) gives the variation of the jump in specific entropy across the convection envelope;?

AF,
A(sy — spn) = C th, (3.32)
with
1 1-— 1 1
c = _(Sb“Sph){6+pT( Fo) el ¥ ps) |
12 Dp + Kp pr{PosT — PTSp)
[pT(ppTST + PpSTT — PTS,T) — PrSpr — PTTPpST
pr + KT 2 ;
+ (pTSPP - pT(pppsT + ppspT) + ppppTST) . (333)
Pyt Ky

The net heat variation, AQ, and specific entropy variation, Asy, of the convective envelope are

related by equation (3.11). Thus

AQ ~ FTbASb, (334)
with
1 kB
= — dz p—T. (3.35)
F cvz mp

The time constant 7, is closely related to the thermal relaxation time at the bottom of the

3The convective envelope extends all the way up to the photosphere in white dwarf models of relevance to this
study.
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convective envelope. The standard definition of the thermal time-scale at depth z reads

Ten = ——/ d,opcp——T (3.36)
where
Js _ PTST ~ PoSp
T— —_—t 37
Cp = aT pr (3 )
The differential equation
iﬁ—?— = AF, - AF,, (3.38)

completes our set of key equations. Here, we ignore horizontal heat transport for good reason.
Transport by radiation is completely negligible because kpzy < 1. Turbulent diffusion acts to
diminish Asy, but only at the tiny rate k7 zp (Vey)p € w.

Approximating the bottom part of the convective envelope as an isentropic, completely ionized,

hydrogen plasma, we arrive at:

o o P
29p”
S Dvzp
b ~ 7F7
5pp2p
Tth 14F (339)

Before leaving this subsection, we point out that A, B, and C are each dimensionless, and in
practical applications, positive. A is evaluated at the boundary between the radiative interior and
the bottom of the convective envelope as is 7, whereas B and C are computed at the photosphere.

2) Implications Of Key Equations

Taken together, the five homogeneous equations (3.28), (3.30), (3.32), (3.34), and (3.38) enable
us to solve for the five quantities Asy, Aspn, AFy/F, AF,,/F, and AQ in terms of (Ap/p)y.* For

compactness of notation, we define a new thermal time constant, 7., closely related to 73, by
T. = (B + C)p. (3.40)

Our principal results, derived for an assumed time dependence ox exp (—iwt), are listed below:

A(B + C) dps

Asy = —
b 1 ior, (3.41)

AB (Spb

Asypy = ————— =2
Spt 1o py (3.42)

We include AFy(F in this list for compleleness although it is already expressed in terms of dp;/ps by equation
(3.28).
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=A—, 3.43
7 ) (3.43)
Ath A dpy
= =2 3.44
F 1—iwr, pp’ ( )
AQ = FTbASb. (345)
3.3 Driving and Damping
The time average rate of change of the mode’s energy is obtained from the work integral,
w dF
= — . A4

v 27 %d dt (3.46)

When the eigenfunction is normalized so that E = 1 as in equation (2.40), v = 2w;, where w; is
the imaginary part of the eigenfrequency. Useful forms for v are reproduced below.

R
v = 2wR2jfdt dzp——csT@ = ——L%dt/ dz(ST d (—) i (3.47)
0

My

Regions of driving and damping are associated with positive and negative values of the integrand.
There are a few cases to consider. These are conveniently classified by the values of the dimension-

less parameters wr, and zy/z,. The most important cases correspond to z/z, < 1. Fortunately,

these are also the simplest, and we consider them here. The origin of this simplicity is the near

constancy of dp/p for z < z,.

3.3.1 Convective Driving

We substitute equations (3.10) and (3.41) into the first form for v given by equation (3.47). It is
apparent that the net contribution comes entirely from the adiabatic part of §7/T. Since the inte-

grand is strongly weighted toward the bottom of the convective envelope, we evaluate all quantities

Yeve R TT(I—%)T_); <—> (‘ZI’> : (3.48)

Since A is positive, 80 is 7evz. The convective envelope is the seat of mode driving.

there and arrive at

3.3.2 Radiative Damping

Here it proves more convenient to use the second form for v given by equation (3.47).

The contribution from z; < z < z,,, obtained with the aid of equations (3.4) and (3.43), reads

(AL (ép L (™  (ép\>dA
() (2), 5 () 8 519
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The first term on the right-hand side of equation (3.49) is to be evaluated at z,. It generally
dominates over the second as A does not vary significantly over this region.

At z > 2, we substitute equation (3.9) for AF/F which yields

—9K3L [ ., ,dlnp [(ép\?
R dzN°c*—— [ — ] . .
e 125¢3w? /zw e TIT P (3.50)

Appeal to equation (2.27) giving the WKB envelope relation for dp/p establishes that the integrand

s () (8 (8]

where in this context dp/p represents the WKB envelope evaluated at z,. The magnitude of this

peaks close to z,,. Thus,

envelope at z,, is significantly smaller than the value of ép/p at zp. Thus this contribution to the
radiative damping is negligible provided z, > z;.

To a fair approximation vraa = vr, + 7, may be set equal to the first term on the right-hand

side of equation (3.49). Thus
AL\ (opy\°
Yead & — | S ) (22 (3.52)
10 Do

Comparison with equation (3.48) reveals that

1+ (wre)?

T = vz 3.53
,Yad 2(0‘)7—0)2 ’YC ( )

3.3.3 Turbulent Damping

Damping due to turbulent viscosity acting on the velocity shear in the convection zone is estimated

from equation (3.46) with

dEvisc
dt

2

b
dzpv &, (3.54)

~ AT R2W? /
0

where v ~ Hyvey is the turbulent viscosity and —iw&;; is the velocity shear tensor.

Estimating turbulent damping is a subtle business. This is delayed until Chapter 4 where we show
that it is negligible in comparison to radiative damping. However, this is not immediately obvious.
For example, taking dép/dz ~ —&/z,, as pertains in the radiative portion of upper evanescent

layer, leads to vyise ~ ~L(25/2,)(¢s /vey)?(3p/p)?, which is much larger than ~,qq.

3.3.4 Net Driving

The net driving follows from equations (3.48) and (3.53);

o T (ALY (8 559
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With the aid of equation (2.46), we reduce equation (3.55) to a cruder, but more revealing form,

o L), oot

wTe)? + 1 \n7,

3.3.5 Simplified Derivations

Both the origin of the overstability and the linear growth rate admit simple derivations in the limit

w7, > 1. We consider each in turn below.

1) Origin of Overstability

The perturbed flux in the radiative interior varies in phase with the pressure perturbation because
adiabatic compression causes the opacity to decrease. The fractional perturbations §7°/T and §F/F
are proportional to 6p/p. All three decline with increasing depth for z < z,,. For z > z, they oscillate
about zero with rapidly decreasing amplitude. To the extent that the coefficients of proportionality

connecting 67 /T and §F/F are depth independent, we find

L (% 6T d (6F L (6T\ AF,
“Yrad = E/z dZTE; (—F—> ~ —Z (—f)b T (357)

b

The fractional temperature perturbation in the convective envelope is approximately adiabatic,
in phase with the pressure perturbation, and independent of z. The first and second properties are
a consequence of w7, > 1, while the third follows from the near constancy of ép/p in the convection
zone. The perturbed flux which enters the bottom of the convective zone produces a z-independent
entropy perturbation that lags the pressure perturbation by a quarter cycle. This behavior is a
consequence of the rapid response of the convection to perturbation and its high efficiency. From

these properties, we deduce that for 0 < z < zp,

dASb b k‘B
dz p—T =~ . .
= /0 2 pmpT AF (3.58)

Thus

* kg dds Lkp (6T\ AF,
cvz — 2 R2/ de p—6T — ~ =—— [ — _— .
7 i L7 zm,,(T)b F (3:59)

Together, equations (3.57) and (3.59) imply

L [6T\ AF,
Ynet, S Z =y — (360)
b
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2) Growth Rate

Next we estimate the terms in equation (3.60). These are evaluated at z = z; < z,,, that is, in the

upper evanescent layer. As a start we replace 67'/T and §F/F by ép/p. Thus

op\>
Ynet ~ L _p . (3.61)
b

To estimate (6p/p), we make note of the following. Compression accounts for a significant fraction
of a g-mode’s energy density inside the upper evanescent layer.> The g-mode eigenfunction is nor-
malized by setting the energy equal to unity. Equal fractions of the energy are stored between each
of the n nodes, and a comparable fraction resides in the upper evanescent layer. From these facts,

we deduce that

5 op 2 1
AE ~47R* z,p, | — ) ~ —, (3.62)
P/ n
S0 ,
) 1
(—p) ~— (3.63)
b/, 1N
Combining equations (3.61) and (3.63), we arrive at
1
Voot ~ —- (3.64)
nT,

This is identical to equation (2.52).

3.4 Short Summary

We analyze the stability of g-modes in ZZ-Ceti stars under the quasiadiabatic approximation. Qur
investigation confirms many results first obtained by Brickhill in his underappreciated series of pa-
pers. All the relevant physical processes take place in the outer layer of hydrogen rich material. This
consists of two parts, a convective envelope overlying a radiative interior. The dynamic time-scale for
convective readjustment is much shorter than the shortest mode period. Moreover, the convection is
efficient; the convective envelope is nearly an isentrope except just below the photosphere. The flux
in the radiative interior increases with compression. As a result, the radiative interior contributes
to mode damping. The convective envelope is the seat of mode excitation because it bottles up
the perturbed flux which enters it from below. Dissipation associated with turbulent viscosity in
the convective envelope is another source of damping. However, careful assessment shows it to be
negligible. Driving exceeds damping by as much as a factor of two provided wr. > 1, where w is the

radian frequency of the mode and 7. is closely related to but somewhat larger than the thermal time

SWithin the g-mode cavity the energy density stored in compression is much smaller than that stored in vertical
displacement.
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at the base of the convective envelope. Overstable modes have growth rates of order v ~ 1/(nt,),
where n is the mode’s radial order and 7, is the thermal time-scale evaluated at the top of the
mode’s cavity. The growth time (1/+) ranges from a few hours for the longest period modes (P ~ 10
minutes) to several thousand years for those of shortest period (P ~ 2 minutes).

Chapter 4 explores the dynamical interaction between the viscous convection zone and pulsation,
and Chapter 5 completes the overstability study by including nonadiabatic effects. A complete

summary of overstability results is presented at the end of Chapter 5.
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Chapter 4 Turbulent Damping on Gravity-Modes
in White Dwarfs

4.1 Introduction

In this and the chapter which follows, we discuss two dissipative processes which must be incor-
porated into realistic overstability calculations. Here we treat the dynamical interaction between
g-modes and convective eddies. Radiative diffusion is investigated in Chapter 5. Both effects modify
the structure of g-modes and impact their stability.

The large-scale motion associated with a g-mode advects and shears small scale convective eddies.
Our present understanding of these interactions is rudimentary. In the absence of a quantitative
theory, we model them as giving rise to a turbulent viscous stress which acts to reduce the mode’s
velocity gradient. Then we incorporate the resulting turbulent damping into our calculations of
mode overstability.

Gravity modes cause mostly horizontal sloshing of the fluid. We concentrate on the largest
component of velocity gradient, dvy /dz, the vertical gradient of the horizontal velocity. In the dual
limit of an isentropic convection zone and vanishing entropy perturbation, we prove in §2.10 that
dvy /dz ~ v, /R, where R is the stellar radius. When the entropy perturbation is included, dvy,/dz
can be as large as v, /z, (eq. [4.13]), where z, is the depth at the top of the g-mode’s propagating
cavity. The inclusion of the viscous stress reduces this gradient by a factor of wtcy, where t., is the
eddy turn-over time (§4.2). This factor is typically so small that viscous damping is insignificant
(§4.3).

The story does not end here. The discontinuity in viscosity across the convective-radiative
boundary results in a discontinuity of horizontal velocity. The latter is Kelvin-Helmholtz unstable
and produces a turbulent layer at the top of the radiative interior where the fluid is only weakly
stratified. Damping due to turbulent viscosity in this layer is a source of nonlinearity which limits

the mode amplitude. This is discussed in §4.4.

4.2 Velocity Gradient in the Convection Zone

We are concerned with the manner in which the viscous stress limits the value of dvy/dz, where
v, = —iwé,. This prepares us for estimating the magnitude of turbulent damping in §4.3.

An adiabatic disturbance in an isentropic region is irrotational. According to §2.10, the corre-
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sponding df,/dz ~ &,/R, where R is the stellar radius. Both the static entropy gradient and the
Lagrangian entropy change associated with a nonadiabatic pulsation increase this estimate, whereas
the viscous stress decreases it. These effects are evaluated below.

We write the viscous stress tensor as

Oi5 = 2/)I/Sij, (41)
where the shear tensor
o 8£z ag] 6l B€L
Sij = zw[ (a% + B2, 3 3ar | (4.2)

The turbulent kinematic viscosity v is of order veylcy, where ve, and l., are characteristic turbulent

velocity and length scales; l., ~ H, ~ z. We define the convective turn-over time as

oy ~ 2 (4.3)

Vev

The viscous force is the divergence of the viscous stress. Its horizontal and vertical components take

the form!
d . d d
ap = = (2pvSh.) + 2ikypvShy ~ —zwd— (pu%) (4.4)
d
o, = j (2pvS..) + 2ikppvSh. ~ —iw [555 (p £ ) + ikppv gh] . (4.5)

Augmenting the equation of motion by the viscous force (Landau & Lifshitz 1976), we arrive at

‘ pé 1
W = ikn (“*p - 95:) + —an, (4.6)
pD p
. d (6 é 1
W = B2 (—p) +g (—p +z‘kh5h) + —a. (4.7)
pdz \ p p p
To order of magnitude
1 wz dép
—qp ~ ——. 4.8
pah tev d2 ( )

To a good approximation the vertical component of the equation of motion reduces to hydrostatic
equilibrium. Both the inertial and viscous terms are negligible.? For modes with z, > 2, it follows

that

5 .
P o —iknn. (4.9)
p

1'We neglect bulk viscosity.
2The viscous term is of order wvey /g ~ (wtey)2(ds/dz) < 1 with respect to each term in the round brackets.
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We proceed to estimate dép/dz. Differentiating equation (4.6), we obtain,

5 w\d& ., [d (pdp op .
— | ——=iky |— | ~— — + ik . 4.10
(“"*tcv) iz “’[dz o) I i (4.10)
In arriving at this expression we make the approximation
d {a w dép,
—_— | — ]~ ——. 4.11
dz ( 0 ) tev dz ( )

The Lagrangian density variation, decomposed into an adiabatic and a nonadiabatic part, takes the

form

where p; = 81n p/8s|,. Substituting equations (4.7) and (4.12) into (4.10), we obtain®

d_&;}i N —Wwiey gkhps [ﬁ_d_s_ (ég) —58] (4 13)

dz ~ 1—iwte, w2 |gpdz \'p

As equation (4.10) makes apparent, the viscous stress significantly reduces d¢p, /dz provided wiey < 1.
In fact, in this limit, aj, as given by equation (4.8) is independent of i.y.
We can think of ép/p and és as providing the adiabatic and nonadiabatic forcing of d&/dz.

Their relative sizes, as estimated at z = zp, are given by

(&)
gpdz /,

where we make use of equation (3.41), and the relations gds/dz ~ (vey/cs)? and tey/Ten ~ (Vev/C5)?.

1/2

1 pdj (14 (wr)2]1/2 (%»4 )
~ =) 2] ) (Wi < 1, 4.14
55T (237), “wrio o ) T (414

op
P

This establishes nonadiabatic forcing as the principal driver of velocity shear in the convection zone.
The horizontal displacement would have a curvature of order z,, were it not for the viscosity, which

forces it to be very flat inside the convection zone. A similar counclusion is arrived at by Brickhill

(1990).

4.3 Estimating Viscous Damping

The damping rate due to viscous dissipation is given by equation (3.46),

b 2
Yyis N —7TR2w2/ dzpv (%ﬁ) , (4.15)
0 dZ

where only the dominant component of the shear is retained. Since we use normalized eigenfunctions,

Y= 2u).i.

3We discard the inertial and viscous terms in equation (4.7).
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To evaluate s given by equation (4.15), we retain only the nonadiabatic term on the right-hand

side of equation (4.13). It then follows that

—(wr,)? zb> (vcv 2 6p>2
vig ~ —— |22 A =1 . 4.16
Tis ™ T (Wre)?2 " \ 2o Cs )y \ P/ (449
Comparison with equation (3.52) shows that viscous damping is always negligible with respect to
radiative damping.
It is clear from equations (4.13) and (4.15) that for a given mode viscous damping is maximal for

a viscosity such that wt., ~ 1. For smaller v, ;s o v, and for larger v, vyis &< v™1. Since wte, < 1

for overstable modes of DAVs, the appropriate limit is that of large viscosity.

4.4 Convective-Radiative Boundary Conditions

Inclusion of the viscous stress in the convection zone requires new boundary conditions to be applied
across its interface with the radiative interior. Although ép, ds, and &, remain continuous, &, does
not. This discontinuity has important implications for mode damping which we explore in §4.5.

Our investigation of the jump in d&, /dz begins with a slightly modified version of equation (4.6),

namely

2, — ik, (POP _watd (o da
W&y, = ik, (pp gf;) = a <'Dydp . (4.17)

Integrating this equation from the photosphere (p = 0) to the bottom of the convection zone (p = py),

[oen[3(8)
“’/0 dpsh-zkh/O an |2 () - g (4.18)

where the viscous term vanishes because the viscous stress vanishes at both boundaries.*

we arrive at

We transform equation (4.18) in two steps, the first using an identity and the second equation

(4.7).
w /0 dp & tknpy [p » 9¢. . ikn /0 dpp a o\ D g&:

A _ Po dpp ds {dop Wi, a.
w? zH) +ik / —-—{p s—(—)— §08 — —= + =1 . (4.19
Do En(z)) vl PP \ p P 7 (4.19)

Here ;- denotes the limit taken as z, is approached from below (the radiative side) or above (the
convective side). We discard the terms containing £, and «.; it is not difficult to confirm that they

are negligible compared to those we retain. Next we approximate the left-hand side of equation

4The viscous stress vanishes in the radiative region, and is continuous across the radiative-convective boundary to
avoid large accleration.
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(4.19) by
Py
MQ/ dpén ~ W’prénlz ), (4.20)
0

since for wtc, < 1, &, is nearly constant within the convection zone. Thus we arrive at an expression

for the discontinuity of &, across the convective-radiative boundary.

Lt
“b — Pb 3

~ ;kh / dp PP [}l@ (_p) _ 53} ) (4.21)
o WP Jo p lgpdz \'p

Equation (4.21) merits a few comments. It may be simplified by taking advantage of near

constancy of dp/p and ds within the convection zone. The former is constant due to rapid momentum
transfer, and the latter due to a rapid entropy transfer. Both transfers proceed on the time scale
tey. Comparison with equation (4.13) reveals that the discontinuity in &, is closely related to the
total variation that &, would experience within the convection zone in the absence of viscosity. The
fractional change in &, across z, is estimated to be of order z;/z,, for marginally overstable modes.

The discontinuity of d/dz(dp/p) is related to that of &, by equation (4.7).%
2t

b 2 Po
ﬂi (@) ~ 2kh / dp Pps [—Qﬁ (@> —58] , (4.22)
gpdz \ p S p lgpdz \'p

while inside a strongly viscous convection zone,

L#)<2(2)

In the nonadiabatic calculations discussed in Chapter 5, we simply require that dp/p be constant

L+
“b

~ —iknép

“b

inside the convection zone, and that its gradient experience a jump at the convective-radiative
boundary as described by equation (4.22). The relative size of the jump increases with mode periods

in the same star.

4.5 Dissipation Arising from the Velocity Jump

Our deduction that the horizontal velocity associated with a g-mode is discontinuous across the
boundary between the convective envelope and radiative interior is an idealization. In reality this
transition takes place across a layer of finite thickness, inside of which the originally weakly stratified
fluid is strongly sheared and becomes turbulent. The structure and the extent of this layer is difficult
to assess not least because it is disturbed by convective overshoot. Fortunately, these details are of

secondary importance to our investigation. Our primary concern is the rate of energy dissipation in

5Note that p and &, are continuous, and the term involving a. is negligible.



50

this layer, since that will limit the amplitude which an overstable mode can achieve.b
It is customary (see, e.g., Landau & Lifshitz 1976, Tritton 1977) to parameterize the shear stress

associated with a velocity jump Av across a layer of fluid having density p in terms of a drag

coeflicient Cp by

o= %D (Av)*. (4.24)

The magnitude of Cp is typically much less than unity. This reflects the anticorrelation between
the magnitudes of the shear and the turbulent viscosity.” As one might expect, Cp is larger for
turbulent shear flows between rough plates than between smooth ones. It seems likely that the
bottom of the convection zone acts more like a rough plate than a smooth one. In what follows, we
treat Cp as a free parameter to be assigned a value based on fitting the observed mode amplitudes.®

The rate of energy dissipation per unit area is
—— =gAv="2p(Av)’. (4.25)

From equation (4.21), we approximate

k R
Av~ L2 5s 0 2L s, (4.26)
w N 4
For overstable modes ds is related to dp/p by
i é
55~ — L (4.27)
WTp P
which enables us to write
Av~ 2 ER (4.28)
Zo by p

Balancing the rate of energy dissipation in the shear layer,

% ~ 21 R*Cppy (Av)?, (4.29)

by the rate of energy gain due to convective driving,

2
aE (‘5_p> , (4.30)
dt P

8This is not the only nonlinear process that limits mode amplitudes.

"Most of the velocity gradient is distributed in the small scales. When estimating the viscous stress using the
global velocity jump, Cp is necessarily much smaller than unity.

8Since the shear flows associated with g-modes are periodic in both space and time, the value of Cp we adopt
represents an average value.
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yields the nonlinear amplitude relation,

op wGTER3
; ~ ——Cpgzﬁ’zb' {(4.31)

This expression makes two significant predictions for the amplitudes of overstable modes: 1) dp/p
for different modes in the same star will exhibit a sharp decrease with increasing mode period; 2)
dp/p for the same mode in different stars will show a steep rise with decreasing effective temperature.
However, these predictions should not be confronted by observation until other nonlinear effects that

limit mode amplitudes are assessed.

4.6 Summary

Nonadiabatic effects due to turbulent viscosity modify the structure of gravity-modes. Inside the
convection zone, the viscous stress associated with convective turbulence suppresses the velocity
shear to such an extent that its contribution to mode damping is negligible. However, this suppres-
sion is responsible for the formation of a turbulent shear layer at the top of the radiative interior.
Turbulent dissipation in this layer limits the amplitudes of overstable g-modes. The limiting ampli-
tude declines with increasing mode period. It is larger in cooler stars which have deeper convective

envelopes. This is estimated quantitatively in §5.6.
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Chapter 5 Effects Of Radiative Diffusion On
Gravity-Modes In White Dwarfs

5.1 Introduction

The driving/damping rates calculated in Chapter 3 are based on a quasiadiabatic approximation.
These rates are accurate provided radiative diffusion may be neglected. Fractional corrections to
an eigenmode due to radiative diffusion are measured by the dimensionless parameters 1/(wmnp)
where the mode is evanescent, and by (k.z)?/(wmn) where it propagates. Here 7y, is the local
thermal time-scale as defined by equation (3.36) in Chapter 3, and k, is the vertical component of
the propagation vector.

For simplicity, consider a hot DA white dwarf whose radiative interior extends all the way up
to its photosphere. The flux perturbation associated with a g-mode is almost independent of depth
above the critical level where the effects of radiative diffusion as defined above become of order unity.
This is a consequence of the limited heat capacity of the material above that depth. When situated
above the mode’s cavity, the critical layer generally dominates mode damping and driving because
the matter higher up cannot trap or release much energy, and the entropy perturbation declines
steeply with depth below this layer.

The story is more complicated in a cooler DA white dwarf whose radiative interior is overlaid by
a surface convection zone. The convective region behaves in a qualitatively different manner from
a radiative region of similar thermal content. Moreover, its behavior depends upon an additional
parameter, wte,, where t., is the dynamical response time of the convective eddies, often referred
to as the eddy turn-over time. We are mainly concerned with the value of %, at the bottom of the
convection zone (at z = z;).

For g-modes in ZZ Cetis, the convective response is rapid; wie, < 1 throughout the convection
zone. Thus in Chapter 3 we assume that the convection zone reacts instantaneously to the pulsation.
Moreover, we neglect the entropy gradient except in a thin superadiabatic layer just below the
photosphere. This implies that the main body of the perturbed convection zone is an isentrope.
The globally uniform entropy perturbation, ds, determines the perturbation to the local convective
flux.! As a consequence of its rapid convective response, the entire convection zone is characterized
by a single thermal adjustment time, 7.. For ZZ Cetis, 7. is typically about 20 times longer than

the conventional thermal time-scale 7, = 71 (25). This large factor reflects the increased impedance

1We ignore both the unperturbed and perturbed radiative flux.
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provided by the superadiabatic layer and the photosphere to a flux increase. The drop in entropy
between the main body of the convection zone and the photosphere grows with increasing flux
because a larger superadiabatic gradient is needed to carry a larger flux, while photospheric entropy
rises at the same time with the increasing effective temperature and radiative opacity. Chapter 3
establishes wr. > 1 as a necessary condition for a g-mode to be overstable. Since the flux perturbation
is reduced by a factor (wr.)”! between the radiative interior and the photosphere, modes detected
photometrically are likely to have wr, < 1.2 These modes would be nonadiabatic immediately below
the convection zone.

Except for the papers by Brickhill (1990, 1991a), previous investigations of g-mode overstability
in Z7Z Cetis proceed by setting §F. = 0; that is they neglect the Lagrangian perturbation of the
convective flux. This is tantamount to assuming that wie, > 1. Within this framework the perturbed
flux is purely radiative, F = §F,, and |0F,| decreases sharply above the bottom of the convection
zone. This reflects the steep decline of F, in the same region since the ratio 6 F,/F, varies smoothly
across it. Because the opacity decreases with compression in the radiative interior, §F, varies in
phase with dp there. Thus the decline of [§F}.| above the bottom of the convection zone makes this a
mode driving region. Convective blocking is the name conventionally attached to this type of mode

excitation. Its fundamental difference from convective driving should be apparent.

5.2 Equations and Boundary Conditions

5.2.1 Equations in the Radiative Region

The linear equations describing nonadiabatic pulsations read
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2Until recently, modes in ZZ Cetis had only been observed photometrically.
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where we assume an exp (—iwt) temporal dependence for all the perturbed quantities. New symbols
which appear here are p; = dlnp/0s|, = 1/s,, and ¢, = 9s/0InT|, = 1/T, = sp. All others are
used in Chapter 3 and are listed with their definitions in Appendix A. These linearized equations
express in turn, the vertical and horizontal components of momentum conservation, mass conser-
vation, radiative diffusion in the optically thick limit, energy conservation, and thermodynamic
transformations relating density and temperature to pressure and entropy.

We adopt Inp as our independent variable, and investigate the radial structure of the four
quantities, (dp/p), d(dp/p)/dInp, (6F/F), and ds. Equations (5.1) can be recast as

d op .
s <;>—)& = 0, (52

dX p\ |2 (N (w I (op) _ p (gkn)® —
X+(2) (= -1)+(2) | (B)-BY¥R Y )65 = 0, (5.
dinp | +(gp> [h(w2 e <p o g P =0 6

F
d <§—>+z‘w’£k3 s = 0, (54)
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where V = dInT/dInp. Notice that since equation (5.4) includes a factor ¢, all four variables are

il
=

(5.5)

complez. Moreover, the eigenfrequency w is also complex; its imaginary part, w;, gives the rate of

growth or decay of the pulsation amplitude. We write each complex variable in the form
Q= (Q +1iQ;) exp ™", (5.6)

The real part of @, which represents the physical perturbation, is e*#(Q, cosw,t+Q; sinw,t). Setting

ds = 0 reduces the nonadiabatic pulsation equations to the adiabatic ones.

5.2.2 Equations in the Convection Zone

The small value of wt., constrains g-mode perturbations within the convection zone. Rapid momen-

tum diffusion enforces d¢;,/dz a 0 which in turn implies (see Chap. 4)

d op
— ] =~ 0. 5.7
dlnp ( P ) 0 &1
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Similarly, rapid energy transport ensures that

dinp =0 (5.8)

except in the thin superadiabatic layer. The total flux perturbation, convective plus radiative, then
follows from equations (5.4) and (5.8).> Equation (5.5) determines the radiative flux perturbation
in terms of dp and és.

Equation (5.8) does not apply in the superadiabatic layer. The entropy gradient there increases
with increasing convective flux. But as this region is thin and of low density, it is sufficient to

incorporate its effect into the boundary conditions.

5.2.3 Boundary Conditions

Before we can solve the four linear, homogeneous, first-order, differential equations (5.2)-(5.5) to
obtain eigenvalues and eigenfunctions, we require a total of five boundary conditions. One of these
is trivial and merely sets the magnitude scale for the eigenfunction. The remaining four express
physical constraints imposed upon the g-mode by the physical environment outside the domain in
which the differential equations are to be solved.

In principle our boundary conditions should be set at the stellar photosphere and at the center
of the star. However, the simple approximations described in §5.2.2 enable us to lower the upper
boundary to the top of the radiative interior at z,. Furthermore, we raise the bottom boundary
condition up to depth z = Zgeep at which p = 10'®dynecm™2.* Since 7, = 10'%s at zqeep, the
quasiadiabatic approximation is valid there for all g-modes of interest to our investigation.

The three boundary conditions applied at the top of the radiative interior read:

(ép—p) = constant, (5.9)
d 510) —ki, /”" Pps [p ds (51)) ]
=) = dp=—2 | == =) —4s, 5.10
dln;D(p oty P lgpdz \p (5-10)
_ (B+C) (6F
bs = ior \ ) (5.11)

Equation (5.9) is the trivial boundary condition referred to earlier which sets the overall scale of the
eigenfunction. Equation (5.10) is the combined result of equations (5.7) and (4.22); the latter gives
the discontinuity of dép/dz across the radiative-convective boundary. Equation (5.11) follows from

equations (3.41) and (3.43).

3Equation (5.8) is equivalent to enforcing a simple mixing-length prescription for the convective flux at any moment
during the pulsation.

4This step alters the spectrum of the eigenvalues w so that they differ from these of a complete star. However, a
simple correction allows us to recover appropriate values for w;.
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Two additional boundary conditions are applied at z = zgeep. They read

d (ép kip\ ép
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Equation (5.12) is a mechanical boundary condition. It states that £, = 0 at z = zgeep. Thus
we imagine that our model is bounded from below by a rigid wall. Equation (5.13) is our thermal
boundary condition. It is the quasiadiabatic limit of the radiative diffusion equation (5.5) which

defines the coefficients M; and M>.%

5.3 Where Is §s Important?

Here we estimate the relative importance of nonadiabaticity in the radiative region. Nonadiabaticity
is represented by the Lagrangian entropy perturbation, ds. We evaluate how ds affects both dp/p
and 6F/F. The former effect measures how energy diffusion reduces the effective local buoyancy,
whereas the latter measures the loss in the matter’s ability to store thermal energy. Then we relate

ds to ép/p. This step determines how nonadiabaticity depends upon the parameter wry.

5.3.1 Nonadiabatic Effects in the Evanescent Region

The effect of ds on 6p/p is contained in equation (5.3). Scaling the adiabatic terms in this equation

in a manner appropriate to the evanescent region z < z, yields
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where we make use of z ~ H, and N? ~ g/z. The nonadiabatic term is of order,

2

2

k 2_ .4
ﬂgg—}ﬁ—;—w—psés ~ __Z__(SS. (5.15)
Py gw Zw

Equations (5.14) and (5.15) establish that the nonadiabatic corrections to dp/p are of order §s.

5We can also use ds = 0 or dés/dlnp = 0 at Zdeep instead of equation (5.13). But our choice is more accurate
since ds decays inward.
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To relate ds to dp/p, we turn to equations (5.4) and (5.5). With appropriate scalings they yield®

5 1 d 5_F 1 6F
s wrindlnp \ F wrn F

oF
- o~ %—Fés. (5.16)

Together, equations (5.15)-(5.16) imply that the ratio of the nonadiabatic to adiabatic contribu-
tions to both dp/p and §F/F is of order 1/wmy,.

5.3.2 Nonadiabatic Effects in the G-Mode Cavity

We follow a procedure similar to that in §5.3.1 with one notable exception. All perturbation quan-
tities are taken to vary on a vertical scale k! where k,z > 1.

Scaling the adiabatic terms in equation (5.3) now yields

dlzllp (%) ~ ks2) <%>’
2 dlcrl:p2 (%)
Y RE)-@1E) - 2@)-er®). o

where we have made use of the relation k. ~ (2z,)~'/2. The nonadiabatic term becomes
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From equations (5.4) and (5.5), we obtain

1 oF
4s ~ ETt—h(k;Z) (F) y

(%F) ~ dlcrllp [(%p) +5S] ~ (ke2) [(%) +6s] ' 19

Combining equations (5.17)-(5.19), we determine that the ratio of the nonadiabatic to adiabatic

contributions to both ép/p and §F/F is of order (k.z)?/wyn. This measure has a simple physical
interpretation. Since 7y, is the time-scale for thermal diffusion across distance z, the time-scale for

thermal diffusion across distance k' must be 7y, /(k-2)?. Nonadiabaticity is measured by the ratio

of the mode period to this time-scale.

5The coefficient connecting dp/p to §F/F in equation (5.5) varies on scale of z.



58
5.4 Numerical Realizations

The equations and boundary conditions for nonadiabatic oscillations are set out in §5.2. Here we
describe the numerical procedure we employ to obtain the complex eigenfrequencies and eigenfunc-
tions.

In place of a complete stellar model, we work with plane-parallel hydrogen envelopes designed
to resemble the outer layers of DA white dwarfs. Details of the construction of these envelopes is

documented in Appendix B.

5.4.1 Nonadiabatic Code

We follow a two step procedure to solve the linear pulsation equations (5.2)-(5.5) for the four
dependent variables subject to the five boundary conditions given by equations (5.9)-(5.13). The
initial step consists of guessing a value for the complex eigenfrequency and then using a relaxation
method to solve the differential equations subject to four out of the five boundary conditions. The
remaining boundary condition, which can be anyone except equation (5.9), is then used to determine
the eigenvalue. Both minimization and root finding techniques work well in this step. Normally,
we reserve equation (5.12) for our final boundary condition, but the results do not change when
others are used instead. We devote the following two paragraphs to descriptions of the relaxation
procedure and the root finding technique.

In the relaxation procedure (Press et al. 1992), the N first order differential equations are trans-
formed to finite difference equations on a mesh of M points. This yields a matrix equation involving
an [(NM) x (MN)] block diagonal matrix.” The boundary conditions are incorporated into the
matrix. An initial guess is provided for each of the N x M variables, and the matrix equation is
solved by iteration. Compared to the shooting method, the relaxation method has the advantage
of faster convergence. Moreover, it is superior in dealing with a set of ‘stiff” differential equations,
as it is equivalent to the shooting method with M meeting points. For convergence, we require the
dependent variables to satisfy both the pulsation equations and the boundary conditions to 10~7
of a scaling factor provided by the corresponding adiabatic eigenfunction at individual points. This
precision is routinely achieved using double precision programs.

Thereafter, eigenvalues are obtained either by minimization or by root finding applied to equation
(5.12). Both procedures start from an initial guess for the complex w. The minimization procedure is
the downhill simplex method described in Press et al. (1992). It is aimed at minimizing the absolute
value of the left-hand side of equation (5.12). Reliable results are obtained provided the initial
simplex (a triangle) encompasses an eigenvalue. Otherwise, it is vulnerable to getting hung up at

local minima. We need to check for global convergence by starting from different initial simplexes.

7"The matrix is block diagonal because the finite differences only involve neighboring points.



59

We find a globally convergent Newton’s method (root finding) to be a better approach. A handful

of line searches and backtrackings suffice to locate a precise root of equation (5.12).

5.4.2 Eigenvalues for Stellar G-Modes

Our numerical integrations yield eigenvalues for a plane-parallel hydrogen envelope bounded from
below by a rigid wall. We attach primes to these to denote that they apply to plane-parallel envelope
and not to a complete stellar model. To derive values of w; appropriate to g-modes of a DA white
dwarf, we associate each nonadiabatic mode of the plane-parallel layer with an adiabatic mode of
a complete stellar model by their frequencies. From the latter we determine the ratio between the
number of radial nodes above zqeep (n') and the total number of radial nodes in the entire star (n).8
Since the region between each radial node makes an equal contribution to the mode mass,® and the

energy gain/loss at the upper atmosphere is shared by all nodes, we have

!

3

We verify this relation by varying zqeep and evaluating w; with different n'.

Our procedure for converting w} to w; requires that nonadiabatic effects be small well above
Zdeep, as is the case for all modes of interest to our investigation. Moreover, it only applies to modes
that have at least one node above z4eep. Thus it cannot handle the highest frequency g-modes. We

compute values of w; for these using the work integral.

5.4.3 The Work Integral

The work integral provides an alternate method for evaluating the driving or damping of a mode.
It is most commonly used in cases where the quasiadiabatic approximation applies. In such cases,
accurate driving or damping rates may be obtained from adiabatic eigenfunctions. The work integral
is less useful when nonadiabatic eigenvalues and eigenfunctions are computed, since the driving or
damping rate is given directly by w;.'° However, the work integral still provides physical insight
because its integrand reveals the spatial distribution of the regions of driving and damping.

The work integral may be expressed in a variety of forms. One version, given by Unno et

al. (1989}, and equation (3.47), is displayed below.

R
W kp 0T dis
= — t dz pT — ——
v 27TR fd/o i my T dt

51n general, neither n’ nor n is an integer. In practice, we determine n' and n by interpolation using adiabatic
eigenfunctions whose frequencies bracket w),.

9Strictly speaking, this statement applies only to nodes within the adiabatic region.

10The work integral computes v = 2w;.
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2 ,R
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This expression applies to periodic pulsations. Because the overstable g-modes in ZZ Cetis have
high Qs (the quality factors), their linear pulsations are nearly periodic. We substitute precisely
periodic solutions for dp/p and s into equation (5.21) to obtain . These are computed by using

our relaxation code to solve the nonadiabatic equations with fixed w, and w; = 0.

5.5 Results and Discussions

5.5.1 Nonadiabatic Effects: Qualitative Analysis

The quasiadiabatic results of Chapter 3 imply that overstable g-modes require wr. > 1. But the
large disparity between 7, and 7, cautions us that the quasiadiabatic approximation is not to be
trusted for those modes for which w7, is just slightly larger than unity. Since these are the modes
whose photometric variations are most easily detectable, this is a significant concern. Indeed, it is
the main motivation for the nonadiabatic calculations reported in this chapter.

Consider a periodic pulsation of a fully radiative star. Flux perturbations are able to stream out
freely above a depth where w7y, < 1. Thus this strongly nonadiabatic region provides little driving
or damping. The presence of a surface convection zone introduces additional complications. Some of
these are discussed in §5.1. In particular, the convective flux responds almost instantaneously to the
pulsation of an overstable g-mode in a ZZ-Ceti star. This implies that the entire convective envelope
complies with a single thermal time constant, 7.. Moreover, 7. exceeds the radiative thermal time
constant at the top of the radiative interior, 7, by at least an order of magnitude.

The thermal effects of the convection zone are nicely illustrated by comparing integrands of
the work integral computed with nonadiabatic and adiabatic eigenfunctions. We present three
examples corresponding to g-modes with periods of 1365, 1,200s, and 2,400s for a stellar model
with effective temperature of 12,000 K.!'! We normalize the phase of the pressure perturbation
(dp/p) to be real in the adiabatic interior. Thus the imaginary component of the flux perturbation
arises from nonadiabatic effects.

Nonadiabaticity increases with mode period. As shown in Figure 5.1, the 136 s mode, for which
wt, = 1.9, is quite adiabatic in the radiative interior. The imaginary part of its flux perturbation
is negligible except near the photosphere. The photospheric flux perturbation is greatly reduced in
magnitude and delayed in phase from that at the bottom of the convection zone. As discussed in
Chapter 3, this results from the finite heat capacity of the convective envelope. Nonadiabatic effects

are more pronounced for the 1,200s mode which has wr, = 0.2. As is seen in Figure 5.2, radiative

" guasiadiabatic predict overstability for each of these modes.
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diffusion below z; reduces both the convective driving and the radiative damping. It also results
in a small region of radiative driving at the top of the radiative interior. The 2,400s mode with
w7y, = 0.1 is nonadiabatic all the way down to the top of its cavity. As a result, the phase shift
between 0F'/F and dp/p at the bottom of the convection zone is so large that the convective driving
predicted by the adiabatic code turns into convective damping. This mode is now stable.

In general, radiative diffusion reduces the growth rates and limits the longest periods of overstable
modes. However, the latter effect is not large. In particular, it cannot account for the observed period
cut-off at around 1,200s for g-modes in ZZ Ceti stars.

Both radiative diffusion and convection introduce phase shifts between photospheric flux and
velocity perturbations. Now that the velocity perturbations are detectable (see Chap. 8), the
information contained in these phase shifts, as well as the amplitude ratios between light and velocity
variations, may yield insights about the nature of both the star and its modes. Our nonadiabatic
calculations provide a theoretical basis for interpreting the phase shifts and amplitude ratios, an

example of which is depicted in Figure 5.4 for a P = 800s mode in a star with T, = 12,300 K.

5.5.2 Nonadiabatic Effects On Driving/Damping Rates

In this section we report on the results of nonadiabatic calculations of driving and damping rates
of g-modes. This material is presented graphically. Our nonadiabatic calculations predict that as
the star cools inside the instability strip, more and longer period modes become overstable. This is
consistent with observations.

Direct calculations of w; and those based on the work integral yield consistent results. This
provides a measure of confidence in both. Modest discrepancies are found for some marginally
overstable modes. We believe the eigenvalue calculations to be more reliable. Work integrals for
marginally overstable modes suffer from cancellation between comparable contributions of driving
and damping.

The value of w; for an individual g-mode undergoes an interesting evolution with decreasing Tog.
Although this behavior may be gleaned from the numerical data presented in Figures 5.5-5.9, we
summarize it here as well. We consider in turn three / = 1 g-modes with periods of approximately
135s, 1,000s, and 2,000s.

The 135s mode has a single radial node. It is overstable below Tog ~ 12,800 K. The upper lid
of its cavity lies far beneath the bottom of the convection zone for all stars in the instability strip.
Thus it is largely immune to both nonadiabatic effects and the deepening of the convection zone
with decreasing Teg. Consequently, the driving/damping rate for this mode is of order 10712571,
independent of Tog. This value is consistent with the estimate 1/n7,, where 7, is the thermal
time-scale at the top of the cavity.

The 1,000s mode has approximately 21 radial nodes. It becomes overstable at Tog ~ 12,000 K.
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Figure 5.1: Comparison between adiabatic and nonadiabatic g-mode eigenfunctions, as well their
respective work integrals. The upper panel displays the §F/F as a function of logp for both the
adiabatic case (dashed line) and the nonadiabatic case (real part solid line and imaginary part dotted
line). Inside the convection zone, both §F/F are dictated by the isentropic entropy perturbation.
The lower panel shows the differential work, 6W, defined by W = [ §Wdlogp plotted against logp
for both the adiabatic (dashed line) and nonadiabatic (solid line) cases.
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Figure 5.2: Similar to Figure 5.1, but for a mode which is moderately nonadiabatic immediately
below the convective envelope. The division between strongly nonadiabatic and adiabatic regions is
marked by the dashed arrow where wry, = 1. Both convective driving and radiative damping are
reduced by radiative diffusion. However, the mode remains overstable.
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Figure 5.3: Similar to Figure 5.1, but for a mode which is significantly nonadiabatic throughout
its upper evanescent region. The phase difference between §F/F and dp/p at the bottom of the
convection zone results in convective damping. This mode is damped, although a quasiadiabatic
calculation predicts it to be overstable. Notice the reduced photospheric |§F/F| for the nonadiabatic
eigenfunction.
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Figure 5.4: The amplitudes and phases of flux perturbation (§F/F) and horizontal pulsational
velocity (vy) as a function of logp for an 800s mode in a star of Tog = 12,300K (w7, = 1.14,
wtp, = 0.07). A photospheric amplitude for 6F/F of 16 mma'?® corresponds to a surface velocity
vp = 1.3km/s. This scaling ignores the effects of limb-darkening, disc averaging, and inclination
angle. The phase ¢ is defined by X = X, cos(wt — ¢), where X is the time dependent perturbation,
and Xy the absolute amplitude of this perturbation. In the adiabatic interior, velocity maximum
lags the light maximum by 90 deg. Nonadiabaticity reduces this relative phase difference to about
~ 70 deg at the photosphere.
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Figure 5.5: Driving/damping rates for £ = 1 modes in stars of Tox = 12,600K and 12,300K are
plotted against mode period. Solid triangles show values of |w;| obtained as eigenvalues, and open
squares and dots those calculated from nonadiabatic and quasiadiabatic work integrals. Rates for
the short period modes (P < 500s) are only calculated from the work integral, as they do not have
a node within zgeep. The transition between overstable and damped modes occurs around P = 200s
for the warmer model and at P =~ 900s for the cooler model, both marked by dips in the values of
|wi|. For long period modes, the nonadiabatic values of |w;| are suppressed relative to the adiabatic
ones. Moreover, the former are approximately equal to w,/27n, where n is the number of radial
nodes.
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Figure 5.6: Similar to Figure 5.5, but for stars of T = 12,000K and 11, 750 K.
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The value of its |w;| exhibits a steady decline with decreasing Teg. This occurs because &p/p is
constant in the convection zone. Hence as the depth of the convection zone increases, so does the

depth of the upper lid of the mode’s cavity. Since |w;| ~ 1/n7y, where 7y, is evaluated at the top
of the cavity, it follows that |w;| must decline with decreasing Teg.

The 2,000s mode is weakly overstable in a narrow temperature range from 11, 500K to 11, 200 K.
For hot stars its |w;| is much smaller than the adiabatic value and saturates around w, /(27n). This
is a consequence of the nonadiabatic effect of radiative diffusion which persists all the way down to
the top of the mode’s cavity. As a result, the reflection coeflicient of upward traveling gravity waves
is reduced to near zero. These features, which are common to all long period modes, are discussed

in more detail below.

A Toy Model For Nonadiabatic Modes

We describe a simple toy model for nonadiabatic modes. It is particularly useful for interpreting
damping rates in the limit of strong dissipation.

Consider waves which satisfy the one-dimensional, homogeneous, acoustic wave equation
> (5.22)

in the interval 0 < z < L. Here ¢ is the displacement and ¢; is the constant sound speed. The dis-
persion relation connecting frequency, w, and wave vector, k, reads w? = k*>c2. The lower boundary
is a rigid wall, so

§(L) =0. (5.23)

Dissipation is introduced by means of a partially reflective upper boundary, where R denotes the

ratio of the amplitudes of the incident to reflected waves. This is expressed through the boundéry

0 0 0 0

We write the general solution of equation (5.22) in the form of oppositely traveling waves;

condition at z = 0:

E — Ae—iwt—ik: + Be—iwt—{—ikz‘ (525)
Application of the boundary conditions given by equations (5.23) and (5.24) yields

k= 1T (5.26)
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where n is the number of half wavelengths between the walls, and

o = :—w ey <é—) : (5.27)

where n is an integer.

Equation (5.27) is the key result from our toy model. It demonstrates that w; grows logarithmi-
cally with R in the limit of strong dissipation (R — 0). Moreover, it clarifies the w,/n dependence
of w; when R < 1. During each period, the mode loses all the energy stored in the top wavelength
of the upward propagating wave.

Equation (5.27) provides a good estimate for the damping rate of strongly nonadiabatic modes
in a pulsating star. Radiative diffusion limits the effective reflection coefficients of these modes to

small values. This occurs when w7, < 1. In hot stars this applies to modes with periods in excess

of 1,200 (cf. Fig. 5.5).

5.6 Amplitude Saturation By Turbulent Dissipation

A finite amplitude mode generates a turbulent shear layer below the radiative-convective boundary.
Energy dissipation in this layer is proportional to the 3/2 power of the mode’s energy. Thus it acts
to nonlinearly limit the mode’s amplitude (cf.§4.5).

We estimate an upper limit to the amplitude of each overstable mode by balancing its linear,
nonadiabatic growth rate with its nonlinear turbulent damping rate.!* This procedure requires
assigning a value to the drag coefficient Cp. Terrestrial experiments indicate that Cp depends
logarithmically on the ratio of wall roughness to boundary layer width, with values as small as 103
being characteristic of flows over smooth walls. We might imagine that penetrative convection makes
the upper boundary of the shear layer behave like a rough wall, but that is only speculation. Since
we have no physical basis for assigning a reliable value to Cp, we treat it as a free parameter subject
to the constraint 1073 < Cp < 10~!. For example, the choice Cp = 0.02 implies an upper limit of
0F/F ~ 10mma for a 500s mode on a 12,300 K star. As this limit is in accord with observations,
we stick with the choice Cp = 0.02 in arriving at the estimates presented below.

Upper limits for the photometric amplitudes of overstable g-modes in stars of different tempera-
tures are displayed in Figure 5.10 for £ = 1 modes, and in Figure 5.11 for £ = 2 and ¢ = 4 modes.!?
The general trends are in accord with the analytic scaling presented in equation (4.31). Namely,

dF/F declines with increasing P at fixed Tyg, and rises with decreasing T at fixed P.

14Realistic limits must await consideration of additional nonlinear, amplitude limiting processes.
15These amplitudes do not take into account the effects of limb darkening, inclination, and disc averaging.
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Figure 5.10: Upper limits in pulsation amplitudes due to the turbulent damping below the convection
zone. Photospheric flux variations are plotted as solid symbols and horizontal velocities are shown
by open symbols. Rough observational limits are set at §F/F > 1mma and v;, > 1kms~!. Note
that photometric variations are relatively more observable than velocity variations in the hotter
stars, while velocity variations are more observable in the cooler stars. This is due to the deepening
of the convection zone and its increasing thermal capacity.
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5.7 Summary

At this point in my thesis, it is informative to summarize the stage we have reached in our theoretical
understanding of ZZ Ceti pulsations.

There seems little doubt that ‘convective driving’, as originally proposed by Brickhill (1991a),
is the correct linear overstability mechanism. Not only is it physically self-consistent, it also offers
convincing explanations for observational facts. It accounts in a general way for the location of
the instability strip, although a precise specification depends upon the prescription for modeling
the convection (e.g., the mixing-length parameter). It shows that as a star cools, the maximum
period of its overstable modes increases. Moreover, it makes the testable prediction that velocity
variations become relatively more observable than photometric variations towards the red edge of
the instability strip.

We confirm, in agreement with Brickhill, that w7, > 1 is a necessary condition for mode over-
stability. However, we find that it is not a sufficient condition for modes with periods in excess
of 1,000s. This conclusion applies even in the quasiadiabatic limit, and it is strengthened when
nonadiabatic effects are fully accounted for. Since 7, ~ 0.057., modes with w7. &~ 1 are rather
nonadiabatic for some distance below the top of the radiative interior. The nonadiabatic region can
extend all the way down to the top of the mode’s cavity for long period modes.

We also agree with Brickhill’s conclusion (1990) that turbulent convection forces the horizontal
velocity to be nearly independent of depth within the convective envelope. Consequently, mode
damping due to turbulent dissipation within the convection zone is reduced to a negligible level.
However, suppression of the horizontal shear in the convective envelope induces a turbulent shear
layer at the top of the radiative interior, and dissipation in this layer works towards limiting the
mode amplitude.

Our predictions for mode overstability are shown in Figures 5.12. A comparison with observations
is given in Figure 5.13

Our nonadiabatic calculations yield a maximum period of about 2,200s for overstable modes.
This clashes with the maximum period of 1,200s for observationally detected modes. It may turn
out that this discrepancy is erased by the amplitude limit set by turbulent dissipation on long period
modes. Figure 5.13 suggests that this might push the longest period of an observable, overstable
mode as far down as 1,000s. Support for this view comes from a careful look at the figures in
Clemens (1993) which show that the photometric amplitudes of modes with periods above 1,000s
are much smaller than those of modes with periods shorter than 1,000s. However, at this point it

is premature to draw any conclusions. We plan to return to this issue after we have completed our

investigation of other amplitude limiting mechanisms.
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Figure 5.12: Results on mode overstability from quasiadiabatic (upper panel) and fully nonadiabatic
(lower panel) calculations. The dots represent fiducial modes from our truncated stellar models which
have periods similar to stellar g-modes. Overstable modes are denoted by filled triangles. These
are surrounded by open squares if they correspond to modes for which wr, < 20. Recall that the
photospheric flux variation is reduced relative to that at the bottom of the convection zone by a
factor [1 4+ (w7.)?]~'/2. The long-dashed line corresponds to wr. = 1, while the short-dashed one
to wr, = 1. Most of the visible overstable modes are nonadiabatic below the convection zone.
The nonadiabatic treatment predicts fewer overstable modes than the quasiadiabatic one, but the

difference is not large. Nonadiabatic effects are more pronounced in reducing mode growth and
decay rates, as shown by §5.5.2.
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Figure 5.13: Observed and theoretical instability strips for DA white dwarfs. Inferred effective
temperatures for all known pulsators are marked in the upper panel (Bergeron et al.1995). The
lower panel repeats the material shown in the lower panel of Figure 5.12. To this we add a solid line
denoting the locus of modes for which turbulent dissipation (with Cp = 0.02) yields a photospheric
flux variation F/F ~ 107%. The blue edge of the theoretical instability strip coincides with the
condition that w7, = 1 for the (n = 1,£ = 1) mode. At this stage, the location of the red edge
(at ~ 11,600 K) is determined by the visibility and the limited amplitudes of the overstable modes.
However, we cannot pin it down until we have a more complete understanding of the nonlinear
processes that limit the mode amplitudes. When comparing the locations of observed and theoretical
instability strips, one should bear in mind that both depend upon the assumed mixing-lengths.
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Chapter 6 Nonlinear Mode Coupling: Basics

6.1 Introduction

One of the most interesting results in this thesis is that nonlinear mode coupling can limit the
amplitudes of overstable modes in white dwarfs to observed values. This is demonstrated in Chapter
7. Here we present information on nonlinear mode interactions that is needed by nonspecialists to
understand the results in Chapter 7.

The hydrodynamical equations are nonlinear in nature. Resonant nonlinear interactions pro-
mote exchanges of energy and angular momentum among eigenmodes! gravity-modes in a stratified
medium is three-mode coupling.? In our study, we assume the nonlinearity is weak and restrict
ourselves to this lowest order interaction.

In §6.2, the perturbative scheme is realized by transforming the equations of fluid motion into
equations describing the amplitude evolution for individual modes. These ‘amplitude equations’
describe temporal variationd of the complex amplitudes under periodic phase evolution, linear driv-
ing/damping and nonlinear mode interactions. The latter involve ‘coupling coefficients’ which mea-
sure the efficiency with which modes interchange energy and angular momentum at given amplitudes.
The coupling coefficients are derived from an action principle. The amplitude equations are time-
averaged to capture long term variations in mode energy. We call the resulting expressions the
‘energy equations’. The amplitude equations and the energy equations are the basic tools we use to
study nonlinear mode interactions.

An efficient numerical tool is another important ingredient. We introduce the ‘symplectic inte-
grator’ (Appendix C) into our study of nonlinear systems. Based on the ‘symplectic’ (phase-space
conserving) nature of a Hamiltonian, an implicit numerical integrator can be constructed to advance
the system forward in time. This integrator accurately preserves a time independent Hamiltonian
down to the round-off error, and only allows coordinate errors to grow linearly with time. In both
attributes, it is superior to conventional integrators. The efficiency of the ‘symplectic integrator’ is
related to its accuracy. The nonlinear systems we are interested in have both a fast and a slow time
scale, and all important dynamics takes place on the long time scale. With a ‘symplectic integrator’,
even a low-order one, we can numerically advance the system with a time-step of order the fast time
scale (usually the mode periods) while preserving accuracy. This is possible with other integrators

only when the order is high. In Appendix C, we also list the extension of ‘symplectic integrator’ to

IThe eigenmode analysis is useful when these interactions may be regarded as perturbations.
21t is possible for two out of these three modes to be identical modes.
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dissipative systems.

Our aim is to understand the statistical energy equilibrium that is reached due to energy transfer
from excited modes to damped modes through three-mode couplings. The couplings of interest to us
can be classified into two types. One type involves the cataclysmical transfer of energy from a high
frequency overstable mode to two lower frequency damped modes; this proceeds due to parametric
instability. The other type involves more than one excited mode. Following Dziembowski (1982), we
call the latter type ‘direct resonance’. In §6.3, we apply the energy equations to derive the energy
threshold for parametric instability. Also using the energy equations, we describe the equilibrium
state of modes that engage in direct resonance. In a pulsating white dwarf, these two kinds of
resonance operate simultaneously. We show in Chapter 7 that parametric instability limits mode
amplitudes to the observed range. We suggest that direct resonance is instrumental in modulating
these amplitudes into the observed irregular distribution (the behaviour of ‘mode selection’).

Appendix E is devoted to understanding the intricate dynamics in multi-mode systems (N > 3).
There, we deal with ‘globally’ coupled systems, conservative and dissipative. We sought to capture
some universality buried inside the complicated dynamics. In particular, we discuss in detail the
processes of ‘energy equipartition’ and ‘mode slaving’. The energy equations discussed in this chapter
are extensively used there to predict the equilibrium state of these multi-mode systems. In the end
of that appendix, we briefly investigate systems that are not globally interacting and are therefore
more similar to pulsating white dwarfs.

One important aspect of a system with only cubic nonlinearity is the existence of ‘amplitude
instability’. This is discussed in detail in Appendix D. Whenever the total energy of a system is
larger than some critical value, there can be unstable nonlinear growth of mode amplitudes. The
kinetic and interaction energies run away towards positive and negative infinity, respectively, with
the total energy remains constant. We show that the critical energy is related to the number of
modes that are globally interacting.? The larger the number of modes, the more stringent in energy
this stability criterion becomes. Geometrically, the instability results from the shape of the potential
(H3, the interactive part of the Hamiltonian) for three-mode couplings. This potential is asymmetric
in configuration space, with one side sloping down infinitely. The system is hindered from spilling
over to infinity only by a small hill, the height of which decreases with the number of modes. This
instability has been encountered by others during their investigations of three-mode couplings. But
it has never been fully understood and documented. The ‘amplitude instability’ is not important
for pulsating white dwarfs. Whenever a realistic system has energy that exceeds the threshold, it is
strongly nonlinear and higher order couplings become as important as three-mode couplings. Also,
global coupling as defined above is not realistic for most physical systems since different couplings

generally have very different coupling coefficients. Overstable modes in a large system are often

3Each mode couples equally strongly to any pair of modes.
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separeted into domains within which interactions are strong, with only weak connections between

different domains.

6.2 Formulation of Nonlinear Mode Coupling

There are at least two ways to construct equations to describe mode coupling, and to calculate the
strength of such an interaction. One method spawns from the equation of motion (as in Dziembowski
1982), the other relies on the systems action. Both methods should give identical results. We adopt

the second approach here.

6.2.1 Coupling Coefficients

The Hamiltonian of a system is directly related to its Lagrangian. We derive Lagrangian densities
for an adiabatic, inviscid, ideal gas under perturbations. The derivations in this section and $6.2.1
are mostly taken from Kumar & Goldreich (1989). They are included in this thesis for completeness.

An ideal gas with adiabatic index T'y, velocity v and potential 1, has a Lagrangian {Newcomb

1962)

—

I N p(Z)
= [ |5 - 72

where & and & represent the unperturbed and perturbed coordinates respectively. They are related

-¢(@)|, (6.1)

by the Lagrangian displacement vector, ¥ = &y + { In our application, we neglect perturbations to
the gravitational potential 9, because gravity-modes are strongly concentrated towards the stellar
surface and cause mostly horizontal motions.

Mass conservation implies

pdT = pydiy, (6.2)

and adiabatic perturbations satisfy

pp " = popy . (6.3)

The Jacobian of the coordinate transform is

B 07\ _ o€
J = det (Ti‘b) = det (1 + Ti’o) . (6.4)

If the gradients of the displacement are small, we can expand the Jacobian to the third order as

-

T =1+(V-§ = 5(v-&p + gewgrhens - U8y Lo g, (65

When non-Cartesian coordinates (e.g., spherical coordinates) are used, as is often the case, the above

derivatives should be thought of as covariant derivatives (i.e., ;" changed to ).
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The expansion of J yields the second and third orders of the Lagrangian densities:

2

aE o
L= DI B (g ]
—~—1)? o — e CL .
o= m| P g0 Co e gevgi s Jengug] . o

The Hamiltonian density is related to the Lagrangian density by

oL

H = mat& - ﬁ, (67)
which leads to
o€’
, = Po|°) P _ A2 4 ghigii]
Mo = B 5| 5|0 -0 82+ i
Hs = Ls. (6.8)

The second order Hamiltonian density (#2) represents the sum of the kinetic and potential energy
of a harmonic oscillator. For a strictly periodic oscillation, these two parts contribute equally. The
third order Hamiltonian (Hs) is the energy in the lowest order interaction.

Any arbitrary perturbation in E can be projected into linear combinations of eigenmodes,

§= (Au& + ALE). (6.9)
x
fa and E; represent the spatial dependence of mode «. Normalized values of these quantities are
related to unity mode energy. The complex variable 4, oc e™™=t A% is its complex conjugate. A,
has the unit of squared root of energy. Let us denote R(A4,) = 1 (4, + A%).

Integrating equation (6.8) over the whole volume gives

M= [dare =Y (R4 = Y B
Hy = 3 kosRIAIR(A:R(A,). (6.10)

afy

Here, the coupling coefficient, %, has the inverse unit of A,. And for any triplet combination, &

reads

bomy = = [ @R {01 - DAV -E)(V £V E) + S b+ gl

HO - D [(V-E)eF g + (V- Eeigh +(v - E)eier] ). (6.11)
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The conservation of angular momentum is implicit in the integration over solid angles. The above
expression for k is symmetric under index exchanges, and it includes all non-degenerate terms with

proper weights.

6.2.2 Amplitude Equations

‘The amplitude equations are a set of equations describing the temporal variations of mode energies
and phases. These equations can be derived using the action-angle variables (J1 and ¢1), as in

Kumar & Goldreich (1989). They are!

dé1 Jwikias [EaEg

= = b;
dt “METR VR %
dJl 1281&123 .
— = ——="2\/EE3F [ 12
@ JBvormessm®, (6:12)
where
® = 5101 + 52 + 5303,
J;
Bo= = (6.13)

and sy, s3, 83 can be +1 or —1. The complex amplitude, A;, is related to the above variables by
Ai =/ Ei€i¢i. (614)

Here i can be 1, 2, or 3. Summing s and s3 over +1 and —1 (all possible frequency combinations

for the same three modes), we obtain the following evolution equation for the amplitudes,

dA 3 .
d—tl = iw A + i%wliﬂngz, (6.15)
where A = > .(A; + A}).

When modes have non-zero driving/damping rates (y # 0), the system is no longer Hamiltonian.

But in the case of weak nonadiabaticity, i.e., |v| < w, we can approximate the amplitude evolution

by

dA 3 .
e ’71A1 + w1 A + i—wlﬁlggAz. (616)

dt V8

‘The above equation is our starting point for studying the nonlinear behaviour of multi-mode systems.

4Here k is integrated over volume, instead of radius as is the case in their paper.
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6.2.3 Energy Equations

When each mode is oscillating close to its natural frequency (no ‘slaving’), we can average out the
terms with fast oscillations in equation (6.16), and retain only those terms that vary slowly (the
‘resonant terms’). For example, a triplet with frequency closure sywi + saws + s3w3 = dw & 0 (where

s1, s2 and s3 are either +1 or —1 depending on the situation) has energy equations of the form,

dE, 9 , T

d_t = 2mE + gslwln m (S3W3E1E2 + sows E1F3 + SllegEg) ;

dE; 9 , T

—Et— = Z’yQEQ + gSgwg.‘Q m (SgnglEQ + sows B F3 + SllezEg) ;

dEs 9 r

d—t = 2vE;+ g83w3/§2m (SgnglEQ + sows F1 F3 + 81w1E2E3) . (617)

Here, I' = 517148272 +8373, and |T'| ~ Max(|v1], 72|, |v3]); & is the coupling coefficient for this triplet.
The factor I'/[I'? + (dw)?] represents the reduction in coupling strength when the interaction occurs
in the Lorentzian wing. A detailed derivation of the energy equations can be found in Appendix F.

Expectation values for mode energies are estimated by setting the left-hand sides of the above
equations to zero, and solving for Ey, > and E3 simultaneously. For conservative systems (7y; = 0),
the equilibrium state of a resonant system is obviously E; = E; = E;. This is energy equipartition,

about which we will discuss in more detail in §E.2.

6.3 Two Types of Three-mode Couplings

In this section, we discuss the dynamics and equilibrium states of three-mode couplings.

6.3.1 Parametric Instability

Parametric instability involves one excited mode (mode 1) and a pair of modes (modes 2 and 3)
with negligible energy, where the frequency condition is w; — ws — w3 = dw ~ 0. We call w1y the
parent mode, while the other two its ‘daughter modes’. For simplicity, we assume the daughter
modes are damped with rates v, ~ 73 < 0, while mode 1 is either (i) excited, but v; < |v2|; or (ii)
neutral (y; = 0), but with much larger initial energy than its daughter modes. The line-width of
this coupling I' ~ 2|5|. In both cases, we have E; > Ey ~ Ej, and the term I E3 in the right-hand
side of equation (6.17) can be neglected.

If the parent mode’s energy exceeds a threshold, E}ara, the energy of the daughter modes grows
exponentially. This is parametric instability. Here we derive Epara in the simplest case of identical

daughter modes: ws = w3 & w1/2, 92 = v3. Since the instability develops on a time scale much
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longer than the mode periods, we consider the energy equations (6.17). For the daughter mode,

dE, 9 r
Tt)- = 2’}/2E2 + §S2w2n2m (83W3E1E2 + sows B E5 + SllegEg)
—273)
= 2vE — w2 2——(——-E Fs. .
V2 T o ¢ (0w LB (6.18)

Mode 2 can be excited whenever

2 2
mzar|(2) ()] 619
Except for notation, this result is identical to equation (27.12) in Laudau & Lifshitz (1976). The
existence of an energy threshold for exciting modes 2 and 3 justifies the word ‘instability’.

In a general three mode system where parametric instability is the only interaction, equation
(6.17) can be solved to yield the equilibrium energy for all three modes. We obtain a similar
relation for near-identical daughter modes as in equation (6.19). Mode 1 excites its daughter modes
whenever its energy exceeds a critical value, and this critical value is also the mean energy for mode
1, independent of whether this mode is neutral or overstable.

The relevant amplitude equations are numerically integrated to confirm the above results. We
obtain satisfactory comparison, as is shown by Figure 6.1 for both v > 0and vy =0.

Analytical calculation shows that the equilibrium system is unstable to small perturbations when
|¥2] > v1/2. This is confounded by the fact that we cannot find a physical solution for mode energy
using equation (6.17) when |ya| < v1/2.

Moreover, in numerical simulations, we observe that when [721/71 < @min, Where ams, is of order
4 t0 10, the system never reaches stable energy equilibrium as the kind predicted in equation (6.19).
This is because that under these circumstances, the assumption of By ~ E3; < E; is broken down.

We also investigate the time-dependent behaviour of these systems. We find that neutral and
overstable parent modes result in different dynamics (Fig. 6.2), even though equation (6.19) predicts
a similar equilibrium state. In the case of y; = 0, energy transfer stops after mode 1 decays to the
level described by equation (6.19). This is characteristic of an instability, where there is energy
transfer only when some stability criterion is violated. In the case of v, > 0, energy of the parent
mode grows linearly until it reaches the same limit, then it parametrically loses energy to the two
daugther modes. The system descends into a limit-cycle. Then equation (6.19) is better regarded
as giving the time-averaged energy in the parent mode.

The conclusion from these numerical experiments is that equation (6.19) describes the instability

threshold as well as the average energy of a parametric system. In a dissipative system, the dynamics

is that of a limit-cycle type.
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Figure 6.1: Equilibrium energy in mode 1 obtained from numerical integration of the amplitude
equations (in triangles and dots) is compared here with that predicted by equation (6.19) (straight
lines) in systems vulnerable to parametric instability. The daughter modes are randomly selected,
with |ws + w3 —wi| < I'. The triangles represent pairs satisfying |w2 — w3| < 0.05, and dots are
other pairs. In the upper panel, these near-identical daughter pairs give rise to the lowest equilibrium
energy, which are well fitted by the straight line. The systems cannot reach reach energy equilibrium
through parametric instability when |y2| < 71/2, and the growth in mode 1 is undeterred. In the
lower panel, mode 1 is not excited. Its energy starts from a high value and is later limited to a
value below the straight line when the daughter modes are identical, and slightly higher when they
are not. The approximation of weak dissipation breaks down when |v2| > 3 x 1072, therefore the
deviation. Here, we show the time average of log E;(t) instead of F;(t), and we set xk = 1.
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Figure 6.2: Different time-dependent behaviour of parametric instability in various systems. The
solid line shows the energy of mode 1, the dashed lines that of the daughter modes. All three cases
have wy = 0.5,ws = 0.102,w3 = 0.398, 50 dw = w; —ws» — w3 K |72|. The upper and the middle
panels illustrate a limit-cycle behaviour that occurs when v; > 0. The two relevant time-scales here
are the growth time for the parent mode and the damping time for its daughters. The lower panel
shows that for v, = 0, mode 1 settles into a constant equilibrium state after it reaches the threshold
value (eq. [(6.19)]). Here, x = 1.
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6.3.2 Direct Resonance

In the above parametric resonance (w; — ws — w3 ~ 0), when one of the daughter modes is also
overstable and has appreciable energy (let this be mode 2), the interaction is called ‘parametric
down-conversion’, and it is one of the three types of direct resonance that we are interested in.

Assume mode 2 is limited in energy by parametric instability with another pair of daughters. The

energy equations for these modes are,

dE; 9 N I,
— =~ 2miE; - - CENEmY
dt Yi£1 SW1w3H1 F% (6&))%’
dE. 9 r
d—tz ~ 2vE,+ Swgwgnlp—(lé)l — damping from its daughters,
dEs 9 , 4 Iy
— & 2wE —_— .20
7 Y3 L3 + Fheche! 2 + (0w)2’ (6.20)

where I'y = y1 — 2 — 3, (dw)1 = w) —ws —ws. The energy of mode 3 is obviously restricted around
an equilibrium value that depends on F3FE3. This coupling effectively increases the driving rate for
mode 2, while it effectively reduces the rate for mode 1. Moreover, when mode 2 has energy large

enough to excite its daughters (see eq. [6.19]),

16 Fg z 6CJ2 2
B2 g [(;) +(w2) ] (6.21)

we have

{

dE K7 I3+ (dw)?
— =~ [271 - 4P1 1+ 0 )ﬁ] Eq,
1

dt 22 TF + (dw);
o v n3 T3 4 (8 )%
~ I:Q’}/l 4F1 ) Pr, ((Sw)f El, (622)

where we have used the scaling law x> ~ 1/(n®Lt,) ~ v/n? for modes 1 and 2. Equation (6.22) in
many cases predicts that mode 1 is nonlinearly damped. Or, parametric down-conversion preferen-
tially suppresses high frequency modes.

The second type of direct resonance happens when all three modes are overstable, wy twsy+ws ~ 0.
We can assume all three modes have amplitude upper-limits determined by some other mechanism,
e.g., parametric instability, and study the effect of such interaction. We see colourful outcomes and
lively dynamics. The direction of the energy flow at any moment is approximately towards energy
equipartition.

The third type of direct resonance happens for dw = w; + wy — w3 ~ 0, where mode 3 is
damped, and modes 1 and 2 are overstable. The latter two lose energy to mode 3 at a rate of
~ w KT /[T? + (6w)?|E) E,. This is simulated and discussed in §E.3.1. The dispersion relation of
gravity-modes implies that this type of interaction is likely to be rare as it is difficult to find good
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frequency resonance.

We believe the first two types of interaction are largely responsible for producing the observed
irregular energy distribution among white dwarf eigenmodes. They also introduce chaotic time
dependences. It is likely that the variability time-scale is of order the mode’s growth time, which
ranges from 10° years for the lowest order (n = 1, period ~ 130 s) mode to of order a day for the

highest order (n ~ 25, period ~ 15005s) overstable modes.
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Chapter 7 Amplitudes of White Dwarf Pulsations

7.1 Introduction

Multi-mode pulsators (including variable white dwarfs, § Scuti stars, 8 Cepheids, variable Ap stars)
are observed to have pulsation amplitudes that are much lower than those of the classical variables,
such as Cepheids, RR Lyraes, etc. There are two main differences between these two groups of
pulsators besides their amplitudes. Members of the second group usually pulsate in their fundamental
or low overtone radial modes, and the density of modes in this frequency range is small; in contrast,
the first group pulsates with radial and/or non-radial modes, and the density of available modes
is usually higher. The small amplitude pulsators also tend to show fluctuations in amplitudes and
phases, while the larger ones appear to change their pulsational behaviour only on the time scale
of stellar evolution.! These characteristics point to different amplitude-limiting mechanisms in the
two groups.

For Cepheids and RR Lyraes, the amplitude of excited modes is likely to be limited by their
distortion of the driving environment. Stellar luminosity is converted into mode energy in the
driving region until the gas property in this region has been significantly disturbed and the region
becomes neutral to pulsation. Amplitudes in this case are invariably large, with fractional light
variations of order 10% or higher.

For low amplitude pulsators, the relatively high density of modes suggests that nonlinear mode
coupling may be responsible for amplitude saturation. Overstable modes gain energy from the
driving region, lose it to other modes via mode interaction, and maintain an approximate equilibrium
at the observed amplitudes. The lowest order couplings,? three-mode couplings, are most effective
in transporting energy across the modes. Properties of three-mode coupling are explored in Chapter
6 and extensively studied in Appendix E.

In this chapter, we focus on parametric instability. In the present context, it refers to a three-

mode coupling that involves one overstable parent mode and two daughter modes each having

!There are, however, reports of mode-switching in these pulsators, which may be a counter-example to this
statement.

2Under the constraints of energy and angular momentum conservation, gravity-waves propagating in a stratified
medium can have three-mode and higher order couplings. In the case of gravity-waves on the surface of homogeneous
fluid (e.g., water waves), the lowest order coupling involves four modes, described by w1 +wy — ws +wy, similar to the
process of phonon-phonon scattering in thermal conduction. Three-mode coupling, on the other hand, is analogous
to the process of photon emission or absorption.
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roughly half the parent mode’s frequency. We stick to the word ‘instability’, as it describes accurately
the nature of this interaction, specifically, the existence of a threshold criterion. We show here that
parametric instability can limit the amplitudes of gravity-modes to the observed values. We adopt
the observational unit of mma (milli-modulation-amplitude: fractional variation in light of 0.1%) for
mode amplitudes.

We briefly discuss another type of three-mode coupling, direct resonance, where at least two
out of the three modes are overstable. This process is far less accommodating to analytical study
than parametric instability. In a pulsating white dwarf, the number of overstable modes is large,
and every overstable mode can be involved in many such direct resonances, all of them combining
to affect the amplitudes, leading to the observed ‘mode selection’. Even if we can single out the
most important resonance, it is still hard to estimate mode amplitudes in such a resonance, as
is demonstrated by experiments in §E.3. Here, we will argue that direct resonance is capable of
modulating mode amplitudes and causing irregularities in the amplitude distribution.

With every overstable mode involved in many resonant interactions, phase coherence inside each
triplet is randomized, leading to stochastic variations of mode amplitudes. We argue in Chapter 6
that the time scales of these variations are likely to be related to the linear growth time for these
modes, consistent with reports of longer period modes having more rapid fluctuations.

Here, we need to mention the pioneering work by Dziembowski & Krolikowska (1985) in 6 Scuti
stars. Based on parametric interaction between pressure-modes and gravity-modes, they produced
amplitude estimates that are consistent with the observed values. Our work demonstrates that
nonlinear interactions can also be responsible for limiting mode amplitudes to a few percent or
lower in pulsating white dwarfs. As most low amplitude pulsators have similar amplitudes, it is not
unreasonable to suspect that parametric instability is important in many of them.

Nonlinear mode coupling may not be the only mechanism in limiting mode growth. Chapter
4 demonstrates that the turbulent layer at the convective-radiative boundary, produced by the
horizontal velocity shear, may also provide interesting limits to pulsation amplitudes for long period

modes.

7.2 Coupling Coefflicients for Parametric Instability

Let mode 1 be the parent mode, while 2 and 3 be the daughter modes. The strength of the interaction
between parent and daughter modes depends upon the magnitude of the relevant coupling coefficient,
the degree to which frequency resonance, wy + w3 & wi, is satisfied, and the decay rates of the
daughter modes. We consider parent modes of low spherical degree, £ = 1 or 2, since these are the
ones that are accessible to photometric observations.

Several methods for numerically calculating the coupling coefficients are described in detail in
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Appendix G. Results from the integration-by-parts method (Appendix G.2.3), which we consider the
most reliable, are summarized below. These are based on adiabatic eigenfunctions obtained for white
dwarf models provided by P. Bradley. The essential characteristics of these models are M, = 0.6Mg,
logg ~ 8.0, hydrogen layer mass My ~ 107*Mg, and helium layer mass My, ~ 1073Mg. Most
of the numerical results presented in this section apply to a model with T,g = 12,800K for which
7, = 1s. This white dwarf lies close to the blue edge of the ZZ Ceti instability strip.

First, we show that for the same parent mode, the magnitude of the coupling coefficient &
depends upon the similarity between the radial structure of the two daughter modes (Fig. 7.1). The
dominant interaction region between parent and daughter modes is the broad region above the top
of the parent mode’s cavity, z < z,1. The radial integrand of x (dk, where k = J dr) peaks just
above 2,1 and declines steeply below it. Contributions from different nodes of the daughter modes

add coherently provided

i w2

bo(by + 1) ls(ls+ 1)

(7.1)

This condition ensures that z,2 = z,3, and k.o = k.3 for 2 < z,1. From the dispersion relation for
white dwarf g-modes (see §2.4.1), it follows that equation (7.1) corresponds to ny = n3; 5o |ng — ng|
measures the radial similarity of the pair of daughter modes. The number of radial nodes above z,,;
in modes 2 and 3 are roughly n) ~ ny/n; and n§ ~ n3/n;. There is insignificant cancellation from

different nodes when

Ing — n3| g ny. (72)

Within this tolerance, the magnitude of the coupling coefficient remains close to its peak value as
indicated by Figure 7.1. The asymmetry of & about |n2 — ng} = 0 is an unexplained feature of this
figure. The sign of & is analgous to the direction of the force. This direction varies among different
triplets and eliminates the possibility for amplitude instability (see Appendix D) in a pulsating star.

Second, we demonstrate that the peak value of x for a given parent mode does not depend
on the spherical degrees of its daughter pairs. Here, the angular momentum selection rule, {5 €
[[61 = €3], €1 + £3] and Mod[(€5 — €> — £1),2] = 0, has to be satisfied (see Appendix G). The
numerical results showing the independence are plotted in Figure 7.2, while §G.3 demonstrates the
independence analytically for incompressible fluid. Physically, the lack of dependence of the peak
value of k on £3 and ¢3 follows because the only property of radially similar daughter modes that
affects & is the fraction of their mass that lies above z,;. And this fraction, nh/ne = nf/ng & 1/ny,
is independent of £» and ¢3. Because the decay rates of damped modes increase with increasing £ at
fixed w, this result implies that the daughter pairs which limit the amplitudes of low ¢ parent modes
have modest values of ¢.

Third, we compare maximum coupling coefficients for different parent modes. These are plotted

in Figure 7.3. With increasing n;, |k| rises steeply as a consequence of the rapid decrease in parent
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Figure 7.1: Values of coupling coefficients & are plotted as functions of |ne — n3l, a measure of the
radial similarity between the daughter modes. We take ¢; = 1, £5 = 1, £3 = 2. However, this choice
is not restrictive; x exhibits similar behaviour for other choices of £ and ¢5. For each daughter mode
(n2,€> = 1), the second daughter mode (n3, 3 = 2) is chosen to best satisfy the frequency resonance
condition, ws &~ wy — wy. The width of the peak in k increases with increasing ny as predicted by
equation (7.2). These calculations are based on a DA model with T,z = 12,800 K. The dimension
of k is erg~1/2.
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Figure 7.2: The lack of dependence of coupling coefficient x on the spherical degree ¢ of daughter
mode 2. Here ¢; = 1, and ¢35 = ¢; + ¢5. For each ¢», we choose the pair of resonant daughter modes

that couples most strongly to its parent mode. These calculations are based on a DA model with
Ter = 12,800 K.
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mode mass. More specifically, the maximum coupling coefficients scale according to the analytic
estimate arrived at by equation (G.29) in Appendix G.

The principal conclusions from this section are: x peaks for [ne — n3| < ny; its peak values are
independent of daughter modes’ ¢ values, and it scales with ny as predicted by equation (G.29).

Each of these three results will have bearing on the theoretical predictions for mode amplitudes.

7.3 Amplitudes Limited by Parametric Instability

Here we estimate amplitudes for overstable modes by assuming that they are limited by parametric
instability. The daughter modes are assumed to be weakly damped, that is to have decay rates
v <« w/2mn. This is equivalent to assuming high reflectivity at the upper lid of the daughter mode
cavity. The opposite case of low reflectivity is treated in the following section.

Each overstable mode can be involved in couplings to many pairs of daughter modes. The
parametric amplitude of a parent mode is defined as that at which parametric instability arises
within one pair of daughter modes. We suggest that upper limits to the observed amplitudes are
associated with the parametric amplitudes arising from the most efficient daughter pairs.?

Following equation (6.19), the parametric amplitude satisfies

2 2
A~ % (%") + (g) , (7.3)
where k, dw = |w; —wy — ws|, and T are the coupling coefficient, frequency detuning, and effective
line-width between the parent mode and the crucial pair of daughter modes.
Consider an ¢ = 1 parent mode. For each choice of £s, there are of order n, pairs of daughter
modes for which & is close to its peak value, and T is near its minimum at that value of l5. The

maximum frequency detuning dw among these triplets is of order half the period spacing among the

daughter modes,
wo w1
2n2 4[2711 )

ow ~

(7.4)

This estimate indeed falls above all actual values of dw, as is shown in Figures 7.4 and 7.5. Statisti-
cally, the minimum value of éw among the n; triplets is expected to be of order
ow w1

6wmin ~ o~ PR
ny  4fng

(7.5)

though the actual values depend sensitively on the stellar model.

The line-width ' = 71 — 92 — 3 ~ |72 + 73| (see Appendix F). The damping rates for the

daughter modes are estimated from a quasiadiabatic calculation in Chapter 2, and computed with

31t is crucial that the daughter modes be able to dispose of the energy fed into them by their parent mode.
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Figure 7.3: The coupling coefficient as a function of the parent mode’s radial order. For each {5, the
daughter pairs are chosen to satisfy the frequency closure best among those that are radially similar
(In2 = ns| < 2nq). € ranges from 1t0 9, and €3 = £, + 05 = 1 + £5. The analytical estimate is taken
from equation (G.29) in Appendix G: L is the stellar luminosity, 7 the thermal time at Zy1 (the
top of the propagating cavity for the parent mode). These calculations are based on a DA model
with Tog = 12,800 K.
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a fully nonadiabatic code in Chapter 5. For long period modes, the latter method yields values
saturating slightly above the values of w/27n. This is the limit of low reflectivity which is dealt with
in the next section. Before saturation, the mode damping rate increases steeply with n. Minimal T’
is achieved for pairs of daughter modes with similar values of n.

For most parametric couplings of interest, wpin < I'min even at 5 = 1.4 In thesg circumstances,
the amplitude limiting daughter modes have ns = ng, f» = 1, £3 = 2, and couple to their parent
mode with near-maximal . The low spherical degree daughter pairs are preferred as damping rates
increase with £ when w is constant.

The fractional density perturbation at the photosphere is related to the mode amplitude A by a
normalization constant. Taking the analytic estimate for this constant given by equation (2.46), we

find
6_/) _ A

= —, 7.6
PRI ZREE (7:0)
We adopt the analytic estimate for the maximal value of  given by equation (G.29),
. 1
2
~—_— 7.7
niLt,’ (7.7)

where n and 7, pertain to the parent mode. Combining equations (7.3), (7.6), and (G.29), we arrive

at an analytic estimate for dp/p,

) sw\* TV’
—’i~nl\/ (Z) +(5) ~2mi (7.9
P w w w1

The fractional density variation at the surface is of order §F//F' there, where §F'/F is the fractional

flux variation.

For low n parent modes coupled to low ¢ daughters, dwmin exceeds I'nin. In this case, the
amplitude limiting pair of daughter modes tends to be determined more by a fortuitously good
frequency resonance than by a large coupling constant or small value of I'. Thus the parametric
amplitudes of low n overstable modes are expected to show large variations from star to star. The
left panels of Figure 7.4 nicely illustrate these features. They show a close resonance involving one
pair of daughter modes that holds the parametric amplitude of the parent mode to 3 x 10™%, more
than one order of magnitude below the value held by the other pairs.

Clemens (1995), in his Figure 4, displays the collection of mode periods found in hot DA variables
with well-sampled light curves. Based on the similarity between the power spectra of different stars,
he argues that periods close to 120s belong to the n = 1,¢ = 1 mode. That only about one half of
these hot DAVs show evidence for this mode is consistent with the expected statistical variations of

the frequency detuning in its best parametric resonance.

4The exceptions involve parent modes of low radial order (n1 < 4).
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Figure 7.4: Pulsation amplitudes limited by parametric instability of daughter modes with different
spherical degrees, for two low radial order parent modes, (ny,¢1) = (1,1) (left panels) and (ny,#,) =
(4,1) (right panels). We include couplings that limit amplitudes to (6p;/p) < 0.1: open squares
represent those that have near maximal « (Jny—n3| < 2n;) and good frequency closure (w; & wao4ws),
whereas solid triangles represent those that have not too small a coupling strength (|ns —n3| < 10n;)
and almost exact frequency closure (dw < T'). Obviously, the relative importance of the second group
decreases as the mean frequency spacing among the daughter modes decreases with increasing £5 or
increasing n;. Here, daughter modes with low spherical degrees have high reflectivity at the top of
its cavity (standing waves), while ones with high ¢ do not (traveling waves).
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Figure 7.5: Minimum parametric amplitudes as a function of n; for #; = 1 modes in a star with
Ter = 12,800K (7, = 1s). The selection of daughter modes is the same as in Figure 7.4, and we
include both low @ traveling waves and high @ standing waves. The relative effectiveness of radially
similar daughter pairs in limiting the parent mode amplitude increases with increasing n; as they
minimize I’ and maximize . Low spherical degree daughter pairs are most important, except for
the n; = 1 mode. With increasing n;, the minimum value of dp/p rises, but the mode energy
it corresponds to (E = A?) declines. For this star, only the two lowest radial order modes are
overstable.
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Figure 7.6: Similar to Figure 7.5, but for a much cooler star with Thg ~ 11,600K (7 = 300s).
This star is likely to fall below the observed red edge. The minimum parametric amplitude of the
n = 1 mode is much higher here than that in Figure 7.5, where it was suppressed as a result of
a fortuitously good frequency resonance. On the other hand, the amplitudes of the higher order
modes are systematically smaller than in the hotter star. This is a consequence of the decline in
mode damping rate with decreasing effective temperature (compare the rates in Fig. 5.5 and those
in Fig. 5.7). The £, > 2 daughter pairs are only relevant for the lowest few parent modes. All parent
modes shown here are overstable. Note that amplitude predictions for short period modes (n; < 15)
need to be modified since their daughter modes are also overstable and have non-negligible energy.
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The smallest parametric amplitude of a given mode declines with decreasing T.q, as is shown in
Figure 7.6 for a star of Tegr = 11,600K.°> This trend may be traced to the increase in the depth of
the convection zone as the star cools. By pushing down the upper lid of each daughter mode’s cavity,
the deepening convection zone decreases the mode’s damping rate. This effect is discussed in §5.5.2.
Note that the temperature dependence of the minimal parametric amplitude is less pronounced at

small n; where dw is more important than T

7.4 Parametric Instability for Traveling Waves

Nonlinear interactions between parent and daughter modes are localized within an interaction region
above z,1, the first node of the parent mode. Therefore, we can carry out a local analysis of the
parametric interaction. This is especially relevant when the daughter waves are only weakly reflected
at the upper boundary of the propagating cavity (]| > w/(27n)). Without external forcing, these

waves can travel radially only one round-trip before being dissipated.

7.4.1 Local Analysis

We focus on pairs of daughter waves that propagate downward, that are radially similar (ny ~ ng),
and that satisfy angular selection rules.

These waves travel inside the interaction region for a time

AT — /@,1 Ldz N n'27r - nam (7 9)
0 Vgz w2 nlwg’ )

where n}, is the number of daughter nodes above z,1 (see eq. [G.26]).

The finite interaction time allows all daughter waves within a frequency band of width 1/AT to
interact coherently with the parent mode.% The frequency spacing between neighbouring daughter
waves is of order wa /nem, which is the inverse of their radial propagation time over their entire cavity.
So each daughter wave packet consists of ny waves. Each pair of daughter waves has comparable
coupling coefficient (see §7.2).

Consider the amount of energy transferred to each daughter wave during the finite interaction
time AT. Accounting for the presence of n; coherent parametric partners, and the fact that only

1/ny of the parent mode’s energy is localised, the energy equation for individual daughter waves

becomes

2,,2
<l§> NUCE (7.10)
e dt para r

5 According to Bradley, who provided this model, Teg = 12,000 K. But as we argue in Appendix B, the convection
zone in his model is deeper than expected, as the superadiabatic gradient is not accurately taken care of. We reassign
a temperature to this model based on the thermal time at the base of its convection zone.

6The concept of ‘coherent parametric instability’ is explained in Appendix H.
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where the line-width I' should be determined by the finite interaction time, as opposed to the decay

rates from the daughters. This leads to

1de wi (2 (6p\°  wi (6 [(6p\°
-— ~— ==} ~=[=)|=), (7.11)
edt para 4T \m1 p/, 4m\4 P/
Here, (dp/p), is the fractional density perturbation at the surface due to mode 1. The above
expression describes the energy growth rate due to parametric instability for running waves inside

the interaction region. Net local growth of wave energy requires that this rate overcome the damping

rate due to local radiative diffusion. The radiative damping rate is given by

9 2
(l%) o E22)” (5_2> =1 (7.12)
edt dissi Tth gl 2wl Tth

where k.5 is the radial wave vector for wave 2. This rate has a lopsided shape favoring smaller depth.
Let dny < nj be the number of daughter nodes above 2, in the region where the parametric growth
rate exceeds the local diffusion rate; ény ~ n) provided that parametric driving exceeds radiative

damping by a large margin at z,;. This condition takes the form

4 ip\?
Fr~—=witi | —] > 1 (7.13)
€2 P/

In our discussion, we assume éng = nh ~ na/ny if F > 1.
We define a gain factor G to describe the growth of energy in daughter waves during one traverse

of the interaction region,

g(t = AT) ~ e(t = 0)e¥. (7.14)

The initial energy in these waves comes from small random fluctuations, mostly likely due to forcing
by turbulence in the overlying convection zone. A large gain factor is a necessary condition for para-

metric instability to produce significant energy transfer between the parent mode and the daughter

G~ — | ~|-- — ] > L 7.15
gl P/ (1 P 1 ( )

In this case, the amplitude of the parent mode is effectively limited to

(2) <)

The relevant value of G scales inversely with Ine(t = 0).

waves;

For fixed values of G and F, (6p/p)1 is most effectively limited by daughter waves whose angular
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The above value of £, decreases with increasing n;. The parent mode’s amplitude is limited by

traveling waves to a minimum value of

2 1.2
<§e> AL (7.18)

P/ (wTwl)%
The amplitude rises sharply with n;. When we take G = F = 10, we obtain an amplitude of 10~3

for the n; = 1 mode. The most important traveling waves in this case are those with l5 ~ 10%. In

general, equation (7.18) is an underestimate since dns < nb,.

7.4.2 Relation to Standing Waves

If after one round-trip inside its cavity, a daughter wave loses the same amount of energy through
radiative dissipation as it gains through parametric instability, it forms a standing wave pattern. In
this case, the parametric amplitude is predicted by equation (7.8). What is the relation between
this equation and equation (7.18), whose derivation is based on local analysis of traveling waves?

A standing pattern is formed when

TNy
N —= | 1
g 5 |72|a (7 9)

where 7, is the energy damping rate, and @ny/w; is the propagation time across the cavity. Sub-

stituting this expression into equation (7.8), taking I' ~ 2|vs|, and ignoring frequency detuning, we

ip\? G2 (m\® G 6\
(7). ~F (=) ~5(3)- (7:20)

When plugging in the appropriate £2/¢, from equation (7.17), we recover equation (7.18). This

obtain

demonstrates the equivalence of the traveling wave and the standing wave treatments, when the
amplitude of the reflected wave exceeds the amplitude of the noise forced by turbulent convection

in the daughter wave’s frequency band.

7.5 Mode Selection — Direct Resonance

From observations of white dwarf pulsations, it is clear that some kind of ‘mode selection’ mechanism
is at work. Where one mode may dominate the pulsation energy in the star, its neighbouring modes
may be completely invisible. Longer period modes tend to have larger surface amplitudes, but the

energy distribution from mode to mode is highly irregular. Parametric instability as discussed in
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§7.3 can only provide upper limits for mode amplitudes.

We briefly consider here the process of ‘direct resonance’, where there are at least two overstable
modes in a triplet. When we limit ourselves to the case of two overstable modes, modes 1 and
2, we find three couplings between these two modes that are efficient in transferring energy: (1)
w1 + w2 &~ ws; (i) w1 — ws &~ wz and mode 2 radially similar to mode 1; (iil) w; — ws & w3 and mode
2 radially similar to mode 3.

In the first case, both modes 1 and 2 lose energy to mode 3. But as is discussed in §6.3.2, it is
difficult to find a good frequency resonance because the frequency spacing of g-modes increases with
increasing frequency. This coupling is important only when there is a fortuitously good frequency
resonance.

In the second case, mode 1 loses energy to both modes 2 and 3. The frequency resonance is
improved in this case. But its importance is undermined by the smallness of the coupling coefficient,
particularly because mode 3 has short radial wavelength.

The third case is similar to the second case except for a much larger coupling coefficient. In
general, parametric instability is suppressed here since mode 2 has non-negligible amount of energy.
As discussed in detailed in §6.3.2, when mode 2 is parametrically limited by its daughter modes,
this coupling is capable of effectively damping out mode 1, the higher frequency mode. This effect
may modify our conclusions on parametric amplitudes in cooler stars (e.g., Fig. 7.6) where the very
short period overstable modes have overstable daughter modes. Mode 3 is similar to mode 2 and is
likely to be overstable when mode 2 is.

At this stage, we can only make very limited statements about the energy distribution among
excited modes. Direct resonance, where all three modes are overstable, should also be taken into
account in the future. Numerical simulations are needed to determine the energy distributions. One
may hope that in the end, comparison with observations will yield information about modes that

are invisible to us, and therefore lead to a better understanding of stellar structure.

7.6 Discussion and Summary

We have shown that parametric instability is capable of limiting amplitudes of overstable modes
to the observed values, which range from ~ lmma (the typical detection limit) to ~ 100mma.
Observationally, it becomes clear that cooler stars pulsate in longer period modes and with larger
amplitudes than hotter ones. Our work in Chapter 3 shows that as a star cools, it excites modes with
longer and longer periods. This explains the first part of the correlation. Our work here successfully
reproduces the second part of the correlation. Despite stronger coupling to their daughter modes,
longer period modes have higher parametric amplitudes because their mode mass is smaller and

because their daughter modes have larger damping rates.
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Figure 7.7: Mode (£ = 1) amplitudes limited by parametric instability with damped daughter modes,
as well as by turbulent damping below the convection zone. Amplitudes for the former case are
indicated by triangles if the parent mode is overstable, and dots if it is not. The lowest parametric
amplitudes are mostly due to low spherical degree daughter modes (£2 = 1 or 2). Turbulent damping
limits amplitudes of long period modes to below the short-dashed {with drag coefficient Cp = 0.02)
or the long-dashed (with Cp = 0.001) curves (see §5.6). Here, we have also taken into account the
visibility factor (see §3.2.4) when converting mode amplitudes from dp/p to 6F/F at the surface.
This factor reduces the photospheric flux variations for short period modes in cool stars. The
observational detection limit lies around 1 mma.
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Figure 7.8: Similar to Figure 7.7, but for £ = 2 overstable modes. The observed luminosity variations
for these modes (§L/L) can be an order of magnitude smaller than variations in the flux.
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Figure 7.9: Comparison between theoretical mode amplitudes and those summarized by Clemens
(1993) from observations of many DA variables. The data (filled circles) are plotted as amplitudes
of fractional light variations in the largest modes versus energy weighted mean periods in individual
stars. They show a clear correlation that is well reproduced by our theoretical calculations. We
include results on £; = 1 overstable modes using three stars (see Fig. 7.7), taking a drag coefficient
of Cp = 0.001. The theoretical results do not include effects like disc-averaging and limb-darkening.
Also, our results are drawn from three stars while the observational data are taken from about two

dozen stars.
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In §7.4, we explored the scenario where the daughters decay so fast that they cannot form
a standing pattern inside the star without external forcing. This arises when the daughters are
strongly damped in the nonadiabatic region. We showed that when these waves are parametrically
unstable such that there is equal or more energy transferred to them from the parent mode than is
lost due to radiative dissipation. These low () waves can therefore form standing pattern and limit
the amplitudes of their parent modes in the same way as the high ) daughter modes (eq. [6.19]).

When a variable white dwarf cools, the amplitude limit due to parametric instability is tightened
for most overstable modes due to the decreasing damping rates of their daughter modes. However,
this is irrelevant for the few very low-order modes (n < 4) whose amplitudes depend sensitively on
the best frequency resonance available. Of course, in all cases, the fractional flux variations at the
photosphere decrease with the visibility factor 1/1/1 + (w7.)? (see Chap. 3).

Turbulent damping arising from the convective-radiative boundary (see §4.4) acts to limit the
amplitudes of long period modes. This may resolve the contradiction between theory and observation
concerning the longest periods for overstable modes (see §5.7). Unfortunately, estimates of turbulent
daming involve a free parameter, i.e., the drag coefficient Cp. We show the scenario for both
Cp =0.02 and Cp = 0.001 in Figure 7.7.

As a passing note, we mention that strong nonadiabaticity in the gravity-modes is expected
to reduce the coupling coefficient, as the local buoyancy force is reduced and the upper lid of the
propagating cavity is pushed deeper down. However, we believe that our conclusions here are not
significantly affected by this complication.

It is clear from the observations that other physical processes (e.g., direct resonance) are needed
to explain the irregular energy distribution among modes (the phenomenon of ‘mode selection’). The
importance of various types of direct resonance is discussed in §7.5. Parametric resonance where at
least one daughter mode is also overstable is capable of suppressing high frequency parent modes.

Another step necessary for a direct comparison between theory and observation is described
below. White dwarf pulsations are observed as luminosity variations, the pulsation amplitude is
measured in 0L/L, where L is the stellar luminosity averaged over (optical) wavelength and the
visible hemisphere, and dL is the size of its variation. The theoretical amplitude, §p/p, is related to

6L /L through the following steps:

1. (8F/F), the amplitude of the flux perturbation at the bottom of the convection zone, is related

to dp/p through the equation of radiative transfer and the equation of state; nonadiabaticity

needs to be taken into account;

2. flux perturbations at the photosphere, (§F/F),;, are diminished and delayed compared to
(6F/F)p, as described by equation (3.38);

3. 0L/L, the observed luminosity variation, is obtained by averaging (6F/F),, over the wave-
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lengths of interest and the visible hemisphere; both the effects of angular dependence of the

pulsation and the limb-darkening have to be taken into account.

In the end, ép/p is related to 6L /L through a factor that depends on mode period, mode spherical
degree (£), the thickness of the convection zone, the reaction of the photosphere to pulsation, and the
inclination angle between the line of sight and the pulsational axis. In Figure 7.7, we accomplished
the first two steps using results from our nonadiabatic calculations (see Chap. 5). With time-resolved
spectroscopy, it is possible to determine the £ values of the modes, as well as the inclination angle
of the star (see Chap. 8). These two values are essential in the third step.

Various theoretical aspects need to be explored further before a complete picture can emerge.
What is the effect of direct resonance on individual modes? What happens to the £ = 1 overstable
modes if there are simultaneously many higher £ modes excited? When stellar rotation splits modes
into closely spaced multiplets, what determines the amplitudes within each multiplet? Is three-mode

coupling the only order of coupling that is of interest in pulsating white dwarfs?
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Chapter 8 Combination Frequencies in the

Pulsation Power Spectra

8.1 Introduction

In the spectacular Whole Earth Telescope (WET) observations of the helium variable GD358
(Winget et al. 1994), long sequences of uninterrupted monitoring of the stellar light disclosed not
only the presence of a large number of pulsational modes in the power spectra, but also the existence
of many harmonics and cross terms (for the power spectrum of GD358, see Fig. 7 in their paper;
Table 8.2 here lists the values). We call the latter ‘combination frequencies’, while the physical
modes are called ‘principal modes’ or ‘parent modes’, not to be confused with the ‘parent modes’ in
parametric instabilities.

The combination frequencies are also seen in many other pulsating white dwarfs, for instance,
(G29-38 (variable name ZZ Psc, McGraw 1978), GD154 (Robinson et al. 1978), BPM31594 (McGraw
1976; O’Donoghue et al. 1992'), G117-B15A (Kepler et al. 1982?) and GD165 (Bergeron et al. 1993).
In fact, every ZZ Ceti locked at with sufficiently high signal to noise ratios has been shown to possess
harmonics or cross terms of the principal modes (Brassard et al. 1995, Fontaine et al. 1991). Figure
8.1 shows the power spectrum of ZZ Psc from a recent Keck observation (van Kerkwijk et al. 1998).

Observations have established the correlation between the strength of the combination frequencies
and the amplitudes variations of the pulsational modes (for an early review, see McGraw 1978). Also,
the combination frequencies tend to have more complicated fine structure which can be explained
by the linear superposition of rotationally split multiplets from the principal modes.

Therefore, these combination frequencies are believed to reflect not the eigenmodes of the star,
but rather the perturbation of a nonlinear medium by sinusoidal waves (the principal modes). In this
chapter, we are aimed at answering the following questions: which part of the star is the nonlinearity
produced? How is the nonlinearity produced? What more can we know about the star using these
combination frequencies?

Brassard et al. (1995) proposed one solution for the nonlinearity. They assume that the stellar

eigenmodes are temperature waves, and they cause linear® temperature perturbations on the surface.

'In this paper, the authors believe that direct resonance between modes is responsible for producing the regular
pattern in the period structure. The idea of direct resonance (Dziembowski 1982), in which the combinations are real
modes, is unlikely mostly because of the lack of eigenmodes in the frequency range concerned.

21t is interesting to see that in this paper the intriguing numerology in mode frequencies causes the author to
suggest the modes are r-modes.

3In this chapter, the terms ‘linear’ and ‘nonlinear’ are different from those used in Chapter 7, with ‘linear’ referring
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Figure 8.1: Fourier power spectrum using a 5-hour Keck light curve of ZZ Psc (G29-38). The
frequency v is in unit of uHz, v = w/2n, where w = 27 /period. The vertical axis is flux variations
in units of 1% (~ 10 mma, where mma is milli-modulated amplitude, and is ~ 0.1%). Notice the
multitude of combination frequencies and the relative simplicity in constructing them by combining
the real modes. The light curve was fit with a combination of sine waves; the resulting amplitudes
and their uncertainties are indicated with the crosses and error bars. The lower panel shows the
power left after taking away the sinusoidal signals identified in the upper panel.
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The photospheric flux reacts nonlinearly according to F = ¢T* (or more detailed atmospheric
modeling), giving rise to the observed combination frequencies. We argue here that their assumption
of sinusoidal temperature variations is not physical. The magnitude of the flux coming out of the
convection zone determines the location of the photosphere (and Teg), but not the reverse. Also,
the thin photosphere is energetically incapable of perturbing the stellar flux.

A competing idea is proposed by Brickhill (1992). He suggests that when the depth of the
convection zone is fixed during pulsation, the photospheric flux will be reduced in amplitude and
lag in phase compared to the flux perturbation entering the convection zone, the magnitudes of
both effects are a function of the convection zone depth. So when the perturbation to the depth of
the convection zone is also taken into account, a linear signal at the bottom will lead to a jigsaw
shaped light curve at the surface, which would introduce harmonics and cross frequencies in the
Fourier transform. Brickhill shows that for a pressure perturbation of ép/p ~ 0.1 at the bottom of
the convection zone, the corresponding combinations have power comparable to the observed ones,
if the principal modes have spherical degrees £ = 1.4 Here, the convection zone transforms part of
the energy associated with the principal modes into the combination frequencies.

Physically, our approach resembles that of Brickhill’s. Based on our results in Chapter 3, we
present an analytical method to calculate the power in the combination frequencies. The relevant
parameters are the depth of the convection zone, the photospheric properties of the star, and the
inclination angle of the spin axis. We compare our estimates with data from GD358 and G29-38,
and infer the above parameters for these two stars. We can reproduce the observed values to the
orders of magnitude.

The discussions here are largely based on Chapter 3. The readers are referred to that chapter

for various symbols.

8.2 Combination Frequencies: Theoretical Backgrounds

8.2.1 Origins

The convection zone produces the observed nonlinearities.

The perturbations within the mode’s propagating cavity are likely to be linear. When these
perturbations are communicated upward through the convection zone, the time-varying impedence
of the convection zone introduces nonlinearity.

We simplify the overall reactions of the convection zone into changes in its depth. We further
limit ourselves to the depth changes due to entropy perturbations. As the eddy turn-over time

(tev) is much shorter than the pulsation period, we assume that the convection zone is at both

to ‘sinusoidal’.
4However, Winget et al. (1994) claimed that Brickhill’s predictions about the power of combination frequencies for
DA variables do not fit the data for the DB variable GD358.
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Figure 8.2: Entropy profiles in the upper atmosphere for three adjacent stellar models. The bottom
of the convection zone (marked with short vertical bars) moves down by a scale-height when the
surface flux varies by ~ 4%. And there is a fast convergence towards the radiative interior. The
construction of these models is detailed in Appendix B.
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thermal and dynamical equilibria at any moment during pulsation. In Figure 8.2, the three static
atmosphere models are therefore equivalent to pulsation at maximum (the top curve), pulsation at
rest (the middle one) and pulsation at minimum (the lower one). The size of the convection zone
shrinks (expands) as the uniform entropy level in the convection zone (s;) rises (drops).

At any instant ¢ during the pulsation, with the depth of the convection zone being z(t) and

thermal time 7, (¢), the extra heat stored in the convection zone is

2 k
dQ = FTbodsb+/ pT =2 (s, — s0) dz

Zb0 P
b kB ds
= F T— |dsp — { —— ] dl dz. .
Tb0d8b+~/zbo p m, [ Sp (dlnp)o np] z (8.1)

Here, all equilibrium quantities are denoted with subscript o, and (ds/dlnp)y is the equilibrium
entropy gradient. The first term in the right-hand side is the heat absorbed by the whole convection
zone (with its static size) when its entropy is raised by dsy, ds, = s;, — so; the second term represents
the extra heat required by the expansion of the convection zone. The entropy in this newly expanded
region is assumed to be s, as well, and z; is determined as the depth where s, = sq.

At any instant, the first law of thermo-dynamics requires
(6F ) B <6F ) _1dQ
F /o Fj), Fd

. oF dSb dsb de k‘B ds
= (F)b 0~ (T — Tho) 7t o {me—p [dsb (dmp)()dlnp]}~

We differentiate equation (8.1) to obtain the above result. Equation (8.2) is similar to the key
equations in Chapter 3, only 7, in this case is a time dependent function.
As in Chapter 3, the entropy change in the convection zone is intimately related to the flux

variation at the surface,

§sy = (B +C) (‘%) N (8.3)

Here, the photospheric property is represented by (B + C) = (B + C)(2).
Expand (B + C)(t) and 73(¢t) in terms of (§F/F)ph to the first order,

(B+C)o [1 +8 (‘%F)ph

oF
Teo |1+ ?
ph

(B+C)

1

2

12

T
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Using the stellar models as those shown in Figure 8.2, in the temperature range of ZZ Ceti variables,

Oln(B+C) 10In(B+0)
OlnF 4 OlnTeg
dlnty 1 dlnty

= ~ — ~ 15. R
7 AnF " 10mTg (8.5)

B

~ a few,

The exact values of 5 and y can in principle be measured using the combination frequencies and be
used to infer stellar structure. Moreover, the width of the theoretical instability strip is a function
of (8 +7) (see Chap. 3).

Let X be the observed flux variation,

oF
X = (——) . (8.6)
F /o
Combining equations 8.2, 8.3 and 8.4, we obtain
dX : OF
)+ X = (7>b, (8.7)

where 7co = (B + Comso, and f(t) = 7eo[l + (28 + )X + 287X = 10[l + fiX + foX?]. Note
that f» would have other terms coming from the second order expansion of (B + C) and 7,. We
ignore them for our order of magnitude analysis here. Equation (8.7) describes the production of
combination frequencies given linear input (6F/F),. It also describes the motion of a pendulum

with time varying mass driven by a periodic external force in a viscous medium.

8.2.2 Solutions

In this section, we consider only normalized mode amplitudes. We delay the discussion on angular

dependences to §8.2.3. We solve for the amplitudes of the combination frequencies.

1) Solutions for a Single Mode

When the input is a single sinusoidal signal,
(%) ) = A cos (wat). (8.8)
The solution for (§F/F)pn can be written in the form

X = a1 cos (wat + ¢1) + a2 €os (2wt + @) + a3 cos (3wat + ¢3). (8.9)
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Expanding equation (8.7) and neglecting terms of high order, we arrive at

ay [cos (wat + ¢1) — WaTeo SIn (Wat + ¢1)] = A cos (wat); (8.10)

s [c0s (2wal + ¢2) — 2w, Teo Sin (2wat + ¢2)] = Ma% sin (2wyt + 261 ); (8.11)
az [cos (Bwat + ¢3) — 3w, Teo sin (Bwat + ¢3)] = Mc—oa‘} sin (3w,t + 3¢h1)

+3—fl$9a1a2 sin (3wat + @1 + ¢2). (8.12)

Solving the above equations sequentially for a;, we obtain

A
a =
1+ (waTCO)Z

2

ay flwaTCO
a» = &

2 /14 (2waTe0)?
as a} waTeoV/f3 + (WaTe0)? (22 — 3F2) (8.13)

4 1+ (Bware0)2 (1 + (2wame0)?)

The expression for a; is identical to equation (3.44) in Chapter 3: it reflects the reduction in the
surface flux perturbation due to the thermal content of the convection zone. Typically, a1 is only
of order 1073 to 1072. The harmonics can be visible mostly thanks to the largeness of f; (of order
20).> The convection zone can divert sufficient energy from the principal modes to the combination
frequencies because its thermal content is boosted up by both the superadiabatic layer and the
ionizing photosphere. The flux perturbations with the combination frequencies are not associated
with physical displacements and velocities.

The phases, ¢, and ¢2, are,

¢1 = —arctan{wre),

P = 201 — g — arctan(2wt.g). (8.14)
The phase of the surface flux lags behind that of (§F/F), by ¢, as described in Chapter 3.

2) Solutions: Two Modes
When there are two linear input signals with frequencies w, and wy, the following form of the solution

is adopted:

X = a1cos(wat + ¢1) + a2 cos (2wt + ¢2) + a3 cos (3wt + ¢3) +

by cos (wpt + 61) + by cos (2wpt + 02) + by cos (3wt + 63) +

5Such a large f1 also helps to make the a3 term visible.
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2 €08 ((Wa — wp)t + 1) + €34 €08 ((2wq — wp)t + P2) + c35 €08 ((we — 2wp)t + 3) +

dy €08 ({wq + wp)t + 01) + dsq cos (2w, + wp)t + 62) + dgp cos ((wq + 2wp)t + 63). (8.15)

The subscripts for the different coefficients are chosen to represent their orders. The amplitudes and
phases of the harmonic terms are given in equations (8.13) and (8.14). The solutions for the cross

terms are presented here.

arb;  fi(wae —ws)Teo

R R ey [P e A
aiby  fi(we + wp)Teo
dy = ; .16
2 2 /14 (wa + wp)Te0)? (8.16)
1 = (61~ 6) — 5 —arctan((w, — wn)7e0)
o = (1 +6y)— g— — arctan{(w, + wp)Teo)- (8.17)

Expressions for ¢34, ¢3s, d3, and ds; are not listed here. They are similar to ag in order of magnitude.
The amplitude ratio cy/dy yields the value of 7.9, independent of the inclination angle.
Since the photosphere would not have enough thermal power to affect these combinations fre-

quencies, we expect the above amplitude and phase relations holds for all wavelengths at all times.

8.2.3 Angular Dependences

The angular dependence of the pulsation affects the magnitude of flux perturbations integrated over
the visible disc.

In this section, we assume all principal modes have spherical degrees ¢ = 1 in ¥", where m €
[—1,1]. We also assume that rotation breaks the frequency degeneracy between different m’s, and
that the observers can resolve them.

The combination frequencies have different angular dependencies from those of their principal
modes. In fact, the a dependence of the a; term tells us that the component at frequency 2w, has

an angular function that is the product of two Y{™’s, while that at 3w, is the product of three Y™s.

Similarly for the other combinations.
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The linear decomposition of the product of any two ¢ = 1 spherical harmonics goes as

= 0 0 0 0 0
0 = 0 0 0 0 ,
}t—d
0 0 /5= O 0 —/& ;_1
v, 0 = 0 0 0 0 )
vy
-0 =1 30 1 ) = 1 1 2
}1 <)1 }1 il ) 0 0 57 0 0 £ ),21
vy 0 0 0 s 0 0 vz
0 0 L0 0 /& Y20
0
0 0 0 = 0 0
0 0 0 0 m= 0
(8.18)

Similar decomposition can be taken for the product of three Y;™’s to determine the non-zero com-
ponents in the combinations.

Next we consider the effect of the inclination angle. There are two coordinate systems in Figure
8.3, defined by the spin axis and the observer respectively. The transformation between the two
coordinate systems, (0@, ®) < (6, ¢) can be derived using two Cartesian coordinates associated with

the the two spherical coordinates respectively. These are

X sin O cos ®
Y | =] sin®sind |, (8.19)
Z cos ©
and
x sin 6 cos ¢
y | =1 sinfising |. (8.20)
z cosf

The two Cartesian coordinates are related to each other through a unitary rotational transformation

matrix,
X cos®y 0 —sin®y x
Yy | = 0 1 0 T E (8.21)
A sin®y 0 cos®g z

where O is defined in Figure 8.3. Therefore,
cos © = sin B¢ sin f cos ¢ — cos O cosb. (8.22)

Given a flux variation of angular depedence, aY;" (0, ®), the total flux perturbation integrated
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Figure 8.3: Two spherical coordinate systems of relevance in a pulsating white dwarf. The spin
axis B defines the stellar coordinate, expressed in (0, ®); while the line-of-sight of the observer (A)
defines another coordinate system, (6, ¢). B is Oy away from A. We take &5 = 0, where ®, is the
projection angle of B axis on A’s equatorial plane (the shaded plane). This angle is arbitrary since
we cannot resolve the disk spatially and different ®; are degenerate. In this plot, only the upper
hemisphere is observable. The transformation between the two, (0, %) < (8, ¢), is done in equation
(8.21).
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over the visible hemisphere is

27 1
oF =a [ [ Y@ ®)h(u)nduds = agp (8.23)
0 0

Here, 1 = cosf. h(u) is the prescribed limb-darkening law; it is in general a function of frequency
and is normalized by fol h(p)pdp = 1. One power of p is needed inside the integrand to reflect
the projection of the area along the line of sight. We call gi* the ‘angular function’. It relates the
physical variation with the observable one. In general, there is not a simple, analytical functional
form for g7".

We adopt Eddington’s limb-darkening law, i.e., h(z) = 1+ 3/2u. For some simple Y (0, ),

the values of their gj* are

g9 = 1.256,

gt = -1.538sin0y,

g0 = 2.175co0s0y,

g1 = 1.538sin0@,,

g;° = 0.789sin’ O,

g;' = 1.881sin(20y),

g5 = —0.161 + 0.483cos’ Oy,

g = —1.8815in(20y),

g5 = 0.789sin’ Q. (8.24)

In particular, when the viewing angle ©¢ = 0 (viewed pole on), g3 = 1.256, ¢) = 2.175, ¢9 = 0.322,
and all the others vanish — if the star rotates pole on, we cannot, observe any rotational splittings.

Or, when ©g = 7/2 (the rotation axis lies on the plane of the sky), ¢¥ = 0, g;* = g} = 1.53,

2

95" = g5 = 0788, g;' = g} = 0, g8 = 0.161. The physical amplitudes of the higher order
combinations are smaller, but their angular functions (g7*) may be larger for a favorable viewing

angle (Qg).

8.3 Applications to Pulsating White Dwarfs

When applying results from §8.2.1 to the pulsating white warfs, we encounter complications: when
the observations last long enough to resolve rotationally split frequencies (as in §8.3.1), chances are

that many principal modes have varied their amplitudes during this time. On the other hand, when

short span data are used (as in §8.3.2), there is no information on the m values for the frequencies.
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8.3.1 GD358

This is a DB variable. Structual similarity between DBVs and DAVs leads us to assume that the
results from §8.2.1 apply here as well.

1) Fine Structure in the Combination Frequencies

For this star, the WET run (Winget et al. 1994) has yielded a high resolution power spectrum. The
star is rotating, and not only the different components in the real modes are well resolved, the
combination frequencies are also shown to have multiple splittings with numbers larger than the
principal modes (see Fig. 8 in that paper, or Table 8.1 in this section). The analysis of Winget
et al. (1994) shows that the complicated fine structure is a natural result of the superposition of
multiplets in the principal modes. If the two principal modes are both ¢ = 1 modes, and they have
different frequency splittings, their combinations may have up to nine non-degenerate components.

Consider the cross-term of two £ = 1 modes, with m, = —1 and my = —1. It has an angular
dependence of Y5 2. If mode 1 and 2 have integrated light variations (6F/ F)fl_l) = ALY gi_l) and

(0F/F )2_1) = Aévl) g§_1) , where the superscript denotes the m value, the observed flux variations

associated with this cross term (with m = —2) will be
<6F> o ATYATY fi (e t wh)Teo o
Bn - : 2
F /-y 2 V14 (wa +wp)?713

. 1 (5_F> (=1 (5_]*—:)(_1) f1(wa +wp)Teo 92_2 (8.25)
2\ F F )y 14 (we w22 97 g0 '

with the subscript (-1, —1) on (§F/F) telling the m values of the two principal modes. The depen-

dence on ©g cancels out exactly and the final result is

SEN\Y f6p\ . .
(S‘f) = 0.167 (—) <*) filw +“”’)Tf _. (8.26)
F ) iy FJ, F )y V14 (wa +wy)?73

The independence on ©g is true for a few other combinations:

§F SFNTD 16PN (wa +w)Teo
or —0.562 { — — —;
F /) 10 F ], FJy T+ (wa +wp)73
<6F)

F /10

0562 <61 >( Y <‘Sl >(0) fl(wa, wb)IcO
(+1,+1)

FJ, F )y T+ (e +wp)?72)
The combinations, (0, —1) and (0,+1), can be derived from symmetry. These relations can be used

0.167 (SF (+1) (SF (+1) f1 (wa + wb)rco
167 (25 il 0 (8.27)
F F/, \/1 + (wa + wp)?73,

a

to infer the values of f; and 7.o. When 7.9 is very long, the flux amplitudes of these combinations
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give fi directly.

The combinations where the final m value is 0 are a bit more complicated, since their ¢ values
can either be 2 or 0 (see eq. [8.18]). Since the angular function of Y (¢9) is consistently smaller
than Yoo by at least a factor of 3, we neglect the Y part here. The observed flux for the m = 0

components in the combination frequencies is therefore related to the principal modes as

(W) _ 0265 (5_F)(‘” (6_F> D £ e + wn) 0

F (—1,41) sin? @y \ F a Fj, \/1 + (wq + 4,‘11,)27'307
SF 0133 (6F\® (6F\"  fi(wa +wi)Teo
F = 2 2l = =5 (8.28)
F (0,0) cos?Qo \ F J \ F b \/1 + (wq + wp)?75

and symmetry gives (0F/F)(41,-1). When f, 7o and all the amplitudes are known, the amplitude
ratio between the m = 0 component of the combination frequencies and the main mode can be used
to deduce O, the inclination angle of the rotation axis relative to the line of sight.

For a preliminary study, we choose f; = 20 (although the theoretical value of f; can fall anywhere
between 10 and 30, depending on the star®), and (w, + wy)7eo = 10.0.7 This choice is based on the

knowledge that w,7.0 and wy7eo both have to be larger than unity for the two principal modes to

be overstable (see Chap. 3). With these values, we have fi(wa + ws)Teo/ /1 + (Wa + wp)?72) = 19.9.
This quantity being much larger than unity is the main reason why we can see the combination
frequencies, even though their principal modes are weak. The prediction for different components
is listed in Table 8.1 for the combination of (k = 15) + (k = 13). Both the absolute amplitudes and
the relative sizes for different components agree with our predictions. Orientation of the rotation
axis cannot be constrained well. Our solution for ©, ranges from 20deg to 70deg. Either the
time-varying nature of the mode amplitudes, or the inconsistencies in the theory, prevents us from

obtaining a perfect fitting (accurate down the observational errors).

2) Combination Frequencies at Large

With other principal modes also contributing to the combination frequencies, we have extra handles
on the problem. We list in Table 8.2 the observed flux variations of the identified eigenmodes and
their combinations in GD358.

First, we infer the values of 7. for this star arguing that the longest overstable mode in the star
is likely to satisfy w7.q ~ 1. This gives rise to 7,9 ~ 130s.

Second, we try to infer 7. using equation (8.16), which estimates the amplitude ratio for the pair
of combination frequencies that are the sums and differences of the same pair of principal modes

respectively. When assuming that only the two (m = 0) components from the principal modes

5Here, we assume the DB white dwarf is qualitatively similar to a DA in the upper atmoshphere.
"The prediction for the amplitudes only changes by a factor of 1.4 when this number changes from 1 to 1000.

This also means that the amplitudes of the combination frequencies are not sensitive measures for the depth of the
convection zone.
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observed freq. v Parent Modes amplitude | predicted amplitude
(uHz) k=13& k=15 (mma) (mma)
m, (mma) m; (mma)
3033.07 -1 6.28 -1 9.33 < 0.1 0.19
3038.65 0 5.78 -1 9.33 < 1.0 0.60
3039.0 -1 6.28 0 19.03 1.55 1.34
3044.5 0 5.78 0 19.03 2.14 0.29/ cos® ©q
3044.76 +1 546 -1 933 <15 0.13/ sin® O
3046.0 -1 628 +1 9.27 1.79 0.15/ sin® ©¢
3050.5 +1 5.46 0 19.03 1.12 1.16
3051.5 0 578 +1  9.27 0.84 0.60
3057.5 +1 546  +1  9.27 0.92 0.17

Table 8.1: Pulsation amplitudes for different components in the (k = 13) + (k = 15) combination.
The observed values are adapted from Figure 8 of Winget et al. (1994), some of them are upper-
limit estimates based on that figure. The frequency (v) here is measured in cycle-per-sec, while the
frequency in the text (w) is in radian-per-second, v = w/2n. This is true for all later figures and
tables. The amplitudes are in unit of mma.

contribute, the angular dependence disappears and we have

& _ (Wa —ws) V1 + (wa +wp)?73
dy (Wat+wb) /T4 (we — wb)‘zrfo.

(8.29)

Using the pair of (15 — 17) and (15 + 17), we obtain 7.0 = 1300s; while from the pair of (9 —
15) and (15 + 9), there is no physical solution for 7.,5. There are three possible reasons for the
incompetence of this method. The signal-to-noise ratio is low in the low frequency range, and
the observation suffers strongly from systematic and random errors caused by perturbations in the
earth’s atmosphere.® Also, in reality, various components from the principal modes contribute to
the combination frequencies. Moreover, the amplitudes of the principal modes are observed to vary
during the whole run.

Third, we attempt to fit the amplitude spectrum of all combination frequencies with only two free
parameters, fi/ cos? @y and 7.9. We have limited information about the m values of the combination
frequencies. Judging from their frequencies, most of them are likely combinations (m = 0) + (m = 0)
or (m = —1) + (m = +1). Here, we adopt (m = 0) + (mm = 0) and use the second equation in (8.28).
The best solution found is plotted in Figure 8.4.°

Our conclusion from the three exercises in this section is that 7.9 for GD358 falls between 400 s

to 1000s. Oy ~ 70 deg when a value of f; = 20 is used. We provide reasonable fits to the observed

8This is unfortunate, since the amplitudes in the low frequency range are most sensitive to 7¢g.

9We do not attempt to estimate the amplitudes for the three mode combinations (e.g., (17 + 17 + 17)). But as
we mentioned before, a rough order of magnitude estimate yields similar magnitudes for these frequencies and those
involving only two.
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frequency tentative amplitude | frequency tentative amplitude
(uHz) identification (mma) (uHz) identification (mma)
k m k m
130.19 | 15-17  7(-2,0,+2) 3.18 2150.57 9 -1 1.45
726.82 | 9-15 7(0) 1.73 2154.10 9 0 4.53
846.21 | 8- 14 ?(-2) 2.05 2157.67 9 1 2.72
937.87 | 8-15 ?(-2) 1.71
1233.5 18 0(?) ~ 3.0 2358.85 8 -1 4.86
1291.00 17 -1 4.95 2362.56 8 0 4.98
1297.58 17 0 14.5 2366.46 8 1 3.51
1304.12 17 1 5.84
2531.02 18 4+ 17 ?(0) 1.54
1355.58 16 -1 1.55 2595.23 17 4+ 17 7(0) 1.98
1361.85 16 0 3.46 2660.84 18 + 15 ?(0) 2.31
1368.50 16 1 2.66 2724.96 17 + 15 ?(0) 4.34
2816.62 17 + 14 ?(0) 1.74
1421.27 15 -1 9.33 2848.28 15 4+ 15 7(-1) 1.9
1427.27 15 0 19.03 2913.94 17 4+ 13 ?(0) 1.57
1434.04 15 1 9.27 2946.65 15 + 14 7(0) 4.46
3044.66 15 4+ 13 7(0) 2.17
1512.72 14 -1 3.55 3124.38 17 4+ 11 ? 0.66
1518.95 14 0 8.35 3296.02 17 4+ 10 7(+1) 0.67
1525.62 14 1 4.29 3451.95 174+ 9 ?7(0) 1.46
3581.47 15+9 ?(0) 1.11
1611.80 13 -1 6.28 3660.00 17 + 8 ?(0) 1.11
1617.38 13 0 5.78 3789.86 15+ 8 7(0) 2.03
1623.49 13 1 5.46 3892.41 | 17 + 17 + 17 ? 0.85
3958.23 | 17 + 17 + 16 ? 1.10
1733.88 12 0 1.34 4022.65 | 17 + 17 + 15 ? 1.33
4114.34 | 17+ 17+ 14 ? 0.57
1840.46 11 -1 1.61 415233 | 17+ 15+ 15 ? 0.79
1845.88 11 0 1.34 4211.58 | 17 + 17 + 13 ? 0.84
1852.12 11 1 1.26 4244.25 | 174+ 15 + 14 ? 1.55
4342.55 | 17 + 15 + 13 ? 0.75
1989.26 10 -1 0.55 4725.19 8+8 7(0) 0.94
1993.68 10 0 1.09 4879.23 | 17+ 15+ 9 ? 0.69
1998.83 10 1 1.22

Table 8.2: Frequencies at which power is seen in GD358, with their possible identifications. Compiled
using Table 2 and Table 3 of Winget et al. 1994. The m values for the combination frequencies are
guessed based on their exact frequencies.
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Figure 8.4: The observed and theoretical amplitudes of combination frequencies in GD 358. The
observed values are marked with solid triangles. And the theoretical best fit solution (f/cos> @y =
133, 7.0 = 4005s) brings about combination frequencies with amplitudes marked by the solid vertical
lines. The horizontal bars are plotted on top of those that are believed to have observed counterparts.
The dashed line at 1 mma is the approximate detection limit in this WET observation. The top
panel is the expansion of the central region in the lower panel. Two obvious misfits at 2848.28vHz
(marked ‘a’ in the lower panel) and 2946.65vHz (marked ‘b’) can both be due to the inappropriate
adoption of m components for the principle modes in the theory. a is likely to have m = —1, although
it is mysterious why the m = 0 component, presumably the strongest combination component, does
not appear in the power spectrum. b is likely to be the composite result of three pairs of principle
modes with different m values. All combinations that are predicted to be observable are seen.
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number | identification amplitude phase freq. v period
(mma) (deg) (n Hz) (s)

1| F1-F3 7.0(0.7) -0.2(6.3) 98.15 10188.93
2 | F1-F4 4.0(0.7) -46.6(10.9) 341.72 2926.34
3| F1-F2 6.4(0.7) 27.1(6.4) 403.67 2477.26
4 | F6-F1 2.7(0.7)  25.7(15.5) 699.42 1429.75
5 | F7 5.5(0.7) -169.3(8.5)  900.44(4.43) 1110.57(5.46)
6| F2 27.0(0.7)  -71.3(2.0) 1224.66(0.76)  816.55(0.50)
7| F4 9.1(0.7)  -44.5(5.8) 1286.61(2.82)  777.24(1.70)
8| F3 14.6(0.7) 41.9(3.2) 1530.19(1.46)  653.52(0.62)
9| F1 31.8(0.7)  134.7(1.5)  1628.33(0.7)  614.13(0.26)
10 | F5-F1 3.6(0.7) -13.4(12.6) 1897.83 526.92
11 | F6 6.3(0.7)  -16.4(7.1) 2327.76(3.28)  429.60(0.61)
12 | F2+F2 9.8(0.7) 34.4(5.2) 2449.32 408.28
13 | F3+F2 5.2(0.7) 24.2(8.2) 2754.85 363.00
14 | F24+F1 8.3(0.7) -3.4(5.1) 2852.99 350.51
15 | F4+F1 4.7(0.7) 23.9(9.3) 2914.94 343.06
16 | F3+F1 5.3(0.7) -9.8(7.8) 3158.52 316.60
17 | F1+F1 4.5(0.7) 13.0(9.1) 3256.66 307.06
18 | F5 5.8(0.7)  -63.1(7.3) 3526.17(3.05)  283.59(0.25)
19 | F6+F1 2.8(0.7) -49.0(14.9) 3956.09 252.78
20 | F5+F1 3.5(0.7)  12.8(12.6) 5154.50 194.01

Table 8.3: The power spectrum of ZZ Psc ( a tabular form of Figure 8.1, van Kerkwijk et al. 1998).
The errors for the amplitudes, phases, and periods of the principal frequencies are included in the
parentheses behind the fitting result. The fitting routine is such that the combination frequencies are
fixed once their parent modes’ frequencies are found. The phases of the combination frequencies are
defined as the difference between their real phase and those of their parent modes, i.e., ¢ — (P £ Ds),
+ sign is taken when w = w, + wp, and vice versa.

amplitudes based on simple assumptions. This gives confidence that with a better data set (taking
away the effect of time-varying ampltiudes), we will be able to determine the stellar parameters

quite well.

8.3.2 ZZ Psc

ZZ Psc (variable name G29-38) is a relatively cool DA variable with large amplitudes. It has been
observed many times (see, Kleinman 1995). Everytime, it seems, the power spectrum is different.
Observers say this star has many ‘states’.

The data presented in Table 8.3 were taken with the Keck II telescope in November 1996. The
total time duration is about five hours. We choose to use this short data set instead of many other
much longer ones in favour of its high signal-to-noise ratio and the absence of complications due to
mode varying. The disadvantage is the possibility of mode beating, especially among multiplets split

by rotation. Kleinman (1995) suggests a rotation period of order ten days for this star; this may
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imply little beating during the observation. We ignore it here. And as before, we assume all principal
modes are £ = 1, and only their m = 0 components contribute to the combination frequencies.

Analogous to what we do in §8.3.1, we search for the best solution of f; / cos® ©g and 7.9 to match
the observed power spectrum of combination frequencies. This is shown in Figure 8.5. Compared
to results in Figure 8.4, the fit for ZZ Psc is far more successful. Our best solution gives 7. ~ 200,
which implies w7. ~ 1.1 for the longest period overstable mode, consistent with our driving theory
in Chap. 3.

There are a few oddities in the general good fitting of Figure 8.5. We have not been able to fit
‘a’ with any success. The amplitude at this very low frequency may be subject to contamination
from other sources that have similar time span, e.g., telescope noise and quasi-periodic fluctuations
in the earth atmosphere. Mode F1 (at 614.265s) is the largest mode during the Keck observation.
It is a mystery to us why the second harmonic of F1 (‘d’) should be so weak, as it is expected to
show the largest amplitude among all combination frequencies.!® Spectroscopic evidence suggests
that Fy mode is £ = 2 (van Kerkwijk et al. 1998); this might explain the underestimated amplitude
in ‘b’ (Fy — F1). We have no answer for the inconsistency seen at frequency ‘¢’ (Fo + ).

The phases of combination frequencies are good indicators of 7.9 without the interference of
inclination angle and f;. But we have not been able to obtain useful information from the phase
angles in Table 8.3. This is a good test of our theory and should be worked out in the future.

With a 7. ~ 2005, ZZ Psc is situated relatively close to the red edge of the DA instability strip.

At the blue end, one would expect 7. ~ 20s.
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White Dwarf

Z, Zp z = R —r, R is the stellar radius, z;, the depth of the convection zone
H, pressure scale-height, H, = £

Cs local sound speed, ¢? = (g—ﬁ)s =tz

N2 Brunt-Vaisala Frequency squared

L, Lamb frequency for spherical degree ¢, L7 = £({ + 1)(%)?

K radiative opacity

s dimensionless specific entropy (measured in units of kg/mp)

Tn local thermal time scale, 7¢n = + fo; dz pepT 7’;—2

Th similar to 7in(z = 23), 7» = & foz dz pr;l—i

A, B,C dimensionless numbers defined in §3.2.4

T, thermal adjustment time scale for the convection zone, 7. = (B + C)7p
V, Vad V= ({élll:,z;)a Vad = (%)s

al — — {81 —
Dp, PT Dy (B_—IE%)T:XP , pT = (812,:;);):)(7‘

(#8%)
OInT P

— Op, — 9p,
PpTy Pops PTT  PpT =\ §In7 , DPop = \ 510, . prr

Spy ST $p = <%§‘p) , ST = (gﬁf—T)p =cy
SpT» Spps STT  SpT = <881%’Sp’ Spp = (%%)Tv 5TT = ((E#Tq})p
ps, T ps = (Qg%ﬂ)p VT = (%)p =1/c,
tev dynamical time in the convection zone, or eddy turn-over time, to, ~ Z
Vey convective velocity for the largest eddies
v kinematic viscosity coefficient, v ~ Ve Hyp
Gravity Mode
n, {,m radial, angular, azimuthal eigennumbers of the eigenmodes
w, v eigenfrequencies, w = 5 82;0 V= p—erlm
én, & horizontal and vertical displacements of the eigenfunction
(or their radial dependences only, depending on the context)
k., ky vertical and horizontal wave-vectors, k. ~ Jiz, kp, ~ j—m ~ [(}?1)
Vg group velocity for the wave in the z direction, vy, = g,‘c‘i
F energy flux in the wave, F = pvg,w?(£2 + £2) -
%”,%p,% fractional Lagrangian pressure, density and temperature perturbations
p' Eulerian pressure perturbation
0F.0F,,, és Lagrangian radiative flux, convective flux, entropy perturbations
08ph, 05p entropy perturbations at the photosphere and at zj, respectively
0Fpn, 0F flux perturbations at the photosphere and at z;
6Q heat absorbed/released by the convection zone during pulsation
21 (zy) the upper lid of the g-mode’s propagating cavity, approximately the first node
of %”, z1 is pushed down when the convection zone reaches deeper
Zw Zu = %gikzg, z1 ~ 2, when the convection zone is negligible
2 the lower boundary of g-mode propagating cavity, here w? ~ N2
T, Tw the thermal time at the depth of z; and z,
(W) work done to the mode after one cycle of pulsation
(Wevz), (Wraa)  work from the convective and the radiative regions
¥ growth/damping rate for the mode energy
Yevzs Vrad energy growth/damping rates from the convective and the radiative regions
Yyis energy damping rate from kinematic viscosity
Wi the imaginary part of the eigenfrequency, it is also the amplitude

growth /damping rate, w; ~ 3

Cp drag coefficient relating shear stress to velocity gradient
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Appendix B Atmospheric Models for Hydrogen
White Dwarfs

B.1 Introduction

The depth of the convection zone for white dwarfs residing inside the DA instability strip depends
extremely sensitively on the effective temperature. The sensitivity originates from the photosphere
where hydrogen is partially ionized. The ionization fraction depends sensitively on temperature,
which gives rise to the sensitive dependence on temperature of both the photospheric entropy and
the superadiabatic gradient below the photosphere. The depth of the convection zone is determined
by these two quantities, as the radiative interior converges quickly for different temperatures (see
Fig. B.1).

For our study, we need white dwarf models with fine grids in the upper atmosphere (especially in
the superadiabatic region) so that the above mentioned sensitive dependence is correctly captured,;
we also need models closely neighbouring each other across the whole range of the instability strip.
Both these considerations require us to make new white dwarf models, in addition to the ones
kindly provided to us by P. Bradley (for reference, see Bradley et al. (1993). These series of closely
neighboured models can be used not only to study the linear instability of gravity-modes inside the
instability strip, but also to study the effect of finite amplitude pulsations, since at any phase during
the pulsation, the upper atmosphere is in both dynamical and thermal equilibrium.

DA white dwarfs with effective temperatures around 12,000 K have long finished their gravita-
tional settling of the elements. In the outer layer of the star, the composition is effectively pure
hydrogen. Stars cooler than the DA instability strip may have chemical mixing when the convection
zone reaches down towards the helium layer.

When the stellar surface gravity (logg), stellar mass, and the effective temperature (Ter) are
specified, the photosphere can be located (in terms of pressure), and inward integration can be
carried out to construct the upper atmosphere of the star. This procedure is accurate as long as the
depth of the region we are working on is much smaller than the stellar radius. We only work with
pure hydrogen; this eliminates the uncertainty in specifying helium-hydrogen interface.

We will compare our models with those from Bradley, and try to explain the differences. Later,

we will use these new models to calculate various gravity-modes.
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B.2 Model Making

B.2.1 Hydrogen Models

We use the Lawrance Livermore equation of state and opacity table (Rogers et al. 1996, Iglesias &
Rogers 1996). The tables and the interpolation programs are from the ftp://dplasma.llnl.gov/.

The stellar photosphere is defined as the place where optical depth reaches 2/3 (Rybicki & Light-
man 1979, Mihalas 1978). For given opacity and equation of state, Teg determines the photospheric
pressure and the opacity. For a radiative photosphere in hydrostatic equilibrium, Frag = F, and gas
pressure is given by

2
-7 B.1
p=3- (B.1)

The condition of being radiative should be tested using the following criterion,

ds  Os
dinp ~ dlnT

F L Os
p8aTéﬁ dlnp

<0. (B.2)
T

Here, equation (B.1) is used, as well as the flux equation of radiative transfer.
When equation (B.2) is not true, i.e., the photosphere is partially convective, Froq + Foo = F =

0T, the partition of fluxes is determined by the following conditions:

ds _ Os Fraa Os
dinp)., ~ OWnT ,80Ty,  dlnpl|y
ds . Os ? (i>% my Fey g
dlnp). dlnp|, oD kg Ton)
ds ds
(dlnp)rad - (dlnp)cv' (B-3)

The second equation in equation (B.3) is derived in §3.2.2 (eq. [3.12] to [3.15]). The dimensionless
number f is defined to be the convective inefficiency in this appendix. The smaller value f takes, the
more efficient the convection is. In the literature, convective efficiency is parametrized in terms of «,
the ratio of the mixing-length to the pressure scale-height. The precise value of @ not only lacks clear
physical meaning but also depends upon the detailed implementation of the mixing-length ansatz.
Two notations are related by f oc a~4/3; the exact relation can be obtained by comparing stellar
models of similar convection zones but different parametrization.

For a partially convective photosphere, photospheric temperature (where p = %q/ k) is different

from the effective temperature, and is approximated by

1
UTgh = Fraq + tiw (B4)
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while the purely radiative case have T, = Teg. The factor of % in front of F., originates from
the fact that in an optically thin region, the turbulent eddies carry heat flux in the form of kinetic
energy and deposit it into the thermal energy of the local gas, which thereupon radiates half of that
heat back into the star (isotropic radiation).

When the location of the photosphere is determined as a function of Teg (or equivalently, the

stellar flux F), we can integrate downward the following equations simultaneously,

dp
o pg,
dinT  OInT olnT| ds
dlnp ~ Olnp s+ ds |,dlnp’
ds ds _ ds
dnp <m>d - <d1np)cv’
ds B Os 3KpFiad Js
<m>md ~ 0InT|,160T%  Olnp|;’

ds :f_as Ei%%FCV%
dinp/ . dlnp|, pp kg T ’

Fraa +Foy = F. (B-5)

In the temperature range we are interested in, the photosphere (sometimes) and the region below it

are convectively unstable. At reaching the bottom of the convection zone, dif 5 <0, the integration

can be continued as long as we set Fr, = 0, and ignore (d‘lirfp)cv.

We integrate the model down to logp = 16.0, which corresponds to a mass of 10~ %M. For
comparison, the mass of the convection zone at the very red end of the instability strip is of order
10~'2 Mg, while the generic hydrogen layer mass for DA white dwarfs is of order 10~* M. Further-
more, the depth corresponding to this pressure is of order 107cm, about a factor of 100 smaller than

the total stellar radius, the thin-layer approximation is valid, and we can ignore curvature as well

as changes in gravity.

B.2.2 Model Characteristics

Our white dwarf models consist of two layers, a convective envelope whose depth depends on the
effective temperature sensitively, and a radiative region below it. Even at the bottom of the model,
the effect of degeneracy is not important.

First, we look at the radiative regions in our models. We try to explain the convergence of
entropy profile (and temperature, density, etc.) in the radiative interior (Fig. B.1), which is also
witnessed by Brickhill (1991).

The radiative interior is governed by the equations of hydrostatic equilibrium and radiative

diffusion, supplemented by the equation of state and the opacity law. With an opacity law specified
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Figure B.1: Entropy profile for three adjacent white dwarf models. The superadiabatic region is em-
phasized by using log p as the horizontal axis. The bottom of the convection zone deepens extremely
steeply with lower temperature. Notice the convergence onto an almost unique entropy profile in
the radiative interior. A few quantities can be extracted from this graph and be compared with
analytical estimates: the entropy jump in the superadiabatic zone, As; entropy at the photosphere
and the base, sph, sp; the depth of the convection zone (in terms of 7;) as a function of Teg. In this
group of models, convective efficiency f = 0.32, and we will consistently stick to this f value in the
whole thesis except as otherwise noted.
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by two constant exponents, x, and k1, where

ko ptrTRT., (B.6)

It is easily verified that the envelope is a polytrope with T o< z, p & 2™, and p x 2™, where z is

the depth measured from the photosphere. More precisely, m is related to the opacity law as

m= LJ“?” (B.7)
Ky +1
and " )
C —KT
T = h_g(ﬁ;p — KT+ 4) ﬁ E ! p(”p+1)/(’iﬂ“nT+4)_ (BS)
4(k, + 1) ke /) acg
Using the numerical values k, = 0.8 and kr = —5, as are typical of fully ionized hydrogen gas, we
obtain m = 4 and
T o« FY/10pl/5, (B.9)

The weak dependence of the temperature profile on the stellar flux, F', accounts for the convergence
of the convective envelopes onto nearly the same T — p relation in the radiative interior. For fully

ionized ideal gas, I'1 = 5/3, and entropy is

T5/2
s In (B.10)
This connects entropy with temperature and pressure, and it further leads to
1
soc—ilnp, (B.11)

L.e., s decreases with depth — the radiative zone is stably stratified as it must be.
Now we turn to the convection zone. Here, we focus on entropy. The newly made models can
be used to measure the parameter B and C, as defined in equations (3.30) and (3.32). These two

numbers reflect the changes of entropy levels when the stellar fluxes are changed. We estimate them

from Figure B.1,

~ 13.0,

C ~ 44 (B.12)

For comparison, the analytical expressions for B and C' (eqs. [3.31] and [3.33]) give

B ~ 10.,
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C ~ 54, (B.13)

when we use equation of state and opacity of pure hydrogen. The two groups of numbers are in
reasonable agreements. This is one piece of evidence that our pure hydrogen models reasonably,
accurately describe the upper convection zones.

As stated in §B.1, we are mostly interested in the depth of the convection zone as a function of
Tesr. We can observe this from Figure B.2, for a variety of mixing-lengths. Shown in the figure is the
thermal adjustment time at the base of the convection zone, 7. = (B 4 C)73, as well as the values
of (B + C). These quantities are defined in §3.2.4.

After the convection first appears at around 15,000 K, the convection zone deepens with decreas-
ing temperature. A smaller f indicates a more efficient convection, which needs a smaller entropy
gradient in the superadiabatic layer, and therefore deepens the convection zone (recall that entropy
increases outward in the radiative zone). But when temperature has become so low that superadia-
batic region becomes less and less important as compared to the whole convection zone, there is a
convergence in the depth of the zone for different values of f.

The deepening of the convection zone as a function of Teg can be approximated by a scaling law,
Te x T3, (B.14)

at the temperature range of 13,000K > Teg > 12,000K (for f = 0.25). This number is rather
independent of the mixing-lengths as long as we measure it in the right region (i.e., 7. between 100
to 1000s). This dependence is much less steep than the one implied by Bradley’s DA models, for
which we find a power index more like 90. Our value widens the instability strip by a factor of 2 in
Terr. We can also derive this dependence analytically, as is done in §B.5. This leads to a similar but

less strong scaling relation, as the change in (B + C) is not taken into account.

B.2.3 Model Comparisons

Our simple models can also be compared with Bradley’s models in detail. Given our difference
(as is discussed at the end of §B.2.2), sensible comparison are possible only when using models
with the same depth of the convection zone. We accomplish this by adjusting the value of f
such that at the same Teg, our convection zone extends to the same depth as Bradley’s model.
It is not consistent in the sense that neighbouring models would need different f. Two examples
are shown, in Figure B.3 for a hotter model (Teg = 12,420K), and Figure B.4, for a cooler one
(Teg = 11,720K). The individual comparisons are very good. Both the Brunt-Viisild and the
temperature, density profiles are similar. But the hotter one is with f = 0.32, while the cooler one

needs a more efficient convection, f = 0.20. This may be understood as that models from Bradley
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Figure B.2: The depth of the convection zone as a function of T,g and the convective efficiency f.
f = 0.001 corresponds to a model that has very small superadiabatic gradient in the whole convection
zone, while f = 1.0 is for a model with very inefficient convection. Recall that f o a‘%, where « is
the mixing-length ratio. Independent of f, atmospheric convection sets in at around 15,000 K. The
photosphere starts becoming convective at a temperature Tog ~ 14, 800 K; this causes a kink in the
depth of the convection zone, due to our approximate treatment of the photospheric temperature
(eq. [B.4]). The photosphere returns to radiative at Tpg ~ 11,000 K. The dotted horizontal lines
in the center plot represents 7. = 100s and 1000s, corresponding to the shortest and the longest
mode periods observed. The fiducial location of the ZZ Ceti instability strip as a function of the
mixing-length ratio reads directly from this plot.
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Figure B.3: Comparison between Bradley’s model (solid lines that extend to the stellar center) and
our simple model (dashed lines that go down to logp = 16). At Teg = 12,420K, we need f = 0.32
to reproduce the thickness of the convection zone as seen in Bradley’s model.

have too deep a convection zone at the cooler temperatures, or the entropy jumps at his cooler
models are smaller than our estimate. We suggest that insufficient grids in the upper atmosphere
(especially the superadiabatic region) may be the reason for this behaviour. We would get a very

narrow width for the DA instability strip if we use Bradley’s models.

B.3 G-Modes

B.3.1 Mode Making

Since our white dwarf models do not go down all the way to the stellar center, we cannot obtain

stellar eigenfrequencies. We could, however, use the eigenfrequencies from Bradley’s models, and
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Figure B.4: Similar to Figure B.3, but for a cooler model, Tog = 11,720 K, M04 in Bradley’s series
of models. Here a much smaller f value is needed to fit his model, which implies that his cooler
models are likely to have too deep a convection zone. The instability strip width obtained using his
models would likely be narrower than that using our models (using the same value of f throughout).
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calculate the corresponding eigenfunctions using our models. Since the eigenfrequencies do not
depend sensitively on the temperature of the stars, or the depth of the convection zone (except for

very high order modes), this treatment is not unreasonable. In this section, we take eigenfrequencies

from Bradley’s 12, 820 K model.
Adopting dp/p as the representative eigenfunction variable (instead of &, &. or 8p/p, 6T /T), the

equation for eigenfunction goes as (eq. [2.14]),

o (7) s () GV [ () (] G) 0o

To integrate the above equation inward, the following two initial conditions are used, i.e., at z = 0,

ég = 0.01,
p
d op 5 [ N? w)? P 2 1 )
S () - (21 d 2y —_ 2 .
dinp (p) [kh <w2 > " (C) pg) 2-dmEp (B.16)

The value 0.01 is an arbitrary number, taken such that the numerical accuracy is easily preserved
throughout the integration. The second condition is derived by realizing that in the outer evanescent
region, the boundary condition is basically free-slip, or, dp/p is flat when approaching z = 0. We
assume that in equation (2.14), the second order derivative is much smaller in magnitude than the
first order one.

Normalization as the kind illustrated in §2.7 is used.

B.3.2 Mode Comparisons

Integration of equation (B.15) gives rise to a ’partial’ mode structure, which can be compared with
the corresponding eigenmode in the ’full body’ models made by Bradley, at least in the region where
both exist. We compare modes in models that have the same Teg and 7, as is shown in Figure B.5
for three different modes.

The conclusion in this section is, for the same stellar models and the same mode frequencies, the
mode structure in our simple models are similar to those in the full-body models made by Bradley.

These partial 'modes’ will be used in Chapter 5 for nonadiabatic calculations.

B.4 Chemical Abundances

We can also construct upper atmosphere white dwarf models that have helium, or heavy metals
(carbon, oxygen, etc.). This is to study the effect of chemical abundances on the depth of the con-

vection zone. We find that chemical mixing would not significantly alter the depth of the convection
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Figure B.5: Eigenmode structures calculated using one of Bradley’s models (solid lines, T.g =
12,420K, 7. = 62s, normalized) and from one of our atmosphere models that have the same 7,
(dashed curves, Ter = 12,420K, f = 0.32 and 7, = 68s). Eigenfrequencies are taken from Bradley’s
model. The dashed curves are required to have the same magnitude at the surface as the solid ones.
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zone, as long as the abundances are within ranges allowed by observations.

B.5 Instability Strip

Using hydrogen models made in this Appendix, we are able to estimate roughly the width of the ZZ
Ceti instability strip.

The boundaries of the instability strip are determined by the dependence of 7. on T.. This
dependence is complicated by our inability to calculate the superadiabatic gradient in the convection
zone accurately based on First Principles. Common practice is to parameterize convective efficiency
in terms of a, the ratio of the mixing-length to the pressure scale-height. Here, we use f, where
f o< a3 to crudely estimate the entropy jump s, — spn (as given by equation (3.14)).

Several steps are needed to determine the dependence of 7. on T, and a. Some require equation
of state and/or opacity tables; we use those provided by LLNL. Given T, we find ppn and spp by
solving equation (3.18). Then for each choice of & (f), we obtain s, from equation (3.14). Equating
the radiative and adiabatic temperature gradients yields a second relation which together with the
value of s; enables us to solve for py, T, and p,. We calculate 7, from equation (3.35) after changing
integration variable from z to p. Multiplying 7, by B+ C, obtained from equations (3.31) and (3.33),
we arrive at 7.. We describe a different numerical method to construct the convection zone in this
Appendix. When given T, and photospheric equation of state and opacity laws, other physical
parameters of the photosphere is completely determined, taking into account the ratio of energy
flux transported radiatively and convectively. Inward integration of the model is carried out with a
certain mixing-length prescription of the entropy profile (quantified by the number f). The bottom
of the convection zone is reached when the entropy gradient becomes negative inward. We construct
a series of white dwarf models for a variety of mixing-length prescriptions.

We examine the dependence of 7. on T, and « in two ways. The first consists of analytical
evaluation of the partial derivatives dIn7,/01InT, and dIn7./91n . This approach has the benefit
of directly exhibiting the most important terms. The second method involves the numerical solution
of the equations enumerated in the previous paragraph.

Several of the relations needed here were derived earlier and are summarized in §3.2.4. Since we
are dealing with static models, where necessary we set w = 0. Two simplifying approximations apply
in the bottom part of the convective envelope, namely, hydrogen is fully ionized and the entropy
gradient is vanishingly small.

The dependence of As, on AT, /T, and Aa/« follows from equations (3.14), (3.41), and (3.45),

AT, 4 Aa

Asy = 4(B + C) T g(sb - Sph)—a—. (B.17)
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Expressing Asy in terms of Apy/py and ATy /Ty, we arrive at

AT,
—2Apy/pp + 3AT, /T, = 4(B + ) T

€

4 Aa
- E(Sb — Sph)T. (BIS)

Equating the radiative and adiabatic temperature gradients and taking differentials provides a

second relation between Apy/py, AT, /Ty, and AF/F,

A AT, AT,
-(1+np)%+(3—w)?b”:4 —~. (B.19)
Solving equations (B.18) and (B.19) for Apy/py and ATy /Ty gives
Apy 4 AT, 1 Aa
= 23— - ~(3- — Spn) — B.2
P CRICEIGCER Cp S CEPITEE S S UE
and
AT, 4 AT, 1 Ao
s SRS S L RO R L S C R0
where A is defined in equations (3.28) and (3.29).
These last two relations imply
A 4 AT, 1 Aa
f =1 {[5 - (B+C)4+ K, — k1)) T + 5(4 + K, — Kkr)(8p — sph)—} (B.22)
Appeal to equations (3.39) and (3.40) yields
B 2
Rl (B.23)
Taking differentials,
AT, 4 AT, 1 Aa
TT = {[7 — (B+C)(5+ 2k, — k1)] 7t 5(5 + 2k, — k1) (sp — sph)?}
A(B+C) AT,
- . B.2
T Bro) YT (B.24)

The variation on the value of (B + C) is not very large (see Fig. B.2). At fixed o (the mixing-
length ratio),

A7, AB+C) 28 AT,
x| =(5+ 26, — rp) et 4 (22 :
- [ (5+2k, — K1) =t (5A 4) T (B.25)
while at fixed 7,
AT, 1 —
~ L (50 = 5pn) Aa (B.26)

T. ~3B+C)-7 a
Equation (B.25) describes the deepening of convection zone as the effective temperature of the

white dwarf decreases. When taking reasonable values, kp = —5, kp =08, A=5,(B+C)~ 15,
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and get

AT, AT,
~—3l——. : B.27
Te Te ( )

Observationally, the longest periods for overstable modes inside the observed ZZ Ceti instability
strip extend from 100s to 1200s as we go to cooler and cooler pulsators. If the thermal adjustment
time (7.) has similar range (the fractional variation in 7. is equivalent to Aln7., the changes in
In.), equation (B.27) results in a corresponding AT, ~ 900K, at T, ~ 12,000 K. Here, we relied
on information about observed period range to derive this width.

A straightforward reading from Figure B.2 produces a number close to 500 K for the same range
of 7. (100 to 1200s). The discrepancy comes from our neglecting the change in (B+C) (photospheric
properties) in the above estimate. But even with the realistic scaling (equation (B.14)), the true
width of the instability strip may still be more like 1000 K, as 7. at the red edge is likely to be much
longer than 1200/27s.! Estimate based on white dwarf number statistics also leads to a width of
~ 1000 K.

In Chapters 5 and 4, we derive the instability width without consulting the observed period
range, when taking into account of complications such as heat leakage and viscous stress. Models

made in the §B.2 are used in these calculations.
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Appendix C The Symplectic Integrator

In this appendix, we describe the principle of symplectic integrator and its application in numerically
evolving the amplitude equations.

There are two main advantages of using a symplectic integrator, as compared to conventional
integrators. The first one is its efficiency. In a problem with two very different time scales, as the one
we are interested in,! to accurately simulate the long term dynamics, we need to use an integrator so
that our time steps can be as long as the mode periods. This is possible in the case of the symplectic
integrator as it fully utilizes one characteristic of the Hamiltonian system, as we will explain later.

The other major advantage of symplectic integrators over other integrators of the same order? is
its accuracy. Except from numerical round-off errors, there is no secular drift in the total energy of
the system when using a symplectic integrator. This is remarkable given that long time integration
using other integrators (e.g., explicit Runge-Kutta), however high their orders are, will always bring
about fictitious numerical energy growth or loss. It is therefore easy to see why the symplectic
integrators have been so much in vogue after their invention. There will, however, be deviations in
the positions — or for coupled oscillators, the phases of the modes — from those of an exact solution.
But even with this, it is superior to other kinds of integrators in that the deviations grow linearly
with time, while for others they grow quadratically.

Here, we first develop the symplectic integrator for a conservative Hamiltonian system, we then
add the complication of dissipation. Our adoption of this integrator has allowed us to carry out

simulations that were previously prohibitively time-consuming.

C.1 Hamiltonian System

A Hamiltonian system is one whose flow preserves volume in the 2N dimensional phase space, @, 9,
Le., the area of any closed loop projected onto a plane p;g; is preserved as the system evolves. Here,
7 is the general momentum, and ¢ the general position. This symplectic nature of a Hamiltonian
flow is a constraint on the dynamics, and special integrators can be designed to carry out numerical
evolution of the system. The following discussion is mostly taken from Yoshida (1990), Saha &

Tremaine (1992) and Malhotra (1994).

!There is the fast time scale of mode oscillation, and the slow time scale of macroscopic dynamics. Most interesting
things happen on the slow scale.

2The order of the integrator reflects the dependence of error on the time step.



147

We consider Hamiltonians of the form,
H=Hy+ Hy, (C.1)

where Hr and Hy are both integrable, when taken separately (Malhotra 1994). Hr usually stands for
linear, periodic kinetic motions, e.g., Keplerian motion of a planet, linear oscillation of an eigenmode,
circling of plasma in an accelerator, etc. Hy usually represents the interactions among components in
the system, it is considered as a perturbation to the regular motion of the system, and an integrable
Hy generally requires that Hy depends on position () only, but not on velocity.

With the notation Z = (g, p), the Hamiltonian equations can be written as
—Z=Dpg?Z, (C.2)

where Dy is the Hamiltonian operator, and is defined as DgF = {F,G}. Here braces stand for
Poisson bracket, with {F,G} = FyGy — FzG;, where Fy = %—g and so on. If we let A = Dp.. and

B = Dpgyv, the evolution of Z'is a formal solution to equation (C.2),
Z(1) = exp(rDy)Z(0) = exp [r(A + B)] 2(0). (C.3)

Normally, A and B are not commutable, so exp(A + B) is not equal to exp(4) exp(B). In fact, a
Baker-Campbell-Hausdorff (BCH) identity leads to

exp(A) exp(B) = exp(C), (C.4)

and

C=A+B+ % [4,B] + 11—2 ([A, A, B] + [B, A, A]) + (higher order terms). (C.5)

-

Here the commutator [X,Y] = XY — Y X, and the higher order commutator is algebraically defined
to be [X, X, Y] = [X,[X,Y]).
Obviously, the original evolution is equivalent to the following evolution, subjecting to operators

A and B at different times,
1 1
exp(irA) exp(TB) exp(§T.4) = exp [T(A + B)+ < error >]. (C.6)

This is a second-order symplectic integrator, as we will explain below. In practical applications, one
first advances the system under the operator 4 for a time of 1 /27, then evolves the system under
the operator B for a full 7, and last, under A again for 1/27. After these three steps of evolution,

the system formally flows from Z(0) to Z(7). In our system of coupled oscillators, we can carry
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out the above steps with the amplitude equations, i.e., the first step is to ‘drift’ the phases of the
normal modes for half the time step, as described by rotation of the phases; then give a ‘kick’ to the
amplitudes and phases as due to interactions alone; and last, ‘drift’ the modes again for another half
a time step. In practice, the third step of the n — 1 time can be merged with the first step for time n,
and this may look like a two-step integrator, and may be mistaken for a first-order integrator. But as
we will explain below, it is really a second-order one. This ‘drift-kick-drift’ scheme is similar to what
is used in the solar system dynamics, when gravity of planets is taken into account as perturbations
(Wisdom & Holman 1991).

We can estimate the truncation error. This error exists as we cut off the BCH identity only at
the second order (eq. [C.5]), and there is a difference between the second-order integrator and the

actual evolution. By manipulating the BCH identity (Saha & Tremaine 1992), we get

1 1 1
exp(34) exp(B) exp(34) = exp (A + B~ [4,4,5]

1 1
+2—4—[A,B,A] + E[B’B’ Al+ < higher order >> , (C.7)

using the property that [A, A] = 0. This leads to the following error estimate,

3

r
Hrr:_
€ 12

1 1
{[HV,HVaHT] + §[HT7HV7HT] - Z[HTaHT;HV]} + O(7%). (C.8)

This is different from equation (14) of Saha & Tremaine (1992). But we are not concerned with the
exact form of the error; we are interested in the power index in the dependence of Hep on 7. We
argue that the integrator in equation (C.6) is a second-order one, not a first-order one as is claimed
in Saha & Tremaine. More universally, Yoshida (1990) argues that an operator of time reversibility
(or non-dissipative) can only be expanded into terms that involve 77, where 7 is an odd number. In
this sense, we could only find symplectic integrators that are of even orders, since formally orders
of the integrators are one power lower than its error’s dependence on 7. Yoshida (1990) gave two
methods to derive symplectic integrators to arbitrary even orders.

The system evolving using the second-order integrator is also a Hamiltonian system, only with its
Hamiltonian changed to H' = Hy 4+ Hy + He,,. Since this integrator exactly describes the evolution
of H', it is a symplectic one. The truncation error is its difference from a system with Hy + Hy .
We can be assured of its symplecticity to the limit of round-off errors introduced by the whimsy
computers which we use to trace the system numerically.

The accuracy and efficiency of symplectic integrators have been extensively demonstrated by
Sanz-serna & Calvo (1993), Broucke (1993), Okunbor (1992), and Malhotra (1994). When comparing
symplectic integrators with other integrators, all authors draw similar conclusions: when using the

same time step, the symplectic ones are more accurate; when allowing the same error, the symplectic
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ones can do with larger time steps. For both cases, the differences are at least a factor of 10.
This is also confirmed by our numerical experiments in conservative systems, where we compare
second-order symplectic integrator with a fourth-order Runge-Kutta and with an adjustable step-

size Runge-Kutta.

C.2 Extension to Weakly Dissipative System

The discussion in §C.1 is oriented towards conservative Hamiltonian systems. In the coupled oscil-
lator systems we are interested in, oscillations are usually driven or damped, on time scales much
longer than the mode periods. Malhotra (1994) shows that for gravitational systems, when one takes
into account of the dissipation only during the ‘drifts’, the error is of order O(7%). Hence the above
symplectic integrator can be revised to deal with non-conservative systems.

Translated into algorithms for coupled oscillator systems with driving and damping, which have

amplitude equations of the form,

dA;
dt

= tw;A; + v A+ < interaction terms >, (C.9)

the revised integrator would be:
drift 1: evolve the complex amplitudes for half a time step, A; = exp(v; + iw;)4;(0);

kick: add the interaction term to the amplitudes, 4; = A;,+ < interaction terms > xdt, where the

interaction terms are evaluated after drift 1;
drift 2: similar to drift 1, evolve the amplitudes for another half time step.

In practice, drift 2 and drift 1 can be merged into a single drift over a whole time step.
Our simulations as documented in Appendix E are made possible by the adoption of the above

symplectic method.
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Appendix D Amplitude Instability in the

Amplitude Equations

D.1 Introduction

For a globally interacting multi-mode system (every mode interacts with every other mode equally
strongly), the amplitude equations are
dA; . . 3K .

d—tl = w,A; + ZﬁwiAz, (Dl)
where A = 3°.(4; + AF).! We find an intrinsic instability for systems evolving according to the
above amplitude equation; we call this the amplitude instability.

Total energy in the system can be separated into two parts, the kinetic energy (Hs) and the
interaction energy (Hs),

1
Hior = H2 + H3 = Z A AT + %RAB. (D.2)

In the absence of driving and damping, the conservation of Hi, gives rise to the amplitude equation
(D.1), which then describes in detail how mode-mode interactions cause energy to flow between H,
and Hjs. Behaviour of a conservative system is usually time-reversible.

The values of Hio determine behaviour of the system. When the total energy involved in the
system is higher than some critical value, an exponential growth of the mode amplitude will occur.
Here, the kinetic energy goes to positive infinity, while the interactive energy goes to negative infinity,
keeping Hi, constant (Fig. D.1). This is the amplitude instability we encounter in numerical
simulations. As will be demonstrated below, the threshold energy associated with this instability is
not very large, and it scales down with increasing number of modes. In reality, we know that white
dwarfs pulsate at finite energy with many modes simultaneously observable. In this appendix, we
would try to explain the condition for and the origin of the amplitude instability. In the final part

of this appendix, we argue that this instability does not happen in real pulsating stars.

1Obviously, as long as kA is constant, x can be taken as any value without changing the system dynamics.
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Figure D.1: The instability in action. The total energy Hio, = 250.0 (we take x = 1072 in this
appendix) is kept constant while both H, and H3 grow unconstrainedly.

D.2 One-Mode System

To simplify the situation further, let us consider a one-mode system. The amplitude equation
becomes
dA 3k
— = wA+i—
dt V8

with A = 2(A),cq = 2|A|cos ¢. The amplitude instability in such a one-mode system may develop

wA?, (D.3)

within a few periods whenever Hy,; surpasses a critical value. We derive this critical value below.

D.2.1 Instability Condition, Derivation I

The first way to derive the critical energy for amplitude instability to happen in the amplitude
equation (D.3) is to consider the geometrical boundary (allowable range of the amplitudes) set by

| cos ¢| < 1. This gives
|A]? — V8k|A]® < Hior < |A]? + V8| AJ°. (D.4)

The mode is only allowed to travel within the above region at given Hyot. These accessible regions
for A are plotted in Figure D.2 for various Hyo. If the trajectory of the amplitude is bound between
|Al: and |Als, the system is stable. But when Hio, > Hepig = 541?, the amplitude is free to go to
infinity. This is a necessary condition for instability, but not sufficient for immediate instability,
since we also observe systems that are stable for a very long time even if their Hyos > Horit. But if
we wait for sufficiently long time, every system satisfying this condition will go unstable. The origin
of the "waiting time’ is explained later.

The above conclusion does not change whether the mode is overstable or damped, presumably
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Figure D.2: A plot that shows the accessible regions for the amplitude |A] when given Hyo:: when
Hior < Herit, |A] € [|Al1,]Als] N [JAl4,00). Herg is at the point where the curve |A]2 — /8| A[®
reaches maximum level. And for Hyoy > Herit, |A| can wander to infinity even if starting from zero.

because the instability happens in a much shorter time scale, of order the mode periods. The only

difference is that a system with driving may start from low Hi and grow into unstable regime.

D.2.2 Instability Condition, Derivation II

Another way to derive the condition for instability is presented here. We separate the real and

imaginary parts of the mode amplitude in equation (D.3),

A,
ddt = —wd
dA; 6w .
= wA —\'}2“—’44;’, (D.5)
and get
d o 12 A
FICRERE %AiAi. (D.6)

Observing these three equations, we find that, whenever the following two conditions occur
simultaneously,
V2

A _yve
r < o

4; < o (D.7)

A, grows to negative infinity, while A; will increase to positive infinity, with |A|?> growing to positive
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infinity. So equation (D.7) is the sufficient condition for the instability (but not a necessary one).
What’s the relation between this sufficient condition and the necessary condition found in §D.2.17?

A, < —%—g necessarily leads to Hy > Hepit.

D.2.3 Analogy to Something Simple

For better insight, we design a physical analogy for the one-mode amplitude equation. From the

above equation for real and imaginary parts of the amplitude, we write down a second order ODE

for 4,,

d?A Y 6k .
r = —w” AT —Az . .
g = WA+ 2 (D.3)
Let = %AT, we have
d*6 2 2

This equation describes a conservative motion with a potential ¥

7

df

@ -

o b .10
where , ,

m:ﬂ%+%y (D.11)

The dynamics are depicted in Figure D.3, where a small ball is set to motion on a hard surface with
shape W. When |f| < 1, the motion is similar to a simple linear oscillator and is confined within the
valley; but when the motion is large in amplitude, the ball can fall off from the negative side. This
is the instability we see in the numerical simulations for one-mode couplings. When there are more
than one-mode involved, the analogy is still valid, but the surface is no longer one-dimensional. The

valley persists, but becomes shallower and shallower as the number of modes increases.

D.2.4 When Including Four-mode Couplings

When four-mode coupling is included, the critical energy is significantly increased, or in other words,
instability is temporarily stopped.
For simplicity, we make the 4-mode coupling coefficient ©® = k2, equation (D.10) is valid with
the shape of the potential being
6> 6> 2

_, 27 Y Ve
® =5+ 5 + 50", (D.12)

This potential does not drop off at 6 ~ 1, and the system is stable at a previously dangerous energy,
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Figure D.3: The motion of a small ball on a frictionless surface, the shape of which is described
by ¥ = 62/2 + 6°/3. Whenever the small ball has sufficient energy to climb over the hill on the
left-hand side, it can escape to § = —o0, as is the case for the instability in the amplitude equations.

as is verified by numerical experiments.

D.3 Multi-mode System

D.31 N =2

The instability involving many modes is very interesting to examine in detail. Firstly, we look at a
system with two modes. Here, we can still work analytically.

For a Hamiltonian system,
Hiot = |A1]* + |Ao]? + V8[| A1 |cosb) + | Az|costs)?, (D.13)

where |4;|, §; are the amplitude and phase of mode i. Hyot being an integral of motion, the system has
only three degrees of freedom; its trajectory (path of time evolution) can be visualized in a three-
dimensional space. When we further project the trajectory onto the two-dimensional (|4,[,|As:|)
plane, the trajectory will be confined to some area (finite or infinite) as is shown in Figure D.4.
The two groups of curves confining the area are determined from |cos#;| < 1, for i = 1 and 2.

There exists a critical energy level Hyj; above which no initial condition is stable after long enough

evolution; this Hey: can be derived by considering the local maximum of Hy,, when cosé#; = —1.
And we get
1
Hcrit = 5_—4I£2N3 ; (D14)

where N = 2. Again, this is a necessary condition for instability. Figure D.4 shows the geometry in

phase space when Hiy is given.
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Figure D.4: The accessible phase space for various Ho projected onto the amplitude plane. At given
Hiot, regions are separated by the dotted curves into the lower-left triangular space and the upper-
right open space. Under the force of interaction, mode amplitudes move inside regions that they start
from. When this region connects to infinity, as is the case when Hyot > Hepir = 23.15 = 1 /(54K223),
the system may undergo amplitude instability. The escape angle 6.5, for an unstable system is
defined here as the opening angle viewed from the zero point.

When Hioy is only slightly higher than He.;, an immediate escape requires a phase condition
of cosf; ~ —1 for both ¢ = 1 and 2. In this case Hj is the coherent sum of all couplings. This is
met in the system from time to time by chance, when phases are sufficiently randomized through
interactions, i.e., phases are not locked to each other as is the case for very strong interactions.
When Hior 3> Herit, less strict phase condition applies and the system suffers higher probability for
instability.

D3.2 N>2

Easily proven, the above necessary condition for instability can be extended to the multimode case,

with H.y¢ written as
1

(D.15)

Here, N is the number of modes inside the system that have appreciable energies. In a conservative
system, this is the total number of modes; while in a driven/damped system, it is usually the number
of excited modes. We carry out a whole spectrum of simulations with driven/damped multi-mode
systems. If the system finally gets to a stable equilibrium state, we find out that the energy of the
system always falls below Hc. (Fig. D.5).

As stated in §D.3.1, the system becomes unstable at the instant when some or all of the modes
take phases cosf; ~ —1. When H,o ~ Hepie, all the modes are required to participate in this
conspiracy; but when the system is very much super-critical, i.e., f = Hyot/Heris > 1, only a small

fraction of the modes are required. This explains why the system takes shorter and shorter time to
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Figure D.5: Comparison between energy of the systems that can maintain equilibrium (small dots)
and the critical energy beyond which the amplitude instability happens (the solid triangles). The
systems simulated here have driven/damping modes, with Ny, of excited modes and an ensemble of
driving/damping rates. All modes are globally coupling with a strength of k. He is a very robust

upper limit to the equilibrium energy of these system, when only the number of excited modes are
used in the instability criterion.

go unstable as its energy increases, as is shown in Figure D.6.

D.4 Physical Considerations: Caution

In a physically meaningful nonlinear system (for example, a pulsating white dwarf), the amplitude
instability as exposed above does not exist.

First, the criterion for instability (eq. [D.15]) have to be modified. In a pulsating white dwarf,
for example, x is nonzero only for three-mode couplings that satisfy the wave vector closure.?2 The
number of effective coupling in this case is of order N? instead of N3, where N is the total number

of modes. And the Hc.; is of order

1
Hepit ~ CrIN’ (D.16)

where C is a constant of order unity or bigger. When Hio, ~ Heyig, this gives

KAN ~ 1, (D.17)

2For simplicity, here we assume all valid couplings in a white dwarf have the same coupling strength. Using the
realistic coupling strength does not alter our conclusion below.
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Figure D.6: The escape time Tes. as functions of the number of modes (left panel) and f = Hyot/Herit
(right panel). Here, the escape time is defined as the time for the system to discover amplitude
instability, when starting from random initial condition. In both cases, more modes and smaller
f brings about quicker instability. In the left panel, f = 10.0, and Ty, scales exponentially with
Nmode- When Npoqe is fixed, Teqe scales in power law with f.

assuming H, > Hs.

Second, when equation (D.17) is satisfied, the perturbed quantity (in the white dwarf, this is the
total Lagrangian density perturbation at the surface, (%”)tot ) would have approached unity when
the instability happens. When all phases of the modes are such that their amplitudes constructively

sum to the total amplitude,

<§£> ~N (6_p> ~ NA x Norm, (D.18)
P/ tot P/ mode

where Norm is the energy-normalized surface amplitude for a single mode. Density perturbation in
every mode is related to the amplitude A as dp/p ~ kA as both terms are the nonlinear parameters.

Equation (D.17) thus gives rise to

<§£> ~ KAN ~ 1. (D.19)
P/ tot

Or, whenever the total density at one point of the star is of order unity, Hy ~ Hz ~ Hy..., and the
assumption of weak nonlinearity breaks down. Higher order interactions have to be simultaneously
taken into account. In fact, the system behaves more like a shock wave at this point.

In a pulsating white dwarf, we suggest that equation (D.17) is never satisfied. As we show
in Chapter 7, each overstable mode in the star is limited to some small amplitude by parametric

resonances. The amplitude instability discussed here is unlikely to happen.
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Appendix E Dynamics of Globally Coupled
Multi-mode Systems

E.1 Introduction

This appendix is devoted to understanding the intricate dynamics in multi-mode systems (N >
3). We have discussed the amplitude equations and the energy equations in Chapter 6. We then
introduce the efficient ‘symplectic integrator’ in Appendix C for the numerical study of the amplitude
equations. Having investigated dynamics of a system with only three modes (§6.3), we turn now to
the far more difficult problem of understanding a system with a large number of modes.

Here, we first deal with ‘globally coupled’ systems (§E). Inside such an idealized system, any
three modes can form a triplet and the coupling coefficient is equally strong in any triplet. Interac-
tions in a realistic system are different: energy and angular momentum conservation constrains the
possibility of forming triplets, and the coupling strength depends strongly on the structure of the
three eigenmodes. But since the amplitude equations for a globally coupled system are significantly
simplified, it is more accessible for both numerical and analytical studies. Many of the properties
for globally coupled systems hold for realistic systems as well, such as the amplitude instability (see
Appendix D) and the concept of weak turbulence.

We analyze the dynamics for both conservative systems (no driving and damping for the modes)
and systems with weak dissipation (with driving and damping).

One prominent aspect of a conservative system, globally coupled or not, is energy equipartition
among the pulsation modes and the process leading towards it. Energy is diffused across the phase
space on time scales that depend on mode densities and pulsation amplitudes. This diffusion gives
rise to a thermal equilibrium, in which every normal mode (or every degree of freedom) of the system
oscillates with comparable energy. The stochastic fluctuations of energy in each mode satisfy the
Boltzman distribution, as long as the total energy of the system is sufficiently large, i.e., the system
is at ‘weak turbulence’.!

For systems with weak dissipation, the equilibrium state is not energy equipartition. Statistically,
the energy flux flowing into the excited modes (by some external forcing or extracted from the
luminosity of the star) equals the flux lost to the damped modes. The energy equations are used to
estimate the total energy of the system at equilibrium; the results compare favorably with results

from numerical integrating the amplitude equations.

T“Weak turbulence’ mentioned here is equivalent to ‘resonance overlap’ in the literature of nonlinear dynamics.
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What comes as a surprise is that at equilibrium, many modes (both excited and damped ones)
are ‘slaved’ to oscillate at frequencies other than their original ones. Only a few modes dominate
the system energy and dynamics. This behaviour is shown most clearly in Figure E.9, in which
mode energies are observed to be organized into beautiful, rhythmic patterns in frequency space.
We believe that ‘slaving’ is unique to these globally coupled, dissipative, multi-mode systems when
the condition of ‘weak turbulence’ is not satisfied. In pulsating stars, ‘slaving’ never happens. Our
arguments are based on the differences between globally coupled systems and realistic systems. As a
result of the ‘amplitude instability’ (see Appendix D), globally coupled systems cannot have energy
high enough to realize ‘weak turbulence’. Weak turbulence brings about phase randomization and
relieves ‘slaving’. Amplitude instability does not happen in a real star, because the couplings there
are not global, but rather ‘patchy’. The condition for amplitude instability in this case coincides
with the condition for strong nonlinearity. In real stars, there can exist true weak turbulence which
prevents slaving.

To gain insights into dynamics of pulsating white dwarfs, we simulate systems that have ‘patchy’
couplings, where modes are allowed to couple to each other only when they satisfy frequency and
angular momentum closure (‘resonance’) simultaneously. We have carried out rather preliminary
explorations of such systems. They exhibit dynamics that are qualitatively similar to those in
globally coupled systems, but the same behaviour may appear at much higher total energy. To fully
understand mode selections, mode switchings and all other intricate dynamics in a pulsating white

dwarfs, it seems that simulations as complicated as a real white dwarf will be necessary.

E.2 Conservative Systems — Energy Equipartition

E.2.1 Energy Equipartition in the Literature

Interesting dynamics in a conservative system involve the process of going towards energy equipar-
tition, in which every degree of freedom in the system acquires similar energy after sufficient inter-
actions. The memories about the initial conditions are forgotten during the interactions, and the
final state, i.e., energy equipartition, is universal. Understanding the process towards equipartition
is a vast field in itself, and here we give an extremely elementary review for the purpose of further
discussions.

In classical statistical mechanics, at sufficiently high energy (so that the classical concept of
density of states is applicable), every degree of freedom in the system possesses an energy of 1/2kg,
where kp is the Boltzman constant. This is the theoretical basis for deriving the specific heat of ideal
gases, molecular or atomic (Callen 1985). Suppose, initially, only a small fraction of the gas particles
has energy, while others are cooled to zero temperature. The re-distribution of energy among normal

modes of the system (every degree of freedom in the system corresponds to one normal mode)



161

is accomplished through close-range scatterings between gas particles.? Associated with energy
equipartition is the concept of ergodicity, i.e., any point in phase space will be visited by the system,
sooner or later. Though we could easily believe that energy equipartition is the equilibrium for an
ergodic system, ergodicity is not a necessary condition (e.g., conservative Hamiltonian systems are
confined to the equi-energy surface yet still achieve equipartition).

It has become an implicit assumption in thermodynamics that a system at equilibrium satisfies
energy equipartition. In the process of investigating the validity of this assumption, Fermi, Pasta and
Ulam (1965) posed the famous FPU problem in 1954. As a simplification to the interacting gas, they
considered a chain of nonlinearly coupled oscillators. They observed numerically that these oscillators
may not always relax to equipartition state, but instead, for some particular initial conditions, the
oscillators recurringly visit their initial states with a ‘super-period’ (Tuck & Menzel 1972). Questions
are therefore raised: is there a threshold below which there is no energy equipartition? And what is
the threshold? If the system is above this threshold, then how long will it take to reach equipartition?

Later studies have more or less answered these questions, and revealed interesting dynamics
occurring at different energies. One important concept has been developed on the way, the so-called
‘Arnold Diffusion’, which reveals the existence of a universal instability in a nonlinear system with
degree of freedom greater or equal to 3 (Chirikov 1979). Briefly, we consider a nonlinear oscillator

with an amplitude-dependent frequency,
w(A) = wo + dw(A). (E.1)

When a (small) periodic force with frequency wy (wy is close to wp for analytical convenience) acts
upon it, there will be resonant energy absorption when the frequency of the oscillator and that of

the force are in resonance,

mw(A) + nwy =0, (E.2)

with m, n being integers. The order of the resonance is the sum |m| + |n|. The above equation
vields the amplitude of the oscillator when it is in resonance. Resonance can happen even when
the above equation is only approximately satisfied — since the force has small but finite value, it
does not take forever (a true d-function in frequency) to transfer energy into the oscillator. The
width of the resonance is roughly the inverse of the time it takes for the external force to impart a
significant amount of energy to the oscillator, and is proportional to v/f;, where fo is the strength of
the external force. The region of resonance is bounded by a separatrix, outside which free oscillation

with frequency wg dominates, and inside which the oscillator is slaved under frequency of the external

force.

?Although the ideal gas approximation neglects collisions, these scatterings are essential for diffusing energy and
producing systems that look like ideal gas.
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There should be at least three frequencies in a system for Arnold Diffusion to happen. An
example is if two external forces with frequencies wy; and wy, simultaneously act on the oscillator
with frequency wg. At sufficiently small strength, the oscillator stays in either one of the resonance
regions, as determined by its initial condition. In the phase space of the oscillator, between the
separatrixes, interaction between two resonances produces ‘narrow chaotic layers’; therefore, diffusion
may occur along (not across) the resonance layers, due to the existence of two incommensurate
driving resonances. This happens even when f; and fs approach zero, though the volume of phase
space occupied by chaotic motion shrinks (exponentially?), and the diffusion has to go through
narrower and narrower tunnels; it appears that the diffusion time extends exponentially. This is the
‘slow Arnold Diffusion’. Most of the trajectories are still locked within the domain of one or the
other resonance.

Chirikov (1979) found that, when the amplitudes of the driving forces are sufficiently large, or
the frequencies wy; and wyy are sufficiently close, there could be ‘resonance overlaps’. Trajectories
can wander from the domain of one resonance to the other, and the relative measure for chaotic
trajectories (with positive Lyapunov exponent) approaches unity.® If we measure the rate of change
of energy in the oscillator, and define this as the diffusion rate, numerical experiments and analysis
show that the diffusion rates depend on the strength of the resonances as a power law (e.g., see De
Luca et al. 1995).

When there are many oscillators interacting with each other in a system, they are to each other
the external forces discussed above. When there are more than three oscillators in the system, there
is weak chaos, but the energy diffusion rate only becomes practically fast when the total energy in
the system rises above some threshold that depends on the number of oscillators and the coupling
strengths. Below this value, the energy equipartition is exponentially difficult to reach (De Luca et
al. 1995; Galgani et al. 1992).

There is perhaps an academic point we can make about chaotic orbits. In a phase space that
1s accessible for one chaotic orbit, it is possible to define an ‘invariant spectrum’ (Contopoulos et
al. 1995). This spectrum can be obtained either by integrating the orbit for a long time, or by
measuring it for random points in this phase space at the same time. The ‘invariant spectrum’ can
also yield the value of the maximum Lyapunov exponent. It is rather amazing that a seemingly

random motion can be simplified into regular quantities; I consider this as ‘chaos tamed’.

E.2.2 Energy Diffusion for Globally Coupled Oscillators

We study here the process of energy diffusion in systems with globally coupled oscillators, to illustrate

the understandings discussed in §E.2.1.

3But this is not equivalent to ergodicity; though any point in the phase space will be infinitely close to a chaotic
g y

trajectory, there is nonzero measure of stable oscillations even at rather high nonlinearity. This shows that ergodicity

is a sufficient but not necessary condition for energy equipartition.
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We adopt the amplitude equations in (6.15), and take s to be constant for different couplings.
The non-resonant interactions will be automatically averaged out when we integrate these equations,
and only the resonant ones contribute significantly to the overall dynamics. With N modes in the
system, the amplitude equation is

% =tw; A; + i%AQ, (E.3)
where 4 = 37.(4; + Aj). The systems are set up with frequencies of the modes spread randomly
but evenly across a range of Aw ~ w; (i.e., the frequency of the modes is comparable to the range
of the frequencies).

An important parameter in gauging the rate of energy diffusion is the closeness of a mode
to resonant interactions. For every mode, on average, the closest combination of interactions is
away from exact resonance by a frequency of (6w)min ~ Aw/(2N?): every mode will attend N2
combinations, so on average, the best one will be 1/N? closer than the worst ones (see Fig. E.1). And,
if we look at the whole system, and ask what is the best resonance the system can host, systematically,
we find a minimum of (6w)min being Aw/N?3, given that the total number of combinations is of order
N3. These two scaling laws are confirmed by simulations shown in Figure E.1.

When investigating the process of energy equipartition, a usual practice is to give some initial
energy to part of the system (the ‘privileged’), and none to the remainder. We can plot the energy
growth in the latter to study the secular changes that lead to equipartition. Rapid variations
in energy, resulting from near resonances, do not lead to equipartition; only the secular trend in
these variations do. Also, the frequency detuning estimates for the system as a whole may not be
very useful, since only three-mode couplings that involve at least one of the ‘privileged’ modes are
significant. If the ‘privileged’ modes lie either at the low or high frequency end of the system, we
could estimate (6w)min as in Figure E.2. Apparently, when counting only interactions that involve
one or two such modes, the (dw)min is much larger than in Figure E.1.

It follows from discussions in §E.2.1 that when there is resonance overlap for every mode, there
will be stochastic instability and fast Arnold Diffusion across the resonances, and we expect the
system to undergo equipartition rapidly. In §E.2.1, the resonance width is determined by the strength
of the external forces. Here, these external frequencies are provided instead by mode couplings. The
width of the resonance is determined by the amplitudes of the modes in resonance. As we mentioned
above, this width is also the inverse of the interaction time scale over which significant energy can
be exchanged. We estimate this nonlinear time scale using the energy equation (6.17). Assuming

every mode has comparable energy, we get

dE W k*(0w) .,
@~ oo
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Figure E.1: Given a group of N modes with frequencies randomly but evenly distributed between
0.0 and 1.0, the best frequency detuning for every mode when all interactions ( dw = w; £ w; & wy,
with 7, j, k taken from the pool of N modes) are considered is (dw)min (averaged over all modes),
and the smallest such detuning among all modes is Min[(dw)min]. We take averages of 1000 such
random systems. When N increases, the detuning improves as estimated, with the average detuning
scaled as 1/N?, and the best detuning scaled as 1/N3.
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Figure E.2: Frequency detuning as a function of number of modes. Similar to Figure E.1, but not
all triplets are allowed as is the case there. In the left panel, a stands for (6w)min when at least
two out of the three modes are taken from the subpopulation of ten lowest frequency modes; amiy, is
for the minimum detuning of all such couplings. b is the mean detuning for couplings that have at
least one such low frequency mode, and ¢ is the mean for all possible couplings, with byin and ¢min
being their respective minimum values. The right hand panel is similar except the subpopulation
is now the ten highest frequency modes. If the ten highest energy modes are also those that have
the highest energy (as in a pulsating white dwarf), the increase in @ with NV in the right hand panel
implies a longer diffusion time for systems with larger IV, when the total energy is fixed. For large
N systems, low frequency modes will be able to diffuse energy out more efficiently than the high
frequency ones at the same total energy.
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where we have assumed that the frequency detuning is larger than the nonlinear line-width and there
is no dissipation (driving or damping). If we define the diffusion time as the time it takes to change

the energy in every mode significantly, or dE ~ E, while the nonlinear line-width is the inverse of

this time, we get
(0w)
Tt ~ S (E.5)

where 4 is the amplitude and E = A2. The resonance overlap condition,
(0w) Taier < 1, (E.6)

can be translated to a condition on the amplitudes. The minimum amplitudes for resonance overlap
can be derived using the expression for (6w)min. Here, (dw)min is the frequency detuning for average
modes in an N-mode system. According to Figure E.1, (0w)min ~ w/N2, and we find the condition

for fast Arnold Diffusion in a globally coupled system,

1

KA_NQ.

(E.7)

Or, equivalently, the total energy of the system has to be larger than 1/(x2N3) (the amplitudes
add up in-coherently). Since different modes have different chances for resonance, some may satisfy
the overlap condition at a much smaller amplitude (smaller by a factor of N2 if it has the smallest
(0w)min in the system). In systems where only some of the modes have large amplitudes, the
useful combinations are restricted, so (6w)min is larger, and the overlap condition is satisfied only at
correspondingly higher amplitudes. In fact, as is briefly mentioned in the caption for Figure E.2, if
the ‘privileged’ sub-system is composed of modes with the lowest frequencies, the typical resonances
are better than when it is comprised of modes with the highest frequencies. This characteristic is
also observed by Pettini & Cerrutisolar (1991). The second type of systems have a higher threshold
for fast energy equipartition, or equivalently, at similar energy, they show much longer diffusion time
than the low frequency type.

When a system has more energy than required by equation (E.7), the diffusion time shortens
correspondingly. Consider an average mode in the system. If it has n overlapping resonances, where

n ~ 1/(7qig (0w)min), With 7qig estimated in equation (E.5), its diffusion time shortens as

1

Tehort ~ Tdiff/ VN ~ ———=—7}
/ wr3 AN’

(E.8)

the factor of 1/1/n follows from the fact that the n resonances incoherently act to remove/infuse
energy from/into this mode. The diffusion time for individual modes depends inversely on A to the

third power, and on N to the fourth power. Above the threshold, a system with larger N can be
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more quickly equipartitioned, and the threshold (in terms of total energy in the system) gets lowered
with larger N. Most numerical simulations to date deal with systems with 10% or fewer modes, while
a real physical system, e.g., a cubic centimeter box of gas at room temperature, has N of order 1024.
The assumption of energy equipartition for gas at equilibrium is therefore well feasible, as a result
of the fast Arnold diffusion.

We would have liked to test the predictions for the diffusion rates in equation (E.5) and (E.8),
but as is shown in Appendix D, whenever x4 is larger than 1/(1/54N3/2), a globally coupled system
with only cubic nonlinearity will suffer from an intrinsic instability, called (by us) the ‘amplitude
instability’. Condition (E.7) is obviously above this limit. Hence, one is forced to include quartic
nonlinearity in the amplitude equations to stabilize the systems. This may partly explain why in
many studies to date, quartic nonlinearity has been favoured, even though it is an order weaker than

the cubic one. We use the following form of amplitude equations,

dAZ' . ,31‘6 9 . 3
el w;A; + z\/gA + 160 A°, (E.9)
where A = 3" .(A; + A7), and the four-mode coupling coefficient © is taken to be © = k2. This form

is chosen such that the fourth order Hamiltonian becomes

Hy = -‘;152444. (E.10)
For comparison, Hy = %A? We can show that including the quartic nonlinearity does not signifi-
cantly change the overlap condition.

Energy equipartition can be seen in systems with nonlinearities of the above form, and this is
shown in Figure E.3.

When the energy of the system is above the resonance overlap threshold, we find that there is
usually a swift growth of energy in the initially zero-amplitude modes for a short period of time.
Afterwards, energy diffusion proceeds slower. This could be due to an inhomogeneous density of
resonances in the phase space of the modes. Initial interactions always tend to pull the modes
into a strong resonance which cause some energy to be exchanged between the modes. But later,
when many modes are slaved to oscillate with the first resonance, they are artificially removed from
the influence of other resonances. Slow diffusion is required to emancipate the slaved modes from
the influence of these strong resonances. Ouly then fast diffusion can proceed. This slow diffusion
process is observed as a ‘plateau’ in the time dependence of the energy.

For an easily thermalized system (quick energy equipartition), mode energy follow a Boltzman
distribution, i.e., every mode spends most of its time near zero energy state, and wanders in the
energy space with its mean energy being the temperature of the system (average energy). In such a

state, the system visits all points in phase space with a probability depending exponentially on the
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Figure E.3: Energy equipartition in a system with both cubic and quartic nonlinearities.
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Here,

N =50, and the frequencies are chosen randomly between 0.0 and 3.0. We take x = 1/N, © = x2.
Initially only the ten lowest frequency modes are given energy, while the others have none. As time
goes by, energy distribution among the modes become more and more homogeneous (the upper long
panel). The energy distribution as a function of mode frequency is shown in the lower nine panels
for different times. We see that the process of energy equipartition occurs in a reasonably short time
scale; in this case the diffusion time is of order 10%.
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energy; the summation of the trajectories therefore yields the Boltzman distribution. In this limit,
the system becomes a good heat bath and every mode is well thermalized inside it. We show in
Figure E.4 a few examples of this Boltzman distribution for cases in which the energy of the system
is sufficiently large (there is also an example for the case when modes could not be thermalized).
We could quantify the behaviour during fast diffusion using the concept of ‘auto-correlation time’.

This time scale should be of order the interaction time scale, i.e., the diffusion time scale.

E.3 Dissipative Systems — Dynamical Equilibrium

For dissipative systems, the main feature in the dynamics is the energy flowing out of the excited
modes and into the damped modes. We consider how fast damped modes can absorb energy and how
this determines the system energy at equilibrium. Then we discuss the equilibrium characteristics,

including the problem of mode slaving and energy fluctuations.

E.3.1 Energy Flow into Damped Modes

For fast energy diffusion to occur, the line-width has to be wide enough that the best combination
becomes resonant. This line-width can arise from nonlinear interactions, as is discussed in §E.2.2. Tt
can also be due to dissipation. Finite growth/damping rates effectively broaden the line-width for
a mode by disturbing the sinusoidal variations. Whenever v > (w)min, diffusion across resonances
can be realized independent of the mode energy.

We look at a simple three-mode system in order to understand the rate of energy flow in the
presence of dissipation. We take wy = 0.5929165, w2 = 0.6885052, w3 = 1.27642, and (6w)min =
w2 + w1 — wz = 0.005; we will write it as dw, as it is the only detuning we are interested in. We
start with £y = E», and E3 = 0, assuming damping through mode 3 with 3 (v3 > 0). We want
to understand how fast energy is flowing into mode 3 in such a system. For this purpose, we trace
the total energy of the system, and we define vo; as the rate of energy disappearing into mode
3, Ttot 18 the absolute value of the total damping rate. The relation between ~;0; and s reflects
how fast mode 3 is absorbing energy from its two high-browed partners, since YiotErot = Y3E3
(Etor = E1 + E2 + E3).

4

We estimate E3 at equilibrium,* as a function of 3. There are two limits which we have to

consider. Firstly, the limit when 3 <« dw. The energy equation for mode 3 yields

Wiy3Kk2E?

2va Ha ~ — .
T L (Gw)?

(E.11)

41t is not an equilibrium in the true sense, since energy is constantly flowing out of the system. But in the limit
that the interaction time is much shorter than the damping time, we could think of the system as being approximate
at equilibrium.
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Figure E.4: Energy fluctuation for an average mode in a globally coupled system with N = 25. We
test for the hypothesis that mode energy displays Boltzman distribution when there is true energy
diffusion, which also leads to energy equipartition. The distribution of energy (f (E)) represents the
amount of time the mode spends with a particular energy. The shape of the distribution depends
on the initial energy in the mode, which increases from bottom to top, and from left to right. The
distribution does approach that of a Boltzman one (the dotted lines) when initial energy is large,
in which the mode spends most of the time with small energy. At the coolest end (the lower left
panel), there is no true thermal relaxation (energy equipartition) in the system and there is only a
spread of energy around the initial value. Here, the mean frequency of the system is 0.5, and 7 is the
integration time (also approximately the equipartition time) to accumulate the plotted distributions.
x = 1.0, and quartic nonlinearity is included.
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Here, we have assumed that E; is insignificant compared to energy in the other two modes. ¥2 in

the determinator can be removed as well. This leads to a relation between Ytot, Y3 and FEyp,

2
Y3 E3 wk \" 131
Yeot °F, ((6w)> 5 (E.12)
In the limit of v3 > (dw),
2
wr\" vk
o , 1
o~ (25) 2 (E.13)

As said, we have assumed E; < E; ~ E,. If this condition is not satisfied, Yeot becomes of order
7vs. In Figure E.5, we compare these estimates with numerical results. The agreement is good and
confirms our understanding of the energy flow in such a simple system.

We proceed with systems a step more complicated, i.e., a 20 mode system with the first ten
modes having large initial amplitudes and the last 10 modes being damped with a rate . In this
case, in the limit of v > (6w), the number of important resonances for every mode is of order v/ (dw).
We use the subscript j for the last ten modes, and i for the first ten. For every damped mode in

this limit, its energy will be
wiyK2E?

0~ 2 () (B4

Hence, the total damping rate,
IO’YEJ 2,2 E,

Yot ~ TO—ET @’

(E.15)

is independent of v, different from the system that has only three modes. This difference is confirmed
by experiments (see Figure E.6). In 20 mode systems, dw, the minimum detuning for triplets that
involve one damped mode and two large amplitude modes is of order 1/2/(N — 10)? ~ 1/200.

The above results on equilibrium energy indirectly confirm the estimates given by equation (6.17),

which gives us confidence in using it on more complicated systems.

E.3.2 Equilibrium Energy

We study multi-mode systems with N. modes driven at a rate of 7, and Ny modes damped at a
rate of 4 (Wu 1995).

To estimate the equilibrium energy, we assume that there is no phase correlation among modes
(i.e., complete phase randomization), which is a good approximation when the number of modes is
large. We can then average over phases in the amplitude equations and write down simplified energy
equation as we did in deriving equation (6.17). Here, we assign negligible energy to damped modes,
as well as comparable energy (F) to every driven mode. This leads to the following energy equation

for any driven mode,

dE

—— ~2%.F — E?. E.16
o =2l -3 08 (E-16)
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Figure E.5: The total dissipation rate (i) in a three mode system as a function of mode energy
(upper) and mode damping rates (lower). Here modes 1 and 2 have large initial energy (Ey),
w1 + w2 &~ w3, and mode 3 is damped with a rate of v3 (73 > 0). Energy is transported out of mode
1 and 2 and is dissipated in mode 3. The total dissipation rate is defined as Yot = V3 F5 /(Eiot)- In
the upper panel, 3 = 0.001 < dw ~ 0.005. The triangles are numerical data, and the dashed/dotted

lines are theoretical estimates for Es < E, and FEj

~ E;. Initial energy in the system is fixed in

the lower panel, and 7;0¢ approaches the two theoretical limits made in equation (E.12) for v3 < dw
and in equation (E.13) for v3 > dw respectively. Here, k = 1/20; quartic nonlinearity of the form
(E.9) is added to prevent amplitude instability.
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panel v > (dw): even when the last 10 modes are infinitely damped, the system still suffers finite
dissipation, as predicted by equation (E.15). Here x = 1/20; quartic nonlinearity is also added.
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The summation is carried out over all triplets that consist of two driven modes and one damped one,
taking the minimum frequency detuning within each triplet. These triplets are the ones that work
most efficiently to transport energy from the source to the sink, thus constricting the overstable

modes to finite amplitudes. The coupling strength 3 for such a triplet is given by

8 ~ 9x%u?

el B
where v = |y1| + [y2| + |3, with modes 1 and 2 driven, and mode 3 damped. In general, damping
is much stronger in magnitude than driving, i.e., v ~ |y3] ~ 4. Aw is the amount of detuning
from frequency resonance for the triplet. The part in parenthesis in equation (E.17) is a Lorentzian
profile, which accounts for this detuning. When |Aw| = 0, the coupling is called ezact resonance;
when |Aw| < v, it is near-resonance; otherwise, it is non-resonance.

In equilibrium, the energy of every driven mode is approximately given by

27e
E~ , E.18
=7 (519
and the total energy in the system by
27,.
Etot >~ NeE ~ Ne (E].g)

>0
As we discussed in §E.3.1, there are two different limits for such a dissipative system. First, when
none of the combinations is close to resonance, i.e., when all |Aw| > ~, the dynamics is dominated
by the one that comes closest, and fast Arnold Diffusion is not possible (since we are using only
three-mode coupling in this section, our amplitudes cannot reach the criterion set in eq. [E.7], since
they have to satisfy eq. [D.14] to avoid the amplitude instability). For this case,
2 Ne(Aw)fninrye

Eior = 0 Ky, (E.20)

When chances for resonance and near-resonance are fairly good, i.e., many | Aw|min € 7, the sum-
mation is necessary and can be substituted by multiplying 8 with an estimate of the number of such
(near-)resonances, ¥/wmin. Fast Arnold Diffusion is guaranteed.

A simple one-dimensional system is designed to test the above conclusions, as well as to familiarize
ourselves with the kinds of nonlinear behavior that is present in a real star. The system consists of
Ne driven modes, and Ny damped ones, whose frequencies are chosen randomly over a range of Aw,
and Awy, respectively. We let Aw, fall within Awy. The driving rates for the N, driven modes are

chosen randomly between zero and some positive number, with central value 7.; similarly for the



175

N4 damped modes, except with a negative central value of v4. Under these conditions,

Awe
| Aw|min ~ NN, (E.21)
[
We define
C= |v—w| (E.22)
and
A min
Conin = Lle_ (E.23)
Cmin > 1 represents the first situation discussed above. We have
2 NeYeVd -
Eior ~ 9 ’:2’);)2/(1 Crzninv (E.24)

when Crin < 1, the number of near-resonances (with C' < 1) is large and can be approximated by

=, which leads to

C’min- (E25)

Notice the different dependences for the above two results on N, and N4. With the help of equation

(E.21), energy in equation (E.24) scales as

1
Etor x _—NeN§ , (E.26)
while in equation (E.25)
1
Eior, o Ny (E.27)

The independence of E¢ on N, after Cp;, passes unity from above is due to saturation of the
number of possible combinations between any two driven modes; before this happens, the bigger the
number of driven modes, the smaller the total energy. Our numerical experiments yield results that

agree with the above estimates satisfactorily, as can be seen in Figure E.7.

E.3.3 When at Equilibrium

We emphasize two aspects of the system dynamics when at dynamical equilibrium. First, the
dominance of a couple of overstable modes and their slaving of other modes; second, the fluctuations
associated with the dynamical equilibrium.

For simplicity, we again study a system with only three modes. Assume mode 1 and 2 are
overstable with rates y1 = v2 = 7, and w3 ~ w1 +ws is damped with a rate of v3. We use a detuning
dw = wy + wy — w3 = 0.005, while typically v; = 1074, and 73 = —10=2. The results here should

be representative for any combination. We show that at equilibrium, slaving of the third mode to
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Figure E.7: Total energy in a driven/damped system as a function of Cyin, the ratio between
detuning and damping (eq. [E.23]). Simple estimates are compared with results from numerical
simulations. The solid line represents equations (E.24) & (E.25), with a somewhat arbitrary break
at the point of Ch, = 1. Here, the energy scaling factor % = %N’jgjld . The large scatter at
Cmin > 1 is associated with the small values of N, there (mostly N, = 1); since the analytical
results only describe the simulations statistically, a bigger N, (or Ng) provides a better fit, as is
clear elsewhere in the plot. The only nonlinearity in these experiments is those due to three-mode

couplings.
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the frequency determined by the two excited modes is prominent. This affects the dynamics of the

system. We use an amplitude equation of the form (with x = v/2/36),

@A?’
48

d ! _’yiAi'FZ.w,in‘f‘%A?‘f‘

= (E.28)

3

where A is a summation over real parts of the amplitudes, 4 = 3 =1

(A; + 47). The addition
of the fourth order interactions helps to keep the system free from the amplitude instabilities (see
Appendix D). It does not change the dynamics too much since the terms are usually small compared
to the three-mode coupling terms. The system is started with random initial amplitudes and phases,
and integrated forward using a second-order symplectic integrator. The final equilibrium state is
reached when there are no more secular changes in mode energy. At equilibrium, apart from random
variations over short time scale, we should have v, E1 + v Es + 73 E3 ~ 0.

First, we show that in this system, the naive equilibrium state of £, ~ Es > FE3, with mode 1
and 2 contributing energy simultaneously to mode 3 is not a stable configuration.

As is clear from the energy equation (6.17), mode 1 and 2 lose energy in a ratio of wy /wy. If we
define the quasi-particle number as N; = E; /w;, three-mode coupling takes one quasi-particle out of
each driven mode, and put one into the damped mode. But mode 1 and 2 are gaining energy with
the same rate, 2y, E; ~ 2y, F>. Hence, there is an energy budget unbalance for at least one of the
two driven modes when they have similar energy.

So, how about a solution E; ~ wi/wsEs > E3? This solution is not stable against small
perturbations. Let Ey = E;(0)+¢€, Ey = E3(0)+4, E1(0) Ex(0) are solutions that make dE;/dt = 0.

When neglecting the smaller nonlinear terms, the perturbed forms of equation (6.17) look like,

de %

= = _ : 2

o o (E.29)
dé Yiwa

—-— = ——c. E.30
dt [55] ¢ ( )

Convert these to second-order differential equations, and it is clear that both € and & are going to
grow exponentially with a rate of v, i.e., the solution is not stable.

According to the above reasoning, a stable equilibrium state will not depend on the reaction of
w1 +wz — ws alone. In fact, other channels of energy transfer have to become dominant, even though
the frequency detuning, dw, associated with them are much larger. For these interactions, we find
that one mode becomes the dominant one and starts forcing some of the other modes into slaved
oscillations. Which mode achieves this status depends on the initial conditions and the frequency
ratios.

The fact that the most obvious interaction channel (w; + we — w3) is not necessarily the most

important one appears in many three-mode systems we investigated. A variety of results are shown
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in Figure E.8. Notice the different degrees of slaving, as well as the interesting fact that one of
the excited modes has to stay at very low energy. There is strong phase locking in these simple
dynamical systems, and even excited modes can be slaved. Here, the natural frequencies of the
three modes are not necessarily in resonance.

In contrast to the systems with two excited modes, a parametrically excited system (w1 — ws+ws,
with mode 1 excited and the other two damped) can lose energy stably through the best resonance.

Also, in systems that have more than two excited modes, effective combinations are many. Phase
randomization is realized, and the obvious channels can be the best ones. But even in these systems,
slaving may be important. In fact, as is strongly suggested by Figure E.9, mode slaving is rather
universal among globally coupled dissipative systems, whose dynamics are not ideally turbulent.
One may have to wonder whether a slaved mode in the pulsating white dwarf can still be called an
eigenmode, though.

We find that globally coupled systems, even for large N, will gradually evolve towards an energy
distribution pattern in which a small population of overstable modes dominate the dynamics. These
excited modes, together with the damped modes related to them through resonances, become the
main reservoir of energy. This is shown in Figure E.9, where energy of the modes is seen to depend
smoothly on frequency, we call these the ‘beautiful patterns’. The presence of these patterns implies
the presence of mode slaving, and therefore the failure of the random phase approximation. The
system is in a chaotic yet not turbulent state. The effective line-widths of the modes are narrower
than either the linear driving/damping rates or the nonlinear line-width one would estimate from
the mode amplitudes. The whole system is organized into many limit cycle oscillations.

In deriving equations (E.24) & (E.25), we assume that every excited mode have similar energy,
and we estimate the total energy in the system from this. But in reality, each dynamical system
that contributes to one data point in Figure E.7 has an un-even distribution of energy among even
excited modes. Fortunately, the results tested in that figure depend only weakly on this assumption.

When there is no more secular change in mode energy, we say that the system has reached equi-
librium. And when a system allows fast diffusion across resonances and satisfies phase randomization
(as opposed to the phase locking seen in most of the examples discussed above), we say the system
is in weak turbulence. For an equilibrium system exhibiting weak turbulence, every mode is still
Jigglings in energy space, exchanging heat constantly and satisfying dF;/dt = 0 only statistically.
Moreover, the size of the fluctuations in this state can be of order the amplitudes themselves. This
is similar to the conservative case, in which the energy is distributed as a Boltzman function (Fig.
EA4).

We consider the time scale for these energy fluctuations. A hand-waving argument goes as follows:
at statistical equilibrium, an excited mode gains energy from the stellar background, and loses it

through nonlinear interaction. For statistical equilibrium to hold any time, these two processes
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Figure E.8: We study the slaving of modes in a small dynamical system where two modes are driven
with 4 = 107, and the third mode is damped 3 = —10~2. The horizontal axis is frequency, the
vertical one is the amplitude of Fourier transform for the real part of the mode amplitudes. Shown
here are four systems, each occupying three panels, corresponding to the three modes in each system.
Listed are the natural frequencies and equilibrium energy for every mode. The small open circle sits
at the natural frequency of the mode. Notice the different degrees and forms of slaving. Lower left:
mode 2 is slaved to 4w,. Upper left: mode 2 is slaved to w;. Lower right: both driven modes oscillate
at their natural frequencies. Upper right: mode 1 is slaved to ws. In none of these cases, mode 3
is oscillating at its natural frequency. We include four-mode coupling in these simulations, but it is
not the main channel of energy transport, judging from the types of slaving behaviour here. We are
baffled, in any case, by the presence of seemingly very high order resonances. For example, in the
lower left case, there seems to be five-mode coupling, though this is not allowed by the amplitude
equations.
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Figure E.9: Another example of the slaving behaviour. Here, four globally coupled large dynamical
systems are observed at their equilibrium. They differ in their total number of modes. The triangles
represent overstable modes, while the dots represent damped modes. Apparently, stable equilibrium
in this kind of systems requires specific pattern of energy distribution, in which a few overstable
modes dominate the scene. The pattern becomes more and more organized as N increases, and
the damped modes (and some excited modes) are obviously in forced oscillation. Here, only cubic
nonlinearity is used in the amplitude equations.
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should have similar time scales. So, in the limit of weak turbulence, pulsation modes have amplitude
changes of order the amplitudes themselves, and the time scale of the amplitude changes should be
of order their respective driving or damping times.

We stress that the above results are for systems in truly turbulent state. We have considered
mainly globally coupled system in this chapter. In these systems, modes are closely chained to
each other in both phases and amplitudes, and show a strong coherence that is not generic of real
pulsating stars. A pulsating white dwarf presumably possesses many relatively inter-dependent
sub-populations.

We must mention again that we started investigating globally coupled systems with only cubic
nonlinearity both for its simplicity and computational convenience. But the amplitude instability
intrinsic to cubic nonlinearity (Appendix D) reduces the importance of these studies. Normal modes
in a physical system do not experience such an instability. The results we obtain for the globally
coupled systems are, at best, only illustrative to the dynamics in a real system, which has non-
constant coupling coefficients for different resonances, and has strict angular selection rules that
exclude global coupling. For a pulsating white dwarf, the amplitude instability only becomes possible
when (6p/p)tor caused by pulsation approaches unity. But at this point, the perturbative approach
breaks down and we need not worry about this instability. Also, the behaviour of mode slaving
(in which a subordinate mode oscillates at alien frequency) is unique to the truncation of mode
couplings in the amplitude equations. In a pulsating star, when the condition for mode slaving is
present, the higher order couplings have become as important as the lowest order ones, and the

assumption leading to the amplitude equations breaks down.

E.4 Realistic Multi-mode System — First View

Here, we investigate the dynamics of a more realistic system. This system is a small sub-population
among the normal mode hierarchy in a pulsating white dwarf. We can choose this sub-population
arbitrarily, and take into account all couplings among its members.

Here, we select a few low-order (radial order n), low degree (spherical degree £ as in Y4,,) modes,
with n = 1,2..7, £ = 1,2, ...5 (we set all m = 0). There are 35 modes in this group and a total of
749 combinations that are allowed by angular selection rules (€3 = [€1 — o], |1 — £a| +2, ..., |61 + €] —
2,101 +£5]). The modes we choose for the experiments are modes that are likely to be important in a
pulsating white dwarf; some of them will be visible in the observed power spectrum. We investigate
the dynamics of such a conservative system (v = 0.0).

First, we demonstrate that a realistic system can reach energy equipartition without encountering
the amplitude instability, unlike a globally coupled system. The initial conditions are such that only

the £ = 1 modes have large energy. The ¢ = 1 branch also has relatively low frequency. We show by
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numerical experiments that energy equipartition happens after finite time when the total energy in
the system is sufficiently large. The 749 combinations form a diffusive web for any mode to travel
across the resonances and to get infinitely close to any location in the phase space, i.e., we observe
fast Arnold diffusion and strong stochastic behaviour. The energy equipartition process is shown in
Figure E.10, in which the amplitudes (the squared root of energy) of individual modes approaches a
uniform distribution after a time of 10® s, when the mode periods are of order 100s. The amplitudes
we use in this experiment are comparable to the observed amplitudes of the pulsations, i.e., the
density compression (6p/p) for overstable mode is of order a few percent.

The diffusion time (~ 10° mode periods) can be further shortened when the system we choose
better resembles a white dwarf in terms of number of modes and combinations.

At equilibrium, every mode acquires equal amount of energy, independent of their mode masses.
This is shown as the constancy of energy, but non-constancy of (6p/p) in Figure E.10.

On the other hand, if we give initial energy to the £ = 5, n = 1,...7 modes (which have on average
higher frequencies), the energy equipartition process is much slower, as is seen in Figure E.11. But
the main explanation for this behaviour is not the resonance property of the modes (as is invoked
in the discussion around Figure E.2), but rather the average magnitudes of x, which decreases as a

function of ¢ when n is kept constant. This characteristic of & is demonstrated in §G.3.
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Figure E.10: The process towards energy equipartition in a numerical experiment where 35 modes
and 749 couplings among these modes are included (see the text for the choice of the modes). We
are not dealing with a globally coupled system. The system is conservative, and 7 modes are given
initially large amplitudes, similar to the observed magnitudes of (§p/p) in a pulsating white dwarf.
The rest are given much smaller initial energy. Evolution of the time-averaged A; due to nonlinear
interaction is plotted in the subsequent panels. At a time as early as T = 10%, a fast process has
given rise to approximate equipartition for the majority of the modes. A much longer time (T = 10%)
is necessary for the completion of this process, possibly due to the existence of strong resonances
and inhomogeneous phase space attractors (see §E.2.2). The physical amplitudes (6p/p); (plotted
in the upper-most panel for T = 108) is related to A; by its normalization value and a constant 10'°
such that, (6p/p); = 10'°(6p/p)A;, and (0p/p) is the normalized value of (6p/p) at z,, the top of
the propagating cavity of the mode (see Chap. 2).
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Figure E.11: Similar to Figure E.10, but with the seven relatively high frequency modes initially
excited. The total energy in the system is similar to that in Figure E.10. Energy equipartition is
achieved much later, as a result of the difficulty in finding good, efficient resonances for these high
frequency modes.
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Appendix F Deriving the Energy Equations from
the Amplitude Equations

F.1 Introduction

In this appendix, we detail our effort in deriving the secular forms of the amplitude equations.
Called energy equations, these forms are useful in understanding the evolution and equilibrium
of coupled dynamical systems. As all fast oscillating terms are removed using the random phase
approximation, only slowly varying dynamics is preserved in the equations, and the confusion is
minimized. We should caution that at many times, dynamics described by the amplitude equations
does not produce sufficient phase mixing and satisfy the random phase approximation. At such
times, the energy equation may not describe the most important dynamics in the system.

We consider a system with at most three modes and one single coupling. The energy equation
derived for it can be easily generalized to other systems. We derive expressions for energy equations
in a conservative system, as well as a dissipative system. Expressions for the latter case is not seen
anywhere in literature.

Equation (6.15) describes the evolution of mode i’s amplitude under both the phase rotation and
the three-mode coupling with mode j and k. Here, we decompose that complex equation into two

real equations: equation for amplitude modulus evolution,

dA;
dt

=7 Ai + wiSi| Kiji | Aj Ag sin(®, 54 + 0); (F.1)

and equation for phase evolution,

dg
dt

A4

A;

= wi + w;i| K| u cos(Pyjx + 0). (F.2)
Here, A; are the modulus of the amplitude for mode i, the complex amplitude A4; = A; exp(—ig;) =
A exp(—iwit — ihe(t)). Mode energy E; = Juw; = 4;4; = A7. The phase combination ®;j; =
Si* ¢+ Sjx¢j+ Sk * dr, where s, ;1 takes +1 or —1. The coupling strength between modes (4,7, k)
is Kyjp = |Kjjr|exp(—id). v; is the driving or damping rate for mode i.

In later derivations, we rely heavily on the concept of quasiparticle numbers, M;. It is related to

A; as
A
A/ Wi ’

M; = (F.3)
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therefore, M? = E; Jw;.
In terms of quasiparticle numbers,

dM;
dt

=v;M; + Sifijk sin(dwt + Dk + 6)Mij, (F.4)

and the phase equation changes into one for 1;, the part of the total phase ¢; that does not rotate

fast,
dip; M; My,
7 = fijk cos(dwt + b + 5)_;\_41——’ (F.5)
with a new coupling strength
fisk = [Kijk| * \/wiw;wy. (F.6)

F.2 Energy Equations for Conservative Systems

Kumar & Goldreich (1989) derive the energy equation for the above amplitude equations in the case

of v; = 0. They get

dft”:’ = SiwiK 2, (SiwiEjo Exo + Sjw; Eio Ero + SkwkEioEjo)(SiLf;z—)@), (F.7)
or, equivalently, in terms of quasiparticle numbers,
%ﬁi = Siw; [ (SiM My + S; MG M + SkaoMfo)in—%"t—). (F.8)
Here, E;; is the second order perturbation on E; with the following expansion,
E,(t) =Eio+ Ex(t)+ En(t) + ... (F.9)

They find that E;; does not have secular changes due to three-mode couplings.

Here, we provide a new (but similar) way of deriving the energy equation and show later that using
the perturbations of energy (E;, as is done in Kumar & Goldreich 1989) and using the perturbations
of quasiparticle numbers (M;) give essentially the same results.

We perturbatively expand M; as
]Vf,(t) = M + ]\/[il(t) + ]V.[,z(t) + ... (FIO)
The relations between expansion terms for E; and M, are

E, = wM;M;~ wi(AL-O + Mj (t) + ]\/[lg(t)) * (Mz'O + M (t) + ]\/flg(t))
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~ wi(Mjy + 2Mig My + ME + 2Mig M + ....), (F.11)
or, more explicitly,
Eoy = w;M},
Ey = wi2MjM;,
Ein = wi(MZ +2MyM;). (F.12)

We further expand phase v; as

¢z(t) =10 + V¥i (t) + ’l/)n(t) + ... (F.13)

With the v’s set to zero, equations (F.4) and (F.5) become

dM; .

7 = Sl_f”],~ sm((5wt + (Pijk + 6)M]Mk7

di; M; M,

—% = fijrcos(dwt + D + 5)—JM—k (F.14)

Assuming all perturbations are zero at time ¢ = 0, the zeroth order quantities can be substituted
into the right-hand side of equation (F.14). Integrating it over time yields expressions for the first

order quantities,

COS((I)ijkO +9) — cos(dwt + ‘I’ijko +9)

Mu(t) = SifijeMjoMo 0 ,
MioMpo sin(dwt + ®;:,.° + §) — sin <I>Z-~.0+5
wil (t) = fljk ‘;\()4-'0’»0 ( ik 6w) ( 7k ), (F15)

where @ijko = Szwzo + Sjij + Skwko-
Now, to derive the second order quantities, we need to substitute the above first order ones back
into the right-hand side of equation (F.14) again. Noting that
M ; M, 1 M;
—_ Mo+ M) (M, My ) (— —
M, (Mjo + Mj1)(Myo + “)(]\/fio M, 5)

MpMio Mo Mo Mo Myo
ol | Mjo My — 2ol
YR v VS V)

12

Mjy, (F.16)

as well as,

Mj]\fk ~ ]\/[jOAIkO + MjOJ\’[kl + ]\/[k()]wjl,
Sin(dwt + q)'ijk +4) = sin(dwt + (Pijko + 6) + cos(dwt + CI)ijkO + (S)Q’l‘jkl,

cos(dwt + Dy + 8) = cos(dwt+ ‘i’,‘jko +9) —sin(dwt + ‘I’ijko + 5)‘I>ijkl, (F.17)
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where <I>i]-k1 = Siva + Sjv1 + Sk, we obtain the following relations, adopting the assumption

of random phases,

dM;s .
7 = Sifijk(MjoMkl + MkOMjl) sm(&u t+ ‘I’i]‘ko + 5)

+8; fije Mijo My cos(6wt + @,51° + 8)(Sivhir + Sjvj1 + Sethnr)

e LM,
= Sif{jk(QSijoMiO -+ QSijOMio + SZT)
10
®;ir° - ®;i°
Sin(0wt + iy + ) Bk +9) C;j(‘s‘” + R +9) (F.18)

The random phase approximation adopted above leads to expressions for the secular changes in
phases and amplitudes. As an essential part of this derivation, the random phase approximation
stresses that the phases of various components in a coupled system are not causally connected, as
their natural frequencies are different. It is necessary that the small part of the phase, 1;, remains
small in comparison to the rotating part of the phase (wt); in other words, the mode is assumed
to rotate close to its natural frequency. As is shown in Chapter 6, this assumption is not always
satisfied in systems with small number of modes and strong interactions, and in these cases, the
random phase approximation breaks down.

We come back to our derivations. For simplicity, we split the angles inside sin and cos functions

in equation (F.18) into

owt + QCI)ijko +20

2 )
Swt
5 = % (F.19)

Simple trigonometry transforms equation (F.18) into

dM;» . . M3 M3, sin® asin 28 + sin 2asin? 8
dtl = S ik (285 Mg Mio + 25, M3 Mio + S; f]\ I ) 5 . (F.20)
The random phase approximation leads to the following expressions,
<sin2a > = 0,
. 1
<sinfa> = 3 (F.21)
And we have
dM; ) ) 5 1 MHME sin(éwt)
7 = Sifijk(sj-z\/fkojuio + SijOJ\f[io + 551 J]Wio S0 ); (F.22)

this is the final result for M;s.
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Derivation for 1;» is analogous to what we just did above and leads to

1 — cos(dwt) )
dw '

dib; .
Vi _ g2 (SuM2 + S;ME)

L2 = (F.23)

When there are more than three modes, the right-hand sides of equations (F.22) and (F.23) should
sum over all possible combinations.

For t € %, we have

sin(éw t) ;
dw ’
1 — cos(dwt) 9
_— 20w t-. F.
> wt (F.24)

This brings equation (F.22) and (F.23) to their final form

dM;s : 1, M3 Mg,
dtl = Sifi(S; My Mio + Sk My Mo + -Q—Si;vT)t, (F.25)
d N
715;—2 = 2f7 1 (Sk M3y + S; M) 0w t2. (F.26)

Equation (F.25) can also be derived differently. Take a second order derivative of M; with respect

to time, applying random phase approximation to it, we get

dZi\fi = Si (S Mg Mio + Sp M3 Mo + %S%) (F.27)
Using the following Taylor expansion,
M;i(t) = M;(0) + dcjlvt[i limo t + %—%hzo 2., (F.28)
we obtain the secular changes for M; as
< M;(t) — M;(0) >= %S,- T3 (S Mo Mio + Sk My Mg + %SiM—i(}?L’%)tQ. (F.29)
In a differential form, this is
< % >= 8if7(S; Mo Mo + Sy M3 Mo + %S%) . (F.30)

Identical to equation (F.25).

At first look, it’s not obvious that equation (F.25) is equivalent to equation (F.8). We prove here
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that they are indeed equivalent. We have, from equation (F.12),

dE;s AMZ dMi
Wil H2Me—7)

(F.31)

Knowing M, (t) and d%”, we can derive a new expression for dgf, and compare it with equation

(F.8). This is carried out here.

Using equation (F.15), we have

4sin® asin® B

M} = S7 75, M3 Mp, 52 (F.32)
Applying again the random phase approximation, we obtain
. 2sin? §
M} = 87l MM, 7 (F.33)
w
which further gives
M3 92 g2 2,0 SIN2J
Combining this result with equation (F.22), we get
dEi-) sz21 dML‘Q
Dtk — J(—2L 4+ M,
dt wil=g + 2Mio=g)
. . 5\ sin(dwt
= 2Swifl(SiML My + S; M Mg, + SkMZOMfO)¥ (F.35)

ow

a factor of 2 off from equation (F.8).
We suspect that the difference of a factor of 2 comes from different mode counting method

employed here and that in Kumar & Goldreich (1989).

F.3 Generalization to Dissipative Systems

It is straightforward to generalize the results in equation (F.8) to the cases when ~y; # 0. We regard
7v; as the imaginary part of the complex frequency, @; = w; +ivy;. We let B; = A;e™*i, where
E; = |B;]?.

Assuming |v;| < w;, we can revise equation (F.8) into

dE;
dt

> in(é&t
= Siwil\izjk(siwiEjOEkO + SjwiEigEro + SkaEiOEjO)(%)a (F.36)

where 0@ = s;@; + ;0; + 0 = dw + i(s;v; + 57 + Skvk) = 6w + il
Using the fact that

sinf = (F.37)
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the real part of equation (F.36) becomes,

dFE;s
_dt—o = SiwiK?jk(SiwiEjOEkO + Sjw;EjEre + SpwrEioEjo)

r

SEFETE (F.38)

This is the energy equation for a dissipative system.
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Appendix G 3-Mode Coupling Coefficients

In this appendix, we detail our numerical calculations of the 3-mode coupling coefficient, the value
of which is pivotal in determining the amplitudes of gravity-modes in pulsating white dwarfs. Here,
we ignore the nonadibaticity in the pulsations, and work with the adiabatic eigenfunctions.

The expression of the coupling coefficient is equation (6.11). Tt involves products of the various
covariant derivatives on the three eigenfunctions. We list the properties and expressions of the
covariant derivatives for scalars, vectors and tensors in §G.1.

Most of our analytical derivations in this appendix are aimed at reducing the complexity in the
expression for the coupling coefficient. Numerically, we go through three separate methods to pin
down the final answer for x (§G.2).

In §G.2.1, we describe briefly the first numerical method to calculate k. Also in this section,
we employ the properties of the eigenfunctions (as derived in Chap. 2) to estimate the magnitudes
of different terms in the coupling coefficient. We find that the largest terms originate from the
curvature of the spherical coordinate systems that we adopt, and they can be several orders of
magnitude bigger than the physical terms. But as is shown later in that section, these curvature
terms cancel each other. The first numerical method suffers from the inaccuracy in calculating this
cancellation. The second numerical method presented in §G.2.2 takes this cancellation into proper
account. The results obtained there are more reliable than from the first method.

The third numerical method is described in §G.2.3. This one is first developed by Kumar &
Goodman (1996), and it employs the technique of integration by parts. We show that this method
is again superior to the other two, though the results from all three methods agree to the order
of magnitude. The radial integrand of % from this method does not reflect the strength of local
physical coupling. To study the local coupling strength, as is useful in the case of travelling waves
and nonadiabatic eigenfunctions, we resort to the second numerical method.

Finally, in §G.3, we derive a simple expression for  in the incompressible limit. This expression

is used to confirm many of the scaling relations obtained numerically.
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G.1 Preparation - Covariant Derivatives

The full expression of the coupling strength for coupling between any three mode, copied from

equation (6.11), is

Kogy = - / PP {11 = 1) (V- Dal€)a(€), + (V- §a(€) (e + (V- INGANEAN
+[(€)a(EaE + €l (€D + [0 =17V -8V - 857 - 5.]}
_ /d%(dm + dis + drg), (G.1)

where the symbol ;” denotes covariant derivatives, eg., 5’] stands for j direction covariant derivative
on ¢ component of the vector 5 dr1, drks and dks represent the three radial integrals that build up
K.

Unlike in Chapter 2, where plane-parallel approximation is adopted, here we treat the eigenfunc-
tions in spherical coordinates. The spherical coordinates are the natural and convenient coordinates
for a spherical star, and in the case of no strong rotation or magnetic field, the angular dependences
of the eigenfunctions can be expressed in terms of a family of complete, ortho-normal functions, Yy,,.
There are a set of angular selection rules defining what modes can be coupled together, the rules
themselves results from the conservation of angular momentum.! We consider modes in spherical
coordinates, not only to take these selection rules into account naturally, but also to comply to the
‘industrial standard’, as the real pulsations are observed in these coordinates. However, this choice
of coordinate system also brings us some unwanted complications, such as large curvature terms

that cancel each other in the end but obscure the physical terms on the way.

G.1.1 Coordinate Basis

In spherical coordinates with basis vectors that are dimensionless (they can also be regarded as

having unit lengths), we decompose 5 into

1 90

- 0
E=E6 180488 = |60).6.0) 55.6(r) 5552 Von(0,0). (G-2)

The &, used in Chapter 3 is equivalent to our £n0Yer, /08 here (a matter of notation); £.(r) and
&n(r) have dimensions of length.

When we calculate a scalar defined by covariant derivatives (e.g., X = (V- f_’)f;ijff;), the final
result should be independent of the coordinate systems we use to calculate it. This allows us to use
the covariant basis since many of its properties (like metric tensor, and Christoffel symbols, as we

would go into later) are already derived in textbooks for tensor analysis (for example, see Arfken

'In a plane-parallel geometry, this is equivalent to the conservation of horizontal wave vectors.
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1985). We go through the definitions and formulations briefly below.
We prefer to use the covariant basis with dimensional vectors &%, which are related to €; by the
scale factors h;: & = h;&;, with h, =1, hy = r and hg = rsinf. &; have the dimensions of h;. In

such a coordinate system, the displacement vector is decomposed into

- 1 19, 1 0
= (£")'s, by, OYeE, = - = ———— | Yo (0 3
f (§ )87‘"!‘(6 )50+(£ )5¢ 57‘(7')7rgh(r)aeagh(r)rsin208¢ KM( 7¢)7 (G )
where &.(r) and £, (r) are the same as the ones in equation (G.2).
The covariant basis vectors are related to each other by
€ - €5 = gij, (G4)
and g;;, the covariant metric tensor for spherical coordinates, is
1 0 0
9ij = 0 7.2 0 ) (G5)
0 0 72sin%6
The corresponding contravariant metric tensor g is
1 0 0
g'=10 % 0 (G.6)
0 0 r2 siln§ 0
The Christoffel Symbols are defined by the following operation,
9
aq] - ‘ij€k7 (G?)

where ¢" =7, ¢ = 8 and ¢® = ¢. The covariant derivatives are expressed using this tensor as

L ovi
b= dq

+ VT, (G.8)

where the rule of Einstein summation applies. The Christoffel symbols can be computed from g;;

by the formula,

Tt = Lgok <% %is ag”). (G.9)

2 Oq? Oq’ B dq*

For the metric in equation (G.5), the only nonvanishing parts of I' are (Lightman et al. 1975)
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;d) = -r Sin2 0,
1
FEO = FZr =
sz = —sinfcosh,
1
@ — o _
Ly = Iy = .
6 _ o _ cOSO
Lo = F0¢ = Snd (G.10)

G.1.2 Covariant Derivatives for Vectors

These lead to the following covariant derivatives for an arbitrary vector V. With a decomposition

of V'&, + V& + V9&4, we have

avr
Vi = VI= ,
ir o or
Vi = Vi—rV?
5 = Vi — V%rsin? g,
Vi = vig 1Vﬁ,
; . r
1
V:z = ‘/,g + ;‘/T7
Vi = Vi —sinfcosgv?,
1
Vi o= Vet ve,
; ; r
V¢ _ thﬁ + COSOV¢
Y A
1 cosf
7 Ve Zyr e G.11
Ve ot EA sinf ’ ( )

where the subscript ‘,” stands for partial derivatives (as compared to covariant). The divergence of

V' is

R r 70 7 9 0
V.7 ol + ov oV 4 2y cos

76
or o0 + 8¢ v sm()‘ ‘ (G.12)

For the displacement vector in equation (G.3), this divergence becomes

- 10 r .
Vo= 22 02 m) - o 4 1) vi0, ), (G.13)
r? Or 7
noting that V¥, = —¢(£+ 1)Ys,,.> This expression is identical to the one that would be derived if
using the dimensionless basis €;. This reflects the invariance of scalars during coordinate transforms.

For convenience, we write down explicitly the covariant derivatives in terms of Er(r) and &.(r)

2The Laplace on the sphere, V2, is formmally = g*#v,, Vg, where «, 8 only go through 6 and ¢.
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€ = 60V (6,0).
¢ = 1&@)—%1’2%
€ = () . (G.14)
And we have
€ = o lerWim,
& = @(r)(,fa 5h<>3 o
€ = )55 im 6 g Vi,
g = 1a) DY
€)= ) Vi + 2 (Vi
g, = 1£h(r>63;¢nm—i§f’jgfh() i
& = rargh()inQG%nm’
& = 160 |- rgastint mryaegtin]
€ = () g Vim + 6o + ()0 D, (G.15)

G.1.3 Covariant Derivatives for Scalars and Tensors

As will be needed in §G.2.3, we list here the relations leading to covariant derivatives of scalars.

Consider a scalar of the form, p = p(r)f(6, ¢), where p is the radial dependence, and f(f, ¢) the

angular one. The first order covariant differentiation transforms it into a vector,

and

J .
Dy = é;pf(G,(]ﬁ)
.0
po = p%f(&@
.0
Py = 8—¢f(6’,¢) (G.16)
rr _ 0 ~
g pﬂ’_apf(gv(ﬁ%
6o, _ 1.0
9"'pe = )paef(&cb),
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.0

0 = gy =~ 57 8, $). G.17
p 9P = GorzaPagl 0 (G.17)

The second covariant derivatives of p (making it p'fj) follow the same rules as in equation (G.15).

In particular, for a scalar that has f(6, ¢) = constant, the only nontrivial second covariant derivatives

are

I

i dr2’

0 1 dp
Po = rdr’

. 1d

A G.18
P rdr’ ( )

To calculate the third order covariant derivatives of a scalar, we use the following formula taken

from Lightman et al. (1975),
(p,l])k - (p;ij)’k + Ffzkp:;' - F?kp,ln (Glg)

Applying it to a scalar that does not depend on # and ¢, the only nonzero components are

. _ Dp
p;rr - d?“3 b
. od (1ldp
= rT— -
Pioo dr \rdr)’
. 2 d (1dp
T . 2in2g 2 | 22K
Pigo = TSI edr <r dr) ’
0 d ]. dp
Pro = 77
; dr \ rdr

o d (b

e dr \rdr)’

) d [1d

o @ (lap 2
p§¢77’ dT <Td7'> . (G. 0)

G.2 Three Numerical Methods

In this section, we describe three different methods that are implemented into a computer to calculate
the coupling coefficients. The work can be divided into two steps, one is to integrate the angular
dependences of the coupling coefficients over the sphere, the second is to integrate over the radius.
The first part can usually be done analytically, as is shown here, while the second part is done

numerically.
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G.2.1 The Direct Method

1). Methodology

In this method, both the angular and the radial integration are accomplished numerically.

For the angular part, we programme the information on covariant derivatives of vectors (eq.
[G.11]) into the software package Mathematica (Wolfram 1991) and integrate the angular products
numerically, using the package’s internal definition for spherical harmonics, and keeping the radial
dependences of the displacements symbolic (&,(r), & (r)).

For example, we consider one of the terms in the expression for &, namely, (V - f)a(ffj) g(ffi),,.
When the £ and m for a, 8 and v are specified, we can use Mathematica to derive symbolically the
covariant derivatives, the output expressed in terms of &.(r), & (r) and their radial derivatives, as
well as Y, and their derivatives with respect to 8 and ¢ for all three modes. There are nine linearly
independent terms (different radial functions) generated from such a procedure, one of such terms
is 1/7%(3p/p)a(€n)s(€n)~, where (8p/p)a = —[1/r2d/dr(r2€,) — £(£ + 1)&,/r]a. We then extract the
angular dependences for these nine terms, integrate the angular dependences over the 4r ster-radian,
and store the integration results. Later we read these results into a fortran program, which also
calculates the radial eigenstructures for any mode with a frequency w and a spherical degree of £.
This program combines the information on the angular integrations with the radial integrations, and
submit to us the final results on &, for any three-mode combinations.

From the results of angular integrations (by Mathematica), we establish the angular selection
rules: x vanishes for combinations of three modes that do not satisfy simultaneously the following two
angular selection rules, i.e., £y = [lo — g, [la — L3 +2, ..., [la +g] — 2, |€a + €3], and m, = mga+1m.,
in a triplet combination with frequency match w, ~ wg + w,y. These selection rules are the central
feature of a realistically coupled system; global couplings as the kind adopted for discussions in
Chapter 6 can only serve as an illustration of the dynamics. This ‘patchy coupling’ also relieves us
from calculating a large number of combinations: for N modes, the number of valid combinations

drops from N?® as in global coupling to of order N2 in a real star.

2). Analysis of a Special Case

When we consider only modes that have m = 0, we can estimate the size of different terms in the
expression for k. Our results here hold also for the cases with m # 0.

When m = 0, £, = 0, and all gradients involving ¢ vanishes except for §;¢’ , which has a leading
term of order &, (r)/r due to curvature. This was quite a surprise to us till we saw that this curvature
term does not matter in the end, as physical intuition would have it.

We consider a triplet involving a low-order, low degree parent mode (a) and two daughter modes

(8, ) of roughly half its frequency (parametric resonance). The daughter modes start to propagate
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below 2,4 ~ 2oy € Zua, Where z, = w?/gk? is approximately the first radial node of the wave-
functions. As we will show, most of the contribution to the coupling strength comes from a depth
z < zZyqa- There are many terms in the expression (6.11), and there are terms that are formally much
larger than the others.

From §2.4.2, we know that V - = —dp/p in the propagating region of the mode is much smaller
than either k.£. or kp&p, which are comparable to each other, and all three terms are comparable
in the upper evanescent region. Therefore, the terms that do not include V - &5 or V - &, are the
largest. We look at one such term in the region z, < 2,5 < 2 < 2,4, Where z;, is the bottom of the
convection zone. The largest integrand in & due to (V - f_')a(ffj)g(ff‘i)v is (V- —3a(§fT)ﬁ(§fg)7, which

formally® has a largest term of the order,

dro = =201 = 1)(V - §alEh)s(Eh)s
~ BT Haryfal + D+ ) e,
~ %V'f)aﬁﬂ(faﬁq)%(é%)a. (G.21)

Here, we approximate 0Ye,, /06 as /£(f + 1)Ys,. And the integrations over # and ¢ have been
carried out and yield a factor of order unity; this factor is ignored from now on. In estimating &y
we take the curvature term, since for g-modes, &, > &,.

Integration of the above integrand over radius can be done using the technique of integration by

parts and yields

R R
/OTQdT‘dlia = /Or2drdij; [%(V'f)aeﬁwﬁ'*“l)(g%)ﬁ]_
R
| rtar g 27 8] ates + (D
R d - o
~ /0 dr% [rpo(V'f)aﬁﬁ(éﬁ + 1)(55)/3] -
R
., d < )
| rarge [ €a] eatea + i

R
~ = [ rdemg(V - Bttt + 1(EDs. (G.22)

The radial integral of the complete differential vanishes: at the surface, py — 0; close to the center,

r — 0, while everything else is regular.

The above integral can be further simplified by invoking the concept of mode mass, which is

3But as we will show later, this formally large term cancels with another part of x, and therefore is not very
interesting. We will discuss this more carefully later.
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associated with the normalization of the displacement,

R
WR(+1) / dzpofy = 1. (G.23)
0

The displacement is considered normalized if the total kinetic energy in the wave is unity. The
integral of f:f dzpo€} is constant between any two neighbouring node points z,; and Zn2. Or,
contributions to the mode mass of 8 (or ) come equally from between any two of its radial nodes.
At the same time, the value of (V - E)Q is relatively constant for z < 2,4, and drops off after that
with a scale length of 1/k. <« Hj,. Therefore, in expression (G.22), only contribution from z < z,,
is most important. We can truncate the integration and integrate only between the surface and

Zwa € I. Inside the evanescent zone, (V - {)a is evaluated using the normalization formula,

(V- 8o~ —(6p/p)z. ~ \/n—%;_— (G.24)

The truncated integration [™* drr?pols(fs+1)(£2)5 is (1/wg)n' [ng fraction of the total energy
in mode B (which is unity), where n’ is the number of nodes for mode 8 within Zwa, and it is

determined as

n' Foo kodz
—~ fOR—. (G.25)
nga fo k.dz

Inside the propagating region for mode 3, k, ~ 1 /\/ZZap- Assuming z,o > Zw3, We have

!

2 4 ¢ 1 1
o2 e (2 g8 L (G.26)
ng  ng\V Zwa Mgl ngle Mo

using the definition of 2, and assuming that wg ~ ws/2, as well as £, = 1. The dispersion relation
isw? o l/norw o l/n, depending on the value of n (see Fig. 2.2). These discussions further lead

to the following estimate,

R
2 g 1
ridrdi, ~ = ——e. G.27

/0 *  Ruw? VN3 L1, ( )
Notice that this expression does not depend on ¢, and it increases with n,, steeply, as 7., decreases

with n,.

—

For comparison, a small term (V - £),(V - £) 3(V - ), in the expression for & is of order

drs = B0, 1AV (V- (v -8,
~ pO(v'g)a (5_p>~
P73
= 1 2wi %pwﬁ
~ pO(V"f)“ngLrwg (7) ()
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3
1 9253pup
ngLng \/Z ’

~ (V-da (G.28)

where we have used the scaling with z of (6p/p)g in the propagating region (see §2.4.2), as well as
the normalized amplitudes for modes at z,, (see also that section). We approximate py ~ pogz. The
depth dependence of dky implies the largest contribution coming from a scale-height around z,z,
first node of the daughter mode. Inside the evanescent region of mode 3, dks increases with depth.

Radially integrating the above expression and substituting in values of (V - E)a at 2,q, we get

/R rldrdsy ~ R /w dt L (zﬂ‘-) %
0 0 VNoLT,e g \ Zup

~ \/ﬁ (G.29)
In deriving this, we make use of the definition of z,, and 7(2) ~ pz/F ~ 47R%pgz2/L. A relation
between ng and n, of ng ~ 2nqfp is also used, taking £, = 1. This term is smaller than equation
(G.27) by a factor of g/(Rw?), which is much larger than unity for g-modes. This term is important,
however, given the cancellations among the large terms.

The comparison between numerical results and estimates in equations (G.27) and (G.29) is

plotted in Figure G.1. The agreement is good over a broad range of n,, except where z,, < z,.

3). Complications

Here, we show that the curvature term in equation (G.21), considered to be among the largest terms
in K, cancels with another curvature term coming from dk, in equation (G.1). Therefore, all the

unphysical terms disappear.

This second curvature term comes from & ]k %, in the expression for & (eq. [G.1]) In the case

of m =0, this term can be dissected into the following combinations,

(€1)a(E)5(E5), + (€)al€l)(€5)5 =
(7 B L&) + (€)5(E)0] + (V-6 [€) (6, + 6 0p(en)t] +
(V- &) [(€)p(€)% + (€)1 (60)5] }
€50 €65 + (€)5(€%] + (€50 [(€)(E), + (€)p(€)%] +
(€50 [(€0)a(a)ly + (€)ip(6)8] |
+{2060)a(€)5(E0), + 2EH)al€)a(Eh)s +20€5)a(EL)a(EL) ) (G.30)

given that (V- §) = &+ §f€ + f;’;. The first group of terms in the right-hand side is similar to term

dr, in equation (G.21) and combines with that term to change the factor I'y — 1 to I'y.
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Figure G.1: The magnitudes of the largest (dk;) and the smallest terms (dr2) in the expression for
the coupling coefficient, numerically integrated (dots) and estimated using equations (G.27) (solid
curve) and (G.29) (dashed curve). The model we used for this calculation has Ty = 12,800 K, and
the convection zone is too thin to interfere with our estimates. The numerical results deviate from
the estimates at larger n,, possibly due to the fact that the upper cavity of mode « is approaching
the bottom of the convection zone. This deviation becomes more significant as we use cooler and
cooler stars.
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First, we show that equation (2.10) can be manipulated into

Spre = pra () gy (000 S
dr \ p p p dr

d (4§ 0 1404
= o (—p) —gpr <;p+2£rpg— ( +1)§h)

p r
d
= 12-(0p) + pgl(f + 1)ép — 2¢rpg, (G.31)
SO
5 d
(wopr +2pg)&, = 7= (0P) + pgl(€+ 1), (G.32)

where equation of continuity has been used. The two terms on the right-hand side are larger than

the left-hand side by at least a factor of (¢,/¢,.).

When ignoring terms of order (¢,/£) or smaller, integration by parts yields

/ dapTy (V- €) (€)1 (6% + (€)1 ()1)]

A2+ A2 — A2 1 d
B a 2
~ -——T’Y— < AaAﬁA’y > /T“)d'r'; ((Sp)a %é‘hﬂfh»y
A2 4 A2 - A2 d
~ L‘TW—— < AaABA'y > /dTTET: ((5p)a (fhgfh.y), (G.33)
where V2Yy, = —A%Yyn, and A2 = ¢(¢ + 1). The symbol < > represents the integration of

the product of three spherical harmonics over the sphere. Analytical integration of the angular

dependences is made possible by the following formula from Appendix A of Kumar & Goodman
(1996),

A%+ A2 - A2

< YagiVi¥aV,Y, > = —5  <AadpA, >
= Fg,yTagfy;
o (AZ)? = (AF - A)?
<g””gm(ViVjYa)(Vm}ﬁ)(vn}w)> = 1 <A0A5A7>
= G5,Taps- (G.34)

Here V; is defined to be the covariant derivative on the surface of the sphere (see their appendix),
and Ty, =< AgAgA, >.
Relations similar to equation (G.33) exist for the terms involving (V - ¢)g and (V - £),.

The second parenthesesed term in equation (G.30) transforms into

[ ap {(€8)a (€€ ), + € (€] + (€505 (€0l + (€0 (620] +
GAMIGARGANNGARGAR
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< AAgA, >

~ (AL = (AF = A2)P + A% — (A2 - A2)2 4 A% — (A2 — A2)?] 1

d d d
/dTp [fhaa; (Engény) + §hﬂ$ (Ehalny) + fhvg; (ghﬁfha)}

A%+ A2 - A2 AZ + A2 - A2 A+ A2 - A2
2 B Y o 2 o v B 2 8 o 2l

d
< AalgA, >/drpd (€nabnany)

e

S A2+ A2 — A2 A2 + A2 — A2 A% 4+ A2 — A2
2 8 a 2 a 3 8 a
[Aa (—“; ) + A% (——2” > +A2 ( 5 *

< Aadph, > / drpg (Enansén) (G.35)

ignoring again terms of order /¢, smaller than the ones kept here.

According to equation (G.32), the expression in equation (G.35) cancels with the combination
of equation (G.33) and two other terms similar to it, down to the order of (¢, /&) < 1. So the
large terms (terms estimated in eq. [G.27]) due to curvature of the coordinate system cancel out as
expected - the scale-height in the upper atmosphere is much smaller than the radius of the star, and
plane-parallel symmetry should apply nearly perfectly. But this cancellation also adds complications
to our numerical computation. The true signal is embedded alongside these large terms, which can
be several orders of magnitude above the true signal. Only using stellar models with fine grids and
accurate integration could we discern the true signal. This is indeed the weakness of this direct

method. We discuss alternatives in the following sections.

G.2.2 Improvements to the Direct Method

The direct method presented in §G.2.1 can be improved upon by pushing the limit of analytical
calculations and removing the curvature terms analytically. We deal with triplets with m = 0 only.
The angular integrations are mostly analytical in this section, and completely analytical in §G.2.3.
The steps leading to a new expression of k are scattered around §G.2.1. Here, we present only

the final expression. Let

1 R
K= _éTo‘ﬁ’Y/ drrids, (G.36)
0

we have

2
dr = (1 =1’V £)a(V - a(V - &), + L Enalnséis Qusy
dfidfrﬁ dfm
dr dr dr
déhg  d

1 d.
+$ {ng |:P1 (V . f)a - ;‘frail {frﬂ% + fm’_dlr_ EF (fh,@fh’y) + ny [] + Fgﬁ []}

+2p + 456kt
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dlpy dfhﬁ

+£{ a,@’ygha l:grﬁ Er'y

o d&; d r
+(I'; = 1)7% {(V “&a !: 27‘5 fl * + 26,580y — §Tﬁ§h7 fr—yfhﬁAg + thfh'yHﬁ»y:l

(V- Ol ]+ (V- 4[]}
+ {28 [H3,6rabusbn + B2, Erpbnabin + H]prEnsna

_Aighafmfm - A%fhﬁérafr'y - Agyfh'\/frb’&"a]} . (G.37)

d
% (fhﬂfhw) + Sﬁvaghﬁ[---] + S’vaﬁgh'y[-"]}

We shorten the expression with ‘...", the meaning of which should be clear from the context. Here,

the angular integration results are defined with

Tog, = / dOqusinOYQYgYZ, =< AolgA, >,

= g <N g >3-,

G = g < om0

Somr = g < G g g7 >= (O Gl 4 G,

HS = Talm <Y, a;;;ﬁ a;;; . ZT; Z - %% aa}; _ AZAZ = S,y — F2

Qusr = 1 cos®§ Y, 8Y; 0Y,  8°Y, 9°Y3 9°Y, (G.38)

Tog, 5’0 00 00 00 ' 06> 08° 00

These are expressions for m = 0 triplets only. The two quantities, Qasy and T,p,, have to be
calculated numerically.

Expression (G.37) still suffers from the large cancellation between curvature terms. We manually
remove the curvature terms, i.e., the terms of the forms (V <£)End€y /dr and &,d(£x&r) /dr, and taking

the differences between these large terms into a slightly simplified expression for dk, which is

di = (D= 1BV alV O3V )y + S EnalnstinQuss

2p déra d@ﬁ d£r7
dr dr

+
d
+= {|:FB’YF1 V- € —Fg,y;fra—f'saﬁv%fha} <£TB é-h"/ ér'y déhﬁ)
 [Ff] () + [Fse] (0}
2 P €nsi) + P 6o (1061,) + Pl 35 (natea) |

+ 4 §ra frﬁér’y

g dér : 2
#r -0k {vg, (L flwzmm 662 o us S + 060, 3,
50+ (7 ()

p
+2;§' { <H§7£7‘a§h/@£h’7 + H’?afrﬁghafhy + Hgggr'yfhﬁfha
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—Aighagrﬁfr'y - A%fhﬁgragr’y - A?ygh'ygrﬂgra)}
_le { F§ €15 (prwE + 26,09 +0p)  + FE Enabnq(.) + Fgﬂghﬁgha(...)} . (G.39)

The terms in the last parentheses are the differences between the two large curvature terms; they

appear to be comparable to the other terms.
The improved method described here significantly improves the calculations of x. The influence

of the curvature terms is removed analytically, and the results on x is more accurate.

G.2.3 The Method of Integration-by-parts

Following Kumar & Goodman (1996), we can rewrite the expression for & employing the technique
of integration by parts. The angular dependences can be analytically integrated using formula from
their paper.

We first pretend that we work in Cartesian coordinates. This means that the covariant derivatives

are equivalent to partial derivatives, and makes it easier to integrate by parts. For example,

/ Fap(V - e

[ b 0ee] e -, €6 - v 91w o))
[ {7 61,6 + w2}, (G.40)

Il

where vanishing surface integrals are assumed, as well as the implicit rule of Einstein summation.

For another term in &,

[ e

- [ @5 [pagiEh + v (V- 48l + il

= [ |-gpacee s Sov g, 60 + D), 60
—(PV - €),E (V- +3(¢-Vp), £(V - &) —p(V - €)°

2 3y
£2(6- V0 (V-6 - SV 9)]. (@41
We introduce the Eulerian pressure perturbation p/, satisfying
' dp
P =dp- &L = -Tip(V-8) - (£ V), (G.42)

where dp is the Lagrangian pressure perturbation. Adiabaticity of the perturbation is assumed.
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The final expression for & is

/d3 {—_pukf §]€ - “pw§ fj(v I —p ZJ€ gj

I(Fl + 1)

(70 + Ly g0} (.43

The derivatives on the displacement ¢ are transferred to pressure through this exercise. As we will

show later, this further improves the accuracy in calculating &.

With just a simple transformation, the above equation agrees with those in Appendix A of Kumar
& Goodman (1996).

Permutation among modes yields

o= =5 [ Er @@,
+ [P (6)a(€")a(V - )y + P (€)5(E)4(V - E)a + 1.4 (61)4 (E)a(V - £)s]
+ [(pf,-->a(§">g<ef)w + (P3)8(E)a(€)y + (i) (E)5(E) ]
+{Pl)a [(€)8(Y - ©)2 + (E)2(V - €)8) + (0li)5 [(€)al(V - ) + (€)4(V - )]
+<p:,->7 [(f%(v o+ (£)a(V- €]} = Ti(T1 + )p(V - €)°}. (G .44)

Now for practical operation, we switch back to spherical coordinates. The expression for covariant
derivatives on scalars can be found in §G.1.3. The Eulerian pressure perturbation has an angular

dependence of p' = 'Yy, and all angular dependences in the new integral for & can be integrated
using equation (G.34). We get

i =+ | Fhtatotes ~ T+ DAY -0a(Y - 0a(7 0
o5 Lt | (T2 ) 6ot 120 4 1L -] + (7000 [ bt + ol
+&ra [dii (%m) Eng + Ed; (%p'ﬁ> ghw] } +FL Y+ Fl ()
{606 |37+ T 0] + b L] + a1
{700 [t + 5] 4701+ (7, (1]
+ {Ggw %Péfhﬁﬁm +GY, ;lgp'ﬁfhafhw + G rigpi,fhﬁgha} , (G.45)

where dx is defined in equation (G.36), and p’ is the shorthand of §'.

Numerical realization of this expression is made more accurate with the following two expressions
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d (1dp 1dp’ 1dp 1 5 dg
a—r(;$>§r+;a—+;&j(v'f) = 58 |pg+pw el (G.46)

The first expression is used to reduce the order of radial derivatives on p', which would otherwise
cause numerical noise; the second is to capture the cancellation between terms. These two equations
help to produce a smoother dr, and lead to answers for & that are more credible.

Note that, after integration by parts, the radial dependence (dk) of expression (G.44) is not the
same as that in equation (G.1). Here, it does not tell where in the star the strongest coupling should

come from and is therefore less physically revealing.

G.2.4 Conclusions

We call here the direct method (§G.2.1) the first method, the improved one (§G.2.2) the second
method, and the one using integration by parts (§G.2.3) the third method.

The first method suffers strongly from the presence of the large curvature terms, and is therefore
not reliable.

The second method removes this confusion. But on the other hand, it depends on the numerical
gridding sensitively, as it involves numerical differentiation of many function; some of them may have
sharp changes. This is demonstrated in a series of experiments, in which we calculate the coupling
coefficients using white dwarf models with finer and finer grids. The results we obtain can vary by
factor of unity sometimes. In general, the results approach those given by the third method, as the
precision in the models and in the eigenfunctions improve.

The third method, in our opinion, is the best out of the three. It has no intrinsic problem with
large cancellations, as the numerical derivatives on the eigenfunctions are minimalized. It is also
stable. The results obtained using this method vary by only a few percent when the spacing between
the grids changes.

All methods agree, however, to the orders of magnitudes, as is shown in Figure G.2 for a subset

of couplings. The full results, involving various scaling relations, are presented in Chapter 7.

G.3 The Incompressible Limit

The dependences of £ on various mode properties can be analytically derived in the incompressible

limit,

(V& —= 0

I(v-¢ — constant. (G.AT7)
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Figure G.2: The coupling coefficients calculated using three different methods for couplings that
involve a mode ((n,¢) = (1,1)), 8 and v modes ((ng,1) and (n,,2)). We choose ng and 1, such
that wg+w, ~ w, (parametric couplings). And & is plotted against the radial difference between the
last two modes, represented by nz — n,. As expected, the coupling is the strongest when ng ~ n.,.
Results from method 1 (dashed line, the direct method, §G.2.1), reduced by a factor of 5, compare
poorly with results from both method 2 (dotted line, improved direct method, §G.2.2) and method
3 (solid line and solid triangles, integration-by-parts method, §G.2.3). It is adversely affected by the
strong cancellations between the large curvature terms. The last two methods agree better, though

method 2 fails to produce the peak around ng — n, ~ 0. The magnitude of this peak is instead
verified in the incompressible limit.
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Equation (G.43) becomes
K= /d3 {——P ijk&’ ﬁJfk sz'jfifj} - (G.48)
The equation of motion is simplified in the incompressible limit,
Pl = p’&; — Ew i (G.49)

Stripping the angular dependence of V, Yy, off p' and &,, and Yy, of &., we are left with the radial

components and they are related by

o= pwireh,

pl. = p wz—g@ £

i# dz

. £e+1

& = (R )5”- (G.50)

With the following angular integration formulas,

’ AZ £ AL - A2

Angy = /dQVhYﬁnvhnm}% = = < Aahgh, >,

Bagy = /dQVQ}eth) VLY = —A2 A,

Copy = /dm YLV =< AgAgA, >, (G.51)

and mutating terms in expression (G.48), we obtain

1 . 1 : :
K= 6 / rhdr {;p (wiBaﬁv + wéBﬁa’v + wfvaaB) 635253

d? d
_29 ,pcamﬁafﬁﬁ“ Capy (fagﬁé'y)

d
idﬁ (Eaéﬁg Aaﬁ’) + 6(15765 ayB + gﬁéaé*y 4/30(7

5,@55%14570 + &fﬁfﬁflvaﬁ + fifﬁf;Avﬁa)} : (G.52)

Relating £" to & through equation (G.50), integrating the functions by parts, and express A, 3~

explicitly, we finally arrive at

2 2 2
wi Bagy + LUBB[}OW + wvaaﬁ
( 5 ) / rdrpghepet. (G.53)

K= —

To estimate the analytical dependence of this «, we introduce the physical displacement &, ~

(Rkp)&h ~ A€, ikpéy ~ A?/ReM. And we assume the daughter modes 8 and ~ are similar in radial
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structure and spherical degrees, so k can be estimated as

. . R AL+ A2 A2 A2 4 A2 - A2 A3+ A2 — A2
K~ /Tzdr(ikhfh)a/)(khﬁh)% (wi 5 T 2 1 g 2 B X

AZAZ YTTRTAZ . YT Az

1 ngAé &Jé
Ve LTya nﬁwé A%ﬂ

1 1
~ - G.54
Vo LToo Nals’ ( )

using similar arguments as in equations (G.24) - (G.26). This final expression has the same depen-
dence on n, as equation (G.29). It is of the same order as the compressibility term, equation (G.28).
Moreover, it does not depend on £ of the daughter modes. At fixed w,, it grows almost linearly with
{y; while at fixed n,, it decays linearly with £,. These dependences are expected to hold also in the
compressible case, and it is proven so by the integrations using method 3. Also, the incompressible

results agree with results from method 3 to within a factor of 2.
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Appendix H Coherent Parametric Instability

In this appendix, we introduce the concept of ‘coherent parametric instability’. It complements
the classical ‘parametric instability’ and, in places where it is applicable, limits amplitudes of the
parent modes to lower values than predicted using equation (6.19). We discuss one application of

this concept when the parametric daughters are travelling waves in white dwarfs.

H.1 The Concept

First, we re-visit the amplitude equations (eq. [6.16)) describing a dissipative system of only three

modes, dw = w; —wy — w3 ~ 0. Retaining only resonant terms, we get

A
El&_t_l. = mA; +iw A — i%wmm:’,A‘zAsa
dA ) .3 N
—(f = 72,42 + dweAs — lﬁw2'€123A1A37
dA : .3 .
d—t3 v3 A3 + fwz Az — Z7§w3/€123A1A2- (Hl)

Here, mode 1 is excited, and modes 2, 3 are damped. Analysis in §6.3.1 shows that the energy in
the daughter modes (modes 2 and 3) undergoes unstable growth whenever the energy in mode 1
rises above a threshold described by equation (6.19). ‘Parametric instability’ can limit the energy
in overstable modes.

Consider a situation in which a fourth mode (mode 4) is also (near-)resonantly interacting with
modes 1 and 2. If 4 is sufficiently similar to mode 3 such that 104 ~ K123 ~ &, the daughter modes

evolve according to the following amplitude equations,

dAs, 3

F = ’YZAZ + ZWQAQ -+ Z\/g 41143 + A1A4)

dA ) 3

—dt3 = y3Az +iwsAz + l\/gwsliA 145,

dA . 3

dt4 Y4 Ay + iwg Ay + z\/gwuwh (H.2)

Mode 4 is also damped in this discussion.
We further stipulate that mode 4 be so similar to mode 3 in frequency such that |ws — wy| <

tya] ~ 74| We call mode 4 the ‘twin’ of mode 3. In the case of a star, mode 3 can have a number

of ‘twins’ depending on the mode density around it. As both are evolving in time under the same
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force, A3 and A4 should have effectively the same phases and magnitudes. Denote the amplitude of

mode 3 or 4 as A, and equation (H.2) can be simplified into

dA: ) .3 N
._dTZ = ’}/QAQ + Z(.UQAQ + Z%WQK(QAlAy),
dA . .3 .
dty = YAy +iwg Ay +i \/'S‘Wy"iAlAz- (H.3)

The two parametric couplings, (w; — ws — ws) and {w; — wa — wy), are called ‘coherent’.
In general, mode 2 would be similar to mode 3 in having ‘twins’. In fact, we can consider the

case where both mode 2 and 3 have N, such twin modes!. Equation (H.3) turns into

dA, . .3 X

- = YeAg +iw, Ay + z%wz/{(NcAlAy),

dA . .3 N

.._d.t_y. - 'YyAy =+ waAy + Zﬁwy/‘{,(NcAl AI) (H4)

Here, z denotes mode 2 or its twin modes. This equation requires that every y mode interacts with
every y mode (and mode 1) with equal coupling coefficient. For each z mode, the fact that there
are N, near-identical y modes to couple with can be thought of as it interacts with one y mode N,
times more strongly. There are in total N2 /2 such coherent couplings.

And the new energy threshold due to the ‘coherent parametric instability’ is

2ae () (3]

Mode 1 is able to nonlinearly excite the daughter modes at this smaller value due to the effective
increase in k.
On the other hand, mode 1 witnesses an increase in & by a factor of N2 due to the coherence

between the two groups of daughter modes,

dA . .3 :
—Ef* =md +iwd + 17—8'0115(NC2AIA3/)- (H.6)

H.2 How to Estimate N_.?7

We anchor our discussions here on the normal modes in a white dwarf. For a parent mode 1, we
choose a pair of daughter modes that interact strongly with the parent mode and nearly satisfy the
frequency resonance condition. We mark them as z. and y., the subscript c for central. We ask,

how big is the population of daughter modes, sitting around these two centroid modes respectively,

'The following analysis will tell that N, is related to the property of the parent mode, and therefore is the same
for modes 2 and 3.
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that may be parametrically excited by mode 1 coherently?

Our discussions in §H.1 set two constraints on this coherent population. The first is that every
daughter mode from the z group couples equally strongly with every one from the y group (and
mode 1). As we argue in Appendix G, most of the coupling happens above z1, where 2, is the depth
of the first radial node for mode 1. The coupling coefficient x is maximized when the two daughter
modes have equal numbers of radial nodes inside z < z,. These numbers are n' ~ n,/ny ~ ny/n,
(see eq. [G.26]). Two daughter modes are considered radially similar (and therefore have maximum
) when the difference in n' is less than 1/2. This is equivalent of |n, — n,| < ni/2, while for modes

z. and ye, |nz — ny| ~ 0. We obtain an estimate for N, from this constraint,
New ~ny /2. (H.7)

The second constraint concerns the coherence between mode phases during the parametric in-
stability which lasts a time of order 1/I". Every mode in the z (or y) group has to be close to each

other in frequency,

Aw < T (H.8)
The number of modes falling inside this frequency width is of order

Aw T

(we /1) - (we/n2)’

Ny ~ (H.9)

where n, is the radial order of the z. mode, and w, /n, is the mean frequency separation among its
neighbouring modes. The same relation holds for y modes.

When the daughter modes are not strongly dissipated, |v;| ~ 1/(ny7u2) € wy/n,, there is no
coherent modes around the daughter pair z. and y.. Note that although there may be many pairs
of daughter modes each having frequency detuning dw < I', the frequency width within each group
of these daughter modes is larger than I'. There cannot be coherent parametric instability.

When the daughter pair are strongly damped, they are travelling waves inside the star with
global damping rates of order w,/n,; (see Chap. 5). The discussions in §7.4 suggest that these
travelling waves only interact with the parent mode for n’ ~ n,/n; ~ ny/n; periods. The number
of coherent partners in the case of travelling waves is therefore (based on eq. [7.9]) determined by

the coherence within this interaction time,

~ . (H.10)

This can also be obtained from equation (H.9) by using I' ~ |v;| ~ njw;/n,, as only the energy loss

rate for the upper n' nodes of the travelling wave is meaningful.
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The number of coherent parametric couplings for mode 1 is therefore
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And the physical amplitude for an overstable mode can be reduced to an expression,
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where I' & |y, + vy|. For daughters that are travelling waves, N, ~ ny and dp/p ~ 'Jw; ~ 1/(4dn,).



