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Abstract

In this work we investigate some possible mechanisms for pulsar radio emission. First we analyze
the normal modes of a strongly magnetized electron-positron plasma taking into account a possible
difference in the distribution functions of electrons and positrons. The dispersion relations, polar-
ization properties and various regimes of beam instabilities in pair plasma are considered. We argue
that kinetic instabilities of electromagnetic modes are more promising candidates for the pulsar ra-
dio emission mechanism than electrostatic instabilities (which occur in the hydrodynamic regime).
We elucidate the microphysical processes underlying cyclotron-Cherenkov and Cherenkov-drift emis-
sion, stressing the importance of collective plasma effects involving all the particles of a medium.
We show that cyclotron-Cherenkov emission at the anomalous Doppler effect can account for various
observed phenomena of the ”core” emission. Cherenkov-drift emission is a likely candidate for the
"cone” emission.

We developed a new description that treats Cherenkov-drift emission in cylindrical coordinates.
This approach describes consistently the resonant wave-particle interaction and provides a link
between the Cherenkov, curvature and drift emission mechanisms recovering them as a limiting
cases of the Cherenkov-drift emission process.

We also consider two possible nonlinear stages of the development of the cyclotron-Cherenkov
instability: quasilinear diffusion and induced Raman scattering. We calculate the asymptotic par-
ticle distribution and emerging spectra for the cyclotron-Cherenkov instability and also show that
induced Raman scattering may be important for the wave propagation and nonlinear saturation of
electromagnetic instabilities. Finally, we considered the escape of waves from a pulsar magnetosphere

taking into account cyclotron, Cherenkov and Cherenkov-drift absorption processes.
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O CKOJILKO HAM OTPBLITUH Yy IHBIX
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O how many miraculous discoveries
The spirit of enlightening prepares
And experience - a son of mistakes difficult,
And genius - a friend of paradoxes,

And chance - God inventor.
A.S. Pushkin
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Whoever needs Heaven when earth is so near?
Heaven'’s light is a promise at best;

Though the joys of our earth are deplorably few,
They are something that people can test.

Earth and Heaven, M.Yu. Lermontov
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List of Frequently Used Symbols

Primes signs near the physical quantities denote pulsar frame, and primes near the functions denote

derivative with respect to argument.

AZ (5.29)

B,B magnetic field

Bprr magnetic field at the pair formation front
¢ speed of light

d (5.70)

F flux

F, energy flux per unit frequency

G(r,ro, A\ v, kz) eigenfunction expansion of scalar Green’s function
Ge(r,ro), Ga(r,ro) electric and magnetic dyadic Green’s functions
i Plank constant

I moment of inertia of the neutron star
I(6,w,n) (5.119)

b current due to the primary beam

Ip current due to each plasma component
K (5.98)

K(w, k) (5.41)

k, & wave vector

ko Cross-over wave vector

L luminosity

LM N cylindrical vector eigenfunctions

Me mass of an electron

n refractive index

Ny beam density

ngJ Goldreich-Julian density

Np plasma density

N density of the fast/slow component

on density of species «

n(k), n(k) photon distribution functions
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P period of neutron star rotation
P derivative of pulsar period
pr scatter in moments of the plasma particles
q charge
Ry light cylinder
Rp radius of curvature
Bns neutron star radius
Te classical radius of electron
rL Larmor radius
ro(t) unperturbed trajectory of a particle
T (5.98)
15 temperature of plasma in units m.c?
Ug, Ug drift velocity
Up velocity of the beam
Up plasma velocity in the pulsar frame
Vg velocity of the fast and slow component
z Eq. (6.24)
W, X,Y, Z (5.49)
o Eq. (9.11)
a* page 199
temperature parameter
Be velocity difference between fast and slow component
Br Eq. (9.10)
Br thermal velocity of plasma particles
r growth rate
v Lorentz factor
Vb Lorentz factor of the primary beam
Yp average Lorentz factor of plasma
YT scatter in Lorentz factors of the plasma particles
Ve Lorentz factor of the tail of the distribution function
Yo Lorentz factor of relative streaming
Ay scatter in Lorentz factors of the resonant particles
s, 61 difference of refractive index from unity
Sim Kroneker symbol
€ dielectric constant

€lm dielectric tensor
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spectral emissivity

multiplicity factor

critical multiplicity factor

unit vector along the magnetic moment of the star
resonance parameter (7.12)

order of the Bessel functions, frequency of the wave
angular frequency of neutron star rotation

(5.29)

angular frequency of particle rotation
nonrelativistic positive cyclotron frequency

plasma frequency of the beam

angular frequency of the wave

cross-over frequency

plasma frequency

definition after Eq. (7.31)

definition after Eq. (9.60)

ratio of ion and electron masses

electric potential

angle of propagation with respect to magnetic field
critical angle of propagation near the cross-over point
Subscripts:

Alfven wave

slow Alfven wave

ordinary wave

fast transverse

slow transverse
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Chapter 1 Introduction

OTKPBIJIACh BE3IHA 3BE3J IIOJIHA,

3BE3IOAM HET CYETA, BE3JHE - JHA.
M.B. JIOMOHOCOB

An abyss opened, full of stars,

Stars have no count, abyss - no bound.
M.V. Lomonosov

A thesis opened, full of equations,

Equations have no count, thesis - no bound.

R.B. Blandford

Pulsars rank among the most interesting objects in the Universe. Physicists from a variety of
fields have been attracted by the extreme conditions which prevail in pulsars and their magneto-
spheres and which are characterized by (Michel 1991): (i)~ 10® — 10'2 G surface magnetic field, (ii)
nuclear density of the neutron stars themselves; (ili) superfluid and superconducting phases in the
interior of the neutron star; (iv) relativistic electron-positron plasmas, and so on. Pulsars appear to
be ideal laboratories for investigating physical extremes, unapproachable on Earth.

Not only are pulsars ”laboratories” (Hewish et al. 1992), they have also turned out to be excellent
sources used for many different types of astrophysical investigation. The modulated pulse arrival
time from binary pulsars has been used to detect the effect of gravitational radiation and provide a
1073 quantitative test of general relativity (Taylor 1994), an accomplishment which, like the original
discovery of pulsars itself, garnered a Nobel prize. The single millisecond pulsars provide excellent
clocks which challenge the best trapped ion clocks available and have been used to set impressive
limits on the cosmic gravitation radiation energy density. Another pulsar produced the first detection
of extrasolar planets (Wolszczan 1996). The high brightness radio emission is allowing unique wave
propagation experiments that probe the properties of turbulent interstellar plasma (e.g., Armstrong,
Rickett & Spangler 1995).

The last decade of pulsar research has been marked by exciting new discoveries (millisecond
pulsars, pulsars in globular clusters and new binary pulsars), further developments in theoretical
understanding of pulsar electrodynamics, properties of relativistic pair plasmas, interior structure of
neutron stars and a rapid progress in observational techniques like coherent dedispersion and high

temporal resolution monitoring.
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An important part of these activities is the need to understand the actual radio emission mecha-
nisms and here, it must be acknowledged there is no consensus as to its true nature (Melrose 1995).
Indeed lack of understanding of the basic character of the emission process is a major limitation to
the further development of "applied” pulsar physics.

At the present time, there are about a dozen competing theories of pulsar radio emission gen-
eration which differ both in the physical effects responsible for the radiation and in the locations
where they operate (Melrose 1995). Probably the only point of agreement between all these theories
is the association of pulsars with magnetized rotating neutron stars. By contrast, there is so much
observational data available that none of the existing theories can explain all the main observational
facts.

To date, the most widely discussed theory attributes the emission to coherent curvature emission
by bunches of particles. Though this theory can explain a broad range of observed pulsar properties
by the careful arrangement of the magnetic field geometry and of the form and size of bunches,
thirty years of theoretical efforts have failed to explain the origin of these bunches (Melrose 1995).
This theory also fails to explain some fundamental observational facts, namely the existence of two
orthogonal polarizations in pulsar radio emission, the observed correlations across the pulse profile
and a large coherent size of the emitting region (see Chapter 2).

In this work we discuss an alternative theory of pulsar radio emission developed by Machabeli
& Usov 1989, Kazbegi et al. 1991b, Kazbegi et al. 1991c, Lyutikov 1997a, Lyutikov, Blandford &
Machabeli 1997, Lyutikov & Machabeli 1997, Lyutikov, Machabeli & Blandford 1997a. The pulsar
radiation is generated by the instabilities developing in the outflowing plasma on the open field
lines in the outer regions of the pulsar magnetosphere. Radiation is generated by two kinds of
electromagnetic plasma instabilities — cyclotron-Cherenkov and Cherenkov-drift instabilities. The
cyclotron-Cherenkov instability is responsible for the generation of the core-type emission and the
Cherenkov-drift instability is responsible for the generation of the cone-type emission (Rankin 1992).
The waves generated by these instabilities are vacuum-like electromagnetic waves so that they can
leave the magnetosphere directly.

Both instabilities occur in the outer parts of magnetosphere at radii comparable to the light
cylinder radius. The location of the emission region is determined by the corresponding resonant
condition for the cyclotron-Cherenkov and Cherenkov-drift instabilities. Instabilities develop in a
limited region on the open field lines. The size of the emission region is determined by the curvature
of the magnetic field lines, which limits the length of the resonant wave-particle interaction. The
location of the cyclotron-Cherenkov instability is limited to the field lines with large curvature, while
the Cherenkov-drift instability occurs on the field lines with the radius of curvature limited both
from above and from below. Thus, both instabilities produce narrow pulses, though they operate at

radii where the opening angle of the open field lines is large.
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Figure 1.1: Distribution function for a one-dimensional electron-positron plasma of pulsar magne-
tosphere.

Apart from the association of pulsars with rotating, strongly magnetized neutron stars, the only
other assumption required for the development of these instabilities is that a rotating neutron star
generates a steady mildly relativistic, dense flow of electron-positron pairs penetrated by a highly
relativistic electron beam. At this point we know only the general features of the distribution function
of the particles in a pulsar magnetosphere (Tademaru 1973,Arons 1981b, Daugherty & Harding 1983,
Chapter 4). It comprises (see Fig. 1.1) (i) a highly relativistic primary beam with the Lorentz factor
5 22 107 and density of the order of Goldreich-Julian density ngs = Q- B/(2mec), (ii) a secondary
electron positron plasma with a bulk streaming Lorentz factor «, ~ 10 — 1000, a similar scatter in
energy Tp & 7, and a density much larger than the beam density n, & Angy = 10% — 108ng;, (iii)
a tail of plasma distribution with the energy up to ~; = 104 — 10°.

The choice of a particular distribution function (Fig. 1.1) is very important. All the following is
predicated on this choice. In particular, in our model the primary beam is composed of electrons or
positrons. We show in Appendix K that both cyclotron-Cherenkov and Cherenkov-drift instabilities
do not develop on ion beam.

The electromagnetic cyclotron-Cherenkov and Cherenkov-drift instabilities are the strongest in-
stabilities in the pulsar magnetosphere (Lyutikov 1997c, Chapter 7). This differs from the more
common case of a nonrelativistic plasma, where electrostatic Cherenkov-type instabilities (i.e.,
those that result in emission of electrostatic Langmuir-type waves) are generally stronger than elec-
tromagnetic instabilities. In addition, for a one-dimensional plasma streaming along the magnetic
field, the effective parallel mass is considerably increased by relativistic effects. For the particles

in the primary beam, which contribute to the development of the instability, the effective parallel
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mass is mesf = vim & 102! m (m is a mass of a particle). This suppresses the development of the
electrostatic instabilities. In contrast, the effective transverse mass, mesf, = ypm, is less affected
by the large parallel momentum. Thus, the relativistic velocities and one-dimensionality of the dis-
tribution function result in a strong suppression of the electrostatic instabilities and strengthen the
electromagnetic instabilities.

Cyclotron-Cherenkov generation of wave by fast particles is not new in astrophysics. For example,
cosmic rays in the interstellar medium and in the supernova shock generate Alfvén waves by a similar
mechanism. In the case of Alfvén waves in the nonrelativistic electron-ion plasma, the frequency of
the waves w can be much smaller than the kv term and can be neglected in the resonance condition.
The important difference between these applications and cyclotron-Cherenkov instability in pulsar
magnetosphere is that the generated waves belong not to the hydromagnetic Alfvén waves, that
cannot leave plasma, but to the almost vacuum electromagnetic waves.

We should also mention that a cyclotron-Cherenkov instability of an electron beam propagating
along a magnetic field is known in the laboratory as a very effective source of the high frequency
microwave radio emission (Galuzo et al. 1982, Didenko et al. 1983, Nusinovich et al. 1995).
The so called slow-wave electron cyclotron masers (ECM) provides a high efficiency and high power
microwave source. Though there are no commercial slow-wave ECM available now, they are believed
to be very promising devices due to their better control of the beam quality and potentially more
compact design than the cyclotron autoresonance masers. Thus, pulsars can be regarded as cosmic
slow-wave ECMs.

In this work we also develop a new look at the theory of amplification of curvature radiation.
We argue that a new, Cherenkov-drift instability may be operational in the pulsar magnetosphere.
The Cherenkov-drift emission combines the features of both Cherenkov and curvature emission
processes. This instability is similar to the drift instabilities of the inhomogeneous plasma. The
striking feature is that, unlike the nonrelativistic laboratory plasma, where drift instabilities develop
on the low frequency waves with the wave length on the order of the inhomogeneity size, in the
strong relativistic plasma drift instabilities can produce high frequency waves.

We develop an approach that treat Cherenkov and curvature emission consistently in cylindrical
coordinates. The choice of cylindrical coordinates allows one to consider curvature emission as a
resonant emission process. In the former approaches the wave-particles interaction length was very
limited, that precluded a strong amplification under all circumstances. Another important difference
in this work is the proper account of the dispersion and polarization of the normal modes. We show
that Cherenkov-drift instability develops only in a medium which supports subluminous waves.

The outline of the thesis is the following. In Chapter 2, we review the observational properties
of pulsar radio emission. In Chapter 3, we review the current theories of pulsar radio emission

generation. In Chapter 4, we discuss the adopted parameters of the pulsar plasma. In Chapter 5,
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we investigate in detail the properties of the normal modes in a strongly magnetized, hot electron-
positron plasma taking into account the possible difference in distribution functions of electrons and
positron. To calculate the dispersion relations of the normal modes in curved magnetic field, we
discuss the properties of the dielectric response in cylindrical coordinates. In curvilinear coordinates
the electric displacement is related to the electric field via the dielectric tensor operator, which is
nonlocal in nature - it involves derivatives with respect to the radial coordinate. The operator re-
lations between electric field and electric induction can be simplified to give algebraic relations in
two different limits: (i) for the nonresonant particles, when we can use the WKB approximation
for the wave-particle interaction, (ii) in a particular limit z > 1 (Section 6.2.1 and Appendix C for
the definition of z) for the resonant interaction of subluminous waves with particles having velocity
larger than the phase speed of the waves. Assuming that these two limits apply for nonresonant
and resonant wave-particle interaction, we calculate the dielectric tensor in cylindrical coordinates
taking into account the curvature drift of particles. From that dielectric tensor we find wave disper-
sions and polarizations for relativistic pair plasma with different distribution functions. In Chapter
6, we discuss the elementary emission process for the cyclotron-Cherenkov and Cherenkov-drift in-
stabilities. Following the ideas of Schwinger et al. 1976, that cyclotron-Cherenkov emission is a
synergetic process that combines the features of both cyclotron and Cherenkov emission processes,
we suggest that, similarly, Cherenkov-drift emission is a synergetic emission process that combines
the features of both curvature and Cherenkov emission processes. In Chapter 7 we discuss a theory
of beam instabilities in a magnetized pair plasma. We distinguish two regimes of Cherenkov and
cyclotron instabilities: hydrodynamic and kinetic. In a hydrodynamic regime all the particles res-
onate with a given wave which grows coherently. In a kinetic regime different particles resonate with
different waves which grow incoherently. Kinetic and hydrodynamic instabilities can be thought of
as two limiting regimes of a single instability. We give the simplified calculations of the various
Cherenkov and cyclotron growth rates in both hydrodynamic and kinetic regimes. We argue that
cyclotron-Cherenkov and Cherenkov-drift instabilities are the strongest instabilities in the pulsar
magnetosphere. In Chapter 8 we outline the general features of our model of pulsar radio emission
and show how various observational facts can be explained in the frame work of the cyclotron-
Cherenkov and Cherenkov-drift instabilities. In Chapter 9 we first discuss nonlinear process that
can saturate cyclotron-Cherenkov instability, namely quasilinear diffusion of the resonant particles
and induced Raman scattering. We calculate the observed intensities that these two nonlinear pro-
cessesproduce and argue that both these processes can be important in pulsar magnetosphere. Then
we discuss the escape of the generated radiation from the pulsar magnetosphere. Finally, in Chapter

10 we present the conclusions of this work.



Chapter 2 Review of the Observational Data and
Phenomenological Theory of Pulsar Radio

Emission

2.1 Core and Cone Emission

In this section we will summarize the most important observational facts about pulsars. The available
database on pulsar radio emission is enormous and the range of pulsar properties is equally large.
Therefore, the observational properties will be presented in the framework of a phenomenological
theory of pulsar radio emission (Rankin 1992). The main feature of this model is the division of
emission into two main components called ”core” and "cone” (there are two cones of emission in the
most general case). In each pulsar, the averaged profile may be a combination of core and/or cone

emissions (Fig. 2.1).

2.1.1 Properties of the Core Emission

The majority of pulsars (about 70%) show core-type emission. In combination with the cone-type
emission, core pulsars are divided into three groups — core singles, triplets and five-components.
The typical core emission has the following features: (a) the profile has a single component at 400
MHz but might develop conal (sometimes nonsymmetrical) outriders above 1400 MHz which can
dominate at higher frequencies; in such pulsars the core component might arrive a little earlier than
conal emission, (b) core emission has a steeper spectrum than conal emission, (c) moderate circular
polarization (up to 60%); the sense of which may reverse in the middle of the pulse (Fig. 2.1),
if the cone component is present, the sense of circular polarization in the core correlates with the
swing of the position angle of the linear polarization in the cone, (d) linear polarization varies from
nearly 100% to unpolarized, in most cases the radiation may be split into two orthogonally polarized
modes (Stinebring et al. 1984), (e) the size of the beam seems to follow a simple relation, which is

independent of radio frequency W = 2.°45/P'/2 where P is the period of the pulsar.

2.1.2 Properties of the Cone Emission

About 30% of all pulsars show pure conal emission and they are divided into two main groups —

cone singles and cone doubles which are believed to be closely connected, the only difference being
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Figure 2.1: Example of emission geometry that produces core and cone profiles.

the geometrical path of the line of sight through the emission region. The typical features of conal
emission are (e.g., Rankin 1992):

(a) the profiles can have up to four components, corresponding to two cones; at high frequencies the
cone might merge forming a smooth emission pattern,

(b) the cone component has a harder spectrum than the core emission,

(¢) circular polarization is small and unsystematic,

(d) linear polarization is moderate to virtually unpolarized; if the core emission is present, the swing
of a position angle is strongly correlated with the sense of circular polarization in the core with a
large (near 180°) total swing, otherwise (in the absence of the core emission) the swing of position
angle is less ( ~ 90°); similarly to the core emission, the radiation may be split into two orthogonally
polarized modes (Stinebring et al. 1984) with changing intensities resulting in a sudden change of
position angle by +7/2; the frequency dependence of linear polarization shows great variety — in
most cases it is a constant or slightly decreasing function of frequency, but occasionally it has a
maximum or increases with frequency, (e) the geometry of the beam corresponds to the cones with
angles 4.°3P~1/2 and 5.°9P~'/2; in contrast to the core emission where the width is independent
of frequency, for conal emission the width changes with frequency as v=%, and seems to reach
a plateau at high frequencies, (f) a few pulsars with conal profiles show drifting subpulses, some

pulsars change between three different drift rates, (g) the nulling effect - sudden (on time scales less
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than 2 microseconds (Deich et al. 1986) disappearance of pulses for an interval much longer than
the pulsar’s rotation period; in pulsars which exhibit both drifting subpulses and nulling, the drift
path recovers from a null according to the length of the null (Lyne & Ashworth 1983), mean drift
rate during the null decreases with the null length, (h) mode switching ~ a spontaneous change of
the averaged pulse between two or several different profiles; mode switching conserves the number
and position of the emission components but changes their relative strength, mode switching and
nulling tend to take place in pulsars with low P, (1) microstructure — noise like spikes of emission
on the time scale of microseconds, microstructure is more prominent at low frequencies and occurs

in pulsars with low P.

2.2 Other Properties of Pulsar Radio Emission

An important feature of the conal emission is that the cone components show correlations of intensity,
while the core component, if present, is not correlated with the cone (Kazbegi et al. 1991a). In a
recent work Gwinn (Gwinn et al. 1997) have measured the coherent emission size of Vela pulsar
using the refractive scintillations from the supernova remnant. Their result - 500 km - strongly
suggests that the emission region is located in the outer parts of the magnetosphere. The thickness
of emitting region is harder to determine since if the emitting particles move almost with the speed
of light and emit in the direction of their motion, the time delay between two different emitted pulses
would be Lorentz-contracted. So far no motion of emitters in the magnetosphere has been detected,
the upper bound for the time delay is about 1 us.

The radio spectra of pulsars are well represented by a power law (Lorimer et al. 1995) with mean
value of spectral indices of -1.6 and varying from 0.5 to 3. Young pulsars have predominantly flatter
spectra. Sometimes a break is observed with high frequencies having a steeper spectrum.

There have been many attempts to determine observationally the emission altitude. Unfortu-
nately, most of the techniques for determining emission altitudes rely on the accepted emission model
(e.g., Thorsett 1992), thus giving contradictory results. In most studies the results are interpreted
in such a way that the emission is coming from low altitudes. Sometime too low: the results of
Cordes et al. 1990 imply emission height of 3 km. The assumptions of dipolar geometry, radius
to frequency mapping and an assumption of a particular emission mechanism are essential to many
estimates. Contrary to these conclusions the results of Gwinn et al. 1997, analyses of Gil & Kijak
1993 and the interpretation of (Manchester 1996) of the ”wide beam geometry” (highly-polarized,
wide-spaced pulses observed in some pulsars) provides an example of the emission originated at a

considerable fraction of light cylinder.
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2.3 Temporal Structure of Pulses

Temporal variations in pulsar radio emission occur on three different time scales subject to scaling
with the pulsar’s period: 1-100 milliseconds for the main pulse, 0.1- 10 milliseconds for subpulses
and 1-2000 microseconds for the micropulses (in any given pulsar micropulse time scale is shorter
than subpulse time scale). The average pulse seems to be a superposition of different subpulses plus
amorphous emission, but there is a distinct physical difference between micropulses and subpulses.
Micropulses (see Fig. 2.2) have a broader emission band and frequency independent longitudes
whereas subpulses appear at different longitudes at different frequencies. In addition, micropulses
have a steeper spectrum than subpulses and the main pulse. They are much more pronounced at
low frequencies and become undetectable at frequencies above =~ 1 GHz. The polarization angle is
fairly constant inside a micropulse (although it changes slightly at the edges) whereas it changes
inside a subpulse.

This raises the question as to whether micropulses reflect the properties of the emission generation
or propagation in the pulsar magnetosphere. In the former case, subpulses and micropulses may be
due to the two independent emission mechanisms or they can reflect different spatial or temporal
structures in the pulsar magnetosphere. One possibility is that small scale beams cause subpulses
and temporal modulations cause micropulses (Cordes 1981). Alternatively, micropulses may be due
to the self-focusing of radio emission as it propagates in pulsar magnetosphere.

If microstructure is inherent to the emission generation, then each microspike may not represent
elementary emitters. They may be an incoherent superposition of coherent emitters (see Rick-
ett 1975, Cordes 1981, Zhuravlev & Popov 1990). This conclusion follows from the observation
that average autocorrelation function of micropulses is well represented by amplitude modulated
white Gaussian noise. The characteristic variation time for the elementary coherent emitters is ap-
proximately the reciprocal of the typical bandwidth (1 GHz), i.e.,, 7 = 1/v & 107% 5. Thus, each
micropulse of a temporal length ¢t ~ 10~% s would contain a contribution from about 10® independent
coherent emitters.

Another insight into the physical nature of microstructure involves the temporal auto-correlation
function of micropulses which show quasi-periodicity with two different times scales: a short time
scale of less than 0.5 milliseconds and long time scale of about 0.5-3 milliseconds (Soglasnov, Popov
& Kuz'min 1983). The number of observed quasiperiods (5-10) implies that the structures that
generate micropulses come in bunches or arrays and that the process that creates these arrays is a
low Q process.

One of the fundamental questions concerning pulsar emission is whether it is broad- or narrow-
band. Multifrequency observations of microstructure show that long duration microstructure (longer

than 500 us) preserves correlation both in broad- and narrow-band filters at frequencies up to 1GHz
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apart. On the other hand, short scale microstructure {shorter than 500 us) when observed in narrow
band filters showed no correlation between frequencies 50 kHz apart (Gurvits et al. 1987). The
statistical interpretation of long time scale microstructures in the framework of amplitude modulated
noise theory (Rickett 1975) is a broad-band (white) noise modulated by some stochastic process.
Physically, this could correspond either to the broad-band noise radiated in a thin layer or to the
narrow-band noise with the emitting frequency scanning a wide range of frequencies in, for example,
radius to frequency mapping. For short time scale noise, the characteristic time of fluctuations
of the modulating function approaches the shot noise structure of micropulses and that gives the
decorrelation in narrow bands. The existence of a spectral break at about 100 MHz might also
be a reflection of two existing mechanisms (soft broad-band and hard narrow-band) with different

spectral features.
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Chapter 3 Review of the Theory

3.1 Introduction

In this Chapter we review the most promising theories of pulsar radio emission. A common feature
of all of them is that they attribute emission to some kind of instability in relativistic plasma flowing
along the open field lines in the magnetosphere of the rotating neutron star.

The most important constraints which a possible radiation mechanism should satisfy are: (a) it
should be operational in a very broad range of pulsar periods — from 1.5 millisecond to more than
5 seconds, more than three orders of magnitude, (b) it should combine long time stability of the
average pulse profile with small time scale variations, (c) it must explain high brightness of observed
radio emission and its complicated polarization properties.

We assume that those theories based on the polar cap model deserve most attention. In these
models the rotation of the neutron star generates a dense outflow of mildly relativistic electron-
positron pairs penetrated by highly relativistic electron or positron beam along the open field lines
(Fig. 3.1). Due to the very strong magnetic field near the neutron star, the spontaneous synchrotron
decay times are very short and all the leptons quickly loose their transverse moments and stay in
the lowest Landau level throughout the inner magnetosphere.

It is generally believed now that the pulsar radio emission is generated by some collective plasma
processes in which the energy is put into the local plasma normal mode. A study of collective insta-
bilities in plasma involves several stages. Initially it is necessary to identify the normal modes of the
medium, their dispersion relations and their polarization. Next, one should investigate the stability
of these modes due to both resonant or nonresonant interactions with plasma particles. Collective
plasma instabilities due to the nonresonant interactions of the normal modes with the plasma par-
ticles are called hydrodynamic instabilities (e.g., firchose instability) and plasma instabilities due to
the resonant interactions of the normal modes with the plasma particles are called kinetic instabil-
ities. For the discussion of various regimes of plasma instabilities in the pulsar magnetosphere, see

Chapter 7.2.

3.2 Single Stage and Two Stage Theories

The various plasma theories of the pulsar radio emission can be classified according to criteria

whether or not the originally unstable waves have to be nonlinearly converted into radiation that can
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Pair production in polar cap

Pair formation
front

Neutron Star

Figure 3.1: Pair production near the neutron star polar caps (after Arons 1983). In a thin inertial
layer near the surface of the star (=~ 1 cm) a primary beam with a density np = ngy is accelerated to
relativistic velocities screening the parallel electric field. As the flow propagates outward, the density
of the beam changes with radius with a different radial dependence than ng; due to the curvature of
field lines or due to the Lense-Thirring precession. The resulting electric field accelerate the charges
to energies E ~ 10'3 eV. The primary particles emit curvature photons, which in turn produces
electron-positron pairs. The pairs are born at excited Landau levels. The secondary synchrotron
photons produce more pairs in an avalanche-like process.
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propagate directly in vacuum. The former approach includes two stages in generating the observed
radio emission: in the first stage emission is generated on the waves that cannot leave magnetosphere
and in the second stage they are converted into escaping modes (Ruderman & Sutherland 1975).

Conventionally, the two stage models are based on the development of the electrostatic insta-
bilities (Ruderman & Sutherland 1975, Cheng & Ruderman 1977). In the two stage models the
conversion may be linear or nonlinear in the amplitudes of the electrostatic waves. The nonlinear
conversion is due to the interaction of the nonlinear waves, for example a decay of the electrostatic
into two electromagnetic waves. The linear conversion is due to the propagation effects in the inho-
mogeneous curved magnetic field of pulsar magnetosphere. Asseo, Pellat & Rosado 1980 have argued
that in the curved magnetic field it is possible to emit electromagnetic waves directly through the
conventional Cherenkov two-stream instability. In fact, this can be considered as a propagation
effect, when the original electrostatic wave is emitted along the magnetic field and acquires electro-
magnetic components as it propagates in the presence of a curved magnetic field. The fact that this
is a linear conversion process occurring well in the adiabatic approximation (when the wave length
is much smaller than the radius of the inhomogeneity, which is the local radius of curvature of the
magnetic field lines), suggests that as the wave propagates in the plasma, it always stays on the same
branch of the dispersion relation. As the wave moves along the particular branch of the dispersion
relation, its polarization may change from longitudinal to transverse.

An important fact, omitted in many works that considered propagation of waves along the
magnetic field, is that the electrostatic plasma waves propagating along magnetic field lines are the
limiting cases of the two branches of ordinary and Alfvén waves that intersect only in the degenerate
case of the parallel propagation (see Fig. 5.3). For oblique propagation the ordinary and Alfvén
waves do not have intersection points. Thus, the linear evolution of the longitudinal plasma wave,
emitted originally along the field line, will drastically depend on which branch (ordinary or Alfvén)
the wave actually belongs to.

The propagation of ordinary and Alfvén waves in the inhomogeneous plasma of a pulsar magne-
tosphere differs considerably {Arons & Barnard 1986, Barnard & Arons 1986, Lyutikov & Machabeli
1997, Section 9.3). Alfvén waves cannot escape directly from plasma into vacuum, while ordinary
waves may become superluminous and can escape from magnetosphere. Consequently, if the emit-
ted quasilongitudinal plasma wave belongs to the Alfvén branch, it will not be able to escape from
magnetosphere and will have to be nonlinearly converted into the escaping mode, even though it
has a transverse electromagnetic component.

A very important problem with the two-stream instability model is the low growth rate on the
resonance with the primary beam (Benford & Bushauer 1977) and the strong sensitivity to the
plasma distribution function for the two stream instability due to the relative streaming of plasma

components (Hinata 1976, Bushauer & Benford 1977). In Section 7.9 we shall show that two-stream
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instability involving primary beam occurs in a hydrodynamic regime and is strongly suppressed by
the large relativistic vy-factor of the beam.

The fact that Alfvén waves cannot leave magnetosphere is very important. This means that elec-
tromagnetic cyclotron-type instabilities involving Alfvén waves (Tsytovich & Kaplan 1972, Hardee
& Rose 1978) should be classified as two stage process. The growth rates of the electromagnetic
cyclotron type instabilities can be very large, but all the complications of the nonlinear wave con-
version and Alfvén wave absorption in the outflowing plasma put the model based on the Alfvén
wave excitation as disadvantage.

Another type of pulsar radio emission generation models is based on the instabilities on the waves
that can leave magnetosphere directly (Kazbegi et al. 1991a, Kazbegi et al. 1991b, Zheleznyakov
& Shaposhnikov 1979, Lyutikov, Blandford & Machabeli 1997). The advantages of this approach
are obvious: the basic emission mechanism does not rely on the numerous complicated nonlinear
wave processes. In this work we show that electromagnetic cyclotron-Cherenkov and Cherenkov-
drift instabilities on the high frequency vacuum-like ordinary and extraordinary waves in the pulsar
magnetosphere may constitute a possible source of the pulsar radio emission.

An important factor in the development of the electromagnetic instabilities is that, unlike the
electrostatic Cherenkov instabilities, in the pulsar magnetosphere they occur in the kinetic regime
and are not subject to the relativistic suppression by the large parallel momentum of the resonant

particles.

3.3 Review of the Theories

3.3.1 Coherent Emission by Bunches

Chronologically, the oldest surviving theory of radio emission is the ”bunching theory.” In this theory
the emitting particles somehow form bunches and all the particles in a bunch emit coherent curvature
radiation.

There has been a long discussion of a possible force that can result in the formation of bunches.
Ruderman & Sutherland 1975 and Cheng & Ruderman 1977 have proposed that two stream insta-
bility due to the excitation of Langmiur waves by the primary beam or by the relative velocity of
the secondary components. Development of the two-stream instability may lead to the formation of
Langmuir solitons with charge separation (Pataraya & Melikidze 1980) that play a role of bunches.
Alternatively, Goldreich & Keeley 1971 proposed a radiative instability of a monoenergetic beam in
a curved magnetic field as a possible mechanism for the formation of bunches. Development of the
two-stream instability can reach nonlinear phase forming a lattice of Langmuir solitons (Pataraya
& Melikidze 1980) which emit radiation by three possible mechanisms: direct radiation when per-

turbed by curved magnetic field in transverse direction, curvature radiation due to the movement
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along dipole magnetic field and by scattering the particles of the primary beam which in the case of
inhomogeneous beam may produce coherent radiation (Asseo, Pelletier & Sol 1990).

Unfortunately, the theories of bunch formations has faced some fundamental problems in creating
and maintaining the bunches (Melrose 1995). The main factors that destroy bunching are velocity
dispersion and radiation reaction of the coherent emission which tend to disperse bunches on a
short time scales. These two effects work in tandem in a sense that even if the original velocity
dispersion were small, the growth of the instability would increase it and suppress the instability
itself. Another disrupting effect is the curvature of magnetic field lines which misaligns a coherence
axis of pancake-like bunches with the direction of the magnetic field.

Though the phenomenological theory of coherent emission by bunches could explain a broad
range of observed pulsar properties by the careful arrangement of the magnetic field geometry and
of the form and size of bunches, it failed to explain the observed correlations across the pulse profile
(Kazbegi et al. 1991a, Gwinn et al. 1997) and existence of the two orthogonal polarizations. The
spectra in the bunching theory is due exclusively to the geometrical properties of the emitting region
which fails to explain a great variety of observed spectra (Mamradze, Machabeli & Melikidze 1980).

The two-stream instability model has been criticized by (Bushauer & Benford 1977, Hinata
1976). Two stream instability on the primary beam has a very low growth rate due to the high
rigidity of the beam (75 & 107), while the two stream instability due to the relative velocity of
the secondary plasma is easily suppressed by the relatively low thermal scatter of plasma particles
(Hinata 1976, see though Weatherall 1994). In both cases the instability growth rate is constant in
a very small angle which limits the growth length in the curved magnetic field (Lyutikov 1997c).
An additional complication in these theories comes from the fact that in the lower regions of the
pulsar magnetosphere, where these mechanisms are supposed to operate, the Cherenkov streaming
instabilities occur on the Alfvén branch which cannot leave magnetosphere. The waves have to be

nonlinearly converted into escaping modes.

3.3.2 Shear Instabilities

In a series of papers (Asseo, Pellat & Rosado 1980, Asseo, Pellat & Sol, Asseo, Pelletier & Sol 1990,
Asseo 1995) it has been shown that the radiative Goldreich-Keeley and two-stream instabilities
may be treated as two limiting cases of a general instability of an inhomogeneous (finite transverse
size) beam propagating in curved magnetic field lines and bounded by the stationary plasma. The
radiative Goldreich-Keeley is then obtained as a limiting case of a very thin beam and the two-stream
instabilities may be obtained in the case of a very large transverse size of a beam. In the infinite
plasma in constant curved magnetic field, the Goldreich-Keeley instability of a monoenergetic beam
does not develop. If there is a considerable shear in the flow, then the generalized Goldreich-Keeley

radiative instability can develop. It is argued {Asseo, Pelletier & Sol 1990) that the instability can
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evolve into the nonlinear regime resulting in a soliton formation.

The initial conditions for the development of the shear instabilities, i.e., the presence of the large
shear and small spread in particle moments, are the weakest points of this theory. It is expected
that the flow of the secondary plasma above the pair formation front is relatively homogeneous, has
a considerable spread in the moments of the particles and occurs in a region with large transverse

dimensions.

3.3.3 Growth of a Curvature Wave

In the theory by Beskin et.al (Beskin, Gurevich & Istomin 1983, Beskin, Gurevich & Istomin 1986
Beskin, Gurevich & Istomin 1993) it is argued that an Alfvén-type curvature mode can become
unstable in the infinitely strong curved magnetic field. In their theory an Alfvén wave splits into
three waves in the curved magnetic field, one of which becomes unstable. The observed radiation
results from nonlinear conversion of this wave.

In spite of some success of the theory, it is very fundamental ideas have been seriously criticized
(Machabeli 1995, Nambu 1989, Larroche & Pellat 1988). The dispersion relations of the curvature-
Alfvén waves are intrinsically non-local and cannot be derived by conventional perturbative methods.
One of the main objections is that the unstable wave grows coherently even in the case of infinite
magnetic field which contradicts the mentioned proof of the impossibility of a maser action in this

limit (Blandford 1975, Melrose 1978a).

3.3.4 Curvature Maser

Until recently, the works that considered a possibility of a curvature maser, i.e., the amplification
of the curvature radiation due to the interaction with particles (Blandford 1975, Melrose 1978a,
Zheleznyakov & Shaposhnikov 1979, Chugunov & Shaposhnikov 1981, Luo & Melrose 1992a) were
treating the curvature emission process as an analog of the synchrotron radiation in vacuum. It
has been shown that the coherent curvature emission is impossible (Blandford 1975, Melrose 1978a)
in this limit in the case of infinitely strong curved magnetic field. This proof, though, allows for a
loophole if the magnetic field is finite. Then, the particles streaming along the curved magnetic field
lines experience a curvature drift perpendicular to the plane of the curved field line allowing for the
possibility of the wave excitation (Zheleznyakov & Shaposhnikov 1979, Chugunov & Shaposhnikov
1981, Luo & Melrose 1992a). Drift velocities for the bulk plasma are negligible and only the particles
from the primary beam or from the tail of the distribution could undergo masing action. Curvature
maser, in a way considered by (Zheleznyakov & Shaposhnikov 1979, Chugunov & Shaposhnikov
1981, Luo & Melrose 1992a, Lyutikov, Machabeli & Blandford 1997a) is a plausible mechanism of

the pulsar radio emission generation. It will be considered in more details in Section 6.2. The most
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important difference in our approach is that we take correctly into account the influence of the
medium on the resonant wave-particle interaction. What one finds, then, is that the modes emitted
by the charged particle streaming along the curved magnetic field in plasma are substantially different
from the vacuum modes, so that the emission process resemble more the collective Cherenkov-type
emission than the single particle cyclotron emission.

We believe that the Cherenkov-drift instability may produce the observed radio waves. It may
be responsible for the "cone” emission (Chapter 8). We will discuss the physics of the cyclotron-
Cherenkov instability in more details in Chapter 6 and show in Appendix H that the conditions
for the development of the cyclotron-Cherenkov instability are satisfied in the magnetosphere of a

typical pulsar.

3.3.5 Cyclotron-Cherenkov Instability

Near the light cylinder the magnetic field strength falls considerably which allows for synchrotron
excitation of transverse motion of particle. At a distance 10° cm from the neutron star, an anomalous
Doppler resonance could be fulfilled for the particles of the primary beam and for the fast particles
in the tail of the plasma distribution. The emitting particle undergoes a transition to the higher
Landau level and emits a cyclotron photon; the free energy is supplied by the parallel motion.
The wave becomes kinetically unstable and has features which could explain a broad variety of
spectral and polarization characteristics of observed core type emission. We believe that cyclotron-
Cherenkov instability is a possible mechanism of pulsar radio emission and may be responsible for
the "core” emission (Chapter 8). We will discuss the physics of the cyclotron-Cherenkov instability
in more details in Chapter 6 and show in Appendix F that the conditions for the development of

the cyclotron-Cherenkov instability are satisfied in the magnetosphere of a typical pulsar.
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Chapter 4 Parameters of the Pulsar

Magnetospheric Plasma

The primary purpose of this Chapter is to define the fiducial parameters for the pulsar magne-
tospheric plasma. Unfortunately, the current poor understanding of the general magnetospheric
structure and the complicated physics of the pair production process still allows a very broad range
of plasma parameters. Undoubtedly, the plasma parameters change from pulsar to pulsar and also
experience strong temporal variations in a given pulsar. As a first step in approaching the problem
we will assume the plasma parameters are stationary, thus neglecting a broad variety of transient
and secular events in pulsar phenomenology. The numerical estimates will be done for a ”typical”

pulsar (see Section 4.1.1).

4.1 Structure of Pulsar Magnetosphere

Rotating, strongly magnetized neutron stars induce strong electric fields that pull the charges from
their surfaces. Inside the closed field lines of the neutron star magnetosphere, a steady charge
distribution established, compensating the induced electric field. On the open field lines, the neutron
star generates a dense flow of relativistic electron-positron pairs penetrated by a highly relativistic
electron or positron beam (Fig. 4.1). The density of the primary beam is roughly equal to the
Goldreich-Julian density ngy = Q- B/(27 gc). We will normalize the density of the pair plasma to
the Goldreich-Julian density.

ne = Angy = 10° - 10%n¢;, w2 = i = 2\wpQ (4.1)

where A is the multiplicity factor which is the number of pairs produced by each primary particle
(subscript a in Eq. (4.1) refers to the electrons and positrons of the bulk plasma). Secondary pairs
are born with almost the same energy in the avalanche-like process above in the polar cap (Arons
1983). The pair creation front in the polar cap region is expected to be very thin so we can in the
first approximation neglect the residual electric field in the front that could lead to the reversed
current and different initial energies and densities of secondary particles.

The combination of the pair plasma and primary beam is expected to screen the rotationally
induced electric field so that the flow is force-free. This can be seen from the following reasoning.

The Poisson equation in the frame rotating with the neutron star reads
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R,

Figure 4.1: Pulsar magnetosphere. €2 is the rotation frequency, u is a unit vector along the direction
of the magnetic moment, « is the angle between € and p, Ry is the light cylinder radius.
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0%y
m = —47Tq(n+ —N_ —nb+nc_1) (42)
Here ny are the densities of secondary plasma particles, n, is the beam density and ¥ is electric

potential. This equation and the current conservation for all three components,

qnevs _ Jp qnevy _ Jb
B Bprr’ B Bprr

(4.3)

determine the charge densities and currents throughout the pulsar magnetosphere. In (4.3) the
current density components, j, and j», are constants determined by the general magnetospheric
conditions and Bppp is the magnetic field at the pair formation front.

If the beam density at the pair formation front is equal to the local Goldreich-Julian density,
then, from (4.2) and (4.3), it follows that the densities and energies of both components of the
secondary plasma are equal. As the flows propagate along the dipolar magnetic field, the primary
beam can no longer screen the rotationally induced electric field since, for the relativistic flow along
the open magnetic field lines, ny o« B and ngy o B cos#, where 8 is the angle between the local
magnetic field and the rotation axis.

Since we have an ample supply of particles, the electric field that could result from this deviation
of the beam density from the Goldreich-Julian density will be screened by accelerating one kind of
the secondary particles and decelerating the other so that in every point the relation
jp(‘l““i)—%*‘qnm—&;’#:o (4.4)
holds.

Another relation between the parameters of the plasma and the beam comes from the energy
argument that the primary particles stop producing the pairs when the energy in the pair plasma

becomes equal to the energy in the primary beam:

2 <~ >$) A=y, at the pair formation front (4.5)

where it was assumed that the initial densities, temperatures and velocities of the plasma compo-

nents are equal. For cold components < ~ >$ ) = 7p while for the relativistic components with a

temperature T}, the average energy is < « >§9) = 2%, T,. The assumption of equipartition (4.5)
is a very approximate one, but it allows considerable simplification of numerical estimates. If, for
some reason, this would turn out to be an incorrect assumption, the corresponding formula can be

adjusted by changing the scaling.

As an estimate of the densities of the particles from the tail of plasma distribution, we will use
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the assumption that the energy in the tail is approximately equal to the energy in the plasma (and
in the beam):

TN = ’n(,o)nb (4.6)

where 7; and n; are the typical energy and the density of the tail particles.

Solutions of (4.4), (4.5) and n, = n_ with given values for j,, j, and ng; at the pair formation
front determine average energies of each component in every point in the magnetosphere. There
are two qualitatively different possibilities: (a) the relative streaming in the center-of-momentum
frame is nonrelativistic, (b) the relative streaming in the center-of-momentum frame is relativistic.
In the case of nonrelativistic relative streaming, both components contribute approximately equally
to the dielectric tensor in the pulsar frame, while in the case of relativistic relative streaming, the
contribution of the slower component may dominate due to the relativistic effects.

For the nonrelativistic relative streaming of the hot components, the maximum relative velocity

B, (in units of ¢) measured in the plasma frame may be estimated from (4.4) and (4.5)

2 2
Tp s
R A [ T— 4.
Fo= o) = AT, (47)

while for the relativistic relative streaming, the 4-factor of the hot plasma components in the center-

of-momentum frame are

Yp b
Yo = (4.8)
T V2N 2572032 (1 +2T,)

The critical value for the parameter A at which the relative velocity of the particles become

relativistic may be estimated as A\* = (v/T,)%%. For the larger )\ the relative velocity of the
plasma components is nonrelativistic; for smaller values it is relativistic. For the characteristic
beam energy <, &~ 107 this gives A\* ~ 10%. With the present uncertainty in the multiplicity factor
A ~ 10° — 10° and the temperatures of the plasma T, = 0.1 — 10, the actual relative flow may be

either nonrelativistic or strongly relativistic.

4.1.1 Typical Pulsar

In this work we will make numerical estimates for the ”typical” pulsar with the following parameters:
(1) Magnetic field is assumed to be dipole with the magnetic field strength at the surface of
neutron star Byg = 10%2G.
(ii) Rotational period of the star P = 0.5 s (light cylinder radius Rps = 2.4 x 10° cm).
(ili) Average streaming energy of the plasma components vy, = 10.
(iv) Temperature of the plasma components T}, = 10.
(v) Initial energy of the primary beam at the pair formation front v, = 6 x 107.

The energy of the beam will decrease due to the curvature radiation reaction force (Section
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J). Then at the light cylinder, where the instabilities occur, the beam will decelerate due to the
curvature radiation reaction to v, = 2 x 108.

For a given period and magnetic field Eq. (4.5) reduces the number of free parameters for the
plasma to two: the plasma temperature and the bulk streaming energy -+, (or temperature and
the multiplicity factor A). We chose a strongly relativistic plasma with the invariant temperature
T, = 10. The multiplicity factor A corresponding to these parameters follows from Eg. (4.5):
A =3x10° The average energy of the tail particles is assumed to be +; = 10°. An important factor
that determines the growth rate of the instabilities is the energy scatter of the resonant particles.
In estimating the growth rates of the cyclotron-Cherenkov and Cherenkov-drift instabilities on the
primary beam, we will also assume that the scatter in Lorentz factors of the primary particles in the
pulsar frame A~ = 10?. This assumes that the beam has cooled considerably due to the curvature
radiation and lost about 10 percent of its energy.

Two points are important in our choice of parameters. First, we use a relatively low plasma
streaming v-factor (and respectively high multiplicity factor A). In the polar cap models (Arons
1981, Arons 1983), the pulsar plasma will have a low streaming ~-factor if the magnetic field near
the surface differs considerably from the dipole field thus reducing the radius of curvature (Machabeli
& Usov 1989). Secondly, the required scatter in energy of the primary beam particles (Ay = 102) is
very small. This is due to the effects of curvature radiation reaction on the primary beam during its
propagation through the dipole pulsar magnetosphere. The highly nonlinear damping rate due to
the emission of curvature radiation by the primary beam result in an effective cooling of the beam
(see Appendix J).

We will use two types of the particle distribution function to calculate the relevant moments:
water bag and relativistic Maxwellian (see Section 5.6). For the case of relativistic Maxwellian
distribution function, the strongly relativistic temperature T, == 10 implies that, formally, there are
many backward streaming particles. We note, though, that the backward streaming particles do
not contribute significantly to any of the relevant moments of the distribution function, so that we
can regard the strongly relativistic streaming Maxwellian distribution as a fair approximation to the
relatively unknown, but definitely very hot, real distribution function.

The location of our typical pulsar on the P — E diagram is shown on Fig. 4.2.

The corresponding plasma densities and frequencies are given in Tables 4.1 and 4.2 for the two
locations (near the stellar surface and at the emission region R ~ 10° cm in the pulsar and plasma
reference frames).

The radius dependence of the parameters is assumed to follow the dipole geometry of the magnetic

field:
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Figure 4.2: The dotted lines show constant spin down ages and magnetic fields. There is also a
dashed line for the equilibrium period spin-up line. The heavy dashed curves and shading illustrate
several death lines from the literature (see Hansen 1997 for references). The circles indicate binary
pulsars and those points with horizontal lines through them are in globular clusters with apparently
negative E (they are contaminated by cluster accelerations).
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Pulsar frame

Plasma frame

Magnetic field, G

HOHM

10'?

Cyclotron frequency wg*, (rads™1),

1.8 x 1019

1.8 x 1019

Beam density, em ™2

ngy; = QB/(2mec) = 1.4 x 101!

ngs = QB/(2mecy,) = 1.4 x 10'°

Beam plasma. frequency, rad s—1

2
W, = /\ﬁaﬁ = My = 2 x 101°

way = m,\mlw = /22 = 6.3 x 10°

’

Beam energy v = 6 x 107 Yo = m\ww = 3 x 10°
Plasma density, cm ™3 nj, = £82B — 4 x 1016 Np,= mmﬁ =4 x 101

Plasma frequency, rad s~ !

w, = V2wpQX=12x 1013

W, = 2wp QA — QXHOHm
p Tp

1 — Bx, Bx- phase speed of X mode

2
r_ W Te  AQT, _ iq-15
o' = AQMEW T 27dwp T 10

suﬁw\/bﬂ
HIPﬂHLH»XHin
mw Ir TpwB 0

Table 4.1: Plasma parameters at the surface of the neutron star




Pulsar frame

Plasma frame

Magnetic field, G

10°

103

Cyclotron frequency wg*, (rads—1),

1.8 x 1010

1.8 x 1010

Beam density, crm 3

ng,; = QB/(2mec) = 1.4 x 10?

ngy = QB/(2mecy,) = 14

2 ’

Beam plasma frequency, rad s~! wey = /\»l:alwzbﬁ = 6 x 10° wey = m\m%m =3x10°
Beam energy v, ~ x10° T = Nl)wmw = 5x10*
Plasma density, cm ™3 n, = wwmm =4 x 107 Ty, = m%w =4 % 10°
Plasma, frequency, rad s ™! Ev = 2w QX =4x10% wp = ,\mlmwubw = 1.2 x 108
1 ! dof Xmode | &= 2% =205 _ 5y 107 | 5= 20 = 29 _ 9104

— Bx,Bx phase specd o mode lmmvxmlwﬂwmw} X lﬂ.ﬁﬂl#eml .
Typical frequency, rad s™! w' = 5x10° w=2 =25x 108

27p

Table 4.2: Plasma parameters at the emission region R ~ 10° cm




() = wp(Rivs) (R—Ni)/ (49)

4.1.2 Electromagnetic Parameters

Next let us estimate the parameters of the electromagnetic radiation in the pulsar magnetosphere.
The typical observed fluxes are of the order of 1 Jy (1 Jy = 10" Zergs~lem~2Hz™!) at a frequency
around 1 GHz. For the typical distance to the pulsar of d = 1 kpc, this translates in the magne-
tospheric flux of F, = 1Jy(d/R)? = 10%ergs~'cm™2Ry? at the distance of R & 10° cm from the
stellar surface. Taking the bandwidth of the emission §v = 10° Hz, we find a typical radiative energy

flux in the pulsar magnetosphere:
F = 10" Ry %ergs™tcm ™2 (4.10)
which gives a total radio luminosity around
~ mRYF = 3 x 10%%rgs™! (4.11)
We note that the radio luminosity is just a small fraction of the particle energy flux:
Eprtel = ypngymc R = 10%%ergs™? (4.12)
which, in turn, constitutes a small fraction of the total energy loss of the rotating neutron star
Ens = IQQ ~ 10%° Pjgergs™! (4.13)
We can also estimate the one dimension photon density (see Eq. (9.17). We find:
1

n(k) = — ~ 101 —

w cm?

(4.14)
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4.2 Transformation of Physical Quantities

In this section we will give the rules of transformation of various quantities from the pulsar frame
to the plasma frame. We will give simple examples, assuming in most cases that the velocities of
particles and wave vectors are directed along the field lines. The transformations of some parameters
are given in Tables 4.1, 4.2 and 4.3.

The typical observed frequency of w’ = 5x10°rad sec™! (v = 1 GHz) corresponds to the frequency
in the plasma frame w = w'/(2v,) & 2.5 x 10%. This can be compared with the characteristic
frequencies of plasma in the plasma frame at the presumed emission site of R = 10%cm (Table 4.2).
More precisely, we should compare the wave frequency with the frequency of plasma oscillations at
small wave number w(k < wy/c) = /2/Tpw, and with the cross-over frequency w, = v/27T% wp. We
find that the emission frequency is much larger than the frequency of plasma oscillations at small
wave number: w > w(k K wp/c), but may be comparable to the cross-over frequency: w > w,.

When making transformation of the refractive index, we assumed that 712,6 < land 726 W/kex 1
( 6 + 6% /kc is the difference of the phase speed of transverse waves from the speed of light. In
physical terms this implies that the velocity of the plasma frame with respect to the pulsar frame
is less than the phase velocity of the transverse waves. So that if a wave travels in the negative
direction in the plasma frame, it will also be traveling in the negative direction in the pulsar frame.
The above conditions are well satisfied in pulsar magnetopsheres, where v, ~ 10 — 100 and § < 107°

in the outer regions.
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Quantity Plasma frame Pulsar Frame
Frequency 2vpw k>0
w(k)
of vacuum-like waves wk k<0
852
Refractive index 1+ 25 §¢) k>0

of vacuum-like waves

n=1+3d+ 6U/ke

42 2vpk'c

|AH+,A4mu;|mﬁwpmv k<0

p k'c
e im0
Angle of propagation 0 ?
270 HO=m
Occupation number n(k) n(k’)
One-dimensional flux F(v) F() %

Table 4.3: Transformation of various quantities from pulsar to the plasma frame
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Chapter 5 Waves in Magnetized Pair Plasma

5.1 Outline of the Chapter

In this Chapter we first derive the dielectric tensor in cylindrical coordinates. Generally, in cylin-
drical coordinates the electric induction is related to electric field through a linear dielectric tensor
operator, which involves derivatives of the electric field with respect to radius. In two particular cases
this operator relation can be simplified to algebraic relations: for the nonresonant wave (this will
correspond to the WKB approximation) and for resonant subluminous waves in the limit z >> 1 (see
Section 6.2.1). In Appendix A, we discuss the properties of electromagnetic waves and wave-particle
interaction in vacuum when described in cylindrical coordinates and show when the nonresonant
terms of the dielectric tensor operator can be reduced to algebraic relations, i.e., to the dielectric
tensor. In Appendix B we calculate the dyadic Green’s function for a particle executing a circu-
lar motion in cylindrical coordinates, and show how the conventional expressions for the curvature
emissivity can be obtained using our approach. In Appendix C we show when the resonant terms
of the dielectric tensor operator can be described by more simple algebraic relations, i.e., by the
dielectric tensor.

Next we discuss the properties of linear waves in a strongly magnetized electron-positron plasma
streaming along the magnetic field. The particles are assumed to be in their ground gyrational state
so that the plasma is one-dimensional. Properties of a one-dimensional pair plasma are considerably
different from the properties of a well studied electron-ion plasma. In this chapter we present
the most thorough consideration available of the properties of the waves in pair plasma taking into
account possible relativistic temperatures and relative streaming of the plasma components. Another
complication in considering the wave modes in a pulsar magnetosphere comes from the large bulk
streaming of plasma which does not allow a simple Lorentz transformation from the plasma rest

frame to the observer frame.

5.2 Response Tensor for a One-Dimensional Plasma

We will calculat the response tensor of a one-dimensional plasma in cylindrical coordinates using the
analogy of the forward-scattering method (see, e.g., Melrose 1986) adopted to cylindrical coordinates.
We introduce cylindrical coordinates x,7,¢ with r along the radius of curvature of the field line,

z perpendicular to the plane of the curved field line and ¢ the azimuthal coordinate (Fig. 5.1).
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Figure 5.1: System of coordinates.

Torsion is neglected and the radius of curvature is assumed to be constant.
We represent the current as a sum of currents due to each single particle moving along its

trajectory r°(t):
0,0) = [ drdp i (e,05(p,2"(0) (1)

We expand the single particle current (denoted by the subscript sp)
Jsp(r,t) = gt 6(r — r°(t)) (5.2)
in Fourier amplitudes in time, z and ¢ and in Hankel amplitudes in r
Jsp(r,m, kz,w) = /dt exp{—iwt} / dzx exp{ik:zx}/dqﬁ exp{ivg} jop(r,t)
= [ dtexplitve(t) + kuzo(t) w0}t [ edeu(en)uier®(®) (53)

where we used a Hankel transform of the delta function

/ eded, (er)J (er®) = =) (5.4)

r

1A Hankel transform is defined as F(z) = fooo Ju(€x)Edg fooo ydyJ, (Ey)F(y)
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We expand the orbit of the particle in powers of wave amplitudes:
r(t) = ro(t) + r(¢) (5.5)

where r0(¢) is the unperturbed trajectory of a particle, when no wave is present and r(t) is first
order purturbations.

The first order Fourier transform of the single particle current is then
jg;,) (rym, ks w) = q/dt exp{i(ve°(t) + kpzo(t) — wt}/{d{Ju(g’r)

% [i‘(l)«fu(éro(t)) + I‘O(t) ((iV¢(1)(t) + zkzm(l)(t)) Ju(fro(t)) + %ﬁ)ﬂr(l)(t)):l (56)

The orbit of a particle is found by solving the equation of motion

d
d—‘t’ =FO(t,r,v) + FO(t,r,v) (5.7)

where FO(t,r,v) is a force acting on a particle when no wave is present and F(¢,r, v), ie., a
force acting on a particle due to the presence of a waves. Expanding Eq. (5.7) in powers of waves

amplitudes we find

0

dp dt(t) — FO(t, 1%, v") (5.8)
®

dﬁg@ = FO (1,10, v0) (5.9)

The force F (¢, r0, v?%) also can be expanded in Fourier amplitudes in ¢,z and @.
FO (¢, 0 v0) = Z/dw'dk; exp{—i(w't — kLaz°(t) — V' ¢°(t))FV (w,m, ky, r0(2), 1) (5.10)

Equation (5.9) can be solved for the first order velocity perturbation #(!)(¢) and first order
trajectory perturbations z(1(t), ¢ (t) and (V) (¢):

1 (2) V(v kg, r0(8), 2)
2 () = Z/dw'dk; exp{—i(w't — kLz%(t) — v ¢°(¢)) :z.c (v r)
r(2) FO (W v kg, (), 1)

(5.11)

where tilde denotes Fourier transforms.
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The first order single particle current then becomes

3O m, kz,w)—qZ/dwdk’/dtel w—w Yt (ks —kL )2 () — (v=2")8° (1)) )} /gng (€r)
V(60 + 1) (8 + ik.50) g, (6r0(0) + ai”(aﬁﬁf'(l))] (5.12)

Using this single particle current we can calculate the current (5.1). In the general case, current
(5.12) may be related to the electric field of the perturbing wave through a generalized dielectric

tensor operator:
j(rom, kg, w) = E(rym, ky,w) - E(r,m, ky,w) (5.13)

where £ is a dielectric tensor operator which involves a Hankel transform of the external current and
partial derivatives with respect to r. This is different from Cartesian coordinates, where the electric
induction is related to electric field through a dielectric tensor. 2 To simplify the calculations we
find when the radial dependence of both the Hankel transform of the external current and of the
perturbing electric field can be approximated by the plane wave form. For the nonresonant term in
the dielectric tensor operator this is justified in the WKB limit, while for the resonant terms this is
justified for subluminous waves in the limit 62%/3 3> 1 (v is the order of the Bessel function).
Thus, in the Hankel transform of the external current and in the derivatives of the perturbing

electric field we can identify

— ikpy, 8% — ik, (5.14)

ar®

In this approximation the Hankel transform of the external current will reduce to the Fourier trans-

form in r and the derivatives of the perturbing electric field are replaced by ik,. The dielectric tensor
operator £ then becomes a conventional tensor.

The integration of the induced current over d¢°dz® then gives delta-functions §(v —v') §(k, — kL)

that are subsequently removed by the corresponding integrations. For rq = const, the time and

dw’ integrations insure that only secular terms are retained. The integration over d¢ and dr® are

removed using relation (5.4).

5.2.1 Perturbed Trajectory

The equations of motions for a particle in a circular magnetic field when the Larmor radius is much

smaller than the radius of curvature are the following:

d;)tr =eE,(r%) + % ((Bs(x°) + Bo)vs — v B, (r%)) (5.15)

2Mathematically, the difference is that dielectric tensor acts in a space tangent to the vector field at some point,
while dielectric tensor operator acts on a vector field itself.
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ke eE,(r%) + % (Br(ro)vd, — v, (By(r) + Bo)) (5.16)
% = eEy(r’) + % (B (%), — v Br(1°)) (5.17)

We solve Egs. (5.15- 5.17) by expanding in powers of waves amplitudes. We assume that initially

the particles are in the ground gyration state. Then in the zeroth order we find: 1% = 0, ¢° = Qt =
2
Yv

vgt/r, v = ug, with ug = R—BWLB' The first order in wave amplitudes gives
o) _ g (E ) - 2B, (r% + B (rO)) + 2B ,m
dt ymec \" c " ¢ ? v F

(5.18)

c2

L E.(r0 E.(r0
= o (B + 22, ) - Ml Pl D)) w50
dt YMmec c v

dvlM E.(r? 0
$ q 0y _ Udp o0y _ Us(UeEy(r®) + uaFy(r))
= E - —B, ~ 2
e — L (Be) - 5.0 - (5.20)
Expanding Egs. (5.18 - 5.20) in Fourier amplitudes, we find the solutions:
~(1) _ q 0 (B quud - B:z:UqS
= g (o (e
B, E E,
+28 (Ez 4 2B ualvgBy o ua ))> (5.21)
5 c ¢
- ) B, Ey 4+ ugE,
5 = ; q2 (g B, 1Y ~ ud((vg s uaEy)
mecr(@h/v2 — 02) c c
B — B,
_EE(ET+_ﬁEL__J@>> (5.22)
y ¢
=1 _ . 4 _ (E . EB ) ’U¢(’U¢E¢ + UdEz) 593
Ug ZmeQO'y( $ = Or + 2 (5.23)
where Q° = w — kyvy — kyuq, kg = m/r.
The first order variations in trajectory are
(1) e 1
®_ Y= 1y _ ¢ m_TI_ 5.24
e O T T T o (5:24)
In a wave magnetic field is related to the electric field:
B = ZcurlE (5.25)
w
In cylindrical coordinates we have
ke
B, =g, ey
w
By = — kzcEr B Z,cc'))Ez



¢ 0
B, =—FE,.+ o (rEg) (5.26)

5.2.2 Simplified Response Tensor

Using Egs. (5.21 - 5.26) we can find the dielectric tensor operator £. In Appendix A it is shown that
in some particular cases the operator relations between electric field and electric displacement can
be simplified to algebraic relations. This is possible in the WKB limit for the nonresonant particles
and in the limit z > 1 for the resonant particles (see Appendix A). In these limits it is possible to

change all the radial derivative 8, — ik,.. The relations between magnetic and electric field then

simplify
ks k,
By~ —2%F, + “°F,
ksc k.c
B, ~ —E, — E 5.27
” o Eo (5.27)

The resulting dielectric tensor is still complicated. It can be simplified according to the following
procedure: (i) for the nonresonant parts, the drift velocity is small and can be neglected, (ii) for
Cherenkov-type resonance (resonances that do not involve wg) , we retain all the terms, (iii) for
cyclotron-type resonances (resonances that do involve wg) we assume that k; /kg = uq/c, uqg/c > 1/v
and expand in small drift velocity retaining only the first terms in uy; and k;. Implicit in this
expansion in small ug is the assumption that yw? > wQBug /c2. In this limit, in the cyclotron-type

resonant terms involving drift velocity we can approximate vg =~ c¢. The dielectric tensor is then
dpd, dpd) fa k?ﬁui wug
7}
——Z / p¢(w—k¢v¢—kua)A o
dpy fo koo ko, Vi
=1- 2 =2 1- 1-==)--2
cos Zwm/wgﬂ w)( o) - 2

dpy , (k7 +k2) v} dpy
f fu g -3 / b A fo

ll

Err

EI'I‘

—= Z /dp¢ w — kyvg) Ay + ikrugAY) fa

d -
€ra = %Z / p¢ w —kyvp) Ay — tkrua A7 )fa
:*_Z /d—p‘é% “’“")A++zkA )f

dp¢ k +k‘2)
/ Uptiaoxa= fa

€z

©-



36

_Zw2 /@Q fa quUa (1_ kzua)_z)é
- pa v Q92 w w c?
1 w2a dp¢ . -
€px = 5 ; ﬁ / —:y‘—’l}d, (szi — ZkrAa) fa
dpy fo keu kru wv,
2 ¢ Ja NplUa T Ua [
e Ja 1— 1—
St [Fanse (-522) (-5%)
1 w2 [ dpg vy + Wla\ ,
—ig w? / v ¢ (kTAo‘—l(kIc_ c )A"‘)fo‘

1 wza dpg v . _
5 e [ (AL 4 ikar) f (5.28)

I

6,-4,

6¢T
Here

A = (é + é) , Al = (Q—lg - é) , QF =w—kpvg—ksuatwpy !, Q% = w—kyvg—kstia,
(5.29)
where f, are one-dimensional distribution functions of the components «.

This dielectric tensor reduces to the dielectric tensor for plasma in straight magnetic fields for
uy = 0. It takes correct account of the Cherenkov-curvature emission and gives the drift corrections
to the cyclotron emission. We also note that this dielectric tensor is nonhermitian, since %, is not a
Killing vector.

It can be shown that for the typical parameters in the pulsar magnetosphere, the drift velocity
of plasma particles due to the curvature of magnetic field lines could be neglected in the calculations
of the real part of the dielectric tensor unless the curvature of field lines satisfies the condition
Rp <« ”yer (here v, is the average streaming energy of plasma particles in the pulsar frame and
r1, = ¢/wp- Larmor radius). This follows from the assumption of a nonrelativistic transverse motion
and the transformation of the radius of curvature seen in the center of gyration frame Rp ., = Rp /7%
This condition is well satisfied inside the pulsar magnetosphere for the plasma streaming energy
v < 10%. By contrast, the drift velocity is very important for the high energy resonant particles.

The use of the simplified response tensor, which assumes a plane wave approximation to the
normal modes of a medium, implies that we effectively have spatially uniform medium. Thus the
use of cylindrical coordinates allows one to eliminate the only inhomogeneity present in the problem,
the weak inhomogeneity of magnetic field, by choosing the cylindrical system of coordinates. For
stationary and spatially uniform plasma we can use Fourier analysis which reduces the problem to

the following system of equations for the perturbations in the electric field:

AasEs(w, k) =0 (5.30)
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where €45 (w, k) is the dielectric tensor of the medium and
Aap = kakg — k*c*8op + w?eqp(w, k) (5.31)
The normal modes satisfy a dispersion relation
Det |Agg| =0 (5.32)

whose roots determine the time behavior of the perturbations.
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5.3 Waves in Cold Pair Plasma with Identical Distributions

of Electrons and Positrons

In this section we will consider the wave propagation in a cold magnetized electron-positron plasma
with equal densities. Though the pulsar plasma is probably hot, the simpler case of cold plasma
is more easily understood and in many cases may serve as a good first order approximation. The
assumption of equal densities of electrons and positrons needs some justification since, in reality,
the pulsar plasma is nonneutral due to the presence of the primary beam with density of the order
of the Goldreich-Julian density and a y-factor v, =~ 107. As we will see the diagonal term in the
dielectric tensor are proportional to the total densities of the plasma components which are larger
than the Goldreich-Julian density by a factor A > 1 and thus almost unaffected by the presence
of the beam. The most important nondiagonal terms, like e;,, are proportional to the difference of
the bulk velocities of the plasma components. For exactly parallel propagation and in the region
n = 1 (n is the refractive index), the condition that the terms associated with the nonneutrality
of the plasma are much less than the terms associated with the different bulk streaming of plasma
components is 8, Ay, > 1 (8] is the velocity difference (in units of ¢) of the plasma components
in the pulsar frame). From (4.4) we may estimate 3, < 1/ so that the terms associated with
the nonneutrality of the plasma are 1/+, times smaller than the terms associated with the different

velocities of the plasma components.

5.4 Plasma Frame

In this section we consider waves in a cold, strongly magnetized, electron-positron plasma in its rest
frame. The drift velocity for the bulk plasma is ignored. In this first approximation we neglect the
influence of the beam on the properties of the modes propagating in the medium. This can be done
provided that the beam density is much smaller than the plasma density. If the average velocities of
the electrons and positrons of the secondary plasma are the same, then retaining only nonresonant

terms we find from Eq. (5.28) the dielectric tensor for cold pair plasma with coincident distribution

functions:
2w12,
€xz =1+ 2 2 = Erp
wh —w
2w,?
€ =1- P
ot w?
€xr =€rg = €pp = €gy = €rg = €gy =0 (5.33)

where wg = 4mnpq?/m is the plasma frequency, and wg = |¢|B/mc is the nonrelativistic cyclotron

frequency.
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5.4.1 Waves in Cold Pair Plasma

Equation (5.32) with the dielectric tensor (5.33) factorizes giving the three wave branches: extraor-

dinary and two coupled ordinary and Alfvén branches:

92 2
n?=1- ?—_a—ib X mode (5.34)

(w2—2 w,,2) (wz—w32—2wp2

2 _
T wiw?wp?-2w?w,?+2wp? wy? cos? b

n

Alfvén and O mode (5.35)

( see Figs. 5.2 and 5.3).

Equation (5.34) describes the transverse extraordinary wave with the electric vector perpendic-
ular to the k-B plane and Eq. (5.35) describes the coupled longitudinal-transverse wave which
has two branches: ordinary quasi-transverse wave with the electric vector in the k-B plane and
quasi-longitudinal Alfvén wave with the electric vector along B.

The normal modes of the plasma for the parallel propagation are given by

wi = V2w, (5.36)
2w?
2 =1 P .
=1+ s (5.37)

(subscripts ; and ¢ refer to longitudinal and transverse polarizations of waves).
For exactly parallel propagation, the dispersion curves for the ordinary mode and Alfvén mode

intersect at

w* = V2w, ke~ V2w, (14w} /wp?) (5.38)

This intersection occurs only for the parallel propagation, for oblique the dispersion curves for
ordinary, extraordinary and Alfvén modes are well separated. It follows that Eq. (5.36) describes
the ordinary mode for ¥ < k* and the Alfvén mode for k& > k*, while Eq. (5.37) describes the
extraordinary mode for all frequencies and the Alfvén mode for £ < k* and the ordinary mode for
E > k.

In the pulsar magnetosphere the waves that may be important for the generation of the observed
radio emission have frequencies much less than the gyrofrequency. In what follows, we will often use
the low frequency approximation when all the relevant frequencies are much less than the gyrofre-
quency. In the cold plasma in its rest frame this implies: w <« wp. The solution of Eq. (5.34) in the

low frequency limit describes a subluminous transverse electromagnetic wave:

w? = k22 ( - —Tp) , w <K wpg, X mode (5.39)
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Figure 5.2: Dispersion curves for the waves in a cold electron-positron plasma in the plasma frame
for oblique propagation (¢ = 0.5). There are three modes: Ordinary (O), Extraordinary (X) and
Alfvén. For graphic purposes gyrofrequency was chosen to be wg = 5wp,. In the high frequency
regime w > wp there are two subluminous waves with the dispersion relation w? ~ k*c? + 2w? for
the X and O modes. Both X and O modes have resonances at w = wpg and Alfvén has a resonance at
w=/2cos fwy. O mode has a cutoff at w = \/§wp. O mode crosses the vacuum dispersion relation
at w? = wa, + w? sin 2.
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Figure 5.3: Dispersion curves for the waves in a cold electron-positron plasma in the plasma frame
in the limit w, <« wp. There are three modes represented by the dashed (ordinary mode), solid
(extraordinary mode) and long dashed (Alfvén mode). The dotted line represents the vacuum
dispersion relation. For the exact parallel propagation, the dispersion curves for the ordinary mode
and Alfvén mode intersect. The insert in the upper left corner shows the region near the cross-over
point wy.
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Solutions of Eq. (5.35) are more complicated. The simple form for the dispersion relation may
be obtained near the cross-over point, where the dispersion relation of the ordinary mode crosses
the vacuum dispersion relation or in the asymptotic regimes far from the cross-over point.
Solving (5.35) with the refractive index set to unity we find the cross-over point for the ordinary

wave.

wg = ki = 2w,? + wp?sin? @ (5.40)

Near the cross-over point, the approximate dispersion relation for the ordinary mode may be

w—wy=— (aKé:’{’ k))/ <8ng:’ k)> dk (5.41)

where K (w,k) = 0 is the dispersion Eq. for w(k).
From Eq. (5.35) we find

found using the relation

w=koc+nlk—ko)c (5.42)
where
_ 10w _ wp? cos? Osin? @
=% Bk ko 4wpt +2wp2w,2sin® 6 + wp? cos? fsin 0

4 4
“p (5.43)

~1-—

4wyt + wpt cos? Hsin® 0
where we used the assumption wp > w,. From (5.43) it follows that the behavior of the dispersion
relation of the ordinary wave near the cross-over point shows a very sensitive dependence on the

angle of propagation. There exists a critical angle 8, = 2w12, /w% at which the dispersion relation

changes:
4
w= V2w, + 28; (k — ko)c, kg ~2wl/c? if § < 2w?/wp?
4
w=ke— Ughlevs ypt k22 =202 + wp?sin?0  if 2w2/wp? < 0 (5.44)

For angles smaller than 6., we can generally use the approximation of parallel propagation when
considering the dispersion relations of the waves, while for larger angles we must take into account
the effects of oblique propagation.

The other limits when the dispersion relations for the ordinary and Alfvén waves may be obtained

in closed form are the asymptotic limits far from the cross-over point. Then the large and small
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wave vector asymptotic solutions are

2 2 2 2] . .
k%c? (1 - —w’%—) +2w,?sin® 6 ordinary wave
2 .
w* = if ke > w (5.45)
P
2wp’sin®d  2w,%sin%6 .
2w,? cos? 0 (1 S "”’w;;“ Alfvén wave

2.2 2 . .
2wp2 + k2c? (1 - k—cwcg’—sf’) sin® § ordinary wave
P

L2 = if ke < wp (5.46)
2 .
k262 cos? 6 (1 - 2;%”2— - %‘3) Alfvén wave

From (5.45) and (5.46) it follows that for Alfvén waves in the limit k¢ > w, and for the ordinary
mode in the opposite limit k¢ < w, we can always set the magnetic field to infinity, while for the
ordinary mode in the limit kc > w, and for the Alfvén waves in the limit k¢ < w, we may set the

magnetic field equal to infinity for the angles of propagation larger than some characteristic angle:

g > if ke > wy

ke
0> ifke <uwp (5.47)

In the limit of infinitely strong magnetic field the dispersion relations for the ordinary (plus sign)

and Alfvén modes (minus sign) are (Arons & Barnard 1986)

. k2202 byl Vit + 4wyt —;lkz c2wp? cos(20)

(5.48)

The short and long wave length asymptotics are then given by (5.45) and (5.46) with the magnetic
field set to infinity.

An important point in considering the wave excitation in the superstrong magnetic field is that
we cannot neglect the very large but finite magnetic field. In the approximation of the infinitely
strong magnetic field the ordinary mode is always superluminous and thus cannot be excited by the
Cherenkov-type resonant wave-particle interaction. In this limit any instability would occur on the
Alfvén waves which are strongly damped as they propagate out in the pulsar magnetosphere. When
the finite magnetic field is taken into account, ordinary wave becomes subluminous for the small
angles of propagation and can be resonantly excited by the Cherenkov, cyclotron or Cherenkov-drift

interaction with the fast particles.
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5.4.2 CMA Diagram for Cold Pair Plasma

CMA diagrams (e.g., Budden 1985) are useful tools in considering wave propagation. It is a plot of
the refractive index versus some functions of wave, plasma and cyclotron frequencies. We chose the
following coordinates for CMA diagram:

2 2
1 w X w
oo (2) zefo(2) 5)
wpg wpB
where Y and X are the standard quantities in the magnetosonic theory. With this choice of co-
ordinates, the lines of constant Z are the lines of constant density and are independent of wave
frequency. The lines of constant W are the lines of constant wave frequency and are independent of
the density. The regions on the CMA diagram are separated by the resonance, where n — oo and

cutoffs, where n — 0.

Using Eqs (5.34) and (5.35) we find resonance

W=1 X modes (5.50)
W = % + 27+ \/(% + Z)2 —2Zcos?0 O & Alfvén modes (5.51)
and reflection points
W=1+2Z2 X modes (5.52)
W=142Z7
O & Alfvén modes (5.53)
W =27

For the X wave the curve n = 1 corresponds to Z = 0 (vacuum case). For the ordinary mode
n=1at W= 2Z +sin® 6 (cross-over point) and Z = 0 (vacuum case). Other useful relations for

the resonances of the coupled ordinary and Alfvén modes are

1 =0
1+2Z 0=m/2
1+2Zsin’0 Z<x1
27 +sin’0  Z>1

%+Z+\/(%+Z)2—2Zc0520=

2Z 80=0

0 f=m/2
2Zcos?’ Z«k1
cos? 0 Z>1

%+Z—\/(%+Z)2—22c0529: (5.54)

The CMA diagrams are plotted in Figs. 5.4 and 5.5.
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Figure 5.4: CMA diagram for the X mode.The vacuum case corresponds to Z = 0. On the axis
W = 0 refractive index is n = 1. Resonance occurs at W = 1 ( n = oo) and reflection occurs at
W =1+ 2Z. Typical X waves in the pulsar magnetosphere have Z < 1, W <« 1 and n > 1 deep
in the magnetosphere. Arrows indicate the adiabatic tracks for the constant density and decreasing
magnetic field (B — 0) and constant magnetic field and decreasing density (n — 0).
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Figure 5.5: CMA diagram for the O and Alfvén modes. Vacuum case corresponds to Z = 0. On
the axis W = 0 refractive index is n = 1. Resonances occur at n = oo and reflections occur at
W=1+2Z and W =2Z (n =0). The curve W = 1 + 2Z corresponds to the upper hybrid wave
w? =wh + ng and the curve W = 2Z corresponds to the plasma wave w? = 2w12,. Typical O waves
(denotes by O) in the pulsar magnetosphere have Z < 1, 2Z < W <« 1. Typical Alfvén modes
(denotes by A) in the pulsar magnetosphere have W <« 1 and n > 1. The arrows B — 0, n — 0
and 8 — 7 /2 indicate correspondingly adiabatic tracks for constant density and decreasing magnetic

field, constant magnetic field and decreasing density and increasing angle of propagation.
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5.4.3 Polarization of Waves in Cold Plasma

To find the polarizations of the waves, we construct a matrix of cofactors of A (Melrose 1978c¢):

Aag = n4kakﬁ - n? (kakgeyy + 6apkykyeyn — kakyeys — kgkyeay)

1
+§5a6 (637 — Eynny) + €aryp — Eyr€ap (5.55)

Then the polarization vectors may be chosen as columns of Aqg.

For the cold plasma the elements of A,z are

2w? 2w?
— 2 p P 2 102

A= n? [ 21402 2w} g
zp =1 +n°+ — 5 | cosfsinf = A,
wB

w? —
2w? 2w? 2n?wp?w? cos? 9
Aep== | [-14n2+ 22 (14 ? +
w2 —LU2 +wB2 w2 (~w2+w32)
2w? 2w?
— 2 P 14 2 2
)\¢¢ = (l—n +—(412—+LUB_2‘) (1+ m — n“ cos 9) (5.56)

We note that these relations are exact in frequency.

For the extraordinary mode using (5.34) for the refractive index in (5.56), we find the polarization
vector for the extraordinary mode ex = (0,1,0). For the ordinary and Alfvén modes using (5.35)
for the refractive index in (5.56), we obtain the ratio of the electric field components in the wave:

(w2 — w32) (w2 — 2wg) cot @

E,
LA (5.57)
E, w? (w2 —wpg? — 2w12,)

For the points far from the cross-over point, we can use the approximation of a very strong

Ez 2w2 2
== (_1 + 32—1’) (1 - 2%) cot 0 (5.58)

Using the relation (5.57) we can estimate the polarization of the ordinary wave at the cross-over

magnetic field to find

point. We find that
E: 2wp’f
E. wg?

(5.59)
wp

2
For the angles smaller than ‘_:5;, the ordinary wave is quasi-longitudinal at the cross-over point and
B

for larger angles it is quasi-transverse.

Relations (5.58) and (5.59) allow us to find the normalized polarization vectors:
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2w,?sin% 6 2w,” cos” 0 2
{cos@(l———?’wz—),o,(1+—1’—z—)sm9}+0< ”) ke > wp

C

eo = ] (5.60)
—(k* sin(26
{(wa:071}+0(k:§2> ke <<(Up
p
wrlo 2w}2,
{#232,0,-1} 0 <2
B
ep = W A Wy (561)
2
{170,_w92 c:thZseCO 9>>_25.;B

{(1+M) sin,0,cos @ (1 M)}%—O(——Z’) ke > wp
€4 = (5.62)
(10,20} 4 0 (22) ke <0y

2
which are accurate to O (w%%)

5.5 Pulsar Frame

The dispersion relations in the pulsar frame are complicated even for the case of a cold plasma. The
waves propagating in different directions have different dispersion relations. So that the dispersion
equation for the X mode becomes a fourth order equation for w(k). To simplify the consideration we
will use the low frequency approximation from the very beginning, i.e., we expand all the relevant
relations in 1/wg.

First we consider forward propagating waves which in the plasma frame had § < 1. We obtain

w'?

' .
wh = k(1 _L472u%)
Ke(1- TR A T VR,
4'ypr c2 k'2 ¢ TpWp
wp = _
W .
vpk' + ?/,} if kK'c < ypuwy,
12
/ ’ “p _ c2k'%sin?¢’ - ;
k Ccose (1 - 4’7240123 4’prp/2 lf k ¢ < prP ( )
Wy = 5.63
vpk' + 372 if K'c > ypuwy,
D
(we remind that w), = wp/\/75)-
The cross-over point is
2LUI2
wy? = —2 + 4y2w}6'? (5.64)

Tp
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For the waves propagating backwards in the plasma frame we give only relations for parallel

propagation.

4 12
W = ke (1 Sl i ) (5.65)

wp
\/§w;

Tp

W = —vpk' + (5.66)
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5.6 Waves in a Relativistic Pair Plasma with Identical Dis-

tributions of Electrons and Positrons

5.6.1 Effects of Thermal Motion on Wave Dispersion

In this section we consider wave propagation in the relativistic, strongly magnetized electron-positron
plasma. The thermal motion of the plasma particles changes the dispersion relations of the waves,
thus changing the conditions for the wave excitation. The thermal motion of plasma particles affects
considerably the dispersion of the Alfvén mode at frequencies w > w, and the dispersion of the
ordinary mode frequencies w < wp. The corresponding dispersion relations are qualitatively different
from the cold case. Another important guantitative modification is in the dispersion relation of the
extraordinary mode. The difference of the phase speed of the extraordinary mode (parameter 4) is
roughly proportional to < 1/4% > (Eq. 5.86), e.g., § is decreased considerably by the bulk streaming
of the plasma. In the relativistic streaming plasma there are many particles with low Lorentz factors.
This results in an increase of § which relaxes the conditions for the development of the cyclotron

and curvature drift instabilities.

5.6.2 Distribution Functions

To estimate the thermal effects on the plasma mode, we use the two kinds of distribution functions:

(1) waterbag distribution
ey if —pr <p: <pr

I
fpz)= ¢ *7 (5.67)
0, otherwise

(here pr = meyr is the scatter in moments) and (ii) relativistic Maxwellian distribution (see also

Appendices D and E for the calculations of the relevant moments of the distribution)

fp.) = exp {—Brp U"} (5.68)

p
2K1(Br)

Both these distributions are ”fast falling” at large moments. This is an important factor for
the dispersion relation of plasma waves (see below). The advantage of the water bag distribution is
that the various moments of the distribution can be easily calculated. The relativistic Maxwellian
distribution is explicitly Lorentz-invariant (see Appendix D for details of Lorentz transformation).

The relevant moments of the distributions are summarized in Table 5.1 for the water bag distri-
bution (in the plasma frame only) and in Table D.1 for the relativistic Maxwellian distribution (in
both plasma and pulsar frame).

In what follows we identify 2yr = T), to consolidate the average energies for the case of two

distributions.
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<y > yr/2
< pv> yr/2
1 log v
< ¥ > T
1 1
< ¥3 > ¥r

Table 5.1: Relevant moments of the water bag distribution in its rest frame (dimensionless units).
It is assumed that pr/mec = vy > 1.

The water bag distribution is generally a good approximation for the account of the thermal
motion of the particles. Its major drawback is the absence of a tail of high energy particles that
can resonate with the waves in the plasma. The Cherenkov resonance on the tail particles will
result in a strong damping of the waves. The cyclotron resonance on the tail particles may result
in a wave excitation if the distribution function is asymmetric with a long high energy tail. The
condition, that the Cherenkov resonance is unimportant, is that the phase speed of the waves in
plasma is much larger than the thermal velocity of the particles. In the case of the idealized water
bag distribution, this condition has to be put in by hand. Whenever the phase speed of the wave
becomes comparable to the thermal velocity, the waves should be considered strongly damped and
nonexistent. Therefore, we expect that the high frequency branch of the Alfvén wave, which in the
limit of cold plasma had a very low phase velocity, will be strongly damped.

Here, we should also mention a long standing controversy about the dispersion of the longitudinal
waves and the possibility of the two stream instabilities in the relativistic plasma. In the initial
work (Silin 1960) and later works (Suvorov & Chugunov 1975), it was stated that the relativistic
plasma does not support subluminous longitudinal waves. This problem has been considered anew
by Tsytovich & Kaplan 1972 who found subluminous waves. The controversy has been resolved
by Lominadze & Mikhailovskii 1978, who demonstrated the existence of the subluminous waves in
the range 0 < n —1 < 1/ < v >% (n = 1), provided that the third moment of the distribution
(< ~® >) is finite (here n is the refractive index and < 4 >>> 1 is the average Lorentz factor of the
plasma particles). Thus, when the distribution function falls off at large momenta slower than 7%
subluminous plasma waves do not exist.

For the water bag distribution, the dispersion of the plasma waves for the parallel propagation
is given by Eq. (5.78). We find that n — 1 becomes larger than 1/ sz for w > several times w,. For

larger frequencies the longitudinal plasma waves are either strongly damped or do not exist at all

(Silin 1960).
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5.6.3 Dispersion Relations in Relativistic Pair Plasma

To simplify the analysis we will use the low frequency approximation w < wp and the assumption

2
of a very strong magnetic field ZL:} < 1 from the very beginning. The dielectric tensor is then

given by
e =14dT, (141?62 cos?8) = ey,
2n?w?
=1— P d T,n?sin% 0
“o¢ T, (1 - n? B2 cos? ) Tadpnsin
€xr == €rz = €z¢ = €z = €rgp = €yr (569)
where
wp
d=—*% (5.70)
Whp

The normal modes of a hot plasma are given by the solution of (5.32) with the dielectric tensor
(5.69). Similarly to the cold case, Eq.(5.69) factorizes into a dispersion relation for the extraordinary

mode
w? = k*c® (1 — dT, (1+ B2 cos®6)) (5.71)

and a dispersion relation for the coupled ordinary and Alfvén modes (not given here). This equation
may be solved in the approximation of infinitely strong magnetic field:
9 1

= Tk22+22+Tk222 20
i (4w2 +2 T, k2c2 B) cos? 6 phe “p pk“c” By cos

+ ((Tp k¥ + 2w12,)2 - 2T, k% c? (Tp k2c? Br? - 2w12, (—2 -+ ﬁ%)) cos? 0

+ T k*c* B1 cos 04)1/2 (5.72)

where the plus sign corresponds to an Alfvén wave and minus to an O wave. The dispersion relations
for the ordinary and Alfvén waves in a hot pair plasma are plotted in Fig. 5.6. It is also possible
to obtain the asymptotic expansion of the dispersion relation of Alfvén and ordinary modes in the

limits of very small and very large wave vectors. In the limit ke > +/ Towp we have

2 1.2 g2 2 _ 2wh ,
c* k* B1 cos* 0 (1 2 TSR (117 cov? ) Alfvén wave
2k (1-d T, (1+62 cos?0)) (1 2y sin’ 0 0
¢ ( - p ( + Bt cos )) T2 Tp k? (—1+ﬁ§~ cos? '9) mave
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Figure 5.6: Dispersion curves for the waves in a hot electron-positron plasma in the plasma frame
in the limit w < wp. Only Alfvén (dotted) and ordinary (dashed) modes are shown. The dispersion
curve for the extraordinary mode is very similar to the cold case. For the illustrative purposes we
have chosen T, = 2. The dispersion curves of the ordinary and Alfvén modes intersect only for

parallel propagation.
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while in the opposite limit k¢ < / Tpwp

k2 cos?§ (1= d Ty (1+ B3 cos?6)) (1 - SH5m8)  Alfvén wave

w? = (5.74)

UJ2
2T—: + c2k? (8% cos® § + sin” 0) O-wave

We will give here also the relevant phase speed of the waves in the limit of small angles of
propagation.

w2,
vg(h =c (1 — —“’—wz") X mode
B

2 2p o2
h woT, w:T, sin* @
v =c (1 — B R O-wave, kc > /Tpwp
B

2 .
VB = ¢ cosf (1 - %;" - %) Alfvén wave (5.75)
B PP

The X mode is always superluminous and the Alfvén mode is always subluminous. The ordinary
mode is superluminous for small small vectors k¢ < \/ﬁwp and may become subluminous for very
small angles of propagation 8 <« \/prp Jwg.

The cross-over point (where the phase speed of the ordinary mode become equal to the speed
of light) is now w? = k2¢? ~ 2 T,w? + wp?sin® 4. Using relation (5.41) we can approximate the
dispersion relation near the cross-over point as

1 (W +4TRwRw?)0?

w=ke—nlk—ky), n= 77 TGI8, P (5.76)
p%

Another analytical solution to the dispersion relation we can obtain for the parallel propagation.

Then we have two transverse wavs with the dispersion

w? =k*c* (1 —d Tp(1 + B8%)) (5.77)
and a plasma wave )
2
W= 2P 222 (5.78)
Tp

It is also useful to represent the dispersion relations for the plasma waves near the cross-over

point in the form (5.42). For the relativistic plasma components, we find

(522 (252)- (- £52)

1
wr ke — -T—Q(k — ko) (5.79)

The phase speed for the high frequency asymptotic of the plasma wave (5.78) approaches the



55

phase speed of the thermal particles cOr. For the more realistic distribution function, these parts of
the dispersion relation will be strongly damped on the Cherenkov resonance with the thermal tail
particles. The high frequency asymptotic of the plasma wave belongs to the Alfvén wave. From
this we make a conclusion that the high frequency (k¢ > T,w,) part of the Alfvén wave is strongly
damped and does not propagate.

In most of the calculations to follow we will assume that the plasma is very hot: pr/mc > 1 and

Tp = V/p7/(me)* +1> 1.

Polarization of waves in a hot plasma

In the case of a hot plasma the matrix of cofactors /\gg is quite complicated and is not given here.
Simple relations may be obtained in the limit wg = co and near the cross-over point for the ordinary

wave. In the limit wg = oo we find the elements of the matrix )\gg

2w?
)\(h) _ ) 1 p 2 .z 20
Tz ( +n ) pr2 (_1+TL2 Ug cos? 9) s
A = p2 (-1+ nz) cosf sing = A
202 (~1+n? cos? 6)
Tpw? (=1 +n?v3 cos?9)

AW = (~1+n?) (=1 +n® cos®6) (5.80)

R) _ 2
)\Z(ly)—l—n -

For the extraordinary mode we find that the polarization vector is ex = (0, 1,0), while for the

ordinary mode

E, n? cos® sin @
—_—= 5.81
E, —-1+4+n2cos?$ ( )

These relations are valid for the points not close to the cross-over point of the ordinary wave, where

the approximation wg = oo is applicable. Near the cross-over point, n = 1, we find

E:,; w329
== 5.82
E, 4T 30,2 (5:82)

For oblique propagation the behavior of the ordinary mode at the cross-over point changes at

6 ~ 4T3d (5.83)

For smaller angles the ordinary mode is quasiparallel at the cross-over point while, for large angles,

it is quasitransverse.
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The polarization vectors for the ordinary and Alfvén modes are then given by

2.2 2 2
{cos@ (1 - ——2—2T”;k2m 9) , 0, — ((1+ —}’—2T”fzk§°s 0) sinH)}, ke > wp

2
el = {wwof,o, —1} 6 < ﬁfﬂ w=w® (5.84)
wn? 2Tu.: h
{Lov—m} 0> 52 w=w"
2
(h) _ w*® tanf
e, = {1,0,—————2 T, 2 } ke € wp (5.85)

5.6.4 Dispersion Relation for Hot Pair Plasma in Pulsar Frame

The dispersion relations for the forward propagating modes in the pulsar frame in the limit o’ <« wg

are

I ! w2 Ty
wy = ke (1 - rpﬁ)

wWgTp
R 2T 12 sin2 g’ .
o = Kec (1 - 44’2(‘% + 7”“’"62 k";sm ) if k'c > /Ty 'ypw;, and 0" < 1/T,
’2
N . ' ’ w. “T 2k12 . 29/ .
wa = kccosh (1 - 2};2“)2; - 57 7:‘217,2) if ke < +/Tp vpwp (5.86)

These relationships are valid for the frequencies satisfying the inequality
w < Ypwp/Tp (5.87)

This is a condition that in the reference frame of the plasma the frequency of the waves is much
smaller that the typical cyclotron frequency of the particles wp/T).

The cross-over point is
12 _ 2wy T 12
wy? = —2—= 4 4y2wi (5.88)
Tp
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5.7 Waves in a Pair Plasma with Different Distributions of

Electrons and Positrons

5.7.1 Response Tensor for Hot Pair Plasma with Streaming Distributions

We first derive the dielectric tensor for a cold, one-dimensional electron-positron plasma with equal
densities and different average energies of electrons and positrons. In this case all nine components
of the dielectric tensor are nonzero. We assume that the fast component of the plasma consists of
positrons. If the charges of the fast and slow components are interchanged, then all the results of
this section will be valid provided that the circular component of the polarization of the natural
modes is reversed.

We assume that though the distribution may be ultrarelativistic, the contribution to the anti-
hermitian part of the dielectric tensor from the cyclotron resonance is negligible so that we can use
a frame invariant ”low frequency approximation” w%/v? > (w — kyvy)2.

Though it is expected that the relaxation time of the plasma present on the open lines in the
neutron star magnetosphere due to the Coulomb collisions is much longer than the dynamical time,
we still expect a large initial spread in the moments of the plasma particles (Arons 1981). As an ap-
proximation to the poorly constrained distribution, we use a relativistic streaming, one-dimensional

Maxwell distribution:

- Mo —puU§
f(pg)e = Tk () exp{ I’fa } (5.89)

Here T, are the temperatures of the electrons and positrons of the plasma in the units of m, c?,
Dy is the 4-momentum of a particle and U¥ = (4, YaBa) is the 4-velocity, 7, is the y-factor and
Ba = Vo /c is the three velocity of the system of reference where the particular component is at rest.

The calculations of the components of the dielectric tensor are outlined in the Appendix M. The

resulting expressions are

Ky + K.
€z =1 +dz Yo <02—}:—2 (1 —ncosfBa)? + To (e — cose)z) = €pr
1
[e 4
. w .
€zr =1id Z _wE signg (1 —ncosf8,) = —€re
[24
Ky + K.
€z = dsinﬁnz Yo <—02-I-:—2 Bo (1—ncosbBy) +To(Ba —n cos0)> = €gr
1
«
. . w .
€re =1idn sinf _wg ; 5igng Bo = —€gr

2 Ko+ Ky +K2) (5.90)

€46 :1—ZIQ(9,w,n)+dn2 sin® 9 ZVQ (Ta+6a 9K,
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where d = wg / w%, wz = 47 n, e2/mg is the plasma frequency expressed in terms of the density
no measured in the laboratory frame, e, is the charge of species o (charge of an electron is —e),
n = kc/w is the refractive index, K(1/Ty) is the modified MacDonald functions, sign is the sign

of the charge «, and we define

47 e’ dpg 1
I(0,wn)= —= [ e - _
(8,w,n) - / v fa CENORE (5.91)

We note that the temperatures T, cyclotron frequency wp and the quantities I, are frame
invariant. The frame invariance of I, follows from the frame invariance of dpg /v, fo and v(w— kg v4)
(the latter is the product of the wave and momentum four vectors).

I is a very sensitive function of the wavelength, distribution functions and angles of propagation
with respect to the magnetic field. For the propagation of the quasi-transverse waves with a near
vacuum dispersion n =~ 1 and for the wave vectors not in the vicinity of the cross-over points
(where the dispersion relations for the quasi-longitudinal and quasi-transverse waves intersect) 3,
the refractive index n in the expressions for I may be set to unity, but even in that case the angle
and distribution function dependence of €, is very complicated. Generally, for the frequencies much
larger than the cross over frequency I < 1, and for frequencies much smaller than than the cross
over frequency I > 1. We will give the forms of I separately for the each case considered.

We would like to stress that we use a noninvariant w, = , /471'n;)q2 /me, l.e., expressed in terms
of the density in the laboratory frame. It is equal to wp./Ya, Where wy, is the invariant plasma
frequency in the rest frame of the particular component and «, is the v-factor of the component’s
rest frame with respect to the laboratory frame. We also should note that, in the case of relativistic
plasma, the actual frequency of Langmuir oscillation measured in the component’s rest frame will
be Wp\/m , 1.e., it will decrease due to thermal effects.

The dispersion relations look much simpler in the center-of-momentum reference frame so we first
discuss in details the properties of the waves in that frame. The general Lorentz transformations to
the pulsar frame from the center-of-momentum frame is very complicated and, as it turns out, it is
simpler to solve the dispersion relations in pulsar frame independently. We will denote the quantities

measured in the pulsar frame by the primes.

3The cross-over point for the ordinary wave is given by solving €44 = 0 with n, the refractive index, set to unity.
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5.8 Waves in a Cold Plasma with Streaming Components.

Center-of-momentum Frame

5.8.1 Dielectric Tensor for the Cold Plasma in the Center-of-momentum
Frame

In the cold plasma approximation we expand (5.90) for T,, < 1. In the center-of-momentum frame

the distribution functions are fo = nq d(py £ Yo Bomac) and we have v, = £ Foc and v, = v, =

1/ /1= 2.

The dielectric permittivity is then given by

€op = €yy =1+2dv (1+n?32cos’6)
2 2 92 o2
o A i a0
€xr =—6TI=2i\/En2L—Z—Z—ﬂO cos @
€z = €gg = —2dn? ,le) B, sinf cosd
g = —cpr =2iVdn? -‘]‘:—Z B, sin 6 (5.92)

5.8.2 Dispersion Relations for Exactly Parallel and Perpendicular Prop-

agation

For parallel propagation § = 0 the dispersion relation splits in two for the longitudinal plasma

modes:

€pp = 0 (5.93)

and for the two transverse waves:

(n? —eggp)® + €2, = 0. (5.94)

Eq. (5.93) describes plasma waves with the electric field of the wave parallel to the wave vector
and (5.94) describes transverse waves. Using (5.92) we arrive at the following solutions for the

plasma waves:

2 w \/w2+473k202ﬁ2
w P 4 o o
2 7?3 kZCZIBOQ 3
o Yo

(5.95)

One pair of solutions of (5.95), corresponding to the minus sign, will be called a slow branch.
The other pair of solutions of (5.95}, corresponding to the plus sign, consists of three parts belonging

to the ordinary, extraordinary and Alfvén modes. The dispersion curves for these modes intersect
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only for parallel propagation. In the case of oblique propagation the modes are always distinct. For
parallel propagation we will distinguish longitudinal plasma modes, described by equation (5.93) and
transverse modes, described by equation (5.94). We stress that, except for the slow Alfvén wave,
which stays separate for any angle of propagation, the longitudinal plasma modes and the transverse
modes are composed of the parts of ordinary, extraordinary and Alfvén branches (see Fig. 5.7).
For large wave vectors k¢ > w,/7,%?%, Eq. (5.95) gives four modes corresponding to the
Langmuir waves in each component propagating in each direction:
w=+kef, + ‘Z—’/’Z (5.96)
Yo
For small wave vectors k¢ < wy/ 73/ 2, the ordinary branch gives the conventional Langmuir
plasma waves with w = ++/2 wp/’yg/ 2 propagating in a positive and negative direction and the
slow wave becomes unstable for £ < /2 wp /73/ 2 B, corresponding to the conventional two-stream
instability (see Fig. 5.7). The maximum growth rate of this instability is Im(w)maz = wp/(1>/2 Bo).
The slow branch, which is unstable at low frequencies, is always subluminous and the ordinary

branch becomes subluminous at k¢ > /2 Yowp 1/1+ 32.

The solutions of Eq. (5.94) for the transverse waves in the plasma frame are

ke (kc:l:2\/awp,6'o —2d70kc,802)
W2 = (5.97)
1+2d7,

In the low frequency approximation, the minus sign in (5.97) corresponds to the extraordinary
mode and the plus sign corresponds to Alfvén mode, while in the high frequency approximation, the
minus sign corresponds to the ordinary mode and the plus sign corresponds to extraordinary mode.
(see Fig. 5.7). For parallel propagation we will call these modes fast (plus sign in (5.97)) and slow
(minus sign in (5.97)) transverse waves.

The polarization of the fundamental modes is given by quantities K and T of Melrose 1978c:

1

K = €yz COSO — €ss SIN O
—rs? t egpcgg — An? | PP for €90
+n? (- (€yz €0s0) + €z SIN0) + €54 (€xr cOSH — €, sinb)
T i ((€z¢ €yz + €ar €pg) COSO + (€47 €xp + €40 €y2) SINH)
—€x¢2 + €pgp €pp — An?
where A = €44 c0s” 0+ 2€,4 080 sin 6 + €44 sin? 6 (5.98)

The waves are quasi-transverse for K ~ 0, circularly polarized for T' = +1 and linearly polarized
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Figure 5.7: Dispersion curves in the center-of-momentum frame for the case of relative streaming of
electrons and positrons for exactly parallel propagation with cutoff and cross-over points shown. The
Lorentz factor of the relative flow is 79 = 1.5. There are four modes represented by the dotted (O
mode), dashed (X mode), long dashed (Alfvén mode) and solid lines (slow Alfvén mode). The waves
are subluminous if the dispersion curve lies below the vacuum dispersion w = kc. kc/w, = 2B,wp/wp
denotes the onset of cyclotron two-stream instability, kc/w, = 21/2/8,7, denotes the onset of
conventional two-stream instability, k*c = wgB,/7,(1 + 82) is a point when a fast transverse wave
becomes subluminous and k¢ = (2 73 (14 52 )) 1 wp, is the point where the ordinary wave becomes
21724,

subluminous. The ordinary branch has a cutoff at w = .

o
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for T =0 or T' = oo. Using (5.97) we obtain

Kft = 0, Tft = -“1,

Kst = 0, Tst =1 (599)

where ft stands for fast transverse and st for slow transverse mode. The waves are circularly
polarized. The fast transverse wave propagating in the positive direction has a right circular po-
larization or negative helicity and slow transverse wave propagating in the positive direction has
left circular polarization or positive helicity. This sense of polarization is determined by our choice
of the sign of the charge of the ordinary component, which is, in turn, determined by the general
structure of the pulsar magnetosphere (the product 2.B at a given point in the magnetosphere).
The appearance of the circular polarization in a plasma with the different charges having the same
masses is due to the relative streaming of the plasma components.

The fact that the normal modes are circularly polarized for the parallel propagation may be seen
as contradictory to our notions of ordinary and extraordinary modes, since in the magnetosonic
theory the ordinary and extraordinary modes are defined as having linear polarization in the k- B
plane and perpendicular to it. As we will see later, for oblique propagation the normal modes become
linearly polarized which allows an identification with the conventional ordinary and extraordinary
modes.

Eq. (5.97) shows two possible hydrodynamic instabilities for these branches:

(1) Firehose instability for 2d v, 8,° > 1 for both modes
(2) Two-stream cyclotron instability for the slow transverse mode for 2+/d wpBo/ke > 1.

If the magnetic field is strong enough so that 2d~, 8,2 <1 (this excludes the firehose instability),

then for large wave numbers k¢ > 2vdw, 8,/7, (so we are far from the two-stream cyclotron

instability) the asymptotic solutions are

2 12
W=+ (kc:t Vdw, Bo — de ke (1+8,2) + d-2 "7") (5.100)

2k22
which describe two pairs of transverse waves propagating in each direction in the plasma frame.
Slow transverse wave always stays subluminous while fast transverse wave is superluminous for
ke < wg Boe (1 + ﬁg) and subluminous for larger wave vector. The dispersion curves for exactly
parallel propagation are plotted in Fig. 5.7 for 7, = 1.2, d = w2/w} = 1/10 (the numerical values
for the parameters were chosen only for the sake of graphically clarity).
For perpendicular propagation § = 7 /2 in the plasma frame the dispersion relations of the natural

modes and their polarization vectors are (in the limit of strong magnetic field d <« 1):
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wi(0=m/2) = k*(1 - 2dv. (1+42B%) E={0, By, —~EyivdkcB, /wp}
Qw?
wi(@=m/2) =k + 7_: E={0, By, E,iwg/ (v2 B, ke)} (5.101)

o

So we have two transverse elliptically polarized waves.

5.8.3 Waves in the Infinitely Strong Magnetic Field

For the infinitely strong magnetic field, the dispersion relation splits in two:

n?=1, E = {0, E,,0)
(n?cos 6% — eg4)(n?sin 62 — €4y) — (n2cosOsin b — €,4)2 =0, E = {E,, 0, B4}

(5.102)

The vacuum dispersion relation corresponds to the linearly polarized wave whose electric vector
is perpendicular to the k-B plane. This is the extraordinary mode. The second equation is for
the mixed longitudinal- transverse wave. In the most general case it has three coupled branches
corresponding to the ordinary, Alfvén and slow Alfven branches.

Setting d = 0 in (5.92), the dispersion relation for the longitudinal- transverse wave in the plasma

frame takes the form:

2n%wp? (1 - n?cosh?) (1+ n?pB2cosb?)

=0 (5.103)
2 k2 v,® (1 — n2 B2 cos 6’2)2

—1+n%+

Eq. (5.103) is a cubic equation in n* and can be solved analytically. The solutions of (5.103)
together with the vacuum solution for the t-wave are plotted on Fig. 5.8 for v, = 1.5 and 6 = 0.5.
In the case of oblique propagation in the infinitely strong magnetic field, the ordinary branch is

always superluminous, while the Alfvén and slow Alfvén waves are always subluminous.

We will give here long and short wavelength asymptotic dispersion relations. For k¢ >> \/Ewp / 7(3,/ 2
we have:
2 _ 1 2(%)2 (1—}—@%00592) sin 62
no = - 3
Y3 (1 — 82 cos 92)2

6> 2%

nZ, = sec2 14 o ’
& 703 83 /1 - 2 cos 0
2 w
9 Y

n2 = 50 [, 2 (5.104)

2 > |
o Y63 32 4/1 — B2 cos b
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Figure 5.8: Dispersion curves in the plasma frame for the infinitely strong magnetic field. Solid lines
give the dispersion curves for the propagation along magnetic field, dashed lines give the dispersion
curves for oblique propagation. X mode has a vacuum dispersion relation.
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where the notations O, SA and A stand for ordinary, slow Alfven and Alfvén modes. The ratio of

the longitudinal component of the electric field in the wave to the transverse are

27,2 wpz (1+[3,,2) sin 62

B _ TPy <1 ifvy, <1
ELo ™ 2 .
- gy <1 if 0y, >1
B ~ g ;ﬁo > 1] iffvy, 1
Ei 454 ) (5.105)
—tanf « 1 iflvy, >1

This implies that for small angles of propagation 6y, < 1 the ordinary wave is quasi-transverse
and both plasma waves are quasi-longitudinal while for larger angles 6+, > 1 all three waves (one
of which is two-stream unstable) are quasi-transverse. This provides an interesting example when a
conventional two stream instability produces quasi-transverse waves only.

The asymptotic dispersion relation for the ordinary wave may be obtained in the low density
approximation of Melrose 1978a, but dispersion relations for Alfvén and slow Alfvén waves, which
are quasi-transverse for # > 1/+,, cannot be derived in that limit.

In the small wave vectors limit (ke < v/2wp/ ~3/ ?) the asymptotic solutions are

w2 . w 2
w% = 273” + (kc)? (3,60 cos? @ + sin? 9) %To = 2% = (1 + BDZ) tan @
_ (ke)? sin? 6 E _ 37,3 B2 cot 92k2 2
wa = kc cosf (1 - 470(1+ﬁ§)wp) ETA =cot (1 + —"’————ﬁm:’z < ) (5.106)

5.9 Waves in a Cold Plasma with Streaming Components
in the Pulsar Frame

As mentioned above, the Lorentz transformation of the dispersion relations is too cumbersome to
be carried out for arbitrary angle of propagation and it is easier to solve Eq. (5.32) in the pulsar
frame. Since the components of the dielectric tensor strongly depend on the y-factors of the plasma
species, we will consider separately two cases: (i) nonrelativistic relative streaming, when the velocity
of each plasma components in the center-of-momentum frame is small 8, < 1 (then both kinds of
plasma particles contribute approximately equally to the dielectric tensor) and (ii) relativistic relative
streaming, when the energy of each plasma components in the center-of-momentum frame is much
larger than unity v, > 1 (some components of the dielectric tensor are dominated by one kind of
particle).

In what follows we denote the velocity and the y-factor of the center-of-momentum frame in the
pulsar frame as 3, and ~,, keeping the notations 8, and ~, for the absolute value of velocity and

energy in the center-of-momentum frame.
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For the waves propagating forward (in the direction of the motion of the plasma frame) in the

pulsar frame, the energies of the plasma components are

29p% ifyp > 9, >1
'Yp(l'*':@pﬁo) if7p>>17,30 <1

Yfaster = YpYo + \/ ’7;2; -1 \Y 72 - 1=

I Yo/ 2% vy > v >1
VYslower = YpYo — 'Yg -1 V ’Yg —1= i . P (5107)
7p(1_:3p:30) 1f’)’p >1,6, <1
and the velocities
Bt Bo 1-1/(87272) ifvwp > v >1
Ufaster = m = ) ]
pro 1617—1—/60/71; 1f'7p>>17ﬁ0 <1

_ /Bp_,Bo _ 1-273/7;2) if’)lp >>'7o >1 (5108)

Uslower =
1— 505 Bp— Bo/7: yp>1,8, <1

We will always assume that 7, > 1, then the velocity difference in the pulsar frame is 63 =

280/73

5.9.1 Nonrelativistic Relative Streaming

We first derive the dielectric tensor for the cold electron-positron plasma in the pulsar frame when
the relative velocity of the plasma components is nonrelativistic. Expanding (5.90) for T, < 1 and

keeping only first term in the 8, < 1 limit of (5.107) (5.108), we have

€y =1+2dvi(1-n'B, COS@I)2=€;y
2w,?

/ P 292 12 5 2 g0
€ =1- +2d~; B;n' “sin“ 6§
4 w2y, (1 —n! B, cos')’ peP

~2inwy? B,
G =R (B — ' cost) = —,
6;(25 :Eld)z =0
, _ —2in?w,? B, sinf'y,
€yz = Kcws = Ty

(5.109)
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Parallel Propagation

For the case of exactly parallel propagation and in the limit 8, < 1, the solution of the Eq. (5.93)

(which describes longitudinal plasma waves) may be approximated as

2 wp \/wpz + 47,2k 2c2 B2
vp2 k22

wp?
Y2 k22

+ Bo

W' =kcB,+ (5.110)
which gives in the long wavelength limit &'c > w,/2 8, two pairs of waves propagating in each

component

W =k Bk -2 (5.111)
Tp

while for smaller wavelength we have two Langmuir waves with w’ = k'c 8, & V2w, /7, and two
two-stream unstable waves.

For the transverse waves the refractive indices are

o 2/wpk'c (wp?+2wyp?) (wpk'ct 27, w2 Bo) + 27, wy? (=27, k'ctwr Bo) Bp
12 2 (wp2kcE 27y, wpwy? By —27p2wp2ﬂp2k’c)
~2y/wpkc (wp® +2w,?) (wpk'cE£ 27, w2 Bo) + 27, wp? (27, ket wgp B,) By
2 (wp?KcE 2y, wpwy? B, —27p2wp2k’cﬂp2)

!
N34 =

(5.112)

which shows a cyclotron two-stream instability for klc < 2w,? 8,7p/wp with maximum growth

rate Im(w')maz = wp? Bovp/wp. For k' > k! the solutions (5.112) may be approximated as

Vdw, B, d
29p ke 4,2

2Vdw, B,
+ % —4dy? (5.113)

! —_
ni,=1%

/ —
ngs=-—1

The fast transverse wave traveling in the positive direction (minus sign in nj 2) is superluminous
for k'c < 4wp 7, P, and subluminous for larger wave vectors.
Solving Eq. €:ﬁ¢ = 0 with the refractive index set to unity, we find the point where the ordinary

wave becomes subluminous: k' > 227, w,/c

5.9.2 Relativistic Relative Streaming

In this section we assume that the streaming of electrons relative to positrons is relativistic meaning
that their relative velocity in the center-of-momentum reference frame is close to the speed of light.
With the distribution functions of the form fo(ps) = 740(pg — Yava) where the v factors and

velocities of plasma components are given by the 7, > 1 asymptotics in (5.107), the dielectric
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tensor (5.90) in the pulsar frame will have the following form:

€4 =1+dZ'y§(1—n’ cos b va)® = €,
o
2
’ Wp 12 s 2.0 2 2
€ =1- + dn' “ sin® 6 1+
¢? gw’%a? (1 — 7' yy cos§')® ; e o)
€. =— \/E;:—,I; Zsigna Yo (1 =1 cos€ v,)
x
€ = dsinfd'n’ Z Y2va (1 —n' cosfvg) = €ha
[e4
i signg Vdn'? w, sin6’ yov
€ = et e (5.114)

o3

Here 7, and v, are given by the v, > 1 asymptotics of (5.107) and (5.108). The velocity difference
is now 643" = 2~2 /2.

Parallel Propagation

In this section we consider the limiting cases of exactly parallel propagation when it is possible to
solve the dispersion relation analytically.

Eq. (5.93) for the plasma waves is a fourth order equation in n' corresponding to the waves
propagating in each direction in each plasma component. If the relative streaming of electrons and
positrons is relativistic, then for sufficiently larger wave vectors k¥'c > w,/(68'v+) the Langmuir
waves in each component have small effect on the waves in the other component and the solution of

(5.93) in the laboratory frame may be approximated as:

W = Ky 4 Ve
Tp

W= kvt P (5.115)
2'71770

For smaller wave vectors two of the four solutions of (5.93) becomes two-stream unstable.

In the intermediate frequency region (for the wave vectors much larger than those corresponding
to the two-stream instability and smaller than w,/(63v+), we may find a cross-over point for the
ordinary wave: k'c = 2+, ¥, wp. The ordinary wave is superluminous for smaller wave vectors and
subluminous for larger.

Solving (5.94) for the dispersion of the transverse waves under the condition d < 1, we get

Vdwpy, | 72 | dyiw;
2k'cy, 292 2k 22
L 2Vdw ddwp %5

— 2,2
ng14 = -1 T e — 8d’70 ’)’p - '—W (5116)
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Here nj , correspond to the waves propagating in the positive direction (along the direction of
the bulk motion) and nj 4 correspond to the waves going in the negative direction. We note that

the ordinary mode is two-stream-cyclotron unstable for k'c < v, wg /27 wg.

5.10 Waves in a Relativistic Pair Plasma with Streaming Dis-
tributions

In this section we consider waves in a relativistic hot electron-positron plasma.
Expanding the Bessel functions in Eq. (5.90) when T, > 1 and keeping only the leading terms,

we obtain the dielectric tensor

€0 =1+ dZ(fyaTa) (1 —nvy cos8)? + (vq — ncosb)?) = ey

€xr = —iﬁ% Z §1GNa Yo (1 — 1 c0s 0 vy ) = —€,4

€20 = Z dn sinf vy Ty (va(l —n cos@va) + (vq — 1 cos0)) = €4y
isigna\/an2w sin 0

€ro = Z ke £ Yala = —€4r

€os =1 —Zla(e,w,n)-{-dnz sin? 07, T (14 v2) (5.117)

In what follows we also assume that the temperature of two kinds of particles are the same and

equal to 7.

5.10.1 Center-of~-Momentum Reference Frame

The dielectric tensor in the center-of~momentum frame is then

€sp =14 2d7%T (14 n? cos6?) (1 + B82) = ¢,
€xr =2idn?%E Bo €08 07, = —€,4
kc
eyz = 2’Ldn2 %Bi‘ /80 Sin 9')’0 - "Ezy
C
€z :—2d70Tn2c059sin9(1+ﬁ§)=6¢z
egp  =1-I(6,w)++2dv,Tn?sin’0 (5.118)

where now
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2wy, T (1+5,)2

Z¥plos 2ol i 1
I0,wn)=1{ .. 10 < 1 (5.119)
orer < o5 > if g7 <0< 1

If we compare this dielectric tensor with the cold case (5.92) we see that (except in the €4, term)
in the case of relativistic temperature the particles have equivalent mass T}, (1 + 32) ~ 2T higher.

The problem of the propagation and stability of the Langmuir plasma waves in a hot plasma is
a very complicated one, and since we are mostly interested in the properties of the quasi-transverse
waves propagating almost along the magnetic field we will use approximations (5.119) for the eyy
and refer the reader to the original works (Silin 1960, Lominadze & Mikhailovskii 1978, Lominadze,
Mikhailovskii & Sagdeev 1979, Weatherall 1994) which consider Langmuir waves propagation. Here
we just note that the two-stream instability is suppressed by thermal effects if T > ~, 3, and we
find the cross-over point, where the ordinary wave becomes subluminous by solving equation €4 = 0

with the index of refraction set to unity:

V3wyve /Ty (14 8,)  if 0 < 1/(2v,T)

ke > (5.120)
2o [< LS if0 > 1/(27T)

For the propagation of the transverse wave along magnetic field, we have the dispersion relations:

1+2d~,T (1 2
n? = +2d5, T (1+5,) (5.121)

1£2Vdw, Bo/ke —2d7, T (1+ 8,°)

which gives the hydrodynamic firehose instability for 2d~, T (1 + ,602) > 1 for both branches
and the cyclotron two-stream instability for the slow transverse mode for kc < 2w,? 3, /wp.

To find the dispersion relations of the quasi-transverse waves propagating forward with a small
angle with respect to magnetic field we follow the same procedure as in Section 5.10 to get for

n?=1+z

2
(-1+1I)2%+ =z <8d%(1—1) (%JFT (1+ﬂ02)) —102) +

2 22
4d2 (l_I) (4d2T2(1+IBO2) wpﬁo) +

k2c?

2 02
44262 (IT(1+,6’02) . I)‘Z@é") (5.122)

Eq. (5.122) gives the solutions
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=1+ \/_L]L:!&“}'zd')’o( (1+IB2)+ kzcz

)
w w 2 if 0 <0crit
npe=1- \/Ekcpﬂa +2d7 (Tp(l +82) + 2 kpzcgo ) - 4(110_1)
242 2.5 2
nst=1+2d(1;£)2l:592,30 Yo +2dyo(T(1+ﬂg)+wp Bo )

kZc? i
L in? ) 2.2 ¢ if0 >0,  (5.123)
ng =1+ 7 +2d70( (1+ﬁ)+—;;27)
with
sz Bo .
6 = C2VAd 1= 1] wy Boe _ ) Fowske if ke < wpvo /Tp(1+ Bo) (5,120
cTre kC . . .
Tke —_ﬂ—T%(l—f-ﬁg)uB if ke > wp, \/Tp(l—l—ﬁo)
(we assumed that 6.4 < 1/(2T+,) and polarizations given by
Kst,ft = ili_%a Tst,ft +1+ _\/Tllli:—le)wj— if 0 <8t
_ Vdw, 8, Vd(1-I)w, B,
T \/lcfol—k’l)w g e flfcfil)’w B 0> Oerir (5125)
Ky = Theos Tftz__'Wu

From (5.123) we find that for the quasi-parallel propagation the extraordinary mode is superlu-
minous for

_wp Bo_ if 3, <1
k< ZerT g (5.126)
wp/(47.T) if fo ~ 1

5.10.2 Pulsar Reference Frame

In the pulsar reference frame we will give explicitly the dispersion relations for the quasi-transverse

waves for the nonrelativistic streaming only. We also assume that v, < T,

-
Following the same procedure we have for exactly parallel propagation

/ \/Ewpﬂa
nip=1d ke 4 ok
: 2y ke | 272
d
npe=-1% ‘/_;”]‘;,ﬂ”” ~8d72 T,

(5.127)

where, as before, n; , corresponds to the waves propagating forward in the pulsar frame and nj 4
to the waves propagating backward.

For the forward propagating waves, we find solutions for oblique propagation for ' < 1/(4T,~,)

— \/EUJ Bo dT
oge =14 S50 ok

if o' <o
nlt:1_M+4_Ll2 erit
T ke T 22 T A(1-1)
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nl — 1 + dT
ot S e ifo >0, (5.128)
np =145 (1—01+'“1_) + 35,z

where the quantity I is now given by I = 8w2~2T,/k'2¢? and polarizations
p ip~P

! ITk'ce'? .
Kst,ft = :til-_qfa Tst,ft =41+ ﬁﬁm iff < GLT“
= _Ydw b, _ Vd(=1+Dw, B,
o= = wear ot =" Tweos if6' >0 . (5.129)
Ko = 8Y40-Dw,fo T, — 8Yd(=1+D’w, 5, erit \9
ft = 3yp L kic@’3 ft— 37,,I2k’t:0’4_

where the critical angle is given by

Bok'c p
g2 2vdw, Bo|l — I| S5 Tuws ifk'c > 2wpvp VIp (5.130)
crit — ~ kel - ﬁowi i wiﬁo , '
P wheos U Tyoogn K ke € 2wy vp /1Ty

The cross-over point, where the ordinary wave becomes subluminous, for the parallel propagation
isk'c =2v2 wp ¥p v/ Tp. For the small wave vectors, the fast transverse mode becomes superluminous

for K'c < wf, Bo/27pwp, while for large wave vectors it is superluminous for §' > k'c/2wp.

5.11 Conclusion

In this chapter we considered the low frequency w <« wpg normal modes for a one-dimensional
streaming electron-positron plasma in a very strong magnetic field taking into account relative
streaming of the plasma species and thermal effects. The dispersion relations for the natural modes
are sensitive even to the small streaming motion between the electrons and positrons of the plasma
consistent with the global electrodynamic conditions. The difference in the averaged parallel velocity
results in the coupling of the two quasi-transverse waves for the angles of propagation with respect to
magnetic field less than some critical angle so that the natural modes become circularly polarized.
For the angles of propagation larger than this angle, the two transverse modes become linearly
polarized due to the coupling to the longitudinal plasma modes. In the case of relativistic relative
streaming, the plasma modes become quasitransverse for the angles of propagation larger than 1/+,.

The distinction between superluminous and subluminous waves is clearly made. In the long
wavelength limit the relative velocity of plasma particles results in the two-stream plasma and
cyclotron instabilities. The stable transverse wave in this limit becomes superluminous, while both
transverse waves were subluminous in the case of zero relative velocity.

The results of this chapter may be relevant to theories of pulsar radio emission generation and
wave propagation in pulsar magnetosphere. We have shown that the small relative velocity of plasma

components modifies these normal modes considerably changing their polarization and dispersion
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properties. Furthermore, as the nature of the outflowing plasma changes, the character of the normal

modes will change as well.
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Chapter 6 Cyclotron-Cherenkov and
Cherenkov-drift Instabilities

In this chapter we consider the physics of the cyclotron-Cherenkov and Cherenkov-drift instabilities
(Ginzburg & Eidman 1959, Lyutikov 1997b, Lyutikov, Machabeli & Blandford 1997a, Lyutikov,
Machabeli & Blandford 1997b). The terminology used here to describe these instabilities refers
to the fact that in the cyclotron-Cherenkov emission, a resonant particle changes its gyrational
state (undergoes a transition between two different Landau levels), thereby comes the ”cyclotron”
part of its name, but the force that induces the emission is due to the presence of a medium (the
”Cherenkov” part of the name). The Cherenkov-drift emission is similar to conventional Cherenkov
(the gyrational state of the resonant particle remains unchanged) but it involves a nonvanishing
curvature drift of the resonant particles.

Both the cyclotron-Cherenkov and Cherenkov-drift instabilities, that we believe can develop in
pulsar magnetosphere, operate in the kinetic regime, i.e., they are of a maser type (see Chapter 7).
This means that there is some kind of the population inversion in the phase space, which supplies
the energy for the development of the instability. In the present case, the source of free energy is the
anisotropic distribution function of the fast particles. The condition of a population inversion may
be restated that the induced emission dominates over induced absorption for a given transition.

The first two steps in identifying the possible maser-type radio emission generation mechanism
are (i) determining which radiative transitions are allowed in a given system and (ii) establishing
if the given distribution function allows for the population inversion for the particle in resonance
with the emitted waves. In this chapter we will first discuss the microphysics of the two suggested
emission mechanisms and then show that the distribution function of the particles present on the
open field lines of pulsar magnetosphere does have a population inversion and allows maser action.
When discussing the microphysics of the emission process, we will concentrate on the spontaneous
emission processes. The induced emission rate, which is important for the development of the
instabilities, is derivable from the spontaneous emission in the usual manner. In the process of
induced emission, the electron emits a wave in a phase with the incident wave. However, both
cyclotron-Cherenkov and Cherenkov-drift masers are broadband and incoherent because a single

electron can resonate with several waves simultaneously.
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6.1 Physics of Cyclotron-Cherenkov Emission

In this section we discuss the microphysics of electromagnetic wave emission at the anomalous

cyclotron resonance

w(k) — k“U” + _u? =0 (6.1)

The conventional synchrotron emission and Cherenkov radiation may be regarded as limiting
cases of [n — 1| < 1 and B = 0 respectively of a synergetic cyclotron-Cherenkov radiation. The
interplay between cyclotron (or synchrotron) and Cherenkov radiation has been a long-standing
matter of interest. Schwinger et al. 1976 discussed the relation between these two seemingly different
emission mechanisms. The important feature of the work of Schwinger et al. 1976 is that the
authors neglected a possible motion along the magnetic field thus excluding the anomalous cyclotron-
Cherenkov Doppler resonances.

To describe the microphysics of the cyclotron-Cherenkov emission process, we first recall the
microphysics of the conventional Cherenkov emission (Ginzburg & Eidman 1959). Consider a charged
particle propagating in an unmagnetized dielectric with the dielectric constant € > 1. As the particle
propagates, it induces a polarization in a medium. If the velocity of the particle is larger than the
velocity of propagation of the polarization disturbances in a medium, which is equal to the phase
speed of the waves v, = ¢/4/e < ¢, the induced polarization cannot keep up with the particle.
This results in a formation of the polarization shock front. At large distances, the electromagnetic
fields from this ”shock front” have a wavelike form corresponding to Cherenkov emission. Thus
the emission is attributed to the polarization shock front and not directly to the particle. This
polarization shock front acts on the particle with a drag force, which slows down the particle. This
drag force may be considered as a generalization of the radiation reaction force in a medium.

Now let us consider a propagation of a particle in a magnetized dielectric along a spiral trajectory.
Similarly, the propagating charged particle induces polarization in a medium. If the velocity of the
particle is larger than the phase speed of the waves, a polarization shock front develops, which acts
on the particle with a drag force. Now the drag force, averaged over the gyrational period, has two
components: along the external magnetic field and perpendicular to it. The parallel part of the drag
force always slows the particle down. The surprising result is that the perpendicular component of
the drag force acts to increase the transverse momentum of the particle. Thus a particle undergoes a
transition to the state with higher transverse momentum and emit a photon. The energy is supplied
by the parallel motion. In fact, half of the parallel energy lost by the particle is converted in the
radiation and half goes into the transverse motion (Ginzburg & Eidman 1959, Lyutikov 1997b).

The photons emitted by such mechanism correspond to the anomalous Doppler effect w — kjv| —
vwg/res = 0, with v < 0. In a vacuum, only the normal Doppler resonance, with v > 0,

is possible. The necessary condition for the anomalous Doppler effect, w — kv < 0, may be
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satisfied for fast particles propagating in a medium with the refractive index larger than unity. It
is natural to attribute the emission at the normal Doppler resonances to the Lorentz force of the
magnetic field acting on the electron, while the emission at the anomalous Doppler resonances to
the electromagnetic drag forces from the medium.

The cyclotron-Cherenkov instability may be considered as a maser using the induced cyclotron-
Cherenkov emission. The free energy for the growth of the instability comes from the nonequilibrium
anisotropic distribution of fast particles. The condition that the emission rate dominates the absorp-
tion requires population inversion in the distribution function of fast particle (maser action). Since
radiation reaction due to the anomalous Doppler effect induces transition up in quantum levels, for
the instability to occur, we need more particles on the lower levels. From the kinetic point of view,
waves grow if the quantity k lef—) is positive for some values of k. For an electron in a magnetic

field this condition takes the form

1 Z8°% ) 8f 6‘f
L k== >0 6.2
o 9pr T o, (6.2)

where v is a harmonic number. Here v > 0 corresponds to normal Doppler effect (transition down in
Landau levels) and s < 0 corresponds to anomalous Doppler effect (transition up in Landau levels).
If the distribution function is a plateau-like in parallel momentum, then the condition for instability
is I/% > 0 which could be satisfied for inverted population for the normal Doppler effect or for
the "direct” distribution for anomalous Doppler effect. The latter case takes place for the beam of
particles propagating along the magnetic field with no dispersion in transverse moments.

Near the light cylinder the magnetic field strength falls considerably which allows for synchrotron
excitation of transverse motion of particle. At the distance 10° cm an anomalous Doppler resonance
could be fulfilled for the particles of the primary beam and for the fast particle of the tail of plasma

distribution.

6.1.1 Quantum Approach to the Anomalous Cyclotron Emission

In discussing the electromagnetic properties in dielectric medium (Sections 6.1.1 - 6.1.2) we will make
a simplifying assumption, which is standard in the theory of Cherenkov radiation, that the refractive
index of the medium n is independent of the frequency and angle. In reality n — 1 as frequency
goes to infinity which provides the upper cutoff for the integration over frequency removing the
divergence of some of the integrals involved.

In this section, following the approach of Ginzburg & Eidman 1959, we show the kinematic
possibility of spontaneous emission with upward transitions in transverse quantum energy levels for
a quantum oscillator propagating with a superluminous velocity in a dielectric medium.

First we note that the energy and momentum of a photon propagating in a medium with the
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refractive index n are given by fiw and A wn/c respectively. Now, consider an electron propagating
in a magnetic field. The quantum states may be described by the definite values of the momentum
along the magnetic field and the projection of the spin of the electron on the magnetic field. The

energies of the eigenstates are

Eyxy = \/(mc2)2 +2mciwy + picZ, (6.3)

where En is the total energy of the state, wy = Nhwp is the energy of the electron in the
frame associated with its center of gyration, N =1/2+ [+ (s+1)/2 is a principal quantum number,
l=0,1,2,..is aradial quantum number and s = =1 is spin quantum number (Sokolov & Ternov
1968). Each state is doubly degenerate except for the ground state I = 0,r = —1.

The conservation of energy and momentum take the form

Ef—Eizhw,

hwncosH‘ (6.4)

Pfz —DPiz =hky =
Indices ¢ and f refer to the initial and final states, 8 is the angle between the directions of
photon propagation and the magnetic field. Neglecting the terms of the order hAw /(mc?) < 1, and

requiring that the energy of the emitted quantum be positive, we arrive at the emission condition

vwp
w — k”’U” - T =0 (6.5)

The change in the transverse energy is

w; — wyg = (N; — Ny)hwg/y=vhwg/y >0, if Zn(w)cosd <1
normal Doppler effect,
w; — wy = (N; — Ny)hwp/y= vhwg/y <0, if 2n(w)cosd >1

anomalous Doppler effect, (6.6)

where we defined v = N; — Ny. In the region of the anomalous Doppler effect the photons are
emitted when the electron undergoes a transition up in its quantum levels. The energy is supplied by
the parallel motion of the particle. The loss in the parallel energy equals the increase of the transverse
energy plus the energy of the emitted wave. Alternatively, we may argue that the quantum state of
the particle with large parallel energy and small transverse energy has a higher total energy than
the state with smaller parallel energy larger and transverse energy which allows for a spontaneous
transition from the state with higher total energy to the state with smaller total energy.

Tt is instructive to consider the emission process in the particle rest frame. In this frame during
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the emission process, the emitting particle increases its transverse energy and also acquires some
parallel velocity due to the radiation recoil at the anomalous Doppler resonance. A puzzling situation
arises: a particle increases its kinetic energy and emits an electromagnetic wave. The resolution of
this paradox is that for the superluminous motion when considered in the particle’s rest frame the
emitted wave has negative energy.

To illustrate this we calculate the energy of the electromagnetic wave traveling in a lossless
dielectric medium with permittivity € and permeability x = 1 along the z axis in the medium rest
frame, which will be denoted by primes, and another frame moving also along the z axis with velocity

3 (see, for example, Dunn 1971, Sturrock 1960). In the primed frame we have
D’ = ¢E', B = H, (6.7)

where E’ and H' are the electric and magnetic fields, D’ and B’ are electric and magnetic induction.

The wave fields, viewed in this frame, have the form

E! = Elexp(i('t' - k'2")),

E,
H, = 77 exp (i(w't' = k'2")) = By,
D! = eEl exp (i(W't' — K'2")), (6.8)

where the impedance Z) = w’/k’c and F/ is an arbitrary constant. The dispersion relation has the

form

Z%e =1, (6.9)

which gives two solutions Z, = +1/y/e = £1/n for the two waves traveling in the positive Z' > 0
and negative Z < 0 directions.
Making Lorentz transformations of the fields Eq. (6.8) we find in the frame moving in the positive

direction z :

E, = E,exp (i(wt — kz2)),

H, =+nE,exp (i(wt — kz)),

_ (ntp0) .
D, = nE, A Eng) exp (i(wt — kz)),
B (B£n) exp (i(wt — k2)), (6.10)

v e np)

where

! / _ A2
B,= W PRe p  V1ZBw g (6.11)

V1-82w ° w— Bkec 7
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We now identify the energy of the wave as
1
W=§(H-B+E-D), (6.12)

whose time-average value is

1
< W >=Re(H-B'+E-D"). (6.13)

Using Eq. (6.10) we can find the time-averaged energy of the forward and backward propagating

waves:
< W > _ nEg n— g
forwd = 9 1‘”,3,
nE? n+ g

< W >packwd = 2 . 6.14

backwd 5 1tngd (6.14)

The energy of the forward propagating wave thus becomes negative for n 8 > 1.

6.1.2 Radiation Reaction due to Emission at Anomalous Doppler Reso-

nance

As mentioned in the introduction, for the different types of Cherenkov emission (conventional
Cherenkov and cyclotron-Cherenkov) it is more consistent to consider photons as emitted by the
shock front of polarization. The energy for the emitted waves is supplied by the slowing down of
the particle by the radiation reaction force. In this approach the emissivity may be calculated as
the work done on a particle by the radiation reaction force. The advantage of this method is that it
allows us to see explicitly, on a microscopic level, how the recoil of the emitted photons influence the
motion of the particle. The very notion of the radiation reaction force assumes that this force acts
as a perturbation to the otherwise classical motion of the particle. This will be true for the particles
on the high Landau levels. For the particles on the low Landau levels, the radiation reaction force
considerably changes the state of the motion and cannot be regarded as a perturbation.

According to Ginzburg & Eidman 1959, the radiation reaction force for a moving charge is given

by

e? ’ ej(vl'e;) ’
frr = 5.3 XJ:/O dt'/dk [_—n?—— cos(w;(t — t'))—

. (v'-e7)
v X (k X e]) W

sin(w; (¢ — t'))J exp ((k(R — R’)) + c.c., (6.15)

where the sum is over the emitted eigenmodes w; of the medium, n; is the refractive index

corresponding to eigenmodes w;, e; are the polarization vectors of the modes (unit vectors along
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the wave’s electric field), R and v are the radius vector and the velocity of the particle. The primed
functions depend on the ¢’ and the asterisk denotes complex conjugation. The second term in Eq.
(6.15) corresponds to the magnetic reaction force which does not do any work.

The energy emitted by the particle equals minus the work of the radiation reaction force on the

particle:
T T
A= / dtfrr-v = / dt (U¢fRR)¢+VJ_-fRR’J_) = A||+ A, (616)
0 0

where we split this work into parallel and transverse parts. A describes the change of the parallel
energy of the particle and A, describes the change of the transverse energy of the particle.
The calculations of A and A, are given in Appendix L. The resulting expressions for the

extraordinary mode, e(*) = (0, 1, 0), and ordinary mode, e(®) = (cosd, 0, —sind) are

. e?v? v
Ai(l): _T:C—j’ Z /dﬂdwn w? cos0 J,(N)?5(w — swp /v — ksvg), (6.17)
AW —M Z dQdwnwl,(V\)?6(w — swp/y — kgvg), (6.18)
+ 273 = v7e
(o) e? Vg Z_ _
A“ = 5 Z /dﬂdwnw nvl csmﬁ) ( vy cosf — vy sm@)
XJ2(/\)(5((4}— st/’y— k¢v¢), (619)
2
() _ _e‘vL 23 nv¢—cc059)
Ay = 27t Z /de sin
><J,,(x\)26(w— swp/v— kevg)- (6.20)

It is straightforward to check that adding transverse and parallel parts, we get the total emissiv-

ities for the ordinary and extraordinary modes (Melrose 1978¢ Eq. 4.33):

Nz(w) = /dﬂnz(w,ﬁ) = /dﬂ i 626uzvin(]'i()\)2<5(w(l— nfB; cosf) —sdp),

= 27l
_ e w? J,( (nﬁz——cosﬁ)
no(w) = / dQpo(w, 8) = / dn;oo zm —
x8(w(l— np, cos®) —voy). (6.21)

From Eq. (6.20) we see that the ¢ components of the work done by the radiation reaction force
are always negative; the particle always reduces its parallel momentum. The sign of the transverse
component of the work depends on the sign of v - the type of the resonance: for a normal Doppler
resonance (v > 0) the transverse energy of the particles decreases; however, for an anomalous

Doppler resonance (v < 0), the transverse energy of the particles increases.



81

v>0

Normal Doppler v<0

resonance Anomalous Doppler
\ 0 resonance

cosB=1/B,n

Fig. 2

Figure 6.1: Regions of normal and anomalous Doppler effects.

6.2 Physics of Cherenkov-drift Emission

In this section we discuss this novel emission mechanism of a charged particle streaming with rela-
tivistic velocity along curved magnetic field line in a medium. A weak inhomogeneity of the magnetic
field results in a curvature drift motion of the particle perpendicular to the local plane of the mag-
netic field line. A gradient drift (proportional to V - B) is much smaller than the curvature drift and
will be neglected. When the motion of the particle parallel to the magnetic field is ultrarelativistic
the drift motion even in the weakly inhomogeneous field can become weakly relativistic resulting in
a new type of generation of electromagnetic, vacuumlike waves. The presence of three ingredients
(strong but finite magnetic field, inhomogeneity of the field and a medium with the index of refrac-
tion larger than unity) is essential for the emission. We will call this mechanism Cherenkov-drift
emission stressing the fact that microphysically it is virtually Cherenkov-type emission process.

Conventional consideration of the curvature emission (Blandford 1975, Zheleznyakov & Shaposh-
nikov 1979, Luo & Melrose 1992a, Melrose 1978c) emphasize the analogy between curvature emission
and conventional cyclotron emission. In our opinion this approach, though formally correct, has lim-
ited applicability and misses some important physical properties of the emission mechanism. In a
separate approach Kazbegi et al. 1991b considered this process calculating a dielectric tensor of an
inhomogeneous magnetized medium, thus treating the emission process as a collective effect. They
showed that maser action is possible only if a medium supports subluminous waves. In this work
we show how these two approaches can be reconciled and argue that the dielectric tensor approach,
which treats the Cherenkov-drift emission as a collective process, has a wider applicability.

The interplay between cyclotron (or synchrotron) and Cherenkov radiation has been a long-
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standing matter of interest. Schwinger et al. 1976 discussed the relation between these two seemingly
different emission mechanisms. They showed that conventional synchrotron emission and Cherenkov
radiation may be regarded as respectively limiting cases of [n — 1| <« 1 and B = 0 of a synergetic
(using the terminology of Schwinger et al. 1976) cyclotron-Cherenkov radiation. In another work
Lyutikov 1997b this analogy has been discussed to include cyclotron-Cherenkov emission at the
anomalous Doppler resonance. An important new aspect of our work (as compared with Schwinger
et al. 1976 and Lyutikov 1997b) is that we take into account inhomogeneity of the medium.

Physical origin of the emission in the case of Cherenkov-type and synchrotron-type processes
is quite different. In the case of Cherenkov-type process, the emission may be attributed to the
electromagnetic polarization shock front that develops in a dielectric medium due to the passage
of a charged particle with speed larger than phase speed of waves in a medium. It is virtually a
collective emission process. In the case of synchrotron-type process, the emission may be attributed
to the Lorentz force acting on a particle in a magnetic field. Cherenkov-type emission is impossible
in vacuum and in a medium with the refractive index smaller than unity.

The very possibility of a coherent curvature emission by the homogeneous distribution has been
an appealing and controversial issue in the pulsar physics for almost two decades. Blandford 1975
proved that a coherent curvature emission by the homogeneous distribution is impossible in the limit
of infinitely strong magnetic field in vacuum (except near the point of inflection). A later attempt by
Beskin, Gurevich & Istomin 1983 and Beskin, Gurevich & Istomin 1986 to create a theory based on
the coherent curvature emission by the homogeneous distribution in the infinitely strong magnetic
field has been proven to be erroneous (Machabeli 1995, Nambu 1989, Larroche & Pellat 1988).

Two shortcomings of the approach of Blandford 1975 were noted. The first is that in adopting
a plane wave formalism, the interaction length for an individual electron, ~ Rp/7,, was essentially
coextensive with region over which the waves could interact with any electron. The approach
precluded a strong amplification under all circumstances because the wave would have to grow
substantially during a single interaction in a manner that could not be easily quantified. The
second problem was a neglect of dispersion. We address the first shortcoming by expanding the
electromagnetic field in cylindrical waves centered on r = 0, and the second explicitly by considering
general plasma modes.

When the curvature drift of a particle streaming along magnetic field is included (which requires
a finite magnetic field), there is a possibility of a maser action (Zheleznyakov & Shaposhnikov
1979, Chugunov & Shaposhnikov 1981). The curvature maser happens on the Cherenkov-drift
resonance (H.1). From the microphysical point of view, Cherenkov-drift emission is quite similar to
the conventional Cherenkov emission, except that now one should take into account the drift velocity
of the resonant particles.

It is more natural to consider Cherenkov-drift emission in a curved magnetic field as an analog
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of the Cherenkov emission with the drift of the resonance particles taken into account, than as the
type of a curvature emission. From the microphysical point of view, the emission is again due to
the polarization shock front that develops due to the passage of a superluminal particle through a
medium, so it is required that the emitting particle propagate with the velocity greater than the
phase velocity of the emitted waves. The Cherenkov-drift maser is impossible in vacuum, unlike the
curvature emission, which is a close analog of the conventional cyclotron emission and is possible
in vacuum. The curvature provides only the drift component of the velocity, which is essential for
coupling the resonant particle to the emitted electromagnetic wave.

In a Cherenkov-type emission the resonant particle can interact only with the part of the electric
field parallel to the velocity. Thus, if the drift of the resonant particles perpendicular to the plane
of the field line is taken into account, it becomes possible to emit a transverse electromagnetic wave
with the electric field along the drift velocity, i.e., perpendicular to the plane of the curved field

line (see Fig. 6.2). The growth occurs on the rising part of the parallel distribution function where

2%y

Bp; > 0. This is satisfied for the particles of the primary beam.

6.2.1 Airy Function Approximation

Next we consider the Airy function approximation to the curvature emissivities of ultrarelativistic

particles in a medium. The expression for the emissivity is

tan? 6
2
eﬁ¢

2,2,,2
T](LU) = M (JL2(V\/E,B¢ COSH) +

2me

J2(v+/€Bg cos 9)) 8 (w — vByc/r) (6.22)

(emissivity per unit solid angle d2).

We assume that a particle is moving through a dielectric with the permittivity € > 1. We show,
that for large energies of the particle, when it is moving with the velocity larger than the speed of
light in a medium, a qualitatively different expansion of the Airy function should be used.

This is analogous to the cyclotron emission at the anomalous Doppler resonance in the straight
magnetic field. Emission at the anomalous Doppler resonance are qualitatively different from the
emissivities at the normal Doppler resonance. Emission at the anomalous Doppler resonance is
similar to the Cherenkov emission - this is a collective effect in which all the particles of the medium
take part.

In the transition region, when the argument of the Bessel functions is large and close to their

orders, it is possible to use the Airy function approximation

2/3 3/2 3/2 .
173\ o [ 2 v 1/3 32111/3 (J1/3 (23 z3/2)+J—1/3 (23 ZS/Q)) ifz>0
o) (&) g - B (p(F) e () e
\/§7ru1/3 KI/S( 3 |Z| ) 12z <

(6.23)
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Figure 6.2: Cherenkov-drift emission. Drift velocity uy is perpendicular to the plane of the curved
field line (B — R, plane, R, is a local radius of curvature). The emitted electromagnetic waves are
polarized along u,. The emission is generated in the cone centered at the angle 8°™ = ug/c and
with the opening angle (26)1/2 < §°™.
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Figure 6.3: Geometry of the Cherenkov-drift resonance. In a given field a particle with a given
Lorentz factor resonates with the waves propagating along the cone centered around the instanta-
neous particle velocity and with the opening angle (25)/2.
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where Ai(z) is Airy function.

In vacuum the argument of the Bessel functions is always smaller than the order: \r = vfgcosf <
v. In a medium, the argument of the Bessel functions can become larger than the order. In a
dielectric the argument of the Bessel functions is Ar = \/WT. If we introduce a notation
kz = wy/€/csin @ (this is a definition of angle 6, the condition of regularity at infinity, A2 > 0 insures
that sinf < 1), then we have Ar = v\/€Bg cos 8, which can be larger than v if 85 > 1/+/€ - for the
superluminal motion of a particle. Using these notations we find

2
z = (/€8s cosf — 1)1/2/3 = (5 — % - %) v2/3 (6.24)

fore=1+2,6 <1, v>1and § < 1. It is clear from Eq. (6.24) that in vacuum z < 0 and in a
medium 2z becomes positive for superluminal particles.

Following the discussion of Section A.3, we can identify the light cylinder radius for the mode v
asr, =v/ A\ We can argue that in the case z > 0 the resonant interaction of a particle with a wave

occurs outside the light cylinder

ro=r, (1 + 1/2%) (6.25)

A transition through point z = 0 (light cylinder) is nontrivial. It resembles phase transition
(Schwinger et al. 1976) in a sense that correlation length for thermal or quantum fluctuations is
very large near the transition. The physical conditions beyond and above the transition point are
essentially different.

For superluminal motion, the collective effects of the medium play an important role. In this
case the corresponding emission process can be called Cherenkov-curvature emission, stressing the
fact that both inhomogeneous magnetic field and a medium are important for the emission. In the
vacuum limit, n — 1, Cherenkov-curvature emission reduces to the conventional curvature emission.
Conventional Cherenkov radiation may be obtained in the limit r — oo after integration over v (see
Schwinger et al. 1976 for the corresponding transition for the cyclotron-Cherenkov radiation).

The emissivity for the Cherenkov-curvature process is

22/3\/Ew2q2v2 ta 9 0 9 2/3
_ ¢ n 20 51/3 42(_1/3
n(w) = ST 7 A (=2132) + (;) A2 (=232} 6 (w — Q) (6.26)
For z < 0 this reduces to the conventional representation for synchrotron emission in terms of
MacDonald functions K, /3. For z > 0 Eq. (6.26) gives
2 22/332 2
(J1/3(8) + J-1/3(8)" + A (Joy3(8) ~ J_2/3(8))" | 6 (w — 1)
(6.27)

218 /ew?q®v} (tan?0
n(w) =

Omcy2/3 €6
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where we used

J, (l/ + zle/s) ~ (%)2/3 Ai! (—21/3;:)

Ai'(—z) = ‘% (J_2/3 (—21/3z) — Jos (—21/3z)) (6.28)

The emissivity (6.27) may be simplified in the case £ > 1. Then we can use the asymptotic

expansion for Airy functions

. oL (2 5 T
A’L(—Z) ~ \_/_;r'm sin (32 -+ Z)

1/4
Ai'(—2) ~ zﬁ cos <§z3/2 + g) (6.29)
to find
V2 /ew?q?B3/z sin?(¢ + w/4)v%/3 tan2 0

where & = (22)%/2/3.
For 6 >> 1/~%, and & >> 62 the condition z >> 1 implies §v%/3 > 1. Then (6.30) can be further
simplified:

23/2y,

2.2 32
~ M cos? (—-3 8%/ + ZT‘) §(w—rQ) (6.31)

m2cr

n(w) y

In this context we note that the total spectral power for the curvature emission in a medium, viz

_ '

2vnf3
n{w) o (2n2ﬁ£J§u(2Vnﬂ¢) - (1~ ”253))/0 ’ dl‘J2u(37)> (6.32)

for the case of superluminal motion, n8y > 1, can be reduced to the explicitly Cherenkov-type

emission form:

n(w) = a*wly (1 _ ) A(z) (6.33)

4de n? ,335

with A(z) of the order of unity for z > 1 (Schwinger et al. 1976).
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Chapter 7 Instabilities in the Pair Plasma

7.1 Introduction

At the moment the most promising theories of the pulsar radio emission generation are based on
the plasma emission model, in which the high brightness radio emission is generated by some kind
of instabilities developing in the outflowing plasma (Melrose 1995). In this chapter we consider
in generality several possible beam-type instabilities in the strong magnetized electron-positron
plasma in a superstrong rectilinear magnetic field, i.e., in this chapter we will neglect the curvature
of the magnetic field lines. The possible resonances include the Cherenkov and cyclotron resonances
of the particles with the Alfven, extraordinary and ordinary modes in two regimes: kinetic and
hydrodynamic. The calculations are done for the cases of cold and relativistic hot plasma taking
into account angular dependence of the growth rate.

In a pulsar magnetosphere the Cherenkov instabilities occur in the hydrodynamic regimes, while
the cyclotron instabilities occur in the kinetic regime. We find that the hydrodynamic-type instabil-
ities are strongly suppressed by the large relativistic y-factor of the primary beam. In contrast, the
cyclotron instabilities are not subject to strong suppression by the large streaming ~y-factor. Based
on this, we argue that electromagnetic cyclotron-type instabilities on the extraordinary, ordinary
and probably Alfvén waves are more likely to develop in the pulsar magnetosphere.

We assume initially that we have a strongly magnetized, one-dimensional, electron-positron
plasma with the similar distribution functions for electrons and positrons plus a beam of the high en-
ergy, fast particles streaming along the magnetic field. One-dimensional relativistic electron-positron
plasmas are very different from their electron-ion counterpart for two separate reasons - their normal
modes are quite different and relativistic one-dimensional distribution function considerably modifies
the nature of the wave-particle interaction.

In this chapter we consider wave excitation in a strongly magnetized pair plasma in the ap-
proximation of straight magnetic field lines, thus omitting an important Cherenkov-drift resonance
(Lyutikov, Blandford & Machabeli 1997, Lyutikov, Machabeli & Blandford 1997a). This is an im-
portant mechanism that may be responsible for the generation of the cone type emission in pulsars.
The electromagnetic Cherenkov-drift instability occurs in the kinetic regime on the high frequency
vacuum-like ordinary and extraordinary waves. It has the same advantages as the electromagnetic
cyclotron instabilities considered in this paper.

We will give here the simplified calculations: a more detailed consideration can be found in
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Lyutikov 1997c. In this chapter we will be working in the plasma frame, which is streaming with
the Lorentz factor v, with respect to the pulsar frame. We recall that the parameters measured in

the pulsar frame are denoted with a prime.

7.2 Hydrodynamic and Kinetic Instabilities

The description of the beam-plasma instabilities is based on the scheme used to solve the general
problem of linear oscillations in plasma. The initial equations are the linearized kinetic equations
for the particles in a self-consistent electromagnetic field and Maxwell’s equations. When the un-
perturbed state of the beam and plasma is stationary and spatially uniform, we can use Eq. (5.32)
to find the normal modes of a medium.

For the beam-plasma system the dielectric tensor e,3(w,k) may be represented as a sum of

contributions from plasma and beam.

%M%ky=@g+%?¢$””+%?d$m (7.1)
where crgfgsma and og‘iﬂa’" are the conductivity tensors of plasma and beam.

Sometimes it is possible to consider beam as a weak perturbation to the system. Then, in the
zeroth approximation, the normal modes of the medium will be determined from (5.32) with ag‘z;‘m
set to zero. This will produce a set of normal modes of the medium {w(k)'}.

If the plasma alone is stable, then the frequency of the normal modes will have a zero imaginary
part. In the first approximation, dispersion relation (5.32) may be expanded taking into account a
small contribution to the dielectric tensor from the beam. The frequency shift A(k)’ of the normal

mode w(k)! is then determined from

AW | K. )

o + Ky(w, k) = 0 (7.2)

w(k)?

where K, (w, k) and Kj(w, k) are the plasma and beam parts of Eq.(5.32). For stable plasma without
a beam, K,(w, k) and {w(k)'} are real.

Two separate cases may be distinguished here depending on whether the complex part of the
beam contribution to the dispersion relations (7.2) K3(w, k) is zero or nonzero. If Im(Kj(w,k) =0
then equation (7.2) has real coefficients. The complex solutions of Eq.(7.2) (if any) are complex
conjugates. Solutions with the positive complex part correspond to the growing waves. These are
hydrodynamic instabilities. In hydrodynamic instabilities, all the particles of the beam resonate
with the normal mode of the plasma. This requires that the growth rate of the instability be greater

than the intrinsic bandwidth of the growing waves:
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k- 6v| < Im(A(K)). (7.3)

Here k is the resonant wave vector, §v is the scatter in the velocity of the beam particles. This is
satisfied for a very small scatter in the velocity of the beam particles, so that all the particles from
the beam resonate with the beam.

Alternatively, if the complex part of the the beam contribution to the dispersion relations (7.2)
K (w, k) is nonzero, the frequency shift A(k) will always have a complex part. If the complex part of
A(k)! is larger than zero, then the corresponding normal mode w(k)" will be growing at the expense
of the beam energy, while for negative A(k)! the mode will be damped on the resonant particles of
the beam. This case corresponds to the kinetic instability. The requirement that the frequency shift
A(k)! due to the complex part of K;(w,k) dominates over the shift due to the large real part of
Ky(w, k) requires that the growth rate be much less than the the intrinsic bandwidth of the growing
waves (reversed inequality (7.3)). This is satisfied for a very large scatter in the velocity of the beam
particles, so that at any given moment only a small fraction of the beam particles is in resonance
with the wave.

Though the physical interpretations of the kinetic and hydrodynamic instabilities are quite dif-
ferent, they may be considered as two limiting cases of a general beam instability. For a relativistic
beam traveling along a magnetic field with average Lorentz factor v, scatter in parallel Lorentz
factors A«y, and average pitch angle ¢ the condition of the hydrodynamic approximation (7.3) takes
the form

P2 Axy swpAry

kyc (?-}-?) +kicy + 42 <«7T (7.4)

where s is the harmonic number (s = 0 for Cherenkov resonance, s # 0 for cyclotron resonance) and
I" is a growth rate of an instability. For the kinetic instability, this inequality is reversed.

From (7.4) it follows that there exist a critical pitch angle

1 [Ay
crit = — - 7.5
Yerit p i/ ,Y (7.5)

For 9 > it the scatter in pitch angles dominates over longitudinal velocity spread. For
¥ > et the average "longitudinal” mass of the beam particles decreases by the factor of (1;)? so
that the instabilities whose growth rate is inversely proportional to the ”"longitudinal” mass of the
particles (like Cherenkov instability of plasma waves) may be enhanced considerably.

Relativistic particles propagating along the curved magnetic field of a pulsar magnetosphere
initially are in the ground quantum state (zero pitch angle). They can develop a finite pitch angle
by (i) particle-particle collisions, (ii) interaction with the electromagnetic field (Compton scattering

on the diffuse thermal photons or recoil due the emission of electromagnetic waves at anomalous
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cyclotron resonance), and (iii) when the adiabatic approximation for the propagation breaks down
(when the Larmor radius becomes comparable with the size of the inhomogeneity). The pitch angle
of the particles is then determined by the balance of these forces on one hand and radiation damping
at the normal synchrotron resonance and the force due to the conservation of adiabatic invariant on
the other hand.

In magnetosphere, the particle-particle collision time is very long compared with the dynamical
time because of the relatively low density of particles, high speed and the one-dimensional character
of the motion. We also assume that the Compton scattering on the diffuse thermal photons is
unimportant and that the adiabatic approximation for the propagation of particles is satisfied. The
transverse component of the force due to the radiation damping at normal synchrotron resonance
dominates the transverse motion of the particles near the neutron star, making the pitch angles equal
to zero. Then the pitch angles will remain zero throughout the region where the above conditions
are satisfied.

In what follows we assume that plasma is one-dimensional before the development of instabilities.

The condition of hydrodynamic approximation (7.4) is then

A A
k“C’Y_;’Y + Swsz i < r (76)

In the kinetic regime this inequality is reversed.
For an instability to be important as a possible source of coherent emission generation, its growth
rate, evaluated in the pulsar frame, should be much larger than the pulsar rotation frequency (.

The growth rates in the pulsar and plasma frames are related by

r
M= —. (7.7)
Tp

So the requirement of a fast growth in the plasma frame is

r
— > 1. 7.8
’YPQ ( )

Another, more stringent requirement on the growth rate comes from the angular dependence of
a growth rate. The emitting plasma propagates in a curved magnetic field. If an instability has a
considerable growth inside a characteristic angle §6’, then the growth length should be larger than

00R., where R, is the curvature of the magnetic fields. In the plasma frame this requirement is

2
C'Yp
> L (7.9)

where we used 40’ ~ §0/,.
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Figure 7.1: Resonances of the Alfvén mode in the cold plasma for p < 1.

7.3 Resonances in Cold Pair Plasma

In the cold plasma approach the resonant interaction between the fast particles and the plasma
may be considered as the interaction of the waves in the plasma with the waves in the beam. The
interaction is the strongest when the dispersion relations of the waves intersect. Consequently, we
are Jooking for the possible resonances between the waves in the plasma (5.35) and the waves in the

beam (see Fig. 7.1 - 7.3):

W =1p kd’ (710)

w=uwv,kcosf+ ot (7.11)
o

As we will see in Section 7.5, the resonant interaction of the plasma waves with the Cherenkov
waves in the beam (7.10) is described by the cubic equation for the frequency shift, which always
has complex conjugate solutions. This implies that the Cherenkov resonant interaction of the waves
in the beam and in the plasma is always unstable.

In contrast, the frequency shift due to the cyclotron interaction of the waves in the beam and

in the plasma (7.11) is described by a quadratic equation, which has two real solutions for the plus
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sign in (7.11) and two complex solutions for the minus sign in (7.11). Thus, only the minus sign
in (7.11) will contribute to the instability growth rate. The resonance (7.11) with the minus sign
is called anomalous Doppler resonance. This corresponding instability may be considered as the
interaction of the negative energy wave in the beam with the positive energy wave in plasma. Due
to the resonant coupling, the amplitudes of both waves grow exponentially.

Now let us consider the condition for the resonances (7.10) and (7.11) to occur. From the low
frequency asymptotics of the Alfvén waves (5.46) we infer that the possibility of the Cherenkov
excitation of the Alfvén waves depends on the parameter

p= 2% (7.12)
wp

If p < 1, then Alfvén waves can be excited by Cherenkov resonance.! However, if . > 1 then
Alfvén waves cannot be excited by Cherenkov resonance. Instead, resonance can occur for an O
mode subject to the requirement of sufficiently small angles of propagation Fig. 7.3 (see Section

7.3.4 below).

For the cold plasma in the region of open field lines we have

3/2 3 T
b= | 228 ,/”Q % 5><10—3< r ) o)<t lf(R”S) <48 (7.13)
VW wp 32 Rys > 1, if( r )>43

RNs

So, at small radii (z < 1) it is the Alfvén wave that is excited by the Cherenkov resonance,
while for larger radii (1 > 1) it is the O-mode that can be excited by the Cherenkov resonance. In
the outer parts of magnetosphere (r > 100Ryg) the parameter p becomes much larger than unity:
w> 1.

For the parallel propagation (and only in this case) the parts of the ordinary and Alfvén modes
that have longitudinal polarization may be considered as forming a single plasma wave with a
dispersion w = \/Ewp. In this particular case, the excitation of either ordinary or Alfvén part of
the longitudinal plasma mode is very similar. But as the waves propagate in the curved magnetic
field lines, the parts of the plasma mode corresponding to the ordinary or Alfvén wave will evolve
differently resulting in a different observational characteristics of the emergent radiation.

In what follows we consider separately the two possible cases of Cherenkov resonances: p > 1
and p < 1.

We also note that the extraordinary wave cannot be excited by the Cherenkov resonance. Though
the formal intersection of the Cherenkov wave in the beam (7.10) with the dispersion relation of

the extraordinary mode is possible for all frequencies if ;1 = 1, the transverse polarization of the

In the case of cold plasma this may be considered as a sufficient condition for the Cherenkov excitation of Alfvén
waves. In the case of hot plasma this is only a necessary condition (see below).
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extraordinary mode excludes a resonant interaction with particles streaming along the magnetic

field.

7.3.1 Cherenkov Resonances of the Alfvén Mode (1 < 1)

We can obtain analytical solution for the location of the Cherenkov resonances of the Alfvén mode
in the limit 4 < 1. Then we can take a wp — 0o approximation in the Alfven wave dispersion. In
the limit of infinitely strong magnetic field the dispersion for Alfven waves follows from (5.35):
2 _ 2(.4)2
2_ _ Y TeY
=t 2w? cos? (7.14)
At the Cherenkov resonance we have n = 1/(8, cos6). Solving (7.14) we find the location of the

Cherenkov resonance of the Alfvén waves in the cold plasma:

(7.15)

2w12, cos? @ 12 \/§pr0$9 if0 <« 1/
Wres v¢ (1 — B2 cos?6) -

V2ercotd g4 s 1)y,

7.3.2 Cyclotron Resonance of an Alfvén Mode

We can similarly distinguish two cases for the cyclotron excitation of the waves. If 4 < 1 then only
Alfvén waves can possibly be excited by the cyclotron resonance. Alternatively, for ¢ > 1 all the
three waves (Alfvén, ordinary and extraordinary) may be excited by the cyclotron resonance.

For < 1 the resonance (7.11) on Alfvén waves always occurs at k¢ >> w,, (Fig. 7.1). Using the

asymptotic expansion for the dispersion of the Alfvén branch in the k¢ > w, limit we find

]

-2 1
s By cos @ (7.16)

Wres \/iwp cos b, kresc =
If 4 > 1 then the cyclotron resonance of the Alfvén wave occurs for k¢ < w,. We may
distinguish here two separate cases depending on the angle of propagation. For angles smaller than
some critical angle, the resonance occurs near w =~ /2 wp while for larger angles the resonance occurs
for w « \/iwp (Fig. 7.2).
In the latter case we may use the small k¥ approximation to the dispersion of the Alfvén wave
(5.46). The resonance condition (7.11) then reads
w;‘, k2 ¢? sin® 6

1
kpooc c0s0 | — — - =0, ke 7.17
¢ cos <2’Yf o e > +ws/v c <K wp (7.17)

In the limit p > 1 we can neglect the first term as compared to the second. Then, if the third term

is much larger than the second (this occurs for the angles of propagation larger than some critical
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angle (7.19)) the resonance occurs at

1/3
4wl w
KresC = (——PL> (7.18)

s cos @ sin® @

The resonant frequency corresponding to (7.18) is much smaller than the plasma frequency if 8 >
1/,/px. From (7.18) we also find a condition that the third term in (7.17) dominates over the second

at the resonance point:

4
Yo W
0 > Oqpir = d Nl
t Ry (7.19)
This angle is always much smaller than unity throughout the pulsar magnetosphere.
Summarizing the possible cyclotron resonances on Alfvén mode we have
wpB .
kresc = T fu<l
b By cost a
wo V2% if 5 land g < 1)
s Bo B K \/ﬁ
kresc = . (7.20)

30403
20 wp @y ifp>1and 0 > 1/ /0

sin2/3 § cos1/3 07;/3

7.3.3 Cyclotron Resonance on the Extraordinary Mode

The location of the cyclotron resonance on the extraordinary mode (which is possible only if 2 > 1
may be found from (5.39) and (7.11). In the low frequency approximation, w <« wp and for small

angles § < 1 we have

2wp 2w _
Wres = ” ( 12] ~ Y 2 - 92) (721)

This relation may be simplified in the limit © > 1 when the term -, 2 can be neglected. The
resonance is then possible for § < w,/wp with a resonant frequency for the parallel propagation

given by
wp 3

7.22
2 (7.22)

Wres =

Since we obtained this resonant frequency in the low frequency approximation, w <« wpg, it is

required that )
wp’)Ib
2
op >1 (7.23)

Using the fiducial plasma parameters of the cold plasma, we find

2 3
2Q A,
i/ L, L T (7.24)

2 2
wB YpwWB Y5 WB Rys

which implies that the extraordinary mode can be excited by the cyclotron resonance only in the
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outer parts of magnetosphere for radii satisfying

‘.2 1/3
Tres wB7p 3
~2x10 .
(RNS> > (A’y{)Q) X (7.25)

The location of the cyclotron resonance is quite sensitive to the choice of the bulk streaming

energy. Comparing the resonant frequency (7.22) with the plasma frequency, we find

3 3/2 3/2
Wres = “B = T (LU_B) 1 7.2
Wp Mwh A2 N20 > (7.26)

which implies that the extraordinary mode is always excited with the frequencies much larger than

the plasma frequency.

7.3.4  Cherenkov Resonances of the Ordinary Mode (u > 1)
w—kgvy =0 (7.27)

When 1 > 1 there is a possibility of the Cherenkov resonance of the ordinary mode. For p > 1
(in the inner parts of the pulsar magnetosphere, but not very close to the star) the Cherenkov
resonances of the ordinary mode occurs at k¢ > wp, while for g >> 1 the Cherenkov resonances
of the ordinary mode occurs at k¢ ~ wy (near the cross over point). Using the corresponding
asymptotics for the ordinary wave (5.45), we find that the ordinary wave is superluminous for the
angles of propagation larger than kc/wp. Consequently, neither Cherenkov or cyclotron-Cherenkov

excitation of the ordinary wave is possible for larger angles. For smaller angles we find

\/§7bw 9

2= 0P~

__1+y,2 0 < 1/ Yo

kresC = (7.28)

2
bwptFL 6> 1/

These relations assume k,esc > wp and p > 1.
For 1 > 1 (in the outer parts of the pulsar magnetosphere) the Cherenkov resonance on the
ordinary mode occurs at k¢ = wg. Using the dispersion relations for the ordinary wave near the

cross-over points (5.44) we can find the locations of the Cherenkov resonances on the ordinary mode:

2
wi,, ~ 2w;2, + wp? sin® 0 + el (1+;6%) (7.29)

From which it follows that for x4 > 1 the Cherenkov resonance on the ordinary modes occurs at

Wres & Wo.
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7.3.5 Cyclotron Resonance of the Ordinary Mode

The ordinary mode can also be excited at the cyclotron resonance if 4 > 1. The lowest excited
resonance frequency of the O-mode is reached for the parallel propagation: wyes = wg? /’ybwg. The
parameters of pulsar magnetospheric plasma are such that this lowest frequency is much higher than
the plasma frequency: wres > wp. So in calculating the resonant frequency of the O-mode we can
always use the high frequency approximation for the dispersion relation of the O-mode (5.45).

Assuming that kres > wp and 6 < wp/wp the solutions of the Eq.(7.11) are

kres =

2, .4n2
0 (1 ) B0) ot

2
B 2.2
= 1+6 7.30
Yp wg Q’ng}z, wp? Y wzz, ( T )) ( )

wp
The conditions for the cyclotron excitation of the ordinary mode are also subject to the require-
ment that the resonant frequency is much less than the cyclotron frequency (7.24). So both ordinary

and extraordinary modes can be excited by the cyclotron-Cherenkov resonance in the outer parts of

pulsar magnetosphere.

7.3.6 Dielectric Tensor for Cold Beam-Plasma System

The dielectric tensor for beam of the density n, propagating with the velocity v, along the magnetic
field B through a plasma of the density n can be found from a general expression (Eq 5.28) with
zero drift velocity u, = 0 and distribution function f,(pg) = np 6(ps) + nsd(py — ps) (np is a density

of a beam and py is a momentum of beam particles):

2 2 -2
1 2wy, _ wWpwt
€z =1+ — 2+ 2 2 = €pp
w wp Vb wzw
—twplwp d
€xr = T3 T ¢tz
2,2 3
Tp W W
Ewp?d v, sind
€z =TT 3 = Ce
vp w2 W
ikwy?wg vy sin @
€r = - = —€4r
¢ 2,2 3% ¢
YW w
2wp? wp? k2 wp? vp2sin’ 0 )
E¢¢ =1- w2 — 3(52 - 22 (73 )
b vo w2 &

v2

where & = w— kv, cos8, & = (w— kvp cos)? —wp?/y2 and v, = 1/4/1 — +%.

We will always assume that beam can be considered as a weak perturbation, so that we can

employ the expansion procedure described in Section 7.2.
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7.4 Hydrodynamic Instabilities for Parallel and Perpendicu-

lar Propagation

7.4.1 Parallel Propagation

In this section we calculate the growth rates for the beam instabilities for the waves propagating along
the magnetic field, that we will use later as guide lines for the general case of oblique propagation.
For the propagation along the magnetic field the dispersion relation (5.32) with a dielectric tensor

7.31 factorizes:

2 2
W w
-1+ —2 b =0 7.32
*+ w? + 3 &2 ( )
2w,? wp?d
—1+n%+ Py — =0 7.33
w? —wp? Y w? (Twe/v + W) (7.33)

Equation (7.32) describes hydrodynamic excitation of longitudinal plasma waves. As discussed
above, this may be a longitudinal part of Alfvén or ordinary mode depending on the parameters of

plasma.

Equation (7.33) describes the cyclotron excitation of the ordinary and extraordinary modes. For

the parallel propagation the cyclotron excitation of the Alfvén wave does not occur.

7.4.2 Cherenkov Excitation of Plasma Waves for § =0

We now look for the correction to the relations (5.36) and (7.10) when the two intersect.

w = V2w, + A
w = wkcosf+ A (7.34)

Expanding in small A, we find that the frequency shift satisfies a third order equation:

2A3 2
V2as %o =0 (7.35)
Wp b

Equation (7.35) always has one real and two complex conjugated roots. The complex root with
the positive complex part corresponds to the instability.

Solving Eq. (7.35), we find the complex part of the frequency shift:

Tl A) — \/?:wp%wb% _ NEY AN TS 7 36
m( )_ 7 - 22/3 ( : )
25 7y Yo/ Vp

This is a growth rate for the Cherenkov excitation of plasma waves (c.f. Godfrey et al. 1975,
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Egorenkov et al. 1983).
We can compare the importance of the Cherenkov excitation of plasma waves by evaluating

growth rate (7.36) for the set of fiducial parameters of a cold plasma and comparing it with the

1/6 —-3/2
Im(4) A JEE =86 —— (7.37)
7pQ fybfyg/z 9 Rys

From which it follows that this instability may be important for » < 20. We will see in Section

dynamical time (7.7):

7.5 that the second criterion (7.9) is not satisfied for the Cherenkov excitation of Alfvén or ordinary

waves, so that the Cherenkov instability does not develop.

7.4.3 Cyclotron Excitation of Transverse Waves for § = 0

We expect that the hydrodynamic instability will be strongest at small wave vectors. We can then
use the low frequency approximation (5.39) to the dispersion of the transverse waves. We seek the

correction to the relations (5.39) and (7.11) when the two intersect.

(.(}2
w = ke 1——'; + A
wpB
w=  kucosd— B4 A (7.38)
b

Expanding in small A, we find that the frequency shift satisfies the quadratic equation:

AK%? wpwy?

w3 A p w?

=0 (7.39)

The =+ sign in (7.39) corresponds to the two signs in (7.33). For the normal Doppler resonance
(plus sign in (7.33) and (7.39)) the resulting frequency shift is real. For the anomalous Doppler
resonance, the frequency shift is complex:

A= LIVW VB (7.40)
2’)’5 ke

which gives near the resonant frequency (7.21)

Im(A) = twpwp VAQ

- - 7.41)
2 ws T, (

For the parameters of a cold plasma the growth rate (7.41) is much longer than the dynamical

time everywhere inside the light cylinder.
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Im(A) v
TS Yo/ Ve

Which implies that hydrodynamic regime of the cyclotron instability is probably unimportant.

=107« 1 (7.42)

7.4.4 Perpendicular Propagation

Next, we consider the hydrodynamic instabilities for the waves propagating perpendicular to the
magnetic fleld (magnetized Wiebel instability (Weibel 1959)). The normal modes of plasma without
a beam for § = /2 follow from Eq. (5.32):

w? = k%4 2w,? (7.43)
w? = wp? + 2w,? (7.44)
2w,?
2 Y4
=1 4
" L + wp? (7.45)

In the limit wp — co the two solution of the biquadratic Eq. (7.45) may be expanded in large

wpg:
2 2k2 2
w? :w32+2wp2+c——2w—p (7.46)
)]
2w,?
2 2 7.2 p
=c’k (1-— 7.47
w c ( o ) ( )

In the limit kc € wp the dispersion curves (7.46) and (7.44) approach each other near the upper

hybrid frequency: w? = wp? + 2w,%. We then expand determinant (7.31) for # = /2 near the

upper hybrid frequency w = ,/wg? + 2w2 + A keeping the terms up to the second order in A.
y » g

A2 2 2 A kz 2 k2 2
2w ¢ _ERY (7.48)
wf, wp w2 Yo wp?

Solving Eq. (7.48), we find the frequency shift

Buwp? (V7 - Vo R = 4wy?)

A= (7.49
2\/7y wg? 7:49)
which shows an instability for k¢ < 2wy /v, with a maximum growth rate
2,2
Im( A)mag ~ -2 20 (7.50)

3
Y62 wp?

which is negligible for all reasonable pulsar plasma parameters.
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7.5 Hydrodynamic Regimes of Oblique Wave Excitation in

Cold Plasma

In this section we develop a general theory of the hydrodynamic weak beam instabilities in the cold
magnetized electron-positron plasma. We expand (7.31) in small w; keeping only first terms. After

considerable algebra we obtain
Qw,? 2w,? 2w,? 2n2wp?wy?cos?l
1— 2 p -1 2 b 1— P r
< mt —w2+w32> <( Tt w? —wpg? T (w? —wp?) +

2 2w? 2w?
W . 2 .2 P _ 2 P
3 ( 1+ n”cos 0+w2—w32> ( 1+n +w2—w32>+

i3 “;2
w2 2 ken? (—1 +n?4+ wff:};) w' By cos@sin® 0
) ) +
2 w
Tow
k2c? (—1 +n2) B> (—1 + n? cos? 0) sin® 9 n
w2
2 (—w? + wp? + w,? n? (1+ cos®8
2k202w112,8b2 ( B ;’ ) + ( ) Sin20+
w? (~w? + wp?) w? (w? —wp?)

w2 ((—1+2:’_222> (_2+n2+u);1+":;+n2cos29) L2 (—2+n2+w§‘f;12) sin20>
7.51)

w?

The term containing 1/(;.;2 contribute to Cherenkov excitation and the term containing 1 /5;2
contribute to the cyclotron excitation.

To find the growth rates we expand the plasma part of (7.51) near the plasma modes (Egs. (5.34)
and (5.35)) and the beam part near the resonances w’ = 0 (for Cherenkov excitation) or v’ = 0
(for cyclotron instability). The expansion of the plasma part of (7.51) near the plasma modes is

done according to the relation

w=uw®4+A (%> Iw(o) (7.52)
Ow

where K, is the plasma part of the determinant (7.31)

2w,? 2w,? 2w,? 2n2wgp?w,2cos?l
K. 1-n24+ ———F2 —14n24 2% 1— 2 P
P < ne+ —w2+w32> << Tttt 22 —wg? T2 (w? — wp?)

(7.53)

i

and w(® are the solutions of the equation K, =0.

Simultaneously, in the beam part of the Eq. (7.51) we should use the normal modes of the
medium for the estimates of w and the refractive index n.

We skip the details of calculations of the growth rate and conclude this section by the table
of the hydrodynamic growth rate in a cold plasma (Table 7.1). For the details of calculations, see

Lyutikov 1997c.
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Resonances | Extraordinary wave Ordinary wave Alfven wave
V6w m.E w H sin 6
Im(A) = E-Yptb >1 1
EA v m\,:uw. AIH...INVW. (8wp?+2wp?sin? 3% H= HEADV — V3w3 Evm nOmQW ifo < H\Q@
2 5 Nm b
Cherenkov Im(A)=0 Im(A) = V3w wp¥ 202 +wp? mwzu 4 p>1 PR
27, (4witwptsin2 §)3 Im(A) = @%I@ME ifo > 1/v
0 " >1 26 Ty
Vw.,, wy Vcos 8 sin @ .
— Ywsw I =2z fp<il
o Im(A) = Nﬁw\m 3 m(A) - nps
Cyclotron Im(A) = m%”s . , < Z,p>1
w w 3 3
w= ik (L4 35 (14+0%)) Im(A) = seloendd - p

3
26 98 w2

Table 7.1: Hydrodynamic growth rates in cold plasma
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7.6 Resonances in the Relativistic Hot Pair Plasma

From the low frequency approximation to the Alfvén waves dispersion we find that the possibility

of Cherenkov excitation of Alfvén wave in a relativistic hot plasma depends on the parameter

(JJBZ

242 Tow?(1 + (32 2951/ Tow
,Uh=\/ T Tp p( ﬂT)z %pr P (7.54)

(compare with (7.12)).

Using our fiducial numbers parameter ;4 may be estimated

T AQ T AQ 3/2 <1, if ( ) <43
WBYp Yws Rys >1, if ( r ) > 43

Ryns

Numerically ;5 and p are equal for the chosen set of the fiducial numbers for the cold and hot cases.

Similarly to the cold case, the parameter u; determines the possibility of the excitation of the
Alfvén and ordinary waves. If pp < 1 then the ordinary wave cannot be excited by Cherenkov
resonance. In this case the Alfvén wave may be excited by the Cherenkov interaction subject to
the condition that the resonance occurs on the parts of the dispersion curve that are not strongly
damped (see below). If un > 1 then the ordinary wave may excited by Cherenkov resonance for the
angles of propagation 8 < @

Another limitation on the possible resonance comes from the requirement that the waves in the

plasma are not strongly damped at the location of the resonance. This is an important constraint

on the resonance of the Alfvén wave, which is strongly damped at large wave vectors.

7.6.1 Cherenkov Resonance of an Alfvén Mode (u; < 1)

Solving (5.72) with n = 1/(8, cos§), we find the location of the Cherenkov resonance of the Alfvén

wave:
2?5 cos? g 2 Tpw?2 37 cos® 6 if0 <1/
P wy B cos - (7.56)
res 2T _ 2_|_ 2 _1+ 2C0529 ~ w232 2 ’
Y p( ﬁb 6T)( IBb ) &_Lfgﬂ if6>>l/’yb
b

(see Fig. 7.4).

7.6.2 Cyclotron Resonance of an Alfvén Wave

The dispersion relation for the Alfvén waves in a relativistic hot pair plasma is complicated even in

the limit of infinitely strong magnetic field (5.72). To find the location of the cyclotron resonances
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Figure 7.4: Alfvén wave resonances in hot pair plasma. (a) Cherenkov resonance for 8 < 1,
(#n < 1); (b) Cherenkov resonance for 8 > 1y, (un < 1); (c) Cyclotron resonance for very hot
plasma (7 < 1); (d) Cyclotron resonance for warm plasma (n > 1). On the plots (c) and (d) the
dashed parts of the Alfvén wave dispersion curve indicate a strong damping on the plasma particles.
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we will use the asymptotic expansion for the dispersion relations of the Alfvén waves far from the
cross-over points (5.46).

First we assume that cyclotron resonance occurs at the frequencies much larger than the cross-
over frequency w » w, and find the condition for this. Alfvén waves are strongly damped in this
limit and there will be no excitation. Using the asymptotic expansion (5.46) to solve (7.11) we find

the cyclotron resonant frequency of the Alfvén wave.

2
2prB

T, 2 ifa <1
w’I‘ES,A = £ (1 + 1 + a) = (7.57)
b wp ifa > 1
V2T, 2,/2\/1—-,8%c0529 ra >
where
292 w? : 1
2vEw? cos? § 7 s BT i< kS
a = b4 = 7.58
Tgw32/8T (1 - ﬂ%‘ cos? 6) 2’75 wf, cot 62 £ o 1 ( )
T2 wg? fBr ! > T,

The condition that the resonant frequency (7.57) be much larger than the cross-over frequency

(evaluated for the parallel propagation) gives

ﬁ;f% ifa <1
%:‘9: %zl ifa>>1and0<<TLp (7.59)
T—:Cz“’? ifa>1land 6 > 4
Which implies that our assumption w,.; > w, may be satisfied only if
n=-0Y% «1 (7.60)

Tp2 wpBp

which may be true for a very hot plasma. If the condition (7.60) is satisfied then the cyclotron
resonance of the Alfvén wave occurs for w > w, (Fig. 7.5).

If we used a more realistic distribution function, then in this limit there will be many particles
satisfying the Cherenkov resonance and the wave will be strongly damped, so we can make a con-
clusion that if the condition (7.60) is satisfied then the cyclotron excitation of the Alfvén wave is
unimportant. If condition (7.60) is not satisfied (warm plasma), then the cyclotron resonance for
Alfvén waves occur at a frequency w,.; =~ w, which is not strongly damped.

Another analytical approximation to the location of the cyclotron resonance for Alfvén waves
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Figure 7.5: Location of a cyclotron resonance of the Alfvén wave. For n < 1 (very hot plasma)
cyclotron resonance on Alfvén waves occurs at k¢ > T; / 2wp, where the waves are strongly damped.
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may be obtained for large angles of propagation 62 > —“’% when the resonance occurs at
Yo P Wp
w K Wy

2y L 2 2
23 T3 wp3 wg cot 63

ifo > —wp (7.61)

’ Yo/ Tpwp

Wres = T
23
Cherenkov Resonance of an Ordinary Mode (i > 1)

By analogy with the cold case (Section 7.5) we find that the Cherenkov resonance on the ordinary
mode with for pp > 1 occurs approximately at the cross-over point w(()h)z = 2prg + w% sin 9,

while for pn > 1 the Cherenkov resonance on the ordinary mode occurs at w > +/ Tpwp:

2 Tp’ybwpe 0
NEEAICL <1
Vit /e (7.62)

2
Wres = wBOEﬁz:rrZ 6> 1/v

Wres =

7.6.3 Cyclotron Resonance of Ordinary and Extraordinary Modes

To find the location of the cyclotron resonance on the ordinary and extraordinary modes, we first
assume that a cyclotron resonance occurs at frequencies much larger than the cross-over frequency

w > w,. Using the high frequency approximation (5.46), we find

L c 2wB w33 (1+LUB292)
res,XC — — ~
° Yo (dTp(1+ B2) — 02— %) 7 Tpw? Tpw2
9 w?sin? 6

kres,0C = CZUB S TolWp 5 .

Yo (dTp(l + /BT) - 62 —- e ) TP“"'B(l - IBT cos 0)

3 2 g2 T w26
N B <1+°”B ; ) + D (7.63)
Y Tpwy Tpwp wp (1+62T7)

The relations (7.63) are valid for the small angles of propagation: § < 3%2

7.6.4 Summary of the Conditions for Wave Excitation in Hot Plasma

Summarizing the results of this Section we note that the possibility of the Cherenkov excitation of
Alfvén or ordinary mode depends on the parameter u; (Eq. (7.54) for pp, > 1 it is the ordinary
mode that is excited by the Cherenkov instability, for pp < 1 Alfvén wave can be excited by the
Cherenkov instability). All the branches (extraordinary, ordinary and Alfvén) can be excited by the
cyclotron instability. If 7 < 1, then the condition that Alfvén waves are not strongly damped in the
resonance region require plasma to be mildly hot: n < 1 (for n > 1 Alfvén waves in the resonance

region are strongly damped).
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7.7 Hydrodynamic Wave Excitation in Relativistic Pair Plasma
7.7.1 Dielectric Tensor for the Beam-Hot Plasma System

To simplify the analysis we will use the low frequency approximation w <« wg and the assumption

2
of a very strong magnetic field ZL:} < 1 from the very beginning. The dielectric tensor is then

given by
2 2
wp? W
€z =14d7T, (1+n2ﬁ%c0526)—b—d:e"
vy w2 &
—1 wbsz W
€xr =5 = ~¢rz
Vo2 w? W
kwp?d Py sind
€z =d T, n® B2 cosb sin&—%:gm
Yy w? W
ikwy?wp By sind
€rg = 2 = —€gr
¥o? w? W
2n?%w? w? k2 wy? By 2 sin? @
€ =1- P +d Tpn?sin? — —b— — 7.64
o9 T, (1 - n? B2 cos?0) F 1 w'? ¥p w? w' 2 (7.64)

7.7.2 Parallel Propagation

For parallel propagation Eq. (5.32) with the dielectric tensor (7.64) factorizes:

2n?w? 2
1- P b (7.65)
T, (1-n207) w2
2A
wp™ W
1-n?+ —+dT, (1+n2p62) =0 7.66
Yow? (wp/v6 — &) » fr) (7.66)
2}\
1 n? > +d T, (1+n263) =0 (7.67)

 ww? (wp/ + @)

Following the same procedure of expanding the dispersion relations in small frequency shifts
A near the intersection of the two resonant curves, we find from (7.65) the growth rate for the

Cherenkov excitation of plasma waves:

_ \/gwé wb§ o \/gx/QwB/\l/G
286, /T, 2239/ Tp

Im(A) (7.68)

(cf. with Egorenkov et al. ).
Using the relations between parameters of the hot plasma (Eq. 4.5 with < v >= 2T},,), the
condition of a fast growth (7.8) for the growth rate (7.68) takes the form

Im(A) ~ A/S 13_:20< r )*3/2 (7.69)
w0 PPV e T T B
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For the fixed values of 4, and «, the growth rate for the Cherenkov excitation of plasma waves
in a hot plasma is smaller by the factor Tp2 /3 as compared with the cold plasma.

Solving Eq. (7.67), we find the growth rate for the cyclotron excitation of transverse waves

JT T
A=Y IpWpws AT R (7.70)
2, wB Yo Vp

Comparison of this growth rate with the dynamical time gives

Im(A) 1 [AT, 1 3/2 3/2
m()=_2 —pz—2<r> :10-4<T> <1 (7.71)
Qv B\ v v \Bnws Rns

From (7.71) and (7.42) if follows that the cyclotron excitation of the transverse waves in the

hydrodynamic regime is not affected by the relativistic temperature of the plasma particles and is
not important in the pulsar magnetosphere.

Similarly to the cold case we omit the details of the calculations of the growth rates and conclude
this section by the table of the hydrodynamic growth rates in the relativistic hot pair plasma (Table
7.2).

7.8 Kinetic Instabilities

As we have discussed in Section 7.2, a general beam instability may be treated analytically in the
hydrodynamic and kinetic limiting cases. We have considered hydrodynamic beam instabilities in
pair plasma in Sections 7.5 and 7.7. Now we turn to the kinetic regime of instabilities. The condition
for the kinetic consideration to apply is the opposite of the condition (7.3). Tt requires a substantial
scatter in the velocities of the resonant particles. In what follows we assume that distribution of the

beam particles is described by the relativistic, one-dimensional Maxwellian distribution:

_ 1 o [P u*
o) = sty (24 (r.72)

where ny, is the density of the beam measured in the laboratory frame (the Lorentz invariant proper
density is nyvs), U* = (, Bsys) is the four velocity of the rest frame of the beam, T} is the beam
temperature in units mc?, K is a modified Bessel function.

This function may be simplified in the limit of cold beam (in its frame) 75 < 1 and large

streaming velocity v, > 1. We find then

__ _(P¢“Pb)2
o) = e (-2 100 (7.73)

where p? = v2Tymc is the scatter in parallel moments.
t b
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Resonances

Extraordinary wave

Ordinary wave

Alfven wave

Im(A) = u>1 I o2
) Im(A) = $ if6 < 1/7
: 3w z w w in i °
Cherenkov HEADV = HBADV - Yo3 wi wp3 /67, m+w mmwm 29 p>1 L1
29 ?Qo» wi+wp?sin mvw. HBADV — Yo wp wy3 no”m 0> ”—\\5u
0 p>1 2% V352 B3
Echmm Im(A)=0 fu<i
z
Cyclotron Im(A) = uwﬁ,ﬁmm vEnT <> 1
wkEq.129

1 1
— w3 w, tan3 @
Im(A) = 22-Ze fan2 0 I S
2% Yy Yo Wp

ifp>»landn>1

Table 7.2: Hydrodynamic growth rates in hot plasma
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In case of kinetic instabilities the growth rate is given by (e.g., Melrose 1978c)

(ei;e’;geﬂ)

1 8 2 /
SR CTn

= - (7.74)
where e’aﬁ and egﬂ are hermitian and antihermitian parts of the dielectric tensor, w(k) is the fre-
quency of the excited normal modes of the medium, and e, is its polarization vector. The antiher-
mitian parts of the dielectric tensor are due to the resonant interaction of the particles from the

beam at Cherenkov (7.10) and cyclotron resonances (7.11). Using the Plemeij formula we find

n2g? dpg wp
1 — . / 6 I s — n
€. i ——7 W f(pg)d {w o €y
4n2q? 0f(py) 2722 sin? 02k2¢? wp
" =1 dpgvy———225 (w') — i /d 2 Slw — —=
b - / Po% o, (W) —1 om Pe Vg f(Py)d | w -
272¢%ksin 0 wp
1" _ g 4 e d ! (5 I _ =D — 1"
o =L [dpgutuara)s (o - 22) = ¢,
€ ~0 =€, =€y =€y, (7.75)

Using the polarization vectors (5.84),(5.85) we find that for the quasitransverse waves (ordinary
mode w > w((,h), Alfvén mode w <« w(()h) and ordinary mode w = w((,h), 0> w%/(prg)), while for

the ordinary mode at the cross-over point and 8 < w /(Tpw?)

1 6 cold plasma

w? dw

(7.76)

2
Wie-€-e)= e
=2-  hot plasma
wP

With polarization vectors (5.60) and (5.62) we find from (7.75), that for quasitransverse parts of

the waves
2122 [ d |
(ex - €" - ex) = —i 52731 —:fw'f(pd,)a (w' - “’TB> (7.77)
4m2q? 7]
(eo €' -eo0) = %— /dpd,v(j,%ld (w')sin® 0
’¢? 2 wB Ch c
- dpg (kvg —wcos)” f(py)d (w' - 7) =eH" " +€) (7.78)
B
2,2 4
" g w Of(pg) / 2
o) = TC Y 0, 2P 5y ban e
(ea-€'-ex) = — wg/ Sy (') tan
) 2.2
w;;sm dpy (w — kvg cos8)® f(py)s <w' - WTB> =4O 4 €4C (7.79)

where we split the antihermitian part for the ordinary and Alfvén modes in two parts: ¢’ € is due

ixe

to the Cherenkov resonance and €¢’¢ is due to the cyclotron resonance.

Most of the relations (7.79), excepting €;¢*, are valid for both cold and hot plasma. For hot



113

plasma we have

2.2 4 bs)
1O = (ep ¢ eq) P = L Y dpsv —f(p¢)6 w')tan? 0 7.80
A mw T2wl o Opy

P%p

For the Cherenkov excitation of the ordinary mode in the limit g > 1 (when the resonance

occurs at the cross-over point) we find

2 2 a 2 2
L [ dpgvs 2525 (o) o< 2z

(eo - €' -eo)cn = (7.81)
47r2q2 wé d (5 P 20)127
mw w‘}g cos? #sin? 0 f p¢v¢ ( ) > UBT

The calculations of the integrals in (7.77 - 7.81) are given in Appendix M

7.8.1 Parallel Propagation

We first consider an important, separate case of parallel propagation.
Using the polarization vectors e; = (0,0, 1) for longitudinal waves and e, = (1,0, 0) for transverse

waves we find

7 -271'2(]2 dp¢ wg
(et € - et) = —Zm f(p ) CU — E’— (782)
éa—wz(et € et) ~ 2w (7.83)
w
(er- ¢ - / dps p¢ 95 Po) 5 (1) (7.84)
1
1 8 , cold plasma
— oW (e1 e el = fw” (7,85)
w? fw %%, hot plasma
The corresponding growth rates are
2
W
[, = —pres 7.86
=T D (7.56)
Tw2w? Bf
[ = P Pres 787
With the distribution function of the form (7.73) we find
ﬂ-wg,res wi
Pt ~ —LU—A’Y——’ W = %—wa—% (788)
3
Iy~ ny  TWpYi , W =wo = /2 Tpwp (7.89)

np T2 Ay

The kinetic growth rates (7.88) and (7.89) can be compared with growth rates in hydrodynamic
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regime (Eqns (7.36) and (7.40)). In a hydrodynamic regime both cyclotron and Cherenkov growth
rates are proportional to the negative powers of the particle’s Lorentz factor. This is a significant
factor for the primary beam and for the particles from the tail of plasma distributions. In contrast,
kinetic growth rates (7.88) and (7.89) are not suppressed by the relativistic streaming of resonant
particles. On the other hand, kinetic growth rates (7.88) and (7.89) scale linearly with a small
ratio of the beam density to plasma density while hydrodynamic growth rates (7.36) and (7.40) are
proportional to 1/3 and 1/2 power of this ratio.

7.8.2 Excitation of Oblique Alfvén Waves in a Kinetic Regime

Cherenkov Resonance

Using (7.74), (7.79), (5.80), (7.80) and (7.74), we find a growth rate for the Cherenkov excitation of

Alfvén wave in a cold plasma:
2 4 3
T oW W o Y
== — tan® 60— .
8 kccos O wp an Avy2? (7.90)

with the resonant w and % given by (7.15) for cold plasma and (7.56) for the hot plasma. In a hot
plasma the growth rate is decreased by a factor Tp2 .

This growth rate is very small. Alfvén waves in the limit w <« w), are almost transverse and are
not excited effectively by the Cherenkov resonance. A strong dependence on w and # corresponds

to the increasing potential part of Alfvén waves for larger w and 6.

Cyclotron Resonance

Using (7.74), (7.79), (5.80) and (7.74), the growth rate for the cyclotron excitation of Alfvén waves
is
T WP

_7 91
4 wresAry (7.91)

with the resonant frequency given by (7.20) in the cold case or (7.61) in the warm case.

7.8.3 Excitation of the Oblique Ordinary Waves in a Kinetic Regime
Cherenkov Excitation

The Cherenkov excitation of the ordinary mode strongly depends on the parameter u;, and the angle

of propagation. Excitation is possible only for up > 1. For pp > 1 the resonance occurs at w > w(()h).

Then, using the polarization vector Eq. (5.60), the resonance frequency (7.28) and Eq. (7.75) we

find from (7.74) ,
7 w2 42sin®0
r=2_%b_7 e 7.92
2 kresc  AN? ( )
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For pp, > 1 the Cherenkov resonance occurs approximately at the cross-over point w((,h). Using

the polarization vector (5.61), the resonance frequency (5.40) and Eq. (7.75) we find from Eq. (7.74)

2

o
w
[ ]
£

@ % 0 <
A~2
r={ vaeor, v, (7.93)

R 3
s _4_'7; b
2 sin? @ cos? § Avy? 0>

wB w

B

Equations (7.92) and (7.93) imply that the Cherenkov excitation of the ordinary mode is effective
only if pup > 1 and in the narrow angle 6 < 2—:%‘21 This condition may be satisfied only in the outer
regions of the pulsar magnetosphere. The growth rate of the Cherenkov excitation of the ordinary
mode in the kinetic regime is proportional to the density of the resonant particles. In the outer parts
of pulsar magnetosphere, the density has decreased considerably which prevents the development of
the Cherenkov instability. Numerically, it turns out that in the pulsar magnetosphere the kinetic

instabilities may be stronger than hydrodynamic.

Cyclotron Excitation of the Ordinary Mode

Using (7.78), (5.80) and (7.74) the growth rate for the cyclotron excitation of the ordinary wave is

w?

BaTeS (7.94)

r_7
4 Wyes cOSZOAY

with the resonant frequency given by (7.30) in the cold case or (7.63) in the hot case. Here wp res is
the plasma frequency of the resonant particles. The angle of emission is limited by § < w,/wg. The

maximum growth rate, which is attained with parallel propagation, is estimated below.

7.8.4 Excitation of the Extraordinary Mode

Using (7.77), (5.80) and (7.74) the growth rate for the cyclotron excitation of the extraordinary wave

is
2

s wp,res
1 wroBy (7.95)

Using the resonant frequency (7.63) we find

2
T = _72 wp,rezwg’yb TP — ﬂ-ATCSA’Yb Tp Q_2 (796)
4 wpAy Avyp  wB
The conditions of the fast growth are
r R
—>1 if { =— 300 7.97
g>L i ( RNS) > (7.97)
ROT  mh o X¥2 RO ([ Q\*?
= = (7.98)
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Since cyclotron instability develops in the outer regions of pulsar magnetosphere, condition (7.98)
can be satisfied for the regions close to the the magnetic axis with R, ~ 10'® cm. The lower streaming
Lorentz factors increase the cyclotron instability growth rate.

We conclude this section by the table of kinetic growth rates (Table 7.3).

7.9 Hydrodynamic and Kinetic Regimes of the Beam Insta-
bility
Having calculated the growth rates for the hydrodynamic and kinetic regimes of the Cherenkov

and cyclotron instabilities, we can check whether the conditions of the corresponding regimes are

satisfied.

7.9.1 Cherenkov Resonance

The condition of the hydrodynamic regime for the Cherenkov excitation is given by (7.4) with v = 0
(the condition for the kinetic regime is reversed). We can distinguish two separate cases: when the
scatter in velocity of the resonant particles is due to the the scatter in parallel velocity or to the
scatter in pitch angles. In the former case condition (7.4) with the parallel growth rate (7.68) gives
the following requirement for the hydrodynamic-type Cherenkov instability:

2

Yo
——>1 7.99
V TpAyAL/3 (7.99)

which is well satisfied for the chosen plasma parameters.
In the case when the scatter in pitch angles dominates over the scatter in parallel velocity the

condition for the hydrodynamic type Cherenkov instability reads

1

—_— (7.100)
Yo/ TpA

P <

This is not satisfied. This implies that if the primary beam does not acquire any significant trans-

verse gyrational energy as it propagates out in the pulsar magnetosphere, then the Cherenkov-type
instabilities occur in the hydrodynamic regime.

We can also verify that the condition for the kinetic growth of the beam without any scatter in

pitch angles is not satisfied. The inverse of the condition (7.4) with the parallel growth rate in the

kinetic regime (7.93) give the following condition for the validity of the kinetic approximation

8/
— b« (7.101)
ATZA~3
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Resonances | Extraordinary wave Ordinary wave Alfven wave
2 3 2
_ m_wp 7Y;sin® @ _
L= 2 kpesc Ay w mQAme Mr 21 2 A s
=T Y W tan29-2,
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oz W e WoYe \.N..u res res
Cyclotron I'=7% lmﬁulbf'

B

w Eq.(7.30)or Eq.(7.63)

w Eq.(7.20) or Eq.(7.60)

Table 7.3: Kinetic growth rate in a pair plasma
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which is not satisfied for the chosen plasma parameters.

We deduce that the Cherenkov instability for the parallel propagation is in the hydrodynamic

regime.

7.9.2 Cyclotron Resonance

For the cyclotron resonances the left-hand side of (7.4) is dominated by the last term. For the
cyclotron excitation of the extraordinary mode condition (7.4) with the growth rate (7.41) give for

the hydrodynamic type instability to apply

%0 R\
Ay < /T A2— =10"" <—) (7.102)
TpWB Rys

which is most probably not satisfied even in the outer regions of the pulsar magnetosphere.
The condition for the kinetic approximation for the cyclotron excitation of the extraordinary

mode follows from (7.4) and (7.96):

- (7.103)
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which is well satisfied inside the pulsar magnetosphere.

From these estimates we conclude that the cyclotron instability in the pulsar magnetosphere
occurs in the kinetic regime. This is different from the electrostatic Cherenkov instabilities on the
primary beam, that occur in a hydrodynamic regime (see also Section 7.10).

This difference is very important for the theories of the pulsar radio emission. The kinetic
instabilities, in contrast to the hydrodynamic, are not suppressed by the large relativistic factor of
the resonant particles. Thus, the kinetic instabilities are more favorable as a possible source of the
pulsar radio emission.

It is possible to illustrate graphically the difference between the hydrodynamic regime of the
Cherenkov instability and the kinetic regime of the cyclotron instability. On the frequency-wave
vector diagram (Fig. 7.2 and 7.4), the dispersion curves of the cyclotron wave in the beam w =
kvy cos§ — wp /v is almost parallel to the dispersion curves of the excited waves in plasma at the
location of the resonance. Thus, a small change in the velocity of the resonant particles results
in a considerable change of the resonant frequency. This vindicates the kinetic approximation that
requires a large bandwidth of the growing waves. In contrast, for the very large streaming ~-factor of
the primary beam (so that p, pp > 1), the Cherenkov resonances on the ordinary and extraordinary

modes occur approximately at the cross-over frequency in a narrow frequency band.
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7.10 Streaming Instability Due the Relative Drift of Plasma

Components

As we have shown in the previous sections, the Cherenkov-type instability on the primary beam
does not develop in the pulsar magnetosphere. This is due to the very large ”parallel” mass of the
primary particles, i.e., to their large y-factor. It has been suggested by that the analogous two-stream
instability due to the relative drift of plasma components may develop in a pulsar magnetosphere.
The difference in velocities between electrons and positrons of the secondary plasma is due to the
requirement that the total charge density of all three components (electrons and positrons of the
plasma and the primary beam) is equal to the local Goldreich-Julian density with a total current
required by the global electromagnetic conditions in the magnetosphere j =~ |engc|-.

We expect that the plasma components are relativistically hot, so that in the center of momentum
frame, the average energies of the particles are comparable relative streaming energies. For the two-
stream instability to develop, the relative streaming of the plasma component should be relativistic.
The relative velocity between the components depends on the density of the secondary plasma. The
critical value for the parameter A at which the relative velocity of the particles become relativistic
may be estimated as \* = (7}/ T,)%/® (v} is the energy of the primary beam in the pulsar frame,
T, is the energy spread in each component). For the characteristic beam energy +, ~ 107 this gives
for the relativistically hot components A\* ~ 10%. This estimate assumes that the relative streaming
between the plasma components reaches its maximal possible value. This is not true for the region
near the pulsar surface where the two-stream instability is supposed to operate.

Next, let us estimate the conditions for the development of the two-stream instability due to the
relative streaming of plasma particles. If the center-of-momentum frame moves with the y-factor v,
with respect to pulsar frame and in the center-of-momentum frame ~-factors of each components’
rest frame is -,, then in the limit v, > s > 1 the rest frame of the slow and fast components move
in the pulsar frame with a y-factor v, = v,/(27,) and 4. = 27,7p. In the rest frame of the slow
component, the y-factor of the fast component is v, = 2v2. The «-factor of the relative streaming
v in the case of the relativistic relative streaming is v, ~ v,/ V2 X. Then, it is required for the
development of the instability that v, >> T}, which can be expressed as

V2> AT, (7.104)

This condition is quite hard to satisfy. It requires cold and not very dense plasma. Using the
equipartition condition (4.5), inequality (7.104) may be written as v, > 7;/3 ~ 3 x 102
An important factor in the development of the two-stream instability on the relative drift of

plasma particles is that the excited waves belong to the Alfvén branch. This can be seen from the
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2
fact that the maximum phase velocity of the Alfven waves in the slow component vg = ¢(1 — %’:7:’;1)
B
(minimal phase velocity of the ordinary wave) is much larger than the relative streaming velocity
vy = c¢(1 — 1/(272)) of the secondary plasma component. This corresponds to the case of Fig. 7.4.a.
Alfvén waves cannot be adiabatically transformed into vacuum waves. Therefore, they have to be

converted into escaping radiation through some nonlinear process.

7.11 Conclusion

In this chapter we considered wave excitation in the strongly magnetized electron-positron plasma.
We found the location of resonances and calculated the growth rates for the Cherenkov and cyclotron
excitation of the ordinary, extraordinary and Alfvén waves. We have considered wave excitation in
cold and relativistically hot plasma in two possible different regimes of hydrodynamic and kinetic
instabilities taking into account angular dependence of the growth rates. The main results of the
chapter are

(1) Cherenkov instabilities develop in the hydrodynamic regime while cyclotron instabilities develop
in the kinetic regime.

(ii) Cherenkov instability on the primary beam develops on the Alfvén waves in the regions close
to the stellar surface and on the ordinary mode in the outer regions of the pulsar magnetosphere
(7.13), (7.55).

(iif) Cyclotron instability can develop on all three wave branches. On the Alfvén branch, the cy-
clotron instability does not develop in a very hot plasma (7.60).

(iv) The typical range of angles (in the plasma frame) with the highest growth rates are

660 ~ w2 Jw% for Cherenkov excitation of the ordinary mode

86 = 1/~ for Cherenkov excitation of the Alfvén mode

00 = wp/wp for cyclotron excitation of the ordinary and extraordinary modes

§6 = 1 for cyclotron excitation of the Alfvén mode
{(v) Cherenkov instability due to the relative drift of the plasma particles can develop only on the
Alfvén mode.

Cherenkov instabilities have largest growth rate near the stellar surface, where the Cherenkov
resonance occurs on the Alfvén mode. However, this mode cannot escape to infinity. In addition,
Cherenkov instabilities grow within a much narrower angle than cyclotron instabilities. Cherenkov
instabilities, developing in the hydrodynamic regime, are also strongly suppressed by the large
relativistic Lorentz factor of the primary beam. These arguments suggest that electromagnetic

cyclotron instabilities are more likely to develop in the pulsar magnetosphere than electrostatic.
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Chapter 8 A Model of Pulsar Radio Emission

In this chapter it is shown that the pulsar radiation may be generated by two kinds of electromag-
netic plasma instabilities — cyclotron-Cherenkov and Cherenkov-drift instabilities. The cyclotron-
Cherenkov instability is responsible for the generation of the core-type emission and the Cherenkov-
drift instability is responsible for the generation of the cone-type emission (Rankin 1992). The
waves generated by these instabilities are vacuum-like electromagnetic waves: they may leave the
magnetosphere directly.

We assume that the distribution function, displayed in Fig. 1.1, remains unchanged throughout
the inner magnetosphere. This requires that no Cherenkov-type two-stream instabilities develop
and that the high energy particles are not excited to the high gyrational states by the mutual
collisions or by the inverse Compton effect. Then in the outer regions of the pulsar magnetosphere
two instabilities can develop: (i) cyclotron-Cherenkov instability and (ii) Cherenkov-drift instability.

A detailed consideration of the conditions necessary for the development of the cyclotron-
Cherenkov and Cherenkov-drift instabilities are given in Appendix F and H. Both cyclotron-
Cherenkov and Cherenkov-drift instabilities develop in the outer regions of the pulsar magnetosphere
at radii R ~ 10° cm.

The frequencies of the waves generated by the cyclotron-Cherenkov instability are given by (F.3)

4 3,3
w= it/ ed 28 (8.1)
Yres Tpw3
which may be solved for the radius at which the waves with frequency w are emitted:
1/6 1/6
275 wh? 1/3 —1/6 1/6_—1/6
R = Rys (M—pr> <w§‘2) = 1.8 x 10° cm By3® v5 /¢ PyL0~7 /S (8.2)

The relationship (8.2) may be regarded as a "radius-to-frequency” mapping. For a given s
the radial dependence of the right-hand side of Eq.(8.1) will result in a radial dependence of the
emitted frequency. The radial dependence of the parameters in (F.3) will result in emission of higher
frequencies deeper in the pulsar magnetosphere, exactly what is observed. The simple ”radius-to-
frequency” mapping will be "blurred” by the scatter in energies of the resonant particles, but the
general trend that lower frequencies are emitted higher in the magnetosphere will remain.

The frequencies emitted at the Cherenkov-drift resonance do not have a simple dependence on
radius from the neutron star. They are determined by several emission conditions which limit

the development of the instabilities to the particular location in the magnetosphere and particular
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frequencies.

The conditions that the instabilities should satisfy are:

(i) small growth length in a curved field lines £ < AORp, where Af is the range of the emitted
resonant angles

(il) condition of kinetic instability (kév,es) > T

In addition to these, the Cherenkov-drift instability should also satisfy another condition:

(iii) the condition of a large drift ug/c > v/26.

The condition (i) states that an emitting particle can stay in a resonances with the wave for
many growth lengths. The condition (ii) is a requirement that the growth rate of instability is much
smaller than the bandwidth of the growing waves. This condition is necessary for the random phase
approximation to the wave-particle interaction to apply.

In Appendices F, H and I we show that the above conditions can be satisfied for the chosen set of
parameters both in normal pulsar and millisecond pulsars. The conditions for the development of the
cyclotron-Cherenkov and Cherenkov-drift instabilities depend in a different way on the parameters

of the plasma. They may develop in the different regions of the pulsar magnetosphere.

8.1 Pulsar Phenomenology

8.1.1 Energetics

In both cyclotron-Cherenkov and Cherenkov-drift mechanism, the emission is generated by the fast
particles which supply the energy for the growth of the waves. The total energy available for the
conversion into radio emission is of the order of the energy of the particle flow along the open field

lines of pulsar magnetosphere:
~ ngy wRa, me® & 10%%erg s (8.3)

where Rp. = Ryg+/ &Yf—ﬂ— is the radius of a polar cap. This is enough to explain the radio lumi-
nosities of the typical pulsar if the effective emitting area is about one hundredth of the total open

field line cross section.

8.1.2 Emission Pattern

The emission pattern for the ”core”-type pulsars (according to the classification of (Rankin 1992))
is a circle with the angular extent of several degrees. In our model the region of the cyclotron-
Cherenkov instability is limited to the almost straight field lines (see Fig. 8.1). The curvature of
the magnetic field destroys the coherence between the waves and the resonant particles. To produce

an observable emission, the waves need to travel in resonance with the particle at least several
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region of
Cyclotron
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Figure 8.1: Top view of the field lines in the equatorial plane of a rotating point dipole in vacuum
(Yadigaroglu 1997). Circle indicates light cylinder. The locations of cyclotron-Cherenkov and drift
instabilities are shown (similar regions will be on the other side of the pulsar). The cyclotron-
Cherenkov instability develops in the region of almost straight field lines. The location of the
Cherenkov-drift emission depends sensitively on the curvature of magnetic field line. Two possible
locations of the Cherenkov-drift emission are shown: ringlike near the magnetic axis and in the region
of swept field lines (shaded ellipse). When the effects of plasma loading are taken into account, the
field lines will become more curved. The current flowing along the open field lines will also produce
a torsion in the field lines, so that at the light cylinder the structure of the field will be changed
considerably.
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instability folding lengths. Far from the magnetic axis, where the field lines are almost straight, the
waves leave the resonance cone before they travel a growth length and no substantial amplification
occurs. Near the magnetic field axis the radius of curvature is very large and waves can stay in a
resonance with a particle for a long time and grow to large amplitudes.

The Cherenkov-drift instability requires a considerable curvature of the field lines on one hand
but its growth rate may be limited by the coherence condition. In a dipole geometry this will limit
the location of the Cherenkov-drift emission region to a ringlike region around the central field line.

The core emission is always generated on the almost straight central field lines. In contrast, the
conditions for the development of the Cherenkov-drift instability depend on the plasma parameters
and the radius of curvature of the magnetic field in a complicated way. This results in a broader
range of phenomena observed in the cone emission. If the parameters of the plasma change due to
the changing conditions at the pair production front, the location of the Cherenkov-drift instability
may change considerably. This may account for the mode switching observed in the cone emission of
some pulsars. The changing plasma parameters, which change the conditions for the development of

the Cherenkov-drift instability, may also be responsible for nulling and the ultimate death of pulsars.

8.1.3 Polarization

If the average energy of the electrons and positrons of the secondary plasma is the same, the fun-
damental modes of such strongly magnetized plasma are linearlly polarized. Both of the two quasi—
transverse modes (one with electric field lying in the k — B, plane, another with E perpendicular
to this plan) may be emitted by the cyclotron-Cherenkov mechanism. This may naturally explain
the two orthogonal modes observed in pulsars (Kazbegi et al. 1991b, Kazbegi et al. 1991c, Lomi-
nadze, Machabeli & Usov 1983). The small difference in the dispersion relations and in the emission
conditions between ordinary and extraordinary modes may explain the difference in the observed
intensities of these modes.

The rotation of the magnetized neutron star produces a difference in the average streaming
velocities of the plasma components. This results in the circular polarization of the quasi-transverse
modes for the angles of propagation with respect to the local magnetic field less than some critical
angle. This may explain in a natural way the occurrence of the circular polarization in the ”core”
emission.

If the cyclotron-Cherenkov instability occurs on the tail of the plasma distribution function,
then the particles of both signs of charge can resonate with the wave. In a curved magnetic field,
electrons and positrons will drift in opposite directions (Fig. 8.2). As the line of sight crosses the
emission region, the observer will first see the left circularly polarized wave emitted by the electrons
in the direction of their drift. When the line of sight becomes parallel to the local magnetic field,

the wave will resonate with both electrons and positrons in the plasma tail, so that the resulting
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Figure 8.2: Switch of the sense of the circular polarization due to the cyclotron-Cherenkov resonance
on the tail of the plasma distribution. The drift velocity of the electron and positron is in the opposite
direction. As the line of sight crosses the emission region, the observer first will see the waves emitted
by the particles of one sign of charge and then the other. The waves emitted by electron and positron
have different circular polarization.

circular polarization will be zero. Finally, the observer will see the wave emitted by positrons in the
direction of their drift. This can explain the switch of the circular polarization observed in some
pulsars.

The cone emission, which is due to the Cherenkov-drift instability naturally has one linear po-
larization. An important difference from the bunching theory is that the waves emitted at the
Cherenkov-drift resonance are polarized perpendicular to the plane of the curved magnetic field line.
This may be used as a test to distinguish between the two theories. To do so, one needs to determine
the absolute position of the rotation axis of a pulsar - a possible but a difficult task. One possible
experiment would involve Harrison-Tademaru effect (Harrison & Tademaru 1975), which predicts
that the spins of neutron stars may be aligned with their proper motion due to the quadrupole mag-
netic radiation if the magnetic moment is displaced from the center of the star. Unfortunately, the
current data does not support this theory (in Crab the spin of the neutron star is within 10° of from
the direction of the proper motion, while for Vela it is approximately perpendicular). Symmetry
of plerions and direct observation of jets from pulsars (like the one observed in Vela pulsar (Mark-
wardt & Ogelman 1995)) may provide an additional information on the location of the neutron star

rotation axis.
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It may be also possible to explain in the framework of our model the phenomenon of ”wide beam
geometry” observed in some pulsars (Manchester 1996). The Cherenkov-drift instability may occur
in the region, where the field lines are swept back considerably. Then the emission will be generated
in what could be called a "wide beam geometry.” Since the waves emitted by the Cherenkov-drift
instability are expected to be highly polarized, we may expect that the linear polarization will be
higher if the Cherenkov-drift instability occurs in the region with a more regular pattern of the field
lines than in the dipole geometry. This may explain the unusually high linear polarization of the

wide beams (Manchester 1996).

8.1.4 Radius-to-frequency Mapping

The condition for the cyclotron-Cherenkov resonance (Eq. F.3) gives a radial dependence of the
emitted frequencies. Higher frequencies are emitted lower in the magnetosphere with the resonant
frequency increasing o< R. If the conditions for the development of the cyclotron-Cherenkov insta-
bility are satisfied for both primary beam and for the particles from the tail of plasma distribution,

then a given frequency may resonate with beam and tail particles at different radii.

8.1.5 Coherent Size

It is possible in the framework of our theory to explain the observations of Gwinn et al. 1997 who
observed a coherent size of 500 km for the emission region in Vela pulsar. The Cherenkov-drift
instability occurs at a distance of approximately 10° ¢cm from the star surface. At that distance,
the coherent size of 500 km subtends an angle o ~ 5 x 1072, We recall that in the Cherenkov-drift
instability, the waves are emitted at an angle 8™ = ug/c to the magnetic field in the direction
perpendicular to the plane of the field lines and in the cone with the width Af ~ v/§. We find then,
that the angle that the emitting region subtends is approximately the angle of the wave emission
with respect to the magnetic field: o &~ 0™ = uy/c ~ 1072 (see Fig. 8.3). In a dipole geometry for
the point 1 on Fig. 8.3 to emit in a direction of the observer B, the field lines must have a nonzero
torsion. Then the emission will be generated in a cone with the angle §°™ ~ ug/c with respect to
the magnetic field line. Taking into account that for a point on a field line near the magnetic axis,
the angle between the local magnetic field and the direction of the magnetic axis is approximately
equal to the angle between the radius vector of the point and the direction of the magnetic axis
(a = 20/3, to be more precise); we see that the observer at two points A and B on Fig. 8.3 will
detect a coherently emitting size of 500 km.

We would like to stress that it is impossible to explain the observations of Gwinn et al. 1997
in the frame work of bunching theory without invoking unrealistic assumptions. In the bunching

theory the emission is generated only along the local magnetic field lines. In our theory the emission
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Magnetic field lines

........... Line tangential to the magnetic field

__________ Radius vector of emitting points

V Emission cone arond local magnetic field

B [mission region

Neutron Star

Figure 8.3: Coherent size of the emitting region. The angular size of the emission region is ap-
proximately equal to the emission cone §°™ around a local magnetic filed: 6 = 2/3a = 8°™. Two
observers A and B see the rays al, a2 and bl, b2 emitted by the two emission points separated
by the distance of 500 km. We stress that the emission angle #*™ is determined by the instability
emission condition.
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is naturally generated at angles to the magnetic field.

8.1.6 Formation of Spectra

Cyclotron-Cherenkov and Cherenkov-drift instabilities produce emission in a limited frequency win-
dow determined by the resonant conditions. The original exponential growth is limited by the
nonlinear processes: quasi-linear diffusion, induced scattering and wave decay. Also, as the waves
propagate in a magnetosphere, they may be absorbed by the particles of the bulk plasma (Lyutikov
& Machabeli 1997). The emergent spectra are the combined results of these processes: emission,
nonlinear saturation and absorption.

In this work we considered two most like nonlinear saturation effects: quasilinear diffusion (see
Section 9.1) and induced Raman scattering (Section 9.2). Both these processes are likely candidates
for the saturation mechanism. They produce fluxes of the order of observed ones. The quasilinear
diffusion produces an average spectral index —2, which is close to the observed mean value of —1.6
(Lorimer et al. 1995). The spectrum flattens at high frequencies - this may be related to the
possible turn-up in the flux densities at mm-wavelegnths (Kramer et al. 1996). The The induced
Raman scattering may also play an important role for the scattering of the radiation that has been
generated lower in the magnetosphere. The threshold intensities for the strong Raman scattering
are comparable to the observed.

The absorption process are considered in Chapter 9.3. The waves may be strongly damped on the
three possible resonances: Cherenkov, Cherenkov-drift and cyclotron. Alfvén wave is always strongly
damped on the Cherenkov resonances and possibly on the Cherenkov-drift resonance and cannot
leave magnetosphere. Both ordinary and extraordinary waves may be damped on the Cherenkov-
drift resonance. In this case Cherenkov-drift resonance affects only the ordinary and extraordinary
waves with the electric field perpendicular to the plane of the curved magnetic field line. The
high frequency parts of the extraordinary and ordinary wave may also be damped on the cyclotron
resonances, but the observed circular polarization in the pulsar radio emission implies that the
extraordinary and ordinary waves get detached from plasma escaping absorption. In this case two

orthogonal linear polarizations will be observed.

8.1.7 High Energy Emission

It may be possible also to relate the pulsed high energy emission to the radio mechanisms. The
development of the cyclotron-Cherenkov instability at the anomalous Doppler effect leads to the
finite pitch angles of the resonant particles. The particles will undergo a cyclotron transition at the

normal Doppler effect decreasing their pitch angle. The frequency of the wave emitted in such a
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transition will fall in the soft X-ray range with the frequencies
w~ pwp = 10¥radsec™  (E =~ 1keV) (8.4)

In such a model the high energy emission will coincide with the core component of the radio emission,
which is what is observed in Crab pulsar and some other pulsars. We also note, that this may be
a feasible theory for the pulsed soft X-ray emission. The hard X-ray and 5-emission cannot be
explained by this mechanism since the total energy flux in the primary beam is not enough to

account for the very high energy emission (see, for example, Usov 1996).

8.2 Observational Predictions

8.2.1 General Predictions of the Maser-type Instability

The formalism of the maser-type emission assumes a random phase approximation for the wave-
particle interaction. Any given particle can simultaneously resonate with several waves whose phases
are not correlated. This is different from the reactive-type emission (like coherent emission by
bunches) when the phases of the waves with different frequencies are strongly correlated. Thus any
observation of the fine frequency structure in the pulsar radio emission may be considered as a strong

argument against the reactive-type emission and in favor of the maser-type emission.

8.2.2 Cyclotron-Cherenkov Instability

Frequency Dependence of the Circular Polarization

The cyclotron-Cherenkov instability can develop both on the primary beam particles and the par-
ticles from the tail of the plasma distribution. The cyclotron-Cherenkov instability on the primary
beam produces a pulse which has a maximum circular polarization in its center. The cyclotron-
Cherenkov instability on the tail particles produces a pulse with the switching of the sense of the
circular polarization in its center. Since the resonance on the tail particles occurs on larger fre-
quencies (Eq. F.3), the effects of the switching sense of the circular polarization should be more

prominent on the higher frequencies.

8.2.3 Cherenkov-drift Instability

Linear Polarization of the Cone Radiation
Cherenkov-drift instability produces waves with the linear polarization perpendicular to the plane
of the curved field line. This is in a sharp contrast to many other theories of the radio emission that

tend to generate waves with the electric field in the plane of the curved field line. If one can determine
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the absolute position of the rotational axis, magnetic moment and the electric vector of the linear
polarization, then, assuming a dipole geometry, it will be possible to determine unambiguously the
position of the electric vector of the emitted wave with respect to the plane of the magnetic field
line. Unfortunately, the results are sensitive to the assumed magnetic field geometry. The distortion
of the magnetic field lines in the outer regions of pulsar magnetosphere (sweep back) can smear out

the simple picture that a pure dipolar field would have produced.

8.2.4 No Cyclotron-Cherenkov Instability in Millisecond Pulsars

In Appendix I we show that the cyclotron-Cherenkov instability does not develop in the magneto-
spheres of the millisecond pulsars. Since in our model the cyclotron-Cherenkov instability produces
core-type emission we predict that millisecond pulsars will not show core-type emission. At present,
the existing observations do not allow a separation into the core and cone type emission in the

millisecond pulsars.
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Chapter 9 Nonlinear Effects and Formation of

the Pulsar Radio Spectrum

9.1 Quasilinear Diffusion

9.1.1 Introduction

In this Chapter we consider pulsar spectrum formation due to the quasilinear saturation of the
cyclotron-Cherenkov instability. The cyclotron-Cherenkov instability develops at the anomalous

Doppler resonance
w(k) — k”’U” — S-E%—Bi =0 fors<0 (9.1)

The nonlinear saturation of the cyclotron-Cherenkov instability due to the diffusion of the res-
onant particles has been previously considered by several authors. Kawamura & Suzuki 1977 ne-
glected the possible stabilizing effects of the radiation reaction force due to the cyclotron emission
at the normal Doppler resonance and the force arising in the inhomogeneous magnetic field due to
the conservation of the adiabatic invariant. These forces result in a saturation of the quasilinear
diffusion.

Lominadze, Machabeli & Mikhailovskii 1979 were the first to notice the importance of the ra-
diation reaction force due to the emission at the normal Doppler resonance on the saturation of
the quasilinear diffusion. Unfortunately, Lominadze, Machabeli & Mikhailovskii 1979 used an ex-
pression for the cyclotron damping rates which is applicable only for the nonrelativistic transverse
motions, when v (3 is the pitch angle) is much less than unity. In the pulsar magnetospheres the
development of the cyclotron-Cherenkov instability results in a diffusion of particles in transverse
moments, quickly increasing their transverse energy to relativistic values.

In a review paper Lominadze, Machabeli & Usov 1983 took correct account of the radiation
reaction force due to the emission at the normal Doppler resonance and pointed out the importance
of the force arising in the inhomogeneous magnetic field due to the conservation of the adiabatic in-
variant (G force Eq. (9.10)). When considering the deceleration of the beam Lominadze, Machabeli
& Usov 1983 incorrectly neglected the radiation reaction force due to the emission at the anomalous
Doppler resonance in comparison with the radiation reaction force due to the emission at the normal
Doppler resonance.

In this work we reconsider and extend the treatment of the quasilinear stage of the cyclotron-
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Cherenkov instability. We have found a state, in which the particles are constantly slowing down
their parallel motion, mainly due to the component along magnetic field of the radiation reaction
force of emission at the anomalous Doppler resonance. At the same time they keep the pitch angle
almost constant due to the balance of the force G and the component perpendicular to the magnetic
field of the radiation reaction force of emission at the anomalous Doppler resonance. We calculate
the distribution function and the wave intensities for such quasilinear state.

In the process of the quasilinear diffusion the initial beam looses a large fraction of its initial
energy =~ 10%, which is enough to explain the typical luminosities of pulsars. The theory predicts
a spectral index F(v) oc v™2 (F(v) is the spectral flux density) which is very close to the observed
mean spectral index of —1.6 (Lorimer et al. 1995). The predicted spectra also show a turn off at

the low frequencies v < 300 Hz and a flattering of spectrum at large frequencies v > 1GHz.

9.1.2 Quasilinear Diffusion

A particle moving in a dielectric medium in magnetic field with the velocity larger than the velocity
of light in a medium is emitting electromagnetic waves at the anomalous Doppler resonance (s <0
in Eq. (9.1)) and at the normal Doppler resonance (s > 0 in Eq. (9.1)). The radiation reaction
due to the emission at the normal Doppler resonance slows the particle’s motion along magnetic
field and decreases its transverse momentum. The radiation reaction due to the emission at the
anomalous Doppler resonance increases its transverse momentum and also slows the particle’s motion
along magnetic field (Ginzburg & Eidman 1959). As the particle propagates into the region of
lower magnetic field, the force G decreases the its transverse momentum and increases the parallel
momentum. The stationary state in transverse moments may be reached when the actions of the
G force and radiation reaction due to the emission at the normal Doppler resonance is balanced by
the radiation reaction due to the emission at the anomalous Doppler resonance.

The quasisteady stage may also be considered in terms of a detailed balance of the particle
transitions between the Landau levels. The quasisteady stage is reached when the number of induced
transitions up in Landau level due to the emission at the anomalous Doppler resonance is balanced
by the number of the spontaneous transitions down in Landau levels due to the emission at the
anomalous Doppler resonance.

The equations describing the quasilinear diffusion in the magnetic field due to the effects of

induced emission at the anomalous Doppler resonance are

d 1 9. 9 9
10 9 9
o |7 (P + Pugs ) 19 o
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Dy o (Av)?
Dyp=Dpy | = Z/ (gﬂ)sw(‘g’p’k)”(k) (A)(Ap) (9:3)

Dpp s<0 (Ap)2

dn(k) w(s n 8 | cosy — (kv/w)cosf O
i = 2 [ dvuteip0 (nton (g + CELGART N r) 0
Where
ap="2 Ay = % (95)
2

09 = i (9.6)
w(s,p, k) = &r;fw—ﬁs(k) le(k) - V(s,p, k)" §(w(k) — swp /v — kjy) (9.7)
V(s,p, k) = (vJ_SJs(z), ~iasvle(z)',v”Js(z)) (9.8)

E?(k)dk/(2n)3 is the energy density of the waves in the unit element range of k-space. E?(k) has
a dimension of energy.

In Eq. (9.21) we neglected spontaneous emission at the anomalous Doppler resonance and the
induced emission at the normal Doppler resonance. The net effect of the spontaneous emission at
the normal Doppler resonance is treated as a damping force acting on each particle in the Boltzman-
type left-hand side of equation (9.9). To be exact, we should have treated the effects of spontaneous
emission at the normal Doppler resonance as stochastic terms in the Fokker-Plank-type terms on the
right-hand side of equation (9.9). But the emission at the normal Doppler resonance occurs at very
high frequencies where the presence of a medium is unimportant and can be neglected. This allows
one to integrate the corresponding terms over angles and sum over harmonics to obtain a classical
synchrotron radiation damping force, that can be treated using the Boltzman approach. Thus, the

total time derivative of the distribution function is

dféf) _ 6,;(tp) +v61;ip) N % [(c+F+ (v x Bo)) /(p)] (9.9)

where G is the force due to the conservation of the adiabatic invariant

me?

G =Brv¥*, Gi=-BrYY, Pr= Ry (9.10)
Here Rg ~ 10°% cm is the radius of curvature and F is the radiation damping force due to the
spontaneous synchrotron emission at the normal Doppler resonance:

2,2 2 2 2¢%w?
FHZ-Q’Y’(/}: FJ_:—Q'LZ)(I—‘[-’)”I/}), a = 302

(9.11)
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From (9.10) and (9.12) we find that

al a FL & 2

= == - = , for >1 9.12

G " G Y (9.12)
where 71, = c¢/wp is a Larmor radius and 7. = ¢?/(mc?) = 2.8 x 10~ 3¢m is the classical radius of

an electron.

The dimensionless ratio in (9.12) is

0% _ ZRBT'e
Br s

=5x10"*Rp Ry ® (9.13)

Rp o9 = Rp/10%m is the radius of curvature in units of 10° cm, Ry = R/10%cm is the distance from
the neutron star surface in units of 10° cm.

Using (9.13) we find that, for the primary particles with v = 107

F =
G—i <1, for p < [ gpk— ~ 1072 (9.14)

The total derivative (9.9) then may be written as

df of of 1 0. 19
623) - 8(tp) +v a(rp) T psng oy CRYCLIP) + S5 (P FI () (9.15)

We are interested in the quasilinear diffusion of the particles due to the resonant interaction with
the waves at the anomalous Doppler effect. We expand the transition currents (9.8) in small v
keeping only s = —1 terms: V(-1,p,k) = v;/2(1,40,0). Then, for the waves propagating along
magnetic field e(k) = (1,0, 0) we find

w(*l,p,k) = “5 L 5(w(k) — swi /vy — ko) (9.16)

where we take into account that Rg(k) ~ 1/2.
We now can find the diffusion coefficients in the approximation of a one-dimensional spectrum
of the waves.

vig 2
n(k) = Z2§if;n(k), n(k) = / dnk(%)’zW (9.17)

We first note that we can simplify the change in the pitch angle (9.5) in the limit % < & and

/72«6
hwé

pusiny (9.18)

Ay~ —
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We then find
)
D¢E2 lk:k,es
Dy 2 2 2
Tq Ty
Dyp=Dpy | = ~DYER |y, | D=omm =t (9.19)
Dypp 2.2 2
D Tg < EI% Ik:krcs
where
k2402
E? = hw(k)n(k) = /th(k)n(k) (9.20)

is energy density per unit of one-dimensional wave vector and we assumed that w(k) is an isotropic
function of k.

‘We next solve the partial differential equation describing the evolution of the distribution function
by successive approximations. We first expand equation (9.21) in small ¢ assuming that 8/0y ~ 1/4.
We also neglect the convection term assuming that the characteristic time for the development of
the quasilinear diffusion is much smaller that the dynamic time of the plasma flow. Then we assume

that it is possible to separate the distribution function into the parts depending on the ¢ and p:

fp)=Y{®)f(p) (9.21)
with
1) =2 [ sinvavse), [t =1 (9.22)
In the lowest order in ¥ we obtain an equation:
1 a0 . 1 a1, Y (¢)

which has a solution

1 P2 o DmcSE} DRpSE; n?6Rpr.E}
Y(¢‘) = 71'—'(/1(2) exp (“lp_g) 1 1/10 = ,BR'Y2 = 072 = '72mc2 (924)
The next order in ¥ gives
of(p) 0 _ 1 ar, ofp)] L, 1 0 [ ., Of(p)
TR (Fif(P)) = =— 55 [SHM/}DW, | T 55 PP gy (9.25)

By integrating (9.25) over 1 with a weight 1 we find the equation for the parallel distribution

function:

o) % (AEEY?f(p)) = 1%

o (pDm*c*E; f(p)) (9.26)

S
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where
apd  2%whyi  2n’whq*Rpd  2n°Rpr2s

A= = = =
E? 3c2E} 3v2m2ch 3v?r?

(9.27)

The term containing A describes the slowing of the particles due to the radiation reaction force
and the term containing D describes the slowing of the particles due to the quasilinear diffusion, or,
equivalently, due to the radiation reaction force of the anomalous Doppler resonance. To estimate
the relative importance of these terms, we consider a ratio

Ay _ ady _ 26y Ror,

Be= B = 3 a7 <! (9.28)

Neglecting the second term on the left-hand side of (9.28) we find

9f(p)

5t (pozc2E,3f(p)) ==90 (9.29)

2 0
p*Op
If the cyclotron quasilinear diffusion has time to fully develop and reach a steady state, then the

distribution function of the resonant particles is

1
f(p) « Y (9.30)

Next we turn to the equation describing the temporal evolution of the wave intensity (9.4).

Neglecting the spontaneous emission term and the wave convection, we find

OFE?
—6Tk = —FEZf(’Y)res (931)

where
1 9 | cosyp— (kv/w)cosf O

Y e Z/ dpu(s, p, k) (h <$ * psing aw) / (p)) (9:82)

and we introduced

F72dy = f(p)pdp (9.33)

We will estimate this growth rate for the emission along the external magnetic field for distribu-
tion (9.22), (9.24). Neglecting 8/0p and assuming that 12 < 26 (so that most of the particles are

moving with the superluminal velocity), we find, that for s = -1,

2
I = TWp res 2
- 20 res

(9.34)

(Tt is important to note that in the limit 1% < 2§ the growth rate does not depend on the scatter

in pitch angles.)
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Equations (9.29) and (9.34) may be combined to a quasilinear expression

0 2 8 (pDm?c*E}
P (f(ﬁ’) + 2 op (T)) =0 (9.35)
which after integration gives
2 8 (yDE? L0
1) - 52 () = (9.36)

Neglecting the initial density of particles in the region of quasilinear relaxation and using Eqgs. (9.30)

and (9.36), we can find a distribution function and the asymptotic spectral shape:

. 1 1/2
fn) = 243 (log(vmaz/ﬁ’) log(’ymaz/’Ymin))

mc?drpy? log(Ymaz/7) e __ mcid log(w/wmin) v (9.38)
271'7'37'%' ]Og(')'maz /7min) - 277-“)27'57'['7‘% 10g(’)’maz/7min) .

(9.37)

E} =

where Wmin = wB/(0Ymaz)-

It is noteworthy that a simple power law distribution for the spectral intensity and distribution
function cannot satisfy both Eqs. (9.30) and (9.36). The particle distributions function and the
energy spectrum of the waves are displayed in Figs. 9.1 and 9.2.

We can now estimate the flux per unit frequency:

483 1 ) 1/2
F(v)=27E} = 2 ( 08(w/wmin) ) , (9.39)
w TeTLTS log(’Ymam/'Ymin)
characteristic pitch angle
R 1/2 ] - 1/4
1/)0 -5 <7l' ETL> ( Og(’)’ /7) ) ~ 10-—6, (940)
Ts log('Ymaa: /7min)

which remarkably stays almost constant for a broad range of particles’ energies and also for different

values of Ypin, and the total energy density in the waves

Vmax mc2f>lm
Bu= [ F)r~ - (9-41)
Vmin 4\/ET8T§ 10g1/2 ('Ymaz/vmin)

This total energy can be compared with the kinetic energy density of the beam:

Etot ~ 7T

~ 9.42
fomCZnGJ log('yma:v/')/min) ( )

It means that some considerable fraction of the beam energy can be transformed into waves.
In Appendix N we show that a particle emitting radiation at anomalous Doppler resonance along

magnetic field can lose approximately half of its energy into radiation. This is due to the fact that a
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gamma_ perp

Figure 9.1: Asymptotic distribution functions in v — p, and v — % spaces in arbitrary units for
Ymaz = 107. The spike at the ¥ = Ymay is an artifact of the initial distribution function f(v)° =
3(Y — Ymaz)- The divergence at v = Ypaq is weak (logarithmic) and would be removed if the more
realistic initial distribution function were used.
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Figure 9.2: Asymptotic one-dimensional energy density in the waves in the y-space (arbitrary units),
and the predicted observed flux.
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E*(k) | Ef | n(k) | n(k) | o, 8 | Dyy | Dyp | Dpp D | A | f(p)p*dp, f(7)dv

2 2
erg 1 erg 1 erg erg” sec cm
erg cm? 1 cm? cm sec cm cm? erg sec cm 1

Table 9.1: Dimension of the main used quantities

particle is decelerated by the radiation reaction force, which eventually reduces the parallel velocity
to subliminous values.
We can also estimate the energy flux (9.39) at the Earth. Assuming that distance to the pulsar
is d ~ lkpc, we find
-2
Fobs ~ 3 (_L_) ]
(v) = 300 Jy 100MEs (9.43)

With time, the value of y,,,;,, decreases as the particles are slowed down by the radiation reactions
force. Since at the given radius, the particles with lower energies resonate with waves having larger
frequencies, more energy will be transported to higher frequencies hardening the spectrum. The
lower frequency cutoff is determined by the initial energy of the beam. No energy is transported to

frequencies lower than
wpB

o (9.44)

Wmin =

This simple picture, of course, will be modified due the propagation of the flow in the inhomogeneous

magnetic field of pulsar magnetosphere.
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9.2 Induced Raman Scattering in Pulsar Magnetospheres

In this section it is shown that induced Raman scattering of electromagnetic waves in the strongly
magnetized electron-positron plasma of pulsar magnetosphere may be important for wave propa-
gation and as an effective saturation mechanism for instabilities of electromagnetic waves. The
frequencies, at which strong Raman scattering occur in the outer parts of magnetosphere, fall into
the observed radio band. The typical threshold intensities for the strong Raman scattering are of
the order of the observed intensities, implying that pulsar magnetosphere may be optically thick to

Raman scattering of electromagnetic waves.

9.2.1 Introduction

We aim to estimate the effects of the induced Raman scattering of the strong electromagnetic wave
propagating in pulsar magnetosphere. Effects of the induced Raman scattering in astrophysical
setting (in active galactic nuclei) were also investigated by Levinson & Blandford 1995 and Krishan
1997. Induced Raman scattering may be considered as a parametric decay of the initial transverse
electromagnetic wave in the another electromagnetic wave and plasma wave. Another type of induced
scattering - induced Brillouin scattering, i.e., the decay of the initial transverse electromagnetic wave
in the another electromagnetic wave and ion sound is prohibited in electron-positron plasma, since
pair plasma does not support low frequency, density perturbing waves (like ion sound wave in
electron-ion plasma).

Strong nonlinear coupling occurs when two waves beat together and the sum or difference fre-

quency and wavelength match the frequency and wavelength of the third wave:

w3 = w1 + w2

ks =k + ks (9.45)

In quantum language, these relations may be interpreted as conservation of energy and momentum,
respectively. The energy transfer between the modes will be efficient if the energy of the pump wave
is strong enough to overcome the damping losses or escape of the generated waves. Thus, the induced
Raman scattering is a threshold process: if the intensity of the pump wave exceeds the threshold
value, the initial electromagnetic wave starts converting energy into the decay waves decreasing its
amplitude exponentially.

Induced Raman scattering may be important in the pulsar environment in two ways. First, it
may provide en effective damping of the existing electromagnetic wave, that has been generated by
some emission mechanism at the lower altitude in the pulsar magnetosphere, where the resonant

conditions for the induced Raman scattering were not satisfied. This may result in a short time
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scale variability which is generally observed in pulsar radio emission. Secondly, it may provide
an effective saturation mechanism for the growth of the electromagnetic wave provided that the
conditions for the wave excitation by some mechanism are satisfied in the region where an effective
Raman scattering takes place.

The first possibility, i.e., the scattering of the existent pump wave, is simpler to consider. As a
first approximation, we can treat the intensity of the pump wave as a constant. Then the nonlinear
equations describing the wave coupling become linear in amplitudes of the decayed waves. The
exponentially growing solutions will imply an effective energy transfer out of the pump wave. As
the intensities of the decay waves grow, this approximation breaks down in two cases: when the
amplitudes of the decay waves become comparable to the pump wave or when the amplitude of the
decay waves enter the nonlinear stage and the waves start loosing energy due to some nonlinear
process (like particle trapping and acceleration). The net effect of any energy loss by the decay wave
is depletion of the original pump wave. For practical estimates, we can neglect the nonlinear stages
of evolution (like cyclic energy transfer between the pump and the daughter waves) and assume that
if the intensity of the pump wave begins to decrease exponentially in the linear stage, then the wave
decays completely.

The second possibility, when the induced Raman scattering provides a nonlinear saturation
mechanism, is more complicated, since the intensities of all waves may be of the same order. A
considerable simplification in this case may be obtained if the damping of one of the decay modes
is very strong or if it leaves the region of the resonant interaction fast enough. Then, after a short
period of time (when the intensities of the other weakly damped waves grow considerably) the
intensity of this damped mode is much smaller than the intensities of the two other modes and can
be neglected.

In what follows we neglect the possible nonlinear stages of the development of Langmuir turbu-
lence (particle trapping or quasilinear diffusion). We also assume that the pump wave is broadband.
This is quite different from the conventional laboratory case of a monochromatic laser-plasma inter-
action. The condition of a broadband pump wave implies that its band width Aw is much larger

than the typical growth rate of the decay instability I':
Aw>»T (9.46)

If this condition is satisfied, then we can use a random phase approximation for the statistical

description of the interacting waves. On the other hand, the condition of weak turbulence allows

one to calculate the matrix elements of the interaction in the approximation of stationary phases.
The general expression for the third order nonlinear current in plasma in a magnetic field has been

written down by Tsytovich & Shvartsburg 1965. An extremely complicated form of the corresponding
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expressions makes the general case of Raman scattering very difficult to consider. Several important
simplifications can be done when considering induced Raman scattering in the pulsar magnetosphere.
First, the superstrong magnetic field allows an expansion of the currents in 1/wg. Second, in the pair
plasma with the same distributions of electrons and positrons, some of the nonlinear currents cancel
out since they are proportional to the third power of the electric charge (this cancellation is exact
in the unmagnetized electron-positron plasma). The third, less justified approximation that we will
make is that all the three interacting waves propagate along magnetic field. This is an important
assumption. It allows us to simplify the consideration considerably and to obtain some analytical
estimates of the effects of induced Raman scattering.

A short overview of the work on the nonlinear process in the pulsar magnetosphere will be appro-
priate here. The possible decay processes for the transverse waves and the corresponding references
are (¢ denotes transverse wave, [ denotes longitudinal wave and e denotes a charged particle) (i} a
decay of a transverse wave into two transverse wave ¢t — t' + ¢’ (Gedalin & Machabeli 1982), (ii)
a decay of a transverse wave into two Langmuir waves ¢t — [ + 1’ (Gedalin & Machabeli 1983), (iii)
a decay of a transverse wave into another transverse and Langmuir wave ¢ — t' + 1 (Gedalin &
Machabeli 1983) !, (iv) induced scattering of transverse waves t + e — ¢ + e (Blandford & Scharle-
mann 1976, Sincell & Krolik 1992, Ochelkov & Usov 1983, Wilson 1982). The possible processes
for Langmuir waves are (i) a decay of a Langmuir wave into another Langmuir and transverse wave
Il — t +1' (Gedalin & Machabeli 1983), (ii) a decay of a Langmuir wave into two transverse waves
I — ¢t +t' (Mikhailovski 1980), (iii) Langmuir wave merger [ + I’ — ¢ (Mamradze, Machabeli &
Melikidze 1980), (iii) induced scattering of Langmuir waves (Lyubarskii 1993). When treating the
nonlinear process involving transverse waves, the matrix elements in above works have been cal-
culated in the drift approximation, when the expansion in parameter 1/wp was done in the very
beginning (wp = |g|B/mec is the positive nonrelativistic cyclotron frequency, B is magnetic field, m

is mass of an electron and c is the speed of light).

9.2.2 Kinematics of Raman Scattering in Pair Plasma
Wave dispersion

We recall that the normal modes of relativistic pair plasma for the case of parallel propagation

consist of two transverse waves with the dispersion relation

2
T
w=ke(1—0), 6=—22 (9.47)
Wy

1The final answer for the matrix element contains probably an insignificant typographical error.
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and a plasma Langmuir wave with a dispersion relation

2

2w
w? = 2 4 k226 (9.48)
TP

where in Eq. (9.48) the wave vectors should not be much larger than cross-over point:
we = k2P =2k < y(1+8)% > (9.49)

We have introduced here a plasma frequency in the plasma frame wz = 2wpQA/~vp, where Q is
the pulsar rotation angular velocity, A is the multiplicity factor, v, is the Lorentz factor of the
plasma frame, T, ~< v > is Lorentz invariant temperature of plasma, 7 is Lorentz factor of a
particle and G = TI? — 1/T, is a characteristic (dimensionless) thermal velocity of particles, 3 is
(dimensionless) velocity. The brackets denote averaging over the distribution function.

At the point {w,, k,} the dispersion curve of plasma waves intersect that of waves in vacuum,
so that for k¥ > k, the plasma waves become subluminous. The necessary requirement for that
is that the distribution function falls fast enough at large values of momentum (faster than 1/p*)
(Lominadze & Mikhailovskii 1978).

In the subluminous region, the plasma wave dispersion relation may be written as

w=ke—n(k—k,c, where

6 2z 8 zz 1 2 > 1
n=1- (% ) € ) :M_zj (9.50)
ok 0w [y, <7PPA+B)3>  T7
Scattered frequencies
From the resonant conditions
w3 = w1 + ws
ks =k1+ ks (9.51)

it follows that the only kinematically allowed Raman scattering process is a back scattering (k1 < 0)

of the initial electromagnetic wave (see Fig. 9.3). We find then

1 wa
k3—-%<—1_6+k26>

1 (2353
Ikll = 2_0 (-1 iy -+ kz C> (952)
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Figure 9.3: Kinematics of backwards Raman scattering in the plasma frame. The vacuum dispersion

relation w = kc, the transverse wave dispersion relations w = kc¢(1 — §) and the plasma wave

dispersion relations (which starts from ( %)1/2 wp) for the parallel propagation are shown. The bold
faced vectors represent k = {w, k}. Cross-over point is given by k, and w,. Only waves with k > k;

can be scattered.

In the region just above the cross-over point {w,, ko}, it is possible to use the expansion (9.50) for

the dispersion of the plasma waves. The resonant wave vectors are then given by

_kz-i-ka ko — ko _kg—ko
k=2t (1—4T2k0), o} = T2 = R (9.53)

The wave vectors in Eq. (9.53) are limited by ko — ko, < ko, k1] < ko.

Induced Raman versus Induced Compton Scattering

Induced Raman scattering is closely related to the induced Compton scattering of waves by the
plasma particles. In the conventional treatment of induced Compton scattering in pulsar setting
(e.g. Blandford & Scharlemann 1976, Sincell & Krolik 1992), the collective effects of the plasma
are ignored. In the case of induced Raman scattering, collective effects play a major role. Raman
scattering is a limit of the induced Compton scattering of waves by particles in a medium when the
beat wave of the incoming and scattered wave becomes a normal mode of the medium (equivalently,
it falls on the "mass surface” of the medium dispersion equation).

In the nonrelativistic plasma the collective treatment of the wave scattering by plasma particles

is justified if the following condition is true:

AkAp <« 1 (9.54)
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where Ak is the change in the wave number of the scattered wave and Ap is the Debye length.
Condition (9.54) states that the wave number of the oscillations of the electron on the beat of the
two scattered waves be much less than the inverse of the Debye length. If condition (9.54) is not
satisfied, then the beat wave will either experience a strong Cherenkov damping (if AkAp ~ 1) or
the beat wave will not feel the presence of a medium (if AkAp > 1), so that the scattering process
will be described as induced Compton scattering.

In the relativistic plasma with the characteristic Lorentz factor of the particles < v >> 1, the
condition (9.54) is modified. To find the generalization of condition (9.54) to the case of relativistic
plasma, we note that condition (9.54) may be rewritten in terms of the phase velocities of the beat
wave vpp = w/k (which is a plasma wave in case of Raman scattering) and the thermal velocities of

the plasma particles vy =< v2 >1/2. Condition (9.54) can then be rewritten
Uph > UT (9.55)

Using (9.50) we find that the phase velocity of the subluminous plasma waves becomes equal to
the thermal velocity of plasma particles approximately at k ~ 2k,. Thus, the following condition
should hold for the wave-particles scattering in relativistic pair plasma to be considered as a Raman

scattering:

Ak < 2k = 44/2 <y >wp (9.56)

When Ak = 2k, the plasma waves are strongly damped and when Ak > 2k, the wave-particles
scattering is described as single particle Compton scattering. As we will see later (Eq. (9.85)), the

condition (9.56) is satisfied in our problem.

9.2.3 Transition Probabilities

First we calculate the matrix elements for the nonlinear three wave interaction in the strongly
magnetized electron-positron plasma when all three waves have their wave vectors along the magnetic

field. We represent the electric fields of the three interacting waves in the form
E(r,t) = R[Eq exp{i(kir — w1t)} + Eg exp{i(ker — wat)} + Ej exp{i(ksr — wst)}] (9.57)

The indices 1, 2, 3 refer to the scattered electromagnetic wave, plasma wave and the initial electro-
magnetic wave respectively. We consider linearly polarized waves. For the parallel propagation the
case of circularly polarized waves may be trivially reduced to the scattering of two linearly polarized
waves. Implicit assumption here is that the coupling between the waves is weak, so that the waves
retain their identity as eigenmodes of the medium during the times much longer than inverse of their

frequencies.
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We calculate transition probabilities by finding the coupling coeflicients for the resonant three-
wave interaction. The interaction of two transverse and one longitudinal wave propagating along
magnetic field in a relativistic plasma has been considered by Brodin & Stenflo 1989. For the decay

process w3 = wy + wo and k3 = k1 + k2, the coupling of the waves is described by the system of

equations
dE, .
7 = 61E2 E3
dE
d—tz = CzE; E3
dE; .
—E- = CgEl E3 (958)
where
2
W
Cc1 = —WC:E
( Ow )1
c 1
2 = Bezz +
( 66w )2
2
%}
C3 = ﬁ C:t (959)
( 0w )3
and

> wpm dp  9F(p)
— P
€z =14 k /w—kvz Op.

TR / dp [ (w=kv.)pL OF(p) kp? OF (p)
Gi—1+2zw2 v |w—kv, Fw, Op1 +m'y(w—kv2$wc) Op,

2
F
Co=-Y 2L [4p {ﬂa_(l’)

wiwam Y&y Op,
- 9 [%P_ZL ( ks _ kq Yo s :ch)] F(p)
Op% [ vids \ (@1 Fwe) (@3 Fwe) (01 F we)(@s F we) c? wiws
i [ _ kiksc?
23 mc?asy Y21 F we) (@3 F we)
vz< ks ko wek o weks )] xaF(p)} (9.60)
(@3 Fwe) (1 Fwe) (O1Fwe)wz (W3Fwe)w2 Op.

where @123 = w1,23 — k1,2,3v, and w. = ¢By/yme is the relativistic cyclotron frequency.

To facilitate the relation between the notations used in the paper and the physical quantities, in
Table 9.2.3 we give the dimensions of some of the quantities used.

We now simplify these relations for the case of one-dimensional pair plasma with the same

distribution functions. Setting F(p) = %6 (p%)f(p.) and introducing a positive nonrelativistic gy-
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Table 9.2: Dimension of the main used quantities

rofrequency wp = 049By/mc (o4 is the sign of the charge), we find

2wy [ _dp, 8 (p:)
zz — 1 e z ZI R '
: * k / w—kv, Op, (9.61)
dp (w — kv,)?
1 2
=1-2 3 62

€ wp/ v (w_kvz)Z_wQB/,ygf(p ) (96 )
2w2|Q| dp, wp ks k@3

€=t > - . 0.63
wiwsm 5 w% LJ12 _ w%/'ﬁ 632 — w%/’yz f(p ) ( )

The probability of the decay is (Melrose 1978¢, Eq. 10.124)

5, RpRE R 2
u(kg,kz,kl) = (27T) = |w1w2w30| 5(k3 - kz — kl) 5(w3 — W2 — wl) =
Ww3wiwe
2
(27)°hPwywhws / dp, ka®i ks o)
2m2wiws Yoi \ % — w% /v? W3t — w/v? Pz
(S(kg ——kz —kl)a(w;v, — W2 —wl) (964)

with R, = R4 = RY =1/2
In the cold case we have

2

(2m)°hePwind | kswq kiws
k = £ - ks —ka -k —wy — .
u(ks, ka, ki) 2mluiwswy  |wi-wh Wi -wd Oks —kz — k1) §(ws —wz —wr)  (9.65)

which may be obtained from Melrose 1978c, Eq. 10.105.
Equations (9.61) and (9.63) can be simplified in the limit of a very strong magnetic field

1 2‘“’; 2
€ = 1+w—2/dpz'y(w—kvz) f(pz) (966)
B
270 fdp, 1 (ks K
=22l [T (B 28 ) s (9.67)
m Y0 wawp \wW3 w1

Using Eq. (9.61) the Eq. (9.67) may be rewritten in the form

c=sdd (@ _h ) (€2 — 1) (9.68)

mwp \ w3 wi
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For the back scattering Eq. (9.67) gives

2|glk2
Wi,3wWBm

Cr~+ (625 — 1) (9.69)

For the plasma waves on the mass surface ¢,, = 0 and

C = iM_
Wi,3wpm
9242k2(27)5h
u(ks, ko, k) = %wﬁ(kg ~kz — ki) 6(ws — wy — wy) (9.70)
B

We can compare this probability with the unmagnetized case (Tsytovich 1970). In the strongly
magnetized plasma, the probability of Raman scattering is decreased by a ratio wis Jw%. This is
similar to the suppression of the Thompson scattering, whose probability is decreased by the same
ratio.

It is convenient to describe the wave distribution in terms of photon occupation numbers

By
=—2= 9.71
"= fw(k) (071)
where EZ is the spectral energy density, which is related to the total energy density
dk
W= [ —E 9.72
/ (27’(’)3 k ( )

The kinetic equation for the Raman scattering are (Melrose 1978c, Eq. (5.93))

dm&ﬂZi/ﬂi/jEw&Mmbﬂm&me%mﬂmm&ﬂ+m%m

dt (2m)3 J (27)
+T3n3(ks), (9.73)
dnz(th) _ / ?2571:;3 / zg:——;’g'u(kg,kl,kg)(nl(kl)n2(k2)—n3(k3) (n1(k1) + na(ka))) +
Tang(ka), (9.74)
dnsd(tka) _ / ?2(7132 / (g:;au(ks,kl,kg(nl(kl)ng(kz)——ng(k3) (n1 (k1) + na(ka))) +
[3ns(ks) (9.75)

Where I'y 2 3 are the corresponding damping or growth rates. The most unimportant damping
is the Landau damping of the plasma waves na(kz) on the particles of plasma. In (9.75) the total

derivative on the left-hand side is

%= 5 ke ar ok (9.76)
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with the second term describing the convective transport of the waves.
Next we integrate over transverse wave vectors to find the system of equations describing the

scattering of the waves propagating along magnetic field

T [ [ ol k) (k) — k) () + ()
+I1na k), (9.77)
dnfjib) = - ((112_1::) (d2_l::,)u(k2, k1, k2) (n1(k1)na(ks) — na(ks) (na (k1) + na(kz)))
+Lana(k2), (9.78)
dng(k ) o dkl dkg
dt - = / (2m) / (27r)“(k2’ k1, k2) (na(ki)na(kz) — na(ks) (na (ki) + na(k2)))
+T3n3(ks) (9.79)
where
d?k; 1 .
ni(ki) =/ (27!')2 ni(ki), 1= 1,2,3 (980)
and 2.21.2 5
u(k‘g,kl,kg) = %%Ma(kg *kg —kl)d(w;g——wz —wl) (981)
B

The two d-functions in u(kz, k1, k) allow us to perform integrations in (9.79).

drake) __ ZaTRECI N (1 () — k) (1 (r )+ ma(ka)) -+ Tama (k). (9.82)

dt m2wl (%2_)3)
dn2(k2) = — 22(]2]6%(271')37%)2 (nl(kl)ng(kg) — TL3(k‘3) (nl(kl) -+ ng(k‘g))) -+ anz(kz)(gs-?))
dt m2w? (_«M)
B \ 3k,
dnii(tkg) - 22Q2kg(27r3)3hw2 (n1(k1)na(k2) — na(ks) (n1(k1) + n2(k2))) + Tana(ks) (9.84)
miw? (gﬁ)

Implicit assumption in Eqgs. (9.82) - (9.84) is the assumption that the wave vectors on the right-
hand side of Eqs. (9.82), (9.83) and (9.84) satisfy the resonance conditions. Thus in Eq. (9.82),
for example, the two independent variables are time t and wave vector k;. The explicit relations

between wave vectors, corresponding to Eqgs. (9.82), (9.83) and (9.84), are

ks m ky = 2T% k1| + ko, wa = (2T%|ky| + ko — 2|k1])c

ko — k, ko — k,
=2 ky ~ k2, wy = (ko — = )e
)c (9.85)
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respectively for Eqs. (9.82), (9.83) and (9.84). The quantity k, = v2Tw, is the cross-over wave
vector, where the dispersion relation for the plasma waves intersect the vacuum dispersion relation.

From Eqs. (9.85) and (9.56) we find that the induced Raman scattering occurs in the frequency

region

V2Tw, < ke < 2vV2Tw, (9.86)

This frequency window (in the plasma frame) corresponds to the frequencies in the pulsar frame
in the range 2/TAwpQ/y, < ke < 44/TAwp/7,, which is 5 x 108radsec™! < k¢ < 10%rad sec™?

which falls into the observed frequency range.

9.2.4 Application to Pulsars

In this section we consider the possible applications of the induced Raman scattering to the wave

propagation and spectrum formation in the pulsar magnetospheres.

Scattering of the Pump Wave

There is threshold intensity of the pump wave that defines what is known as strong induced Raman
scattering. The rate of induced plasmon production, which depends on the intensity of the pump
wave, should exceed the rate of loss due to the various damping processes. The end result of such
strong scattering is a total depletion of the initial pump wave. The critical one-dimensional photon

density is determined from (9.83)
dk dk
/ ! /—3u k3, kl, kg)’rl;g(kg) PQ (987)

Linear Landau damping rate in the relativistic plasma (T}, > 1) is (Lyutikov 1997¢, Chapter 7)

rwd of
— P 30)
Fa= Tkcw? (7 67) (9:88)
with
2 kOTJ?
Tres = AL koc = wy = 4/ 2Tw,, Ak=k—ko (9.89)

The equations are valid for Ak < kg.

With a power law distribution function f o< v™%, a > 2, we find

—a/2+1
W koT?
Ly ok < AkP) (9.90)
P

As Ak —-0T9 = 0.
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The threshold spectrum of the incoming radiation is then given by

m23T~ 5 L2 [ Ake\ ~1He/?
ng ~ T —g (9.91)
647°hg*  wl \ wp
Estimating Ak = k, we find the characteristic threshold photon density:
th MW 22 _1 1 3 p-3
ng ~ 107 WT_ T =27x10 om? BlZ /\5_ Pyo Tl_O Rg_ ¥p,10 (992)
P

where Blz = B/1012G )\5 = /\/105 P0‘2 = P/O.QSGC T10 = T/10 Rg = R/logcm Yp,10 = ’Yp/lo and we
used o = 2. Note that this is an upper bound on the threshold photon density (for k ~ 2k,). At the
lower frequencies k = k, the threshold values are much lower.

While for the relativistic Gaussian-type distribution f o< 1/T X exp{—~/T} the damping rate is

1/4
W\ B 2w2T
Lx(af) waer) | apa (9.93)

(compare with Lominadze & Mikhailovskii 1978 Eq. (2.10)), and the spectrum of the incoming

radiation is then given by

2.3 2 A —3/2 2W2T 1/4
ng ~ T Yp ke exp { — | 2 (9.94)
128722 RTo/4w2 \ wp AK2? c?

The characteristic threshold photon density is in this case

2.3, .2 2.3
th . 1n—4 v CWg _ —5M°C'WBYp 20 1 -1 -3 p-3
ne 10 PT3hw? S X107 ey, — 27 X107 G B dsT P2 T By “pao (9.95)

(upper bound) where we used w2 = 2wpQA/7,.

For the comparable values of the temperature, i.e., for the similar dispersion of the energies of
the plasma particles, the threshold in the case of a power law distribution is much larger than in
the case of Maxwell-type distribution. This is due to the larger damping rate in the case of a power
law distribution since there are more particles satisfying the Cherenkov resonance in this case than
in the case of Maxwell-type distribution.

The estimates (9.92) and (9.95) are done for the one-dimensional photon distribution function
(in k) in the plasma frame. The photon distributions (9.92) and (9.95) are the one-dimensional
distributions.

The energy flux per unit interval of frequencies is given in terms of a one-dimensional photon
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distribution function as follows:

hwdk
F(v)dv = n(k, 23:3 war - n(k,rQ);hwdk = n(k, r)hwdv (9.96)

Where we took into account that the dispersion relation of the electromagnetic waves is almost
vacuum like, so k = w/c.

We recall next that both three dimensional occupation numbers (which is basically three dimen-
sional photon distribution function) n(k,r) and one-dimensional photon distribution n(k,r) (Eq.

(9.80)) are relativistic invariants. It follows from Eq. (9.96) that

= inv (9.97)

We note that relation (9.97) for the case of one-dimension differs from the three dimensional relation
F(v)/v? = inv.

Thus, the flux in the observer frame is
F'(v') = 2nn(k',r)h' in ergcm~2sec™! Hz ™} (9.98)
We can estimate the observed flux (in Jankys) at the Earth:

FoPs () = F'(") (%) 2 (9.99)

where dg is distance from the pulsar to the Earth. Using Eqgs. (9.92), (9.95), (9.98) and (9.99), we
find

102
7w .
fobs _ o mm2cwyvv (Rus\’ [ Rys (9.100)
1o-4 g*0A dg R '
T3
for the power law and exponential distributions correspondingly.
Numerical estimates give
30
Fobs — Jy (9.101)
3x 1071

These are comparable with the fluxes observed from bright pulsars. Since the estimated threshold
intensities are upper bounds, we conclude that stimulated Raman scattering may be an important
factor in the formation of pulsar radio emission. Estimates for the millisecond pulsars give about an
order of magnitude lower values.

The above calculations show that the radio waves propagating in the pulsar magnetosphere may

be subject to strong stimulated Raman scattering. The characteristic time for the intensity variations
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may be estimated from Eqgs. (9.90) and (9.93) to be ¢ > 1/w,. This can account for the very fast

intensity variations observed in pulsar radio emission.

Saturation of Cyclotron Instability by the Induced Raman Scattering

We assumed that the product electromagnetic waves (labeled by index 1) leave the region of resonant
Interaction, so we can assume that their photon densities are n;(k;) ~ 0. We are interested in
the time asymptotic limit for the intensities of the transverse waves, excited by some instability
mechanism with a growth rate I's. Neglecting the wave convection we then find from Egs. (9.82)

and (9.84):

22¢%k2(2m)3 hw,
mih (52)
B 22¢%k2(27)3 fuwg

2,,2 [ Ows
mwg (6k2>

ng(ks) + Pz’ﬂg(kQ) = 0, (9102)

le(kz) + ang(kg) =0 (9103)

Comparing Eqs. (9.87) and (9.102) we find that they are identical: the threshold intensity for
the strong Raman scattering is equal to the saturation intensity. This is not a surprising fact, since
in both cases it is the damping of the plasma waves that controls the electromagnetic wave intensity.
In Section 9.2.4 we found that the corresponding intensities are comparable to the observed ones, so
that the nonlinear saturation by the induced Raman scattering may provide observed emissivities.

We also note in this context, that at a given radius, the induced Raman scattering operates in
a limited frequency range (9.56). So, if the instability that produces radio emission is intrinsically
broad band (with the bandwidth of the growing mode larger than the range in which the induced
Raman scattering operates), then the effects of the induced Raman scattering would produce a dip
in the spectrum, corresponding to that frequency range. If, on the other hand, the instability that
produces radio emission is intrinsically narrow band with the central frequency of the instability
falling into the operational range of the induced Raman scattering and changing with radius to
mimic the observed broadband spectrum, then the induced Raman scattering can be an effective

saturation mechanism for a larger range of frequencies.
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9.3 Wave Escape from Pulsar Magnetosphere

In this section we consider wave propagation and absorption in the strongly magnetized one-
dimensional relativistic electron-positron plasma of a pulsar magnetosphere. Absorption coefficients
at the Cherenkov, Cherenkov-drift and cyclotron resonances are calculated. We find that (i) Alfvén
waves are subject to strong damping at all these resonances, (ii) high frequency ordinary and extraor-
dinary modes may be damped on the cyclotron resonance, though circular polarization, observed
in some pulsars, points to the possibility of escape of the transverse waves if they become detached
from plasma due to the sharp density decrease. Both ordinary and extraordinary modes with the
electric field perpendicular to the osculating plane of the curved magnetic field line may be strongly
damped on the Cherenkov-drift resonance. The observed frequencies of the pulsar radio emission are
then determined by the conditions of wave excitation and absorption. The spectral break observed
in some pulsars may be due to the cyclotron absorption in the outer parts of pulsar magnetosphere.

In spite of a large number of works which considered wave generation and propagation in pul-
sar magnetosphere (Tsytovich & Kaplan 1972, Volokitin, Krasnosel’skikh & Machabeli, Arons &
Barnard 1986, Barnard & Arons 1986, Lyutikov 1997a), the problem of the wave escape has not yet
been resolved. The problem is complicated by the poorly constrained distribution function of plasma
particles, unknown structure of the magnetic field close to the light cylinder, and the fact that there
is no generally accepted theory of pulsar radio emission generation. In this work we address the
possible mechanisms of the resonant absorption for the waves propagating in pulsar magnetosphere.

Previously, the wave absorption in the pulsar magnetosphere has been considered by Barnard
& Arons 1986 and Mikhailovskii et al. 1982. Barnard & Arons 1986 have shown that Alfvén
waves with the phase velocities not very close to the speed of light (this corresponds to small wave
vectors and small frequencies) are subject to strong damping at the Cherenkov resonance as they
propagate outward in the pulsar magnetosphere. At the small frequencies, where Alfvén waves
are almost transverse, their resonant interactions with particles at the Cherenkov resonance (Eq.
(9.104) with s = 0, uq = 0) is ineffective, since the electric field of the waves is almost perpendicular
to the particle’s velocity. Mikhailovskii et al. 1982 considered damping of the high frequency
electromagnetic waves at the cyclotron resonance. They concluded that the extraordinary and
ordinary modes are subject to strong damping on the cyclotron resonance in the outer parts of the
pulsar magnetosphere.

We analyze possible resonant absorption process (Cherenkov, cyclotron and Cherenkov-drift) on
all the possible wave modes propagating in one-dimensional strongly magnetized plasma (Alfvén,
ordinary and extraordinary). For the propagation of the coupled ordinary-Alfvén modes, Barnard
& Arons 1986 considered the case of infinitely strong magnetic field. In this limit the high frequency

ordinary mode is always superluminous and cannot interact with particles at the Cherenkov-type
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resonance (with s < 0 in (9.104)). If the effects of the finite magnetic field are taken into account,
the ordinary mode becomes subluminous for large frequencies and can be both excited and damped
in a Cherenkov-type resonant interaction with particles.

Besides considering wave absorption at the Cherenkov resonance and cyclotron resonances we
also take into account wave absorption at the Cherenkov-drift resonance (Eq. (9.104) with s = 0
and finite uq). Resonant interaction of particles with electromagnetic waves at the Cherenkov-drift
resonance may also be an important mechanism for the pulsar radio emission generation (Kazbegi et
al. 1991b, Lyutikov & Machabeli 1997). We find that the subluminous waves with electromagnetic
components may be subject to strong damping at the Cherenkov-drift resonance. This may be
an important process for all the waves. This is the only mechanism for the absorption of the low
frequency Alfvén waves. It may also result in the absorption of the extraordinary and ordinary
waves at the frequencies well below the cyclotron absorption frequency.

Cherenkov-drift interaction is made possible by the curvature of the magnetic field lines. When
this is taken into account, a particle propagating along the magnetic field also drifts with a velocity
perpendicular to the plane of the curved field line allowing for the interaction with the electric
field of the wave polarized in the direction of the particle’s drift. This is a distinctive feature of a
Cherenkov-drift interaction: it affects only the electric field of the wave which is perpendicular to

the osculating plane of the curved magnetic field.

9.3.1 Resonant Wave-Particle Interaction

We recall, that in a curved magnetic field, with the radius of curvature much larger than any other
length scale, the resonant interaction of waves and particles occurs at the resonances
w(k) — kyvy — kotig — S—‘;E =0 (9.104)

We will distinguish the following separate cases:

(i) Cherenkov resonance (s = 0,uq = 0),

(ii) Cherenkov-drift resonance (s = 0, uq # 0),

(iii) Normal cyclotron resonance (s > 0 ),

(iv) Anomalous cyclotron-Cherenkov resonance (s < 0 ).

As we will see later, in pulsar magnetosphere drift is not important for the cyclotron-type reso-
nance, so we did not distinguish between cyclotron resonances with and without drift.

For the resonant interaction between a particle and a wave to occur another condition (besides
resonance (9.104)) should be met: there must be a nonzero component of the electric field of the
wave along the particle velocity. Consequently, Cherenkov resonance (i) acts only on component

of the electric field parallel to the external magnetic field. Since in the pair plasma with the same
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distribution of electrons and positrons the extraordinary mode has an electric vector perpendicular
to the magnetic field, it cannot be excited by the pure Cherenkov resonance (i). In contrast, when
the drift of the resonant particles is taken into account, the Cherenkov-drift resonance (ii) couples
the particle’s velocity along the z axis to the z component of the electric field of the wave. This
allows for the excitation of the transverse waves which have a nonzero = component of the electric
field.

By the nature of the transition currents, the cyclotron resonance (iii) and (iv) always couples
to the parts of the electric field perpendicular to the external magnetic field. It is possible to
show (Lyutikov 1997b), that for the one-dimensional distribution the normal cyclotron resonance
(iii) contributes to damping of the waves, while the anomalous cyclotron-Cherenkov resonance (iv)
contributes to the excitation of the waves.

It is convenient to consider the resonant interaction of particles and waves on the w — k diagram.
In this approach the resonance between the normal mode of the medium and a particle is seen
as an intersection of the wave’s dispersion curve w = w(k) with the "particle’s dispersion curve”
w = kgvg —kguq+ s—“;—‘i We adopted this method from the hydrodynamic theory of wave interaction.
We find it also useful to look at the kinetic regimes of particle interaction as well. We will use this
method to illustrate the resonant interactions occurring in pulsar magnetospheric plasma.

In this section we concentrate on the wave absorption. We omit the anomalous cyclotron-
Cherenkov resonance (iv) which, in one-dimensional plasma, contributes to the wave excitation
only. The normal cyclotron resonance (iii} in our case always contributes to wave damping, while
the net effect Cherenkov-type resonances (i) and (ii) depend on the sign of the derivative of the
distribution function igp(—flm‘—) evaluated at the resonance p|. The waves are growing for Lgx—”) >0
and are damped for the reversed sign.

We suppose that the normal modes of the medium are emitted somewhere in the pulsar mag-
netosphere. In that region the emission conditions for the waves excitation are assumed to hold.
We are interested in the behavior of the waves as they propagate outward in the pulsar magneto-
sphere. We will restrict ourselves in this paper to the linear effects in wave amplitude. The nonlinear
propagation effects have been considered elsewhere (Gedalin & Machabeli 1983, Machabeli 1983).

As the waves propagate outward in the pulsar magnetosphere, their dispersion will change. We
assume that this change is adiabatic. For the linear waves this assumption is satisfied if the wave
length is much smaller than the typical size of the inhomogeneity and if the inverse of the frequency
of the waves is much smaller than the typical time scale for the change in the parameters of the
plasma. For the inhomogeneity size of the order of the radius of curvature and time scale for the
change in the parameters equal to the pulsar period, the adiabatic approximation is well satisfied.
We also note here that the adiabatic approximation may break down near the points on the w —bfk

diagram where two dispersion curves approach each other. In a pair plasma dispersion curves of the



158

ordinary and Alfvén waves do approach each other for the quasi-parallel propagation near the point
wke= \/§Twp. An effective wave transformation can occur near this point.

The slow change in the parameters of the plasma changes the phase speed of the waves and bring
them into resonance with the particles satisfying the damping conditions for the particular wave. If
the dispersion of a wave is written in the form w = w(k,r), then its evolution is described by the

fO].].()Wlng eq uatlonS.
50.) k T t (30} k
l ( 17 ) l ( ? r’ t) l] 8w(k’ r? t)

o o ot (9.105)

We can find the evolution of the phase speed for the plasma normal modes. This can be done
exactly for X mode and in the asymptotic limits of k¢ < \/T,wp and ke > |/Tpw, for Alfvén and
O modes. Using dispersion relations (5.74) and the radius dependence of the parameters (4.9) we

find

o _ *311_’,’(}1 Sw2T, <0

OR wiR

e _ 3v8 3w12,Tp k% cos?0 + wp?sin® 6 3 (c* k* + wp?) sin(26)

80R — wiR w?R 3w?Rp

vy __ﬁ 6 wp? 2tan0+czk2 (4R -+ 3Rp sin(20)) tand <0 (9.106)
OR =~ 2 wp®R ' Rp 4w,? RRp '

which implies that the phase speed of the extraordinary mode is always decreasing as the waves

propagate out in the pulsar magnetosphere. We also note that this statement will be also valid in a

Wp,
wp

nondipole geometry as long as the quantity increases with radius.

The phase speed of the ordinary mode decreases if the angle of propagation is smaller than some
critical angle § = % ~ w%j; and increases for larger angles. In the curved magnetic field even if
the ordinary mode originally was propagating along magnetic field, it will develop an increasing angle,
so that eventually its phase speed will start to increase and the wave will become superluminous.
Thus if the ordinary mode is emitted it may leave the pulsar magnetosphere unabsorbed. The phase
speed of the Alfvén mode is always decreasing as it propagates outward in a pulsar magnetosphere.

As we will see in Section 9.3.2, this will result in the absorption of the Alfvén mode.

We now proceed to consider in detail the various absorption processes.

9.3.2 Absorption at the Cherenkov Resonance (i)

The resonance conditions for the interaction of waves with particles have been solved in Lyutikov
1997c. It has been shown than the resonant interaction of the Alfvén or ordinary wave with a particle

depends on the parameter

2 Tesy/ Tow
Lh = Sresy/ TpYp (9.107)
WB
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where it was assumed that v,¢s > 1.

This criteria come from the fact that the maximum phase speed of the Alfvén wave and the
minimal phase speed of the ordinary wave are equal to the Alfvén speed v, = ¢(1 — §). Since the
effective dispersion of the particle in the Cherenkov resonance w = v,.;kcosf, Alfvén wave can
Cherenkov resonate with a particle if yp, < 1 and ordinary wave can Cherenkov resonate with a
particle if pp > 1 (see Fig. 9.4).

The absorption at the Cherenkov resonance occurs on the falling part of the distribution function.
The corresponding particle velocities range from 0 to vy. For relativistically hot plasma vy ~
(1 —1/(2T2)) c. For the particles of the bulk plasma with the y-factors in the pulsar frame of the

order of v, the drift is not important and we can consider conventional Cherenkov resonance (i).

Alfvén Wave

We first note that the high frequency part of the Alfvén branch w > \/Iprp is always strongly
damped on the bulk particles. There is also a possibility that the intermediate w < \/Iprp Alfvén
waves are damped on the Cherenkov resonance. The low frequency Alfvén waves are not strongly
affected by the Cherenkov resonance since at w < \/’./prp Alfvén waves are quasi-transverse.

In the plasma frame the absorbing particles of the bulk plasma have velocities in the range from
—vr to vp. All the forward propagating Alfvén waves with the phase velocity less than vy will lose
the component of the electric field along the external magnetic field.

Using the parameter pp with ~v,.s = v we find that the parallel component of the electric field

of Alfvén waves will be strongly damped at all wave length if

3/2 3/2
2/ Ty vrwp A Q —3 T Y R
VPP _ 9 /oT /== =2x10 ' - —_ 1 9.108
B P Vs T Vig) () Rvs) 1 0109

which suggests that Alfvén wave propagating in the outer region of pulsar magnetosphere R > 50Rys
are subject to the strong damping on the Cherenkov resonance (i). The damping rate for the
Cherenkov absorption of the Alfvén wave is given in Table I. Estimating the typical frequency of

the Alfvén waves in the plasma frame w ~ /T,wp, 0f/0y ~ f/v and 6 ~ 1 we find

by 2
T~ ZresWGJres (9.109)
)

The condition of the strong absorption, ¢/I' < Ry, for the damping of Alfvén waves on the
g

Cherenkov resonance may be written as

2
Aresres [WB (9.110)

Zreshres 9B o q
VI p ¥V Q >
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We would like to stress that condition (9.108) corresponds to the strong Cherenkov damping
of the parallel component of Alfvén waves with any frequency. The low frequency Alfvén waves
propagating along magnetic field are less subject to Cherenkov damping since they have the highest
phase speed. It has been show in Section 9.3.2 that as the Alfvén wave propagates in a curved
magnetic field its phase speed always decreases. For larger angles of propagation the potential part

of the electric field also increases. This will result in a strong absorption of all Alfvén waves.

Ordinary Wave

The lowest phase speed of the ordinary wave is equal to Alfvén velocity v, and if the thermal velocity
of the plasma particles is much less than the Alfvén velocity, then the ordinary mode will not interact
at the Cherenkov resonance with the particles. In the pulsar plasma the Alfvén velocity is very close
to the speed of light and the thermal velocities of the particles may, at best, be comparable to it but
not much larger.? The Cherenkov interaction of the ordinary wave with resonant particles is very
sensitive to the angle of propagation. For oblique propagation, the lower phase speed part of the
ordinary wave, which is most likely to be damped at the Cherenkov resonance, is quasi-transverse
and, thus, almost unaffected by the Cherenkov interaction, which acts on the longitudinal part of
the electric field of the wave.

The damping rate of the ordinary wave due to the Cherenkov interaction with the particles of
the plasma is given in Table I. The resonant frequency in this expression has been found by Lyutikov

1997c. The Cherenkov resonance on the ordinary mode with pp > 1, but not much larger, happens

:fZTp'y,.gswpf)
0 < 1/v
V-1 (9.111)

2
wBeﬁf;—%ﬁ 9>>1/’yb

at

Wres =

For the quasi-parallel propagation we estimate y? — 1 1. Then for %,% & ;5 we find a damping

rate of the ordinary wave due to the Cherenkov interaction with the particles of the plasma:

)
=B 0 1/ Yres (9.112)

I= A1‘e:3 T 0 ’
Yres ATp’Yp

with the «v,.s given by the condition pj = 1:

~ 0B [ YB g0t B T (9.113)
res Vriws VA0 ' 10%cm '

This is a very large energy for the particles in the plasma frame. The number of particles

satisfying this condition is of the order of the Golreich-Julien density or less, so Ayes ~ 1.

2When comparing the velocities close to the speed of light, we compare the corresponding y-factors v/c ~ 1 — 2—’1—2—,
thus the statement v; >» vy implies v1 > 7.
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Using these estimates we find that the ordinary wave is not subject to the strong damping at

Cherenkov resonance (i).

9.3.3 Absorption at the Cherenkov-drift Resonance (ii)

The Cherenkov-drift resonance (ii) is important for the particles from the tail of plasma distribution
and for the primary beam particles. The Cherenkov-drift excitation may be an important mechanism
for the generation of pulsar radio emission (Chugunov & Shaposhnikov 1981, Lyutikov & Machabeli
1997). An important factor in the Cherenkov-drift resonance is that a resonant particle couples
to the component of the electric field along the drift velocity, i.e., perpendicular to the local field
lines. So that, unlike conventional Cherenkov resonance (i), Cherenkov-drift resonance (i) affects
transverse waves.

Since the Cherenkov-drift resonance requires a very high parallel momentum, the resonant in-
teraction will occur on the high phase velocity waves. This implies that this resonance is always
important for the extraordinary mode, while for ordinary and Alfvén modes it is important only for
small angles of propagation. It is more convenient to consider the Cherenkov-drift resonance in the
pulsar frame, which we will use in this section. The values in the pulsar frame will be denoted by

primes. Representing the wave dispersion as

2
wy Ty
—2—2—472“)3 X mode
12 2 2 0l
T ' ' w, Ty Tpwp Tpsin 2]
w=k'c(l-24"), where §' = ot T R O mode (9.114)
“’,2TP k'2c2sin% 0’ 4
AT — it Alfvén mode
To¥E TYpWpTip

The resonance condition (9.104) may then be written as (s = 0)

1 1 1
e &+ 3 W) + 50~ u)? =0 (9.115)
where we used v,es = ¢ (1 — 5—7—1;-2 - %uff) and ¢/ = Ek:j“'

An important feature of Eq. (9.115) is that it is independent of frequency. It can be simultane-
ously satisfied for the waves with very different phase speeds. The angular dependence of the Eq.
(9.115) makes a distinction between the resonant particles with different velocities. The particles
with larger velocities have a larger drift and resonate with the waves propagating at larger angles.

Cherenkov-drift resonance (ii) is important if u/, > +/26’. If this condition is satisfied, then the
resonant Cherenkov-drift interaction occurs for the angles ¢’ < v/26" and |8’ — u/)| < v/26" (see Fig.
6.3).
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Resonances

Extraordinary wave

Ordinary wave

Alfven wave
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Table 9.3: Growth rates and corresponding resonant frequencies of waves in the kinetic approximation

. All values in the table refer to the plasma

frame. Negative growth rates correspond to wave absorption. The notations are the following: wp res - plasma frequency of the resonant particles,

A~ - scatter in Lorentz factor of the resonant particles.
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The Cherenkov-drift absorption for the waves with %’ ~ 0 and 6’ ~ u/, happens at

3/2 3/2

1 R

N = = BT ~200 (9—) (9.116)
V28 2v2wl /T, 109 cm

The resonance (9.116) is satisfied for the particles from the tail of plasma distribution. Since the
distribution of the tail particles is of a ”falling” type, the waves, or more precisely, the transverse
components of the electric field of the waves, will be damped. The Cherenkov-drift resonance (ii)
will result in a damping of ordinary, extraordinary and Alfvén modes with the electric field in the z
direction. The waves with the electric field in the r direction will be unaffected.

The growth rate of the Cherenkov-drift absorption is given in Table I. Estimating the character-

istic wave frequency in the pulsar frame as w ~ 7,4/Tpw, the condition of the strong absorption,

)‘t wp
—t - [ZE 5 (9.117)
Yt/ TpAp Q

where \; = nt/ngy is the multiplicity of the tail particles and we assumed that the scatter in energies

¢/T" < Rj. may be written as

of the tail particles is vy = ;.

The numerical estimates show that the left-hand side of Eq. (9.117) is of the order of unity for
the assumed pulsar parameter. This implies that the Cherenkov-drift absorption may be important
for the transverse waves.

An important feature of the Cherenkov-drift resonance is that emission on the primary beam
particles and absorption on the tail particles can occur in the same region. Since the primary beam
particles have larger energy and larger drift velocities, the waves will be emitted at larger angles
and may not be absorbed on the resonance with the tail particles. As the waves propagate in the
pulsar magnetosphere, the angle of propagation of the wave with respect to the local magnetic field
is likely to increase and the waves will not be absorbed by the Cherenkov-drift resonance.

Thus we have shown that the Cherenkov-drift damping of the transverse electromagnetic waves
on the tail particles may be important. The affected waves have a polarization perpendicular to the
plane of the curved field line. It is not clear how strong this effect is. The answer to this question
depends on the details of the geometry of the emission and absorption regions and on the parameters

of the outflowing plasma.

9.3.4 Absorption at the Cyclotron Resonance (iii)

As we mentioned earlier, the drift velocity is unimportant for the cyclotron resonance (iii). With

the drift velocity set to 0, the resonance condition in the plasma frame reads

. ) 1 62 Sw
1 — sign, — § + sign, <Zz— + ?> = kC’yis (9.118)

TES
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where we introduced sign, = —vﬁl - a sign of the particle’s velocity (sign, = 1 for the forward

|v
propagation), and omitted the anglz 1. The case of emission (s < 0) has been treated elsewhere
(Machabeli & Usov 1979, Kazbegi et al. 1991b). For absorption we set s = 1.

From (9.118) it follows that the normal cyclotron resonance can be satisfied only if sign, = —1,
i.e.,on the particles streaming backwards in the plasma reference frame. All the subluminous waves
with the frequency larger than

Wimin pl & ;‘% (9.119)
(in the plasma frame) will be subject to cyclotron damping.

In the pulsar frame this will correspond to the minimum frequency of

WRBY,
1,

Wmin = 2’)’pwmin,pl = wB (9120)
The damping rate for the cyclotron absorption is given in Table 1. The condition for strong
absorption, ¢/T" < Ry, implies that for w = W’T‘:B— (see also Mikhailovskii et al. 1982) the waves are

strongly damped if
Yp < A, (9.121)

a condition well satisfied in the pulsar magnetosphere.

We note that the minimal frequency (9.120) at the light cylinder is wp(R = R;.) = 1.4 x 10°
rad sec™!. This means that the waves in the typical observed window may be strongly damped.
We also point out that the frequency (9.120) corresponds approximately to the frequency of the
spectral break observed in some pulsars (Malofeev 1996). This break may be related to the cyclotron
absorption. For almost orthogonal rotators the waves propagating at a small angle to the rotational
axis may reach cyclotron absorption within the dipole magnetosphere regions. Consequently, the
larger range of frequencies will be absorbed. Such pulsars {(e.g., Geminga) may be observed only at
low frequencies (Melikidze 1997).

The statement that the waves with frequency larger than (9.120) are strongly damped on the
cyclotron resonance (iii) is based on the assumption that the dipolar geometry extends up to the light
cylinder. In a real pulsar the distortion of the field lines at the light cylinder must be considerable.
This may change the estimated lower frequency considerably. For example, if at some point the
density of the plasma falls down considerably, the wave may get detached from plasma, become
a vacuum wave and evade the cyclotron absorption. A convenient way to describe the adiabatic
evolution of plasma waves is by using CMA diagrams (see Figs 5.4 and 5.5). As the wave propagates
in magnetosphere, the density and magnetic field change, so that the location of the wave on the
CMA diagram traces some phase curve. In order to become a vacuum wave, a particular plasma

mode has to reach a line n = 0. If in the process of evolution this phase curve crosses a resonance,



165

the wave is absorbed. So that in order to become a vacuum wave the phase curve should not go
through a resonance. It is clear from Figs. 5.4 and 5.5 that Alfvén wave cannot become a vacuum
wave: its phase curve cannot reach the line n = 0 without crossing the resonance line. Ordinary and
extraordinary waves, on the other hand, can become vacuum waves if the density falls fast enough.

We believe that there is observational evidence that, at some point in the magnetosphere, the
transverse modes detach from plasma, thus escaping the absorption. The possible location for
the location of the point where the density of the plasma drops down considerably is where the
magnetic field lines cease to be dipole. The argument that lead us to the assumption that the
waves detach from plasma at some point is the following. If the average streaming energies of the
plasma components are different, then the transverse electromagnetic waves propagating along the
field lines have circular polarization and the waves propagating with the angle to the magnetic field
larger than some critical angle have linear polarization. As the waves, emitted along the field line
with the circular polarization, propagate in curved magnetic field lines, they develop a finite angle
the field and star splitting into the orthogonal linearlly polarized modes. The fact that we do see
circular polarization in the core emission implies that the waves got detached from plasma before
they acquired an angle to the magnetic field larger that the critical angle at which the polarization
changes from circular to linear.

Summarizing the absorption processes in the strongly magnetized, electron-positron plasma of
pulsar magnetosphere, we note that the waves may be strongly damped on the three possible reso-
nances: Cherenkov, Cherenkov-drift and cyclotron. The conclusions are the following. Alfvén wave
is always strongly damped on the Cherenkov resonances and possibly on the Cherenkov-drift res-
onance and cannot leave magnetosphere. Both ordinary and extraordinary waves may be damped
on the Cherenkov-drift resonance. In this case Cherenkov-drift resonance affects only the ordinary
and extraordinary waves with the electric field perpendicular to the plane of the curved magnetic
field line. The high frequency parts of the extraordinary and ordinary wave may also be damped on
the cyclotron resonances, but the observed circular polarization in the pulsar radio emission implies
that the extraordinary and ordinary waves get detached from plasma, escaping absorption. In this

case two orthogonal linear polarizations will be observed.
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Figure 9.4: Absorption resonances on the Alfvén and Ordinary modes in the cold plasma for for
u# > 1. For the Cherenkov absorption the damping region is below the Cherenkov resonance line
w = kvcos@. For the cyclotron absorption the damping region above the cyclotron resonance line
w = —kvcosf +wp/y. For p < 1 Cherenkov resonance curve does not intersect the dispersion
relation for the ordinary mode. In that case the ordinary mode is not damped on the Cherenkov
resonance. (
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Chapter 10 Future Directions

ITocaymARTE!

BEOL ECJAU 3BE30bI 3AYKUTAIOT -

3HAUUT - 9TO KOMY-HUBY b HYKHO?
3HAYUT - KTO-TO XOYET, YTOBbl OHU BbLJIN?
3HAYUT - KTO-TO HA3BIBAET BTU IIJIEBOUKU

SKEMYY>KUHOMN?
B.B. MASIKOBCKUA

Listen!

You know - if they light up the stars -

That means - somebody needs them?

It means - someone wants them to be there?
It means - someone calls that spit

pearls?

V.V. Mayakovsky

In this thesis I have considered two possible pulsar emission mechanisms based on the cyclotron-
Cherenkov and Cherenkov-drift instabilities. I have argued that kinetic type instabilities on electro-
magnetic waves are more likely candidates for the pulsar radio emission mechanism than electrostatic
instabilities and have shown that the cyclotron-Cherenkov emission at the anomalous Doppler effect
can account for the various observed phenomena of the core-type emission and the Cherenkov-drift
emission is a likely candidate for the cone-type emission.

An important requirement of this model is that the emission is generated in the outer magneto-
sphere at a considerable fraction of a light cylinder radius. This is in contrast to the conventional
presumption which is based upon the association of the pulse width with the angle subtended by the
open field lines. In the model discussed here, the instability region is determined by the curvature
of magnetic fields, which limits it to the field lines with low curvature. At this moment it is not
possible to determine decisively the location and the size of the emitting regions, but interstellar
scintillation observations, similar to those of (Gwinn et al. 1997), are very promising.

Another direction of research that can produce important observational evidence is the imple-

mentation of ”coherent dedispersion” algorithm (e.g., Jenet et al. 1997), which allows very high
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temporal or frequency resolution. Using this technique it may be possible to distinguish between
"antenna” and "maser” emission mechanisms. Fine frequency structure in the fundamental emis-
sion is more likely to be found in the maser process. Unfortunately, various propagation effects in
the pulsar magnetosphere and in the interstellar medium can imitate both spectral and temporal
structure, complicating the interpretations.

Both cyclotron-Cherenkov and Cherenkov-drift instabilities produce characteristic polarization
patterns, which can serve as tests for this model of pulsar radio emission. If the cyclotron-Cherenkov
instability develops on both the primary beam and on the tail of the plasma distribution, then
the effect of the switched senses of the circular polarization should be more prominent at high
frequencies. A striking feature of the Cherenkov-drift instability is that it produces electromagnetic
waves polarized perpendicular to the plane of the curved magnetic field line. This is orthogonal to
the pattern predicted by the theories of radio emission that involve curvature emission. If, at some
point, it will be possible to determine independently the relative orientation of the pulsar magnetic
field and electric field in the wave, then this distinctive feature of the Cherenkov-drift instability
may be used to test our model. One possibility is to assume a dipole geometry and determine the
absolute position of the neutron star spin axis. However, the assumption of a dipole geometry may
not be correct in the outer parts of magnetosphere, where torsion and bending of the field lines may
be important.

Studies of millisecond pulsars can also provide insight into the physics of radio emission. One of
the predictions of our model, though predicated on the details of the distribution function of plasma
particles, is that cyclotron-Cherenkov instability does not develop in the millisecond pulsars. This
implies that the amount of circular polarization observed in millisecond pulsars should be much less
that in the normal pulsars.

One of the most important aspects of the pulsar emission theory, that was almost omitted in this
thesis, is the relation of radiation emission to the high frequency (optical, UV, X and +) emission.
Timing observations in different spectral windows show that in some pulsars (the Crab pulsar, for
example) the high frequency emission is coincident with the radio emission, which may imply that
they are coming from the same location. We should note in this context that the most successful
contemporary models of 7-ray emission locate the emission region in the outer magnetosphere (e.g.,
Romani 1996).

Turning to the theory, we note that we are still handicapped by our inability to find the global
solution for the electrodynamical structure of a pulsar magnetosphere. This is a formidable prob-
lem, but probably within reach giving the growing computational power of modern computers. A
serious limitation of our theory is that it is based on the ad hoc assumptions on the distribution
function, rather than computed selfconsistently. Further development of the theory should incor-

porate, probably numerically, the more realistic (e.g., Arons 1981b) distribution functions for the
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plasma particles and primary beam than used here. This may be an important factor for the disper-
sion of normal modes! and for the growth rates of kinetic instabilities. Finally, more detailed work
on the nonlinear effects associated with the saturation processes of the cyclotron-Cherenkov and
Cherenkov-drift instabilities and with the propagation effects is possible. In this thesis I discussed
two possible saturation mechanisms for the cyclotron-Cherenkov instability - quasilinear diffusion
and induced Raman scattering. For the induced Raman scattering I considered only a simpler case
of a parallel propagation of the interacting waves. The case of oblique propagation, as well as other
nonlinear processes, like wave decay and induce scattering, deserve a closer attention.

In this thesis I have presented a model for the pulsar emission that involves the application of
the fundamental plasma physics concepts to the new environment of pulsar magnetospheres. The
model has some striking and potentially testable observational consequences. It is hoped that even
if it is contradicted by observations, the principles elucidated in this thesis will have a more general

applicability and will strive to solve the long-standing puzzle of "how pulsars work.”

ISee, for example, comments on page 51 on the dependence of the plasma wave dispersion on the distribution
function.
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Appendix A Electromagnetic Waves in

Cylindrical Coordinates

The purpose of this Appendix is to consider wave-particle interaction of the vacuum normal mode in
cylindrical coordinates. As noted in Section 5.1, in the curvilinear coordinates, the electric induction
is related to electric field through dielectric tensor operator, which involves derivatives of the electric
field. This is different from the case of Cartesian coordinates, when the relation between electric field
and electric induction involves algebraic relations. In this Appendix we first discuss the structure of
vector waves in vacuum and in a homogeneous dielectric medium and find the conditions, when the

simplifying WKB approximation may be used for wave-particle interaction in vacuum.

A.1 Vacuum Normal Modes

We expand the fundamental solutions of wave equation
w?
curlcurlE — —E =0 (A.1)
c

in terms of Fourier amplitudes

E(r,t) Z /dw/dk o Vyw)exp {—i(wt — vd — ky2)} (A.2)

v=—0C

The wave equation (A.1) then takes the form

“;é‘? (rEy) + iky é‘? kj”E(j, + ;j— - (-‘g - kﬁ)) E, =0 (A.3)
—6‘? (Tar rE¢)> ( ) - kiVEI = (“c’—j - k§> Ey=0 (A.4)
L2 (25 (5-5) e
Magnetic field is related to the electric field:
curlE = 198 _ g (A.6)

c Ot c
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The amplitudes E(r, k;, v, w), subject to condition of being finite at » = 0, are

.k.’l: T
EW(r ky,v,w) = EM (E/\—J,’,()\r)er - ’;—frJy(Ar)ed, + Ju(/\r)ex> (A7)
B (r, k,,v,w) = %EW (#ﬁ)e + A (Ar) e¢> (A.8)
E®(r, ky,v,w) = BE® (%Jy(/\r)e, - J;(Ar)e¢) (A.9)

tkocv

kyc cA
® = g [ Z=& g i Al i
BY (r, ks, v,w) =FE ( " J,(Ar)e, + S Jo(Ar)ey — i - J,,(/\r)ex) (A.10)

where A = y/w?/c?> — k2, J,(Ar) are Bessel functions and e, e4,ex are unit vectors along the

corresponding axes. A dispersion relation in cylindrical coordinates is just an equation for Bessel

11 1 V2 9 w?

functions:

A.2 'Waves in an Isotropic Dielectric

In a dielectric the wave equation is

0?D

=0 (A.12)

curlcurlE —

In an isotropic dispersive medium the relation between the electric induction D and electric field

may be written as
D(w) = e(w)E(w) (A.13)

From Egs. (A.2) and (A.13) it follows that in a dielectric the solutions of the wave equation are

B (. ks, 1) = B (Z;“_:J;(Xr) bfe, — ;—’szu(ir)% + Jy(ir)ex> (A.14)
T
B (r by, v, w) = 2 ply <Mer +iJ. (Ar) e¢,) (A.15)
Ac T
E®(r ky,v,w) = E® (%Jy(;\r)e, - J;e¢> (A.16)

. R 12 R
B (r, ks, v,w) = E® (%JL(Ar)er + eV 5 Gryey — i%Ju()\r)ex> (A.17)

rw

where X = /w?/c2e — k2.
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A.2.1 Short Radial Wave Length Expansion of Vacuum Solutions

For large orders v > 1, argument larger than the order Ar > v and not very close to it, Ar — v > v,

we can use expansion in tangents of the Bessel functions:

Ju(vsecC) ~ 4/ 7r1/t2an§ cos (u(tanC - () + g) , (> vTl2 (A.18)

In our case cos{ = v/(\r).

Introducing
2 2 ? 2 2 2 _ w?
kr=2X = kr+k¢+kz=c—2 (A.19)
the expansion (A.18) reads
Jo(Ar) & . cos (£kpr — @) (A.20)

The limits of applicability of this expansion is that k,r 3> 1 and ¢ is not very small.

The normal modes in this limit are

: Ik”' T
EW(r, 1) e HWt—kozdkor) (_———kv e, — k/\12c¢ ey + ez>
, k k,
EW(r,t) « e iwi—ketk,r) (—; e~ e¢> (A.21)

A.3 WKB Solution (Short Radial Wave Length)

We can obtain solutions (A.21) of Eqs. (A.3-A.5) in the WKB limit, when the effective radial
wavelength is much shorter than the characteristic scale of the problem.

Assuming that the solutions of Egs. (A.3-A.5) have a form
1,6 05 _ 1

7;6 , G > - (A22)

2
S = j:/dr\/)\2 - :—2 == (krr — v arccos /\—VT) (A.23)

with k. defined by Eq. (A.19).

The ”potential” term in the Schrodinger-type equation (A.11) has a characteristic scale r, = v/.

E «x

we find

Solutions are exponentially decaying for smaller radii and have a wavelike structure at larger radii.
The condition of applicability of the WKB approach is then k,r >> v, where &, is a typical radial
wave number.

The dispersion equation, which is obtained by substituting Eq. (A.22) in Eqgs. (A.3-A.5), takes

a form

eVE=0 (A.24)
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where
k24 R2 -9 —koky ot s ~kgky — e

c? 27
) = | —koks— e p24k24 - —kokg (A.25)
2

—kaky + %= —kzkg R

c2

(0

For k, > 1/r we can drop the complex part of the tensor ¢; j (which is not even Hermitian since

k, is not Killing vector). The dispersion equation det||e§?)|] = 0 then gives
2 42, 2 W
ky + kg +ky = = (A.26)

The WKB method breaks down when the radial wave length becomes comparable to the inho-

mogeneity scale of the "potential.” For a given radius this occurs for
=108 (A.27)

for 7 = 10° cm and the wave length A = 10 cm.

This breakdown of the WKB method may be illustrated graphically. Consider the surfaces of a
constant phase of Hankel function H,Sl):
Y, (Ar) N 2l
Ju(Ar) v

¢ = arctan ( ), 1=0,1,2,..v~1 (A.28)
(Fig. A.1).

For radii much larger than the "light cylinder” radius, Ar = v, the surface of a constant phase
has a form of unwinding spiral with a wave length Ar/v. Near the light cylinder the radial wave
length becomes comparable to the light cylinder radius.

From the quantum mechanical point of view, the kinetic energy, given by the derivative term in
Eq. (A.11) becomes zero at the light cylinder radius. This is the classical reflection point. For larger
radii the kinetic energy is real and positive: the solution of the ”Schrédinger equation” (A.11) has a
wavelike structure. For smaller radii the kinetic energy is complex: the solution of the ”Schrodinger
equation” (A.11) has exponentially decaying form, modified by the presence of the reflection point
at r =0.

When approaching the classical reflection point, a common approach in quantum mechanics is to
use the Airy function approximation to the solutions of the ”Schrédinger equation.” This corresponds
to the transition region in the Bessel function expansion, when relations (A.18) are no longer valid
and omne should use Airy function expansion. We will discuss the various regimes of the Airy function

expansion in Section 6.2.1.
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Figure A.1: Surfaces of constant phase of Hankel function H,Sl) for v = 5. Circle \r = v is an
analog of a light cylinder. For radii much smaller than the light cylinder radius Ar = v the rotation
is similar to solid body rotation, while for the radii much larger than the light cylinder radius the
surface of a constant phase has a form of unwinding spiral with a wave length Ar/v.
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A.4 ‘Wave-Particle Interaction in Vacuum

A considerable simplification of the wave-particle interaction in cylindrical coordinates is reached
when the interaction occurs in the WKB limit, or, equivalently, when we can use the expansion in
tangent for the Bessel functions. From Eq. (A.18) we find a lower limit on the azimuthal wave

number:
v > (Ar)?3 ~ 10° (A.29)

for the observed wave length 10 cm and the curvature radius 10° cm. From Egs. (A.27) and (A.29)
it follows that for a given radius and given wave length cylindrical waves with azimuthal wave
numbers in the range (Ar)?/3 < (Ar) can be considered in the WKB limit, i.e., in the plane wave
approximation.

It is possible to picture graphically the resonant and nonresonant interaction of a particle moving
along the circular trajectory. The pattern in Fig. A.1 may be thought of as rotating with a frequency
Ac/v. A particle at a given distance ry with a given velocity vy is rotating with an angular frequency
Qp = vy/To. A resonant interaction occurs when these two frequencies are equal. In vacuum,

o = yﬂ¢/\ ~ Ty (1 - #) (A3O)

where 7, = v/ is the light cylinder radius for the mode v. So, in vacuum, the resonance between

a particle and a wave always happens inside the light cylinder.
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Appendix B Field of a Single Particle in

Cylindrical Coordinates

In this Appendix we show how conventional formula for the curvature or synchrotron emissivity in
vacuum may be obtained in cylindrical coordinates. We calculate the spectral energy flux at infinity
due to the particle executing a helical motion. We do this by finding the eigenfunction expansion of
the dyadic Green’s in cylindrical coordinates.

We wish to find the solutions of the vector wave equation

w2
curlcurlF — —F = Q (B.1)
¢

where F is electric or magnetic field and Q is a source function. For a single particle source, which
is a delta function in coordinates, Eq. (B.1) is an equation for the Green’s function. To find Green’s
function we first have to find the solutions to the homogeneous equation with Q = 0. The solutions

to the homogeneous vector wave equation can be obtained from the solution of the scalar wave
equation

w?
curlcurl¥ — —¥ =0 (B.2)
c

U(v, kyyw) = V¢FE2) Z (2r) (B.3)
(Z, is any Bessel function) using the relations
E® = curl(e, ¥), E" = curl curl (e, 7) (B.4)

Functions (B.3) are eigenfunction for the scalar wave equation. The eigenfunction for the vector

wave equation are (e.g., Eq. (6.5-6.6) of Tai 1994)

1 ; ) ks
L = ;grad¥ = e i wt—koz—vg) <ZLer + %ZM + +f—A—Zyez) (B.5)
1 —i(wt~kez—vg) [ VY 1
M= Xcurl(ez\II) =e (szl,er - Z,,ed,) (B.6)
c A iwt—kso—ve) [ ;K kv
N= qurl curl(e,¥) = ¢ = zTZuer - WZ,,ed, + Z,e, (B.7)

We note that curlL = 0. L is an expansion in eigenfunctions of the longitudinal electric field from

the point source and M and N are expansions in eigenfunctions of the transverse fields.
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The orthogonality properties are (Tai 1994)

L*(r, X, k., V") Lir, A\ kg, v)
26(A =) ,
dr | M*(r,N, k., ") M(r, N kg v) | =2(1+0,0)7 T&(kz —k.)6,_ (B.8)
N*(r, N, kL, V) N(r, A ks, v)

For the particle moving along trajectory rq(¢), the eigenfunction expansion of the scalar Green’s

function for the scalar waves equation

curl curl ¥ — ﬁc’;\y = —dr / dt et J—(T_TL(t))J(x — 2o(£))5($ — o (2)) (B.9)

is
Ju(Ar) ,El)()\ro) ifr <wrg

(B.10)
LOr)HP ) i r > g

G(r,ro, A v, k) = ind(w — vQy — kyvz) {

This particular choice of Bessel and Hankel functions insures that the solution is regular at zero and
corresponds to the outgoing wave at infinity.

The corresponding dyadic Green’s functions for the vector waves equation (B.1) can be found

using the relations

Gp(r,ro) = curlZG(r,ro) (B.11)
Ge(r,rg) = (I+ %VV) G(r,ro) (B.12)

where 7 is a unity matrix and G(r,rg) is the scalar Green’s function.

The eigenfunction expansion of the electric dyadic Green’s function is

Ge(r,ro, \, v, ke) = im(2 — 6,,0)8 (w — kgvp — kzuq)

L*(Ar) A L(Aro) + M*(Ar) A M(Aro) + N*(Ar) A N(Xro) (B.13)
which, using relations (B.12), gives

gE(Ta T0, )‘) v, kz) = 7,7!'(2 - 61’»0) (

ke X s
Hﬁl)()‘r)e‘?’ — ZTHIEU()‘T)%> A (J[,(/\ro)e, + ;—;Jy(/\ro)e(b + zT.L,()\ro)egg)

v

(1) —
(Hl, (Ar)e, yy"

c?)\? S kzv 1
+— (—27H5 ) (Ar)e, — mﬂg Y(Ar)eg + HY )()\r)ez>

ka: kzll
A (2—/\—J,',()\r0)er - EEJV(/\TO)% + J,,(/\ro)ez)
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i gW — g il _J
+< z)\TH,, (Ar)e, — H, (/\r)e¢>/\(z/\ro.],,(/\r0)e, JU(/\ro)e¢,> (B.14)

The first term here is just the eigenfunction expansion of the Green’s dyadic for the point source.
The magnetic Green’s function (the Fourier transform in ¢, z and t) for the vector wave equation
is

G (T‘, T, A, U, kx) = i7r(2 — 61,,0) N* ()\7‘) A M(/\T‘o) + M*(/\T) A N(/\To) (B15)
which, using relations (B.12), gives

A
gB(T7 To, Ay v, kz) = 7'7T(2 - 51/,0)%

% ko kov
(—ZvHEl)(AT)eT - H,SI)I(AT)EL;S) A (ZTJ:,(ATO)GT — ;\ET—OJV(AT'())e(ﬁ -+ J,,(/\ro)ez>
Ko a1y kot pra) (1) Y /
+ —ZTHV ()\r)er — */\2—THV (/\T‘)e¢ + HV ()\r)ez A ley(ATo)er — J,,()\ro)ed, B.1 )
0

The solution to the inhomogeneous vector wave equation (B.1) is given by the integral with a

kernel given by the dyadic Green’s function
F(r, A\ v, kz) :/dr'g(r,r',)\,u, k2)-Q(r', A v, by yw) (B.17)

where Q(r’, A\, v, k;) is a Fourier transform of Q(r) and - denotes a scalar product.
For the particle executing the helical motion with the velocity v = {0, vg, v, }, the current density
is
j(r) = qvé(r —rp) (B.18)

The Fourier transform of the current is

8(r — o)

v ke, w) = /dme‘ik” /dtei“’t/dqﬁe_i" i(r) = qvi(w — vQy — kvy) (B.19)

Using Eqs. (B.14), (B.17) and (B.19), we find the transverse component of the electric field:

By = mq(2 - 8,,0)28(w = v — kova) (= I, (ro)vy (—in IV (Ar)e, — HI'(Ar)es)

C

A\ [k, vy i FS— kev . 1 1
- ( o uz> J,(Aro) <-27H£ Y (Ar)e, — EHﬁ Y(Ar)eg + HY )(Ar)ez> )B.ZO)
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In the wave zone, Ar > 1, and for v >> 1 this can be simplified

. 2 w i, c2\? kL) K
E, =igm4/ oy we A (w—vQg—kyvz) (JL()\ro)v¢e¢ - <— v ¢ 4 vx) Ju(Aro) (zTer + ey
(B.21)

Similarly, we find magnetic field

ke
B = imq(2 — 6,,0) A 6(w — v — kovy) (—iLHy)(Ar)er - H51>'(Ar)e¢) — g v ) T (o)
Ar A To
Kk kg
- (A (e, = 5D (r)es + P (e, ) T (o) (B.22)

which in the limit Ar >> 1 and v > 1 gives

. 2 o } krvQd ky
B = igm4/ W/\e M (w — vy — kpvz) (le,()\ro) < v ¢ _ yz> es + (—/\—er + ez> JL()\TO)%)
(B.23)

The Pointing flux, S = cE* x B/(4r), for r — oo is then

2 k 2 k
S = ‘17‘” (va; i <LC _ wv;) Jf(Ar0)> <eT + TIe””> §(w — vQy — kyvy)dldwdk,  (B.24)

where dl = rd¢ is a unit arc length of a cylinder.

We are interested only in the radial component of the flux. Equating the Pointing flux to the

emissivity, we find

k. wug

2
nw, k) = ¢*w <JL2U<2/> + ( T ) Jz()\ro)> S(w — vy — kyvg) (B.25)

which is exactly the cyclotron emissivity per unit range d¢ dw dk,.
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Appendix C Resonant Electromagnetic Waves in

the Asymptotic Regime z > 1

In this Appendix we consider resonant wave-particle interaction in a medium. We are concerned with
case, when the interaction occurs ”outside the light cylinder” (see Section A.3 and Fig. A.1), which
corresponds to case z > 0 (Eq. 6.24). In particular, we show that in the limit z > 1 in cylindrical
coordinates the wave-particle interaction may be described by the plane wave approximation. This
fact allows a considerable simplification, when calculating the resonant terms for in the dielectric
tensor (see Section 5.2).

We wish to simplify the relations (A.14-A.17) in the limit z > 1. Instead of standing waves,
described by Bessel J functions, we consider propagating waves, described by Hankel H(1) and H®

functions. For the outgoing waves, corresponding to H(1)| we find in the limit z > 1:

Hmz__jﬂi_g%émﬁg
Jrvi/3z1/4
.23/421/4 iﬂzii/? T
H(l)l ~ _Z—M;} e’ "3 + 4 (Cl)
We next define the radial wave number
OlnHW
kr = —ZT (02)
Using Eqgs. (C.1) and (C.2), we find
V22X .
k= _1,1% ~ V253 (C.3)

Introducing a notation kg = v/r, the waves in the isotropic dielectric in the limit z > 1 may be

written
k.k kyk
(i) = gl [ _Zelr, otz
EYY(k,w)=F ( 3 er 53 ey +ex) (C.4)
B (k,u) = %G—E(”) (kger — ky ey) (C.5)
[
E®(k,w) = E® (kye, — krey) (C.6)

52
B® (k,w) = E® (krkzce, + kqusced) - &ex> (C.7)
w w w
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with k = {k, k4, kz} and a phase dependence exp{—i(wt — k,r — kg — koz}.

With these notations the dispersion relation is

k2 4+ k24K = wc—z;e (C.8)

Relations (C.4-C.7) look similar to the relations (A.21), though they were obtained in quite a
different manner. Expansions {A.21) are valid for Ar — v > v with the radial wave vector defined by
(A.19). Expansions (C.4-C.7) are valid for Ar = v and £ > 1 (the radial wave vector in this case is
defined by (C.3)).

The importance of these results is that in these two limits the electromagnetic wave in cylindrical
coordinates look like plane waves. This is a considerable simplification. It allows one to implement
a well developed technique of Fourier transforms in considering the wave propagation.

This representation of the electromagnetic fields requires (i) the presence of a medium with the
index of refraction n > 1, (ii) superluminal motion of the resonant particle § > 1/(2v?), and (iii)
large harmonic number v > §=3/2,

Another important feature is that in this limit there is an additional freedom in the choice of

wave polarizations in an isotropic dielectric. For example, we can introduce the polarization vector

corresponding to the waves (C.4-C.7):

elt) = %{kqs, —k,,0} = {sin¢, —cos ¢, 0}
elt) — {—cos¢sinf, —sinysinh, cos b} (C.9)

which satisfy relations

et =¢, x e,

et = ¢, x ¥ (C.10)

The special role played by the e, in defining the polarizations of the normal modes comes from
the fact that in the isotropic homogeneous medium, the solutions of the vector wave equations may
be chosen to be tangential to the coordinate surfaces e;. In the nonisotropic medium this is not
true.

Alternatively, in the limit z > 1 we can chose the following polarizations

e(t) = i{_kr’ 0, kr}
ki

1
o) —

= m{k(i,k“ —k3  koky} (C.11)
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(see Fig. C.1). This particular choice of polarizations has an advantage that it may be related to

the polarizations in the straight field line geometry.
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Figure C.1: Polarization of normal modes in the limit of very strong magnetic field. The electric
field vector of the -mode is in the plane e, — e, and the electric vector of the lt-mode is orthogonal
to e; — k plane.
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Appendix D Relativistic Maxwellian Distribution

We seek an appropriate expression for the relativistic one-dimensional distribution. The aim of this
Appendix is to define the relevant physical quantities measured in different systems. The relation
obtained in the Appendix are extensively used in Chapter 5.6 when considering the properties of
waves in a relativiscally hot plasma.

Relativistic covariant dispersion relations for plasma waves have been considered by Godfrey et
al. 1974a, Melrose 1982 and others (see reference in Melrose 1982). The general expression for the

frame-invariant distribution function is

flp, )™ = exp {u(r) - Bp*U, } (D.1)

1
2nh)3

—~

where p is a chemical potential, 8 = 1/T), T is invariant temperature, p is the momentum of the
particle, p¥ is a four-momentum of the particle and U, is four velocity of the reference frame (speed
of light and particle mass are set to unity in this Appendix).

Next we define a flux four-vector:

N = [ Ry o)™ = (e, 0,30, 0) (D-2)

An invariant density, measured in a particular frame with the four velocity U, is then
— NV — dp v inv
ne = N'U, = 7(27 U.)f(p) (D-3)

In particular, the invariant density in the rest frame (with U2 = {1,0,0,0}) is n°® = N*U?S. We

normalize the distribution function (D.1) to the invariant density of particles in the rest frame
dp
Ne = /WQXP{“@Y} (D.4)

Then, for a one-dimensional distribution f(p)"™ = §(p%)f(p)™"*/r (below p is a component of

momentum along magnetic field)

PRI = s exp (=™ U} (D5)

where we introduced new variables v = coshz and v, = coshy and used a relation (Gradshtein &
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Ryzhik 1980, (3.547.4))
inf
/ dx cosh z exp{—coshz} = 2K1(5) (D.6)

—inf

The density in the frame moving with the four velocity U, = {v,, vp7,} (where v, =1/,/1 — vZ) is

n=N°= /dpf(p)"“’ = YpNo (D.7)
In this work we use the distribution function normalized to the laboratory density n

exp {~0p"U, } (D.8)

0wl 4, )

flp) = ™ - 2K1(ﬂ)’)’p

There is a natural simplification of the distribution function (D.8) in the case 8 > 1, v, > 1
(cold plasma streaming with large Lorentz factor). In this case the distribution is strongly peaked at

7 = 7p s0 we can expand the distribution function, keeping terms up to the second order in v — ,:

TLL ) {_/3(7 —%)° (r =)’ } (D.9)

n
2K1(6) 7 2(2 - 1) } = VarAy ¥ {“ 2A~?

where we introduced Ay = \/Tvp and used the fact that v, > 1.

In Table D.1 we give the estimates of the moments of the relativistic Maxwellian distribution.
< ... > implies [ dp...f(p)/n, where n is the noninvariant density in the laboratory frame.

The arguments of the Bessel functions in Table D.1 are 1/7,. When calculating moments we

used a relation

° d" K
/ dz ezp(—f cosh(z)) cosh(z)" = (—1)" ~d;T(m (D.10)
0
The asymptotic relations for the modified Bessel functions are
K, (z)=,/5=¢€e"" (1—!—%‘—1) z — 00 (D.11)

Ko(z) = — In(z), Ku,(z)=1iTWw) (§)™" z—0 (D.12)
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Plasma frame

Pulsar frame

Density, <1 > 1 L
Tp
. YW (1+T/2+Twk) T, <1
KotKy 1+T,/2) T, <1 KetKs o 7 2) —
<7> 2 T 1 Y\ 2w, Tip) =
P Hip > 1Ty (1 +22) if T, > 1
<v> 0 Up
Toup(1+ T,/2) T, <« 1
<p> 0 QEQEM~ =
270, T ifT, > 1
T, v2 .
B (14T, +52) T, <1
< pv > T, o Aﬁwﬁw + Hﬁv =
7 Tp AH +emv ifT, > 1
-T,/2) ifT, 1 -
H ) 1-Tp/2) T, < . 1 Mm\m T, < 1
<= > e = K,
¥ Ky Tp K1 log T, .
_o%ﬁﬂm T, > 1 I«Nﬁuﬂu ifT, > 1

Table D.1: Moments of the relativistic Maxwellian distribution
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Appendix E Cutoff and Cross-Over Points for

Parallel Propagation

Using streaming Maxwellian distribution it is not possible to find the exact expressions for the two
important frequencies: cutoff frequency (a limit & — 0 of the plasma wave dispersion) and the
cross-over frequency (when the ordinary mode has a vacuum dispersion relation).

The cutoff frequency is

drwg® [ dp
w?utoff = Me ?f(p) = (E1>
and the cross-over frequency is
4rg* [dp f(p)
2 —
Weross—over — Me /? (1 _ ’U)2 (EQ)

For the case of relativistic Maxwellian distribution (Eq. 5.67) the expression for the cutoff

frequency may be re written as

w dz

2
w? = £ / exp{ —08 cosh E.3
ol f = 2K (B)%p J coshi(z + 1) p{—Bcoshz} (E.3)

where v, = coshy. The corresponding integrations in the case 8 > 1 (cold plasma) may be
performed using the steepest decent method. For 3 > ~, the "sharply” peaked function under
integral sign in (E.3) is exp{—8coshz} so we can use expand around the point z = 0 to obtain
2
2 [m exp{-B} “p .
= |——=t "] _ P E4
wcutoff 2,827321(1(,8) ’)’g 1 ﬁ>> Yo ( )

where w2 = 4mg’n/m,.

For 8 « 1 (hot plasma) we can make the following approximation to the exponential function:

1 ifl <z < -1
exp{—fcoshz} =~ iflogh <= 08/ (E.5)

0 otherwise
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We find then

for >1
w2 _ n log 283 dz B 4»73 ﬁ')’p
cutoff ™ QKI(IB),), h2 -
p J~log28 cosh™(z +y) w2
—LT'Yp for By, « 1
where we used log 26
°8 dz 2
/ 5 = s— for B <1
—log2p cosh’(z +y) 1+48%y;

(E.7)

An interesting consequence of Egs. (E.4) and (E.7) is that in the case of relativistically hot

plasma streaming with very large Lorentz factor, so that v, > T > 1, thermal motion increases

the cutoff frequency, while for the lower streaming Lorentz factors thermal motion decreases the

cutoff frequency.

The calculations of the cross-over frequency (E.2) may be done exactly:

w

p

cToss—over 2K1 (ﬁ)’)’p oo COSh2 T (1 . tanh :1:)2
dypwilT T>1
2vpw2 T«1

2 B wy /°° dr  exp{—fcosh(z —y)} (1 +ﬁp)2K2(ﬁ)w§
- 2K1(8)

(E.8)
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Appendix F Conditions on the
Cyclotron-Cherenkov Instability

In this Appendix we consider the development of the cyclotron-Cherenkov instability in magne-
tosphere of the typical pulsar. We show that the conditions on page 122 (Chapter 8) for the
development of the cyclotron-Cherenkov instability are satisfied for the typical pulsar.

The conditions for the development of the cyclotron-Cherenkov instability may be easily derived
for the small angles of propagation with respect to the magnetic field. Representing the wave's

dispersion as

wiT

P
'a‘é%g X mode
_ _ wiTy Yp w2Tp sin® 6
w = ke(l = §), where § = 475(‘)23 - B O mode (F.1)
wiT 2.2 . 2 ,
p b 4 kZc sin 6 Alfvén mode

473 wd T gy, wiT,
and neglecting the drift term, the resonance condition (6.1) may then be written as

R A2 (F.2)

292 2 W Yres
Let us discuss the condition for the development of the cyclotron-Cherenkov instability. First
we note that Eq.(F.2) requires that 571’2_—: < 4 and 9—22 < 6. The first is the condition that the
particle is moving through plasma with the velocity faster than the phase velocity of the wave. The
second condition limits the emission to the small angles with respect to magnetic field. Assuming

that 2—712— < 6 and % <« ¢, we find from (F.2)

2 3 * 2 6
w=-28 _ ™ Ys < R > (F.3)
'71"635 /\Tp'Yres Q Rys

This resonant frequency increases with radius as RS.
Using the upper limit on the frequencies for the relations (F.1) to hold, namely w < vy, wp/Tp.
This sets the limit on d: § > T, /{ ¥p ¥res). This condition is satisfied for the radii:

(F.4)

< R ) <2'y§ wB,N_g)l/B 5 x 102 for the beam

Bns Tres AL 2 x 10°  for the tail

This is the radius where the resonance condition first becomes satisfied for the particles of the
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primary beam and from the tail of the distribution function.

The cyclotron-Cherenkov instability growth rate is (i.e. Kazbegi et al. 1991c):

I = ™ u)12),1-e3.5x T )\/\resTp Tres 02
“Va2way V2T Ay ~3 wp (F.5)
P B

where we have normalized the density of the resonant particles to the Goldreich-Julian density

2 _ 2
p,res — /\"'“33 was-

w
It follows from (F.5) that the growth rate increases with radius as R®. Deeper in the magne-
tosphere the growth rate is slow and the waves are not excited. At some point the growth rate

becomes comparable to the dynamic time I'/QQ = 1. This occurs at

1/3
R A~y 3 * 2 x10%  for the beam

Rys VEAM vesTpYres O 1x10% for the tail

Using the equipartition condition (4.5) we conclude that at a given radius the growth on the
tail particles is approximately the same (the higher resonant density is compensated by the higher
resonant vy-factor).

Starting this radius the waves will start to grow with the growth rate increasing with radius.
The highest frequency of the growing mode is determined by the condition (F.3) evaluated at the
radius (F.6):

1 x 10%rads™!  for the resonance on the beam

Wmaz = (F.7)
4 x 10'rads™! for the resonance on the tail

These estimates show, that for the chosen plasma parameters the cyclotron-Cherenkov instability
always develops on the tail of the distribution function and can also develop on the particles from
the primary beam. The higher density of the tail particles favors the development of the instability
on the tail particles. The cyclotron-Cherenkov instability on the tail particles occurs deeper in the
magnetosphere on the higher frequencies than the cyclotron-Cherenkov instability on the primary
beam, which can develop further out in the magnetosphere and produce emission at the lower
frequencies.

The growth rate of the cyclotron-Cherenkov instability should satisfy two other conditions: the
growth length must be much less than the length of the coherent wave-particle interaction and the
kinetic approximation should be valid. The coherent wave-particle interaction is limited by the
curvature of the magnetic field. A particle can resonate with the waves propagating in a limited
range of angles with respect to the magnetic field. As the wave propagates in a curved field, the angle

that the wave vector makes with the field changes and the wave may leave the range of resonant
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angles. If the range of the resonant angles is A§ then the condition of a short growth length is
c

For cyclotron-Cherenkov instability we can estimate Af ~ /6. Then we find a condition on the

radius of curvature

1 c Ay 101 cm for the beam
B > ~
V21 AresQ Yres83/2 5x 10%cm  for the tail

R (F.9)

at the distance R = 2 x 10%m. The region of the cyclotron-Cherenkov instability is limited to the
field lines near the central field line. The transverse size of the emission region may be estimated as
T = R?/Rp ~ 108cm. This gives an opening angle of the emission §¢™ = z/R =~ 2°.

There is another condition that the growth rate (F.5) should satisfy, namely the condition of
the kinetic approximation. In deriving the growth rate we implicitly assumed that the wave-particle
interaction is described by the random phase approximation, which requires that the spread of the

resonant particles satisfies the condition
kévyes| > T (F.10)

For the particle streaming in the curved magnetic field without any gyration, this condition takes

the form
Ay  swgAwy

Axy
kyje— + kyug—— + >T F.11
i ~3 5 42 ( )

For the cyclotron-Cherenkov instability the last term on the left-hand side of (F.11) is dominant

and the condition (F.11) becomes
wg Ay

2
res

>T (F.12)

Using the growth rate (F.5), this condition may be rewritten as

1/6

R [2 Ay2wh 3
2 7 7B ’p = 10° F.13
<RN5> <<< 7r/\TesQ27§es’\TP 3 x40 ( )

Eq.(F.13) means that the kinetic approximation is well satisfied inside the pulsar magnetosphere.
Thus, the conditions for the development of the cyclotron-Cherenkov instability may be satisfied
for the typical pulsar parameters. The waves are generated in the observed frequency range near
the central field line. The radius of emission is = 10%cm, the transverse size of the emitting region is
~ 10%cm and the "thickness” of the emitting region is < 10%cm. This may account for the core-type

emission pattern.
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Appendix G Grow Rate for the Cherenkov-Drift

Instability

In this Appendix we calculate the growth rate for the Cherenkov-drift instability in the plane wave
approximation. Originally this growth rate has been obtained by Lyutikov, Machabeli & Blandford
1997a, using the single particle emissivities. Here we give a derivation using the simplified dielectric
tensor (Eq. (5.28)). The relevant components of the antihermitian part of the dielectric tensor

(5.28) are Lyutikov & Machabeli 1997:

4m?q? 0f(py)
" . 2 ¢
= —f—— - k - hg )
€2z i— /dpasud s 6 (w — kv — kzua)
Ar?q? 9f(py)
Elzlqﬁ = — e /dp¢udv¢ 8p¢ é (w — k¢v¢ - kzud) = ng,
Al 0f(pg)
e =it P gy 1T ets ~ ana). o

The growth rate of the Cherenkov drift instability (Melrose 1978c):

of(p)
I'= [ d k hk - . 2
[ dputic.p) i 221 (G2)
Growth rate for the lt-mode is
dr2g? kokrug ve koL 2 0f(py)
= dp, | 2224 T¢TL 005 (w — kyvg — ky G.3
m Po < ckk c k Ops (W= kyvg ud), (G-3)

and growth rate for the t-mode is

4rg? keug\’ 8
It = mq dpy (ﬁ) ’;;i"’)a (W — kgvg — kpug) . (G.4)

Where we chose the following polarization vectors

1
oIt — WD {kokr, =k, koks ),

et = i{—kzaoykra}v (G5)
k1

where k, = \/k2? + k2 and

k = {ky, ky, ks }. (G.6)
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The maximum growth rate for the t-mode is reached when k;/ky = ug/c and the maximum
growth rate for the lt-mode is reached when k, = 0. We also note, that in the excitation of both lt-
and t-wave, it is the  component of the electric fleld that is growing exponentially.

kdgkzud

Estimating (G.3) and (G.4) using é-function ( max | kﬁf ] = ¢v/26/uy and max[w - %"3%]

~ V26), we find the maximum growth rates of the t- and lt-modes in the limit § > 1/42,

22 106  9f()
t it . ““pyres Y Y
=r w <1+u§72/c2 Oy >Tes’ (G.7)

where wy, ;es is the plasma density of the resonant particles.

We estimate the growth rates (G.7) for the distribution function of the resonant particles having

a Gaussian form:

I _(ps —m)?
$o0) = o ep (8220, (@)

where pp is the momentum of the bulk motion of the beam and p; is the dispersion of the momentum.

Assuming in (G.7) that ugys/c > 1, we find the growth rates

2 w? &vp 2
I‘\t — Flt ~ ~ _bres , G.9
T wAy? ol (G9)

where v, = py/(mc), Ay = Ap/(mc).
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Appendix H Conditions on Cherenkov-Drift
Instability

In this Appendix we consider the development of the Cherenkov-drift instability in magnetosphere
of the typical pulsar. We show that the conditions on page 122 (Chapter 8) for the development of
the Cherenkov-drift instability are satisfied for the typical pulsar.

Since Cherenkov-drift resonance requires a very high parallel momentum, the resonant interaction
will occur on the high phase velocity waves. This implies that, like cyclotron-Cherenkov resonance,
Cherenkov-drift resonance is always important for the extraordinary mode, while for ordinary and
Alfvén modes it is important only for small angles of propagation. We can then use the small ap-
proximation to dispersion relations for the small angles of propagation (F.1). Introducing cylindrical
coordinates x , 7, ¢ with r along the radius of curvature of the field line, z perpendicular to the plane
of the curved field line and ¢ the azimuthal coordinate (Fig. 5.1), the resonance condition may then

be written as

1 1, 1 .
R U = H.1
552, 0t 5 (0 —ua/e)" =0 (H.1)
2
whereweusedvres=c(1—ﬂ%——%),6=%andw=:—;.

We note that for the extraordinary mode, ¢ is independent of frequency and Eq. (H.1) becomes
independent of frequency as well. This means that for the given angle of propagation, Cherenkov-
drift resonance on the extraordinary mode occurs at all frequencies simultaneously. It is different
from the cyclotron-Cherenkov resonance which occurs at a particular frequency. For both ordinary
and Alfvén modes, § does dependent on the frequency, so that for a given angle of propagation the
Cherenkov-drift resonance occurs at a fixed frequency.

Let us now discuss the condition for the development of the Cherenkov-drift instability. First we

drop the % term from Eq.(H.1). This term is much smaller than § for the radii satisfying

272,
1/3
R Wt A3
< ) > 37p2 (H.2)
Rns QAT ¢

which is satisfied everywhere inside the pulsar magnetosphere.

We find then that Eq. (H.1) can be satisfied for

¥ < V26, |0 -uafc] < V25 (H3)
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Fig. 6.3 describes the emission geometry of the Cherenkov-drift instability.

From (H.3) we see that drift of the resonant particles becomes important if
ug/c > V26 (H.4)

Using the expression for § (9.114), Eq. (H.4) gives

( R ) S </\TpQw§RZB)1/3 (E5)

Rys 23 g

At a given radius this condition may be considered as an upper limit on the curvature of the

field lines 12
62 73 72
< | —rf )
Rp < (ATPQ wg (H.6)

Alternatively, condition (H.5) may be regarded as a lower limit on the radius from the star. In
the dipole geometry the radius of curvature for the open field lines may be estimated as Rg > %.

Then we find from Eq. (H.5)
NT, w} Yz
(—i) > (%@”) =23 (H.7)
RNS C’Yp FYb

In what follows we assume that the Cherenkov-drift resonance occurs in the outer parts of the
pulsar magnetosphere where the typical value of the drift velocity is ug ~ 0.01c.
The growth rate for the Cherenkov-drift resonance instability on the primary beam is calculated

in Appendix G, Eq. G.9. Expressing the growth rate G.9 in terms of the parameters of the

2 AT, Q?
= il P i H.8
\/;'ygA'yzufi w (H8)

The growth rate (H.8) should satisfy several conditions. The first is the criteria for the fast

magnetospheric plasma, we find

growth: I'/€2 > 1. This is the requirement that the growth rate is fast enough, so that the instability
have time to develop before the plasma is carried out of the magnetosphere. From (H.8) we find that
the condition I'/Q2 > 1 is satisfied for the chosen parameters and the typical frequency of emission
w=>5x10%rad sec™l.

The next condition that a growth rate should satisfy is that the growth length be much less than
the length of the coherent wave-particle interaction (F.8). Estimating the range of resonant angles

Af ~ +/§ and using the growth rate (H.8), this condition gives

R. > CY Ax?
B

2 o0 ~ 10%m at R ~ 10%m (H.9)
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Eq.(H.9) is the lower limit on the radius of curvature of the field lines. It will restrict the emission
region to the field lines closer to the central field line, where the radius curvature is large.
There is a third condition that the growth rate (H.8) should satisfy - the condition of the kinetic

approximation (F.11). For the Cherenkov-drift resonance condition (F.11) gives

A
kzud%( >T (H.10)

Estimating kyc & wug/c we find that this condition can be easily satisfied in the pulsar magneto-
sphere.

In a dipole geometry the instability occurs in the outer regions of pulsar magnetosphere with
R ~ 10° cm on the field lines with radius of curvature limited both from below (by the condition of

a large radius of curvature H.6) and from above (by the condition of a short growth length H.9).
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Appendix I Instabilities in Millisecond Pulsars

In this Appendix we consider the development of the cyclotron-Cherenkov and Cherenkov-drift insta-
bilities in magnetosphere of a millisecond pulsar. We show that the conditions on page 122 (Chapter
8) for the development of the Cherenkov-drift instability are satisfied for a millisecond pulsar, while
the conditions for the development of the cyclotron-Cherenkov are probably not satisfied.

Here we will discuss the conditions for the development of these instabilities in a "standard”
millisecond pulsar with the period P = 5 x 1073 sec and the surface magnetic field B = 108 G.
As a first order approximation we will assume that the other plasma parameters, i.e., the initial
primary beam Lorentz factor %50) = 6 x 107, the primary beam Lorentz factor at the light cylinder
7,50) = 6 x 109, its scatter Ay = 10%, average streaming energy of the secondary plasma -, = 10, its
scatter in energy T, = 10 and the multiplicity factor A = 3 x 10° are the same. The light cylinder
is now at a radius R = 2.4 X 10"cm = 24 Ryg. These are very approximate assumptions. The
plasma parameters in the millisecond pulsars are likely to be different from the normal pulsars.
At this moment we do not understand the physics of the pair production well enough to make a
quantitative distinction between normal and millisecond pulsars.

The growth rate of the cyclotron-Cherenkov instability becomes equal to the rotational frequency

() =20 )

of the pulsar at (see (F.6))

which is inside the light cylinder.
The approximation of the kinetic growth rate cyclotron-Cherenkov instability (F.13) requires
that

(i) <3 x10° (1.2)

Rys

which is satisfied. The condition of a short growth length (F.8) requires that
Rp > 10%m (1.3)

at the emission site of R =~ 20 Ry s. This condition is hard to satisfy - cyclotron-Cherenkov instability
does not develop in the millisecond pulsars.

For the Cherenkov-drift instability, the condition of a large drift (H.4) is now satisfied for all open
magnetic field lines as well as the condition of a fast growth (H.9), and the condition of the kinetic
approximation (H.10). By contrast, Cherenkov-drift instability can develop in the magnetospheres

of the millisecond pulsars.
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It is harder to satisfy the conditions for the development of the cyclotron-Cherenkov instability
in the millisecond pulsars than in the normal pulsars. Since there is no clear distinction between core
and cone-type emission for the millisecond pulsars it is possible that only Cherenkov-drift instability
develops in their magnetospheres. Alternatively, different pulsars may have a substantially different

plasma parameters, so that both instabilities may develop in some of them.
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Appendix J Effects of Curvature Radiation

Reaction on the Beam

In this Appendix we consider the effects of curvature radiation reaction on the propagation of the
beam. We show, that due to the highly nonlinear dependence of the radiation reaction force on the
energy of the particle, the beam becomes very cold as it propagates in the pulsar magnetosphere.
This vindicates the assumed small scatter in the beam energy (see Section 4.1.1, page 23). We note
here, that though the beam becomes very cold, the assumption of kinetic regime for the cyclotron-
Cherenkov instability is still satisfied (Appendix F).

Consider a beam of electrons propagating in s dipole curved magnetic field. The radius of

curvature on a field line near the the magnetic moment is

4/
Rp = §—R&{LR (J.1)

Here o* « +/Rns/R is the angle with respect to magnetic moment at which a given field line
intersects the neutron star surface.
An evolution of the distribution function under the influence of the radiation reaction form is

described by the equation:

8f(z,p¢,t) 0 6p¢'
ot

280 2 (% p,0) -0 o2

Eq. (J.2) can be solved by integrating along characteristics

22 ~4y,3
Ops _ 2% (3.3)
ot 3c3R%
With the radius of curvature given by (J.1), Eq. {J.3) has a solution
2 2 pg(t)
1 p; + (mc) p 3r.a*?
5 5 +1In d = In(t/t,) (J.4)

Py 1+ /p3 + (me)? ) 2 Bys
0

where r, = 'T;—Zf is the classical radius of an electron, ¢y &~ Rys/c and pg is the initial momentum.
This equation can be solved for pg > mc
39r.a*?

—1/3
Yo(v,t) =~ <1 Y-y 1ﬂ(‘f/to)) (3.5)

8Rys
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Figure J.1: Evolution of the distribution function of the primary beam due to the curvature radiation.
Initial Lorentz factor of the beam is vy, = 6 x 107 and the initial scatter is Avyy = 106.

Solution of the continuity equation (J.2) is then

Fo ) = fo <vow,t>, t=to) (%(Z,t))% (1.6)

where fo(70,% = to) is the initial distribution function at R = Rys.
Evolution of the distribution function is shown in Fig. J.1.
If originally the beam had a scatter in energy A«p, then at a later moment it will have a scatter

in energy given by

9r.o*?
Ay = Ay (1+ % ¥

-4/3
ln(t/to)> (3.7)

NS
which implies that the scatter in energies of the beam may decrease much faster than its average
energy.

To estimate the decrease in the average energy and in the energy scatter, we consider an evolution
of the beam on the last open field line. Then o*? = Rys§2/c and at the light cylinder (¢t = 27/)

we have

-1/3
y 3970 2mc
< _[1 hd
( + 708 c ln(RN'SQ)

97r.Q 27re —4/3
=7 _ (1 32 ¢ n(—— J.8
Ao < TNy n(RNSQ)) (J.8)
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which may be expressed as

Ay A 8
87 _ A% (1) (1.9)
Y Yo Yo

If the original beam was mildly relativistic ( Ayp &~ 0.1), then in order to reach a scatter Ay/ v ~
107* the beam would have to lose about 90% of its original energy: </~ ~ 0.1. Estimating (J.8),
we find that the scatter in the energy of the beam on the last open field line at the light cylinder for
the normal pulsars may be as small as Ay, = 100. This vindicates our assumption of the chosen
beam energy spread.

In the normal pulsars the cooling of the high energy beam is important for the vy > 2 x 107.
In a millisecond pulsars it becomes important for the v > 2 x 10°. The cooling of the resonant
particles increases growth rates of both cyclotron-Cherenkov and Cherenkov-drift instabilities. On
the other hand, the kinetic approximation condition for the Cherenkov-drift instability may not be
satisfied for a very small scatter in energy of the resonant particles. Unlike the cooling, the change

in the average energy of the beam is normally not very important and is neglected.
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Appendix K Instability on Ion Beam

In this Appendix we show that both cyclotron-Cherenkov and Cherenkov-drift instabilities do not
develop on the ion beam.

If the relative orientation of rotational and magnetic axis is such that the electric field pulls up
positive charges, then the primary beam may consist of ions. Since the energy of the curvature
photon is independent of the mass of the particle, the critical Lorentz factor of the charge particles
needed for the pair production is also independent of the mass of the particle. Tons will be accelerated
to the same Lorentz factors as electrons v, &~ 108=7. It is possible that in approximately 50% of
neutron stars the primary beam will consist of ions. In what follows, the ratio of ion and electron
masses will be denoted as p = m;/m, == 10374.

First we consider a cyclotron-Cherenkov instability on the ion beam. If the primary beam
consists of ions, then the cyclotron-Cherenkov resonance at the given frequency occurs closer by
a factor p*/% &~ 3 (see F.4). This will increase the density of the resonant particles by =~ 30, but
the growth rate for the cyclotron-Cherenkov instability (F.5) is proportional to the squared plasma
frequency of the resonant particles, which is inversely proportional to the mass of the particles.
Taking into account that the condition of the kinetic instability is independent of the mass of the
particle, we conclude that the cyclotron-Cherenkov instability on the ion beam does not develop due
to the very small growth rate.

The growth rate of the Cherenkov-drift instability is proportional to p=2 (Eq. G.9), so the growth
rate on the ion beam is many orders of magnitude smaller than the growth rate on the electron beam.
Thus, we conclude that both cyclotron-Cherenkov and Cherenkov-drift instabilities do not develop
on the ion beam. The pulsars with such a relative orientation of magnetic and rotational axis that
the induced electric field accelerates ions can produce radio emission only at the cyclotron-Cherenkov

instability on the tail particles.
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Appendix L. Calculation of the Radiation

Reaction Force

In this Appendix we give the derivation of the expressions for the transverse and parallel parts of
the work done by the radiation reaction force (Section 6.1.2, Egs. (6.20)). We first simplify the Eq.

(6.15) for the case of real polarization vectors:

e? ¢ e; (v -e;)
frr = ~53 z; /0 dt’ / dk [n—f cos(w(t —t'))cos(k - (R - R/))—
i &%x—e]) sin(w(t — ') sin(k - (R — R’))} , (L.1)
where we used the relations
cos(k- (R~ R/ W, o
(k-( N S .00 T () cos ¥, L)
sin(k- (R - R'})) s sin ¥, o

The argument of the Bessel functions is A = (k sin@ R ), 6 is the angle of propagation with respect
to magnetic field, and we introduced ¥, o = (swy + kyvg)t — (s'wy + kyvy)t’. The velocity of the
particle given by v = (v) cos(wg t), vy sin(wy t), ve).

The polarization vector are: for extraordinary mode we have e(*) = (0, 1, 0) and for the ordinary
mode el®) = (cos§, 0, —sin ).

The integration over dt’ may be performed using the relations

t
/ 4t cos(w(t — ') cos(egr(t,t)) = T8y.0 6w — swir — ki vg)
0

¢
/ dt' sin(w(t —t')) sin(Te,s (8, 1)) = 7 ds,s 8w — swy — kg vy), (L.3)
0
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Appendix M Calculations of the Resonant

Integrals

The calculations presented in this Appendix are used in all the calculations of the kinetic growth

rate of the instabilities.

01 (ps)
- 3
"~ kcosfm, (qu’y OPs  / res

/dp¢ (kvy — wcos 6)2 f(ps)d (w' _ w_3_> —
gL
1

__keccos8 < wBPs
my 3me

/dp¢, (kvy — wcos 6)2 fps) \ 6(Pp — Pres)

For wg > kc this reduces to

7% (wsin 02 — wg/v) ) ~ <wa(PaS)>

wpvg cos? § Vg cos% 6§

Similarly we have

[ dnotes = kv cos)1(p)s (9= 22 ) = (ﬁ@)

Yo Vo
and

[ pate — ks cos0)?(pp)6 (- 22 ) = (22022

b )

(M.2)

(M.4)

(M.5)
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Appendix N Phase Tracks of Particles Emitting
Along Magnetic Field

In this Appendix we consider phase tracks of a single particle emitting electromagnetic waves along
the magnetic field. We show that a resonant particle can lose up to half of its energy into radiation.
This sets an upper limit on the effectiveness of the emission generation.

We assume that the initial transverse momentum is assumed to be zero. If there exists an initial
strong wave that propagates along the magnetic field and interacts resonantly with the particle, then
the emission of a single particle into this mode will be strongly amplified (by the large occupation
number of the final states), so that the single particle emission into this mode will dominate over
the spontaneous emission at other directions.

First we find integrals of motions. The two integrals of motion come from the following equations

(m = c =1 in this Appendix):

Apgy = nly (N.1)
d(p}) = (1 —nBs)d(v?) (N.2)
Eq.(N.1) is a consequence of the fact that the change of energy of the particle Ay = —hw is

related to the change of impulse along magnetic field Apy = —fiwn . Eq.(N.2) may be obtained by
differentiating the relation

7' =1+py+pl (N.3)
From Eq. (N.1) we find the first integral of motion

d(v(n=0s)) =, v(n-L0s)=r(n—-LBs0) (N.4)

From Eq. (N.2) and using Eq. (N.4) we find the second integral of motion

@ (b ~7(1 = n*) = 2y3on(n — B2,0)) = 0

Pi =10 =207 —v)von(n — Byo) + (n* — 1)(v4 —~7) (N.5)

where we can use p; o = 0. Using Egs. (N.3) and (N.5) we can parametrize the parallel momentum:

Pl = pf o = 270nB:0(7 = Y0) + (v — 70)*n? (N.6)
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Egs. (N.5) and (N.6) give a parametric dependence of py and py. Each phase track is specified by
the choice of vp = 1/+/1 — B8z,0% and + plays a role of a parameter along the phase curve.

From Eq. (N.5) we find that p; has a maximum at

« _ yon(n = Bs.0) _ (nBs0—1)

n2 -1 ’ PL= vn? -1 (N’?)

vy

This corresponds to the transition n8; = 1. At this transition the pitch angle ¢ = p, /p; = v/24.
For v > +* the parallel velocity of the particle is larger than the phase speed of the wave, so the
particle emits waves (along the magnetic field) at the anomalous Doppler effect. For smaller Lorentz
factors v < v* the parallel velocity of the particle is smaller than the phase speed of the wave, so the
particle emits waves at the normal Doppler effect. Wave emission at the anomalous Doppler effect
is accompanied by the increase in pitch angles, while wave emission at the normal Doppler effect is
accompanied by the decrease in pitch angles.

Previous relations can be simplified if we take into account the n = 1+ with § < 1 and assume

that 2 > 1/8. Setting 82,0 to unity we find then

PL=(w—7r-1D(0+v—nlo-)

pi=(w-n(0-7)"-1

(N.8)
(see Fig. (N.1)).
Next we simplified relations (N.8) and (N.7) by expanding in small § = n — 1:
L= (10 =718 (27 — 706)
pi=(v—70)°~1
. _ 0 7%0V6
= — * = N.9

Eq. (N.9) implies that the beam cannot lose more than half of the initial energy into radiation.
After losing half of the initial energy, the radiation reaction slows beam to the velocity lower than

the phase velocity. If we introduce an effective parallel Lorentz factor

=1+-L (N.10)

then at the point when v = +v* we have
'y]’[‘ N — (N.11)
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Figure N.1: Phase tracks of a resonant particle. The curves are shown for § = 0.01 and for two
values of initial Lorentz factors: 7o = 10* and vy = 5 x 103. Initial transverse momentum is zero.
The transverse momentum has maximum at vxZ2. For larger v the particle emits waves at the
anomalous Doppler effect which increases pitch angles, while for smaller v the particle emits waves
at the normal Doppler effect with decreasing pitch angles.
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Relations (N.9) can be further simplified for v >> 7,6:

pl = 2v(v0 ~7)9

pj =7 —1— 27790

So that the pitch angle is given by

PL 26(v0 =)

~
~

(N.12)

(N.13)
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