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Abstract

In this work we investigate some possible mechanisms for pulsar radio emission. First we analyze
the normal modes of a strongly magnetized electron-positron plasma taking into account a possible
difference in the distribution functions of electrons and positrons. The dispersion relations, polar-
ization properties and various regimes of beam instabilities in pair plasma are considered. We argue
that kinetic instabilities of electromagnetic modes are more promising candidates for the pulsar ra-
dio emission mechanism than electrostatic instabilities (which occur in the hydrodynamic regime).
We elucidate the microphysical processes underlying cyclotron-Cherenkov and Cherenkov-drift emis-
sion, stressing the importance of collective plasma effects involving all the particles of a medium.
We show that cyclotron-Cherenkov emission at the anomalous Doppler effect can account for various
observed phenomena of the ”core” emission. Cherenkov-drift emission is a likely candidate for the
"cone” emission.

We developed a new description that treats Cherenkov-drift emission in cylindrical coordinates.
This approach describes consistently the resonant wave-particle interaction and provides a link
between the Cherenkov, curvature and drift emission mechanisms recovering them as a limiting
cases of the Cherenkov-drift emission process.

We also consider two possible nonlinear stages of the development of the cyclotron-Cherenkov
instability: quasilinear diffusion and induced Raman scattering. We calculate the asymptotic par-
ticle distribution and emerging spectra for the cyclotron-Cherenkov instability and also show that
induced Raman scattering may be important for the wave propagation and nonlinear saturation of
electromagnetic instabilities. Finally, we considered the escape of waves from a pulsar magnetosphere

taking into account cyclotron, Cherenkov and Cherenkov-drift absorption processes.
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O CKOJILKO HAM OTPBLITUH Yy IHBIX
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O how many miraculous discoveries
The spirit of enlightening prepares
And experience - a son of mistakes difficult,
And genius - a friend of paradoxes,

And chance - God inventor.
A.S. Pushkin
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Whoever needs Heaven when earth is so near?
Heaven'’s light is a promise at best;

Though the joys of our earth are deplorably few,
They are something that people can test.

Earth and Heaven, M.Yu. Lermontov
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List of Frequently Used Symbols

Primes signs near the physical quantities denote pulsar frame, and primes near the functions denote

derivative with respect to argument.

AZ (5.29)

B,B magnetic field

Bprr magnetic field at the pair formation front
¢ speed of light

d (5.70)

F flux

F, energy flux per unit frequency

G(r,ro, A\ v, kz) eigenfunction expansion of scalar Green’s function
Ge(r,ro), Ga(r,ro) electric and magnetic dyadic Green’s functions
i Plank constant

I moment of inertia of the neutron star
I(6,w,n) (5.119)

b current due to the primary beam

Ip current due to each plasma component
K (5.98)

K(w, k) (5.41)

k, & wave vector

ko Cross-over wave vector

L luminosity

LM N cylindrical vector eigenfunctions

Me mass of an electron

n refractive index

Ny beam density

ngJ Goldreich-Julian density

Np plasma density

N density of the fast/slow component

on density of species «

n(k), n(k) photon distribution functions
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P period of neutron star rotation
P derivative of pulsar period
pr scatter in moments of the plasma particles
q charge
Ry light cylinder
Rp radius of curvature
Bns neutron star radius
Te classical radius of electron
rL Larmor radius
ro(t) unperturbed trajectory of a particle
T (5.98)
15 temperature of plasma in units m.c?
Ug, Ug drift velocity
Up velocity of the beam
Up plasma velocity in the pulsar frame
Vg velocity of the fast and slow component
z Eq. (6.24)
W, X,Y, Z (5.49)
o Eq. (9.11)
a* page 199
temperature parameter
Be velocity difference between fast and slow component
Br Eq. (9.10)
Br thermal velocity of plasma particles
r growth rate
v Lorentz factor
Vb Lorentz factor of the primary beam
Yp average Lorentz factor of plasma
YT scatter in Lorentz factors of the plasma particles
Ve Lorentz factor of the tail of the distribution function
Yo Lorentz factor of relative streaming
Ay scatter in Lorentz factors of the resonant particles
s, 61 difference of refractive index from unity
Sim Kroneker symbol
€ dielectric constant

€lm dielectric tensor
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spectral emissivity

multiplicity factor

critical multiplicity factor

unit vector along the magnetic moment of the star
resonance parameter (7.12)

order of the Bessel functions, frequency of the wave
angular frequency of neutron star rotation

(5.29)

angular frequency of particle rotation
nonrelativistic positive cyclotron frequency

plasma frequency of the beam

angular frequency of the wave

cross-over frequency

plasma frequency

definition after Eq. (7.31)

definition after Eq. (9.60)

ratio of ion and electron masses

electric potential

angle of propagation with respect to magnetic field
critical angle of propagation near the cross-over point
Subscripts:

Alfven wave

slow Alfven wave

ordinary wave

fast transverse

slow transverse
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Chapter 1 Introduction

OTKPBIJIACh BE3IHA 3BE3J IIOJIHA,

3BE3IOAM HET CYETA, BE3JHE - JHA.
M.B. JIOMOHOCOB

An abyss opened, full of stars,

Stars have no count, abyss - no bound.
M.V. Lomonosov

A thesis opened, full of equations,

Equations have no count, thesis - no bound.

R.B. Blandford

Pulsars rank among the most interesting objects in the Universe. Physicists from a variety of
fields have been attracted by the extreme conditions which prevail in pulsars and their magneto-
spheres and which are characterized by (Michel 1991): (i)~ 10® — 10'2 G surface magnetic field, (ii)
nuclear density of the neutron stars themselves; (ili) superfluid and superconducting phases in the
interior of the neutron star; (iv) relativistic electron-positron plasmas, and so on. Pulsars appear to
be ideal laboratories for investigating physical extremes, unapproachable on Earth.

Not only are pulsars ”laboratories” (Hewish et al. 1992), they have also turned out to be excellent
sources used for many different types of astrophysical investigation. The modulated pulse arrival
time from binary pulsars has been used to detect the effect of gravitational radiation and provide a
1073 quantitative test of general relativity (Taylor 1994), an accomplishment which, like the original
discovery of pulsars itself, garnered a Nobel prize. The single millisecond pulsars provide excellent
clocks which challenge the best trapped ion clocks available and have been used to set impressive
limits on the cosmic gravitation radiation energy density. Another pulsar produced the first detection
of extrasolar planets (Wolszczan 1996). The high brightness radio emission is allowing unique wave
propagation experiments that probe the properties of turbulent interstellar plasma (e.g., Armstrong,
Rickett & Spangler 1995).

The last decade of pulsar research has been marked by exciting new discoveries (millisecond
pulsars, pulsars in globular clusters and new binary pulsars), further developments in theoretical
understanding of pulsar electrodynamics, properties of relativistic pair plasmas, interior structure of
neutron stars and a rapid progress in observational techniques like coherent dedispersion and high

temporal resolution monitoring.
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An important part of these activities is the need to understand the actual radio emission mecha-
nisms and here, it must be acknowledged there is no consensus as to its true nature (Melrose 1995).
Indeed lack of understanding of the basic character of the emission process is a major limitation to
the further development of "applied” pulsar physics.

At the present time, there are about a dozen competing theories of pulsar radio emission gen-
eration which differ both in the physical effects responsible for the radiation and in the locations
where they operate (Melrose 1995). Probably the only point of agreement between all these theories
is the association of pulsars with magnetized rotating neutron stars. By contrast, there is so much
observational data available that none of the existing theories can explain all the main observational
facts.

To date, the most widely discussed theory attributes the emission to coherent curvature emission
by bunches of particles. Though this theory can explain a broad range of observed pulsar properties
by the careful arrangement of the magnetic field geometry and of the form and size of bunches,
thirty years of theoretical efforts have failed to explain the origin of these bunches (Melrose 1995).
This theory also fails to explain some fundamental observational facts, namely the existence of two
orthogonal polarizations in pulsar radio emission, the observed correlations across the pulse profile
and a large coherent size of the emitting region (see Chapter 2).

In this work we discuss an alternative theory of pulsar radio emission developed by Machabeli
& Usov 1989, Kazbegi et al. 1991b, Kazbegi et al. 1991c, Lyutikov 1997a, Lyutikov, Blandford &
Machabeli 1997, Lyutikov & Machabeli 1997, Lyutikov, Machabeli & Blandford 1997a. The pulsar
radiation is generated by the instabilities developing in the outflowing plasma on the open field
lines in the outer regions of the pulsar magnetosphere. Radiation is generated by two kinds of
electromagnetic plasma instabilities — cyclotron-Cherenkov and Cherenkov-drift instabilities. The
cyclotron-Cherenkov instability is responsible for the generation of the core-type emission and the
Cherenkov-drift instability is responsible for the generation of the cone-type emission (Rankin 1992).
The waves generated by these instabilities are vacuum-like electromagnetic waves so that they can
leave the magnetosphere directly.

Both instabilities occur in the outer parts of magnetosphere at radii comparable to the light
cylinder radius. The location of the emission region is determined by the corresponding resonant
condition for the cyclotron-Cherenkov and Cherenkov-drift instabilities. Instabilities develop in a
limited region on the open field lines. The size of the emission region is determined by the curvature
of the magnetic field lines, which limits the length of the resonant wave-particle interaction. The
location of the cyclotron-Cherenkov instability is limited to the field lines with large curvature, while
the Cherenkov-drift instability occurs on the field lines with the radius of curvature limited both
from above and from below. Thus, both instabilities produce narrow pulses, though they operate at

radii where the opening angle of the open field lines is large.
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Figure 1.1: Distribution function for a one-dimensional electron-positron plasma of pulsar magne-
tosphere.

Apart from the association of pulsars with rotating, strongly magnetized neutron stars, the only
other assumption required for the development of these instabilities is that a rotating neutron star
generates a steady mildly relativistic, dense flow of electron-positron pairs penetrated by a highly
relativistic electron beam. At this point we know only the general features of the distribution function
of the particles in a pulsar magnetosphere (Tademaru 1973,Arons 1981b, Daugherty & Harding 1983,
Chapter 4). It comprises (see Fig. 1.1) (i) a highly relativistic primary beam with the Lorentz factor
5 22 107 and density of the order of Goldreich-Julian density ngs = Q- B/(2mec), (ii) a secondary
electron positron plasma with a bulk streaming Lorentz factor «, ~ 10 — 1000, a similar scatter in
energy Tp & 7, and a density much larger than the beam density n, & Angy = 10% — 108ng;, (iii)
a tail of plasma distribution with the energy up to ~; = 104 — 10°.

The choice of a particular distribution function (Fig. 1.1) is very important. All the following is
predicated on this choice. In particular, in our model the primary beam is composed of electrons or
positrons. We show in Appendix K that both cyclotron-Cherenkov and Cherenkov-drift instabilities
do not develop on ion beam.

The electromagnetic cyclotron-Cherenkov and Cherenkov-drift instabilities are the strongest in-
stabilities in the pulsar magnetosphere (Lyutikov 1997c, Chapter 7). This differs from the more
common case of a nonrelativistic plasma, where electrostatic Cherenkov-type instabilities (i.e.,
those that result in emission of electrostatic Langmuir-type waves) are generally stronger than elec-
tromagnetic instabilities. In addition, for a one-dimensional plasma streaming along the magnetic
field, the effective parallel mass is considerably increased by relativistic effects. For the particles

in the primary beam, which contribute to the development of the instability, the effective parallel
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mass is mesf = vim & 102! m (m is a mass of a particle). This suppresses the development of the
electrostatic instabilities. In contrast, the effective transverse mass, mesf, = ypm, is less affected
by the large parallel momentum. Thus, the relativistic velocities and one-dimensionality of the dis-
tribution function result in a strong suppression of the electrostatic instabilities and strengthen the
electromagnetic instabilities.

Cyclotron-Cherenkov generation of wave by fast particles is not new in astrophysics. For example,
cosmic rays in the interstellar medium and in the supernova shock generate Alfvén waves by a similar
mechanism. In the case of Alfvén waves in the nonrelativistic electron-ion plasma, the frequency of
the waves w can be much smaller than the kv term and can be neglected in the resonance condition.
The important difference between these applications and cyclotron-Cherenkov instability in pulsar
magnetosphere is that the generated waves belong not to the hydromagnetic Alfvén waves, that
cannot leave plasma, but to the almost vacuum electromagnetic waves.

We should also mention that a cyclotron-Cherenkov instability of an electron beam propagating
along a magnetic field is known in the laboratory as a very effective source of the high frequency
microwave radio emission (Galuzo et al. 1982, Didenko et al. 1983, Nusinovich et al. 1995).
The so called slow-wave electron cyclotron masers (ECM) provides a high efficiency and high power
microwave source. Though there are no commercial slow-wave ECM available now, they are believed
to be very promising devices due to their better control of the beam quality and potentially more
compact design than the cyclotron autoresonance masers. Thus, pulsars can be regarded as cosmic
slow-wave ECMs.

In this work we also develop a new look at the theory of amplification of curvature radiation.
We argue that a new, Cherenkov-drift instability may be operational in the pulsar magnetosphere.
The Cherenkov-drift emission combines the features of both Cherenkov and curvature emission
processes. This instability is similar to the drift instabilities of the inhomogeneous plasma. The
striking feature is that, unlike the nonrelativistic laboratory plasma, where drift instabilities develop
on the low frequency waves with the wave length on the order of the inhomogeneity size, in the
strong relativistic plasma drift instabilities can produce high frequency waves.

We develop an approach that treat Cherenkov and curvature emission consistently in cylindrical
coordinates. The choice of cylindrical coordinates allows one to consider curvature emission as a
resonant emission process. In the former approaches the wave-particles interaction length was very
limited, that precluded a strong amplification under all circumstances. Another important difference
in this work is the proper account of the dispersion and polarization of the normal modes. We show
that Cherenkov-drift instability develops only in a medium which supports subluminous waves.

The outline of the thesis is the following. In Chapter 2, we review the observational properties
of pulsar radio emission. In Chapter 3, we review the current theories of pulsar radio emission

generation. In Chapter 4, we discuss the adopted parameters of the pulsar plasma. In Chapter 5,



5

we investigate in detail the properties of the normal modes in a strongly magnetized, hot electron-
positron plasma taking into account the possible difference in distribution functions of electrons and
positron. To calculate the dispersion relations of the normal modes in curved magnetic field, we
discuss the properties of the dielectric response in cylindrical coordinates. In curvilinear coordinates
the electric displacement is related to the electric field via the dielectric tensor operator, which is
nonlocal in nature - it involves derivatives with respect to the radial coordinate. The operator re-
lations between electric field and electric induction can be simplified to give algebraic relations in
two different limits: (i) for the nonresonant particles, when we can use the WKB approximation
for the wave-particle interaction, (ii) in a particular limit z > 1 (Section 6.2.1 and Appendix C for
the definition of z) for the resonant interaction of subluminous waves with particles having velocity
larger than the phase speed of the waves. Assuming that these two limits apply for nonresonant
and resonant wave-particle interaction, we calculate the dielectric tensor in cylindrical coordinates
taking into account the curvature drift of particles. From that dielectric tensor we find wave disper-
sions and polarizations for relativistic pair plasma with different distribution functions. In Chapter
6, we discuss the elementary emission process for the cyclotron-Cherenkov and Cherenkov-drift in-
stabilities. Following the ideas of Schwinger et al. 1976, that cyclotron-Cherenkov emission is a
synergetic process that combines the features of both cyclotron and Cherenkov emission processes,
we suggest that, similarly, Cherenkov-drift emission is a synergetic emission process that combines
the features of both curvature and Cherenkov emission processes. In Chapter 7 we discuss a theory
of beam instabilities in a magnetized pair plasma. We distinguish two regimes of Cherenkov and
cyclotron instabilities: hydrodynamic and kinetic. In a hydrodynamic regime all the particles res-
onate with a given wave which grows coherently. In a kinetic regime different particles resonate with
different waves which grow incoherently. Kinetic and hydrodynamic instabilities can be thought of
as two limiting regimes of a single instability. We give the simplified calculations of the various
Cherenkov and cyclotron growth rates in both hydrodynamic and kinetic regimes. We argue that
cyclotron-Cherenkov and Cherenkov-drift instabilities are the strongest instabilities in the pulsar
magnetosphere. In Chapter 8 we outline the general features of our model of pulsar radio emission
and show how various observational facts can be explained in the frame work of the cyclotron-
Cherenkov and Cherenkov-drift instabilities. In Chapter 9 we first discuss nonlinear process that
can saturate cyclotron-Cherenkov instability, namely quasilinear diffusion of the resonant particles
and induced Raman scattering. We calculate the observed intensities that these two nonlinear pro-
cessesproduce and argue that both these processes can be important in pulsar magnetosphere. Then
we discuss the escape of the generated radiation from the pulsar magnetosphere. Finally, in Chapter

10 we present the conclusions of this work.



Chapter 2 Review of the Observational Data and
Phenomenological Theory of Pulsar Radio

Emission

2.1 Core and Cone Emission

In this section we will summarize the most important observational facts about pulsars. The available
database on pulsar radio emission is enormous and the range of pulsar properties is equally large.
Therefore, the observational properties will be presented in the framework of a phenomenological
theory of pulsar radio emission (Rankin 1992). The main feature of this model is the division of
emission into two main components called ”core” and "cone” (there are two cones of emission in the
most general case). In each pulsar, the averaged profile may be a combination of core and/or cone

emissions (Fig. 2.1).

2.1.1 Properties of the Core Emission

The majority of pulsars (about 70%) show core-type emission. In combination with the cone-type
emission, core pulsars are divided into three groups — core singles, triplets and five-components.
The typical core emission has the following features: (a) the profile has a single component at 400
MHz but might develop conal (sometimes nonsymmetrical) outriders above 1400 MHz which can
dominate at higher frequencies; in such pulsars the core component might arrive a little earlier than
conal emission, (b) core emission has a steeper spectrum than conal emission, (c) moderate circular
polarization (up to 60%); the sense of which may reverse in the middle of the pulse (Fig. 2.1),
if the cone component is present, the sense of circular polarization in the core correlates with the
swing of the position angle of the linear polarization in the cone, (d) linear polarization varies from
nearly 100% to unpolarized, in most cases the radiation may be split into two orthogonally polarized
modes (Stinebring et al. 1984), (e) the size of the beam seems to follow a simple relation, which is

independent of radio frequency W = 2.°45/P'/2 where P is the period of the pulsar.

2.1.2 Properties of the Cone Emission

About 30% of all pulsars show pure conal emission and they are divided into two main groups —

cone singles and cone doubles which are believed to be closely connected, the only difference being
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Figure 2.1: Example of emission geometry that produces core and cone profiles.

the geometrical path of the line of sight through the emission region. The typical features of conal
emission are (e.g., Rankin 1992):

(a) the profiles can have up to four components, corresponding to two cones; at high frequencies the
cone might merge forming a smooth emission pattern,

(b) the cone component has a harder spectrum than the core emission,

(¢) circular polarization is small and unsystematic,

(d) linear polarization is moderate to virtually unpolarized; if the core emission is present, the swing
of a position angle is strongly correlated with the sense of circular polarization in the core with a
large (near 180°) total swing, otherwise (in the absence of the core emission) the swing of position
angle is less ( ~ 90°); similarly to the core emission, the radiation may be split into two orthogonally
polarized modes (Stinebring et al. 1984) with changing intensities resulting in a sudden change of
position angle by +7/2; the frequency dependence of linear polarization shows great variety — in
most cases it is a constant or slightly decreasing function of frequency, but occasionally it has a
maximum or increases with frequency, (e) the geometry of the beam corresponds to the cones with
angles 4.°3P~1/2 and 5.°9P~'/2; in contrast to the core emission where the width is independent
of frequency, for conal emission the width changes with frequency as v=%, and seems to reach
a plateau at high frequencies, (f) a few pulsars with conal profiles show drifting subpulses, some

pulsars change between three different drift rates, (g) the nulling effect - sudden (on time scales less
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than 2 microseconds (Deich et al. 1986) disappearance of pulses for an interval much longer than
the pulsar’s rotation period; in pulsars which exhibit both drifting subpulses and nulling, the drift
path recovers from a null according to the length of the null (Lyne & Ashworth 1983), mean drift
rate during the null decreases with the null length, (h) mode switching ~ a spontaneous change of
the averaged pulse between two or several different profiles; mode switching conserves the number
and position of the emission components but changes their relative strength, mode switching and
nulling tend to take place in pulsars with low P, (1) microstructure — noise like spikes of emission
on the time scale of microseconds, microstructure is more prominent at low frequencies and occurs

in pulsars with low P.

2.2 Other Properties of Pulsar Radio Emission

An important feature of the conal emission is that the cone components show correlations of intensity,
while the core component, if present, is not correlated with the cone (Kazbegi et al. 1991a). In a
recent work Gwinn (Gwinn et al. 1997) have measured the coherent emission size of Vela pulsar
using the refractive scintillations from the supernova remnant. Their result - 500 km - strongly
suggests that the emission region is located in the outer parts of the magnetosphere. The thickness
of emitting region is harder to determine since if the emitting particles move almost with the speed
of light and emit in the direction of their motion, the time delay between two different emitted pulses
would be Lorentz-contracted. So far no motion of emitters in the magnetosphere has been detected,
the upper bound for the time delay is about 1 us.

The radio spectra of pulsars are well represented by a power law (Lorimer et al. 1995) with mean
value of spectral indices of -1.6 and varying from 0.5 to 3. Young pulsars have predominantly flatter
spectra. Sometimes a break is observed with high frequencies having a steeper spectrum.

There have been many attempts to determine observationally the emission altitude. Unfortu-
nately, most of the techniques for determining emission altitudes rely on the accepted emission model
(e.g., Thorsett 1992), thus giving contradictory results. In most studies the results are interpreted
in such a way that the emission is coming from low altitudes. Sometime too low: the results of
Cordes et al. 1990 imply emission height of 3 km. The assumptions of dipolar geometry, radius
to frequency mapping and an assumption of a particular emission mechanism are essential to many
estimates. Contrary to these conclusions the results of Gwinn et al. 1997, analyses of Gil & Kijak
1993 and the interpretation of (Manchester 1996) of the ”wide beam geometry” (highly-polarized,
wide-spaced pulses observed in some pulsars) provides an example of the emission originated at a

considerable fraction of light cylinder.
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2.3 Temporal Structure of Pulses

Temporal variations in pulsar radio emission occur on three different time scales subject to scaling
with the pulsar’s period: 1-100 milliseconds for the main pulse, 0.1- 10 milliseconds for subpulses
and 1-2000 microseconds for the micropulses (in any given pulsar micropulse time scale is shorter
than subpulse time scale). The average pulse seems to be a superposition of different subpulses plus
amorphous emission, but there is a distinct physical difference between micropulses and subpulses.
Micropulses (see Fig. 2.2) have a broader emission band and frequency independent longitudes
whereas subpulses appear at different longitudes at different frequencies. In addition, micropulses
have a steeper spectrum than subpulses and the main pulse. They are much more pronounced at
low frequencies and become undetectable at frequencies above =~ 1 GHz. The polarization angle is
fairly constant inside a micropulse (although it changes slightly at the edges) whereas it changes
inside a subpulse.

This raises the question as to whether micropulses reflect the properties of the emission generation
or propagation in the pulsar magnetosphere. In the former case, subpulses and micropulses may be
due to the two independent emission mechanisms or they can reflect different spatial or temporal
structures in the pulsar magnetosphere. One possibility is that small scale beams cause subpulses
and temporal modulations cause micropulses (Cordes 1981). Alternatively, micropulses may be due
to the self-focusing of radio emission as it propagates in pulsar magnetosphere.

If microstructure is inherent to the emission generation, then each microspike may not represent
elementary emitters. They may be an incoherent superposition of coherent emitters (see Rick-
ett 1975, Cordes 1981, Zhuravlev & Popov 1990). This conclusion follows from the observation
that average autocorrelation function of micropulses is well represented by amplitude modulated
white Gaussian noise. The characteristic variation time for the elementary coherent emitters is ap-
proximately the reciprocal of the typical bandwidth (1 GHz), i.e.,, 7 = 1/v & 107% 5. Thus, each
micropulse of a temporal length ¢t ~ 10~% s would contain a contribution from about 10® independent
coherent emitters.

Another insight into the physical nature of microstructure involves the temporal auto-correlation
function of micropulses which show quasi-periodicity with two different times scales: a short time
scale of less than 0.5 milliseconds and long time scale of about 0.5-3 milliseconds (Soglasnov, Popov
& Kuz'min 1983). The number of observed quasiperiods (5-10) implies that the structures that
generate micropulses come in bunches or arrays and that the process that creates these arrays is a
low Q process.

One of the fundamental questions concerning pulsar emission is whether it is broad- or narrow-
band. Multifrequency observations of microstructure show that long duration microstructure (longer

than 500 us) preserves correlation both in broad- and narrow-band filters at frequencies up to 1GHz
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apart. On the other hand, short scale microstructure {shorter than 500 us) when observed in narrow
band filters showed no correlation between frequencies 50 kHz apart (Gurvits et al. 1987). The
statistical interpretation of long time scale microstructures in the framework of amplitude modulated
noise theory (Rickett 1975) is a broad-band (white) noise modulated by some stochastic process.
Physically, this could correspond either to the broad-band noise radiated in a thin layer or to the
narrow-band noise with the emitting frequency scanning a wide range of frequencies in, for example,
radius to frequency mapping. For short time scale noise, the characteristic time of fluctuations
of the modulating function approaches the shot noise structure of micropulses and that gives the
decorrelation in narrow bands. The existence of a spectral break at about 100 MHz might also
be a reflection of two existing mechanisms (soft broad-band and hard narrow-band) with different

spectral features.



12

Chapter 3 Review of the Theory

3.1 Introduction

In this Chapter we review the most promising theories of pulsar radio emission. A common feature
of all of them is that they attribute emission to some kind of instability in relativistic plasma flowing
along the open field lines in the magnetosphere of the rotating neutron star.

The most important constraints which a possible radiation mechanism should satisfy are: (a) it
should be operational in a very broad range of pulsar periods — from 1.5 millisecond to more than
5 seconds, more than three orders of magnitude, (b) it should combine long time stability of the
average pulse profile with small time scale variations, (c) it must explain high brightness of observed
radio emission and its complicated polarization properties.

We assume that those theories based on the polar cap model deserve most attention. In these
models the rotation of the neutron star generates a dense outflow of mildly relativistic electron-
positron pairs penetrated by highly relativistic electron or positron beam along the open field lines
(Fig. 3.1). Due to the very strong magnetic field near the neutron star, the spontaneous synchrotron
decay times are very short and all the leptons quickly loose their transverse moments and stay in
the lowest Landau level throughout the inner magnetosphere.

It is generally believed now that the pulsar radio emission is generated by some collective plasma
processes in which the energy is put into the local plasma normal mode. A study of collective insta-
bilities in plasma involves several stages. Initially it is necessary to identify the normal modes of the
medium, their dispersion relations and their polarization. Next, one should investigate the stability
of these modes due to both resonant or nonresonant interactions with plasma particles. Collective
plasma instabilities due to the nonresonant interactions of the normal modes with the plasma par-
ticles are called hydrodynamic instabilities (e.g., firchose instability) and plasma instabilities due to
the resonant interactions of the normal modes with the plasma particles are called kinetic instabil-
ities. For the discussion of various regimes of plasma instabilities in the pulsar magnetosphere, see

Chapter 7.2.

3.2 Single Stage and Two Stage Theories

The various plasma theories of the pulsar radio emission can be classified according to criteria

whether or not the originally unstable waves have to be nonlinearly converted into radiation that can
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Pair production in polar cap

Pair formation
front

Neutron Star

Figure 3.1: Pair production near the neutron star polar caps (after Arons 1983). In a thin inertial
layer near the surface of the star (=~ 1 cm) a primary beam with a density np = ngy is accelerated to
relativistic velocities screening the parallel electric field. As the flow propagates outward, the density
of the beam changes with radius with a different radial dependence than ng; due to the curvature of
field lines or due to the Lense-Thirring precession. The resulting electric field accelerate the charges
to energies E ~ 10'3 eV. The primary particles emit curvature photons, which in turn produces
electron-positron pairs. The pairs are born at excited Landau levels. The secondary synchrotron
photons produce more pairs in an avalanche-like process.
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propagate directly in vacuum. The former approach includes two stages in generating the observed
radio emission: in the first stage emission is generated on the waves that cannot leave magnetosphere
and in the second stage they are converted into escaping modes (Ruderman & Sutherland 1975).

Conventionally, the two stage models are based on the development of the electrostatic insta-
bilities (Ruderman & Sutherland 1975, Cheng & Ruderman 1977). In the two stage models the
conversion may be linear or nonlinear in the amplitudes of the electrostatic waves. The nonlinear
conversion is due to the interaction of the nonlinear waves, for example a decay of the electrostatic
into two electromagnetic waves. The linear conversion is due to the propagation effects in the inho-
mogeneous curved magnetic field of pulsar magnetosphere. Asseo, Pellat & Rosado 1980 have argued
that in the curved magnetic field it is possible to emit electromagnetic waves directly through the
conventional Cherenkov two-stream instability. In fact, this can be considered as a propagation
effect, when the original electrostatic wave is emitted along the magnetic field and acquires electro-
magnetic components as it propagates in the presence of a curved magnetic field. The fact that this
is a linear conversion process occurring well in the adiabatic approximation (when the wave length
is much smaller than the radius of the inhomogeneity, which is the local radius of curvature of the
magnetic field lines), suggests that as the wave propagates in the plasma, it always stays on the same
branch of the dispersion relation. As the wave moves along the particular branch of the dispersion
relation, its polarization may change from longitudinal to transverse.

An important fact, omitted in many works that considered propagation of waves along the
magnetic field, is that the electrostatic plasma waves propagating along magnetic field lines are the
limiting cases of the two branches of ordinary and Alfvén waves that intersect only in the degenerate
case of the parallel propagation (see Fig. 5.3). For oblique propagation the ordinary and Alfvén
waves do not have intersection points. Thus, the linear evolution of the longitudinal plasma wave,
emitted originally along the field line, will drastically depend on which branch (ordinary or Alfvén)
the wave actually belongs to.

The propagation of ordinary and Alfvén waves in the inhomogeneous plasma of a pulsar magne-
tosphere differs considerably {Arons & Barnard 1986, Barnard & Arons 1986, Lyutikov & Machabeli
1997, Section 9.3). Alfvén waves cannot escape directly from plasma into vacuum, while ordinary
waves may become superluminous and can escape from magnetosphere. Consequently, if the emit-
ted quasilongitudinal plasma wave belongs to the Alfvén branch, it will not be able to escape from
magnetosphere and will have to be nonlinearly converted into the escaping mode, even though it
has a transverse electromagnetic component.

A very important problem with the two-stream instability model is the low growth rate on the
resonance with the primary beam (Benford & Bushauer 1977) and the strong sensitivity to the
plasma distribution function for the two stream instability due to the relative streaming of plasma

components (Hinata 1976, Bushauer & Benford 1977). In Section 7.9 we shall show that two-stream
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instability involving primary beam occurs in a hydrodynamic regime and is strongly suppressed by
the large relativistic vy-factor of the beam.

The fact that Alfvén waves cannot leave magnetosphere is very important. This means that elec-
tromagnetic cyclotron-type instabilities involving Alfvén waves (Tsytovich & Kaplan 1972, Hardee
& Rose 1978) should be classified as two stage process. The growth rates of the electromagnetic
cyclotron type instabilities can be very large, but all the complications of the nonlinear wave con-
version and Alfvén wave absorption in the outflowing plasma put the model based on the Alfvén
wave excitation as disadvantage.

Another type of pulsar radio emission generation models is based on the instabilities on the waves
that can leave magnetosphere directly (Kazbegi et al. 1991a, Kazbegi et al. 1991b, Zheleznyakov
& Shaposhnikov 1979, Lyutikov, Blandford & Machabeli 1997). The advantages of this approach
are obvious: the basic emission mechanism does not rely on the numerous complicated nonlinear
wave processes. In this work we show that electromagnetic cyclotron-Cherenkov and Cherenkov-
drift instabilities on the high frequency vacuum-like ordinary and extraordinary waves in the pulsar
magnetosphere may constitute a possible source of the pulsar radio emission.

An important factor in the development of the electromagnetic instabilities is that, unlike the
electrostatic Cherenkov instabilities, in the pulsar magnetosphere they occur in the kinetic regime
and are not subject to the relativistic suppression by the large parallel momentum of the resonant

particles.

3.3 Review of the Theories

3.3.1 Coherent Emission by Bunches

Chronologically, the oldest surviving theory of radio emission is the ”bunching theory.” In this theory
the emitting particles somehow form bunches and all the particles in a bunch emit coherent curvature
radiation.

There has been a long discussion of a possible force that can result in the formation of bunches.
Ruderman & Sutherland 1975 and Cheng & Ruderman 1977 have proposed that two stream insta-
bility due to the excitation of Langmiur waves by the primary beam or by the relative velocity of
the secondary components. Development of the two-stream instability may lead to the formation of
Langmuir solitons with charge separation (Pataraya & Melikidze 1980) that play a role of bunches.
Alternatively, Goldreich & Keeley 1971 proposed a radiative instability of a monoenergetic beam in
a curved magnetic field as a possible mechanism for the formation of bunches. Development of the
two-stream instability can reach nonlinear phase forming a lattice of Langmuir solitons (Pataraya
& Melikidze 1980) which emit radiation by three possible mechanisms: direct radiation when per-

turbed by curved magnetic field in transverse direction, curvature radiation due to the movement
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along dipole magnetic field and by scattering the particles of the primary beam which in the case of
inhomogeneous beam may produce coherent radiation (Asseo, Pelletier & Sol 1990).

Unfortunately, the theories of bunch formations has faced some fundamental problems in creating
and maintaining the bunches (Melrose 1995). The main factors that destroy bunching are velocity
dispersion and radiation reaction of the coherent emission which tend to disperse bunches on a
short time scales. These two effects work in tandem in a sense that even if the original velocity
dispersion were small, the growth of the instability would increase it and suppress the instability
itself. Another disrupting effect is the curvature of magnetic field lines which misaligns a coherence
axis of pancake-like bunches with the direction of the magnetic field.

Though the phenomenological theory of coherent emission by bunches could explain a broad
range of observed pulsar properties by the careful arrangement of the magnetic field geometry and
of the form and size of bunches, it failed to explain the observed correlations across the pulse profile
(Kazbegi et al. 1991a, Gwinn et al. 1997) and existence of the two orthogonal polarizations. The
spectra in the bunching theory is due exclusively to the geometrical properties of the emitting region
which fails to explain a great variety of observed spectra (Mamradze, Machabeli & Melikidze 1980).

The two-stream instability model has been criticized by (Bushauer & Benford 1977, Hinata
1976). Two stream instability on the primary beam has a very low growth rate due to the high
rigidity of the beam (75 & 107), while the two stream instability due to the relative velocity of
the secondary plasma is easily suppressed by the relatively low thermal scatter of plasma particles
(Hinata 1976, see though Weatherall 1994). In both cases the instability growth rate is constant in
a very small angle which limits the growth length in the curved magnetic field (Lyutikov 1997c).
An additional complication in these theories comes from the fact that in the lower regions of the
pulsar magnetosphere, where these mechanisms are supposed to operate, the Cherenkov streaming
instabilities occur on the Alfvén branch which cannot leave magnetosphere. The waves have to be

nonlinearly converted into escaping modes.

3.3.2 Shear Instabilities

In a series of papers (Asseo, Pellat & Rosado 1980, Asseo, Pellat & Sol, Asseo, Pelletier & Sol 1990,
Asseo 1995) it has been shown that the radiative Goldreich-Keeley and two-stream instabilities
may be treated as two limiting cases of a general instability of an inhomogeneous (finite transverse
size) beam propagating in curved magnetic field lines and bounded by the stationary plasma. The
radiative Goldreich-Keeley is then obtained as a limiting case of a very thin beam and the two-stream
instabilities may be obtained in the case of a very large transverse size of a beam. In the infinite
plasma in constant curved magnetic field, the Goldreich-Keeley instability of a monoenergetic beam
does not develop. If there is a considerable shear in the flow, then the generalized Goldreich-Keeley

radiative instability can develop. It is argued {Asseo, Pelletier & Sol 1990) that the instability can
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evolve into the nonlinear regime resulting in a soliton formation.

The initial conditions for the development of the shear instabilities, i.e., the presence of the large
shear and small spread in particle moments, are the weakest points of this theory. It is expected
that the flow of the secondary plasma above the pair formation front is relatively homogeneous, has
a considerable spread in the moments of the particles and occurs in a region with large transverse

dimensions.

3.3.3 Growth of a Curvature Wave

In the theory by Beskin et.al (Beskin, Gurevich & Istomin 1983, Beskin, Gurevich & Istomin 1986
Beskin, Gurevich & Istomin 1993) it is argued that an Alfvén-type curvature mode can become
unstable in the infinitely strong curved magnetic field. In their theory an Alfvén wave splits into
three waves in the curved magnetic field, one of which becomes unstable. The observed radiation
results from nonlinear conversion of this wave.

In spite of some success of the theory, it is very fundamental ideas have been seriously criticized
(Machabeli 1995, Nambu 1989, Larroche & Pellat 1988). The dispersion relations of the curvature-
Alfvén waves are intrinsically non-local and cannot be derived by conventional perturbative methods.
One of the main objections is that the unstable wave grows coherently even in the case of infinite
magnetic field which contradicts the mentioned proof of the impossibility of a maser action in this

limit (Blandford 1975, Melrose 1978a).

3.3.4 Curvature Maser

Until recently, the works that considered a possibility of a curvature maser, i.e., the amplification
of the curvature radiation due to the interaction with particles (Blandford 1975, Melrose 1978a,
Zheleznyakov & Shaposhnikov 1979, Chugunov & Shaposhnikov 1981, Luo & Melrose 1992a) were
treating the curvature emission process as an analog of the synchrotron radiation in vacuum. It
has been shown that the coherent curvature emission is impossible (Blandford 1975, Melrose 1978a)
in this limit in the case of infinitely strong curved magnetic field. This proof, though, allows for a
loophole if the magnetic field is finite. Then, the particles streaming along the curved magnetic field
lines experience a curvature drift perpendicular to the plane of the curved field line allowing for the
possibility of the wave excitation (Zheleznyakov & Shaposhnikov 1979, Chugunov & Shaposhnikov
1981, Luo & Melrose 1992a). Drift velocities for the bulk plasma are negligible and only the particles
from the primary beam or from the tail of the distribution could undergo masing action. Curvature
maser, in a way considered by (Zheleznyakov & Shaposhnikov 1979, Chugunov & Shaposhnikov
1981, Luo & Melrose 1992a, Lyutikov, Machabeli & Blandford 1997a) is a plausible mechanism of

the pulsar radio emission generation. It will be considered in more details in Section 6.2. The most
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important difference in our approach is that we take correctly into account the influence of the
medium on the resonant wave-particle interaction. What one finds, then, is that the modes emitted
by the charged particle streaming along the curved magnetic field in plasma are substantially different
from the vacuum modes, so that the emission process resemble more the collective Cherenkov-type
emission than the single particle cyclotron emission.

We believe that the Cherenkov-drift instability may produce the observed radio waves. It may
be responsible for the "cone” emission (Chapter 8). We will discuss the physics of the cyclotron-
Cherenkov instability in more details in Chapter 6 and show in Appendix H that the conditions
for the development of the cyclotron-Cherenkov instability are satisfied in the magnetosphere of a

typical pulsar.

3.3.5 Cyclotron-Cherenkov Instability

Near the light cylinder the magnetic field strength falls considerably which allows for synchrotron
excitation of transverse motion of particle. At a distance 10° cm from the neutron star, an anomalous
Doppler resonance could be fulfilled for the particles of the primary beam and for the fast particles
in the tail of the plasma distribution. The emitting particle undergoes a transition to the higher
Landau level and emits a cyclotron photon; the free energy is supplied by the parallel motion.
The wave becomes kinetically unstable and has features which could explain a broad variety of
spectral and polarization characteristics of observed core type emission. We believe that cyclotron-
Cherenkov instability is a possible mechanism of pulsar radio emission and may be responsible for
the "core” emission (Chapter 8). We will discuss the physics of the cyclotron-Cherenkov instability
in more details in Chapter 6 and show in Appendix F that the conditions for the development of

the cyclotron-Cherenkov instability are satisfied in the magnetosphere of a typical pulsar.
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Chapter 4 Parameters of the Pulsar

Magnetospheric Plasma

The primary purpose of this Chapter is to define the fiducial parameters for the pulsar magne-
tospheric plasma. Unfortunately, the current poor understanding of the general magnetospheric
structure and the complicated physics of the pair production process still allows a very broad range
of plasma parameters. Undoubtedly, the plasma parameters change from pulsar to pulsar and also
experience strong temporal variations in a given pulsar. As a first step in approaching the problem
we will assume the plasma parameters are stationary, thus neglecting a broad variety of transient
and secular events in pulsar phenomenology. The numerical estimates will be done for a ”typical”

pulsar (see Section 4.1.1).

4.1 Structure of Pulsar Magnetosphere

Rotating, strongly magnetized neutron stars induce strong electric fields that pull the charges from
their surfaces. Inside the closed field lines of the neutron star magnetosphere, a steady charge
distribution established, compensating the induced electric field. On the open field lines, the neutron
star generates a dense flow of relativistic electron-positron pairs penetrated by a highly relativistic
electron or positron beam (Fig. 4.1). The density of the primary beam is roughly equal to the
Goldreich-Julian density ngy = Q- B/(27 gc). We will normalize the density of the pair plasma to
the Goldreich-Julian density.

ne = Angy = 10° - 10%n¢;, w2 = i = 2\wpQ (4.1)

where A is the multiplicity factor which is the number of pairs produced by each primary particle
(subscript a in Eq. (4.1) refers to the electrons and positrons of the bulk plasma). Secondary pairs
are born with almost the same energy in the avalanche-like process above in the polar cap (Arons
1983). The pair creation front in the polar cap region is expected to be very thin so we can in the
first approximation neglect the residual electric field in the front that could lead to the reversed
current and different initial energies and densities of secondary particles.

The combination of the pair plasma and primary beam is expected to screen the rotationally
induced electric field so that the flow is force-free. This can be seen from the following reasoning.

The Poisson equation in the frame rotating with the neutron star reads
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R,

Figure 4.1: Pulsar magnetosphere. €2 is the rotation frequency, u is a unit vector along the direction
of the magnetic moment, « is the angle between € and p, Ry is the light cylinder radius.
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0%y
m = —47Tq(n+ —N_ —nb+nc_1) (42)
Here ny are the densities of secondary plasma particles, n, is the beam density and ¥ is electric

potential. This equation and the current conservation for all three components,

qnevs _ Jp qnevy _ Jb
B Bprr’ B Bprr

(4.3)

determine the charge densities and currents throughout the pulsar magnetosphere. In (4.3) the
current density components, j, and j», are constants determined by the general magnetospheric
conditions and Bppp is the magnetic field at the pair formation front.

If the beam density at the pair formation front is equal to the local Goldreich-Julian density,
then, from (4.2) and (4.3), it follows that the densities and energies of both components of the
secondary plasma are equal. As the flows propagate along the dipolar magnetic field, the primary
beam can no longer screen the rotationally induced electric field since, for the relativistic flow along
the open magnetic field lines, ny o« B and ngy o B cos#, where 8 is the angle between the local
magnetic field and the rotation axis.

Since we have an ample supply of particles, the electric field that could result from this deviation
of the beam density from the Goldreich-Julian density will be screened by accelerating one kind of
the secondary particles and decelerating the other so that in every point the relation
jp(‘l““i)—%*‘qnm—&;’#:o (4.4)
holds.

Another relation between the parameters of the plasma and the beam comes from the energy
argument that the primary particles stop producing the pairs when the energy in the pair plasma

becomes equal to the energy in the primary beam:

2 <~ >$) A=y, at the pair formation front (4.5)

where it was assumed that the initial densities, temperatures and velocities of the plasma compo-

nents are equal. For cold components < ~ >$ ) = 7p while for the relativistic components with a

temperature T}, the average energy is < « >§9) = 2%, T,. The assumption of equipartition (4.5)
is a very approximate one, but it allows considerable simplification of numerical estimates. If, for
some reason, this would turn out to be an incorrect assumption, the corresponding formula can be

adjusted by changing the scaling.

As an estimate of the densities of the particles from the tail of plasma distribution, we will use
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the assumption that the energy in the tail is approximately equal to the energy in the plasma (and
in the beam):

TN = ’n(,o)nb (4.6)

where 7; and n; are the typical energy and the density of the tail particles.

Solutions of (4.4), (4.5) and n, = n_ with given values for j,, j, and ng; at the pair formation
front determine average energies of each component in every point in the magnetosphere. There
are two qualitatively different possibilities: (a) the relative streaming in the center-of-momentum
frame is nonrelativistic, (b) the relative streaming in the center-of-momentum frame is relativistic.
In the case of nonrelativistic relative streaming, both components contribute approximately equally
to the dielectric tensor in the pulsar frame, while in the case of relativistic relative streaming, the
contribution of the slower component may dominate due to the relativistic effects.

For the nonrelativistic relative streaming of the hot components, the maximum relative velocity

B, (in units of ¢) measured in the plasma frame may be estimated from (4.4) and (4.5)

2 2
Tp s
R A [ T— 4.
Fo= o) = AT, (47)

while for the relativistic relative streaming, the 4-factor of the hot plasma components in the center-

of-momentum frame are

Yp b
Yo = (4.8)
T V2N 2572032 (1 +2T,)

The critical value for the parameter A at which the relative velocity of the particles become

relativistic may be estimated as A\* = (v/T,)%%. For the larger )\ the relative velocity of the
plasma components is nonrelativistic; for smaller values it is relativistic. For the characteristic
beam energy <, &~ 107 this gives A\* ~ 10%. With the present uncertainty in the multiplicity factor
A ~ 10° — 10° and the temperatures of the plasma T, = 0.1 — 10, the actual relative flow may be

either nonrelativistic or strongly relativistic.

4.1.1 Typical Pulsar

In this work we will make numerical estimates for the ”typical” pulsar with the following parameters:
(1) Magnetic field is assumed to be dipole with the magnetic field strength at the surface of
neutron star Byg = 10%2G.
(ii) Rotational period of the star P = 0.5 s (light cylinder radius Rps = 2.4 x 10° cm).
(ili) Average streaming energy of the plasma components vy, = 10.
(iv) Temperature of the plasma components T}, = 10.
(v) Initial energy of the primary beam at the pair formation front v, = 6 x 107.

The energy of the beam will decrease due to the curvature radiation reaction force (Section
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J). Then at the light cylinder, where the instabilities occur, the beam will decelerate due to the
curvature radiation reaction to v, = 2 x 108.

For a given period and magnetic field Eq. (4.5) reduces the number of free parameters for the
plasma to two: the plasma temperature and the bulk streaming energy -+, (or temperature and
the multiplicity factor A). We chose a strongly relativistic plasma with the invariant temperature
T, = 10. The multiplicity factor A corresponding to these parameters follows from Eg. (4.5):
A =3x10° The average energy of the tail particles is assumed to be +; = 10°. An important factor
that determines the growth rate of the instabilities is the energy scatter of the resonant particles.
In estimating the growth rates of the cyclotron-Cherenkov and Cherenkov-drift instabilities on the
primary beam, we will also assume that the scatter in Lorentz factors of the primary particles in the
pulsar frame A~ = 10?. This assumes that the beam has cooled considerably due to the curvature
radiation and lost about 10 percent of its energy.

Two points are important in our choice of parameters. First, we use a relatively low plasma
streaming v-factor (and respectively high multiplicity factor A). In the polar cap models (Arons
1981, Arons 1983), the pulsar plasma will have a low streaming ~-factor if the magnetic field near
the surface differs considerably from the dipole field thus reducing the radius of curvature (Machabeli
& Usov 1989). Secondly, the required scatter in energy of the primary beam particles (Ay = 102) is
very small. This is due to the effects of curvature radiation reaction on the primary beam during its
propagation through the dipole pulsar magnetosphere. The highly nonlinear damping rate due to
the emission of curvature radiation by the primary beam result in an effective cooling of the beam
(see Appendix J).

We will use two types of the particle distribution function to calculate the relevant moments:
water bag and relativistic Maxwellian (see Section 5.6). For the case of relativistic Maxwellian
distribution function, the strongly relativistic temperature T, == 10 implies that, formally, there are
many backward streaming particles. We note, though, that the backward streaming particles do
not contribute significantly to any of the relevant moments of the distribution function, so that we
can regard the strongly relativistic streaming Maxwellian distribution as a fair approximation to the
relatively unknown, but definitely very hot, real distribution function.

The location of our typical pulsar on the P — E diagram is shown on Fig. 4.2.

The corresponding plasma densities and frequencies are given in Tables 4.1 and 4.2 for the two
locations (near the stellar surface and at the emission region R ~ 10° cm in the pulsar and plasma
reference frames).

The radius dependence of the parameters is assumed to follow the dipole geometry of the magnetic

field:
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Figure 4.2: The dotted lines show constant spin down ages and magnetic fields. There is also a
dashed line for the equilibrium period spin-up line. The heavy dashed curves and shading illustrate
several death lines from the literature (see Hansen 1997 for references). The circles indicate binary
pulsars and those points with horizontal lines through them are in globular clusters with apparently
negative E (they are contaminated by cluster accelerations).
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Pulsar frame

Plasma frame

Magnetic field, G

HOHM

10'?

Cyclotron frequency wg*, (rads™1),

1.8 x 1019

1.8 x 1019

Beam density, em ™2

ngy; = QB/(2mec) = 1.4 x 101!

ngs = QB/(2mecy,) = 1.4 x 10'°

Beam plasma. frequency, rad s—1

2
W, = /\ﬁaﬁ = My = 2 x 101°

way = m,\mlw = /22 = 6.3 x 10°

’

Beam energy v = 6 x 107 Yo = m\ww = 3 x 10°
Plasma density, cm ™3 nj, = £82B — 4 x 1016 Np,= mmﬁ =4 x 101

Plasma frequency, rad s~ !

w, = V2wpQX=12x 1013

W, = 2wp QA — QXHOHm
p Tp

1 — Bx, Bx- phase speed of X mode

2
r_ W Te  AQT, _ iq-15
o' = AQMEW T 27dwp T 10

suﬁw\/bﬂ
HIPﬂHLH»XHin
mw Ir TpwB 0

Table 4.1: Plasma parameters at the surface of the neutron star




Pulsar frame

Plasma frame

Magnetic field, G

10°

103

Cyclotron frequency wg*, (rads—1),

1.8 x 1010

1.8 x 1010

Beam density, crm 3

ng,; = QB/(2mec) = 1.4 x 10?

ngy = QB/(2mecy,) = 14

2 ’

Beam plasma frequency, rad s~! wey = /\»l:alwzbﬁ = 6 x 10° wey = m\m%m =3x10°
Beam energy v, ~ x10° T = Nl)wmw = 5x10*
Plasma density, cm ™3 n, = wwmm =4 x 107 Ty, = m%w =4 % 10°
Plasma, frequency, rad s ™! Ev = 2w QX =4x10% wp = ,\mlmwubw = 1.2 x 108
1 ! dof Xmode | &= 2% =205 _ 5y 107 | 5= 20 = 29 _ 9104

— Bx,Bx phase specd o mode lmmvxmlwﬂwmw} X lﬂ.ﬁﬂl#eml .
Typical frequency, rad s™! w' = 5x10° w=2 =25x 108

27p

Table 4.2: Plasma parameters at the emission region R ~ 10° cm




() = wp(Rivs) (R—Ni)/ (49)

4.1.2 Electromagnetic Parameters

Next let us estimate the parameters of the electromagnetic radiation in the pulsar magnetosphere.
The typical observed fluxes are of the order of 1 Jy (1 Jy = 10" Zergs~lem~2Hz™!) at a frequency
around 1 GHz. For the typical distance to the pulsar of d = 1 kpc, this translates in the magne-
tospheric flux of F, = 1Jy(d/R)? = 10%ergs~'cm™2Ry? at the distance of R & 10° cm from the
stellar surface. Taking the bandwidth of the emission §v = 10° Hz, we find a typical radiative energy

flux in the pulsar magnetosphere:
F = 10" Ry %ergs™tcm ™2 (4.10)
which gives a total radio luminosity around
~ mRYF = 3 x 10%%rgs™! (4.11)
We note that the radio luminosity is just a small fraction of the particle energy flux:
Eprtel = ypngymc R = 10%%ergs™? (4.12)
which, in turn, constitutes a small fraction of the total energy loss of the rotating neutron star
Ens = IQQ ~ 10%° Pjgergs™! (4.13)
We can also estimate the one dimension photon density (see Eq. (9.17). We find:
1

n(k) = — ~ 101 —

w cm?

(4.14)
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4.2 Transformation of Physical Quantities

In this section we will give the rules of transformation of various quantities from the pulsar frame
to the plasma frame. We will give simple examples, assuming in most cases that the velocities of
particles and wave vectors are directed along the field lines. The transformations of some parameters
are given in Tables 4.1, 4.2 and 4.3.

The typical observed frequency of w’ = 5x10°rad sec™! (v = 1 GHz) corresponds to the frequency
in the plasma frame w = w'/(2v,) & 2.5 x 10%. This can be compared with the characteristic
frequencies of plasma in the plasma frame at the presumed emission site of R = 10%cm (Table 4.2).
More precisely, we should compare the wave frequency with the frequency of plasma oscillations at
small wave number w(k < wy/c) = /2/Tpw, and with the cross-over frequency w, = v/27T% wp. We
find that the emission frequency is much larger than the frequency of plasma oscillations at small
wave number: w > w(k K wp/c), but may be comparable to the cross-over frequency: w > w,.

When making transformation of the refractive index, we assumed that 712,6 < land 726 W/kex 1
( 6 + 6% /kc is the difference of the phase speed of transverse waves from the speed of light. In
physical terms this implies that the velocity of the plasma frame with respect to the pulsar frame
is less than the phase velocity of the transverse waves. So that if a wave travels in the negative
direction in the plasma frame, it will also be traveling in the negative direction in the pulsar frame.
The above conditions are well satisfied in pulsar magnetopsheres, where v, ~ 10 — 100 and § < 107°

in the outer regions.
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Quantity Plasma frame Pulsar Frame
Frequency 2vpw k>0
w(k)
of vacuum-like waves wk k<0
852
Refractive index 1+ 25 §¢) k>0

of vacuum-like waves

n=1+3d+ 6U/ke

42 2vpk'c

|AH+,A4mu;|mﬁwpmv k<0

p k'c
e im0
Angle of propagation 0 ?
270 HO=m
Occupation number n(k) n(k’)
One-dimensional flux F(v) F() %

Table 4.3: Transformation of various quantities from pulsar to the plasma frame
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Chapter 5 Waves in Magnetized Pair Plasma

5.1 Outline of the Chapter

In this Chapter we first derive the dielectric tensor in cylindrical coordinates. Generally, in cylin-
drical coordinates the electric induction is related to electric field through a linear dielectric tensor
operator, which involves derivatives of the electric field with respect to radius. In two particular cases
this operator relation can be simplified to algebraic relations: for the nonresonant wave (this will
correspond to the WKB approximation) and for resonant subluminous waves in the limit z >> 1 (see
Section 6.2.1). In Appendix A, we discuss the properties of electromagnetic waves and wave-particle
interaction in vacuum when described in cylindrical coordinates and show when the nonresonant
terms of the dielectric tensor operator can be reduced to algebraic relations, i.e., to the dielectric
tensor. In Appendix B we calculate the dyadic Green’s function for a particle executing a circu-
lar motion in cylindrical coordinates, and show how the conventional expressions for the curvature
emissivity can be obtained using our approach. In Appendix C we show when the resonant terms
of the dielectric tensor operator can be described by more simple algebraic relations, i.e., by the
dielectric tensor.

Next we discuss the properties of linear waves in a strongly magnetized electron-positron plasma
streaming along the magnetic field. The particles are assumed to be in their ground gyrational state
so that the plasma is one-dimensional. Properties of a one-dimensional pair plasma are considerably
different from the properties of a well studied electron-ion plasma. In this chapter we present
the most thorough consideration available of the properties of the waves in pair plasma taking into
account possible relativistic temperatures and relative streaming of the plasma components. Another
complication in considering the wave modes in a pulsar magnetosphere comes from the large bulk
streaming of plasma which does not allow a simple Lorentz transformation from the plasma rest

frame to the observer frame.

5.2 Response Tensor for a One-Dimensional Plasma

We will calculat the response tensor of a one-dimensional plasma in cylindrical coordinates using the
analogy of the forward-scattering method (see, e.g., Melrose 1986) adopted to cylindrical coordinates.
We introduce cylindrical coordinates x,7,¢ with r along the radius of curvature of the field line,

z perpendicular to the plane of the curved field line and ¢ the azimuthal coordinate (Fig. 5.1).
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Figure 5.1: System of coordinates.

Torsion is neglected and the radius of curvature is assumed to be constant.
We represent the current as a sum of currents due to each single particle moving along its

trajectory r°(t):
0,0) = [ drdp i (e,05(p,2"(0) (1)

We expand the single particle current (denoted by the subscript sp)
Jsp(r,t) = gt 6(r — r°(t)) (5.2)
in Fourier amplitudes in time, z and ¢ and in Hankel amplitudes in r
Jsp(r,m, kz,w) = /dt exp{—iwt} / dzx exp{ik:zx}/dqﬁ exp{ivg} jop(r,t)
= [ dtexplitve(t) + kuzo(t) w0}t [ edeu(en)uier®(®) (53)

where we used a Hankel transform of the delta function

/ eded, (er)J (er®) = =) (5.4)

r

1A Hankel transform is defined as F(z) = fooo Ju(€x)Edg fooo ydyJ, (Ey)F(y)
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We expand the orbit of the particle in powers of wave amplitudes:
r(t) = ro(t) + r(¢) (5.5)

where r0(¢) is the unperturbed trajectory of a particle, when no wave is present and r(t) is first
order purturbations.

The first order Fourier transform of the single particle current is then
jg;,) (rym, ks w) = q/dt exp{i(ve°(t) + kpzo(t) — wt}/{d{Ju(g’r)

% [i‘(l)«fu(éro(t)) + I‘O(t) ((iV¢(1)(t) + zkzm(l)(t)) Ju(fro(t)) + %ﬁ)ﬂr(l)(t)):l (56)

The orbit of a particle is found by solving the equation of motion

d
d—‘t’ =FO(t,r,v) + FO(t,r,v) (5.7)

where FO(t,r,v) is a force acting on a particle when no wave is present and F(¢,r, v), ie., a
force acting on a particle due to the presence of a waves. Expanding Eq. (5.7) in powers of waves

amplitudes we find

0

dp dt(t) — FO(t, 1%, v") (5.8)
®

dﬁg@ = FO (1,10, v0) (5.9)

The force F (¢, r0, v?%) also can be expanded in Fourier amplitudes in ¢,z and @.
FO (¢, 0 v0) = Z/dw'dk; exp{—i(w't — kLaz°(t) — V' ¢°(t))FV (w,m, ky, r0(2), 1) (5.10)

Equation (5.9) can be solved for the first order velocity perturbation #(!)(¢) and first order
trajectory perturbations z(1(t), ¢ (t) and (V) (¢):

1 (2) V(v kg, r0(8), 2)
2 () = Z/dw'dk; exp{—i(w't — kLz%(t) — v ¢°(¢)) :z.c (v r)
r(2) FO (W v kg, (), 1)

(5.11)

where tilde denotes Fourier transforms.
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The first order single particle current then becomes

3O m, kz,w)—qZ/dwdk’/dtel w—w Yt (ks —kL )2 () — (v=2")8° (1)) )} /gng (€r)
V(60 + 1) (8 + ik.50) g, (6r0(0) + ai”(aﬁﬁf'(l))] (5.12)

Using this single particle current we can calculate the current (5.1). In the general case, current
(5.12) may be related to the electric field of the perturbing wave through a generalized dielectric

tensor operator:
j(rom, kg, w) = E(rym, ky,w) - E(r,m, ky,w) (5.13)

where £ is a dielectric tensor operator which involves a Hankel transform of the external current and
partial derivatives with respect to r. This is different from Cartesian coordinates, where the electric
induction is related to electric field through a dielectric tensor. 2 To simplify the calculations we
find when the radial dependence of both the Hankel transform of the external current and of the
perturbing electric field can be approximated by the plane wave form. For the nonresonant term in
the dielectric tensor operator this is justified in the WKB limit, while for the resonant terms this is
justified for subluminous waves in the limit 62%/3 3> 1 (v is the order of the Bessel function).
Thus, in the Hankel transform of the external current and in the derivatives of the perturbing

electric field we can identify

— ikpy, 8% — ik, (5.14)

ar®

In this approximation the Hankel transform of the external current will reduce to the Fourier trans-

form in r and the derivatives of the perturbing electric field are replaced by ik,. The dielectric tensor
operator £ then becomes a conventional tensor.

The integration of the induced current over d¢°dz® then gives delta-functions §(v —v') §(k, — kL)

that are subsequently removed by the corresponding integrations. For rq = const, the time and

dw’ integrations insure that only secular terms are retained. The integration over d¢ and dr® are

removed using relation (5.4).

5.2.1 Perturbed Trajectory

The equations of motions for a particle in a circular magnetic field when the Larmor radius is much

smaller than the radius of curvature are the following:

d;)tr =eE,(r%) + % ((Bs(x°) + Bo)vs — v B, (r%)) (5.15)

2Mathematically, the difference is that dielectric tensor acts in a space tangent to the vector field at some point,
while dielectric tensor operator acts on a vector field itself.
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ke eE,(r%) + % (Br(ro)vd, — v, (By(r) + Bo)) (5.16)
% = eEy(r’) + % (B (%), — v Br(1°)) (5.17)

We solve Egs. (5.15- 5.17) by expanding in powers of waves amplitudes. We assume that initially

the particles are in the ground gyration state. Then in the zeroth order we find: 1% = 0, ¢° = Qt =
2
Yv

vgt/r, v = ug, with ug = R—BWLB' The first order in wave amplitudes gives
o) _ g (E ) - 2B, (r% + B (rO)) + 2B ,m
dt ymec \" c " ¢ ? v F

(5.18)

c2

L E.(r0 E.(r0
= o (B + 22, ) - Ml Pl D)) w50
dt YMmec c v

dvlM E.(r? 0
$ q 0y _ Udp o0y _ Us(UeEy(r®) + uaFy(r))
= E - —B, ~ 2
e — L (Be) - 5.0 - (5.20)
Expanding Egs. (5.18 - 5.20) in Fourier amplitudes, we find the solutions:
~(1) _ q 0 (B quud - B:z:UqS
= g (o (e
B, E E,
+28 (Ez 4 2B ualvgBy o ua ))> (5.21)
5 c ¢
- ) B, Ey 4+ ugE,
5 = ; q2 (g B, 1Y ~ ud((vg s uaEy)
mecr(@h/v2 — 02) c c
B — B,
_EE(ET+_ﬁEL__J@>> (5.22)
y ¢
=1 _ . 4 _ (E . EB ) ’U¢(’U¢E¢ + UdEz) 593
Ug ZmeQO'y( $ = Or + 2 (5.23)
where Q° = w — kyvy — kyuq, kg = m/r.
The first order variations in trajectory are
(1) e 1
®_ Y= 1y _ ¢ m_TI_ 5.24
e O T T T o (5:24)
In a wave magnetic field is related to the electric field:
B = ZcurlE (5.25)
w
In cylindrical coordinates we have
ke
B, =g, ey
w
By = — kzcEr B Z,cc'))Ez



¢ 0
B, =—FE,.+ o (rEg) (5.26)

5.2.2 Simplified Response Tensor

Using Egs. (5.21 - 5.26) we can find the dielectric tensor operator £. In Appendix A it is shown that
in some particular cases the operator relations between electric field and electric displacement can
be simplified to algebraic relations. This is possible in the WKB limit for the nonresonant particles
and in the limit z > 1 for the resonant particles (see Appendix A). In these limits it is possible to

change all the radial derivative 8, — ik,.. The relations between magnetic and electric field then

simplify
ks k,
By~ —2%F, + “°F,
ksc k.c
B, ~ —E, — E 5.27
” o Eo (5.27)

The resulting dielectric tensor is still complicated. It can be simplified according to the following
procedure: (i) for the nonresonant parts, the drift velocity is small and can be neglected, (ii) for
Cherenkov-type resonance (resonances that do not involve wg) , we retain all the terms, (iii) for
cyclotron-type resonances (resonances that do involve wg) we assume that k; /kg = uq/c, uqg/c > 1/v
and expand in small drift velocity retaining only the first terms in uy; and k;. Implicit in this
expansion in small ug is the assumption that yw? > wQBug /c2. In this limit, in the cyclotron-type

resonant terms involving drift velocity we can approximate vg =~ c¢. The dielectric tensor is then
dpd, dpd) fa k?ﬁui wug
7}
——Z / p¢(w—k¢v¢—kua)A o
dpy fo koo ko, Vi
=1- 2 =2 1- 1-==)--2
cos Zwm/wgﬂ w)( o) - 2

dpy , (k7 +k2) v} dpy
f fu g -3 / b A fo

ll

Err

EI'I‘

—= Z /dp¢ w — kyvg) Ay + ikrugAY) fa

d -
€ra = %Z / p¢ w —kyvp) Ay — tkrua A7 )fa
:*_Z /d—p‘é% “’“")A++zkA )f

dp¢ k +k‘2)
/ Uptiaoxa= fa

€z

©-
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_Zw2 /@Q fa quUa (1_ kzua)_z)é
- pa v Q92 w w c?
1 w2a dp¢ . -
€px = 5 ; ﬁ / —:y‘—’l}d, (szi — ZkrAa) fa
dpy fo keu kru wv,
2 ¢ Ja NplUa T Ua [
e Ja 1— 1—
St [Fanse (-522) (-5%)
1 w2 [ dpg vy + Wla\ ,
—ig w? / v ¢ (kTAo‘—l(kIc_ c )A"‘)fo‘

1 wza dpg v . _
5 e [ (AL 4 ikar) f (5.28)

I

6,-4,

6¢T
Here

A = (é + é) , Al = (Q—lg - é) , QF =w—kpvg—ksuatwpy !, Q% = w—kyvg—kstia,
(5.29)
where f, are one-dimensional distribution functions of the components «.

This dielectric tensor reduces to the dielectric tensor for plasma in straight magnetic fields for
uy = 0. It takes correct account of the Cherenkov-curvature emission and gives the drift corrections
to the cyclotron emission. We also note that this dielectric tensor is nonhermitian, since %, is not a
Killing vector.

It can be shown that for the typical parameters in the pulsar magnetosphere, the drift velocity
of plasma particles due to the curvature of magnetic field lines could be neglected in the calculations
of the real part of the dielectric tensor unless the curvature of field lines satisfies the condition
Rp <« ”yer (here v, is the average streaming energy of plasma particles in the pulsar frame and
r1, = ¢/wp- Larmor radius). This follows from the assumption of a nonrelativistic transverse motion
and the transformation of the radius of curvature seen in the center of gyration frame Rp ., = Rp /7%
This condition is well satisfied inside the pulsar magnetosphere for the plasma streaming energy
v < 10%. By contrast, the drift velocity is very important for the high energy resonant particles.

The use of the simplified response tensor, which assumes a plane wave approximation to the
normal modes of a medium, implies that we effectively have spatially uniform medium. Thus the
use of cylindrical coordinates allows one to eliminate the only inhomogeneity present in the problem,
the weak inhomogeneity of magnetic field, by choosing the cylindrical system of coordinates. For
stationary and spatially uniform plasma we can use Fourier analysis which reduces the problem to

the following system of equations for the perturbations in the electric field:

AasEs(w, k) =0 (5.30)
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where €45 (w, k) is the dielectric tensor of the medium and
Aap = kakg — k*c*8op + w?eqp(w, k) (5.31)
The normal modes satisfy a dispersion relation
Det |Agg| =0 (5.32)

whose roots determine the time behavior of the perturbations.
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5.3 Waves in Cold Pair Plasma with Identical Distributions

of Electrons and Positrons

In this section we will consider the wave propagation in a cold magnetized electron-positron plasma
with equal densities. Though the pulsar plasma is probably hot, the simpler case of cold plasma
is more easily understood and in many cases may serve as a good first order approximation. The
assumption of equal densities of electrons and positrons needs some justification since, in reality,
the pulsar plasma is nonneutral due to the presence of the primary beam with density of the order
of the Goldreich-Julian density and a y-factor v, =~ 107. As we will see the diagonal term in the
dielectric tensor are proportional to the total densities of the plasma components which are larger
than the Goldreich-Julian density by a factor A > 1 and thus almost unaffected by the presence
of the beam. The most important nondiagonal terms, like e;,, are proportional to the difference of
the bulk velocities of the plasma components. For exactly parallel propagation and in the region
n = 1 (n is the refractive index), the condition that the terms associated with the nonneutrality
of the plasma are much less than the terms associated with the different bulk streaming of plasma
components is 8, Ay, > 1 (8] is the velocity difference (in units of ¢) of the plasma components
in the pulsar frame). From (4.4) we may estimate 3, < 1/ so that the terms associated with
the nonneutrality of the plasma are 1/+, times smaller than the terms associated with the different

velocities of the plasma components.

5.4 Plasma Frame

In this section we consider waves in a cold, strongly magnetized, electron-positron plasma in its rest
frame. The drift velocity for the bulk plasma is ignored. In this first approximation we neglect the
influence of the beam on the properties of the modes propagating in the medium. This can be done
provided that the beam density is much smaller than the plasma density. If the average velocities of
the electrons and positrons of the secondary plasma are the same, then retaining only nonresonant

terms we find from Eq. (5.28) the dielectric tensor for cold pair plasma with coincident distribution

functions:
2w12,
€xz =1+ 2 2 = Erp
wh —w
2w,?
€ =1- P
ot w?
€xr =€rg = €pp = €gy = €rg = €gy =0 (5.33)

where wg = 4mnpq?/m is the plasma frequency, and wg = |¢|B/mc is the nonrelativistic cyclotron

frequency.
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5.4.1 Waves in Cold Pair Plasma

Equation (5.32) with the dielectric tensor (5.33) factorizes giving the three wave branches: extraor-

dinary and two coupled ordinary and Alfvén branches:

92 2
n?=1- ?—_a—ib X mode (5.34)

(w2—2 w,,2) (wz—w32—2wp2

2 _
T wiw?wp?-2w?w,?+2wp? wy? cos? b

n

Alfvén and O mode (5.35)

( see Figs. 5.2 and 5.3).

Equation (5.34) describes the transverse extraordinary wave with the electric vector perpendic-
ular to the k-B plane and Eq. (5.35) describes the coupled longitudinal-transverse wave which
has two branches: ordinary quasi-transverse wave with the electric vector in the k-B plane and
quasi-longitudinal Alfvén wave with the electric vector along B.

The normal modes of the plasma for the parallel propagation are given by

wi = V2w, (5.36)
2w?
2 =1 P .
=1+ s (5.37)

(subscripts ; and ¢ refer to longitudinal and transverse polarizations of waves).
For exactly parallel propagation, the dispersion curves for the ordinary mode and Alfvén mode

intersect at

w* = V2w, ke~ V2w, (14w} /wp?) (5.38)

This intersection occurs only for the parallel propagation, for oblique the dispersion curves for
ordinary, extraordinary and Alfvén modes are well separated. It follows that Eq. (5.36) describes
the ordinary mode for ¥ < k* and the Alfvén mode for k& > k*, while Eq. (5.37) describes the
extraordinary mode for all frequencies and the Alfvén mode for £ < k* and the ordinary mode for
E > k.

In the pulsar magnetosphere the waves that may be important for the generation of the observed
radio emission have frequencies much less than the gyrofrequency. In what follows, we will often use
the low frequency approximation when all the relevant frequencies are much less than the gyrofre-
quency. In the cold plasma in its rest frame this implies: w <« wp. The solution of Eq. (5.34) in the

low frequency limit describes a subluminous transverse electromagnetic wave:

w? = k22 ( - —Tp) , w <K wpg, X mode (5.39)
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Figure 5.2: Dispersion curves for the waves in a cold electron-positron plasma in the plasma frame
for oblique propagation (¢ = 0.5). There are three modes: Ordinary (O), Extraordinary (X) and
Alfvén. For graphic purposes gyrofrequency was chosen to be wg = 5wp,. In the high frequency
regime w > wp there are two subluminous waves with the dispersion relation w? ~ k*c? + 2w? for
the X and O modes. Both X and O modes have resonances at w = wpg and Alfvén has a resonance at
w=/2cos fwy. O mode has a cutoff at w = \/§wp. O mode crosses the vacuum dispersion relation
at w? = wa, + w? sin 2.
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Figure 5.3: Dispersion curves for the waves in a cold electron-positron plasma in the plasma frame
in the limit w, <« wp. There are three modes represented by the dashed (ordinary mode), solid
(extraordinary mode) and long dashed (Alfvén mode). The dotted line represents the vacuum
dispersion relation. For the exact parallel propagation, the dispersion curves for the ordinary mode
and Alfvén mode intersect. The insert in the upper left corner shows the region near the cross-over
point wy.
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Solutions of Eq. (5.35) are more complicated. The simple form for the dispersion relation may
be obtained near the cross-over point, where the dispersion relation of the ordinary mode crosses
the vacuum dispersion relation or in the asymptotic regimes far from the cross-over point.
Solving (5.35) with the refractive index set to unity we find the cross-over point for the ordinary

wave.

wg = ki = 2w,? + wp?sin? @ (5.40)

Near the cross-over point, the approximate dispersion relation for the ordinary mode may be

w—wy=— (aKé:’{’ k))/ <8ng:’ k)> dk (5.41)

where K (w,k) = 0 is the dispersion Eq. for w(k).
From Eq. (5.35) we find

found using the relation

w=koc+nlk—ko)c (5.42)
where
_ 10w _ wp? cos? Osin? @
=% Bk ko 4wpt +2wp2w,2sin® 6 + wp? cos? fsin 0

4 4
“p (5.43)

~1-—

4wyt + wpt cos? Hsin® 0
where we used the assumption wp > w,. From (5.43) it follows that the behavior of the dispersion
relation of the ordinary wave near the cross-over point shows a very sensitive dependence on the

angle of propagation. There exists a critical angle 8, = 2w12, /w% at which the dispersion relation

changes:
4
w= V2w, + 28; (k — ko)c, kg ~2wl/c? if § < 2w?/wp?
4
w=ke— Ughlevs ypt k22 =202 + wp?sin?0  if 2w2/wp? < 0 (5.44)

For angles smaller than 6., we can generally use the approximation of parallel propagation when
considering the dispersion relations of the waves, while for larger angles we must take into account
the effects of oblique propagation.

The other limits when the dispersion relations for the ordinary and Alfvén waves may be obtained

in closed form are the asymptotic limits far from the cross-over point. Then the large and small
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wave vector asymptotic solutions are

2 2 2 2] . .
k%c? (1 - —w’%—) +2w,?sin® 6 ordinary wave
2 .
w* = if ke > w (5.45)
P
2wp’sin®d  2w,%sin%6 .
2w,? cos? 0 (1 S "”’w;;“ Alfvén wave

2.2 2 . .
2wp2 + k2c? (1 - k—cwcg’—sf’) sin® § ordinary wave
P

L2 = if ke < wp (5.46)
2 .
k262 cos? 6 (1 - 2;%”2— - %‘3) Alfvén wave

From (5.45) and (5.46) it follows that for Alfvén waves in the limit k¢ > w, and for the ordinary
mode in the opposite limit k¢ < w, we can always set the magnetic field to infinity, while for the
ordinary mode in the limit kc > w, and for the Alfvén waves in the limit k¢ < w, we may set the

magnetic field equal to infinity for the angles of propagation larger than some characteristic angle:

g > if ke > wy

ke
0> ifke <uwp (5.47)

In the limit of infinitely strong magnetic field the dispersion relations for the ordinary (plus sign)

and Alfvén modes (minus sign) are (Arons & Barnard 1986)

. k2202 byl Vit + 4wyt —;lkz c2wp? cos(20)

(5.48)

The short and long wave length asymptotics are then given by (5.45) and (5.46) with the magnetic
field set to infinity.

An important point in considering the wave excitation in the superstrong magnetic field is that
we cannot neglect the very large but finite magnetic field. In the approximation of the infinitely
strong magnetic field the ordinary mode is always superluminous and thus cannot be excited by the
Cherenkov-type resonant wave-particle interaction. In this limit any instability would occur on the
Alfvén waves which are strongly damped as they propagate out in the pulsar magnetosphere. When
the finite magnetic field is taken into account, ordinary wave becomes subluminous for the small
angles of propagation and can be resonantly excited by the Cherenkov, cyclotron or Cherenkov-drift

interaction with the fast particles.
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5.4.2 CMA Diagram for Cold Pair Plasma

CMA diagrams (e.g., Budden 1985) are useful tools in considering wave propagation. It is a plot of
the refractive index versus some functions of wave, plasma and cyclotron frequencies. We chose the
following coordinates for CMA diagram:

2 2
1 w X w
oo (2) zefo(2) 5)
wpg wpB
where Y and X are the standard quantities in the magnetosonic theory. With this choice of co-
ordinates, the lines of constant Z are the lines of constant density and are independent of wave
frequency. The lines of constant W are the lines of constant wave frequency and are independent of
the density. The regions on the CMA diagram are separated by the resonance, where n — oo and

cutoffs, where n — 0.

Using Eqs (5.34) and (5.35) we find resonance

W=1 X modes (5.50)
W = % + 27+ \/(% + Z)2 —2Zcos?0 O & Alfvén modes (5.51)
and reflection points
W=1+2Z2 X modes (5.52)
W=142Z7
O & Alfvén modes (5.53)
W =27

For the X wave the curve n = 1 corresponds to Z = 0 (vacuum case). For the ordinary mode
n=1at W= 2Z +sin® 6 (cross-over point) and Z = 0 (vacuum case). Other useful relations for

the resonances of the coupled ordinary and Alfvén modes are

1 =0
1+2Z 0=m/2
1+2Zsin’0 Z<x1
27 +sin’0  Z>1

%+Z+\/(%+Z)2—2Zc0520=

2Z 80=0

0 f=m/2
2Zcos?’ Z«k1
cos? 0 Z>1

%+Z—\/(%+Z)2—22c0529: (5.54)

The CMA diagrams are plotted in Figs. 5.4 and 5.5.
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Figure 5.4: CMA diagram for the X mode.The vacuum case corresponds to Z = 0. On the axis
W = 0 refractive index is n = 1. Resonance occurs at W = 1 ( n = oo) and reflection occurs at
W =1+ 2Z. Typical X waves in the pulsar magnetosphere have Z < 1, W <« 1 and n > 1 deep
in the magnetosphere. Arrows indicate the adiabatic tracks for the constant density and decreasing
magnetic field (B — 0) and constant magnetic field and decreasing density (n — 0).
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Figure 5.5: CMA diagram for the O and Alfvén modes. Vacuum case corresponds to Z = 0. On
the axis W = 0 refractive index is n = 1. Resonances occur at n = oo and reflections occur at
W=1+2Z and W =2Z (n =0). The curve W = 1 + 2Z corresponds to the upper hybrid wave
w? =wh + ng and the curve W = 2Z corresponds to the plasma wave w? = 2w12,. Typical O waves
(denotes by O) in the pulsar magnetosphere have Z < 1, 2Z < W <« 1. Typical Alfvén modes
(denotes by A) in the pulsar magnetosphere have W <« 1 and n > 1. The arrows B — 0, n — 0
and 8 — 7 /2 indicate correspondingly adiabatic tracks for constant density and decreasing magnetic

field, constant magnetic field and decreasing density and increasing angle of propagation.
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5.4.3 Polarization of Waves in Cold Plasma

To find the polarizations of the waves, we construct a matrix of cofactors of A (Melrose 1978c¢):

Aag = n4kakﬁ - n? (kakgeyy + 6apkykyeyn — kakyeys — kgkyeay)

1
+§5a6 (637 — Eynny) + €aryp — Eyr€ap (5.55)

Then the polarization vectors may be chosen as columns of Aqg.

For the cold plasma the elements of A,z are

2w? 2w?
— 2 p P 2 102

A= n? [ 21402 2w} g
zp =1 +n°+ — 5 | cosfsinf = A,
wB

w? —
2w? 2w? 2n?wp?w? cos? 9
Aep== | [-14n2+ 22 (14 ? +
w2 —LU2 +wB2 w2 (~w2+w32)
2w? 2w?
— 2 P 14 2 2
)\¢¢ = (l—n +—(412—+LUB_2‘) (1+ m — n“ cos 9) (5.56)

We note that these relations are exact in frequency.

For the extraordinary mode using (5.34) for the refractive index in (5.56), we find the polarization
vector for the extraordinary mode ex = (0,1,0). For the ordinary and Alfvén modes using (5.35)
for the refractive index in (5.56), we obtain the ratio of the electric field components in the wave:

(w2 — w32) (w2 — 2wg) cot @

E,
LA (5.57)
E, w? (w2 —wpg? — 2w12,)

For the points far from the cross-over point, we can use the approximation of a very strong

Ez 2w2 2
== (_1 + 32—1’) (1 - 2%) cot 0 (5.58)

Using the relation (5.57) we can estimate the polarization of the ordinary wave at the cross-over

magnetic field to find

point. We find that
E: 2wp’f
E. wg?

(5.59)
wp

2
For the angles smaller than ‘_:5;, the ordinary wave is quasi-longitudinal at the cross-over point and
B

for larger angles it is quasi-transverse.

Relations (5.58) and (5.59) allow us to find the normalized polarization vectors:
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2w,?sin% 6 2w,” cos” 0 2
{cos@(l———?’wz—),o,(1+—1’—z—)sm9}+0< ”) ke > wp

C

eo = ] (5.60)
—(k* sin(26
{(wa:071}+0(k:§2> ke <<(Up
p
wrlo 2w}2,
{#232,0,-1} 0 <2
B
ep = W A Wy (561)
2
{170,_w92 c:thZseCO 9>>_25.;B

{(1+M) sin,0,cos @ (1 M)}%—O(——Z’) ke > wp
€4 = (5.62)
(10,20} 4 0 (22) ke <0y

2
which are accurate to O (w%%)

5.5 Pulsar Frame

The dispersion relations in the pulsar frame are complicated even for the case of a cold plasma. The
waves propagating in different directions have different dispersion relations. So that the dispersion
equation for the X mode becomes a fourth order equation for w(k). To simplify the consideration we
will use the low frequency approximation from the very beginning, i.e., we expand all the relevant
relations in 1/wg.

First we consider forward propagating waves which in the plasma frame had § < 1. We obtain

w'?

' .
wh = k(1 _L472u%)
Ke(1- TR A T VR,
4'ypr c2 k'2 ¢ TpWp
wp = _
W .
vpk' + ?/,} if kK'c < ypuwy,
12
/ ’ “p _ c2k'%sin?¢’ - ;
k Ccose (1 - 4’7240123 4’prp/2 lf k ¢ < prP ( )
Wy = 5.63
vpk' + 372 if K'c > ypuwy,
D
(we remind that w), = wp/\/75)-
The cross-over point is
2LUI2
wy? = —2 + 4y2w}6'? (5.64)

Tp
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For the waves propagating backwards in the plasma frame we give only relations for parallel

propagation.

4 12
W = ke (1 Sl i ) (5.65)

wp
\/§w;

Tp

W = —vpk' + (5.66)
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5.6 Waves in a Relativistic Pair Plasma with Identical Dis-

tributions of Electrons and Positrons

5.6.1 Effects of Thermal Motion on Wave Dispersion

In this section we consider wave propagation in the relativistic, strongly magnetized electron-positron
plasma. The thermal motion of the plasma particles changes the dispersion relations of the waves,
thus changing the conditions for the wave excitation. The thermal motion of plasma particles affects
considerably the dispersion of the Alfvén mode at frequencies w > w, and the dispersion of the
ordinary mode frequencies w < wp. The corresponding dispersion relations are qualitatively different
from the cold case. Another important guantitative modification is in the dispersion relation of the
extraordinary mode. The difference of the phase speed of the extraordinary mode (parameter 4) is
roughly proportional to < 1/4% > (Eq. 5.86), e.g., § is decreased considerably by the bulk streaming
of the plasma. In the relativistic streaming plasma there are many particles with low Lorentz factors.
This results in an increase of § which relaxes the conditions for the development of the cyclotron

and curvature drift instabilities.

5.6.2 Distribution Functions

To estimate the thermal effects on the plasma mode, we use the two kinds of distribution functions:

(1) waterbag distribution
ey if —pr <p: <pr

I
fpz)= ¢ *7 (5.67)
0, otherwise

(here pr = meyr is the scatter in moments) and (ii) relativistic Maxwellian distribution (see also

Appendices D and E for the calculations of the relevant moments of the distribution)

fp.) = exp {—Brp U"} (5.68)

p
2K1(Br)

Both these distributions are ”fast falling” at large moments. This is an important factor for
the dispersion relation of plasma waves (see below). The advantage of the water bag distribution is
that the various moments of the distribution can be easily calculated. The relativistic Maxwellian
distribution is explicitly Lorentz-invariant (see Appendix D for details of Lorentz transformation).

The relevant moments of the distributions are summarized in Table 5.1 for the water bag distri-
bution (in the plasma frame only) and in Table D.1 for the relativistic Maxwellian distribution (in
both plasma and pulsar frame).

In what follows we identify 2yr = T), to consolidate the average energies for the case of two

distributions.
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<y > yr/2
< pv> yr/2
1 log v
< ¥ > T
1 1
< ¥3 > ¥r

Table 5.1: Relevant moments of the water bag distribution in its rest frame (dimensionless units).
It is assumed that pr/mec = vy > 1.

The water bag distribution is generally a good approximation for the account of the thermal
motion of the particles. Its major drawback is the absence of a tail of high energy particles that
can resonate with the waves in the plasma. The Cherenkov resonance on the tail particles will
result in a strong damping of the waves. The cyclotron resonance on the tail particles may result
in a wave excitation if the distribution function is asymmetric with a long high energy tail. The
condition, that the Cherenkov resonance is unimportant, is that the phase speed of the waves in
plasma is much larger than the thermal velocity of the particles. In the case of the idealized water
bag distribution, this condition has to be put in by hand. Whenever the phase speed of the wave
becomes comparable to the thermal velocity, the waves should be considered strongly damped and
nonexistent. Therefore, we expect that the high frequency branch of the Alfvén wave, which in the
limit of cold plasma had a very low phase velocity, will be strongly damped.

Here, we should also mention a long standing controversy about the dispersion of the longitudinal
waves and the possibility of the two stream instabilities in the relativistic plasma. In the initial
work (Silin 1960) and later works (Suvorov & Chugunov 1975), it was stated that the relativistic
plasma does not support subluminous longitudinal waves. This problem has been considered anew
by Tsytovich & Kaplan 1972 who found subluminous waves. The controversy has been resolved
by Lominadze & Mikhailovskii 1978, who demonstrated the existence of the subluminous waves in
the range 0 < n —1 < 1/ < v >% (n = 1), provided that the third moment of the distribution
(< ~® >) is finite (here n is the refractive index and < 4 >>> 1 is the average Lorentz factor of the
plasma particles). Thus, when the distribution function falls off at large momenta slower than 7%
subluminous plasma waves do not exist.

For the water bag distribution, the dispersion of the plasma waves for the parallel propagation
is given by Eq. (5.78). We find that n — 1 becomes larger than 1/ sz for w > several times w,. For

larger frequencies the longitudinal plasma waves are either strongly damped or do not exist at all

(Silin 1960).
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5.6.3 Dispersion Relations in Relativistic Pair Plasma

To simplify the analysis we will use the low frequency approximation w < wp and the assumption

2
of a very strong magnetic field ZL:} < 1 from the very beginning. The dielectric tensor is then

given by
e =14dT, (141?62 cos?8) = ey,
2n?w?
=1— P d T,n?sin% 0
“o¢ T, (1 - n? B2 cos? ) Tadpnsin
€xr == €rz = €z¢ = €z = €rgp = €yr (569)
where
wp
d=—*% (5.70)
Whp

The normal modes of a hot plasma are given by the solution of (5.32) with the dielectric tensor
(5.69). Similarly to the cold case, Eq.(5.69) factorizes into a dispersion relation for the extraordinary

mode
w? = k*c® (1 — dT, (1+ B2 cos®6)) (5.71)

and a dispersion relation for the coupled ordinary and Alfvén modes (not given here). This equation
may be solved in the approximation of infinitely strong magnetic field:
9 1

= Tk22+22+Tk222 20
i (4w2 +2 T, k2c2 B) cos? 6 phe “p pk“c” By cos

+ ((Tp k¥ + 2w12,)2 - 2T, k% c? (Tp k2c? Br? - 2w12, (—2 -+ ﬁ%)) cos? 0

+ T k*c* B1 cos 04)1/2 (5.72)

where the plus sign corresponds to an Alfvén wave and minus to an O wave. The dispersion relations
for the ordinary and Alfvén waves in a hot pair plasma are plotted in Fig. 5.6. It is also possible
to obtain the asymptotic expansion of the dispersion relation of Alfvén and ordinary modes in the

limits of very small and very large wave vectors. In the limit ke > +/ Towp we have

2 1.2 g2 2 _ 2wh ,
c* k* B1 cos* 0 (1 2 TSR (117 cov? ) Alfvén wave
2k (1-d T, (1+62 cos?0)) (1 2y sin’ 0 0
¢ ( - p ( + Bt cos )) T2 Tp k? (—1+ﬁ§~ cos? '9) mave
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Figure 5.6: Dispersion curves for the waves in a hot electron-positron plasma in the plasma frame
in the limit w < wp. Only Alfvén (dotted) and ordinary (dashed) modes are shown. The dispersion
curve for the extraordinary mode is very similar to the cold case. For the illustrative purposes we
have chosen T, = 2. The dispersion curves of the ordinary and Alfvén modes intersect only for

parallel propagation.
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while in the opposite limit k¢ < / Tpwp

k2 cos?§ (1= d Ty (1+ B3 cos?6)) (1 - SH5m8)  Alfvén wave

w? = (5.74)

UJ2
2T—: + c2k? (8% cos® § + sin” 0) O-wave

We will give here also the relevant phase speed of the waves in the limit of small angles of
propagation.

w2,
vg(h =c (1 — —“’—wz") X mode
B

2 2p o2
h woT, w:T, sin* @
v =c (1 — B R O-wave, kc > /Tpwp
B

2 .
VB = ¢ cosf (1 - %;" - %) Alfvén wave (5.75)
B PP

The X mode is always superluminous and the Alfvén mode is always subluminous. The ordinary
mode is superluminous for small small vectors k¢ < \/ﬁwp and may become subluminous for very
small angles of propagation 8 <« \/prp Jwg.

The cross-over point (where the phase speed of the ordinary mode become equal to the speed
of light) is now w? = k2¢? ~ 2 T,w? + wp?sin® 4. Using relation (5.41) we can approximate the
dispersion relation near the cross-over point as

1 (W +4TRwRw?)0?

w=ke—nlk—ky), n= 77 TGI8, P (5.76)
p%

Another analytical solution to the dispersion relation we can obtain for the parallel propagation.

Then we have two transverse wavs with the dispersion

w? =k*c* (1 —d Tp(1 + B8%)) (5.77)
and a plasma wave )
2
W= 2P 222 (5.78)
Tp

It is also useful to represent the dispersion relations for the plasma waves near the cross-over

point in the form (5.42). For the relativistic plasma components, we find

(522 (252)- (- £52)

1
wr ke — -T—Q(k — ko) (5.79)

The phase speed for the high frequency asymptotic of the plasma wave (5.78) approaches the
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phase speed of the thermal particles cOr. For the more realistic distribution function, these parts of
the dispersion relation will be strongly damped on the Cherenkov resonance with the thermal tail
particles. The high frequency asymptotic of the plasma wave belongs to the Alfvén wave. From
this we make a conclusion that the high frequency (k¢ > T,w,) part of the Alfvén wave is strongly
damped and does not propagate.

In most of the calculations to follow we will assume that the plasma is very hot: pr/mc > 1 and

Tp = V/p7/(me)* +1> 1.

Polarization of waves in a hot plasma

In the case of a hot plasma the matrix of cofactors /\gg is quite complicated and is not given here.
Simple relations may be obtained in the limit wg = co and near the cross-over point for the ordinary

wave. In the limit wg = oo we find the elements of the matrix )\gg

2w?
)\(h) _ ) 1 p 2 .z 20
Tz ( +n ) pr2 (_1+TL2 Ug cos? 9) s
A = p2 (-1+ nz) cosf sing = A
202 (~1+n? cos? 6)
Tpw? (=1 +n?v3 cos?9)

AW = (~1+n?) (=1 +n® cos®6) (5.80)

R) _ 2
)\Z(ly)—l—n -

For the extraordinary mode we find that the polarization vector is ex = (0, 1,0), while for the

ordinary mode

E, n? cos® sin @
—_—= 5.81
E, —-1+4+n2cos?$ ( )

These relations are valid for the points not close to the cross-over point of the ordinary wave, where

the approximation wg = oo is applicable. Near the cross-over point, n = 1, we find

E:,; w329
== 5.82
E, 4T 30,2 (5:82)

For oblique propagation the behavior of the ordinary mode at the cross-over point changes at

6 ~ 4T3d (5.83)

For smaller angles the ordinary mode is quasiparallel at the cross-over point while, for large angles,

it is quasitransverse.
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The polarization vectors for the ordinary and Alfvén modes are then given by

2.2 2 2
{cos@ (1 - ——2—2T”;k2m 9) , 0, — ((1+ —}’—2T”fzk§°s 0) sinH)}, ke > wp

2
el = {wwof,o, —1} 6 < ﬁfﬂ w=w® (5.84)
wn? 2Tu.: h
{Lov—m} 0> 52 w=w"
2
(h) _ w*® tanf
e, = {1,0,—————2 T, 2 } ke € wp (5.85)

5.6.4 Dispersion Relation for Hot Pair Plasma in Pulsar Frame

The dispersion relations for the forward propagating modes in the pulsar frame in the limit o’ <« wg

are

I ! w2 Ty
wy = ke (1 - rpﬁ)

wWgTp
R 2T 12 sin2 g’ .
o = Kec (1 - 44’2(‘% + 7”“’"62 k";sm ) if k'c > /Ty 'ypw;, and 0" < 1/T,
’2
N . ' ’ w. “T 2k12 . 29/ .
wa = kccosh (1 - 2};2“)2; - 57 7:‘217,2) if ke < +/Tp vpwp (5.86)

These relationships are valid for the frequencies satisfying the inequality
w < Ypwp/Tp (5.87)

This is a condition that in the reference frame of the plasma the frequency of the waves is much
smaller that the typical cyclotron frequency of the particles wp/T).

The cross-over point is
12 _ 2wy T 12
wy? = —2—= 4 4y2wi (5.88)
Tp
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5.7 Waves in a Pair Plasma with Different Distributions of

Electrons and Positrons

5.7.1 Response Tensor for Hot Pair Plasma with Streaming Distributions

We first derive the dielectric tensor for a cold, one-dimensional electron-positron plasma with equal
densities and different average energies of electrons and positrons. In this case all nine components
of the dielectric tensor are nonzero. We assume that the fast component of the plasma consists of
positrons. If the charges of the fast and slow components are interchanged, then all the results of
this section will be valid provided that the circular component of the polarization of the natural
modes is reversed.

We assume that though the distribution may be ultrarelativistic, the contribution to the anti-
hermitian part of the dielectric tensor from the cyclotron resonance is negligible so that we can use
a frame invariant ”low frequency approximation” w%/v? > (w — kyvy)2.

Though it is expected that the relaxation time of the plasma present on the open lines in the
neutron star magnetosphere due to the Coulomb collisions is much longer than the dynamical time,
we still expect a large initial spread in the moments of the plasma particles (Arons 1981). As an ap-
proximation to the poorly constrained distribution, we use a relativistic streaming, one-dimensional

Maxwell distribution:

- Mo —puU§
f(pg)e = Tk () exp{ I’fa } (5.89)

Here T, are the temperatures of the electrons and positrons of the plasma in the units of m, c?,
Dy is the 4-momentum of a particle and U¥ = (4, YaBa) is the 4-velocity, 7, is the y-factor and
Ba = Vo /c is the three velocity of the system of reference where the particular component is at rest.

The calculations of the components of the dielectric tensor are outlined in the Appendix M. The

resulting expressions are

Ky + K.
€z =1 +dz Yo <02—}:—2 (1 —ncosfBa)? + To (e — cose)z) = €pr
1
[e 4
. w .
€zr =1id Z _wE signg (1 —ncosf8,) = —€re
[24
Ky + K.
€z = dsinﬁnz Yo <—02-I-:—2 Bo (1—ncosbBy) +To(Ba —n cos0)> = €gr
1
«
. . w .
€re =1idn sinf _wg ; 5igng Bo = —€gr

2 Ko+ Ky +K2) (5.90)

€46 :1—ZIQ(9,w,n)+dn2 sin® 9 ZVQ (Ta+6a 9K,



58

where d = wg / w%, wz = 47 n, e2/mg is the plasma frequency expressed in terms of the density
no measured in the laboratory frame, e, is the charge of species o (charge of an electron is —e),
n = kc/w is the refractive index, K(1/Ty) is the modified MacDonald functions, sign is the sign

of the charge «, and we define

47 e’ dpg 1
I(0,wn)= —= [ e - _
(8,w,n) - / v fa CENORE (5.91)

We note that the temperatures T, cyclotron frequency wp and the quantities I, are frame
invariant. The frame invariance of I, follows from the frame invariance of dpg /v, fo and v(w— kg v4)
(the latter is the product of the wave and momentum four vectors).

I is a very sensitive function of the wavelength, distribution functions and angles of propagation
with respect to the magnetic field. For the propagation of the quasi-transverse waves with a near
vacuum dispersion n =~ 1 and for the wave vectors not in the vicinity of the cross-over points
(where the dispersion relations for the quasi-longitudinal and quasi-transverse waves intersect) 3,
the refractive index n in the expressions for I may be set to unity, but even in that case the angle
and distribution function dependence of €, is very complicated. Generally, for the frequencies much
larger than the cross over frequency I < 1, and for frequencies much smaller than than the cross
over frequency I > 1. We will give the forms of I separately for the each case considered.

We would like to stress that we use a noninvariant w, = , /471'n;)q2 /me, l.e., expressed in terms
of the density in the laboratory frame. It is equal to wp./Ya, Where wy, is the invariant plasma
frequency in the rest frame of the particular component and «, is the v-factor of the component’s
rest frame with respect to the laboratory frame. We also should note that, in the case of relativistic
plasma, the actual frequency of Langmuir oscillation measured in the component’s rest frame will
be Wp\/m , 1.e., it will decrease due to thermal effects.

The dispersion relations look much simpler in the center-of-momentum reference frame so we first
discuss in details the properties of the waves in that frame. The general Lorentz transformations to
the pulsar frame from the center-of-momentum frame is very complicated and, as it turns out, it is
simpler to solve the dispersion relations in pulsar frame independently. We will denote the quantities

measured in the pulsar frame by the primes.

3The cross-over point for the ordinary wave is given by solving €44 = 0 with n, the refractive index, set to unity.
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5.8 Waves in a Cold Plasma with Streaming Components.

Center-of-momentum Frame

5.8.1 Dielectric Tensor for the Cold Plasma in the Center-of-momentum
Frame

In the cold plasma approximation we expand (5.90) for T,, < 1. In the center-of-momentum frame

the distribution functions are fo = nq d(py £ Yo Bomac) and we have v, = £ Foc and v, = v, =

1/ /1= 2.

The dielectric permittivity is then given by

€op = €yy =1+2dv (1+n?32cos’6)
2 2 92 o2
o A i a0
€xr =—6TI=2i\/En2L—Z—Z—ﬂO cos @
€z = €gg = —2dn? ,le) B, sinf cosd
g = —cpr =2iVdn? -‘]‘:—Z B, sin 6 (5.92)

5.8.2 Dispersion Relations for Exactly Parallel and Perpendicular Prop-

agation

For parallel propagation § = 0 the dispersion relation splits in two for the longitudinal plasma

modes:

€pp = 0 (5.93)

and for the two transverse waves:

(n? —eggp)® + €2, = 0. (5.94)

Eq. (5.93) describes plasma waves with the electric field of the wave parallel to the wave vector
and (5.94) describes transverse waves. Using (5.92) we arrive at the following solutions for the

plasma waves:

2 w \/w2+473k202ﬁ2
w P 4 o o
2 7?3 kZCZIBOQ 3
o Yo

(5.95)

One pair of solutions of (5.95), corresponding to the minus sign, will be called a slow branch.
The other pair of solutions of (5.95}, corresponding to the plus sign, consists of three parts belonging

to the ordinary, extraordinary and Alfvén modes. The dispersion curves for these modes intersect
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only for parallel propagation. In the case of oblique propagation the modes are always distinct. For
parallel propagation we will distinguish longitudinal plasma modes, described by equation (5.93) and
transverse modes, described by equation (5.94). We stress that, except for the slow Alfvén wave,
which stays separate for any angle of propagation, the longitudinal plasma modes and the transverse
modes are composed of the parts of ordinary, extraordinary and Alfvén branches (see Fig. 5.7).
For large wave vectors k¢ > w,/7,%?%, Eq. (5.95) gives four modes corresponding to the
Langmuir waves in each component propagating in each direction:
w=+kef, + ‘Z—’/’Z (5.96)
Yo
For small wave vectors k¢ < wy/ 73/ 2, the ordinary branch gives the conventional Langmuir
plasma waves with w = ++/2 wp/’yg/ 2 propagating in a positive and negative direction and the
slow wave becomes unstable for £ < /2 wp /73/ 2 B, corresponding to the conventional two-stream
instability (see Fig. 5.7). The maximum growth rate of this instability is Im(w)maz = wp/(1>/2 Bo).
The slow branch, which is unstable at low frequencies, is always subluminous and the ordinary

branch becomes subluminous at k¢ > /2 Yowp 1/1+ 32.

The solutions of Eq. (5.94) for the transverse waves in the plasma frame are

ke (kc:l:2\/awp,6'o —2d70kc,802)
W2 = (5.97)
1+2d7,

In the low frequency approximation, the minus sign in (5.97) corresponds to the extraordinary
mode and the plus sign corresponds to Alfvén mode, while in the high frequency approximation, the
minus sign corresponds to the ordinary mode and the plus sign corresponds to extraordinary mode.
(see Fig. 5.7). For parallel propagation we will call these modes fast (plus sign in (5.97)) and slow
(minus sign in (5.97)) transverse waves.

The polarization of the fundamental modes is given by quantities K and T of Melrose 1978c:

1

K = €yz COSO — €ss SIN O
—rs? t egpcgg — An? | PP for €90
+n? (- (€yz €0s0) + €z SIN0) + €54 (€xr cOSH — €, sinb)
T i ((€z¢ €yz + €ar €pg) COSO + (€47 €xp + €40 €y2) SINH)
—€x¢2 + €pgp €pp — An?
where A = €44 c0s” 0+ 2€,4 080 sin 6 + €44 sin? 6 (5.98)

The waves are quasi-transverse for K ~ 0, circularly polarized for T' = +1 and linearly polarized
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Figure 5.7: Dispersion curves in the center-of-momentum frame for the case of relative streaming of
electrons and positrons for exactly parallel propagation with cutoff and cross-over points shown. The
Lorentz factor of the relative flow is 79 = 1.5. There are four modes represented by the dotted (O
mode), dashed (X mode), long dashed (Alfvén mode) and solid lines (slow Alfvén mode). The waves
are subluminous if the dispersion curve lies below the vacuum dispersion w = kc. kc/w, = 2B,wp/wp
denotes the onset of cyclotron two-stream instability, kc/w, = 21/2/8,7, denotes the onset of
conventional two-stream instability, k*c = wgB,/7,(1 + 82) is a point when a fast transverse wave
becomes subluminous and k¢ = (2 73 (14 52 )) 1 wp, is the point where the ordinary wave becomes
21724,

subluminous. The ordinary branch has a cutoff at w = .

o
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for T =0 or T' = oo. Using (5.97) we obtain

Kft = 0, Tft = -“1,

Kst = 0, Tst =1 (599)

where ft stands for fast transverse and st for slow transverse mode. The waves are circularly
polarized. The fast transverse wave propagating in the positive direction has a right circular po-
larization or negative helicity and slow transverse wave propagating in the positive direction has
left circular polarization or positive helicity. This sense of polarization is determined by our choice
of the sign of the charge of the ordinary component, which is, in turn, determined by the general
structure of the pulsar magnetosphere (the product 2.B at a given point in the magnetosphere).
The appearance of the circular polarization in a plasma with the different charges having the same
masses is due to the relative streaming of the plasma components.

The fact that the normal modes are circularly polarized for the parallel propagation may be seen
as contradictory to our notions of ordinary and extraordinary modes, since in the magnetosonic
theory the ordinary and extraordinary modes are defined as having linear polarization in the k- B
plane and perpendicular to it. As we will see later, for oblique propagation the normal modes become
linearly polarized which allows an identification with the conventional ordinary and extraordinary
modes.

Eq. (5.97) shows two possible hydrodynamic instabilities for these branches:

(1) Firehose instability for 2d v, 8,° > 1 for both modes
(2) Two-stream cyclotron instability for the slow transverse mode for 2+/d wpBo/ke > 1.

If the magnetic field is strong enough so that 2d~, 8,2 <1 (this excludes the firehose instability),

then for large wave numbers k¢ > 2vdw, 8,/7, (so we are far from the two-stream cyclotron

instability) the asymptotic solutions are

2 12
W=+ (kc:t Vdw, Bo — de ke (1+8,2) + d-2 "7") (5.100)

2k22
which describe two pairs of transverse waves propagating in each direction in the plasma frame.
Slow transverse wave always stays subluminous while fast transverse wave is superluminous for
ke < wg Boe (1 + ﬁg) and subluminous for larger wave vector. The dispersion curves for exactly
parallel propagation are plotted in Fig. 5.7 for 7, = 1.2, d = w2/w} = 1/10 (the numerical values
for the parameters were chosen only for the sake of graphically clarity).
For perpendicular propagation § = 7 /2 in the plasma frame the dispersion relations of the natural

modes and their polarization vectors are (in the limit of strong magnetic field d <« 1):
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wi(0=m/2) = k*(1 - 2dv. (1+42B%) E={0, By, —~EyivdkcB, /wp}
Qw?
wi(@=m/2) =k + 7_: E={0, By, E,iwg/ (v2 B, ke)} (5.101)

o

So we have two transverse elliptically polarized waves.

5.8.3 Waves in the Infinitely Strong Magnetic Field

For the infinitely strong magnetic field, the dispersion relation splits in two:

n?=1, E = {0, E,,0)
(n?cos 6% — eg4)(n?sin 62 — €4y) — (n2cosOsin b — €,4)2 =0, E = {E,, 0, B4}

(5.102)

The vacuum dispersion relation corresponds to the linearly polarized wave whose electric vector
is perpendicular to the k-B plane. This is the extraordinary mode. The second equation is for
the mixed longitudinal- transverse wave. In the most general case it has three coupled branches
corresponding to the ordinary, Alfvén and slow Alfven branches.

Setting d = 0 in (5.92), the dispersion relation for the longitudinal- transverse wave in the plasma

frame takes the form:

2n%wp? (1 - n?cosh?) (1+ n?pB2cosb?)

=0 (5.103)
2 k2 v,® (1 — n2 B2 cos 6’2)2

—1+n%+

Eq. (5.103) is a cubic equation in n* and can be solved analytically. The solutions of (5.103)
together with the vacuum solution for the t-wave are plotted on Fig. 5.8 for v, = 1.5 and 6 = 0.5.
In the case of oblique propagation in the infinitely strong magnetic field, the ordinary branch is

always superluminous, while the Alfvén and slow Alfvén waves are always subluminous.

We will give here long and short wavelength asymptotic dispersion relations. For k¢ >> \/Ewp / 7(3,/ 2
we have:
2 _ 1 2(%)2 (1—}—@%00592) sin 62
no = - 3
Y3 (1 — 82 cos 92)2

6> 2%

nZ, = sec2 14 o ’
& 703 83 /1 - 2 cos 0
2 w
9 Y

n2 = 50 [, 2 (5.104)

2 > |
o Y63 32 4/1 — B2 cos b
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Figure 5.8: Dispersion curves in the plasma frame for the infinitely strong magnetic field. Solid lines
give the dispersion curves for the propagation along magnetic field, dashed lines give the dispersion
curves for oblique propagation. X mode has a vacuum dispersion relation.
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where the notations O, SA and A stand for ordinary, slow Alfven and Alfvén modes. The ratio of

the longitudinal component of the electric field in the wave to the transverse are

27,2 wpz (1+[3,,2) sin 62

B _ TPy <1 ifvy, <1
ELo ™ 2 .
- gy <1 if 0y, >1
B ~ g ;ﬁo > 1] iffvy, 1
Ei 454 ) (5.105)
—tanf « 1 iflvy, >1

This implies that for small angles of propagation 6y, < 1 the ordinary wave is quasi-transverse
and both plasma waves are quasi-longitudinal while for larger angles 6+, > 1 all three waves (one
of which is two-stream unstable) are quasi-transverse. This provides an interesting example when a
conventional two stream instability produces quasi-transverse waves only.

The asymptotic dispersion relation for the ordinary wave may be obtained in the low density
approximation of Melrose 1978a, but dispersion relations for Alfvén and slow Alfvén waves, which
are quasi-transverse for # > 1/+,, cannot be derived in that limit.

In the small wave vectors limit (ke < v/2wp/ ~3/ ?) the asymptotic solutions are

w2 . w 2
w% = 273” + (kc)? (3,60 cos? @ + sin? 9) %To = 2% = (1 + BDZ) tan @
_ (ke)? sin? 6 E _ 37,3 B2 cot 92k2 2
wa = kc cosf (1 - 470(1+ﬁ§)wp) ETA =cot (1 + —"’————ﬁm:’z < ) (5.106)

5.9 Waves in a Cold Plasma with Streaming Components
in the Pulsar Frame

As mentioned above, the Lorentz transformation of the dispersion relations is too cumbersome to
be carried out for arbitrary angle of propagation and it is easier to solve Eq. (5.32) in the pulsar
frame. Since the components of the dielectric tensor strongly depend on the y-factors of the plasma
species, we will consider separately two cases: (i) nonrelativistic relative streaming, when the velocity
of each plasma components in the center-of-momentum frame is small 8, < 1 (then both kinds of
plasma particles contribute approximately equally to the dielectric tensor) and (ii) relativistic relative
streaming, when the energy of each plasma components in the center-of-momentum frame is much
larger than unity v, > 1 (some components of the dielectric tensor are dominated by one kind of
particle).

In what follows we denote the velocity and the y-factor of the center-of-momentum frame in the
pulsar frame as 3, and ~,, keeping the notations 8, and ~, for the absolute value of velocity and

energy in the center-of-momentum frame.
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For the waves propagating forward (in the direction of the motion of the plasma frame) in the

pulsar frame, the energies of the plasma components are

29p% ifyp > 9, >1
'Yp(l'*':@pﬁo) if7p>>17,30 <1

Yfaster = YpYo + \/ ’7;2; -1 \Y 72 - 1=

I Yo/ 2% vy > v >1
VYslower = YpYo — 'Yg -1 V ’Yg —1= i . P (5107)
7p(1_:3p:30) 1f’)’p >1,6, <1
and the velocities
Bt Bo 1-1/(87272) ifvwp > v >1
Ufaster = m = ) ]
pro 1617—1—/60/71; 1f'7p>>17ﬁ0 <1

_ /Bp_,Bo _ 1-273/7;2) if’)lp >>'7o >1 (5108)

Uslower =
1— 505 Bp— Bo/7: yp>1,8, <1

We will always assume that 7, > 1, then the velocity difference in the pulsar frame is 63 =

280/73

5.9.1 Nonrelativistic Relative Streaming

We first derive the dielectric tensor for the cold electron-positron plasma in the pulsar frame when
the relative velocity of the plasma components is nonrelativistic. Expanding (5.90) for T, < 1 and

keeping only first term in the 8, < 1 limit of (5.107) (5.108), we have

€y =1+2dvi(1-n'B, COS@I)2=€;y
2w,?

/ P 292 12 5 2 g0
€ =1- +2d~; B;n' “sin“ 6§
4 w2y, (1 —n! B, cos')’ peP

~2inwy? B,
G =R (B — ' cost) = —,
6;(25 :Eld)z =0
, _ —2in?w,? B, sinf'y,
€yz = Kcws = Ty

(5.109)
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Parallel Propagation

For the case of exactly parallel propagation and in the limit 8, < 1, the solution of the Eq. (5.93)

(which describes longitudinal plasma waves) may be approximated as

2 wp \/wpz + 47,2k 2c2 B2
vp2 k22

wp?
Y2 k22

+ Bo

W' =kcB,+ (5.110)
which gives in the long wavelength limit &'c > w,/2 8, two pairs of waves propagating in each

component

W =k Bk -2 (5.111)
Tp

while for smaller wavelength we have two Langmuir waves with w’ = k'c 8, & V2w, /7, and two
two-stream unstable waves.

For the transverse waves the refractive indices are

o 2/wpk'c (wp?+2wyp?) (wpk'ct 27, w2 Bo) + 27, wy? (=27, k'ctwr Bo) Bp
12 2 (wp2kcE 27y, wpwy? By —27p2wp2ﬂp2k’c)
~2y/wpkc (wp® +2w,?) (wpk'cE£ 27, w2 Bo) + 27, wp? (27, ket wgp B,) By
2 (wp?KcE 2y, wpwy? B, —27p2wp2k’cﬂp2)

!
N34 =

(5.112)

which shows a cyclotron two-stream instability for klc < 2w,? 8,7p/wp with maximum growth

rate Im(w')maz = wp? Bovp/wp. For k' > k! the solutions (5.112) may be approximated as

Vdw, B, d
29p ke 4,2

2Vdw, B,
+ % —4dy? (5.113)

! —_
ni,=1%

/ —
ngs=-—1

The fast transverse wave traveling in the positive direction (minus sign in nj 2) is superluminous
for k'c < 4wp 7, P, and subluminous for larger wave vectors.
Solving Eq. €:ﬁ¢ = 0 with the refractive index set to unity, we find the point where the ordinary

wave becomes subluminous: k' > 227, w,/c

5.9.2 Relativistic Relative Streaming

In this section we assume that the streaming of electrons relative to positrons is relativistic meaning
that their relative velocity in the center-of-momentum reference frame is close to the speed of light.
With the distribution functions of the form fo(ps) = 740(pg — Yava) where the v factors and

velocities of plasma components are given by the 7, > 1 asymptotics in (5.107), the dielectric
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tensor (5.90) in the pulsar frame will have the following form:

€4 =1+dZ'y§(1—n’ cos b va)® = €,
o
2
’ Wp 12 s 2.0 2 2
€ =1- + dn' “ sin® 6 1+
¢? gw’%a? (1 — 7' yy cos§')® ; e o)
€. =— \/E;:—,I; Zsigna Yo (1 =1 cos€ v,)
x
€ = dsinfd'n’ Z Y2va (1 —n' cosfvg) = €ha
[e4
i signg Vdn'? w, sin6’ yov
€ = et e (5.114)

o3

Here 7, and v, are given by the v, > 1 asymptotics of (5.107) and (5.108). The velocity difference
is now 643" = 2~2 /2.

Parallel Propagation

In this section we consider the limiting cases of exactly parallel propagation when it is possible to
solve the dispersion relation analytically.

Eq. (5.93) for the plasma waves is a fourth order equation in n' corresponding to the waves
propagating in each direction in each plasma component. If the relative streaming of electrons and
positrons is relativistic, then for sufficiently larger wave vectors k¥'c > w,/(68'v+) the Langmuir
waves in each component have small effect on the waves in the other component and the solution of

(5.93) in the laboratory frame may be approximated as:

W = Ky 4 Ve
Tp

W= kvt P (5.115)
2'71770

For smaller wave vectors two of the four solutions of (5.93) becomes two-stream unstable.

In the intermediate frequency region (for the wave vectors much larger than those corresponding
to the two-stream instability and smaller than w,/(63v+), we may find a cross-over point for the
ordinary wave: k'c = 2+, ¥, wp. The ordinary wave is superluminous for smaller wave vectors and
subluminous for larger.

Solving (5.94) for the dispersion of the transverse waves under the condition d < 1, we get

Vdwpy, | 72 | dyiw;
2k'cy, 292 2k 22
L 2Vdw ddwp %5

— 2,2
ng14 = -1 T e — 8d’70 ’)’p - '—W (5116)
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Here nj , correspond to the waves propagating in the positive direction (along the direction of
the bulk motion) and nj 4 correspond to the waves going in the negative direction. We note that

the ordinary mode is two-stream-cyclotron unstable for k'c < v, wg /27 wg.

5.10 Waves in a Relativistic Pair Plasma with Streaming Dis-
tributions

In this section we consider waves in a relativistic hot electron-positron plasma.
Expanding the Bessel functions in Eq. (5.90) when T, > 1 and keeping only the leading terms,

we obtain the dielectric tensor

€0 =1+ dZ(fyaTa) (1 —nvy cos8)? + (vq — ncosb)?) = ey

€xr = —iﬁ% Z §1GNa Yo (1 — 1 c0s 0 vy ) = —€,4

€20 = Z dn sinf vy Ty (va(l —n cos@va) + (vq — 1 cos0)) = €4y
isigna\/an2w sin 0

€ro = Z ke £ Yala = —€4r

€os =1 —Zla(e,w,n)-{-dnz sin? 07, T (14 v2) (5.117)

In what follows we also assume that the temperature of two kinds of particles are the same and

equal to 7.

5.10.1 Center-of~-Momentum Reference Frame

The dielectric tensor in the center-of~momentum frame is then

€sp =14 2d7%T (14 n? cos6?) (1 + B82) = ¢,
€xr =2idn?%E Bo €08 07, = —€,4
kc
eyz = 2’Ldn2 %Bi‘ /80 Sin 9')’0 - "Ezy
C
€z :—2d70Tn2c059sin9(1+ﬁ§)=6¢z
egp  =1-I(6,w)++2dv,Tn?sin’0 (5.118)

where now
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2wy, T (1+5,)2

Z¥plos 2ol i 1
I0,wn)=1{ .. 10 < 1 (5.119)
orer < o5 > if g7 <0< 1

If we compare this dielectric tensor with the cold case (5.92) we see that (except in the €4, term)
in the case of relativistic temperature the particles have equivalent mass T}, (1 + 32) ~ 2T higher.

The problem of the propagation and stability of the Langmuir plasma waves in a hot plasma is
a very complicated one, and since we are mostly interested in the properties of the quasi-transverse
waves propagating almost along the magnetic field we will use approximations (5.119) for the eyy
and refer the reader to the original works (Silin 1960, Lominadze & Mikhailovskii 1978, Lominadze,
Mikhailovskii & Sagdeev 1979, Weatherall 1994) which consider Langmuir waves propagation. Here
we just note that the two-stream instability is suppressed by thermal effects if T > ~, 3, and we
find the cross-over point, where the ordinary wave becomes subluminous by solving equation €4 = 0

with the index of refraction set to unity:

V3wyve /Ty (14 8,)  if 0 < 1/(2v,T)

ke > (5.120)
2o [< LS if0 > 1/(27T)

For the propagation of the transverse wave along magnetic field, we have the dispersion relations:

1+2d~,T (1 2
n? = +2d5, T (1+5,) (5.121)

1£2Vdw, Bo/ke —2d7, T (1+ 8,°)

which gives the hydrodynamic firehose instability for 2d~, T (1 + ,602) > 1 for both branches
and the cyclotron two-stream instability for the slow transverse mode for kc < 2w,? 3, /wp.

To find the dispersion relations of the quasi-transverse waves propagating forward with a small
angle with respect to magnetic field we follow the same procedure as in Section 5.10 to get for

n?=1+z

2
(-1+1I)2%+ =z <8d%(1—1) (%JFT (1+ﬂ02)) —102) +

2 22
4d2 (l_I) (4d2T2(1+IBO2) wpﬁo) +

k2c?

2 02
44262 (IT(1+,6’02) . I)‘Z@é") (5.122)

Eq. (5.122) gives the solutions
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=1+ \/_L]L:!&“}'zd')’o( (1+IB2)+ kzcz

)
w w 2 if 0 <0crit
npe=1- \/Ekcpﬂa +2d7 (Tp(l +82) + 2 kpzcgo ) - 4(110_1)
242 2.5 2
nst=1+2d(1;£)2l:592,30 Yo +2dyo(T(1+ﬂg)+wp Bo )

kZc? i
L in? ) 2.2 ¢ if0 >0,  (5.123)
ng =1+ 7 +2d70( (1+ﬁ)+—;;27)
with
sz Bo .
6 = C2VAd 1= 1] wy Boe _ ) Fowske if ke < wpvo /Tp(1+ Bo) (5,120
cTre kC . . .
Tke —_ﬂ—T%(l—f-ﬁg)uB if ke > wp, \/Tp(l—l—ﬁo)
(we assumed that 6.4 < 1/(2T+,) and polarizations given by
Kst,ft = ili_%a Tst,ft +1+ _\/Tllli:—le)wj— if 0 <8t
_ Vdw, 8, Vd(1-I)w, B,
T \/lcfol—k’l)w g e flfcfil)’w B 0> Oerir (5125)
Ky = Theos Tftz__'Wu

From (5.123) we find that for the quasi-parallel propagation the extraordinary mode is superlu-
minous for

_wp Bo_ if 3, <1
k< ZerT g (5.126)
wp/(47.T) if fo ~ 1

5.10.2 Pulsar Reference Frame

In the pulsar reference frame we will give explicitly the dispersion relations for the quasi-transverse

waves for the nonrelativistic streaming only. We also assume that v, < T,

-
Following the same procedure we have for exactly parallel propagation

/ \/Ewpﬂa
nip=1d ke 4 ok
: 2y ke | 272
d
npe=-1% ‘/_;”]‘;,ﬂ”” ~8d72 T,

(5.127)

where, as before, n; , corresponds to the waves propagating forward in the pulsar frame and nj 4
to the waves propagating backward.

For the forward propagating waves, we find solutions for oblique propagation for ' < 1/(4T,~,)

— \/EUJ Bo dT
oge =14 S50 ok

if o' <o
nlt:1_M+4_Ll2 erit
T ke T 22 T A(1-1)
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nl — 1 + dT
ot S e ifo >0, (5.128)
np =145 (1—01+'“1_) + 35,z

where the quantity I is now given by I = 8w2~2T,/k'2¢? and polarizations
p ip~P

! ITk'ce'? .
Kst,ft = :til-_qfa Tst,ft =41+ ﬁﬁm iff < GLT“
= _Ydw b, _ Vd(=1+Dw, B,
o= = wear ot =" Tweos if6' >0 . (5.129)
Ko = 8Y40-Dw,fo T, — 8Yd(=1+D’w, 5, erit \9
ft = 3yp L kic@’3 ft— 37,,I2k’t:0’4_

where the critical angle is given by

Bok'c p
g2 2vdw, Bo|l — I| S5 Tuws ifk'c > 2wpvp VIp (5.130)
crit — ~ kel - ﬁowi i wiﬁo , '
P wheos U Tyoogn K ke € 2wy vp /1Ty

The cross-over point, where the ordinary wave becomes subluminous, for the parallel propagation
isk'c =2v2 wp ¥p v/ Tp. For the small wave vectors, the fast transverse mode becomes superluminous

for K'c < wf, Bo/27pwp, while for large wave vectors it is superluminous for §' > k'c/2wp.

5.11 Conclusion

In this chapter we considered the low frequency w <« wpg normal modes for a one-dimensional
streaming electron-positron plasma in a very strong magnetic field taking into account relative
streaming of the plasma species and thermal effects. The dispersion relations for the natural modes
are sensitive even to the small streaming motion between the electrons and positrons of the plasma
consistent with the global electrodynamic conditions. The difference in the averaged parallel velocity
results in the coupling of the two quasi-transverse waves for the angles of propagation with respect to
magnetic field less than some critical angle so that the natural modes become circularly polarized.
For the angles of propagation larger than this angle, the two transverse modes become linearly
polarized due to the coupling to the longitudinal plasma modes. In the case of relativistic relative
streaming, the plasma modes become quasitransverse for the angles of propagation larger than 1/+,.

The distinction between superluminous and subluminous waves is clearly made. In the long
wavelength limit the relative velocity of plasma particles results in the two-stream plasma and
cyclotron instabilities. The stable transverse wave in this limit becomes superluminous, while both
transverse waves were subluminous in the case of zero relative velocity.

The results of this chapter may be relevant to theories of pulsar radio emission generation and
wave propagation in pulsar magnetosphere. We have shown that the small relative velocity of plasma

components modifies these normal modes considerably changing their polarization and dispersion
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properties. Furthermore, as the nature of the outflowing plasma changes, the character of the normal

modes will change as well.
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Chapter 6 Cyclotron-Cherenkov and
Cherenkov-drift Instabilities

In this chapter we consider the physics of the cyclotron-Cherenkov and Cherenkov-drift instabilities
(Ginzburg & Eidman 1959, Lyutikov 1997b, Lyutikov, Machabeli & Blandford 1997a, Lyutikov,
Machabeli & Blandford 1997b). The terminology used here to describe these instabilities refers
to the fact that in the cyclotron-Cherenkov emission, a resonant particle changes its gyrational
state (undergoes a transition between two different Landau levels), thereby comes the ”cyclotron”
part of its name, but the force that induces the emission is due to the presence of a medium (the
”Cherenkov” part of the name). The Cherenkov-drift emission is similar to conventional Cherenkov
(the gyrational state of the resonant particle remains unchanged) but it involves a nonvanishing
curvature drift of the resonant particles.

Both the cyclotron-Cherenkov and Cherenkov-drift instabilities, that we believe can develop in
pulsar magnetosphere, operate in the kinetic regime, i.e., they are of a maser type (see Chapter 7).
This means that there is some kind of the population inversion in the phase space, which supplies
the energy for the development of the instability. In the present case, the source of free energy is the
anisotropic distribution function of the fast particles. The condition of a population inversion may
be restated that the induced emission dominates over induced absorption for a given transition.

The first two steps in identifying the possible maser-type radio emission generation mechanism
are (i) determining which radiative transitions are allowed in a given system and (ii) establishing
if the given distribution function allows for the population inversion for the particle in resonance
with the emitted waves. In this chapter we will first discuss the microphysics of the two suggested
emission mechanisms and then show that the distribution function of the particles present on the
open field lines of pulsar magnetosphere does have a population inversion and allows maser action.
When discussing the microphysics of the emission process, we will concentrate on the spontaneous
emission processes. The induced emission rate, which is important for the development of the
instabilities, is derivable from the spontaneous emission in the usual manner. In the process of
induced emission, the electron emits a wave in a phase with the incident wave. However, both
cyclotron-Cherenkov and Cherenkov-drift masers are broadband and incoherent because a single

electron can resonate with several waves simultaneously.
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6.1 Physics of Cyclotron-Cherenkov Emission

In this section we discuss the microphysics of electromagnetic wave emission at the anomalous

cyclotron resonance

w(k) — k“U” + _u? =0 (6.1)

The conventional synchrotron emission and Cherenkov radiation may be regarded as limiting
cases of [n — 1| < 1 and B = 0 respectively of a synergetic cyclotron-Cherenkov radiation. The
interplay between cyclotron (or synchrotron) and Cherenkov radiation has been a long-standing
matter of interest. Schwinger et al. 1976 discussed the relation between these two seemingly different
emission mechanisms. The important feature of the work of Schwinger et al. 1976 is that the
authors neglected a possible motion along the magnetic field thus excluding the anomalous cyclotron-
Cherenkov Doppler resonances.

To describe the microphysics of the cyclotron-Cherenkov emission process, we first recall the
microphysics of the conventional Cherenkov emission (Ginzburg & Eidman 1959). Consider a charged
particle propagating in an unmagnetized dielectric with the dielectric constant € > 1. As the particle
propagates, it induces a polarization in a medium. If the velocity of the particle is larger than the
velocity of propagation of the polarization disturbances in a medium, which is equal to the phase
speed of the waves v, = ¢/4/e < ¢, the induced polarization cannot keep up with the particle.
This results in a formation of the polarization shock front. At large distances, the electromagnetic
fields from this ”shock front” have a wavelike form corresponding to Cherenkov emission. Thus
the emission is attributed to the polarization shock front and not directly to the particle. This
polarization shock front acts on the particle with a drag force, which slows down the particle. This
drag force may be considered as a generalization of the radiation reaction force in a medium.

Now let us consider a propagation of a particle in a magnetized dielectric along a spiral trajectory.
Similarly, the propagating charged particle induces polarization in a medium. If the velocity of the
particle is larger than the phase speed of the waves, a polarization shock front develops, which acts
on the particle with a drag force. Now the drag force, averaged over the gyrational period, has two
components: along the external magnetic field and perpendicular to it. The parallel part of the drag
force always slows the particle down. The surprising result is that the perpendicular component of
the drag force acts to increase the transverse momentum of the particle. Thus a particle undergoes a
transition to the state with higher transverse momentum and emit a photon. The energy is supplied
by the parallel motion. In fact, half of the parallel energy lost by the particle is converted in the
radiation and half goes into the transverse motion (Ginzburg & Eidman 1959, Lyutikov 1997b).

The photons emitted by such mechanism correspond to the anomalous Doppler effect w — kjv| —
vwg/res = 0, with v < 0. In a vacuum, only the normal Doppler resonance, with v > 0,

is possible. The necessary condition for the anomalous Doppler effect, w — kv < 0, may be
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satisfied for fast particles propagating in a medium with the refractive index larger than unity. It
is natural to attribute the emission at the normal Doppler resonances to the Lorentz force of the
magnetic field acting on the electron, while the emission at the anomalous Doppler resonances to
the electromagnetic drag forces from the medium.

The cyclotron-Cherenkov instability may be considered as a maser using the induced cyclotron-
Cherenkov emission. The free energy for the growth of the instability comes from the nonequilibrium
anisotropic distribution of fast particles. The condition that the emission rate dominates the absorp-
tion requires population inversion in the distribution function of fast particle (maser action). Since
radiation reaction due to the anomalous Doppler effect induces transition up in quantum levels, for
the instability to occur, we need more particles on the lower levels. From the kinetic point of view,
waves grow if the quantity k lef—) is positive for some values of k. For an electron in a magnetic

field this condition takes the form

1 Z8°% ) 8f 6‘f
L k== >0 6.2
o 9pr T o, (6.2)

where v is a harmonic number. Here v > 0 corresponds to normal Doppler effect (transition down in
Landau levels) and s < 0 corresponds to anomalous Doppler effect (transition up in Landau levels).
If the distribution function is a plateau-like in parallel momentum, then the condition for instability
is I/% > 0 which could be satisfied for inverted population for the normal Doppler effect or for
the "direct” distribution for anomalous Doppler effect. The latter case takes place for the beam of
particles propagating along the magnetic field with no dispersion in transverse moments.

Near the light cylinder the magnetic field strength falls considerably which allows for synchrotron
excitation of transverse motion of particle. At the distance 10° cm an anomalous Doppler resonance
could be fulfilled for the particles of the primary beam and for the fast particle of the tail of plasma

distribution.

6.1.1 Quantum Approach to the Anomalous Cyclotron Emission

In discussing the electromagnetic properties in dielectric medium (Sections 6.1.1 - 6.1.2) we will make
a simplifying assumption, which is standard in the theory of Cherenkov radiation, that the refractive
index of the medium n is independent of the frequency and angle. In reality n — 1 as frequency
goes to infinity which provides the upper cutoff for the integration over frequency removing the
divergence of some of the integrals involved.

In this section, following the approach of Ginzburg & Eidman 1959, we show the kinematic
possibility of spontaneous emission with upward transitions in transverse quantum energy levels for
a quantum oscillator propagating with a superluminous velocity in a dielectric medium.

First we note that the energy and momentum of a photon propagating in a medium with the
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refractive index n are given by fiw and A wn/c respectively. Now, consider an electron propagating
in a magnetic field. The quantum states may be described by the definite values of the momentum
along the magnetic field and the projection of the spin of the electron on the magnetic field. The

energies of the eigenstates are

Eyxy = \/(mc2)2 +2mciwy + picZ, (6.3)

where En is the total energy of the state, wy = Nhwp is the energy of the electron in the
frame associated with its center of gyration, N =1/2+ [+ (s+1)/2 is a principal quantum number,
l=0,1,2,..is aradial quantum number and s = =1 is spin quantum number (Sokolov & Ternov
1968). Each state is doubly degenerate except for the ground state I = 0,r = —1.

The conservation of energy and momentum take the form

Ef—Eizhw,

hwncosH‘ (6.4)

Pfz —DPiz =hky =
Indices ¢ and f refer to the initial and final states, 8 is the angle between the directions of
photon propagation and the magnetic field. Neglecting the terms of the order hAw /(mc?) < 1, and

requiring that the energy of the emitted quantum be positive, we arrive at the emission condition

vwp
w — k”’U” - T =0 (6.5)

The change in the transverse energy is

w; — wyg = (N; — Ny)hwg/y=vhwg/y >0, if Zn(w)cosd <1
normal Doppler effect,
w; — wy = (N; — Ny)hwp/y= vhwg/y <0, if 2n(w)cosd >1

anomalous Doppler effect, (6.6)

where we defined v = N; — Ny. In the region of the anomalous Doppler effect the photons are
emitted when the electron undergoes a transition up in its quantum levels. The energy is supplied by
the parallel motion of the particle. The loss in the parallel energy equals the increase of the transverse
energy plus the energy of the emitted wave. Alternatively, we may argue that the quantum state of
the particle with large parallel energy and small transverse energy has a higher total energy than
the state with smaller parallel energy larger and transverse energy which allows for a spontaneous
transition from the state with higher total energy to the state with smaller total energy.

Tt is instructive to consider the emission process in the particle rest frame. In this frame during
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the emission process, the emitting particle increases its transverse energy and also acquires some
parallel velocity due to the radiation recoil at the anomalous Doppler resonance. A puzzling situation
arises: a particle increases its kinetic energy and emits an electromagnetic wave. The resolution of
this paradox is that for the superluminous motion when considered in the particle’s rest frame the
emitted wave has negative energy.

To illustrate this we calculate the energy of the electromagnetic wave traveling in a lossless
dielectric medium with permittivity € and permeability x = 1 along the z axis in the medium rest
frame, which will be denoted by primes, and another frame moving also along the z axis with velocity

3 (see, for example, Dunn 1971, Sturrock 1960). In the primed frame we have
D’ = ¢E', B = H, (6.7)

where E’ and H' are the electric and magnetic fields, D’ and B’ are electric and magnetic induction.

The wave fields, viewed in this frame, have the form

E! = Elexp(i('t' - k'2")),

E,
H, = 77 exp (i(w't' = k'2")) = By,
D! = eEl exp (i(W't' — K'2")), (6.8)

where the impedance Z) = w’/k’c and F/ is an arbitrary constant. The dispersion relation has the

form

Z%e =1, (6.9)

which gives two solutions Z, = +1/y/e = £1/n for the two waves traveling in the positive Z' > 0
and negative Z < 0 directions.
Making Lorentz transformations of the fields Eq. (6.8) we find in the frame moving in the positive

direction z :

E, = E,exp (i(wt — kz2)),

H, =+nE,exp (i(wt — kz)),

_ (ntp0) .
D, = nE, A Eng) exp (i(wt — kz)),
B (B£n) exp (i(wt — k2)), (6.10)

v e np)

where

! / _ A2
B,= W PRe p  V1ZBw g (6.11)

V1-82w ° w— Bkec 7
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We now identify the energy of the wave as
1
W=§(H-B+E-D), (6.12)

whose time-average value is

1
< W >=Re(H-B'+E-D"). (6.13)

Using Eq. (6.10) we can find the time-averaged energy of the forward and backward propagating

waves:
< W > _ nEg n— g
forwd = 9 1‘”,3,
nE? n+ g

< W >packwd = 2 . 6.14

backwd 5 1tngd (6.14)

The energy of the forward propagating wave thus becomes negative for n 8 > 1.

6.1.2 Radiation Reaction due to Emission at Anomalous Doppler Reso-

nance

As mentioned in the introduction, for the different types of Cherenkov emission (conventional
Cherenkov and cyclotron-Cherenkov) it is more consistent to consider photons as emitted by the
shock front of polarization. The energy for the emitted waves is supplied by the slowing down of
the particle by the radiation reaction force. In this approach the emissivity may be calculated as
the work done on a particle by the radiation reaction force. The advantage of this method is that it
allows us to see explicitly, on a microscopic level, how the recoil of the emitted photons influence the
motion of the particle. The very notion of the radiation reaction force 