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ABSTRACT

A new formulation of the pair of Boussinesq-class equations for modelling
the propagation of three-dimensional nonlinear dispersive long water waves is
presented. This set of model equations permits spatial and temporal variations
of the bottom topography. Further, the two resultant equations may be
combined into a single equation through the introduction of an irrotational
layer-mean velocity. An exact permanent-form sclution is derived for the
combined equation, which is still of the Boussinesg-class and includes reflection,
This solution for the surface height is found to describe a slightly wider wave
than the permanent form solution to the uni-directional Korteweg-deVries

Equation.

A numerical scheme using an implicit finite-difference method is developed
to solve the combined equation for propagation over fixed sloping bottom
topography. The scheme is tested for various grid sizes using the permanent-
form solution, and an oscillatory tail is seen to develop as a result of insufficient

mesh refinement.

Several cases of wave propagation over a straight sloping ramp onto a shelf
are solved using the permanent-form solution as initial conditions and the
results are found to be in good agreement with previous results obtained by
using either the Boussinesq dual-equation set or the single Korteweg-deVries
equation. The combined equaticn is used to solve the related problem in two-
horizontal dimensions of a wave propagating in a channel having a curved-ramp
bottom topography. Depending on the specific topography, focussing or
defocussing occurs and the crest is selectively amplified. Indications of cross-

channel oscillation are presented. linear, nondispersive theory is used to solve



a case with identical topographical features and initial condition. The solutions
using the simplified theory are found to be considerably different from the
results for nonlinear, dispersive theory with respect to the overall three-
dimensional wave shape as well as in the areas of crest amplification, soliton

formation and cross-channel effects.
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CHAPTER 1

Introduction

Waves travelling on the surface of water may be influenced by the bottom
topography. In particular, waves possessing a wavelength which is large in
comparison to the water depth are strongly affected by the lower boundary. To
emphasize the large relative wavelength, these waves are called long waves, while
to emphasize the small relative depth, they are alternately known as shallow-
water waves. This thesis will explore a new formulation of classical long water
wave theory originally developed over a century ago. The goal is to investigate
the effects of three-dimensional bottom topography without sacrificing other
interesting features of the propasgation such as nonlinearity, dispersion and

wave reflection.

Since the definition for long waves relies on the relative measure of
wavelength to water depth, the kinds of waves considered here span a
considerable range. For instance, the first oscillatory mode in a bathtub filled
with a foot of water is a long wave. On another scale, the seismically generated
sea waves known as tsunami! have wavelengths so long that even the deep ocean

basin, averaging 3,500 meters in depth, seems shallow.

Much of the discussion in this paper will center on the effects of
nonlinearity and dispersion in long waves. Nonlinearity is identified as the
steepening of the front face of a wave. This steepening occurs when higher

amplitudes travel at higher phase velocity. A wave which is strongly affected by

1 The term tsunami has been edopted by scientists to denote ean earthquake-generated
wave, These waves are somelimes referred to as "tidal” waves, however, this term has been
discarded in order to clearly separate tsunami from tides.
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nonlinearity will overturn or break. Breaking waves are a special and difficult
topic and will be excluded from the analysis presented here. We rely on the
effects of dispersion -- the tendency of a wave to disperse into a train of waves --
to hold the effects of nonlinearity in check and prevent breaking. When
nonlinearity and dispersion are balanced, we have a situation known as weak

nonlinearity.

Nonlinear dispersive long water waves have been studied for over 100 years,
beginning with Russell (1844) who observed a persistent, long-wavelength wave
(a solitary wave) propagating in a canal. The simplest model for long wave
propagation (described in many texts, for example, Lamb [1932]) assumes that
the waves are of infinitesimal amplitude, linear and nondispersive. For constant
depth situations, with no external forcing, this model reduces to the well-known
wave equation. Airy (1B45) developed a set of model equations (now bearing his
name) which takes into account the finite amplitude of the wave, assuming that
the effects of nonlinearity dominate dispersion. These equations predict that
all waves steepen and break, a prediction which precludes the existence of
permanent-form water waves. The classical model for finite amplitude long
water waves in constant depth including nonlinear and dispersive effects was
developed in three papers by Boussinesq (1871lab, 1B72). Rayleigh (1878)
independently derived an equivalent set of equations. Both Boussinesq and
Rayleigh derived the permanent form (solitary wave) solutions to these
equations. Korteweg and deVries (1895), basing their work on the formulation of
Rayleigh, restricted the equations to propagation in one direction only,
combined them and found permanent form solutions (for both periodic and
solitary waves). Their equation is known as the KdV equation. Miles {(1981) gives
a full account of the history of the KdV equation, with special emphasis on

Boussinesq’'s contributions. Ursell (1953) clarified the relationship between the
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Airy equations and the Boussinesq equations by establishing the importance of
the relationship between the sizes of the dispersive and nonlinear effects, Some
higher order formulations of the equations for finite amplitude long waves have
been developed by Grimshaw (1971), Laitone (1960) and Fenton (1971). A
method known as inverse scattering was used by Gardner, Green, Kruskal and
Miura (1987) to solve the KdV initial-value problem. This method can be used to
predict the number of solitary waves (solitons) which will emerge from arbitrary
initial data. Madsen and Mei (1969) presented a derivation of Boussinesg-type
equations for the propagation in one horizontal dimension of long waves over a
bottom with slow spatial variation. Johnson (1972) developed a KdV equation
with variable coefficients to described a wave progressing over a ramp and
obtained the number and amplitude of the solitons produced on the shelf as a
function of relative depth change and initial amplitude. Tappert and Zabusky

(1971) independently obtained similar results.

In the past 20 years, it has become especially clear that research efforts
concerned with the propagation of weakly nonlinear long waves over an uneven
bottom has taken two distinct directions: One approach is to neglect reflection
and proceed to combine the governing equations into a convenient, single
equation of the KdV-type which is then solved either by inverse-scattering
techniques or numerical methods. The other method is to leave the equations
in their dual-equation form and solve these numerically. In this study, we
present a description of weakly nonlinear shallow water waves which can
conveniently accommodate three-dimensional variations in the bottom
topography. Based on the model first put forward by Wu (1981), a single
governing equation is derived for this system and a permanent form solution for
constant depth is obtained. Th;e governing equations are solved numerically for

a‘series of cases of increasing complexity. One of our objectives in this study is



-4 -

to establish some fundamental baseline information about this new equation,
which has the potential to conveniently replace other single and multiple

equation models while including effects that these models neglect.

Another goal of this thesis is to investigate some basic problems involving
three-dimensional bottorn topography, and this is accomplished through the
development of a numerical method to solve the combined equation discussed
above. Many computational models have been developed previously to solve the
long wave equations, although most of these rely on the linear, nondispersive
equations; see Goring (1978) for a discussion of criteria useful for determining
when the linear, dispersive equations are appropriate. A computational model
using two sets of difference equations was developed by Leendertse (1967) to
study the propagation of long waves in two horizontal dimensions. The effects of
the earth's rotation and bottom roughness were included; the water depths at
certain points must be given as input to the numerical scheme. Peregrine
(1967) numerically calculated solutions to the Boussinesq equation for a wave
approaching a straight beach of constant slope. In addition, Peregrine obtained
analytical solutions for wave reflected off the slope by using linear theory. The
Boussinesq equations were solved numerically for the case of a solitary wave
ascending a straight ramp by Madsen and Mei (1969). They cited experimental
confirmation of the disintegration of the solitary wave on the shelf into two or
more seolitary waves. The variable-coefficient KdV equation has been solved, for
cases involving ramp transitions from one depth to another, by Johnson (1972).
Vliegenthart(1971) analyses a group of finite difference schemes used to solve
initial-value problems for the KdV equation, including some schemes which are
dissipative. Goring (1978) has solved the Boussinesq equation in one horizontal
dimension using a finite element method. Lepelletier {1981) included dissipation

in his finite-element solution to a Boussinesq-type model for basin excitation
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and transient harbor excitation problems. A numerical model which propagates
a cylindrical weakly nonlinear long waves was developed by Chwang and Wu
(1978) to investigate the focussing of curved wavefronts. Their formulation
solves the two-equation Boussinesq equations in cylindrical coordinates for
spatially varying bottom topography.

The numerical methods required to solve the new combined equation which
we present in this thesis are straightforward and need not be specific to the
particularities of the situation under study since important effects such as
nonlinearity, dispersion and wave reflection are included in the fundamental
formulation. We employ an implicit finite-difference method to develop two
computer programs to solve the combined equations. The basic problems
investigated in this thesis concern the evolution of an initial solitary wave
propagating down the length of a rectangular channel. The channel contains
two regions of constant depth connected by a submerged ramp. In our
numerical experiments, different ramp geometries are modelled. The simplest
of these geometries (which reduces the problem to propagation in one
horizontal dimension only) is the straight ramp with constant slope and no
variation in the cross-channel direction. The other ramp geometries considered
in this study retain the feature of constant longitudinal slope but incorporate
curvature in the cross-channel direction. In all cases, the ramp configuration
and wave motion are taken to be symmetric with respect to the centerplane of
the channel. As the initial condition, we use the solitary wave solution
appropriate to our combined equation. A single solitary wave, as opposed to a
train of periodic waves, is useful in the context of our experiments for a
number of reasons: (1) The solitary wave form can be derived as an exact
solution to our governing equation for constant depth. (2) The solitary wave's

extremely simple shape reduces the need for elaborate boundary conditions
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which may influence the nature of the solution. (3) The solitary wave can
be easily distinguished from the reflected wave when passing over a ramp.
The final wave form resulling from the passage over the curving ramp is
found to be strongly influenced by the bottom topography, and other methods
based on simplified theories are found to be inadequate in these situations

containing three-dimensional bottom topography.



CHAPTER 2

Derivation of the Governing Equations

The governing equations for long waves have been derived in many ways
using different scalings, simplifying and restrictive assumptions, and choice of
dependent variables. All methods arrive at similar, but not identical
equations. (Compare for example: Boussinesq [1871], Korteweg and DeVries
[1895], Lamb [1932], Madsen and Mei [1969], Whitham [1974], and Wu
[1981]) In order to provide a clear and consistent understanding of the
equations used in this study, we present the following derivation, based on
the techniques used by Wu (1981). We also derive an exact permanent-form
solution to a combined form of these new equations. This special solution
proves useful in twe ways: first, as an initial condition in our numerical studies

and second, as a rigorous test on the accuracy of the numerical scheme.

2.1 The Basic Equations.

We start by considering three-dimensional, finite-amplitude waves of
arbitrary wave number in both horizontal dimensions (x,y)=x. Figure 2.1
provides a reference sketch showing the placement of the coordinates (x,y,z)=X
and physical variables described below. The undisturbed ocean surface
coincides with the plane z=0. The air-sea interface is assumed to span over the
entire horizontal plane, and when perturbed is given by =z = ¢xt). The
impermeable lower boundary is prescribed by z = —h(xt), which will allow us
to include movement of the ocean bed. The fluid is taken to be incompressible
and inviscid, with a constanl density p. Surface tension will be neglected. The

governing equations are the Euler equations:
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VeU=0, (2.1)

au _ 9u = -1y o-
o m + UVU = pvop g¥oz (2.2)

Here U{Xt) = (u,v,w) represents the flow velocity vector; Vo= (aax e 62) p(Xt)

is the pressure; and g is the acceleration due to gravity.

The boundary conditions for this system are:

» at the free surface:

W= -g%— +uV¢ on z = ¢(x,t), (2.3)
P = po(xt) on z = &x.t), (2.4)

e at the lower (solid) boundary:

o 8h
w = m uvh on z

i

- h(x,t), (2.5)

where u(Xt)=(u,v) is a vector which contains only the horizontal velccity
components; pg(Xx,t) denotes the pressure at the free surface (here assumed to

be prescribed), and V = (—a—a—- 5‘2—).

An important set of layer-averaged equations can be obtained with

application of the following transport theorem.

dt: ffdz+vf ufdz. (2.8)

where f{Xt) is any scalar, vector or tensor flow quantity; such operations with
tensorial quantities can always be reduced to operations on the tensor’s
cartesian components which are scalar quantities. The validity of this theorem
depends on the incorporation of the boundary conditions (2.3) and (2.5) as is
shown in Appendix A. As a notational convenience we will use a bar to indicate
the average of any quantity over the vertical layer, ie., if q represents any

vector or scalar quantity, then

q= -1-—f q dz, (2.7a)
T -n
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where 7 is the layer thickness: m=(¢+h). Using this notation, the transport

theorem (2.6) may be rewritten as

7

a{al
o |Fn

= 1)+ Vnut] (2.7b)
We may now proceed to use (2.7b) to investigate the transport of various

quantities in the flow by replacing f with the physical variables of interest.

Taking f=constant and f=u in (2.7b) yields, respectively,

&+ v [nu] = o, (2.8)
B, __ Vp
ST+ Vo [nua) = -0 =k (2.9)

where UU denotes a tensor of the second order defined in the Euclidean space
with the two horizontal dimensions (X=X, Y=X,) such that its ij* component is

[u], = wu; and its it

. component of the divergence is [V-Ua); = —-@—*[ujuj].

9x;
Equation 2.8 is an expression of layer-mean mass conservation (or volume
conservation, since the density is constant), while Eq. 2.9, which is obtained by
applying (2.7b) to the horizontal components of (R.R), governs the vertically-

averaged horizontal momentum. These two equations form an important basis

for describing the physical situation of interest.

Still using Eg. 2.7b, we may further take f=w and f=E4, where Ey is defined

as

1
Eq(Xt) = -é—;oU-U + pgZ, (2.10)

and making use of the vertical component of (2.2) and the mechanical energy

equation derived from (2.1), we obtain

3, 1

Sm®) + Vinwa] = - gn - po- Pl (2.11)
8 5 : . 8h \
b + V- [n(Eq + plu] = - [Poé‘f"* P-h ] (2.12)

where p_j indicates the pressure evaluated at z=-h. These equations, which we
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show here for completeness, govern the layer-mean vertical momentum and
energy, respectively. From Eq 2.10, E4 may be seen to represent the sum of

kinetic and potential energy densities.

Since the density p is constant, it follows from the principle of
conservation of mass that the entire fluid volume remains constant over time.
If we assume that certain physical quantities, such as ¢ and wu, fall off
sufficiently fast away from the region of interest, and if we take h{(xt) in

the form h{xt) = he(X) + h;(xt) then the constant fluid volume is given by

¢
fav= fasf az
A% S -h
= f1¢ + ho(®) + hy(x.)]dS (2.13)
S
for a sufficiently large but finite region V with a corresponding horizontal

surface S over which h(xt) is assumed integrable (and beyond which ¢+h; is

assumed to have negligible integral effect). If we define the excess mass N, as

M, = pjs-k* hy] dS
then (2.13) implies M. is constant over time. Furthermore, for a fixed lower
boundary (h;=0) the mass above the undisturbed surface remains
unchanged over time. This simple conservation law will later be used to

check the accuracy of our numerical calculations.

2.2 Irrotational Long Waves; the Velocity Potential.

The system comprised of Egs. 2.8 through 2.13 is exact and applies to
both rotational and irrotational flow in an inviscid, incompressible fluid. We
can simplify this system by assuming that the flow is irrectational, which is a
good assumption for a homogeneous inviscid fluid starting from rest. This

assumption allows us to introduce the velocity potential ¢ such that
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If we substitute (2.14) into (2.1), we obtain the field equation for the potential

as

Vg =0 (2.15)
which is the laplace equation. Furthermore, if we introduce the velocity

potential into (2.2) and integrate, we obtain the Bernoulli equation:

0 1
%4— —a—‘f—+ -é—{Vogc]2+gz=O (2.18)

which relates the pressure and the velocity potential. Note that these equations

are not depth-averaged and are exact to the extent that irrotationality holds.

We are primarily interested in determining the movement of the free
surface ¢(x,t) for the case of long water waves. (Of course, we also hope to
obtain information on the other physical variables in the process.) Our
approach will be to use the laplace and Bernoulli equations, which involve
¢ and p, along with the boundary conditions involving ¢, ¢ and p, to introduce
an appropriate expansion for ¢ and obtain a relationship between V¢, ¢ and Vp.
Once we have this relationship we can substitute it into Eq. 2.9 and proceed to
solve the approximated layer-averaged pair of transpert eguations, (2.8) and

(2.9), for ¢

It is convenient at this time to nondimensionalize the equations, so that
all variables (except for those specifically noted later) are of order unity and
their relative magnitudes are revealed by the accompanying order

parameters. The dimensionless variables are given by:

- X - o = (&
x= 5= Z2= 1 t—(}\)tn'
¢p hp D
- S T e ..".:-----—"'l ,47
&= h b nE g, (R.17a)
= (52 - o
(p }\_AC ng' p pghg

where
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e the subscript D denotes a dimensional variable,
» A is a characteristic wavelength,

» hgis the maximum water depth,

¢ is the typical wave speed: ¢ = “/ghyg,
= Ais arepresentative wave amplitude, and
» pis the density.

In addition, we can deduce from (2.17a) that

ho hg
= PR g = | — a1y
u v = {1 ug (AC)VD%. and (2.17b)
o Be _ oy b8, 0pp .1
Y= e T G T G By (2.17c)

Unless otherwise specifically stated, all variables will henceforth be taken to

be dimensionless. We will presently discuss the two dimensionless parameters

- A - ho 4
o= . and &= ~ (R.174)

which emerge when (2.17) is substituted into the set of basic equations. For
convenience, the first two transport equations (Egs. 2.8 and 2.9) are rewritten

below, after substituting the nondimensional variables from 2.17 and replacing

by Vg
—g—?— + oV [n¥e] = 0, (2.18)
a - = P
az=nVe) + ofV [nVeVe] = -nVp (2.19)

where n = (a¢ + h), and V¢ and the other similarly denoted layer-averaged
guantities are described by the non-dimensionalized version of (2.7a). The
Laplace (2.15) and Bernoulli (2.16) equations can also be non-dimensionalized

using (2.17):

2
2y2y = - 82 (2.20)

2
ptz= - a%%—- %{(V(p)g + é——(%g—)zJ (RR1)
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Finally. we nondimensionalize the kinematic boundary condition on the bottom
(Eq. 2.3):

o = _gz%%——asz(u'Vh) onz= -h(xt). (2.22)

The dimensionless parameter, @, provides a measure of the nonlinearity.
This nonlinearity is physically manifested as the tendency of the front of the
wave to steepen during propagation. & is the dispersion parameter and it
gauges the tendency of a single wave to disperse into a train of oscillatory
waves. As stated at the outset of this thesis, we are considering only long
waves and £ therefore must be a small parameter by definition. Additionally, we
assume that the wave amplitude remains small compared to the water depth,

thus «a is also a small parameter.

It is the relative magnitudes of these two parameters that determine which
phenomenon (nonlinearity or dispersion) dominates during the propagation of

these long waves. Ursell (1953) elucidated the following classification:

<< £# . ... linear wave class {dispersion dominates),
o Rg? Boussinesqg—class, (nonlinearity balances dispersion),
>> #® ... Airy—class, (nonlinearity dominates).
2

The Ursell number, Ur=—-, is often used to succinctly indicate the class of long

a3

waves under consideration. Naturally, these classes are not completely
exclusive - there can be some overlap between the linear and Boussinesq classes
and between the Boussinesq and Airy classes. The widest variety of phenomena
can be described by assuming the waves to be of the Boussinesg-class, which will
allow for some encroachment onto the other two classes. Accordingly, we will

take a~ 2.

Since ¢=0(1) and 7= 0(1), we infer from Eq.2.18 that V< O{1) and

U< 0{1). Subsequent inspection of Eq.2.20 implies that w=<O0{s?) and
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< 0{a) and Vh= 0(1) in order to

consequently, from (2.22), we must have %t}k

-ensure self-consistency. Based on the form of the nondimensional Laplace

equation, we assume the following expansion for ¢:

=

2 £m® o (Xot). (2.22)

Substituting (2.22) into (2.20) we obtain the recursion relations for $,, as

$p = po(x.t),
-
®, = pa(xt) + zps(xt) - 'é“"vzﬁﬁc. (2.22)
z Zl
Dop = §02n(x't) + ZWZnﬁ»l(X't) . VEf lef ‘I’z(n-x)(x»f‘t)df-
for n=1,2.3....., where ¢g, ¢;, ... represent unknown functions of x and t only. A

possible additive term zg,(x.t) for $, has been discarded in order to satisfy the

order estimate for w.

We now define the expansions

u=Vyp =Veg + e?Vdy + e?Vd, + -

=ug + gfa, +gtuy + (2.25)

az

i

eflw, + gfwp + - ] (2.26)
Note that ug = Ygo(x.t) is independent of z, however, all other terms in the

expansions of u and w can vary with z.

2.3 Generalized Form of the Classical Boussinesq Equations.

Since the first order expansion terms for u are independent of z, we can

show from the expansion (2.25) that

VoVe = Vg Vp + e[Vo,Vd, - Vo, VE,] + O(f).




-16 -
This permits Eq. 2.18 to be simplified to

0275 + a*Vg V[Tp] = - Tp + O(c°). (2.27)
We now turn to the Bernoulli equation (2.21) to determine Vp. Substituting the
expansion for ¢, we have
p+z=-a[dg+ 20, +——u§]+0\cxs 0Fe?) (2.28)
where the dot ° indicates a partial derivative with respect to t. If we evaluate
(2.28) at the free surface, using the boundary condition (2.4) we have
po+tal= -algg + 29, + —q-uo] + O(ag,a®e?). (2.29)

I we layer-average the horizontal gradient of Eq.2.28 and subtract the

horizontal gradient of Eq. 2.29 we find

Vp = aV¢& + Vpg - ae?[Vd 5 - V@] + O(as?,0fe?)
- g h? ey 4 2.2
= oV¢ + Vpg + ae LE’V?% + —é—\? Vel + O(ae?, o e?) (2.30)

Further utilizing the expansions for ¢, u, and w, we find through substitution

that (2.22) determines ¢3 to be:

1 8n

p3 = {‘" 5+ V(huo)| + O(s%). (231)

Combining (2.30) and (2.31), we obtain an expansion for Vp as

_ ol B2
Vp = aV¢ + Vpg - _}l.@_v{_l_.q}}.+ V-(hug )} - —“—‘—a-"Vzuo

4,22
12 Bt at 6 ot + O(oet, 0 s*)(2.32)

Rewriting (2.18) and substituting (2.32) into (2.27), we obtain the following two

equations:

-g% + aVv- [<h + ag‘)V,a] - %}t—l- (2.33)

= [
Ny | FTowiTe = - 2R 051100  oes
ot Ve ViVl + aV¢ Vpg + ae 12 atV P V- (hVg)

2
- b....._a__v ZV;O

D + O{ast, ofs?) (2.34)
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where we have substituted uy = U + O(¢®) and u = Vg in the highest order terms
retained, i.e., in the terms on the right-hand side of (2.34). This operation has
no effect on the error estimate. This set of equations for ¢ and V¢ governs the
propagation of weakly nonlinear” long waves in water of variable depth. The
depth variation may be prescribed to vary with both space and time variables.
These equations constitute a generalization of the Boussinesq equatitms.T Note
that the first equation (2.33) is an exact statement of mass conservation for an

incompressible fluid; Eg. .34 is correct to O(ae® afe?). D

2.4 Introduction of the Irrotational Layer-Mean Velocity.

It is important to note that although u=Vy is irrotational, the layer-
averaged quantity U=Vg is a rotational vector field whenever Vh# 0. (See (2.36)
below.) Consequently, we cannot successfully integrate the layer-averaged
momentum equations (2.34) to obtain a single Bernoulli-like equation relating
the potential ¢ to the surface height ¢. The vorticity Vxd in this layer-averaged
flow is generally small (O(£®), as shown below) and is fed by the last two terms on
the right-hand side of Eq.R.34. Wu (19B1) has identified these terms as

frequency diffusicn effects due to the depth variation.

We now define a new irrotational velocity ¥ for the layer-averaged flow as:

u = V¢, such that ¥xu =0. (2.35)

We are able then to relate @ to W by using the expansion for ¢ in Eq. 2.2

* Weak nonlinearity is taken to mean am £2

The original Boussinesq (1872) equations were derived for the two-dimensionel propaga-
tion of weakly nonlinear long waves in a rectangular channe! of constent water depth. Tran-
scribed into our notation, and taking hy as the water depth, these equations are (in dimen-
sional form):

e _ e | pa%]
xfat‘l‘hdx_gf+§1h * o]

T T hoa
Bt = hobx d-n Oaxlno 6 %

C-omng (1978) has shown that these two equations are eqmvaknt to the layer-averaged for-
inu;a tion which we present in Eq. 2.33 and 2.34 ebove.
Lepelletier (18B81) refers to this new velocity as the pseudo-velocity.
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a=u + az{é—zps + g—vz%}% + 0(z%). (2.38)

Clearly, @ = u' + 0(¢*) when Vh= 0. Substitution of (2.38) into (2.33) yields:

_ [ 2
a%%— + ch-{(h + ag“)ch] = - %}t—l—- aazv'l{%,;s + -%——Vzgoo}Vh + O(ae*,0ff)  (2.37)

Furthermore, using (2.35) we can express a Bernoulli-type equation in terms of

V¢, ¢and U’ as:

6; 0(2, 2 l aa aE N2 re o (o PN 4 2.2
i -+ e = — - -+ e
o b+ W)+ o+ po = ags+ (U)o alpo + &% + Suf] + Ot o)
h o h* 8
= as e{ S —g-—a—t—vzgpc} + 0ot ofe?), (2.38)

where we have substituted from (2.29) for (a¢ + pg) on the left side. Rewriting

(2.37) and (2.38) after substituting for g5 from (2.31), we have, respectively,

_ [
a%{--&- OLV{(h +at)Vel = - %%—-a- 27 1{}21[ 1 8h o L g (hve)] (2.39)
h® oo
- —-§~V2go Vh| + O{oe?,0fe®)

% . B—(V )2+ a¢ = —po + ar¥{ 2 CRE 8 | v.(nvp) (2.40)
ot T2 ot eFI [ m 4
h? 8 4o

"B atV go] + O(oe, o),

where we have substituted gg = ¢ + 0(¢°) in the highest order terms retained.
This pair of equations for ¢ and ¢ forms the theoretical basis for the present
study. This system belongs to the same class of weakly nonlinear long wave
equations as the system formed by (2.33) and (2.34) since the error remains at
the same order. Equations 2.39 and 2.40 are thus entirely equivalent to the
typical set of extended” Boussinesqg equations. The new formulation is

superior, however, since it reduces the number of dependent variables from

L - . . - N .
The deyth may have space and time variastions; wave propagation is allowed in two hor-
izontal dimensions.
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three scalar unknowns (namely, U and ¢) to two (¢ and ¢). In addition, equation
(2.40) is one order less as a partial differential equation than (2.34).
Furthermore, ¢ may be eliminated by substituting ¢ from (2.40) into (2.39),
leaving only one equation and one scalar unknown, ¢. Once p has been
determined, ¢ and U may be readily deduced from FEqs.2.40 and R.38

respectively.

This is the first time that it has been possible to combine a full Boussinesg-
class set of equations without the loss of bidirectional propagation. Through
limiting the propagation to one-direction only, previous investigators had
obtained a one equation description of weakly non-linear wave propagation.
Aside from the combination of the two equations and subsequent elimination of
one dependent variable, there appears to be no significant advantage in limiting
propagation to one direction only. When reflection becomes important, this
limitation is a sericus disadvantage. Some rather elaborate 'switch-on/switch-
ofi" schemes have been developed to compensate for the limitations of
unidirectional propagation in situations invelving reflection. Our approach,
however, finds the limitation to unidirectional propagation unnecessary, since it
is possible to directly combine the two governing equations into a single

equation for ¢.

2.5 The Relationship of the Governing Equations to Other Long Wave Models.

Since the clarification by Ursell in 1953 and the subsequent introduction of
the Ursell number, it is clear that the Boussinesg equations provide an
approepriate and accurate model for long waves of small amplitude. The explicit
governing equations for other classes of long waves actually emerge as sub-
classes of the fuil equations (2.39) and (2.40). By assuming appropriate

relationships between the order parameters o and & these models may be
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separated under the following headings:

e Linear Nondispersive Model. In the simplest long wave model all the
nonlinear and dispersive effects are neglected. The relevant Ursell number is
Ur << 0(1), with o << 1 and £® << 1 in addition. Physically, this system is one
in which the wave amplitude is extremely small compared to the depth and the
wavelength is extremely long compared to the depth. For this case the full

equations reduce to:

K " 7.7 ol= - -—a—-ll- t ]
a%f—+ of + pg = 0. (2.42)

For constant depth, h=hy and no forcing from the prescribed free-surface

pressure, pe=0 both ¢ and ¢ satisfy the well-known wave equation:

pu=hV%, & =hv¥,

» Nonlinear Nondispersive Model. This model was originally thought to
constitute the fundamental equations for long water waves of finite amplitude.
Now, however, it can be seen that the nonlinear nondispersive model equations --
often called the Airy equations -- can be extracted from the full equations. The
Ursell number for this system is Ur >> 0{1): « is small bul finite, a< 1; and

£2<< 1.7 The full equations reduce to:

8¢ ¢ Sl= .8 ,
agot oV (h + ad)Vy| = 3 (2.43)
aT ag —
0 S+ SHVE)? + ot = —ps. (2.44)

This system predicts that all waves steepen and eventually break.
» Linear Dispersive Model. Finally we consider a system, not discussed by

Ursell, which has approximately the same Ursell number as the Linear

i Actuelly this case must have a®¥ £, If a is taken to be larger in relation to &, say, arn Ve
then terms of order a® should have been retained instead of ag®.
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Nondispersive Model presented above. This case, however, models the physical
situation of extremely small amplitude waves, a<< 1, with only moderately long

wavelength, £2< 1.}

[ 2
o¢ V'[ V‘f] - .8h  eep.ibhrl8h (hYaY] - Pveg
asota [RV¢ T l AT + V' (hVg)] BV ®1Vhi, (2.45)
LISy § - B ISR B O
cxat,a+ag“-— po+a8{26tla AL + V- (hVg) 5 atV;o. (2.486)

Each of these models displayed above is embedded in the full (Boussinesg-
class) equations, (2.39) and (2.40), and need not be invoked explicitly. This
means that the full equations may be used when the class of long waves is
indeterminate, or when the class may change either across the physical region
of interest or during propagation (as long as breaking does not occur). This
feature is especially useful in numerical work which may be required since the
full equations generally cannot be solved in closed form. In some cases,
theoretical solutions are available for the three sub-classes described above.
These solutions, however, may become guite tedious or even impossible when the
bottom topography is three-dimensional or when the wave is passing from one

long-wave class to another.

2.6 Permanent Form Solutions for Constant Depth

We are interested in determining if the governing equations, (2.39) and
(2.40), will support solutions of permanent form. While such solutions are of
theoretical interest, they also provide initial conditions and stringent checks on
the accuracy of the numerical scheme. The lack of an exact permanent form
solution to the classical Boussinesq equations, has caused some confusion in

previcus numerical studies. In the past, investigators have prescribed initial

iA ain we must have a®¢®. If o is smaller than this, some of the higher order dispersive
g we ‘ g T
terms which were neglected should have been retained.
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conditions based on the permanent-form solution to the Korteweg-deVries'
(KdV) Equation. This equation, which is valid only for uni-directional waves, is
an approximation of the full Boussinesq set. The exact permanent-form
solution to the KdV equation, however, is not an exact solution to the parent
Boussinesq equations. This discrepancy in initial conditions has been used to
explain some propagational anomalies (such as the appearance of an oscillatory
tail -- see the discussion in Section 3.3) which appear in the numerical solution
of the classical Boussinesqg pair of equations. Our new exact solution to the
actual equation which is solved numerically provides a rigorous and clear test
on the numerical scheme, since the computed solution must approach the exact
theoretical sclution as the numerical errors induced by finite stepsize and

convergence tolerance are reduced.

If we restrict our attention to the case of one-dimensional long waves

propagating in water of constant depth, h = hy, the full equations reduce to:

¢ + a{é‘ﬁx]x + hepgx = 0(84,a82), (R.47)
hE
o
#ot Sleal® + ¢ o = O(ehas?), (2.48)

where, to simplifiy notation, we have dropped the bar from ¢ and used

2

PR Yy = %}%— and so on.

subscripts to denote partial derivatives: ¢ =
If we follow the KdV-model route at this early point in the analysis, then the
resulting equation is limited to one directional prepagation only. As already

mentioned in Section 2.5, we can directly combine the two governing equations

into a single equation for g, without restricting wave motion to one direction.

* In addition to the original description in the Korteweg and deVries paper (1895), a large
number of papers and texts describe the derivation of the permanent form solution to the
KdV equations, see for example Whitham (1874). For reference, the KdV Equation is given
below in dimensional form:

chf

3
GteGl+ 5rX]+ 5 = 0
o
where ¢ = /2l
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Our next step, therefore, will be to combine the equations (2.47) and (2.48), still
permitting motion in both directions. In order to permit comparisons to other
permanent form solutions of the Boussinesqg-class, we will revert to dimensional
equations for the remainder of this section. The combined, constant-depth

equations, in dimensional form, are:

hé
" Pt RexPa PP T P * c?¢xx = O(oe?,0fe?), (2.49)

where c¢ is the wave speed, ¢ = ~/ghy. We assume a permanent form for the

solution as:

¢(xt) = F(x) where x=x-Ut.
U is an unknown phase velocity of the wave, to be determined later.

Substitution of the permanent form expression into Eq. 2.49 for ¢ yields

2 _ 192 Uh§
(c* - U°)F" + BUFTF" + ———5——-—}" =0 (R.50)
where the prime ' indicates an ordinary derivative with respect to y: ' = —3—5—
We can obtain a first integral of (2.50) as
U%h§
(c2-UBF + ZUF)? + —2F" + G, = 0 (2.51)

where G; is a constant of integration. Another integration is possible after
multiplying (2.51) by F"" and this step yields

U?h§
(c® - UA)(F)? + U(F)® + ——

(F'¥ +GF +G,=0 (2.52)
where G; is a constant of intepgration. If we assume that F' and its derivatives
tend to zero at infinity, then we must take G, = Gg = 0. Furthermore, we can
write (2.52) as:

Uhg

P = (PP A, - F (2.532)

where
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C2
A= U(1- 5. (2.53b)

Ay is the amplitude of F', the permanent form solution to (2.53a). Specifically,
this permanent form seolution is found to be:

F' = A, sech?(8 x) (2.52)

3A
-——= Returning to Eq. 2.4B and substituting this solution for ¢, we

where 8° = 20l
Uhg

obtain a permanent form solution for the surface height ¢

¢xt) = 1529—{ A (U - A)sech®[B(x~Ut)] + Assech‘*[ﬁ(x—m)]} (2.55)

Setting the arguments to zero in (2.55) will reveal the amplitude ¢; of ¢ which we

write as
_ So _
o= by = U

Substituting for A, from (2.53b), we obtain a relationship between the phase
velocity U of the permanent wave form and the nondimensional wave height «

as

o= —52—‘- 1. (256)

Solving for U yields the following two-directional formula:

L
U:ic{1+a]2=ic1+-"é‘--%—+,.., (2.57)

In order to compare the form of our permanent surface wave to that from
the KdV equation, we put the surface height in terms of ¢;, the peak amplitude,
to yield:

{o
1+a)

¢= ( sech?[B{(x-Ut)] + « sech‘*[ﬁ(x—Ut)]} (2.58)

where we may write 8 in terms of o

20 |

(2.59)

4hg(1+a)

o
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The solution for the KdV soliton is given in Whitham (1974) as:

m‘»—-

[ 3
= ngsech?
7] = Tjesec l4h5

(x=Uyt) (2.60)

a

where Uy = 1 + - These two sclutions are compared in Fig 2.2 and 2.3 for two

[\

amplitudes {0.1 and 0.7) with hg taken to be 1.0. The new solution has a
somewhat smaller wave number and falls slightly to the outside of the K4V

solitary wave solution.

Our solution has the advantage over the classical formulation in that it
clearly permits propagation in both directions. Furthermore, the present result
for phase velocity U is in better agreement than the KdV model with higher

order solutions to the nonlinear dispersive equations which give

=1 -+

v
<

iR
§
2
e
o
fav]
;_

(See Fenton [1972].) The permanent surface wave form is only slightly different
from the KdV solution, our solution having a somewhat wider shape for the same
amplitude, The diflerences however, may be fortuitous since they are all

consistent with the order of the approximations.

The permanent form solution derived in this section will be used extensively
as the basic reference case in Chapter 4 to investigate the response of the

numerical scheme to variation of the computational parameters.

2.7 Combination of the Governing Equations

For reference, the combination of the governing equations (2.39) and

(2.40) discussed in Section 2.4 is presented below:

1 h h? f
#u = hV% + Vh¥g + —(h-po) + 82{'@“}% - “é'szh] (2.58)
t

T h h2 .
- 82V'{ - =V Whi - a[2Ve, ¥V o~ ¢, V3p] + O(e*,as?)

273
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Figure 2.2 Comparison of solitary wave shapes for amplitude of 0.1. Korteweg-
deVries curve is calculated from Eq. 2 60. Present theory surface height is taken

from Eq. 2.58. Water depth is taken to be 1.0,
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Figure 2.3 Comparison of solitary wave shapes for amplitude of 0.7. Korteweg-
deVries curve is calculated from Eq. 2.60. Present theory surface height is taken

from Eg. 2.58. Water depth is taken to be 1.0.
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where H is given by

h
H= —&3-+ V- (hVe)

and to simplify notation we have dropped the bar from ¢ and used subscripts to
denote partial derivatives as in Section 2.6. Higher order terms have been
dropped in a manner consistent with the derivation leading to Egs. 2.39 and

2.40.

The specific cases discussed in this thesis do not include floor motion or
variaton in free-suface pressure, therefore, the combined equation for h=0 and
po= 0 is shown below:

2
pw = hVPp + VhVp - a[RVg, 'V p - ¢, V3] + g{%Vh-Vgot + %—-’Vzgat} (2.59)
t

f h hZ
- 52\7-1 —Z—Vh-w + —VZ2giVh| + O(s% ae?)

6

In the following chapter, futher simplifcations of the combined equations will be

presented for the special cases computed numerically.
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CHAPTER 3

The Numerical Procedure

The numerical procedure described in this chapter is used throughout the
rest of this thesis to solve the governing partial differential equation (559) for
selected bottom topographies. In order to efficiently perform a variety of
numerical experiments, two numerical programs were developed: One for
solving the governing equation in the reduced case of one horizontal dimension
(1HD), and another for solving this equation in two horizontal dimensions (2HD).
Both programs have their foundation in classic finite-difference methods, and
both follow similar paths toward the solution of Equation 3.59, with a single
exception involving matrix inversion (discussed in Section 3.2). We will first
examine the solution method for the 1HD case; the 2HD case will follow in
Section 3.2 as a natural extension of the techniques described for the 1HD case.
The permanent form soluticn, described in the previous chapter, provides a
stringent test of the accuracy of our scheme. In order to provide convincing
evidence of the reliability of our numerical procedure, we present in Section 3.3
the results of exhaustive testing based on comparison with the permanent form
solution. We use the information from these tests to select our numerical
parameters and present an estimation of the errors for a number of key

quantities.

3.1 The Numerical Method for the Case Involving One Horizontal Dimension.

In this section, we consider motion in one horizontal dimension {1HD) only.

For reference, the equation for ¢(x,t), the depth averaged potential in 1HD is:
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h? hh, he
Pr = (hpg)x—RPxPxt - Pr¥xx + “B‘—ﬁﬂxxu + ”‘2“"3":11 6 I hy@rxlx (3.1)

Here t represent time and subscripts denote partial derivatives; h=h(x) is the
water depth. For simplicity we have taken h to be slowly varying in space and
fixed in time, specifically, hy hy, - < 0(«) and hy=0. Higher order terms
involving ¢ and derivatives of h have been dropped in a manner consistent with
the derivation in Chapter 3. In addition, the order parameters aand ¢ * have
been absorbed into the accompanying variables in equation {3.1), so that the
appropriate relative magnitudes of the quantities are restored. The quantities
to the immediate left and right of the equal sign in (3.1) constitute the well-
known wave equation in nonuniform media. The next two terms are nonlinear
contributions, while the last three terms represent the effects of dispersion. Of
the dispersive constituents of (3.1) only the first term contributes in regions
where the depth is constant, as in the classical Boussinesq model. Once ¢ has
been obtained, we determine the surface height ¢ by using Equation (3.40) in

1HD, which is

(¢ h? h

{(X,t) R é’" )2 + '_quaxxt hx¢xt- (32>

We will now discuss the numerical aspects of solving (3.1). As an initial,
heuristic indicator of numerical stability, we examine the linearized version of
Equation 3.1 for constant depth, h = hy:

h§
1 = hopxx + = Pxxit (3.3)

We assume that, given some suitable initial conditions, we may make a Fourier
expansion of the solution to {3.3). We consider the effects of a single term of

this expansion, g(x.t) = Be!™ Y where B is a constant, & (= —2-)%1) is the

* . . . A
As discussed in Section 3.2, a = . , where A is a representative wave amplitude and hgis e
0
2

. A
typical water depth; &= o where A is & typical wavelength; a® g°.
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wavenumber, and  is the frequency  Substitution into (3.3) yields a

relationship between the wavenumber and the frequency as:

hor?
w? = —-—————————-——(j - (3.3a)
1+ 5'1'16/62

This equation, known as the dispersion relation, may be taken to imply stability
with respect to the introduction of small short wavelength errors due to
numerical approximation -- unlike in some linearized forms of the Korteweg
deVries (KdV) Equation. Such small errors, having large x will not cause the
frequency to become imaginary and thus destroy the hyperbolic nature of the

problem,

We approximate the partial differential equation (3.1) in the continuous
variable ¢ by an appropriately chosen difference equation in the difference
variable @, assuming ¢(x,t,)® &(jn), where the arguments of ¢ and & are
related through the stepsizes of the difference scheme chosen. We examine the
difference equation in a limited spatial domain: Xj=< x< Xg, where X; and Xy are
the left and right boundary values, respectively. We choose uniformly spaced
mesh points along the restricted x-axis; Ax denotes the spacing between each

point. N;, the number of points along the restricted x-domain, satisfies

(Nx—1)Ax = Xg - X..
The time interval is the constant At, and our objective is to obtain ® (and thus
deduce ¢} on the given x-domain mesh at times (n'At), for n=1,2,3,.... We have
noted before that the basic form of the governing equations is the wave
equation, ¢y = hgg, plus nonlinear and dispersive terms. QOur selected finite-
difference representation of Eg. 3.1 is based on those finite difference methods

which are known to be successful with the wave equation.T We use a three time

T Meny texis and papers discuss finite-diflerence solutions to the wave equation. Our ep-
proach loosely follows the averaging scheme described in Greenspan (1974), which was first
developed in & more general form by Von Neumann (see 0'Brien [1851] for a discussion of
the generalized scheme).
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level scheme which averages $,, over the top and bottom time levels. We
implicitly solve for the full range of space values at each time step, based on
information from the previous two time steps, which are assumed known
through either initial conditions or previous time-step solutions. Correction is
made for the nonlinear terms which involve time derivatives through an
iterative process, described more fully below. Nonlinear factors which do not
include time derivatives require no iteration since the solution at the middle
time level is known. A flowchart of the numerical method for the 1HD case

appears in Figure 3.1
We begin by solving the linearized version of (3.1), which is

h? . h h?
guw = (hegy + 5 ¥ T "é"hx@xn - "é"‘thwxx]x (3.4)

to obtain a first approximation ) to ». We represent the finite difference form

of this equation as

By (Gn+1)] = {8 (n).2(n-1)]3 (3.5)

where:

« {B] represents a tridiagonal matrix in which the lower diagonal, diagonal

th

and upper diagonal entries in the }*° row are, respectively:

At? 2h?
Bl.=101+ + 3.ba
(B =1 Ao BAXE] ( )
- h At? h? hhy
s = m [ +
Bl ‘2 Ax® T 3axR 4Ax]

and j=R2.3.....(Ng -1). Boundary conditions {j=1 and j=N;) will be discussed later.

» The superscript following ¢ denotes the iteration number within the
particular time step; if no superscript appears, ® is a converged solution from a
previous time step or an initial condition.

lc)

o (& '(jn+1)is the column vector of Ny values (unknown) of & at the new
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Read in computational parameters
and depth profile.

Compute the initial conditions from
Eqg. 3.9 for ¢ at t=-At, 0.

!

Compute the lower and upper
triangular matrix decomposition
of {B} in Eg. 3.5a
|

1

Compute the right-hand-side vector {r}
in Eq. 3.5b for the linearized equation,
(nonlinear correction vector {6} is zero.)

foner

! ]

Successively solve the lower and upper

triangular systems using {r} + {6} as
the current right-hand-side vector.

Compute the nonlinear
correction vector {6}
from Eq. 3.7 based on
newest solution for e.

First solution
for this time step?

Is p in Eqg. 3.8 less
than prescribed tolerance?

Compute surface height
from Eq. 3.2

last time step?

'*————{ Increment time counteﬂ

Figure 3, 1. Flow Chart for IHD Case.



time step.
o {r[®(jn).®{(jn—1)]} is the right-hand-side column vector based on known
values of ¢ at the middle and lower time levels. Specifically, the jth component

of 7 is given as

i =200n)-d(n-1)+ C1%x(jn) + Cod(jn—-1) {3.5b)

+ quln(ln) + C4¢xx(j'n'—l> + Cﬁq)xxx(jrn)

for j=2.3.. -1), where
At*hhy
C; = At®hg{1 - h), Co = s
_ 2h? Atzhghm _ hAt? hZ? _ Atzhzhx
©2= 73 5 LT T BE T

and the finite differences for the x-derivatives used above are taken to be the
standard central difference formulas:

T
$.in) = 2[””( ’lﬁ“ j+1n)-@{j-1 n)}. (3.5c)

. (’
¢(jn) = Ay“ {ﬁﬂ (j+1n)-2%(jn) + ¢(j—1 n)] (3.54)

Prex(in) = {ﬁ?( ji+2n)-2%(j+1.n) + RE(j—1.n) + ¢ (j—2, n)] (3.5¢)

2:§x3
» The arguments of & indicate the node numbers for space and time grids
respectively.
e The scheme (excluding boundaries) uses centered difference quotients
and (in the standard numerical nomenclature) is consistenti with the linearized
equation (3.4). Also, we can show (for the linearized equation) that the scheme

is unconditionally stable* for all Ax and At. The truncation error is

3 Consistency meeans thaet as the stepsizes ( L, A?) tend to zero in eny manner the trunce-
tion error {from truncating the Tayior expansions used to generate the finite differences)
tends 10 zero.

The term stable here is inten.ded in the standard numerical sense which may be loosely
characterized to mean that there is an upper limit (as At goes to zero) to the amplification
of & perturbation arising from any sort of error in the celeulation. Unconditional stebility
indicates that the scheme is stable without regard to the ratio of the stepsizes in the x or t
direction



0[(8x)°] + O[(At)*].
Equation 3.5 represents a system of N; equations for the N; unknowns
) (jn+1). This system of eguations can be easily and efficiently solved by
decomposing B into upper and lower triangular matrices and solving the

resultant triangular systems successively. The upper and lower matrices need

only to be calculated once and can be used throughout the computation.

In order to solve the full equation (3.1) we must employ an iterative

th

technique. The i~ approximation to ® (j.n+1) can be represented as

818" (Gn+1)) = ¢ [8(n) 8 (n-1)]) (3.6)

+ V2V n).2(1n).% Jn-1)]
where ié(i)i represents the column vector of corrections to the known vector {r}
due to the nonlinear terms. Specifically, we calculate the jth row entry of {893

by

(60}, = - At,(1n)[ey " (in+1) - &4(n-1)] (3.7)

¢ (jin) 571y

- At
> L \

jn+1) - ¢(jn-1)],
for j=2.3,....,(Ng -1), where $,, $;; are as given in Eq. 3.5¢, 3.5d.

We use a type of uniform convergence test to examine each iteration for
convergence, taking as successful an iteration which has u less than some

prescribed tolerence where u is given by

1
er § i FRER
{Z’@”(j.ml)-qn(’ 1)(j,n+1)] ]2
i=1

M= — (3.8)

Not g
{Z{¢)um+1>-@0nﬂ2]2

This tolerance test compares the iteration differences to the time step

differences.

We assume that no wave of significant amplitude approaches near to either
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boundary. Consequently, conditions at the boundaries are taken to be especially
simple. We assume that the second space derivative of the potential is zero at

the boundaries, that is,

dee(1n) =0, and  9.,(N;n) =0
Physically , this condition implies that the layer-mean velocity is constant at the
boundaries, an assumption which is good for our situaticon in which the wave is
kept in the middle region of the computational domain, and little change is
observed at the boundaries. Calculations indicate that any leakage of mass into
or out of the computational domain due to these boundary assumptions is

negligibly small for situations such as those permitted in this study.

As initial conditions we use the permanent form, constant-depth solution
which was derived in the Section 3.6. The permanent form solution may be

integrated to give ¢ directly at the two initial time-steps as

¢(jn) = %g—tanh BL(jAx%) - Uln-At)] j=1.2,.. Ny, n=-1,0 (3.9)
where
L
« Uis the phase speed given by U = (1 + )%,
r 3o ‘é‘
« and the constant g8 equals | i ]

A copy of the FORTRAN program developed from the description presented
here for 1HD propagation resides in Appendix B. Results for a number of cases
using this 1HD program will be presented in Section 3.3, along with a discussion

of specific values for step size, tolerance, wave height and other key quantities.

3.2 The Numerical Method for the Case Involving Two Horizontal Dimensions

The numerical method for the two horizontal dimension (2HD) case follows

the 1HD case quite closely. The equation for g¢(x,y,t) is taken from (2.59)
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assuming, as in Section 3.1, that h = h{x,y) is slowly-varying in space and fixed

in time:

h? h h?
P — V(hVe) - Vg Vg, - ¢tV29" + '5"V2¢n + ‘é’Vh‘VfPtt - —é—V'[(Vggp)Vh] (3.10)

Higher order terms involving derivatives of h have been dropped in a manner
consistent with the derivation in Chapter 3 and the order parameters « and &
have been absorbed into the accompanying variables. The terms in (3.10)
correspond to those discussed for (3.1). The surface height ¢(x,y,t) is computed

from (2.40) for this model situation:
1 h? h
gy t) = - e (V)P 5V + SVhV gy

As in Section 3.1 we assume that the continuous varible ¢(x;¥x.ty) can be
approximated by the discrete variable $(jk.n) through an appropriate
difference representation of Eq. 3.10. The computational domain is defined by
X, = x<Xg and Yy < y<Yg The mesh points are unifermly spaced along the
restricted axes; Ax, Ay, At represent the stepsizes in the x, y and t directions. Ny
and Ny denote the number of points along the x and y axes. Np (the total
number of grid points) is defined as:

Np = Ng'Ny (3.11)
A flowchart of the numerical method for the 2HD case appears in Figure 3.3. For
a basic description of the solution method, see Section 3.1, paragraph 3. The
specific changes implemented on the 1HD method for the ZHD case are
discussed below.

We introduce a numbering convention which will sequentially number the

mesh in the (x,y) plane. The new index m runs from I to N7 and is defined by

m=j+(k-1)Ng for j=1..Ny, k=1..N; (3.12)

All the discrete (Xj,yk) points may now be referenced by a a single subscript m.
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Read in computational parameters
and depth profile.

]

Compute the initial conditions from
Eq. 3.9 for ¢ at t = ~-At, 0.

t

Compute the coefficients of
the five-banded matrix {B}
described in Eq. 3. 14,

Compute the right-hand-side vector {r}
in Eq. 3. 14 for the linearized equation,
(Nonlinear correction vector {é} is zero.)

Perform one iteration of SOR using
{r} + {6} as the current
right-hand-side vector.

First solution
for this time step?

Is p in Eq. 3.8 less

Compute the nonlinear
correction vector {6}
irom Eq. 3.7 based on
newest solution for ¢.

than prescribed tolerance?

Compute surface height
from Eqg. 3.2

Last time step

——————--—~{ Increment time counter ]

Flow Chart for 2HD Case.

Figure 3.3,
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The linearized version of (3.10) is

h? h h?®
¢u = V'(hVg) + 'g“Vzwu + S VhVey - 'é"V'[(V %¢)Vh] (3.13)

and we represent the finite-difference form of this equation as in Equation 3.5 of
Section 3.1:

B} @

(mn+1)} = [ (mn)d(mn-1)]) (3.14)
however the quantities listed above are now defined as follows:

e {B}represents a banded matrix of rank NtxXNt whose nonzero elements lie
on the five diagonal lines pictured in Figure 3.4. These five entries are given on

the mth row as.

(Bimym = - [ 200, B Bhy
x 2 Ay®  BAy® 4By
Bocin = (54 gor 150)
{Blmm = 1 + (hAt? + zgz)-{ﬂ; A;z] (3.142)
Blmrrm = '['}'21'2:; i 3:; i Zzlsl;]
Bl = - (AL B2 B

for m: j=2.3,....(Ny-1) and k=2.3,....,(Ny-1) where m is defined by (3.12). Boundary
conditions will be discussed later.

» The superscript following $® denotes the iteration number within the
particular time step; if no superscript appears, ¢ is a converged solution from a
previous time step or an initial condition.

. §®(0)(m,n+1)§ is the column vector of Ny values (unknown) of & at the new
time step.

o r[d(mm)d(m,n-1)]} is the right-hand-side column vector based on
th

known values of ¢ at the middle and lower time levels. Specifically, the m

{excluding those points which lie on either an x or y boundary) component of r



Figure 3.4 Schematic representaion of the nonzero elements of the banded

matrix {#]. The five diagonal lines show the location of the nonzero elements.
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is given as

f7im = 2% (m.n) - #(m.n-1)C,Vh' V& (m,n)CaVh-Vé (m,n—-1) (3.14b)
C3V2®(m,n) + C,V26 (m,n—1) + CsVh-V[V?2® (m,n)]

for m: j=R.3,...(Ng -1);: k=2.3,...(Ny=1), where

C, = At®-h, c, = B

2
_  h®PVPhAt® 2h? _h® _ hAt?
Ca = 6 3 Ca= 5 Cs= -

and the finite differences for the derivatives above are taken as the appropriate
centered difference quotients.
« The scheme described here is consistent with equation 3.13 and is

unconditionally stable. The truncation erroris O[(At)®] + O[(Ax)3] + O[(Ay)®].

Equation (3.14) represents a systemm of Ny equations in Np unknowns
¢©(m,n+1). This system of equations is rather large and is not efficiently solved
by direct matrix methods which destroy the five-banded structure. Instead, we
solve the system using the Successive Over-Relaxation {(SOR) method which is an
iterative inversion scheme that exploits the banded nature of the matrix.

In order to solve the full equation (3.10) we must also iterate on the

th

nonlinear correction terms. We represent the i*" approximation to $/mn+1)

as!

15310" (mn+1)] = & (m.n).8 (m.n-1)]} (3.15)

+ 69798 (m n),® (m.n).® (m.n-1)]3
where {69] represents the column vector of corrections to the known vector {7}

th

due to the nonlinear terms. Specifically, we calculate the m"> row entry of {1}

by
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(605, = - At & (mn)[8% Vmn+1) - &, (mn-1)] (3.16)

- @Y(m.n){@(;"l)(m,n-&rl) - ¢, (m.n-1)]

b (mn o
-—X—}Z-—‘z——-—)—*[@(] 1)(m.n-l-l) -d(m.n-1)]},
for m: j=2,3,....(Ny -1); k=2,3,...Ny, where the indicated derivatives are composed

of standard centered finite-difference quotients. Since we must already use SOR
to iterate for the solution at each iteration, we streamline the process and
minimize the iteration count by combining the SOR iteration with the iteration
on the nonlinear correction. (See the flowchart Fig 3.3 for the specific
procedure)

Our convergence test is essentially the same as that given in Eq. 3.B. The
summation for the 2HD case runs from 1 to Nt in boih the numerator and

denominator.

The initial conditions consist of placing the permanent form sclution
specified in Eq. 3.9 along each row of points in the x-direction. This initializes a
planar permanent-form wave moving in the x-direction, with no variation in the
y-direction.

The specific situation we wish to model for the 2HD case is that of a wave
propagating down an infinite channel. For the restricted computational
domain, we have four boundaries consisting of a total of [2(Ng + Ny—1)] points to
consider instead of just 2 boundary points for the 1HD situation. Figure 3.5
shows the boundary peints and the naming convention for the boundaries. We
retain the simple features of the 1HD case at the entrance and exit boundaries,

where we take

Prx(Menn) =0 and $5Meen) =0 (3.17)

where
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Men = 1 + (k—1) Ny, Mex = k'Ny for k=1,2,....Ny.
The other two boundaries gre.the channel walls, which affords the obvious

condition that the velocity perpendicular to the wall is zero, i.e.,

3 (My1n) =0 and ¢, (Myen) =0 (3.1B)

where

Mg1= 1.2, .. Ny Mgo = {(Ny—l)Nx+1],{(Ny-—1)NX+2], .« \Nr.
For bottom topographies which are symmetric about the channel center-line we
need only to consider half of the region of interest. The boundary conditions for
this symmetric situation are identical to (3.18) since there is no flow across a
line of symmetry.
A copy of the FORTRAN program described in this section may be found in
Appendix C. The following section will discuss specific tests performed with the

2HD program.

3.3 The Numerical Checks

The numerical scheme described in the previous two sections can be shown
to be consistent with the appropriate linearized equation and unconditionally
stable (also in reference to the linearized equation). The iteration scheme used
to include the nonlinear terms is standard, and these nonlinear terms can be
shown to be small relative to the dominant terms which have previously been
identified as the well-known wave equation in a nonuniform medium. Any
errors, then, are assumed to be associated with (1) the finite grid spacing, (2)
the convergence tolerance parameter, or (3) round-off errors due to inadequate
precision. We refer to (1) and (2) as the numerical parameters. In this section,
we show that our numerical scheme when given the exact permanent form
solution {derived in Section 2.8) as an initial condition does, in fact, converge to

the exact permanent form solution. We show that the errors in key quantities,
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such as peak amplitude, excess mass and wave speed, behave in a regular
fashion with respect to the the numerical parameters. We discuss the effects of
the finite grid spacing and select the stepsize and the tolerance to be used in
later numerical experiments. Finally we give the expected range of validity for
the numerical experiments (to be discussed Chapter 5) for the chosen

numerical parameters.

The permanent form solution derived in Section 2.8 is of crucial importance
in this section. Without this solution, we would have no way to insure that the
stepsize, tolerence and precision used in the numerical program were adequate
for the model preblems. However, in order to know what numerical checks to
perform, we must know what type of numerical experiments are planned. As we
have discussed in Chapter 1, our primary aim is to study three-dimensional
propagation effects through the use of some basic curving bottom topographies.
All of the topographies mentioned in Chapter 1 share the feature of a deep flat
section joined by some sort of curving ramp to a shallower flat section. We
therefore perform our series of tests with wave parameters designed to simulate
propagation in the two extreme cases -- (1) the deep flat section and (2) the
shallew flat section. BSince no permanent-form or other exact theoretical
solutions are available for regions with variable bottom topography, we do not
consider these cases in this chapter. However, a number of investigators have
numerically solved the 1HD case for variable depth and, in Chapter 5, we discuss

the results for some comparable cases.

The parameters which govern the initial conditions that we have chosen to
use in this series of tests are summarized by the order parameter «
Specifically, we examine two cazes: o = 0.1 and a = 0.4, which we expect to cover
the range of this parameter in the 2HD numerical experiments described in the

upcoming chapter. We arbitrarily take the depth to be unity and scale all other
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guantities from this length. A range for possible stepsizes can be chosen by
inspection of the initial conditions plots. From these graphs we can see that the
wavelength of the waves plotted is roughly 20 units, however the region of
swiftest change is only about a quarter of this distance. Therefore, in order to
represent this important region adequately, we establish the range of stepsize

values to be investigated as 0.2 < At, Ax, Ay =0.8.

We wish to examine the numerical scheme for the stepsize range above in
the absence of errors induced by incomplete convergence and round-off. Initial
computation indicates that if u in Eq. 3.B is required to be less than 107 there
is no appreciable change in the results: therefore, we assume tha§ there is
complete convergence for the 1HD case if w< 107° This tolerance requires
from 3 to 5 iterations per time step for the 1HD case, depending on the
amplitude and stepsize. In addition, we introduce the use of double-precision
which dramatically reduces the effects of round-off error. In order to simplify
the process of stepsize examination, we take the stepsizes in the three

directions x.,y,and t to be equal in length, i.e,,

A =Ax = Ay = A for 0.8< A=< 0.8
Figures 3.6 and 3.7 show the results of stepsize variation using the 1HD
program for the cases « = 0.1 and a = 0.4 respectively. The initial wave peak
was located at x=0 and the wave was propagated for 100 time units (or as close
to that value as the stepsize permitted). The number of actual time steps (of
size A) taken varied from 126 (for A=0.8) to 501 (for A=0.2). It is clear from the
figures that the scheme converges to the exact solution as the mesh spacing is
refined. The solutions for the larger grid spacings display an oscillatory tail
which deviates from the exact solution. This undular tail was also apparent in
similar calculations by Goring (1878) who used a finite-element formulation to

solve the Boussinesq eguations. Goring attributed the formation of an
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Figure 3.6 The surface height after propagation for 100 time units for an initial
solitary wave amplitude of 0.1, The upper seven curves depict surface heights
computed for varicus stepsizes using the 1HD program. From top to bottom the
stepsizes used are At =Ax =08, 0.7, 06, 0.5, 0.4, 0.3 and D.2. The last curve
shows the surface height computed for t=100 from the permanent-form

solution Eq. 2.58.
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Figure 3.7 The surface height after propagation for 100 time units for an initial
solitary wave amplitude of 0.4, The upper seven curves depict surface heights
computed for various stepsizes using the 1HD program. From top to bottom the
stepsizes used are At = Ax =0.8, 0.7, 0.6, 0.5, 0.4, 0.3 and 0.2. The last curve
shows the surface height computed for t=100 from the permanent-form

sclution Eq. 2.58.
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Figure 3.7
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oscillatory tail to his use of inexact! initial conditions. However, the resuits
illustrated in Figs. 3.6 and 3.7 indicate that, at least for our formulation, this

oscillatory tail is a spurious result generated by insufficient mesh refinement }

We may examine the resulls from the stepsize variation in more detail
through Tables 3.1 and 3.2. These tables show that the errors in excess mass (a
conserved quantity), peak amplitude, wave shape and wave speed are reduced as
the stepsize is refined for the two different amplitudes. Under excess mass we
have established two separate categories: "Range/Theo. Excess' and 'Final/Theo.
Excess." The first entry is meant as an indicator of the extent to which the
excess mass anomalously varies as a function of time (normalized by the
theoretical excess mass value). The theoretical excess mass can be shown to be
constant for the range of motion considered in the computational domain. By
inspecting the value of the excess mass at each time step, it was discovered that,
as the oscillatory tail develops, the excess mass also undergoes an oscillation.
As the wave continues to propagate, the oscillations become smaller until they
approach a straight line. The 'Final/Theo. Excess” eniry indicates the ratio of
this final excess mass to the theoretically predicted value. The final values are
usually quite close to the predicted theoretical value. The next column entry in
the tables indicates the degradaticn in the peak amplitude resulting from the
stepsize choice. The quantity listed in the table is the peak value after
propagation for 100 time units normalized by the initial wave height. This
quantity is also seen to respond favorably to the mesh refinement. The next
column marked "Trough/Initial Amp." is intended to act as a measure of the

shape distortion of the permanent form wave due to the spacing. The entries

T As previously discussed in Section 2.8, the KdV permanent-form solution, which Goring
used as an initial condition, is not an exect solution to the Boussinesq equations. In this
study, the initiel condition used is an exact permeaneni-form sclution to the equetion which
we solve numerically.

For comparison, Goring used stepsizes of Ax = 0.7 and At = 0.7575, about equivalent to
the stepsizes we used to obiain the second curve from the top in Figs. 3.6 and 3.7,
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listed were obtained by dividing the maximum trough depth by the initial peak
amplitude. Values for the larger stepsizes show a comparatively large degree of
distortion from the theoretical shape, which is confirmed in Figures 3.6 and 3.7.
The final column in Tables 3.1 and 3.2 gauges the accuracy of the position of the
wave after 100 time units by computing the wave speed and comparing it to the
value theoretically determined in Section 2.6. (Both the peak height used in
column 3 and the peak amplitude position used to determine the average wave
speed have been interpolated from the grid points for more accurate results.)
The wave speed comparison indicates that the wave invariably travels slower on
larger grid spacings for our numerical scheme. Some simple computations
indicate that this slower speed may be primarily attributed to the degradation

in peak height.

The tables and figures discussed above were made using the 1HD program.
Ideally, similar tables and plots should be made using the 2HD program as well,
however such a project is prohibitively time-consuming and expensive for a
reasonably sized grid. (The core region required goes up as the square of the
space step and the time requirements go up by a factor larger than the cube of
the stepsize because the combined nonlinear and Successive Over-Relaxation
iteration scheme dictated by the larger sized grid requires from 10 to 15 more
iterations.) Instead, a small group of well-chosen tests were performed using the
2HD program and these results were then compared to those from the 1HD
program. These tests indicate that, for a tolerance of 10'7, the results from the
ZHD cases are identical to the 1HD. Because we are able to show that, for high
enough tolerances, the 2HD case results converge to those from the 1HD case,

we may apply the results from the 1HD stepsize variation to the 2HD case.

It is clear that smaller stepsizes yield superior results. For the 2HD

program this is a unpleasant (although certainly not unexpected) conclusion
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because the stepsize so greatly influences the time, cost and region storage
requirements. Therefore, we must balance the time, cost and space
disadvantages against accuracy in our computed results, keeping in mind the
types of phenomena we want to examine in the numerical experiments. This
balancing resulted in a choice of 0.4 as the selected stepsize for 2HD
calculations. This parameter is large enough to keep the disadvantages from
becoming prohibitive, yet small enough to allow us to observe important
features in the propagation with confidence. However, since the 1HD program
does not have the soaring costs and time requirements of the 2HD program, and
since we may be interested in some more subtle features in the 1HD case, we
will take the 1HD stepsize to be as small as appropriate for the numerical

experiments discussed in Chapter 5.

With regard tc the tolerance parameter, we are primarily interested in
determining what is the largest possible value that will allow us to reduce the
following two effects:

¢ Cross-channel drift recognizable as the generation of spurious y-
derivatives, and

« Systematic changes in the values of key quantities such as excess mass,
peak height, and wave speed from the 1HD results for the same stepsize (A =
0.4).
Our chosen tolerance of 10'4 is found to permit a maximum drift of 0.2% in
amplitude values across the channel after propagation for 100 time units. Table
3.3 compares the differences in the key quantities mentioned above for the :HD
case with a tolerance of 10™ and the 2HD case at the same stepsize (A = 0.4)

with a tolerance of 167

An atternpt was made to revert to single-precision from the double-

precision used in the test cases; however, it was discovered that single precision
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is not adequate for the calculations we wish to perform. Thus we have insisted
on double-precision for all our calculations. All computations presented in this
thesis were performed on the IBM 370/3023 digital computer in the Booth
Computing Center of the California Institute of Technology. The programs
required approximately 350 kilobytes of core storage for the 1HD cases and 1.8
megabytes of core storage for the 2HD cases. A typical 1HD case, running for
100 time units, used about 120 seconds of CPU time while the equivalent typical

2HD case used about 1800 seconds.

We are now prepared to state the expected maximurn errors for the
special cases we will consider in the upcoming chapter. These errors are listed
in Table 3.4 for a typical 1HD stepsize and for the selected 2HD step size of 0.2

4

with tolerances of 20-5 and 10~ respectively. We have chosen the numerical
parameters such that the ranges given are more than adequate for model

problems discussed in Chapter 1.
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CHAPTER 4

Results and Discussion

The results presented in this chapter were obtained using the numerical
methods described in Chapter 3. The first set of results concerns the
propagation in one horizontal dimension (1HD) of a solitary wave from a
constant depth, up a gradual ramp, into a shallower flat region. The wave is
seen to steepen and gain amplitude as it passes over the ramp and eventually to
separate {or fission ) into two or more sclitary waves (solitons). We show that,
for the cases which we consider, at least BO% of the initial excess mass moves
onto the shell, the remainder being reflected back from the ramp. We make
some comparisons of our results with other theoretical and numerical
predictions of the primary shelfl soliton amplitude and find good agreement for
all the cases considered. As might be expected, the second soliton amplitude is
found to be lower than that predicted by a model which assumes no wave
reflection from the shelf. Comparison with experiment confirms the basic form

of the solutinon on the shelf.

We continue our investigation of wave propagation into shallower water by
use of the 2HD program with a plane solitary wave initial condition, similar to
the 1HD case above. We examine propagalion under the influence of four
related bottormn topographies. These depth profiles share the features of a
uniform depth region joined by a gradual, curving ramp to another, shallower
uniform depth region. Once the wave has propagated over the submerged ramp
and onto the shelf, the effects of focussing, or defocussing, due to the 2HD depth
variation are clearly apparent. We examine the cross-channel variation in

amplification of the primary soliton height. We find that the peak amplitude
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may vary considerably across the channel since the bottom topography sets up
a kind of rocking motion in the fliud. The delayed formation of the secondary
solitons is apparent at some channel points, and the line of fully-formed
primary and secondary soliton crests deviates noticeably from the straight line
crests of the uniform cases. Linear nondispersive theory is used to recompute
one of the cases and the results are significantly different {from those computed

through nonlinear dispersive theory

4.1 Results for Propagation in One Horizontal Dimemsion: Variable Depth

In this section we use the 1HD program developed in Chapter 3 to
investigate the propagation of a solitary wave from a region of constant depth,
over a gradual ramp, and onto a shelf. Figure 4.1 is a sketch of the bottom
topography for the series of cases considered in this section. We present these
1HD results for two reasons: first, to introduce the phenomenon of a wave
climbing up a ramp, keeping in mind the model problems for 2HD discussed in
Chapter 1, and second, to provide a baseline for comparison with the upcoming

2HD results.

As an initial condition we take a solitary wave moving to the right with peak
located at x=0. The specific form of this initial condition is given by Equation
3.9 with o taken to be 0.12. For convenience, we take the water depth hp in the
deeper region to be unity and the ramp length Iy to be 10. Other parameters
are in Figure 4.1 are: X = =30, Xs = 6, and Xg = 90. The shelf depths which we
consider are h;=0.451, 0.5, and 0.614. The first and last of these values are

chosen for special reasons, which we will discuss next.

We have previously mentioned the KdV equation in the discussion of
permanent form solutions (see Section 2.6) for constant depth. A variable-

coefficient KdV equation (which we will refer to as the VKdV equation), which
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Figure 4.1 Definition sketch for the bottom topography.
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describes a solitary wave moving onto a shelf, has been derived by Johnson
(1972) and separately by Kakutani (1971) in a similar form. This equation
predicts that a solitary wave! moving into a region of decreased depth will break
up into a finite number of solitons plus (possibly) an oscillatory tail. This
conclusion is in agreement with the experimental and numerical work of
Madsen and Mei (1989). The depth of the shelf relative to the initial depth
influences the number of seclitons which emerge from a solitary wave initial
input. For some special depths (eigendepths), only solitons and no oscillatory

tail will be produced. These eigendepths he are given by:

!
@I»&
-~
2N
N
N

where N gives the number of solitons on the shelf. In particular, since we have
taken hg to be unity, the eigendepth for two solitons is he = 0.614 and for three
solitons is h,=0.451. These depths correspond to two values of h; in our

numerical experiments.

For the more general case where the shelf depth h; is not an eigendepth,
Johnson shows (for initial solitary wave input) that N solitons (of nonzero
amplitude) will emerge where N is the largest integer which satisfies N< pand p

is defined as:

{o
N‘»-'

'S

{1 + 8[h,] ] (4.2)

th

11
= - — =
p > 73

Furthermore, the amplitude A, of the n™" soliton on the shelf relative teo the

initial solitary wave amplitude Ag is:

An _ . H2(p-n)?
A,O'hl{ } (&

o>
o)
g

pp + 1)

where n=12,...N. Tappert and Zabusky (1971) also derived these relationships

T The solitary wave discussed in reference to the K4V and VKdV equations is defined by
Equation 2.60 in Section 2.8,
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by a different method. Johnson has found good agreement with these
predictions through a numerical finite-difference solution to the VKdV equation.
For a shelf depth of 0.5 (4.2) predicts the production of three solitons. Equation
4.3 gives the relative amplitudes of these solitons as 1.71, 0.66, and 0.11 for the

first, second and third solitons respectively.

We are interested in comparing the results from our governing equation
(2.862) for an initial input from (3.9) with the theoretical and numerical results
discussed above. Figures 4.2 through 4.4 show the results of our 1HD numerical
experiments taking h; to be 0.614, 0.5, and 0.451 respectively. Our formulation
of the 1HD ramp problem yields results similar to those described for the VKdV
equation by Johnson{1972) and also to those of Madsen and Mei(1969). As the
wave approaches the ramp, the front side steepens and the peak amplitude
(measured from the still water level) grows. Once the wave is on the shelf, two
or three solitons are formed and these waves gradually separate due to
differences in their velocity (since the velocity is a function of amplitude).
Examination of the computed solution indicates that two solitons are formed
for h; = 0.814, while three scolitons emerge for h; = 0.5 and 0.415, in agreement
with the prediction of (4.2). The low-amplitude reflected wave can be seen
travelling toward the left in Figs. 4.2 through 4.4 at times t=20 and t=40. At
time t=80 and t=B0 this reflected wave interacts with the left boundary. Since
our boundary conditions are not adequate to allow the wave to simply pass out
of the computational region, there is some reflection off the left boundary.
However, the wave reflected by the left boundary is sufficiently far away from

the sheif solitons so that it does not affect this region of primary interest.

Table 4.1 shows some specific results for the 1HD cases. All the results for
the shelf solitons have been normalized by the initial amplitude of the solitary

wave. The figures for soliton heights and excess mass on shelf are taken from



—64—

i~

Figure 4.2 Computed surface heights for various times. Initial solitary wave
amplitude is 0.12, depth on the shelf is 0.614. The X’s on the x-axis denote the

position of the ramp.
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Figure 4.3 Computed surface heights for various times. Initial solitary wave
amplitude is 0.12, depth on the shelf is 0.5. The X’s on the x-axis denote the

position of the ramp.
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Figure 4.4 Computed surface heights for various times. Initial solitary wave
amplitude is 0.12, depth on the shelf is 0.451. The X's on the x-axis denote the

position of the ramp.
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TABLE 4.1

Comparison of Resulis for 1HD Cases

Shelf Soliton Heightst

Shelf Grid % Excess

Depth, | Size | first | second | third | Mass cn
h, Shelf
Present results 0.451 0.2 1.71 0.64 0.14 82%
Johnson numerical 1 * 1.8 0.8 0.2 .
(1972) theoretical || 0451 - 1183 | 081 | 0.20 100%

0.2 1.62 0.52 1

Present results 0.5 0.1 1.68 0.58 0.1 B47%

.05 | 1.68 0.58 0.12

Johnson numerical * 1.73 0.65 0.10
(1872) theoretical 0.5 - 1.71 0.66 0.11 100%
vari-
Madsen and numerical able | 1.66 0.75 0.2 857
Mei (1969) | experimental || 02 - e 0.4 4
Present results 0.614 0.2 1.42 0.33 none 89%
Johnson numerical * 1.5 0.4
0614 0.38 rone 100%

(1972) theoretical - 1.51

+ Soliton heights are normalized by the initial sclitary wave height.

* Johnson uses a different coordinate system; stepsizes may not be comparable.
4+ At this mesh size, the third soliton was not resclved.

# A third soliten was not apparent {rom the experimental results.
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results after the wave front has travelled the equivalent of approximately B0
units, where distances are normalized by the relavant hy for each case. From
this table we can see that our results are in fairly good agreement with those of
Johnson as well as Madsen and Mei. However, our results for all three depths are
somewhat lower than the corresponding results given by Johnson. This is
expected, since our formulation includes reflection, an effect which is discarded
in the KdV and VKdV derivations. In fact, our results indicate that up to 18% of
the excess mass may be reflected by the gradual slopes selected for our
numerical experiments, and this is in agreement with Madsen and Mei's figure of
15% reflection for depth 0.5. Due to this reflection, it is reasonable to expect
smaller soliton amplitudes on the shelf and, in accordance with this hypothesis,
we find that the normalized differences in amplitude between our results and
Johnson’s become larger as the reflected mass becomes larger. We must be
conservative about these conclusions, however, since results for a range of
stepsizes for shelf depth of 0.5 indicate that larger stepsizes also yield lower

results.

Our results for the first soliton amplitude and excess mass on the shelf
agree quite well with those shown in Table 4.1 from Madsen and Mei's numerical
integration of a variant of the Boussinesq eguations. The second and third
soliton heights, however, show some disagreement. Dur results for the second
and third soliton amplitudes are lower than the corresponding amplitudes
presented by Johnson. Madsen and Mei, however, report computed second and
third soliton amplitudes which are larger than Johnson's corresponding results.
As mentioned in the previous paragraph, it is physically reasonable that the
soliton amplitudes would be lower (than amplitudes computed by a model like
Johnson’s which neglects wave reflection) since the Boussinesq formulation

which we use includes reflection. Madsen and Mei, however, also rely on the
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Boussinesq equations (i.e., reflection is included) and yet the amplitudes which
they report for the second and third solitons are actually larger than those
given by Johnson’s theoretical predictions and numerical calculations as well as
by our computations. We attribute the discrepancy between our result and that
of Madsen and Mei to their extensive replacement of the original terms of the
Boussinesq equations by other terms within the same order of approximation.
Their error terms, therefore, may be quite difierent from ours and over the
course of the numerical integration, these differences may accumulate. Note
that on the shelf, where o has increased to approximately 0.4, the size of the
error terms relative to the dominant terms can be as large as 0(c®) or about
16%. Such an error probably accounts for the differences between our results

and those of Madsen and Mei.

Finally, in reference to Table 4.1, note that the theoretical and numerical
results presented are in qualitative agreement with the experimental results
regarding the shelf soliten heights. Madsen and Mei attribute the lack of
quantitative agreement to the use of a rather crude wave generation technique

and to the effects of viscous damping.

4.2 Results for Propagation in Two Horizontal Dimemsion: Yariable Depth

Using the results from Section 4.1 as a guide, we have identified a series of
cases with 2HD variations in bottom topography. These model problems are
extensions of the 1HD ramp cases. Here we consider waves propagating in a long
channel containing a submerged ramp which connects two constant depth
areas. This is similar to the 1HD problem except that now the ramp may vary
across the channel. The cross-channel variable is y while the x-axis
corresponds to the longitudinal axis of the channel. The y-origin lles on the

center longitudinal line of the channel, as before, the x-origin is taken directly
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under the wave peak at t=0. Four test topographies are selected: two of which
have convex curvature in relation to the initial planar solitary wave, while the
other two are concave with respect to the initial wave. All of these cases have
the y=0 axis as a line of symmetry. Figures 4.5a through 4.5d show the four
curving ramp configurations chosen for study. For convenience in dealing with

this group of cases we will refer to these topographies as in the following table:

Table 4.2

Key to 2HD Bottom Topographies

Case Acronym  Figure Number
Concave, Narrow (m 4.5a
Concave, Wide (Iw) 4.5b
Convex,Narrow {ON) 4.5¢
Convex,Wide (OW) 4.5d

(I and O above stand for curving in and curving out.) The front edges of these
curving ramp sections all lie at the point correspnding to x=Xg in Figure 4.1, As
in the previous section, hg is taken to be unity and the ramp length is 10. The
channel length for our computation is taken to be 120. The specific values
defining the width of the cross-channel features for the separate cases may be
read from Figure 4.5 Ramp profiles are obtained by curving a straight ramp of

slope 1:20 along the line {(y) defined by

i(y) = mcosz[%’i} Y e (£.4)

C

Ve is the width of the curving section of the ramp and it may be read from
Figures 4.5a through d. The ramp is taken to be straight in the cross-channel
direction for y= y.. The shelf depth has been taken to be 0.5 and the channel
width is 32. The spacing in x,y and t is 0.4. The initial conditions consist of a
planar solitary wave defined by Eq. 3.8 with & = 0.12. For comparison, we also
solve the degenerate case of a straight ramp for the same initial conditions. We

will refer to this case as (S). Since these cases are symmetric about the
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Figure 4.5a,b,c.d The four curving ramp bottom topographies. The front of the
ramp is placed in the channel at position x=X, shown in Fig. 4.1. The cases are
denoted:

(a) Narrow concave. (IN)

(b) Wide concave. (IW)

(c) Narrow convex. (ON)

(d) Wide convex.  (OW)
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centerline, we need only to compute for half the width of the channel.

Figures 4.6a through 4.6d present three-dimensional perspective views of
the waveforms at selected times as computed by the 2HD program using
topographies (IN), (IW), (ON), and (OW) respectively. It is clear from inspection
of these figures that the waveform has been strongly affected by the passage
over the curving ramp. We can immediately separate the concave from convex
topographies: In the concave ramp cases, (IN) and (IW), the primary wave crest
is amplified along the wall, while for the convex cases, {ON) and (OW), the peak
is amplified along the centerline. This effect can be explained by recalling that a
line of wave crests obliquely approaching a straight ramp will turn in their
propagation in such a way as to make the angle between the crestline and the
depth contours smaller. Figure 4.7 presents a sketch of this phenomena for a
concave topography. The ray lines -- lines which are perpendicular to the crests
-- turn toward shallower water as the wave passes over the curved ramp. In
general then, any outcropping will tend to focus the wave amplitudes along the
central line of the protrusion and this phenomena is clearly present in our

computed solutions.

Figures 4 .6a through 4.6d also show that a second and in some cases a
third soliton forms behind the main wave. In faci, as we would expect, many of
the features present in the 1HD sclutions are alse seen in the 2HD cases.
However, the features vary dramatically across the channel. In order to show
the cross-channel differences more gquantitatively, we present Figures 4.8a
through 4.8d. These figures display the surface height along cuts made
longitudinally at the centerline and the wall. The concave cases {IN) and (IW)
show the similar features (at the final timestep) of strong, well-defined first and
second soliton peaks along the wall, while the centerline cuts show smaller peak

amplitudes and the second soliten definition is poor, though discernible. The
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Figure 4.6a,b,c,d Three-dimensional perspective views of the computed surface
height at verious times for the cases : (a) narrow, concave ramp, (b) wide,

concave ramp, {c) narrow, convex ramp and (d) wide, convex ramp.
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Figure 4.8a,b,c,d Profiles of the computed surface height at the centerline and
the wall for the (a) narrow, concave ramp, (b) wide, concave ramp, (c) narrow,
convex ramp and (d) wide, convex ramp.
For the two concave cases:

» Along the centerline, the ramp begins at 16 and ends at 28.

» Along the wall, the ramp begins at 8 and ends at 18.
For the two convex cases:

» Along the centerline, the ramp begins at 8 and ends at 18.

« Along the wall, the ramp begins at 16 and ends at 286.
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undular tail apparent at time=80 may result from dispersion of the large
negative trough which forms at the back of the wave at time=40. MNore
investigation is necessary to determine if this tail is a real effect or simply a
result of the stepsize used. (See the discussion of numerical dispersion due to
stepsize in Chapter 3.) Along the centerline cuts for the (ON) and {OW) cases, the
solitons are seen to quickly become separated and well defined. Trailing behind
the second soliton at time=80, both cases exhibit another low wide peak which
may be a third soliton. Recall that the KdV theory predicts three solitons (and
an oscillatory tail) for the depths chosen for these experiments. However, even
at a stepsize which is half of what is used here the 1HD program was unable to
resolve the third soliton. In addition, the amplitude is too large for a predicted
third soliton and its position is too far behind the second crest. Returning to
the plots 4.6c and 4.6d it appears that the third hump which appears is the
result of a cross channel oscillatory mode with node points at the one-quarter
and three quarter lines of the channel. This oscillation appears to be gradually
separating from the primary and secondary wave crests. Inspection of the wall
cuts for cases (ON) and (OW) show a gradual transition of waveforms with the

final timestep displaying a still unseparated second soliton.

Figures 4.9a through 4.9d give the peak soliton amplitude as a function of
time for 3 longitudinal cuts down the channel: wall, centerline and quarterline.
These graphs again make clear that the centerline of the convex cases and the
wall line of the concave cases are the primary regions of focussing during the
wave's progression over the ramp. What these plots also indicate is that an
initial depletion occurs in the region away from the focussing. Loosely speaking,
the quarterline amplitude remaing between the two extrema located at the
center and well lines, with the quarierline position functioning as a kind of node

for oscillation across the channel width. The curves for the wall and centerline
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Figure 4.%9a,b,c,d The peak amplitude along three longitudinal lines as a
function of time for the cases: {(a) narrow, concave ramp, (b) wide, concave

ramp, {c) narrow, convex ramp and (d) wide, convex ramp.
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amplitudes move apart rapidly as the wave passes over the ramp, then approach
each other again and appear to cross near the end of the computation.
Preliminary computation for larger stepsizes and longer times showed that the
amplitude curves actually do cross at time & B80. Computation was terminated
before it was apparent if another crossing would take place. Additional
computation would be necessary to determine if a long-time ringing has been
initiated, or if the wall efTfects are strong enocugh to quickly return the wave to a
planar form. (These computations must be done cautiously, since peak
amplitude degradation due to insufficient mesh refinement may mask long-time
ringing.)

Figures 4.10a through 4.10d are contour plots of the surface height at
various times for all four cases. The first few plots have been truncated in order
to fit the entire sequence on a single page. In these plots we can see that the
line of crests is bent as the wave passes over the submerged curved ramps. This
happens because part of the wave is in deeper water and, since the wave speed
may be estimated as the sguare root of the dep’ch.T the part of wave in deeper
water travels faster than the part which is passing over the decreasing depth
region. If we examine the plots for time=20, it appears that the contour lines
are pinched at the centerline in the convex ramp cases and at the walls in the
concave cases. This pinching also occurs because the effects of decreasing
depth are not felt at the same time across the channel. As the wave moves into
shallower water, the front face of the wave steepens and the peak amplitude
grows. These changes are reflected by an increase in the order parameter o We
can see from the figures in section 2.6 which show the form of solitary waves for
different o that as a increases the wave length decreases. The a for the primary

soliton on the shelf is roughly three times larger than that for the wave in the

T The actual speed ¢ of the shallow water wave is, of course, ¢ = Vgh however, we have nor-
malized our coordinates so that ¢ is unily when the depth is 1,
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Figure 4.10a,b,e.d Contour plots of the surface height at various times for the
cases: (a) narrow, concave ramp, (b) wide, concave ramp, (¢) narrow, convex
ramp and (d) wide, convex ramp. The interval between contours is 0.025. Dotted
lines denote regions of negative surface height. The initial three plots on each
page have been truncated to eliminate large areas where no contours are seen

(flat regions).
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deeper region, indicating that the wavelength is smaller on the shelf. This can
be clearly seen in Figures 4.10a through 4.10d in which the contour lines
become more closely packed as the wave moves up onto the shelf. The dotted
lines on the contour plots indicate that the primary and secondary solitons are
followed by rather extensive, but shallow, regions which dip below the
undisturbed water line. It is not known whether these features of large extent
but small amplitude are true features of the solution, or whether they are
brought on by the numerical scheme. Additional testing at decreased stepsize

would be required to confirm these features.

4.3 Comparison with Linear, Nondispersive Theory

In order to gauge the importance of nonlinearity and dispersion in our
numerical experiments, we re-examined the case of a wide concave ramp (IW) by
numerically solving the linear nondispersive long wave equations . {For
convenience, we will refer to these equations as linear theory.) This was a simple
matter, since these equations {as we have discussed in Section 2.5) are a subset
of the full nonlinear dispersive equations. We modified the original 1HD and 2HD
by setting all nonlinear and dispersive terms to zero; no other changes were
made in the programs. The 1HD program for linear theory was used to test for
convergence of the computed solutions as the stepsize was decreased and the
scheme was found to be satisfactory: the effect of step size on peak degradation
and excess mass was found to be similar to the 1HD test cases described in
Section 3.1. The 2HD program for linear theory retrieved the 1HD linear theory

results identically when required to converge within a small enough tolerance.

Figure 4.11 is a three-dimensional perspective view of the surface height
obtained at various time steps by solving the linear equations. As mentioned

above, the bottom topography used for this experiment was the wide concave
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Figure 4.11 Three-dimensional perspective view of the surface height at various
times for the case using linear nondispersive theory. The bottom topography is
the wide concave ramp {IW) pictured in Fig. 4.5b. Initial conditions are the same

as in cases (IN), (IW), {ON) and (OW).
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ramp (IW). Comparison of figure 4.11 with the corresponding figure 4.6b for
nonlinear dispersive solution shows grossly different wave forms at the end of
computation. Figure 4.12 shows profiles for the centerline and wall at various
times. The corresponding figure for nonlinear dispersive theory is 4.8b. These
profiles show that along the wall the wave achieves a smaller height than in the
nonlinear dispersive calculation. No additional solitons are formed and a rather
deep trough forms at the rear face of the wave. The back of the wave is seen to
be steeper than the front at the last 3 times displayed for the wall cut. The
centerline cut profiles show a peak amplitude much lower than that for the
nonlinear dispersive theory. The final wave form computed locks poorly formed
and possesses a wavelength roughly 3-4 times larger than that computed for the
primary soliton in the nonlinear dispersive theory. The waves do not travel as
fast as those calculated using the full nonlinear, dispersive theory, as should be

expected.

We may compare the peak amplitudes along three longitudinal lines vs. time
through Figure 4.13. This figure also emphasizes the differences between the
linear theory énd the nonlinear, dispersive theory. Here the wave peaks
computed from linear theory are seen to achieve lower amplitudes than in the
previously computed cases. Similar to the curves in Fig 4.9b, the curves in 4.13
also appear to approach each other but much less rapidly than seen before.
Preliminary computations performed for a larger stepsize and longer time did
not evidence that a crossing occurs before t ® 100. Thus our results suggest
that, if a cross-channel ringing is set up, the period would be much longer than

indicated by the results of the nonlinear dispersive theory.

Finally we examine Figure 4.14, the contour plots of surface height for the
linear case. These plots clearly show that the wavelength of the progressing

wave is not compressed as much as in the previously computed case, shown in
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Figure 4.12 Surface height profiles for the case using linear, nondispersive
theory. Surface heights are shown for two longitudinal cuts (along centerline
and wall) at various times. Bottom topography is the wide concave ramp. Along
the centerline, the ramp extends from 18 to 26; along the wall the ramp extends

from 6 to 16.
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Figure 4.13 The peak amplitude as a function of time along three longitudinal
lines for the case using linear nondispersive theory. Botlom topography is the

wide, concave ramp.
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Figure 4.14 Contour plots of computed surface height at various times for the
case using linear nondispersive theory. First three plots are truncated as

remarked in Fig. 4.10. Bottom topography is the wide, concave ramp.
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Figure 4.10b. The wave contours look quite similar at time=20, but are

markedly different by the end of the computation.

The above results indicate that, for the present case, the linear theory fails
to adequately describe the overall three-dimensional character of the
interaction between the wave and the bottom topography. The linear theory
appears unable to satisfactorily predict crest amplification, soliton formation,
cross-channel effects and overall wave shape. Therefore, to obtain reliable
information about 2HD problems such as those considered here, application of a
more appropriate model (such as the present nonlinear dispersive theory) is

required.



-107 -

CHAPTER 5

Summary and Conclusions

In this thesis, a new formulation of the model equations for finite amplitude
dispersive long waves has been presented. The major improvement in this new
formulation stems from the introduction of the irrotational layer-mean velocity
in Section 2.4 and the subsequent translation of the classical Boussinesg
equations into this new variable. The transformed equations were written in
terms of the velocity potential and surface height and in addition these two
equations were combined to obtain a single equation for the potential. The
combined equation can fully model depth variations in space and time, as well
as wave propagation in two horizontal dimensions including wave reflection. We
have examined the resultant, single, Boussinesg-class equation for permanent
form solutions in constant depth. Permanent-form solutions were determined
for the potential and surface height, and the shape of the permanent form

wave was found to be slightly wider than the classical KdV result.

The permanent-form solution permitted verification of the numerical
scheme developed in Chapter 3. This numerical method, which uses an implicit
finite-difference formulation, was examined for test cases in one and two
horizontal dimensions and found to be satisfactory for the initial conditions
prescribed in this study. Estimates were made on the errors in peak amplitude,
shape deformation and wave speed induced by the finite grid spacing. In
particular, errors due to insufficient mesh refinement were evidenced by peak
amplitude degradation, excess mass variations and the development of an
oscillatory tail. The observed undular tail was attributed to numerical

dispersion resulting from the finite grid spacing and was clearly seen to



- 108 -

diminish as the grid spacing was refined.

The combined equation was used in a group of numerical experiments to
model a wave progressing over a ramp and onto a shelf in one horizontal
dimension. Solitons were produced on the shelf and our results for soliton
amplitudes show good agreement with theoretical predictions and numerical
computations based on the variable-coefficient KdV equation, even though the
ramp reflects about 15% of the excess mass. These results suggest that the
variable-coeflicient KdV theory may be applicable to study of the transmitted

wave on the shelf.

Another group of numerical experiments were performed to examine wave
propagation in two horizontal dimensions over a curved submerged ramp. The
curving ramp bottom topographies had a focussing effect on the wave as
evidenced by enhanced primary crest amplification. Soliton formation was also
apparent on the shelf, with the exception that the formation of the second
soliton was delayed at certain locations in the channel. Indications of an cross-
channel oscillatory mode with nodal points at the quarter and three-quarter

lines were presented.

For comparison, computations for an identical case were performed using
linear nondispersive theory. The waves were seen to evolve quite differently, and
although the wave was clearly being focussed by the submerged curved ramp,
the effects were not as great as in the nonlinear, dispersive case {(as would be
expected). No additional solitons were formed on the shelf and a trough
developed near the back of the wave, steepening that side. Finally, the linear
theory solution was seen to travel more slowly than the waveform computed
through nonlinear dispersive theory. For the kinds of cases we considered here
the linear nondispersive theory was inadequate for the characterization of the

amplitude, shape and wave speed of the nonlinear dispersive solution.
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From the information obtained through this study, our principal
conclusions are:

*» The combined governing equation derived in Chapter 2 is a convenient and
straightforward replacement for the more cumbersome, two-equation
Boussinesg models used previously.

« The combined equation has the advantage of an exact, easily-obtained
permanent form solution which can be used to check the accuracy of a
numerical approximation to the equation and as initial conditions for solitary
wave studies.

* Special attention must be paid to the stepsize convergence tests in a
numerical scheme developed to solve Boussinesg-class equations. In particular,
the appearance of an oscillatory tail must be considered suspect until testing at
reduced stepsizes can confirm its validity.

» For the gradual slopes considered here, it is not necessary to include
reflection to obtain a satisfactory representation of the wave transmitted onto
the shelf. A KdV-type formulation seems to fairly well describe the waveform
propagated onto the shelf, however, our computed results fall slightly below the
KdV theory. The somewhat smaller amplitudes on the shelf are attributed to the
effect of reflection from the ramp which causes only about B5% of the excess
mass to be transmitted onto the shelf.

» For the curving bottom topographies and initial wave amplitudes used in
this study, linear nondispersive theory is inadequate. The linear nondispersive
theory fails to accurately describe crest amplification, soliton formation, cross-

channel effects and overall three-dimensional wave shape.
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APPENDIX A

Derivation of the Transport Theorem

In Chapter 2, the following transport theorem (Eq. 2.6) was presented:

dt- ffdz+vf uf dz.

In order to prove this transport theorem, let us consider the material
derivative of a flow quantity, f(Xt), integrated over a material volume V. It is

well known (e.g., Serrin [1959]) that, for an incompressible fluid,

ffdv f £ £V U)aV = ii-f-dv
where ad— = §—+ Vo). Vg, U, and other quantities are fully described in Chapter

2 (Section 2.1). If we choose a material volume V which at time t coincides with

a vertical column having horizontal cross-section S; then
fa-dv fdsf -—-—-» UV,f)dz

-fdsfl + Vo (UD)|d

The transformation of the inner integral in Eq. A.1 is possible because the fluid

(A1)

is incompressible: Vo'U = 0.
If we expand and evaluate the inner integral in A.1, we have

¢t

ot - 8¢ . g
f l'a"[""% \Uf)]dz --f fdz - 1,22 o0 o +vf (uf)dz (AR)

- ()5 - (uf) 5 2 - (o), —f— (v1)

X + (W) - (W),

._h 6
Here f_p indicates the quantity {(Xt) evaluated at z = a. On substituting from

the boundary conditions and replacing Eq. A.R into Eq. A.1, we find
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dh
T

Il

[ e

fscds -é@{-f_hfdz + v-f_h(uf)dz,

The transport theorem (3.8) follows immediately since the area S, is arbitrary.

dSt deq-vf (uf)dz fga—<—+(m)¢ f - (wt)
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APPENDIX B

Listing of the 1HD FORTRAN Program

To complement the description of the numerical procedure in Section 3.1,
we present the following FORTRAN program used in the 1HD problems. Many
cormnment cards have been added to make the program easier to understand. A

fowchart of this program is presented in Figure 3.1.
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IMPLICIT REAL*B(A-H,0-7)

COMMON/STEPS /DX, DT,NODEX,MAXT NODEX1
COMMON/WAVEH/ETA(850),ALF,U BETA,AU,NXZERO
COMAMON/TWHERE /KTIME KOUNT

PROGRAM TO SOLVE PARTIAL DIFFERENTIAL EQUATION (3.1)
*+*CAVEAT* THE STEP SIZES HAVE ALL BEEN TAKEN TO BE THE SAME!***
THE SCALARS ARE:

DX - STEPSIZE IN X-DIRECTION.

DT  -- STEPSIZE IN TIME: SAME AS DX.

NODEX -- NUMBER OF NODEX IN THE X-DIRECTION.
MAXT -- NUMBER OF TIME STEPS TO BE COMPUTED.
NXZERO -- NODAL LOCATION OF INITIAL WAVE PEAK.
AL -- THE AMPLITUDE OF THE INITIAL WAVE.
DEEP -- WATER DEPTH IN DEEP REGION.

SHALLO -- WATER DEPTH IN SHALLOW REGION.

SL -~ RAMP SLOPE.

NESTART -- NODAL STARTING LOCATION OF RAMP.
NEND -- NODAL ENDING LOCATION OF RAMP.

TOLER -- CONVERGENCE TOLERANCE COMPARISON PARAMETER

THE ARRAYS ARE:

ETA -- VECTOR ARRAY OF SURFACE HEIGHT, COMPUTED FROM
SUBROUTINE SURFIT.

PHI -- ARRAY CONTAINING THE POTENTIAL AT THE PREVIOUS
TIME STEP PHI( ,1) AND PRESENT TIME STEP PHI( ,2).

PHIOLD -- FIRST OR PREVIOUS APPROXIMATION FOR PHI AT THE
NEW TIME STEP.

PHINEW -- CURRENT APPROXIMATION FOR PHI AT THE NEW TIME
STEP.

DERX -- DOUBLY SUBSCRIPTED ARRAY CONTAINING THE FIRST
SPATIAL DERIVATIVE OF PHI AT THE PREVIOUS TIME
STEP DERX( ,1); THE PRESENT TIME STEP DERX( ,2);

AND THE NEW TIME STEP DERX( ,3).

DXX -- DOUBLY SUBSCRIPTED ARRAY CONTAINING THE SECOND
SPATIAL DERIVATIVE OF PHIL. SECOND SUBSCRIPT
DENOTES TIME STEP AS IN DERX ABOVE

TRI -- DOUBLY SUBSCRIPTED ARRAY CONTAINING THE COEFFICIENTS
OF THE TRIDIAGONAL MATRIX. TRI( ,1) IS THE LOWER
DIAGONAL, TRI( ,2) IS THE DIAGONAL, AND TRI(,3)

IS THE UPPER DIAGONAL.

REDRUS — THE VECTOR ARRAY CONTAINING THE REDUCED RIGHT-
HAND SIDE. COMPUTED ONCE PER TIME STEP.

FULRHS -- THE VECTOR ARRAY CONTAINING THE REDUCED RIGHT-
HAND SIDE PLUS THE NONLINEAR CORRECTION. COM-
PUTED AT EACH ITERATION IN EACH TIME STEP.

H,HX,HXX -- THREE VECTOR ARRAYS CONTAINING THE WATER DEPTH
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(VARIES WITH X), THE FIRST DERIVATIVE OF THE WATER
DEPTH AND AND THE SECOND DERIVATIVE OF THE WATER
DEPTH, RESPECTIVELY. THESE ARRAYS ARE FILLED AT THE
BEGINNING OF COMPUTATION.

UPTRIA -- UPPER TRIANGULAR MATRIX USED IN 'L-U’ DECOMPOSITION.
COMPUTED ONCE.

DOTRIA -- LOWER TRIANGULAR MATRIX USED IN 'L-U’ DECOMPOSITION.
CONPUTED ONCE.

READ IN THE NUNMBEIR OF CASES
READ(5,149) NCASE

149 FORMAT{I5)

C.

@]

[

e

@

o

@

DO 500 ICASE=1,NCASE
READ IN INPUT VALUES AND WRITE OUT HEADERS
CALL READVL(ICASE,TOLER,ITMAX)

..SET UP THE BOTTOM TOPOGRAPHY

CALL RAMP

..SET UP THE COMPUTABLE CONSTANTS

ALL CONBET

THE INITIAL CONDITIONS ON PHI, ALSO INITIAL X-DERIVATIVES

CALL 5TART
ST UP THE TRIDIAGONAL MATRIX FOR THE CURRENT TIME STEP
CaLL DIAGIT
DO 10 KTINE=1 MAXT
KOUNT=0

..SOLVE THE REDUCED EQUATION (3.4).

CALL SOLRED

WITERATION LOOP: COMPUTE NEW RHS VECTOR AND

....SOLVE THE FULL EQUATION (3.1).
5 IF(KOUNT.GT.ITMAX) GO TO 1000
KOUNT=KOUNT+1
CALL FULSOL
....CHECK FOR CONVERGENCE:
... KRIT=1 MEANS CONVERGED; KRIT=0 MEANS NOT CONVERGED.
CALL COMPAR(TOLER,KRIT)
I[F(KRIT.EQ.0) GO TO 5
TIME=(KTIME-1)*DT

...COMPUTE THE SURFACE HEIGHT

CALL SURFIT(KTIME)

..COMPUTE THE EXCESS MASS

CALL EXCESS(VOLM,BELOW,ABOVE)

..GET WAVE PEAK AND PEAK LOCATION

CALL SIFTS(PEAK XPEAK)

.WRITE RESULTS. UNIT 17 IS THE TAPE.

WRITE(8,164) TIME,VOLM,BELOW,ABOVE,PEAK XPEAK,KOUNT

164 FORMAT(1X,F8.2,3X,1P3D15.6,8X,1PD15.6,4X,1PD15.6,8X,I2)

C.

KOMPAR=5%( (KTIME-1)/5

IF (KOMPAR.EQ.KTIME-1)

1 WRITE(17) TIME,VOLM,BELOW,ABOVE ,PEAK,XPEAK, KOUNT
PREPARE TO MOVE TO NEXT TIME STEP

CALL SWITCH

10 CONTINUE

500 CONTINUE
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STOP

1000 WRITE(6,1600)

1600 FORMAT(1X,"MAXIMUM ITERATION COUNT EXCEEDED’)
STOP
END

BLOCK DATA
IMPLICIT REAL*8(A-H,0-Z)
COMMON/XDERV/DERX(850,3),DXX(850,3)
DATA DERX,DXX/2550*0.0,2550*0.0/

C...INITIALIZE THE DERIVATIVES TO ZERO
END

SUBROUTINE READVL(ICASE,TOLER,ITMAX)
IMPLICIT REAL*8(A-H,0-7)
COMMON/STEPS /DX, DT, NODEX, MAXT,NODEX1
COMMON/WAVEII/ETA(850),ALF,U,BETA AU, NXZERO
C..READ IN THE CHANGEABLE CONSTANTS
READ(5,150) DX,DT,ALF,HGT, TOLER,MAXT NODEX,NXZERO, TMAX
150 FORMAT(4F8.3,1PD15.6 /415)
C..WRITE OUT HEADER INFORMATION
WRITE(6,160) ICASE,DX,DT,ALF,TOLER,MAXT,NODEX,NXZERO
160 FORMAT(1H1// /25X, **** CASE NUMBER: *,I3,” **** 5X/ /1X,
1 'SPACING:", 10X, DX="F6.2/19X,'DT="F6.2/ /1%,
2 "PEAK ANMPLITUDE=",1PD10.1/1X
3 "CONVERGENCE TOLERANCE=",1PD10.1/1X,
'NODE INFORMATION:,5X,"MAX TIME:,15,5X,’X NODES:",15/23X,
'PEAK LOCATED AT NODE?,I5 /)
C...TAPE WRITLS
[F{ICASE.NE.1) CALL WRTNF(17)
WRITE(17) DX,DT,ALF,HGT TOLER,MAXT,NODEX,NXZERO,ITMAX
RETURN
END

L1

SUBROUTINE CONSET

[MPLICIT REAL*8(A-H,0-7)

CORMMON/STEPS/DX,DT.NODEX,MAXT,NODEX1

COMMON/WAVEH/ETA(850),ALF,U,BETA AU NXZERD

COMION/DIGONL/TRI(850,3), REDRHS(85C), FULRHS(850)
C..COMPUTES ALL THE NECESSARY CONSTANTS

U =DEQRT(1.0+ALF)

BETA =DSQRT(3.*ALF/(£.7U*U))

AU = ALF/U

NODEX1=NODEX-1

RETURN

END

SUBROUTINE START
IMPLICIT REAL*8(A-H,0-Z)
COMMON /STEPS /DX, DT,NODEX,MAXT,NODEX1
COMMON /WAVEH /ETA(850),ALF,U,BETA, AU, NXZERO
COMMON /POTEN/PHI(850,2),PHIOLD(850) PHINEW (850)
COMMON /XDERV /DERX(850,3),DXX(850,3)

C...PLACE TWO SETS OF INITIAL CONDITIONS IN ARRAY PHI
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C...ALSO COMPUTE THE FIRST AND SECOND SPATIAL DERIVATIVES OF PHI
C.INTIAL CONDITIONS DO NOT ASSUME ANY DEPTH VARIATION
DO 10 J=1.2
T=(5-2)*D7T
DO 10 I=1,NODEX
X=(1-N)XZERO)*DX
CHI = BETA®(X-U*T)
PHI(LJ) =DSQRT(4.*ALF/3.)*DTANH( CHI)
[F(CHLGT.44.) GO TO 10
DERX(I,J) = AU/(DCOSH(CHI)*DCOSH(CHD))
DX(LJ) = -2.C¢BETA*DERX(LJ)*DTANH (CHI)
10 CONTINUE
1 RETURN

COMLON /T LPS /DX, DT NODEX,MAXT NODEX1
COMMON/WAVEH/ETA(850),ALF, U, BETA AU NXZERO
CCAIAION /SLOPE /H{B30), HX(850),HXX(85C)
COMMON/DIGONL/T aO,E),REI)RHS(B'"O) FULRHZ(850)
C..SETs UpP THE DIAGONALS OF THE TRIDIAGONAL MATRIX

TRI(1,1) = (.0
TRI(1,3) =00

TRI(NCDEX, 1)
;ka:\pJ;x'x,B} = 0.0
_;i'll(] 2) =
TRINODEX2) = 1.0
Do 10 =2 NODEX1
hET={(1}
CP=DT*DT*HGET/2 HGT*HGT /2.

TR )= -CF/ (1/,,\@?\’) +~HGT *HX(I)/(é.*DX)
TR"(I 2)=1.0 = 2.0CF/(DX*DX)

TRI(I3)= -CF/(DX*DX) -HGT*HX(1)/(4.*DX)

RET URN
END

SOLRED
INPLICIT REAL*8(4-H,0-7)
ONMON /STEPS /D%, DT, NODEX,MAXT, NODEX 1
ON/WAVEH /ETA(850),ALF,U,BETA, AU NXZERO
COLUON /DIGONL /TRI(850,3), REDRHS(850), FULRH S(850)
COMMON /POTEN /PHI(650,2), PHIOLD(850), PHINEW (850)
COMNON /XDERV /DERX(850,3),DXX(850,3)
COMMON/UPNDO/UPTRIA(850,3),DOTRIA(850,3)
COMMON /TWHERE /KTIME,KOUNT
COMMON /SLOPE 7 H{850), HX(850), HXX(850)
C..COMPUTES THE RHS FOR THE REDUCED EQUATION
C..AND
C..SOLVES THE REDUCED EQUATIONS TO YIELD PHIOLD
DX32=(2. *DX*DX*DX)
DO 10 1=2,NODEX 1
HGT=H(I)
HDX=HX(I)




C1 = HDX*DT*DT - HGT)
C2 = HGT*HDX /2.
c3 = -(Hu’T‘HGT/S.)'(E.O + DT*DT*HXX(I)/2.)
C4 = HGT*DT*DT /2. + HGT*HGT /3.
IF(1.EQ.2.0R.LEQ. \*omm) GO TO 11
C5 = -DT*DT*HGT*HGT*HDY /6.
D}\:&-(Pﬁxpz 2)-2.*PHI(I+1,2)+2.*PHI(I-1,2)-PHI(I-2,2)) /DX32
REDRHS(I) =2.*PHI(I,2) - PHI(,1)
1 + C1*DERX(L,2) + C2*DERX(1,1)
2 + C3*DX(1,2) + C4*DXX(I,1) + C5*DXXX
GO TO 10
11 REDRHS(I) =2.*PHI(1,2) - PHI(I,1)
1 + C1*DERX(1,2) = C2*DERX(],1)
2 + C2*DXX(1,2) + C4*DXX(L1)
10 CONTINUE
REDRHS(1) =2.¢PHI(1,2) - PHI(1,1)
REDRHS(NODEX)= 2.*PHI(NODEX,2) - PHI(NODEX, 1)
CALL TRISOL(TRI,REDRHS,PHIOLD)
DO 2¢ 1=2,NODEX1
DERYN(1,2)=(PHIOLD(I+1)-PHIOLD{I-1))/(2.*DX)
DYX(1,3) =(PHIOLD(I+1)-2.0*PHIOLD()+PHIOLD(I-1)) / (DX*DX)
20 CONTINUE
DERX(1,3) =(PHIOLD(2)-PHIOLD(1))/DX
DX¥(1,2)  =0C.0
DEF\'(\'ODEX,C) -(PHIOLD(NODEX)—PHIOLD(NODEXl))/DX

SUBROUTINE TRISOL(TRI,RHS,PHI)

VPLICIT REAL*B(A-H,0-2)
DINENSION TRI(850,3),RHS(1),PHI(1)
COMAION /UP NDO/UPTRIA(850,3),DOTRIA{B50,3)
COMMON /STEPS /DX, DT, NODEX, \AXT, NODEX1
COMAION/ TWHERE /KTIME KOUNT

C..SOLVES A TRIDIAGONAL MATRIX BY °L-U’ DECOMPOSITION. LOWER AND UPPER

C..TRIANGULAR MATRICES ARE COMPUTED ONLY ONCE
UPTRIA(1,2)=TRI(1,2)
UPTRIA(1,3)=TRI(1,3)
PHI(1) = RHS(1)
[F(KTIME.GT.1) GO TO 500
[F(KOUNT.GT.1) GO TO 500
DO 10 1=2,NODEX
11 =11
DOTRIA(L,2) =
UPTRIA(L3) = TRI(1,3)
DOTRIA(L1) = TR 1(1,1) 7/ UPTRIA(I1,2)
UPTRIA(L2) = TRI(1,2) - DOTRIA(I,1)*UPTRIA(I1,3)
IF(DABS(UPTRIA{LZ)).LT.1.D-29) GO TO 35

10 CONTINUE
500 DO 20 [=2,NODEX
20 PHI(I) = RHS(I) - DOTRIA(L 1) * PHI(I-1)

PHI(NODEY) = PHI(NODEX) / UPTRIA(NODEX,2)
[=NODEX
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25 I1=I-1
PHI(11)= (PHI(I1) - UPTRIA(I1,3) * PHI(I)) / UPTRIA(I1,2)
I=I-1
IF(LEQ.1) GO TO 15
GO TO 25

15 RLTURN

35 WRITE (8,7)

7 FORMAT (//5X,’A REQUIRES PIVOTING OR IS SINGULAR')
STOP
END

SUBROUTINE FULSOL
IMPLICIT REAL*8(A-H,0-7)
COMMON/STEPS /DX, DT,NODEX,MAXT,NODEX 1
COMMON /WAVEH /ETA(850),ALF,U,BETA,AU,NXZERO
COMMON /DIGONL/TRI(850,3),REDRHS(850),FULRHS(850)
COMMON/POTEN/PHI(850,2), PHIOLD(850), PHINEW (850)
COMMON /XDERV /DERX(850,3),DXX(850,3)
COMMON/TWHERE /KTIME,KOUNT
COMMON /UPNDO /UPTRIA(850,3), DOTRIA(£50,3)
C...COMPUTES RHS FOR FULL EQN AND SOLVES THE FULL EQUATION (3.1)
C..FOR PHINEW
C..KEEPS THE SAME BOUNDARY CONDITION ON LEFT AND RIGHT
DO 10 1=2,NODEY1
FULRHS(I) = REDRHS(I) - DT*DERX(I,2) *(DERX(I,3)-DERX(I,1))
1 - DT*DXX(1,2) *(PHIOLD(I)-PHI(L,1)) /2.
10 CONTINUE
FULRHS(1) =REDRHS(1)- DT*DER¥(1,2)*(DERX(1,3)-DERX(1,1))
FULRHS(NODEX)=RLDRHS(NODEX)
1 - DT*DERX(NODEX,2)*(DERX(NODEX,3)-DERX(NODEX, 1))
CALL TRISOL({TRI,FULRHS,PHINEW)
DO 20 I=2,NODEX1
DERX(L3)=(PHINEV (I+1)-PHINEW(I-1))/(2.*DX)
DXX(1,3) =(PHINEW(I+1)-2.C*PHINEW(D)+PHINEW(I-1)) /(DX*DX)
20 CONTINUE
DERX(1,3) =(PHINEW(2)-PHINEW(1))/DX
DXX(1,3) =0.0
DERX(NODEX,3) =(PHINEW(NODEX)-PHINEW(NODEX1))/DX
DXX(NCDEX,3) =0.0
RETURN
END

SUBROUTINE CONFPAR(TOLER,KRIT)
1IMPLICIT REAL*8{A-H,0-2)
COMMON/STEPS /DX, DT NODEX MAXT NODEX1
COMMON/POTEN/PHI{(850.,2),PHIOLD(850),PHINEW(850)
C...COMPUTES THE CONVERGENCE CRITERION
C...AND
C...COMPARLES IT TO THE USER SELECTED TOLERANCE
KRIT=0
DFITER=0.0
DFTIME=C.0
DO 10 I=1, NODEX
DFITER=DFITER+(PHIOLD(I}-PHINEW(I))*(PHIOLD(1)-PHINEW(I))
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DFTIME=DFTIME+(PHI(1,2)-PHINEW (D)) *(PHI(1,2)-PHINEW(I))
10 CONTINUE

COMTOL=DSQRT(DFITER) /DSQRT(DFTIME)

IF(COMTOLLT.TOLER) KRIT=

DO 20 I=1,NODEX
20 PHIOLD(1)=PHINEW(I)

RETURN

END

SUBRQUTINE SURFIT(KTIME)
[MPLICIT REAL*8(A-H,0-7)

CHEION/STEPS /DX, DT, NODEX,MAXT ,NODEX1
COMMON/WAVEH/ETA{850),ALF,U BETA AU ,NXZERO
COMIMON/POTEN/PHI(850,2),PHIOLD(850), PHINEW (850)
COMMION/XDERV/DERN(850,3),DXX(£50,3)

COMAMON/SLOPL /H(85C), HX(850), HXX(850)

C..CONMPUTES THE SURFACE HEIGHT BASED ON THREE TIME LEVELS OF PHI
DO 10 I=1,NODEX
HGT=H()

PDXXT={DXX(1,3) - DXX(1,1) }/(2.0*DT)

POXT ={DERX(1,3) - DERX{[,1))/7(2.C*DT)

ET4A1 ={PHINEW{]) - PHI{I,1) )7{(2.0*DT)

ETa(l)= - ETA1 - DERX(,2)*DERX(1,2}/2.0

1 = (HGT*HGT/3)PDXT + (HGT*HX()/2.)*PDXT
10 CONTINUE

KOUPAR=5*( (KTIME-1)/5)

C  IF(KOMPAREQKTINE-1)
IF(RTIME.LQ
KCHE=30%{ { 1
Ir(J\\,n'\\LI\ 1BIE \ RL‘LR:\‘

2 TIhlE= (f\"l\u;u)‘
WRITE(S,1380) TIME
160 FORMAT{(1X, SURFACE HEIGHT AT TIME = " F7.2)
WRITE(G, 701) {(ETA(D),I=1,NODLEX)
161 FORMAT{10(1X,F10.6))
RETURN
END

WRITE(17) KTIME,ETA PHINEW

(/3

UBROUTINE EXCESS(SUMEX,BELOW ABOVE)
3IFLICIT REAL*8(A-H,0-Z)
COMMON /ST TEPS/DX.DT NODEX,MAXT,NODEX
COMMON/WAVEH/ETA(850),ALF, U, BETA,AU, NXZERO
COMMON/RAK P”/DLLP,:HALLO,\L,I\'\‘TAR*,NEND
SUMEX=0.0
C..INTLGRATES THE EXCESS MASS
NE1=NEND-1
BELOW = 0.0
DO 10 I=1,NE1
10 BELOW = BELOW + ETA(I)*DX
ABOVE = 0.0
DO 20 I=NEND,NODEX
20 ABOVE = ABOVE + ETA(I)*DX
SUMEX=BELOW~+ABOVE
RETURN

=
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END

SUBROUTINE SIFT3(PEAK,XP)
IMPLICIT REAL*8(A-H,0-7)
DIMENSION P(3),X(3),IP(3)
COMMON /STEPS /DX, DT, NODEX,MAXT,NODEX 1
COMMON /WAVEH/ETA(850),ALF, U, BETA,AU,NXZERO
C..FINDS WAVE PEAK AND PEAK POSITION
C...SEARCHES FOR THE THREE HIGHEST VALUES ANDT THE FITS A QUADRATIC
DO 5 L=1,3
P(L) = 0.0
5 IP(L)= 0
DO 10 I=1,NODLX
IF {P(1).GT.LTA(D) GO TQ 12
DO 100 M=1,2
P(4-30) = P(3-3)
100 1P \e-L)-»IP’(B-N)
P(1) =E7AL)
IP(1)=1

12 IF(P(2).GT.ETA(D)) GO TO 13

GO TO 10
13 wi( ).GT.ETA(D) GO TO 1

”U
(A)
[}
1
ii

Db ;Q x\’”’,g
0 X =(IP(M)-NXZERO)*DX
~~m\-f 2)) 7 (X(1)X(2))-(P(1)-P(3)) / (X(1)-X(3))) 7 (X(2)-X(3))
=(P{1)-P(3)) 7/ (X(1)-X(3)) - A*{X{1)+X(3))
-P(l) APX(1)*X(1) -B*X(1)
XpP=-B/(2.%4)
PEAK=A*XP*XP + B*XP + C

U TINT SWITCH
[LIPLICIT REAL® 8(A-H,0-7)
10N/ STEPS/DX,DT,NODEX,MAXT,NODEX1
MNON /Pwr\'/DHU@;O,2),PHIOLD(%G),PHINEW(%O)
OGN /XDERY /DERX(850,3),DXX(850,3)
C..BUNPS ALL PHI AND PHI DERIVATIVES DOWN ONE TIME STEP TO
C...PRCPARE FOR NEXT TIME STEP COMPUTATION
DO 10 1=1,NODEX
PHI{I,1)=PHI(I,2)
PHI(I,2)=PHINEW{D)
DERX(I,1)=DERX(L,2)
DERX(1,2)=0ERX(L3)
DXX(1,1) =D0(1,2)
16 DXX(1,2) =D¥3(1,3)
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RETURN
END

SUBROUTINE RAMP
IMPLICIT REAL*8({A-H,0-2)
DIMENSION HRAW(85C)
COMMON/STEPS /DX,DT,NODEX,MAXT NODEX1
COMMON /SLOPE /H(850),HX{850),HXX(850)
COMMON/RAMPPM/DEEP,SHALLO,SL,NSTART,NEND
C...SETS THE BOTTOM TOPOGRAPHY
C...READ IN THE RAMP START NODE, RAMP END NODE, DEEP DEPTH, SHALLOW DEPTH,
C...AND THE SLOPE OF THE RAMP
READ(5,150) NSTART,NEND,DEEP,SHALLO,SL
120 FORMAT(215,3F10.5)
C..WRITE QUT
WRITE(17) NSTART,NEND,DEEP,SHALLO,SL
WRITE(6,160) NSTART NEND,DEEP,SHALLO,SL
160 FORMAT(1X,"RAMP PARAMETERS: ,6X,’START NODE=",15,5X,
1 "END NODE:"I5/23X,DEEP WATER DEPTH="F6.2 /23X,
2 'SHALLOW WATER DEPTH="I6.2/23X,SLOPE=",1PD11.2//)
NS1=NSTART+1
NE1=NEND+1
C...SET UP THE HEIGHTS
DO 10 I=1,NSTART
10 HRAW(I)=DEEP
DO 20 I=NS1,NEND
20 HEAW({)=DEEP - SL*(I-NSTART)*DX
DO 30 I=NE1,NODEX
30 HRAW(I)=SHALLO
C...SNCOOTH THE PROFILE
NODEX1=NODEX-1
DO 35 [=2,NODEX1
35 H{D=(HRAW({I+-1)+HRAW(I)+HRAW(I-1)) /3.
H{1)=HRAW(1)
H(NODEX)=HRAW (NODEX)
C..COMPUTE THE DERIVATIVES
DO 40 1=2,NODEX1
HX(I) =(H{I+1)-H{1-1))7(2.*DX)
40 HXX(D)=(11(1-1)-2 *H({I)~H({I-1)) /(DX*DX)
X(1)  =0.0
HXX(1) =0.0
HX{NODEX) =0.0
HXX(NODEX)=0.0
RETURN
EXND
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APPENDIX C

Listing of the 2HD FORTRAN Program

To complement the description of the numerical procedure in Section 3.2,
we present the following FORTRAN program used in the 2HD problems. This
sample program can be used to solve the concave topographies described in
Chapter 4. {The convex topographies have a slightly different subroutine
SETRMP.) Many comment cards have been added to make the program easier to

understand. A flowchart of this program is presented in Figure 3.3.



OO0O000000000000000000000000000000000000000000Q00000

- 128 -

IMPLICIT REAL*8(A-H,0-7)

COMMON /STEPS /DX, DT,NODEX,MAXT,NODEX1

COMMON /ADDY /DY,NODEY,NODEY1,NODTOT

COMMON /WAVEH /ETA(12341),ALF,U,BETA,AU,NXZERO

COMMON /POTEN /PHI(12341,2),PHIOLD(12341),PHINEW(12341)
COMMON / TWHERE /KTIME KOUNT

PROGRAM TO SOLVE PARTIAL DIFFERENTIAL EQUATION (3.10)
DESCRIBING PROPAGATION IN TWO HORIZONTAL DIRECTIONS

PROGRAM HAS BEEN DESIGNED TO CORRESPOND AS MUCH AS POSSIBLE
WITH THE PROGRAM FOK PROPAGATION IN ONE HORIZONTAL DIMENSION

***CAVEAT* THE STEP SIZES HAVE ALL BEEN TAKEN TO BE THE SAME!#*+

ALL SINGLY SUBSCRIPTED ARRAYS FOR THE POTENTIAL, SURFACE HEIGHT,

AND DERIVATIVES REPRESENT FUNCTIONS OF TWO VARIABLES, X AND Y.

EQUATION (3.12) GIVES THE RELATIONSHIP BETWEEN THE SEQUENTIAL
NOTATION USED HERE AND THE MORE PHYSICAL (X,Y) NOTATION.

THE SCALARS ARE:

DX -~ STEPESIZE IN X-DIRECTION.

DY -~ STEPSIZE IN Y-DIRECTION: SAME AS DX,

DT --STEPSIZE IN TIME: SAME AS DXL

NODEX -- NUMBER OF NODES IN THE X-DIRECTION.
NODEY -- NUMBER OF NODES IN THE Y-DIRECTION.
NODTOT -- TOTAL NULBER OF NODES.

MAXT -- NUMBER OF TIME STEPS TO BE COMPUTED.
NXZERO -- NODAL LOCATION OF INITIAL WAVE PEAK.
ALF  -- THE AMPLITUDE OF THE INITIAL WAVE.

DEEP - WATER DEPTH IN DEEP REGION.

SHALLO -- WATER DEPTH IN SHALLOW REGION.

SL -~ RAMP SLOPE.

NSTART -- NODAL STARTING LOCATION OF RAMP.
NEND -- NODAL ENDING LOCATION OF RAMP.
MCURVE -- WIDTH OF CURVING RAMP FEATURE
TOLER -- CONVERGENCE TOLERANCE COMPARISON PARAMETER
SOR ~-- SUCCESSIVE OVER-RELAXATION PARAMETER

THE ARRAYS ARE:

ETA --VECTOR ARRAY OF SURFACE HEIGHT, COMPUTED FROM
SUBRQUTINE SURFIT.

PHI -- ARRAY CONTAINING THE POTENTIAL AT THE PREVIOUS
TIME STEP PHI( ,1) AND PRESENT TIME STEP PHI(.2).

PHIOLD -- FIRST OR PREVIOUS APPROXIMATION FOR PHI AT THE
NEW TIME STEP.

PHINEW -- CURRENT APPROXIMATION FOR PHI AT THE NEW TIME
STEP.
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DERX - DOUBLY SUBSCRIPTED ARRAY CONTAINING THE FIRST
X-DERIVATIVE OF PHI AT THE PREVIOUS TIME
STEP DERX(,1); THE PRESENT TIME STEP DERX( ,2);

AND THE NEW TIME STEP DERX( ,3).

DERY -- DOUBLY SUBSCRIPTED ARRAY CONTAINING THE FIRST
Y-DERIVATIVE OF PHI AS IN DERX ABOVE.

DELSQ -- DOUBLY SUBSCRIPTED ARRAY CONTAINING DEL-SQUARED
SECOND SUBSCRIPT DENOTES TIME AS IN DERX ABOVE.

REDRHS - THE VECTOR ARRAY CONTAINING THE REDUCED RIGHT-
HAND SIDE. COMPUTED ONCE PER TIME STEP.

FULRHS -- THE VECTOR ARRAY CONTAINING THE REDUCED RIGHT-
HAND SIDE PLUS THE NONLINEAR CORRECTION. COM-
PUTED AT EACH ITERATION IN EACH TIME STEP.

HEIGHT DHDX,DHDY.DDH -- FOUR DOUBLY-SUBSCRIPTED ARRAYS
CONTAINING RAMP INFORMATION: THE WATER DEPTH IN
THE RAMP REGION, THE FIRST X AND Y DERIVATIVES OF
DEPTH, AND DEL-SQUARED OF THE DEPTH. THESE ARRAYS
ONLY CONCERN THE RAMP REGION AND ARE USED BY
THE FUNCTION SUBROUTINES FOR DEPTH AND DEPTH
DERIVATIVES.

LINITIALIZE THE DERIVATIVE ARRAYS
CALL BLOTK

...READ IN THE NUMBER OF CASES TO BE COMPUTED
READ(C,148) NCASE

149 FORMAT{IS)
DO 500 [CASE=1 NCASL

LWREAD IN INPUT VALULES, SET RAMP CONFIGURATION
LAND WRITE OUT HEADERS

CALL READVL(ICASE, TOLER,ITMAX)
_SET UP THE COMPUTABLE CONSTANTS
1 CALL CONSET
THE INITIAL CONDITIONS ON PHI, ALSO GETS X-DERIVATIVES
CALL START
DO 10 KTINE=1,MAXT
KOUNT=0
_.SOLVE THE REDUCED EQUATION:
CALL SOLRED
_ITERATION LOOP: COMPUTE NEW RHS VECTOR; SOLVE THE FULL EQN.
5 KOUNT=KOUNT+1
[F{KOUNT.GE.JTMAX) GO TO 1000
CALL FULSOL
.CHECK FOR CONVERGENCE: CONVERGED => KRIT=1; NOT CONVERGED => KRIT=0.
CALL COMPAR(TOLER,KRIT)
[F(KRIT.EQ.C) GO TC 5
TIME=(KTIME-1)*DT
CALL SURFIT(KTIME)
CALL CXCESS(VOLM)
CALL SIFTS(PEAK,XPEAK)
WRITE(6,164) TIME,VOLM,PEAKXPEAK KOUNT
162 FORMAT(1X,F8.2,1PD15.6,4X,1PD15.6,4X,1PD15.6,8X,12)
KOMPAR=10%( (KTIME-1)/10)
IF(KOMPAR.EQ.KTINE-1)
1 WRITE(17) TIME,VOLM PEAK, XPEAK,KOUNT
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CALL SWITCH
10 CONTINUE

500 CONTINUE
STOP

1000 WRITE(8,1600)

1600 FORMAT(1X," MAXIMUM ITERATION COUNT EXCEEDED’)
STOP
END

SUBROUTINE BLOCK
[MPLICIT REAL*8(A-H,0-7)
COMMON/XDERV/DERX(12341,3),DELSQ(12341,3)
wm\ /\DLRx /DERY(12341,3)

DO 10 KN=1
DO 10 L=1, 1 2341
DELSQ{L,N)=C.0
DERX(L,N) =0.0

10 DERY(L,N) =0.C
RETURN
END

SUBROUTINE READVL(ICASE,TOLER,ITMAX)
IMPLICIT REAL*8(A-H,0-7)
COMMON/STEPS /DX, DT,NODEX MAXT,NODEX1
COMMON/ADDY/DY,NODEY,NODEY1,NODTOT
COAINION /WAVEH /ETA(12341),ALF, U, BETA, AU NXZERO
COMION/DEPTH/HGT,SHELFH, SLOPE, NSTART,NEND,NSTRT1,NENDP1
COLINON/SOPARM /SOR,SOR1
OMION/PROFIL/HEIGHT (58 41), DIIDX{(55,4 1), DHDY(55,41) DDH(55,4 1)
C...COMPUTES THE VARIOUS CONSTANTS
READ(5,150) DX,DT,ALF,HGT, TOLER, MAXT ,NODEX,NXZERO,ITMAX
150 FORMAT(4F8.3,1PD15.6/415)
READ(5,152) DY, NODEY
152 FORMAT(F&.3,15)
READ(5,153) NSTART,NCND,SLOPE,SHELFH,SOR
153 FORMAT(215,2F10.5/F10.5)
C...THE HEIGHT PROFILE AND ITS DERIVATIVES
CALL SETRMP
C..PUT ALL INPUT OUT ONTO TAPE; NEW FILE IF MORE THAN ONE CASE
IF(ICASLC.NI.1) CALL WRTINF(17)
WRITE(17) DX,DT,ALF,HGT TOLER,MAXT , NODEX,NXZERO,ITMAX,
1 DY,NODEY,NSTART ,NEND,SLOPE,SHELFH,SOR
C..THE IDENTIFIERS FOR THIS CASE
WRITE(8,60)
60 FORZ\Z“'\’E(1OXV’0#t###"»1‘*###***tt#*#’ﬁ"it"’*#"*Q##*“**"""‘.ﬁ"’
1 "*?"###*3**?#3****#*‘83#*'#*2*')
WRITE(8,65)
85 FORMAT(10X,*,79X,"#)
WRITE(8,70) ICASE
70 FORMAT({10X,’*,32X,’CASE NUMBER =',12,32X,'*")
WRITE(8,85)
WRITE(6,75) DX, DY DT
75 FORMAT(10X,* 5%, ’SPACING", 12X, DX=",F6.3,5%, ' DY=",
1 F6.3,5X,DT="F6.3,17X,’*)



WRITE(8,80) NODEX,NODEY, MAXT
80 FORMAT(10X,’*,5X,’NUMBER OF POINTS:",3X,X-DIR:",I3,5X,"Y-DIR:",
1 I3,5X MAX TIME:,I3,14X,'*)
XZERO=(NXZERO-1)¢DX
VWRITE(8,85)
WRITE(G,85) ALF,HGT,XZERO
85 FORMAT{10X,’*,5X, " WAVE PARAMETERS",5X, " AMPLITUDE"",15X,

1 F&5.3,23X,'%,1X/10X,*,26X,"WATER DEPTH",13X,
1 F5.3,23X,'%,1X /10X, *,26X, INITIAL PEAK LOCATION’,

1 2X.F7.3,23X,")
WRITE(8,65)
=(NSTART-1)*DX
END=(NEND-1)*DX
WRITE(8,87) ST,END,SHELFH
87 FORMAT(10X, " ,5X,'RAMP PARAMETERS®,5%,"START LOCATION:",8X,

1 FE.2,24X,"*,1X/10X,"*,26X,"END LOCATION:,10%,
1 F6.2,24X,"*,1X/10X,"* 26X, DEPTH ON SHLLF:,

1 BX.F7.3.23X,%)
WRITL(E,85)
VRITE6,60) TOLER
90 FORMAT(10X,"*,5X,"COMPUTATIONAL TOLERANCE USED:",1PD12.2)
VRITE \c 65

’ ""'X SCR PARAMETER!,15%,1PD15.8)

WRIT
RETU KJ
EXND

SUBROUTINE CONSET

[MPLICIT REAL*8(A-11,0-2)

COMMON/ETEPS /DX, DT NODEX MAXT NODEX1
COMNON/WAVEH/ETA(12341),ALF U, BETA AU NXZERO

CONMON/RHSIDE /REDRHE(12341),FULRHS(12341)
COMAION 7ADDY /DY, NODEY,NODEY 1,NODTOT

COMMON/DEPTH /Hu-,sHFIFH,DLOPE NSTART,NEND,NSTRT1,NENDP1
COMMON/SQUEEZ/CF,C,02.CD,D2,DSQ,DSQ3,DD4
COMIMON /SHELF/CFSH,CSH \.,ZDH CDSH

110N /SOPARY /SOR,SOR
ABON/FIN/NS3

U =DSQRT(1.0~ALF)

BLTA =DSQRT(3.%ALF /(4.#U*T))

AU = ALF/U

NODEX1=NODEX-1

NODEY1=NODEY-1

NODTOT=NODEX*NODEY

NSTRT1=NSTART-1

NENDP1=NEND=+1

NS3 =NSTART-3
C..FLAT ENTRY SECTION

CF = DT*DT*HGT/2. + HGT*HGT/3.

C = -CF/(DX*DX)

c2 2.0%C

CD (1.0 - 4.0*C)/SOR




C...SHELF SECTION
CFSH = DT*DT*SHELFH/2.+ SHELFH*SHELFH/3.
CSH = -CFSH/(DX*DX)
C2SH = 2.0%CSH
CDSH = (1.0 - 4.0°CSH)/SOR
D2 = DX*2.0
DSD = DX*DX
DSO3 = DSQ<3
DD4 = DX*4.0
SOR1 = 1.0-SOR
RETURN
END

SUBROUTINE START
IMPLICIT REAL*8(A-H,0-7)
COLMON/STEPS /DX, DT, NODEX, MAXT,NODEX 1
COMMON/4DDY /DY, NODEY,NODEY1,NODTOT
ION/WAVEH /ETA(12341),ALF,U,BETA,AU,NXZERO
OAIAION /PO?E;\’/Pmuasu,2),PH10LD(12341),PH1NEW(12341)
Co? zuc C/NDERV/DERX(12341,3),DELSQ(12341,3)
COMMON/YDERY/DERY(12341,3)
C..INTIAL CONDITIONS DO NOT ASSUME ANY DEPTH VARIATION
DO 10 N=1,2
T={N-2)°DT
C..SET UP THE FIRST ROW OF VALUES
DO 10 J:I,I\'DDE ¥
CHI = BETAS{(J-NXZER )'D‘f U*T)
PHI(J,N) = DSQRT(4.“ALF/3.)*DTANH( CHI)
I (CHL c:. ££) GO TO 10
DERX(J,N) = AU/(DCOSH(CHI)*DCOSH(CHI))
DELSQ{ \, = -2.0*BETA*DERX(J,N)*DTANH(CHI)
10 u*l\uf
C..SFREAD FIRST ROW ACROSS GRID
DO 20 N=1,2
DO 20 K=2,NODEY
DO 20 J=1,NODEX
L=]=(K-1)*NODEX
PHI(LN) = PHI(I,N)
DERX(L.N) = DERX(J.N)
20 DELSQ(L,N) = DELSQ(J.N)
RETURN
END

C

SUBROUTINE SOLRED

[MPLICIT REAL*8(A-H,0-7)

COMMON/STEPS /DX, DT, NODEX, MAXT,NODEX1

COMMON /ADDY/DY,NODEY,NODEY1,NODTOT

COMMON /WAVEH/ETA(12341),ALF,U,BETA,AU,NXZERO

COMMON /DEPTH/HGT,SHELFH,SLOPE, NSTART,NEND,NSTRT 1,NENDP1
COAMMON/RHSIDE /REDRHS(12341), FULRHS(12341)
COMMON/POTEN/PHI(12341,2),PHIOLD(12341),PHINEW(12341)
COMMON/XDERV/DERX(12341,3),DELSQ(12341,3)
COMBON/YDERY /DERY(12341,3)

COMMON /TWHERE /KTIME, KOUNT
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COMMON/SQUELEZ/CF,C,C2,CD,D2,D3Q,D5Q3,DD4
COMMON/SHELF /CFSH,CSH,C25H,CDSH

COMPUTES THE RHS FOR THE REDUCED EQUATION C
AND CALLS THE SOLVER TO YIELD SOLUTION TO LINEARIZED EQUATION C
WHICH IS THEN USED T0O CALCULATE NONLINEAR TERMS AND o
ALSO FUNCTIONS AS NEXT GUESS FOR SOLVER c
c
C
............ THE ENTRY AND EXIT EDGE BOUNDARIES. oo
DO 10 JEND=1,NODTOT,NODEX
REDRHS(JBND) = 2 *PHI(JBND,2) - PHI(JBND, 1)
JDEX=,BND=NODLX1
10 REDRHS(IDEX) = 2 *PHI(JDEX,2) - PHI(JDEX,1)

OO0 00000

C
.................. THE MIDDLE REGIONS..oooioooooooeoee o
o, INITIAL TLAT SECTION oo,
C1 =-2.*HGT*HGT/3
B1 = HGT*DT*DT/2. + HGT*HGT/3.
DO 30 K=1, ’\‘OJ"‘Y
DO 30 J=2,NSTRT
L=J~(K- 1>a\f\?z:.\
30 REDRHS(L) =2.*PHI(L,2) - PHI(L,1) + C1*DELSQ(L.2) + B1*DELSQ(L,1)
Coeee, SLOPING REGION oo,
C *EXCLUDING THE WALLS*
32 K=2 NODEY1
DO 32 J=NSTART,NEND
VHGT = H(J.K)
VHX = HX(J.K)
VHY = HY(J,K)
VDELH= DELH(J K)
L=J+(K-1)*NODEX
= -(VHGT*VHGT/3.)*(2.+DT*DT*VDELH/2.)
B1 = VHGT*DT*DT/2. + VHGT*VHGT /3
C3 = DT*DT-VHGT
Cé = VHGT/2.
5= - VHGT*VHGT*DT*DT/6.
32 REDRHS(L)=2 *PHI(L,2) - PHI(L,1) + C1*DELSQ(L,2) + B1*DELSQ(L,1)
1 =+ C3*(VHX*DERY(L,2)=VHY*DERY(L,2))
2+ C4*(VHX*DERX(L,1)+VHY*DERY(L,1))
b2
4

@]

i

|

+ C5*( VHX*(DELSQ(L+1,2)-DELSQ(L-1,2))
+ VHY*#(DELSQ(L+NODEX,2)-DELSQ(L-NODEX,2)) }/(2.*DX)
C *NOW CALCULATE ON THE WALLS+*
D023 1=1,2
DO 33 J=NSTART,NEND
K={I-1)*NODEY1 + 1
VHGT = H(J,K)
VHX = HX(J,K)
VHY = HY(J,K)
VDELH= DELH({J.K)
L=J+(K-1)*NODEX
= -(VHGT*VHGT/3.)*(2.+DT*DT*VDELH/86.)
Bi = VHGT*DT*DT/2. + VHGT*VHGT /3.



- 129 -

C3 = DT*DT-VHGT
C4 = VHGT/2.
C5 = - VHGT*VHGT*DT*DT/8.
33 REDRHS(L)=2.*PHI(L,2) - PHI(L,1) + C1*DELSQ(L,2) + B1*DELSQ(L,1)
1+ C3%(VHX*DERX(L,2)+VHY*DERY(L,2))
2+ Ca*(VHX*DERX(L,1)+VHY*DERY(L,1))
3 + C5*%( VHX*(DELSQ(L+1,2)-DELSQ(L-1,2)) )/(2.*DX)

C1 = -2.*SHELFH*SHELFH /3.
B1 = SHELFH*DT*DT/2. + SHELFH*SHELFH /3.
DO 34 K=1,NODEY
DO 34 J=NENDP1,NODEX1
L=0+(K-1)*NODEX
34 REDRHS(L) =2.*PHI(L,2) - PHI(L,1) + C1*DELSQ(L,2) + B1*DELSQ(L,1)
C

CALL SUCCES(PHIOLD,REDRHS)
C
C...PUT SOLUTION TO LINEAR INTO PHINEW AS FIRST SOR GUESS
DO 20 L=1,NODTOT
20 PHINEW(L)=PHIOLD(L)
RETURN
END

SUBROUTINE FULSOL
IMPLICIT REAL*8(A-H,0-7)
COMMON /STEPS /DX, DT, NODEX MAXT,NODEX1
COMMON/ADDY /DY NODEY,NODEY1,NODTOT
COMMON/WAVEH/ETA(12341),ALF,U,BETA,AU,NXZERD
COMMON/DEPTH/HGT,SHELFH,SLOPE,NSTART,NEND,NSTRT1,NENDP1
COMMON/RHSIDE /REDRHS(12341),FULRHS(12341)
COMMON/POTEN/PHI{(12341,2),PHIOLD(12341),PHINEW(12341)
COMMON/XDERV/DERX(12341,3),DELSQ(12341,3)
COMMON/YDERV/DERY(12341,3)
COMMON /TWHERE /KTIME, KOUNT
C... COMPUTES RHS FOR FULL EQN AND SOLVES FOR PHINEW
C...(B.C’S ABSORBED IN DELSQ TERM)
DO 20 K=1,NODEY
DO 20 J=1,NODEX
L=J+(K-1)*NODEX
FULRHS(L) = REDRHS(L) - DT*{ DELSQ(L,2) *(PHIOLD(L)-PHI(L,1))/2.
1 +DERX(L,2)*(DERX(L,3)-DERX(L,1))
2  +DERY(L,2)*(DERY(L,3)-DERY(L,1)) )
20 CONTINUE
CALL SUCCES(PHINEW,FULRHS)
1 RETURN
END

SUBROUTINE COMPAR{TOLER,KRIT)

IMPLICIT REAL*8(A-H,0-7)
COMMON/STEPS/DX,DT,NUDEX,MAXT,NODEX1

COMMON/ADDY /DY ,NODEY,NODEY1,NODTOT
COMMON/POTEN/PHI{12341,2),PHIOLD(12341),PHINEW(12341)
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KRIT=0
DFITER=0.0
DFTIME=0.0
DO 10 1=1,NODTOT
DFI =PHIOLD(I)-PHINEW(I)
DFITER=DFITER+DFI*DFI
DFT =PHI(L,2)-PHINEW (I)
DFTIME=DFTIME+DFT*DFT

10 CONTINUE
COMTOL=DSQRT(DFITER) /DSQRT(DFTIME)
IF(COMTOLLT.TOLER) KRIT=1
DO 20 [=1,NODTOT

20 PHIOLD(I)=PHINEW(I)
RETURN
END

SUBROUTINE SURFIT(KTIME)
IMPLICIT REAL*8(A-H,0-7)
DIMENSION VELOC(12341)
COMMON /STEPS /DX,DT,NODEX,MAXT,NODEX1
COMMON/ADDY/DY,NODEY,NODEY1,NODTOT
COMMON /WAVEH /ETA(12341),ALF,U,BETA,AU,NXZERO
COMMON/POTEN /PHI(12341,2),PHIOLD(12341),PHINEW(12341)
COMMON /XDERV/DERX(12341,3),DELSQ(12341,3)
COMMON /YDERV /DERY(12341,3)
COMMON /DEPTH/HGT,SHELFH,SLOPE NSTART,NEND,NSTRT 1,NENDP1
COMMON/SQUEEZ/CF,C,C2,CD,D2,DSQ,DSQ3,DD4
DO 5 K=1,NODEY
................. INITIAL FLAT SECTION..ooiooiriioreienereen,
DO 10 J=1,NSTRT1
L=J+(K-1)*NODEX
PT =(PHINEW(L) - PHI(L,1))/D2
GPSQ =DERX(L,2)*DERX(L,2)+DERY(L,2) *DERY(L,2)
PDSQT=(DELSQ(L.3) - DELSQ(L,1)) /D2
10 ETA(L)= -PT -GPSQ/2. + (HGT*HGT/3.)*PDSQT
..................... SLOPING REGION ..o,
DO 12 J=NSTART,NEND
L=J+(K-1)*NODEX
VHGT = H(J.K)
VHX = HX({,K)
VHY = HY(.K)
PT = (PHINEW(L) - PHI(L,1))/D2
GPSQ = DERX(L,2)*DERX(L,2)+DERY(L,2)*DERY(L,2)
PDOTH = (VHX*(DERX(L,3)-DERX(L,1))+VHY*(DERY(L,3)-DERY(L,1))) /D2
PDSQT = (DELSQ(L,3) - DELSQ(L,1))/D2
12 ETA(L)= -PT + (VHGT*PDOTH-GPSQ)/2. + (VHGT*VHGT/3.)*PDSQT

DO 14 J=NENDP1,NODEX
L=J+(K-1)*NODEX
PT =(PHINEW(L) - PHI(L,1))/D2
GPSQ =DERX(L,2)*DERX(L,2)+DERY(L.2) *DERY(L,2)
PDSQT=(DELSQ(L,3) - DELSQ(L,1))/D2
14 ETA(L)= -PT -GPSQ/2. + (SHELFH*SHELFH/3.)*PDSQT
& CONTINUE
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KOMP=10*( (KTIME-1)/10 )
IF (KOMP.NE.(KTIME-1).AND.KTIME.NE.MAXT) RETURN
WRITE(17) KTIME,PHI PHINEW,ETA
WRITE(B,160) KTIME

160 FORMAT(1X,"WRITING TO TAPE, KTIME=",I5)
RETURN
END

SUBROUTINE EXCESS(VOLM)

[MPLICIT REAL*8{A-H,0-Z)

COMMON/STEPS /DX, DT, NODEX,MAXT,NODEX1

COMMON/ADDY/DY ,NODEY,NODEY1,NODTOT

COMMON/WAVEH/ETA(12341),ALF,U,BETA,AU,NXZERO
C..INTEGRATES THE EXCESS MASS

VOLM = 0.0

DO 10 I=1,NODTOT

10 VOLM = VOLM + ETA(I)*DX

VOLM=VOLM/NODEY

RETURN

END

SUBROUTINE SIFT3(PEAK,XP)
IMPLICIT REAL*8(A-H,0-7)
DIMENSION P(3),X(3),IP(3)
COMMON /STEPS /DX,DT,NODEX,MAXT NODEX1
COMMON /ADDY/DY,NODEY,NODEY1,NODTOT
COMMON /WAVEH /ETA(12341),ALF,U,BETA,AU,NXZERO
COMMON/TWHERE /KTIME, KOUNT
C...SEARCHES FOR THE THREE HIGHEST VALUES AND THE FITS A QUADRATIC
DO 1000 K=1,NODEY, 4

DO 5 L=1,3
P(L) = 0.0
5 IP(L)= 0

ISTART=1+(K-1)*NODEX
IEND =K*NODEX
DO 10 I=ISTART,IEND
IF (P(1).GT.ETA()) GO TO 12
DO 100 M=1,2
P(4-K) = P(3-M)
100 IP(4-M)=IP(3-M)
P{1) =ETA(I)
IP(1)=I
GO TO 10
12 IF(P(2).GT.ETA(I)) GO TO 13
P(3) = P(2)
IP(3)=IP(2)
P(2) = ETA(D
IP(2)=1
GO TO 10
13 IF(P(3).GT.ETA(I)) GO TO 10
P(3) = ETA(D)
IP(3)=1
10 CONTINUE
DO 20 M=1,3
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20 X(M)=(IP(M)-(K-1) *NODEX-NXZERO) *DX
A=((P(1)-P(2))/ (X(1)-X(2))-(P(1)-P(3)) / (X(1)-X(3))) 7 (X(2)-X(3))
B=(P(1)-P(3))/(X(1)-X(3)) - A*(X(1)+X(3))

C= P(1) - A*X(1)*X(1) -B*X(1)
XP=-B/(2.%A)
PEAK=A*XP*XP + B*XP + C
KOMP=20*( (KTIME-1)/20 )
IF(KOMP.NE.(KTIME-1).AND.KTIME.NE.MAXT) GO TO 1000
WRITE(8,160) K,PEAK XP
160 FORMAT(1X,15,1P2D15.6)
1000 CONTINUE
RETURN
END

SUBROUTINE SWITCH
IMPLICIT REAL*8(A-H,0-7)
COMMON/STEPS /DX,DT,NODEX, MAXT, NODEX1
COMMON /ADDY/DY,NODEY,NODEY1,NODTOT
COMMON/POTEN/PHI(12341,2),PHIOLD(1234 1), PHINEW(12341)
COMMON /XDERV /DERX(12341,3),DELSQ(12341,3)
COMMON /YDERV/DERY(12341,3)
DO 10 I=1,NODTOT
PHI(I,1) = PHI(L2)
PHI(I,2) = PHINEW(D)
DERX(I,1) = DERX(L2)
DERX(1,2) = DERX(L3)
DERY(I,1) = DERY(],2)
DERY(1,2) = DERY(],3)
DELSQ(L1) = DELSQ(L2)
10 DELSQ(L2) = DELSQ(I,3)
RETURN
END

SUBROUTINE DERSET(PASS)
IMPLICIT REAL*8(A-H,0-7)
DIMENSION PASS(12341)
COMMON/STEPS/DX,DT,NODEX,MAXT,NODEX1
COMMON/ADDY/DY,NODEY,NODEY 1,NODTOT
COMMON/SQUEEZ /CF,C,C2,CD,D2,DSQ,DSQ3,DD4
COMMON/SHELF /CFSH,CSH,C25H,CDSH
COMMON/XDERV/DERX(12341,3),DEL3Q(12341,3)
COMMON/YDERV/DERY(12341,3)
C...ENTRANCE AND EXIT BOUNDARIES HAVE DXX=0.0; DX CALC BY BACK/FWD DIFF.
C...ALL POINTS NOT LISTED ARE SET TC 0.0 BY BLOCK DATA:
IN GENERAL THESE ARE:
*ALL FIRST DER IN Y AT TOP AND BOTTOM BDYS
*ALL SECOND DER IN X AT RIGHT AND LEFT BDYS

OO0 0

C...ENTRANCE AND EXIT BOUNDARIES (EXCLUDING THE FOUR CORNERS)
DO 10 K=2,NODEY1
IB=(K-1)*NODEX + 1
JE= K*NODEX
DERX(JB,3)
DERX(JE,3)

PASS(JB+1)-PASS(JB) }/DX

= (
= (PASS(JE) -PASS(JE-1))/DX
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JBPN = JB+NODEX
JBMN = JB-NODEX
JEPN = JE-NODEX
JEMN = JE-NODEX
DERY(JB,3) = (PASS(JBPN)-PASS(JBMN))/D2
DERY(JE,3) = (PASS(JEPN)-PASS(JEMN))/D2
DELSQ(JB,3) = (PASS(JBPN) - 2.*PASS(JB) + PASS(JBMN))/DSQ
DELSQ(JE,3) = (PASS(JEPN) - 2.*PASS(JE) + PASS(JEMN))/DSQ
10 CONTINUE
C..THE WALL BOUNDARIES (EXCLUDING THE FOUR CORNERS)
DO 20 JB=2,NODEX1
JT=JB+NODEY1*NODEX

JBP1 =B +1
JBM1 =JB-1
JTP1 =JT + 1
JTM1 =JT -1

DERX(JB,3) = (PASS(JBP1)-PASS(JBM1))/D2
DERX(JT,3) = (PASS(JTP1)-PASS(JTM1))/D2
DELSQ(JB,3) = (PASS(JBP1)-2.*PASS(JB)+PASS(JBM1)

1 +2.%(PASS(JB+NODEX)-PASS(JB)) )/DSQ
20 DELSQ(IT,3) = (PASS(JTP1)-2.*PASS(JT)+PASS(JTM1)
1 +2.*(PASS(JT-NODEX)-PASS(JT)) )/DSQ

C...MIDDLE REGION, NO SPECIAL TREATMENT
DO 30 K=2,NODEY1
DO 3C J=2,NODEX1
L=J+(K-1)*NODEX
LP1=L+1
LM1=L-1
LPN = L + NODEX
LMN = L - NODEX
DERX(L,3) = (PASS(LP1) - PASS{LM1))/D2
DERY(L,3) = (PASS(LPN) - PASS(LMN))/D2

30 DELSQ(L,3) = (PASS(LP1)+PASS(LM1)+PASS(LPN)+PASS(LMN)

1 -4 *PASS(L))/DSQ

C...FOUR CORNERS:
NLTCOR=NODTOT-NODEX1
DELSQ(1,3) = 2.*(PASS{1+NODEX)-PASS(1) )/DSQ
DELSQ(NODEX,3) = 2.*(PASS(2*NODEX)-PASS(NODEX))/DSQ
DELSQ(NLTCOR,3) = 2.*(PASS(NLTCOR-NODEX)-PASS{NLTCOR))/DSQ
DELSQ(NODTOT,3) = 2.*(PASS(NODTOT-NODEX)-PASS(NODTOT))/D3Q
RETURN
END

SUBROUTINE FIRGES(PASS)

IMPLICIT REAL*8(A-H,0-Z)

DIMENSION PASS(12341)

COMMON /STEPS /DX,DT,NODEX,MAXT,NODEX1

COMMON /ADDY/DY,NODEY,NODEY1,NODTOT

COMMON /POTEN /PHI(12341,2),PHIOLD(12341),PHINEW(12341)
C...SETS UP THE INITIAL GUESS FOR SUCCES
C...ONLY DO THIS ESTIMATE IF SOLVING LINEAR (FIRST SOL EACH TIME)

DO 10 L=1,NODTOT

10 PASS(L)=2.*PHI(L,2)-PHI(L,1)
RETURN
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END

SUBROUTINE SUCCES(PASS,RHS)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION PASS(12341),RHS(12341)
COMMON /STEPS /DX, DT, NODEX,MAXT,NODEX1
COMMON/ADDY/DY,NODEY,NODEY 1,NODTOT
COMMON /XDERV/DERX(12341,3),DELSQ(12341,3)
COMMON/YDERV/DERY(12341,3)
COMMON / TWHERE /KTIME, KOUNT
COMMON/DEPTH /HGT,SHELFH,SLOPE, NSTART,NEND,NSTRT 1, NENDP1
COMMON /SQUEEZ/CF,C,C2,CD,D2,DSQ,DSQ3,DD4
COMMON /SHELF /CFSH,CSH,C2SH,CDSH
COMMON /SOPARM/SOR,SOR1
C
C...SOLVES THE FIVE-BANDED SYSTEM BY SUCCESSIVE OVER RELAXATION
C...SOR ITERATIONS ARE INTERLEAVED WITH NON-LINEAR ITERATIONS
C...FIRST GUESS IS SUPPLIED BY SUBROUTINE CALL TO CUT DOWN ON ITERATIONS
IF(KOUNT.EQ.0) CALL FIRGES(PASS)

(NO OFF-DIAGONALS, SIMPLE EQUALITY)
DO 10 JBND=1,NODTOT,NODEX
PASS(JBND) =RHS(JBND)
JDEX=JBND+NODEX1
10 PASS(JDEX) =RHS(JDEX)
c
C..WALLT BOUNDARY HAS NO LEFT COMPONENT AND H HAS NO 1STDERIN Y
Coerererns INITIAL FLAT SECTION eimoovoeeoosoeeenen .
DO 20 J=2 NSTRT1
OFFDIA=C*(PASS(J-1)+PASS(J+1))+ C2*PASS(J+NODEX)
PASS(J)=SOR1*PASS(J) + (RHS(J)-OFFDIA)/CD
20 CONTINUE
o, SLOPING REGION. oo vveoreeeeeeeeeeeeeeer
DO 22 J=NSTART,NEND
VHGT = H(J,1)
VHX = HX(J,1)
CR  =-(VHGT/2. + VHGT*VHGT /DSQ3)
CDR = (1.0-4.0°CR)/SOR
EX = VHGT*VHX/DD¢
OFFDIA = (CR+EX)*PASS(J-1)+(CR-EX)*PASS(J+1)

1 +2.0*CR*PASS(J+NODEX)
22 PASS{J) = SOR1*PASS(J) + (RHS(J)-OFFDIA)/CDR
Con FLAT SHELF SECTION ..o

DO 24 J=NENDP1,NODEX1
OFFDIA=CSH*(PASS(J-1)+PASS(J+1))+ C2SH*PASS(J+NODEX)
24 PASS(]) = SOR1*PASS(J) + (RHS(J)-OFFDIA)/CDSH

DO 36 K=2,NODEY1

oo, INITIAL FLAT SECTION.oeeovooeereerreerrernnns
DO 30 J=2 NSTRT1
L=J+(K-1)*NODEX
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OFFDIA=C*{PASS(L-1)+PASS(L+1)+PASS(L-NODEX) +PASS(L+NODEX))
30 PASS(L) = SOR1*PASS(L) + (RHS(L)-OFFDIA) /CD
oo SLOPING REGION.covueiveoeeeeeeeeereresen,
DO 32 J=NSTART,NEND
VHGT = H(K)
VHX = HX(J.K)
VHY = HY({.K)

CR = -(VHGT/2. + VHGT*VHGT/DSQ3)
CDR = (1.0-4.0*CR)/SOR

EX = VHGT*VHX/DD4

EY = VHGT*VHY/DD4

L=J+(K-1)*NODEX
OFFDIA=(CR+EY)*PASS(L-NODEX) + (CR+EX)*PASS(L-1)
1+ (CR-EX)*PASS(L+1) + (CR-EY)*PASS(L+NODEX)
32 PASS(L) = SOR1*PASS(L) + (RHS(L)-OFFDIA) /CDR
Corereeeerern, FLAT SHELF SECTION....cvoiviieoeeeeiernnn,
DO 34 J=NENDP1,NODEX1
L=J+(K-1)*NODEX
OFFDIA=CSH*(PASS(L-1)+PASS(L+1)+PASS(L-NODEX) +PASS(L+NODEX))
34 PASS(L) = SOR1*PASS(L) + (RHS(L)-OFFDIA)/CDSH
36 CONTINUE
C...TOP BOUNDARY HAS NO RIGHT COMPONET; NO Y DERIVS IN H
Correernn, INITIAL FLAT SECTION .o,
DO 40 J=2,NSTRT1
L =J + NODEY1*NODEX
OFFDIA=C*(PASS(L-1)+PASS(L+1))+C2*PASS(L-NODEX)
40 PASS(L) = SOR1*PASS(L) + (RHS(L)-OFFDIA)/CD
oo SLOPING REGION .. cvveooeeeereeeeeereseees
DO 22 J=NSTART,NEND
VHGT = H(J,NODEY)
VHX = HX(J,NODEY)
CR = -(VHGT/2. + VHGT*VHGT/DSQ3)
CDR = (1.0-4.0*CR)/SOR
EX = VHGT*VHX/DD4
L =J + NODEY1*NODEX
OFFDIA=(CR-EX)*PASS(L+1)+(CR+EX)*PASS(L-1)

1 +2.0*CR*PASS(L-NODEX)
42 PASS(L) = SOR1*PASS(L) + (RHS(L)-OFFDIA)/CDR
Co FLAT SHELF SECTION......cooiiiri

DO 44 J=NENDP1,NODEX1
L=J+(NODEY-1)*NODEX
OFFDIA=CSH*(PASS(L-1)+PASS(L+1))+C2SH*PASS(L-NODEX)

44 PASS(L) = SOR1*PASS(L) + (RHS(L)-OFFDIA)/CDSH

C...SUPPLY THE DERIVATIVES FOR THE NEW TIME LEVEL FROM THIS SOLUTION
CALL DERSET(PASS)

RETURN
END

FUNCTION H({JX,KY)

IMPLICIT REAL*B(A-H,0-Z)

COMMON/DEPTH/HGT,SHELFH,SLOPE NSTART,NEND,NSTRT 1,NENDP1
COMMON/PROFIL/HEIGHT(565,41),DHDX(56,41),DHDY(55,41),DDH(55,41)
COMMON/FIX/NS3

JP=JX-NS3
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H=HEIGHT(JP,KY)

RETURN

END

FUNCTION HX(JX KY)

IMPLICIT REAL*8(A-H,0-7)

COMMON /DEPTH/HGT,SHELFH,SLOPE,NSTART,NEND,NSTRT 1,NENDP1
COMMON /PROFIL/HEIGHT(55,41),DHDX(55,4 1),DHDY(55,41),DDH(55,4 1)
COMMON /FIX/NS3

JP=JX-NS3

HX=DHDX(JP,KY)

RETURN

END

FUNCTION HY(JX,KY)

IMPLICIT REAL*8(A-H,0-7)

COMMON /DEPTH/HGT,SHELFH,SLOPE, NSTART,NEND,NSTRT 1,NENDP1
COMMON /PROFIL/HEIGHT(55,41),DHDX(55,41),DHDY(55,41),DDH(55,41)
COMMON /FIX/NS3

JP=JX-NS3

HY=DHDX(JP,KY)

RETURN

END

FUNCTION DELH(JX,KY)

[MPLICIT REAL*8(A-H,0-2)

COMXON/DEPTH /HGT,SHELFH,SLOPE NSTART,NEND,NSTRT 1,NENDP1
COMMON /PROFIL/HEIGHT(55,4 1), DHDX(55,4 1), DHDY(55,41),DDH(55,4 1)
COMMON /FIX/NS3

JP=JX-NS3

DELH=DDH(JP,KY)

RETURN

END

SUBROUTINE SETRMP
C...THIS PROGRAM SETS UP THE HEIGHTS AND SMOOTHS THE DEPTH PROFILE
C...ALSO CALCULATES THE X, Y DERIVATIVES AND DELSQUARE.
C..RAMP LENGTH IS FIXED AT 10.

IMPLICIT REAL*8(A-H,0-2)

DIMENSION HRAW(55,41)

COMMON /PROFIL/H(55,41),HX(55,41),HY(55,41),DELH(55,41)

DATA DX/0.4/

DATA DEEP,SHALLO,SL/1.0,0.5,0.05/

DATA NSTART,NEND/3,28/

DATA MCURVE/16/

NS1=NSTART+1

NE1=NEND+1
C..INITIALIZE

DO 5 J=1,55

DO 5 K=1,41

DELH(J,K)=0.0

HX(J,K)=0.0

5 HY(J,K)=0.0
C...THIS IS THE STRAIGHT RAMP PART
DO 16 K=MCURVE, 41
DO 10 J=1,NSTART
10 HRAW(J K)=DEEP
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DO 12 J=NS1,NEND

12 HRAW(J,K)=DEEP - SL*(J-NSTART)*DX
DO 14 J=NE1,55

14 HRAW(J K)=SHALLO

1€ CONTINUE

C..THIS IS THE CURVED RAMP PART

MC1=MCURVE-1
PI2=3.14159/2.
DO 18 K=1,MC1
DO 18 J=1,55
YP=(K-1)*DX
XP=(J-1)*DX
YM= MC1+*DX
CS=DCOS(PI2*YP/YM)
F1=10.0*CS*CS + (NSTART-1)*DX

F2=F1+10.0

IF(XP.LT.F1) HRAW{J,K)=DEEP
IF(XP.GE.F1.AND.XP.LE.F2) HRAW(J,K)=DEEP-SL*(XP-F1)
IF(XP.GT.F2) HRAW(J,K)=SHALLO

18 CONTINUE
C..SMOOTH THE PROFILE
DO 20 K=1,41
H(1,K) = HRAW(1,K)
H(55,K)= HRAW(55,K)
DO 20 J=2,54
IF(K.EQ.1) GO TO 21
IF(K.EQ.41) GO TO 22
H(J,K)=(HRAW (J+1,K)+HRAW(J,K)+HRAW (J-1,K)+
! HRAW(J K+1) +HRAW(JK-1) )/5.
GO TO 20
21 H(J,K)=(HRAW (J+1,K)+HRAW(J,K) +HRAW(J-1,K)+2.*HRAW(J,K+1)) /5.
GO TO 20
22 H(J,K)=(HRAW(J+1,K)+HRAW(J, K)+HRAW(J-1,K)+2.*HRAW(J,K-1)) /5.
20 CONTINUE
C...CALCULATE THE DERIVATIVES -- WHAT'S NOT THERE IS ZERO
C..X-DERS ARE EASY
DO 30 J=2,54
DO 30 K=1,41
30 HX(J,K) = (H(I+1.,K) - H{J-1,K))/(2.*DX)
C..LEAVE Y-DERS AT WALLS TO BE ZERO
DO 40 J=2,54
DO 40 K=2,40
40 HY(J,K) = (H(J,K+1) - H(J,K-1))/(2.*DX)
C...SOME SPECIAL TREATMENT AT THE WALLS FOR DEL SQUARE
DO 50 J=2,54

DO 50 K=2,40
50 DELH(J,K)= (H(J+1,K) -4.*H(J,K)+H{J-1,K)

1 +H(J,K+1) +H(I1 X-1) )/(DX*DX)

DO 80 J=2,54

DELH(J,1) = (H(J+1,1) -2.*H(J,1)+H({I-1,1) )/(DX*DX)

60 DELH(J,41)= (H(J+1,41) -2.*H{J,41)+H({I-1,41) )/(DX*DX)
RETURN
END
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