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ABSTRACT 

A new formulation of the pair of Boussinesq-class equations for modelling 

the propagation of three-dimensional nonlinear dispersive long water waves is 

presented. This set of model equations permits spatial and temporal variations 

of the bottom topography. Further, the two resultant equations may be 

combined into a single equation through the introduction of an irrotational 

layer-mean velocity. An exact permanent-form solution is derived for the 

combined equation, which is still of the Boussinesq-class and includes reflection. 

This solution for the surf ace height is found to describe a slightly wider wave 

than the permanent form solution to the uni-directional Korteweg-deVries 

Equation. 

A numerical scheme using an implicit finite-difference method is developed 

to solve the combined equation for propagation over fixed sloping bottom 

topography. The scheme is tested for various grid sizes using the permanent

form solution, and an oscillatory tail is seen to develop as a result of insufficient 

mesh refinement. 

Several cases of wave propagation over a straight sloping ramp onto a shelf 

are solved using the permanent-form solution as initial conditions and the 

results are found to be in good agreement with previous results obtained by 

using either the Boussinesq dual-equation set or the single Korteweg-deVries 

equation. The combined equation is used to solve the related problem in two

horizontal dimensions of a wave propagating in a channel having a curved-ramp 

bottom topography. Depending on the specific topography, focussing or 

defocussing occurs and the crest is selectively amplified. Indications of cross

channel oscillation are presented. Linear, nondispersive theory is used to solve 
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a case with identical topographical features and initial condition. The solutions 

using the simplified theory are found to be considerably different from the 

results for nonlinear, dispersive theory with respect to the overall three

dimensional wave shape as well as in the areas of crest amplification, soliton 

formation and cross-channel effects. 
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CHAPfER 1 

Introduction 

Waves travelling on the surface of water may be influenced by the bottom 

topography. In particular, waves possessing a wavelength which is large in 

comparison to the water depth are strongly affected by the lower boundary. To 

emphasize the large relative wavelength, these waves are called long waves, while 

to emphasize the small relative depth, they are alternately known as shallow-

water waves. This thesis will explore a new formulation of classical long water 

wave theory originally developed over a century ago. The goal is to investigate 

the effects of three-dimensional bottom topography without sacrificing other 

interesting features of the propagation such as nonlinearity, dispersion and 

wave reflection. 

Since the definition for long waves relies on the relative measure of 

wavelength to water depth, the kinds of waves considered here span a 

considerable range. For instance, the first oscillatory mode in a bathtub filled 

with a foot of water is a long wave. On another scale, the seismically generated 

sea waves known as tsunamit have wavelengths so long that even the deep ocean 

basin. averaging 3.500 meters in depth, seems shallow. 

Much of the discussion in this paper will center on the effects of 

nonlinearity and dispersion in long waves. Nonlinearity is identified as the 

steepening of the front face of a wave. This steepening occurs when higher 

amplitudes travel at higher phase velocity. A wave which is strongly affected by 

t The term ts"Unarni has been adopted by scientists to denote an earthquake-generated 
wave. These waves are sometimes referred to as "tida1" waves, however, this term has been 
discarded in order to clearly separate tsunami from tides. 
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nonlinearity will overturn or break. Breaking waves are a special and difficult 

topic and will be excluded from the analysis presented here. We rely on the 

effects of dispersion -- the tendency of a wave to disperse into a train of waves -

to hold the effects of nonlinearity in check and prevent breaking. When 

nonlinearity and dispersion are balanced, we have a situation known as weak 

nonlinearity. 

Nonlinear dispersive long water waves have been studied for over 100 years, 

beginning with Russell (1844) who observed a persistent, long-wavelength wave 

(a solitary wave) propagating in a canal. The simplest model for long wave 

propagation (described in many texts, for example, Lamb [1932]) assumes that 

the waves are of infinitesimal amplitude, linear and nondispersive. For constant 

depth situations, with no external forcing, this model reduces to the well-known 

wave equation. Airy ( 1845) developed a set of model equations (now bearing his 

name) which takes into account the finite amplitude of the wave, assuming that 

the e:ff ects of nonlinearity dominate dispersion. These equations predict that 

all waves steepen and break, a prediction which precludes the existence of 

permanent-form water waves. The classical model for finite amplitude long 

water waves in constant depth including nonlinear and dispersive effects was 

developed in three papers by Boussinesq (1871a,b, 1872). Rayleigh (1876) 

independently derived an equivalent set of equations. Both Boussinesq and 

Rayleigh derived the permanent form (solitary wave) solutions to these 

equations. Korteweg and deVries (1895), basing their work on the formulation of 

Rayleigh, restricted the equations to propagation in one direction only, 

combined them and found permanent form solutions (for both periodic and 

solitary waves). Their equation is known as the KdV equation. Miles (1961) gives 

a full account of the history of the KdV equation, with special emphasis on 

Boussinesq's contributions. Ursell ( 1953) clarified the relationship between the 
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Airy equations and the Boussinesq equations by establishing the importance of 

the relationship between the sizes of the dispersive and nonlinear effects. Some 

higher order formulations of the equations for finite amplitude long waves have 

been developed by Grimshaw (1971), Laitone (1960) and Fenton (1971). A 

method known as inverse scattering was used by Gardner, Green, Kruskal and 

Miura (1967) to solve the KdV initial-value problem. This method can be used to 

predict the number of solitary waves (solitons) which will emerge from arbitrary 

initial data. Madsen and Mei ( 1969) presented a derivation of Boussinesq-type 

equations for the propagation in one horizontal dimension of long waves over a 

bottom with slow spatial variation. Johnson (1972) developed a KdV equation 

with variable coefficients to described a wave progressing over a ramp and 

obtained the number and amplitude of the solitons produced on the shelf as a 

function of relative depth change and initial amplitude. Tappert and Zabusky 

(1971) independently obtained similar results. 

In the past 20 years, it has become especially clear that research efforts 

concerned with the propagation of weakly nonlinear long waves over an uneven 

bottom has taken two distinct directions: One approach is to neglect reflection 

and proceed to combine the governing equations into a convenient, single 

equation of the KdV-type which is then solved either by inverse-scattering 

techniques or numerical methods. The other method is to leave the equations 

in their dual-equation form and solve these numerically. Jn this study, we 

present a description of weakly nonlinear shallow water waves which can 

conveniently accommodate three-dimensional variations in the bottom 

topography. Based on the model first put forward by Wu (1981), a single 

governing equation is derived for this system and a permanent form solution for 

constant depth is obtained. The governing equations are solved numerically for 

a series of cases of increasing complexity. One of our objectives in this study is 
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to establish some fundamental baseline information about this new equation, 

which has the potential to conveniently replace other single and multiple 

equation models while including effects that these models neglect. 

Another goal of this thesis is to investigate some basic problems involving 

three-dimensional bottom topography, and this is accomplished through the 

development of a numerical method to solve the combined equation discussed 

above. !Y~any computational models have been developed previously to solve the 

long wave equations, although most of these rely on the linear, nondispersive 

equations; see Goring ( 1978) for a discussion of criteria useful for determining 

when the linear, dispersive equations are appropriate. A computational model 

using two sets of difference equations was developed by Leendertse ( 1967) to 

study the propagation of long waves in two horizontal dimensions. The effects of 

the earth's rotation and bottom roughness were included; the water depths at 

certain points must be given as input to the numerical scheme. Peregrine 

(1967) numerically calculated solutions to the Boussinesq equation for a wave 

approaching a straight beach of constant slope. In addition, Peregrine obtained 

analytical solutions for wave reflected off the slope by using linear theory. The 

Boussinesq equations were solved numerically for the case of a solitary wave 

ascending a straight ramp by Madsen and Mei ( 1969). They cited experimental 

confirmation of the disintegration of the solitary wave on the shelf into two or 

more solitary waves. The variable-coefficient KdV equation has been solved, for 

cases involving ramp transitions from one depth to another, by Johnson (1972). 

v1iegen thart( 1971) analyses a group of finite difference schemes used to solve 

initial-value problems for the KdV equation, including some schemes which are 

dissipative Goring ( 1978) has solved the Boussinesq equation in one horizontal 

dimension using a finite element method. Lepelletier (1981) included dissipation 

in his finite-element solution to a Boussinesq-type model for basin excitation 
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and transient harbor excitation problems. A numerical model which propagates 

a cylindrical weakly nonlinear long waves was developed by Chwang and Wu 

(1976) to investigate the focussing of curved wavefronts. Their formulation 

solves the two-equation Boussinesq equations in cylindrical coordinates for 

spatially varying bottom topography. 

The numerical methods required to solve the new combined equation which 

we present in this thesis are straightforward and need not be specific to the 

particularities of the situation under study since important effects such as 

nonlinearity, dispersion and wave reflection are included in the fundamental 

formulation. We employ an implicit finite-difference method to develop two 

computer programs to solve the combined equations. The basic problems 

investigated in this thesis concern the evolution of an initial solitary wave 

propagating down the length of a rectangular channel. The channel contains 

two regions of constant depth connected by a submerged ramp. In our 

numerical experiments, different ramp geometries are modelled. The simplest 

of these geometries (which reduces the problem to propagation in one 

horizontal dimension only) is the straight ramp with constant slope and no 

variation in the cross-channel direction. The other ramp geometries considered 

in this study retain the feature of constant longitudinal slope but incorporate 

curvature in the cross-channel direction. Jn all cases, the ramp configuration 

and wave motion are taken to be symmetric with respect to the centerplane of 

the channel. As the initial condition, we use the solitary wave solution 

appropriate to our combined equation. A single solitary wave, as opposed to a 

train of periodic waves, is useful in the context of our experiments for a 

number of reasons: (1) The solitary wave form can be derived as an exact 

solution to our governing equation for constant depth. (2) The solitary wave's 

extremely simple shape reduces the need for elaborate boundary conditions 
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which may influence the nature of the solution. (3) The solitary wave can 

be easily distinguished from the reflected wave when passing over a ramp. 

The final wave form resulting from the passage over the curving ramp is 

found to be strongly influenced by the bottom topography, and other methods 

based on simplified theories are found to be inadequate in these situations 

containing three-dimensional bottom topography. 
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CHAPTER 2 

Derivation of the Governing Equations 

The governing equations for long waves have been derived in many ways 

using different scalings, simplifying and restrictive assumptions, and choice of 

dependent variables. All methods arrive at similar, but not identical 

equations. (Compare for example: Boussinesq [1871], Korteweg and DeVries 

[1895], Lamb [1932], Madsen and Mei [1969], Whitham [1974], and Wu 

[198:].) In order to provide a clear and consistent understanding of the 

equations used in this study, we present the following derivation, based on 

the techniques used by Wu ( 1981 ). We also derive an exact permanent-form 

solution to a combined form of these new equations. This special solution 

proves useful in two ways: first, as an initial condition in our numerical studies 

and second, as a rigorous test on the accuracy of the numerical scheme. 

2.1 The Basic Equations. 

We start by considering three-dimensional, finite-amplitude waves of 

arbitrary wave number in both horizontal dimensions (x,y)= x. Figure 2.1 

provides a reference sketch shoVving the placement of the coordinates (x,y.z)= X 

and physical variables described below. The undisturbed ocean surface 

coincides with the plane z=O. The air-sea interface is assumed to span over the 

entire horizontal plane. and when perturbed is given by z = ((x,t). The 

impermeable lower boundary is prescribed by z = -h(x,t). which will allow us 

to include movement of the ocean bed. The fluid is taken to be incompressible 

and inviscid. with a constant density p. Surface tension will be neglected. The 

governing equations are the Euler equations: 
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'li' 0 ·U = 0, (2.1) 

dU --- av + U'li' U = - .l.V'oP - g\7oz Bl o p dt 
(2.2) 

Here U(Xt) = (u,v,w) represents the flow velocity vector; 'li'o= (a~, 
8
8
Y, 

8
8
2 

): p(X,t) 

is the pressure; and g is the acceleration due to gravity. 

The boundary conditions for this system are: 

• at the free surface: 

w = R + u·V'C:at 

p = Po(x,t) 

• at the lower (solid) boundary: 

Bh w = - -- u·V'h at 

on z = c;(x,t), 

on z = c;(x,t), 

on z = -h(x,t), 

(2.3) 

(2.4) 

(2.5) 

where u(Xt)= (u,v) is a vector which contains only the horizontal velocity 

components; p 0 (x,t) denotes the pressure at the free surface (here assumed to 

be prescribed): and V' = ( 0~. ~,). 

An important set of layer-averaged equations can be obtained with 

application of the following transport theorem. 

J<" df a <" <" 
dt = m J f dz + \!. J u f dz. 

-h -h -h 
(2.6) 

where f(Xt) is any scalar, vector or tensor flow quantity: such operations with 

tensorial quantities can always be reduced to operations on the tensor's 

cartesian components which are scalar quantities. The validity of this theorem 

depends on the incorporation of the boundary conditions (2.3) and (2.5) as is 

sho"V>TI in Appendix A. As a notational convenience we will use a bar to indicate 

the average of any quantity over the vertical layer, i.e., if q represents any 

vector or scalar quantity, then 

q = .l. J( q dz, 
r; - h 

(2.7a) 
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where r; is the layer thickness: r;=((+h). Using this notation, the transport 

theorem (2.6) may be rewritten as 

df a - -
r; - = -[77 f] + v"[r; uf] 

dt at · 
(2.7b) 

We may now proceed to use (2.7b) to investigate the transport of various 

quantities in the fiow by replacing f with the physical variables of interest. 

Taking f=constant and f=u in (2.7b) yields, respectively, 

E.!J_ + \7 · f ?'JU] = 0 at L '/ ' 
(2.8) 

(2.9) 

where uu denotes a tensor of the second order defined in the Euclidean space 

with the two horizontal dimensions (x=x1,y=x2) such that its ijth component is 

[uu]iJ = uiuj and its ith component of the divergence is - a -
[V'·uu]· = _rLu·u·] 

l a i l . 
Xj 

Equation 2.8 is an expression of layer-mean mass conservation (or volume 

conservation, since the density is constant), while Eq. 2.9, which is obtained by 

applying (2.7b) to the horizontal components of (2.2), governs the vertically-

averaged horizontal momentum. These two equations form an important basis 

for describing the physical situation of interest. 

Still using Eq. 2. 7b, we may further take f=w and f=Ed, where Ed is defined 

as 

(2.10) 

and making use of the vertical component of (2.2) and the mechanical energy 

equation derived from (2. 1), we obtain 

:t (r;w) + \7·[77wu] = -g77 - ! [Po - P-h] 

ft-<77Ed) + V'·[r;(Ed + p)u] = -[Po*f-+ P-h ~~] 

(2.11) 

(2.12) 

where P-h indicates the pressure evaluated at z=-h. These equations, which we 
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show here for completeness, govern the layer-mean vertical momentum and 

energy, respectively. From Eq. 2.10, Ed may be seen to represent the sum of 

kinetic and potential energy densities. 

Since the density p is constant, it follows from the principle of 

conservation of mass that the entire fluid volume remains constant over time. 

If we assume that certain physical quantities, such as ( and u, fall off 

sufficiently fast away from the region of interest, and if we take h(x,t) in 

the form h(x,t) = h 0 (x) + h 1 (x,t) then the constant fiuid volume is given by 

( 

fdv = fdsf dz 
v s -h 

= j[( + h 0 (x) + h 1(x,t)]dS 
s 

(2.13) 

for a sufficiently large but finite region V with a corresponding horizontal 

surface S over which h(x,t) is assumed integrable (and beyond which (+h 1 is 

assumed to have negligible integral effect). If we define the excess mass Me as 

!le= pj[( ..._hi] dS 
s 

then (2.13) implies Me is constant over time. Furthermore, for a fixed lower 

boundary (h1 = 0) the mass above the undisturbed surface remains 

unchanged over time. This simple conservation law will later be used to 

check the accuracy of our numerical calculations. 

2.2 Irrotational Long Waves; the Velocity Potential. 

The system comprised of Eqs. 2.8 through 2.13 is exact and applies to 

both rotational and irrotational fl.ow in an inviscid, incompressible fluid. We 

can simplify this system by assuming that the fl.ow is irrotational, which is a 

good assumption for a homogeneous inviscid fluid starting from rest. This 

assumption allows us to introduce the velocity potential rp such that 

\7 orp = U. (2.14) 
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If we substitute (2. 14) into (2.1), we obtain the field equation for the potential 

as 

2 
Y'orp=O (2.15) 

which is the Laplace equation. Furthermore, if we introduce the velocity 

potential into (2.2) and integrate, we obtain the Bernoulli equation: 

£_ + £L + .Lrv- oCf! ]2 + gz = 0 
p Ot 2 L 

(2 .16) 

which relates the pressure and the velocity potential. Note that these equations 

are not depth-averaged and are exact to the extent that irrotationality holds. 

We are primarily interested in determining the movement of the free 

surface t(x,t) for the case of long water waves. (Of course, we also hope to 

obtain information on the other physical variables in the process.) Our 

approach will be to use the Laplace and Bernoulli equations, which involve 

cp and p, along with the boundary conditions involving rp, (, and p, to introduce 

an appropriate expansion for r;: and obtain a relationship between V'rp, t and \7p. 

Once we have this relationship we can substitute it into Eq. 2.9 and proceed to 

solve the approximated layer-averaged pair of transport equations, (2.8) and 

(2.9), for(. 

It is convenient at this time to nondimensionalize the equations, so that 

all variables (except for those specifically noted later) are of order unity and 

their relative magnitudes are revealed by the accompanying order 

parameters. The dimensionless variables are given by: 

XD 
x= 

I\ ' 

t= tn 
A' 

where 

ZD 
z= 

ho ' 

hn 
h = ho, 

PD 
p= 

pgho' 

c 
t = ( >:")tn. 

7lD 
77 = ho, (2.17a) 
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• the subscript D denotes a dimensional variable, 

• "A is a characteristic wavelength, 

• ho is the maximum water depth, 

• c is the typical wave speed: c = ~. 

• A is a representative wave amplitude, and 

• pis the density. 

In addition, we can deduce from (2.17a) that 

rho ho 
u = V' rp = 'Ac )Urj, = (Ac )v DrpD. and (2.17b) 

w = Brp = ( hJ )w = ( hcT ) BrpD . 
Bz A.A..c D AAc BzD 

(2.17c) 

Unless othenvise specifically stated, all variables will henceforth be taken to 

be dimensionless. We will presently discuss the two dimensionless parameters 

A d ho 
a= he an E; = T (2. 17d) 

which emerge when (2.17) is substituted into the set of basic equations. For 

convenience, the first two transport equations (Eqs. 2.B and 2.9) are rewritten 

below, after substituting the nondimensional variables from 2.17 and replacing 

uby\/rp: 

Bri " -] m + aV'·l7]Yrp = 0, (2.18) 

a ft< 7]Y rp) + a 2v · [ 1'/Y rp v ;c] = - r;\I p (2' 19) 

where r; = (a(+ h), and vrp and the other similarly denoted layer-averaged 

quantities are described by the non-dimensionalized version of (2. 7a). The 

Laplace (2.15) and Bernoulli (2.16) equations can also be non-dimensionalized 

using (2.17): 

(2.20) 

(2.21) 
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Finally, we nondimensionalize the kinematic boundary condition on the bottom 

(Eq. 2.3): 

2 8h 
O:W = - t - - o:e2(u·\7h) 

at on z = - h(x,t). (2.22) 

The dimensionless parameter. o:, provides a measure of the nonlinearity. 

This nonlinearity is physically manifested as the tendency of the front of the 

wave to steepen during propagation. t is the dispersion parameter and it 

gauges the tendency of a single wave to disperse into a train of oscillatory 

waves. As stated at the outset of this thesis, we are considering only long 

waves and t therefore must be a small parameter by definition. Additionally, we 

assume that the wave amplitude remains small compared to the water depth, 

thus ex is also a small parameter. 

Jt is the relative magnitudes of these two parameters that determine which 

phenomenon (nonlinearity or dispersion) dominates during the propagation of 

these long waves. Ursell (1953) elucidated the following classification: 

! 
<< t 2 

. . . . linear wave class (dispersion dominates), 
a ;::;; e2 . . . . Boussinesq-class. (nonlinearity balances dispersion), 

>> t 2 
. . . . Airy-class, (nonlinearity dominates). 

The Ursell number, Ur= ~, is often used to succinctly indicate the class of long 
t 

waves under consideration. Naturally, these classes are not completely 

exclusive - there can be some overlap between the linear and Boussinesq classes 

and between the Boussinesq and Airy classes. The widest variety of phenomena 

can be described by assuming the waves to be of the Boussinesq-class, which will 

allow for some encroachment onto the other two classes. Accordingly, we will 

take cx:::::J t2. 

Since ~~ 0(1) and 'r)~ 0(1), we infer from Eq. 2.18 that \?Cf'~ 0(1) and 

u~ 0(1). Subsequent inspection of Eq. 2.20 implies that w~ O(c:2
) and 
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consequently, from (2.22), we must have ::::;: O(a) and Vh:::;: 0(1) in order to 

ensure self-consistency. Based on the form of the nondimensional Laplace 

equation, we assume the following expansion for cp: 

"" 
rp = l: e2r.\P2n(Xt). (2.22) 

n=o 

Substituting (2.22) into (2.20) we obtain the recursion relations for \P 2n as 

\Po= cpo(x.t), 

2 

\P2 = !f2(x,t) + zrp 3(x.t) - %"-\7 2rp 0 , (2.24) 

Z z1 

ili2n = lf2n(x,t) + Z\C2n+1(X,t) - \72f dz1f \P2(r.-1)(x,t.t)dt, 

for n=l.2,3,. .. ., where rp 0 , rp 1 , ... represent unknown functions of x and t only. A 

possible additive term zrp 1(x,t) for \P 0 has been discarded in order to satisfy the 

order estimate for w. 

We now define the expansions 

(2.25) 

and 

(2.26) 

Note that Uo = V'rp0(x.t) is independent of z, however, all other terms in the 

expansions of u and w can vary with z. 

2. 3 Generalized. Form of the Classical Boussinesq Equations. 

Since the first order expansion terms for u are independent of z. we can 

show from the expansion (2.25) that 
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This permits Eq. 2.19 to be simplified to 

(2.27) 

We now turn to the Bernoulli equation (2.21) to determine \7p. Substituting the 

expansion for r.;:, we have 

(2.28) 

where the dot • indicates a partial derivative with respect to t. lf we evaluate 

(2.28) at the free surface, using the boundary condition (2.4) we have 

(2.29) 

If we layer-average the horizontal gradient of Eq. 2.28 and subtract the 

horizontal gradient of Eq. 2.29 we find 

- 2 

= cxvc;-+ \7po + m:2 [~Y'~s + ~ v 2\7~oJ + O(cxe4 ,cx2 t 2
) (2.30) 

Further utilizing the expansions for r.;:. u, and w, we find through substitution 

that (2.22) determines yr, 3 to be: 

r 1 ah ] r.fs = - [ ~m:- + \7·(hno) + o(e2). (2.31) 

Combining (2.30) and (2.31), we obtain an expansion for \7p as 

Rewriting (2.18) and substituting (2.32) into (2.27), we obtain the folloVving two 

equations: 

ah 
at· (2.33) 
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where we have substituted li{l = n + O(t2
) and n = V rp in the highest order terms 

retained, i.e., in the terms on the right-hand side of (2.34). This operation has 

no effect on the error estimate. This set of equations for t and Vrp governs the 

propagation of weakly nonlinear• long waves in water of variable depth. The 

depth variation may be prescribed to vary with both space and time variables. 

These equations constitute a generalization of the Boussinesq equations.t Note 

that the first equation (2.33) is an exact statement of mass conservation for an 

incompressible fluid; Eq. 2.34 is correct to O(o:t4 ,a2 r2). D 

2.4 Introduction of the Irrotational Layer-Mean Velocity. 

It is important to note that although u=Vrp is irrotational, the layer-

averaged quantity u=v 9 is a rotational vector field whenever V'h;;t 0. (See (2.36) 

below.) Consequently, we cannot successfully integrate the layer-averaged 

momentum equations (2.34) to obtain a single Bernoulli-like equation relating 

the potential rp to the surface height <;'.'. The vorticity vxu in this layer-averaged 

fl.ow is generally small (O(t2
), as shown below) and is fed by the last two terms on 

the right-hand side of Eq. 2 .34. Wu ( 1981) has identified these terms as 

frequency diffusion effects due to the depth variation. 

We now define a new irrotational velocity :j: for the layer-averaged flow as: 

u' = v-;; ' such that vxu' = 0. 

We are able then to relate u to u' by using the expansion for rp in Eq. 2.22: 

•Weak no:r:ilinearity is taken to mean a~~ 
t The origina] Boussinesq (1872) equations were derived for the two-dimensional propaga
tion of weakly nonlinear long waves in a rectangu.lar chan..-riel of constant water depth. Tran
scribed into vur notation, and taking h 0 as the water depth, these equations are (in dimen
siona: form): 

[ :t u_h dx = g ~ + ~ ~ + h6 ;:~], 
a~ B a r >2 h5 ~2 ~= -ho-'.Lh-.ygn;-1:.._- - . at Bx Bx ho 6 axZ 

Goring (1978) has shown that these two equations are equivalent to the laye!'-averaged for
.i:nulation which we present in Eq. 2.33 and 2.34 above. 
+ Lepelletier (1981) refers to this new velocity as the pseudo-velocity. 

(2.35) 



- 18 -

u = u' + e2\~s + ~V' 2 cp 0)V'h + 0(£4
). (2.36) 

Clearly, u = u' + O(c4
) when vh= 0. Substitution of (2.36) into (2.33) yields: 

(2.37) 

Furthermore, using (2.35) we can express a Bernoulli-type equation in terms of 

'V~. (and u' as: 

(2.38) 

where we have substituted from (2.29) for (at+ p 0) on the left side. Rewriting 

(2.37) and (2.38) after substituting for cp 3 from (2.31), we have, respectively, 

Qt r ] oh r\ h 1 oh -
O'. at + aY'· t(h + a()'V~ = - at+ m:2y. l 2r ~at+ V'·(hV'rp)] (2.39) 

- ~2 V'2~J\lhl + O(ae4,a2c2) 

o"f a.2 - ,, ( h o f i oh - ] a + -('Vrp)~ +a(= -p0 + ac21--t...:::...._ + V'·(h\lcp) 
at 2 2 at a at 

(2.40) 

where we have substituted i;o 0 = ~ + O(e2 ) in the highest order terms retained. 

This pair of equations for ( and ~ forms the theoretical basis for the present 

study. This system belongs to the same class of weakly nonlinear long wave 

equations as the system formed by (2.33) and (2.34) since the error remains at 

the same order. Equations 2.39 and 2.40 are thus entirely equivalent to the 

* typical set of extended Boussinesq equations. The new formulation is 

superior, however, since it reduces the number of dependent variables from 

•The de_,;th may have space and time variations; wave propagation is allowed in two hor
izontal dimensions. 
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three scalar unknowns (namely, u and() to two (So and(). In addition, equation 

(2.40) is one order less as a partial differential equation than (2.34). 

Furthermore, ( may be eliminated by substituting ( from (2.40) into (2.39), 

leaving only one equation and one scalar unknown, So· Once "SO has been 

determined, ( and u may be readily deduced from Eqs. 2.40 and 2.36 

respectively. 

This is the first time that it has been possible to combine a full Boussinesq

class set of equations without the loss of bidirectional propagation. Through 

limiting the propagation to one-direction only, previous investigators had 

obtained a one equation description of weakly non-linear wave propagation. 

Aside from the combination of the two equations and subsequent elimination of 

one dependent variable, there appears to be no significant advantage in limiting 

propagation to one direction only. When reflection becomes important, this 

limitation is a serious disadvantage. Some rather elaborate ''switch-on/switch

off" schemes have been developed to compensate for the limitations of 

unidirectional propagation in situations involving reflection. Our approach, 

however, finds the limitation to unidirectional propagation unnecessary, since it 

is possible to directly combine the two governing equations into a single 

equation for -;p. 

2.5 The Relationship of the Governing Equations to Other Long Wave Models. 

Since the clarification by Ursell in 1953 and the subsequent introduction of 

the Ursell number, it is clear that the Boussinesq equations provide an 

appropriate and accurate model for long waves of small amplitude. The explicit 

governing equations for other classes of long waves actually emerge as sub

classes of the fui1 equations (2.39) and (2.40). By assuming appropriate 

relationships between the order parameters o. and i, these models may be 
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separated under the following headings: 

• Linear Nondispersive Model. In the simplest long wave model all the 

nonlinear and dispersive effects are neglected. The relevant Ursell number is 

Ur<< 0(1), with a.<< 1 and t 2 << 1 in addition. Physically, this system is one 

in which the wave amplitude is extremely small compared to the depth and the 

wavelength is extremely long compared to the depth. For this case the full 

equations reduce to: 

Bh 
at · 

a. 7t + a.(+ Po = 0. 

(2.41) 

(2.42) 

For constant depth, h=h0 and no forcing from the prescribed free~surface 

pressure, p 0 =0 both;; and (satisfy the well-known wave equation: 

• Nonlinear Nondispersive Model. This model was originally thought to 

constitute the fundamental equations for long water waves cf finite amplitude. 

Now, however, it can be seen that the nonlinear nondispersive model equations --

often called the Airy equations -- can be extracted from the full equations. The 

Ursell number for this system is Ur >> 0( l); a. is small but finite, a.< l; and 

t 2 << i.t The full equations reduce to: 

ah 
at · 

a;; 0:2 2 
a. :::..:t:_ + -

2 
(V'iO) + a.(= -po. at 

This system predicts that all waves steepen and eventually break. 

(2.43) 

(2.44) 

• Linear Dispersive Model. Finally we consider a system, not discussed by 

Ursell, which has approximately the same Ursell number as the Linear 

f Actually this case must have a~ l:. If a is taken to be larger in relation to l:, say, a~ -Ji 
then terms of order a'.> shollid have been retained instead of ail-. 
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Nondispersive Model presented above. This case, however, models the physical 

situation of extremely small amplitude waves, ex<< 1, with only moderately long 

wavelength, i 2< i.+ 

(2.45) 

(2.46) 

Each of these models displayed above is embedded in the full (Boussinesq-

class) equations, (2.39) and (2.40), and need not be invoked explicitly. This 

means that the full equations may be used when the class of long waves is 

indeterminate, or when the class may change either across the physical region 

of interest or during propagation (as long as breaking does not occur). This 

feature is especially useful in numerical work which may be required since the 

full equations generally cannot be solved in closed form. In some cases, 

theoretical solutions are available for the three sub-classes described above. 

These solutions, however, may become quite tedious or even impossible when the 

bottom topography is three-dimensional or when the wave is passing from one 

long-wave class to another. 

2.6 Permanent Form Solutions for Constant Depth 

We are interested in determining if the governing equations, (2.39) and 

(2.40), will support solutions of permanent form. While such solutions are of 

theoretical interest, they also provide initial conditions and stringent checks on 

the accuracy of the numerical scheme. The lack of an exact permanent form 

solution to the classical Boussinesq equations, has caused some confusion in 

previous numerical studies. In the past, investigators have prescribed initial 

f AgaiI1 we must have al'::j z:4. If 0:. is smaller t...'ian this, some of the higher order dispersive 
terms which were neglected should have been retained. 
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conditions based on the permanent-form solution to the Korteweg-deVries"' 

(KdV) Equation. This equation, which is valid only for uni-directional waves, is 

an approximation of the full Boussinesq set. The exact permanent-form 

solution to the KdV equation, however, is not an exact solution to the parent 

Boussinesq equations. This discrepancy in initial conditions has been used to 

explain some propagational anomalies (such as the appearance of an oscillatory 

tail -- see the discussion in Section 3.3) which appear in the numerical solution 

of the classical Boussinesq pair of equations. Our new exact solution to the 

actual equation which is solved numerically provides a rigorous and clear test 

on the numerical scheme, since the computed solution must approach the exact 

theoretical solution as the numerical errors induced by finite stepsize and 

convergence tolerance are reduced. 

1f we restrict our attention to the case of one-dimensional long waves 

propagating in water of constant depth, h = h 0 , the full equations reduce to: 

(2.47) 

o:. r ]2 .r 2 he\? O( 4 2) rpt + 2L rfx + ~ - f ~xxt = f ,CXf , (2 .48) 

where, to simplifiy notation, we have dropped the bar from rp and used 

subscripts to denote partial derivatives: ¥'tt = a
2

~ , ¥'x = !?.!L, and so on. at ax 

If we follow the KdV-model route at this early point in the analysis, then the 

resulting equation is limited to one directional propagation only. As already 

mentioned in Section 2.5, we can directly combine the two governing equations 

into a single equation for ~. without restricting wave motion to one direction 

•In addrLion to the o::-ig~na] desc::-iption in the Korteweg and deVries paper (1895), a large 
numbe::- of pape::-s and texts describe the derivation of the permanent form solution to the 
KdV eq-.i.ations, see for example WhiLham (1974). For reference, the KdV Equation is given 
below in dimensional form: 

2 3 cha 

where c = ~· 
~t + C ~x[1 + ::;.:;:--t2 , ] + ~6 xxt = 0 

ho 
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Our next step, therefore, will be to combine the equations (2.47) and (2.48), still 

permitting motion in both directions. In order to permit comparisons to other 

permanent form solutions of the Boussinesq-class, we will revert to dimensional 

equations for the remainder of this section. The combined, constant-depth 

equations, in dimensional form, are: 

2 h5 2 - ( 4 2 2) - 'Ptt - 'Pxrf!xt - rf!t'Pxx + ~xxt.t + C rf!xx - 0 CX.f ,a f , (2.49) 

where c is the wave speed, c = ~· We assume a permanent form for the 

solution as: 

c;o(x,t) = F(x) where x = x - U·t. 

U is an unknown phase velocity of the wave, to be determined later. 

Substitution of the permanent form expression into Eq. 2.49 for cp yields 

u2h2 
( c2 - U2)F" + 3UF'F" + --0

-F"" = 0 
3 

(2.50) 

where the prime ' indicates an ordinary derivative with respect to x: F' = dF. 
dx 

We can obtain a first integral of (2.50) as 

3 u2h2 
(c2 - U2)F' + -U(F')2 + --0

-F'" + G1 = 0 
2 3 

(2.51) 

where G1 is a constant of integration. Another integration is possible after 

multiplying (2.51) by F" and this step yields 

(2.52) 

where G2 is a constant of integration. lf we assume that F' and its derivatives 

tend to zero at infinity, then we must take G1 = G2 = 0. Furthermore, we can 

write (2.52) as: 

Uh 2 

+(F")2 = (F') 2 [Au - F'] (2.53a) 

where 
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c2 
Au = U( 1 - -~ ). u.: (2.53b) 

Au is the amplitude of F', the permanent form solution to (2.53a). Specifically, 

this permanent form solution is found to be: 

F' = Au sech2 ({3 x) (2.54) 

2 3Au where {3 = --. Returning to Eq. 2.48 and substituting this solution for cp, we 
4Uh6 

obtain a permanent form solution for the surface height (: 

(2.55) 

Setting the arguments to zero in (2.55) will reveal the amplitude (o of (which we 

write as 

(o Au a=-= -U 
ho c 2 

Substituting for Au from (2.53b), we obtain a relationship between the phase 

velocity U of the permanent wave form and the nondimensional wave height a 

as 

u2 
o.=-2--1. 

c 

Solving for U yields the following two-directional formula: 

.L [ a ex2 ) U = ± c[ 1 + ex] 2 = ± c 1 + 2 - B + .... 

(2.56) 

(2.57) 

In order to compare the form of our permanent surface wave to that from 

the KdV equation, we put the surface height in terms of ( 0 , the peak amplitude, 

to yield: 

( = (l~o.) [sech2[f'(x-Ut)] +ex sech4[p>(x-Ut)]) (2.58) 

where we may write {3 in terms of a 

r 3a lt 
{3 = l 4h~( 1 +o:) 

(2.59) 
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The solution for the KdV soliton is given in Whitham (1974) as: 

(2.60) 

where Uk= 1 + ~. These two solutions are compared in Fig 2.2 and 2.3 for two 

amplitudes (0.1 and 0.7) with ho taken to be 1.0. The new solution has a 

somewhat smaller wave number and falls slightly to the outside of the KdV 

solitary wave solution. 

Our solution has the advantage over the classical formulation in that it 

clearly permits propagation in both directions. Furthermore, the present result 

for phase velocity V is in better agreement than the KdV model with higher 

order solutions to the nonlinear dispersive equations which give 

v - = 1 -'- E!.. - -1.__,..2 -'-c . 2 20 '' . ' ... 

(See Fenton [1972].) The permanent surface wave form is only slightly different 

from the KdV solution, our solution having a somewhat wider shape for the same 

amplitude. The differences however, may be fortuitous since they are all 

consistent with the order of the approximations. 

The permanent form solution derived in this section will be used extensively 

as the basic reference case in Chapter 4 to investigate the response of the 

numerical scheme to variation of the computational parameters. 

2. 7 Combination of the Governing Equations 

For reference, the combination of the governing equations (2.39) and 

(2.40) discussed in Section 2.4 is presented below: 

(2.58) 



0 

0 

ro 
0 

0 

<.D 
0 

0 

::r 
0 

0 

('\J 
0 

0 

0 

-26-

0 '---~~~~~~~~~~--'-~~~~~~~~~~---' 
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Figure 2.2 Comparison of solitary wave shapes for amplitude of 0.1. Korteweg-

deVries curve is calculated from Eq. 2.60. Present theory surface height is taken 

from Eq. 2.58. Water depth is taken to be 1.0. 
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Figure 2.3 Comparison of solitary wave shapes for amplitude of 0.7. Korteweg

deVries curve is calculated from Eq. 2.60. Present theory surface height is taken 

from Eq. 2.58. Water depth is taken to be 1.0. 



- 28 -

where H is given by 

and to simplify notation we have dropped the bar from rp and used subscripts to 

denote partial derivatives as in Section 2.6. Higher order terms have been 

dropped in a manner consistent with the derivation leading to Eqs. 2.39 and 

2.40. 

The specific cases discussed in this thesis do not include floor motion or 

variaton in free-suface pressure, therefore, the combined equation for h= 0 and 

Po= 0 is sho-w-n below: 

(2 .59) 

In the following chapter, futher simplifcations of the combined equations will be 

presented for the special cases computed numerically. 
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CHAPTER 3 

The Numerical Procedure 

The numerical procedure described in this chapter is used throughout the 

rest of this thesis to solve the governing partial differential equation (3.59) for 

selected bottom topographies. In order to efficiently perform a variety of 

numerical experiments, two numerical programs were developed: One for 

solving the governing equation in the reduced case of one horizontal dimension 

(1HD), and another for solving this equation in two horizontal dimensions (2HD). 

Both programs have their foundation in classic finite-difference methods, and 

both follow similar paths toward the solution of Equation 3.59, with a single 

exception involving matrix inversion (discussed in Section 3.2). We will first 

examine the solution method for the 1HD case; the 2HD case will follow in 

Section 3.2 as a natural extension of the techniques described for the 1HD case. 

The permanent form solution, described in the previous chapter, provides a 

stringent test of the accuracy of our scheme. In order to provide convincing 

evidence of the reliability of our numerical procedure, we present in Section 3.3 

the results of exhaustive testing based on comparison with the permanent form 

solution. We use the information from these tests to select our numerical 

parameters and present an estimation of the errors for a number of key 

quantities. 

3.1 The Numerical Method for the Case Involving One Horizontal Dimension. 

In this section, we consider motion in one horizontal dimension ( 1HD) only. 

For reference, the equation for So(x,t), the depth averaged potential in 1HD is: 
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Here t represent time and subscripts denote partial derivatives; h=h(x) is the 

water depth. For simplicity we have taken h to be slowly varying in space and 

fixed in time, specifically, hx, hx::x, · · · ~ O(a) and ht= 0. Higher order terms 

involving rp and derivatives of h have been dropped in a manner consistent with 

• the derivation in Chapter 3. In addition, the order parameters a: and c have 

been absorbed into the accompanytng variables in equation (3.1), so that the 

appropriate relative magnitudes of the quantities are restored. The quantities 

to the immediate left and right of the equal sign in (3.1) constitute the well-

known wave equation in nonuniform media. The next two terms are nonlinear 

contributions, while the last three terms represent the effects of dispersion. Of 

the dispersive constituents of (3.1) only the first term contributes in regions 

where the depth is constant, as in the classical Boussinesq model. Once rp has 

been obtained, we determine the surface height (by using Equation (3.40) in 

1HD, which is 

1 I )2 , h 2 h 
((x,t) = - :Pt - 21rx -r ~x:xt + 2hxrfxt· (3.2) 

We will now discuss the numerical aspects of solving (3.1). As an initial, 

heuristic indicator of numerical stability, we examine the linearized version of 

Equation 3.1 for constant depth, h = h 0 : 

hcT 
\Ott = ho\Cx::x + ~xxtt· (3.3) 

We assume that, given some suitable initial conditions, we may make a Fourier 

expansion of the solution to (3.3). We consider the effects of a single term of 

this expansion, rp (x,t) = Bei(A:x-(.)t), where B is a constant, x; ( = 2;) is the 

•As discussed in Section 3.2, a = .::.
0

, where A is e representative wave amplitude and h 0 is a 

typical water depth; l:"" ~, where A is a typic£:2 wavelengt:'1; al':! r:2 . 
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wavenumber, and c.J is the frequency. Substitution into (3.3) yields a 

relationship between the wavenumber and the frequency as: 

(3.3a) 

This equation, known as the dispersion relation, may be taken to imply stability 

with respect to the introduction of small short wavelength errors due to 

numerical approximation -- unlike in some linearized forms of the Korteweg 

deVries (KdV) Equation. Such small errors, having large te will not cause the 

frequency to become imaginary and thus destroy the hyperbolic nature of the 

problem. 

We approximate the partial differential equation (3.1) in the continuous 

variable rp by an appropriately chosen difference equation in the difference 

variable iP, assuming rp(xj,tn)l'::i iP (j,n), where the arguments of rp and iP are 

related through the stepsizes of the difference scheme chosen. We examine the 

difference equation in a limited spatial domain: X1:S x:S XR, where X1 and XR are 

the left and right boundary values, respectively. We choose uniformly spaced 

mesh points along the restricted x-axis: !::.x denotes the spacing between each 

point. Nx, the number of points along the restricted x-domain, satisfies 

The time interval is the constant !::.t, and our objective is to obtain iP (and thus 

deduce() on the given x-domain mesh at times (n·!::.t), for n=l,2,3, .... We have 

noted before that the basic form of the governing equations is the wave 

equation, :ftt = hY'xx· plus nonlinear and dispersive terms. Our selected finite-

difference representation of Eq. 3.1 is based on those finite difference methods 

which are known to be successful with the wave equation.t We use a three time 

1kny tex:s nnd papers discuss fi..""lite-d~fference so'.utions to the wave equation. Our ap
prooch :ro:Jows the averngi.""lg scheme described m Greenspan (1974), which was first 
deve1oped in a more general iorrr. by Von Neuman.,.., (see O'Brien [1951] for a discussion of 
the sche:ne). 
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level scheme which averages tPxx over the top and bottom time levels. We 

implicitly solve for the full range of space values at each time step, based on 

information from the previous two time steps, which are assumed known 

through either initial conditions or previous time-step solutions. Correction is 

made for the nonlinear terms which involve time derivatives through an 

iterative process, described more fully below. Nonlinear factors which do not 

include time derivatives require no iteration since the solution at the middle 

time level is known. A flowchart of the numerical method for the 1HD case 

appears in Figure 3.1 

We begin by solving the linearized version of (3.1), which is 

(3.4) 

to obtain a first approximation Iii (O) to rp. We represent the finite difference form 

of this equation as 

(3.5) 

where: 

• ~B\ represents a tridiagonal matrix in which the lower diagonal, diagonal 

and upper diagonal entries in the /h row are, respectively: 

h l:it2 h 2 hhx 
(Bl . - - rL--+ --- --] 
< lJ-1.J - 2 /:;x2 3L'.:lx2 4/:;x 

t:it2 2h2 
!Eli·= [1 + h-2 + --2 J 

J· f;x 3/:;x 
(3.5a) 

r h 6t2 h 2 hhx (Bl .. - -1---'- --+ 
< lJ+l.J - ' 2 f;x 2 · 3.6x2 4/:;x 

and j=2.3, .. .,(Nx -1). Boundary conditions (j= 1 and j=Nx) will be discussed later. 

• The superscript following cii denotes the iteration number within the 

particular time step; if no superscript appears, iii is a converged solution from a 

previous time step or an initial condition. 

• ~cp(o)(j,n+l)S is the column vector of Nx values (unknown) of .P at the new 
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Start 

Read in cornputationaJ parameters 
and depth profile. 

Compute the initial conditions from 
Eq. 3. 9 for <P at t = -.C:.t, 0. 

Compute the lower and upper 
triangular matrix decomposition 

of {B} in Eq. 3. 5a 

Compute the right-hand- side vector tr} 
in Eq. 3. 5b for the linearized equation. 

(nonlinear correction vector {Ii} is zero.) 

Successively solve the lower and upper 
triangular systems using {r} + {oJ as 

the current right-hand-side vector. 

Compute the nonlinear 
correction vector {6} 

r----t from Eq. 3. 7 based on 
newest solution for <p. 

~------------.\ no 

Compute surface height 
from Eq. 3. 2 

------ Increment time counter 

end 

Figure 3. 1. Flow Chart for IHD Case. 
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time step. 

• ~r[cii(j,n),ili(j,n-1)]\ is the right-hand-side column vector based on kno-wn 

values of cii at the middle and lower time levels. Specifically, the jth component 

of r is given as 

~r li = 2¢ (j,n) - tP (j,n-1) + C1tPx(j,n) + C2ciix(j,n-l) 

+ Csciixx(j,n) + C4 ciixx(j,n-1) + C5 '1ixxx(j,n) 

for j=2.3, ... ,(1\'x -1), where 

(3.5b) 

and the finite differences for the x-derivatives used above are taken to be the 

standard central difference formulas: 

, r ] 
tPxx(j,n) = --;;-l'i±i(j+l.n)- 2tIJ(j,n) + cJi(j-1.n), 

D.x~ 

<PxxxO.n) = -.1 3 rlcJi(j+2.n)-2¢(j+1.n) + 2iJJ(j-1,n) + <P(j-2.n)]. 
2!.ix 

(3.5c) 

(3.5d) 

(3.5e) 

• The arguments of .:P indicate the node numbers for space and time grids 

respectively. 

• The scheme (excluding boundaries) uses centered difference quotients 

and (in the standard numerical nomenclature) is consistent+ with the linearized 

equation (3.4). Also, we can show (for the linearized equation) that the scheme 

• is unconditionally stable for all 6x and ~t. The truncation error is 

:t' Co::1sistency means tha: as the steps:zes (L'it, !::.Y.) tend to zero in any manner the tnmca
tio::1 error (fro:n trunca::ng the Tay:or expansions used to generate the finite differences) 
tends to zero. 
• The term sta':J~e here is i-ite· ,ded in the standard numerical sense which may be loosely 
characterized to mea::1 that there is an upper limit (as !::.t goes to zero) to the amplification 
of a perturbation arising fro:r. any sort of error in the calculation. Unconditiona} stability 
indicates that t.c'ie scheme is stabJe witho·'1t regard to the ratio of the stepsizes in the x or t 
direc~~o:'.1 
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O[(b.x)3 ] + O[(b.t)3]. 

Equation 3.5 represents a system of Nx equations for the Nx unknowns 

qi(ol(j,n+l). This system of equations can be easily and efficiently solved by 

decomposing B into upper and lower triangular matrices and solving the 

resultant triangular systems successively. The upper and lower matrices need 

only to be calculated once and can be used throughout the computation. 

In order to solve the full equation (3.1) we must employ an iterative 

technique. The ith approximation to cfi (j,n+1) can be represented as 

!B\·~cfi(i)(j,n+1)l = ~r[cfi(j,n),cfi(j,n-1)]\ (3.6) 

+ ~c)(i)[ qi (i-1) (j ,n) ,tli (j,n), cfi (j ,n-1)] l 

where /o(i)l represents the column vector of corrections to the known vector /r l 

due to the nonlinear terms. Specifically, we calculate the jth row entry of /o(i)l 

by 

\.t(i)l,, = "t ;r, (J. n)r;i.0-l)(J. n+1) ;r, (J· n ')] 
(U . -'-" "±'x, L'±'x • ~ -'±'x\ • -.J. (3. 7) 

for j=2,3, ... ,(Nx -1), where tPx, tPxx are as given in Eq. 3.5c, 3.5d. 

We use a type of uniform convergence test to examine each iteration for 

convergence, taking as successful an iteration which has µ less than some 

prescribed tolerence where µ is given by 

[ 
N ) 

1 
"r (i) (i-1) 2 2 i~ lcfi (j.n+1) - cfi (j,n+1)] 

[ 

N ) l Y. r (i) 2 2 
J~lcfi (j,n+l)-cfi(j,n)] 

(3.B) µ= 

This tolerance test compares the iteration differences to the time step 

differences. 

We assume that no wave of significant amplitude approaches near to either 
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boundary. Consequently, conditions at the boundaries are taken to be especially 

simple. We assume that the second space derivative of the potential is zero at 

the boundaries, that is, 

<Pxx(1,n) = 0, and 

Physically , this condition implies that lhe layer-mean velocity is constant at the 

boundaries, an assumption which is good for our situation in which the wave is 

kept in the middle region of the computational domain, and little change is 

observed at the boundaries. Calculations indicate that any leakage of mass into 

or out of the computational domain due to these boundary assumptions is 

negligibly small for situations such as those permitted in this study. 

As initial conditions we use the permanent form, constant-depth solution 

which was derived in the Section 3.6. The permanent form solution may be 

integrated to give:; directly at the two initial time-steps as 

j=l,2, .. .,Nx; n=-1,0 (3. 9) 

where 

..!.. 
• V is the phase speed given by V = ( 1 + a) 2 , 

• 
l 

30'. -
and the constant {3 equals [ 

4
U2 ] 2 . 

A copy of the FORTRA!'i program developed from the description presented 

here for 1HD propagation resides in Appendix B. Results for a number of cases 

using this 1HD program will be presented in Section 3.3, along with a discussion 

of specific values for step size, tolerance, wave height and other key quantities. 

3.2 The Numerical Method for the Case Involving Two Horizontal Dimensions 

The numerical method for the two horizontal dimension (2HD) case follows 

the lHD case quite closely. The equation for si:i(x,y,t) is taken from (2.59) 
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assuming, as in Section 3.1, that h = h(x,y) is slowly-varying in space and fixed 

in time: 

(3.10) 

Higher order terms involving derivatives of h have been dropped in a manner 

consistent with the derivation in Chapter 3 and the order parameters o.: and t 

have been absorbed into the accompanying variables. The terms in (3.10) 

correspond to those discussed for (3.1). The surface height ((x,y,t) is computed 

from (2.40) for this model situation: 

As in Section 3.1 we assume that the continuous varible So(Xi·Yk·ln) can be 

approximated by the discrete variable ifl (j ,k,n) through an appropriate 

difference representation of Eq. 3.10. The computational domain is defined by 

X1 ~ x ~ XR and Y1 ~ y ~YR· The mesh points are uniformly spaced along the 

restricted axes; !:ix, !:iy, !:it represent the stepsizes in the x, y and t directions. Nx 

and Ny denote the number of points along the x and y axes. NT (the total 

number of grid points) is defined as: 

t3 , , ) 
' • .!. 1 

A flowchart of the numerical method for the 2HD case appears in Figure 3.3. For 

a basic description of the solution method, see Section 3.1, paragraph 3. The 

specific changes implemented on the lHD method for the 2HD case are 

discussed below. 

We introduce a numbering convention which ·will sequentially number the 

mesh in the (x,y) plane. The new index m runs from l to NT and is defined by 

m = j + (k - 1 )·Nx for j = 1,. . .,Nx; k = 1 ... ,Ny· (3.12) 

All the discrete (xi·Yk) points may now be referenced by a a single subscript m. 
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Start 

Read in computational parameters 
and depth profile. 

Compute the initial conditions from 
Eq. 3. 9 for <p at t = -~t, 0. 

Compute the coefficients of 
the five-banded matrix {B} 

described in Eq. 3. 14. 

Compute the right-hand-side vector {r} 
in Eq. 3. 14 for the linearized equation. 

(Nonlinear correction vector {6} is zero.) 

Perform one iteration of SOR using 
{r} + {6} as the current 
right-hand-side vector. 

Compute surface height 
from Eq. 3. 2 

Figure 3. 3. Flow Chart for 2HD Case. 

Compute the nonlinear 
r----icorrection vector {6} 

from Eq. 3. 7 based on 
newest solution for cp. 
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The linearized version of (3.10) is 

(3.13) 

and we represent the finite-difference form of this equation as in Equation 3.5 of 

Section 3.1: 

(0) 
{Bl·/cIJ (m,n+l)l = ~r [it (m,n),it (m,n-l)]l (3.14) 

however the quantities listed above are now defined as follows: 

• IBl represents a banded matrix of rank NTxNT whose nonzero elements lie 

on the five diagonal lines pictured in Figure 3.4. These five entries are given on 

the mth row as: 

"h .6t2 h 2 hhy 
/Blm-Nx,rn = - L 2 .6y2 + 36.y2 - 4.6y] 

h .6t2 h 2 hhx 
fBlm-1.m = - [ 2 D,x2 + 36x2 - 4!>,x] 

(Bl = 1 + rht>,t2 + 2h2 )·[__L + _1 _) 
< m.m \ 3 6.x2 .6y2 (3. 14a) 

/Bl - - r .!2_ .6t
2 

+ _!:C_ -'-, hhx J m+l.m - n 2 
• c 2 6x<: 36.x 46x 

- rL . .!2_ M2 + _!:C_ + hhy ] 
/Blm+Nx.m = 2 6.y2 36 y2 4.6y 

form: j=2,3, ... ,(Nx-1) and k=2,3,. .. ,(Ny-1) where mis defined by (3.12). Boundary 

conditions will be discussed later. 

• The superscript following it denotes the iteration number within the 

particular time step: if no superscript appears, it is a converged solution from a 

previous time step or an initial condition. 

• {it(o)(m.n+1)l is the column vector of NT values (unknown) of it at the new 

time step. 

• ~r [it (m.n) ,it (m,n -1)] l is the right-hand-side column vector based on 

known values of it at the middle and lower time levels. Specifically. the mth 

(excluding those points which lie on either an x or y boundary) component of r 
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Nx-----

1 

Figure 3.4 Schematic representaion of the nonzero elements of the banded 

matrix IBl. The five diagonal lines show the location of the nonzero elements. 
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is given as 

!rsm = 2cii(m,n) - cii(m.n-1)C 1\7h·V'ct (m.n)C2V'h·V4i(m.n-1) 

C3\7 2ct(m,n) + C4 \7 2ct(m,n-1) + C5V'h·Y'[V 2 c±i(m,n)] 

form: j=2,3 ..... (Nx -1); k=2.3 .... (Ny-1), where 

2h2 

3 ' 

(3.14b) 

and the finite differences for the derivatives above are taken as the appropriate 

centered difference quotients. 

• The scheme described here is consistent Vvith equation 3.13 and is 

unconditionally stable. The truncation error is 0[(.6t) 3
] + 0[(.6x) 3

] + 0~(.6y) 3 ]. 

Equation (3.14-) represents a system of NT equations in NT unknowns 

¢ (Ol(m,n+l). This system of equations is rather large and is not efficiently solved 

by direct matrix methods which destroy the five-banded structure. Instead, we 

solve the system using the Successive Over-Relaxation (SOR) method which is an 

iterative inversion scheme that exploits the banded nature of the matrix. 

In order to solve the full equation (3.10) we must also iterate on the 

nonlinear correction terms. We represent the ith approximation to ct(m,n+l) 

as: 

(3.15) 

+ )o(i)[ cp (i-ll(m,n) ,cii (m,n) ,ct (m,n-1) Jl 

where (o(i)l represents the column vector of corrections to the known vector ~r l 

due to the nonlinear terms. Specifically, we calculate the mth row entry of (olilj 

by 
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p-(i))m = At ( ;r, ( )[;r,(i-1)( +1) ;r, ( 1)] <u l - LJ, • '±'x\m,n '±'x m,n - '±'x m,n- (3.16) 

tlixx(m,n)r-'h(i-1)( ) -'h( •)]) - L'±' mn+l -'±'mn-1 2 ' ' ' 

form: j=2,3 ..... (Nx -1); k=2,3 .... Ny. where the indicated derivatives are composed 

of standard centered finite-difference quotients. Since we must already use SOR 

to iterate for the solution at each iteration, we streamline the process and 

minimize the iteration count by combining the SOR iteration with the iteration 

on the nonlinear correction. (See the flowchart Fig 3.3 for the specific 

procedure) 

Our convergence test is essentially the same as that given in Eq. 3.8. The 

summation for the 2HD case runs from 1 to Nr in both the numerator and 

denominator. 

The initial conditions consist of placing the permanent form solution 

specified in Eq. 3. 9 along each row of points in the x-direction. This initializes a 

planar permanent-form wave moving in the x-direction, with no variation in the 

y-direction. 

The specific situation we wish to model for the 2HD case is that of a wave 

propagatmg down an infinite channel. For the restricted computational 

domain, we have four boundaries consisting of a total of [2(Nx + Ny-1)] points to 

consider instead of just 2 boundary points for the lHD situation. Figure 3.5 

shows the boundary points and the naming convention for the boundaries. We 

retain the simple features of the 1HD case at the entrance and exit boundaries, 

where we take 

(3.17) 

where 
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for k= 1,2, .. .,Ny. 

The other two boundaries are. the channel walls, which affords the obvious 

condition that the velocity perpendicular to the wall is zero, i.e., 

and (3.18) 

where 

1'lw1 = : ,2 • · · · ,Nx, 

For bottom topographies which are symmetric about the channel center-line we 

need only to consider half of the region of interest. The boundary conditions for 

this symmetric situation are identical to (3.18) since there is no flow across a 

line of symmetry. 

A copy of the FORTRAI\ program described in this section may be found in 

Appendix C. The following section will discuss specific tests performed with the 

2HD program. 

3.3 The Numerical Checks 

The numerical scheme described in the previous two sections can be shown 

to be consistent with the appropriate linearized equation and unconditionally 

stable (also in reference to the linearized equation). The iteration scheme used 

to include the nonlinear terms is standard, and these nonlinear terms can be 

sho't.'11 to be small relative to the dominant terms which have previously been 

identified as the well-known wave equation in a nonuniform medium. Any 

errors, then, are assumed to be associated with ( 1) the finite grid spacing, (2) 

the convergence tolerance parameter, or (3) round-off errors due to inadequate 

precision. We refer to (1) and (2) as the numerical parameters. In this section, 

we show that our numerical scheme when given the exact permanent form 

solution (derived in Section 2.6) as an initial condition does, in fact, converge to 

the exact permanent form solution. We show that the errors in key quantities, 
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such as peak amplitude, excess mass and wave speed, behave in a regular 

fashion with respect to the the numerical parameters. We discuss the effects of 

the finite grid spacing and select the stepsize and the tolerance to be used in 

later numerical experiments. Finally we give the expected range of validity for 

the numerical experiments (to be discussed Chapter 5) for the chosen 

numerical parameters. 

The permanent form solution derived in Section 2.6 is of crucial importance 

in this section. Without this solution, we would have no way to insure that the 

stepsize, tolerence and precision used in the numerical program were adequate 

for the model problems. However, in order to know what numerical checks to 

perform, we must know what type of numerical experiments are planned. As we 

have discussed in Chapter 1, our primary aim is to study three-dimensional 

propagation effects through the use of some basic curving bottom topographies. 

All of the topographies mentioned in Chapter 1 share the feature of a deep fl.at 

section joined by some sort of curving ramp to a shallower fl.at section. We 

therefore perform our series of t,ests with wave parameters designed to simulate 

propagation in the two extreme cases -- (1) the deep fl.at section and (2) the 

shallow fiat section. Since no permanent-form or other exact theoretical 

solutions are available for regions with variable bottom topography, we do not 

consider these cases in this chapter However, a number of investigators have 

numerically solved the 1HD case for variable depth and, in Chapter 5, we discuss 

the results for some comparable cases. 

The parameters which govern the initial conditions that we have chosen to 

use in this series of tests are summarized by the order parameter o.. 

Specifically, we examine two cases: a= 0.1 and o. = 0.4, which we expect to cover 

the range of this parameter in tbe 2HD numerical experiments described in the 

upcoming chapter. We arbitrarily take the depth to be unity and scale all other 
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quantities from this length. A range for possible stepsizes can be chosen by 

inspection of the initial conditions plots. From these graphs we can see that the 

wavelength of the waves plotted is roughly 20 units, however the region of 

s-wiftest change is only about a quarter of this distance. Therefore, in order to 

represent this important region adequately, we establish the range of stepsize 

values to be investigated as 0.2 ~ tit, 6x, 6y ~ 0.8. 

We wish to examine the numerical scheme for the stepsize range above in 

the absence of errors induced by incomplete convergence and round-off lnitial 

computation indicates that if µin Eq. 3.8 is required to be less than 10-5 there 

is no appreciable change in the results; therefore, we assume that there is 

complete convergence for the lHD case if µ ~ 10-5 . This tolerance requires 

from 3 to 5 iterations per time step for the 1HD case, depending on the 

amplitude and stepsize. Jn addition, we introduce the use of double-precision 

which dramatically reduces the effects of round-off error. Jn order to simplify 

the process of stepsize examination, we take the stepsizes in the three 

directions x,y,and t to be equal in length, i.e., 

b. t = 6x = b.y = 6 for 0.2 ~ b. ~ 0.8. 

Figures 3.6 and 3.7 show the results of stepsize variation using the HID 

program for the cases ex = 0.1 and ex = 0.4 respectively. The initial wave peak 

was located at x=O and the wave was propagated for 100 time units (or as close 

to that value as the stepsize permitted). The number of actual time steps (of 

size 6) taken varied from 126 (for l:.=0.8) to 501 (for D.=0.2). It is clear from the 

figures that the scheme converges to the exact solution as the mesh spacing is 

refined. The solutions for the larger grid spacings display an oscillatory tail 

which deviates from the exact solution. This undular tail was also apparent in 

similar calculc.tions by Goring ( 1978) who used a finite-element formulation to 

solve the Boussinesq equations. Goring attributed the formation of an 
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Figure 3.6 The surface height after propagation for 100 time units for an initial 

solitary wave amplitude of 0.1. The upper seven curves depict surface heights 

computed for various stepsizes using the 1HD program. From top to bottom the 

stepsizes used are .6t = !;,x = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3 and 0.2. The last curvE' 

shows the surface height computed for t= 100 from the permanent-form 

solution Eq. 2 58. 
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Figure 3.7 The surface height after propagation for 100 time units for an initial 

solitary wave amplitude of 0.4. The upper seven curves depict surface heights 

computed for various stepsizes using the 1HD program. From top to bottom the 

stepsizes used are .6t = .6x = O.B, 0.7, 0.6, 0.5, DA, 0.3 and 0.2. The last curve 

shows the surface height computed for t= 100 from the permanent-form 

solution Eq. 2.58. 
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oscillatory tail to his use of inexact t initial conditions. However, the results 

illustrated in Figs. 3.6 and 3.7 indicate that. at least for our formulation, this 

oscillatory tail is a spurious result generated by insufficient mesh refinement.+ 

We may examine the results from the stepsize variation in more detail 

through Tables 3.1 and 3.2. These tables show that the errors in excess mass (a 

conserved quantity), peak amplitude. wave shape and wave speed are reduced as 

the stepsize is refined for the two different amplitudes. Under excess mass we 

have established two separate categories: "Range /Theo. Excess" and ".Pinal/Theo. 

Excess " The first entry is meant as an indicator of the extent to which the 

excess mass anomalously varies as a function of time (normalized by the 

theoretical excess mass value). The theoretical excess mass can be shown to be 

constant for the range of motion considered in the computational domain. By 

inspecting the value of the excess mass at each time step, it was discovered that, 

as the oscillatory tail develops, the excess mass also undergoes an oscillation. 

As the wave continues to propagate, the oscillations become smaller until they 

approach a straight line. The "Final/Theo. Excess" entry indicates the ratio of 

this final excess mass to the theoretically predicted value. The final values are 

usually quite close to the predicted theoretical value. The next column entry in 

the tables indicates the degradation in the peak amplitude resulting from the 

stepsize choice. The quantity listed in the table is the peak value after 

propagation for 100 time units normalized by the initial wave height. This 

quantity is also seen to respond favorably to the mesh refinement. The next 

column marked "Trough/Jnitial Amp." is intended to act as a measure of the 

shape distortion of the permanent form wave due to the spacing. The entries 

1' As previous2y discussed iI1 Section 2.8, the KdV -pe:rmanent-form solution, whlch Goring 
used as an initial conditio::-i, is not an exac1 so:J.tion to the Boussbesq equations. In thls 
study, the initial condition used is an exact :;ie:rmanen:-form solution to the equation which 
we so2ve n-..imericaEy. 
t For comparison, Gor::ng used stepsizes of !:n. = 0.7 and !:.i.t = 0.7575, about equivalent to 
the stepsczes we used to ob:ain the second curve frorr: the top in Figs. 3.6 and 3.7. 
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listed were obtained by dividing the maximum trough depth by the initial peak 

amplitude. Values for the larger stepsizes show a comparatively large degree of 

distortion from the theoretical shape, which is confirmed in Figures 3.6 and 3.7. 

The final column in Tables 3.1 and 3.2 gauges the accuracy of the position of the 

wave after 1 DO time units by computing the wave speed and comparing it to the 

value theoretically determined in Section 2.6. (Both the peak height used in 

column 3 and the peak amplitude position used to determine the average wave 

speed have been interpolated from the grid points for more accurate results.) 

The ·wave speed comparison indicates that the wave invariably travels slower on 

larger grid spacings for our numerical scheme. Some simple computations 

indicate that this slower speed may be primarily attributed to the degradation 

in peak height. 

The tables and figures discussed above were made using the 1HD program. 

ldeally, similar tables and plots should be made using the 2HD program as well, 

however such a project is prohibitively time-consuming and expensive for a 

reasonably sized grid. (The core region required goes up as the square of the 

space step and the time requirements go up by a factor larger than the cube of 

the stepsize because the combined nonlinear and Successive Over-Relaxation 

iteration scheme dictated by the larger sized grid requires from 10 to 15 more 

iterations.) lnstead, a small group of well-chosen tests were performed using the 

2HD program and these results were then compared to those from the 1HD 

program. These tests indicate that, for a tolerance of 10-7 , the results from the 

2HD cases are identical to the 1HD. Because we are able to show that, for high 

enough tolerances, the 2HD case results converge to those from the 1HD case, 

we may apply the results from the 1HD stepsize variation to the 2HD case. 

lt is clear that smaller stepsizes yield superior results. For the 2HD 

program this is a unpleasant (although certainly not unexpected) conclusion 
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because the stepsize so greatly influences the time, cost and region storage 

requirements. Therefore, we must balance the time, cost and space 

disadvantages against accuracy in our computed results, keeping in mind the 

types of phenomena we want to examine in the numerical experiments. This 

balancing resulted in a choice of 0.4 as the selected stepsize for 2HD 

calculations This parameter is large enough to keep the disadvantages from 

becoming prohibitive, yet small enough to allow us to observe important 

features in the propagation with confidence. However, since the 1HD program 

does not have the soaring costs and time requirements of the 2HD program, and 

since we may be interested in some more subtle features in the 1HD case, we 

·will take the lHD stepsize to be as small as appropriate for the numerical 

experiments discussed in Chapter 5. 

With regard to the tolerance, parameter, we are primarily interested in 

determining what is the largest possible value that will allow us to reduce the 

following two effects: 

• Cross-channel drift recognizable as the generation of spurious y-

derivatives, and 

• Systematic changes in the values of key quantities such as excess mass, 

peak height, and wave speed from the 1HD results for the same stepsize (6 = 
0.4). 

Our chosen tolerance of 1 o-4 is found to permit a maximum drift of 0.2% in 

amplitude values across the channel after propagation for 100 time units. Table 

3.3 compares the differences in the key quantities mentioned above for the lHD 

case with a tolerance of 1 o-5 and the 2HD case at the same stepsize (6 = 0.4-) 

-4 
with a tolerance of 10 ". 

An attempt was made to revert to single-precision from the double-

precision used in the test cases; however, it was discovered that single precision 
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is not adequate for the calculations we Vtish to perform. Thus we have insisted 

on double-precision for all our calculations. All computations presented in this 

thesis were performed on the JBM 370/3023 digital computer in the Booth 

Computing Center of the California lnstitute of Technology. The programs 

required approximately 350 kilobytes of core storage for the 1HD cases and 1.6 

megab:y"tes of core storage for the 2HD cases. A typical lHD case, running for 

100 time units, used about 120 seconds of CPU time while the equivalent typical 

2HD case used about 1800 seconds. 

We are now prepared to state the expected maximum errors for the 

special cases we will consider in the upcoming chapter. These errors are listed 

in Table 3.4 for a typical 1HD stepsize and for the selected 2HD step size of 0.4 

with tolerances of 1 o-5 and 1 o-4- respectively. We have chosen the numerical 

parameters such that the ranges given are more than adequate for model 

problems discussed in Chapter 1. 
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CHAPI'ER 4 

Results and Discussion 

The results presented in this chapter were obtained using the numerical 

methods described in Chapter 3. The first set of results concerns the 

propagation in one horizontal dimension ( lHD) of a solitary wave from a 

constant depth, up a gradual ramp, into a shallower fiat region. The wave is 

seen to steepen and gain amplitude as it passes over the ramp and eventually to 

separate (or fission ) into two or more solitary waves (solitons). We show that, 

for the cases which we consider, at least 80% of the initial excess mass moves 

onto the shelf, the remainder being reflected back from the ramp. We make 

some comparisons of our results with other theoretical and numerical 

predictions of the primary shelf soliton amplitude and find good agreement for 

all the cases considered. As might be expected, the second soliton amplitude is 

found to be lower than that predicted by a model which assumes no wave 

reflection from the shelf. Comparison with experiment confirms the basic form 

of the solution on the shelf. 

We cor:itinue our investigation of wave propagation into shallower water by 

use of the 2HD program with a plane solitary wave initial condition, similar to 

the lHD case above. We examine propagation under the influence of four 

related bottom topographies. These depth profiles share the features of a 

uniform depth region joined by a gradual. curving ramp to another, shallower 

uniform depth region. Once the wave has propagated over the submerged ramp 

and onto the shelf, the effects of focussing, or defocussing, due to the 2HD depth 

variation are clearly apparent. We examine the cross-channel variation in 

amplification of the primary soliton height. We find that the peak amplitude 
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may vary considerably across the channel since the bottom topography sets up 

a kind of rocking motion in the fiiud. The delayed formation of the secondary 

solitons is apparent at some channel points, and the line of fully-formed 

primary and secondary soliton crests de\'iates noticeably from the straight line 

crests of the uniform cases. Linear nondispersive theory is used to recompute 

one of the cases and the results are significantly different from those computed 

through nonlinear dispersive theory 

4.1 Results for Propagation in One Horizontal Dimcmsion: Variable Depth 

In this section we use the 1HD program developed in Chapter 3 to 

investigate the propagation of a solitary wave from a region of constant depth, 

over a gradual ramp, and onto a shelf. Figure 4. 1 is a sketch of the bottom 

topography for the series of cases considered in this section. We present these 

1HD results for two reasons: first, to introduce the phenomenon of a wave 

climbing up a ramp, keeping in mind the model problems for 2HD discussed in 

Chapter 1, and second, to provide a baseline for comparison with the upcoming 

2HD results. 

As an initial condition we take a solitary wave moving to the right with peak 

located at x=O. The specific form of this initial condition is given by Equation 

3.9 with ex taken to be 0.12. For convenience, we take the water depth ho in the 

deeper region to be unity and the ramp length Lii to be 10. Other parameters 

are in Figure 4.1 are: X1 = -30, Xs = 6, and XR = 90. The shelf depths which we 

consider are h 1 =0.451, 0.5, and 0.614. The first and last of these values are 

chosen for special reasons, which we will discuss next. 

We have previously mentioned the KdV equation in the discussion of 

permanent form solutions (set: Section 2.6) for constant depth. A variable

coefficient KdV equation (which we will refer to as the VKdV equation), which 
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UNDISTURBED 
WATER LEVEL 

Figure 4.1 Definition sketch for the bottom topography. 
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describes a solitary wave moving onto a shelf, has been derived by Johnson 

(1972) and separately by Kakutani (1971) in a similar form. This equation 

predicts that a solitary wave t moving into a region of decreased depth will break 

up into a finite number of solitons plus (possibly) an oscillatory tail. This 

conclusion is in agreement with the experimental and numerical work of 

Madsen and Mei (1969). The depth of the shelf relative to the initial depi:,h 

influences the number of solitons which emerge from a solitary wave initial 

input. For some special depths ( eigendepths), only solitons and no oscillatory 

tail will be produced. These eigendepths he are given by: 

- i.. 
1) J 9 ( 4.1) 

where N gives the number of solitons on the shelf. Jn particular, since we have 

taken ho to be unity, the eigendepth for two solitons is he ::: 0.614 and for three 

solitons is he=DA-51. These depths correspond to two values of h 1 in our 

numerical experiments. 

For the more general case where the shelf depth h 1 is not an eigendepth, 

Johnson shows (for initial solitary wave input) that N solitons (of nonzero 

amplitude) will emerge where N is the largest integer which satisfies N :-:;: p and p 

is defined c.s: 

( 4.2) 

Furthermore, the amplitude Ar.. of the nth soliton on the shelf relative to the 

initial solitary wave amplitude Ao is: 

A.n = h-}(2(p - n)Z) 
Ao 1 p(p + 1) 

( 4.3) 

where n=l,2, .. .,N. Tappert and Zabusky (1971) also der;.ved these relationships 

f The solitary wave discussed in reference to tJ1e KdV and VKdV equations is defined by 

Equation 2.60 in. Section 2.6. 
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by a different method. Johnson has found good agreement with these 

predictions through a numerical finite-difference solution to the VKdV equation. 

For a shelf depth of 0.5 (4.2) predicts the production of three solitons. Equation 

4.3 gives the relative amplitudes of these solitons as l. 71, 0.66, and 0.11 for the 

first, second and third solitons respectively. 

We arc interested in comparing the results from our governing equation 

(2.62) for an initial input from (3.9) with the theoretical and numerical results 

discussed above. Figures 4.2 through 4.4 show the results of our 1HD numerical 

experiments taking h 1 to be 0.614, 0.5, and 0.451 respectively. Our formulation 

of the 1HD ramp problem yields results similar to those described for the VKdV 

equation by Johnson(1972) and also to those of Madsen and Mei(1969). As the 

wave approaches the ramp, the front side steepens and the peak amplitude 

(measured from the still water level) grows. Once the wave is on the shelf, two 

or three solitons are formed and these waves gradually separate due to 

differences in their velocity (since the velocity is a function of amplitude). 

Examination of the computed solution indicates that two solitons are formed 

for h 1 = 0 614, while three solitons emerge for h 1 = 0.5 and 0.415, in agreement 

with the prediction of (4.2). The low-amplitude reflected wave can be seen 

travelling toward the left in Figs. 4.2 through 4.4 at times t=20 and t=40. At 

time t=60 and t=BO this reflected wave interacts with the left boundary. Since 

our boundary conditions are not adequate to allow the wave to simply pass out 

of the computational region, there is some reflection off the left boundary. 

However. the wave reflected by the left boundary is sufficiently far away from 

the she~f solitons so that it does not affect this region of primary interest. 

Table 4.1 shows some specific results for the lHD cases. All the results for 

the shelf solitons have been normalized by the initial amplitude of the solitary 

wave. The figures for soliton heights and excess mass on shelf are taken from 
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Figure 4.2 Computed surface heights for various times. Initial solitary wave 

amplitude is 0,12, depth on the shelf is 0.614. The X's on the x-axis, denote the 

position of the ramp. 
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Figure 4.3 Computed surface heights for various times. Initial solitary wave 

amplitude is 0.12, depth on the shelf is 0.5. The X's on the x-axis denote the 

position of the ramp. 
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Figure 4.4 Computed surface heights for various times. Initial solitary wave 

amplitude is 0.12, depth on the shelf is 0.451. The X's on the x-axis denote the 

position of the ramp. 
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TABLE 4.1 

I Comparison of Results for 1HD Cases 

Shelf Soliton Heightst 

Shelf Grid % Excess 
Depth, Size first second third Mass an 

h1 Shelf 

I 
I 

Present results 0.451 0.2 1.71 I 0.64 0.14 
i 

82% 

Johnson 

I 
numerical 

I 

I 

" 1.8 0.8 0.2 
I (1972) theoretical 0.451 - 1.83 0.81 0.20 100% 

i 
I 

0.2 1.62 0.52 :t 
Present results 0.5 0.1 1.68 0.58 0.1 843 

I 
0.05 1.69 0.59 0.12 

Jal:nson numerical " 1.73 0.65 0.10 
(1972) theoretical 0.5 - 1.71 0.66 0.11 1003 

vari-
Madsen and numerical able 1.66 0.75 0.2 853 
Mei (1969) experimental 0.5 - 1.2 0.4 # I 

I I 

I I 
I 

Preser"t results 0.614 0.2 1.42 0.33 none 89% 

I 
Johnson numerical " I 1.5 0.4 

0.614 none 100% (1972) theoretical 
I 

-
I 

1.51 0.38 
I I 

' 
I 

t Soliton heights are normalized by the initial solitary wave height. 
• Johnsor: uses a different coordinate system; stepsizes may not be comparable. 
t At this r.:Jesh size, the third soliton was not resolved. 
# A third soliton was not apparent from the experimental results. 

I 
I 

I 
i 
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results after the wave front has travelled the equivalent of approximately BO 

units, where distances are normalized by the relavant ho for each case. From 

this table we can see that our results are in fairly good agreement with those of 

Johnson as well as Madsen and Mei. However, our results for all three depths are 

somewhat lower than the corresponding results given by Johnson. This is 

expected, since our formulation includes reflection, an effect which is discarded 

in the KdV and VXdV derivations. Jn fact, our results indicate that up to 18% of 

the excess mass may be reflected by the gradual slopes selected for our 

numerical experiments, and this is in agreement with Madsen and Mei's figure of 

15% reflection for depth 0.5. Due to this reflection, it is reasonable to expect 

smaller soliton amplitudes on the shelf and, in accordance with this hypothesis, 

we find that the normalized differences in amplitude between our results and 

Johnson's become larger as the reflected mass becomes larger. We must be 

conservative about these conclusions, however, since results for a range of 

stepsizes for shelf depth of 0.5 indicate that larger stepsizes also yield lower 

results. 

Our results for the first soliton amplitude and excess mass on the shelf 

agree quite well with those shown in Table 4.1 from Madsen and Mei's numerical 

integration of a variant of the Boussinesq equations. The second and third 

soliton heights, however, show some disagreement. Our results for the second 

and third soliton amplitudes are lower than the corresponding amplitudes 

presented by Johnson. Madsen and Mei, however, report computed second and 

third soliton amplitudes which are larger than Johnson's corresponding results. 

As mentioned in the previous paragraph, it is physically reasonable that the 

soliton amplitudes would be lower (than amplitudes computed by a model like 

Johnson's which neglects wave reflection) since the Boussinesq formulation 

which we use includes reflection. Madsen and Mei, however, also rely on the 
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Boussinesq equations (i.e., reflection is included) and yet the amplitudes which 

they report for the second and third solitons are actually larger than those 

given by Johnson's theoretical predictions and numerical calculations as well as 

by our computations. We attribute the discrepancy between our result and that 

of Madsen and Mei to their extensive replacement of the original terms of the 

Boussinesq equations by other terms within the same order of approximation. 

Their error terms, therefore, may be quite different from ours and over the 

course of the numerical integration, these difTerences may accumulate. Kole 

that on the shelf, where a has increased to approximately 0.4, the size of the 

error terms relative to the dominant terms can be as large as O(a2 ) or about 

16%. Such an error probably accounts for the differences between our results 

and those of Jv~adsen and Mei. 

Finally, in reference to Table 4.1. note that the theoretical and numerical 

results presented are in qualitative agreement with the experimental results 

regarding the shelf soliton heights. Madsen and Mei attribute the lack of 

quantitative agreement to the use of a rather crude wave generation technique 

and to the effects of viscous damping. 

4.2 Results for Propagation in Two Horizontal Dimemsion: Variable Depth 

Using the results from Section 4.1 as a guide, we have identified a series of 

cases with 2HD variations in bottom topography. These model problems are 

extensions of the lHD ramp cases. Here we consider waves propagating in a long 

channel containing a submerged ramp which connects two constant depth 

areas. This is similar to the 1HD problem except that now the ramp may vary 

across the channel. The cross-channel variable is y while the x-axis 

corresponds to the longitudinal axis of the channel. The y-origin l'.es on the 

center longitudinal line of the channel; as before, the x-origin is taken directly 
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under the wave peak at t=O. Four test topographies are selected: two of which 

have convex curvature in relation to the initial planar solitary wave, while the 

other two are concave with respect to the initial wave. All of these cases have 

the y=D axis as a line of symmetry. Figures 4.5a through 4.5d show the four 

curving ramp configurations chosen for study. For convenience in dealing with 

this group of cases we will refer to these topographies as in the following table: 

Table 4.2 

Key to 2HD Bottom Topographies 

Case Acronym Figure Number i 

(IN) 
I 

Concave, Narrow 4.5a 
Concave, Wide (IW) 4.5b 
Cor:vex,Narrow (OK) 4.5c 
Convex.Wide (OW) 4.5d 

(I and 0 above stand for curving in and curving out.) The front edges of these 

curving ramp sections all lie at the point correspnding to x=Xs in Figure 4. l. As 

in the previous section, ho is taken to be unity and the ramp length is l 0. The 

channel length for our computation is taken to be 120. The specific values 

defining the width of the cross-channel features for the separate cases may be 

read from Figure 4.5. Ramp profiles are obtained by curving a straight ramp of 

slope 1 :20 along the line f (y) defined by 

2 21iy 
f(y) = 10cos [ Ye J Y~ Ye (4.4) 

Ye is the width of the curving section of the ramp and it may be read from 

Figures 4.5a through d. The ramp is taken to be straight in the cross-channel 

direction for y? Ye· The shelf depth has been taken to be 0.5 and the channel 

width is 32. The spacing in x,y and t is 0.4. The initial conditions consist of a 

planar solitary wave defined by Eq. 3.9 with a = 0.12. For comparison, we also 

solve the degenerate case of a straight ramp for the same initial conditions. We 

will refer to this case as (S). Since these cases are symmetric about the 
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Figure 4.5a,b,c,d The four curving ramp bottom topographies. The front of the 

ramp is placed in the channel at position x=Xs shown in Fig. 4.1. The cases are 

denoted: 

(a) :!\arrow concave. (IN) 

(b) ·wide concave. (IW) 

( c) Narrow convex. (OT\) 

( d) Wide convex. (Ovr) 
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CASE (IN) 

NARROW CONCAVE RAMP 

WIDE CONCAVE RAMP 

Figure 4.5b 
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centerline, we need only to compute for half the width of the channel. 

Figures 4.6a through 4.6d present three-dimensional perspective views of 

the waveforms at selected times as computed by the 2HD program using 

topographies (1N), (IW), (ON), and (OW) respectively. It is clear from inspection 

of these figures that the waveform has been strongly affected by the passage 

over the curving ramp. We can immediately separate the concave from convex 

topographies In the concave ramp cases, (IN) and (JW), the primary wave crest 

is amplified along the wall, while for the convex cases, (ON) and (OW), the peak 

is amplified along the centerline. This effect can be explained by recalling that a 

line of wave crests obliquely approaching a straight ramp will turn in their 

propagation in such a way as to make the angle between the crestline and the 

depth contours smaller. Figure 4 .7 presents a sketch of this phenomena for a 

concave topography. The ray lines -- lines which are perpendicular to the crests 

-- turn toward shallower water as the wave passes over the curved ramp. In 

general then, any outcropping will tend lo focus the wave amplitudes along the 

central line of the protrusion and this phenomena is clearly present in our 

computed solutions. 

Figures 4 .6a through 4.6d also show that a second and in some cases a 

third soliton forms behind the main wave. In fact, as we would expect, many of 

the features present in the 1HD solutions are also seen in the 2HD cases. 

However, the features vary dramatically across the channel. In order to show 

the cross-channel differences more quantitatively, we present Figures 4.Ba 

through 4.Bd. These figures display the surface height along cuts made 

longitudinally at the centerline and the wall. The concave cases (IN) and (Hr) 

show the similar features (at the final timestep) of strong, well-defined first and 

second soliton peaks along the wall, while the centerline cuts show smaller peak 

amplitudes and the second soliton definition is poor, though discernible. The 
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Figure 4.6a,b,c,d Three-dimensional perspective views of the computed surface 

height at verious times for the cases : (a) narrow, concave ramp, (b) vvide, 

concave ramp, (c) narrow. convex ramp and (d) wide, convex ramp. 
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Figure 4.Ba,b,c,d Profiles of the computed surface height at the centerline and 

the wall for the (a) narrow, concave ramp, (b) wide, concave ramp, (c) narrow, 

convex ramp and (d) wide, convex ramp. 

For the two concave cases: 

• Along the centerline, the ramp begins at 16 and ends at 26. 

• Along the wall, the ramp begins at 6 and ends at 16. 

For the two convex cases: 

• Along the centerline, the ramp begins at 6 and ends at 16. 

• Along the wall, the ramp begins at 16 and ends at 26. 
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undular tail apparent at time=BO may result from dispersion of the large 

negative trough which forms at the back of the wave at time=40. More 

investigation is necessary to determine if this tail is a real effect or simply a 

result of the stepsize used. (See the discussion of numerical dispersion due to 

stepsize in Chapter 3.) Along the centerline cuts for the (ON) and (OW) cases, the 

solitons are seen to quickly become separated and well defined. Trailing behind 

the second soliton at time=BO, both cases exhibit another low wide peak which 

may be a third soliton. Recall that the KdV theory predicts three solitons (and 

an oscillatory tail) for the depths chosen for these experiments. However, even 

at a stepsize which is half of what is used here the lHD program was unable to 

resolve the third soliton. Jn addition, the amplitude is too large for a predicted 

third soliton and its position is too far behind the second crest. Returning to 

the plots 4.6c and 4.6d it appears that the third hump which appears is the 

result of a cross channel oscillatory mode with node points at the one-quarter 

and three quarter lines of the channel. This oscillation appears to be gradually 

separating from the primary and secondary wave crests. Inspection of the wall 

cuts for cases (ON) and (OW) show a gradual transition of waveforms with the 

final timestep displaying a still unseparated second soliton. 

Figures 4.9a through 4.9d give the peak soliton amplitude as a function of 

time for 3 longitudinal cuts down the channel: wall, centerline and quarterline. 

These graphs again make clear that the centerline of the convex cases and the 

wall line of the concave cases are the primary regions of focussing during the 

wave's progression over the ramp. What these plots also indicate is that an 

initial depletion occurs in the region away from the focussing. Loosely speaking, 

the quarterline amplitude remains between the two extrema located at the 

center and w2 ll lines, with the quaLerline position functioning as a kind of node 

for oscillation across the channel width. The curves for the wall and centerline 
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Figure 4.9a,b,c,d The peak amplitude along three longitudinal lines as a 

function of time for the cases: (a) narrov.r, concave ramp, (b) wide, concave 

ramp, (c) narrow, convex ramp and (d) wide, convex ramp. 
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amplitudes move apart rapidly as the wave passes over the ramp, then approach 

each other again and appear to cross near the end of the computation. 

Preliminary computation for larger stepsizes and longer times showed that the 

amplitude curves actually do cross at time ~ 80. Computation was terminated 

before it was apparent if another crossing would take place. Additional 

computation would be necessary to determine if a long-time ringing has been 

initiated, or if the wall effects are strong enough to quickly return the wave to a 

planar form. (These computations must be done cautiously, since peak 

amplitude degradation due to insufficient mesh refinement may mask long-time 

ringing.) 

Figures 4.lOa through 4.10d are contour plots of the surface height at 

various times for all four cases. The first few plots have been truncated in order 

to fit the entire sequence on a single page. Jn these plots we can see that the 

line of crests is bent as the wave passes over the submerged curved ramps. This 

happens because part of the wave is in deeper water and, since the wave speed 

may be estimated as the square root of the depth,t the part of wave in deeper 

water travels faster than the part which is passing over the decreasing depth 

region. If we examine the plots for lime=20, it appears that the contour lines 

are pinched at the centerline in the convex ramp cases and at the walls in the 

concave cases. This pinching also occurs because the effects of decreasing 

depth are not felt at the same time across the channel. As the wave moves into 

shallower water, the front face of the wave steepens and the peak amplitude 

grows. These changes are reflected by an increase in the order parameter cc We 

can see from the figures in section 2.6 which show the form of solitary waves for 

different o: that as o: increases the wave length decreases. The o: for the primary 

s.oliton on the shelf is roughly three times larger than that for the wave in the 

t The actual speed c of the shal'.ow water wave is, of course, c ""Vgh however, we have nor
malized o:.ir coordinates so that c is UI1ity when the depih is 1. 
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Figure 4.10a.b,c,d Contour plots of the surface height at various times for the 

cases: (a) narrow, concave ramp, (b) wide, concave ramp, (c) narrow, convex 

ramp and ( d) wide, convex ramp. The interval between contours is 0.025. Dotted 

lines denote regions of negative surface height. The initial three plots on each 

page have been truncated to eliminate large areas where no contours are seen 

(fiat regions). 
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deeper region, indicating that the wavelength is smaller on the shelf. This can 

be clearly seen in Figures 4. 1 Oa through 4. 10d in which the contour lines 

become more closely packed as the wave moves up onto the shelf. The dotted 

lines on the contour plots indicate that the primary and secondary solitons are 

followed by rather extensive, but shallow, regions which dip below the 

undisturbed water line. 1t is not knovm whether these features of large extent 

but small amplitude are true features of the solution, or whether they are 

brought on by the numerical scheme. Additional testing al decreased stepsize 

would be required to confirm these features. 

4.3 Comparison with linear, Nondispersive Theory 

In order to gauge the importance of nonlinearity and dispersion in our 

numerical experiments, we re-examined the case of a wide concave ramp (IW) by 

numerically solving the linear nondispersive long wave equations . (For 

convenience, we will refer to these equations as linear theory.) This was a simple 

matter, since these equations (as we have discussed in Section 2.5) are a subset 

of the full nonlinear dispersive equations. We modified the original 1HD and 2HD 

by setting all nonlinear and dispersive terms to zero; no other changes were 

made in the programs. The 1HD program for linear theory was used to test for 

convergence of the computed solutions as the stepsize was decreased and the 

scheme was found to be satisfactory: the effect of step size on peak degradation 

and excess mass was found to be similar to the 1HD test cases described in 

Section 3. 1. The 2HD program for linear theory retrieved the 1HD linear theory 

results identically when required to converge within a small enough tolerance. 

Figure 4.11 is a three-dimensional perspective view of the surface height 

obtained at various time steps by solving the linear equations. As mentioned 

above, the bottom topography used for this experiment was the wide concave 
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Figure 4.11 Three-dimensional perspective view of the surface height at various 

times for the case using linear nondispersive theory. The bottom topography is 

the wide concave ramp (IW) pictured in Fig. ?.5b. Initial conditions are the same 

as in cases (JN), (HY). (ON) and (OW). 
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ramp (IW). Comparison of figure 4.11 with the corresponding figure 4.6b for 

nonlinear dispersive solution shows grossly different wave forms at the end of 

computation. Figure 4.12 shows profiles for the centerline and wall at various 

times. The corresponding figure for nonlinear dispersive theory is 4.Bb. These 

profiles show that along the wall the wave achieves a smaller height than in the 

nonlinear dispersive calculation. No additional solitons are formed and a rather 

deep trough forms at the rear face of the wave. The back of the wave is seen to 

be steeper than the front at the last 3 times displayed for the wall cut. The 

centerline cut profiles shovl a peak amplitude much lower than that for the 

nonlinear dispersive theory. The final wave form computed looks poorly formed 

and possesses a wavelength roughly 3-4 times larger than that computed for the 

primary soliton in the nonlinear dispersive theory. The waves do not travel as 

fast as those calculated using the full nonlinear, dispersive theory, as should be 

expected. 

We may compare the peak amplitudes along three longitudinal lines vs. time 

through Figure 4. 13. This figure also emphasizes the differences between the 

linear theory and the nonlinear, dispersive theory. Here the wave peaks 

computed from linear theory are seen to achieve lower amplitudes than in the 

previously computed cases. Similar to the curves in Fig 4.9b, the curves in 4.13 

also appear to approach each other but much less rapidly than seen before. 

Preliminary computations performed for a larger stepsize and longer time did 

not evidence that a crossing occurs before t i::i 100. Thus our results suggest 

that, if a cross-channel ringing is set up, the period would be much longer than 

indicated by the results of the nonlinear dispersive theory. 

Finally we examine Figure 4.14, the contour plots of surface height for the 

linear case. These plots clearly show that the wavelength of the progressing 

wave is not compressed as much as in the previously computed case, shown in 
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Figure 4.12 Surface height profiles for the case using linear, nondispersive 

theory. Surface heights are shown for two longitudinal cuts (along centerline 

and wall) at various times. Bottom topography is the wide concave ramp. Along 

the centerline, the ramp extends from l6 to 26; along the wall the ramp extends 

from 6 to 16. 
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Figure 4.13 The peak amplitude as a function of time along three longitudinal 

lines for the case using linear nondispersive theory. Bottom topography is the 

wide, concave ramp. 
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Figure 4.14 Contour plots of computed surface height at various times for the 

case using linear nondispersive theory. First three plots are truncated as 

remarked in Fig. 4.10. Bottom topography is the wide, concave ramp. 
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Figure 4.10b. The wave contours look quite similar at time=20, but are 

markedly different by the end of the computation. 

The above results indicate that, for the present case, the linear theory fails 

to adequately describe the overall three-dimensional character of the 

interaction between the wave and the bottom topography. The linear theory 

appears unable to satisfactorily predict crest amplification, soliton formation, 

cross-channel effects and overall wave shape. Therefore, to obtain reliable 

information about 2HD problems such as those considered here, application of a 

more appropriate model (such as the present nonlinear dispersive theory) is 

required. 
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CHAPTER 5 

Summary and Conclusions 

In this thesis, a new formulation of the model equations for finite amplitude 

dispersive long waves has been presented. The major improvement in this new 

formulation stems from the introduction of the irrotational layer-mean velocity 

in Section 2.4 and the subsequent translation of the classical Boussinesq 

equations into this new variable. The transformed equations were written in 

terms of the velocity potential and surface height and in addition these two 

equations were combined to obtain a single equation for the potential. The 

combined equation can fully model depth variations in space and time, as well 

as wave propagation in two horizontal dimensions including wave reflection. We 

have examined the resultant, single, Boussinesq-class equation for permanent 

form solutions in constant depth. Permanent-form solutions were determined 

for the potential and surface height, and the shape of the permanent form 

wave was found to be slightly wider than the classical KdV result. 

The permanent-form solution permitted verification of the numerical 

scheme developed in Chapter 3. This numerical method, which uses an implicit 

finite-difference formulation, was examined for test cases in one and two 

horizontal dimensions and found to be satisfactory for the initial conditions 

prescribed in this study. Estimates were made on the errors in peak amplitude, 

shape deformation and wave speed induced by the finite grid spacing. ln 

particular, errors due to insufficient mesh refinement were evidenced by peak 

amplitude degradation, excess mass variations and the development of an 

oscillatory tail. The observed undular tail was attributed to numerical 

dispersion resulting from the finite grid spacing and was clearly seen to 
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diminish as the grid spacing was refined. 

The combined equation was used in a group of numerical experiments to 

model a wave progressing over a ramp and onto a shelf in one horizontal 

dimension. Solitons were produced on the shelf and our results for soliton 

amplitudes show good agreement with theoretical predictions and numerical 

computations based on the variable-coefficient KdV equation. even though the 

ramp reflects about 15% of the excess mass. These results suggest that the 

variable-coefficient KdV theory may be applicable to study of the transmitted 

wave on the shelf. 

Another group of numerical experiments were performed to examine wave 

propagation in two horizontal dimensions over a curved submerged ramp. The 

curving ramp bottom topographies had a focussing effect on the wave as 

evidenced by enhanced primary crest amplification. Soliton formation was also 

apparent on the shelf. with the exception that the formation of the second 

soliton was delayed at certain locations in the channel. lndications of an cross

channel oscillatory mode with nodal points at the quarter and three-quarter 

lines were presented. 

For comparison, computations for an identical case were performed using 

linear nondispersive theory. The waves were seen to evolve quite differently, and 

although the wave was clearly being focussed by the submerged curved ramp, 

the effects were not as great as in the nonlinear, dispersive case (as would be 

expected). No additional solitons were formed on the shelf and a trough 

developed near the back of the wave, steepening that side. Finally, the linear 

theory solution was seen to travel more slowly than the waveform computed 

through nonlinear dispersive theory. For the kinds of cases we considered here 

the linear nondispersive theory was inadequate for tb e characterization of the 

amplitude, shape and wave speed of the nonlinear dispersive solution. 
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From the information obtained through this study, our principal 

conclusions are: 

• The combined governing equation derived in Chapter 2 is a convenient and 

straightforward replacement for the more cumbersome, two-equation 

Boussinesq models used previously. 

• The combined equation has the advantage of an exact, easily-obtained 

permanent form solution which can be used to check the accuracy of a 

numerical approximation to the equation and as initial conditions for solitary 

wave studies, 

• Special attention must be paid to the stepsize convergence tests in a 

numerical scheme developed to solve Boussinesq-class equations, In particular, 

the appearance of an oscillatory tail must be considered suspect until testing at 

reduced stepsizes can confirm its validity, 

• For the gradual slopes considered here, it is not necessary to include 

reflection to obtain a satisfactory representation of the wave transmitted onto 

the shelf, A KdV-type formulation seems to fairly well describe the waveform 

propagated onto the shelf, however, our computed results fall slightly below the 

KdV theory, The somewhat smaller amplitudes on the shelf are attributed to the 

effect of reflection from the ramp which causes only about 85% of the excess 

mass to be transmitted onto the shelf, 

• For the curving bottom topographies and initial wave amplitudes used in 

this study, linear nondispersive theory is inadequate. The linear nondispersive 

theory fails to accurately describe crest amplification, soliton formation, cross

channel effects and overall three-dimensional wave shape, 
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APPENDIX A 

Derivation of the Transport Theorem 

In Chapter 2, the following transport theorem (Eq. 2.6) was presented: 

! <- df a f<- <" - = - f dz+ \!·J uf dz. 
_ h dt at _ h _ h 

In order to prove this transport theorem, let us consider the material 

derivative of a flow quantity, f(X.t), integrated over a material volume V. It is 

well known (e.g., Serrin [1959]) that, for anincompressiblefluid, 

iL Jr dV = j( EL+ f V0 ·U)dV = JEL dV, 
dt v v dt ydt 

where :t ( = :t U-\7 o), \7 o, U, and other quantities are fully described in Chapter 

2 (Section 2.1). If we choose a material volume V which at time t coincides with 

a vertical column having horizontal cross-section Sc then 

(A.1) 

The transformation of the inner integral in Eq. A.1 is possible because the fluid 

is incompressible: \7 0 ·U = 0. 

If we expand and evaluate the inner integral in A.1, we have 

q Bf ] a f <" Ei_ oh f <" J [- + \7 0 (Uf) dz= - fdz - f( - Lh- + \7· (uf)dz 
-h at at -h at at -h 

(A.2) 

ar oh ar oh - (ufk~-~- (uf)_h-- (vf)c::::...._ (vf)_h-+ (wf)(- (wf)_h· 
ox Bx By By 

Here Lh indicates the quantity f(X,t) evaluated at z = a. On substituting from 

the boundary conditions and replacing Eq. A.2 into Eq. A.1, we find 
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f dS f ( .fil.cz = f dS fl.E_ f ( fdz + \7 ·!( (uf)dz - f(El_d + (wf)( - Lh ddh - (wf)_hl 
Sc -h dt Sc Bt -h -h t t 

a <: <: 
= J dS BJ fdz + \7·J (uf)dz. 

Sc t -h -h 

The transport theorem (3.6) follows immediately since the area Sc is arbitrary. 



- 112 -

APPENDIXB 

Listing of the lHD FORTRAN Program 

To complement the description of the numerical procedure in Section 3.1, 

we present the following FORTRAN program used in the lHD problems. Many 

comment cards have been added to make the program easier to understand. A 

f'cowchart of this program is presr::nted in Figure 3.1. 
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IlvlPLICIT REAL•B(A-H,0-Z) 
COM~~ ON I STEPS /DX,DT ,NODEX,MA,':CT ,NODEX1 
cm.mo'.\ /WAVEH /E'IA(850),ALF,U ,BETA,AU ,l'<-XZERO 
CO:\BJO~\ /TWHERE /K:"IME,KOUNT 

c 
C PROGRA~~ TO SOLVE PARTIAL DIFFERENTIAL EQUATION (3.1) 
c 
C 0 •CAVEAP THE STEP SIZES HAVE ALL BEEN TAKEN TO BE THE SAME'*** 
c 
C 1HE SC.A.LARS ARE: 

DX - STEPSIZE IK X-DIREC'.'.IO'.\. 
C D".' -- STEPSIZE IN" TIME: SAME AS DX. 
C NODEX -- NUMBER OF NODEX IN THE X-DIRECTION. 
C MAX-:- -- NUMBER OF TIME STEPS TO BE COMPUTED. 
C l'{XZERO -- NODAL LOCATION OF INITIAL WAVE PEAK. 
C ALF -- THE AMPLITCDE OF THE INITIAL WAVE. 
C DEEP -- WATER DEPTH IN DEEP REGION. 
C SHALLO -- WATER DEP'?H IN SHALLOW REGIOK. 
C SL -- RA:'llP SLOPE. 
C NSTAR'? -- NODAL STARTING LOCATION OF RA.c\;IP. 
C !\END -- NODAL ENDING LOCATION OF RAMP. 
C TOLER -- COl\'YERGENCE TOLERANCE COMPARISON PARA\iETER 
c 

THE ARRAYS ARE: 
c 
C ETA --VECOR ARRAY OF SURFACE HEIGHT, COMPUTED FROM 
C SUBROUTINE SURFIT. 
C PHI -- ARRAY CONTAINING THE POTENTIAL A'T THE PREVIOUS 
C TIME STEP PHI( , 1) AND PRESENT TIME STEP PHI( ,2). 
C PHIOLD -- FIRST OR PREVIOUS APPROXIMATION FOR PHI AT THE 
C NEW TIME STEP. 
C PHIKEW -- CURRENT APPROXIMATION FOR PHI AT THE NEW TIME 
C STEP. 
C DERX -- DOUBLY SUBSCRIPTED ARRAY CONTAINING THE FIRST 
C SPATIAL DERIVATIVE OF PHI AT THE PREVIOUS TIME 
C STEP DERX( ,1); THE PRESENT TIME STEP DERX( ,2); 
C A.t'\D THE NEW Tl.ME STEP DERX( ,3). 
C DXX -- DOUBLY SUBSCRIPTED ARRAY CONTAINING THE SECOND 
C SPATIAL DERIVATIVE OF PHI. SECOND SUBSCRIPT 
C DENOTES TIME STEP AS IN DERX ABOVE 
C TRI -- DOUBLY SUBSCRIPTED ARRAY CONTAINING THE COEFFICIE}."TS 
C Of THE TRIDIAGONAL MATRIX. TRI( , 1) IS THE LOWER 
C DIAGONAL, TRI( ,2) IS THE DIAGONAL, AND TRI( ,3) 
C IS THE UPPER DIAGONAL. 
C REDRHS -- THE VECTOR ARRAY CONTAINH~G THE REDUCED RIGHT-
C HAND SIDE. COMPUTED ONCE PER TIME STEP. 
C FULRHS -- THE VECTOR ARRAY CONTAINI'.\'G THE REDUCED RIGHT-
C HAND SIDE PLUS THE NONLINEAR CORRECTION. COM-
C PU".ED AT EACH ITEE.ATION lN EACH TIME STEP. 
c H,HX,mcx -- THREE VECTOR ARRAYS CONTAINING THE WATER DEPTH 
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C (VARIES WITH X), THE FIRST DERIVATIVE OF THE WATER 
C DEV:iH AND Al\D THE SECO.NTI DERIVATIVE OF THE WATER 
C DEPTH, RESPECTIVELY. THESE ARRAYS ARE FILLED AT THE 
C BEGINNING OF COMPUTA'.'.IOI\1. 
C UP'?RIA -- UPPER TRl/l.l\GULAR MATRIX USED IN 'L-U' DECOMPOSITION. 
C COMPUTED ONCE. 
C DOTRIA -- LOWER TRIANGULAR MATRIX l.7SED IN 'L-U' DECOMPOSITION. 
C CD'.11PUTED ONCE. 
c 
c 
C ... RCAD I'.\ THE l\'U!\JBI::R Of CASES 

READ(5. 149) NCASI: 
11zg roimA~·(I5) 

DO 500 ICASE=l ,NCASE 
C ... READ II\ INPUT VALUES A.'\D WRI'::'E OUT HEADERS 

CALL READ\'L(ICASE,TOLER,ITMA.X) 
C ... SET UP '.:'HE BOTTD:\1 TOPOGRAPHY 

CALL Rl\MP 
C ... SE~ UP THE COt.iPU'I'ABLE CONSTANTS 

CALL CO:\SET 
C ... THE I:\LIAL COl\DITIO:\S ON PHI, ALSO INEIAL X-DERIVATIV'ES 

CALL START 
C ... Sl::'I UP THE TRIDIAGO:\AL MATRIX FOR "rHE CL'RRENT TIME STEP 

CALL DI\GIT 
DO 10 KTI:ilE=l ,El'iAX'T 
KOU:\T=O 

C ... SOLVE THE REDUCED EQUATION (3.4). 
CALL SOLRI:D 

C .. .ITERATION LOOP: COEIIPCTE NT\'\ RHS VICTOR AKD 
C ...... SOLYE THE FULL EQU\.TIOI\ (3.1). 

5 IF(h.00~\·~. GT .E l\lA.\:) GO TO 1000 
KOCNT=I\ODNT"t'1 
CALL FULSOL 

C ...... CHECK FOR CONVERGE:"JCE: 
C ...... KRIT= 1 M[A~S COI\'YERGED; KRIT=O MEAI\S NOT CONVERGED. 

CALL co:,1PAR(TOLER,KRE') 
IF(KRIT.EQ.O) GO TO 5 
Tll-.JE=(KTIME-1) *DT 

c ... cm.IPUT[ THE SURFACE HEIGHT 
CALL SURFIT(KTIME) 

C ... CO~IPUTE THE EXCESS MASS 
CALL EXCESS(VOLM,BELOW,ABOVE) 

C ... GET WAVE PEAK AKD PEAK LOCATION 
CALL SIFT3(PEAK,XPEAK) 

C ... vrnr:E RESCLTS. UNIT 17 IS THE T AP:C. 
vrnrT E( 6' 164) TIME,VOLM ,BELOW ,ABOVE,PEAK,XPEAK,KOUNT 

164 1X,F8.2,3X,1P3Dl5.6,8X, 1PD15.6,4X, 1 PD15.6,8X,I2) 
KO!IJPAR=5 *( (KTIME-1) / 5 ) 
IF(KO:..IPAR.EQ.KJ.'IME-1) 

1 WRITE(17) TIME,VOL'li,BELOW,ABOVE,PEAK,XPEAK,KOUNT 
C ... PREPARE TO 110VE TO NEXT TIME STEP 

CALL SWI~'CH 
10 CONTINUE 

500 co;\TINUE 
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STOP 
1000 lrnITE(6,1600) 
1600 FORMAT(lX,'MAXIMUM ITERATION CODN'"l' EXCEEDED') 

STOP 
END 

BLOCK DATA 
IMPLICIT REAL*S(A-H,0-Z) 
COM:'\ION /A1JERV/DERX(850,3),DXX(850,3) 
DATA DERX,D:XlC/2550*0 0,2550*0.0/ 

C .. .INELl\LIZE THE DE;RIVATIVES TO ZERO 
E1'<D 

SCBRODTINE READVL(ICASE,TOLER,ITMAJ() 
IMPLICIT REAL*S(A-H,0-Z) 
COM:'\WN /STEPS /DX,DT,NODEX,MAXT,NODEX1 
co~1l:'\W'.\ /vYA \"Ell I E1'A(850),ALF, u ,BETA,AU ,l\AZERO 

C ... READ II\ THE CHA'.\GEABLE CO.'.\STANTS 
READ( 5, 150) DX,DT,ALF,H GT, TOLER,MAXT ,NODEX,l\iAZERO,ITMAX 

150 FOR'.1IAT(4F8.3,1PD15.6/4I5) 
C ... WHI~"E OUT HEADER INTORMA';"ION 

WRE E( 6, 160) ICASE,DX,DT ,ALF, TOLER,MAXT,NODEX,i'i'XZERO 
160 FORMAT( lH 1/I125X,' ,..,.., CASE I\UMBER: ',I3 ,' ••••',5XI I lX, 

1 'SPACING:', 1OX,'DX=',F6.2I19X,'DT=',F6.2 I 11X, 
2 'PEAKA'.11PLITCDE=',1PD10.1/1X 
3 'COt<YERGEl\CE TOLERANCE=',1PD10.l/1X, 
4 'NODE INFOE!11ATI0'.\:',5X,'MAX TIME:',I5,5X,'X NODES:',I5/23X, 
5 'PEAK LOCATED AT NODE:',15/) 

C ... TAPE WRITI::S 
IF(ICASE.NE.1) CALL WRTNF(17) 
WREE(l 7) DX,DT,ALF,HGT,TOL£q,MA_XT,NODEX,l\i'XZERO,ITMAX 
RE!URN 
END 

SUBROUTIKE COI\SE'T 
IMPLICIT REAL*El(A-H,0-Z) 
CO.\ElON I STEPS I DX,D :i,KODEX,MAXT ,NODEX1 
comwN /WA YEH /ETA(i.350),ALF,U ,BSTA,AC ,NXZERO 
COM1110N IDIGONL!':RI(850 ,3) ,REDRHS(850),FCLRHS(850) 

C ... CO~dPUTES ALL THE NECESSARY CONSTANTS 
U =DSQRT(l.O+ALF) 
BE1 A =DSQRT(3. *ALF I( 4. "'U"U)) 
AU=ALF/U 
NDDEXl=NODEX-1 
RETURN 
END 

SUBROUTINE ST ART 
IMPLICIT REAUB(A-H,0-Z) 
COW.l.Oi\ I STEPS /DX,DT ,NODEX,MAXT ,NODEX1 
CO.\DION /WA YEH /ETA(850),ALF,U ,BE'.:A,AU ,NXZERO 
COM!ll.ON /POTEN IPHI(850,2),PHIOLD(B50),PHINEW(850) 
COM11ION IXDERY /DERX(850,3),DXX(850,3) 

C ... PLACE TWO SETS OF INITLAL CONDITIONS IN ARRAY PHI 
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C ... ALSO COMPUTE THE FIRST AND SECOJ\il) SPATIAL DERIVATIVES OF PHI 
C ... INTIAL CONDITIOI\S DO KOT ASSUME ANY DEP"1H VARIATION 

D010J=l.2 
1=(J-2)•D"'.' 
DO 10I=1,NODEX 
X=(I-\-"XZERO)~Dx 

CHI = B[TA .-(X-li*T) 
PHI(I,J) =DSQRT(.',.*ALF/3.)*DTA.1\'"H( CHI) 
IF(CHIGT.44.) GO TO 10 
DEEX(L) = ACl(DCOSH(CHI)*DCOSH(CHI)) 
Dv;(I.J) = -2.0*BETA*DLRX(l,J)*DTANH(CHI) 

10 CON-!'W[ 
1 RETCRN 

El\D 

SCBROU"TE\-E DIAGE 
rnf'UCE Iff:'\L $8(A-H,0-Z) 
co:,J:,jO\" /STEPS /DX,DT,l\ODEX,MAXT,NODEXl 
co:1El0\ /Yi A YEH /E"?A(85D),ALF,U ,BEJ:A,AU ,J\XZERO 
cc:1J'..~O:\ /SLOPE /H(850),llX(85C),HXX(B50) 
C0'.11: '.JN I mc;o '.\L/T E.1(850 ,3) ,REDRHS(B50) ,FULRH S(850) 

C ... SE-~:) uP THE DiAGO\ALS OF THL: TRIDIAGOl\AL 31ATRIX 
1,1) =0.0 
1,3) 

= 1.0 
D:J 10 I=2,NOJIX1 
h~ 

C:'=lX::'DT~I-IGT /2.-'- EG-:C•HGT /3. 

,1)= -CF! -'-HGT'*HX(I)/(4.*DX) 
,2)=1.0 ..,.. 2.0*CF /(DX*DX) 

10 ''.'RI(I.3)= -CFl(DX*DX) -HGT*HX(I)/(4.*DX) 

S'CBROC"TI'\E SOLR[D 
nJPLICL' -H,0-Z) 
co;1'.'.1lO\ /STEPS /DX D-:',!\ODEX,MAXT,NODEX1 
CO~i'.'10:\ /\", ,BETA,AU ,l\XZERO 
co;.::1JC)]\ /DIGD'\L . 0,3),REDRHS(850),FULRHS(850) 
CO"'.ll'1l0:\ IPOTEJ\ /Pl-JI(850 ,2),PHIOLD(850),PHII'\E:W (850) 
C0~1E:O\ ),DXX(l:J50,3) 
co:-.1:1~D'\ / up;.;-uo /L PTRlA( 850,3),DDTRIA(850,3) 
co:1l.\~ O\" /:'l'd![EE /JCE,JE,KOC N·= 
COI\'.:110:\ /SLOPE/ ),HX(850),HXX(850) 

C ... CO'.lrf-'VTES -:'.HE EI-IS VOE -:-HE REDUCED EQUATIO.'.\ 
C ... AND 
C ... SOLYES THE REDGCED EQUATIONS TO l:lELD PHIOLD 

DX32=(2. <ff\'DX 
DO 10 l=?,.'.\ODEX1 
HGT=H(I) 
HDX=HX(I) 
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C2 = HG'T*HDX/2. 
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C3 = -(HG'T*HGT /3.)•(2.0 + DT*DT*HXX(I)/2.) 
C4 = HGT*DT*D'.:' 12. + HGT•HGT 13. 
IF(I.EQ.2.0IU.EQ.NODEXl) GO TO 11 
C5 = -DT*DT~HG'.:'*HG1*HDX/6 
D\....li.."X=(PHI(l+2,2)-2. •PHI(I + 1,2)+2. •PHI(I-1,2)-PHI(I-2,2)) /DX32 
REDRHS(I) =2. *PHI(I,2) - PHI(l, 1) 

1 + C 1 *D[R\(1,2) + C2 *DERX(l,J) 
2 + C3*DXX(I,2) + C4*DA"X(l.1) + C5*DXXX 

GO TO 10 
11 REDRHS(I) =2. *PHI(I,2) - PHI(I, 1) 

1 + C 1 *DERX(I,2) + C2*DERX(I, 1) 

2 + C3*DXX(I,2) + C4*DXX(I,1) 
10 CO'.\TII\TE 

REDr:HS(l) = 2.$PHI(l,2) - PHI(l,1) 
REDRHS(NODEX)= 2.*PHI(NODEX,2)- PHI(NODEX,1) 
CALL TRlSOL(TRI,REDRHS,PHIOLD) 
DO 20 I=2,NODEX1 
DEIG(I,3)=(PHIOLD(T+1 )-PHJOLD(I-1))1(2. *DX) 
D::\:X(I,3) =(PHIOLD(I + 1 )-2.C *PHIOLD(I)+PHIOLD(I-1)) I (DX•DX) 

20 CO'.\TI\:CE 
DERX(l,3) =(PHIOLD(2)-PHIOLD(l))/DX 
D:\X(l,8) =C.O 
DER".(NODI:::X,3) =(PHIOLD(NODEX)-PHIOLD(NODEX1)) !DX 
DX.."\(:\ODEX,3) =C.O 
RE-~L'R:\ 

E:;u 

Sl..:DROL:Til\"E TRISOL('TRI,RHS,PHI) 
1~,lPLICC REAL*B(A-H,0-Z) 
Di',lE\"SION TRI(85C,3),EH S( 1),PHI(1) 
co~.l\1 ();\" / ur~;Do I CPTEIA( 850 ,3) ,DOTRIA(850 ,3) 
CO'.>nlO'.\ / S~"EPS /DX,D":.-,NODEX,~,IAXT,NODEXl 

co:DlO\" /'TYiHERS /K'TI:11I:,KOUJ\T 
C ... SOLVES A TRIDlAGO:\AL .MATRIX BY 'L-U' DECOMPOSITION. LOWER AND UPPER 
C ... TR~A:\GULt\.H .'llA-:.-RlCES ARE COMPlJTED ONLY Or\CE 

1,2)=TRI( 1,2) 
UP-: 1,3)='.RI(l,3) 
PHJ(l) = EllS(l) 
IF(K=mE.G'..1) GO TO 500 
If(K0l1'.\T.GT.1) GO TO 500 
DO 10 1=2,I\ODEX 

Il = l-1 
DO".'.RlA(I,2) = 1. 
UPTRIA(l,3) = TRI(I,3) 
DO:-RIA(I,1) = TRI(I,1) I UPTRIA(I1,2) 
UPTRIA(I,2) = TI\1(1,2) - DOTRIA(I, 1)•UPTRIA(I1,3) 
If(DABS(CIY.'.RIA(I,2)).LT 1.D-29) GO TO 35 

10 CON'?E\CC 
500 DO 20 1=2,I\ODEX 
20 PHI(I) = RHS(l) - DOTRIA(I,1) • PHI(I-1) 

PBI(NODLX) = PHI(NODEX) I UPTRIA(NODEX,2) 
I=l'iODEX 
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25 Il=I-1 
PHI(Il)= (PHI(Il) - UPTRIA(Il,3) • PHI(I)) I UPTRIA(Il,2) 
I=I-1 
IF(LEQ.1) GO TO 15 
GO TO 25 

15 RL~UR'\' 
35 WREE (6,7) 
7 FOR\IAT (/ 15X,'A REQUIRES PfVOTING OR IS srnGULAR') 

STOP 
El\D 

SUBROUTINE FULSOL 
IlllPLICIT REAL "8(A-H,0-Z) 
cm.rn ON I STEPS I DX,DT ,NODEX,MAXT,NODEX1 
co=11'.'.l0:\ /WA YEH !ETA(850),ALF,U ,BE~ A.AU ,l\'XZERO 
COM!IION /DIGOl\L/TRI(850,3),REDRHS(850),FULRHS(850) 
Cm.DIO:l /POTEJ\ /PHI(850,2),PHIOLD(850),PHINEW(850) 
COM!llO'.\ /:XTIERV /DERX(850 ,3) ,D:X..>c( 850 ,3) 
Cm.E.IO:\ /TWHERE/KTIME,KOUNT 
CO!lllilO:\ /C'PNDO /UPTRIA( 850,3).DOTRIA(850,3) 

C ... C0!1IPUTES RHS FOR FULL EQN AND SOLVES THE FULL EQUATION (3.1) 
C ... FOR PHII\CW 
C ... KEEPS THE SAME BOUI\DARY CONDITlO!'< ON LEFT k\D RIGHT 

DO 10 I=2,l\ODEX1 
FULRHS(I) = REDRHS(I) - DT•DERX(I,2)"(DERX(I,3)-DERX(I,l)) 

1 - DT *D\.'X(I,2) *(PHIOLD(I)-PHI(I,1)) 12. 
10 COl\TINUE 

FULRHS( 1) =REDRHS(1)- DT*DI:RX( 1,2) *(DERX( 1,3)-DERX(l ,1)) 
FULRHS(l\ODEX)=RL:DRHS(l\::mcx) 

1 - DT •DERX(:\ODEX,2) •(DERX(NODEX,3)-DERX(NODEX,1)) 
CALL TRISOLC'Rl,FULEHS,PtHNEW) 
DO 20 I=2,:\0DEX1 
DERX(I,3 )=(PH!l\£'\',-(I -'-1 )-PHil';EW (I-l)) I (2. *DX) 
D:X..'\:(l ,3) =(PHINEW (I+ 1 )-2.0 *PHINEW(I)+PHINEW(I-1)) l(DX*DX) 

20 CO'.\-:T\lJE 
D:::RX( 1.3) =(PHil\EY\(2)-PHG\EW( 1 )) !DX 
DXX(l,3) =0.0 
DERX(NODEX,3) =(PHil\EW(NODEX)-PHINEW(NODEX1))/DX 
D),.'X(NODEX,3) =0.0 
RETuRN 

EI\D 

SlJBROlJ-:'.T\"E co:\IPAR(TOLER,KRIT) 
lll'PLIC!-:· Rl::AL ~s(A-H,0-Z) 
cmn:oN /STEPS /DX,DT,NODEX,MA,TI,NODEX1 
COMillON /POTEI\' /PHI(850,2),PH10LD(850),PHIKEW(850) 

C ... Cm.!PUTES THE COl\"\'ERGENCE CRITERIO'.\ 
C ... A'.'iD 
C ... CO~JPARES IT TO THE USER SELECTED TOLERAI\CE 

KRE=O 
DFITER=O.O 
DFTIME=O.O 
DO 1 0 I= l ,~\ODEX 
DFITER=DFEER+(PHIOLD(I)-PHIKEW(I))•(PHIOLD(I)-PHINEW(I)) 
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DFTIME=DFTIME+ (PHI (I,2)-PHII\""EW (I)) •(PHI (l,2)-PHil\'"EW(I)) 

10 COI\TPTE 
co:,E 0 L= DS QRT(DFITER) ID SQRT (DFTIME) 
IF(CO:-EOL.LT.TOLER) KRE=l 
DD 20 I= 1,l\ODEX 

20 PHIOLD(l)=PHINEW(I) 

RETURN 
END 

SUBFWU1INE SURFIT(IGIME) 

L'\lPUCJT REAL *6(A-H,O-Z) 
cc; nJO:\ / S1EPS IDX,DT,.t\ODEX,!vIAX::,I\-oDEX1 

C0\1:1: '.)\/'\YA \TH/ ETA(Bt.iO),ALF, U ,BE'.'.A,AC ,I\ AZ ERO 

cmrnor; /PO'C EN IPHI(850 ,2 ),PflIOLD(850),PHII\EY\ (850) 

C0~1::1 o:\ /XDER\' /DERX(850 ,3),DA.\(o50 ,3) 
co:.ElC \/SLOPE /H\850 ),HX(85C).HX\:(8:::JO) 

c...co:.:PC1ES iHl~ SCRFACE HEIGHT BASED OI\ THREE TIME LEVELS OF PHI 

DO 10 I=l,i-..;ODEX 

HGT=Il(I) 

PlJ\),-=(DX'X(l,3) - DX..\(I,1) )1(2.0*DT) 
Pux·~ =(D:CRX(I,3) - DERX(I,1))/(2.0~ffi) 

ET Al =(PHl'.\EIY(l) - PHI(I,1) )1(2.0'DT) 

E·: - l:iAl - Dr::R:<(I,::~)"'DCR:--~(I,2)12.0 

1 ..,.. (llGT'HGT 13 )*PDi::.".-: ..,_(HGT 12.)"PDX".:' 

10 CO\-:T\Ct: 
KOL.i.P1\l\=5*( (K:Im:-1)15) 

c lFl)<mlPARE;,/ 1c1:,1E-1) wm-::-I.:(17) K'.I!.=E.I'?A,PHINEW 

KCilK=:J'Y( ,1L-1)15C) 
IF(KClh.NE.K'.iML-1) RCCR'..\ 

2 l)"'D~ 

160 rcm: .. L\:'(1X,' Sl'IffACE HEIGH'? A-: -:;,-g,~[ = ',F?.2) 

11m: .161) .A(I),I=l,:'\ODCX) 

161 fOR'.,1X::(lO(lX,Fl0.6)) 

RS~ l;J:~?\ 

E.\D 

S;J BROU-:::'L\1:: EXCESS (SUSJEX,BELO\Y J,BOVE) 
Bll--Ucr-: REAUB(A-H,0-Z) 
C0~1::\JO'.\ / s::EPS IDX.DT,NODEX,'.1JAX.1,NODEX1 

CO\J'.lO\ /W:\YEH /ET A(850),ALF,U ,BE~ A,AC ,l\-XZERO 

co:\;f1lOS /R1'i~\~PflI / DEEP,SHALLO,SL,NSTAR-:,KEND 

SU)JI.:X=O.O 
C ... II\'i"EGRA~ES '.:HI: EXCESS MASS 

l\'E 1 =?\El\D-1 
m::1.,01; = o.o 
DJ 10 I=1,'.'-.'L1 

10 BELO\;= BELOW+ ETA(I)"'DX 

AI30\'E = 0.0 
DO 20 I=NE'.\D,NODEX 

20 ABOVE = ABOVE + ET A(I) *DX 

SCMEX=BELOW +ABOVE 



E:'\lJ 

SUBROUTINE SIFT3(PEAK,XP) 
IMPLICIT REAL*B(A-H,0-Z) 
DI\1El\SlOI\ P(3),X(3),IP(3) 
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COMllJ OI\ I STEPS I DX,DT ,l\ODEX,MAXT ,l\ODEXl 
co~,]l\}O_"\ /WAVEH/ETA(BbO),ALF,U ,BE'.:.'A,AlJ ,l\'XZERO 

C ... FII\DS WAVE PEAK AND PEAK POSITIOl\ 
C ... SEAI~CHLS FOR THE THREE HIGHEST VALCES Ar\D '.:'HE FITS A QUADRATIC 

D05L=l.3 
P(L) = 0.0 

5 IP(L)= 0 
DO 10 I= 1,l\ODEX 
IF l).GC-.I:T1\(I)) GC '."'O 12 

D 0 1 C 0 ~.1 = 1 , 2 
P(': = P(3-~1J) 

100 =IP(3-~) 

P(l)=F~A 

IP(l)=l 
GJ TO 10 

12 GT.E~A(I)) GO TO 13 
P(3) = P(2) 
IP(3) ) 
P(2) = ETA(!) 
IP(2)= I 
GO TO 1 C 

GT.ETA(I)) GO TO 10 

IP(J)= I 
10 co~;·~r~·;cc 

DO 2C =:,3 
20 =(IP('\l)-l\-XZERO)'"DX 

A= ( 1 ) ) I (X( 1 )-X(2) )-(P( 1)-P(3)) I (X( 1 )-X(3))) I (X(2)-X(3)) 
B=(P( 1)-P(3)) /(X(l )-X(3)) - A *(X(1)-..X(3)) 
C= P(l) - A*X(l)*X(l) -B*X(l) 
XP=-B/ .*A) 
PEAK=A~xP~xP + B*XP + c 
RI:T CE'.\' 
E'\D 

I'.1lPL!C: R.LAL *c1(A-H,0-Z) 
co:,:;.10:\ I S'"."EPS /DX,DT,'\'ODEX,MA..'CT,l\ODEX1 
co:.l'\W'\ I POTE!\ /PHI(B50 ,2),PHIOLD(850),PHI:\DV(850) 
COI.I:JO:; /XDER\. /DElc,;X(850,3 ),DX:X(850 ,3) 

C ... BT.:m)s ALL PHI Al\D Pill DERIYATfVES DOWl\" ONE TIME STEP TO 
C ... PREPARL~ FOR l\"EXT TlllIE STEP COMPUTATIOl\" 

DO 10 i=l,'.\ODEX 
PHI(!, 1 )=PHI(I,2) 
PHl(I,2 
DERX(l, 1 )=DERX(l,2) 
DSRX(l ,2) =<::1SRX(I,3) 
DXX(I, 1) =DX:X(l,2) 

10 =DXX(I,3) 



RETURT'i 
END 

SUBROUTINE RAMP 
IMPLICIT REAL*8(A-H,0-Z) 
DIMENSION HRA W(850) 
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CO~ll>I O!\" I S'TEPS I DX,DT ,NODEX,MAXT ,NODEXl 
cmrnm,; /SLOPE /H(850),HX(850),HXX(850) 
COMillO'.\ /R&\IPPM/DEEP,SHALLO,SL,NSTART,NEND 

C ... SETS THE BOTTOM TOPOGRAPHY 
C ... READ IN THE RAMP START NODE, RAMP END NODE, DEEP DEPTH, SHALLOW DEPTH, 
C ... AND THE SLOPE OF THE RAMP 

READ(5, 150) NSTART,NEND,DEEP,SHALLO,SL 
150 FOR:llAT(2I5,3F10.5) 

C ... lrnITE OUT 
17) NSTART,NEND,DEEP,SHALLO,SL 

Wt\EE(6 ,160) 1\"SIAfC,NEND,DEEP,SHALLO,SL 
160 FORflIAT(lX,'RAI\IP PARAil1ElERS:',6X,'START NODE=',I5,5X, 

1 'E!'iD NODE:',I5/23X,'DEEP WATER DEPTH=',F6.2/23X, 
2 'SHl'.LLOW IYA'I'ER DEPTH=',f6.2/23X,'SLOPE=',1PD11.2/ /) 
KS 1=l\S".':'AR'T-1 
NEl=NE:\D+l 

C ... SE'1 UP THE HEIGHTS 
DO 10 I=l,l'\STAR".:' 

10 HRA\'f(I)=DEEP 
DO 20 I=l\S1 ,NEl\D 

20 HRAW(I)=DEEP - SL •(I-NSTARl')"'DX 
DO 30 I=NEl,NODEX 

30 1-IRA\Y(I)=SHALLO 
C ... S:1~00TH THE PROFILE 

f'iODEXl =NODEX-1 
D:J 35 I=2,'.\0DEX1 

35 H(I)= (HRA W(I-r 1) +HRAV\(I)+HRAW(I-1)) 13. 
H(l)=HRA\Y( 1) 
H(I\ODEX)=HRAW (NOD EX) 

C ... Cel1IPC . ."E THE DERIVATIVES 
DO 40 1=2,.!'iODEXl 
HX(I) =(H(I+l)-H(I-1))1(2.*D"X) 

40 HXX(I)=(H(I-1 )-2. *H(I)-,-H (I-1 )) I (DX*DX) 
HX(l) =0.0 
HXX(l) =0.0 
HX(NODEX) =0.0 
HXX(l\'ODEX)=O.O 
RETUR'.\ 
E!\D 
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APPENDIXC 

Listing of the 2HD FORTRAN Program 

To complement the description of the numerical procedure in Section 3.2, 

we present the following FORTRAN program used in the 2HD problems. This 

sample program can be used to solve the concave topographies described in 

Chapter 4. (The convex topographies have a slightly different subroutine 

SETR!v:P.) 1~any comment cards have been added to make the program easi.er to 

understand. A flowchart of this program is presented in Figure 3.3. 
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IMPLICIT REAL•B(A-H,0-Z) 
COMMON I STEPS /DX,DT,NODEX,MAXT ,NODEXl 
COM!vlON I ADDY /DY,NODEY,NODEY1,NODTOT 

c 
c 

COM.'llON /WAVEH/ETA( 12341 ),ALF,U,BETA,AU,NXZERO 
COM.'IION /POTEN /PHI( 12341,2),PHIOLD(1234l),PHINEW(12341) 
COMM OJ\ /TWHERE /KTIME,KOUNT 

C PROGRAM TO SOLVE PARTIAL DIFFEREN'TIAL EQUATION (3.10) 
C DESCRIBING PROPAGATION IN TWO HORIZONTAL DIRECTIONS 
c 
C PROGRAM HAS BEEN DESIGKED TO CORRESPOND AS MUCH AS POSSIBLE 
C WITH THE PROGRAM FOR PROPAGATIOI\ IN ONE HORIZONTAL DIMEKSION 
c 
C .... CA\"EA'.:""* THE STEP SIZES HAVE ALL BEE:\ TAKEN TO BE THE SAME' .. * 
c 
C ALL SINGLY SCBSCRIPTED ARRAl'.'"S FOR THE POl'ENTIAL, SURFACE HEIGHT, 
C AND DERIVATJYES REPRESENT FUNCTIOl\S OF TIYO VARIABLES, X ANDY. 
C EQUATION (3.12) GIVES THE RELATIO!\SHIP BETWEEN THE SEQUENTIAL 
C NOTATIO:\ USED HERE A'.'\D THE MORE PHYSICAL (X,Y) NOTATION. 
c 
C THE SCAL..4.RS ARE: 
c 
C DX - STEPSIZE IN X-DIRECTION. 
C DY -- STEPSIZE II\ Y-DIRECTIOI'\: SAME AS DX. 
C DT -- S1EPSIZL IN TIME· SA!l1E AS DX. 
c NODEX -- NU.'liBER or NODES IN 'THE X-DIRECT"ION. 
c NODEY -- NUI\IBER or !\ODES Il\ THEY-DIRECTION. 
C NODTOT -- TO"I'AL l\Ci,IBER OF NODES. 
C MPJ(T -- NU'.IIBER OF 'IIME STEPS TO BE COMPUTED. 
C J\i-XZERO -- NODAL LOCATION OF INEIAL WAVE PEAK 
C ALF -- THE A~IPLITUDE OF THE INITIAL WAV"E. 
C DEEP -- WATER DEPTH Il\ DEEP REGION. 
C Sl!ALLO -- WATEE DEP_H I:\' SHALLOW REGION. 
C SL -- RMdP SLOPE. 
C NSTART -- NODAL STARTING LOCATION OF RAMP. 
C NEND -- l\ODAL ENDING LOCATION OF RAMP. 
C MCURVE -- WIDTH OF CURVING RAMP FEATURE 
C TOLER -- CONVERGENCE TOLERANCE COMPARISOJ\ PARAMETER 
C SOR -- SUCCESSIVE OVER-RELAXATION PARAMETER 
c 
C THE ARRAYS ARE: 
c 
C ETA -- VECTOR ARRAY OF SURFACE HEIGHT, COMPUTED FROM 
C SUBfWC'.!TL\E SURFIT. 
C PHI -- ARRAY CON'.:""A!Nl!\G THE POTE!\"TIAL AT THE PREVIOUS 
C TIME STEP PHI( , 1) A!\D PRES PU TIME STEP PHI( ,2). 
C PHIOLD -- FIRST OR PREVIOUS APPROXIMATION FOR PHI AT THE 
C NEW TIME STEP. 
C PHINEW -- CURRENT APPROXIMAl'ION FOR PHI AT THE NEW TIME 
C STEP. 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
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DERX - DOUBLY SUBSCRIPTED ARRAY COl\i1AINING THE FIRST 
X-DERIVATIVE OF PHI AT THE PREVIOUS TIME 
STEP DERX(, 1); THE PRESENT TIME STEP DERX( ,2); 
MD THE NEW TIME STEP DERX( ,3). 

DERY -- DOUBLY SUBSCRIPTED ARRAY CONTAINING THE FIRST 
Y-DERIVATIVE OF PHI AS II\' DERX ABOVE. 

DELSQ -- DOUBLY SUBSCRIPTED ARRAY CONTAINING DEL-SQUARED 

SECOND SUBSCRIPT DENOTES TIME AS IN DERX ABOVE. 
REDRHS -- THE VECTOR ARRAY CONTAINING THE REDUCED RIGHT

HAND SIDE. COMPUTED ONCE PER TI.ME STEP. 
Fl'LRHS -- THE VECTOR ARRAY CONTAINING THE REDUCED RIGHT

HAND SIDE PLUS THE NONLINEAR CORRECTION. COM
PF.'.:ED A'T EACH EERATIO:'.'~ I'\ EACH TIME STEP. 

HEIGH-:.-,DHDX,DHDY,DDH -- FOCI~ DOLBLY-SUBSCRIPTED ARRAYS 
CONTAIC..:ING RAMP INFORMA?ION: THE WATER DEPTH IN 
THE RAMP REGION, THE FmST X AKD Y DERIVATIVES OF 
rn:::l-,-H, A!\D DEL-SQUARED Of "?HE DEP'!'H. THESE ARRAYS 
ONLY CONCERN THE Rt,:,JP REGION A'.\D ARE USED BY 

THE fC!\CTIOi\ SUBROC-:LINES FOR DEPTH AND DEPTH 
DEFm ATIYES. 

c ... II'>.-ITIALIZE 7HE m::RIVA"?IYE ARRAYS 

CALL l3LClC1\. 
C ... READ I:\ THE NU'11BER OF CASES TO BE COMPUTED 

READUi, 149) 0:CASE 
149 FOR'..1'\T(I5) 

DO COG ICliSE=l .XCASL 
C ... RLAD IX lNPU'T \li.LCES, SET RA\IP CO\TIGURATIOI\ 
C ... A'.\D \\El 'TE OC':'.' HLt;DERS 

CALL READYL(JCASI:,'TOLER,I'TMA_,\) 
C ... SL"T UP J.TlE co:1IPU1ABLE COI\s·.:A'.\':'.'S 

1 CALL CO:\SET 
c ... 1TlE l!\rL\L CO\DlTIO'.\S ON PHI, ALSO GETS X-DERIYATIVES 

CALL S~-4.RT 
DU 10 K1Hi1E=1,MA\1 
KOC:\ . .i=O 

C ... SOLYE THE REDUCED EQUA'TIOI\: 
CM.L SOLRED 

C ... l~EJ::,\'TIO:\ LOOP: COI1lPCTE NEW RHS VECTOR; SOLVE THE FULL EQN. 

GO 'I"D 1000 

CALL FTLSOL 
C ... CHECK FOE CO\-Vt:RGEI\CE: CO\YERGED => KRIT=l; NOT COI'llVERGED => KRIT=O. 

CML C0:'1PAR(-::-DLER,KRE) 
~ .EQ.O) GO TO 5 

Tl'.\lt: 1) "'DT 
CALL SCRf'IT(KTrnE) 
CALL EXCESS(YOUI) 
CALL SffT3(PEAK,XPEAK) 

,164) TI'.llE,VOLM,PEAK,XPEAK,KOUI\1 
164 FOF:'.11A'";( lX,FB .2, lPD 15.6,t,X, 1PD15.6,4X,1 PD15.6,8X,12) 

KOI11PAE=10*( (KTHilE-1)110) 

1F(K0!\1PAR.EQ. K'.:'IME-1) 
17) TI~iE,VOL!'vi,PEAK,XPEAK,KOUNT 



CALL S"'l'tT'.' CH 
10 CONTINUE 

500 CO!\TlNUE 
S':J'OP 

1000WRITE(6,1600) 
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1600 FOR:1lAT(lX,'MA.XIMUM ITERATION COUNT EXCEEDED') 
S:'.'OP 
E.r\D 

SUBROl:TI:'.'JE BLOCK 
n1ru::.:r:: EEAL ~a(A-H,0-Z) 
ccrn:-JO:\ /XDERY /DERX( 12341,3),DELSQ( 12341,3) 
CO\Di:Y.\ /rTIER\" /DERY( 123S. l ,3) 
DO 10 l\=1,3 
DO 10 L=l,123..:;1 
DELSQ(L,.'.'\) = C.O 
DEEX(L,l\) = 0. 0 

10 DERY(L,l\) = 0.0 
RETURN 
END 

SUBROUTINE READVL(ICASE,TOLER,ITMA.X) 
IMPLlCl'. REAL*B(A-H,0-Z) 
C0'.1nl o;\' I S""EPS I DX,D~ ,NODEX,MAX:: ,NODEXl 
ccm'-JO:\ /ADDY /DY,'.\ODEY,NODEYl ,NOF'.OT 
C:X-,1:110~: /\VAVEH /ETA( 123,; 1 ),ALF ,U,BE! A,AU,:!'{XZERO 
C0'..1:110N /DEPTH /HGT ,SHELFH ,SLCJPE,NSTART ,l\EN"D,NSTRT 1,NENDPl 
co:rno:~ /SOPAE.:11 /SOR,SORl 
CD?:IDlO\J /PROfIL/HEIGHT(55 ,41),DIJDX(55,1:.1 ),DHDY(55,41 ),DDH(55,41) 

C ... CmiPCTES THE VARIOUS CO'.\STAl\ .. TS 
RI::AD(5, 150) DX,DT,ALF,HGT ,TOLEH,MAXT,NODEX,NXZERO,ITMAX 

150 FOH:.lAT(ffB.3, 1PD15.6 /4I5) 
READ(5,152) DY,l\ODEY 

152 FOR\!AI(FB.3,IG) 
READ(5, 153) l\START,l\END,SLOPE,SHELFH,SOR 

153 FOR'.11A ~ (215 ,2fl 0 .5 /Fl 0 .5) 
C ... THE HEIGHT PROFlLE A:\D ITS DERIVA'lIVES 

CALL SGRMP 
C ... PCT ALL IJ.\PUT OUT ONT"O TAPE; KEW FILE If MORE THA.t"\' ONE CASE 

IF(ICASLI\L 1) CALL vrnTl\T(l 7) 
WRITE( 1 7) DX,DT ,ALF,H GT ,T OLER,MA'\T ,NODEX,1:\"XZERO,ITMAX, 
1 DY,NODJ:::Y,NSTART,'.\£'.<D,SLOPE,SHELFH,SOR 

C ... THE IDE.'.'\TIFIERS FOE THIS CASE 
WRITE(G,GO) 

60 FORMA~ (lOX,'******••·*•******"******************"**••••••••••••', 

1 '*********"**~~*****************') 
WRITE(6,G5) 

65 FOR'-lAT(lOX,'*',79X,'*') 
WF.ITE(6,70) ICASE 

70 FORMA'I"(10X,'*',32X,'CASE KUMBER =',I2,32X,'*') 
WRITE(6,65) 
Wl:ff1E(6,75) DX,DY,DT 

75 FORMA1(10X,'•',5X,'SPACING:',12X,'DX=',FG.3,5X,'DY=', 
1 F6.3,5X,'DT=',F6.3, 17X,'*') 
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WRITE(6,80) NODEX,NODEY,MAXT 

80 FORMAT(lOX,' •',5X,'NUMBER OF POIT\~S:',3X, 'X-DIR:',I3,5X,'Y-DIR:', 
1 I3,5X,'~JAX TIME:',I3, 14X,'•') 
XZ:CR'.J=('.\}(ZER0-1) ~DX 
y,·mTE(6,G5) 
WRITE(G,8 ALF,HGT;XZERO 

85 FOE\lA T( 1 OX,'•' ,5X, 'WA\ 'E PARA1>~ETERS:' ,5X, 'AMPLITUDE:', 15X, 
1 F5.3,23X,"",1X110X,'•',26X,'WATER DEPTH:',13X, 

F5.3,23X,'*', 1X/lOX,'*',26X,'INITIAL PEAK LOCATION', 
2X,F7 .3 ,23X,' •') 

,G5) 

ST =(KSTART-l)*DX 
E:'\D= ('\E'.'W-1) *DX 
W ,87) ST,E'.\D,SHELFH 

87 FOR\JXT(lOX,'*',5X,'l:V\\1P PA.RAMETERS:',5X,'START LOCATION:',8X, 
1 F6.2,24X,""',1X/10X,'•',26X,'E'.\D LOCATIO'.'\:',lOX, 
1 F6.2,24X,'*',1X!10X,'•',26X,'DEPTH m~ SHELF:', 

6X,F7.3,23X,' 
YrnIT ,65) 
Y.1·:1- ,S )TOLER 

90 fC.JlrnXT(lOX,'*',5X,'CO\IPU1ATIO:\AL '.:'OLIRA'.'\CE USED:',1PD12.2) 
\, .G 
\\ .s sor: 

95 FOF:'.1L\-.:-(10X,'"',5X,'SOR PARAME1ER:',15X,1PD15.6) 

RE'".:CE:\ 
L;\D 

SCI31~0CTI:\E CO\-SET 
EiPLlC:Ii EL-\L' 8 (A-H, 0-Z) 
co:.1:.J D>: / S~TPS /DX, ff'. ,I'\ODEX,T\iL\,\""T',NODE'Xl 
co~.1:,i ()'.\" /\!"AYEH /LT A( 12341 ),ALF ,U ,BETA,Al.7,I\--::\ZERO 

C0'.1'.'.110:\ /RB SIDE /REDi".HS( 12341 ),FULRH S( 12341) 
c 0 rim o:·\ /ADDY/ DY,N ODEY' N 0DEY1, I\ OD'~ 01 
COYl'.10:\ / DEViH /HGT ,SHSLFH ,SLOPE,NSTART,NE'.\D,NSTRT 1,NENDPl 
CD:li'.10'.\ / SQCJ::LL:: /Cf ,C,C2,CD,D2,D5(~,DSQ3,DD,; 
CO'. I:\;o:.; / SliELF /CF5H ,CSH,C2SH,CDSH 
COjJ'.110~\ /SOPAR:.l /SOR,SOR1 
co:\;, .. 10;; /Fixn-:s3 

lJ =DSQRT(l.0-ALF) 
BETA =DSQRI(3. "ALF /(4.*U*U)) 
AU= ALF /D 
l\ODEXl='.:'\OIJD(-1 
l\ODEY1 =~\ODEY-1 
NOD':OT=I';ODEX*'.\ODEY 

NS~P.Tl=NSl'AK>l 

l\El\DPl=NEND+l 
!\ S3 ='\S!ART-3 

C ... FLAT E'.\TRY St:C--;:'ION 
CF = DT *D'.l*HGT /2. + HGT*HGT 13. 
C = -Cf l(DX*DX) 
c2 = 2.o•c 
CD = (1.0-4.0*C)/SOR 
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C ... SHELF SECTIO:\ 

CFSH = DT"DT*SHELFH/2. + SHELFH*SHELFH/3. 

CSH = -CFSHl(DX"DX) 

C2SH = 2.0*CSH 

CDSH = (l.0 - 4.0*CSH)/SOR 
D2 = DX"2.0 
DSQ = D:'\*DX 

DSQ3 = DSQ'3. 

DD4 = DX*4.0 
SO~l = 1.0 - SOR 
RE'J.'URN 
END 

SU BROCTI:\E S'::' AIC 
IMPLICE REAL"8(A-H,O-Z) 
co1 :'1W\. /S-EPS IDX,D'l',NODEX,MA,'X":",NODEXl 

C()'.LU'\ / -'cDDY /DY,:\ODEY,I\ODE:Yl ,KOD"'.'01 
C0',1'.10~\ /V1A\L:H /E~- 12341 ),ALF ,U,BETA,AU,l\"XZERO 

co:C·lO\ / PO"'.E\ IPHl( 12341,2),PHIOLD( 12341),PHINEW(12341) 

ccrn:\10:< /XDERV 12341,3),DELSQ( 12341,3) 

C0'.1El0'.\ IYDER\' IDL:RY(12341 

C .. .r~;-;-J~L CO'.\D!TlO'.\S DO ;,·01 ASSUME Al'-.tY DEPTH VARIATION 

DOl0!\=1,2 

"DT 
C ... SL:T UF' THI.: FIRST P.O'\'i OF VAL'CIS 

DO 1C J=l,:\ODEX 
cm = l:li:.:'TA'((J-!\'XZERO)*DX-U*T) 

PI-ll(:,i'i) = DS .*ALF /3.)*DTANH( CHI) 

If(CHIG'::' GO TO 10 

.~;) =AC l(DCOSH(CHI)*DCOSH(CHI)) 

DELS ','.\) = -2.0•f3E"'.A *DTANH(CHI) 

10 cc_,:TINUE 
C ... SFEI::AD rms-:- RO\'i ACROSS GRID 

DO 20 :\=1,2 
DO .'20 i\.==2 ,N ODEY 
DO 20 J=l,J\ODLX 
L=" ~-(K-1) *'.';ODEX 
Pl-Il(L)\) = - ,1\) 
DERX(L,i'i) = DERX(J ,I\) 

20 DELSQ(L,N) = DELSQ(:,N) 

RE URN 
END 

SUBROlJTII'\E SOLRID 

H-lPLICil REAL*8(A-H,O-Z) 

CO!i.E.l O'.\ I S'l EPS I DX,DT ,J\ODEX,MAXT ,NODEXl 

CO!i.E>iO:\ I ADDY /DY,NODEY,NODEYl ,NODTOT 

CO!i.lIIJO.\' !WA \'EH !ETA( 12341 ),ALF,U,BETA,AU,J\"XZERO 

COMMON /DEP~ H /HGT ,SHELFH,SLOPE,NSTART,NEND,NSTRT 1,NENDP1 
CJ:1nJON /HHSIDE /RCDf?.HS( 12341 ),FULRHS(12341) 

CO!ll!\lOI\ /PO'.:'EN IPllI( 12341,2),PHlOLD( 12341),PHINEW(12341) 

COI\l!IJON /A'DERV /DERX( 1234 1 ,DELSQ( 12341,3) 

COMIIJON /r'DERV /DEI~Y(12341,3) 
CO!IIMO'.'\ /TWHERE /KTIME,KOUKT 
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COMMO!\ /SQUEEZ /CF,C,C2,CD,D2,DSQ,DSQ3,DD4 
COMMON /SHELF /CFSH,CSH,C2SH,CDSH 

C ....................................................................... C 
c c 
C COMPlJ'.:"ES THE RHS FOR THE REDUCED EQUATION C 
C A.'\'D CALLS THE SOLYER TO YIELD SOLU'lIOI\ 10 LI:'.\EARIZED EQUATION C 
C WHICH IS THE'.\ USED 'TO CALCCLATE KO'.'iLII\EAR TERMS AND C 
c 
c 
c 

ALSO FC.\CiIOI\S AS I\EXT GCESS FOR SOLVER 
c 
c 

C ............ THE Ei\TRY AXD E)]T EDGE BOUXDARII:S ........................ -
DO 10 JE\D=l,NODTOT,KODEX 
REDlmS(JBND) = 2. *PHI(JB.\'D,2) - PHI(JBr\'D, 1) 
JDEX=JB.\'D-I\ODEX1 

10 REDRHS(JDEX) = 2.*PHI(JDEX,2) - PHI(JDEX,l) 
c 
C .................. THE MIDDLE REGI0'.\5 ................................. --
C ................ .Il\'ITL\L FLA'.:' SEc;rox ............................... . 

Cl = -2.*HGT"'HG'T/3. 
Bl = HGT*D'l"'DT 12. + HGT*HGT 13. 
DO 30 K=l,NOD'.::Y 
DO 30 J=2,'\STR~1 
L=,J-(h-1) ~ KODCX 

c 

30 RE:DRES(L) =2.•-PHI(L,2) - PHI(L,1) + Cl"'DELSQ(L,2) + Bl"'DELSQ(L,1) 
C ..................... SLO?l'.\G REGIDI\ .................................. . 
c •EXCLlJDl'\G THE ·wALLS* 

DO 32 K=2,NODEY1 
DO 32 J=NS~AfC,\DW 
\:1-JG~ = H(J.l\) 
\11X = HX(J .K) 
VHY = HY(J,K) 
VDELH= DELH(J ,K) 
L=J +(K-1) ~I\ODEX 
Cl = -(vl-l.GT•VHGT /3.)•(2.+DT•D-:"•VDELH/2.) 
Bl= VHG-:'.'*DT'"DT /2. + VHGT*VHGT/3. 
C3 = DT•DT-VHGT 
CSc = \1-l.GT 12. 
C5 = - \1-JG~*VHG'l~DT*D:-16. 

32 REDI~H S(L)=2*PHI(L,2) - PHI(L, 1) + C l*DILSQ(L,2) + Bl •DELSQ(L, 1) 
1 + C3*(VHX*D[RX(L,2)..;..VHY*DERY(L,2)) 
2 + C': *(VI-J:X"DERX(L, 1)+VHY*DERY(L,1)) 
3 .,.. C5 *( Vl-!X*(DELSQ(L+ 1.2)-DELSQ(L-1,2)) 
4 .,- \l-l.Y*(DELSQ(L..;..NODEX,2)-DELSQ(L-NODE".X,2)) )/(2.•DX) 

c •Nov; CALCCLATE O'.\ THE WALLS* 
DO 33 I=l,2 
DO 33 J=NSTAR"C,'.\END 
K=(I-l)*NODEYl + 1 
VHGT = H(J,K) 
VHX = HX(.J,K) 
v1-lY = HY(:,K) 
VDELH= DELH(J ,K) 
L=J -'-(K-1) "l\'')DEX 
Cl = -(VHGT"VHG'l /3.)*(2.+DT•DT•v'DELH/6.) 
Bl = VHGT*DT*DT 12. + VHG~-·VHG'T /3. 



c 

C3 = DT*DT-VHGT 
C4 = VHGT/2. 
C5 = -VHGT•VHGT*DT*DT 16. 
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33 REDRHS(L)=2.•PHI(L,2) - PHI(L,1) + Cl*DELSQ(L,2) + Bl*DELSQ(L,1) 
1 + C3•(VHX•DERX(L,2)+VHY•DERY(L,2)) 
2 + C4•(VHX•DERX(L,1)+VHY•DERY(L,1)) 
3 + C5•( VHX•(DELSQ(L+l,2)-DELSQ(L-1.2)) )1(2.•DX) 

C ................... FLAT SHELF SECTION ............................... . 
Cl = -2.•SHELFH•SHELFH/3. 
Bl= SHELFH•DPDT/2. + SHELFH*SHELFH/3. 
DO 34 K= 1 ,NO DEY 
DO 3L~ J=NENDPl,NODEXl 
L=: ..,..(K-1) •NODEX 

34 REDRHS(L) =2.•PHI(L,2) - PHI(L,1) +Cl •DELSQ(L,2) +Bl •DELSQ(L,l) 
c 
C ......... -PERFORM ONE PASS OF SUCCESSIVE OVER RELAXATION ........... . 

CALL SUCCES(PHIOLD,REDRHS) 
c 
C ... PUT SOLUTION TO LINEAR INTO PHI:NEW AS FIRST SOR GUESS 

DO 20 L=l,NODTOT 
20 PHINEW(L)=PHIOLD(L) 

RETURN 
END 

SUBROUTIJ\'E FULSOL 
IMPLICIT REAL•B(A-H,0-Z) 
COMMON I STEPS I DX,DT,NODEX,MAXT ,NODEX1 
COMMON I ADDY /DY,NODEY,NODEYl ,NODTOT 
COMMON /WAVEH!ETA( 12341 ),ALF,U,BETA,AU,1\'XZERO 
COM110N I DEPTH /HGT ,SHELFH ,SLOPE,NSTART ,NENTI,NSTRT 1,NENDP1 
comlON /RH SIDE /REDRHS( 12341),FULRHS( 12341) 
COMI,lQN /POTEN /PHI(12341,2).PHIOLD(12341),PHINEW(12341) 
COMMON /XDERV /DER.X(12341,3),DELSQ(12341,3) 
COMMON /YDERV /DERY(12341,3) 
COM110N !TWHERE /KTIME,KOUNT 

C ... COMPUTES RHS FOR FULL EQN AND SOLVES FOR PHlli"'EW 
C ... ( B.C.'S ABSORBED IN DELSQ TERM) 

DO 20 K=l,l\'ODEY 
DO 20 J=l,NODEX 
L=J.i-(K-1) *NO DEX 
FULRHS(L) = REDRHS(L) - DT•( DELSQ(L,2)•(PHIOLD(L)-PHI(L,1))12. 
1 +DERX(L,2) •(DER.X(L,3)-DERX(L, 1)) 
2 +DERY(L,2)*(DERY(L,3)-DERY(L,1))) 

20 CONTINUE 
CALL SUCCES(PHINEW,FULRHS) 

1 RETURN 
END 

SUBROUTINE COMPAR(TOLER,KRIT) 
IMPLICIT REA.L•S(A-H,0-Z) 
COMMON I STEPS /DX,DT ,NUDEX,MAXT ,NODEX1 
COMMON I ADDY /DY,NODEY,NODEYl,NODTOT 
COMMON /POTEN /PHI(12341,2),PHIOLD(12341),PHINEW(12341) 



KRIT=O 
DFITER=O.O 
DFTIME=O.O 
DO 10 I=l,NODTOT 
DFI =PHIOLD(I)-PHINEW(I) 
DFITER=DFITER+DFI*DFI 
DFT =PHI(I,2)-PHIN"EW (I) 
DFTIME=DFTIME+ DFT*DFT 
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10 CONTINUE 
COMTOL=DSQRT(DFITER)/DSQRT(DFTIME) 
IF(CmiITOL.LT.TOLER) KRIT=l 
DO 20 1=1,NODTOT 

20 PHIOLD(I)=PHINEW (I) 
RETURN 
END 

SlJEROUTINE SURFIT(KTIME) 
IMPLICIT REAUB(A-H,0-Z) 
DIMENSION VELOC(12341) 
COMM ON I STEPS I DX,DT ,NODEX,MAXT ,NODEX1 
COM.MON I ADDY /DY,NODEY,NODEYl ,NODTOT 
COMMON /WAVEH /ETA( 12341 ),ALF,U,BETA,AU,NXZERO 
COMMO'.\' /POTEN /PHI(12341,2),PHIOLD(1234 l),PHL"r\TEW(12341) 
COMM ON /XDERV /DERX( 12341,3),DELSQ( 12341,3) 
cmrnoN /YDERV /DERY(1234 l,3) 
COMMON /DEPTH I HGT ,SHELFH ,SLOPE,NSTART ,NEND,NSTRT l ,NENDPl 
cmrnoN I SQUEEZ /CF ,C,C2,CD,D2,DSQ,DSQ3,DD4 
DO 5 K= 1,NODEY 

C ................ .INITIAL FLAT SECTION ............................... . 
DO 10 J=l,NSTRTl 
L=J+(K-l)*NODEX 
PT =(PHINEYi(L) - PHI(L,1))/D2 
GPSQ =DERX(L,2)*DERX(L,2)+DERY(L,2)*DERY(L,2) 
PDSQT=(DELSQ(L,3) - DELSQ(L,1))/D2 

10 ETA(L)= -PT -GPSQ/2. + (HGT*HGT 13.)*PDSQT 
C ..................... SLOPING REGION .................................. . 

DO 12 J=NSTART,NEND 
L=J+(K-l)*NODEX 
VHGT = H(J,K) 
VHX = HX(J,K) 
VHY = HY(J ,K) 
PT = (PHINEW(L) - PHI(L,1))/D2 
GPSQ = DERX(L,2)*DERX(L,2)+DERY(L,2)*DERY(L,2) 
PDOTH = (VHX*(DERX(L,3)-DERX(L, 1))+VHY•(DERY(L,3)-DERY(L,1))) /D2 
PDSQT = (DELSQ(L,3) - DELSQ(L,l))/D2 

12 ETA(L)= -PT+ (VHGT*PDOTH-GPSQ)/2. + (VHGT*VHGT/3.)*PDSQT 
C ................... FLAT SHELF SECTION ............................... . 

DO 14 J=NENDPl,NODEX 
L=J +(K-1) •NODEX 
PT =(PHINEW(L) - PHI(L,1)) /D2 
GPSQ =DERX{L,2)*DERX(L,2)+DERY(L,2) •DERY(L,2) 
PDSQT=(DELSQ(L,3) - DELSQ(L, 1)) ID2 

14 ETA(L)= -PT -GPSQ/2. + (SHELFH•SHELFH/3.)*PDSQT 
5 CONTINUE 
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KOMP=lO•( (KTIME-1)/10) 
IF(KOMP.NE.(KTIME-1).AND.KTIME.1'.t'E.MAXT) RETURN 
WRITE(17) KTIME,PHI,PHINEW,ETA 
WRITE(6,l 60) KTIME 

160 FORMAT(lX,'WRITING TO TAPE, KTIME=',I5) 
RETURN 
END 

SUBROUTINE EXCESS(VOLM) 
IMPLICIT REAUB(A-H,0-Z) 
COMM ON I STEPS /DX,DT ,NODEX,MAXT ,NODEX1 
COMMON I ADDY /DY,NODEY,NODEYl ,NODTOT 
COMMON /WAVEH /ETA( 12341 ),ALF,U,BETA,AU,NXZERO 

C .. .II\TEGRATES THE EXCESS MASS 
VOLM = 0.0 
DO 10 I= 1,NODTOT 

10 VOLM = VOLM + ETA(I)•DX 
VOLM=VOLM/NODEY 
RETURN 
END 

SUBROUTINE SIFT3(PEAK,XP) 
IMPLICIT REAL*B(A-H,0-Z) 
DIMENSION P(3),X(3),IP(3) 
COMMON /STEPS/DX,DT,NODEX,MAXT,NODEX1 
COMMON I ADDY /DY,NODEY,NODEYl ,NODTOT 
COMMON !WAI/EH /ETA( 12341),ALF,U,BETA,AU,NXZERO 
CO:\IMON /TWHERE/KI'IME,KOUNT 

C ... SEARCHES FOR THE THREE HIGHEST VALUES AJ',1) THE FITS A QUADRATIC 
DO 1000 K= 1,NODEY.4 
D05L=l,3 
P(L) = 0.0 

5 IP(L)= 0 
ISTART=l +(K-l)*NODEX 
IEND =K*NODEX 
DO 10 f=ISTART,IEND 
IF (P(l).GT.ETA(I)) GO TO 12 

DO 100 M=l,2 
P( 4-M) = P(3-M) 

100 IP(4-M)=IP(3-M) 
P(l) =ETA(I) 
IP(l)=I 
GO TO 10 

12 IF(P(2).GT.ETA(I)) GO TO 13 
P(3) = P(2) 
IP(3) =IP(2) 
P(2) = ETA(I) 
IP(2)= I 
GO TO 10 

13 IF(P(3).GT.ETA(I)) GO TO 10 
P(3) = ETA(I) 
IP(3)= I 

10 CONTINUE 
DO 20 M=l.3 
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20 X(M)=(IP(M)-(K-1)•NODEX-NXZERO)•DX 
A=( (P( 1)-P(2)) I (X( 1 )-X(2) )-(P( 1)-P(3)) I (X( 1)-X(3))) I (X(2)-X(3)) 
B=(P(l)-P(3))/(X(l)-X(3)) - A•(X(1)+X(3)) 
C= P(l) - A*X(l)*X(l) -B•X(l) 
XP=-B/(2. •A) 
PEAK=A*XP*1.'P + B•XP + C 
KOMP=20 •( (KTIME-1) /20 ) 
IF(KOMP.NE.(KTIME-1).AND.KTIME.NE.MAXT) GO TO 1000 
WRITE(6,160) K,PEAK,XP 

160 FORMAT(1X,I5,1P2Dl5.6) 
1000 CONTINUE 

RETURN 
END 

SUBROUTINE SWITCH 
IMPLICIT REAL•B(A-H,0-Z) 
COMMON!STEPS/DX,DT,NODEX,MAXT,NODEXl 
COM!IWN I ADDY /DY,NODEY,NODEYl,NODTOT 
COMMON /POTEN /PHI( 12341,2),PHIOLD(12341),PHINEW(12341) 
COM!liON /XDERV /DERX(12341,3),DELSQ(12341,3) 
COMMON /YDERV /DERY( 12341,3) 
DO 10 I=l,NODTOT 
PHI(I,1) = PHI(I,2) 
PHI(I,2) = PHINEW(I) 
DERX(I,1) = DERX(I,2) 
DERX(I,2) = DERX(I,3) 
DERY(I, 1) = DERY(I ,2) 
DERY(I,2) = DERY(I,3) 
DELSQ(I, 1) = DELSQ(I,2) 

10 DELSQ(I,2) = DELSQ(I,3) 
RETURN 
END 

SUBROUTINE DERSET(PASS) 
IMPLICIT REAL*B(A-H,0-Z) 
DIMENSION PASS(12341) 
COMM ON I STEPS I DX,DT ,NODEX,MAXT ,NODEX1 
COMMON I ADDY /DY,NODEY,NODEY1,NODTOT 
COMMON /SQUEEZ /CF,C,C2,CD,D2,DSQ,DSQ3,DD4 
COMMON /SHELF /CFSH,CSH,C2SH,CDSH 
COMMON /XDERV /DERX( 12341,3),DELSQ(12341,3) 
COMM ON /YD ERV /DERY( 12341,3) 

C ... ENTRA.N"CE AND EXIT BOUNDARIES HAVE DXX=0.0; DX CALC BY BACK/FWD DIFF. 
C ... ALL POINTS NOT LISTED ARE SET TO 0.0 BY BLOCK DATA: 
C IN GENERAL THESE ARE: 
C *ALL FIRST DER IN Y AT TOP AND BOTTOM BDYS 
C *ALL SECOND DER IN X AT RIGHT AND LEFT BDYS 
c 
C ... E:NTRANCE AND EXIT BOUNDARIES (EXCLUDING THE FOUR CORNERS) 

DO 10 K=2,NODEY1 
JB=(K-l)•NODEX + 1 
JE= K•NODEX 
DERX(JB,3) = (PASS(JB+1)-PASS(JB) )!DX 
DERX(JE,3) = (PASS(JE) -PASS(JE-1))/DX 



JBPN = JB+NODEX 
JBMN = JB-NODEX 
JEPN = JE-NODEX 
JEMN = JE-NODEX 
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DERY(JB,3) = (PASS(JBPN)-PASS(JBMN)) /D2 
DERY(JE,3) = (PASS(JEPN)-PASS(JEMN))ID2 
DELSQ(JB,3) = (PASS(JBPN) - 2.•PASS(JB) + PASS(JBMN))/DSQ 
DELSQ(JE,3) = (PASS(JEPN) - 2.•PASS(JE) + PASS(JEMN))/DSQ 

10 CONTINUE 
C ... THE WALL BOUNDARIES (EXCLUDING THE FOUR CORNERS) 

DO 20 JB=2,NODEX1 
JT=JB+NODEYl •NODEX 
JBPl = JB + 1 
JBMl = JB - 1 
JTP 1 = JT + 1 

JTMl = JT - 1 
DERX(JB,3) = (PASS(JBP1)-PASS(JBM1))/D2 
DER.X(JT,3) = (PASS(JTP1)-PASS(JTM1))/D2 
DELSQ(JB,3) = (PASS(JBPl)-2. •PASS(JB)+PASS(JBMl) 

1 +2. •(PASS(JB+NODEX)-PASS(JB)) )/DSQ 
20 DELSQ(JT,3) = (PASS(JTPl)-2. *PASS(JT)+PASS(JTMl) 

1 +2.•(PASS(JT-NODEX)-PASS(JT)) )/DSQ 
C ... MIDDLE REGION, NO SPEClAL TREATMENT 

DO 30 K=2 ,NODEYl 
DO 30 J=2,NODEX1 
L=J+(K-l)•NODEX 
LPl = L + 1 
L.Ml = L - 1 
LPN = L + NODEX 
LMN = L - NODEX 
DERX(L,3) = (PASS(LPl) - PASS(LM1))/D2 
DERY(L,3) = (PASS(LPN) - PASS(LMN)) /D2 

30 DELSQ(L,3) = (PASS(LPl)+PASS(LMl)+PASS(LPN)+PASS(LMN) 
1 -4.•PASS(L))IDSQ 

C ... FOUR CORNERS: 
NLTCOR=NODTOT-NODEXl 
DELSQ(1,3) = 2.•(PASS(l+NODEX)-PASS(l) )/DSQ 
DELSQ(NODEX,3) = 2. •(PASS(2*NODEX)-PASS(NODEX))/DSQ 
DELSQ(NLTCOR,3) = 2. *(PASS(NLTCOR-NODEX)-PASS(NLTCOR)) /DSQ 
DELSQ(NODTOT,3) = 2. *(PASS(NODTOT-NODEX)-PASS(NODTOT)) /DSQ 
RETURN 
END 

SUBROUTINE FIRGES(PASS) 
IMPLICIT REAUB(A-H,0-Z) 
DIMENSION PASS(12341) 
CD.Miil ON I STEPS I DX,DT ,NODEX,MAXT ,NODEXl 
COMMON I ADDY /DY,NODEY,NODEYl,NODTOT 
COMMON IPOTEN /PHI(1234 l,2),PHIOLD(12341),PHil\i~W(12341) 

C ... SETS UP THE INITIAL GUESS FDR SUCCES 
C ... ONLY DO THIS ESTIMATE IF SOLv1NG LINEAR (FIRST SOL EACH TIME) 

DO 10 L=l ,NODTOT 
10 PASS(L)=2. •PHI(L,2)-PHI(L, 1) 

RETURN 



c 

END 

SUBROUTINE SUCCES(PASS,RHS) 
IMPLICIT REAL•B(A-H,0-Z) 
DIMENSION PASS(12341),RHS(12341) 
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COMM ON I STEPS IDX,DT ,NODEX,MAXT ,NODEXl 
COMM ON I ADDY I DY,NODEY,NODEYl ,NODTOT 
COMMON /XDERV /DERX(l 234 1,3) ,DELSQ( 12341,3) 
COMM ON /YD ERV /DERY( 12341,3) 
COMMON /TWHERE /KTIME,KOUNT 
COMMON /DEPTH /HGT,SHELFH,SLOPE,NSTART ,t\END,NSTRT 1,NENDP1 
COMMON! SQUEEZ /CF,C,C2 ,CD,D2,DSQ,DSQ3,DD4 
COMM OJ'\ /SHELF /CFSH,CSH,C2SH,CDSH 
COMMON! SOP ARM I SOR.SOR 1 

C ... SOLVES THE FIVE-BANDED SYSTEM BY SUCCESSIVE OVER RELAXATION 
C ... SOR ITERATIONS ARE INTERLEAVED WITH NON-LINEAR ITERATIONS 
C ... FIRST GUESS IS SUPPLIED BY SUBROUTINE CALL TO CUT DOWN ON ITERATIONS 

IF(KOUNT.EQ.O) CALL FIRGES(PASS) 
c 
C ............ THE ENTRY AND EXIT EDGE BOUNDARIES ........................ -
C (NO OFF-DIAGONALS, SIMPLE EQUALITY) 

DO 10 JBND=l,NODTOT,NODEX 
PASS(JBI\1D) =RHS(JBND) 
JDEX=JBND .... NODEXl 

10 PASS(JDEX) =RHS(JDEX) 
c 
C ... WALL I BOUNDARY HAS NO LEFT COMPONENT AND H HAS NO lST DER INY 
C ................ .INITIAL FLAT SECTION ............................... . 

DO 20 J=2,NSTRT1 
OFFDIA=C*(PASS(J-l)+PASS(J +1))+ C2 •PASS(J+NODEX) 
PASS(J)=SDRl *PASS(J) + (RHS(J)-OFFDIA) !CD 

20 CONTINUE 
C ..................... SLOPING REGION .................................. . 

DO 22 J=.KS.LART,NEND 
VHGT = H(J,1) 
VHX = HX(J,1) 
CR = -(VHGT /2. + VHGT*VHGT /DSQ3) 
CDR = (1.0 - 4.0*CR)/SOR 
EX = VHGT*VHX/DD4 
OFFDIA = (CR .... EX)*PASS(J-l)+(CR-EX)•PASS(J+1) 

1 +2.0•CR*PASS(J+NODEX) 
22 PASS(J) = SORl *PASS(J) + (RHS(J)-OFFDIA)/CDR 

C ................... FLA.T SHELF SECTION ............................... . 
DO 24 J=NENDP1,NDDEX1 
OFFDIA=CSH•(PASS(J- l)+PASS(J + 1))+ C2SH*PASS(J+NODEX) 

24 PASS(J) = SORl *PASS(J) + (RHS(J)-OFFDIA)ICDSH 
c 
C .................. THE MIDDLE REGIONS ................................. --
C 

DO 36 K=2 ,NODEYl 
C ................ .INITIAL FLAT SECTION ............................... . 

DO 30 J=2,NSTRT1 
L=J+(K-l)*NODEX 
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OFFDIA=C•(PASS(L-l)+PASS(L+l)+PASS(L-NODEX)+PASS(L+NODEX)) 
30 PASS(L) = SORl *PASS(L) + (RHS(L)-OFFDIA)ICD 

C ..................... SLOPING REGION .................................. . 
DO 32 J=NSTART ,NEND 
VHGT = H(J.K) 
VHX = HX(J,K) 
VHY = HY(J,K) 
CR = -(\'HGT 12. + VHGT*VHGT /DSQ3) 
CDR = (1.0 - 4.0•CR)/SOR 
EX = VHGT•\FHX/DD4 
EY = VHGT•VHY /DD4 
L=J+(K-l)•NODEX 
OFFDIA=(CR+EY)•PASS(L-NODEX) + (CR+EX)•PASS(L-1) 

1 + (CR-EX)•PASS(L+l) + (CR-EY)•PASS(L+NODEX) 
32 PASS(L) = SORl •PASS(L) + (RHS(L)-OFFDIA)/CDR 

C ................... FLAT SHELF SECTIOJ\' ............................... . 
DO 34 J=NENDPl,NODEXl 
L=h(K-l)•NODEX 
OFFDIA=CSH•(PASS(L-l)+PASS(L+l)+PASS(L-NODEX)+PASS(L+NODEX)) 

34 PASS(L) = SORPPASS(L) + (RHS(L)-OFFDIA)ICDSH 
36 CONTINUE 

C ... TOP BOUNDARY HAS NO RIGHT CDMPONET; NOY DERNS IN H 
C ................ .INITIAL FLAT SECTION ............................... . 

DO 40 J=2.NSTRT1 
L = J + NODEYl •NODEX 
OFFDIA:::C •(PASS(L-1)+PASS(L+1))+C2 •PASS(L-NODEX) 

40 PASS(L) = SORl •PASS(L) -i- (RHS(L)-OFFDIA)ICD 
C ..................... SLOPING REGION .................................. . 

DO 42 J=NS?ART,NEND 
VHGT = H(J,NODEY) 
VHX = HX(J,NODEY) 
CR = -(\'HGT /2. + VHGT*VHGT /DSQ3) 
CDR = (1.0 - 4.0•CR)/SOR 
EX = VHGT•VHXIDD4 
L = J + NODEYl •NODEX 
OFFDIA=(CR-EX) •PASS(L+ 1 )+{CR+EX)*PASS(L-1) 

1 +2.0•CR•PASS(L-NODEX) 
42 PASS(L) = SOR1 •PASS(L) + (RHS(L)-OFFDIA)/CDR 

C ................... FLAT SHELF SECTION ............................... . 
DO 44 J=NENDPl ,NDDEXl 
L=J +(NODEY-1) •NO DEX 
OFFDIA=CSH •(PASS(L-1)+PASS(L+1 ))+C2SH *PASS(L-NODEX) 

44 PASS(L) = SDRl •PASS(L) + (RHS(L)-OFFDIA)ICDSH 

C ... SUPPLY THE DERNATIVES FOR THE NEW TIME LEVEL FROM THIS SOLUTION 
CALL DERSET(PASS) 
RETURN 
END 

FUNCTION H(JX,KY) 
IMPLICIT REAL•S(A-H,0-Z) 
COMMON I DEPTH /HGT,SHELFH,SLOPE.NST ART ,NEND,NSTRT l ,NENDP 1 

COMMON /PROFIL!HEIGHT(55 ,41),DHDX(55,41),DHDY(55,41 ),DDH(55,41) 

COMMON /FIX/NS3 
JP=JX-NS3 



H=HEIGHT(JP,KY) 
RETURN 
END 
FUNCTION HX(JX,KY) 
IMPLICIT REAL•B(A-H,0-Z) 
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COMMON /DEPTH I HGT ,SHELFH ,SLOPE,NSTART ,NEJ:\i'D,NSTRT l ,NENDP 1 
COMMON /PROFIL/HEIGHT(55 ,41),DHDX(55,4 l),DHDY(55,41 ),DDH(55,41) 
COMMON /FIX/NS3 
JP=JX-NS3 
HX=DHDX(JP,KY) 
RETURN 
END 
FUNCTIOK HY(JX,KY) 
IMPLICIT REAL•B(A-H,0-Z) 
cmfMON I DEPTH !HGT ,SHELFH,SLOPE,NSTART,NENU,NSTRT 1,NENDP 1 
COMMON /PROFIL/HEIGHT(55,41),DHDX(55,4 l),DHDY(55,41),DDH(55,41) 
COMMON /FIX/NS3 
JP=JX-NS3 
HY=DHDX(JP,KY) 
RETURN 
END 
Fl.Jl\TTION DELH(JX,KY) 
IMPLICIT REAL•B(A-H,0-Z) 
C01EWN!DEPTH!HGT,SHELFH,SLOPE,NSTART,NEJ\'D,NSTRT1,NENDP1 
COMMON /PROFIL/HEIGHT(55,41),DHDX(55,41),DHDY(55,4 l ),DDH(55,41) 
COMMON /FIX/NS3 
JP=JX-NS3 
DELH=DDH(JP,KY) 
RETURN 
END 

SUBROUTINE SETRMP 
C ... THIS PROGRAM SETS UP THE HEIGHTS AND SMOOTHS THE DEPTH PROFILE 
C ... ALSO CALCULATES THE X, Y DERIVATIVES AND DELSQUARE. 
C ... RAMP LENGTH IS FIX~D AT 10. 

IMPLICIT REAUB(A-H,0-Z) 
DIMENSION HRAW(55,41) 
CO!IIMON /PROFILIH(55,41 ),HX(55,41),HY(55 ,41),DELH(55,41) 
DATA DXI0.41 
DATA DEEP,SHALLO,SL/ 1.0,0.5,0.05 / 
DATA NSTART,NEND/3,28/ 
DATA MCUR\~/16/ 
NSl=NSTART+l 
NE1=NEND+l 

C .. .INITIALIZE 
DO 5 J=l,55 
DO 5 K=l,41 
DELH(J,K)=0.0 
HX(J,K)=O.O 

5 HY(J,K)=O.O 
C ... THIS IS THE STRAIGHT RAMP PART 

DO 16 K=MCURVE,41 
DO 10 J=l,NSTART 

10 HRA W(J ,K)=DEEP 
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DO 12 J=NS1.NEND 
12 HRA W(J ,K)=DEEP - SL•(J-NSTART)•DX 

DO 14 J=NEl,55 
14 HRAW(J,K)=SHALLO 
16 CONTINUE 

C ... THIS IS THE CURVED RAMP PART 
MCl=MCUR\TE-1 
PI2=3.14159/2. 
DO 18 K=1,MC1 
DO 18 J=l,55 
YP=(K-l)•DX 
XP=(J-l)*DX 
YM= MCl *DX 
CS=DCOS(PI2•YP !YM) 
F1=10.o•cs•cs + (NSTART-1)•DX 
F2=F1+10.0 
IF(XP.LT.Fl) HRAW(J,K)=DEEP 
IF(XP .GE.Fl .AND.XP.LE.F2) HRAW(J,K)=DEEP-SL•(XP-F 1) 
IF(XP.GT.F2) HRAW(J,K)=SHALLO 

18 CONTINUE 
C ... SMOOTH THE PROFILE 

D020K=1,41 
H(l,K) = HRAW(l,K) 
H(55,K)= HRAW(55,K) 
DO 20 J=2,54 
IF(K.EQ.1) GOT021 
IF(K.EQ.41) GO TO 22 
H(J,K)=(HRAW(J+ 1,K)+HRAW(J ,K)+HRAW(J-1,K)+ 

HRAW(J,K+l) +HRAW(J,K-1) )/5. 
GO TO 20 

21 H(J.K)=(HRAW(J+ 1,K)+HRAW(J,K)+HRAW(J-1,K)+2. •HRAW(J,K+l)) /5. 
GO TO 20 

22 H(J,K)=(HRAW(J + 1,K)-t-HRAW(J,K)+HRA W(J-1,K)+2. •HRA W(J,K-1)) /5. 
20 CONTINUE 

C ... CALCULATE THE DERIVATIVES -- WHAT'S NOT THERE IS ZERO 
C ... X-DERS ARE EASY 

DO 30 J=2,54 
DO 30 K=l,41 

30 HX(J.K) = (H(J+l.K) - H(J-1,K))/(2.•DX) 
C ... LEAVE Y-DERS AT WALLS TO BE ZERO 

DO 40 J=2,54 
DO 40 K=2,40 

40 HY(J,K) = (H(J,K+l) - H(J,K-1))1(2.•DX) 
C ... SOME SPECIAL TREATMENT AT THE WALLS FOR DEL SQUARE 

DO 50 J=2,54 
DO 50 K=2,40 

50 DELH(J,K)= (H(J+l,K) -4.•H(J,K)+H(J-1,K) 
1 +H(J,K+l) +H(J,K-1) )l(DX*DX) 
DO 60 J=2,54 
DELH(J,1) = (H(J+1,1) -2.*H(J,l)+H(J-1,1) )l(DX•DX) 

60 DELH(J,41)= (H(J+l,41) -2.•H(J.41)+H(J-1,41) )l(DX•DX) 
RETURN 
END 
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