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Abstract

For a wide class of learning systems and different noise models, we bound the test
performance in terms of the noise level and number of data points. We obtain O(1/N)
convergence to the best hypothesis, the rate of convergence depending on the noise
level and target complexity with respect to the learning model. Our results can be
applied to estimate the model limitation, which we illustrate in the financial markets.
Changes in model limitation can be used to track changes in volatility.

We analyze regularization in generalized linear models, focusing on weight decay.
For a well specified linear model, the optimal regularization parameter decreases as
O(0?/N). When the data is noiseless, regularization is harmful. For a misspecified
linear model, the “degree” of misspecification has an effect analogous to noise. For
more general learning systems we develop EXPLOVA (explanation of variance) which
also enables us to derive a condition on the learning model for regularization to help.
We emphasize the necessity of prior information for effective regularization.

By counting functions on a discretized grid, we develop a framework for incorpo-
rating prior knowledge about the target function into the learning process. Using this
framework, we derive a direct connection between smoothness priors and Tikhonov
regularization, in addition to the regularization terms implied by other priors.

We prove a No Free Lunch result for noise prediction: when the prior over target
functions is uniform, the data set conveys no information about the noise distribu-
tion. We then consider using maximum likelihood to predict non-stationary noise
variance in time series. Maximum likelihood leads to systematic errors that favor
lower variance. We discuss the systematic correction of these errors.

We develop stochastic and deterministic techniques for density estimation based
on approximating the distribution function, thus placing density estimation within the
supervised learning framework. We prove consistency of the estimators and obtain
convergence rates in L; and L;. We also develop approaches to random variate

generation based on “inverting” the density estimation procedure and based on a



control formulation.

In general, we use multilayer neural networks to illustrate our methods.
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Chapter 1

Introduction

— The way that can be walked on is not the perfect way.
The word that can be said is not the perfect word.
- Lao-Tzu (~ 3" century B. C.)

— If it weren’t for that infamous last minute, nothing would ever get
done.

Learning is a general concept that describes the process of formulating a hypothesis
from a finite set of data. Data is presented as a set of instances drawn from some
underlying process, and one attempts to determine the underlying process from the

data alone!. Some examples include

e Probability Density Estimation. The instances correspond to realizations of a
random variable from the true density (the underlying process). One attempts

to learn the form of the true density from the realizations.

o Pattern Recognition. The instances are a pair {feature vector, class label}. As
an example, the feature vector might be [brightness, time] and the class label
might be day or night?. One attempts to determine whether it is day or night
given the brightness and the time of day. Admittedly, this is an easy task, but
not so easy, and in the same category, are such varied tasks as speech recognition,
hand written digit recognition, fault detection in machinery, medical diagnosis,

etc.

e Regression. The instances correspond to {x, y} pairs and the underlying process

1Sometimes other prior information is available, for example, one might know that the true
dependence is a monotonically increasing function.
2by definition day is the time between sunrise and sunset.
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which is to be learned is the mapping y = f(x).

e Time Series Prediction. The data usually consists of a single instance of a time
series z(t) = [z(t),1(¢)] for t = 0,1,...,T and the task is to determine the value

x(T+1). One can view the I(¢) as the information available at time ¢.

The brain appears to have solved many of these problems efficiently — in the sense
that it learns patterns well. However, the brain is a slow processor — it can only
process a small number of patterns per second. Can we solve these problems just as
efficiently using computers, and gain the benefit of their speed at the same time?
Many computational learning systems exist (neural networks, support vector ma-
chines, Gaussian processes, radial basis networks, nearest neighbor rules ...)3. We
will develop a theory for learning systems in general and use neural networks to il-
lustrate some of our results. A brief description of a neural network can be found
in section 1.3. The most general and natural framework in which to set the learn-
ing problem is a statistical one, taking into account the probabilistic nature of the
information we learn from. To begin, let us first set up a mathematical framework
for learning. We will develop a framework for supervised learning, the task of deter-
mining the true mapping from one space to another, given a set of instances of the
mapping. Most learning problems, including many unsupervised learning problems

(for example density estimation) can be posed within this framework.

1.1 Learning Theory Set Up

We are presented with a data set Dy, the training set, which consists of N input
output pairs {x;, v; }IL,. Each x; € R% is drawn from some input probability measure
dF(x) which we will usually assume to have compact support. We call the underlying
process that we are attempting to learn the target function. The target function is

generally represented by a conditional probability measure dF(y|x) — each y; is drawn

3 A description of neural network and other learning models can be found in [Bishop, 1995a].
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The learning algorithm selects from the learning model a hypothesis func-
tion gp, based on the data set Dy.

Figure 1.1: The learning paradigm

from the probability measure dF'(y|x). We will restrict ourselves to the case where

yi = (%) + € (1.1)

where f(x;) is some deterministic dependence and ¢; is a random component?. We
would like to model the deterministic dependence f(x;).

Learning entails choosing a hypothesis function g from a collection of candidate
functions . We will generally assume that the target function f and the candidate
functions g € H are continuous. The set H is called the learning model because
it reflects how we choose to model the target function. The hypothesis function is
chosen by a learning algorithm, A, usually based on some performance criterion on
the data. The general learning paradigm is illustrated in figure 1.1. We assume that
A is a mapping A : Dy — H. A typical learning algorithm might be to select the
hypothesis which minimizes an error measure on the training set. This ié generally

called empirical risk minimization. For example, let £(z,y) = (z — y)? be the

“For example, if ¢; was a normal(0,1) random variable, then P(y|x;) =normal(f(x;),1).
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error measure. Then, the algorithm might be

A(Dy) = ar;qgiz'n Z (9(xi) — i)’ (1.2)

Given a learning task, we select a particular learning system, which takes as input a

data set and produces a hypothesis function (see figure 1.2).

Definition 1.1.1 A Learning System L is a pair {A, H}.

D = eH
(A, 4

Figure 1.2: The learning setup

Define gp, (x) € H as A(Dx), the function that was chosen by the algorithm. Usually,
we are interested in the performance of gp, (x) with respect to some error measure,

Q(gpy, f). Therisk (test error), E[gp, ], is the expected value of this error measure

Elgpy) = (Qgp, f))x (1.3)

We use (-) to denote expectations®. Thus, the test error measures the ultimate per-
formance of our system after it has learned from the data. A common test error

measure is the squared difference between f and g.

Elgoy] = (905 (%) — F(x))*),, (1.4)

We can further define the expected risk (expected test error), £ as the expecta-

5Sometimes E[-] will be used to denote expectations, but in this context, we usually reserve E
for error measures.
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tion of the test error taken over possible realizations of the data set.

€ = (Elgoy)p, (1.5)

This usually involves taking an expectation over the noise and the x values in the
data set. The goal is to minimize £. & represents the expected test performance of a
given learning system.

All the example learning problems mentioned earlier can be fit into this general

learning paradigm.

o Probability Density Estimation. Let F'(i) be the fraction of points less than x;,
where x < y if the inequality is satisfied component-wise. Then we attempt to

learn the mapping x; — F(3).

e Pattern Recognition. We attempt to learn the mapping feature vector —

class label.
o Regression. This is almost identical to the general setting.

e Time Series Prediction. One attempts to learn the mapping I(t — 1) — z(t).

1.2 Preview

Having defined the learning paradigm, certain natural questions arise. Under what
conditions is it consistent — as the data set becomes larger, will one necessarily con-
verge to a hypothesis that minimizes the expected risk? How does noise affect this
convergence? Is it necessarily true that in order to minimize the expected test error,
it is always best to minimize the empirical risk for the same error measure? We
consider these questions in Part 1.

Intuitively one expects noise to decrease the performance of a learning system.

However, the effects of noise should become less pronounced with increasing data
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availability. We will quantify this intuition in chapter 2 where we will show that for

a very broad class of learning systems, the performance is expected to behave as®

o*C+B 1
(‘:N(O') - 50 < ?—N—‘— + o0 <—]\7) (16)

where o2 is the average noise variance and £y(0) is the expected test error when the
data set has NV examples. &, B and C are constants that may depend on the target
function, learning model and input distribution. & is the model limitation modulo
the algorithm. This bound is valid in the non-asymptotic regime as well as for noise
(€;) with different distributions. Using this result, we quantify the trade off between
numerous more noisy data, and fewer less noisy data. We will also develop a method
for estimating the model limitation, &. We present experimental verification of (1.6)
on some toy problems as well as on real financial data.

In chapter 3 we look at regularization. Specifically, we investigate the use of
learning algorithms that not only minimize an empirical risk, but also penalize the
complexity of the learned hypothesis by introducing a regularization term. Unfortu-
nately, there is no well established way to determine the relative weight given to the
empirical risk versus the complexity penalty — this relative weighting is usually called
the regularization parameter. We extend the one-dimensional linear learning model
results of [Koistinen, 1997] to the n—dimensional general linear framework, where we
derive the form of the regularization parameter both when the learning model is well
specified (the target function is in the learning model) and when the learning model
is misspecified. We then develop a technique which we call EXPLOVA (explanation
of variance) that provides an estimate of the regularization parameter for general
learning models and regularization terms. We use EXPLOVA to derive a condition
for regularization to improve test performance. We find that the regularization pa-

rameter is O(02/N). In particular, when no noise is present, regularizatioh can hurt.

6We use the the standard order notation. We use z(N) = O(y(N)) to mean that z(N) < Cy(N)
for some constant C and for all N. We use z(N) = o(y(N)) to mean z/y — 0 as y(N) — 0
(N — o0).
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We present experimental verification of our results using neural networks.

The noise variance affects the convergence of learning systems, and plays a role
in the choice of regularization parameters. Thus, we will conclude part I with an
analysis of the estimation/prediction of noise variance in time series. We will analyze
the commonly used maximum likelihood method and show that it is not uncommon
for maximum likelihood methods to pick the worse of two models most of the time.
We will show that learning models trained to predict ¢(t) using maximum likelihood
will have a tendency to underpredict o(t). We will derive the probability distribution
for \ given a sufficiently general learning model, where ) is the underprediction factor.
We will then illustrate how this distribution over A could be used to update future
predictions obtained using the learned model to minimize a given error criterion.

In part II we study the density estimation problem. Existing techniques for density
estimation involve developing an estimate for the probability density function itself.
We present two techniques that learn to implement the sample distribution function
instead. The first is a stochastic technique (SLC) and the second (SIC) estimates the
density by smoothly interpolating the sample distribution function. We will show that
the stochastic method (SLC) converges to a solution of the interpolation method (SIC)
with probability 1. Then we analyze the convergence properties of SIC. We will define
a class of estimators which we call generalized distribution functions. We will prove
that the class of generalized distribution functions converges uniformly in L; and Lo
(MISE") with respect to an arbitrary probability measure. The rate of convergence
is O(1/+/N) for L; and O(1/N) for L,. We will then analyze the convergence of the
density estimate obtained from the distribution estimate. We will prove convergence
to the true density when the true density has bounded derivatives up to order K. We
will show that the rate of convergence is O((loglog(N)/N)A=1/%)) in L,. This bound
is better than that attainable by standard non-parametric techniques that attempt to

predict the density when K > 5. We show experimental verification of these bounds

"Mean Integrated Squared Error.
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on a toy problem and we use our technique to estimate the densities for the changes
in stock prices. We verify the well established fact that changes in stock prices have
a distribution that is fat-tailed compared to a Gaussian distribution.

We then present an application to random variate generation. One can use the
same techniques for distribution function estimation to estimate the inverse of the
distribution function. Given the inverse, it is easy to generate random variates ac-
cording to the estimated density. This method for random variate generation is fast
and works for general densities.

In part I we consider the issue of priors and how they affect learning systems. First
we will add to the existing no free lunch (NFL) results by showing that constructing
general algorithms to estimate noise distributions from the data is a fruitless endeavor
— No Noisy Free Lunch (NNFL). Specifically we will prove that when the prior over the
target function space is uniform, a well behaved prior on the noise distribution space
can not be updated (in the Bayesian sense) from any finite data set. Therefore in
order to make statements about noise in data, it is necessary to make some statement
about the target function.

The issue of priors threads its way through this entire work. We will devote the
final chapter to the idea of natural priors and their incorporation into the learning
process in the form of regularization terms. We will pursue the purely combinatorial
question of counting paths on a discretized grid. We will then use these results to
develop the form of some common regularizers, notably the Tikhonov regularizers.
We will develop a framework for incorporating general priors into the learning process
through regularization terms, and explicitly derive these regularization terms for a
set of commonly encountered priors. Thus we will explicitly link the use of Tikhonov
regularizers to priors on derivatives, and we will provide a principled approach to the
use of regularization terms. Our analysis also provides a method for calqulating the

regularization parameter.
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1.3 The Neural Network

Figure 1.3: A 2-input 3-hidden unit feed forward neural network with one output.

The two layer neural network with one output unit is a parameterized learning model

that implements a function of the form

H d
y(x)=S (Z 1,0 (Z WiT; — wig> - vo) (1.7)
i=1 j=1

that maps x € R% to y € R. H is the number of hidden units and the parameters
are the w;;’s and the vy’s. vy and the wy’s are usually called biases. ©(z) is a non-
linear function called the threshold function. ©(z) is usually chosen to be sigmoidal
(eg. tanh(x), 1/(1 + e™®)). S(z) is called the output non-linearity (usually S(z) =
z). The parameters (sometimes called weights) are altered in order to obtain the
desired mapping. Figure 1.3 illustrates a typical neural network. Various universal
approximation results show that neural networks can approximate most interesting
function classes on compacta [Hornik et al., 1990], [Barron, 1993], [Cybenko, 1989,
[Funahashi, 1989)].
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Part 1

- Noise And Learning
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Introduction

— To prove something to someone, it suffices to convince them that it
18 true.

—-Jehoshua Bruck

For a given learning system (learning model, learning algorithm pair), there will be a
“best” hypothesis (modulo the algorithm) that can be reached. With respect to the
test error measure, suppose that this hypothesis achieves an error of &,. It is natural
to ask whether the learning system will necessarily arrive at this hypothesis as the
data set size gets large. We do not really care about the hypothesis, only its test error,
so it is more reasonable to require that the learning system arrive arbitrarily close
to this optimal test error as the data set size becomes large. Figure 1.4 illustrates
that a tradeoff exists between having a low value for & and the speed with which
this value is reached as the data set size gets larger — the BIAS-VARIANCE tradeoft
[Geman and Bienenstock, 1992].

Some of the issues of convergence within the PAC (Probably Approximately Cor-
rect) framework have been answered by VC-theory [Vapnik and Chervonenkis, 1971},
[Vapnik, 1982], [Vapnik, 1995]. For a classification problem®, with high probability
(> 1—4) one wishes to find a classifier with low probability of error (Prlerror] < €).
Suppose that on m examples, a hypothesis, g € H, has an empirical misclassification
error rate (training error) of vJ* = # incorrect/m. Let e, be the true probabil-
ity of misclassification (test error). Then, VC-theory provides a bound of the form

[Parrondo and Van den Broeck, 1993]

2

Prlsup |V — eg| > €] < 6e™A(2m)e” "™ (1.8)
geEH

8 A learning problem where the target outputs are 1. More general functions can be treated
using the e-net, [Vapnik, 1995, pg 41-45].
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Regression with noise and 20 Data Points Regression with noise and 200000 Data Points
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(a)A fit with 2"¢ order and 5™ order polynomials to 20 noisy data points
generated by a 3% order polynomial. (b)A fit with 2™ order and 5 order
polynomials to 200000 noisy data points generated by a 3" order polyno-
mial. These two graphs illustrate that with many data points, even with
noise present, both models find their respective best fits. It happens to be
the case that the more powerful model can implement the target function.
With few data points however the more powerful model is very sensitive to
a little noise. The less powerful model, despite not being able to implement
the target function, seems to do better. Thus, though it has a higher bias,
for the small value of N it appears to have a better test error indicating
that the weaker model converges more quickly to its optimal error.

Figure 1.4: Tradeoff between more powerful learning systems and higher sensitivity
to noise

Here A(2m) is the growth function for the learning model which is essentially a
measure of the complexity of the learning model. This inequality states that with
high probability, the deviation of the training error from the test error will be less
than e if the model complexity (A(2m)) is not too large. If in addition one has a
good optimization algorithm for minimizing the empirical misclassification rate, then,
the condition “A(2m) does not grow too fast” is sufficient for consistency in the PAC
sense. Necessary and sufficient conditions for PAC consistency of the learning process,
along with a more detailed account can be found in [Vapnik, 1995, chap. 3]. These
results are a considerable step forward. They show that consistent learning is possible

provided that the complexity of the learning model is controlled — the bound, (1.8),
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applies for any target function and any input distribution.

Can similar statements be made about other test error measures? For example,
what properties of a learning system are sufficient to guarantee that the expected
squared error of the learned hypothesis will converge to the best possible, modulo the
learning system? We will address this issue in chapter 2.

The development of the theory of ill-posed problems has led to the theory of

regularization as a means for their solution. Briefly, the functional equation

I(f)=F (1.9)

(where f is the unknown function) is ill-posed if a small change in F' (F' — F; with
| F — Fj | small) results in a large change in f (f — fs with | f — f5| large). This
is not desirable because the solutions to such problems can be very sensitive to the
presence of noise, and, in general, it may not even be the case that in the limit 6 — 0,
the convergence f; — f is obtained. Ill-posed problems are not a purely mathematical
phenomenon. Important real life problems can be ill-posed, most notably, density
estimation (which we will return to in part II), and the inference problem (inversion
of the cause—effect relationship). It was discovered that if instead of minimizing an

error measure &(Z(f), F5), one introduces the so called regularization functional

E(L(f), F5) + A(6)Q(f) (1.10)

where Q(f) is some functional and A(4) is an appropriately chosen constant, then the
desired convergence lims_,q f5 — f can be obtained, [Tikhonov and Arsenin, 1977,
[Tikhonov, 1963], [Ivanov, 1962]. Thus, we see that it is not always best to minimize
an empirical risk (training error). In the presence of noise, learning can be enhanced
by using a regularization term. The need for regularization is now evident, but exactly
how one finds A(8) is yet undiscussed. We will look at effective choices for A(6) in

chapter 3. Figure 1.5 illustrates the general philosophy behind regularization. We
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Regularization effectively restricts the search to a subset of the learning
model. Shown are four possible subsets.

Figure 1.5: Illustration of the philosophy of regularization.

start with a large learning model. We use regularization to restrict the search to a
subset of the learning model in order to decrease the variance of our search. If we
restrict our search to the lower left corner, we are in good shape because most of the
functions that are good fits are also likely to be the target function. The top two
subsets are not as good. The lower right subset is disastrously bad — we may have
succeeded in reducing the variance, but we have done so at expense of a large bias.
We expect the regularization to be effective in proportion to how good the restricted
subset is at approximating the target function. This in turn will depend on how
good our prior information about the the target function is, because we use this prior
information to determine which restricted subset to search. It makes no sense to
restrict the search to low complexity functions if one is sure that the target function
has intermediate complexity — in this case one would want a “complexity” penalty that
penalizes high and low complexities. Thus one expects that effective regularization

should be intimately connected with good prior information.
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Chapter 2

Convergence of Learning Systems'

— All roads lead to Rome. The only question is “How fast do they get
you there?”.

2.1 Introduction

In this chapter, we will tackle the question of learning from noisy data and how
learning performance is affected by the presence and variability of noise in the data.
In doing so, we do not restrict the distribution or the time-varying nature of the
noise, nor do we place severe restrictions on the learning model or learning algorithm
that we use. Our results provide quantitative estimates of the optimal performance
that can be achieved in the presence of noise. In financial markets, this provides a
benchmark for the target performance given a data set. We also quantify the tradeoft
between the noise level and the number of data points. Our experiments with real
foreign exchange data demonstrate that the results are applicable to the case of finite
data, the only case of practical interest. They also provide a means for assessing the
change in the level of noise in financial data that can be applied to volatility-based
financial instruments.

The chapter is organized as follows. Section 2.2 covers the main results about the
impact of noise. Here we will prove convergence results for stable learning systems,
and provide bounds for the test error. We present experimental verification of these
results for a toy problem. These results are then tested in the four major foreign

exchange markets in section 2.4. We will usually defer to appendix 2.6 the complete

1Parts of this chapter were done in collaboration with Alexander Nicholson of the Learning
Systems Group
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proofs of the results when the proofs offer no added insight.

2.2 Impact of Noise on Learning

We begin by specializing the general learning paradigm that has already been defined
in chapter 1. We will define the learning systems we are interested in, which will
be a fairly general class of learning systems. We will see that the bounds on the
performance of these fairly general learning systems take on a surprisingly simple

form.

2.2.1 The Learning Problem

We assume the standard learning paradigm. The goal is to learn a target function
f:R? = R. The training data set, Dy, consists of N input output pairs {x;, vt
Each x; € R? is drawn from some input probability measure dF(x) which we assume
to have compact support. We will assume that the target function f and the candidate
functions ¢ € #H are continuous. Additive noise is present in the training data,

yi = f(x:) + €. We further assume that the noise realizations are independent and

zero mean, so
(e]x)e =0, (€T | %) = diag|o}, 08, .., 0%] (2.1)

(we use {-) to denote expectations, o = [0102...0x], and diag[-] denotes a diagonal
matrix). It should be noted that we allow the noise variance to change from one data
point to another.

Let gp,(x) € H be A(Dy), the function that was chosen by the algorithm. The
test error we will be interested in is the expectation of the squared deviation between

gpy and f(x) taken over the input space. We will denote the test error by E[gp,]-

Elgny] = ((9on(x) — F(x))?), (2.2)
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The expected test error, Ex(0), is then given by

En(o) = (Elgoy))epy (2.3)

where we have made explicit the noise dependence of the data set in the expectation.
The goal is to minimize Ex(0). En(c) will depend on the detailed properties of
the learning system and target function. It would be a daunting task to tackle the
behavior of Ex(0) in general, but as we shall see, under quite unrestrictive conditions,
the changes in Ex(0) as the noise or data set size change can be quantified.

A related quantity of interest is A/, the number of data points (with noise added)
that are needed to attain an expected test error comparable to that attainable when

N noiseless examples are available.
N(A,o,N)2 rrI{]in{Nl 1 En, (o) — En(0) < A} (2.4)

N(A,0,N) is the number of noisy examples that are equivalent to N noiseless ex-
amples, and it describes the trade off between numerous, more volatile data, versus
fewer and less volatile data. We would like to analyze the behavior of En(o) and
N(A,0,N). We address these questions analytically in section 2.3 where we restrict

our analysis to stable learning systems, which we will now define.

2.2.2 Stable Learning Systems

One expects that if one has “close” data sets Dy = {x;, f(x;)} and Dy = {x;, f(x;)+
e(x;)} where e(x;) is small, then A(Dy) should be “close” to A(Dl). For A to have
this property, # should be able to implement the two “close” functions.? We formalize
this notion by defining the class of learning systems that are n'* order—continuously
compatible (CC,) with respect to the probability measure dF'(x). We will use the
following notation. Let S be the compact support for dF(x) and let {x;}Y, C S.

2These conditions will often be satisfied in practice.
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Let D = {x;, %}, D' = {xi,u; + &}¥, be any two data sets on S such that
max; € = €maq- Let A(D) = g(x), A(D') = g(x) + n(x).

Definition 2.2.1 £ is n* order—continuously compatible if 3C such that

(In(x)")x < (Cémaz)”

with probability 1 (i.e. for almost every D). We will write L € CC,,.
Proposition 2.2.2 If L € CC,, then L € CC,, form=1...n.

PRrROOF: By Jensen’s inequality, (|f(x)[*), < (|f(x)])y for 0 < a < 1. Letting
f(x) = n(x)™ as in Definition 2.2.1 and a = m/n for m < n, the proposition now
follows because L € CC,. n
We would like A to be “unbiased” in the following sense. If we have a data set D
with A(D)=go and we add independent, zero mean noise to the targets to get a new

data set D' then we would like (A(D")) = go, where this average of functions is

noise

taken point wise. This motivates the following definition.

Definition 2.2.3 Let D and D' be two data sets related by y' =y + € where the €’s
are independent and zero mean. Then L is mean preserving or unbiased if (A(D’)), =

A(D).

Definition 2.2.4 A learning system L is stable if it is in CC2 and it is mean pre-

serving.

These properties are somewhat intuitive, and we note that, for any learning sys-
tem L, they can be checked directly. We would like our learning procedure to be
robust towards small noise fluctuations in the data so we do not consider learning
models that may yield discontinuous behavior. The unbiasedness property may seem
fragile, especially given the extremely nonlinear nature of most learning algorithms.

Nevertheless, we consider it an important and not overly restrictive condition on a
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learning system. If the noise is small, then the first order change in A(Dy) should be
proportional to the noise parameter, so that the average change is zero with zero-mean
noise. Indeed, experiments with neural networks show that learning with gradient
descent and conjugate gradient descent on the mean squared error are unbiased with a
reasonable noise level. Thus, linear and neural network learning models give learning

systems that are stable.

2.3 Performance of a Learning System

Expected Test Error

0.25

L ! : .
0 50 100 150 200 250
Nurnber of Training Examples

For various noise levels with variances ranging from 0.25-6.25. A non-
linear neural network learning model was used with gradient descent on
the squared error. Data was created using a non-linear target function.

Figure 2.1: Experiments illustrating the behavior of the test error as a function of N
and o2

Intuition tells us that noisier data leads to worse test performance. This is because the
learning system attempts to fit the noise (i.e. learn a random effect) at the expense
of fitting the true underlying dependence. However, the more data we have, the less
pronounced the impact of the noise will be. This intuition is illustrated in figure
2.1. We observe that the higher the noise, the higher the test error, but the curves

appear to be getting closer to each other as we use more and more examples for the
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learning process. The following two theorems quantify this intuition. We will restrict
ourselves to stable learning systems. Remember that stable learning systems possess
the two properties “continuity” and “unbiasedness.”
First we consider the case where the learning model is linear — linear regression

with noise. The following theorem is valid.

Theorem 2.3.1 Let H, the learning model, be the set of linear functions w - x + wp

and let the learning algorithm be minimization of the squared error. Then

Ex(0) = Ex(0) + -"—Z(dj—vil—) +0 (7\71-2-> (2.5)
Ex(0) = Bo+ 2+ 0(=) (2.6)

N 3

where By = A}im {En(0)} and B is a constant dependent on the input distribution. It
—00

follows that

o*(d+1)+B 1
MaeN) = ZUEDEE L o ) 2.7
A + N 2
PROOF: See theorem 2.6.1 in appendix 2.6. |

This theorem can be generalized for learning models that are general linear models
(models that are linear in their parameter space) — included here would be Fourier
series, polynomial regression, etc. For more general learning models, the following

theorem is valid.

Theorem 2.3.2 Let L be stable. Then, for any € > 0, 3C; such that using L, it is

at least possible to attain a test error bounded by

0’2C1

En(o) < En(0) + N +e+0 <%) (2.8)

C, 1
SN(O) < Fy + ’N +e+to <N) (29)
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where imy 0 En(0) = Ey and o2 = % Zi\il o2. Cy,Cy are constants that generally

depend on the input distribution, target function, learning system and possibly e.

PROOF: See theorem 2.6.4 in appendix 2.6. [ ]

Corollary 2.3.3 If Cy < C] Ve then

En(o) < En(0) + aj\?’i + <%> (2.10)

Corollary 2.3.4 A}im En(o) = lim En(0), independent of o, where we assume this
—00

N—00

limit is well defined.

Combining (2.8) and (2.9) we get

Cl—(;z_‘l‘CQ 1
B _ — .
Enlo) < Bo+ 20 +0(N> (2.11)

The essential content of the theorem is that the expected test error increases in
proportion to o2, holding everything else constant, and decreases in proportion to
1/N, holding everything else constant. Corollary 2.3.4 tells us that when N — oo,
the performance approaches the best attainable independent of the noise level. The
conditions of theorem 2.3.2 are quite general and are satisfied by a wide variety of
learning models and algorithms. Fo‘r learning models that are linear, C; =d+ 1. Fy
is the model limitation modulo the learning algorithm when tested on noiseless data.
The limiting performance on noisy future data is Fy + o2.

Experimentally we observe that the bounds of theorem 2.3.2 are quite tight even
for small N (see figure 2.3) so combining (2.8) and (2.9) we expect the following
dependence for N (A, o, N), the number of noisy examples that are equivalent to N
noiseless examples.

N(A, 0, N) ~ o2C1 + G (2.12)

For the results illustrated in figure 2.3, artificial data sets were created from a known
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(a)Nonlinear target function and linear learning model — The residual er-
ror is shown for a nonlinear target function trained using a linear model.
Gaussian noise with o2 ranging from 0.04 to 38.44 was added to training
sets. The dashed lines show the error level predicted by theorem 2.6.1.
(b)Nonlinear target function and nonlinear learning model — The resid-
ual error is shown for a nonlinear target function trained using a 2-3-1
network. Gaussian noise with o2 ranging from 0.25 to 6.25 was added
to training sets. The results correspond very closely to those predicted by
theorem 2.8.2 when Cy = 20 (shown with dashed lines). (c)The behavior
of the expected test error with no noise for the learning scenario in (a).
We observe that for even small N there is close agreement between the
theoretical 1/N decrease. (d)The behavior of the expected test error with
no noise for the non-linear learning scenario in (b). Once again for small
N we observe the expected behavior.

Figure 2.2: Experiments with simulated data, testing the theoretical bounds.
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target function. Figure 2.3(a) illustrates the results of fitting a linear model to non-
linear data. Shown is the residual error (Ey(0) = En(0) — En(0)) as a function of N
on a log-log scale. The inputs are chosen from R?, and the dashed lines illustrate that
En (o) quickly converges to 302/N as expected from (2.5). Figure 2.3(b) shows similar
results for a nonlinear learning model. Gradient descent was used to train the three
hidden unit neural network model®. Ideally we expect this algorithm/model pair to
be continuously compatible, and it was empirically shown to be mean preserving to
considerable precision. The residual errors very closely follow 20 62/N, showing that
we have approximate equality in (2.8) for C; ~ 20.* Figures 2.3 (c) and (d) show
that £x(0) also behaves linearly in 1/N for both cases (i.e. it quickly approaches the
bound in 2.9).

The constants C;, B, E, in theorem 2.3.2 control the trade off between the BIAS
and the sensitivity to noise/convergence rate. Simpler models will have a high value
for Ey but C; and B will be small. More complex learning models will have a lower
model limitation Ey, but higher convergence parameters C; and B. This is the tradeoff
that we illustrated in figure 1.4 and here we see that it is rooted in the size of the
constants C;, B and E,. For a given number of data points, there will be some

“optimal model complexity.”

2.3.1 Estimating the Model Limitation

When the learning model is linear, we can show (theorems 2.6.1, 2.6.2 in appendix
2.6) that the expected training error &;.(co) (the error on the data set) and expected
test error approach the same limiting value from opposite sides as N — oo. Further
the rates of convergence to this limiting value are the same. [Murata et al., 1993] has
obtained a similar asymptotic result in the case of nonlinear models when performing
gradient descent on the training error. Using the Murata result, we can use our bound

on the test error to bound the training error performance. The expected error on a

3A description of neural network and other learning models can be found in [Bishop, 1995a].
4This suggests that the condition in corollary 2.3.3 holds.
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noisy data set, & is related to En(o) by Eest(0) = En(o) + o2. The experiments
demonstrate that the bounds of theorem 2.3.2 are almost saturated for small NV, so,

ignoring terms that are o(1/N), and using Murata’s result for gradient descent, we

have
— — o2+ C
Ey+ 0?2 < Eest(o) = Ey+ 0%+ C_1Q_N+__g (2.13)
_ . Go+C
Eo+0'22 gtr(O')r’d Eo—f—Uz———lg—]v_t—’% (214)

(in the case of linear learning models we can replace C; by d +1). From the data set
of size N, for Ny < N, we can randomly pick N, data points (perform Bootstrapping
[Shao and Tu, 1996] on the training data). By varying N; in the training phase and
observing the error on the training set, we obtain estimates of the model limitation
Ey + o2 and of C,02 + C, by fitting the training error dependence on N; using (2.14).
Thus, we can estimate the parameters that are needed for the bound (2.11). This is
illustrated in the next section where we apply the results presented here to the case

of financial time series.

2.4 Application to Financial Market Forecasting

Information processing of financial data entails the extraction of relevant information
from overwhelming noise. Financial markets are dynamic systems so the noise pa-
rameters may fluctuate with time. In addition to being a nuisance that complicates
the processing of financial data, noise plays a role as a tradable commodity in its own
right. Indeed, market volatility is the basis for a number of financial instruments,
such as options [Black and Scholes, 1973], whose price explicitly depends on the level
of volatility in the underlying market. For this reason, it is of economic value to be
able to predict the changes in the noise level in financial time series as these changes
are reflected in the price changes in tradable instruments. These changes can be sig-

nificant as one can observe in figure 2.3 where the U.S. Dollar/German Mark market
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The market volatility can change noticeably over the course of time.

Figure 2.3: The price curve for the U.S. Dollar vs. German Mark, illustrating changes
in volatility over time.

has undergone extreme changes in volatility.

In spite of the high levels of noise, financial data are among the best applica-
tion domains for intelligent processing and advanced learning techniques. These data
have been recorded very accurately for very long periods of time. They are avail-
able on different time scales, and simultaneously available in many different markets.
This provides a very rich environment for analysis and experimentation using ad-
vanced processing techniques. Moreover, the payoff for even rhinute, but consistent,
improvements in performance is huge.

Financial markets present us with data in the form of a time series. We might
have the daily, hourly or tick-by-tick stock prices or foreign exchange rates. We would
like to extract as much information as possible from historical data with the hope
of learning the underlying behavior. In general, we can consider the value of a time
series y(t) at any time ¢ as a noisy data point y = f(x) +e€. Here f is a deterministic
function of a vector x(t) of market indicators and e(t) is noise. The task at hand is

one of learning f(-) from a finite data set (the history of the series).
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Above is the realization of one such time series from the FX markets.
Error bars are used to illustrate that each point is the outcome of a noisy
event.

Figure 2.4: Financial time series tend to be very volatile.

In modeling the time variation of a stock price S, the standard Black-Scholes
model for pricing options based on volatility [Black and Scholes, 1973] assumes the

variation to be of the form
dS = pSdt + 5Snvdt

where G is the market volatility and 1 has a zero-mean normal distribution with
variance 1. Thus, the Black-Scholes model uses only the previous price as the indicator
vector x. The price at different times has a deterministic dependence on the past (the
i term) and a noisy component (the & term). The variance of the noisy component

is related to the volatility and need not be constant. The precise relation is given by®

o2 = 52S2At (2.15)

5This relationship is valid for discrete time steps At. For continuous evolution a more careful
analysis shows that A log(S) is Gaussian with variance 52 At [Wilmott et al., 1995].
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where ¢ is a time index.

Extensive literature already exists on methods for extracting information from
noisy time series ([Montgomery et al., 1990], [Abu-Mostafa, 1990], [White, 1988]),
[Trippi and Turban, 1993]. The details of such methods are not our present con-
cern. We are interested in determining how our prediction performance depends on
the amount of available data and the variability of the data (which is related to mar-
ket volatility (2.15)) — what change in performarnce are we to expect if this year’s
market is more volatile than last year’s market? What change in performance rela-
tive to some benchmark are we to expect if the market changed recently and hence
we only have a few data points to learn from? These quantities can be obtained from
En(o). En(o) is related to the “future profit” you expect to make having trained
your learning system on the available data. Changes in Ey(c) will be related to the
tradeoff in profit when attempting to learn and predict during more volatile stages of
the market compared to less volatile stages.

Pricing information is available on a variety of time scales, which presents us with
a data set size vs. variability tradeoff. We could choose to use the tick-by-tick data
because we will then have many data points, but the price we have to pay is that
these data points are much noisier. The trade off will depend on how much noisier the
tick-by-tick data is, and the details of the learning scheme. Market analysts would
like to quantify this tradeoff by how it affects performance. This tradeoff is captured
by N(A, o, N)

An estimate of the best performance that we can achieve with a given information
extraction scheme might also be economically useful. As well as providing a criterion
for selecting between different models, knowing the model limitation could be useful
for determining whether even an unlimited amount of data will give a system that is
financially worth the risk. This would allow analysts to compare trading strategies
based on their model limitation.

Can we apply the results of section 2.2 to real financial market data? Our ex-

perimental simulations indicate that we can. Figure 2.5 illustrates the 1/N behavior
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of the residual error éN(U) for foreign exchange rates. Daily close exchange rates

Number of Training Exammples

The results are for the British Pound (STG), the Swiss Franc (CHF), the
Japanese Yen (JPY) and the German Mark (DEM). Also shown are two
lines that show 1/N behavior. We see that the test error curves follow the
theory well.

Figure 2.5: The dependence of the test error-Ey on N in some currency markets.

between 1984 and 1995 were used for the Swiss Franc (CHF), German Mark (DEM),
British Pound Sterling (STG) and Japanese Yen (JPY). A linear model was used to
learn the future price as a function of the close price of the previous five days.

We performed the following experiments. The last 1000 data points of each time
series were held out as a test set. The remaining points were used to create a data

set

{xr = (Sk-ay.--, k), Uk = Sks1}

N points were sampled from this set and used to learn. This was repeated to obtain
an estimate of the expected test and training error. We show the dependence of the
expected test error on the number of training examples in figure 2.5. Though it is
not obvious that the assumptions made to derive the results hold, as with the results
on artificial data, the test error seems to not only obey the bound of equation (2.8),
but quickly assumes 1/N behavior. Assuming the bounds to be tight for both the

test error and training error, we are able to estimate the best possible performance
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of the linear model (Ey + o?) by finding the line best fitting Ex(o) as a function of

1/N. Table 2.1 summarizes these estimates.

Currency | Ey+ o2 No Change Currency | Ey + o2 Est. | No Change
Estimate Predictor Estimate Predictor
(model lim.) | (test error) (model lim.) | (test error)
DEM 0.000499 0.000502 DEM 0.000156 0.000152
CHF 0.000158 0.000160 CHF 0.000148 0.000151
STG 0.000134 0.000136 STG 0.000153 0.000157
JPY 1.082 1.083 JPY 0.851 0.867

(a)

(b)

In (a) we use the training error to estimate Ey + o2 and compare to the
performance on the training set when we use the simple system: predict no
change in price. In (b) we use the test error curve to estimate Ey. Only
(a) is possible in practice, but both yield very good estimates(if we assume
that this simple strateqy is close to the best you can do), thus verifying
that the results of section 2.2 can be applied to this learning problem. The
change in the estimate from (a) to (b) is due to the fact that the test
and training sets are taken from different time intervals, and hence the
estimates reflect a change in the market volatility over time.

Table 2.1: Estimate of model limitation and comparison to simple predictor.

We compare the model limitation to the test error obtained by simply predicting
the present value as the next value. We find that this simple strategy virtually attains
the model limitation suggesting that today’s price completely reflects tomorrow’s price
— that’s the best we can expect to achieve systematically. The results in table 2.1 are
appealing on two accounts. Firstly, assuming that today’s price is the best predictor of
tomorrow’s price, the technique we use to predict the model limitation is performing
well (table 2.1 (a)). That todays price is the best predictor of tomorrows price is
illustrated by table 2.1 (b) where the Ey + o2 estimate is the true model limitation
estimated using the test error. We see that the simple strategy basically achieves this
model limitation. Secondly, because the model limitation estimates are slightly below

the error of the simple strategy, we deduce that there is some information that can

be extracted from previous prices.
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By training on different time periods, we find that the model limitation may
change as in the example in table 2.1. If we assume the underlying dependence to
have remained constant so that Ey has not changed, then the resulting change can
only be due to a change in o2 thus providing an estimate of the change in the volatility
(since the volatility is related to the change in o2 (2.15)). It appears from table 2.1
that of the four currencies, the British Pound’s volatility seems to have increased
while the remaining three markets display decreasing volatility.

Thus, we see that the results of section 2.2 apply to the problem of financial

forecasting.

2.5 Comments

The new results in section 2.3 are represented in theorem 2.3.2. The experimental
results on artificial data amply support the theory. We have shown that the number
of noisy examples required for comparable generalization with N noiseless examples
increases as o2. Explicitly, the main result bounds the test error for a noisy data set
by -

En(o) < By + 7% G +o0 <i> (2.16)

We also obtained a result that bounds the expected test error relative to a bench-
mark test error (2.8). Experimentally we showed that this result applies to the non-
asymptotic regime — the empirical results show that the bounds hold with almost
equality for N as small as 20. Intuitively this is because the non-asymptotic effects
that affect Ex(0) also have a similar effect on En(0).

We began with the goal of answering two questions: Relative to a benchmark sce-
nario (that of learning with no noise), how does the performance change with the noise
level and with the number of examples? This dependence is represented by the expres-
sion for Ex(c) above. This is a similar result to those derived by [Murata et al., 1993]

and [Moody, 1991]. However the differences are significant. [Murata et al., 1993]
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compares the training error when descending on a given error function to the expec-
tation of that error when you have finished learning. The learning algorithm is specific
but the form of the error function may vary. Moody considers minimization of an
error term plus a complexity term and assumes that the input distribution is a sum of
delta functions at the training data points. In this chapter, we derive a convergence
result for the expected squared error without severely restricting the learning algo-
rithm or the input distribution. We also quantified what change in performance is to
be expected when noise is added to a data set. The results were also presented in the
context of financial time series analysis, but we stress that they are applicable to the
general learning problem, independent of most of the details of the learning model
and learning algorithm. In particular, we do not require the learning algorithm to
minimize a simple training error measure — optimizing a general regularized training
error (as in [Plaut et al., 1986]) should produce an algorithm that still satisfies the

conditions of theorem 2.3.2. As an example, we minimized the fourth power of the

Test Error Dependence when Training using Fourlh Power Error

‘\\ ~~ - :Slope -1

2
10’
Number of Training Examples (N)

The results are for the two noise levels illustrated. The value of Eq 15 0.14
for both noise levels. For comparison are also shown the slope -1 fits.

Figure 2.6: The dependence of the test error on N when minimizing the fourth power
of the residual as the training error measure.

training error as our learning algorithm. The expected squared error (our test error
measure) should still converge at a rate O(1/N), according to our theoretical results.

This convergence is illustrated in figure 2.6
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We provided an estimate of the model limitation. We used this estimate to esti-
mate the best possible performance when learning in the FX markets. The results
were consistent with the assumption that today’s price reflects all the information
about tomorrow’s price. Using this method for predicting the model limitation, we
could detect changes in the market volatility, which is of economic use.
It would be useful to explore the relationship between the constants (Ej, Cy,Cs)

that parameterize the expected test error dependence.
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2.6 Appendix

2.6.1 Proofs of Results

We use the notation

X=[x1 x2 ... xXn], y=f+e¢

Y= <XXT>X, q = (xf(x)),

The law of large numbers gives us that XX7T e NY and Xf P N (xf(x)),, where
—00 —00

we assume that the conditions for this to happen are satisfied.

Theorem 2.6.1 Let H, the learning model, be the set of linear functions w - x + wy

and let the learning algorithm be minimization of the squared error. Then

Ex(o) = Ex(0) + ﬂdﬁ*ﬂ +0 < ]\1&) (2.17)
En(0) = Fo + % +0( 13) (2.18)

where Ey = J}im {En(0)} and B is a constant dependent on the input distribution. It
— 00
_ o2(d+1)+B
follows that N (A,o0,N) = TarE T O(N?)

PROOF: g € L & g(x) =xTw. The Least Squares estimate of w is given by
v = (XXT) Xy (2.19)
from which we calculate

En(o) = (WTxxw —2wTxf(x) + F(x)*), x.
N -

+ (FXT(XXT)T'E(XXT) " Xe)y



34
_ +Z" ((XTXXT)'2(XXT)'X], )y

where we have used (2.1) and q = (xf(x)),. By the law of large numbers, we note

that (XX*)~! — NI and Xf — Nq, so we write
N-—ro0 N—oo
XXT = N +VNV(X), Xf = Nq + v Na(X) (2.20)

where (V)x = (a)x = 0 and Var(V) and Var(a) are O(1) by the central limit
theorem®. Using (2.20) and the identity [1 + AA]™' = 1 — AA + A2A2% + O()3), we

obtain the expansion

Ty— T\ — _ XTy-1x Tsy—1lyn-1 XT'n-1 -1 -1
XT(XXT) 15X XT)~1X = XX _ oX zN\éz X | 3XI5Ve iy X—i—O(-A;l%—)

From the definition of X we find from the first term

[<XT2 1X <Z Ekl Xz Xl > = [Z E,;llilkl]ii =1
k1l

by taking the expectation of the trace of both sides of the equation, the second term

can be shown to be of the same order as the third term. So

202 i
o+ 0(55) (2.21)

En(o) = En(0) +

The first part of the theorem now follows. Using similar techniques for £y(0), we find

0

Tz IVZ ?q_aTZ 1q>
En(0) = (f*)—q"S7! +<q
~(0) (f*)—da'>'q -

TS IVI-1VE-lq + a5 la — 22751V 1
L la q @) +0< )
2

N
B 1
= Fy+—+0
0+N—|— <N>

3
2

6We assume that the conditions for the central limit theorem to hold are valid.
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with By = (f?) —q'~'q and B depending on the input distribution. This gives the

N dependence of E5(0). Finally we have

En(o) — En(0)

yielding the functional dependence N (A, o, N). n
This result can immediately be generalized to the case where the learning model
is linear in its parameter space. A similar technique can be used to derive a result on

the expected mean squared residual itself which we will call & (o).

Theorem 2.6.2 Let H, the learning model, be the set of linear functions w - x + wy

and let the learning algorithm be minimization of the squared error. Then

E(0) = &£,(0) + 02 — ?(—d—NJrl-) (2.22)
£.(0) = By — % + 0(N1§) (2.23)

where Ey and B are the same constants appearing in theorem 2.6.1. Thus we find

2(o2(d +1) + B) . 1

Enlo) — &(0) = 250 o)

(2.24)

where, now, En(o) is the noisy test error.

PRroOOF: The residual error is given by

(o) = (0w -v7) = (O X - 1))

(£7F) — (fTX(XXT)1XE) + (eTe) — (" XT(XXT) "' Xe)
N
fEXT(XXT)IXE) — o2
:§f2>_< (XX PXE) o D

J

£.(0)
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from which the first part of the theorem follows. Using the techniques of theorem

2.6.1 we find that

£&(0) = (f’)-d'S'q
(qTT7'VEIVE-lg+alSa— 2aTS1VElq) N 1
N

Comparing with theorem 2.6.1 we have the second part of the theorem. |
This result is similar to the results obtained by [Murata et al., 1993], [Moody, 1991].
We now consider the case of a non-linear learning model. The following proposition
shows that limy_,00 A(Dn) = goo is well defined point wise — i.e., Ve > 0, IM such
that if N > M then maxy |geo — A(Dn)| < €. This can be skipped if this fact is self
evident or if one wishes to assume convergence and one is merely interested in the

rate. It is included here purely for technical completeness.

Proposition 2.6.3 Let L € CCy. Then, the limit limy_, o A(Dy) = goo for noiseless
data sets is well defined point wise on sets of non-zero probability — i.e., Ve > 0, IM

such that if N > M then maxy |g — A(Dy)| < €.

ProoF: We will sketch the idea of the proof, the details can be filled in using exactly
the same techniques as for the proof to theorem 2.6.6. First we show that for any two
infinite data sets, the learned functions are essentially identical. For any infinite data
set, as the input support is compact (closed and bounded), any infinitesimal volume
of non zero probability has an infinite number of data points. Consider two such data
sets. The means of the targets in this small volume will be equal (by the law of large
numbers). Because the target function is continuous on this compact support, the
means for the two data sets are arbitrarily close to the true values for each data set
(this can be attained by letting the the size of the volume be arbitrarily small). By
continuous compatibility, these two data sets must both be mapped arbitrarily close
to the data set with the means as targets. Therefore they must be mapped arbitrarily

close to each other. Thus, we see that ((g; — g2)?) is less than e for arbitrary small
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€, where the two different data sets drawn from the input distribution are mapped to
gi- So we conclude that ((g; — g2)?) = 0, therefore, g; = g, with probability 1. Thus,
any two infinite noiseless data sets are mapped to the same function (as the functions
are continuous), which we call gq.

Finally, consider a data set Dy. For N large enough, this data set can be made
arbitrarily close to an infinite data set using the argument above. Let gy = A(Dy).
Therefore {((gn — goo)?) can be made arbitrarily small by choosing N large enough. In
other words, imy_,0 {(gN — goo)?) = 0, therefore gy converges to go, with probability
1. Further, because the functions are continuous and the support is compact, this
convergence is uniform. ]

We have just shown that the limit A(Dy) exists as N — oo. Thus, with noiseless
data sets, we have convergence for stable learning systems. We now consider both

the rate of convergence and what happens when noise is added.

Theorem 2.6.4 Let L be stable. Let the target function f be continuous. Let the
probability measure on the input space have compact support X. Then Ve > 0, 3C, >
0 such that using L, it is at least possible to attain a test error bounded by

=2

En(o) < En(0) + J]\?l +e+ 0O <%> (2.25)

PROOF: By rescaling, we can assume that the input space X C S = [0,1]¢. f is
continuous, so it is uniformly continuous on the compact set S. Therefore, 3; such
that

| x —x'|< 6 = f(x) — f(X)|< b

Divide [0, 1] into intervals of size &, /+/d. Thus we divide S into <\/3/ 51)d cubes. Let
C; = Ci, 4y..i, define the cube with lowest coordinates i. Let N; be the number of data
points in Cj, and let y; = —]\17 sz cc, Y- Let B = Pr{z € C;}. We only need consider
regions where P, > 0, as regions with P; = 0 are don’t care regions. The following

Lemma is easily obtained by noting that for x,x’ € C, |f(x) — f(x')]| < d2.
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Lemma 2.6.5 Let x € C

\Zcékl
rrel;
= 70| = L ) 1< 4

x,EC i
Construct a new data set by replacing all the y’s in C; by ;. i.e., with no noise, the

targets would be f(x;) and with noise they are p;. Vx; € Cj,

> €k

f Xk 2, €C;
¢ 30 LO ST e iy g
xk;éxJ !

|| <62

where 1 = 3 L &’“—)&—f(—’i) and & = Y, cc. &/Ni. We have that (n;), =0 and
(). = 0. Let A map the noiseless data set to go € H and this noisy version of the

data set to g = go + 1. So for the test error we have

En(o) = ((f = 9)*) = ((f — 90)*) +2{(Ff = 00)(g0 — 9)) + {(90 = 9)°)

En(0) Ty Ty

where the expectations are with respect to the test point, training data points and

the noise (Dy, x,€). We now examine 77 and T5.

Ty = <G—mﬂm—w)m#
D = g0) (A, FO)D) = Axes £0xe) +md)))

< [ 0F (AR 7)) = A 050 + 1))y ) H
(g0 LA ({30, 7 () ) = A ({355, £350) + 1Dy

< (ma] gl 4 (B, £ — Al £ + 0D
(i) Cé, <m3x|gol>DN

(d)

< cidy
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where (a) and (b) follow from the mean preserving assumption. (c) from continuous
compatibility and (d) because the limit g, exists point wise therefore the sequence

(maxy | gol)p,, is a bounded sequence. Similarly, for T5 we get
Tl = [((AM £} = A, FO6) + e+ 6D,

( 2 ek
@ 202 52 Xj,xkECi
< T T
! Dy €

i

-

= 207 |83+ <Z 9_i>
- 2

1

=2

Dn,€

O e (53+§<§:%>
i i Dy

N
= 2075 + 2025522% (f) PM1—PR)N
i n=1

o

Njizi+o(ﬁlz—)
_ 9en 02 o 1 1
= 2073+ 2-2C §i 5 H0(32)

——
1

(a) follows from the continuous compatibility assumption. (b) follows because the
noise is chosen independently of the inputs. Choosing 6, such that ;85 + 2C%3 < ¢

we have

En(o) < En(0) + 91—(]—%'_—2 +e+ 0O <—A—1[—2)

[ ]

We note that it is easy to extend these theorems to the case where the noise
variances are drawn from some distribution. By taking the expectation over that dis-
tribution, the same result with o2 being the expected value of the variance parameter
is obtained. Note also that the preceding proof is by no means suggesting a method
to calculate C;. It is simply a means to show its existence. Often, especially when

the input distribution is bounded, Corollary 2.3.3 will hold, and it might be possible
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to estimate these constants experimentally.

One might wonder what would happen if the mean preserving assumption is
violated. We note that the only place where this is used is in the evaluation of
T:. Continuity could still be used however with the difference being that a term
of order ¢/+/N would remain. in other words, one would have Ex(c) < En(0) +
C"o/+/N + higher order. So if we do not have the mean preserving property then
these methods do not guarantee 1/N convergence of the test error. Using identical

methods, one can, however, get the following result using the continuity property

alone: {|f —g|) < {f—gl) + %’ This is very similar to theorem 2.6.4 where one
measures test error by the expectation of the magnitude difference as opposed to the
squared difference.

We now derive a theorem for the dependence of £x(0) on N.

Theorem 2.6.6 Let L be stable. Let the target function f be continuous. Let the
probability measure on the input space have compact support. Then Ve > 0, 3Cy >0

such that using L it is at least possible to attain a noiseless test error bounded by

Cy 1
— — 2.2
SN(O)<E0+N+6+0<N> (2.26)
Corollary 2.6.7 IfCy < Ch Ve then Ex(0) < Eo+%+0 (%) where By = 1\}1_{11 En(0)

Before we proceed to the proof of the theorem, the following lemma is needed.

Lemma 2.6.8 Let N balls be independently be distributed into r cells according to
the probabilities p, . ..p,. Then for every m > 0,3A,, such that the probability, q, that

at least one cell is empty is bounded by
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PRrooOF:

q = Pr[U cell; is empty] < ZPr[celli is empty] = Z(l — )V

3 7

P < Am

< r(1—minp)V < 2™
7( minpi)” < o

choosing A,, > r(—m/in(a))™. n
PROOF OF THEOREM 2.6.6

Let X, S, 61, 62, Ci, P, Nj be as in the proof of theorem 2.6.1. We only consider
those cubes with P, > 0.

Suppose that we have an infinite noiseless data set, Do. For all i, let 4 =
(f(%))xpxec; and let p; = -1\171 ij cc, Ui if Ci is non-empty else, p; = 0. Construct two
data sets from the infinite one, D; and Ds, by replacing all the y’s in Cj by @i, and p;
respectively. D; does not depend on Dy and Ds can be obtained from Dy. Dy and

D, are close data sets because for x € Cj,

£ = (Fyea] = | (709 = FONyyea| < 176 = F@ypyec, < &

Therefore by continuous compatibility, ((ge — g1)%) < C?83. Define € by p; = 7 + €.
Then (q}DN = 0 for all non-empty C;. Let go, g1 and go be A(Dy), A(D;) and
A(D.) respectively. Since we can construct Dy, using £ we can at least obtain a test

error given by

E, <C?52

e

- - ———
En(0) < {(f = 900)?) + (9o — 91)*) + ({91 — 92)*)

+2 [ {(f = 9o0) (900 = 91)) | T2/ {(f = 9o0) (91 — 92)) | + 2| (900 — 91)(91 — 92)) |

-~
S[fﬁgoo{maw052

(by cont. comp.)

By the mean preserving property, ((g1 — g2))p, = 0. Therefore,

{(f = 90)(g1 = 92)) | = 1 {(f — 9o0) (91 — 92))pyy ), | =0
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Similar reasoning shows that 2| (g — ¢1){(g1 — 92)) | = 0. Let @ be the probability

that at least one cell is empty. For the final term we have

(a)
<(gl - 92)2> S (1 - Q)C2 <Z€12> + 4Qc2lf'12naa:
Dy |Vi,N;>0

i

i bil Ni>0/ psg
o2
< (D)  taQ
i ! N;>0
® 1 o0l 1
A

Cs

where o2 = Var(yily € C;). (a) follows by continuous compatibility because with
probability 1 — @ the data sets are at most ¢ apart and >, € > max; €, and with
apart. (b) follows because (1/N;) = 1/(NP;)+
0(1/N) and Lemma 2.6.8 can be used to yield @ = o(1/N). Finally we have

probability @ they are at most 2|f|

mazx

C 1
b+ == +o0

EN0) < By + O + 2f = Guclpau + =2 +0(5)

Choosing §, small enough, we have the theorem because |f — goo| is bounded on the

compact support X. [
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Chapter 3

Regularization in Learning Systems’

— A person 1s at his best when under just the right amount of pressure,
not too much and not too little.
~Yerkes-Dodson/Amir Atiya.

— We are all regularized by our parents.

3.1 Introduction

Comparison of the Regularized and Unregularized Solutions

5 T T T T T T T T e

.1 i

-3k Target Function i
+ + Data
------ 5th Order Polynomial
~4[ - - Regularized 5th Order Polynomial
-5 1 L L I H £ 1 1 I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 05

15 noisy data were generated uniformly in [—0.5,0.5] from the target func-
tion. Shown are the fits with and without regularization.

Figure 3.1: An example of regularization using 5" order polynomials.

1Parts of this chapter were done in collaboration with Xubo Song of the Learning Systems Group
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Regularization techniques have been used to improve out of sample performance,
typically by smoothing the fit to noisy data. Generally, they correspond to adding
a penalty term to the empirical risk, that somehow penalizes the complexity of the

learned function.

£ =Fy+\Q (3.1)

where Ej is the empirical risk,  is the complexity regularizer and A controls the rel-
ative weighting given to the complexity penalty. Well established techniques include
Tikhonov type smoothing regularizers [Tikhonov and Arsenin, 1977] [Bishop, 1993]
[Wu and Moody, 1996, heuristic weight decay regularizers [Plaut et al., 1986], weight
elimination [Scalettar and Zee, 1988], soft weight sharing [Nowlan and Hinton, 1992].
It is well established that such regularization techniques improve out of sample per-
formance when one attempts to learn from a noisy training set. Figure 3.1 illustrates
the potential benefits of regularization. In the case of noiseless data, it is unclear
what kind of performance to expect when using regularization techniques.

Unfortunately, there is no obvious way in which to choose the regularization pa-
rameter. Possible techniques are cross validation eg. [Golub et al., 1979] or some
other principle such as structural risk minimization [Vapnik, 1995]. [Mackay, 1992a,
[Mackay, 1992c] describes a method for choosing regularization parameters from the
Bayesian point of view, given a prior distribution for the regularization parameter.
Unfortunately, exactly what a prior on the regularization parameter would be and
how one could obtain it are not well defined. It is shown in [Koistinen, 1997] that
if A = o(n~%/2), then the gain in the test error is o(1/n) therefore it is crucial to
have a reliable method for choosing A to take advantage of this small potential gain.
Conversely, a poor choice for A could easily have a negative effect.

By restricting the complexity of the learned function, regularization will help the
out of sample performance in two distinct cases. When one has some a priori belief
that the target function is “simple,” it might be possible to incorporate this prior

belief about the function into the regularization term and thus improve out of sample
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performance. When noise is present, attempting to fit the noise will produce a learned
function that is more complicated than necessary, so restricting the complexity of the
learned function should help the out of sample behavior. In this chapter we deal
with the latter case — regularization in the presence of noise. We will address the
connection between priors and regularization later, in chapter 9

By minimizing the out of sample error (test error), we will derive an analytic
expression for the optimal weight decay parameter when the learning model is linear
in the parameter space (general linear models). These results generalize the results
of [Koistinen, 1997] to multidimensional input. We will show that for general linear
models that are well specified, the regularization parameter is O(c?/N) and the gain
in test error is O(1/N?), analogous to the result in [Koistinen, 1997] for the one
dimensional case. For more general target functions, the regularization parameter
turns out to be O(c?/N) + A; where A, is related to the approximation degree (how
close the target function is to the learning model). A target function outside the
learning model has an effect analogous to noise. Here too we will see that the test
error gain is O(1/N?), and that regularization is considerably less useful when there
is no noise.

For more general learning models and regularization functions, we develop a tech-
| nique which we call EXPLOVA (Explanation of Variance)? in order to derive an
expression for the regularization parameter. Using this technique, we also derive a
data dependent condition on the learning model that we expect to be satisfied if a
given regularization term is to be helpful, and give examples where we expect regu-
larization to help. We will see that for general linear models, EXPLOVA produces
results that are similar to the test error minimization technique. Using EXPLOVA,
we find that in general, the regularization parameter is O(c?/N). Our results pre-
scribe weight decay when the data are noisy but not when the data are noiseless. We

demonstrate this experimentally using simulations with neural networks.

2This name is partly due to Alexander Nicholson.
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The goal of this chapter is two fold: to develop the form of the regularization
parameter and to emphasize that its choice depends on the noise level and some prior
knowledge about the target function.

This chapter is organized as follows. In section 3.2, we first derive analytic ex-
pressions for the weight decay parameter in the case of general linear models. We will
then develop EXPLOVA which enables us to derive an expression for the regulariza-
tion parameter and a condition necessary for regularization to be useful with general
learning models. In section 3.3 we discuss the results from section 3.2 and show
some experimental verification of them. We will end with some concluding remarks

in section 3.4

3.2 The Optimal Regularization Parameter

In this section, we set up the learning problem and then consider two methods for
finding the optimal regularization parameter. Assume the standard learning paradigm
that has already been defined. A continuous target function f : R? — R generates
the training data set Dy, which consists of N input-output pairs {x;, y; }N,. Bach
x; € R? is drawn from some input probability measure dF'(x).

Additive noise is present in the training data, y; = f(x;) +¢;. We further assume

that the noise realizations are independent and zero mean, so
(e]x)e =0, (e€” | x)e = diaglot, 03, ..., 0] (3.2)

(we use (-) to denote expectations, o = [0103 ... on], and diag[-] denotes a diagonal
matrix).

The functions g, € H are parameterized by a weight vector w. We use mean
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squared deviation as our error measure, thus, the training error, &, is defined by?

£ = 3 D oul) — (33
and the test error, Ex(0) is
En(0) = ((Fx) - 9u(x)%), (3.4)

where the expectation is over possible training data sets (noise and input points)
and the test point. The ultimate goal is the minimization of the test error, Ex(0).
We consider a regularization term of the form AQ(w), where A is the regularization
parameter and ) is the regularizing function. The learning algorithm will be to

minimize the function

é:gtr"l—)\ﬂ

When ) = 0 the algorithm becomes minimization of the training error. Intuitively, for
non-zero \, we minimize the training error but penalize complexity (due to attempting
to fit the noise) with the regularization term.

We restrict ourselves to stable learning systems. Remember that stable learn-
ing systems possess the two properties “continuity” and “unbiasedness”. Continuity
ensures that “close” data sets are mapped to “close” functions. For two data sets
differing only by the addition of zero-mean noise, unbiasedness requires that at every
point, the average value (with respect to the noise) of the functions resulting from
the noisy data set is equal to the value of the function resulting from the noiseless

data set. (refer to chapter 2 definitions 2.2.1 and 2.2.3 for the formal definitions.)

30ur EXPLOVA analysis can be extended to other forms for the training error without much
effort.
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3.2.1 General Linear Learning Models

In this section, we will extend the results of [Koistinen, 1997] to weight decay for
general linear learning models. We pick the regularization term so as to minimize the
test error directly. Our goal is to analyze the (asymptotic) form of the optimal reg-
ularization parameter. We will see that for noisy data, the regularization parameter
is O(0?/N). For noiseless data, there is considerably less gain (and potential loss) in
using a regularization term.

Define a set of expansion functions {1;(x)}7_;. Thus we map the d dimensional
input space into an S dimensional space by z, = ¥, (x). We will assume the existence
of all expectations necessary for the following analysis to proceed. Our learning model

is linearly parameterized by the weight vector w:

S

0,0 = S wit(x) = -7 (3.5)

i=1

When 95 (x) = x4,k = 1...d and 9441 = 1, we have standard linear regression. This
framework is applicable to general polynomial regression, Fourier series methods, etc.

The target vector is given by

yi=[n...un] =1 +e

be the transformed input matrix. Let 3, = ZZT/N and § = .1, z;f(z;)/N. Let
Xy = <Sz>x and g = <g>x
To make the analysis more presentable, we assume a regularization term of the

form

~

Qw) = MwlY,w



49
Then, &(w) = Eu(w) + Aw) is quadratic in w. By straight forward differentiation
with respect to w, we find that the weight vector minimizing & is given by
(Z2Z7)'Zy W

YN = T aw (36)

where w* = (ZZT)'Zy = £;'(g + Ze/N). We assume that g # 0 else the optimal
least squares solution is simply 0 and weight decay will always help. By the law of

large numbers, we note that ZZ — NX, and Zf — Ng, so we write
N—oo N-—y00
777 = N3, + VNV(Z), 7f = Ng + v Na(Z) (3.7)

where (V), = (a), = 0 and Var(V) and Var(a) are O(1), by the central limit
theorem®. Using (3.7) and the identity [1 + AA]™' = 1 — AA + A2A? + O(A?), one
finds that

A TAVESL o sAlvesSltvest
sz sz z+0<1) (38)

¥l=51 - Nl

zZ z \/N + N N3/2
Using (3.5) in (3.4), and differentiating with respect to w, we find that the best fit
in our model is wy = g. Let the target function f(z) = wiz + n(z). The maximum

value of 7 is a useful measure of how close the target function is to our learning model.

Let us define this formally by

Definition 3.2.1 The approzimation degree (v;) of the general linear model with re-

spect to the target function and input distribution is given by

va = sup{|n(z)]} (39

For good learning models, 4 will be close to zero. For noiseless data, (w*) ~ wp.
More precisely, (w*) converges to wg as N — co. The rate of this convergence could

also be a useful measure. Formally, we define it as follows.

4WWe assume the conditions for this to occur are satisfied.
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Best Linear Fit to y=Cos{x)
T

0.8r

~0.6642x+1.1582 —

04

02p

L L
0 05 1 15 w2

The best fit to y = cos(z) for a uniform distribution on [0,7/2]. vq can be
calculated to be approximately 0.1582

Figure 3.2: Example fit of a non-linear function by a general linear function.

Definition 3.2.2 The convergence degree (cq) of the general linear model with re-

spect to the target function and input distribution is given by

ca=sup {k (W) =wp+ O <%>} (3.10)

Examples:

e For a well specified general linear model (n(z) = 0), after we get S data points,

w* = wy therefore ¢y = oco.
o cy = 2 implies that (w*) = wy + O(1/N?).

e The methods of chapter 2 show that in general, ¢4 > 1. A quick calculation
shows that if (VI V)2 lg — £ 1 (VE,ta) = 0, then ¢4 > 3/2.
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Well Specified Learning Model

The target function is given by f = wy - z. Thus, y = ZTw, + ¢, therefore, w* =

wo + 3;1Ze/N. Using (3.4) and (3.6), we get for the test error

)2 JzTr[<f];12z>]
Etest(A) = mwozzwo + N1+ N2

(3.11)

where we used the facts (¢”Ae)_ = o®Tr[A] and (7 A) = 0 where A is independent
of e. When o? = 0 it is no surprise that any A # 0 will hurt. In fact it is easy to
convince oneself that for any A > 0, o2 > 0 such that regularization with that value

of \ will hurt. By setting 9y Fies: = 0, we find

a2Tr[<5:;1zz>]
)\o imal —
Pb ! NCL)OZZUJO

(a) %S 1

N NWOZZWO+O(N2>

®) 28 ( 1 )

y ——d 0| = 3.12
Nw*Y,w* N ( )

where (a) follows because <2;122> = Tigi1)x(as1) + (2, ' VE; V) /N +o(1/N) and
(b) because <(w*)Ti‘zw*> = wlS,we + O(c?/N). Using (3.12) in (3.11) we find for
the improvement in the test error, AE.s; = Epest(A) — Biest(0),

ABy = 304ﬂ[<2;122>]2+ LY _o(Z (3.13)
test — N2w02zw0 0 = e .

Technical Note

For input dependent noise that is independent and has zero conditional
mean, the test error can be calculated as

\2 <O'2(Zi)zjizil[i)z_lzzﬁ)z_l]lj>

zW0iato NI+ A2

Brogt = ———x
test (1+)\)

(3.14)



52

where summation over repeated indices is understood; to O(1/N) this
expression becomes

A2 Tr[(o*(z)zz") 5]

Biegt = ————wy %,
test = [T L a0 0 T TN A2

(3.15)

We can then proceed to obtain Aypyme in exactly the same way as has
already been used above when the noise is input independent.

Misspecified Learning Model

In this case, the target function is not in the learning model. We can still make some
progress because the learned hypothesis can be explicitly constructed. The results
are not as clean as in section 3.2.1, however, they are strong enough to show that
even in this fairly general case, it may not be a good idea to use a regularization term
when the data are noiseless.

Using (3.4) and (3.6) the test error can be calculated as

<gTS;1222;1g + %T&[Zziz—lD 2 <gTﬁ);1g>

Ees - ?
test (T+ )2 o VY
We can write this in a form similar to (3.11) as follows
V(875 e)  Surl(TS)] + A
Biewt = ) - (§75;'g) (3.6

where

As=(gT55.5'8 - 875, 8)

Ay deviates from zero to the extent that Eziz‘ '& deviates from g, thus A, is small
and in fact decreases at least as fast as 1/N. A more detailed analysis of Ag is given

in the appendix, where it is shown that A4 ~ (Tr[n(z)zz" %, 1), Setting 9 Fies=0
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we solve for Agptimai-

Aoptimal = (317)

=
Q
1]
N
=
!
N
N/
N
My
\/
>
+
P
=2
3
—
N
~—
Y
N
N
~
™M
N
i
S~

Q

(3.18)

where (a) follows from (3.46) in appendix 3.5. Note that ¥;'g = w* so as 7%, g =
w*T$,w* + O(1/v/N). Notice that the extra term induced by the misspecification is
exactly what would arise if instead we added noise to the data with a variance equal
to n%(z), dependent on z (3.15). Using our expression for Apptima in (3.16), we see

that the gain in test error performance is

3G TH($71%, )] + Ag)? .
AEtes; = — Gy g +0 (Kﬁ) (3.19)
which is O(1/N?). If ¢4 > 1 then it can be shown that A = 0(1/N) and so can be
ignored (in the asymptotic limit) in the expression for Agpiima. Otherwise Ag4 can be
bounded in terms of vy, therefore, for good learning models, A4 will be small.

To summarize the results of this section, we see that in the presence of noise, the
optimal weight decay parameter is O(c?/N). In fact, any A < Aptimar Will decrease
the expected test error. Further, when there is no noise, we expect that regularization

is ineffective.

3.2.2 Explanation of Variance (EXPLOVA)

The regularization term decreases the complexity of the learned hypothesis. The
test error usually improves because the variance of the new classifier decreases. This
compensates for the extra variance “learned” due to the noise in the data. We try to
exploit the fact that with noise, the learned function has higher variance in order to
deduce some properties that the regularizer should have.

We suppose that &, is minimized at w*. Due to the addition of the regularization
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term, the minimum of & will be shifted from w* by an amount Aw. This produces a
change in the variance of the output for the learned function. The presence of noise
adds variance to the targets. This implies that the variance of the learned function
will be higher than it should be, in proportion to the level of noise. The presence of
the regularization term should offset the variance gained due to the noise, and this
change should be related to the noise level. We now quantify this as follows.

Initially the learned function was trained to “explain” as much variance in the
data as it could. It is well understood, that the presence of noise increases the test
error, [Barron, 1984],[Eubank, 1988],[Akaike, 1970]. For linear models, and the input
distribution being delta functions at the observed data points,

202(d + 1)

SN(U):gtr+ N

(3.20)

where 02 = Y, 02/N. [Moody, 1991] derives a similar result for more general learning
models with (d+1) replaced by pefy, an effective number of parameters for the learning
system. [Amari and Murata, 1991] shows that a similar result holds when descending
using backpropagation on the training error.

Due to the presence of noise, we suppose that the test error increases by an amount

AE(c, N). Expanding the expression for the test error we have

En(o) = <(f—g)2>e,DN,x
= (f*), = 2{f (D pyx (9" ppx

The first term is independent of noise, and the second term is equal to the term that
would replace it if there were no noise (by the unbiasedness assumption). Therefore
{(¢®) must increase by AE(c, N). The presence of noise increases the complexity of

the learned function by increasing (g%), p. .-
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In the previous chapter, we saw that for stable learning systems (theorem 2.3.2)
AE(o0,N) < — + 0O(==) (3.21)

where C is a constant that depends on the target function, input distribution and
learning system. For linear models®, C = (d + 1). We would like regularization to
enable us to perform as well as we would were there no noise present in the data.
Unfortunately all we know is that the noise induces an increase in (g*). Thus we
know that to be performing as well as in the noiseless case, (g*) should decrease by
AE(o,N). This is a necessary requirement, but it is not sufficient. In a sense, we are
using the fact that (g?) should decrease as a hint [Abu-Mostafa, 1995]. We enforce
this “hint” not because it guarantees getting closer to the noiseless performance, but
because if we are getting closer to the noiseless performance, then the hint will be
obeyed. Furthermore, (g) should remain unchanged due to the regularizer, because
the addition of noise did not change (g) in the first place.

The general approach is as follows. The training error will be minimized at some
weight vector w*. If the regularization parameter is small, then the regularization term
will be small. The introduction of the regularization term will cause the minimum to
shift to w* + Aw, where Aw will be small. This change in w will lead to a change in
(g2) which we will equate to AE(a, N) ~ Co2/N .6

By taking the Taylor expansion of £ (w) about w* up to second order in Aw =

w — w*, and using the fact that V,.&, = 0, we find that
. 1
E(w) = Eu(w*) + A2w™) + EAWT[HW* (Ex) + AH o ()] Aw + AAWTV,-Q  (3.22)

where the Hessian [H,» ()]ij=0.,0.,(*) |+ is the matrix of second derivatives. Hyx(Es)

is positive definite and can be calculated from the data given the learning model and

~

w* (which can be obtained by optimizing the training error). Setting Va,&(w) =0

5see theorem 2.3.1 in the appendix
6The analysis can also be carried out for other error measures if one can evaluate A&(o, N)
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we find for the change in the weight vector induced by the regularization term

Aw

Q

N [Hop (En) + AH o+ (Q)] 1 Ve Q (3.23)
= —AH}V,Q+0()\) (3.24)

where V{2 £ 0.
We will ignore the O(\?) term as A will be small, and write H,« for H,(&;,). Let

V(ger) = %Zgw* (%)%, Gur) = ‘]{72 (3.25)

be sample estimates of (g2.) and (g,~). Equating the change in V(g,+) to —Co?/N
we can deduce what A should be. The change in V(g,~) is approximately given
by AV(gu+) = Aw - V<V (g,+). Using (3.24) and differentiating the expression for
V(gu+), we have for the change in V(g.~)

AV (gy) = _%_V)—\ (H;*lvw*ﬂ) : (Z g(xm)vw*g(xm)> + O()‘z) (3.26)

Similarly, one can evaluate A (92>C,DN,X

A, p o = ~2A (HZAV09) - 9V 9), g + OO) (3.27)

Equating this change to —Co?/N we have

Co?/N 1
A O(= 3.28
2 (HJ*1VW*Q) : <ng*g>e,'DN,x + (NZ) ( )
Co?
~ Co*/N +O(—) (3.29)

3 (H9.0) (3 ax)Vovaen)

Equating the change in M(g,~) to zero (due to unbiasedness), the following condition
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must be satisfied

(H7'V,-Q) - (Z Ve 9(Xm ) +0(M\) =0 (3.30)

This condition can usually be satisfied by a linear transformation of the inputs. This
will become clearer when we consider linear models as an example.

We conclude from (3.29) that the regularization term is O(i'];—) For a positive
regularization parameter to be consistent with a decrease in variance, the necessary

condition is that

(Hy!' Ve Q) - (gVer @ e pox = 0 (3.31)

hold at w = w*. Since the regularization term should be applicable to any target
function (so, for all w*), it is necessary that this inequality be true for all w. This
is a condition that has to be satisfied by a given regularization term and is not
independent of the learning model — a regularization term will be useful for a certain
learning model, but perhaps not for another — for example, consider two identical
learning models, one parameterized by w, the other parameterized by 1/w; if weight
decay helps in one case, it will not help in the other.

Given only the data, (3.31) is not verifiable, however the sample version

(Hc:*lvw*g) . (Z g(xm)vw*g(xm)> 2 0 (332)

m=1

can be directly verified at w*, as w* can be obtained by optimizing the training error.
We note that using V(g,~) itself as the regularization term is guaranteed to satisfy
the consistency condition.

The expression for the regularization parameter A (3.29) is calculated as follows.
Optimize the training error to obtain w*. Given w*, the term (3.32) can be calculated
using the data points. This can then be used to evaluate (3.29) provided that esti-
mates for o2 and C are available. Descending on &, starting from w*, we then arrive

at the final regularized solution.
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EXPLOVA is summarized as follows. Noise is present in the data set, and the
noise level is known. Further, an effective model complexity or an effective number
of parameters is known. This knowledge is summarized in the constant C, which
in general may depend on the target function, input distribution and the learning
model. We then calculate the value of the regularization parameter by equating the
the variance gain in the function due to the presence of noise and the variance loss
due to the presence of the regularization term. EXPLOVA is more a philosophy than
a specific method, applicable to other techniques. We stress that the noise level needs
to be known, because, for given a regularization term, one can find a noise level small
enough such that regularization will hurt.

We conclude this section by specializing the preceding analysis to the case of

weight decay. For simplicity, we present the analysis for the weight decay term

1
Qw) = -z—wTHw*w

where H,- can be computed by first optimizing the training error. In this case,

V.- Q(w*) = H,+w*, therefore using (3.24)
Aw ~ — "

Using (3.29), we find for the regularization parameter

Co?/N
fur (£ o) Varatxn)

A~ (3.33)

so, for a positive decay parameter to generate a decrease in variance, the necessary

condition is that

w* - (Z 9(Xp) Ve g(xm)> >0 (3.34)

m=1

N
and (3.30) becomes w* - Y. V,+g(xn) = 0. As already pointed out, this can usually

m=1
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be achieved by transforming the input space. (3.34) should hold for all w*. This is a
strong condition on the learning model. In expectation this becomes w*- (gVy-g) > 0

for all w*.

Examples

o General Linear Learning Model

For general linear learning models, the training error is given by

from which we see that H,. = 25 where 3, = ZZ” /N and we use the definition
2727 = SN _ 2,2l /N. Let ¥, = <2z> The consistency condition (3.34) and

m—=

its expectation become
(w*)Ti‘zw* >0 (w)TS,w* >0
which are both satisfied for all w* because ‘2z and ¥, are positive semi-definite

N
matrices. The mean preserving condition (3.30) becomes w* - Y z; = 0. This
i=1

N
can be achieved by an initial translation of variables such that Y z; = 0. (Note
i=1

that this will change iz) The regularization term becomes

028 N

1 T
——— " YW 3.35
2 Nw*TY,w* (8.35)

o g,(x) = ¢(w- x)

If ¢’ > 0, and z¢(z) > 0, then
w-gVug=w x¢p(w x)¢'(w-x) =0

and so the consistency condition is satisfied. eg. ¢(¢) = tanh(t)
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3.2.3 Summary of Theoretical Results

We have demonstrated that weight decay in the presence of noise can yield improved
results. In the noiseless case, we do not expect weight decay be of significant help.
Further, weight decay may hurt, especially if the target function is ‘almost’ in learning
model (section 3.2.1).

The optimal regularization term for linear models (calculated by directly minimiz-
ing the test error) is similar to the EXPLOVA result. EXPLOVA can be applied to
more general learning models and more general regularization terms. The algorithm
would be to first optimize the training error to get w*. Using w* one can check (for the
learning model at hand) whether the regularization term is expected to help (3.34).
If so, with an estimate for the noise level, one can construct the regularization term.
We emphasize that without an estimate of the noise level it is not possible to sys-
tematically choose a regularization parameter in the sense that for any regularization
parameter, if the noise is small enough, regularization will hurt. Further, one also

needs an estimate for the parameter C, an effective model complexity.

3.3 Experiments

Using a model that is non-linear in the parameter space, we illustrate the depen-
dence of Agptimar in the noisy case (Figure 3.3). The dependence is consistent with the
predicted —]1\—, behavior, which is readily derivable from the methods of section 3.2.2
but not evident using the techniques of section 3.2.1 . Figure 3.4 shows the test error
profile for the noiseless and noisy cases. Note that the behavior in the noiseless case
does not clearly imply the existence of an optimal A, where as the noisy case does.
The simulations indicate that when 0% > 0, there exists a regularization term that
will improve the test error, but conversely, given any regularization term, there is a
scenario in which the test error will be increased by the regularizer as is evidenced by
the fact that for no noise the test error is an increasing function of A. Thus in order

to have effective regularization, one needs some priors on the noise level.
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Dependence of the Optimal Weight Decay Parameter on N
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The experiments were run for a teacher 2-5-1 neural network and student
2-10-1 with 0*=0.32. All hidden units were tanh. The expected test er-
ror for A was calculated over 1000 runs and then for each N the lambda
minimizing this is used. A slope -1 line is shown for comparison with the
expected 7{[— decrease which should have slope -1 on this LogLog plot.

Figure 3.3: Illustration of the behavior of Asptimar on N.

3.4 Comments

We analyzed regularization (specifically weight decay) for general linear models (G.L.M’s).
We demonstrated that when the data is noiseless, regularization is of limited use (es-
pecially for c¢q > 1 or vy < 1), contrary to the idea that regularization will help by
curtailing the model complexity. If there is nothing to over fit, then the model will not
over fit. Our experimental verification in the more general case was also consistent
with this prediction — regularization is of limitéd help when no noise is present.

For G.L.M.’s, we analyzed the form of the regularization parameter and found an

explicit formula for Ajptimar = O(“2§"2), where the n?

arises from the component of
the target function outside the learning model when the G.L.M. is misspecified — the

component of the target function outside the learning model has an effect equivalent
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The top two graphs ((a) and (b)) show the dependence of the test error
in the presence of noise (02 = 0.3%) when training a 2-10-1 network on
data produced by a 2-5-1 network. All hidden units were tanh. We see the
presence of a best A > 0. The lower two figures ((¢) and (d)) show the
analogous results when the data are noiseless. The results are strikingly
consistent with the conclusions of section 3.2.1 even though the learning

model 1s non linear.

Figure 3.4: Test error dependence on A with and without noise.
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to input dependent noise’.

We deduced a technique (EXPLOVA) for testing the effectiveness of regulariza-
tion, which relied upon using the ‘hint’ that the target function is simpler than in-
dicated by the variance of the targets . This technique offers hope for being able to
choose a regularization parameter in some systematic way, given an estimate for the
noise level. In the presence of noise, EXPLOVA suggests a regularization parameter
of the form

o2 /N
A ~ Ll (3.36)

2 (H1V,.9) ( ,i:l 9(5m) Ve g<xm>>

which is applicable to general learning models and regularization terms. Further, EX-
PLOVA furnishes a method for evaluating whether or not a given regularization term
is useful for a particular learning model. We believe that the philosophy embedded
in EXPLOVA bears promise — the knowledge of the noise level indicates that the tar-
gets have a higher variance than the true function, therefore, we should incorporate
this knowledge by requiring that our learned function have smaller variance. Further
theoretical and experimental investigation along these lines seems promising.

We emphasize the need for a prior belief on the noise level by noting that there
is no universally good regularizing scheme — for any given regularizer, there is a level
of noise small enough (where now we treat a target function outside the learning
model as a noisy target function in the learning model) such that the regularization
will hurt. The need for an estimate of the noise and some prior information becomes
apparent by taking the Bayesian approach. Suppose that we wish to maximize the
posterior probability that the hypothesis, (g), is the target function, (f), given the
data set.

P(g = f|Dn) < P(Dnlg = f)P(g = f) (3.37)

7Using the methods in chapter 2, it is possible to show that the component of the target function
outside the linear learning model has an effect on convergence similar to input dependent noise as
well, thus we see that in many respects, a target function outside the learning model behaves very
much like a target function inside the learning model plus some additive noise.
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Assume a Gaussian noise model. Then maximizing the logarithm of (3.37) leads to

the equivalent optimization problem

min {Z(g(xi) —y;)* — o log(P(g = f))}
i

We have the familiar form of an empirical risk plus a regularization term —o? log(P(g =
f)). We see that the size of the regularization term depends on the estimate o2. We
also see that the relative weight of the regularization term to the empirical risk is
decreasing~ 1/N, in agreement with our results for more general noise. We have
looked at a specific prior, a delta function at the target function. Notice that our
results depended on parameters related to the target function. In general, priors will
have to be incorporated into the learning process. We consider this issue in chapter
9.

The gains due to regularization are O(1/N?) for the optimal regularization pa-
rameter, so it is important to have an accurate estimate for Aypiima in order to avoid
potential disaster. To this end, we need o2 and A4 (for G.L.M.’s) or ¢ and C (for
EXPLOVA). These quantities are priors, thus, effective regularization requires

the use of some prior information.
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3.5 Appendix

We use the notation
Z=1[z, 2o ... zZn], y=f+e¢

L. =(22"),, g=(zf(2)),

The law of large numbers gives us that ZZT e N¥Y,and g = ZfN——% N (zf(z)), =
00 —00
g. where we assume that the conditions for this to happen are satisfied. g € H <

g(z) = z7w. The Least Squares estimate of w is given by
ot = (225 'Zy (3.38)

We assume the conditions for the central limit theorem to apply are satisfied, so we

write

727" = NZ, +VNV(Z), Xf = Ng + vV Na(Z) (3.39)

where (V), = (a), = 0 and Var(V) and Var(a) are O(1) by the central limit theorem.
Using (3.7) and the identity [1 + AA]™1 =1 — AA + A2A? + O()?) one finds that

- yoivy st n LoIVYESIVE T

Yol=yt-—2 = 3.40
z zZ \/N N ( )
3.5.1 Properties of Ay
Here, we will present a detailed analysis of A4, given by

As= (8757558 - 875 g) (3.41)

Using (3.40) and (3.39), we find that

Aq

2Ty -IVy-lvy -t Ty-la—3gTy vyt 1
:< g z z z g+a z a g Z z a>+0 (342)
N N3/2
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We immediately see that A; is O(1/N). We can develop a more intuitive under-
standing of A as follows. Let f(z) = z'wy + n(z), where the best fit wp is given
by wo = X,;'g = X1 (zf(z)). Then consistency requires that X;* (zn(z)) = 0, so

(zn(z)) = 0. Let
. Z -
g = TVX = Tawo + & (3.43)
where we have defined § = Zn/N = >, z;n(z;) is an S x 1 vector. ({) = 0 and the

covariance matrix for £ can be calculated as

(&€7) = (el (e), ?V(z»z (3.44)

The expression for A; can now be reduced to
Aq=(€7815,50) + (w0%a577¢) (3.45)

We ignore the second term because it only involves €. Also by construction, wy is
approximately orthogonal to ¢ so if sz)‘z‘ 1 ~ T then this is justified®. The first term
can be simplified by taking the trace. To order 1/N, we then find

Tr[<77(z)2zzT> b

Ag= N

(3.46)

Notice that this is equivalent to the term that would arise were there input dependent

noise with noise variance n(z)2.

8Technically, one can show that the O(1/N) coefficient is wg (VY7 'a) where alpha is a random

variable with the same statistics as v N¢. However, we expect that V should be uncorrelated with
o, 80 we can ignore this term.



67

Chapter 4
The Maximum Likelihood Method and

the Prediction of Variance in Time Series

— The objective world simply is; it does not happen.
-Herman Weyl

The previous two chapters illustrate that the noise variance plays an important role
in the behavior of learning systems. A natural next step would be to consider the
estimation of the noise variance. Specifically we consider the general problem of
predicting variance in time series and the use of maximum likelihood as a tool for
choosing between any two variance predictors.

What can one say about the prediction of variance? In general nothing (NNFL,
chapter 8), unless we make some assumptions about the underlying deterministic be-
havior. We will assume that the mean is known for theoretical purposes. Practically,

this requires that the mean can be learned efficiently.

4.1 Introduction

Consider the time series depicted in figure 4.1. Each point z(¢) is drawn from a
distribution whose mean is u(t) and variance is o*(t). While we can only observe
z(t), we wish to learn about the mean p(t) and the variance o?(t). An accurate
prediction of the mean tells us about the expected behavior of the time series. An
accurate prediction of the variance is also important, for example, in financial time
series, the volatility (a normalized version of o(t)) is a tradeable quantity. Typically,
the variance serves to place an error bar on the predicted value.

The question arises as to how one can judge various models that are predicting
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Figure 4.1: A sample time series

a non-explicit parameter like the variance. The variance falls into the class of non-
explicit parameters because, on drawing a random variable from its distribution, no
direct information on the variance is conveyed. Depending on the error measure
one wishes to use, the value of the random variable gives direct information on the
‘central’ value - for example it is the best estimate of the mean using squared error,
or the best measure of the median using absolute error. For this reason it is possible
for a model to “learn” the mean or median by “training” on the actual value of the
random variable using one of these error functions. If we have more than one drawing
from the distribution then some direct information does exist on the variance but we
would like to consider time series with time-varying distributions, so we only get one
drawing from each distribution. As a result, one has to somehow infer information on
the variance, and here lies the difficulty with variance prediction. The task of mean
and variance prediction now becomes a learning problem. We discuss how this can
be done using maximum likelihood, and we take the special case of Gaussian noise to
illustrate our points.

The most striking result we will demonstrate is that, for any finite number of
data points, it is more likely than not that we will pick the worse of two specific

models if we use the likelihood function to compare them. It turns out that max-
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imum likelihood will lead to an underestimation of o(t), even when the mean is
predicted perfectly. This naturally leads to the question “can we correct for the
systematic underestimation?”. Such a correction factor would allow us to choose
from a class of models using maximum likelihood and then correct for the bias in
the method of selection. We will derive the probability distribution for this under-

prediction factor and discuss various correction factors. We consider models that

black box N

Iipy — , —s 1, &
predictor

Figure 4.2: A learning system

predict the mean and variance at time ¢ as in figure 4.2. A variety of such techniques
exist ([Hamilton, 1994], [Weigend and Gershenfeld, 1993], [Montgomery et al., 1990],
[Engle, 1982], [Bollerslev, 1986]. One would like to have a reliable method for choos-
ing between different models that are predicting o(¢). Our goal is the selection of the
optimal model given a number of models. Training can be viewed as a generalization
of this where one chooses from a class of models (e.g., neural networks with a given
architecture). We will evaluate maximum likelihood as a selection criterion between
models.

We describe the time series by some underlying time varying distribution, f(z |
I;_a¢), which is the conditional probability density for obtaining a value x at time ¢
given the information available at t — At. We are interested in (z), a prediction for
the outcome and ¢ = < (z — (z) f)2>f, the variance. (), denotes expectation with
respect to f(z | Ii_at)-

This chapter is organized as follows. Next, we will briefly discuss some finan-
cial motivation before moving on to an analysis of the maximum likelihood method
where we will discuss some of its problems. We will then consider the possibility of

compensating for the maximum likelihood problems.
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4.1.1 Financial Motivation

Volatility factors into a number of equations in finance. [Black and Scholes, 1973]
derived option pricing models for which the expected future volatility is an important
input. [Kat, 1993] has shown that more accurate volatility prediction will improve
the replication efficiency of delta hedging strategies using Black—Scholes hedge ratios,
even if the volatility is not constant. [Crouhy and Galai, 1995] shows that for path
independent options, though the option value depends only on the average volatility,
the hedge ratio itself depends on the path of future volatility. It would therefore be
financially useful to have an accurate prediction of the volatility.

A variety of techniques exist for predicting volatility. One can use the option
prices to compute ‘implied’ volatilities, such as those derived from the Black-Scholes
pricing equations. Another alternative is a multifactor model. Usually combinations
of such models work best, but these models all include some constancy in the volatil-
ity. [Schwert, 1989] tests for the constancy of the volatility and strongly rejects this
hypothesis. Thus one would like to have models that reasonably account for chang-
ing volatility. Autoregressive Conditional Heteroscedasticity (ARCH) type models
introduced by [Engle, 1982] stipulate the conditional variance as a function of past
innovations. Generalizations of this are GARCH [Bollerslev, 1986], and EGARCH
[Nelson, 1991], where the conditional variance is a function of past innovations and
variances. [Hull and White, 1987] has tried models that have stochastic parts to
them.

Variability versus Volatility: Financial market indices seem “too volatile” in that
movements seem to not be attributable to any new objective information. It is im-
portant to distinguish how “jagged” or “choppy” a time series is from the volatility.
One might more accurately refer to the former as the variability. At any given time,
if the mean value is known, the tendency of the actual value at that time to wander
about this mean value is related to the volatility. In the case where the mean and the

variance are constant, the variability will reflect the volatility. We are more concerned
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with time varying variance.

Correspondence with the Black-Scholes Volatility Models

In modeling the time variation of a stock price, Black-Scholes assume an Ito Process
[Ito, 1951] of the form
dS = pSdt+6Sevdt (4.1)

e ~ N(0,1), S is the instrument price. & is defined as the volatility and is the standard
deviation of the proportional change in the stock price in unit time. It is this & that
enters into the calculation of the hedge ratios, option prices, etc. The discrete analog

of (4.1) is
%g— ~ N(iAt, 52 At) (4.2)

or AS ~ N(SiAt,S*6?At). In our general framework, f(S | I;_a;) will be the

probability density for S at time ¢t. In particular, I, a; includes the information

S;_a:. Hence, the Black-Scholes model fits into this framework. The variance o2 is

related to the volatility & by
o

St—asV At

So to calculate option prices, hedge ratios, etc., according to the Black-Scholes pre-

(4.3)

o=

scription, it suffices to know o(t). With this consideration in mind, we now restrict

our analysis to the prediction of variance.

Technical Aside

In the Ito interpretation, (4.1) can be used to show that [Gardiner, 1997,
pg 95 X

dlog(S) = (ji — 552)dt + GeVdt (4.4)
Thus log(S) follows a trully Gaussian process, with the variance equal to

the volatility. Thus, in the non-discrete case, S is actually log-normal, and
it is only log(S) that is normal.
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4.2 Estimating o(¢)

4.2.1 Basic Setup

We start by introducing some notation that will be used throughout this discussion.
We will use u, o for the actual mean and standard devition, and fi, & for predicted
values. We will usually denote a data point drawn from the true distribution by d.
For a random variable with a Gaussian distribution with mean p and variance o2, we
will write  ~ N(u, 0?).

We will consider the case of noisy time series. Given the history of information
(including the full history of values of the time series), there exists some conditional
probability distribution for the next value. We label the time series variable x, and let
f(z¢ | I1—as) be the probability density function for z;, the value of the series at time
t, where I;_a; is the information available at time ¢t — At. Usually, I; A, is taken as the
past few values of the variable z. Ideally, we would like to know what f is, but we will
focus on the first two moments of £ We are interested in p(l;_a;) and o(I;_a;), the
mean é,nd variance at time t. A model consists of a “black box” that takes as input
I;,_as and outputs {/i,6'}, predictions of the mean and variance for time ¢ (figure
4.2). A collection of models consists of a set of such pairs of functions {af, 6{}74;.
We will drop the t superscript when the context is clear. The index ¢ refers to which
model we are talking about. Here, we will not be concerned with exactly what goes
into the black box of figure 4.2. All we know is that we are given a set of models

(e.g., GARCH, Neural Networks,. . .) that take the input J;_a; and provide estimates

of the mean and variance as output.

4.2.2 Choosing Between the Models

In order to choose between the models, one requires some ‘validation’ data. Since
our goal is to predict the mean p and the variance o?. We would ideally be given

n data points which consist of a series of inputs and the actual values of the mean
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and variance corresponding to those inputs,{I* A, u*, 0®}2_,. For each model i, one
then compares its predictions {4, 68} with the actual values and then chooses that
model that performed ‘best’ on the validation data. More formally, one constructs

an error measure for model ¢
E; = ZE(IS—Auﬂ??&?’MaaO—a) (4'5)

and chooses the model yielding the lowest value for the error. £ is a measure of
how bad a prediction was on a given data point. The most familiar error measure is
probably the squared difference error, E; = zn: [(4% —p®)2+ (6% —0%)?]. Unfortunately
one does not usually have access to the acgu:zil values of the mean and variance. All
one usually has are data points ({d,}"_,) drawn from the distributions f(z; | I a,)-

Based on the data, one has to construct an error measure
n
By =y E(Ifap 5,67, do) (4.6)
a=1

that evaluates the estimates i and & without knowing the actual 4 and o. One eval-
uates this error measure for the different models and picks the model that minimizes

the error.

4.2.3 Maximum Likelihood to Choose Between Models

If we know the functional dependence of f(z; | I;_a;) on the parameters that we are
trying to predict, then after observing the data we can evaluate the likelihood that
the data occurred under the assumption that model ¢ is correct. Given the likelihoods

of the different models, we will choose that model that has the highest likelihood!

[(d | model i) = [ £(da | I as) (4.7)
a=1

lin the evidence framework, we are picking the model for which the evidence is highest.
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where we have assumed that the data have been drawn independently from their
respective distributions. The likelihood is the physically important quantity because
it relates to a probability. A more mathematically useful quantity is the log (likeli-
hood) because it yields easily to the law of large numbers for many data points, as
it converts the product into a sum. In order to evaluate the right hand side of (4.7)
for a given model, we need to make some assumption about f. For the analysis that
follows we will assume that f is Gaussian. A similar analysis could be done for any

other assumption on f. Thus,

7]'0'2 202

F(d) L) = —==eap [—(—d—_ﬂ—] (4.8)

where p and o depend on I;_a;. An equivalent way to formulate this model (say) for

the price of a stock is

Sy = p+oN(0,1) (4.9)

To reproduce the Black-Scholes model, one would choose p = Si_a(1 + pAt) and
o =05;_ At\/&. In particular, we see that Black-Scholes models satisfy our Gaussian
assumption on f. The likelihood that the data occurred under a particular model ¢
is given by

= 1(d | model 7) —(d—“ﬂ] (4.10)

H L/ 2mal, 2 [ 26%,2

Maximizing the likelihood, or equivalently maximizing the log(likelihood) is the crite-
rion that we will use to differentiate between the models. As an example, consider the
training of Neural Networks to predict the variance using likelihood as the objective

function to optimize [Weigend and Nix, 1995].
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4.3 Problems with Maximum Likelihood

4.3.1 Expected Value of the Likelihood and Log(likelihood)

Maximum likelihood is widely used for parameter estimation [Valavanis, 1959]. Here
we will analyse maximum likelihood through its expectation. It is well known that
for a sample of data drawn from the same distribution, the maximum likelihood
predictors are i = d, the sample mean and &% = a2 — 32, the sample variance.
According to the law of large numbers, these estimates approach the true values
with probability 1. Suppose we do not have many data points. We can look at the
expectation of the likelihood and the log(likelihood) instead.

Consider thé likelihood function as a function of the data d,. Thus it is itself a
random variable, for which the distribution is known given the distribution of the
data point d,. One can calculate the expectation of the likelihood and log(likelihood)

for model 7. For simplicity in notation, we will drop the o index.

1 [ (- i)

log(l;) = -3 [%—4_—%?2— + log(o® + 67) + log 27r:| (4.11)
1 - Ai 2 2

logl) = —3 [(“ “’61 T log(62) + log 27?} (4.12)

The first expression tends toward the second in the limit > — 0, as should be
expected. Both the likelihood and log(likelihood) are convex independently in the
variables ji; and 6. However, as functions of two variables, they are not convex.
The expectation of the log(likelihood) is maximizea when the predicted mean and

variance are equal to the true mean and variance? .

max((log(i))] = > p, 67— 07 (4.13)

iy 0

If we expect the observed value of the log(likelihood) to be close to its expected value,

2(log(likelihood) ) is a cross entropy between f; and f, so this is a special case of Jensen’s
inequality.
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which will be true with enough data points, then it seems reasonable to maximize
the log(likelihood) in order to predict {ji, 6}. For this reason we use maximizing the
log(likelihood) as our criterion for choosing between models. The expectation of the
likelihood itself is not maximized at the correct values. Its maximum is when 6 — 0.
max[log(l)] = bi—n, 67 =0 (4.14)

Hi,0;

This rules out likelihood itself as a comparator because its expected behavior is not
desirable.

We now look at the expected log(likelihood) more closely. We will say that model
1 strictly dominates model 2 if |, — u| > |fi2 — p| and |61 — 0| > |62 — o and one
of the inequalities is strict?. One expects that if model 1 strictly dominates model
2, then its expected log(likelihood) should be higher. Unfortunately one can find
common situations where this is not the case. This becomes evident from figure
4.3. As 62 — 0, {logl;) — —oo so we can make model 2’s variance large while
sending model 1’s variance to zero. Then, model 1 will strictly dominate model 2
despite having a lower log(likelihood) . Thus, we see that even log(likelihood) will
lead to an expected worse choice in such situations. However we note that training
(say neural networks) by maximizing log(likelihood) [Weigend and Nix, 1995] using
small perturbations will select ‘better’ models on the average because the maximum
is unique. Note that by initially choosing a model with lower log(likelihood), training
could be faster owing to the asymmetry of the curve about the actual variance. If
the neural network cannot implement the maximum of the curve then training may
stop at a worse value than is necessary, owing to this asymmetry.

The previous analysis might suggest that a lower variance model with higher
likelihood is the best of both worlds. Always pick the lower variance model in this
case. What about the possibility of a “worse” model predicting lower variance and

having a higher likelihood. This will be the subject of the next section. In particular

3we use the absolute error criterion here, but almost any will do just as well.
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Shape of the <iog{l)> curve
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The curve is not symmetric about the true variance. Two models with
equal likelihoods can have different errors.

Figure 4.3: Plot of (logl;) as a function of 62, keeping /i fixed

we will compare the ground truth model to a ‘worse’ model predicting a lower variance.

4.3.2 Probability of Choosing the Wrong Model

Suppose that you have two models, model 1 dominating model 2 as described above.
One expects that model 1 will be picked more often than model 2. This does not
follow from the previous analysis of the expected value because it is possible for model
1’s expected log(likelihood) to be greater without its likelihood being higher most of

the time.

e Is is possible for a model to strictly dominate another model, yet on the basis

of likelihood be chosen less that half the time?

We will not only answer this question with an affirmative, but with an affirmative
even when the better model is the ground truth model. Set up the problem in the
following way. We have n data points {I;_as, d.} where each of the d, have been

drawn from a (possiblydifferent) distribution ~ N(pq, 02). We will consider the case
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where (%, = u, (perfect prediction of the mean), while the variances predicted by the

models are given by

Ou, A.>0 (4.15)

thus the models are parametrized by A’,,a = 1,...,n. The likelihood of model 7 with

parameters \* is

li = | [ Nao (ptar (No0)?) (4.16)

We are going to compare the two models {\, = 1}, the perfect model, and {),}. We
seek the probability (Pj) that Iy > Iy where I; is the likelihood of the ground truth
model and [5 is the likelihood of model X.

Treat the data outcome d as a random variable £. Then this likelihood itself is a
random variable, depending on the parameter X, so we can ask the question: what
is the probability that this random variable with parameter X is greater than the
random variable with parameter X = 1, i.e., we are asking for the frequency with
which the ‘worse’ model is chosen over the actual model.

To get the ball rolling consider the simplest case — one data point. Assume that
both models have mean 0, the true model has variance 1 and the worse model has
variance A?, slightly less than 1. The situation is depicted in figure 4.4. The probabil-
ity we require is the area under the true curve for the region where the worse model
is above the true model. This area is approximately 0.68. Therefore, close to 70% of
the time, this worse model will be chosen over the true model. Generalizing to n data
points, let P; be the probability that the worse model is picked over the true model.
It is given by

Py = Prob[l; > Ij] = /d"xl(f | X=T1) (4.17)

{i5>13}
In appendix 4.6, it is shown that Py is symmetric in o (remember that o indexes the
data points), so the condition for P; to be maximum will be symmetric in A,. With
this in mind, we therefore consider the case X =L P; is calculated in appendix

4.6 along with various asymptotic properties. Figure 4.5 summarizes the result in a
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The probability that a worse model predicting a slightly smaller variance
15 picked over the true model is the probability that the data point lands
in the one sigma interval. Ths probability is therefore given by the shaded

area on the graph.

Figure 4.4: Probability that a single data point favors a worse model.

plot of P, versus A. For A slightly less than 1, P, is greater than —;« This means
that a worse model will be chosen over the actual model more than % the time. This
holds for any number of data points. The smallest value that A can be with P, > %
(Amin(n)) is tabulated for various n in table 4.1. Referring to table 4.1, we note that
for n=100, a model with a 0.7% error in the prediction of o will be chosen more often

than the actual model. This is a fairly significant error when dealing with a tradable

quantity in financial markets.

4.4 Correcting the Maximum Likelihood Errors

Up to now we have diagnosed some problems with the maximum likelihood scheme.
We now try to tackle the problem of compensating for this error using our under-
standing of how it fails. The models that are more probable than the actual model are

models which underestimate the variance (assuming the mean is predicted perfectly).
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P, for various n
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For n even we get the result Py =1 —¢e™#" Z,f:_ol %, 8= i\;—zk’_jl—A The
result for n odd can be obtained numerically. Regions where the curve
exceeds % are regions where the worse model is picked more often than the

actual one.

Figure 4.5: Plot of Py as a function of A.

n )\mm (n) Pmaw (n) <%\‘> =correc

1 0.4937 0.6831 00

2 0.7072 0.6321 1.7725

5 0.8729 0.5842 1.1894

10 0.9349 0.5594 1.0837
20 0.9670 0.5422 1.0397

50 0.9866 0.5268 1.0153
100 0.9934 0.5186 1.0076
500 0.9986 0.5088 1.0015
1000 0.9993 0.5059 1.0008

For Apin(n) <A <1, Py > % (%) 18 the expected correction factor Qeorrec
for the new prediction given the mazimum likelihood model prediction (& —
QeorrecO ). Pmaz(n) is the mazimum value that Py can take and occurs for

A— 17

Table 4.1: Probability of picking a worse model.
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One expects that the model chosen using maximum likelihood will systematically
have a A that is less than 1. Suppose that we have a model that is predicting & = Ao
on the average. We would like to correct the prediction arrived at using maximum
likelihood methods by multiplying our prediction by some correction factor to get a

better prediction.

0 — QeorrecO (4.18)

In order to calculate qorrec, we need the probability distribution for obtaining a

particular model with parameter .

4.4.1 Probability Distribution Over A

Probability of picking a certain value of A using Maximum Likelihood
T T T T

Asn — oo P()) tends to a Gaussian centered at 1. When n=1, P()) is
finite at the origin.

Figure 4.6: Plot of P(A) for various values of n.

Consider the following idealized training dynamics. We have the class of models
that are parametrised by A. Training proceeds in the following way. Start with a
random A and perturb A a little toward the higher range and toward the lower range.

We are now only dealing with the three X’s {A — £, A\, A+ £}, Using the data we
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compare the likelihood of these three models and choose the model that produces the
highest likelihood. We continue the process until no change in A results. One can now
decrease the step size to attain the necessary accuracy. In this way, training of the
model proceeds in such a way that the model ends up picking the A that maximized
the likelihood function on the data set. In actuality the learning proceeds not by
varying A but by varying the parameters of the model (in the case of neural networks,
these are the weights). If the learning model is sufficiently general, then because we
expect the likelihood to be maximized at all A, equal, we restrict ourselves to that
space for the computation of P(A). The detailed derivation of this probability density

is in appendix 4.7. The final result we get for this probability density is

n%e‘"&; A2\ 21
Pydr= "2 (—> AdA (4.19)
I3 \2

We show a plot of P()) for various n in figure 4.6.

Correction Factors

Given the data set, we settle on a model & = Ao that maximizes the likelihood. The
probability distribution for X is given by (4.19). Knowing P()), can we change the
prediction in some deterministic way in order to improve our expected performance.
More quantitatively, one has in mind some penalty function £(op, ), where oy, is the
final prediction. We assume o, = aé. Noting that by definition, ¢ = 6/, we would

like to solve the following problem

Q»

Oleorrec = argmin <S(oz g)> (4.20)
A

[e4

Table 4.2 shows the correction factors for some penalty terms. We will focus on

Qeorree = %, which has an interpretation as an expected correction factor to bring &

up to o. One might also be interested in knowing 1/ (}), the correction factor to

make o, unbiased. Note that <§> > <1T> These quantities are easily calculated from



acorrec

N
S ft
o

(z-1) G
(log %)2 exp[(log(A))]

Table 4.2: qcoprec for different penalty functions.

P()\) using the identity (4.49) in appendic 4.7

a:<%> = \/@1}@) (4.21)
% = (g)rif(»z;) (4.22)

Values of the correction factor for various values of n are given in table 4.1. Note
that for n = 100 the correction is about 0.8% which is not trivial.

We summarize the correction method. Assuming that the models are predicting
the mean well, train the models using maximum likelihood and arrive at a model
to be used for future predictions. Now, given a new test input, obtain this model’s
prediction and correct by the correction factor described above, depending on the

penalty function that you wish to use.

4.4.2 Example: Training Neural Networks Using maximum

Likelihood

In this example, the model is a neural network with 131 weights. The weights are
altered by maximizing the likelihood [Weigend and Nix, 1995]. The input variable

which we have called I;_a; is * € [0,7]. The mean p(z) and variance o*(z) are
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Underprediction of o when Training a Network using Max. Likelihood
T
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We show the neural network prediction, 6(t), the true o(t), and the cor-
rected version using the correction factor given for 200 data points in table

4.8

Figure 4.7: Plot of the neural network learned o.

functions of z
p(z) = sin(1.5z)sin(2.5z),  o*(z) = 0.01 + 0.25 x [1 — sin(2.5z)]? (4.23)

and the model is a mapping z — [ :2((”‘2)] The network was trained on n examples
by altering the weights in the direction that increased the likelihood that the data
occurred under the model. The final network arrived at is used as the final model.
It is to this network that we wish to apply the correction factor. A question arises
as to what the effective number of data points (n.s;) is. Each parameter can be
regarded as being trained on some of the data points. So n.ss should be approximately
proportional to the number of examples, n.ss ~ yn. Using this relationship we can

get a theoretical prediction to compare with the experimental value. The results are

summarized in table 4.3 4.

4We thank Zehra Cataltepe of the Learning Systems Group at Caltech for use of the results
from her experiments in verifying the method of [Weigend and Nix, 1995]. (@correc) Was computed
from the results only where o was larger than a threshold because where o is small, the behaviour
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n ()

expt. theory
100 1.254+0.18 2.03
200 1.24+0.03 1.30
300 1.22+0.04 1.19
600 1.07+0.09 1.08
1000 1.044+0.03 1.05

S f it

The theoretical predictions were obtained by assuming a proportional re-
lationship negr = yn, fitting v to the data using the expected theoretical
form. The theory fit is for v = 0.012. [t is interesting to compare -y to
1/# weights (= 0.008), then n.ps would have an interpretation as the #
of examples per weight.

Table 4.3: Theoretical fit to experiments using Neural Networks

The agreement between the theoretical values and the experimental values seems
convincing especially as the number of data points increases. Note that the variance
in the experimental values is relatively small implying that the network has indeed
settled on a model with almost a constant parameter for \. A sample curve is shown
for n = 200 in figure 4.7. How one would calculate n.ss for a general class of mod-
els with a given learning algorithm is not yet obvious. In our discussion we have
assumed that the class of models is good enough to implement the various models
with parameter A. Exactly how we search through this space and how the models are

parametrized are expected to affect n.yy.

4.5 Comments

It seems appropriate to summarize the path that we have followed in this chapter.
We started out by setting up a framework for comparing between models. In this
framework, we used maximum likelihood to compare between models and we found

that this can lead to choosing the wrong model. These results are summarized by the

is erratic. The mean as expected was learned well, so we can apply the analysis above where we
assumed the mean was being predicted exactly.
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picture in figure 4.8.

IN SAMPLE

OUT OF SAMPLE

Choosing the model that

maximizes the likelihood
FINITE will yield a model that

DATA systematically predicts

lower variance, even if

the mean is predicted well.

Probability of choosing
the wrong model

is > —;— for some ‘worse’

models.

EXPECTED NOT
VALUE APPLICABLE

Possible to find
models 1,2 with

model 1 worse than 2

but <10g ll> > <10g12>

Figure 4.8: Diagram depicting the problems with the maximum likelihood method.

We find a systematic underestimation of the variance in time series analogous to
that of a sample variance. We expect the mean to be predicted well. When the mean
is predicted well, we derive a probability distribution for the underprediction factor.
Given a penalty function, we can derive a correction factor, correc. This correction
factor can be large. In this way we are able to choose a model from a class of models
using maximum likelihood, and then improve that model using the correction factor.
What about when the mean is not being predicted well? One would like to have a
way to predict the variance without having to predict the mean. No noisy free lunch

(chapter 8) partially answers this question. It is necessary to have some prior on p(t)

to make any prediction, and in this case we have a “good” prior.
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4.6 Appendix A

In this appendix we derive the technical results used in section 4.3. The a priori
model that will be assumed is Gaussian. Suppose we have a data point (d,) drawn
from the actual distribution. Given a model {/i,,5,}, the likelihood of the data point

1s

~ ~ — ~ ~2 1 (da - ﬂa)2
l(da I ,LLa,O'a) = Nda(,ua,(fa) = \/Wexp ———‘—2-6_2—"*" (424)

n data points d, are drawn independently from distributions with (possibly varying)
actual means (u,) and (possibly varying) actual variances (¢2). Assume that the

model is predicting the mean correctly (fio = o), While the variances predicted by

the model are given by

ba = AaOar Ao >0 (4.25)

The likelihood for the model with parameters X is
U(d | X) = ][ Nao (ftar (Aa0a)?) (4.26)

Treat the data outcome d as a random variable Z. Then this likelihood is a random
variable, depending on the parameter X. We seek the probability that this random
variable with parameter Xis greater than the random variable with parameter X = I
i.e., we are asking for the frequency with which the ‘worse’ model is chosen over the

actual model. This probability is given by
P; = Prob[l; > ;] = /d”xl(f{ x=1) (4.27)
{52}

The boundary condition for the integral is non trivial. The condition I; > Iy implies

log(l;) > log(ly) due to the monotonicity of the log function. Thus, the boundary
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condition reduces to

> (—2?2@— | > Zlog (4.28)

[3]

(Ta—Ha)
To

Making a change of variables to u, = , the expression for P; becomes

/ gy e (4.29)
53 [1- 3 | 2 og0a)

(23

(M

The boundary condition is symmetric in o, the constraint on the A\,’s (A, > 0) is
symmetric in o and the integrand is also symmetric in & so the condition for P to be
maximized will be symmetric in o. With this as motivation, we consider the class of

models for which X = AL, ie., all \,’s constant. The boundary condition now reduces

to
E(“’“Q’ja) <pPn, 0<A<1 2
Mlog A
Z 012620‘ >/8n 1<A : A —1
o
1 1
O</\<1:>0<ﬂ<§, )\%0,1:>ﬁ——>0,5 (4.31)

The integral can be reduced to one dimensional form by transforming to spheri-
cal coordinates with the aid of the following result derivable by standard methods

[Huang, 1987, pg 138-139)

/7~ d"x f(r) = fZ_E_T% /01;11" " (r) (4.32)

<R 2

Thus with some manipulation, one finally gets

fondyy eV 0<pB<t
Py=P = (4.33)

=
AN
™

x0 n__ —
ey S dy yi e
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When n is even we can get a closed form answer. When n is odd, and large, we can
get an answer in terms of the asymptotic form for the error function. We pursue the
case n even, leaving the rest to numerical analysis. We also restrict ourselves to the

interesting domain 0 < A < 1. The case 1 < A follows an identical analysis. We

g=1

rewrite (4.33) as

where n = 2m. Doing the integral followed by the derivatives and noting that I'(m) =

(m — 1)! for positive integer m yields after some algebra

1 e fny el (Bt 0<1<A
P, = { h=0 k! (4.35)

k=0 g

We use the following lemma to discover an asymptotic form for this as n — oo

Lemma 4.6.1

o) o 2 | i)
nlg{)lo e ZF :/dum “:7}%[\/5(””—_ )] (4.36)

k=0 —oo

PROOF: Note that a Poisson distribution with parameter n has P(k) = e "n"/k!. As

n — 0o, this tends to a Gaussian. More precisely [Feller, 1968a, pg 194, Problem 9|

w2

n+ﬁﬁ§;n+aﬁP(k)—>N(a)—N(ﬁ): /ﬁ s (437

f(n)—n
N The lemma now follows. n

In our case, 3 = —n and a = ==

The asymptotic form of Py hasa = lim { 5 (G -8)— %)] . Thus fora < 0 (=P, >
n—roo
1

3), B(n) must approach % faster than —71; We can make this more precise. Suppose

that A = 1 — g(n) and 8 = ;7 — n(n). Then expanding to second order using the
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definition of §(A) one finds

g*(n)
12

o) = 2(m) — ot -0t )= 2 S ) aa)

3

Expanding the expression for Py in n(n) we can get an asymptotic form as 8 — 1.
We can then answer the question: what are the values of § that give Py > —é— Tedious

but elementary algebra yields

—n Long 2 3
P~ 1-eE Y wi(5) —em)n(n)+n"(n)+I(nn”)] - e(n) =
Using Stirling’s approximation for the factorial function, we can now get an expression
for that Amin(n) for which Py = 1. Thus Py > £ for Apin(n) < A <1

11— 00 1

0.6 — Qn—?’] (4.40)

As XA — 17, Py(n) tends toward its maximum value (P,,,(n)) for given n

- 1 1 1
P2 P (n)=-+ [1— } 4.41
A (n) 2 V/127mn 36m ( )

Note the fact that for n fairly large, A, (n) is significantly less than 1. All models that
lie in the region between Apin(n) and 1 are more likely to be chosen than the actual
model, so the question arises as to whether one can compensate for this systematic
underestimation of the variance when the maximum likelihood scheme is used. This

is the subject of Appendix 4.7.
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4.7 Appendix B

In this appendix we derive the probability distribution used in the development of
the X\ correction factor. A similar analysis to that which led up to (4.30) yields the

following conditions

> (—z% <nBA M), A<\ A log (3\’\—)
by D= X pun? BAM) = ———=5, B>0
Z (—1—2;:?—) >nB(\ M), A> A B_Z — 1]
(4.42)

What is needed is that [, L < and that [, _ ax < Iy. From (4.42) this is equivalent
to the condition that the data satisfy
)2
nBOA — D) < 3 Ea i) 50 5y (4.43)

2
= 202

So to get the probability that this is true we simply need to integrate the probability

density for the z;’s over the region where this condition is true. Thus we want

/ d"™x H Na, (phay 02) (4.44)

nBAA-R)<S Bazia)® gy 21 42)
(s [s7

This is the probability that the data fall within the range required to ensure that
N 4 < Iy and that [, _ o < I,. But this precisely the probability that our algorithm
stops at A. Using (4.32) we can reduce this integral into one dimensional form as was

done to get (4.33). Thus the probability that A’ € [A, A + %] is given by

P(\)—= = dy y2 eV (4.45)

d\ 1 /nﬁ(,\,M%ﬁ) .
2 I‘(g—) n

BAN-2)

The idea now is to expand the limits in d\. To this end we require the expansion

BAA+0) = 5\23 [1+ 2] +9(6%). We use this to expand the limits of integration and
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then using the substitution nx =y — n%% the integral reduces to

ey A2\ i 92271372 Cne
P()\)d)\ = —1:(—%-)——— (?> ‘/_%d}\ dX I:l + ﬁjl € (446)

Expanding the integrand as a Taylor series in  and doing the integral gives a result

as a Taylor series in dA. Taking the limit as dA — 0 one finally gets
Femm A2\ 2!
P\ =2~ (A—> AdA (4.47)

Thus we have found, using this method of model selection, the probability that a
model with parameter A is obtained. We are interested in quantities like the expected
correction factor

(4.48)

Qeorrec =

S| =

These quantities are easily calculated from P(A) using the identity

(A™) = /Oood)\ A™ {“;‘Zi (;)g_lA} - (%)E Fr((g) (4.49)

One finds by substituting the value m = %1 that

[/ny D(%57)

Qeorrec = <%\'> - (5) F(%) (4:50)
ny I'(3)

<_§\> = (5) FI(‘TH-l) (4.51)
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Part I1

Density Estimation
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Chapter 5

Introduction and Background’

— When solving a problem, try to avoid solving a more general problem
as an intermediate step.
- Vladimar Vapnik

A majority of problems in science and engineering have to be modeled in a prob-
abilistic manner. Even if the underlying phenomena are inherently deterministic,
the complexity of these phenomena often makes a probabilistic formulation the only
feasible approach from the computational point of view. Consequently, tools from
probability theory have become very valuable in the characterization, analysis, and
solution of many such problems. Although quantities such as the mean, the variance,
and possibly higher order moments of a random variable have often been sufficient
to characterize a particular problem, the quest for higher modeling accuracy, and for
more realistic assumptions drives us towards modeling the available random variables
using their probability density. This of course leads us to the problem of density es-
timation (see [Silverman, 1993]). Density estimation has been a very active research
topic in the past three decades. There has always been competition among researchers
to invent more accurate density estimation techniques, since this will significantly
impact the applications that rely on density estimation as an essential component.
Examples of applications that need a density estimation step include the following:
the application of the optimal pattern classification procedure, the Bayes procedure
(see [Bishop, 1995a], and [Duda and Hart, 1973]), the determination of the optimal
detection threshold for the signal detection problem [van Trees, 1968], time series

prediction applications where the density for a future data point is required rather

1T would like to acknowledge that this work on density estimation was done in collaboration with
Dr. Amir Atiya while he was a Visiting Associate at the Caltech Learning Systems Group.
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than a single forecast for the value (see [Weigend and Srivastava, 1995]), clustering
for unsupervised classifier design [Duda and Hart, 1973|, the design of optimal scalar
quantizers for the signal encoding problem [Gersho and Gray, 1992], and finding es-
timates of confidence intervals and quantile levels for the parameter estimation and

regression problems [Larsen and Marx, 1986.

5.1 Density Estimation is Ill-Posed

Non parametric statistics developed with the need for solutions to the density esti-
mation and regression problem that were both unbiased and consistent. The density,

if it exists, is the solution to the integral equation?

/ " gt p(t) = F(z) (5.1)

—00

where F(z) is the probability distribution function. The density estimation problem

can be stated as follows.

From a set of functions {p(¢)}, solve the integral equation (5.1) in the
case where the distribution function F'(z) is unknown but a data set
{Z1,%2,...,2n} drawn 4.4.d. according to this distribution function is

given.

Solving this problem for a wide class of functions {p(#)} is an ill posed problem?®. As
an example consider the estimator that is a sum of delta functions at the data points.
A small change in the data points results in a large change in the estimate. Therefore
the need for some form of regularization arises.

Using the data, one can construct the sample distribution function Fj (x) given by

Fy(z) = — Z O(z — ;) (5.2)

2We restrict ourselves to one dimension for most of our discussion of density estimation.
3 A more detailed discussion of ill-posed problems can be found in part I
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Sample and True Distribution Functions for a Sample Size of 20
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Figure 5.1: The sample distribution function.

where ©(z) = 1 if z > 0 and O(z) = 0 otherwise. A sample distribution function is

illustrated in figure 5.1. The uniform convergence [Serfling, 1980, pg 62]
sup |F(z) — Fy(z)| =3 0 (5.3)

suggests that one can use F,(z) as an approximation to F(z). Therefore, solving (5.1)
with F(z) replaced by Fi(z) is the approach that we will take. Unfortunately, this
alone will not suffice because as already mentioned, the density estimation problem
is ill-posed. We need to restrict our space {p(t)} by using regularization. In order to
do this we have to make some assumptions on F'(z).

Naturally, one asks whether such assumptions can be avoided. Unfortunately
the answer to this question is no. It can be shown that estimation of a probability

density implies strong mode  estimation of the probability distribution [Vapnik, 1995,

“We say that P(A) = P(zy,...,zy) estimates the probability measure P in the strong mode if

sup |P(4) — P(4)] £ 0
AeF

as N — oo where the sup is taken over all subsets of the sigma algebra of interest, F.
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pr 61]. It can also been shown (eg. [Barron et al., 1992], [Devroye and Gyorfi, 1990])
that no estimator can estimate an arbitrary probability measure in the strong mode.
Therefore it is necessary to make some assumptions on the probability measure in
order to estimate the density. As a simple example, the estimator consisting of
delta functions at each data point (appropriately normalized) is a legitimate density
estimator, but this does not converge to the true density unless the true density
happens to be a set of delta functions. Conversely, continuous density estimators will
not (in general) converge to the true density if the true density happens to be a set
of delta functions. Lacking any prior information, there is no reason to favor one of
these methods over the other. We will impose smoothness constraints on the true
density by bounding its derivatives.

This theme regarding the necessity of prior information has already appeared in
the context of regularization and will appear again when we discuss natural priors. We

will assume that the measure we are attempting to estimate has bounded derivatives.

5.2 Existing Density Estimation Techniques

How can one estimate the form of the density using a number of data points drawn
from that density? Traditional density estimation methods can be grouped into two
broad categories (see [Silverman, 1993], [Bishop, 1995a], and [Duda and Hart, 1973]).
The first of these is the parametric approach. It assumes that the density has a specific
functional form, such as a Gaussian or a mixture of Gaussians. The unknown density
is estimated by using the data to obtain estimates for the parameters of the functional
form. Typically, the parameters are estimated using maximum likelihood or Bayesian
techniques. The drawback of the parametric approach is that the functional form
of the density is rarely known beforehand, and the commonly assumed Gaussian or
mixture of Gaussian models rarely fit densities that are encountered in practice.
The more common approach for density estimation is the non parametric ap-

proach, where no functional form for the underlying density is assumed. Rather than
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expressing the density as a specific parametric form, it is determined according to
a formula involving the data points available. Non parametric density estimation
belongs to the class of ill-posed problems in the sense that small changes in the data
can lead to large changes in the estimated density. Therefore it is important to have
methods that are robust to slight changes in the data. For this reason some amount of
regularization is needed [Tikhonov and Arsenin, 1977], [Tikhonov, 1963]. The most
common non parametric method is the kernel density estimator, also known as the
Parzen window estimator [Parzen, 1962]. The density is estimated by summing “ker-

nel functions” centered at each data point.

p(z) = —}V—Z 7(})K<j(‘N”;"> (5.4)

v(N) is the kernel width. Embedded in the choice of y(N) is the amount of regular-

ization or smoothing. A typical kernel function is the “Gaussian bump.”

K@) = ——e % (5.5)

The problem with the kernel method is its extreme sensitivity to the choice of the
kernel width (y(N)). A wrong choice can lead to either under smoothing or over
smoothing. Methods to estimate the kernel width are either asymptotic and given
in terms of the unknown density, thus impractical, or are based on cross-validation,
thus prone to statistical error. Another drawback of the kernel regression method is
that it has the tendency to exhibit bumpy behavior at the tails. If the bumps are
smoothed out by increasing the kernel width, then essential detail in the main part
of the density is masked out or the width of the main part of the density will be
exaggerated. We illustrate this behavior in figure 5.2.

The other common non parametric approach is the k-nearest neighbor technique
[Fukunaga and Hostetler, 1973]. In this approach, the density at a particular point z

is estimated as inversely proportional to Vj, the volume of the hypersphere centered
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{Hustration of the Sensitivity of Parzen Windows to the Smoothing Parameter
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The Parzen estimate from 100 data points sampled from a mixture of two
Gaussians. Illustrated here is the sensitivity to the smoothing parameter.
With a small parameter (width=1), the detail is picked up but the function
becomes extremely bumpy. A smoother function can be obtained at the
expense of less detail by using a larger smoothing parameter (width=3).
Looking at the curves, we see that the choice of the smoothness parameter
can be critical.

Figure 5.2: Tllustration of the sensitivity of the Parzen estimator to the smoothing
parameter

at z, with radius equal to the Euclidean distance to the k" nearest neighbor.

1k-1

p(z) = & v (5.6)

The k-nearest neighbor approach shares some of the drawbacks of the kernel density
estimator, such as the difficulty of obtaining the best smoothing parameter k. In
addition, the density estimate is not a smooth function, has a very heavy tail, and
integrates to infinity on non-compact sets.

In spite of the importance of the density estimation problem, proposed meth-
ods using neural networks have been very sporadic in the literature. Many of them
are similar to existing conventional methods, but developed in a neural network

framework. Traven’s approach [Traven, 1991] and Cwik and Koronacki’s method
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[Cwik and Koronacki, 1996] are based on mixture of Gaussian density estimation
method. Schioler and Kulczyki’s method [Schioler and Kulczyki, 1997] is based on
the kernel estimation method. Roth and Baram [Baram and Roth, 1996] developed
an elegant method using a one-layer network of sigmoidal nodes, and training it by
maximizing the entropy of the outputs. Van Hulle [van Hulle, 1996] developed an
interesting technique based on a self organizing approach, whereby the algorithm con-
verges to a solution, such that at any point, the density of the weight vectors is an
estimate of the unknown density. Modha and Fainman [Modha and Fainman, 1994]
proposed a multilayer network, that is trained by maximizing the log-likelihood of the
data. [Weigend and Srivastava, 1995] develop a fractional binning approach, devel-
oped in the context of time series prediction, that is based on partitioning the input
space into bins, assigning a softmax output neuron for every bin, and training the
network on the fraction of data falling in each respective bin. Smyth and Wolpert
[Smyth and Wolpert, 1998] suggested a method for combining the estimates of sev-
eral density estimators (such as kernel estimators or mixture of Gaussian estimators).

The common factor in all these methods is their focus on estimating the density itself.

5.3 New Density Estimation Techniques

First we will propose two new methods for density estimation which can be im-
plemented using multilayer networks. The approaches can thus be considered as
semi-parametric models. The reason is that the model is described in terms of a
number of parameters (the weights of the network), rather than the actual data
points, but at the same time the number of parameters can be increased in a way
that would ultimately achieve an all-powerful model capable of approximating any
(continuous) density function. One important advantage of multilayer networks over
local methods such as the kernel estimator is that they have been shown in theory
and in practical problems to be superior for high-dimensional problems, for example

approximation ability does not decay with increasing input dimension [Barron, 1993].
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Convergence of the Sample Cumutlative Distribution to the Distribution
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The sample distribution function for a mizture of two Gaussians is shown
for 1000,10000 and 1000000 data points. Notice that the curve for 10000
data points is essentially overlapping the 1000000 data points curve.

Figure 5.3: The convergence of the sample distribution function.

Further, multilayer networks give us the flexibility to choose an error function to suit
our application. The methods developed here are based on approximating the dis-
tribution function, in contrast to most previous works which focus on approximating
the density itself. Straightforward differentiation then gives us the estimate of the
density function. The distribution function is often useful in its own right - one can
directly evaluate quantiles or the probability that the random variable occurs in a
particular interval.

Figures 5.3 and 5.4 indicate the essential intuition behind why one might focus
attention towards learning from the distribution function rather than from the density.
One can see the higher sensitivity of the density estimator to finite sample size and the
bin width (smoothness parameter). Too small a bin width increases the sensitivity to
the ‘noise’ due to the small sample size. A larger bin width will smooth out this noise
at the expense of a loss of information. The distribution estimator, however, does not
appear as sensitive to the small sample size, and no smoothness parameter need be

chosen. The regularization that is controlled by the bin width ( or kernel width) is
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The histograms of data drawn from data droawn from a mizture of two
Gaussians. (a) and (b) are for a bin width of 0.02, and (c) and (d) are
for a bin width of 1. The histograms for 1000, 10000, 1000000 points are

shown. Notice the extreme sensitivity to the bin width.

Figure 5.4: Convergence of the histogram estimator.

embedded in the integral operator that is used in passing from the histogram to the
distribution.

We will develop two methods for the estimation of densities by first learning the
cumulative and then taking the derivative of the resulting function. One of the
techniques is based on a stochastic algorithm (SLC), and the second is based on a
deterministic technique based on learning the cumulative (SIC). We will show that
these two techniques yield equivalent results. The stochastic technique will generally

be smoother on smaller numbers of data points, however, the deterministic technique
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is faster and applies to more that one dimension.

We will analyze the consistency and the convergence rate of the estimation er-
ror for our methods in the univariate case. When the unknown density is bounded
and has bounded derivatives up to order K, we prove that the estimation error is
O((loglog(N)/N)~(=%)), where N is the number of data points. As a comparison,
for the kernel density estimator (with non-negative kernels) and the k™ nearest neigh-
bor density estimator, the estimation error is O(N~%°), under the assumptions that
the unknown density has a square integrable second derivative (see [Silverman, 1993]),
and that the optimal kernel width is used, which is not possible in practice because
computing the optimal kernel width requires knowledge of the true density. One can
see that for smooth density functions with bounded derivatives, our methods achieve
an error rate that approaches O(N~1). We have found in the literature only the fol-
lowing methods that achieve a comparable error rate. The first is a kernel estimator
with the specific choice of kernel that possesses zero I** order moments forl =1, ..., L,
L being even. For such kernels, the convergence rate is O(N~2%/(2L+1)) The prob-
lem, however, with this method is that the kernel has negative parts, and hence the
resulting density estimate can be negative at some points and could therefore be an
illegitimate density function. Because of this problem, this method is impractical and
is not commonly used. The other method is the adaptive kernel estimator. The error
rate is theoretically O(N~%/°) for this method. However, the error estimate for this
method is based on using the optimum smoothing function, which is given in terms
of the unknown density and its derivatives. Even if one uses pilot estimates of these
unknown characteristics of the true density to determine the smoothing function, the
resulting statistical error will leave a residual O(N~%%) term that cannot entirely

cancel out. The error estimate of our method, in contrast to these methods, does not

rely on optimizing parameters based on the unknown density.
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5.4 Random Variate Generation

The topic of random variate generation has been a vast research topic in the past
three decades. In many scientific problems in areas such as physics, biology, engi-
neering, and economics it is now more the rule than the exception to be confronted
with problems where analytic solutions are not possible and simulating the given
problem would be the only feasible approach. Problems which possess some random
element will necessitate an accurate and fast random variable generation procedure
for the Monte Carlo simulation to be efficiently performed. Examples of applications
include the simulation of a biological system, such as how nerve cells interact together,
the simulation of a communication network where the packets are assumed to arrive
according to a particular density function, the simulation of a control system where
the plant disturbance is a random variable, and the simulation of the stock market
in an attempt to estimate a valuation for some derivative instruments. In the past,
the assumption of standard density functions such as Gaussian or exponential densi-
ties for these random variables often allowed analytical solutions for these problems.
But now, with more accuracy needed, the next step has been to assume more real-
istic density functions for the random variables (possibly estimated from the data).
Unfortunately, there are very few techniques that can generate a random variable
possessing an arbitrary density function (see [Press et al., 1988] for a review of the
approaches). One well known method is the transformation method: a uniformly
distributed random number z is generated, and this number is passed through a non-
linear transformation y = G~!(z), where G(z) is the given (cumulative) distribution
function. The problem with this method is that in the majority of cases G~!(z) (or
even G(z)) is not known analytically. Solving for G'(z) numerically is not practical
since an essential feature of random number generation is speed. In Monte Carlo sim-
ulations, random variables are typically generated millions of times, in order to obtain
statistically reliable results. There are many variations of the transformation method,

such as obtaining transformations of several random variables (see [Knuth, 1981a]
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The integrable function h(z) dominates g(z). A point is generated uni-
formly in the area A and then is accepted or rejected depending on whether
it falls in the area under g(x).

Figure 5.5: The rejection method for random variate generation.

and [Johnson, 1994]). These methods are largely ad hoc, and can be used to generate
only some of the well-known density functions such as Gaussian, Gamma, Beta, etc.

The other method for random variable generation is the rejection method. It is a
more general method than the transformation method. To use the rejection method, a
comparison function h(z) that dominates g(z) everywhere is required (see figure 5.5).
A point (p = [ps, py]) is generated uniformly in the two-dimensional region bounded
by the comparison function and the z-axis. For this purpose, H~! is needed where
H(z) = ffoo dt h(t). The point (p) will be accepted or rejected depending upon the
realization of a second uniform [0, 1] random variable (u) as follows. u is compared
to g(ps)/h(p:) and the point p is accepted if v < g(p,)/h(p;). The problem with
the rejection method is that for some large-tail densities it is not possible to find a
comparison function with an analytically invertible distribution function (a necessary
condition for the method) that is everywhere larger than the given density. Therefore,
it cannot guaranteed that this method is capable of generating random variates from

an arbitrary -density. The acceptance rate is 1/A where A is the area under h(z).
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The acceptance rate can be small (0.01), thus slowing down the random variate
generation process. Further, if the functional form of the given density is not known
and it is characterized only by a finite set of data points (or say by a kernel density
formulation), it becomes a computationally extensive procedure (requiring that we
pass through all the points in the data set) to generate a single point.

Our goal is to develop several new random variable generating techniques which
can be implemented using multilayer networks. The first method is based on viewing
the random number generation as the inverse process of the density estimation. This
method becomes the only computationally efficient method available for generating a
random variable given a set of data points rather than a functional formulation. Two
variants of this method are also proposed. We also propose a method that formulates
the problem within a “control” framework. A cascade structure is proposed, that
consists of a density shaping network (acting as the “controller”), and a density
estimation network (acting as the “plant”). For the methods that we propose, the
bulk of the time is spent in “learning” to generate the random variates. Once this
learning is done, the actual generation of these random numbers is fast and can thus
be used for Monte Carlo simulations.

The next chapter will develop the two new density estimation techniques, where
we will also discuss the new, related, random number generating techniques. We will
illustrate the techniques using neural networks. Then, in chapter 7 we will analyze the
convergence characteristics of the two methods. We will show that the two methods

are essentially equivalent, and then we will analyze convergence.
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Chapter 6

New Density Estimation Techniques with
Application to Random Variate

Generation

— Traveller, there are no paths. Paths are made by walking.
- Antonio Machado

In this chapter we will propose two new methods for density estimation. For both
methods, one can use a standard multilayer network, such as a one-hidden-layer or
a two-hiden-layer network. We will use neural networks throughout for illustrative
purposes, but stress that any sufficiently general learning model will do just as well.
The network’s output will represent an estimate of the distribution function, and its
derivative will be an estimate of the density. We have already discussed the intuitive
advantages of learning from the sample distribution function. We will now proceed

to a description of the two methods.

6.1 SLC (Stochastic Learning of the Cumulative)

Let z, € R, n = 1,..., N be the given data points. Let the underlying density be
g(z) and its distribution function G(z) = [*_g(t)dt. We assume the density to be
continuous and have continuous derivatives of all orders. Let the neural network
output be H(z,w), where w represents the set of weights of the network. Ideally,

after training the neural network, we would like to have

H(z,w) = G(x). (6.1)



108
Learning requires a set of targets. To determine a target for the network training,
we make the following observation. The density of the variable y = G(z) (z being
generated according to g(z)) is uniform in [0, 1]. The reason is as follows. Let z(y)

represent the density of y. Using the well known formula for transformation of random

variables,
g(z) _ g(z)
dz dz

and z(y) = 0 for y < 0 or y > 1. We used the fact that g(z) = dG(z)/dz. Thus, if
H(z,w) is to be as close as possible to G(z), then the network output should have
a density as close as possible to uniform in [0,1]. This is what our goal will be. We
will attempt to train the network such that its output density is uniform. Having
achieved this goal, the network mapping should represent the distribution function
G(z)*.

The basic idea behind the proposed algorithm is to use the N data points drawn
from the unknown density as inputs to the network. For every training cycle we
generate a different set of N network targets randomly from a uniform distribution
in [0,1], and adjust the weights to map the data points (sorted in ascending order)
to these generated targets (also sorted in ascending order). Thus we are training the
network to map the data to a uniform distribution.

Before describing the steps of the algorithm, we note that the resulting network has
to represent a monotonically nondecreasing mapping, otherwise it will not represent a
legitimate distribution function. Let M = {w|0H (z,w)/0z > 0, Vz}. Then we wish
to pick w € M, such that H(z,w) is as close as possible to G(z). In practice, enforcing
monotonicity could be done by using a class of “monotonic networks” [Sill, 1998b], or
else by using hint penalty terms [Abu-Mostafa, 1995], [Abu-Mostafa, 1990]. Hints are
auxiliary information or constraints on the target function, that are known a priori

independent of the training examples). By using hints in the form of penalty terms,
y

LA similar philosophy is used in [Baram and Roth, 1996], where they show that their entropy
maximization method implies transformation to a uniform density (and also implies the necessity
to maximize the expected logarithm of the determinant of the transformation Jacobian).
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we can guide the learning process, and obtain a network that satisfies the hints. In
our simulations, we used the latter approach of adding a term, that penalizes non-

monotone mappings to the error function. The proposed algorithm is as follows.

1. Let 21,23, ..., zy be the points drawn from the unknown density. Without loss of

generality assume the points are sorted in ascending order: z; <z < -+ < zy.

2. Set t = 1, where t is the training cycle number. Initialize the weights to w(1).

This is usually done randomly.

3. Generate randomly from a uniform distribution in [0, 1] N points u}, u5, ..., uy.

These are the network targets for this cycle.

4. Sort the targets in ascending order, i.e. u; < uy < ... < uy (where we have
renamed the ordered targets u,). Then, the point u, is the target output for

Ty
5. Adjust the network weights according to the backpropagation scheme:

o0&

o (6.3)

w(t+1) = w(t) —n(t)

where £ is the objective function that includes the error term and the mono-

tonicity hint penalty term:

&=y, [H(w) —u] + A5 0 (H ()~ Hlye+ A)) [Hly) - Hlye+ )]

(6.4)
where we have suppressed the w dependence. The second term is the mono-
tonicity penalty term, A is a positive weighting constant, A is a small positive
number, ©(z) is the familiar unit step function, and the y;’s are any set of
points where we wish to enforce the monotonicity. Because the hint is known

to be true, A can be chosen very large.
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Method 1: Learning after 100000 iteratians with 3 Hidden Units . .
T T T T Method 1: Density Estimate After 100000 fterations
T T T T

—  True
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The cumulative estimate after 100000 iterations of SLC is shown in (a)
along with the sample and true distribution functions. The implied density
is shown in (b). The data set consisted of 100 points sampled i.i.d. from
the mizture of two Gaussians shown in (b).

Figure 6.1: Stochastic learning of the probability density function.

6. Set t =t+ 1, and go to step 3 to perform another cycle until the error is small

enough.
7. Upon convergence, the density estimate becomes

i) = 200 (65)

Note that as presented, the randomly generated targets are different for every cycle,
which will have a smoothing effect that will allow convergence to a truly uniform
distribution. One other version, that we have implemented in our simulation studies,
is to generate new targets after every fixed number L of cycles, rather than every cycle.
This will generally improve the speed of convergence as there is more “continuity” in
the learning process. Also note that it is preferable to choose the activation function
for the output node to be in the range of 0 to 1, to ensure that the estimate of the

distribution function is in this range. A sample run of how SLC performs on 100 data
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points drawn from a mixture of two Gaussians is shown in figure 6.1.

SLC is only applicable to estimating univariate densities. The reason is that for
the multivariate case, the nonlinear mapping y = G(z) will not necessarily result in
a uniformly distributed output y. Fortunately, many, if not the majority of prob-
lems encountered in practice are univariate. This is because multivariate problems,
with even a modest number of dimensions, need a huge amount of data to obtain
statistically accurate results. Our second method, described next, is applicable to the

multivariate case as well.

6.2 SIC (Smooth Interpolation of the Cumulative)

Again, we have a multilayer network, to which we input the point x, and the network
outputs the estimate of the distribution function. Let g(x) be the true density func-
tion, and let G(x) be the corresponding distribution function. Let x = (z!, ..., z%)T.

The distribution function is given by

G(x) = /_oo .. [:g(x)dxl gt (6.6)

a straightforward estimate of G(x) could be the fraction of data points falling in the

area of integration:

N
A 1
G(x) = —N;@(X — Xy), (6.7)
where O is defined as

1 ifzt>0foralle=1,...,d,
O(x) =

0 otherwise.

The statistical properties of the estimate (6.7) have been widely studied ( [Serfling, 1980],
[Finkelstein, 1971]). For the method we propose, we will use such an estimate for the
target outputs of the neural network.

The estimate given by (6.7) has a staircase-like shape if plotted against x, and thus
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Method 2: Learning The Cumulative 3 Hidden Units
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The cumulative estimate after 10000 iterations of conjugate gradient is
shown in (a) along with the sample and true distribution functions. The
implied density is shown in (b). The data set consisted of 100 points
sampled i.3.d. from the mizture of two Gaussians shown in (b).

Figure 6.2: Smooth interpolation by a neural network to estimate a probability density
function.

is discontinuous (see for example figure 5.1). The neural network method developed
here provides a smooth, and hence more realistic estimate of the distribution function.
Further, the density can be obtained by differentiating the output of the network with
respect to its inputs. To our knowledge, there is no density estimator in the literature
that is based on interpolating estimates of the distribution function, and taking the
derivative to obtain the density.

For the low-dimensional case, we can uniformly sample (6.7) using a grid, to obtain
the examples for the network. Beyond two or three dimensions, this is not feasible
of course because of computational considerations. One idea is to sample the input
space randomly (using say a uniform distribution over the approximate range of x,,’s),
and for every point determine the network target according to (6.7). Another option

is to use the data points themselves as examples. The target for a point x,, would



113
then be
. 1 N
G(zm) = 1 Z O(Tm — T ). (6.8)
n=1, n#m
We also use monotonicity as a hint to guide the training. Once training is performed,
and H(x,w) approximates G(x), the density estimate can be obtained as
9 H(x,w)

§(x) = o (6.9)

We note that for a few dimensions, a derivation of the derivatives in (6.9) will be
straightforward. For larger dimensions a numerical differentiation scheme such as the
simple differencing method is more feasible. A sample run of how SIC performs on

the same 100 data points used to run SLC is shown in figure 6.2.

6.3 Application to Random Variate Generation

6.3.1 Learning G !(z) (SLCI and SICI)

Suppose that we wish to generate random variates from a specified univariate density
g(z). It could also be that g(z) is represented only by a number of data points
drawn from it, rather than a functional form. Typical approaches to such a problem
would estimate the density from the given data, and apply some of the well-known
methods such as the transformation method or the rejection method (which would
be computationally extensive, since a pass through all the given data points has to
be performed to generate a single point).

We propose a method implementable by multilayer networks, that is inspired
by the transformation method. But, unlike the transformation method, we do not
assume that G~!(z) is known analytically. The network learns to implement the
transformation G~'(z). The basic structure of the method is illustrated in figure
6.3. It consists of two cascaded multilayer networks. The first network is trained to

estimate the distribution function G(z) from the data using one of the techniques
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Neural Network :
X — Density nhverse = 2

y=G(x) Neural Network

Estimator

Network 1 Network 2

The first network learns G(z). This can be done using the data available
or if one has g(x), one generates according to g(x) using (say) the rejec-
tion method. Thus generating the data for this learning may be slow, but
once the learning has taken place, Network 1 implements G(z). Now for
an arbitrary set of inputs, we take Network 1’s outputs as the inputs to
Network 2 and the target are the inputs that went into Network 1. Thus
we train Network 2 to implement the inverse of Network 1 which should

be G1.

Figure 6.3: Training a network to implement G*(z).

described in the previous sections. Once the first network is trained, the density of
its output is uniform in [0, 1] as discussed in sections 6.1 and 6.2. Then, we train the
second network to invert the mapping produced by first network. This inversion can
be accomplished to an arbitrary precision by using as large a network and as many
data points as we want. Learning the inverse proceeds as follows. Let Hy(z, w) and
H,y(z,v) be the functions implemented by Network 1 and Network 2 respectively. Let
{z;} be an arbitrary set of inputs. Then, the input Joutput examples for Network 2
will be {H;(z;,w),z;}. Once the entire training process is complete, random variate
generation according to g(z) is a done by passing a uniform deviate in [0,1] (y)
through Network 2, i.e., Ha(y,v) ~ g(z). To see why this is so, observe that for the
cascade structure of the two networks in figure 6.3, the density of the output z is
equal to density of the input z because Network 2 is the inverse of Network 1. Since
the density of the output y of Network 1 is uniform, inputing a uniform deviate (y)
into Network 2 should produce a variable (z) having a density equal to that of z.
More formally, assume that Network 1 was implementing G(z). Then, Network 2 is
implementing G~'(z). Therefore, z = G~(y) where y has a uniform distribution.

Using the formula for transformations of random variables, the density gz of the
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output z is evaluated as

oa(e) = :;EE%J)] ~ 7 = e (6.10)

This method applies only for the one-dimensional case because the mapping G(z)
transforms z into a uniform density only for the univariate case. A second method
based on a control formulation of the problem, described later, is more general and
applies to the multi-dimensional case as well.

It might seem wasteful to first learn G(z),and then invert it. Perhaps a direct
method for learning G~(z) would be more efficient. Along these lines, we propose two
other approaches which are inspired by the density estimation techniques themselves.
They are variants of the method just described in that they build upon the idea
that a network mapping a uniform distribution to the true distribution must be

implementing G~*(z).

SLCI (Stochastic Learning of G Inverse)

This technique is very similar to the stochastic method for estimating G(z) and can
be viewed as the inverse of Method 1. Once again, G~! is a monotonic function so a

monotonicity hint should be used here as well. The algorithm is as follows.
1. Sort the data points z; <z, < --- < 7N
2. Set t = 1 and initialize the weights of the network to w(1).

3. Generate N numbers ({u;}¥ ;) from a uniform density in [0, 1] and sort them

so that u; <us < - < up.

4. Train the network to map input u, to output target z, exactly as in steps
and 6 of the stochastic density estimation technique. Every cycle or every L

cycles generate new u,’s.
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5. After training is complete, input to the network a uniformly generated number.

The output is distributed according to G(z).

SICI (Smooth Interpolation of G Inverse)

This approach is analogous to the smooth interpolation approach for estimating the
density. It is identical to SLCI, except that the input examples are (1 — 1)/(N — 1)

(corresponding to output example z;), instead of the uniform deviates.

6.3.2 Control Formulation of Random Variate Generation

Adjust Parameters Error(Z,G)
Density i
t
X —»|  Shaping ED:nsqltyr o)
stima
Neurdl Network 4 e 2 )
/ H, Hy

Given Density
G(y)

The first network shapes the density of . The transformed density is
estimated, and then compared with the true density. The parameters of
the first network are altered until the transformed density matches the
required density.

Figure 6.4: Control formulation for random variate generation.

We propose a novel formulation of random number generation within a “control frame-
work”. Figure 6.4 illustrates the basic idea. As with the previous method, the struc-
ture consists of two cascaded units. A random variable z is generated according to
any standard density function, for example Gaussian or uniform. In principle, an
unlimited number of z’s can be generated. This random variable is the input to the
composite structure. The first network acts as a nonlinear transformation that shapes

the density of z. Let the density of the transformed variable be Z(y) where y is the
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transformed variable. The second unit serves to estimate the distribution function,
for example SLC or SIC (sections 6.1 and 6.2) could be used. The output of the
second unit, is the estimate of the distribution function Z(y) of Network 1’s output.
Let the desired distribution function be G(y). An error signal, £(G(y), Zy,(y)) can
now be generated where we have explicitly shown that the distribution Z is a function
of wy, the weights of the first network. This error signal can be backpropagated to
adjust the weights of Network 1 so as to minimize £(G(y), Zu,(y)). Such a train-
ing process would change Network 1’s mapping in such a way that would shape the
distribution function of y to get it as close as possible to the desired distribution func-
tion. Once training is complete, we can generate numbers according to the density
G(z), by generating = according to the standard density, and then passing it through
Network 1.

Note 1: This algorithm is not restricted to the case of scalar random variable, and

so can be used to generate multi-dimensional variables.

Note 2: To generate from a density represented only by a set of data points, we use
the same method above but replace G(y) by G(y), an estimate of G(y) using the
data points. This estimate can be obtained using one of the methods described

in sections 6.1 and 6.2.

Note 3: The entire learning process can be an involved process. However, once the

learning has been done, the generation of random variates is fast.

The analogy with the control problem is as follows. The second unit represents the
“plant,” and Network 1 is the “controller.” The controller is trained, such that the

plant produces the desired output®. The details of the algorithm are as follows:

I: Initialization:

2This technique has a similar form to a neural network control structure (see
[Narendra and Parthasarathy, 1990]) where, typically, a neural network is trained to identify the
plant (estimate the plant output), analogous in our set up to the density estimation unit. Then, a
neural network controller is trained to control the plant — i.e., the identification network estimates
the plant output and the controller network is altered until this output is as desired.
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. Let the desired density be g¢(y) and the corresponding distribution function
G(y). Generate N samples zy,---,zy € R% according to any standard density
such as a Gaussian density. The larger NN is, the more accurate the final result

will be.

. Let Hy(z,w) and Hy(z,v) be the functions implemented by Network 1 and Net-
work 2 (where we have assumed that the density estimator is a neural network
as in the previous sections). Network 1 has d outputs, and Network 2 has one

output. Initialize the weights of the networks.
. Calculate Network 1’s output: y,(w) = Hy(z,,w), n=1,---,N.

. Train Network 2 using SLC or SIC in order to estimate the distribution of the
yn's. Thus, Hy(y,v(w)) is implementing the distribution function of y, where

we have explicitly shown the w dependence.
II: Training Iterations:

. Suppose the error function we wish to minimize is £(Hy(w), G). Possible error
functions are an Ly or L, norm, or a cross entropy (Kulback-Leibler distance).
For the case of squared error, let {z,}Y , be any set of points for calculating

the error function (&),

M

£ =3 [Ha(zn, o(w)) - G(zn)r (6.11)

n=1

. One alters the weights (w) of the first network in the direction of the negative

gradient:
o0&

w(t+1) = w(t)
For example in the case of squared error we have,

o0& OHs (2, v(w))

= 2% [HQ(zn,U(w)) - G(zn)] SR (6.13)
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As an approximation to step six, we can let the arbitrary set z, be y,, the
outputs of the first network. We leave v(w) fixed for a certain number (L) of
training cycles. Then the change in £, as w changes is due to a change in y,.

By the chain rule we have

g% = 2;[H2(ynav(w))—G(yn)]?§%(yuj_ﬂ‘)l (6.14)
= 23 [Halyn, o) - Gl L) 2 15

The weights in the first network can now be updated using a standard standard
backpropagation scheme [Hertz et al., 1991, pg 115], where one backpropagates
the §’s first through Network 2, then through Network 1 and one only adjusts
the weights of Network 1. We will specialize the remainder of the algorithm to
this case. Appendix 6.6 considers the weight update rule for the general case

where the density estimation is done using SIC?.

7. After L cycles of weight update for Network 1 in step 6, train Network 2 for a few
cycles on the new y/ s, to allow it to track the small change in the distribution

of y. Thus we now change v which was kept constant in step 6.

8. Go to step 6 to perform another iteration of training, and continue doing so

until the error becomes small enough.

9. After training is complete, the random numbers can be generated by generating
z according to the standard density that was innitially used (e.g. Gaussian),
and computing y = H(z, w*) (where w* represents the final weights after the

entire learning process). Now, y should be the distributed according to g(y).

3Tt will be shown in the next chapter that SLC is essentially equivalent to SIC.
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Plotted are the true density and the estimates (SLC, SIC, Parzen). In
(a), 100 data points were used, and in (b) 200 data points were used. The
optimal Parzen window width (h) can be calculated for the true density
as h ~ 5.12/n'/% [Silverman, 1993, pg 40]. Though this is not possible
in practice, we use it here for comparison. Notice that even the optimal
Parzen window is bumpy, whereas the neural networks, which are also
capable of implementing any density (by using arbitrarily many hidden
units) is smooth.

Figure 6.5: Comparison of optimal Parzen windows, with neural network estimators.

6.4 Simulation Results

We tested our techniques for density estimation on data drawn from a mixture of two

Gaussians:
3 1 _ (a+30)2 7 1  (@-92

r) = — e i3 4 — e 162 6.16
9@) = 15 iae 10 /1607 (6.16)

Data points were randomly generated and the density estimates using SLC or SIC

(for 100 and 200 data points) were compared to the Parzen technique. Learning was
done with a standard 1 hidden layer neural network with 3 hidden units. The hidden
unit activation function used was tanh and the output unit was an erf function. A
set of typical density estimates are shown in figure 6.5. A monotonic mapping was
obtained by enforcing the monotonicity hint as a penalty with a weight 10000, and

the learning algorithm used was conjugate gradient. As will become clear in the next

50
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chapter, one wishes to pick the “smoothest” interpolator. We softly enforced this
smoothness by starting at small weights. As can be seen from figure 6.5, our method
gives smoother results that the Parzen estimate. This will become quantified in the
next chapter.

As an application we estimated the density of stock price changes for a group of
companies. Refer to chapter 4 or [Wilmott et al., 1995] for a more detailed discussion
of modeling stock price change using stochastic differential equations. Essentially, the
ratio log(S;;1/S:) should have a Gaussian distribution according to the Black-Scholes
formulation. Using our techniques we estimate the densities for this ratio, illustrated
in figure 6.6. We plot the estimated density along with the true histograms and
the Gaussian with the same mean and variance (figure 6.6) for three representative
companies (IBM, GE, JP Morgan). Notice how the true distribution significantly

deviates from the Gaussian, displaying the well established fat-tailed behavior.

6.5 Comments

We have developed two techniques for density estimation based on the idea of learning
the cumulative by mapping the data points to a uniform density. In so doing, we
placed the density estimation problem within the supervised learning framework.
Two techniques were presented, a stochastic technique (SLC), which is expected to
inherit the characteristics of most stochastic iterative algorithms, and a deterministic
technique (SIC). Both methods learn the distribution function by mapping the data
to a uniform distribution. SLC tends to be slow in practice, however, because each
set of targets is drawn from the uniform distribution, this is anticipated to have a
smoothing /regularizing effect — this can be seen by comparing SLC and SIC in figure
6.5 (a). A similar outcome is obtained by adding small random perturbations to the
targets of SIC. The distribution of these perturbations (for target y; = i/N +1 should
be a S-distribution with parameters i,(N+1-i).

Extensions along these lines are possible: why restrict oneself to a uniform density?
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Tail Behavior of the Density Estimata for IBM log Stock Price Changes
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Shown are the density estimates of the changes in log stock price for IBM,
JP Morgan (JPM) and General Electric (GE) using SIC. For each com-
pany, about 1530 data points were available. Also shown for comparison 1s
the Gaussian with the same mean and variance as the data. The estimated
distribution is significantly non-Gaussian. We magnify the tail behavior
in (b), (d) and (f). Notice that the true density has a considerably fatter
tail. (The data was obtained from [Momentum, 1996]

Figure 6.6: Density estimates for the log stock price changes of some U.S. stocks.
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One could map to any standard density. For example, one can replace the uniform
targets by targets drawn from (say) a Gaussian density. Let the network function
being implemented be H(z,w), and let the mapping that converts a Gaussian random
variable to a uniform be Q(z). This is just the error function erf(z)%. Then the
composite mapping

Q(H (w,z))

is the required estimate G(z), from which the density can be obtained by differen-
tiation with respect to z. Thus our methods could be extended by mapping to any
standard density for which Q(z) is known analytically. The advantage of doing this
can be seen by supposing that the true density is close to a Gaussian or some other
standard density. Then we let the mapping Q(z) “do the bulk of the work” and the
neural network has to learn only the deviation of the true density from the standard
density. This mapping could be considerably simpler to learn as it will by assumption
be close to the identity mapping®.

Our simulations demonstrated that the our techniques performed well in compar-
ison to the Parzen technique using the optimal kernel width, which is unrealizable in
practice. Further, there is no smoothing parameter that needs to be chosen. Smooth-
ing occurs naturally by picking the interpolator with the lowest bound for a certain
derivative — that this is what we should do becomes clear in the next chapter, where
we consider the theoretical issues of convergence. In our simulations, we enforced
smoothing by starting the network at small weights. For our methods, the major-
ity of time is spent in the learning phase, but once learning is done, evaluating the
density is fast. We used our methods to demonstrate the fat-tailed behavior in the
stock markets — price changes in the stock markets obey a distribution that has a

fatter-than-Gaussian tail.

2

4 — L [ -
erf(z) = mf_ooe 3

5 A technicality in the proof of convergence with probability 1 requires that the random targets be

bounded with probability 1. However we can ignore this technical requirement without significant

practical loss.
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We then developed techniques for non-uniform random variate generation that
are applicable to generation of random variates from a density represented by a set of
data points (SLCI or SICI) or from a density whose functional form is given, where
we formulated the task as a control problem. Our methods are applicable to any
density, and the generation of random variates is fast, once the learning is performed.
The learning phase is the rate limiting step, but this will become insignificant when
one needs to generate millions of points, many times.

In this chapter we have developed the techniques for density estimation. The
techniques for random variate generation rely on the density estimation techniques.
In the next chapter, we will discuss the theoretical soundness of these techniques in

order to justify their use.



125
6.6 Appendix

In this appendix we will derive the exact weight update rule for the “control” algo-
rithm in section 6.3.2. Suppose the error function we wish to minimize is £(Hy(w), G).
Possible error functions are an L; or L, norm, or a cross entropy (Kulback-Leibler dis-
tance). We consider here the squared error. A similar analysis can be done for other

error functions. Let {z,}M, be any set of points for calculating the error function

(8)7

M

£ = 3" Halm v(w)) - G(zn)]2 (6.17)

n=1

One alters the weights (w) of the first network in the direction of the negative gradient:

E
w(t+1)=w(t) — n-g—qz (6.18)
For the case of squared error we have,
M
OHj (2, v(w))
E[Hz Zn, U - G(zy) 5y (6.19)
We need to compute ?iz(—za’;—”(@, which by the chain rule we can write as
0H>((2), v(w)) 0Hs((2),v) Oug
= —_— .20
ow Z Ouy, ow (6.20)

k

When using SIC as the density estimator, v is a minimizer of the error function

€= Z <H2 Yi, ¥ N%l)z (6.21)

Define the matrix of second derivatives (the Hessian) of & with respect to v by
P&

o (6.22)

Hij —
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which is a function of v (and implicitly of w). Then, the lowest order term in the

Taylor expansion of £ around vis a quadratic:
E(v + Av) = E(v) + AvTHAw (6.23)

A change in w; produces a change in the y,’s. This in turn produces a change in E:

(6.24)

1 )8H2(yn,v) OH1 (2, w)
N+1 Oy Ow;

&= &+ 20w, (Z(H2(yn,v)

n

J

Qi (v,w)

~

Therefore, if w; — w; + Aw;, in the limit of small Aw;, £(v + Av) is given by (in the

limit of small Av)
E(v+ Av) = E(v) + AvTH(v, w)Av + 2Av - V,. Qi (v, w) (6.25)

Setting the gradient of this expression (with respect to Av) to zero, one obtains for

the change in v

Av = —Aw;H (v, w)V, (v, w) (6.26)
therefore we find that
(;912)1 = —-H(v,w)V,Qi(v,w) (6.27)
Therefore we finally get
E &
B 2 [(Ho)(2i,0) — G(2:)](VoHa(2:,0)) - (—H (v, w) VoSh(v,w))  (6.28)
! i=1

and the weight update is given by

o0&

3 (6.29)
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(6.29) can be used in (6.26) to obtain the weight updates (Av) for the density esti-

mating network.
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Chapter 7

Convergence of the Density Estimation

Techniques

— Now, here, you see, it takes all the running you can do to keep in
the same place. If you want to get somewhere else, you must run twice

as fast as that.
—Lewis Carroll

This chapter deals with the convergence properties of the density estimation tech-
niques that we have proposed. Our goal is to justify the methods introduced in the
previous chapter by showing that convergence to the true density does occur. Fur-
ther, we analyze the rate of convergence and compare with various other estimators.
Due to the technical nature of such convergence issues, we will take this opportunity
to summarize the essential details of the chapter.

First, we will consider the stochastic method (SLC). The targets are uniform in
[0, 1]. The expected value of the target u;, the i order statistic, is i/N + 1, therefore

we should expect the learned function to be approximately performing the mapping

(7.1)

where z; represents the ** element of the ordered data set. But this is exactly the
mapping we are trying to learn in SIC (smooth interpolation of G(z)). Thus we expect
SLC to converge to a solution that is also a solution of SIC. The formal statement and
proof of this claim are the contents of section 7.1. For the proof, we will need some
results from recursive stochastic approximation theory, which we will review briefly.

Having shown that SLC—SIC, we can now restrict our analysis to SIC. First we

define a set of functions which we call generalized sample distribution functions. These
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functions are exactly that set of functions that interpolate the sample distribution
function data points. We will prove that this set of functions converges uniformly
to the true distribution function in the L; and L, (MISE — mean integrated square
error) sense. Thus, at least we do learn the cumulative. In fact we will show that the
rate of convergence is O(N~Y/2) for L; and O(N~') for L,. For comparison, the Lo,

convergence [Serfling, 1980, pg 62] is y/loglog(N)/N. Further, because the neural
network is an arbitrarily powerful class of functions, these generalized distribution
functions can be implemented, therefore the neural network implementations as we
have used in the previous chapter also converge.

How about the convergence to the true density. As was discussed in chapter 5,
some assumptions have to be made about the true density. We assume boundedness
of the derivatives. Therefore the cumulative will be implementable by generalized
distributions with bounded derivatives (in the asymptotic limit, with probability 1).
We will then obtain the convergence to the true density, and further, the rate of
convergence approaches N=! (in L,). We will show that when the true distribution
function has K bounded derivatives, the convergence rate is O((loglog(N)/N)!~1/X)
which as K — oo is faster than 1/N'7¢ Ve > 0. For comparison, the Parzen esti-
mate has a convergence rate of N=%/% for the optimal smoothing parameter, which is
inaccessible in practice as it depends on the parameters of the true density. We will
illustrate our convergence rate with simulations using neural networks.

We will then analyze the random number generation techniques (SLCI and SICI),
which are essentially techniques for estimating G™1. We will restrict the analysis to
the case where G~ is continuous on [0, 1]. We will show convergence of SLCI to SICI
with probability 1 as N — oo, and then we will obtain the L; and L, convergence

rates for SICI. They are O(N~/2) for L; and O(N~!) for L,.
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7.1 Convergence of SLC to SIC

In this section we will analyze the stochastic method (SLC). Let D = {z1,®s,...,2n}
be the data points sorted in ascending order, and let wuy(¢),us(t), ..., un(t) be the
output targets for training cycle ¢, where the u;(¢)’s are generated from a uniform
density and then sorted in an ascending order. Ignore for the time being the effect
of the hint penalty term in (6.4), as this term can only help convergence, and, if
monotonicity is satisfied (as in the case of convergence to the true density), then the

hint term will equal zero. The convergence behavior is given in the following theorem:

Theorem 7.1.1 SLC converges with probability 1 to a local minimum of the error

function
N

5=Z[H(mn,w)—— NZ— 1]2 (7.2)

n=1

provided that the learning rate 1(t) is a decreasing sequence, that satisfies the following

" conditions
a. Y o.n(t) = oo,
b. Y 2, nP(t) < oo, for some p,
c. limy oo sup[l/n(t) — 1/n(t — 1)] < co.

We note that the conditions on n(t) guarantee that the learning rate is decreasing in a
way that will dampen the random fluctuations around the minimum, but at the same
time, not decreasing too fast to prevent reaching the minimum. A possible choice
could be

n(e) = =+ (7.3)

where 7' is a constant!. Before we prove the theorem, we will summarize some aspects
of the theory of stochastic approximation, that will be the main tool in proving the

theorem. Stochastic approximation deals with the convergence analysis of iterative

In(t) = n'/ log(t), however, would not work.
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algorithms where the inputs are random variables. We follow the analysis of Ljung
[Ljung, 1977], though other approaches that have different sets of assumptions, such
as Kushner and Clark [Kushner and Clark, 1978] could also be used. For more details
on stochastic algorithms in general, see [Benveniste et al., 1990].

A general stochastic iterative algorithm is given by
w(t +1) = w(t) +nt)Qt w(t), u(t)) (7.4)

where u(t) is a sequence of independent random variables (Ljung considers a more
general form, where u(t) is given by an iteration in terms of the random input and
w). The algorithm converges with probability 1 (w.p.1) only to a stable stationary

point of the ordinary differential equation?

T — z

if the following assumptions are satisfied (see [Ljung, 1977]):
A1: u(t) is bounded w.p.1.

A2: The function Q(¢,w,u) is continuously differentiable w.r.t. w and u, and the

derivatives, for fixed w are bounded in t.

A3: n(t) is a decreasing sequence, and

o > iy (t) = oo,

e > 2. nP(t) < oo for some p,

o fim sup{1/n(t) = 1/n(t ~ 1) < .
A4: limy o F [Q(t, w, u(t))] exists for all .

By observing the proof of convergence in [Ljung, 1977}, it can be shown that condition

A2 can be replaced by the following condition:

%In this chapter, we use E[-]to denote expectations.
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A2': @Q is locally Lipschitz continuous in w and u, meaning that |Q(¢, wy,uy) —
Q(t, wa, u2)| < R(w,u,p,v)(lwr — wa| + |ug — usl), for wy, wy € B(w,p) for
some p = p(w), and uy, us € B(u,v) for v > 0, where B(z,y) is the ball cen-
tered at « with radius y. Moreover, the Lipschitz constant R(w, u(t),0,v(t)) is

a bounded function of ¢ for fixed w and bounded v(t).

To see why this is the case, we note that condition A2 is used in the proof in
[Ljung, 1977] only in Lemma 2, pg. 569. There, the equivalent condition A2’ can
be used in its place. Now, we can proceed to the proof of the theorem.

PrOOF OF THEOREM 7.1.1: The update equation for SLC is given by

w(t +1) = w(t) + () Q(w(?), u(?)) (7.6)

where u(t) is the vector of u,’s that are presented for training cycle ¢, and

Q). ut) = =3 [H(za, w(t)) ~ ()] 2 Cne 0] (7.7

Note that z, is fixed and considered constant in the proof, because it does not change
from one cycle to the next. The first condition, the independence of successive u(t)
vectors, is satisfied, by the construction of the algorithm. We now verify that condi-

tions Al, A2', A3 and A4 are satisfied.

e Condition Al is satisfied, because u,(t) is generated from a uniform density,

and hence it is bounded.

e ( is a piecewise (with respect to ¢) differentiable function of v and w (assuming
standard sigmoidal neural networks). Further, the derivatives are bounded in ¢
for fixed w because u,(t) is bounded in ¢. Therefore, @ is locally Lipschitz. In
addition, the local Lipschitz constant R(w,u(t),0,v(¢)) is bounded in time (for
fixed w) as the derivatives are bounded in time for fixed w. Hence condition

A2 is satisfied.
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e Condition A3 is equivalent to the conditions of the theorem.

o Let us now consider Condition A4:

lim E[Q(w,u(t))] — m Y (H(zn,w) - E[un(t)])?H(gT"’m (7.8)

t—»00
n=1

The variables u,(t) are the order statistics of a sample of size N drawn from a
distribution that is uniform in [0,1]. The density of the order statistic can be

found in most texts on probability theory, e.g. [Billingsley, 1986]. We get

N! n~—1 N-—-n
fun) = (n—l)!(N——n)!u” (1—uy,) (7.9)

which is a beta distribution. The first moment can be obtained in a straight-

forward manner, as follows:

E(u,) = (7.10)

Substituting in (7.8), we see that the limit exists and is independent of ¢ for all

w.

Thus, all conditions of [Ljung, 1977] are satisfied, therefore we conclude that the
algorithm converges w.p.1 to the stable stationary points of the following ordinary

differential equation

== —Z[H(mn,w) - 1)] angJ’w) (7.11)

£=3"[H@,w) - " I (7.12)
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because the right-hand side of (7.11) is the negative gradient of the error function in
(7.12)3. ]

Thus, we have shown that SLC essentially trains the network to map point z, to
n/(N + 1). By comparing with SIC, described in the previous chapter, we see that
both methods possess similarities for the univariate case. In fact, as N — oo, both
methods are essentially equivalent. Therefore, we will restrict the remaining analysis
to SIC — smooth interpolation of the sample cumulative (G(z)). We will first look
at the convergence to the true distribution function and then the convergence to the

density.

7.2 Convergence to the Distribution Function

SIC gives an estimate of the distribution function, from which we get the density by
differentiation. The distribution function is useful in its own right, so we will first
look at the consistency of SIC as an estimator of the distribution function — in the
limit of large N, does the estimate converge to the true distribution function?

Two well studied statistics of the sample distribution function are the Kolmogorov-

Smirnov statistic (Dy) and the Cramér-von Mises statistic (Cy) defined as follows

Dy = sgp|GN(x)—G(x)\ (7.13)
Cy = /_ " (Gu(z) — G(2))2dG(z) (7.14)

The following theorems are valid [Serfling, 1980, pg 61-64]

30bserving this proof, it should be clear that if the hint term had been kept in (6.4) the proof
would have proceeded in exactly the same manner resulting in convergence to the error function
in (6.4). If we require that the solution be monotonic, then the hint term must be zero, therefore,
the function converged to must be a minimum of the remaining term which is precisely the error
function (7.12). Ultimately, the same final result is obtained.
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Theorem 7.2.1 With probability 1

N 1
1i Dyyfor— o — = 1
lﬁl_f;olip N 2loglog(N) 2 (7.15)
PROOF: See [Smirnov, 1944|, [Chung, 1949] or [Csédki, 1968]. u

Theorem 7.2.2 ([Finkelstein, 1971]) With probability 1

limsup C N 1 (7 16)
117 Su —_— " = — = .
Voo, N2loglog(N) 2

It is not hard to extend these theorems to apply to generalized sample distribution
functions as we will define shortly. These theorems give the probability 1 convergence
behavior. We will look at (Cn) p, the expected performance in in the Ly error criterion
(MISE), as well as the corresponding quantity in the L; error criterion. The expecta-
tions are with respect to the data set. We will derive bounds on the estimation error
for the distribution function estimator, as well as the density estimator. Let us start

with the following definition.

Let G be the space of functions such that for every X € G, the following holds
e X:R—[0,1]
e X'(t) exists everywhere, is continuously differentiable and X'(¢) > 0.
e X(—00)=0and X(c0)=1.

Thus, G is the space of distribution functions on the real line that possess continuous
density functions, which is the class of functions that we will be interested in. We

define a metric? with respect to G as follows

Wﬂiz[wﬂWX%Mt (7.17)

4A straight-forward application of Holder’s inequality [Rudin, 1976, pg 139] verifies that the
triangle inequality is satisfied. The other properties of a metric are easily checked, therefore what
we defined is legitimate metric.
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| f |]§{ is the expectation of the squared value of f with respect to the distribution
X € G. Let us name this the Ly X-norm of f. We can analogously define the
Ly X-norm of f as
= [ 10X @ (7.18)

o0

Let the data set (D) be {z; < z» < ... < zn}, and corresponding to each z;, let
the target be®

1

. 1
YT NTI (7.19)

Definition 7.2.3 A generalized sample distribution function, H, satisfies the follow-

ing two conditions
e He g

We will denote the set of all generalized sample distribution functions for a data set,

D, by 'HD

The set Hp contains those continuously differentiable distribution functions that
interpolate the data set {(;,y;)}Y,. Naturally, this set will include a neural network,
trained according to SLC or SIC after convergence to zero error. Note that the
conventional distribution function estimator (6.7) is not in this class of generalized
sample distribution functions, but it is the limit of functions that are in this class.
Let us now derive the estimation error for the distribution function estimator.
Let H € Hp, and let G € G be the true distribution function. As we mentioned,
H estimates the whole distribution function, given a number N of observed values

by interpolation. Therefore H(z;) = y; = i/(N + 1). The true distribution function

5For analytical convenience, this is the preferred target. In the previous chapter where SIC
was introduced, the targets were (i — 1)/N in keeping with the traditional definition of the sample
distribution function. Asymptotically, the two are equivalent and the convergence rate analysis could
be done with either.
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evaluated at z; is generally not equal to y;. Therefore we will write

G(x)

H(x)

i+ 1/(N+1)

El¢

iN+1)

There are two sources of estimation error: the error at each data point, ¢;, and the
interpolation error between the data points — an error that would persist even if the
€;’s were all zero. As a first step, let us analyze the statistics of the ¢;’s. G(z) has a
uniform distribution in [0,1] as has already been discussed. Therefore, u; = G(z;) is
the 3** order statistic of the uniform distribution. Thus, the density of (u;, u;) can be
obtained by standard techniques (eg. [Billingsley, 1986, pg 200]), and is given by

Nt i-1 N—j J—iml o~
g(ui’uj): (2“1)|(]_2_1);(N_])'u7, (1_uj) (Uj_ui) J=t (721)

Noticing that €; = u; — /(N + 1), we can calculate the first two moments of the ¢;’s

_ N+ 1-9)
@ =0 &8 = oy PR+ 1)

(7.22)

The following theorem provides a bound for the estimation error, which will prove

consistency of the distribution estimator in expectation.

Theorem 7.2.4 (L, convergence to the true distribution) Let the data set D

consist of N data points, z; drawn i.i.d. from the (true) distribution G € G. For
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every H € Hp and every F' € G, the inequality

(18 -G 1), = ([ () = G@)PPehs) < g + gy (129
holds.
PRrROOF: Let g = —o0, zn41 = 00.
1#-Gl= [ e -cerr@w=3 [ (#e) - ce)FEE
- (7.24)

Now by definition, G(z;) = H(z;) + ¢;. Let z € [z;, ;41]. Because both H and G
are monotonically increasing we have that i/(N + 1) = H(z;) < H(z) < H(zi11) =
(i+1)/(N+1)and i/(N+1)+¢ = G(z;) < G(z) < G(ziq1) = (i+1)/(N+1) +€iqa-
We then get

1 1
T < _ < e - .
€; N+ 1 _G(.’E) H(x)_6’+1+N+1 (725)
Thus
1 1
— 2 e )2 ) Y .
(G(2) - H(z))* < (& = g/ + (G + ) (7.26)
Therefore using (7.22)
(C@) ~ H@Yy = oy + (6 + ) + oy (s — )
D (N+ 1)2 7 i+1 N+ 1 -+ 1/ )
_ 2 IIN+1—49)+(@E+1)(N —1)
(N +1)2 (N +1)2(N +2) ’
3 1
< 2
S N+IE AN L) (7.27)
where the last inequality follows by maximizing over 7. Thus we find
N
9 i+1 9 ,
(IH-GR), = 3 [ (@) - 6@, Fle)ds, (729
i=0 v Ti

< i/+ <2(N3+ 5t 2(N1+ 1)) Fo)ds,  (7.29)

1=0
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- <2(N?; I 2(N1+ 1)) XZ;/:H F'(z)dz,  (7.30)

7

3 1 *
- F' .
(2(1\7 T2 Ta v+ 1)> [w (z)dz, (7.31)
3 1
= . 7.32
SN+ 172 T 2N+ D) (7:32)
The last line follows because [°° F'(z)dz = 1. ]

Note 1: The theorem applies to any H € Hp and any F' € §, in particular to
F(z) = G(z), the true distribution function. Thus the expected squared error

approaches zero asymptotically at a rate O(1/N).

Note 2: The same proof can be modified for the case of the integrated squared error

over some bounded interval.

Note 3: Without much extra effort, this result can be extended to a larger class HJ,

of interpolators that are defined by H € Hyp, if

i 1+1
N+1"N+1

T € [z, zia] = H(z)e] | (7.33)
with no other constraints being made on continuity, the existence of derivatives
or even monotonicity. To see this notice that the monotonicity of H is used
only in obtaining (7.25), where (7.33) can be used in its place. Thus, it is not
imperative for the distribution function estimator to be monotonic to get con-
vergence to the true distribution. In fact this will carry over even for the density
estimate convergence. Therefore, the monotonicity hints used in the previous
chapter are not crucial for convergence. We used them in our applications and
required monotonicity in our definition of G simply to ensure that we obtained
legitimate density functions. Note that the conventional distribution function

(6.7) belongs to this extended class #},.

Note 4: Exact interpolation is not required. The result (O(1/N) convergence) can be

obtained without much added effort as long as | H (z;) — i/(N +1)| < A/vV/N, Vi.
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To see this we can look at (7.25) and note that this approximate interpolation

would only add terms that are O(1/N) throughout the rest of the proof.

Note 5: The theorem applies to any interpolator satisfying (7.33). In particular
a large enough neural network will be one such monotonic interpolator, pro-
vided that the network can be trained to zero error, and hence the target
outputs (y; = %/(N + 1)) can be realized by the network exactly. For a
large enough neural network, this can be accomplished [Atiya, 1994]. Fur-
ther, because we only need to approximate a generalized distribution func-
tion to within O(1/ VN ), one can apply the universal approximation results for
multilayer networks ([Hornik et al., 1989], [Cybenko, 1989}, [Funahashi, 1989],
[Barron, 1993]) to show that as long as the number of hidden units > NN, this
interpolation to O(1/N) can be accomplished. To apply these theorems, certain
technical restrictions need to be made on the true distribution function, which

we will assume are satisfied®.

The previous theorem can easily be extended to obtain the L; convergence.

Theorem 7.2.5 (L; convergence to the true distribution) Let the data set D
consist of N data points, x; drawn i.1.d. from the (true) distribution G € G. For

every H € Hp and every ' € G, the inequality

(1 Gleby = ([ 1) - CE@IF@Ha) < omr i 3

oo

holds.

PrRoOOF: The same reasoning that led up to (7.25) is still valid. Thus, we find for

z € [z, Tit1]

2
|H(z) — G(z)| < |&| + €| + N1 (7.35)

SEssentially one needs boundedness of sufficiently high order derivatives.
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By Jensen’s inequality, (|e;|) < v/{€2) therefore we find that (|e;|) < 24/1/(N +2).
The rest of the analysis is exactly analogous to the L, convergence proof, the final
result being (7.34). N
Thus we have L, convergence at a rate O(1/v/'N).

Note 6: The bounds on the estimation error derived in this section are not asymp-

totic, and hold for every N.

7.3 Convergence to the True Density Function

We have seen in the last section that SIC provides a consistent estimator for the
distribution function. In addition, we obtained bounds on the estimation error. In
this section, we derive the estimation error for the density estimator. As we have
already discussed, the density estimator is simply the derivative of the distribution
function estimator (i.e. the neural network output), and thus we need to evaluate
(15 -G

Obtaining a tight convergence rate for the density estimation error is a tougher

z;

job. The reason is that the derivative operation accentuates the noise. Another reason
is that, as we discussed in chapter 5, the density estimation problem is an ill-posed
problem. Without any a priori assumptions on the true density function, it will be
hard to judge the suitability of an estimator. Even the trivial estimator consisting
of the summation of delta functions centered at the data points could be as valid as
other estimators. In fact, [Barron et al., 1992] and [Devroye and Gyorfi, 1990] show
that no density estimator is consistent for certain types of error measure unless one
makes some a priori assumptions about the distribution function. Typical a prior:
assumptions used in the density estimation literature are smoothness constraints on
the class of considered densities. These are realistic assumptions that are usually
obeyed by densities that are typically encountered in real world applications. We will
consider such constraints in our analysis. First, we need the following results relating

the higher derivatives of a function to lower order derivatives.
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Lemma 7.3.1 Let a twice differentiable function f(z) be defined on the interval
(a, 00) where the lower limit (a) could be —oco. Supposesup, |f| = My, sup, |f'| = My,

and sup, |f""| = M, where the sup, is taken over x € (a,00). Then,
M2 < AMyM, (7.36)

PrOOF: Let h > 0. Then for z € (a,00), by Taylor’s theorem, we have

f(z +2h) = f(z) + 2hf'(z) + (2h)2i%€—) (7.37)
for some ¢ € (z, + 2h). Therefore
play = TEL2ZIE (7.38)
50
|f'(z)] < ]—%9 + hM, (7.39)

This inequality holds for every h > 0. In particular for the h that minimizes the right
hand side. This minimum is attained at h = v/ My/M, and so we have the bound

|f'(2)] < 24/ Mo M, (7.40)

Thus sup, | f'(z)| < 2/ MoMs,. |

Corollary 7.3.2 Let G(z) be differentiable m times on the interval (a,00). Let
sup, |GO| = M; fori=1...m. G denotes the i*" derivative. Then

M? < 4AM;_ 1 M;4 (7.41)

fori=1...(m—1).

PROOF: Let f(z) in lemma 7.3.1 be GG~ (z). ]
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Theorem 7.3.3 Let G(z) be differentiable m times on the interval (a,c0). Let
sup, tG(i)l =M; fori=1...m. Then

1 1
My < 2" MM (7.42)

ProoF: We prove the theorem by induction on m. For m = 2, the theorem is
equivalent to lemma 7.3.1. Suppose (7.42) holds for m = P. We show that it holds

for m = P + 1. From lemma 7.3.1 we have
11
M, <2Mg M3 (7.43)
By applying the induction hypothesis to G’ we have the following equation
_1 o1
M, < 2P7'M, T ME,, (7.44)

Combining these two equations we get

1 11 N3

My < 2Mg (277 PME,) (7.45)

P41 1 P—1 1
= 2P MM, ME,. (7.46)

Thus we find that
p+1 1 L Pz_fl

My < (2 MgM,)", (7.47)

S SR T
= 2P M, T MET, (7.48)
and thus (7.42) holds for m = P + 1. This concludes the proof. |

Corollary 7.3.4 Let G(z) € C*® on the interval (a,00). Let sup, |G| = M;. Define

the sequence {sk}%2, by sy = Zk_lM,:/k. Suppose that limg_,o s = § < 00. Then

M, < BMy (7.49)
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Proor: Taking the limit m — oo in Theorem 7.3.3 and using the fact that the
term by term product of two convergent sequences converges to the product of the
limits, the corollary follows. ]

After these preliminary results, we now come to our density estimator. We will
assume that the true distribution function has bounded derivatives up to order K.
Then, in the asymptotic limit N — oo, one expects that with probability 1, an
interpolator should exist with bounded derivatives with the same bounds, because
in the asymptotic limit, G(z) itself becomes an interpolator. To proceed in a more
formal manner, we will extend Hp to include the approximate interpolators. Thus

we define the set of approximate sample distribution functions #?%, as follows

Definition 7.3.5 Fiz v > 0. A v-approzimate sample distribution function, H, sat-

isfies the following two conditions
e He G

. |H(a:,) - —N'—H| <vy 1——————°g12°§(N), Vi

We will denote the set of all v-approzimate sample distribution functions for a data

set, D, and a given v by HY,.

Note that Hp C HY for every v > 0, and Hp = HY. Let A; = sup, ]G(i)], i=1...K
and define BY (D) by
B!(D) = Hlen7£5 sup |H?| (7.50)

for fixed v > 0. Note that by definition, for all ¢ > 0, 4 H € H} such that
sup, |H®(z)| < BY + . BY(D) is the lowest possible bound on the i deriva-
tive for the v-approximate sample distribution functions given a particular data set.
In a sense, the “smoothest” approximating sample distribution function with re-
spect to the 7th derivative has an i derivative bounded by BY(D) One expects that
B; < A;, at least in the limit N — oo. This is the content of the next theorem. Let
By = A; +n{(D).
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Theorem 7.3.6 For every v > 1, with probability 1,

(D) <0 (7.51)
By this is meant that for all § > 0
lim P[p/(D) <é] =1 (7.52)

N—o00

PROOF: This is a straightforward application of theorem 7.2.1 as follows. Suppose
the theorem were false. Then there exists § > 0 such that limy._,o, P[n/(D) > 6] >
v > 0. Therefore with probability> v, G ¢ HY, as N — oo, as if G € H}, then n < 0.
Thus with probability > v,

log log(N
Dy =sup |Gn(z) — G(z)| > v o8 20]%[( ) (7.53)
as N — oo. Thus,
N1/2 v 1
lim Dy{/=——— > lim — > —
N3oo N\/ 2loglog(N) — Noeo 2 T2
with probability> v > 0, implying that
li D ——————N1/2 L 7.54
WP P loglog(h) 7 3 (754
with probability> v > 0, contradicting theorem 7.2.1. ]

In the next theorem, we present the main result of the chapter, namely a bound
on the estimation error for the density estimator obtained by using the approxi-
mate sample distribution functions. It is embedded in a large amount of techni-
cal machinery, but its essential content is that if the true distribution function has
bounded derivatives to order K then picking the approximate distribution function
with “minimum” value for BX, we obtain a convergence rate for the estimation error

of O((loglog(N)/N)*~1/X).
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Theorem 7.3.7 (L, convergence to the true density) Let N data points, x; be
drawn i.i.d. from the distribution G € G. Let sup, ‘G(i)‘ = A; fori=0...K, where
K >2. Fizv>1ande>0. Let B;(D) = infyess sup, [HK[ Let H € HY, be a
v-approximate distribution function with Bx = sup, ]H K I < BY% +¢ (by the definition
of BY,, such a v-approximate sample distribution function must exist). Then, for any

Feg, as N — oo, the inequality

<|| H—¢ ;|;>D < 22KV (24, 1 )% F(N) (7.55)
where , 2
F(N) = [(1 +v) (ZE@J%M) T4 N%TI} (7.56)

holds with probability 1, as N — oo.

PrOOF: Let S(z) = G(z) — H(z). Then My = sup, |S¥)| < Ag + Bg, and

|H -G = / (@) F' (z)do (7.57)
< supS'(z)? (7.58)
By Theorem 7.3.3
S'(z)? < 22K-(Ap + By )% sup S(z)? % . (7.59)
G

I

where B = sup, IH(K)]. By construction, Bx < B% (D) + ¢. By theorem 7.3.6, as
N — o0, B%(D) < Ak + € with probability 1, so,

(Ax + Bx)® < (24x + )% (7.60)

holds with probability 1 in the asymptotic limit. We are interested in the expected
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value of (7.59) with respect to D. Therefore, we need the expected value of I,
(1) = (sup () # ) (7.61)

Jensen’s inequality gives for 0 < a < 1 that (|¢|*) < (|4])*. Applying this to ¢ = S?

yields -
i < <Sup sZ(x)> N (7.62)

T €

Because H is a v-approximate sample distribution function, H(z;) = ¢/(N + 1) +n;

where |7;| < vy/loglog(N)/2N. Similar reasoning to that which led to (7.25) can

now be applied to show that for z € [z;, ;1]

1 1
€~ M+t T N <G(z)— H(z) < €1 —mi+ N1 (7.63)
therefore .
2loglog(N) \ 2 2
1S(z)] < les] + |eira] "|'V< N ( >) N1 (7.64)

and using theorem 7.2.1, we see that with probability 1, as N — oo,

| 2
2loglog(N)\ ? 2
2 < Z oo\ =
sgpS (z) < [(1 +v) ( I + Nl (7.65)

This inequality holds with probability 1 in the asymptotic limit, therefore, its ex-
pectation, (I),, is also bounded by the same quantity. To see this, suppose that
limy oo (I}, > F(N), then with some probability ¢ > 0, I > F(N), otherwise
(I, < F(N). Therefore sup, S*(z) > F(N) with probability € > 0 in the asymp-
totic limit, contradicting (7.65) . Using (7.60) in (7.59), and the fact that (I) is
bounded by (7.65), the theorem is proved. n
Notes 1-5 at the end of theorem 7.2.4 apply here as well. Note 5 will still apply because

a neural network can approximate a function and its derivative [Hornik et al., 1990].
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Note 7: This theorem holds for any ¢ > 0 and v > 1. Therefore we see that for
smooth density functions, with bounded higher derivatives, the convergence
rate approaches O(loglog(N)/N) which is faster than 1/N'~¢ convergence for
any € > 0. Thus, we have faster convergence than the standard kernel density

estimator (for which the rate is O(N~%%)).

Note 8: No smoothing parameter needs to be determined unlike the other traditional

techniques.

Note 9: From the theorem, it is clear that one should try to find a generalized v-
approximate distribution function with the smallest possible derivatives. Specif-
ically, of all the sample distribution functions, pick the one that “minimizes”
By, the bound on the K derivative. Thus, when using optimization tech-
niques to find the generalized distribution function, one would be justified in
introducing penalty terms, penalizing the magnitudes of the derivatives (for

example Tikhonov type regularizers [Tikhonov and Arsenin, 1977]).
L; convergence follows by using very similar arguments to the previous theorem.

Theorem 7.3.8 (L; convergence to the true density) Let N data points, z; be
drawn i.1.d. from the distribution G € G. Let sup, JG(i)] = A; fori=0...K, where
K >2. Fizv>1ande>0. Let By(D) = infyeyy sup, lHK| Let H € HY, be a
v-approximate distribution function with By = sup, lH K ‘ < BY +¢€ (by the definition
of BY, such a v-approzimate sample distribution function must exist). Then, for any

FeG, as N — 00, the inequality
H -G %) <2EVQ24x+e)xF(N 7.66
FIp

where

f(N) = !(1 -+ I/) <g_b%$___w> : + _2__:| " (767)

holds with probability 1.
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Proor: The proof proceeds in an analogous fashion to the proof of theorem 7.3.7
with sup, S*(y) replaced by sup, |S(y)- n
Once again, the theorem applies to any € > 0 and any v > 1, therefore, for smooth
density functions, we have L; convergence at a rate O((loglog N/N )%), which is faster

than O(1/Nz~¢) for any € > 0.

7.4 Simulation Results

Convergence of the Density Estimation Error
¥ T

——  Observed Convergence
———  Best 1/NFit

101 N

Expected Squared Error

107 F

A five hidden unit two layer neural network was used to perform the map-
ping r; — 1/(N+1), trained according to SIC. For variousN, the resulting
density estimation error was computed for over 100 runs for each N. Plot-
ted are the results on a Log-Log scale. For comparison, also shown is the
best 1/N fit.

Figure 7.1: Convergence of the density estimation error for SICI

We demonstrate the convergence results for SIC with a simulation run on the same
test density used in section 6.4. A five hidden unit neural network was trained using
SIC to estimate the sample distribution function, for which the density estimate is the

derivative of the learned function. The density estimation error was then computed.
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Shown in figure 7.1 is the behavior of log(E) versus log(/N), and for comparison, we

show a slope -1 curve. The optimal linear fit had slope -0.97.

7.5 Convergence of SLCI and SICI

In this section we will briefly analyze the random variate generation methods to show

that they generate the true distribution as N — oo.

7.5.1 Convergence of SLCI to SICI

We will use ideas very similar to those used in section 7.1. The update rule for SLCI

is

w(t)=w(t+1)—n(t)-2 Z(H(un(t), w(t)) — xn)ﬁﬂ(una(i))’ w(®)) (7.68)

v

Q(w(t)u(t))
Just as in section 7.1, Q(w(t),u(t)) satisfies requirements Al, A2', A3 and A4 of

[Ljung, 1977]. Therefore, convergence to a stable stationary point of the differential

equation
W — i B2 Y (B (0), w() — o) OO (7 69)

occurs with probability 1, provided n(t) satisfies the required conditions. Thus, we

have proved the following theorem:

Theorem 7.5.1 SLCI converges with probability 1 to a local minimum of the error

function
N 2
E=E Z[H(un,w) - xn} } , (7.70)
n=1
(where the ezpectation is with respect uy, ..., uy, the N order statistics of a uniform

distribution), provided that the learning rate 1)(t) is a decreasing sequence, that satis-

fies the following conditions

a. Yy o.n(t) = oo,
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b. Y oo mP(t) < oo, for some p,

c. lim;_. sup[l/n(t) — 1/n(t — 1)] < oo.

We are now almost there, because in the limit N — oo, we expect u, — n/(N + 1)
with probability 1. This, however, is just an application of theorem 7.2.1. Another
way to see this is to write u; = i/N+1+¢; in (7.70) and expand as a power series in ¢;.
The ¢; terms disappear and the higher order expectations decay to zero as N — oo.

Therefore, we have the following theorem.

Theorem 7.5.2 If the conditions of theorem 7.5.1 hold, then in the limit N — oo,

SLCI converges with probability 1 to a minimum of the error function

Szi[H (Nil,w> ) (7.71)

n=1

Thus we see that SLCI converges to a solution of SICI (in the limit N' — oo) with

probability 1. We now look at the convergence of SICI

7.5.2 Convergence of SICI to G}

We will make the simplifying assumption that G~*(u) is continuous on [0, 1]. There-
fore the input support is compact. Since G(z) was assumed differentiable, then so is
G~'(u), and further because [0, 1] is compact, we have that |dG~"(u)/du| is bounded.
Let the bound on the derivative be S. Then, the input distribution is bounded in the
range [—S, S].

Let u; = ¢/(N + 1), then SICI trains the network to implement the inverse of a
generalized distribution function that interpolates the points {u;, z;}. Let the inverse
of this generalized distribution function be H(u). We would like to analyze the rate
of convergence of the integrated squared error £ = E “01 dp(u) (H(u) — G_l(u))z],

where p is any continuous measure on [0, 1]. Write

;= G ) + ¢ (7.72)
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Because both G~! and H are monotonic, the same arguments that led up to (7.25)

can be used to get that for u € [u;, u;41],
2 — G N ujy) < H(uw) — G Hu) < 2441 — G uy) (7.73)
from which follows the inequality
(H(u) — G w)? < (2 — G (i41))* + (21 — G (w))? (7.74)
The density for the order statistic z; is [Billingsley, 1986, pg 200]
N!

ile) = Gy =)0 @) (- ) (7.75)

We will require the expected value E[(z; — G (u;11))?] and E[(ziy1 — G (uy))?].
They can be bounded as follows

Bl(zi - G (un))?] = / "y (s — G M) (xs) (7.76)

oo

= /(; du Bini1-i(w) (G (u) — G Huiga))?  (7.77)

- /o du 5i,N+1—i(U)dGc;u(C) (u = uis1)” (7.78)
< S2E[(u - ui+1)2]5i,N+1~i (779)

where
Ba,p(u) = %(%;—('g%ua_l(l — )Pt (7.80)

(a) follows by using (7.75) and making a transformation of variables to u = G(z;),
and (b) by Taylor’s theorem, for some ((u). A similar calculation yields E[(zs1 —
G ()% < S?E[(u — u;)?|g,,, y_; The expectations are with respect to the relevent

B-distributions and can be calculated using standard methods. Then, straightforward
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bounds for these expectations gives that for u € [1/(N + 1), N/(N + 1)),

N -1

E((Hw) -G W) < 8 1y

(7.81)

In the two end cells [0,1/(N + 1)] and [N/(N + 1), 1], the difference between H and
G is bounded by 2S5. Putting all this together, we find

E [ /0 1 dp(v) (H(u) — G_l(u))z} = é /Nf dp(u) B [(H(u) — G} (u))?]

(A

o UL

1 i1
SZ—L—/N+ dp(u)

4N +1)2 )
N+1
8B N -1
< 52 i
< S (N+1+4(N+1)2> (7.82)

where the last inequality follows because du(u) was assumed to be a continuous
measure and therefore can be bounded on this compact set (by B). Thus we have

proved the following theorem

Theorem 7.5.3 (L, convergence of SICI) Let the data set D consist of N data
points, x; drawn i.i.d. from the (true) distribution G € G. Assume that G™' is
continuous on the closed interval [0,1] and let its derivative be bounded by S. For
every H € MY that is zero outside the interval [—S, S] and any continuous measure

du(u) on [0,1], the inequality

(7.83)

—1 —1 2 2 SB N—‘l
— <
(1l -67;) <s (N+1+4(N+1)2

holds. u

Notes 1-5 appended to theorem 7.2.4 apply. Thus we have proved that SICI converges
to G~! provided the conditions of theorem 7.5.3 hold, and further that the rate of

convergence is O(1/N). Just as the Ly convergence of SIC and its corresponding
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density estimate were obtained, we can get L; convergence of SICI.

Theorem 7.5.4 (L; convergence of SICI) Let the data set D consist of N data
points, z; drawn i.i.d. from the (true) distribution G € G. Assume that G™! is
continuous on the closed interval [0,1] and let its derivative be bounded by S. For
every H € H7}, that is zero outside the interval [—S, S| and any continuous measure

du(u) on [0,1], the inequality

< / du(u) - G—1;>D <s <N4f1 L ) -

holds.

The proof is analogous to the L, convergence, with an application of Jensen’s in-

equality to bound E[|u — w;|] by /E[(u — u;)?].

7.6 Comments

Our main goal in this chapter was to provide convergence results applicable to the
use of generalized distribution functions. Thus we have laid a theoretical foundation
upon which the methods of the previous chapter stand. The conditions that we
required of the true distribution function are not unreasonable from the practical
point of view. We see that the convergence rate for the density estimation approaches
O(loglog(N)/N). A similar result holds in L;. Our convergence results do not require
any restrictions to be placed on the support of the true distribution.

Comparable rates of convergence are obtained only for parametric density esti-
mation, where the true density has the same form as the estimating density and it is
only the parameters that need to be estimate. For example, [Scott, 1988, pg 19-40]
shows that for estimating a (Gaussian density and the parameter of a uniform density,
O(1/N) convergence is obtained. The only case we find in the literature that obtains
faster than O(1/N) convergence is for the special case of the uniform density where

O(1/N?) can be obtained using an estimator of the form czy where zy is the nt



155

order statistic and ¢ ~ 1+ log2/N. The optimal rate for the integrated squared
error for density functions with bounded r-Sobolev norm is O(N~1~1/#r+1)) which
also approaches N~! for smooth density functions’, [Bretagnolle and Huber, 1979
and [Efroimovich and Pinsker, 1983]. [Barron and Sheu, 1991] has obtained a similar
rate of convergence for a cross entropy error function. Our rate has a similar form to
this optimal rate for bounded Sobolev norm — note that there is no easy connection
between bounded Sobolev norm and bounded derivatives in general.

Because lemma 7.3.1 can be saturated [Rudin, 1976, pg 114], we conjecture that
the convergence rate is optimal in the sense that for a true density with bounded

derivatives Ay, ..., Ak,

sup{e: £ = O(N")} =1 — % (7.85)

where this sup may or may not be attainable.

"r is the maximum degree for which [ |f("| < co.
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Part 111

A Natural Prior
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Introduction

— A mathematician who assumes nothing also proves nothing.

The application of Bayesian inference assumes the knowledge of a prior. Prior infor-
mation can be used to greatly improve upon learning performance, if the assumed
prior information is correct. Effectively, the search space becomes narrower without
sacrificing any approximation capability. Thus, one expects the BIAS to remain con-
stant and the VARIANCE to decrease [Geman and Bienenstock, 1992]. The capacity
of the learning model will generally have decreased [Sill, 1998a|, and possibly the VC
dimension as well [Abu-Mostafa, 1993]. One therefore expects the generalization per-
formance to be closer to the in-sample performance, and since we have not sacrificed
any in-sample performance, one expects the generalization performance to be better.

One technique for incorporating prior information about the target function into
the learning process is through the use of hints [Abu-Mostafa, 1995]. Hints can be
enforced “softly” by using virtual examples (extra examples generated using (for
example) a known invariance of the target function) or by introducing a penalty
function that is minimized when the hint is obeyed. These techniques have been
applied with success in the financial markets (ex. [Abu-Mostafa and Atiya, 1996])
and to medical, bond, and credit data by [Sill and Abu-Mostafa, 1997]. Another way
to enforce hints is to have a learning model that contains only functions that obey
the hint (ex.[Sill, 1998b]). [Sill and Abu-Mostafa, 1997] shows how a “softly” enforced
penalty hint can be interpreted in a Bayesian formalism by assigning a probability
distribution to the hint violation. Incorporating prior information into the learning
process will improve the performance. On the other hand, if the assumed prior
information is incorrect, it could be potentially disastrous.

e Is is necessary to incorporate some prior information into the learning process
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if one is to get anywhere at all?

By enforcing hints (and other prior information), one is assigning a prior probabil-
ity measure to the functions according to whether the hint (other prior information)
is obeyed or not. We are subtly doing this by restricting ourselves to a learning model
in the first place — a uniform prior over the learning model and zero outside. One
expects that the better our prior, the better the performance should be — approxi-
mating a sine function in the Fourier basis should certainly do better than (say) using
a polynomial basis, with the same amount of effort. Unfortunately, obtaining prior
information requires knowledge about the target function, which is the unknown. As
a result, in many applications, one simply assumes a uniform prior.

In the limit of infinite data, the dependence on the prior usually disappears. In
the real world, however, one is dealing with a finite amount of data. In this real
world, can one get away with assuming as uninformative a prior as the uniform one?
Various no free lunch results to be discussed in the next chapter show that unless one
learns with a specific prior in mind, all hypotheses are just as likely to yield a given
generalization behavior. Any non-trivial performance can only be claimed relative to
a prior, therefore one is forced to assume a prior.

The next two chapters will focus on this issue of the prior. We will discuss the
prediction of noise distributions from noisy data, and the need for a prior on the
target function. Then, we will discuss how priors could be used in the derivation of
regularizers, such as the first order Tikhonov regularizer. We begin here by laying the
foundations for the uniform prior, that which is almost always assumed, and proceed
from there.

We will concentrate on compact spaces, and assume that the input space is the
unit hypercube in d dimensions. Let the output space be the bounded interval [0, C].
Discretize the input and output spaces as follows. Let the input variable, x, take on

values in the set

X ={0,A,,20,,...,1— A, 1} (7.86)
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‘Sample Functioin in the Discretised Space with A‘:Ay:O.I. C=1,d=1 Sample Functioin in 1he Discretised Space with A=002, Ay:O.()OE. C=1,d=1
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(a) (b)

The discretized function space has only a finite number of functions. We
show a particular function on different quantization scales. An arbitrary
precision can be obtained by making the grid finer and finer.

Figure 7.2: The discretised function space

so there are N, = 1+ A% possible values for each input variable. Let the output

variable, y, take a value in the set
Y={0,4,,24,,...,C—A,C} (7.87)

There are N, = f—y—lrl possible y values. A function (f) will be a mapping, f : X — ).
There are I' = Nmed different functions. By making A;, A, as small as we choose, we
can achieve an arbitrary precision (for example see figure 7.2). In all applications, only
a finite number of functions are available (computers are finite precision machines).
Due to this finiteness, we can define a probability distribution on the function space
— a prior over the function space. One natural prior is to take this distribution to
be uniform. Therefore to every function we assign a probability of % Many other

“natural” priors are plausible.
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Chapter 8
No Noisy Free Lunch (NNFL)

— We all have our own priors. Ultimately, what matters is the degree
of expression.

Which data set has more noise?

Plot of Some Sample Data Piot of Some Sample Dala
T Y T T T T

Two sample noisy data sets created by taking two functions and adding
noise to them. The x-values are the same in both cases.

Figure 8.1: Two sample noisy data sets.

8.1 Introduction

Already established in the learning theory literature are a set of “No Free Lunch”
(NFL) theorems for various types of learning systems, [Wolpert, 1996¢], [Wolpert, 1996b],
[Zhu, 1996], [Cataltepe et al., 1998] and for optimization methods [Wolpert, 1996a].
The essential content of these theorems is that no learning algorithm can be univer-

sally good. A learning algorithm that performs exceptionally well in certain situations
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will perform comparably poorly in other situations. Thus, in particular, random al-
gorithms that always yield average performance, cross validation, bootstrapping and
anti-cross validation are all, in some sense, on an equal footing. Stopping early at
a higher training error than the minimum achievable gains nothing (for generalized
linear models) if the hypotheses yielding that training error are chosen with equal
probability. An optimization technique that performs well with one cost function will
perform poorly on another cost function. Thus, one needs to make some assumptions
about the underlying structure of the problem to be able to claim any kind of superior
performance.

Here we extend these ideas to the prediction of noise distributions. The basic
problem is to deduce properties of the noise distribution (for example, the noise
variance) from a finite data set that consists of input—output pairs. The outputs have
a deterministic dependence on the inputs (the target function) and a noisy component.
One approaches the problem with some prior belief about the noise distribution, and
one hopes that the data will enable a fine tuning of that prior belief to the extent that
more precise statements can be made about the properties of the noise. An accurate
estimate of the noise distribution is useful because the noise sets a fundamental limit
on the performance of a learning system [Cortes et al., 1994]. Noise may play other
roles as well, for example, in financial markets, the noise level is itself a tradable
quantity.

We will show that having a uniform prior on the possible realizations of the target
function does not allow one to update a well behaved prior on the noise distributions
(in the Bayesian sense) from any finite data set. Lets go back to the question posed
at the beginning (figure 8.1). Which data set has more noise? Figure 8.2 shows the
same data, but this time with the function that created the data. Now, which data
set has more noise? The task is considerably easier given this extra information. We
will show that some extra information of this form is essential.

This chapter is organized as follows. We start with an example in section 8.2 where

we attempt to predict a noise variance when learning using linear models. Section 8.3
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The same noisy data sets that were shown in figure 8.1, and the functions
that were used to produce them. In (b), the noise variance is roughly siz
times larger.

Figure 8.2: Noisy data and the functions that generated them

sets up the problem in general and section 8.4 presents the main results, beginning
with the simple case of boolean functions, and continuing to the more general case.
We will show that information about the noise distribution cannot be obtained from
a finite data set if the target distribution is assumed uniform. We conclude with

section 8.5 where we also discuss the implications of the NFL theorems.

8.2 An Example Using Linear models

In this section we illustrate the conclusions of this paper for the case of linear learning
models on the input space R%. Tt is not our goal to be strictly rigorous, but rather

to illustrate the point. The hypothesis functions are of the form
gw(X) = W - x + Wo (8.1)

w, wy are called the weights. We are given a data set D = {Xq, Yo = f(Xa) + na }2;.

f(xa) is some deterministic function (we place no other restrictions on the function)
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and n, is noise, drawn i.i.d. with zero mean and variance o?. We use mean squared

deviation as the measure of error. Define the training error as
Er = 1 (W - Xo + Wo — Ya)? (8.2)
N 83

Define w*, w} as those weights that minimize &,. It can then be shown that at this

minimum, the expected training error is given by (theorem 8.6.1)

02(d+N1)+B+0(i) (8.3)

<gt7‘*>D,x,e = EO + 02 -

we use (-) to denote expectations and the expectation here is over possible data sets,
the input space and the noise. Ej is the BIAS, where the BIAS is the expected
training error of the best hypothesis function in our learning model. B is a constant
given by theorem 8.6.1. For the purposes of this section, the exact expression for B is
not essential. It suffices to know that B is related to the variance of a sample statistic
around its population value.

The training error used as an estimate of the noise variance is asymptotically
biased. It over predicts the noise variance by the BIAS. Since we know the form of
("), perhaps we can do better. We can sample NV; data points from the N data
points and estimate the training error. We use bootstrapping [Shao and Tu, 1996]
to estimate (£;,*(N1)), and by varying N; we can fit the resulting dependence of
(E4*(N1)) on 1/N; using (8.3). Let the slope of this fit be A. From (8.3), we see that
A is an estimate for 02(d + 1) + B, therefore, A/(d + 1) used as an estimate of o2 is
off by B/(d + 1). Perhaps we can estimate B by the bootstrap as well. Suppose we
draw N data points and estimate B (using the bootstrap technique) by B. Tt can
be shown that (theorem 8.6.2)

~ N 2
<B> =B+o’(d+1)(1- )+ % tr (SIVELV) (8.4)
o(d+1)
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Thus we now have two quantities, A, an estimate of B +¢?(d+1) and B, an estimate
of B+ o?((d+1)(1 — Ng/N) +tr (£~'VEZ~1V) /N). Solving for o?, we have
A-B
o = (8.5)

N tr(5-1VS-1V)
(d+1)5 — =N

However, we are bootstrapping a quantity B, which is related to the deviation of a
statistical quantity of the sample from its population value. This estimate is good
only as long as N represents the population — i.e., Ng/N — 0. In this case, B =
B + 02%(d + 1). Combining this with A, our other estimate for 02(d + 1) + B, we get
no information on o2. We are faced with a dilemma. For finite Ng/N we can get
an estimate of o2 but this estimate is not very good. However, we have no way to
make it better because by making the bootstrap more effective, the final result loses
its dependence on ¢? - technically speaking, we cannot in this way get a consistent
estimate of o2, even as N — oo.

Thus, to get information on o2, perhaps we should look at terms with higher order
in 1/N. Perhaps some method other than simply using the training error would yield
a better result.

The purpose of the next few sections is to show that such an exhaustive search
will necessarily be fruitless unless we make some statement about f — in this case it
would suffice to tell us “how good our model is at estimating f” (i.e., Ey). Rather
than explore every other potential method for estimating o2 in this linear scenario,
we will set up a more general framework for the prediction of noise and show that
unless some assumptions are made about the target function, all noise models are
just as probable, given the data. The intuition is that the data points are consistent
with any noise level if we do not restrict the target function. We pursue these issues

next.
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8.3 Problem Set Up

Sample Data Points on the Discrete Grid, and Two possible Functions
T

Suppose that the two functions shown are both equally likely (probabiliity
1/2) to be the function that created the data. Then, the two hypotheses
noise=0 and noise>0, are equally likely to be true.

Figure 8.3: An example discretised grid

A finite data set D = {X,, s}, is given, where x, € R% y, = f(Xa) + ngand
f:R% — R. We will concentrate on the case where the noise distribution is fixed.
The results can be modified to accommodate noise distributions that vary with x. It
will always be understood that o indexes points in the data set.

We will use the grid representation of functions as has already been defined, with
one small modification. We will allow the y values to be negative as well. Thus, we
allow the output to take the values {—C,—C + A,,C +24A,,...,C — A,,C}. There
are now N, = zAQy + 1 possible function values. We assume that C' can be made as
large as we wish. Further, without loss of generality, we can scale the outputs by 31;,
therefore we can assume that y € {—C’, —C+1,-C+2, ..., C-1, C’}, N, = 2C+1 and
C = C/A,. With this representation, the noise n € {0,+1,+£2,...} has a distribution
given by a vector P where P, = Pr[n =] and >, P, = 1. Assume a prior probability

measure on the possible noise distributions g(P). We are interested in the Bayesian



166

posterior on these noise distributions

Pr[D|Plg(P)

9(P|D) = PriD]

where Pr[D] = Y p Pr[D|P]g(P). We can calculate Pr[D|P] as follows.

Pr[D|P, f] = || Prinalf(xa)]

a=1
multiplying by P[f] and summing over f we have

Pr[D|P] = %ZHPr[nalf(xa)]

f a=1

@ lH Z Pring| f(xq)]

ya =1 f(xa)=~C

(8.6)

(8.7)

(8.8)

where (a) follows when we sum over all points not in the data set, and we have used

the fact that Pr[f] = 1/T" - uniform prior.

8.4 No Free Lunch for Noise Prediction

8.4.1 Boolean Functions

Notation:

x € {0,1}¢
f:x — {0,1}
(1-p)€[0,1] = probability of flip

There are T' = 22* possible functions.

Theorem 8.4.1 Let g(p) be the prior distribution for the noise parameter, p. If the

prior distribution on the possible functions is uniform then g(p|D) = g(p).
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Proor.

Let m; be the number of times f; agrees with D where we use ¢ to index functions.

Then Pr[Dlp, fi] = p™ (1 — p)'"™™, so
Pr[D, filp] = Pr[Dlp, fi]Pr{filp] = %pm"(l —p)' ™™ (8.9)

Let p(m;) be the number of functions agreeing exactly m; times with the data set D.

p(m;) = (Ti) 22"l = ( ! ) 27'T. Summing (8.9) over f;, we get

i m;

Pr[Dlp] = > Pr[D, fp]

Ji
1<
= T > ™ (1 —p) ™ p(my)
m;—=0
!
1 . e [0
= 52 - (m>
m;=0 v
Py 2—1
independent of p. Therefore,
Pr(Dlp)g(p)
D —
9(p|D) Br(D) 9(p)

8.4.2 Extension to More General Functions

We would like to extend the previous analysis to the case where the output is not
binary and the input is the discretized version of [0,1]?. Figure 8.3 illustrates the

discretised grid we will work with and some sample functions and data.
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Cyclic Noise

When the noise is additive modulo N, then P = [Py, P, ..., Py,_1] fully specifies the
noise distribution.

example: The binary case with probability of flip 1 — p we have NV, = 2, Py =

p, A=1-p

Lemma 8.4.2 Y Prin,|f(x4)] =1 for allx, € D.

f(xa)
PROOF:
o Ya—C Ny—l
Z Pring|f(xa)] = Z Pr[na|f(xq)] Z P, =1
f(xll): Na=Ya +C Na=0

Combining Lemma 8.4.2 with (8.8) we have the following theorem.

Theorem 8.4.3 Let g(P) be the prior distribution for the cyclic noise. If the prior
distribution for the functions is uniform then g(P|D) = g(P)

PROOF:
By Lemma 8.4.2 and (8.8), Pr[D|P] = 5r. Therefore,
Pr[D|P]g(P)
o(plp) = 2N g(p)

]
Note that the boolean case is a special case of the cyclic noise case. In the language of
information theory [Cover and Thomas, 1991], the noise forms a symmetric channel
between the function value and the output value. A uniform distribution for the
function values induces a uniform distribution on the output values, independent of
the details of the symmetric noisy channel. Hence, observing the output conveys no

information about the noisy channel.
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Thresholded Additive Noise

Noise is added to the target and then thresholded so,

{Imﬂﬁf@0+mhf@0+m20
% max{—C, f(x;) +n;}, f(x;)+n; <0

P = [P,, Py, Pyo,...]. Unlike in the previous case, edge effects make Pr[D|P] de-

pendent on P. These effects can be made as small as we please by allowing C to

be as large as we please. The intuition is that the data set is finite (y; is bounded)

and so, because the noise distribution must decay to zero, if C is large enough, the

probability that f(x,) is close to the edge and y, so far away becomes negligible.

This is formalized in the next lemma.
Lemma 8.4.4 Given € > 0,3C large enough such that

1 1
7 (19 < PrIPIP] < 5
Y

C—o

N, =2C + 1. Intuitively, ¢ — 0.

PROOF:

(8.10)

Because {P,} is summable, there exists i such that z[i|>n P; < 5. Let Ymaz = max{y; }

and Ymin = min{y;}. Choose C' > max{|Ymaz + 1|, |Ymin — 7|} We then have,

c Ya—C
Z Prn.|f(xa)] = Z Prng|f(xa)]
f(xa)=—C na=Ya+C
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Where the last inequality follows because by construction ymez —C < —n and Ymin +

C > 7. Using (8.8) we have

1

1 €
— > Pr[DIP] > —(1 - =)
w7 2 PriDIP]2 (=)

The lemma now follows by using the inequality (1 —z)" >1—-nzfor0<z <1. =

Thus we see that by choosing C, the bound on our function f to be large enough,
the noise distribution has almost no effect on the probability of obtaining a particular
data set. All data sets become equally probable, in the limit of large C'. This in turn
tells us that the data should not be telling us any more about the noise distribution
than we already know. The prior distribution for the noise is unaffected given any
finite data set. To formalize this intuition, we need to impose a technical condition

on the prior over the noise distribution space.

Definition 8.4.5 Let 0 < ¢ < 1. Define np(e) by

np(€) = min n:ZPi<e

lil>n
For all 0 < € < 1, np(€) < oo, by the summability of P.

Definition 8.4.6 Let 0 < ¢ < 1. Define 7j(¢) by

() = sup {ne(e)}
where the sup is taken over P € support{g(P)}.

Definition 8.4.7 A prior on the space in which P is defined, g(P), is totally bounded
if

fj(e) < o0

for all e > 0.
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Essentially this means that the support set for the prior on the noise distributions is
not “too large.” For example, comparing only a finite number of noise distributions
yields a totally bounded prior over the noise distribution space. We are now in a

position to make precise the intuition mentioned above.

Theorem 8.4.8 (No Noisy Free Lunch (NNFL)) Let g(P) be totally bounded.
Forall0<e<1,3C>0:

(1= (P) < g(PID) < {& (s.11)

[}

Therefore,
Clim g(P|D) = g(P)
—> 00

because € — 0 can be attained by letting C — oo.

PROOF:
Following lemma 8.4.4 now let C' > max{|ymaz + 7(€)], |Ymin — 7(€)|}. Then Lemma
8.4.2 applies uniformly to every P € support{g(P)}. Therefore (8.10) holds for every

P € support{g(P)}.

Pr[D|P]g(P)
Pr(D]
Pr[D|Plg(P)
;PT[D[P]Q(P)

9(P|D)

(8.12)

Using (8.10), an upper bound can be obtained by substituting Pr[D|P] with 1/N; in
the numerator, and (1 — ¢) /N; in the denominator. To get a lower bound, we do the
opposite. Then, using the fact that > p g(P) =1, we get (8.11). =

Therefore, having no bound on f and allowing all f’s to be equally likely does
not allow anything new to be deduced about the noise distribution given any finite
data set. The preceding results essentially formalize the intuition that if every target
function value is equally likely, then, each noise realization for every data point is

equally likely. Hence nothing can be deduced about the relative likelihoods of different
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noise realizations. It should now be clear how to extend these results to the case where
the noise distribution has x dependence — one looks at each point independently.
The non-thresholded additive noise model is asymptotically obtained by letting
C become arbitrarily large. Further the results apply to arbitrary Ay, Ay, so by
allowing Ay, A, — 0, these results can be applied to the non-discretized model in

this asymptotic sense.

8.5 Comments

The updated prior g(P|D) is given by

9(P|D) x g(P) Y Pr(DIP, f]P[f] (8.13)
f
where P[f] is the prior over target functions. We have demonstrated that when P[f]
is “uniform”, it is not possible to update a prior on the noise distribution from a
finite data set, provided that a certain technical condition is satisfied. A non trivial
P[f] is needed for g(P|D) to be different from g(P). Exactly how P[f] will factor
into g(P|D) is given by (8.13).

The result is more useful than it appears at first sight, for one might argue that
no one ever has a uniform prior. A restatement of the result is: Given two noise
distributions, P; and P,, there are just as many (non-uniform) priors that favor P;
over P, (when one weights by the amount by which P is favored), as vice versa.

This result fits into a set of NFL theorems that might be considered a collection
of negative results, offering no hope for learning theory. The situation is considerably
more positive, however. One is never in a situation with a uniform P[f]. Further, it
is rare that no information about P[f] is known (excepting that it is non-uniform).
Therefore, incorporating P[f] into the noise prediction or learning algorithm is a must
in order to claim superior performance. To this end, distribution independent bounds

such as the VC bounds [Vapnik, 1995], though valid, are of little use — one might be
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able to guarantee that the training error is close to the test error but what use is
that, if one cannot guarantee that, on the average, the training error will be low.
Results that exemplify the superiority of algorithm A over algorithm B on a certain
bench mark problem are also of little use, for the reverse will be true on some other
“benchmark” problem.

NFL focuses our attention on the importance of the prior information available.
One should not attempt to find learning systems that are universally good. Instead,
one should study the possibilities that various priors present. Unfortunately, iden-
tifying and justifying the prior for the problem at hand is already a daunting task,
let alone incorporating it into the learning problem. One way would be through the
use of hints [Abu-Mostafa, 1995], [Sill, 1998b], [Sill and Abu-Mostafa, 1997]. In the
next chapter we will consider another way of incorporating prior information into the
learning system.

A possible starting point is the identification of priors, P[f], with learning systems
that perform well with respect to them, for example [Barber and Williams, 1997],
[Zhu and Rohwer, 1996]. One might then be able to relate real problems to these
priors and thus choose an appropriate learning system, or at least it might become
possible to make precise the assumptions behind a belief that a certain learning
system is appropriate for a certain problem. Further, VC type bounds derivable with
the knowledge of the prior, rather than with respect to any target function, are likely
to be much tighter. What would be a useful result? One of the form “Algorithm A
(or Learning System A) performs better than average on problems drawn from the

(useful) class B”. We attempt to address some of these issues next.
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8.6 Appendix

We use the notation

X=[x; %2 ... XnJ, y = f(Xa) +¢
T=xx")_,  q=({xf(x)),

The law of large numbers gives us that XX7 e NX and X f(x4) N (xf(x)),
—0o0 ~$00

where we assume that the conditions for this to happen are satisfied.

Theorem 8.6.1 Let the learning model be the set of linear functions w - x + wy and

let the learning algorithm be minimization of the squared error. Then

2d+1)+B 1
gtr* = E() + 0'2 - g(—?—FNLL +o0 <7V—) (814)
where By and B are constants given by
Ey=(f*)-d'S7'q (8.15)
Ty 1vy-ivsig+afslta-—2aTy- v
p-ld ara >~ a7 - %) (8.16)
N
PROOF: The Least Squares estimate of w is given by
w = (XXT)'Xy (8.17)
from which we calculate the expected training error as
) = (& W - )= { TKTXXT) X~ 1))
tr N N
(f(xa)T f(%a)) — (FTX(XXT) X f(%a)) + (7€) — (T XT(XXT)1Xe)
B N
o TXT XXT -1x N 2
_ gy U XXX XS ) o)
R N | N

-~

Ty
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By the law of large numbers, we note that (XXT)_1 N—> NY and X f(x4) N—> Nq,
—»00 —00

so we write
XXT = N% +VNV(X), X f(x.) = Nq+ vV Na(X) (8.18)

where (V)x = (a)x = 0 and Var(V) and Var(a) are O(1). Using (8.18) and the
1_

identity [1 + AA]™! =1 — XA + A2A? + O(N®) we evaluate T} as

<f2> ¢’y lq
(qTE'VEVElq+alSa-2aTS 'V lg) 1
- + O( 3 )
N 3
The theorem now follows. ™}

This result is similar to the results obtained by [Amari et al., 1995],[Moody, 1991].
By theorem 8.6.1, we have that

B= 717 (T 'VEIVETg) + (aTSla) ~2 (a’ETIVElq) (8.19)

.
v~ ~~

-~
Ty Ty T3

We wish to estimate 77,75, T3. Suppose that we try to bootstrap them as follows. For
T, we take q = Xy /N = X(f(%X4)+€)/N and 7! = (XX?/N)~!. We estimate V by
sampling Ng of the N data points and compute v/Ng((XXT/N)™!—(XpXE/Ng)™).
We then estimate T; by 7%, a bootstrapped expectation of 7L 'VE~-1VE~1q. This
requires Ng/N to be small. Doing all this, we find that

0.2

7, = {x) X (szfT (mtve-tyy-ty 2 xe) X“) + 5

tr <E‘1VE”1V> (8.20)
where we have taken expectation with respect to the noise. Notice that the first term
is the unbiased estimator of T73.

For Ty = (a’v7'a) we use a = v N(q—Xpys/N). Partitioning the input matrix

and noise vector into the part in the sampled Ng points and the remaining part, write
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X = [Xp Xp] and € = [¢§ &]T. Noting that € and ép are independent, we have for

T
) . 1
Ty = To+ -N—-z—N—B(NBXe — NXpgep)X ' (NpXe — NXgep) (8.21)
_ T I N]%.(N — NB)2 XBEB _ XBEB 2_1 XBgB . XBGB (8 22)
2 N2Ng N—-Ng Np N—-Ng Ng |
i N 1
= Tp+oXd+1) <1 - —N@) +o <7\7> (8.23)

where we have taken the expectation with respect to the noise. T, is an unbiased
estimate of 1.

Performing the same kind of analysis for T3 we find that T3 = T, an unbiased
estimate of T3. Now we estimate B by Tl + Tg - 2T3 which is the unbiased estimate

of B plus some correction terms. Therefore we have proved the following theorem.

Theorem 8.6.2 For N — oo, Ng/N — 0, the bootstrapped estimate of B, which we

call B has an expectation given by

A\ o?(d+1) Ng o? T
(B) =B+=5—= (1 - 7\7) + St (STVETV), (8.24)
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Chapter 9

Natural Priors and Regularization

— Natura non fecit saltum

We have seen that the issue of the prior is important in order to make substantial state-
ments about learning systems. Perhaps the most commonly considered reference prior
for Bayesian analysis is the Jeffrey’s prior [Jeffreys, 1946] which is invariant under
reparametrization and is approximately noninformative [Clarke and Wasserman, 1993],
[Clarke and Barron, 1994]. Our goal here is to look at reasonable priors when prior
information is available, and to deduce what the optimal learning strategy should be
(in the Bayesian sense).

We will diverge from learning theory to consider a purely combinatorial problem.
We would like to count the number of functions that satisfy a certain constraint. We
will formulate and present an analysis of the problem for the finite grid that we have
already discussed. In the asymptotic limit (A, — 0), we use the central limit theorem
to obtain an approximate expression for the solution to the counting problem. We
will then return to learning theory in section 9.3 where we will demonstrate how
Tikhonov regularization follows by assuming a certain prior and applying some of the
results obtained from counting functions.

In what follows, we will retain the discretized grid already defined, and restrict
ourselves to one input dimension (d = 1). In this case, a function can be viewed as a
path on a two dimensional grid, with z monotonically increasing along the path. If we
assign a prior probability distribution to the functions, we can then view a function
as a random walk on this two dimensional grid, with the distribution of the starting

point and the distributions of future jumps being related to that prior.
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Suppose we can define some natural characteristic (p) of a path. Let N(p) be
the number of functions with the value of this natural characteristic equal to p.
Proceed as follows. Let a data set D be given and assume that the conditional
density (likelihood) P(D|f) is known. Usually, this involves assuming a noise model
and then computing the density that a particular noise realization occurred. Taking

the Bayesian approach, we would like to find f that maximizes

P(D|f)P
P(f|D) = —LI—J—(%—)LQ (9.1)
or, equivalently, one can maximize its logarithm, £, given by
& = log[P(f|D)] = log[P(D|f)] + log[P(f)] — log[P(D)] (9-2)

The last term can be ignored, and typically P(f) is assumed to be uniform, so the
log(P(f)) term is also ignored, resulting in the maximum likelihood method for es-
timation. In the case of Gaussian noise, this results in having to minimize a sum of
squared errors'. From the NFL results, we know that assuming P(f) to be uniform
is not a fruitful approach.

Suppose we can define some natural characteristic (p) of a path. Let N(p) be the
number of functions with the value of this natural characteristic equal to p. Because

p is implied by knowing the function, we can write

P(f) = P(f,p)=P(flp)P(p) (9.3)

Now suppose that p is the determining characteristic that governs how the target

function was picked. Then it seems reasonable to assume that all functions with the

ITechnically, Gaussian noise can not allowed on our grid but we will just use it as an illustrative,
familiar example.
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same value for p are equally likely:

P(flp) = ] Sp.p(s) (9.4)

(p

Further if one also stipulates that all p’s are equally likely (P(p) = const), then, (9.2)
leads to the following problem

max {log[P(D|f)] — log[N(p(£))]} (9.5)

The following definition should now be intuitive.

Definition 9.0.3 A natural characteristic, p, of the target function distribution s a

property according to which functions are chosen such that

o All target functions with the same value of p are equally likely.
If in addition,

e All values of p are equally likely.

then we call it a maximally informative characteristic (MIC).

Now, by definition, (9.5) is the problem we need to solve for MIC’s. In general, we

solve

max {log[P(D|f)] - log[N(p)] +logP(p)]} (9.6)

where p = p(f). All that remains is to find a suitable p for the problem at hand.
P(p) is a prior belief about how p is distributed. If P(p) ox N(p) then (9.6) reduces
to maximum likelihood estimation. If p is a determining characteristic, and we have
no reason to believe that any value of p is more likely that another, then we get
(9.5). We have broken down the problem into two parts. The calculation of N(p)
which is purely a combinatorial problem, and the finding of a natural characteristic,
the property of the prior on the target function required for (9.5) and the calculation
of N(p) to go through. The art is all in the natural characteristic — the ability
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to choose a natural characteristic that represents the true nature of the learning
problem, and one for which N(p) can be calculated. Given a problem, one needs
some idea about how the target function was picked. We will reverse this process.
We will consider a certain set of natural characteristics and from them, determine
the objective function that one should optimize. This is a minor beginning toward
the development of a catalog of natural characteristics and the objective functions
they imply. A practitioner, with this catalog in hand, approaches a problem and tries
to decide which natural characteristic to use. Then what remains is to optimize the
objective function (9.5) that is implied by that characteristic. The characteristics
that we will consider are variations of the total variation of a function, and some
other reasonable bound constraints.

Define the variations, 7;;, of a function by

o f J
ozt

Tii(f) = /d:c (9.7)

We will be interested in discretized versions of 711, 712, 722, the most commonly used

Tikhonov type regularization terms.

9.1 Counting Functions

Let p for a function (path) be defined by

Ny—1

p(f)=> e (9.8)

i=0

where i indexes the possible z values. For example, if ¢; = 0, €; = |s; — s;_1| where
s; = yi/ Ay, then p is the sum of the number of jumps in the path. It is a discrete
analog of the integrated magnitude of the gradient, 77;. In figure 9.1 (a), p = 21. For
figure 9.1 (b), p = 417 (though this is not obvious from simply looking at the figure).
Let N(p) be the number of functions with } e = p. Our goal is to calculate N(p) for
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Sample Functioin in the Discrelised Space wilh AfAyAH, C=1,0=1 Sample Functioin in he Discrelised Space with 4,=0.02, Ay:0.00E, C=1,d=1

The discretized function space has only a finite number of functions. We
show a particular function on different quantization scales. An arbitrary
precision can be obtained by making the grid finer and finer.

Figure 9.1: The discretised grid

various functional forms p(f). We will assume that e; > 0.

9.1.1 Setting up the Combinatorial Problem

Let B(p, Ny, Ny, , j) be the number of paths with ) J e = p on the grid of size N, X N,

with so =7 and sy, = j. If either of the conditions p < 0, N, <0, N, <0, then B is

defined to be zero. In this section, we will consider p of the form

Ny
P = Z e(si, 5i-1)
3=1
when e(z,y) = |z —y|, p is the total variation. Assume that e(-,-) is a symmetric

function. From B(p, N, Ny, 1,j) we can calculate N(p) as

Np) =3 Blp Mo Ny ) (0.10)

i,§=0

By symmetry, B(p, Ny, Ny,4,j) = B(p, Nz, Ny, j,1).
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9.1.2 Counting the Number of Functions

We will present two methods for calculating B(p, N, N, ¢, j), one based on a recursive

argument, and one based on computing the generating function for B(p, Ny, Ny, 4, j).

Recursive Approach

Proposition 9.1.1 Let N; > 0, Ny > 0 be two integers such that N1 + Ny = N,

then

Ny
B(p, Ny, Ny, i,5) = Y > B(r, Ny, Ny, i, k)B(p — 1, Na, Ny, &, §) (9.11)

k=0 r

PRrROOF: Fix k,r in the summations. Then, B(r, N1, Ny, 1, k)B(p — r, Na, Ny, k, j) is
the number of paths from 7 to j passing through the point (Ny, k) with > e = r in the
first N7 steps and ) | e = p—r in the remaining N, steps. Summing over the possible
values for 7, we get the number of paths from ¢ to j passing through the point (N, k)
with Y e = p. Summing over the possible values of k£ we get the number of paths
from ¢ to j with > e = p. [
Given (9.11), we can compute B(p, N, Ny, 1, j) by starting at N, = 1 and building
upwards. More precisely, note that B(p,1, Ny, 1,5) = 0pe,j). Substituting this into

(9.11) we get the following recursion

B(p717Ny7iaj) = 5p,e(i,j) (912)
Ny

B(p, N, +1,N,,4,5) = Y Blp—e(j,k), Noy Ny, i, k) (9.13)
k=0

Now, B(p, Ny, Ny, i,7) for any values of its arguments can be recursively computed
by starting with N, = 1 and increasing IV, by increments of 1 to the desired value.

In the case where e(z,y) = |z — y|, the recursion becomes

B(p,1,Ny,4,7) = 0pja—yl (9.14)
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Ny
B(p,N, +1,Ny,i,5) = > Blp— |z —y|,No, Ny, 1, k) (9.15)

Generating Function for B(p, N, N,, 1, j)

We would like to calculate P(pli, ), the probability of obtaining a path from ¢ to j
with 3" e = p, where we take s; to be i.i.d. and P(sy = m) = 1/N,. Then,

B(p, Nz, Ny, 4, 5) = N, "2 P(pli, 5) (9.16)

We can also calculate P(p) from P(pli, j):

Nl s 1 .
P(p) =Y P(pli, )P (i, ) = 55 > Ploli.) (9.17)
Y] Yoo
and now N(p) is given by N,"*P(p). Let ¢;;(s) = <egsP>P( i) Since p takes on a
pli.g

discrete set of values, we can write
(s Z P(pli, 5)r (9.18)

where r = ¢*. Given 1;;, we can read off P(pli, j) as the coefficient of r?. Therefore

we concentrate on 1;;.

vi(s) = NNw = 2 Z ) (9.19)

51=0 SNz—1= =0
_ < I]\}E_Z Z re(z,s1)Te(s1,52) . re(sNz—hsj) (920)
Y $1.-SNp—1
1 Ny—1
= N N2 M Jis (9-21)
Yy

where we define an N, x N, “transfer matrix” M by

M;; = e (9.22)
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To get B(p, Nz, Ny, 1,j) we need to find the coefficient of r# in the expression for 1;;

B(p, N, Ny, i, 5) = MY ], (9-23)
and for N(p) we find the coefficient of 7* in the expression for ¢ = 3}, . ;;
Ny
N(p)= Y M™; (9.24)
§,j=0 ”
When e(z,y) = |z — y|, M becomes the Toeplitz matrix given by M;; = rli=Jl
1 roorr . Ml
T O O
M=| | | (9.25)
rNy—2 r? r 1

Technical Aside

We note a connection here to counting paths for a bounded random walk
with variable step size, each step size having the same probability. The
bounded grid is exactly the grid we have been talking about all along.
If we want to calculate the probability that, having started at point 7
and ended at point j, the total distance traveled in the y direction is
p, then we need to calculate the coefficient of the e**” term in [M"="1],;
where M is given by (9.25). If N, is large, then, the largest eigenvalue of
M will exponentially dominate. Diagonalizing M and ignoring the lower
eigenvalues of M we find that

[IMN="1]5; & o) z(€) 2 () (9.26)

where «(s) is the largest eigenvalue and z is the corresponding eigen-
vector. [Grenander and Szegd, 1958, pg 69-75] studies this eigenvalue in
some detail, including its limiting form as N, — oo.
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9.2 Asymptotic Solution to the Counting Problem

A closed form solution to the the recursive approach (9.11) or the generating function
approach (9.21) has yet to be found for the cases of interest. For reasonable grid sizes,
N(p) could perhaps be computed numerically using either of the above methods. In
practice, Nand N, are large (O(2°%)), and the asymptotic limits Ny, IV, — oo become
relavent, so we can make use of the central limit theorem. We will need a version of the
central limit theorem that is valid for dependent random variables. For convenience

we state it here.

Theorem 9.2.1 (Central Limit Theorem (CLT), [Billingsley, 1986, pg 375])
Suppose that X1, Xa, ... is stationary and a-mizing with o, = O(n™®) and that
(X,) =0 and (X!?*) <oo. If Sy = X1+ -+ Xy, then

Var|S, >
n[ | 2o (XP)+2> (X1 Xy (9.27)
k=1
where the series converges absolutely. If o > 0, then S,/o+/n = N(0,1) ]

where N (0, 1) is the standard normal distribution. Figure 9.2 illustrates this conver-
gence to a Gaussian for N, ~ 100, N, ~ 50.

In general, the conditions of the theorem will be satisfied for X; = e;, so, the
probability P(p) approaches a Gaussian density. Therefore, to investigate P(p) in
the asymptotic limits N,, N, — oo it suffices to calculate (p) and Var[p]. Then N(p)
is given by

N(p) = N,"*P(p) — exp [-(—p;@)—z} (9.28)

27Var|p] 2Var[p]

In the remainder of this section we will list (o) and Var[p] for different forms of p as

N, N, — oo. The details can be found in appendix 9.5.1.

1. e; = |s; — si—1|(Total Variation Constraint ~ Tiy).

N,N,>2
15

{py — T Varlp] — (9.29)
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Illustration of the convergence of N(p) to a Gaussian for p = |s; — s;—1|.
Plotted are three! curves, one a montecarlo simulation to obtain P(p),
the second, a Gaussian with the same mean and variance of p that was
obtained from the monte carlo simulation and the third is the Gaussian
implied by the theoretically computed mean and variance of p . The fit s

impressive gien that Ny was only 101.

Figure 9.2: N(p) and its Gaussian approximation

N(p) = N,"*N({p), Varp]),

. e; = (8; — 8i-1)? (Squared Total Variation Constraint ~ T3).

N,N,*
20

Var[p] —

N(p) = N,"*N((p), Var|p]).

. e; = (28; — 8i—1 — 8i+1)> (Smoothness Constraint ~ Tz1).

N,N,?
(p) = =2 Varll =

121N, N,*
180

N(p) = N,"*N((p), Var|p]).

(9.30)

(9.31)
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4. e; = g(s;). In this case, (p) = N, (g9(s0)) and Var[p] = N,Var[g(s)]

(a) g(si) = s;/ N, (Mean Constraint).

(o) — ]—\2@— Var(p] — 1];%% (9.32)
N(p) = N,"*N({p) , Var[p]).
(b) g(s;) = s?/N, (Power Constraint).
()~ Varld > 2 (9.33)

N(p) = N, N((p) , Varlp]).

5. p = max;{s;} (Mazimum Power Constraint) To get N(p), note that of the
(1 + p)™= paths that are available, the p™+ that do not reach the level p are

excluded, so

N(p) = (p+ 1) — p (9-34)

6. Multiple Constraints Suppose that the natural characteristic is a combination
of properties of the path — a vector characteristic (g). One needs to compute
the multivariate probability distribution P(p). Once again, in the fine grid
limit, we can appeal to the CLT and reduce the computation to computing the
parameters of the multivariate Gaussian. These are the mean vector ({#)) and

the covariance matrix () given by
=Ty - (7)) (9.35)

Because Ap = 1, N(p) is also the number density of functions at p, the number of
functions with p in the interval [p, p + Ap| . It is this number density that is needed

in what follows.
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Characteristic Discrete Version N(p) Limiting Form
Jy do| % & ilsi = simal N(852, MeEn) xe?
fol do(4L)? Ny (%)2 oilsi —si1)? N(ﬁw—;gz-, N“23004) o €3N 57
Jrda(E8? N2 () Siesm s —sia)? N(Nen@l 2NIOhy o er
Iy doly| (&) &S N(§, &) N(§, 1)
Ji do y? (&) - xis? NG5 N(% 5%
sup{|y|} NC; max;{s;} (% + l)Nm - (%)Nz o pNee’s
(%—Z - A

In the last column we give the limit as N, — oo and we assume that P(p)
(9.6) is non-zero only on some bounded region . Taking the log of this
column gives the relevant “reqularization” term.

Table 9.1: Various characteristics and the form for N(p) that they lead to.
9.3 Application to Regularization

In the previous section, we discussed the computation of N(p). Remember that the
presumption is that p is a natural characteristic, so P(f|p) = 1/N(p). p was generally

a function of the s;’s. We are more interested in characteristics defined in terms of

y; = Ays; = Cs;/Ny. For example,

1
/da:
0

Table 9.1 gives some characteristics that might be of interest, and the corresponding

dy
dx

N,
= Z lyi — yia| = -5y— Z |5 — s4-1] (9.36)

discrete versions, along with N(p), the number density of functions at p.

Given N(p), we form the objective function to minimize using (9.5) by taking the
logarithm of N(p). Suppose that we assume that the data was created by taking
the true targets and adding Gaussian noise, which we assume to have zero mean and
variance 0. Then up to the addition of a constant, log[P(D|f)] = ~1/20% ", 7}

where we have defined the residuals r; = f(z;) — v, and [ indexes the data points.
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Up to constants, which we ignore, the optimization problem (9.5) reduces to

min { sz ST log[N(p(f))]} (9.37)

where we have assumed that every value of p is equally likely. The second term can
be considered a regularization term, and is given by the logarithm of the final column
in table 9.1. If one has some other prior on the possible values of p (the natural

characteristic) then this can be incorporated by using (9.6).

9.3.1 Derivation of the Tikhonov Regularizer

Many times, one wishes to enforce smoothness constraints on the learned function,
so one heuristically introduces Tikhonov type regularization terms. Suppose that p
is one of the smoothness measures. Then, if one would like to distinguish between
target functions on the basis of p, and only p, one is making the statement that all
target functions with the same value of p are equally likely, ie. that p is a natural
characteristic. Thus we can apply the results from table 9.1 to get the form of the
regularization term. We see that for all the smoothness characteristics, the depen-
dence on p is given by exp(Ap), where X can be read off from table 9.1. This leads
to a regularization term Ap, which is precisely Tikhonov type regularization for the

discrete setup we have described.

The Continuum Limit

Applying these methods to the continuum limit (though practically not necessary)
could be interesting from the theoretical point of view. A little bit of care has to
be used in passing to the continuum limit because for the derivatives to approach
the true derivative, one needs A, << A, (better resolution on the y—axis than the
r—axis). We can define a precision to which we would like to measure the derivatives

by the ratio A,/A, which we will assume tends to 1/A.
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1. p= N% >;1si — si—1| = Ti1. The regularization term is 5711/C. This is exactly

the Tikhonov regularizer with regularization parameter equal to 5/C.

2. N, (‘1%)221(52 — 8i-1)> = Ti2. The regularization term is (10712/3C*)AA,.
This is exactly the Tikhonov regularizer with regularization parameter equal
to (10/3C*)AA, (a similar result holds for T3,—the regularization parameter is
(90/121C?))*A,%). Note that in these cases, the precision in the derivative and
the y—quantization appear. We offer the following intuition. Regularization is
found most useful in situations where noise is present, and one can view the
quantization A\Q, = A, as “artificial noise”, thus as A, decreases, we expect

the need for less regularization. In fact, [Bishop, 1995b] shows that training

with input noise is equivalent to having a regularization term ~ 7is.

9.4 Comments

The role of priors is important. Here we have discussed how to go from a particular
prior (natural characteristic) to a regularization term by using counting arguments
for paths on a grid. Given a problem, the aim should be to formulate a prior be-
lief about what the most determining feature of the target function is, its natural
characteristic (or set of natural characteristics), and then one can compute the rele-
vant regularization term using a Bayesian framework as we have illustrated. We have
shown that smoothness as a natural characteristic leads in general to Tikhonov type

regularization terms, the minimization of an error function of the form

202)\
Z ré + Tii (9.38)

where we factored out the 1/202 in (9.37). We have given a prescription for the
computation of A, and have computed the regularization terms for a variety of natural
characteristics (priors). Note that the term C' that appears as a bound for the grid

is also a prior.
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We have addressed not what regularization terms one should use, but why regu-
larization terms should arise naturally from the choice of a prior, and how to calculate
them. Why one should use a certain regularization term is entirely a function of the

problem at hand.
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9.5 Appendix

9.5.1 N(p) for various functional forms p(f)

1.

e; = |s; — si—1|(Total Variation Constraint)~ Ti;.

For the expected value of p we have

(p) = <i_: |s; — 3i—1|> i {|s; — si-1]) (9.39)

Ny—1

= (Ny—1){|s1 — so]) = — S| (9.40)

_ (Nm - 1)(Ny — 1)(Ny 1)
= 3N, (9.41)

To compute the variance of p, first we will compute the expected value of p?

(") = <Z_ il si— 8i-1)(8] — 5j— 1)|> (9.42)

i=1 j=1

We need to consider four cases separately: 7 =14; j = ¢+ 1;5 = ¢ — 1; neither of

the above. Taking these four cases into consideration we have

() = — 1) (51— 50)%) + 2(Ny — 2) (|(s1 — 50) (52 — s1)|) +
((Np — 1)2 = 3(N, — 1) +2) (|s1 — s0])° (9.43)

We need to compute these expectations with respect to the probability distri-
bution P(sq,s1) = 1/N,%. Then, Var[p] is given by (p*) — (p)*. A tedious

calculation yields:

(N:c — 1)(Ny B 1)(Ny + 1)(Ny2 + 1)
15N, -

(Vy = DNy = 2)(Ny + DNy +2)
90N,”

Varlp] =

(9.44)
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In the limit N, N, — oo,

NN, N,N,?
{p) — v Var[p] — Y (9.45)
3 15
. e; = (8; — 8;_1)% (Squared Total Variation Constraint ~ Tiz)
Following similar techniques as above, we find
Np—1
(p) = Z ((si —5i-1)%) (9.46)
i=1
N, — 1)(N, — 1)(N, +1

6

Once again, for the variance, we need to consider separately the four cases as

above. A tedious calculation yields:

(Ny — 1)(N, — D)(3(N, — 1)3 +12(N, — 1) + 8(N, — 1) — 8)

Varlg] = b
__1\3 —1)\2 — _
90
In the limit N, N, — oo,
()AM Var,«[]__)j_v_‘i_]\ﬁ’i (949)
P 6 P 20 '
. e; = (28; — 8i_1 — 8iy1)® (Smoothness Constraint) ~ T
Again, using similar techniques as above, we find
N, - 2)(N, —1)(N, +1
(N — 1)(N, — 1)(121(N, — 1)® + 484(N, — 1)% + 376(N, — 1) — 216)
Varlp] = 180
~Ny(181(Ny —1)% + 724(N, — 1)* + 556(N, — 1) — 336) (9.51)

180

In the computation of the variance, the six cases (j = 4; j =i £ 1;j =i £ 2;
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neither of the above) need to be handled separately. The limiting forms are

N,N,?

(p) = —5 - Varlp] =

121N, N,*

' (9.52)

4. e; = |25; — 8;-1 — Siy1|(Smoothness Constraint ~ Ty, ) Though tedious, this can

also be calculated using the above techniques.
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Chapter 10

Conclusion

— In hope we can derive pleasure, even if those hopes turned out in

VaIN.
Yaser S. Abu-Mostafa

We have answered some of the fundamental questions about learning systems regard-
ing convergence, choice of regularization terms in the presence of noise, incorporation
of prior information within a Bayesian framework and the prediction of noise pa-
rameters. We have also managed to fit the density estimation problem within the
supervised learning framework and obtain consistent density estimation.

Buried in every chapter is the notion that if one has no prior information about
the learning task, then one cannot choose learning systems in a systematic way so as
to improve the chances of better test performance. Smooth learning models learn well
because target functions tend to be smooth in general. The message is that one has
to incorporate priors into the learning process and here we have developed techniques

that illustrate where our prior information can be used.

In choosing a learning system, there is a trade off between Ey and C, which

[ ]
depend on prior information about the targets.

e Choice of regularization in the presence of noise requires in addition to Ey and
C, an estimate of the noise variance.

e Estimating noise distributions effectively requires a prior on the targets. Given
a prior (knowledge of the target function), we could then analyze the maximum
likelihood method for noise variance prediction.

e Given a prior in the form of a natural characteristic, it was possible to incorpo-
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rate the prior into the learning process.

e The density estimation error was bounded in terms of the bounds on the deriva-
tives of the true density, which in turn implied that the algorithm should be to

minimize the bound of a certain derivative in addition to fitting the data.

The issue of the prior is important, and though we would like to avoid making as-

sumptions, we have to do so in order to learn.

The longest period of time for which a modern painting has hung upside
down in a public gallery unnoticed is 47 days. This occurred to Le Bateau
by Matisse in the Museum of Modern Art, New York City. In this time

116,000 people had passed through the gallery.
[McWhirter and McWhirter, 1971]
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