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Abstract 

Upper bounds on the magnetization of arbitrary ferromagnetic spin models 

are investigated. We discuss two methods by which it was proven that the mean 

field magnetization was shown to be an upper bound on the true magnetization. 

These are the Pearce and Slawny proofs. Results are given on analyses of 

methods attempting to extend the Pearce proof. 

Extensions to mean field theory are studied. We present new results which 

show that two of these extension methods also give upper bounds on the magneti

zation. We prove that the two-body extension, the Oguchi method, is an upper 

bound for spin 1/ 2 Ising models. For those spin 1/ 2 models where the three

body method predicts a unique magnetization, this too is proven to give an upper 

bound. The corresponding critical temperatures are proven to fall in the 

decreasing sequence 

where the inequalities are strict if the extension schemes are etiectively used. 
/ 

As applications of these methods, we obtain graphical spontaneous magnetization 

curves for various models and the new upper bound Tc < 2. 897 for the one 

dimensional 1/ r 2 Ising model. improving the previous mean field upper bound 

of Tc :s; 3.290. 



-v-

List of Ji\gures 

page 

Fig. 1 Experimental Spontaneous Magnetization Curve 68 

Fig. 2 Boundary Conditions 69 

Fig. 3 Theoretical Magnetization C~e 70 .. 
Fig. 4 Table of Critical Temperature Bounds "'t'l 

Fig. 5 Solving for the Mean Field Magnetization 72 

Fig. 6 The Balanced Torque Problem 73 

Fig. 7 Hyperbolic Curves 74 

Fig. B Program to test Pearce's Inequality 75 

Fig. 9 Sample numerical calculations 78 

Fig. 10 The Mean Field Magnetization for non-zero h BO 

Fig. 11 Concavity 81 

Fig. 12 Construction of the /ij matrix 82 

Fig. 13 Numerical spontaneous magnetization bound graphs 83 

Fig. 14 Program to plot magnetization bounds 88 



-vi -

Table of Contents 

Acknowledgement 

Abstract 

List of Figures 

Chapter I. Introduction 

1.1 The Physical Question 

... 

1.2 First Analyses: Solutions and Approximations 

1.3 Second Analyses: Rigorous Results 

Chapter TI. Mean Field 'lb.eory and Extensions 

2. 1 Mean Field Theory 

2.2 Extended Mean Field Theories 

Chapter ID. The Models: Mathematical Summary 

Chapter IV. Pearce: Re-examining the :Mean Field Magnetization Bound 

4.1 The Pearce Results 

4.2 Analyses of the Pearce Inequality 

Spin 1/2 

Holder's Inequality 

Geometric Analysis. 

Numerical Analysis 

/ 

page 

iii 

iv 

v 

1 

6 

12 

17 

19 

22 

25 

31 

31 

32 

34 

37 



-vii -

Chapter V. Sl.awny: Completing the Mean Field Analysis 

5.1 Other Magnetization Bound Ideas 

5.2 A Jensen-like Inequality 

5.3 The Slawny Proof 

Ch.apter VI. Siu: The Oguchi Bound 

6.1 The Oguchi Magnetization B~u__r1d ... 
6.2 The Three-Body Magnetization Bound 

6.3 Proof of the Critical Temperature Ordering 

6.4 Rederiving Pearce 

Appendix A; The GKS Correlation Inequalities 

References 

Figures 

38 

41 

43 

46 

53 

55 

58 

61 

64 

68 



1.1 1b.e Physical Question 

- 1 -

Chapter 1 

Introduction 

Consider the following physical experiment. Place a piece of iron with zero 

magnetization, m = 0 , in a heat bath at temperature T. Apply an external 

magnetic field h, h ~ 0 , to the ir<in and slowly decrease this field until 

h = 0 . Measlirement of the magnetization would now give m = 0 if T was 

sufficiently large and m > 0 if T was sufficiently small. This is the ferromag

netic example of a first order phase transition with m serving as the order 

parameter. Tne magnetization at zero external field is called the sponlaneoul'! 

magnetization. The temperature above which the spontaneous magnetization is 

zero and below which the spontaneous magnetization is non-zero is called the 

critical temperature Tc. Figure 1 shows an experimental spontaneous magneti

zation curve. 

From a physics point of view, one very interesting feature in the above 

experiment is the kink or non-smoothness in the m vs. T graph. With most of 

our microscopic physics showing smooth behavior, we are led to wonder if our 

understanding of statistical mechanics and fundcimental interactions are 

sufficient to create a model that manifests such non-smooth behavior. We create 

such a model by abstracting only the (apparently) most important properties of 

the physical system. The dominant cause of ferromagnetism is the apparent 

alignment of atomic dipoles and the tendency of dipoles to align themselves with 

an external field. We kn.ow these atoms lie in a lattice and believe ferromagne

tism to be basically independent of the size or shape of the lattice. These con

siderations led to the creation of the Ising model in 1920 by Wilhelm Lenz. The 

model was first analyzed by Lenz's student Ernst Ising in the same year. 
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In the Ising model our basic object is a spin variable St, which takes values in 

the space 0 = i -1, 1 J. The subscript 'i' denotes which site in the lattice A the 

spin variable si is attached to. 

We introduce interactions by means of a Hamiltonian H, 

H = - 2: J;,; s;, s1 - h 2: si 
i,j 1:A i1:A 

(I.1) 

and cause alignment to be a favorable configuration by demanding the pair cou

pling J;,; , and the external magnetic field h, to be non-negative. We then.say we 

are working with a ferromagnetic system. For most applications it is assumed 

the coupling is translation invariant, i.e., 

J;,3 = J(ji-j I) 

We also assume the total coupling of any one spin to the outside world is finite, 

i.e., L;Jii < oo, in order to get interesting behavior. Our convention is that the 
i 

self-coupling of any spin, J;,;,, is zero. Our lattice A is usually some finite subset 

of zd. although other structures, e.g.. triangular or hexagonal lattices, are 

allowed. The statistical mechanics of a finite lattice A is introduced by defining 

expectations using the Boltzmann factor: 

where 

is the partition function. Here f3 is the inverse temperature 1/ k T. l; stands for 
[s) 

a configuration sum where the spins S;, EA assume all their possible values. The 

measure assigned to any spin configuration is ® d J.L;, ( S;,); for this model 
'teA 

dµ.;,(s)=~fo(s-l)+o(s+l)J is the normalized counting measure. For 
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translation invariant couplings in a finite lattice boundary conditions must be 

prescribed. Typical ones are plus-boundary conditions. where spins in :ttd.\.A are 

fixed to be plus (si = + 1) (see figure 2.a); periodic boundary conditions, where 

couplings of spins to spins in zd.\A are understood to apply to spins 'on the 

other side' of A (see figure 2.b); and free boundary conditions. where couplings 

to any spins in :tt4 \.A are set equal to zero (see figure 2.c). It is mathematically 

convenient to get rid of any dependence on the size or shape of A by taking the 

thermodynamic limit of expectations. This means we allow the size of A to go to 

infinity, IAl-+ex>, and define the true expectation value as 

Often specific parameters of H. such as the magnetic field h, will be written as 

subscripts instead of H when we wish to emphasize their presence. Subscripts 

may also be omitted when their presence is clear from context. We arrange for 

I Al -+ 00 by taking a growing, nested sequence of cubes whose length approaches 

infinity. Our original problem is now an investigation of 

or 

m ({J) = lim ( si).o A.+ 
IAl-+CICI f'• 

where the 0 subscript denotes free boundary conditions, and the+ subscript 

denotes plus boundary conditions. By general arguments, these two definitions 

are equivalent [ 1]. Since the equilibrium state of our system in the thermo

dynamic iimit is usually translation invariant, the 'i! dependence in the expecta

tion is usually non-existent. Attention must be paid, though, to the 'i' depen

dence in the intermediate calculations when A is finite. 
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The demonstration that the Ising model exhibited the ferromagnetic phase 

transition came in two steps. First, in 1936 Rudolf Peierls gave an argument 

which showed that the spontaneous magnetization was non-zero at sufficiently 

low temperature [2]. He used plus boundary conditions on a two dimensional 

square lattice with nearest neighbor couplings, i.e., J;,j = 0 if j is not a 

(geometric) nearest neighbor to i. In the Peierls argument one relates the pro

bability of a minus spin (s;, = -1) to the probability of a contour on the lattice. 

By comparing the energy cost of having a contour to the gain in entropy from a 

contour, Peierls is able to find a temperature below which the probability of a 

minus spin is less than 1/ 2, and therefore that the spontaneous magnetization 

is positive. The second part of the demonstration came in 1967 from Robert 

Griffiths who showed that for lattices of any dimensionality the spontaneous mag

netization was zero at a sufficiently high temperature [3]. He used a 'ghost spin' 

trick and compared the magnetization to various correlation functions to find 

that for sufficiently high temperature, the magnetization is less than some linear 

function of the external field. This implies that the spontaneous magnetization 

must be zero. To round out these two arguments into a magnetization graph, we 

use a correlation inequality called GlCS II which tells us that correlation functions 

don't decrease as the temperature is lowered and don't increase as the tempera

ture is raised. GKS II also tells us that if you have a non-zero magnetization in 

dimension d, you also have non-zero magnetization in dimension d+ 1. We then 

know that a three dimensional ]sing model has the appropriate ferromagnetic 

behavior and can be used as a model for real ferromagnets. Were the two tem

perature bounds from the Peierls argument and the Griffiths argument the same, 

we would know the exact transition temperature. Since these two temperatures 

are not the same, we have two bounds on Tc , a lower bound and an upper bound. 

A theoretical magnetization curve is shown in figure 3 and we indicate what we 
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have learned by these analyses on this figure. 

While we have shown the Ising model to have the simplest property of 

figure l, that of regions of positivity and of zero-ness, we may inquire about some 

other features of figure 1. The apparent continuity of the graph is partially 

shown by GKS II. GKS II allows one to show monotonicity of m as a function of T, 

and thus continuity almost everywhere. AB one might believe this to be 

insufficient, we point out that the one dimensional 1/ r 2 (where Jij = I i-j 1-2 ) 

Ising model is believed to possess a discontinuity right at the transition tempera

ture. The concavity of m { T) above Tc is easy to show (the graph is fiat); the 

concavity below Tc or piecewise concavity of m ( T) everywhere is as yet an 

open question. The problem of determining m as a function of T is ver; much 

open and is of major importance in using the Ising model as a quantitative expla

nation for any physical phenomenon. The next several chapters describe work 

and partial results towards answering this question. 

Attention has so far been focused on the ferromagnetic phase transition. We 

"Wish to point out that there are other kinds of phase transitions and reasons to 

study the Ising model. Most common is the liquid- gas phase transition of water. 

'Ihe order parameter is the density of the mixture of water and water vapor. The 

critical temperature of water is 374°C at a critical pressure of 217.72 atmo

spheres. Other examples include the superconducting I normal states of some 

metals and the superftuid states of helium. The most recent source of interest 

bas been the conjectured quark deconflning transition of the vacuum. It is 

believed that the universe is in a low temperature phase where quarks are per

manently confined, but that there exists a high temperature phase where quarks 

are free. This question originated in quantum field theory but similarities in the 

mathematical treatments have re-awakened interest in the study of Ising-like 

models in statistical mechanics, specifically lattice gauge theories. A different 
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reason to study spin systems is the universality hypothesis for critical 

exponents. By solving for the critical exponents of more types of spin models, 

one will better understand the range of validity and necessary conditions for 

universality. 

Our last word in this chapter is a warning. While the physical ideas behind 

the Ising model underlie many physical systems, it takes further work to relate 

the Ising model properties to the real world properties. Appropriate dimensional 

quantities must be inserted and the hypotheses behind the Ising model must be 

checked for validity. For example, does the spin-spin interaction really dominate 

the Hamiltonian so much that other interactions may be neglected? With this 

caveat in mind, we focus attention on a study of the Ising model itself. 

1.2 First Analyses: Solutions and.Approximations 

Many variations on the original Ising model have since been introduced. 

Their utility lies both in a possible closer modelling of some real world systems 

and their amenity to some kinds of mathematical analysis. Insofar as we can 

learn something from them they increase our understanding of the mechanics 

and general properties of phase transitions. Already mentioned is the possibility 

of changing the underlying lattice structure. Real crystals can have one of 32 

point groups associated with them and we desire at least this much freedom in 

specifying our models. It turns out that the qualitative features of phase transi

tions depend mainly on the dimensionality of the lattice and not on the particu

lar lattice used; quantitative features will depend on the type of lattice used. Our 

spin space 0 = f -1, 1 ~ corresponds to a spin 1/ 2 or two state system. 

Higher angular momentum spins, the spin n/ 2 models, have spin spaces 

-( 2 4 n - ( -1 I -1 + n I -1 + n t • • • I 1 j • 
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The spin - spin interaction is still taken to be -J;,jsisj . The plane rotor (also 

called the x - y or 0(2) ) model imagines each spin to be a two component vector 

having components (.:r ,y) satisfying .:r2 + y 2 = 1 with the spin - spin interac

tion being -Jij~i.~j. This introduces then-vector models where each spin is a 

normalized n-component vector with the dot product interaction. The Heisen-

berg model is the three vector model and is much studied since it is a three 

dimensional spin. Clock (also called Zp) models are discretized versions of the x 

- y models. Instead of letting the components (.:r ,y) run over the continuum of 

their allowed values, only certain ordered pairs are allowed, e.g. the Z4 model 

allows the spin to point to the number 12, 3, 6, and 9 on a clock. The interac-

tion in All the above models need not be pair couplings. Terms like the three 

body coupling, -Jijlcsisjsk, or many body couplings may be put into the Hamil

tonian. Theories with four body terms are in use in the study of lattice gauge 

theories [ 4]; there the interaction is -J IT Si. The most important 
i~tte 

feature of pair couplings appears to be the rate of decay of the coupling at long 

distances. For example, nearest neighbor couplings in a one dimensional 

spin 1/ 2 model cause no transition, but Jij = li-j 1-i.5 do. This is why people 

distinguish between finite range couplings. where if the distance between sites i 

and j is too large, I;,; = 0, and long range couplings, where if one goes out far 

enough away from site i one can always find a non-zero Jij. Apart from the 

above models, there is still a plethora of models that we shall not discuss, e.g., 

Potts, Villain approximation models, solid on solid, spherical, etc. It should also 

be mentioned that there are antiferromagnetic models, I;,; and h may assume 

negative values. These are of interest nowadays in the discussion of spin glasses 

and the RKKY interaction [5] 

r.J cos Ii-; I 
li-j 13 . 
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The proofs of many results useful in analyzing general ferromagnetic spin models 

fail when antiferromagnetic couplings are allowed, and we defer study of antifer

romagnetic models to a later date. The above models are also classical in the 

sense that we do not worry about commutativity of any of the spin variables. 

Quantum analogs of all the above models exist but we shall not discuss them 

here. 

The first analysis of the Ising model was done in 1925 by Ernst Ising 

(appropriately enough) for his graduate studies. His conclusion that the one 

dimensional nearest neighbor spin 1/ 2 Ising model had no phase transition was 

rather disappointing. It had been hoped that this model would explain fer-

romagnetism and that was one of the reasons for its creation. However the 

method nowadays used to solve one dimensional problems is quite interesting 

and proves versatile enough to handle discrete spin spaces with finite range cou

pling. All these models possess no phase transition. The method is called the 

transfer matrix method and basically enumerates all the possible states of a spin 

and its effective neighbors, then lises matrix multiplication to extend the 

configuration sum to any finite size chunk of a one dimensional lattice. The parti

tion function for finite A is found to depend on the eigenvalues of the tr an.sf er 

matrix. In the thermodynamic limit only the largest eigenvalue is important and / 

it becomes easy to show that the thermodynamic functions are smooth and there 

is no phase transition. The same method together with lots of mathematical 

manipulations was used by L. Onsager in 1944 to calculate the partition function 

for the two dimensional spin 1/ 2 nearest neighbor zero external field Ising 

model [ 6]. In the famous Onsager solution, he shows directly that there is a 

phase transition in two dimensions and finds the critical temperature to be 

Tc = 2.269 (in units where the coupling constant equals 1). Variations of the 

Onsager solution have been made to solve other two dimensional lattices exactly; 
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examples include the triangular and hexagonal lattices. Extensions of the 

transfer matrix analysis have been attempted for higher dimensional lattices but 

these have so far been unsuccessful in solving these models. A distinct two 

dimensional model, called the ice model, was solved by Elliot Lieb [7], also by 

using the transfer matrix method. An enhanced version of the ice model, called 

the B - vertex model, was solved by R. J. Baxter [ 46]. This rounds out the list of 

types of major exactly solved models. 

Since we are only able to solve a few models, and many of those solutions are 

quite complex, it is natural to seek approximate methods of analysis which are 

simpler, and which work in greater generality. We list a partial set of such 

methods. Exari1ination of the form of eA-pectatiori.S leads one to a l".Jgh tempera-

lure (small (3) expansion [B]. This is done by expanding the Boltzmann factor 

into its Taylor series. For nearest neighbor models this becomes a sum over self 

avoiding walks on A (see [9]). Duality is a method which relates one Hamiltonian 

on a lattice to a possibly difierent Hamiltonian on a (possibly) ditierent lat

tice [10]. When duality relates a theory to itself, it also allows a high tempera

ture expansion to be related to a low temperature expansion. One then gets a 

guess at the value of Tc by saying it is at the (assumed) common singularity of 

these two expansions. Since the two dimensional theories solved to date ~ve 

had only one critical. point, duality has succeeded in correctly predicting the 

value of Tc . Monte Carlo techniques have been used to calculate spin correlation 

functions [ 11]. The method hopes to be able to choose a small representative 

sample of spin configurations and compute on the basis of these, rather than 

having to deal with the large number of all possible spin con.figurations. Tb.is 

method is ideally suited to the large computing capability being ottered by 

modern computers, and with correct Monte Carlo programs, ofiers the possibility 

of better answers With more computing time. Renormalization group analyses 
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have been tried. The rigorous applications include analyses of Dyson's hierarchi

cal model [ 12] and the Kosterlitz - Thouless transition in two dimensional x-y 

models [ 13]. One believes lack of a fundamental length scale to be characteristic 

of all systems near their transition point and this idea is precisely what the 

renormalization group tries to capture. The Curie-Weiss molecular field theory, 

also called mean field theory, was an approximation that tried to make self con

sistent solutions to spin models (see chapter II). The great virtue of this method 

was that it predicted phase transitions and gave a reasonably easy equation to 

solve to get the transition temperature. Unfortunately this theory turns out to 

have a habit of predicting too many phase transitions and will sometimes predict 

a phAse transition where there really isn't one. We can understand.this intuitively 

by looking at phase transitions as a macroscopic manifestation of microscopic 

cooperative effects. In the unmagnetized phase each spin prefers to point in any 

direction independently of the other spins, resulting in an overall spin expecta

tion value of zero. In the transition to the magnetized phase, spins will see other 

spins preferentially pointing in some direction and will want to point in that 

direction too. This process cascades through the lattice and one gets a non-zero 

magnetization. Important in this argument is the ease by which a spin 

cooperates with all the other spins. This information is contained in ):he spin-spin 

correlation function. The real spin system has to contend with intervening spins 

sometimes not pointing in the same direction as spins further away. These are 

called fluctuations and cause information to be inefficiently propagated through 

the lattice, thus making cooperation and phase transitions hard. Mean field 

theory on the other band has perfect correlation between all of its spins. This 

makes cooperation much easier, thus explaining the ease of having a phase tran

sition in this model. This also explains why the mean fteld magnetization should 

be greater than the true magnetization. We shall prove this to be true in 
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Chapters N and V. Mean field theory is the first in a series of approximations col

lectively known as the Cluster Variational approximations. We shall discuss these 

at greater length in chapter II. 

A wealth of data has been amassed using these techniques on many difierent 

models [14]. We are led to wonder. though, are these numbers, e.g., the approxi

mations to Tc , above or below their true value and how good are they as best 

guesses to the true value? On the one hand most of the figures obtained in this 

manner have agreed well with exact results when we have both figures. On the 

other hand we are without a guide as to what to do if there happen to be two 

conflicting best guesses. A case in point is the presently studied random field 

Ising model. Researchers are trying to determine the lol•1er critical 

dimensionality, de, of the model, i.e., the lowest dimension in which there is a 

phase transition. Th.ere are confucting arguments saying that de = 2 (see refer

ence [15]) and de = 3 (see reference [16]). If all arguments are both reasonable 

and sound, the deciding factor must be a rigorous analysis of the model. Another 

example is the one dimensional 1/ r 2 Ising model. For £ > 0, models with 

J. - 1 · · 1-2+£ 'id - ?..-J were known to undergo a transition, those with 

Ji,J = li-j 1-2-1: were known not to. What about the case E: = 0 ? This was 

important in the analysis of the Kondo problem [ 17] and the Th.ouless effect [ 18]. 

A rigorous argument [19] has recently settled this question, there is a phase 

transition for £ = 0 . From these considerations we may formulate a philosophy 

about these methods. It is important to have an intuitive feeling for the proper

ties of your model and desirable to have approximation schemes, especially sim

ple approximation schemes, to get a rough feeling for the numbers of the model. 

It would be great to have exact solutions and we shall try to get as many of these 

as we can [20]. Barring exact solutions, it is very handy to know what is 

rigorously true about the model, especially if this proves simple to calculate. 
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Rigorous results provide a guidepost to further analyses and help choose between 

plausible and correct arguments and plausible and incorrect arguments. We turn 

now to the rigorous study of spin systems. 

1.3 Second Analyses: Rigorous Results 

AB an illustration of the pitfalls which await the unwary, consider 

m 1 = Um lim (s)fJh A 
IAl-+00 h-+O+ ' ' 

and 

m 2 = lim lim ( s )fl h A 
h-+O+ !A!-+oo ' ' 

for the two dimensional nearest neighbor Ising model on a lattice with free boun-

dary conditions. The only difference is a change of order in the limiting opera-

lions, but that is sufficient for high (3 to make m 1 = 0 and m 2 > 0 . Rigor is 

not only nice in these problems, it is demanded. 

It is impossible to list here all the rigorous results known about spin sys

tems; instead we include selected types of questions asked and known results. 

See [21] for discussions of rigorous results and the methods of proof involved. 

The first question that needed to be answered was, does the thermodynamic 

limit exist as a mathematical limit? We know that the pressure, defined as 

p = lim IAl I lnZA fAf _.oo 

exists for many models. More importantly the correlation functions, which are 

the observables, are also known to exist. A simple proof of the existence of the 

spontaneous magnetization using plus boundary conditions may be made using 

the two correlation inequalities GKS I and GKS II. GKS I tells us that the spontane-

ous magnetization must be non-negative for all lattices, and GKS II tells us that 
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the spontaneous magnetization is decreasing as a function of increasing lattice 

size. A monotone, bounded sequence must have a limit and so the spontaneous 

magnetization exists. Correlation inequalities relate the values of various expec

tation functions and are useful in arguments like the one above. Some of these 

are conveniently sequenced as Ursell functions (f 'l..l..n D. i.e., 

(s) ~ 0 

is the first Ursell function u 1• obeying GKS I. 

is the second Ursell function U2, obeying GKS II. 

is the third Ursell function U3, obeying the GHS inequality. 

There are also others such as Newman's Gaussian inequality, the Lebowitz ine-

quality and the FKG (Fortuin, Kastelyn, and Ginibre) inequality. Other lines of 

inquiry include the nature of thermodynamic states, the phase diagram of states 
/ 

and rigorous relations between critical exponents. 

In this thesis we will study what is rigorously known about the transition 

temperature and the magnetization function. Results to date include upper and 

lower bounds on the transition temperature, upper bounds on the magnetization 

as a function of the temperature and the external field, and a lower bound on the 

spontaneous magnetization as a function of temperature (from the Peierls argu-

ment). It is clear that the transition temperature of any approximating model 

giving an upper bound on the magnetization automatically gives an upper bound 

on the true transition temperature. We should remark that there are two a 
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priori different transitions possible in all these systems and hence two possible 

critical temperatures. One transition is the onset of spontaneous magnetization 

and this is the one we will use. The other transition is the loss of exponential 

falloff of the two point correlation function. While we believe these two transi

tions to occur at the same temperature for most of our models, the two dimen

sional x - y model is an example of a model where the two temperatures are dis

tinct. Simon's inequality [22] provides a bound on this latter critical tempera

ture. Applications of Simon's inequality to find numerical bounds of transition 

temperatures may be found in Barrett and O'Carroll [23] and Monroe [24]. 

Work on critical temperature bounds began with Peierls and the lower bound 

on Tc he derives from the Peierls argument. In 1976 Jurg Frohlich, Barry SLtnon 

and Tom Spencer [25] discovered the infrar-ed bounds which gave (relatively) 

easy to compute lower bounds for n - vector models. These are the two methods 

we have for computing lower bounds. Griffiths first proposed an argument to give 

an upper bound on Tc for spin 1/ 2 models. His bound is slightly better than the 

mean field critical temperature. Cassandre, Olivetti, Pellegrinotti and 

Presutti [26] used a result in probability called Dobrushin's Uniqueness 

Theorem [27] to extend the mean field upper bound to a large class of one - com

ponent models, including the spin n I 2 models, thus extending the bound to 

more than spin 1/ 2 models. Driessler, Landau and Perez [28] and Simon [29] 

were able to extend this bound to multicomponent, i.e. n-vector, models. 

Fisher [30] concentrated on nearest neighbor models. By using self avoiding 

walk ideas he was able to get the strongest bounds that we have on such models. 

A table of all these bounds is given in figure 4. 

The magnetization function first received attention from Thompson [31]. He 

showed that the mean field magnetization was a bound on the true magnetization 

for spin 1/ 2 models. This implies the mean field critical. temperature bound. 
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Krinsky [32] narrowed the scope of Thompson's work to nearest neighbor models 

and was able to show that the Bethe approximation gave an upper bound to the 

magnetization. The Bethe approximation is one of the Cluster Variational 

approximations and constitutes the strongest result presently known for nearest 

neighbor spin 1/ 2 magnetization and temperature bounds. The approximation 

itself will be described in chapter II. By different methods, the mean field mag

netization was eJ1.'tended to spin n I 2 and multicomponent models. Paul 

Pearce [33] used techniques similar to those used in correlation inequality proofs 

to get the mean field bound for spin n/ 2 models (where n = 2P3q-1 , p and 

q are non-negative integers and not both zero), and the x - y and classical 

Heisenberg models. Hal Tasaki and Takashi Hara [34] use correlation inequalities 

to demonstrate the bound for spin n/ 2, n any positive integer, and n-vector 

models where n~3. Combining Pearce's work and Tasaki and Hara's work we 

have the mean field bound for all spin n/ 2 and all n-vector models. Joseph 

Slawny [35] uses the DLR (Dobrushin, Lanford and Ruelle) equations and a new 

inequality analogous to Jensen's inequality to independently arrive at the mean 

field bound for all spin n/ 2 and all n-vector models. We should also mention 

Charles Newman [36] who has results similar to Tasaki and Hara's. Pearce's and 

Slawny's work will be discussed in Sections IV and V, respectively. 
/ 

Our new result is a proof of bounds on the true magnetization by the second 

and third members of the Cluster Variational approximations, the Oguchi method 

and (where appropriate) the three body approximation. These bounds hold for 

general ferromagnetic pair coupling, not necessarily nearest neighbor couplings, 

for spin 1/ 2 Ising models. · The resulting critical temperature bounds are also 

shown to be a decreasing sequence, 

Tc(true) s; Tc(symmetric 3-body) s; Tc{Oguchi) s: Tc{mean field) 
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as expected. When the couplings in the privileged regions for each of these 

approximations are non-zero, the temperature bounds are shown to be strict. 

In the next chapters we will review Pearce's work and Slawny's work and 

then present our new bounds. We shall focus attention to one component models. 

mainly spin n/ 2. 
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Chapter II 

Kean Field Theory and Extensions 

Il.1 llean Field Theory 

Since mean field theory will be the basis for the bounds we will derive in the 

following chapters, it is good to get an intuitive picture of what is happening. We 

believe that in the thermodynamic limit we will have some unique equilibrium 

state. In this state we expect each site to have the same average value or (in 

other words) the magnetization should be uniform throughout the {infinite} lat-

tice. If this is so, we may make a self consistency argument to discover the value 

of that magnetization. This argument was first given by Pierre Weiss in 1907. 

Instead of performing the full configurational average, we concentrate attention 

on one spin. We replace all other spins by their assumed average value m . Thus 

our Hamiltonian (equation 11) has become 

H 1 = - ~Jids;.m - h}::;m -hs;. 

'""" j:l:i 

(Il.1) 

where Si is the spin we are looking at. We now drop the subscript 'i' since we 

have only one variable. This new lattice creates a background :field for our spin s 

through the pair couplings and we can compute the predicted magnetization of 

(II.2) 

Now we bad originally assumed that all the spins were equivalent, hence we 

demand that this procedure yield the value m for the expectation of our 

'privileged' spin. This will give us a self - consistent theory with the assumptions 

we've made. The consistency equation is then 
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m((J) = (s)p,H1 

For the spin 1/ 2 model this gives the familiar equation 

m = tanh((Jl;J i.i m + h) 
i 

(II.3) 

whose largest root is our estimate at the true magnetization (using the Hamil

tonian given in equation I.1). 

A few comments are in order about rigorously using this procedure. First, of 

necessity we start our calculation in a finite region A that later we expand to the 

thermodynamic limit. If we use translation invariant couplings on a lattice with 

periodic boundary conditions and a sequence of intermediate lattices, such as 

cubes, where all sites are equivalent, we will have translation invariant finite lat-

tice states. The thermodynamic limit will also then be translation invariant and 

our assumption about equivalent sites will be correct. Second, we observe that 

if m ((J) is a bound on the expectation of the spin, then any function m •(p), with 

m •(p) ~ m ((3), is also a bound. The best bound for a given A will be the (point

wise) smallest function that is a bound. We anticipate the A dependence of this 

best bound, call it mA(f3), and note that inspection of the form of mA(f3), from 

say equationll.2, reveals that it is an increasing function of IAI. It will also be 
/ 

bounded above by the infinite volume magnetization bound and will approach this 

as a limit. The intlnite volume magnetization bound is what we will call the mag

netization bound. Third, the constant term in the Hamiltonian H 1 may be thrown 

away when considering expectation values. We note that H 1 is now a function of 

only one spin variable and the conflgurational sum is now easy. Our extensions to 

mean field theory will also get rid of a large number of spins and leave Hamiltoni

ans that are functions of only a small, easy to work with, number of spins. 

Fourth. the equationll.3 is usually solved graphically. A plot of m and an over

laid plot of tanh(,s'l;Jijm + h) as functions of m Will quickly yield an 
i 
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estimate of the intersection value. Further numerical work, such as Newton's 

method for :finding zeroes of functions, will give better and better estimates of 

the intersection value. Figure 5 shows this graph. Fifth, the critical temperature 

is the maximum temperature (minimum (3) such that equation 113 has a non -

zero solution for h = 0. Taking derivatives of equation 11.3 we see that this 

occurs at 

or 

The general condition for the critical temperature from equation II.5 is 

a(s )p,Hn{m) I = 1 
iJm m=O 

(11.4) 

and this equation also defines the critical temperatures of the extensions to 

mean field theory. 

Mean field theory is also known as the Curie - Weiss effective field theory. 

The self consistency idea and procedure are also used in the Hartree Fock 

approximation, used to find an approximate wave function describing a system of 

many electrons. 

Il.2 l:x:tended llean fteld Theories 

The extensions to mean field theory that we describe here use the same self 

- consistency idea. The philosophy behind these extensions is that while an 

infinite number of spin variables (needed for the full con:figurational sum) may be 

unmanageable, and one spin variable used in mean field theory may be fine for a 

first approximation, some procedure should exist by which with more and more 
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calculational effort a better and better guess to the true magnetization will be 

obtainable. The cluster variational approximations are a procedure that fulfills 

this need. Intuitively these approximations are reasonable, yet only the first 

clu8ter variational approximation, i.e., mean field theory, bas been shown to be a 

bound for most spin systems. For spin 1/ 2 systems, this thesis shows that the 

next two approximations, the Ogucbi approximation and (where appropriate) the 

three body approximation, are also magnetization bounds. A stronger approxima

tion has been shown to be an upper bound for the special case of spin 1/ 2 sys

tems with only nearest neighbor couplings. Tb.is stronger bound is the Bethe 

approximation (32] (also called the Bethe-Peierls-Weiss or BPW approximation). 

The procedure for these higher order approximations is for the n 'th order 

approximations to look at n selected spins in A. All other spins are replaced by 

their assumed magnetization m. The interactions between the n spins them-

selves and between the n spins and the background field are kept unchanged. 

The calculation of the expectation values of each of these spins is done exactly 

using the effective Hamiltonian. If we call X the region containing the privileged 

spins, the effective Hamiltonian Hn. is 

This may be written in the simpler form: 

where 

Hn = - ~ E J;,js;,s; - E (h + J;,(X)m)s;, 
i,jeX ieX 

J;,(X) = E Jii 
JeA\X 

If ( St,)p,B" is independent of 'i' , the magnetization is taken to be the largest 

self - consistent solution m of 
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(11.5) 

'lbe Ogucbi bound corresponds to selecting any two spins. In practice these are 

chosen to be nearest neighbors since these spins usually have the strongest 

spin-spin coupling. If our region X = ls ,t J with coupling J, the Oguchi Hamil-

tonianis 

H 2 = -Jst -k(s+t) (II.6) 

where 

k = h + J;,(X)m 

( We will often use the mixed notation X = fs ,t J instead of X = fi,j j and 

s == S;, and t = Si. What is meant should be clear from context.} The three 

body approximation considers any three spins. If our region is X = (s ,t ,u J , 

the three body Hamiltonian H3 is 

Ha= -J8 tSt - Jsusu - Jt;utu - ks(X)s - kt(X)t - A;,.(X)u (II.7) 

where J :r:y is the coupling between spins :t and y, and 'Icy (X) = h + J 11 (X)m. In 

the Bethe approximation we will look at a spin and all of its (assumed} equivalent 

nearest neighbors. The magnetizations of the central spin and the external spins 

are calculated in the background field as before. However our new self con

sistency condition is 

( Scentral) = ( Snearest ne'fghbor ). 

Where applicable, the Bethe approximation has yielded the strongest magnetiza

tion and critical temperature bounds to date. 
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Chapter III 

The Models: Mathematical Summary 

Let A be a finite lattice with periodic boundary conditions. At each site 'i' 

in A there is a spin variable Si taking values in the spin space 'lt with 

weights d I.ks. ( s). The configuration space for A is .® 'lt, written as [ s], with a 
t,eA 

priori measure .® d I.ks. ( s ) . The 'lt and d I.ks. ( s ) are usually identical copies of 
t,£A 

one basic 0 and d µ( s). Spin n/ 2 spins have 

2 4 
0 = l-1 , -1 + n , -1 + n , · · · lJ 

with the associated normalized counting measure. Our interactions are defined 

through the Hamiltonian 

where J;,; ~ 0 and h ~ 0 are ferromagnetic couplings and Ji; = J ( I i-j I) is 

translation invariant. We assume l;Jij is finite and use the convention that 
i 

Ju, = 0. {:J = 1/ k T is the inverse temperature and we define expectations via 

the usual Boltzmann factor, 

(:J will usually be absorbed into the couplings J;,; and h. The magnetization of the 

model is defined as 

and the spontaneous magnetization is 
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Our states are translation invariant so both of the preceding equations are actu-

ally site independent. By general results, this spontaneous magnetization is the 

same as that obtained by plus boundary conditions (see chapter 1.1 for a discus

sion of boundary conditions). When the underlying lattice is ~d, our approach 

to the thermodynamic limit will be through a sequence of nested cubes. 

We will refer to several correlation inequalities repeatedly and we list them here 

for reference: 

Correlation Inequalities 

Name [Reference] Inequality 

GKS I [37] (s) ~ 0 

GKS II [38] (st) - (sXt) > 0 

GHS [39] (stu)-(sXtu)-(tXsu) 

-(uXst) + 2(sXtXu) ~ 0 

FKG [40] (/g)-(/Xg) ~ o 

where s ,t ,u are spin variables associated with {possibly) ditJerent sites and 

J ,g are monotone functions of spin variables. By a monotone function we mean 

any function that does not decrease as any of its arguments increase. Examples 

of monotone furi.ctions include s and L:si. 
i 

When working with mean field theory or its extensions, we shall often con-

sider regions Xa, all identical copies of some region X, such that A= uXa, 
a 

i.e., A is a disjoint union of the basic region X and its copies. We denote 

J;. (X) = L J,_i 
JeA\X 

for any site i in some copy of X. Often the mixed notation X = (s, t i will be 
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used instead of X = fi,j J and s = Si and t = s; when it is clear what is 

meant. J8 t will stand for J 'id if s = s, and t = s j, k ( = k ( m )) will be short for 

h+L;Jijm and ki(X) will stand for h +Ji(X)m. Similarlyks andJs(X) 
i 

refer to ki and Ji(X) when s = si. The variables s ,t ,u,x and y will often be 

used for spin variables instead of Si ,s j, etc. m will always refer to a magnetiza

tion. a , fJ and 'Y used as exponents will be binary variables assuming only the 

values 0 and 1. The relational symbol ,...., will stand for 'has the sign of' , where 

zero is taken to be either positive or negative as is convenient. For 

example -( - )" means has the sign of ( -1 )". Non-negativity is also writ-

ten....,(+). 

We will use= to indicate the end of a proof. 
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Chapter IV 

Pearce: Re-examining the :Mean Field :Magnetization Bound 

IV.1 The Pearce Results 

Pearce's work extends the mean field magnetization bound of Thompson in 

two ways. First, the method of proof used is simpler and more adaptable to 

proofs of other results. Second, the mean field bound is shown to apply to more 

than spin 1/ 2 models, it also applies to spin n/ 2 models (where 

n = 2P3q - 1 , p , q are non-negative integers and not both zero), the x - y 

model, and the classical Heisenberg model. 

The method of proof is quite similar to the methods used in proving the 

correlation inequalities GKS I and GKS II. There one makes several variable 

changes, expands the exponential and notices that what is left may be factored 

over sites. The resulting expression is a one or two variable polynomial inequal

ity which can be directly proven. Retracing these steps gives one the correlation 

inequality for any :finite volume, and hence for the infinite volume limit. These 

proofs are written out in Appendix A. Pearce will show ( m -s )~ 0 where m is 

the mean field magnetization. To do this we follow the above procedure until we 

arrive at a simple one - variable inequality (equation N.1). This is theorem N.1. 

For two single spin measures, spin 1/ 2 and spin 1, we are able to demonstrate 

equation IV.1 by a variety of methods. This is theorem N.2. We then notice that a 

convolution theorem enables us to infer equation N.1 for the spin n I 2 meas

ures mentioned above. This will be theorem N.3. Some numerical investigation 

of equation N.1 was done in hopes of illuminating how to categorize the class of 

measures satisfying equation N.1. While equation N.1 was found to be true in all 

cases tested, no systematic properties of the equation were revealed. 
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In this proof we use periodic boundary conditions. We refer the reader to 

chapter III for the necessary mathematical assumptions and notation and to 

chapter Il.1 for the argument concerning passage to the thermodynamic limit. 

We write m for m ((3,A) and for notational convenience suppress the depen

dence on (3 and A We remark that k in equation N.1 is short for h + m L; Jij. 
iv!i 

which is the coefficient of the spin s obtained from the Hamiltonian H 1 ( equa-

tion ll. l). This specific form of k will be important in the interpretation of m as 

the mean field magnetization. however only the positivity of k is needed in the 

proofs of all the theorems. The ideas and most of the results of the following are 

from Pearce [ 45]. 

'!"tu~orem IV.1 : Given a spin space 0, associated measure dµ(s )A and a con-

stant m satisfying Pearce's Inequality: 

(N.1) 

for all non - negative integral p . we have 

Proof : If ( (m-s )) ~ 0 we have the result. We examine the Hamiltonian 

(equation I. l) and note it can be rewritten as: 

H=- ~~Ji;{(m-s.t){m-s;) + m{si+s;) - m 2) 

'·' 
so that 

((m-s))8 = N-1((m-s)exp(~~.f3Ji;{m-si){m-s;)))p,u0 (N.2) 
t.,J 

where Ho= 'LH 1(si). H 1 definedinequationll.l, and 
ieA 

N =(exp{ ~~f3J;o(m-si)(m-s;))fi,B 1 
"" 
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We are only interested in the non - negativity of ( (m-s)) so we may neglect all 

positive terms on the right hand side of equation IV.g., N is clearly positive. We 

expand the exponential into a Taylor's series and write out some terms of the 

numerator (NUM): 

oo 1 11 Jn NUM = ((m-s)Il( L; -, 2{jJ;.j(m-si)(m-s;) ))11.01 
i,j n =On. 

Observe that the resulting expression is a sum of terms like 

(positive coefficient )(I1(m-s.JA)/i,Ho 
i 

Since Ho is a sum of one - variable terms, each of these terms is 

(positive coefficient)lI((m-siY')fi,Hi 
i 

(Note the change of order of operations of expectation and continued product.) 

Our hypothesis implies that ( (m -s;.)P')p,u
1 

is non - negative, so that 

( (m-s ))8 is a sum of terms, each of which is a product of non - negative 

terms, hence ( ( m -s ))u is non - negative.• 

We observe that for evenp equation N.1 is obviously positive. We consider 

now only odd p. For two measures, spin 1/ 2 and spin 1 we can show 

equation N.1 directly. 

'lb.eorem IY.2 If m is defined by demanding that equation N.1 is identically 

zero for p = 1, then equation N.1 holds for the spin 1/ 2 and spin 1 measures. 

Proof : The spin 1/ 2 measure is: 

dµ(s) = ~ f o(s +1) + o(s-1)) 

The value of m, after algebraically manipulating equation N.1 is 

J elcssdµ,(s) 
m=-----J elcs dµ,(s) 
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or 

m = tanhk 

Equation IV.1 for odd p is 

Some algebra reduces this to 

ek{p-1) _ ek{l-p) > o 

which is clearly true for p odd and k positive. 

T'ne spin 1 measure is 

d.µ,(s) = ~ {o(s + 1) + o(s) + o(s -1)) 

The expression for m is now 

Equation IV.1 for oddp is: 

For p = 1 equality holds (by definition). For p ~ 3, 

so the expression in brackets is 

which is non - negative. • 
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Direct manipulation of equation IV.1 gets progressively more difficult with 

higher spin n/ 2 measures. Note that once equation IV.1 has been proven 

for dµ(s ), it has also been proven for a.dµ((3s) with a and (3 any positive con-

stants. We use this fact to write higher spin n/ 2 measures as convolutions of 

spin m I 2 and spin q I 2 measures where 

(n + 1) = (m + l)(q + 1) 

Rewriting equation IV.1 in terms of the related generating function allows us to 

use the convolution property to infer equation IV.1 for higher spin n/ 2 meas-

ures. 

'(Vq • 
.... .. ·"· Equation lV.1 holds for spin n/ 2 measures where 

n = Z1' 3q - 1 where p and q are non - negative integers and not both zero. 

We introduce the convolution 

For example, a spin 3/ 2 measure may be written as a convolution of two 

modified spin 1/ 2 measures by 

I ll 1 llll 2 2] dµ(:i:) = - o(x - s + - ) + o(x - s - - ) - o(s + - ) + o(s - - ) ds 
2 3 3 2 3 3 

Proof : Consider the generating function g (µ,x) related to equation IV.1. 

- 1 g(µ,:i:) = E feks(m-s)P:r:P-,dµ(s) 
J> = 0 p. 

(IV.3) 

Non - negativity of equation JV.1 is equivalent to non - negativity of the 

coefficients of g (:r:) expanded in a Maclaurin series. If we write 
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rp(µ,k) = f e'"dµ(s) 

and 

D(µ,,k) = log9? 

then equation N.3 is 

g (µ,,x) = exp[v(µ,,k-x) + x :i,n(µ,,k i] 
Under convolution, 

so 

which implies non - negativity of the coefficients of g (µ1 *J.""2,X) given the same 

information about g (µ1,x) and g (~.x) . Since we have directly shown the 

truth of equation N.1 for spin 1/ 2 and spin 1 , we now know that equation N. l 

holds for any measure expressible as a convolution of these two measures. This is 

the class of measures listed in the statement of the theorem. As a limiting case. 

we have shown that the spin- oo measure, dµ(s) = ~ds is one for which the 

mean field bound holds. For this model, equation N.1 is 

m = L(EJvm + h) 
1 

where L = cothx - .! is the Langevin function. • 
% 
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IV.2 Analyses of the Pearce Inequality 

It is interesting to try to classify the measures dµ(s) such that 

equation N.1 holds. Attempts in this direction have resulted in an alternative 

proof of Theorem N.2 for spin 1/ 2 measures; a proof of Theorem IV.2 for a por

tion of the k, n plane; and a proof of Theorem IV.2 for various values of m. 

Numerical investigation of Pearce's equation IV.1 has not resulted in any coun

terexamples. These results are examined below. 

We must remark that although the validity of equation N.1 for all spin n/ 2 

measures is still an open question and therefore an interesting one to continue 

to investigate. there is no longer any statistical mechanical interest in this prob-

lem. The interest in equation rv.1 iay in its role as a stepping stone to pro~...ng the 

mean field magnetization bound. By d.itJerent methods Slawny has already pro

ven the mean field bound for a large class of measures that includes the 

spin n/ 2 measures. 

Spin 1/2 

We consider first spin 1/ 2. A geometric picture of the problem is made by 

an analogy to a seesaw. We diVide the interval [-1 , 1] into two segments 

[-1,m) and [ m, l] and attach weights (also known as mass points) e -k to the 

end of the left segment and ek to the end of the right segment. (See figure 6.) 

Equation IV.1 may be viewed as a statement about torques. For p = 1. the 

torques balance, i.e., 

(IV.4) 

Other seesaw arrangements, with lever arms of ( 1 + m )P and ( 1 - m )P 

presumably don't balance, i.e., equation N.1 states 

(IV.5) 
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We see this directly from equation IVA since 

and 

e-k(l+m)=ek 
(1-m) 

(1 + m) iii!: 1 (1-m) 1
(1 + m)]P >(1 + m) 
(1-m) -(1-m) 

so we've shown equation IV.5. This constitutes an alternative derivation of 

Theorem N.2 for spin 1/ 2. 

Holder's Inequality 

Examination of the above proof shows that one does not need the explicit 

exponential form for the weights, only that the weight on the right be greater 

than the weight on the left. Let us generalize our problem to a compound torque 

problem, this will correspond to spin n/ 2 measures. We will have a set of 

weights on the left of the balance wi,L, at a set of distances d;,,L. Similarly on 

the right we have a (different) set of weights w; ,R, at distances d; ,R. The 

number of weights on both sides do not have to be equal. Clearly the correspon-

dence of this formulation to our original problem is 

f~.LJ = fm - x x e 0 and x < mj 

If the mean m lies exactly on a point in n. this point will not contribute to equa

tion N.1 and also clearly does not contribute to our torque problem since the 

extra weight fall'S directly on the balance point. The definition of the balance 



point m (mean and magnetization) is 

Equation N.1 asks us to determine the sign of 

Ewt,Lc.if.L - 'Lwj,Rdf.R 

~wi,L c.if.L -1wj ,Rdf.R ,..., i Ew..:.~ 
i 

I J

P W·L W·R ~ ..... ., , d'P 4 "·rn. d;,,L - 4 'Lw· '3 ,R ,, L.J-i.,L :J t.,L 
i i 

(Holder's Inequality) 

I J

P 
W·R W·R - J, d J, dP - ~ Ew· ;,R - 4 Ew· .,,R 

j '1.,L :J i,L 
i i 

(N.6) 

Expand the first term. Looking only at the coefficients of dJ'.R, we see that if 

l J

P W·R W·R 'J, ~ J, 

~w-£,L ~wi,L 
(N.7) 

then equation N.6 is positive. Equation N.7 is true if 

for each W;,R· For Pearce's equation, we evaluate 'Lwi,L explicitly and use the 
i 

smallest value of w1 ,R we can. Since the weights are a geometric series, if we 

let c be the common ratio between adjacent weights. and if there are M of 

them, we ask: 

which holds for all M if c ~ 2. In terms of Pearce's weights, a sufficient condi-

tionis then 



or 

-34-

k ~ nln2 
2 . 

What we have shown is that for any spin n/ 2 measure, if the external field is 

strong enough, the mean field magnetization will be a bound on the true magneti-

zation. 

Geometric .Analysis 

We may also investigate Pearce's problem geometrically. For the spin 1/ 2 

case, we note that there is a hyperbola indicating the possible pairs of values 

(<4,L•'U.'i,L) that leave the position of the mean unchanged. From our previous 

analysis, any such pair with d;.,L > d; ,R still obeys equation N.1. We shall now 

construct a distribution of distances and weights so that it is obvious that 

Lwi,Ldf.L - Lw;.ndf.R ~ 0 
" i 

Choose any set of values for d;,R and W;,R· Let fd;.,L J be the same set of values 

as f d; ,R J and similarly for f ~.L J. This is geometrically equivalent to reftecting 
/ 

the right hand side distribution through a mirror located at the balance point 

and perpendicular to our line segment [-1, 1]. Now take any pair (d;.,L,wi,L) 

and substitute for it the pairs (~.L.awi,L) and(~:£. ;;L (1-a)wi,L) where 
v;. L 

0 ~ a ~ 1 and d;.:L > <4.L. The balance point is undisturb~d since 

What we have done is to take part of the weight associated with ~.L and shift it 

to some distance d;.:L farther away from the balance point. In the spin 1/ 2 case 

we shifted all of the weight associated with the initial pair ( d,.,L, wi.L) . See 
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figure 7. This shifting process leaves the balance point unchanged yet increases 

the value of Ewi.L d.f.L since it effectively lets the process of raising a number 
i 

to a power p work on a greater number. Thus for any distribution constructible 

in this manner. 

Ewi,Ldf.L ~ l;w;,Rdf.R 
i j 

which is what we wanted to show. 

How do we use this geometrically proven inequality to analyze Pearce's ine-

quality? When the initial distribution gives a set of distances and weights such 

that the final distribution may be obtained only by decreasing the initial weights 

i...'l the hyperbolic manner described, then the final distribution will satisfy the 

Pearce inequality. One case we know is constructible is one where 

and the remaining members of f~.Ll/inal'fd.t,Llinitial are farther out than 

any element of fd.t.L imitial. The proof of constructibility is by contradiction. 

Start with the initial distribution and redistribute weights, making sure that first 

the weight associated with the smallest distance is correct for the final distribu

tion and working your way to greater and greater dist<jnces (farther and farther 

out from the balance point). When you have no more excess weights to work 

with. can this distribution be any different from the final distribution? If it is, 

then one of the two distributions has extra weights on the left hand side. But this 

contradicts the fact that both distributions have the same balance point and the 

same right hand side torques. Thus the two distributions must be equal and you 

have constructed the distribution you wanted to prove the Pearce inequality for. 

Notice that the spin values f xi I x,eOJ are regularly spaced and that the 

weights e"' are increasing. If the mean m happens to lie exactly on a point 



-36 -

in 0, or midway between two adjacent points in n we have an obviously construc

tible distribution by the previous argument. Th.us if mefo.1. · · · 11, Pearce's 

inequality holds. When 0 = [ -1, 1 J, m must lie on a point in 0 and so whenever 

the distribution of weights is non - decreasing, e.g., the spin 00 distribution, 

Pearce's inequality must hold. This is a proof of Pearce's Lemma 4, stated below: 

Letµ be an even probability measure with support on [ -1, l], and sup

poseµ is absolutely continuous, i.e., dµ(s)=f (s)ds, with/ non

decreasing on [ 0, 1]. Then equalion N. l holds for this measure. 

In fact our analysis is slightly stronger than Pearce's Lemma 4 in that given 

knowledge of the range of values of m as some subset of [O, l] . we can relax the 

non - decreasing condition of the weights. 

A variant of our proof that the spin 1/ 2 model satisfies Pearce's inequality 

yields some information about spin n/ 2 systems. The greatest two values a 

n-2 n-1 
spin n I 2 spin can assume are -- and 1. Whenever ml'.[--, 1 J, we notice 

n n 
there is only one set of values in f dj ,R, W; ,R J and 

'°'W· L"· L = W· Rd· R L.J 'l., Uot, , • 'J. 
i 

But by our location of m, each dt,L > dj ,R so 

I 

"w· L"'PL >w. RdPR L.J 'l., ~. ,, .,, 

i 

so Pearce's inequality holds. Except for the spin 1/ 2 case, this is a weaker 

result than our {k ,n) result. We summarize our results in the following 

1beorem IV.4-: For spin n/ 2, if k > n l~ or 

mefo,!,·· nnZ~U[nnl,1] then Pearce's inequality holds. If 

dµ(s) = f (s )ds and f (s) is non-decreasing, Pearce's inequality holds. 

Proof : Given Above. • 
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Numerical Analysis 

A numerical investigation of the Pearce inequality was made in hopes of indi

cating where analytic proofs of the inequality should be directed. A listing of the 

program used, together with comments and instructions is in figure 8. The mag

netization, usually a function of the external field, was allowed to vary indepen

dently for use in testing conjectures where the value of the magnetization was 

unimportant. No counterexamples were found, nor were any importar1.t proper

ties of the equation revealed. Numerical examples are given in figure 9. 
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Chapter V 

Slawny: Completing the Mean Field Analysis 

V.1. Other llagneti.za.Uon Bound Ideas 

Mter Pearce's work in June 1980, it seemed extremely reasonable to assume 

that the mean field magnetization bound held for all spin n/ 2 measures; it only 

remained to be seen how to do so. Pearce's method proved to be a very 'bare 

handed' approach to analyzing the problem and further attempts at straightfor

wardly solving the Pearce inequality for more spin n I 2 measures didn't work 

out. In December 1981 Charles Newman succeeded in proving the magnetization 

bound for one-component systems whose expectations obeyed the GHS (Griffiths, 

Hurst and Sherman) inequalities. The GHS inequalities are a set of inequalities 

expressing the multivariable analogue of a one - variable concavity property, i.e., 

(V.1} 

for all i ,j ,k cA. not necessarily distinct. If we consider only one site, 

equation V.1 reduces to / 

(s3)- 3(s2Xs) + 2(s )3 ~ 0 

which is essentially 

or concavity. Since it had been proven that a large class of spin measures, 

including spin n/ 2, obeyed the GHS inequalities, Newman had succeeded in 

extending the magnetization bound. Newman's work went unpublished. About 
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November 1983 Hal Tasak:i and Takashi Hara found their own proof of the magnet-

ization bounds for single component spins obeying the GHS inequality. In addi-

tion, Tasak:i and Hara extended Pearce's proof of the mean field bound ton -

component systems with n ~ 3. Since Pearce had shown the bound for n ~ 3 

multicomponent systems, this new result rounded out the domain of validity of 

the magnetization bound. 

In March 1983 Joseph Slawny published a proof of the mean field bound using 

still different methods. His results are valid for a class of one component models 

which includes spin n/ 2, and for arbitrary n - component models. To explain 

the idea of his proof, we shall temporarily focus on the spin 1/ 2 measure. Recall 

that the mean field ma.gnetization is defined as the greatest self consistent solu-

tion of 

mMF = tanh(mMrl;Jt; + h) 
i 

This is shown graphically in figure 10. (We absorb the p dependence into the cou-

plings in this chapter.) If we can show that the true magnetization satisfies 

7ntrue < tanh(fflt.rue l;Jij + h) (V.2) 
i 

then by inspecti9n of figure 11 we see that 711.true £ [O,mMF] so we've 

shown m.mie :s; mMF· To derive equation V.2, use two facts. First in the thermo-

dynamic limit, we demand that expectations be independent of the order of sum-

ming over spins in the configuration sum, provided one remembers that there 

are conditional probabilities for each spin depending on the rest of the spins. 

This is one of the DLR (Dobrushin, Lanford, Ruelle) [ 41] conditions for a state to 

be an equilibrium state. This tells us that if we get the right probabilities for the 

values of all the neighbors of a spin (in the sense that if J;,; ¢: 0 then i and j are 

neighbors), and then use these values to calculate the expectation of a spin. this 
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will be the correct expectation. This says 

(s)+ = (tanh(L:Ji.isi + h))+ 
i 

Note that the values of all the external spins enter into the tanh only through 

their sum. This is a disguised one-variable problem. The second fact we need is 

that functions that are like tanh satisfy a Jensen - like inequality for certain 

measures. The important properties of tanh define a class of functions: 

Definition: Let M be the class of functions that are odd, positive for positive 

argument and concave for positive argument. 

If the function is J, J is of class M, and the measure dp, then the Jensen- like 

inequality is: 

J f (x) dp ~ f (f x dp) 

Our use will be for J = tanh, X = s and dp is the Boltzmann factor for the 

rest of the spin lattice. The measure dp must have the property that it favors 

positive values of the function X; we will make this more precise later. The proof 

proceeds by using the DLR equations to reduce the full spin problem to a dis-

guised one variable problem, the FKG inequalities to show that the Boltzmann 

factor mE}asure is of the desired form, and the Jensen - like inequality to demon

strate the magnetization bound. In all the steps of this proof we use only general 

inequalities obeyed by all the comm.on one - component spins, hence the proof 

works for this large class of spins. The function tanh which is particular to 

spin 1/ 2 , will be replaced by any function in the class M. The fact that other 

spin measures give rise to functions in M is the combined result of GKS I, GKS II, 

and the GHS inequalities. 
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V.2 A .Jensen-Oke Inequality 

We first prove the Jensen - like property. The following theorems and proofs 

closely follow Slawny [35]. 

'lbeorem V.1: If J £M , and the measure dp satisfies 

p(x ~ a) ~ p(x ~ -a) (V.3) 

for any positive a, then 

ff (x) dp ~ !(f x dp) (V.4) 

Proof: We approximate the measure dp by a sum of o -functions. For conveni-

ence we let xi denote the positive values of x with non - zero meAsure O'-i 

and -Y; denote the negative values of x with non - zero measure P;. By taking 

finer and finer grids or better approximations to d p we have the result in the 

limit. We shall take grids that are symmetric around the origin. Let us assume 

there exists a matriX/'ij that (in efiect) interpolates between f~J and f P;J and 

which has properties to be listed below. Then a proof of the equation V.4 would 

run: 

( need: Ll';q = P; ) 
" 

( by concavity) 

= l:cxt/(~) - Ll'i· Y; !(~) 
i iJ "~ 

(V.5) 

(V.6) 

(V.7) 
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Cl!: L<X.£1 {zt) - L/1;,il (Yi) 
i iJ 

(V.B) 

= L<X.£1 (zt) - L:P;I (Y; ). 
i i 

Two remarks need to be made. In going from equation V.5 to V.6 we note that the 

sum of weights l;(a;, - Ll'v Y;) is only less than or equal to one. Even though 
• • %· ,. , ,. 

concavity requires a set of weights whose measure is exactly one, we are all right 

since we can include the point x = 0 for free and give this point the necessary 

weight for the sum to be one. Second, in the transition between equation V.7 and 

equation V.8 we use figure 11 to see that 

if y ~x 

for concave functions. 

Now we need to show that a matrix"/;,; with desired properties exists. We do 

this by construction. Suppose that there are n a;,'s and m P;'s. We start 

with /'nm and construct the matrix algorithmically. 

Step 1 : Set i = n and j = m 

Step 2 : do while I i > 0 and j > OJ 

if {J;, < (a; - L; t'ki) then 
k >i 

7;,; = {J;,: for all a < j, set "Y;,a, = 0; i = i - l; go to step 2. 

else: 

7;,; = a.; - L "Y'!c;; {J;, = {J;, - a; + L; "Y1c;: for all a < i, 
k>i k>i 

set "Ya; = 0; j = j - 1; go to step 2. 

Step 3: Stop 

See figure 12 . Clearly all elements "Yi; are non - negative, L"Yij = P; and 
i L7v ~ ai· Yfe remark that the< in the last expression is necessary since we 

i 
know that LO'..£~ L;fJ; by hypothesis. If Yi > X;, we know "Y;,; = 0 since we are 

;, i 
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re - parcelling the weights fai J to cover the weights f PJ I and by hypothesis one 

needs at most the measure from :r:i outwards to take care of YJ· i.e., 

'lb.us you don't need to draw on the~ associated with an :r:i < Yj to cover the 

associated PJ . • 

V.3 The Slawny Proof 

Let us define 

which one recognizes as the mean field consistency function for general dµ(s ), 

and is tanhx for spin 1/ 2. Here :r: stands for 'l:iJ;,jsj + h ands is the spin we 
i 

are looking at. We now prove Slawny's main result. 

'lb.eorem V.2 : The mean field magnetization, defined as the greatest self con-

sistent solution of 

m = f;,(mL,Jii + h) 
i 

is an upper bound to the true magnetization. 

Proof : The DLR equations [ 41] tell us that 

(si)+ = (f ;,(L,Jiisi + h))+ 
i 

(V.9) 

If we let :r: = 'l:iJiisi + h then the right hand side of equation V.9 is 
i J f;,(:r:)dp, which is the correct form for Theorem V.1. We can derive some 

information about f;, (:r:) for positive :r:, and by the obvious symmetry 

(dJ.1.£ (s) = dJ.1.£ (-s )), related information about negative :r:. J;, (:r:) is positive 

(GKS 1), non - decreasing (GKS II), and concave (GHS). Thus Ji (:r:) is of class M. 
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We verify that p has the correct property as follows. For free boundary condi-

tions, 

p0(x ~ a) = p0(x s -a) 

By the FKG inequality we know that increasing boundary spins increases the 

likelihood that spins are up, i.e., 

P+(x ~a.) > p0(x ~a) 

and 

Po(x s -a.) ~ P+(x ~ -a.) 

hence 

P+(x ~a) ~ P+(x s -a.). 

With both f and p satisfying the hypothesis of Theorem V.1 we conclude: 

(s)+ sf ((L;JiJsj + h)+) 
i 

= f (L;Ji3(s;)+ + h) 
i 

(V.10) 

In the thermodynamic limit both f i(x) and (si)+ are translation invariant so 

the i dependence is non - existent. Equation V.10 tells us that (si)+ lies 

between 0 and m 11F in figure 11, so we conclude 

( S )+ ~ ntrnean field • 

We emphasize that only the mean field approximation treats the neighbors 

of a spin only through their summed spin values. It is because we have only one 

external parameter, i.e., this sum. that we can ".18e Theorem V.1 to get the mean 

field bound. For the Oguchi approximation the neighbors of the privileged region 
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come into the problem in two parts, the sum of the spin values affecting each 

member of the privileged region. The analogy to Theorem V.1 would then be a 

two-variable inequality and correspondingly much harder to deal with. 
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Chapter VI 

Siu: The Oguchi Bound 

VI.1 'lbe Oguchi Magnetization Bound 

Our original work in the field of magnetization bounds has been to show that 

the Oguchi magnetization is an upper bound to the true magnetization. For 

those cases where the three body magnetization is uniquely defined, lhis too is 

shown to be an upper bound. The Oguchi and three body methods improve the 

mean field method by considering a small region in A with a certain number of 

spins and treating the interactions between these spins exactly. These methods 

work for any region with the right number of spins, even for those regions where 

the spin-spin couplings J;,; are zero. In this case we recover the mean field 

result and no advantage has been gained. When one chooses a region of spins 

where the J;,; are non-zero, e.g., nearest neighbors, one expects these methods 

to be improvements on mean field theory. We then say the methods are 

'etJectively used'. It is believed that the Oguchi magnetization is smaller than the 

mean field magnetization and the three body magnetization is smaller than the 

Oguchi magnetization. While we are unable to demonstrate this for all tempera-
/ 

tures, we are able to show that the corresponding transition temperatures obey 

the expected inequalities, i.e., 

Tc(true) ~ Tc(symmetric3-body) s Tc(Oguchi) ~ Tc(meanfield) 

which implies the expected magnetization relations for a region of temperatures. 

When the approximations are etJectively used in a given model, we are able to 

show that strict inequalities hold for the decreasing sequence of transition tern-

peratures. 
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We will follow Pearce in reducing the true thermodynamic expectation to a 

few-variable inequality. We shall be able to demonstrate this resulting inequality 

for spin 1/ 2 by an induction argument. Our basic tool will be the introduction of 

a dummy spin equation which we couple to our approximating spin equation by 

means of a ferromagnetic coupling. Ideas along these lines were suggested by 

Griffiths [ 42]. After obtaining the magnetization bounds, we derive implicit func-

lions for the magnetizations and implicit functions for the critical temperatures. 

The monotonicity of the critical temperatures follows from working with the 

implicit functions. We are able to give alternative derivations of Pearce's Coral-

lary 3 (Theorem N.2 this thesis) by using these methods and the Griffiths 

trick [ 4-3]. 

The utility of our method is that it is a reasonably simple procerlure and is 

valid for a large class of models. For spin 1/ 2 models these are the strongest 

results to date for general ferromagnetic coupling. For nearest neighbor models 

stro.uger rest'its exist for the magnetization bound (Krinsky [32]) and the transi

tion temp(,r.1t.ure bound (Krinsky [32], Fisher [30]). Our results are also sugges-

live of an algorithmic procedure, that of larger and larger regions, that may 

approach the true magnetization or the true transition temperature for some 

models. Also suggested is that this procedure may be valid for other spin meas-

ures though this remains to be shown. 

Following the ideas outlined in chapter N we rewrite A= UXa where 
a 

each Xa is a copy of some fundamental region X. If there are n sites (and 

therefore n spins) in X, we denote by Hn (Xa) a new m-dependent Hamiltonian 

constructed in the following manner. Let H~(Xa) be the restriction of H to 

those couplings involving only spins in Xa· Then 

Hn(Xa) = H~(Xa) + ~ Ji(Xa)msi 
'EXa: 
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Examples of Hn are H2 and Ha in chapter II equations 11.6 and II.7 respectively. 

We may view the construction of Hn. {X4 ) in terms of selectively breaking bonds 

in H. When we focus attention to some particular X a• we isolate this region from 

the rest of A by 'breaking' the bond J;,js;,s; via the substitution: 

The term J;,j(m-s;,)(m-s;) is part of an exponential that will be replaced by 

its Taylor series, and so disappears from the Hamiltonian. We are left with tenns 

linear ins;,. i.e., Jijm (s;, + sj ). that are now absorbed into Hn (Xa). 

1beorem VI.1 : If there is an m, m only a function of (3. such that 

for allp;, integral and non - negative, tpen 

(m-s)A,H~ 0 

Proof : Following Pearce we write 

H == E Hn(X4 ) - ~L;'(Jij(m-s;,)(m-sj) - J;,1m 2) 
Xa.cA 

(v1.1) 

In the second sum, E' . we sum over all pairs S;, and s1 , where i and j lie in 

different Xa's. We have 

(m-s)A.H = N-1((m-s)exp{E' ~J;,1 (m-s;,)(m-s1)))A,I;Hn(XcJ 
Ill 

where 

N = (exp(E' ~J;,3(m-s;,)(m-s;)))A.I;Hn(Xa.) 
Ill 

We observe that N is positive. By expanding the exponential in the numerator in 

a Maclaurin series, the numerator becomes a sum over products, each product 
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factoring over regions X a· The final expression after factorization is just our 

hypothesis which is assumed non - negative. By reversing this argument we have 

the conclusion. The argument concerning the transition to the thermodynamic 

limit is in chapter 11.1. We refer the reader to chapter Nin the proof of Theorem 

N.1 to see some of the partial steps written out. 

Consider first the Oguchi approximation. Equation VI.1 written out explicitly 

is 

L; eJst +lc(s +t)(m-s)P(m-t)q > 0 (VI.2) 
s,t = ±1 

where J is the coupling between spins s and t. AB we examine equation Vl.2, we 

observe that some of the difficulty in showing this result comes from the 

infinitude of possible p and q values. We reduce the number of necessary values 

to consider by the next lemma. 

Lemma: 1f 

then 

.L; Ker { m -s )P s a rv ( - )a and 0 < m < 1, 
[s] 

L;Ker(m-s)P + 1sa ,.., (-)a 
[s] 

The range of values for m is clearly the range of possible expectation values for 

our spin so this condition is automatically fulfilled. Inspection of equation VI.2 

indicates that later useful choices for Ker will be 

Ker = exp(Jst + k(s + t)) 

and 

Ker= fexp(Jst + k(s+t)H(m-t)qtb 
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for the Oguchi model. Clearly we can use this induction step in the proof of 

equation Vl.1 for any region X o: 

Proof : Let 'u' be a dummy spin 1 /2 variable. For spin 1 /2 

so 

L; Ker ( m -s )P + 1 s a = 
[s] 

Jim 

1 
1 

1 
L; el!SfL Ker(m-s )Ps"(m--'IL) 

K-+oo E 2e.Kzjj [s],u 

r·'Y , 
For any fixed K. using the identity 

e Ksu = co sh K + su sinhK 

the right-hand side of eq. Vl.3 <RHS) is 

RHS "'(coshK)(L; Ker (m-s )P sa)(L;(m-u )) 
~] u 

+ (sinhK)(L; Ker(m-s )Psa+ 1)(E (m-u)u) 
[s] u 

(VI.3) 

We calculate two of the sums explicitly. In the first sum we may also choose to 

note that u ( m -u) is negative for both values of u so the sign of the sum is 

seen even without evaluating the sum. 

E(m-u)u mL;u - 1 = -1 "' (-). 
u 'U 

L;(m-u) m-L;u = m ,... (+). 
u u 

Therefore, using the induction hypothesis, we can write: 

RHS,.,, (+)(-)"(+) + (+)(-)a+l(-). 



- 51 -

Since this holds for any K positive, it also holds in the limit and we have 

L; Ker(m-s)P+1 s" - (-)" • 
[s] 

The previous lemma has reduced the proof of the non - negativity of 

equation Vl.1 to a proof of the two statements: 

EeJst +k(s +t)(m-s)sa,..., (-)a (VI.4) 

and 

(VI.5) 

Equation VI.1 is just the case where a = fl = 0 and the above equations imply 

the necessary non- negativity. We complete the proof of the Oguchi bound in 

Theorem VI.2 : Equation Vl.1 holds for the Oguchi Hamiltonian. 

Proof : Since the spin s is a spin 1/ 2 variable, there are really only two values 

of a to consider, a = 0 and a= 1. To prov-e equation VI.4 for a = 0, we note 

that we have not yet specified the value of m. Let us now define m = m0gu.ch.i 

where mq,uchi is the value of m such that the left-hand side of eq. VI.4· is identi

cally zero for a= 0. Explicitly, 

m = IL e-flH2s]/ IE e-flHa] 
[s] [s] 

That takes care of the case a = 0 for eq. Vl.4. For a = 1, we notice s ( m -s) <: 0 

for both s = ± 1 and so the sum must be non-positive. This proves equation Vl.4. 

To see equation VI.5 we rewrite 

e Jst = coshJ + st sinhJ 

and have: 
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= (coshJ)(:E e ks (m-s )s 4 )(:Ee kt (m-t )tb) 
s t 

+ (sinhJ)(:E elcs (m-s )s 4 +1)(:E ekt (m-t)tb+l) 
s t 

where H 2 is the Oguchi Hamiltonian (see equation Il.5). To determine the sign of 

:Ee ks ( m -s )s a, we recall the correlation inequality GKS II. GKS II tells us that a 
s 

magnetization defined by H2 =- Jst - k (s +t) is not less than that defined by 

H = -ks. (Intuitively this says that increasing a ferromagnetic coupling can 

only aid in the alignment of all the spins and thus increase the magnetization, 

which is reasonable.) Then we know that 

As before, we know 

from the sign of (m-s )s. This information about the signs of all the terms tells 

us 

as needed.• 

We remarked before that in all models considered nowadays the expecta

tions of the two spins in the Oguchi approximation are equal. Examination of our 

proof shows that if one were to construct a model where these expectations were 

different, the Oguchi approximation would still give an upper bound. This upper 

bound would correspond to the larger of the two expectations. This argument 
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will not work for the proof of the three body bound given below. Our demonstra

tion of equation VI. 7 requires the use of the GKS II correlation inequality, which in 

turn requires a unique expectation value of the spins. 

VI.21be 1.bree-Body :Magnetization Bound 

Our first two theorems apply equally well to any region X. To get the three 

body bound we have: 

Theorem VI.3 ; (3-body case) 

If X = !s ,t ,u J and there is a Hamiltonian H 3 onX such that 

(s) = (t) = (u)= m. theneq. (VI.1) holds. 

Proof : The three cases to consider are 

L; e-PHs(m-si)sf,..., (-)a 
[s] 

L; e-PIIs(m-si)sf(m-s;)sJ,..., (-)a+b 
[s] 

V"i,j e X,i :¢ j 

L; e-llHs(m-s )sa(m-t )tb (m-u)uc ,..., (-)a+b+c 
[s] 

(VI.6) 

(VJ. 7) 

(VI.B) 

where again the Lemma brings us to equation VI.1. As before, define 

m = m3-body where ms-body is the largest m such that the left-hand side of 

Vl.6 is identically zero for a = 0. By the assumed equality of expectation of all 

three spins s ,t ,u, this is possible with one value of m. For a = 1, we use the 

non - positivity of s (m-s ). This proves case VI.6. Case VI.8 can be shown by 

rewriting the coupling terms in the Boltzmann factor as cosh and sinh as done 

in Theorem Vl.2. We notice 

exp(Jstst + Jw,tu + Jsusu) = IT {coshJs.s, + sisisinhJ8 , 81 ). 

pairs iJ 
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The important point is that the spin variables occur in pairs. In equation VI.Bone 

sees that changing two (or any even number) of spins at a time doesn't affect the 

sign of the product 

(Eek is (m-s )sa )(Ee ket (m -t )tb )(EeksU (m-u )u c) 
s t u 

,..,, (-)B + b + C. 

Thus the left hand side of equation VI.B will be a sum of three terms. each of 

which is "' (-)" + b + c which proves case VI.8. We demonstrate Case \1.7 by 

using our ferromagnetic coupling trick and by using GKS II which says 

(s) (t) - (st) s; 0 

Let 'y' be a dummy variable. The left-hand side ~UISJ of Case VI.7 for a = 0 is: 

Fix K. The RHS may be written as: 

RHS "'{coshK)(E e-lllls(m-s)t)(E(m-y)yb) 
[s] y 

+ (sinhK)(E e-PHs{m-s)(E(m-y)yb+1) 
[s] I y 

using s 2 = 1. We observe that 
Ee-PHa(m-t )s 

Ee-lffls(m-t)s,..., ...._[s_...] ____ _ 

[s] ~e-PHs 
[s] 

= ((m-t)s}n
3

• 

By GICS II this is non - positive. The signs of the above terms are then 
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-(+)(-)(-)b + (+)(+)(-)b+l 

as needed. The case (a = l,b = 0) may similarly be shown. Since 

s { m -s ) s 0, s ( m -s) t { m -t) ~ 0 which takes care of the case 

a = b = 1. This exhausts the possibilities and Case VI. 7 is shown. • 

The implicit equations for lhe three magnetization upper bounds are: (we 

resurrect the fl dependence) 

(i) mean field upper bound 

m = tanh(f3(L:Jiim + h )) 
i 

(ii) Ogucbi upper bound 

m = sinh(2xp) 
cosh{2x p) + exp( -2{3J) 

(iii) symmetric 3 - body upper bound 

m = sinh3x {J + e -4fJJ sinhx p 
cosh3x (:J+3e -4fJJ coshx f3 

where x stands for mJ;, (X) + h. 
/ 

VI.3 Proof of the Critical Temperature Bounds 

The magnetizations predicted by the Ogucbi and three-body Hamiltonians 

have been shown to be upper bounds on the magnetization of the true Hamil-

tonian. We expect these magnetization bounds to be a decreasing series as the 

nwnber of spins in X is increased. To get a quantitative feel for these bounds, 

we now examine the critical temperatures predicted by these two methods. In 

this section we will explicitly show the ft-dependence. 
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1beorem W.4 : Given a Hamiltonian H we have 

Tc (true) s Tc (symmetric three-body) S Tc (Oguchi) S Tc (mean 

field). 

We recall that the critical temperature of the approximation schemes are 

obtained as the solution to 

a<s>A,e I = 1 
am m=O 

with the external field h = 0. Using the e>...-plicit equation obeyed by the rnagneti-

zation for the mean field approximation, the mean field critical temperature is 

determined by 

The corresponding equation for the Oguchi case is ((30 = f30guchd 

f3o(E Jij - J)( 1 + tanhJ f3o) = 1. 
; 

and the symmetric three-body case gives: 

ltanh J {33 + tanh2 J (33 l f33(E Ji; - 2J)(1+2 3 ) = i. 
; tanh J{33 + 1 

(VI.9) 

(VI.10) 

We remark that examinati9n of the proofs below show that equality is obtained 

only for the pair coupling J = 0 and that otherwise one has strictly better 

bounds. 

Proof: Clearly all the critical temperatures are upper bounds to the true transi-

tion temperature. We show that 

~(Pc.MF - f3c,Oguch:l) Jij < 0 
i 

which implies that T c,Oguch:i S T C,MF· AB we are now working only with critical 

temperatures, henceforth we drop the subscript 'C'. By eqs. VI.9 and VI.10, we 
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have 

'J} J ;a (p MF - Po) = 1 -1 1 + ~ PoJ + PoJ] 

Examine the right hand side (RHS). Let x = f3oJ and note that x is non

negative. When x = 0, the right hand side =O. Now 

.2._ (RHS) = 1 • 1 - 1 
ox ( 1 + tanh x )2 cosh2x · 

Since this is negative for all positive X , we see that the right hand side is ncn-

positive, as needed. 

To show /13 ~ Po. we note that if 

r ft,,..,..,J, r,,.+t~nl,2J;,,.,l 
(X): ("J.··X -2JX)l1+2'"'..u.Lu<i- uwu~ -1j 

g 4' "3 tanh3Jx + 1 
J 

then g (x) is an increasing function of positive x. We ~ill show that g (p0) ::::; 1. 

Since g (p3) = 1. this implies that P3 > Po· If y = f3oJ and T = tanh y. 

clear1y 

Th.en: 

But 

T T (1 + T-T2) y ~ -- > --- ------~-
1 + T (1 + T) (1 + T + T2). 

I 1 1 ---yS:------
l+T i+2jr<r+1)1 

T3 + 1 

-
1

- -y = "E J.. ·Po - 2J Po 
l+T i v 

by equation VI.10 so we've shown g (Po) ~ 1. 

We present some sample calculational results obtained with these methods. 

See figure 4. The values for Tc.MF and T c,o are obtained from equations VI.9 and 
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VJ.10. We remark that while each of the three spins in the three-body model is 

predicting zero magnetization, this is a bound on the magnetization. Thus we can 

obtain an upper bound on TC• call it Tc 3. corresponding to max Tc 3{s ). This 
' tn::X ' 

is what is listed under Tc 3-body. We emphasize that even though most of the 

models given below are nearest neighbor, our method is not restricted to nearest 

neighbor models and gives new and better results to models such as the one

dimensional 1/ r 2 model. 

We have numerically plotted the magnetization bounds for various models. 

They are listed in figure 13 and their generating program in figure 14. Occasional 

irregularities near the critical point are due to roundotI etiects in the computer 

simulation. P..:s expected, the three magnetization bounds form a decreasing 

sequence. 

Vl.4 Rederiving Pearce 

Pearce's Corollary 3 (Theorem N.2 this thesis) may also be demonstrated 

using the methods of this chapter. We recall this result: 

1b.eorem VI.5 

(VI.11) 
I 

for spin 1/ 2 and spin 1 measures. 

Proof : For spin 1/ 2 we use the Lemma to reduce the inequality to 

Leks(m-s)s«,..., (-)« 
s 

For a = 1 this is clearly true. As before, for a = 0 we use this equation to 

define m. This gives 

m 
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which is the mean field magnetization. This proves the spin 1/ 2 case. 

For spin 1, we use the Gritfiths trick of writing a spin n I 2 variable as a fer

romagnetically pair-coupled system of n spin 1/ 2 spins [ 43]. Our spin 1 

variable s can now be written as 

t+u s=---
2 

with associated probability 

_l_e logv2tu 
3v'2 

where t and u are spin 1/ 2 variables. For example, when t = u = 1, s = 1 

with probability ~ and when t = 1 , u = -1. s = 0 with probability ! . Equa

tion Vl.11 now reads 

I;-1-elo~ + (k/2)(t +u)(m-t + u)P;;;::: 0 
t,u3v'2 2 

Using the binomial expansion, this is a sum of terms: ( a + b = p ) 

'Ibis was proved in Theorem Vl.2 to be true if 

I I;el~ + (k/2)(t +u)t 

t,u 
1n = ------=-------Eel o g ..J2 tu + c1:12>ct + u) 

t,u 

by symmetry, 

I;e(k/2)(t +u)_l_elog.,/2tu( t + u) 
t,u 3"2 2 

:Ee{k/2)(t + u)_l_elog"'2tu 

f,'U 3v'2 

':Eekss 
s ----
Eeks 
s 
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which is the mean field magnetization.• 
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.Appendix 1 : The GKS I and GKS D Con-elation Inequalities 

Let us first state that both of these correlation inequalities hold for more 

general Hamiltonians than the form given below and that they are valid for other 

lypes of functions other than those given below. The version given is sufiicient to 

cover all cases covered in the text. For proofs valid for more general Hamiltoni-

ans, as well as analogous proofs of other correlation inequalities, see Sylves-

ter [44]. 

Theorem Al: (GKS I] For general dµ(s) satisfying dµ(s) = dµ(-s) and a 

Hamiltonian of the form 

with ferromagnetic Ji; and h;,, we have 

for any k. 

Proof: We use free boundary conditions. We recover this theorem and proof for 

the case of periodic boundary conditions simply by adding extra ferromagnetic 

couplings J.;,;. For plus boundary conditions the theorem follows by increasing 

the external fields h;, to infinity on the set of sites in ~4\A. Recall 

(exp( ~fJ~JijSiSj + /J~h;,si) Sk 
( > (s] t.,J t. 

s1c = .:;...;._----"---------
J exp( lpEJ;,;sis; + PEh;,s;,) 
[s] 2 i,j i 

We desire ( sk) "' ( +). We can neglect the denominator since it is clearly posi-

tive. Expand the Boltzmann factor in the numerator into its Taylor series. Note 

that every term has a positive coefficient. Now each term is a product over sites, 

a typical one of which.is 

J s"'dµ(s) 
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which is zero for odd n by the plus-minus symmetry of dµ(s ), and positive for 

even n . Reversing this argument gives the result. • 

Theorem A2: [GKS Il] Under the conditions of Theorem 1, 

(st)-(sXt)> 0 

where s , t are any two spins. 

Proof : Again we use free boundary conditions. If our Hamiltonian H is a function 

of ~si L we create a duplicate Hamiltonian H • = H<fstO and note that (we 

drop the subscript i) 

~ e -PH (ls D f ( s ) 

(/(s))= s] r '"T.Tl'!-n J e -puu .. )} 

[s] 

J e-P(HCfsD + n·(ls"D>/ (s) 
[s ],[s "] - =-==---"-~~~~~~~~~ J e -/f(H(fs D + B "(ls"!)) 

[s ],[s "] 
Then we calculate 

(st)8 - (s )i.(t)8 = (s(t - t •))8 + B" 

Now we use the 'duplicate variables' trick. If we make the substitution 

• Pt. - qi 
Si=: 2 

then 



-63 -

and our expectation 

Now look at the sign of ((pi +qi )q;) as in the proof of Theorem AL After 

expanding and factoring we get a typical term of 

J pf'q["'dµ(s )dµ(s "') 

with n, m non-negative integral. If m is odd, switching the dummy variables 

around (si ~st and vice versa) shows that this integral is zero. If m is even and 

n is odd, the switch (si ~ -si, st~ -s/) again shows the integral to be zero. 

For both m and n even, the integral is positive. • 
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·4t-~~~i--~~--1t--~~--1t--~~--1t----lr-tt"'-1 

0 ·Z ·a 

SpontAneous magnetization curt"es. 
(n) CJ11s;iicnl ur..-e (Langei-io). 
(b) Quantum curve, i=l. 
(<") Quantum curve, i=l· 

000, Iron. XX X, Cob.-1lt. 4441 Sickel. 

F. Tyler, Phil. Mag. 11:596 (1931) 

Figure I 
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+ + + + 
I I I I 
s - 6 - s - s 

• I I I 
s - s - 6 - s 
I I I I 
s - s - s - s 
I I I I 
s - s - s - s 

• I I I 
+ + + + 

s - s - s - s 
I I I I 
s - s - s -
I I I 

0 0 0 0 
I I 

- + 

- + 

- + 

-+ 

s - s - s - s - 0 
I I I I 
s - s - s - s - 0 
l I I I 
s - s - s - s - 0 
I I I I 
s - s - s - s - 0 
I I I I 
0 0 0 0 

Examples of boundary conditions for a two dimensional 
nearest neighbor model. 's' stands for a spin. Connecting 
lines are bonds. a) Plus boundary conditions. b) Periodic 
boundary conditions. c) Free boundary conditions. 

Figure 2 
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theoretical spontaneous 
magnetization curve 

I 

Bound i Tc Upper Bound 

Below TCLower Bound the Peierls argument says the magnetization 
is non-zero. ~hove TC Upper Bound Griffiths shows the 
magnetization is zero. 

Figure 3 
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Critical Temperature Bounds 

Model Mean Field Oguchi 3-body Fishera Best known 

A 4 3.776 3.730 2.885 2.269* 

B 6 5.847 5.825 4.933 4.9330: 

c 3 2.707 2.627 1.820 1.519* 

D 6 5.847 5.641 4.933 3.641* 

E 3.290 3.021 2.897 --b 

* Exact. 

a Fisher [30]. 

b Best guess is Tc: RI 1.58, Bhattacharjee et. al. ~ 45]. 

Tue models are: A = two-dimensional (2-D) nearest neighbor (n.n) square lat

tice; B = 3-D n.n cubic; C = 2-D n.n hexagonal; D = 2-D n.n triangular; E = 1-D 

Jt; = Ii - j 1-2 model. 
/ 

Figure 4 
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C- m 

/ 
/ rtanh 'fi!J~m) 

L,_ tanh (B IJ .. rn) 
r£J ~ 

/ 
/ 

0 

/ 
/ 

/ 
/ 

m(I\) 

Solving for the mean field magnetization as the 
intersection of two graphs. Note that the intersection 
point may be 0 (zero). 

F:ip,ure 5 

m 

/ 
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........__~--~----------....,.--~--~--------__,._,, -------v---' 
(1 + m) / (I - m) 

A representation of Pearce's inequality as a 
torque balance problem. 

Figure 6 

k 
e 
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/ 

w. L 
i, 

d. L 1, 

---""' ~ 
d~ L 1, 

Two pairs of weights and distances contributing 
the same amount to the determination of the mean. 
All such pairs lie on the hyperbolic curve shown. 

Figure 7 
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ch&r&cter input,disc_con,nch&r 
recil ~,k,p,v,su•,mnumer,~deno~,xi,xinc,newv&l 
i nt.eger i dun1n1y 

openCunit = 10,file='me&nmcsg.vcil',stcit.us='unknown'> 
c + &ccess='&ppend'> 

newvcil = O. 
wr i te ( 6, 5 > 
read <5,30>n1 
recid <5,30H. 
recsd <5,30>p 
recsd <5,30>v 
go to 50 

2 wr ite<6, 10> 
recsd <5, ll>input,newvcil 
if <input.eq.'e'>then 

go t.o 9999 
else if ((input.ne.'m').&nd.Cinput.ne.'k') 

+ .cind.Cinput.ne.'p'> 
+ .cind.<input.ne.'v'))t.hen 

go to 2 
end if 

c change vcslues of pcsr&met.ers 
if Cinput.eq.'ru') then 

20 

if <newvcsl.lt.O>then 
n1nun1er = 0 • 
111deno111 = O. 
>: i nc: = 2 • I v 
>: i = -1. - >:inc: 
do 20 idummy = 1,<v+l) 
>: i = >: i + >: i nc: 
runumer = mnumer + exp(k *xi>* xi 
•denom = rudenom + exp~k *xi> 

I 
m = runume~/mdenom 

else 
"' = newvcs 1 

end if 
else if Cinput..eq.'k'>then 

It.. = newvci 1 
else if (input..eq.'p'>t.hen 

p = newvcil 
else if <input..eq.'v'>t.hen 

v = newvcil 
end if 

Standard FORTRAN program written to test Pearce's inequality 

/ 

for arbitrary values of m,k,p and v (for spin v/2). Each ti~e 
m is set to the correct value, as defined by the p=l condition, 
this is indicated with a * ProRram ran on a Data General "f\74000. 

Figure 8 
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50 nch&r = '*' 
if <newv&l.ge.O>nchar ~ ' ' 
call integral<m,k,p,v,sum> 
write<10,90>m,k,p,v,sum,nch&r 
write<6, 90>m,k,p,v,sum,nchar 

go to 2 
9999 close<unit = 10,status='keep') 

stop 
5 format(' initial values of m,k,p,v? 

+(one on a line><r,r,r,r)') 
10 format(' vary? : m,k,p,v,e<xit>; 

+value <spon mag: -1.>'> 
11 format<a1,1x,f8.3> 
30 formalCfS.3> 
90 format<' m: ',fS.3,' k: ',fS.3,' p: ',fS.3, 

c: 
c 

+ ' v: ',f8.3,' sum: ',fS.3,1x,a1> 
er1cl 

subroutine integral <m,k,p,v,sum> 
real m, k, v, p, sum, xi, xinc 
integer i, v1, ip 

>:inc = 2./v 
v1 = v + 1. 
SURI = 0. 
xi = -1.- xinc 

do 10 i=l, vl 
xi = xi + xinc 
if ((m - xi).lt.0.) then 

sum =sum - <exp<k*xi>> * ((xi - m> ** p> 
else if <<m - xi).ge.O.> then 

sum =sum+ <exp<k*xi)) * ((m - xi> ** p> 
end if 

1 t.
. / 

0 con 1nue / 
suR1 = sun1 I v1 
return 
end 

Figure 8 (continued) 
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This program evaluates the sum: 

(I) 

(s goes from -1to1 in v steps. We divide by v + 1 to normalize the measure.) 

It allows interactive variation of the parameters: 

m mean field magnetization 

k external field strength 

p real variable 

v 2 " spin of the Ising model 

When running the program. a star will be printed at the right when the mean field 

value of mis computed for a given value of k and V. i.e., 

Eseks 

m = -"---
L;eks 

" One wants to show that equation I is always positive for: 

k non - negative real 

p non- negative integer 

v all positive integers 

m defined as above 
/ 

To use the program, input all values as real constants (put in the decimal point) 

and vary parameters as in this example: m,.67 (The letter of the variable you 

want changed, followed by a comma and then the appropriate new value. Blank 

spaces are not recommended.) To exit, type 'e' when asked what to vary. A run

ning log is kept in the file 'meanmag.val' of all parameter values that have been 

examined. 
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Numerical studies of Pearce's Inequality 

m k p v sum 

.055 .1 1.0 3 .000 

.055 .1 3.0 3 .042 

.055 .1 5.0 3 .090 

.055 .1 7.0 3 .145 

.269 .5 1.0 3 .000 

.269 .5 3.0 3 .196 

.269 .5 5.0 3 .431 

non "' ~n 3 .766 .Ci0l:1 .v ..... 
.496 1. 1.0 3 .000 

.496 1. 3.0 3 .324 

.496 1. 5.0 3 .736 

.496 1. 7.0 3 1.583 

.975 5. 1.0 3 .000 

.975 5. 2.0 3 .610 

.975 5. 2.5 3 .535 

. 975 I 5 . 3.0 3 .469 

.975 5. 4.0 3 .389 

.975 5. 5.0 3 .376 

.975 5. 7.0 3 .566 

. 975 5 . 9.0 3 .327 

Figure 9 
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Numerical studies of Pearce's Inequality 

m k p v sum 

.050 .1 1.0 4 .000 

.050 .1 3.0 4 .032 

.050 .1 5.0 4 .066 

.050 .1 7.0 4 .102 

.243 .5 1.0 4 .000 

.243 .5 3.0 4 .153 

.243 .5 5.0 4 .314 

,,A t:I " 7.0 4 .530 .i:;.-ru .v 

.453 1.0 1.0 4 .000 

.453 1.0 3.0 4 .260 

.453 1.0 5.0 4 .549 

.453 1.0 7.0 4 1.084 

.955 5.0 1.0 4 .000 

.955 5.0 3.0 4 .462 

.955 5.0 5.0 4 .352 

/ .955 5.0 7.0 4 .529 

.997 10.0 1.0 4 .000 

.997 10.0 3.0 4 3.838 

.997 10.0 5.0 4 1.104 

.997 10.0 7.0 4 .440 
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m 
true 

m 

tanh ( s(I.J .-....+. h )) 
r J 1J 

mmean field m 

Graphical illustration of how to recognize when 
l!l ~ m f. ld 0 true mean 1e 

Figure 10 
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f(y) 

y f(x) 

x 

/ 

y 

f(x) is a concave function with f (O) = O. 
This is a graphical illustraction that 

f(x) 
y_-_ 

x 

L f(y) -

Figure 11 

f(x) 

x 
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SS 
I'\'\ 

> 2. lt.k £ -k=l 

0 •• 0 

(tnm-.=~A-1] ("'-. .. = p..,) 
J, 

Some steps in the construction of the '1 t3 matrix. Starting on 
a given row, one proceeds to fill in the matrix elements 
going left , stopping when the sum of the entries in that row 
equals the o(associated with that row. The rest of the entries 
on that row are set equal to zero and one continues to fill in 
non-zero entries in the matrix element directly above the stopping 
point. All entries to the right of the new starting point are 
set equal to zero. One proceeds until one reaches column I. 
This matrix is lower triangular. 

Figure 12 

o{. ... 
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The following graphs are magnetization graphs calculated 

from the approximations given on p. 53. The solid line gives the 

mean field bound, the dotted line gives the Oguchi bound, and the 

dashed line gives the three-body bound. The three-body bound 

may or may not be applicable to a given model. This must be 

checked separately. For the following curves we assumed a 

nearest neighbor model with the number of nearest neighbors 

equal to the variable 'Sigma' (corresponding to ~ J._j ) , a 
J 

temperature dependent coupling 'J' (corresponding to pJ ) , and 

an external field 'h' (corresponding to h). The program used 

to draw these plots is listed on p. 85. The parameters used to 

draw these plots are given below: (T is only a plotting max 
parameter). 

T Sigma J h 
max 

13a 4 4 I 0 

13b 6 6 I 0 

13c 12 6 1 1 

13d 10 10 1 0 
/ 

A possible interpretation of these plots consistent with the 

parameters given is: 13a - two dimensional nearest neighbor (n.n.) 

model in zero field; 13b - two dimensional triangular or three 

dimensional n.n. model in zero field; 13c - the models in 13b, but 

in a non-zero field; 13d - five dimensional n.n. model in zero 

field. (If not otherwise specified, the underlying lattice is 

cubic). 

Figure 13 
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o: •Hasnetization Curve Prosraa•: 
1: Pclrjent •t •ax ?'tUient •Sis~a 1•,s;ent J1Hicsiz 3 
2: wrt 705•'IP1200t1000•8700t6700';.wrt 705t'VS6';Jine 
3: txd o;penl Hscl o,u,o,1hcax OtUr01Utlh1a>: Ort.0•1•1 
4: l>M;for T=U/100 to U b~ U/100;1/l}B;.01}N;HtN>M 
s: "-N}Hiif 'fl'(M><Oisto +o 
6: "tN>H;N/10}N;sto -1;if N=le-4isto +1 
7: Plt TtMr1t<TtU/100>;if M<=le-J;pen;sto t2 
s: next HPen 
9: 
10: 
11: 
1.,. 
". 

line 1,.s;t}H;for T=U/100 to U b~ U/250il/l}B;.01>N;H+N>H 
H-N>H;if 't2'{H><o;sto tO 
MtN>HiN/lO}Nisto -1;if N=le-~;sto tl 
Plt TrHtl+<TtU/100)iif H<=le-JiPen;sto t2 

13: next Hren 
14: line 2r2;1}H;for T=.5 to U b~ U/250;1/l}Bi.Ol}NiH+N>H 
is: H-N>Hiif 'f3'<H><o;sto +o 
16: HtN}HiN/10}NiSto -1;if N=le-4isto tl 
17: Plt r.K.tt<Tt.s>;if H<=le-JiPenistP 
1e: next TiPenistP 
19: •11•:ret 'th'(BCSP1tH>>-P1 
20: ·n· :Ht<S-J)p1}p2het 'sh' <2BP2)/( 'ch' <2BF-2He>:P(-2JB> )-pl 
21: 'f3':H+<S-2J)pl}p2;'sh'(3BP2)texP<-4BJ)'sh'(BP2))pJ 
22: ret pJ/( 'ch' <3BP2H3e>:P(-4IcJ> 'ch' (8?2) >-Pl 
23: 'sh':ret (exp(pl)-e>:P(-pl))/2 
24! 'ch':ret <exp(pl)texp(-pl))/2 
25: 'th•:ret 'sh'(~l>/'ch'(p1) 

Program to plot magnetization curves for the mean field, 
Oguchi and three-body methods. Program ran on an HP 
desktop computer 9825R attached to an HP plotter 9872A. 

Figure 14 


