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ABSTRACT

This thesis deals mainly with the development of new learning algorithms and
the study of the dynamics of neural networks. We develop a method for training
feedback neural networks. Appropriate stability conditions are derived, and learning
is performed by the gradient descent technique. We develop a new associative
memory model using Hopfield’s continuous feedback network. We demonstrate
some of the storage limitations of the Hopfield network, and develop alternative
architectures and an algorithm for designing the associative memory. We propose
a new unsupervised learning method for neural networks. The method is based on
applying repeatedly the gradient ascent technique on a defined criterion function.
We study some of the dynamical aspects of Hopfield networks. New stability results
are derived. Oscillations and synchronizations in several architectures are studied,
and related to recent findings in biology. The problem of recording the outputs
of real neural networks is considered. A new method for the detection and the

recognition of the recorded neural signals is proposed.
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INTRODUCTION

Because of the clear superiority of the brain over conventional computers
in many information processing tasks, attention has focused during the previous
decade on developing computing structures, called neural networks, which emulate
the structure and the functionality of the brain. The study of neural networks
has the dual purpose of using our knowledge about the brain to develop efficient
solutions to difficult real world computational problems, as well as shedding some

light on the possible information processing mechanisms of the brain.

A neural network is a massively parallel network of interconnected analog
processing elements (neurons) (see Fig. 0.1 for an example). The parallel nature
of the neural network enables it to achieve potentially computation speeds not
attainable by conventional sequential computers. The function of an individual
processing element is very simple, and is often taken as the weighted sum of its
inputs, passed through a non-linear function, usually taken as sigmoid-shaped. The
weights of the neurons are the parameters, which define the functionality of the
network. The motivation behind choosing the neuron functions as given was initially
biological, but also turned out to be very practical for various applications and for
VLSI implementations. The real neurons in the brain communicate by means of
trains of impulses (or spikes). It is believed that the short-time average spike rate
is one of the most relevant information processing parameters. Biological neurons
are also densely interconnected, and the output of each neuron affects the output of
each neuron connected to it with a particular “efficacy”. The outputs of the neurons
in the described “artificial” neural network represent the spike rates, whereas the

weights represent the efficacies.

One of the powerful aspects of the neural network is that it can perform com-

plex non-linear mappings. Some architectures exhibit rich dynamical properties,
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Fig. 0.1: An example of a neural network.

suggesting applications such as signal processing, robotics, and control. The ability
to learn is one of the main advantages that make neural networks so attractive.
Efficient learning algorithms have been devised to determine the weights of the net-
work, according to the data of the computational task to be performed. Learning in
neural networks has also been inspired by biological systems. The efficacies of real
neurons vary slowly with time according to the given stimuli, thus accounting for
the long term memory. The learning ability of the neural network makes it suitable
for problems whose structure is relatively unknown, such as pattern recognition,
medical diagnosis, time series prediction, control, and others. Such real world prob-
lems cannot be easily captured by a simple mathematical formula or algorithm.
Therefore, the way to model a problem is to consider simply input/output exam-
ples of the process (called training patterns). A system which has the capability of
learning by examples (for example, a neural network) would in general be suitable

for such kinds of tasks.

In this thesis we will study the dynamics and capabilities of neural networks,

develop learning algorithms for various architectures and purposes, and study some



biological aspects and insights. In Chapter 1 we briefly review two main archi-
tectures of neural networks: feedforward and feedback networks, and we review
the method for learning by examples for feedforward networks. The main purpose
of this section is to develop a new method for learning by examples for feedback
networks. In Chapter 2 we will study the storage capabilities and limitations of
feedback associative memories. We propose a network architecture, and develop a
learning algorithm for the storage of real-valued vectors. In Chapter 3 we develop
a neural network method for unsupervised learning. The work in Chapter 4, done
with the collaboration of Dr. Pierre Baldi of Jet Propulsion Laboratory, deals with
the study of some of the dynamical aspects of feedback neural networks. Oscilla-
tions in neural networks are studied, and biological implications are proposed. In
Chapter 5 we consider the problem of recording the outputs of real neurons. We
develop new signal processing techniques for the accurate detection of the neural

activity.
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CHAPTER 1

LEARNING IN FEEDBACK NEURAL NETWORKS

1.1 FEEDFORWARD NETWORKS

There are mainly two categories of neural network architectures: feedforward
and feedback networks. Feedforward (or multi-layer) networks have been extensively
invesigated in the neural networks literature (see Lippmann’s review on neural net-
works (1], and see Wasserman [2]). They consist of several layers connected as shown
in Fig. 1.1. The last layer is called the output or visible layer, and the other layers
are called hidden layers. In most applications one usually uses one or two hidden
layers. The number of neurons per hidden layer depends on the problem considered.
The usual way is to specify it by trial and error, and of course the more difficult
the problem, the larger the required sizes of the hidden layers. Let ygl) denote the
output of the i** neuron of layer [ (ygo) denotes the i** input to the network). The

function of the network is given by

Ny
{ o {LI=1) (I-1) (D ’ ‘
Yy, = f(z w, y; +8,71, l=1,.,L, i=1,...,Ny,
J=1
11—1) , ‘ | '
where ng ) denotes the weight from neuron j of layer [ — 1 to neuron 7 of layer

l, 9§l> is the threshold of neuron ¢ of layer {. The function f is taken as a unit step

or a sign function (see Figs. 1.2 and 1.3), or as a sigmoid-shaped function, e.g.,
f(z) = tanh(z), (1.1)

(see Fig. 1.4), or
fz) = — (1.2)

(see Fig. 1.5). Usually, one uses one of the previous two forms because of their

smoothness.
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Fig. 1.1: A feedforward network.
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Fig. 1.2: A unit-step neuron function.
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Fig. 1.3: A sign neuron function.
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Fig. 1.4: A sigmoid neuron function from -1 to 1.
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Fig. 1.5: A sigmoid neuron function from 0 to 1.

The breakthrough for multi-layer networks was the development of a method
for learning by examples, the backpropagation learning algorithm, which was devel-
oped by Werbos [3) and Rumelhart ef al. [4]. The backpropagation algorithm has
made it possible to design multi-layer networks for numerous applications, such as
adaptive control [5], sonar [6], stock market prediction (7], speech recognition (8.

The method is described as follows.

Let x(1),...,x(M) be the given input vectors, and y(1),...,y(M) be the corre-
sponding desired output vectors. It is required to adjust the weights and thresholds

of the network, so that the network ultimately maps each x(m) to y(m) as closely

as possible. We define the sum of square error:

M
E =) E(m),
m=1

E(m) = [y(m) = y"|%,

where y{&) represents the vector of outputs of the network, when the input is x(m).
In the backpropagation algorithm we initialize all the weights and thresholds to
small, random values. Then, we iteratively adjust the weights and the thresholds

in a steepest descent manner; 1.e.,

(LI=1),, | ay _ (L1=1) OFE
[

OF
a8’

)

(1

80t +1)=6"(t) — p



where p is the step size. Another variation, which is in some ways faster and there-
fore more often used is to adjust the weights after presenting each example, instead
of after cycling through the whole set of examples. Therefore, in this variation we
present the input examples cyclically, and each time we adjust the weights in a

steepest descent on E{m), as follows,
JE(m)

PNIINEE
awij

Li=1),, . (1,1—1
'ng )(t +1) = w‘;j- )(t) —p

GE(m)

ot + 1) = 8 (1) — pnL
( ' a6’

The procedure in detail, which is called the delta update rule [4], is as follows. We
start by adjusting the weights of the last layer and work backwards until the first

hidden layer. We adjust the weights according to

Li—1 (1,01—1 , (1) (1-1
wiy T 1) = e T = ey,

60(t +1) = 6(1) + pol”,

where 52(-0 is an error term for neuron i of layer [, calculated as follows: For the last

layer,
.L’\fL—-l
(L L.L—-1) (L-1) , (L (L
& b fi[ E wgk )yi '+ Qg )}(yj(m) Y ).
k=1

We propagate backwards, to calculate the 6;5)’5 for the remaining layers:

Ni_» N, ‘

(1-1) D (=10-2) (1=2) | a(I-1) (D (LI-1)
6]. — f!{zwjk Y, +6’j }(Zék Wy )

k=1 k=1
Although the backpropagation algorithm is guaranteed to converge to only a local
rather than a global minimum of the error function, experience has shown that in
many problems it, in fact, converges to the global minimum. The algorithm has

proven its effectiveness and usefulness in many applications.



1.2 FEEDBACK NETWORKS

Feedback networks have received a lot of attention in the neural networks
literature. The feedback network consists of N neurons; the output of each is fed
back to all other neurons via weights w;;. The operation of the network is given
in terms of defined dynamics, which describes the time evolution of the neuron
outputs. The system’s evolution can be expressed in a discrete-time or continuous-
time formulation. In the discrete-time formulation (introduced by Hopfield 19]), the
evolution equation is given by

N
yi = F(Q_wiy; + 6:),

=]
where w,; is the weight from neuron ¢ to neuron j, §; is the threshold for neuron 1,

yi is the state for neuron 7, y; is the new state for neuron 7, and f is either a sign

function or a sigmoid function (most researchers consider f as a sign function).

The continuous-time formulation was developed by Amari [10], Grossberg and
Cohen [11], and Hopfield [12]. It is given by the set of differential equations (called

the Hopfield continuous model):
dlLi
Ty = —U; -+ Zwijf(uj) -+ 91' = gg(ul, ...,'u.N): (13)

Yyi = f(u’i)e

where, again, w;; is the weight from neuron 7 to neuron j, 6; is the threshold for
neuron ¢, 7; is the time constant for neuron 7, and f is a sigmoid-shaped function,

e.g., (1.1) or (1.2).
1.3 DYNAMICS AND STABILITY

Unlike feedforward networks, feedback networks can produce time-varying

outputs. They could produce periodic, or chaotic motion, or possibly, eventually



constant outputs. They possess, therefore, richer types of behavior, and hence richer

information processing capabilities.

In this thesis we will concentrate mainly on the Hopfield continuous model.
Before considering some of its dynamical aspects, the following relevant stability
concepts are reviewed. We will provide only heuristic explanations of some of the

concepts. The rigorous definitions can be found in Vidyasagar [13].
An equilibrium of a system (consider the system (1.3)) is a point u™ = (u],...,ux )’

satisfying gi(ul, ..., uxy) =0, i =1,... NV.
An equilibrium u” is said to be asymptotically stable if:

1) It is possible to force any trajectory starting from some open neighborhood
U7 around the equilibrium to remain as close as desired to the equilibrium u”*

for all ¢ > T by choosing U sufficiently small.
2) The trajectory goes to the equilibrium u™ as t goes to infinity.
An equilibrium that does not satisfy 1) is said to be an unstable equilibrium.

A system is said to be globally stable (or simply stable) if every trajectory converges

to an equilibrium.

A system is globally asymptotically stable if every trajectory converges to a unique

equilibrium.

There has been considerable interest in studying stability properties for con-
tinuous neural networks. For instance, Hopfield {12] and Cohen and Grossberg [11]
showed that a network with symmetric weight matrix and monotonically increasing
functions f is stable. The proof is by constructing an energy or a Lyapunov func-
tion, that is, a function which is non-increasing along the trajectories (see [13]). The

local minima of such a function correspond to the equilibria of the network. Further
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results and discussions on stability issues will be presented in the next section, and

in Chapter 4.

1.4 A LEARNING ALGORITHM FOR FEEDBACK NETWORKS

Feedback neural networks have been shown to be quite successful in perform-
ing a number of computational tasks. Examples of applications are the traveling
salesman problem (Hopfield and Tank [14]), A/D conversion and linear program-
ming (Tank and Hopfield [15]), image restoration (Zhou et al. [16]), associative
memories (Hopfield [9]) (associative memories are an important class of applica-
tions, to be discussed in detail in the next chapter). The network for solving such
problems is usually specified by constructing an energy function whose minimum
corresponds to the solution of the problem. This energy function specifies the
weight matrix of the network. Iterating this network leads to the convergence to
the (global, it is hoped) minimum of the energy function and hence to the solution
of the problem. This design technique, though elegant, is not a sufficiently system-
atic design method, and one is not guaranteed to find the required energy function
for any given problem. We will propose here a method for learning by examples on
general networks containing feedback as well as feedforward connections. In other
words we will extend the backpropagation training algorithm to general networks

containing feedback connections (also see Atiya [17]).

Consider a group of N neurons that could be fully interconnected (see Fig.
1.6 for an example). The weight matrix W can be asymmetric. The inputs are
also weighted before entering into the network (let V be the weight matrix). Let x
and y be the inp‘ut and output vectors, respectively. Our model is governed by the
following set of differential equations (Hopfield [12]):

du

r = —u+ Wiu) + Vx + 6, y = f(u), (1.4)



11

neuron 1

N\

7

inputs

%

-l neuron 2
outputs

//
Iy

neuron 3

Fig. 1.6: A feedback network.

where f(u) = (f(uy),.... f(un))T, T denotes the transpose operator, f is a sigmoid
function or any other bounded and differentiable function, 7 is the time constant,

and 6 = (6, ...,HN)T is the threshold vector.

In developing a learning algorithm for feedback networks, one has to pay at-
tention to the following. The state of the network evolves in time until it goes to an
equilibrium, or possibly other types of behavior such as periodic or chaotic motion
could occur. However, we are interested in having a steady and fixed output for
every input applied to the network. Therefore, we have the following two impor-
tant requirements for the network. Starting any initial condition, the state should
ultimately go to an equilibrium. The other requirement is that we have to have a

unique equilibrium state for a fixed input. It is, in fact, that equilibrium state that
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determines the final output. The objective of the learning algorithm is to adjust
the parameters (weights) of the network in small steps, so as to move the unique
equilibrium state in a way that will result finally in an output as close as possible to
the required one (for each given input). The existence of more than one equilibrium
state for a given input causes the following problems. In some iterations one might
be updating the weights so as to move one of the equilibrium states in a sought
direction, while in other iterations a different equilibrium state is moved. Another
important point is that when implementing the network (after the completion of
learning), for a fixed input there can be more than one possible output, depending
on what the initial condition is. This leads us to look for a condition on the matrix

W to guarantee the global asymptotic stability of the system.

Theorem: A network (not necessarily symmetric) satisfying either

a) >y w?]- < 1/max(f")?,

ROTIY
or
b) 3 fwi;| < 1/max(f"), all ¢,
exhibits no other behavior except going to a unique equilibrium for a given input.

Proof: Consider Case a) first. Let u;i(¢) and uy(t) be two trajectories of (1.4)

starting from two different initial states. Let

J(t) = [ui(t) — ua(t)]%,

where || || is the two-norm. Differentiating J with respect to time, we obtain
d.](f) . T 'dul(t) duz(f)'
— = 2Aw(t) —ua()) ( 7 )

Using (1.4) , the expression becomes

) 2 () — a1+ 2 (1) — w0) "W (£ (0)  £a(t)]
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Using Schwarz’s Inequality, we obtain

dJ(1)
TN e
dt —

fs() = s (1)1 2T (1) — ua()] (W IR (w (1) — £(a(0))]]

IR )

Again, by Schwarz’s Inequality,
wi [f(ui(1)) = £lua()] < [Jwill - U (ua()) = f(uz(t) ], i=1,.,N (15)
where w; denotes the i** row of W. Using the mean-value theorem, we get
18(uws (1)) — E(ua(0)) ] < (maxl £)[us(t) — wa()]- (1.6)

Using (1.5), (1.6), and the expression for J(t), we get

dJ(t)
dt

< —aJ(1), (1.7)

where
a:§~—maxf ZZW

By Condition a) in the hypothesis of the Theorem, « is strictly positive. Multiplying

both sides of (1.7) by exp(at), the inequality

S0 <0

results, from which we obtain
J(t) < J(0)e™ ",

From that and from the fact that J is non-negative, it follows that J(t) goes to
zero as t — oo. Therefore, any two trajectories corresponding to any two initial
conditions ultimately approach each other. To show that this asymptotic solution is
in fact an equilibrium, we simply take uy(¢) = u;(¢+7'), where T is a constant, and
applies the above argument (that J(¢) — 0 as t — o0), and hence u; (t+71) — uy ()

as t — oo for any T, and this completes the first part of the proof.
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Now, consider Case b). Again, consider two trajectories u(t) = (u11(¢), ..., u ()T

and us(t) = (um(t),...,u.gg\r(t))T. Define
Ti(t) = (uailt) — uai(1))”,

and

J(t) = max J(t). (1.8)

Let I(t) be the set of indices at which the maximum in (1.8) is attained. Differen-

tiating J, one obtains

d](t) o o duli(t) dugi(t)“

et = ?(u.ll(i) - uga(t))< )
= “(uw(t) - W(t)){-(un(f) — upi(t)) + Z“w< flua (1) - f(uz;(i)))le
< —%(zz.li(z‘) — u,gi(zf))z - ;2_—5'&15(1‘) — (1) Z wiili flug (1)) — flug;(1)),

dJI‘(t)
dt

where ¢ denotes the element of I(t), whi . Using the mean-

value theorem, and using the fact that [uy;(t) — ug;(t) < juii(t) — u2i(t)], we get

dJ(t)
7t < -“Oc’i,](f),
where a; = %[ max|f'|> 2.5 lw;;] } Using an argument similar to that of the first

part of the proof, we can conclude that under Condition b), the system converges

to a unique equilibrium. ®

For example, if the function f is of the widely used form, f(u) = 1/(1 +e7%),
then Condition a) requires that the sum of the square of the weights be less than 16.
Condition b) requires that the sum of the absolute values of the weights converging
onto each neuron be less than 4. Note that for any function f, scaling does not have
an effect on the overall results. We have to work in our updating scheme subject to

one of the constraints given in the Theorem. We note that a condition for global



asymptotic stability very similar to Condition b) was also independently derived by

Hirsch [18].
1.5 LEARNING

Consider a fully connected network, as in Fig. 1.6. The neurons from 1 to
K are output neurons, and the neurons from A + 1 to N are hidden neurons. Let
(x(m),y(m)), m =1,..., M be the input/output vector pairs of the function to be

implemented. We would like to minimize the sum of the square error, given by

AM
E = ZE(m)
=1

where
K

E(m) = > (yi — yi(m))*, (1.9)

1= 1

and y = (y1,...,y~n)7 is the network (equilibrium) output vector when the input is
x(m). The learning process is performed by feeding the input examples x(m) se-
quentially to the network, each time updating the weights in an attempt to minimize

the error.

We would like each iteration to update the weight matrices W and V, and
the threshold vector 6, so as to move the equilibrium in a direction to decrease

the error. We need therefore to know the change in the error produced by a small

change in the weight matrices. Let —5 sv— denote the matrices whose

(i,7)'" element are 355,:?) and 8?5:?), respectively, and let 6%{:{) be the column
BE(m)

vector whose 1" element is ~5e

Assume that the time constant 7 is sufficiently small so as to allow the network
to settle quickly to the equilibrium state, which is given by the solution of the

equation:

y =f(Wy + Vx + 6). (1.10)
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Differentiating (1.10), we obtain

9y; - Oyn
2T ) Wy = - Yo bir ), k.p=1.....N.
(‘Ajuykp f( J/(Z_j J Jau’kp yp gl»), P y 5 ,
where
50 = 1 ifj =k,
70 otherwise,
and

ke

n

We can write in vector notation as

Jy

Doy

(A — W) 1b*P, (1.11)

where A = diag(1/f'(z;)) and b*? is the N-dimensional vector whose i** component
is given by

¢ 0 otherwise.

By the chain rule,

JE(m) JE(m) Jy;
- Z 73,7]—_ oy’

which, upon substituting from (1.11), can be put in the form ypg;{ 8%<ym>, where g,

is the k™ column of (A — W)*l. Finally, we obtain the required expression, which
1s
JE(m)
IW

_10E(m) 1
dy y

=AW

where 8.&;{;72} is obtained by differentiating (1.9). We get

OE(m)
dy

= 2(y1 — yr(m), . yx — yx(m),0,....0)7. (1.12)

Regarding agi/m}’ it is obtained by differentiating (1.10) with respect to vy,.

We get similarly
dy

Ovip

= (A -W) e
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where ¢*? is the N-dimensional vector whose i** component is given by

0 otherwise.

A derivation very similar to the case of é%ﬁ results in the following required

expression:
JE(m) . 7 -10E(m) T
av = LA - W J dy x(m)" .
Similarly, we get also
JdE(m) . 7+ -1 0E(m)
= A-W"' —
o8 ‘ : ay

As in the backpropagation method, we update the weights here by the steepest
descent method. We use the variant discussed in Section 1.1, where we present the
examples in a cyclical manner, and updates the weights after each presentation

according to the gradient of E(m). This becomes in our case

Wi 1) = W) - p/A — WT) —1 ai(m)yT’
Yy
V(1) = V() - pla - wT B T
L i 8},
. .-10F
Bt + 1) = 8(0) - pl4 — wT] 22

where 85{;(;1) is given by (1.12), and p is the step size. Updating the weights is

subject to any of the constraints given in the Theorem. If at some iteration the
weights violate one of cie constraints, then they are scaled so as to project them
back onto the surface given by the constraint (simulations have shown that the

constraint a) in general gives better results).

We assert that the matrix A — W7, whose inverse appears in the update equa-

tions, can never be singular. We prove that as follows. By Gershgorin’s Theorem
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191, the eigenvalues of A — W7 lie in the union of the circles (in the complex space)

defined by

1
A= —— +wyl < % lw;il.
i 7 il Wiz
f(”) J#i ,

Hence, if max(1/f')> s lw;;], all 7, then all eigenvalues of A — W7 will have

positive real parts. This previous condition is equivalent to condition b) given in
the Theorem. Hence the matrix A — W7 is guaranteed to be non-singular when

enforcing condition b) during the update iterations. It can be also proven that if

condition a) of the Theorem is enforced, then the matrix A — WT is non-singular.

One of the drawbacks of the steepest descent minimization method is its
susceptibility to local minima. A way to reduce this is to add noise in the update
equations to allow it to escape local minima. We have implemented a stochastic

descent method, described as

W(t+1) = W(t) - paggz) + aE(m)R,
V(i +1) = V(t) - paggfn)« + aE(m)R,
Ot + 1) = 0(t) — ,o?—ga—g—ql +aE(m)R,

where R is a noise matrix whose elements are characterized by independent zero-
mean, unity-variance Gaussian densities, and « is a parameter. Note that the
control parameter is taken to be E(m). Hence, the variance of the added noise
tends to decrease the more we approach the ideal zero-error solution. This makes
sense because for a large error, i.e., for an unsatisfactory solution, it pays more to
add noise to the weight matrices in order to escape local minima. On the other
hand, if the error is small, then we are possibly near the global minimum or near
an acceptable solution, and hence we do not want too much noise in order not to be
thrown out of that basin. Note that once we reach the ideal zero-error solution, the

added noise as well as the gradient of E(m) becomes zero for all m, and hence the
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increments of the weight matrices become zero, and the algorithm converges. This
method was implemented on several examples. We have observed that it frequently
converged to a zero-error solution when the original steepest descent method did
not. Also, in general it was faster than the steepest descent method (in some

examples more than twice as fast).

We wish to note that Almeida [20], and Pineda [21] have also independently
developed a learning algorithm for feedback networks. In particular, Pineda’s algo-

rithm has some similarities to our method.
1.6 GENERALIZATION

In many cases where a large network is necessary, the constraints given by
the Theorem might be too restrictive. Therefore we propose a general network,
explained as follows. The neurons are partitioned into several groups (see Fig. 1.7
for an example). Within each group there are no restrictions on the connections
and therefore the group could be fully interconnected (i.e., it could have feedback
connections). The groups are connected to each other, but in such a way that there
are no loops. The inputs to the whole network can be connected to the inputs of
any of the groups (each input can have several connections to several groups). The
outputs of the whole network are taken to be the outputs (or part of the outputs)
of a certain group, say group f. The constraint given in the Theorem is applied on

each intra-group weight matrix separately. The error function to be minimized is
M
E =Y E(m),
meml

where
K

E(m) = Z(y{f - yz’(m))zv

=1

and y7 is the output vector of group f upon giving input x(m).
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Fig. 1.7: An example of a general network (each group represents a feedback

network).

We will also apply the steepest descent method. The gradients are evaluated
as follows. Consider a single group [. Let W! be the intra-group weight matrix
of group I, V™ be the matrix of weights between the outputs of group r and the

inputs of group [, ' is the threshold vector of group [, and y' be the output vector

l rl

of group [. Let the respective elements be (CHPR N 95, and y!. Furthermore, let N;

be the number of neurons of group [. The equilibrium is given by
yl — f(lel + Z Vrrlyr + 9!)’
reA;

where A, is the set of the indices of the groups connected to the inputs of group [.

A derivation similar to the one in the previous section gives

T,-10E(m)

awz, - iAl - (Wl) | ayg (yl)Ta
OE(m -1 0E(m
m(,rl) = (Al - (whT] ™ 53(/1 Jyn?,
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JE(m)

1 0E(m)
a6

dy!

= A"~ (WHT]

where A' is the diagonal matrix whose /** diagonal element is 1/f'(z}), =} =

‘ gl BE(m . :
kwl-,yi =3 ;{yz - 4. The vector ——(97@ associated with group [ can be

obtained in terms of the vectors 85}(,?)’ jeB;, where B; is the set of the indices

of the groups connected to the outputs of group [, as follows. Let %‘;, j€eB; be
. 3 . Jy J
the matrix whose (k,p)'" element is a—" The elements of yl can be obtained by

differentiating the equation for the equilibrium for group j, as follows,

5.3)7* () Z ""Byp

Hence.

= (AT - WV, (1.13)
Using the chain rule, we can write

dE(m) Z(ayf)TaE(m)
dy" gy’’’ dy’
jeB
We substitute from (1.13) into the previous equation to complete the derivation by

obtaining
OE(m) P T, T -1 OE(m) /
oyl > (VE)T(AT - (W) ] ay7 (1.14)

jeB;

For each iteration we begin by updating the weights of group f (the group con-

taining the final outputs). For that 0roup equais simply 2(y{ —y1(m), ..., yg{ -

yr(m),0,...,007). Then we move backwards to the groups connected to that group
8E({m)
Sy

and obtain their corresponding vectors using (1.14), update the weights, and
proceed in the same manner until we complete updating all the groups. Updating

the weights is also performed using the steepest descent rule.
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Fig. 1.8: A pattern recognition example.

1.7 AN IMPLEMENTATION EXAMPLE

A pattern recognition example is considered. Fig. 1.8 shows a set of two-
dimensional training patterns from three classes. It is required to design a neural
network recognizer with three output neurons. Each of the neurons should be on if a
sample of the corresponding class is presented, and off otherwise; i.e., we would like
to design a ”"winner-take-all” network. A single-layer three-neuron feedback network
(fully connected except for self-connections w;;) is implemented. We obtained 3.3%
error. Performing the same experiment on a feedforward single-layer network with
three neurons, we obtained a 20% error. For satisfactory results, a feedforward
network should be two-layer. With one neuron in the first layer and three in the

second layer, we got a 36.7% error. Finally, with two neurons in the first layer and
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three in the second layer, we got a match with the feedback case, with a 3.3% error.

1.8 CONCLUSION

A way to extend the backpropagation method to feedback networks has been
proposed. Conditions on the weight matrix are obtained, to insure having a unique
equilibrium, so as to prevent having more than one possible output for a fixed input.
An algorithm for training the feedback network is developed. A general network
structure for networks is also presented, in which the network consists of a number
of feedback groups connected to each other in a feedforward manner. The method
is applied to a pattern recognition example. With a single-layer feedback network it
obtained good results. In general, we have observed that training feedback networks
is somewhat slower and more susceptible to local minima than training feedforward
networks. Since feedback networks are more general and hence more capable than
feedforward networks, we propose the following strategy. We start by training a
feedforward network until it converges, and then allow feedback connections within

the layers and use the algorithm we have developed, to obtain a smaller error.
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CHAPTER 2

A FEEDBACK ASSOCIATIVE MEMORY

2.1 INTRODUCTION

The brain has a remarkable ability to evoke stored memories using only par-
tial or somewhat erroneous information. This has led a number of researchers to
investigate how a collection of simple neuron-like elements can be used for real world

applications such as content addressable memories, and pattern recognition.

The concept of the associative memory is the ability to reconstruct memorized
items from incomplete or somewhat erroneous cues. There are two categories of
associative memories: auto-associative memories, and hetero-associative memories.
Consider the auto-associative memories. Let y(1),...,y(M) be a number of stored
pattern vectors. The components of y(m) represent, for example, features extracted
from the pattern. The function of the associative memory is to output a pattern
vector y(m) when inputting a noisy or incomplete version of y(m). The other type
of associative memory, the hetero-associative memory, is a more general concept.
We have a number of key-response pairs (¢(1),y(1)),...,(c¢(M),y(M)). The memory
outputs a response vector y(m) if a noisy or incomplete version of the key vector

c(m) is given.

One of the well-known neural network associative memory models is the Hop-
field discrete model [1] (see Section 1.2). It is a fully connected feedback network
governed by asynchronous update. Hopfield showed that the model can store a

number of binary vectors y(1),...,y(M) if we choose the weight matrix as

M

W= [y(m)y(m)" -1],

m==1



(8]
-~J

where I is the identity matrix. The basic idea of the model is that every memory
vector is an equilibrium of the network. When presenting an erroneous memory
vector, the state of the network evolves to the equilibrium representing the correct
memory vector. Afterwards, many alternative techniques for storing binary vectors
using also the discrete feedback net have been proposed, e.g. [2],[3/,/4] and [5]
(see also Michel and Farrell [6] for an overview). However, the problem of storing
analog vectors, using Hopfield’s continuous feedback network model of 1984 [7] (see
Section 1.2), has received little attention in literature. By analog vectors we mean
vectors whose components are real-valued. This problem is important because in a
variety of applications of associative memories like pattern recognition and vector
quantization, the patterns are originally in analog form and therefore one can save

having the costly quantization step and therefore also save increasing the dimension

of the vectors.

There are two main requirements for the associative memories. Every given
memory should be an equilibrium of the network. Moreover, the equilibria corre-
sponding to the memory vectors have to be asymptotically stable; i.e., they should
be attractive (see definition in Section 1.3). Previous work on the design of as-
sociative memories using Hopfield’s continuous model include the work by Farrell
and Michel [8]. Their model can store binary vectors in the form of asymptotically
stable equilibria. Pineda [9] developed an interesting method for the storage of
analog vectors. In this method the network is designed using a learning procedure
so that each given memory vector becomes an equilibrium of the network. It does
not guarantee, though, the asymptotic stability of the equilibria. We propose here
a method that solves the problem of storing analog vectors using the Hopfield con-
tinuous model. The network is designed so that each memory vector corresponds to
an asymptoticaiiy stable equilibrium (see also a preliminary version of the method

in Atiya and Abu-Mostafa [10]). Before describing the new method, we will study
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in the next section the Hopfield continuous model, and will examine its storage

limitations.

2.2 THE NETWORK

Continuous-time neural networks can be modeled by the following differential

equations (Hopfield [7]):

du
o= —u + Wf(u) + 6 = h(u), x = f(u). (2.1)
where u = (ul’,._,uN)T is the vector of neuron potentials, x = (1'17---7334\")T s

the vector of firing rates, W is the weight matrix, the (i,7)*" element being w,;,
. . T
8 = (8y,...,0n)7T is the threshold vector, f(u) means the vector (fur)ses flun)™ ),

f is a sigmoid-shaped function, for example
f(w) = tanh(u), (2.2)

and N is the number of neurons.

If the weight matrix is symmetric and f is monotonically increasing, then the |
state always converges to an equilibrium (Grossberg and Cohen [11] and Hopfield
[7]). The vectors to be stored are set as equilibria of the network. Giving a noisy
version of any of the stored vectors as the initial state of the network, the network
state has to eventually reach the equilibrium state corresponding to the correct
vector. An important requirement is that these equilibria are asymptotically stable;
otherwise, no attraction to the equilibria will take place. Unfortunately, there is
a limitation on the set of vectors that can be stored, as given by the following

theorem.

Theorem 2.1: If W is symmetric, f(u) is monotonically increasing, f(u) is strictly

convex downwards for v > 0 and strictly convex upwards for u < 0, and f(0) =0,
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then if x* is a stored memory, no other memory y* can be stored with

INEIET sign(y; ) = sign(z;), all 7 such that 27 # 0 (2.3)

4

or with

yrl < lel, sign(y;) = sign(z]), all i, (2.4)

where )
1 ifz >0,
sign(z) =40 ifz =0,
-1 ifz < 0.
Proof: Assume the contrary. First assume that there are two memories x* and y~*
satisfving (2.3). Both x™ and y* are stored memories if and only if they are asymp-
totically stable equilibria of the system. We study the stability of the equilibrium

x” by linearizing (2.1) around the equilibrium (see Guckenheimer and Holmes [12}),

to obtain
dn
b, P
di 17,
where 7 = u — u*, x* = f(u*) and J is the Jacobian matrix, the (i,;)"" element

being g—gi, evaluated at u*, where h; is the i'* element of h (of Eq. 2.1). It can be
3

evaluated as

J= I+ WA(u")

where I is the identity matrix and A(u*) is the diagonal matrix whose i*" diagonal
element is f'(u?). The equilibrium u”* in the non-linear system (2.1) can be asymp-
totically stable only if J has eigenvalues of negative or zero real values (see [12]).
The eigenvalues of J are identical to those of [—~I + AV YWAY? (u* )] because
if A is an eigenvalue of J, then

det[~I+ WA(u*) — M| = 0.

Upon multiplying both sides by det {Alfzg(u* ) det gA"l/z(u*)E, we get

i

det [T+ AY2(u")WA?(u™) - M| =0,
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using the fact that f is monotone increasing and hence A(u™) is non-singular.
The matrix [~I + AY?(u*)WA!2(u")] is negative semi-definite if and only if
~A 7 Hu) + VV is negative semi-definite because for any vector z;, the quadratic
form z] [~A7'(u") + Wz equals z; —I+ AY2(u)WAY2(u")|z,, where z, =

A~Y2(u*)z;. By the mean value theorem [13], there exists a point x on the straight

line joining x* and y* (x # x™, x # y”) such that

. . . R Ay* —x)Th(f(x
(" =) Th[E (3]~ xR ) = |2 R e

(where h is as defined in (2.1)). But hf"l(y"} = h{f”l(x*)j = 0, since they are

equilibria. We obtain

(v =x") T [=AT ) = W (y" —x") =0, (2.

N
ot
A S——_

where u = f 7 (x). We observe that x, being on the line joining y* and x~, sctisfies

conditions

il > |zt sign(zr;) = sign(x7), all i such that 7 # 0.
i 71 g g 1 1

*

Because of the strict convexity assumption, f'(u;) < f'(u]

) when |u;| > ju7. The

left hand side of (2.5) can be written as
* *Tg' - ; 3 * N (y:"$:)2 o * ERVRE *
(" =x)T[FATH W Wy =) = =) st ) ) wi(ul =) (5 —=3).
iog

Whenever y} is strictly larger than z7, then f'(u;) < f'(u}), and hence the right

hand side of the previous equation is strictly less than

"Z(yz‘x "'ZZ% — 2y —a3),

which in turn is less than or equal to zero because the Jacobian at u” has negative

*

or zero eigenvalues. Hence Equation (2.5) has no solution except when x* = y~,



31

thus contradicting our assumption. The proof that there is no stable equilibrium
vy~ satisfying (2.4) follows by the argument that if this fact were not true, then by
interchanging x™ and y~, condition (2.3) would be satisfied, which we proved to be

impossible. ®

Figure (2.1) illustrates the limitations given by Theorem (2.1 for a two-
dimensional case. Figure (2.1a) considers the case when one of th memories x
has no zero component. The "forbidden regions,” or regions where 10 other mem-
ory can be stored, are shown to be the two squares below and t the inside, and
above and to the outside of the existing memory. Figure (2.1b) sl ows the case when
one of the components of the existing memory is zero; then thy: forbidden region is
now, in general, larger and extends over two quadrants. Figy fe (2.1c) illustrates an

interesting corollary of the theorem, described as follows:

Corollary: If the origin is asymptotically stable t}.en no other asymptotically

stable, equilibrium can exist.

The convexity requirements on f of Theorem 2.1 are satisfied by the most
commonly used forms of sigmoid functions, such as f(u) = tanh(w) and f(u) =
(2/7)tan"!(u). Even the absence of these requirements will change only the form

but not necessarily the severity of the limitations.

The limitations given by Theorem 2.1 indicate some of the difficulties en-
countered in designing analog associative memories. There are sets of vectors that
cannot be stored in the form of asymptotically stable equilibria. To solve this prob-
lem, we use an architecture consisting of both visible and hidden units. The outputs
of the visible units correspond to the components of the stored vector. The purpose
of the hidden units is to relieve the limitations on the visible components of the

asymptotically stable equilibria. If the outputs of the hidden units are designed,
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Figure 2.1: An illustration of the limitations of the Hopfield continuous model on
the set of memory vectors that can be stored. Consider a two-dimensional case.

x represents one of the stored vectors. The hatched regions, or the "forbidden
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regions,” represent the regions where no other memory can be stored.



33

for example, to have some components of a different sign for every different stored
vector, then Theorem 2.1 does not provide any limitations on the freedom of choos-
ing the sets of memory vectors to bé stored (of course, under the assumption of
having enough hidden units). We will not restrict ourselves to a symmetric weight
matrix. Our proposed model is as follows. We have a number of hidden layers and
one visible layer, arranged in a circular fashion, with connections running in one
direction from one layer to the next, as shown in Figure (2.2). No connections exist
within each of the layers. The advantage of such an architecture is that it lends
itself to a simple design procedure, as we will see in the next section. It is worth
noting that such an architecture has been considered before, for various purposes.
In Chapter 4 we have analyzed oscillations and phase locking phenomena for such
an architecture. Kosko [14],[15] considered the special case of a two-layer network

and proposed a model for hetero-associative memory for binary vectors called the

Balanced Associative Memory (BAM), using discrete neurons.

Let x(! be the output vector of layer [. Then, our model is governed by the

following set of differential equations,

du® I 1,1-1) I~1 ! I i
= —ul 4 w1y 4 g x = f(ul), (2.6)

where W(H!=1) is the N;x N;_; matrix of welghts from layer [—1 to layer [ (VVU"0> =
WL 00 = o8 9 is the threshold vector for layer [, f is a sigmoid function
in the range from —1 to 1, and L is the number of layers. The layers from 1 to L —1

represent the hidden layers, whereas layer L represents the visible layer.

We would like each memory vector to correspond to the visible layer com-
ponent of an asymptotically stable equilibrium of the network. We have given a
motivation for the choice of the architecture by saying that for this choice Theorem
2.1 does not provide any limitations on the sets of memories that can be stored.

However, it has to be shown that no limitations of any other kind whatsoever will be
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visible
hidden layers layer

Figure 2.2: The proposed architecture for the new associative memory

encountered. The following theorem gives conditions for the stability of equilibria

in the considered architecture.

Theorem 2.2: An equilibrium point

u*
u” = :
D
satisfying
.*'\Yg
Sasl @) <1, i=1alN (27)
1=1

for some [ is asymptotically stable, where a;; is the (i,j)th element of a matrix A,

given by

A = WEEDA Dy L WEDA (YWD A (u By A (e yw Y,
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Proof: We linearize (2.6) around the equilibrium u*. We get

dn
i R S
FrE

where n = u — u* and J is the Jacobian matrix, evaluated as

0 0 ... 0 WELA (urD))
WEDA (w0 ... 0 0
J=-1+ . . . .
0 0 ... WELDA(u(E-D) 0

. . . . T
Let X be an eigenvalue of J, associated with eigenvector v = (v, . vE)", where

v; represents the component corresponding to layer [. Then,
Vv(l,L)A(u*(L))vL — (/\ + l)vla

Wr(z,l)A(u*(l))vl — ()\ -+ 1)V2,

W(LaL“UA(u*(Lwl))VL_l = (A + l)VL7

from which we obtain

AA (WD), = (A + D

By Gershgorin’s Theorem [16], any eigenvalue 3 of AA(u*V) satisfies one of the

following N; inequalities:

Bl <D laislf (), i=1, N

7

Since A = —1 + 8L then if Inequalities (2.7) are satisfied, A will have a negative

real part. Thus, the equilibrium u* of the system (2.6) is asymptotically stable. m

Thus, if the neurons of one of the hidden layers are driven far enough into the
saturation region, then the corresponding equilibrium will be stable because then,
f'(u;) will be very small, causing Inequalities (2.7) to be satisfied. This provides a

motivation for the learning algorithm, which is described in the next section.
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2.3 TRAINING THE NETWORK

Let y(m), m = 1,..., M be the vectors to be stored. Each y(m) corresponds
to the visible layer component of an equilibrium. Let the equilibrium be denoted

by x(m), where
X(l)(m)

x(mj =1 )

xL)(m)
where clearly XU’)(?’H) = y(m). We choose arbitrarily one of the hidden layers,
say layer A, and design the network such that the equilibrium values of that layer

25

27/, i=1,..,Ng are very close to 1 or -1. This means that the neurons in that

layer are saturated, and we will therefore call this layer the saturating layer. As-
suming that the outputs of the neurons in the saturating layer are close enough to
1 or -1, then Theorem 2.2 guarantees the asymptotic stability of the equilibrium.
Enforcing the saturation of the units in the saturating layer is quite essential, since
simulations show that when ignoring stability requirements, the equilibrium is prob-
ably unstable. Since we have an asymmetric network, there is nothing to rule out
the existence of limit cycles. Also, we can have spurious equilibria, i.e. equilibria
that correspond to no memory vector. However, if these unwanted limit cycles and
spurious equilibria occur, then they would be far away from the memory vectors

because each memory vector is guaranteed to have a basin of attraction around it.

The design of the memory is as follows. For each memory vector y(m)
we choose an arbitrary target vector z(m) for the saturating layer, of the form
(£1, ...,il)T. A simple way is to generate the z;(m)’s randomly. We will call the

z(m)’s the saturating layer vectors.

Let us write the equations for the equilibrium of (2.6). Equating the right

hand side to zero leads to:

xD(m) = W=D () 4 gDy, l=1,..,L. (2.8)
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Figure 2.3: The equivalent feedforward network

The problem can be reduced to training an equivalent feedforward network (see
Fig. (2.3)) to map input vector y(m) to output vector y(m) for m = 1,..., M.
This becomes clear if we compare the equation of the equilibrium for our feedback

network (Eq. (2.8)) with the equation for the output of the feedforward network:
y O (m) = f(WhEDy U=y gty [=1,..,1L,

where the input y(®)(m) is y(m) (y"(m) is the output of layer [ for the feedforward

network).

We define the two error functions E; and FE»,

(K
y' ) (m) — a(m)|,

M
By =Y Ei(m),  Ei(m)=|

M
By =Y Ea(m),  Ea(m) = [y (m) - y(m) "
mz=]
Training is performed by applying a backpropagation type algorithm twice (see the
description of the backpropagation algorithm in Section 1.1). First we train the
layers 1 to K to map the input vector y(m) to the saturating layer vector z(m), by

minimizing E; for the feedforward network. Then, we train layers K + 1 to L to
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map the output of the saturating layer KA to the output vector y(m), by minimizing

E,.

We note that we use a slightly modified version of the backpropagation algo-
rithm for training the layers 1 to K. A standard backpropagation algorithm will
have a very slow convergence because the targets are 1 or -1. Therefore, in our
method we used a stopping criterion as follows. If the output signs match the tar-
get signs and the outputs are at least some constant 3 in magnitude (a typical value
3 = 0.8), then we stop iterating the weights. We then multiply the weights and
the thresholds of the saturating layer by a big positive constant in order to drive
the outputs of the saturating layer as close as possible to 1 or -1. Let ¢; and ¢; be
two small, positive constants (typical values: ¢; = 0.01 and e; = 107°), and let p

denote the step size. Our algorithm is as follows:

1) Generate the initial setting of the weight matrices W{'=1(0) and 6(9(0)

randomly, { = 1,..., L.

2) Apply the steepest descent update (the delta rule, refer to Section 1.1) for E;

for the first K layers,

OF,

(Li-1) (LiI=D) oy _ 71 = ’
W ( )—W (TL 1) p@W(u‘l)’ l-—l,...,A’
oF
9<l>(n) :6(!)(n—~1)“ﬁ5é(—;>> l=1,.,K,

until sign {yEK)(m)j =sign [z;(m)], and iyEK)(m)[ > (3 for all 7 and m.

3) Set
WEE-D oy (KE=1) 1)

giE) CQ(K)(n},

where ¢ is a positive constant such that }yEK)(m)I > 1 —¢; for all  and m.
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4) Apply the steepest descent update for E, for layers K + 1 to L,

OE
(gsl_l) ; — 7‘(*’»!_1) - - . 2___, e 4 e i
% (n) =W (n—1) P WL =K +1,..,L,
A nE
60 (n) = 60 (n —1) — pva%(%—, l=K=+1,..,L,

until By < e;.

Remarks:

a) It is important to note that for training layers A + 1 to L, the input vector

to layer K + 1 is, of course, taken to be the output vector of layer A’, not the

target vector z(m) of the saturating layer, because they are slightly different.

After learning has been completed, the stabﬂity of the equilibria has to be
checked, by simulating the set of differential equations, or else by checking
Ineq. (2.7). If some of the equilibria are unstable, then this means that
we have not chosen a small enough ¢;. In our simulations we have never

encountered an unstable equilibrium when ¢; = 0.02.

We have applied also the other variant of the backpropagation algorithm,
where we update the weights after presenting each training input instead of
after cycling through all the training inputs (see Section 1.1). We observed

that it generally converges faster.

Let W and 6 represent respectively the weight matrix and threshold vector at
which Equations (2.8) are satisfied. Practically, the learning algorithm might
result in an output of the feedforward network slightly different from y(m),
when inputting y(m), and a parameter set W' and 6’ slightly different from
W and 8, respectively. We assert that this produces only a slight displacement

of the equilibrium of the feedback network. This is because the equilibrium
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is stable and hence the corresponding Jacobian is non-singular (for example,

there will be no bifurcations at which the equilibrium might disappear).

e) A very important remark: Once learning is completed, retrieving a memory
vector y(m) using a noisy version y'(m) is performed as follows. The initial
condition for the visible layer is set as y'(m). The initial conditions for the
remaining layers are set as

I3

X = Wm0 =10 Uty l=1,..,L—1,

where x(% = x(5) = y'(m). A practical way to load the initial conditions is
by clamping y'(m) shortly onto the visible layer and allowing the network to
evolve according to its equations of motion (2.6), while the connections from

the last hidden layer to the visible layer are temporarily switched off.

f) The presented training method applies also to the discrete-time continuous-

output update formulation, i.e. the system given by
xW(t + 1) = fWEHLTT0 gy gy l=1,..,L.

The equilibria for such a system are equivalent to those of the continuous-time
system (2.6). Also, we can show using a theorem analogous to Theorem 2.2
that if one of the hidden layers is heavily saturated, then the corresponding
equilibrium is asymptotically stable. This system has vet to be tested by

numerical simulations, to verify its global stability properties.
2.4 HETERO-ASSOCIATIVE MEMORY

Any auto-associative memory can be easily extended into a hetero-associative
memory by applying an appropriate linear transformation at the output. We present
a more direct way. Let (c¢(1),y(1)),....,(c(M),y(M)) be the pairs of stored associ-

ations, and z(1),...,2(M) be the corresponding saturating layer vectors. We have
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at least 3 layers in our loop architecture: one saturating layer K;, and two layers
Ky and L, which upon convergence are to carry ¢(m) and y(m), respectively. In
a way, this is a multi-layer analog extension of Kosko’s two-layer hetero-associative
BAM [14],/15]. Consider also an equivalent feedforward network as in the previous

section. Let

M
Ey =Y Ei(m),  Ei(m)=y™(m)—a(m)|’,

mz=]

M
Er =Y Es(m).  Es(m) = y"(m) - c(m)]?,

m==1

M
Ey =Y Es(m), Es(m) = [y'(m) - y(m)|]>.

me=1

Learning is performed according to the following straightforward extension of the

learning algorithm of the previous section:

1) Generate the initial setting of the weight matrices W-=1(0) and 6(9(0)

randomly, [ = 1, ..., L.

2) Apply the steepest descent update for Fy for the first A layers,

JE
- =107, 1 — 4
W(g 1)(?1):W(” 1 (nwl)*pW, Z'—lw..,hl,
) ar
1 { 1 -
9( )(n) :6‘2”(71"1)*‘,Om, l= 1,...,_[11,
(K1) 1 (K1)

until signly;” (m)] =sign[z;(m)], and |y;" /(m)| > 3 for all i and m.

3) Set
WKL E=1) _ CW(Kl,Krl)(n)

9‘:1{1) — CQ(Kl)(n)’

where ¢ is a positive constant such that {y§K1>(771)§ > 1 —¢; for all 7 and m.
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4) Apply the steepest descent update for F; for layers K1 + 1 to K5,

oF
Wr(l,l-*l)(n) — W(l,l—l)(n — 1) — 'OW‘ l fad ]\—1 —’» 17,_,’]{2’
o ) JE .
89 (n) :9“3(72.«1)—;955%, =K +1,.., Ko,

until By < €9.

5) Apply the steepest descent update for E3 for layers Ky + 1 to L,

0E

(11— - 3 -

W\é’,l 1)(7?,) :W(\qu 1)(72*1)—p5mq l: ]\2 +17"‘7L7
0 0 OE; -
¢ (71) = (72'“1)*",05@7 [ = AQ"%—];,....,L,

until E3 < €5,
2.5 A BINARY ASSOCIATIVE MEMORY

In case of a binary associative memory, a method simpler than the one pre-
sented in Section 2.3 is even possible. Let the memory vectors y(1),...,y(M) be of
the form (+1,..., :izl)T. At an equilibrium corresponding to some memory vector
y{(m), the visible layer is heavily saturated, and therefore by Theorem 2.2 the equi-
librium is stable, even if we do not have a saturating hidden layer. A saturating
hidden layer is therefore not needed, and the problem reduces to applying a back-
propagation algorithm only once on the feedforward network of Fig. (2.3). The set
of input vectors are y(1),...,y(M), and the corresponding target output vectors at

the last layer L are again y(1),...,y(M). Let

M
Ep =Y [y (m) - y(m)|*.

m=1

The algorithm is as follows:

1) Generate the initial setting of the weight matrices W(-=1)(0) and 6(Y(0)

randomly, [ = 1, ..., L.
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2) Apply the steepest descent update for Ep for all L layers,

X OF
— [ . \ B
w ! 1)(71) - wi 1)(n —1) - pW? l=1,..,L,
(1 IEp
9(1)(?1):9\ )(n——l)~pm. ZZI.L,

g . r (L
until sign y; )(

e

m)| =sign|z;(m)], and !ygm(m)j > 3 for all ¢ and m.

3) Set
W(L,L*l} — er(L,L——l)(n)’

L) CB(L>(n,),

where ¢ is a positive constant such that ‘y:Lj(m) > 1 — ¢ for all 7 and m.
2.6 THE CAPACITY OF THE NETWORK
On the Capacity of Continuous-time Networks

For the Hopfield network, described by Eq. (2.1), it was shown by Guez et -
al. [17] that there are at most 3" equilibria. We can show that we can obtain
2™V asymptotically stable equilibria by considering a diagonal weight matrix with
sufficiently large entries. For the architecture considered, it is possible to show that
the number of asymtotically stable equilibria we can achieve is at least 2 to the
power the number of neurons in the smallest layer. However, the issue here is not
so much how many equilibria we can have, as much as how programmable their
locations are. Consider a general fully connected continuous Hopfield network (Eq.
2.1) with I visible neurons and J hidden neurons. The network should work as an
associative memory, in the sense that each memory vector y(m) corresponds to an
equilibrium. Let M be the number of memory vectors, and N be the total number

of neurons (i.e. N = I+ J). Then we have MI equations for the equilibria, while
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there are (I + J)({ + J + 1) degrees of freedom, corresponding to the weights and

the thresholds. Thus the capacity is at most

I+ I+ J+1)

- . (2.9)

The set of vectors that can be stored if M is greater than (2.9) represents the range
of the mapping, which maps (W, 8) to (y(1),....y(M)) if y(1),...,y(M) are stable
equilibria of the network, and therefore it is a number of surfaces of a lower dimen-
sion embedded in the space of all possible sets of M memory vectors. Therefore, if
M is greater than (2.9), then the fraction of all possible sets of vectors that can be

stored is virtually a set of measure zero.

Consider a fully connected network with no hidden neurons. Apart from the
constraint shown in Theorem 2.1 on the set of vectors that can be stored, it follows
from the previous argument that only a zero-fraction of the set of all possible M/
vectors can be stored, 1f M > N + 1. Thus, there is an abrupt change when M

exceeds V+1. In case of a symmetric matrix, the abrupt change occurs at (N +3)/2.
The Capacity of the Proposed Model

An expression for the capacity is difficult to obtain for the general multi-layer
network. The two-layer case is of special interest because of its simplicity and the
adequacy of its capabilities. Let N; and N, be the numbers of neurons in the
hidden and the visible layers, respectively. Using an argument similar to the one
presented in the previous subsection, we can conclude that the capacity cannot
exceed (2NN, + Ny + N3)/N,, which is approximately 2N, for large N; and N,.
Of more interest is to obtain a lower bound on the capacity, since we are interested
more in what tkhe network can do rather than in what it cannot do. The following
theorem gives a lower bound. First, define the augmented memory vectors and the

17 y(nT] " and

augmented saturating layer vectors as, respectively, {y(l)Tﬂj
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Theorem 2.3: A two-layer network is guaranteed to store any set of N; + 1 vectors.

Proof: Sufficient conditions for the storage of the memory vectors are:

Wz - v, (2.10)
wRgly - p, (2.11)
and
Ny
Z!aiﬁf'(uj(m)) <1, i=1,...,Ng, {2.12)
j=1

where Z is the matrix whose columns are the augmented saturating layer vectors,

Y is the matrix whose columns are the augmented memory vectors, V and F are

the matrices given by

M T (M)
V= : : :

] e £ ()

=) o ()]
F = : S :

F )] oo T e (M)

wj(m) = f7'(z;(m)), and a;; is the (1,5)"* element of the matrix A, defined as
A= W(z‘@)A{f‘l(y(m,));iW(?‘U. Equations (2.10) and (2.11) guarantee that the
memory vectors are equilibria, whereas Inequalities (2.12) ensure their stability,

according to Theorem 2.2.

Let Z be given by the following (N; + 1) x M matrix:
1 -1 -1 ... =1
11 -1 ... -1
Z=11 1 1 ... =1
1 1 O |
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Equation (2.10) represents N, sets of linear equations in the weights and the
thresholds. A solution for {\V(z‘ljw(z:’g exists if M < N; + 1, since the columns of
Z are linearly independent. Consider Equation (2.11). It is enough to prove that

there is a matrix W and a threshold vector 8 satisfying

.

sign Wy(m) + 92 = sign|z;(m)] all 1, m, (2.13)

El

because one can then take W(''?) = oW, and 8\!) = af, where a is big enough to
drive the outputs of the hidden units far into the saturation region, i.e., very close
to -1 or 1. It is possible to find a W and 6 to satisfy Equation (2.13), as follows.

One can take W = (wl.../lw)?, where w is a column vector satisfyin
{orei ying
wiy(i) #wly(j)  fori#j. (2.14)

Such a w exists for any set of distinct vectors y(1),...,y(M), because otherwise w

can be perturbed to restore (2.14). Rename the indices of the memories such that
wly(1) > wliy(2) > ... > wly(M).
We choose the 8;’s, such that

wly(1) > =0 > wliy(2) > =y > ... > wly(M) > —6y > ... > Ox,.

We can see that this choice satisfies (2.13). Now we show that taking « large enough

will satisfy Ineq.(2.12). We take the limit as o — oco. We get

Ny Ny 4€w2au1(m)
H i 1 ] .
QILIT;OE 1{a2]§af (au](m)) - (}}-‘PH;O E 1£al? O:(]_ + e~—2ozuj{m})2 - O < 17
j= i=

where we used the sigmoid function defined in (2.2). This completes the proof that

N3 + 1 memory vectors correspond to asymptotically stable equilibrium points.

Thus, the storage capacity equals 1+number of hidden neurons. For the

network to achieve this capacity, a particular choice of the saturating layer vectors
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has to be taken. In our algorithm the saturating layer vectors are specified by the
user, as generating them randomly, for example, realizes the distributiveness of the
memory as well as results in good retrieval accuracy. The question is whether for
any choice of saturating layer vectors the capacity will remain the same as Ny + 1.
The answer turns out to be negative, and the capacity can be lower in this case, as

will be shown in the next theorem.

Theorem 2.4: If the augmented memory vectors are linearly independent, and
the augmented saturating layer vectors are linearly independent, then a two-layer

network is guaranteed to store min{N;, Ny) + 1 vectors.

Proof: The memory vectors correspond to the stable equilibria if conditions (2.10)—
(2.12) are satisfied. Eq. (2.10) has a solution for W(*1) since M < N, +1 and the
columns of Z are linearly independent by hypothesis. Also, Eq. (2.11) has a solution
for W12 because M < Ny + 1 and the columns of Y are linearly independent,
again by the hypothesis of the theorem. Inequalities (2.12) are satisfied by choosing
the magnitudes of the elements of F large enough and using an argument similar

to that in the proof of Theorem 2.3. »

If M > min(N;,N3) + 1, then Eq. (2.10) and (2.11) will constitute more
equations than unknowns. Hence, with a random choice of the saturating layer
vectors, there is a small chance for being able to store a given set of vectors. We
must caution, however, that the previous theorem gives only the number of vectors
that can be stored when the saturating layer vectors are given. It does not guarantee
their storage when using the learning algorithm presented in Section 2.3. This is
because it is possible to get stuck in a local minimum of the error function. Although
there is a simple way to satisfy the conditions (2.10)—(2.12), sufficient for the storage

of the memory vectors, by simply solving the linear Equations (2.10) and (2.11),
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we favor using the learning method for the following reason. If we are not at full
capacity, then Equations (2.10) and (2.11) do not have a unique solution. Specifying
a solution arbitrarily by, for example, randomly generating the values of the extra

degrees of freedom has led to results quite inferior to those of the learning method.
2.7 IMPLEMENTATION

The theoretical results presented in the last section indicate some of the ca-
pabilities of the new associative memory. However, some of the issues remain yet
unresolved by the theoretical analysis, such as the extent of the existence of limit
cycles and spurious equilibria, and the shapes of the basins of attraction. We have
therefore resorted to numerical simulations. In the numerous experiments we have
performed we have never encountered limit cycles. Spurious equilibria exist, but
their number 1s high only when we are close to full capacity. Concerning the basins
of attraction, they are required to have balanced shapes (for example, no memory
vector has a too small or a too large basin of attraction). We have tested this by
performing the following experiment. We have a two-layer network with two hidden
neurons and two visible neurons. The two vectors (—0.5,—~0.5)T and (0.75,0.25)7

are stored. Figure (2.4) shows the resulting basins of attraction.

To test the error correcting capability of the model, we have performed the
following experiment. A two-layer network is considered with 10 neurons in the
hidden layer and 10 neurons in the visible layer. Five randomly generated memory
vectors are considered, with components ranging from -0.8 to 0.8 (if we have com-
ponents close to 1 or -1, then convergence in learning can get very slow because we
are close to the saturation region). Thus, we are operating at about half capacity.
After learning, the model is tested by giving memory vectors corrupted by noise
(100 vectors for a given variance). Fig. (2.5) shows the error fraction versus the

signal-to-noise ratio. The model is also tested for pattern completion ability. Com-
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B \
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Figure 2.4: A demonstration of the basins of attraction for a network with two
hidden neurons and two visible neurons, after training the network to store the

vectors 4 = (0.25,0.75)7 ans B = (-0.5,-0.5)7T.
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ponents of the patterns are chosen randomly and set to zero. Fig. (2.6) shows the
error fraction versus the number of missing components. The capacity according
to Theorem 2.4 for the two-layer network is 11. We have done several experiments
with 11 memory vectors. In only a few instances did learning succeed. The reason
1s more the fact that the augmented saturation layer vectors turn out to be linearly
dependent, rather than that the learning algorithm fails to converge to the global
minimum. We have also done several experiments with 10 memory vectors. In
all our trials learning succeeded. However, the results with 10 memory vectors are
quite worse than those in the case of 5 memory vectors. The main reason is that the
number of spurious equilibria in the 10 vector case is larger. We have observed in
general that when operating close to full capacity, the number of spurious equilibria
increases. A reasonable strategy is therefore to operate at half capacity (or less),
where the number of spurious equilibria is not high. We performed another exper-
iment using a four-layer network. We have 10 neurons per layer, and 5 memory
vectors. The results are shown in Fig. (2.7) for the case of having noisy memory
vectors, and in Fig. (2.8) for the case of having memory vectors with missing com-
ponents. We observe that the results are close to those of the two-layer network.
For high signal-to-noise ratios, the two-layer network achieves higher recall accu-
racy, whereas for low signal-to-noise ratios the four-layer network performs better.
We were able to store up to 13 memory vectors using the four-layer network. As
in the case of two-layer network, close to the capacity, the performance is not very

good.

Finally, the storage capacity of the network for binary vectors is tested. We
implemented the method described in Section 2.5. A two-layer network is consid-
ered, having 10 neurons in each layer. Of course, in this case there is no saturating
hidden layer. Again, 5 memory vectors are considered. The pattern completion

ability of the network is tested, and Fig. (2.9) shows the result. We observe that
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the performance is better than in the case of storing real valued vectors, because
the case of binary vectors is to a greater extent below its capacity, which is here

quite higher than in the case of analog vectors.

2.8 CONCLUSION

We have developed a new associative memory model for real valued vectors,
using the continuous feedback neural network model. We have considered an ar-
chitecture consisting of a visible layer and a number of hidden layers connected in
a circular fashion. Training is reduced to the problem of training a feedforward

network, and therefore the standard backpropagation routines can be used.

The proposed associative memory is of a distributed nature, and therefore a
localized fault in one of the neurons will not necessarily “erase” one of the memories,
unlike some of the associative memories, for instance, those of the winner-take-all

type (see Lippmann’s Hamming Net [18], and Majani et al. [19]). The strength of
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the new method is that it can cope with constraints on the architecture, like fan-in

and fan-out limitations, or locality of interconnections. In contrast, most of the

other associative memory models do not possess such a flexibility, and, for example,

they require full connectivity. Another advantage of the new memory is that it can

store any given set of vectors. For most of the distributed associative memories

(i.e.,

not counting winner-take-all type), such as those using the Hopfield binary

model, there are sets of vectors that cannot be stored (see [20]).
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CHAPTER 3

AN UNSUPERVISED LEARNING
METHOD FOR NEURAL NETWORKS

3.1 INTRODUCTION

One of the most important features in neural networks is its learning ability,
which makes it in general suitable for computational applications whose structure
is relatively unknown. Pattern recognition is one example of such kinds of prob-
lems. For pattern recognition there are mainly two types of learning: supervised
and unsupervised learning (refer to Duda and Hart [1]). Supervised learning means
that examples of the patterns as well as their class identities are known. Unsuper-
vised learning, on the other hand, means that only examples of the patterns are
available. The information about the class membership of the patterns is not given,
either because of lack of knowledge or because of the high cost of providing class
labels associated with each of the training patterns. We might wonder how we can
hope to design a pattern classifier without the knowledge of the class membership
of the training patterns. Fortunately, in typical pattern recognition problems pat-
terns from the same class tend to have similarities, whereas patterns from different
classes have relatively large differences. Therefore, a tentative way for designing the

classifier is to detect the groups of patterns possessing similarities.

A pattern is represented by a (say, N-dimensional) vector of values represent-
ing features extracted from the pattern, the simplest of which in case of a time-signal
are its samples at regularly spaced time instants, or in case of an image, are the
pixel values. Thus, a pattern represents a point in an N-dimensional space. Con-
sider a set of training patterns. The pattern vectors tend to form clusters of points

in the N-dimensional space, a cluster for each class. This is because patterns from
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the same class tend to be similar and therefore they will be close in distance in the

N-dimensional space. Therefore, detecting the clusters is the first step in typical

unsupervised learning methods.

The clusters are usually separated by regions of low pattern density. We
present here a new method for unsupervised learning using neural networks (see
also Atiya {2]). The basic idea of the method is to update the weights of the
neurons in a way to move the decision boundaries in places sparse in patterns. This
is one of the most natural ways to partition clusters. It is more or less similar to the
way humans visually decompose clusters of points in three or less dimensions. This
way contrasts with the traditional approaches of unsupervised learning, such as the
ISODATA algorithm (Duda and Hart [1]), as well as neural network approaches
such as the competitive learning [3] and the self-organizing maps [4], whereby the
estimation of the membership of a pattern vector depends only on the the distances

between this vector and suitably estimated class representative vectors.

3.2 THE MODEL

Let x(*), ..., x) represent the training pattern vectors. Let the dimension
of the vectors be N. The training patterns represent several different classes. The
class identities of the training patterns are not known. Our purpose is to estimate
the number of classes available as well as the parameters of the neural classifier.
Let us first consider the case of having two classes. Our neural classifier consists of
one neuron (see Fig. 3.1) with N inputs corresponding to the N components of the

pattern vector x to be classified. The output of the neuron is given by
T, .
Yy = f(W X wo)a

where w is a weight vector, w, is a threshold and f is a sigmoid function from -1



to 1 with f(0) = 0; e.g.,
flu) = tanh(w).

Positive output means class 1, negative output means class 2 and zero output means
undecided. Since the output can cover the full range from -1 to 1, we can interpret
it as indicating the degree of membership of the pattern to each of the two classes.
For example, if the output is very near 1, then the pattern with high probability
belongs to class 1. An output near zero means that the pattern membership is
uncertain and the two classes are candidates with close likelihood. This type of

classifier is called fuzzy classifier.

The classifier partitions the pattern space into two decision regions: the deci-

sion region for class 1, given by the half-space {x/w?x + w, > 0}; and the decision
region for class 2, given by the other half-space {xwx + w, < 0}. The decision
boundary is the boundary between the two decision regions. It is given by the
hyperplane

wlx + Wy = 0

(see Fig. 3.2). Patterns near the decision boundary will produce outputs close to
zero, while patterns far away from the boundary will give outputs close to 1 or -1.
Assuming ||[w|| < a, where a is a constant, a good classifier is one that produces an
output close to 1 or -1 for the training patterns, since this indicates its "decisiveness”
with respect to the class memberships. Therefore, we design the classifier so as to

maximize the criterion function:
1 . 1 , 4 -
I = Sp PR ) = [ DA ),
j j

subject to ||wi| < a, where ¢ is a positive integer (for best results we take q=2).

The first term is a measure of the decisiveness of the classifier with the given test

pattern set. Regarding the second term, it has the following purpose. The first
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Fig. 3.1:The model of a first order neuron with a sigmoid-shaped function.

2
\
w-x+w, =0
decision boundary
class 2
output negative
\\ X

Y 1
A~

output positive
class 1

Fig. 3.2: The decision regions and the decision boundary of a first order neuron.
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term is maximized if the decision hyperplane is very far away from the patterns,
resulting in the output being very close to 1 for all test patterns (or close to -1
for all patterns); i.e., all patterns are assigned to one class only, which is a trivial
solution. Incorporating the second term will prevent this trivial solution because if
f(wa(j) +w,) = 1 for all j (or —1 for all j), then J will be nearly zero. However,

J is non-negative for any w and w, because of the following:

where

The inequality follows because f, the average of the outputs, is less than one in

magnitude and ¢ > 1. Then we get

| -
> UZ Fw T aeg) = f7 20

and hence the trivial solution of assigning all patterns to one class only is ruled out

because it corresponds to a minimum, not a maximum, for J.

We iterate the weights in a steepest ascent manner in an attempt to maximize

the defined measure,

Avw — oJ
W= p(‘?w
:PuZ TR+ wg) = (£ £ (W) g
and
Ao — aJ
Wy = pauy

"piifz AT 4 w,) = g(7P ] £ (D ),
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where p is the step size. The iteration is subject to the condition [[wl < a. When-
ever, after some iteration, this condition is violated, w is projected back to the
surface of the hypersphere |[w| = a (simply by multiplying by a/|wll). The term
f'(wa(j) +w,) in the update expression gives the patterns near the decision bound-
ary more effect than the patterns far away from the decision boundary. This is
because f'(u) is high whenever « is near zero and goes to zero when the magnitude
of u is large. Thus, what the method is essentially doing is iterating the weights in
such a way as to move the decision boundary to a place sparse in patterns. The
relative importance of patterns near the decision boundary increases for large a.
This is because w tends to go to the surface of the sphere ||w|| < a. Large a will
therefore result in the argument of f' being in general higher than for the case of
small a, thus resulting in a smaller strip with high f' around the decision boundary.
Of course, without the constraint w could grow in an unbounded fashion, resulting
in f(WTXU) + w,) being very near 1 or —1 for all j for most possible partitions,

and we obtain therefore possibly bad solutions.
3.3 EXTENSIONS

We have shown in the previous section a method for training a linear classifier.
To extend the analysis to the case of a curved decision boundary, we use a higher-
order neuron; i.e., the output is described by

y = flwo + Zwiécz' R Z Wiyeoip Tiy * 0t Tig ),
; i< <ig,

where z; denotes the i*"* component of the vector x and L represents the order.
Higher-order networks have been investigated by several researchers, refer for ex-
ample to Psaltis and Park [5], Psaltis et al. [6] and Chen et al. [7]. They achieve
simplicity of design while still having the capability of producing fairly sophisticated

non-linear decision boundaries.
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The decision boundary for the higher-order neuron is given by the equation
W, + Zwi$i 4o+ Z Wiyeiy iy o iy, = 0.
i i <<
The higher-order case is essentially a linear classifier applied to augmented vectors
of the form

L _L—-1 L
(1817"‘.,513]\7,"‘,171,581 £27"'7$]\;’)

(the superscripts denote here powers), using an augmented weight vector
(Wi, N, W11, W12, WNNN)-

We can therefore apply basically the same training procedure described for the
linear classifier case on the set of augmented vectors; i.e., we update the weights

according to

2
M

Awiyiy = p= S Flug) = a( 1) f (wy)et) -2l

i

2 - 11 pf
Beo = poe 37 [F(u) = aFY ) (),
J

where f(u;) is the output of the neuron when applying the pattern x; e,
‘ ) . ~ j i)
Uj = W, T Zwimgﬂ i Z Wiy eeeiy Z’Ef) ce z’ii
i iy <e<ip,

and

f= wl—Y\f(’uuj)-

M &~
2

We have considered so far the two-class case. The extension to the multi-class
case is as follows. We apply the previously described procedure (preferably the
curved boundary one), i.e., partition the patterns into two groups. One group of
patterns S corresponds to positive outputs and represents an estimate of a collec-

tion of classes. The other group $~ corresponds to negative outputs and represents
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an estimate of the remaining classes. Then we consider the group S* separately
(i.e., we use only the patterns in S for training), and partition it further into two
groups 577 and ST corresponding to positive and negative outputs, respectively.
Similarly, we partition S~ into §™7 and S™~. We continue in this hierarchical
manner until we end up with the final classifier; see Fig. 3.3 for an example. We
stop the partitioning of a group whenever the criterion function J associated with
the partition falls below a certain threshold. (One practically observes that J in
general decreases slightly after each partition until one cluster remains, whose parti-
tioning results in a relatively abrupt decrease of J.) The final classifier now consists
of several neurons, the sign pattern of whose outputs is an encoding of the class
estimate of the presented pattern. Note that the output of the neuron responsible
for breaking up some group plays a role in the encoding of only the classes contained
in that group. Therefore, the encoding of a class could have a number of “don’t
cares”. Refer to the next section for a constructive example of the extension to the

multi-class case.

3.4 IMPLEMENTATION EXAMPLES

The new method is implemented on two two-class problems and a five-class
problem. In all examples the patterns of each class are generated from bivariate
Gaussian distributions. The first example is a two-class problem with a large overlap
between the two classes. Fig. 3.4 shows the resulting decision boundary when
applying the new method using a first-order neuron. One observes that the obtained
partition agrees to a large extent to that a human would estimate when attempting
to decompose the two clusters visually. Regarding the second example, we have
two classes with equal diagonal covariance matrices whose diagonal entries differ
much, resulting in two long clusters. Fig. 3.5 shows the results of the application

of the proposed method using a first-order neuron. In another example we have a
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Fig. 3.3: An example of the hierarchical design of the classifier.
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five-class problem with the means being on the corners and the center of a square.
We used third-order neurons. Fig. 3.6 shows the results. We ended up with four
neurons partitioning the patterns. The first neuron is responsible for partitioning
the whole collection of patterns into the two groups 5™ and 57, separated by the
boundary B;; the second neuron partitions the group S into the groups $™7 and
5§77, separated by the boundary Bs: the third neuron divides S¥7 into S™77 and
ST with boundary Bg; finally, the fourth neuron partitions S~ into S~F and
S77, the boundary being Bj; (see also Fig. 3.3). One observes that the method
partitioned the patterns successfully. As a pattern classifier, the four neurons give
the encoding of the class estimate of the presented pattern. The codes of the five
classes are + + + X, + + - X, + — XX, —~ XX+ and -~ XX —, where the +’s and
—’s represent the signs of the outputs and the X' means “don’t care”. In the last
simulation experiment we test the performance of the method on a 15-dimensional
example having 30 clusters. The means of the clusters are generated using a uniform
distribution in [~1,1]**. The inputs are Gaussian and uncorrelated; the standard
deviation is 0.15 for each input and for each class. Using second-order neurons,
the new method resulted in the correct partitioning of the clusters, the number of

neurons used for the partitioning being 28.

We remark that in all the previous problems, the weights are initialized by
generating them randomly. A final important comment about the method is that
when using a high-order neuron and a constant step size, it is imperative to scale
the inputs so that their maximum magnitude is neither much higher nor much lower
than 1. The reason is that otherwise, the higher-order terms will respectively either
dominate or be dominated by the lower-order terms, and unsatisfactory results

might be obtained.
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Fig. 3.4: A two-cluster example with the decision boundary of the designed classifier.
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Fig. 3.5: A two-cluster example with the decision boundary of the designed classifier.
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3.5 CONCLUSION

A new neural, unsupervised learning technique has been proposed in this
work. This technique is based on the hierarchical partition of the patterns. Each
partition corresponds to one neuron, which is in general a higher-order neuron. The
partition is performed by iterating the neuron weights in an attempt to maximize
a defined criterion function. The method is implemented on several examples and
is found to give good results. The method is fast, as it takes typically from about
2 to 5 iterations to converge (by one iteration we mean one sweep through the set
of training patterns). Although the proposed method is prone to get stuck in local
minima, this did happén in our simulations in only very difficult problems, and this
problem could be solved by using gradient algorithms for searching for the global

maximum, like the Tunneling Algorithm (Levy and Montalvo 8)).
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CHAPTER 4

OSCILLATIONS IN NEURAL NETWORKS

4.1 INTRODUCTION

The brain is a complex dynamical system. To study its intriguing properties
and functions, one has to shed light on the possible role of the different types of
behavior of the system. A first step is to consider stable neural networks, i.e.,
networks where every trajectory tends to an equilibrium. Such networks have been
extensively studied and are now relatively well understood (see Hirsch [11). The

next step is to study networks exhibiting oscillatory behavior.

A large variety of oscillations in various parts of the brain have been discov-
ered, see for instance Freeman and Skarda [2], Freeman and Van Dijk (3], Poppel
and Logothetis [4], and the references in Pavlidis [5], to name a few. The idea of
analyzing oscillations in neural networks has gained a lot of importance after recent
discoveries by Gray et al. [6] and Gray and Singer [7] (see also Eckhorn et al. [8]),
which indicate that oscillations seem to play a role in the extraction of high level
features from the visual scene. Before explaining these discoveries in detail, we will
give a short introduction about the vertebrate visual system (see also Kuffler et al

[9])-

The visual system is one of the most studied sensory systems in the vertebrate
brain. It consists of several layers. The first few layers are responsible for extracting
several simple features in the visual scene, for example, the detection of edges
and the detection of motion. Subsequent layers extract progressively higher level
features. The outputs of these processing stages are pieced together at higher

centers of the brain, to produce such high level tasks as the perception of objects,
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the understanding of the visual scene, and the understanding of motion in the scene.
The first few processing stages are relatively well understood (at least their overall
functionality, but maybe not so much the details of how the neural responses are
generated by the interactions between the cells). On the other hand, sufficient
understanding of the deeper processing stages is still lacking. The first stage in the
visual system is the retina. Upon the presentation of a visual stimulus or input,
the photoreceptor cells absorb light and produce a proportional response. The
subsequent layers in the retina process the visual signal further, and the output is
relayed via the optic nerve to the so-called lateral geniculate nucleus (LGN). The
optic nerve consists of a bundle of about a million axons of the cells of the last layer of
the retina, the ganglion cell layer. The initial processing performed at the retina has
been tested by stimulating the retina with a variety of patterns of light of different
shapes, sizes, and colors. It has been found that the retinal ganglion cell responds
best to a roughly a circular spot of light of a particular size and a particular part
of the visual field. (The particular part of the visual field stimulating a particul:

cell is called the receptive field of the cell.) The LGN is another processing station,
whose output goes to the primary visual cortex. From there, the output goes to
further destinations such as neighboring cortical areas. There are also feedback
connections from the primary visual cortex to the LGN. The LGN also responds
mainly to circular spots of light. On the other hand, the primary visual cortex is
activated by more complicated patterns. There are two types of cells: simple and
complex cells. A simple cell is usually tuned to respond best to a light bar with a
particular width and length, and with a particular orientation. The cells are usually
arranged in columns; each column corresponds to a particular position in the visual
scene. Each column consists of cells, each being tuned to detect a light bar with
a particular orientation. The complex cells are specialized to detect moving light

bars. Each complex cell produces strongest activity if a light bar with a particular
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orientation, and moving in a particular direction is presented in the appropriate

position of the receptive field.

The discoveries of Gray et al. have been made using multi-unit recordings from
the cat primary visual cortex. (Multi-unit recording is a way to record the activity
of groups of neurons; a detailed discussion of this method is given next chapter.)
Upon the presentation of a moving light bar of suitable orientation and direction,
populations of adjacent neurons within a cortical column exhibit an oscillatory
response with a frequency of 40-50 Hz. The interestine fact is that zero phase
locked oscillations could occur in two remote columns of non-overlapping receptive
fields with similar orientation preferences, as much as 7 mm apart. When two short
light bars moving in opposite directions are presented as stimuli in the receptive
fields of the two cortical sites, then oscillations occurred, but no synchronization is
observed. In contrast, when an elongated light bar covering the two receptive fields

is presented, the two sites engage in synchronous oscillations.

Thus it seems that synchronous oscillations are a means of linking related
features in different parts of the visual scene. It serves as a way for coding global
features of the scene. We therefore believe that feedback signals from higher centers
of the brain are also involved. The stimulus-specific phase lockings discovered could
be the visible part of a more complex coding mechanism for high level features in the
visual scene involving all parameters of the oscillations such as phase, frequency,
and amplitude. A possible mechanism is the labeling hypothesis, closely related
to several previous investigations, for example, by von der Malsburg [10],{11], and

von der Malburg and Schneider {12], Abeles [13], and Crick [14]

I

In the labeling
hypothesis neighboring groups of neurons are labeled by certain labels, such as the
phase of the oscillation (frequency and/or amplitude). These labels reflect different
properties of the image, and the computations involved are the interactions between

the labels of the different groups. For example, an image could be segmented by
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attaching a specific phase to the oscillations of aggregates of neurons associated with
each object. (Image segmentation means partitioning the image into regions, each
associated with a meaningful object in the scene.) Another example of the labeling
hypothesis is to have a frequency of oscillation expressing the speed of motion for the
groups of neurons associated with each moving object in the scene. (In fact, Eckhorn
et al. [8] observed that the frequency of oscillation increases with the increase of the
speed of the moving light bar.) Baldi et al. [15] show how a two-dimensional field of
coupled neural oscillators can be partitioned into patches of roughly the same phase.
Some other processing involving other layers with feedback might adjust each patch
to the site of one of the objects in the scene, thus leading to the segmentation of the
image. In this chapter we are going to study oscillations in various neural network
architectures (see also Baldi and Atiya [16]). We will investigate conditions for
phase locking of an aggregate of neurons, and we will study how a stimulus applied

to two populations of neurons can lead to 0-phase locking.

4.2 THE MODELS

To study oscillations and phase locking phenomema, it i1s essential to use
a model that matches reality as closely as possible. However, because of lack of
sufficient biological information (for instance, detailed information about the con-
nectivity), it makes not much sense at this stage to use such detailed models as
the one based on Hodgkin-Huxley Equations [17] (the Hodgkin-Huxley Equations
are a detailed model for the neuron, explaining the spike generation and propaga-
tion process). Also, too much detail and complexity in a model might obscure the
underlying principles and mechanisms of oscillations. We are interested in simple
and general robust principles, which can serve as guidelines also in studying other
oscillation and phase locking phenomena detected in the brain. We have therefore

decided to use the Hopfield continuous model [18]:



N
= —— + > wiifi, (uy), z: = fi(u;) i1=1,..,N, (4.1)

dt T :
=1

where, as usual, u; is the potential of neuron 1, z; is the short time average firing
rate, W = [w;;| is the matrix of synaptic weights and 7; is the time constant of
neuron . The function fy, is a sigmoid function, and A; is the gain, which is a
parameter controlling the steepness of the sigmoid function. In this chapter we take

fa () = tanh(Xu,).

The results of Gray et al. seem to indicate that some form of partial organiza-
tion occurs even at a lower level, namely, that of single neuronal spikes. Therefore,
we have also examined oscillations in networks of spiking neurons (similar, for in-
stance, to those considered by Partridge {19] and Kbnight 120}). In such a model
a neuron integrates the incoming inputs until the neuron potential reaches a fixed
threshold. At that instant the neuron produces a spike, provided that it is not in
the refractory period. The details and the results of this model are presented in

Section 4.9.

Consider again the Hopfield continuous model (4.1). It has been studied by
many researchers (see Hirsch [1] for an overview). Its stability properties have been
examined in detail. For instance, a symmetric weight matrix W (Grossberg and
Cohen [21], and Hopfield {18]) guarantees stability. Another interesting result by
Hirsch [22], is that a network satisfying the even loop property is almost stable (i.e.,
the set of initial states whose trajectories do not converge is of measure zero). The
even loop property means that if the network is modeled as a directed graph, then

any cycle contains an even number of inhibitory connections.

We present here another new stability result. If the weight matrix is anti-

symmetric (i.e., w;; = —wj;, w;; = 0), then the network is stable. The proof is as
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follows. Consider the Lyapunov function:

N

G(ul, vy u,]\;') = Z/ fA;('lLi)d'uz'.
0

=1

Clearly G > 0, G — o0 as |{u — oo, and
o N du N N N
G u; ;g ,
= S G =D )+ D w0
P i= i=1j=

Since W is antisymmetric, the second term in the right hand side of the previous
equation vanishes. Since u;fy,(u;) > 0, the time derivative of (¢ is less than or equal
to 0, with equality if and only if «; = 0, for all .. Therefore, the system converges

to the origin, which is the unique equilibrium for the network.

Little work has been done, though, to analyze the dynamical properties of the
model. Baird [23] and [24] studied Hopf bifurcations in oscillatory networks, for the
purpose of analyzing the olfactory bulb. Li and Hopfield [25] studied oscillations in

a two-layer network, also in their modeling of the olfactory bulb.
4.3 ON NON-LINEAR OSCILLATIONS

Because of the ubiquity of oscillations in such diverse fields as biology, chem-
1stry, ecology, economics, and engineering, the theory of non-linear oscillations has
attracted the attention of many researchers since as far back as last century. Os-
cillations, particularly in two~dimensiona1 systems, are to some extent well under-
stood, and a number of theoretical results exists. (Oscillations cannot occur in one-
dimensional flows, unless the system is driven by an external periodic driving force.)
One of the well-known theorems on the existence of oscillations in two-dimensional
systems is the Poincaré-Bendixson theorem. It states that if a trajectory remains
in some compact region [, and if it does not approach any equilibrium point in D,

then it converges to a periodic orbit, which lies entirely in D. Another interesting



result, reported by Bendixson, states that if the divergence of the vector field is
positive everywhere (or negative everywhere) on a simply connected region, then

no periodic orbit can lie entirely in the region.

For high-dimensional systems, on the other hand, there are only very few
theorems on the existence of periodic orbits, the most important of which is the Hopf
bifurcation theorem. Let A be a parameter vector of the system. If at A = A\~ several
conditions are satisfied, the main condition being that the Jacobian corresponding
to an equilibrium possesses a pair of pure imaginary eigenvalues (see Hassard et al.
[26]), then the point A = A* is said to be a Hopf bifurcation point. The equilibrium
bifurcates into a periodic orbit. This theorem, however, only proves the existence
of a periodic orbit immediately beyond the bifurcation point A = A*, but does

not specify how far beyond it the periodic orbit will still exist. Nevertheless, the

theorem has been of practical importance.

Several results exist concerning the approximation of the frequency and the
amplitude of the oscillations (see Nayfeh and Mook [27]). As a first approximation,
we can assume that the oscillations are small and close to sinusoidal, and linearize
the system. A better approximation can be obtained by considering additional
higher-order terms in the Taylor series expansion of the nonlinearities of the vector
field. This allows us to obtain several harmonics of the oscillations. This latter
approach is usually difficult for high-dimensional systems, as we obtain a simulta-
neous set of N non-linear algebraic equations, which are usually hard to solve (N
is the dimension). For simplicity, therefore, we have adopted the first approach in

our work.

As a first step in understanding the oscillations in neural systems, we will

study the oscillations in two-neuron networks.
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4.4 TWO-NEURON NETWORK

A two-neuron network with no self-connections (0 diagonal weight matrix)
cannot have a stable periodic orbit. (A stable periodic orbit is defined as a periodic
orbit that attracts all solutions starting in some open neighborhood containing
the periodic orbit.) To prove this fact one can use Hirsch’s result for the case

wiawsy; > 0. For the case wisws; < 0, we use the Lyapunov function

U2 uy
Glur,uz) = iwlﬂ/ Fay(us)duy + E'lﬁ’gﬂ/ Iy (g )duy .
0 Jo

A trivial calculation shows that %% < 0 with equality if and only if u; = uy = 0.
Therefore, all trajectories converge to the origin and there are no periodic orbits.
Therefore, to achieve oscillations we have to add self-connections. Consider then
the system associated with the matrix wi; = wsy = wis = —w3y; = 1 and assume

for simplicity that A\; = As = Aand 71 = = 7.

Proposition 4.1: For the system

d'u, 1 Uy

—r = T Al + f,\(uz): (4.2)
d’léz Uy

7Rl Flun) + fa(ua)
the origin is the only equilibrium point. If A7 < 1, the origin is stable and all the
trajectories converge to the origin (no cycles). If Ar > 1, the origin is unstable and

there exists always a periodic orbit surrounding the origin.

Proof: Equilibrium points of (4.2) satisfy the equations

h{ui) = u1 — uy

(4.3)

bl

h{up) = uy + us
where h(u) = 27 fi(u). If one of the variables satisfying (4.3) is non-zero, so must
the other one be. Moreover, h is odd, i.e. h(—u) = ~h(u). Therefore, we need to

consider only solutions in the two quadrants defined by u; > 0. We have two cases:
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Case 1: 2A7 <1 (i.e. A{u) < u for uw > 0). If uy > 0, the second equation of

(4.3) is violated and if uy < 0, the first one cannot be satisfied.

Case 2: 2A7 > 1 (i.e., there exists a unique point ¢ > 0 such that h(c) = ¢ and
h{u) > u for 0 < u < ¢ and h(u) < w for v > ¢). Clearly, we cannot have u; = ¢
(respectively, u; = ¢) for then uy; = 0 (respectively, u; = 0). Four subcases need to
be examined depending on the position of uy with respect to ¢ and —c. If uy > ¢,
then obviously the second equation of (4.3) cannot be satisfied. If 0 < uy < ¢, then
from the second equation we have u; = h(uz) — us < c¢. Therefore, h{u;) > u; and
this contradicts the first equation. The remaining cases are similar, and as a result

the origin is the unique equilibrium point.

We can calculate the eigenvalues 3 of the Jacobian at the origin to obtain
the expression 3 = (7A — 1)77! = ¢A. As a consequence, if A\r > 1, the origin
is unstable, and if Ar < 1, the origin is stable. Now, if A7 < 1, we can prove,
using Bendixson’s result (see previous section), that the system cannot have any
periodic trajectories, for the divergence of the vector field defined by (4.2) is given
by —2/7+ fi(u1)+ fi(uz), which is always strictly negative if A7 < 1 (except at the
origin when At = 1, in which case the divergence is 0). If A7 > 1, we have seen that
the origin is unstable, with both eigenvalues having positive real parts. Therefore,
it is possible to draw a small enough closed curve around the equilibrium such that
the vector field at this curve points outwards. Also, we can easily show that there
exists a very large closed curve such that the vector field points inwards. Hence
by Poincaré-Bendixson’s theorem there exists a periodic trajectory in the region in

between the small and the large curve. m
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4.5 RING ARCHITECTURE

We begin by studying the ring architecture (see Figure 4.1). The neurons are
arranged in a ring, with connections running in one direction. It will be seen in the
next section that many properties of this simple network carry over to the case of
layered networks with feedback, an architecture possibly often encountered in the

nervous system. The equations for the ring are

du; u; v .
(Z = »% +wi i1 fa,(wie) = Fiug, wie), ;= [ (w;) 1 =1,...N,
(4.4)

where wig = w;n. We restrict ourselves to rings at least 3 in length. We have seen
in the last section that the two-neuron ring cannot oscillate. Let 4 = H;‘_\;lu‘g‘g_l,

and A = 11 )\,

Figure 4.1: A 5-neuron ring

By Hirsch’s theorem [22], an even number of inhibitory connections in the
ring (A > 0) leads to convergent behavior. Let us now consider the case of an odd

number of inhibitory connections (4 < 0). For simplicity, let the time constants be
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equal (7; = 7 all 7).

1/N

AN,

Proposition 4.2: If 4 < 0, the origin is the only equilibrium point. If (A|

. e . oy 1/N T c e
-cos(m/N) < 1, the origin is stable, and if (A]4]) / 7 cos(w/N) > 1, the origin is

unstable.

Proof: The equation for the equilibrium is obtained by setting the right hand side

of (4.4) equal to zero. We get

uy = Twin oy (TN o1 oy (T fa, (). (4.5)

Since sign(f(u))=sign(w), the sign of the right hand side of (4.5) is —sign(u;), since
there is an odd number of negative w; ;_1’s. Thus, the only solution is u; = 0, and
hence u; = 0, all ¢, and the origin is the only equilibrium point. The stability of the

origin could be determined by linearizing the system around the origin, to obtain

where J(0) is the Jacobian matrix, its (i,7)'" element being given by g—?—. The
)

eigenvalues /J; of the Jacobian are evaluated as:
1 N o 1N A
Br = - + (A%AD”‘\ I T(2k=1)/N kE=1,..,N.

. /N , ) .
If (A!ADLNTCOS(W’/.]\’T) < 1, all eigenvalues have negative real parts, and hence
the origin in the non-linear system (4.4) is stable. If (A?AU”NT cos(m/N) > 1,
there are eigenvalues with positive real parts, and hence the origin in (4.4) will be

unstable. &

As a result of Proposition 4.2, the origin is stable at small gains or small

A )1/NT .

weights. As we increase the gains or the weights, at the point when (A

cos(m/N) = 1, a Hopf bifurcation occurs. The Jacobian has a pair of pure imaginary
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eigenvalues. The origin loses stability, and a stable periodic orbit is created. We

prove the following:

N VO - . < g .
Theorem 4.1: If (A|A])""" 7cos(n/N) > 1, then there exists a periodic solution,
and all trajectories converge to either the unstable equilibrium at the origin, or to

a periodic orbit.

Proof: We will use a theorem by Mallet-Paret and Smith [28], which proves several

results on monotone cyclic feedback systems. Define a new set of variables z; by
;= wi;-1(z-1 — 71), 1=1,....N

with, as usual, zp = zx and wip = w,n. The system (4.4) becomes

dz; z; . , .
dfl = _T ’ -+ fA.' Ewi,i—-l(:i—l - Tl)f +1= Gi(zi,zzgl), 1 = 1,...,]\". (46)
: i1
For this system the orthant RY = [0, )" is invariant. Moreover, it has a unique

equilibrium, using Proposition 4.2. It is straightforward to verify that it is a mono-

tone cyclic feedback system; i.e., there are a;’s 1 or -1 such that

0G;
> 0 11 Ziy i1,
I a ; 1s

Qy

and G is Cnx_;. Also, one can prove that every trajectory is bounded, as one
can construct a cube [0,U]", large enough such that the vector field is pointing
inward. Also, the Jacobian has at least two eigenvalues with a positive real part, if

(Alap™

Tcos(n/N) > 1. Using Theorem 4.1 in Mallet-Paret and Smith, we can
conclude that the system (4.6), and hence our original system (4.4) have a periodic

solution, and that all trajectories converge to either the unique equilibrium, or to a

periodic orbit. m

The implication of Theorem 4.1 is that for the ring architecture there is no
complicated behavior such as quasi-periodic or chaotic motion. Also, because the

unique equilibrium is unstable, almost all trajectories converge to a periodic orbit.
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4.6 LAYERED NETWORKS

Now, consider the general case of layered networks. The layers are connected
in a circular fashion, as shown in Figure 4.2. Within each layer there are no lateral
connections. Let W'=1 be the matrix of weights from layer [ — 1 to layer [, and let
L be the number of layers. Assume that the weights from one layer to the next are
of similar sign. By Hirsch’s Theorem, an even number of inhibitory layers result in
convergent behavior. So again we will consider only the case of an odd number of
inhibitory layers. If the weights from one layer to the next are equal, and the time
constants and the gains of each layer are equal, then the layered network behaves

effectively as a ring. This is proven in the following theorem.

\,V/32>O

WlS <0

Wa1>0

Figure 4.2: A three layer network: the weights from layer 1 to layer 2 and from layer
2 to layer 3 are positive, and those from layer 3 to layer 1 are negative. Provided

the gains are high enough, for most possible choices of the weights, this structure



oscillates.

Theorem 4.2: Let the time constants and the gains of layer I be 7(/) and A(l)
respectively, and let EVVZ’Z'IE(Z.J) = w(l). Then, for any initial conditions, the
outputs of any two neurons in the same layer differ by a quantity that decreases to
zero exponentially fast. The limiting behavior of the network corresponds to that

of a ring with =, = 7(1), A; = A(l) and w, ;-1 = w(l)m(l — 1), where m({ — 1) is the

number of neurons in layer [ — 1 (modulo L).

Proof: Let w;, and u;, be the outputs of two neurons in the same layer [. Then,

du;,  duy, Uiy — Uy,
dt dt (1)
and thus u;, — u;, — 0 exponentially fast, hence proving the first part.

Let %(!) be the asymptotic output of a neuron in layer {. Then,

du(l)  u(l)

a _;'(‘Z)" +w(l)ym(l = 1) fag-1) (w{l = 1)),

which proves the second part of the theorem. n

Theorem 4.2 implies, of course, that if the layered network oscillates, then the

oscillations of each layer zero phase lock.

We found by simulations that zero phase locking is still preserved if we relax
some of the conditions of Theorem 4.2, as follows. We have generated the weights
of each Wh'=1 randomly, but with keeping the signs fixed (the time constants of
each layer are constant). We have found the remarkable result that with an odd
number of inhibitory layers, 0 phase locking of each layer still holds exactly (see
Figure 4.3 for a three-layer example). The peaks of the oscillations of the neurons
of each layer coincide exactly, as do the zero crossings also. Although we have

obtained this result in all of tens of simulation experiments we have performed,
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Figure 4.3: The oscillations (in the z-space) of the three-layer network of Figure
4.2 with three neurons per layer. The upper three, middle three, and lower three
curves correspond to layer 1, layer 2, and layer 3, respectively. For phase comparison
purposes, the lowest graph superimposes the outputs of all 9 neurons. The weight
matrices are generated randomly, and the signs of the weights are as given in Figure

4.2. We observe that the oscillations of each layer zero phase lock.
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it does not mean that any network with an odd number of inhibitory layers and
equal time constants for each layer will result in 0 phase locking. One can easily
find cases where phase locking does not necessarily occur; for instance, it is easy,
with the proper connections, to imbed a long ring with an even number of negative
connections within such a layered network. We have also found by simulations that
the phase locking remains very robust with respect to perturbations in the time
constants of each layer. This means that varying the time constants within each
layer will result in only a slight change in the relative phases of the neurons of each
layer. The appendix presents a proof of phase locking for some cases of random

weight matrices.

We have mentioned in the introduction that the labeling hypothesis is based
on computations involving the phases, the frequency, and/or the amplitudes of
the oscillations. It is therefore important to derive their relationships with the
parameters of the model (weights, gains, and time constants). Again, consider
a network with an odd number of inhibitory layers. From simulations we have
observed that the oscillations in the u-space are close to sinusoids. Let the output
of the i** neuron of layer [ be approximated as ui(l) = A;(1)sin(wt + ¢;), where w
is the angular frequency of the oscillation, and ¢, is the phase of the oscillations of
layer [. Assume that we are close to the Hopf bifurcation point; i.e., the oscillations

are of small amplitudes. Using the approximation
fa, iuz(l)* = fi, 43(1) sin(wt + gal)j ~ A A (D) sin(wt + @),

we obtain upon substitution in the differential equation set the phase shift ¢;;;

between the oscillations of layers [ and [ — 1:

— Y 1 : 1,l-1
s = { arctan{T( Jw| if W > 0, (4.7)

B - arctani'r(l)w} if Whi=1 -,

By going through all phase shifts once around the loop, we obtain the following
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expression for the evaluation of the frequency of oscillation,
N
Yarctan%(l}wg = . (4.8)
Lo - S
=1

The three layer case (N = 3) is of particular interest. It can be shown that

which, for the case of equal time constants (= 7), gives the period T = 27/w =

27TT//\//§ =~ 3.637,and ¢; ;-1 = 7/3.

When the gains and/or the weights are large, the oscillations have a large
amplitude, and an expression for the frequency and phase shifts can also be derived.
We can approximate the oscillations in the z-space as a square wave: fy, Lul(l)f oS
sign isin(wi + @l)‘ It is easy to derive the phase shifts, as an expression for the

solution of the differential equation set can be obtained. We get

( —wr(DIn[2/(1 + e~ /=7(DY] if Whi=1 ~
dri-1 = { (Dln 2/( ) ! (4.9)

7 —wr(l)ln (2 /(1 + e“ﬁ.f’wTU))E FWH=1 - g

/

Summing the phase shifts around the loop, we get for the frequency of oscillation

N
Zwv‘(l)lné‘l/(l + e‘W/”T(Z))] = 7. (4.10)
i=1

Although in the derivation of (4.7) and (4.8) we have assumed that we are close
to the bifurcation point, simulations show that the expressions remain reasonably
accurate beyond the bifurcation. Moreover, in general the high gain expressions
(4.9) and (4.10) result in values not too different from the values given in (4.7)
and (4.8), respectively. Intermediate gain or weight values result in frequencies and
phase shifts in between those given by (4.7), (4.8) and (4.9), (4.10), respectively
(see Table 4.1 and Figure 4.4 for simulation results). We therefore observe that the
frequency and the phase shifts are to some extent not much affected by the weight

values.
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A 0.3 1 2 3 4 5

T (msec) 18.5 16.1 15.1 14.8 14.7 146

@12 (degrees) 69.9 714 70.9 70.7 70.3 70.3
@23 (degrees) 76.7 763 |763 |765 |76.7 76.7

Table 4.1: The period and the phase shifts of the three-layer network of Figure 2.
The weights are generated randomly and the time constants of layers 1, 2, and 3
are 2, 8, and 12 msec, respectively. The theoretical estimates for the period and
the phase shifts for the weakly non-linear range using Equations (4.7) and (4.8)
are: 7' = 18.6 msec, 012 = 69.8°, and 093 = 76.2°, thus agreeing to some extent
with the measured values for small A. The theoretical estimates for the high gain
limit, using Equations (4.9) and (4.10), can also be obtained as: 7" = 14.5 msec,
012 = 70.3°, and ¢93 = 76.6°. We can see that they also agree with the measured

values for high A.
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Figure 4.4: The period in a three-layer network with randomly generated weights,
with equal time constant 7 for all neurons (keeping A fixed). The relation is close
to a straight line and agrees with the theoretically calculated values of 3.637 and

2.897 (shown as the two dashed lines) for small 7 and large 7, respectively.
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4.7 PHASE LOCKING MECHANISM

We present here a mechanism for the synchronization of two remote non-
connected populations of neurons. This gives a tentative explanation to the results
of Gray et al. It also sheds some light on how the phases of aggregates of neurons
can be adjusted, an essential step for the labeling process. Consider two non-
connected similar neural network oscillators, such as the layered type considered
in the last section. Let the two networks be initially out of phase. If an input in
the form of a strong short pulse is applied simultaneously to one or more layers
in both networks, then the two networks rapidly synchronize (see Figures 4.5 and
4.6 for an illustration). The explanation is as follows. Because of the pulse, each
network loses its oscillation, and converges to an identical equilibrium at one of the
corners of the hyper-cube (in z-space). When the pulse ends, both networks relax
together to the limit cycle, and the oscillations of both networks become in phase.
This mechanism is robust with respect to small differences in the weights of the
two networks, because in any case the equilibrium is at approximately the same
position at the corner of the hypercube. The only difference is the path back to the
limit cycle, which does not affect the phase much. We remark that this scheme is
analogous to the case of two initially out of phase pendula, given a common strong
impulse in a specific direction, which results in restoring their synchronization. It
i1s important to note that the applied pulse need not represent only an external
stimulus. It could also represent a feedback signal from higher centers of the brain.
For example, a possible scenario is that the largest effect on phase locking could
happen when an external input together with a feedback pulse from higher centers

arrive simultaneously.

4.8 NETWORKS WITH LATERAL CONNECTIONS

Consider the usual network with an odd number of inhibitory layers. If we add
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commom input

network 1

Figure 4.5: A phase locking mechanism: A strong common input applied to two non-
connected populations of neurons results in the 0 phase locking of the oscillations

of both populations.
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Figure 4.6: The phase locking mechanism between two non-connected populations
of neurons. The upper curves represent the outputs of the first layer in a three-layer
network with three neurons per layer. The lower curves represent the outputs of a
similar network, but initially out of phase from the other network. A pulse applied
simultaneously to the first layer of each of the two networks results in synchronizing

the oscillations of the corresponding layers of the two networks.
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lateral connections, i.e., connections within each layer, but no self-connections, then
the following is observed from computer simulations. Provided that the magnitudes
of the lateral connection weights are not too large compared to the magnitudes of the
inter-layer weights, this architecture oscillates. If the signs of the lateral connection
weights of each layer are constant, then the oscillations are approximately in phase.
For instance for a three-layer network the oscillations are found to be in phase
=2 —4% if the lateral connection weights are positive and comparable in magnitude
to the inter-layer weights. If the signs of the lateral connection weights are negative,
then the robustness of the oscillation and the phase locking becomes worse to some
extent. If the signs of the lateral connection strengths are not constant, then phase
locking almost does not hold. Of course these observations hold in general when
the weights are randomly generated, and do not necessarily hold for every possible

choice of the weights.
4.9 THE SPIKING MODEL

In the spiking model, if the neuron potential u; is below a threshold value 4;,

then the i"" neuron integrates according to the charging equation

d ; U, N -
D B) DI (4.11)

=1

where the form of the excitatory or the inhibitory post-synaptic potential is modeled

/7 of width about 7, and the t;’s are the firing times

by the decaying exponential e~
of neuron j up to time ¢ (in the simulations we have taken the intervals ¢ — ¢; to
be restricted to a window (0,w)). If the activity u; reaches the threshold value 6;

at time ¢, then t is a firing instant for neuron i, u; is reset to 0, and neuron i is

prevented from firing during a refractory period r;.

We will concentrate here directly on the most interesting case of layered net-

works. In our model the thresholds need to be scaled. We chose 8, = fizjwij, fi>
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0 where f; is equal for all neurons belonging to the same layer. Consider the ;"
neuron with u;(0) = ¢, starting to charge at time 0 by summing the effects of the

incoming synaptic potentials present in its past. Then (4.11) can be rewritten as

dui Ui . 4/r ‘
= :_":.i,ge ; (4.12)

with 4 =

Z]‘Et w;; e /7. Integration of (4.12) results in the following expression
‘7

for the neuron potential,

41 -+ —t/T if 7 = .
wi(t) :{(‘4’ mele » L (4.13)

4 T —t /T —t/r — 1t/ o y
A—~—T1‘_T(€ ITo— ey —ce™ VT i £

If a new spike occurs at time {; in a neuron connected to neuron ¢ while it is
charging, we can still use Equation (4.13) with the proper adjustments (i.e., we use
(4.13) as it is till time ¢z, then reset the time axis, 4 and c using u(t;) = ¢). In any
case, the main difficulty arises from the fact that the equation u,(¢) = 6, cannot
be solved analytically to determine the firing times of the neurons. Rescigno et al.
129] have analyzed the behavior of one such element under a sinusoidal input. They
showed that for all values of the parameters, there exists a pattern of firing times
which repeats itself periodically after a finite number of pulses in the absence of
noise, and this pattern is stable against perturbations. Even the precise response
of a neuron described by (4.11) to a periodic train of spikes (i.e. t; = j27/w) is not
completely known when the window of integration is taken to be infinite (w = oo).
However, if we assume (and that will be the case in all that follows) that a unit
has only a short memory, in the sense that it integrates only those incoming spikes
that have occurred since the last time it fired, then it is obvious that such a neuron,

when stimulated by a periodic train of spikes, will fire periodically and at constant

phase with respect to the train.

In order to avoid negative thresholds, all the weights between a layer and the

next are always taken to be non-negative. Typically, two types of stable behavior
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are commonly observed: The activity of the network dies out or a periodic pattern
of firings establishes itself (see Figure 4.7 for a three-layer example). If the threshold
values are too high or if the number of initial spikes is too small, then the activity
of the network dies out because the neuron potentials u; cannot reach the threshold
6;. If the thresholds are not too high and the initial condition is that all the neurons
in the first layer fire at time ¢ = 0, then all the neurons in the second layer will
also fire simultaneously, even in the case of random synaptic weights. The reason
for that is that the firing time t of a neuron in the second layer is the solution of

(consider the case 7; # T)

—(e7HT -, (4.14)

T — T

T
7

b, = fz‘zli’i; = szj
j 7

The synaptic weights cancel from both sides, and if we assume the time con-

stants and the fractional thresholds f; to be constant within a layer, the time ¢

of firing is independent of the unit considered. Obviously, a similar analysis holds

for the following layers, leading to a stable periodic pattern of activity where all

neurons in each layer fire synchronously, one layer after the other.

The maximal value of the function on the right hand side of (4.13) is reached
when ¢ = tna, ~ 77(lnt; — In7)/(7; — 7). So, to fix these ideas, consider for
simplicity a three-layer network where all the units have the same parameter values
7; = 8 msec, 7 = 6 msec, f; = f and a refractory period r = 4 msec. Then
tmar = 6.9 msec, corresponding to f = fo,. =~ 2.5, and for t = » = 4 msec,
f = fref = 2.2, As a result, there are three possible ranges of regimes depending
on the value of the common threshold parameter f in the network. If 0 < f < 2.2,
then the threshold is reached before the end of the refractory period. The period of
the network is therefore given by 7' = 3r = 12 msec, corresponding to a frequency
of 83 Hz. If 2.2 < f < 2.5, then the threshold is reached at a time 4 < ¢t < 6.9

obtained by solving (4.14). This yields a period 12 < T < 20.7 corresponding
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Figure 4.7: The outputs of a three-layer spiking model with three neurons per layer.
The threshold of each neuron is chosen as 2.3 times the sum of weights converging
onto it, 7; = 6 msec for all 7, and 7 = 8 msec. The upper three, middle three, and
lower three graphs represent the outputs of layer 1, layer 2, and layer 3, respectively.
The bars represent the spikes. The first layer is given an external stimulus so that all
its neurons fire near time zero. The dispersion of the firing instants of the following

layers decreases progressively until the spikes of each layer are simultaneous.
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to frequencies in the range 48-83 Hz. Finally, if 2.5 < f, then the potentials
never reach the threshold and the activity dies out. The case of L layers, with
L =2, 0or L > 3 can be analyzed similarly. In any case, the period is always
entirely determined by the relative thresholds f;, the time constants, and possibly
the refractory periods. The connection weights appear only through their sum at
each neuron, which in random networks can be assumed to be roughly constant. As
in the continuous case, the details of the connections are irrelevant. Notice also that
two similar, but independent layered networks that are activated simultaneously in

two corresponding layers, will trivially synchronize their periodic activity.

An important feature of the previous analysis is that under similar conditions,
the periodic behavior observed is unchanged if we add lateral intra-layer connec-
tions or if the inter-layer connectivity is local. Both analytically and in simulations
it is easy to see that the behavior is also robust with respect to several other per-

turbations of the initial conditions:
- when only a (large) fraction of the cells in one layer is initially activated;

- when a low level of possibly random activity exists in the network prior to the
activation of the cells in one layer; notice in particular that isolated random

firing is insufficient in general to activate an entire layer;

- when the initial activation of the cells in one layer is not exactly simultaneous
but occurs over a short interval of time; in the case of random connectivity, it
is easy to see that the firing times in the following layer will be concentrated

around their mean with an even smaller dispersion (see Figure 4.7).
4.10 CONCLUSION

In the present work we have studied oscillations and synchronization in neu-

ral networks. We have shown that a layered network possesses oscillation and zero
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phase locking properties, which are very robust with respect to the weight values.
A mechanism for the synchronization of two non-connected populations of neurons
using a common input is proposed. This mechanism is simple and general enough
to apply to a large variety of architectures and models of neural oscillators. In
the scheme we have proposed, synchronization of the remote neural populations
1s through a strong input and/or a feedback signal from higher brain centers. A
point that has to be investigated further is whether through using the continuous
time model (4.1) can lateral connections between populations of neurons have an
additional role in propagating synchronization upon the arrival of a common input.
An important issue for further research is to develop schemes where the frequency
and amplitude of the oscillations also play a role in the labeling process. The fre-
quency might, for example, be a measure for the speed of a moving object, while the
amplitude of the oscillation could indicate a measure of the distance of the object.
On first thought, these problems seem to be hard, since a change in the neuron
weights on a fast time scale seems to be required. However, a fast adaptation of
the weights in the brain is not ruled out, and in fact several researchers hypothe-
sized its existence (see von der Malsburg [11)). An alternative is to consider a high
order network model, where a neuron output can serve as a gate for controlling the
effect of the other neurons. This would adjust the coupling strengths of a number
of neural oscillators, and thus would provide an effective mechanism for controlling

the phase interactions, possibly using control signals from higher brain centers.

Certainly, more experimental results are awaited, so that we can correctly
direct the theoretical investigation, which, we hope, will shed light on the problem

of the extraction of high level features.
APPENDIX: A PHASE LOCKING CONDITION

We prove here a phase locking condition for networks with random weight



99

matrices. Consider a multi-layer network with 7, = 7 and A; = A for all neurons 1.
Assume that tne entries in W1 are random but of constant sign, with an odd
number of inhibitory layers. Assume that the gain and/or the weights are small
enough such that the system is close to the Hopf bifurcation point; i.e., we have
small oscillations. The eigenvectors of the Jacobian J(0) at the bifurcation corre-
sponding to the pair of pure, imaginary eigenvalues give the approximate phases of
the oscillations. This can be seen by plugging ae’* in the differential equations, and
retaining only linear terms in the Taylor series expansion (a represents the complex
vector of phases of the oscillations (e/%1,...,e/%2)7). Let the eigenvector of the Ja-
cobian corresponding to eigenvalue jw be of the form vl = (VlT, ...?V}Z:)T, where v,
is the component associated with layer [. Oscillations will occur with approximate
zero phase difference within each layer if v; is of the form v; = ¢;z;, where ¢; 1s a

complex constant and z; is a vector with strictly positive components. Since v is

an eigenvector (let the eigenvalue be 3), it must satisfy the relations
[,l—1 1 :
AW "0y o= (= + B)vy, [=1,...,L.
T

Hence,

1
WHELWhivy = (= + 8)' A7 v

T

1
whl=t whiv, = (= +3) 2 Fvy.
T
Therefore, the matrices S§; = WhHi-tWi—0i=2 Wittt 1 — 1 I have the same
set of eigenvalues. If 3 is an eigenvalue of J(0), then (+ + BYEA"T is an eigenvalue
of S1,...,S1. Conversely, it can be checked that if v is an eigenvalue of S;, then all
the complex numbers of the form —1/7 + AyY/E (4*/L is any L-th root of v) are

eigenvalues of J(0).

Let p(M) denote the spectral radius of a matrix M (i.e., the maximum of

the magnitudes of the eigenvalues). The Perron-Frobenius theorem (see Gant-
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macher [30]) states that if M is with non-negative components and irreducible
(irreducible means that for any ¢ and &, there is a sequence j;,...,j,, such that
Mij, 5, jys .-y Tk are nonzero), then M has a positive real eigenvalue equal to
its spectral radius p(M). This eigenvalue is simple and has an eigenvector with
positive components. The matrices S;,...,S; are negative and almost surely ir-
reducible. By the Perron-Frobenius theorem, S; has a simple eigenvalue v* with

v* = —p = —p(S1), the spectral radius of S; with eigenvector v of real and positive

H

components. The complex numbers

1 I (k1)
3A — - /\pl/LG‘]“<2ATl>/L, b o— 0..[ ~1
T

[k

are eigenvalues of J(0) with eigenvector z* = (z},...,z} ) and

N

: A AR [—1,1— . )
Z?:<l~f-8k) WHTIWE R W (v]) j=2.....L

7

and z¥ = v}. The rightmost eigenvalue of J(0) is the one eventually associated with
the bifurcation. Therefore, if 3* is the rightmost eigenvalue, then oscillations occur

with (approximate) 0 phase difference within each layer. This happens if

1 ;
Re(3" = —— + AplfL cos(m/L) > Re(a)

-

i

for any other eigenvalue a of J(0). Hence, if ¢ is the eigenvalue of S; with the

second largest magnitude, the condition

, _ L
8l < p27F < p(cos Z)

guarantees phase locking. There are simple situations where the previous condition

is satisfied. Assume for example that m; = ... = my = M and that the weight

matrices WH'=1 are symmetric (which is true if, for instance, the connection weight

between any two neurons depends only on their inter-distance). Assuming that the

entries in S; are independent identically distributed for : < j; then it is known that
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there is a very sharp drop between the size of the first and the second eigenvalue

(refer to Juhdsz (31 and Firedi and Komlds 32]). The first eigenvalue is of order

M, whereas the second eigenvalue is of order /M.
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CHAPTER 5

RECOGNITION OF NEURAL SIGNALS

5.1 INTRODUCTION

A first step in the study of the complex information processing mechanism
of the brain is to examine how small populations of neurons interact. It is known
that information is transferred from one neuron to another by means of a train of
spike-shaped voltage pulses called action potentials, or simply spikes. Each neuron
produces action potentials of fixed shape, and therefore the relevant information
processing parameters are the time instants of the action potentials. Researchers
are interested in devising techniques that allow to simultaneously record the spike

instants of groups of adjacent neurons.

Monitoring the activity of a neuron is usually accomplished by placing an
electrode outside the cell membrane. The electrode is a metal wire, insulated to
its tip, or a fluid-filled tube. There are two types of extracellular recordings. The‘
single-unit recording contains the activity of only one neuron, whereas the multi-
unit recording consists of the activity of several neurons adjacent to the electrode.
Multi-unit recordings are advantageous over single-unit recordings when trying to
record the activity of a group of adjacent neurons. This is because the small scale
of real neural networks makes inserting one recording electrode per cell impractical.
Also, when using multi-electrode array chips, we do not have much control over the
positions of the electrodes, and hence utilizing multi-unit recordings would be more

appropriate in this case.

In spite of all the advantages of multi-unit recordings, they also present a

rather serious waveform classification problem because the actual temporal sequence
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Fig. 5.1: An example of a multi-neuron recording

of action potentials in each individual neuron must be deciphered. A multi-unit
recording contains the spike streams of several neurons adjacent to the electrode.
Fortunately, spikes recorded from the same cell are more or less similar in shape,
while spikes coming from different neurons usually have somewhat different shapes,
depending on the neuron type, electrode characteristics, the distance between the
electrode and the neuron, and the intervening medium. Fig. 5.1 illustrates some
representative variations in spike shapes. It is our objective to detect and classify
different spikes based on their shapes. We note that large spikes generally come
from neurons adjacent to the electrode, while small spikes originate from remote

neurons, as the spike waveform gets attenuated when traveling long distances.

The spike classification problem has been extensively studied in the last two

decades (see [1]-[13], and see also the review paper by Schmidt [14]). There are two
main categories of classification methods. The first one is the template matching
technique. Templates representing the typical spike shapes of the different neurons
are obtained. An unknown spike is compared to each of the templates, and the

neuron corresponding to the closest template is chosen. In the second category,

a small number of features are extracted from the spike waveform. Examples of
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Fig. 5.2: An example of a temporal overlap of action potentials

features used are the positive peak value, the negative peak value, the time interval

between the positive and negative peaks, and the peak-to-peak value.

One of the difficulties encountered in the classification problem is that action
potentials from different neurons ~an overlap temporally producing novel waveforms
(see Fig. 5.2 for an example of an overlap). To deal with these overlaps, we have
first to detect the occurrence of an overlap, and then estimate the constituent spikes.
Detecting overlapping spikes is potentially very important in understanding neural
networks, as they can reveal correlations in the neural activity patterns, as well
as cause and effect relationships. Unfortunately, only a few of the available spike
separation algorithms consider these overlapping events. Those few tend to rely on
heuristic rules and subtractive methods to resolve overlap cases. We propose a new
off-line spike separation method, using an approach that minimizes the probability
of error in classification, explicitly taking into account the likelihood of overlapping

spikes (see also [15]).

The first step in classifying neural waveforms is obviously to identify the typ-
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ical spike shapes occurring in a particular recording. To do this we have applied
a learning algorithm on the beginning portion of the recording, which in an un-
supervised fashion (i.e., without the intervention of a human operator) estimates
the shapes. After the learning stage we have the classi :tion stage, which is ap-
plied on the remaining portion of the recording. A new classification method is
proposed, which gives minimum probability of error, even in case of the occurrence
of overlapping spikes. Both the learning and the classification algorithms require a
preprocessing step to detect the position of the spike candidate in the data record,

as will be explained in the next section.

5.2 DETECTION

Spikes are usually characterized by an initial sharp rise. Therefore, most
researchers use a simple level detecting algorithm [14], that signals a spike when
recorded voltage levels cross a certain voltage threshold. However, variations in
spike amplitude that are due to natural brain movements during recording (e.g.,
respiration) can cause the whole spike to be displaced downwards (or upwards),
resulting in low (or high) positive and negative peaks. Thus, a level detector using
a positive (or negative) threshold can miss some spikes. Alternatively, we have
chosen to slide a window of fixed length until a time when the peak-to-peak value

within the window exceeds a certain threshold.

5.3 LEARNING

Learning is performed on the beginning portion of the sampled data using the
Isodata clustering algorithm [16]. The task is to estimate the number of neurons n
whose spikes are represented in the waveform and to learn the different shapes of the

spikes of the various neurons. For that purpose we apply the clustering algorithm

choosing only one feature from the spike, the peak-to-peak value, which we have
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found to be quite an effective feature. Note that using the peak-to-peak value in
the learning stage does not necessitate using it for classification (we might need
additional or different features, especially for tackling the case of spike overlap).

For completeness, the algorithm is explained in what follows:

As we do not know the number of available clusters (spike classes), we repeat-
edly perform the [sodata algorithm for 2 clusters, 3 clusters, and so on. Each time
after performing the algorithm we measure

J(e) = min jpi — 51,
LFE ]
where ¢ denotes the number of clusters, and y; is the mean of the spike peak-to-peak
value of cluster i. If J(c)is below a fixed threshold R, then we stop and take ¢ —1 as
the estimate of the number of available clusters (spike classes). The fixed threshold
is taken as a constant times the maximum peak-to-peak value over all spikes in the

learning stage (for example, we have chosen that constant as 0.1).

Let yy,...,yx represent the vectors of samples of the spikes in the learning
period. Let @y,...,zx be the peak-to-peak values for these spikes. The algorithm is

as follows:
1) ¢ = 2 (number of clusters).

2) Generate yy, ..., it randomly (estimates of the means of the peak-to-peak val-

ues).

3) Classify z;,...,zx by assigning them to the nearest p;. Thus, we have ¢ sets
Ay, ..., Ac, where A4; represents the set of indices of the spikes assigned to

cluster 7 (i.e., p; is the nearest mean).

4) Recompute the means

pe= Y 2/ K,

JjeA;
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where K; is the number of elements in A4;.
5) If any mean pu; changed value in the previous step, go to 3).
6) Calculate J = min; j2; ui — i/
7) If J < R, then stop: the templates are y*,...,y° 7.

8) Calculate typical template vectors of the different spike classes,

yi = Zyj /K.

JEA;

9) Increase ¢ by 1. Go to 2).

5.4 CLASSIFICATION

Once we have identified the number of different spikes present, the classifica-
tion stage is concerned with estimating the identities of the spikes in the recording,
on the basis of the typical spike shapes obtained in the learning stage. In our clas-
sification scheme we make use of the information given by the shape of the detected -
spike as well as the firing rates (spike rates) of the different neurons. We note that
LeFever and De Luca [17] have also developed a recognition technique for myo-
electric signals, which exploits statistics about the firing rates. We propose here a
different technique. Although the shape plays in general the most important role
in the classification, the rates become a somewhat significant factor when dealing
with overlapping events. This is because, in general, overlap is considerably less
frequent than single spikes. The shape information is given by a set of features
extracted from the waveform. Let x be the feature vector of the detected spike
(e.g., the samples of the spike waveform). Let Ni,..., N, represent the different
neurons. The detection algorithm tells us only that at least one spike occurred in

the narrow interval (¢t — T3,t + T3) (= say I), where t is the instant of the peak
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of the detected spike, 7} and T3 are constants chosen subjectively according to the
smallest possible time separation between two consecutive spikes, identifiable as two
separate (non-overlapping) spikes. By definition then, if more than one spike occurs
in the interval I, we have an overlap. As a matter of convention, the instant of the
occurrence of a spike is taken to be that of the spike peak. For simplicity, we will
consider the case of two possibly overlapping spikes, although the method can be
extended easily to more. The classification rule that results in minimum probability
of error is the one that chooses the neuron (or pair of neurons in case of overlap)
having the highest probability of firing. We have therefore to compare the P;’s and

the P;;’s, defined as
P; = P(N, fired in [|x, 4), i =1,...n,

P;; = P(N; and N; fired in I]x, 4), g =1,...n, 7 <I,

where A represents the event that one or two spikes occurred in the interval . In
other words, P; is the probability that what has been detected is a single spike from
neuron i, whereas P;; is the probability that we have two overlapping spikes from
neurons [ and j (note that spikes from the same neuron never overlap). Henceforth
we will use f to denote probability density. For the purpose of abbreviation, let
B;(t) mean “neuron N; fired at t,” We will show that the classification problem can

be reduced to comparing a number of likelihood functions.

Consider P;;. We can write
t+T 14Ty
Pl} _/ / Bl fl Bg(tz)lx.fl)dfldtg

We obtain, using Bayes rule,

/t+T2/t+T2 f(x, A] Bg}({ili)Bj(tz))f(Bl(tl))Bj(tz))dtldtz.
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Now, consider the two events B(t1) and B;(¢). In the absence of any information

about their dependence, we assume that they are independent. We get

F(Bi(t1), Bj(t2)) = f(Bu(t1)) f(B;(t2))-

Within the interval I, both f(B;(t,)) and f(B;(t;)) hardly vary because the dura-
tion of I is very small compared to a typical inter-spike interval. Therefore, we get

the following approximation:

The expression for P;; becomes

Pl_jx f( f{B / . / . Bl(t1>/Bj<f2})dt1dZ‘2

Notice that the term 4 was omitted from the argument of the density inside the

integral, because the occurrence of two spikes at ¢; and t5¢l implies the occurrence
of A. A similar derivation for P; results in

M/”?

Pi =
f(x, 4)

F(x|B;(t1))dt,.
1—Ty

The term f(x,A) is common to all the P;;’s and the P;’s. Hence, we can simply

compare the following likelihood functions:

t+To

Li = f(Ba-(z‘))/ F(x|By(t1))dt i=1,..,n, (5.1a)

t—T,

t4+Ty i+T2
Li; = f(B; (D) f(Bi(t / / (t1), B;(t2))dty dts,

Lj=1,.,n, j7<I (5.1b)

We propose two schemes for evaluating the terms f(B;(¢)). In the first one,

we ignore the knowledge about the previous firing pattern except for the estimated
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firing rates A;,...,\, of the different neurons Ni,...,N,, respectively. Then the
probability of a spike coming from neuron N; in an interval of duration df is simply
A;dt. Hence,

f(Bi(t)) = As. (5.2)
In the second scheme we do not use any previous knowledge except for the total

firing rate (of all neurons), say «. Then

FBi(1) = = (5.3)

Although the second scheme does not use as much of the information about
the firing pattern as the first scheme does, it has the advantage of obtaining and
using a more reliable estimate of the firing rate, because in general the overall firing
rate changes less with time than the individual rates. Also, the estimate of o does
not depend on previous classification results, but rather on the detection results,
which are usually quite reliable. However, the second scheme is useful mostly when
the firing rates of the different neurons do not differ much; otherwise the first scheme

is preferred.

In real recording situations, sometimes we encounter voltage signals that are
much different from any of the previously learned typical spike shapes or their
pairwise overlaps. This can happen, for example, because of a falsely detected noise
spike, a spike from a class not encountered in the learning stage, or to the overlap
of three or more spikes. To cope with these cases, we use the reject option. This
means that we refuse to classify the detected spike because of the unlikelihood of
the assumed event A. The reject option is therefore employed whenever P(4/x) is

smaller than a certain threshold. We know that

P(A

X) - f(A>X)/IEf(‘47X) + f(‘4cex)}7
where A€ is the complement of the event A. The density f(A°,x) can be approx-

imated as uniform (over the possible values of x) because a large variety of cases
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are covered by the event A°. It follows that we can just compare f{A4.x) to a
threshold. Hence, the decision strategy finaly becomes: Reject if the sum of the
likelihood functions is less than a threshold. Otherwise, choose the neuron {or pair
of neurons) corresponding to the largest likelihood functions. Note that the sum of

the likelihood functions equals f(4,x)

Now, let us evaluate the integrals in (5.1). We take the samples of the spike
(or possibly also just part of the samples) to constitute the feature vector x. The
added noise, partly thermal noise from the electrode and partly because of firings
from distant neurons, can usually be approximated as white Gaussian. Let the
variance be o?. It can be estimated from idle (non-spiking) periods of the recording.
Overlapping spikes are assumed to add linearly. (Several researchers observed that
this assumption holds well, e.g., [8].) The integrals in the likelihood functions can
be approximated as summations (note, in fact, that we have samples available,
not a continuous waveform). Let y' represent the typical feature vector (template)

associated with neuron N;, with the m'® component being y° . Then

[ | | . 1 r 1 1 27
flxiBill k) = mp'ﬁz( ~ Ym—y)]
1 1 M '
f(x|Bi(k + k1), Bj(k + ko)) = W ex L~—é;5 Z(zm — Yy — y;_kz)zj,

h

where ., is the m'" component of x, and M is the dimension of x.

To summarize, the recognition procedure becomes as follows:

1) Obtain the likelihood functions:

Mo M

Ly=f(Bi(k) D expl-g5 ) (em ~wm-i)’],  (54a)



, : I P ;-
le; = f(Bu(k))f(B;(k)) }: Z eXPi"é}’g‘ (m — yin-—kl - ‘y;n_;\.g)zg’

ki=—Miky=—M; m=1

7 <1, (5.4b)
where k is the spike instant, and the interval from —Af; to M, corresponds to the
interval I defined at the beginning of the section.

2) H N Ly + 33y <c(cisa constant), then reject (spike is unknown).

3) Otherwise, obtain max; ; (L}, L};). The corresponding index (indices) repre-

sents (represent) the firing neuron(s).

We note that in the case of high signal-to-noise ratio the summations in (5.4a)
and (5.4b) are dominated by the term corresponding to the closest distance between
the vector of z.,’s and the time-shifted templates. In such a situation we can simply

use the following likelihood functions:

M
LY = 20°In[f(Bi(k))] ~min[ D (2m = yroi,)’],

m=1
M '
L;', = Zlengf(Bg(k))J + nglnif(Bj(k))j — {Hl}fl‘ (Zm = Yk, — yin_kg‘)gj.

We observe similarities between this case and the template matching method. The
presented method gives additional bias terms to incorporate the effects of firing
rates. Note that the bias for the likelihood functions of overlapping spikes is strongly
negative in case of low individual firing rates. This is consistent with the intuitive
fact that in this case a detected event would be less likely an overlap, when the

spike streams are independent.

We note that the discharge rates \; and o change with time. It is therefore
imperative to adjust the rate estimates with time so as to track the changes. We

use exponential averaging, as follows. In every block of H samples we count the
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number of spikes of class ¢ (say it is D;), and the overall number of spikes (say D).

The new estimates are updated as follows:
Ai(new) = aX;(old) + (1 — a)D;/H,

a(new) = aafold) + (1 — a)D/H,

where a is a constant between 0 and 1. The choice of a should depend on the choice
of H. If H is low (H can be as small as 1), then a should be very close to 1, and

vice versa.

5.5 IMPLEMENTATION

The techniques we have just described were tested in the following way. For
the first experiment we identified two spike classes in a recording from the rat
cerebellum. We created a signal composed of a number of spikes from the two
classes at random instants, plus noise. To make the situation as realistic as possible,
the added noise is taken from idle periods (i.e., non-spiking) of a real recording.
The reason for using such an artificially generated signal was to be able to know
the class identities of the spikes, in order to test our approach quantitatively. We
implemented the detection and classification techniques on the obtained signal, with
various values of noise amplitude. In our case the ratio of the peak-to-peak values
of the templates turned out to be 1.375. Also, the spike rate of one of the classes
was twice that of the other class. Fig. 5.3 shows the results with applying the first
scheme (i.e., using Eq. 5.2). The overall percentage correct classification for all
spikes (solid curve) and the percentage correct classification for overlapping spikes
(dashed curve) are plotted versus the standard deviation of the noise o normalized
with respect to the peak h of the large template. Notice that the overall classification
accuracy is near 100% for o/h less than 0.15, which is actually the range of noise

amplitudes we mostly encountered in our work with real recordings. Observe also
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the good results for classifying overlapping events. We have also applied the second
scheme (i.e., using Eq. 5.3) and obtained more or less similar results. We wish to
mention that the thresholds for detection and for the reject option are set up so as

to obtain no more than 3% of falsely detected spikes.

A similar experiment is performed with three waveforms (three classes), where
two of the waveforms are the same as those used in the first experiment. The third
is the average of the first two. All three neurons have the same spike rate (i.e.,
A = X3 = A3). Hence, both classification schemes (Eq. (5.2) and Eq. (5.3))
are equivalent in this case. Fig. 5.4 shows the overall as well as the sub-category
of overlap classification results. We observe that the results are worse than those
for the two-class case. This is because the spacings between the templates are in
general smaller. Notice also that the accuracy in resolving overlapping events is now
tangibly less than the overall accuracy. However, we can say that the results are
acceptable in the range of o/h less than 0.1. From this experiment we observe also
that for the case of high noise amplitude, the information given in the spike rates
becomes considerably significant in preventing wrongly classifying single spikes as
overlaps. This is because in our method the factor multiplying the summations
in the L;;’s is generally much less than that of L;’s, thus producing a frequently

needed bias for single spikes.

Finally, in the last experiment the techniques are implemented on real record-
ings from the rat cerebellum. The recorded signal is band-pass-filtered in the fre-
quency range 300 Hz - 10 KHz, then sampled with a rate of 20KHz. For classifica-
tion, we take 20 samples per spike as features. Before performing the classification,
the zero-level of the spike is set so that the positive peak and the negative peak are
equal in magnitude. It has been noticed, and also verified, using experiments with
single-unit electrodes, that sometimes the level of the spike gets displaced because

of small movements during the recording. Fig. 5.5 shows the results of the proposed
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for a three-class case.
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Fig. 5.5: Classification results for a recording from the rat cerebellum.

method, using the first scheme (Eq. 5.2). The number of neurons whose spikes are
represented in the waveform is estimated to be four. The detection threshold is
set up so that spikes that are too small are disregarded, because they come from
several neurons far away from the electrode and are hard to distinguish. Notice the
overlaps of classes 2 and 4, and 1 and 4 (twice), and 1 and 3, which were detected
by the algorithm. Overall, the discrepancies between classifications done by the

proposed method and an experienced human observer were found to be small.



5.6 CONCLUSION

Many researchers have considered the problem of spike classification in multi-
neuron recordings, but only a few have tackled the case of spike overlap, which could
occur frequently, particularly if the group of neurons under study is stimulated.
In this work we propose a method for spike classification, which can also aid in
detecting and classifying overlapping spikes. By taking into account the statistical
properties of the discharges of the neurons sampled, this method minimizes the
probability of classification error. The application of the method to artificial as well

to as real recordings confirms its effectiveness.
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