THE EFFECT OF ELECTROSTATIC FIELDS ON THE
ORIENTATION OF COLLOIDAL PARTICLES |MMERSED
IN SHEAR FLOW

Thesis by

Sterge T. Demetriades, A.B., M.S,

In Partial Fulfillment of the Requirements
For the Degree of

Mechanical Engineer

California Institute of Technology

Pasadena, California

1958



ACKNOWLEDGMENT

The author is indebted to Professor J. H. Wayland for his support

during the course of this. investigation.



ABSTRACT

The orientation distribution function for colloidal particles
immersed in Couette flow with an electric field parallel to the velocity
gradient is derived in this study. A description of a modified and
improved version of streaming birefringence apparatus built to test
this theory and to conduct other studies in streaming birefringence

is also included.
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ayy byy ¢, = components of distortion of fluid defined by equation 8.

= general coefficients of Fj series, see equation 40.

B = a constant defined in Appendix C.
D = orientational diffusion coefficient (rotary diffusion
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3(% - 52), eté.
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fluid far from the particle along xf,y'! and z* axes
respectively.
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I. [NTRODUCTION

An attempt is made in this study to determine theoreiically the
effect of electric fields on the orientation of colloidal particles in
sﬁear flow. The experimental verification of the theoretical results
has not been completed because the alloted time was all spent on the
design, construction and assembly of the complex equipment required for
the experiment. Double refraction (birefringence) was considered and
chosen as the most appropriate method for the experimental study of this
effect. Therefore the problem investigated in detail is one which is
relatively easy to study in concentric-cylinder streaming-birefringence
apparatus, namely the case when the electric field is parallel to the
velocity gradient., Thus it would seem more appropriate to qualify the
title further to read "The Effect of an Electric Field Normal to the
Velocity on the Orjentation of Colloidal Particles in Couette Flow",

Streaming birefringence (SBR)* has already become an important
biochemical and hydrodynamic research tool. Its biochemical uses are
outlined in the excellent general review by Cerf and Scheraga (1).
Although Humphry (2) was first to suggest the use of $BR as a hydro-
dynamic research tool, Wayland (3) was first to carry out the quantita=-

tive determination of a complex flow field by means of SBR measurements.

*SBR = streaming birefringence = double refraction associated with
shear flow = flow birefringence. If an external field is applied to a
normally isotropic Eure liquid, solution or suspension, the system in
most cases becomes irefringeni. The production of double refraction
in this manner is referred to as the Kerr effect, the Cotton-Mouton
effect, or the Maxwell effect, depending upon whether the applied field
is electric, magnetic or hydrodynamic, respectively,
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He found that quantitative measurements were possible as close as 0.1 mm
from a wall, In addition, Wayland (3) presents an excellent review of
the hydrodynamic uses of SBR. More recently Prados and Peebles (4)
attempted an analysis of two~dimensional laminar flow utilizing a doubly
refracting liquid. A comprehensive literature survey of SBR was pre-
sented by Peebles, Prados and Honeycutt (5). It appears therefore that
the effect of shear fields on the orientation of colloidal particles
has been the subject of numerous and extensive investigations.

Electric birefringence has been applied with success to the study
of static suspensions of colloidal particles by many (e.g. Benoit (6,7),
O'Konski and Zimm (8), O'Konski and Haltner (9)) and the effect of
electrié fields on the orientation and relaxation effects of colloidal
particles in suspensions is well~known.

By contrast, the effect of a simultaneous application of electric
and shear fields on the orientation of colloidal particles, isotropic
pure liquids or solutions has received scant attention. At this date
Tolstoi (10) appears to be the only investigator to have studied the
combined Kerr and Maxwell effects. He considered the effect of a
simultaneous application of electric and hydrodynamic fields on a
particle having an anisotropic polarizability but no permanent dipole
@oment. He investigated the case when the electric field, E; is applied
in the direction of the velocity gradient (i.e. normal to the flow

velocity) and he claims that by generalizing the results of Peterlin
and Stuart (11, 12) for small a (a = ratio of the velocity gradient to

the rotary diffusion constant), he found that the extinction angle is



not 45° as a approaches zero but deviates from 45° by an amount o'

where

2
tan 2¢' = _Z__t.é_n_:%’_ ~ %_ . (1)
1 - tan” ¢!
The quantity G in equation 1 is the velocity gradient. In addition he

gave an expression for the dependence of the birefringence on E and

Gy which may be written in the form:

Qﬁé%l = Q. - (2)
a(E%)

E=0

G=constant

Tolstoi (10) applied these results for colloidal suspensions to
the limiting case of pure liquids. Without elaborating on his method
and results he states that equations 1 and 2 were found to hold for a
sample of purified transformer oil. By introducing the effect of the
electric field into the Raman and Krishnan (13) theory for pure liquids,

he obtained the following equations:

1 - tan 9! G

and
a(an) % 0. | 0

E=0
G=constant

Equations 3 and 4 are in disagreement with the experiments just
mentioneds Therefore, Tolstoi concluded that the experiments were in
agreement with an orientation-type theory (Peterlin and Stuart, (11,12))

and in disagreement with the Raman and Krishnan theory. The disagree~
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ment of the latter theory with experiments on pure liquids had also been
indicated earlier by Sadron (14, 15). A summary of Tolstoi's study
appears in English in the comprehensive review paper of Cerf and
Sheraga (1).

Since Tolstoi does not derive an expression for the orientation=
distribution function in terms of the angles O and ¢ and does not pro-
" vide an exact expression for the angle of éxtinction or the amount of
birefringence as a function of the field strengths and particle pro-
perties, it is impossible to evaluate the merits of the combined Kerr
and Maxwell effects as a hydrodynamic or biochemical research tool on
the basis of his work alones In fact it appears that Tolstoi considered
only the two-dimensional problem, i.e. when & = 90° = constant, so that
the major axis of all his particles lies completely on the plane yhich
contains the flow velocity vector and the electric field vector. There-
fore, in order to determine the usefulness of this combined-field method
it is necessary to develop the theory of the orientation of colloidal
particles in Couette flow with an electric field normal to the velocity
vector. The theoretical results of this investigation appear below.

A description of the experimental apparatus and procedures is given

in Appendix F.
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I1. EFFECT OF AN ELECTRIC FIELD NORMAL TO THE FLOW
VELOCITY ON ORIENTATION OF COLLOIDAL PARTICIES
IN COUETTE FLOW

The success of a theory to account for or predict experimental
observations depends ultimately on the model proposed for the solute
particles and the simplifying assumptions made in order to treat rigor-
ously their interaction with the hydrodynamic and electric fields, It
is appropriate therefore at this point to outline the problem with
special emphasis on the assumptions that will have to be made for its
solution.

Perrin (16) has developed the theory of diffusion of orientation
due to Brownian movement in the preseﬂce of an external orienting field.
Now if the colloidal particles in question obey the general laws of
Brownian movement, the orientation distribution function F obeys the

general equation
DVF - div (i) = & 5)

where D is the orientational diffusion coefficient (rotary diffusion
coefficient according to most authors) and @ is the angular flux of
the particles in the absence of Brownian movement due to external
orienting fields. Equation 5 is no more than a statement of the fact
that the number of particles which attain a certain orientation due to

Brownian movement per unit time minus the number of particles which

lose that orientation due to the effect of the fields which generate
EL is the number of particles which accumulate in that orientation per

unit time. When steady—sta{e is attained in the absence of orienting
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fields all orientations are equally likely and normalization yields
= z&‘. The suspension then is isotropic. As soon as an external
orienting field is applied, this equilibrium value of F is destroyed.
The particles lose the uniform orientation imposed by Brownian move-
ment, Subsequently,if the external fields reach a steady state then
F reaches a new equilibrium and this new F with steady-state external
fields is given (after the characteristics of the suspension have

settled to a steady state) by
DVF - div (Fa) = 0. )

The work of Sadron (15), Peterlin (17) and Peterlin and Stuart (11)
proved that equation 6 holds for particles which are rigid ellipsoids
of revolution in an orienting field of shear. The results of Peterlin
and Stuart have been extended by Scheraga, Edsall and Gadd (18) to the
region of high velocity gradient by means of a highwspeed computer.
Snellman and Bjornstall (19) have also considered the effect of absorp-
tion on the observed phenomenon. For many of the synthetic polymers,
however, the rigid model appears to be untenable. The work of Benoit (6),
O'Konski and Zimm (8) and O'Konski and Haltner (9) established that
equation 6 holds for particles which are rigid ellipsoids of revolution
in an orienting electrostatic field.

It appears therefore that in cases where the particle is rigid,
flow or electric birefringence gives information about its size and
shape. In cases where it is not rigid these techniques can furnish
information about the internal motion of the molecule (for further
details on non=rigid particles see the excellent review article of

Cerf and Scheraga (1)).
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The angular ﬁl&x‘i‘é;‘; of the particles in the absence of Brownian
movement is the parameter which feels the influence of the external
orienting fields. Therefore the dynamic problem of the motion of these
particles under the influence of these fields needs to be considered
in detail,

In general we can decompose the system of forces acting on the
particle into purely hydrodynamic and purely electric components the
sum of which is equal to and opposes the forces acting on the fluid
next to the particle.

Jeffery (20), treated the problem of rigid ellipsoids of revolution
in a viscous fluid whose motion is laminar. He considered a system of
axes X,¥,z fixed in the particle and moving with it with center at the

origin of the particle whose surface then is described by

L322
v+ 5 =1 (7)
a b c

The undisturbed motion of the fluid in the neighborhood of the particle

is then given by

Uy = apx + hyy +.g,2 + g5z = hyy

vg = hx + by + iz 4+ hox = foy > (8)

wo = gyx ¥ Fly + ez + foy = g5z

where aj, bl’ C19 fls gy hyy T2y g3y hy are the components of distor-
tion and rotation of the fluids These are assumed to be constant in
space through a volume which is large compared with the dimensions of

the particle. They will, however, vary with time, since the particle
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will rotate under the influence of the fluid and the axes x,y,z will
be rotating axes.

Neglecting squares and products of the velocities, the equations
of motion of an incompressible viscous fluid referred to moving axes

are of the type

uvzu - { - wqv + cuzw} %)

where p, u, p are respectively the density, coefficient of viscosity
and mean pressure of the fluid while w;, wy, Wy, the spins of the ellip-
soid about its axes, are produced by the motion of the fluid and, as
Jeffery proves, are of the same order as the velocities u, v and w.
Therefore for small u, v and w all products like wyv may be neglected.
Jeffery also proves that the remaining terms on the right-hand side of
equation 9 are of the second order of small quantities (i.e. products
of the type w €, where & andcn1 are béth small) and are therefore

negligibles The equations of motion then reduce to

uv2u=-g-§-, nV2v=g§ and uV2w=%§, (10)

with the equation of continuity,

du dv ow _

ox T dy * oz 5O (1)
Jeffery then finds a solution of equations 10 and 11 which agree with
equation 9 at great distances from the origin and which gives on the

surface of the ellipsoid

U= oz =y , vzm3x-mlz, w=-‘w1y-032)<, (12)

that is to say at the surface of the ellipsoid the fluid moves with
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the velocity of the ellipsoidyi.e. the relative velocity between the
fluid and the surface of the particle is zero at any point of the sur-
face. dJeffery calculates the values of uy v, w in terms of known para-
meters at any point and from these he calculates the stresses on the
surface of the ellipsoid. From these he computes the components of
force per unit area acting on the surface of the ellipsoid and the
resultant couples (i.e. the torques) along each one of the axes x,y,z
i.es Lx, Ly’ and L respectively. <

Finally, Jeffery assumes that if the particle is subject to no
forces except those exerted by the fluid upon its surface, then in the
slow motions to which his assumptions have already restricted us, the
resultant couple on the particle must vanish at every instant. This
is a special case of what is also known as Stokes' flow and is equiva-
lent to saying that at low particle Reynolds numbers, the net torque
is zero, i.e. the angular acceleration is zero. This leads him to an
expression for the steady-state components of angular velocity in the
following specific case:

Take axes x', y', z' fixed in direction and let the components of
the fluid velocity in the undisturbed motion (i.e. far from the particle)
be uo', vo' and wy'y parallel to these axes. Consider the laminar motion
given by uy' = vo' =0 and wo'.= Gy® where G is the constant velocity
gradient in the +y' direction. This is recognized immediately as
Couette flow, the flow which would occur when the gap between two infi-
nite parallel surfaces is filled with fluid and one surface is made to
move while the other remains stationary. This situation can be reproduced

experimentally by two concentric cylinders separated by a gap of dimen=
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sions small compared to the length and diameter of the cylinders. The
velocity of rotation, of course, will have to remain below the critical
value at which organized or random turbulence (Taylor flow (21,22))

' at any

begins =~ the :mgtion is strictly laminar. The velocity v
point O is wholly in the z'~direction, while the velocity gradient
is.in the y' difection which coincides with the radius of the concen-
tric cylinders. The outer cylinder is rotating so that the positive
y' direction is the direction of increasing velocity. Figures 1, 2

and 3 show the geometry of the two systems of coordinates x,y,z and

x'yy*yz! with respect to the concentric cylinder and the particle.



v =11m
Since use is made in this study of Jeffery's results, his coordi-

nate notation is addpted throughout. "Thus his'three Eller angles I
0,9y and {3 connecting .the systems'x,y,z andix'yy'yz'y aré the angles
between the axes x and x', the planes x'y' and x'x and the planes x'x
and xy respectively. As shown in Appendix A these angles are produced
from the initial fixed system x', y', 2!, first by rotation about x’
counterclockwise by an angle 9 to produce the system of orthogonal

! 2
axes x', y",

z", then by rotation about z* counterclockwise by an
angle 6 to produce the system x, y"™, z" and finally by rotation about
x counterclockwise by an angle ¥ to produce the system x,y,z. Then

the steady~state motion™ due to hydrodynamic forces is described by

. 2 2 .
9=G(%:"%) sichosGsin@cosq)-’-’-GH, (13)
+b
and
9= “"“g-- (a c052¢ + b2 sin2¢) =y s (14)

(a +b )

where a is the semimajor axis and b the semiminor axis of the ellipsoid
and subscript H indicates these are hydrodynamic components. These
formulas of Jeffery for the rate of change of é and ; due to the hydro-
dynamic forces were used by A. Peterlin (17) in his theory for SBR and
since Peterlin's theory has been repeatedly verified (¥is. Cerf and
Scheraga (1)), we may conclude that the validity of these formulas and
therefore Jeffery's treatment of the hydrodynamic part of the problem

is proven and his expressions for the hydrodynamic torques are correct.

. *That is the motion resulting from setting the acceleration terms
W)y @, and aB equal to zero.
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However equations 13 and 14 are not sufficient to characterize the
angular velocity of the particle when an electrostatic Srienting field
is also present. It is not immediately obvious whether the electro-
static comﬁonents and the hydrodynamic ccmpohents of é and é are
linearly independent and additive. Therefore the new values of ; and
é must be derived taking into aecount both effectss The starting point
for the derivation is the simple statement that the resultant torque
on the ellipsoids is equal to the sum of the torque due to the hydro-
dynamic field plus the torque due to the electric fields The torque
due to the electric field will first be decomposed into components
LEx’ LEy and LEZ; these components will then be added to the hydro-
dynamic components LHx’ LHy'and Ly, availablf FroT deffery’s theory,
and the sum will be set equal to zero (i.e. o = w, = w3 = 0) to ob~
tain the values of Wy W and wye From these the values of é and é
will be obtained by a simple transfol;mation and the vector o will be
expressed in terms of 0 and ¢. This value will be inserted into

equation 6 and a solution will be obtained for the distribution orienta~

tion function, F(g,0).

A. RECAPITULATION OF UNDERLYING ASSUMPTIONS.

1t is appropriate at this stage to list the assumptions on which
this theory is based.

le The flow is a.coatinuum.

24 The flow is laminar,

3« The flow is one~dimensional with a constant velocity gradient,

4, The inertia terms (or the accelerations) of the equations of
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motion of the fluid or of the particles are negligible, i.ee
this is a Stokes flow.

5. The system is a monodisperse suspension.

6. The particles are rigid ellipsoids of revolution with semi-
major axis a and semi-minor axis b = c.

7. The particles have either a uniform dielectric constant or two
principal dielectric constants along the axes a and b,

8. The system has reached a steady state.

9. The electric field is one~dimensional and uniform and perpen-
dicular to the velocity vector or parallel to the velocity
gradient,

10 The electric field induces a dipole on the particle which
does not have a permanent dipole moment a;d is’non-conducting

in the interior.

Bo EFFECT OF THE ELECTRIC TORQUE ACTING ON THE PARTICLE.

To determine the effect of the electric torque on the orientation
of the particle it will first be necessary to find the components of the
torque along the fixed axes x', y' and z', to convert these into com=
ponents along x, y and z, and to express these in terms of ¢, 6 and V,

to determine the new spins w;y wy, and wy and to insert these into the

diffusion equation.

le Components of the Electric Torque Along x', y' and z!.

The two angles of interest in considering the torque acting on the
particle due to the electric field are the angle a made by the principal

axis x (or a) of the particle and the electric field and the angle 3",
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measured counterclockwise, made by the resultant electric torque LE
and the +x' axis. The direction of the electric field of strength E
is entirely along the y' axis. Therefore the torque LE due to this
field is entirely in the x'z' plane as shown in figure 4. In addition
the torque LE is perpendicular to the axis of rotational symmetry of
the particle x, and lies in each of the four quadrants of the x'z'
plane depending on the orientation of the particle in the x'y'z'

frame (figs. 4a, 4b, 4c and 4d). The angle 3', which is the smallest
angle made by the torque L. and the x' axis, is equal to the angle b
made by the perpendicular AC from the axis x to the axis y' and the
perpendicular to the y* axis BC contained in the y'z' plane (since
their sides are mutually perpendicular). Then, as shown in Appendix B,

the following relations hold:

sin 2a = 2 sin O cos ¢ sin26 sin2¢ + 00526 ’ (15)
5 =38!, (16)
cos & = sin U si 3 (17)
cos © + sin O sin 9
and
sin & =

2 . (18)
cos O + sin"6 sin“p

ft may be seen from figures 4a, b, c and d that the four pairs of
components LEx’ and LEz’ resulting from all the possible orientations
of the particle, can be expressed quite readily in terms of 8", which
is seen to be related to ' in each instance. It should be noted that
the torque Lg is always drawn perpendicular on the plane of a with a

counterclockwise (right-handed screw) convention. The four possible
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(c)

5= 8'y 8" = 180° + 5!

(d)

5 =18, o" = 360° - &'

FIGURE 4

COORDINATE SYSTEM FOR DETERMINING COMPONENTS
OF ELECTRIC TORQUE ALONG x', y' and z'
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pairs are shown in the following tabulation

Fige 4a, » = 3' = 3" Figs, 4b, 5 = 8", 3" = 180° - 3*
Lo = Lp cos d! LEx' =« L cos o = L cos ot
LEZ' = - LE sin d* Le,e == LE sin 8" = - LE sin &'

Fige 4c, & = 8%, 8" = 180%+ »* Fig. 4dy 3 = 3*, 8" = 360°- '
Lg,t = - Lg cos 3" = Ly cos ' L 4 = Lgcos 8" = L cos !
LEZ' = L.E sin 3" = - LE sin 8! LEZ' = LE sin 3" = - LE sin 3!

It is obvious that in all cases
LEx? = LE cos b,
eyt = O > (19)

be, QLE sin 3,

where, as shown in Appendix C,

and

H

b = BEZ sin 2a. (20)
The quantity B is a constant given in Appendix C which contains the

dielectric constant and the dimensions of the particle.

2, Components of the Electric Torque Along x,y and z, in Terms
f nd V.

Inserting the value of L given by equations15 and 20 in equations
19 and operating on it with the transformation matrix A of Appendix A,

we obtain the components of the torque along x, y and z, namely
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e, = 0
X
LEy = - BE2(2 sin 8 cos 9)(sin @ cos ¥ + cos O cos P sin ) ~ (21)

a.nd 2 :
LEZ = BE“(2 sin 0 cos ¢)(sin 9 sin ¥ = cos O cos ¢ cos V)

Note that LEx = 0 as one would suspect intuitively because of symmetry.
This concludes the determination of the components of the electric

torque.

3¢ New Spins w;, w, and w3 Due to the Combined Electric and Hydro=

dynamic Torques.
The hydrodynamic components of the torque along xy y and z axes,

as derived by Jeffery, are
2
Ly = A {27 (F5 - @)},
Ly = AL6 - aDg+ 6 + 3D (g - )}, > (22)

L, = A{G% - b+ G2 + b7) (hy - @)}

The symbols Ay A, A,y g5 h)y foy g5 and hy are defined in Appendix D.

y
The components of the combined torques are given in the steady state,

by

i

e = by + Ly = 0

L =L, + = Q S (23
yHyLEy (23)

Lz = LHz + LEz =0

Inserting equations 21 and 22 into equation 23 and solving for a, and

@3 (note that wy is not required since ¥ is not required because ¥ is

arbitrary), we obtain
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Av[ (b°- az)gl'*' (b2+ a2) g] - BE? (2sinBcose) (sinpcosy+ cosbeospcosy)

i A (6% + 32
y
= 0 sin{y -9 sin 0 cos ¥, (24)
2 .2 2, .2\, 2 . .
A[(a"= b%)h + (a"+ b")h,] +BE" (2sinBcosy) (sinpcosy-cosBeospcosy)
“3 Az(a2 + b2)
= 0 cos ¥+ 9 sin 0 sin V.
N i " 0 Due to th mbined Electri nd rodyn
TQTQQ§§0

Inserting the values for g1y 8oy hy and h, from Appendix D into

equations 24 and solving for ¢ and 0, we obtain, after considerable

simplification,

* 2 7]
® = "'§'Q_2“ (a2c052q>+ b2sin2‘P) + .___2;5_2__ * EL ° 2 cos ¢ sin @
(a“+b°) (@ +b") y
and . > (25)
. 2
3] ='g£§§:h§l sin 20 sin 29 = __%E_i_ "EL * sin 20 C°S2¢
4(a“+b°) (@“+b°) y

where Ay = A, (since b = c) is defined in Appendix D.
Recognizing the first terms in the right-hand side of equations 25

for the hydrodynamic contributions to ¢ and 8, we may write

P =g, + o
and > (26)
o . .
6=6,+ e
N

where
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. 2
1 BE .
I * sin 29
E Ay a2+ b2 ‘
and A > (27)
. 2
BE --#- . 28E 5 * sin 20 cosz@.
y a+b i

Note that { does not appear in the expressions for ¢ and 0, as

one would suspect from the symmetry of the particles.

C. SPECIAL CASE OF THE GENERAL ORIENTATION DIFFUSION EQUATION FOR RIGID
COLLOIDAL PARTICLES IN COUETTE FLOW WITH AN ELECTRIC FIELD NORMAL TO
THE VELOCITY.

In the spherical coordinate system with its origin at the center of
the particle of unit radius and polar angles ¢ and 8 (identical with
the Euler angles), the angular flux @ of the particle due to the external
orieﬁting fields is given by

s-H-dg oy (28)

where di is the angle through which the particle turns and consists of
the components dB and sin 6 dp in the 3} and'$& dimensions respectively.
The term div F() in the steady-state orientation diffusion equation,

equation 6, now becomes
VeFah = 's'{:Té [F6c086+ 9 slne +9"E sinB +sm6v—E +Fsin9—(2] (29)

To simplify the computation of this term construct the right triangle

shown in figure 5 and set M = A sin 2\ and 2K = A cos 2\ where

_ 1 2-b2) 1 1(_BE .
K..-G(a =FGR and M=73--—5— ). Then we obtain
4 a2 + b2 4 Ay a +b
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é = Alcos(29 - 2)\) +.§Q§§gL ]

and (30)
A ' .
" 0 ='% sin 20[sin(2¢ = 21) - sin 2)].
2N Now let 29 - 2x = 2y, Note that 2A is
%IGUé; 5 a constant which depends on the magni-
' TRANSFORMATION OF tude of the electric field E, the

COORDINATES
velocity gradient G, the dimensions

and the dielectric constant of the particle. Then we obtain

% % @35,_.6_2.5 wnd 202 31)
dp By o0 6‘:‘2 o9 oy

and equation 29 becomes

V'ﬁgh=';%;§ [(—3sin39 sin 2y - sinB (3 cosze - 1) sin 2A)F

+'% sin © sin 20(sin 2% - sin 2\) %%

. a \
+ sin O(cos 2y +-% cos 2\) 5%-]. (32)

Note that when E = 0, the quantities M and sin 2\ vanish while cos 2\ = 1,
and we obtain A = 2K and v = 9. Then equation 32 is identical with the
equivalent term Vef® in Peterlin's theory (17).

Carrying through all these transformations to the left=hand side of
equation 6, we obtain
1 82 6 2
DV2F = DA - OF ;<088 0F  3F | | (33)

6in0 aY2 sin 8 80 52
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When E = 0 equation 23 also becomes identical with the equivalent term
DVYF in Peterlin's theory.

Equations 6, 32 and 33 now give the special case of the orienta-
tional diffusion equation for rigid colloidal particles in Couette flow

with an electric field normal to the velocity.

D. SOLUTION OF THE ORIENTATIONAL DIFFUSION EQUATION FOR RIGID COLLOIDAL
PARTICLES IN COUETTE FLOW WITH AN ELECTRIC FIELD NORMAL TO THE VELOCITY.

The form of equation 6 which applies to our problem can now be

written

VF = & (_(3 5in% sin 2¢ + [3 cos = 1] sin 2VF

+‘% sin 20 (sin 2y = sin 2\) gg
3]
+ (cos 2y +é‘ cos 2\) 6‘5 i, (35)
where
2.4
- 1 2 BE
Ay (a"- b%)

We recognize equation 35 as @ linear partial differential equation
with transcendental coefficients. A certain symmetry is expected to
prevail on physical grounds (e.g. F(9,8) = F(p + =, 6 + n)) and the
orientation distribution function should be a sphere of unit radius
with a variable population density on its surface. In addition, the

quantity A/D is usually less than unity. Thus for tobacco-mosaic virus

1

R=1, D =530 sec_l; for ‘thymonucleic acid D = 400 = 1150 sec” ’

e

R < 1.0; and for vanadium pentoxide D = 180, R < 1.0. Since usually

turbulence sets in for G = 1000 sec-l most SBR measurements are made
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with G = 100 or lesss The magnitude of E on the other hand should re-

2 _ b2) remainsr ysu=

main small to avoid electrophoresis so‘that=BE21A (a
ally below 50 sec” L. Thus, usually, A/D << 70/100 < 1.0, Therefore it
appears that the function F may be expressed as a power series in A.

In most applications this series converges fairly rapidly.

Letting

B=3) (37

the required series becomes

F=). BF, (38)
J=0

where each FJ satisfies the inhomogeneous equation

V2Fj = =(3 sin29 sin 2y + [3 00529 - 1] sin 2¢y)F.

J=1
1 oF .
+7 sin 20 (sin 2y - sin Zx)-——L-—
1 oF .
+ (cos 2v + ﬁ cos 2\) —J"— (39)

Because of the spherical characteristics of F, each Fj may be ex-

pressed in terms of a series of spherical harmonies as:

. 2m
22 nO,J +Z Z (a joos 2my + b ,Jsm 2m'r)P2n . (40)
n=0

" n=l m=l

The computation of the terms FO’ F1 etc. is given in Appendix Es The

procedure we follow in order to determine the coefficients anO,j’ anm,j

and b__ . is as follows: Express each of the terms 3 sin“® sin 2y,

nimy j

3 °°529 - 1)sin QY,'l sin 20(sin 2y - sin 2\), cos 2y +d cos 2\ of
. 2 ’ R

equation 39 in terms of spherical harmonics of the first kind Pzn(x)
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(Legendre polynomials) or associated spherical harmonics of the first
génd P2 (x)aéLegendre associated functlons) Also express Fj-l?

BéJ-l and‘g;'l'—l in terms of Legendre polynomials or Legendre associated
functions. Then substitute these terms with the appropriate equivalent
polynomials or functions on each side of equation 39 and carry out the
multiplications involved, grouping the terms which include same powers

of x and at the same time like trigonometric factors sin 2my or cos 2my.
Then equate the coefficients of like terms on each sidey i.e. terms of
the type xi, x} sin 2my or x}cos 2myy (i = 0919250003 M= 1925000)0

Then solve the resulting system of simultaneous equations for the coef-
ficients 2,0,j° 2nm,j? bnm,j' It should be noted that this method be-
comes possible because the products of spherical harmonics involved all
turn out to be finite polynomials. Thus the general term will include
the products PSP 2 = 3(1-x7)P, 5 PSPE™ = 3(1-xPIP5M; PoP, = (3x2-1)P2n;
P,P gm 2(3 —l)P2 ;5 (where Pg is a finite polynomial); P2 2n =

3(l-x )l/zxo(l -X )l/2 [a finite polynomlal], cot © P% gm
x(1mx2) "2 (1-x )1/2 om. P5P3m+l ~3x (1=x )1/2(1 )1/2

Poni
. 1.,2m+1_ .
polynomial], for m < n and -P2P2 =0 for m = n. These tedious but

o[a finite

straightforward steps outlined above and leading to the values of the
general coefficients were not carried out and only the coefficients of
the first three terms were determined.

Finally it will be seen that all coefficients can be expressed in
terms of the leading coefficient, aO0,0’ whose value can be found by nor-

malization i.e. by setting the integral of F over the entire solid angle

*

It is convenient to use the notation of Jahnke and Emde (Jables of
Functions, Dover Publications, New York, Fourth Ediction, 1945) and deflne
Pp (x)=P (cos 6) and Pn(x)—Pn(cos 8) so that Pj(x) = cos § = x and Pl(x)
s1n 0= - )1/2
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(over the surface of the unit sphere) equal to unity. Thus

IQF szjzﬁleFsinede do = 1 | (41)

Because of the orthogonality of the terms of Fonly Fy survives the
: U _ 1
integration yielding 200,0 = 2x*
The first three terms were determined by following the same pro-
cedure outlined above. The details of that computation are given in

Appendix E. The series F then becomes

=L 4grd . 2
F =gz P2 210,1P2* (8, 1008 2r +by; sin 21)P)]
+ BZE‘L a P, + (a cos 2y+b sin 2 )P2 ++ P
2 210,272 73,2 T 011,280 Y2 T2 30,274

. 2 ) 4
+ (a21’2cos 2Y+b21’2sm ZT)P4+ (a22,2°°5 4T+b22’291n 4Y)P4]+.. (42)

The values of the coefficients 210,19 211,10 210,2° 211,2 b11,2’ a20,2,
221,2? b21’2, 422,29 and b22,2 and the Legeﬁdre polynomials Poy P, and
associated functions Pg, Pi, Pg (which happen to be polynomials in this
case) are also given in Appendix E.

The following ge&;\eral rules were found to hold for the coefficients
of equations 38to 40: |

1. All terms with negative indexes are zero.
2. All P%:H are zero when m = n,

= = =
3. 2m, 0 0 and 300, j 0 except aO0,0 Sy *

4. bnm,O = bnO,'j = bOm,J = 0.

5 If n> jorifm>j, a 0.

nMy §

6. Terms with m > n are excluded,
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Some of these rules were also Foﬁnd to hold in the investigation of SBR
by Scheraga, Edsall and Gadd (18). It should be pointed out that not
all the coefficients are required for the SBR problem, but, as was shown
by Peterlin and Stuart only the bll,j and 21, terms are retained. |t
is difficult to say without further analysis which terms will be retained
when the electrohydrodynamically oriented system interacts with a polar-
ized beam of light to give double refraction by a combination of the
Kerr and Maxwell effects (i.e. electrostreaming birefringence, ESBR).

In principle, however the evaluation of the angle of extinction and the
birefringence ean be carried out by the method of Peterlin and Stuart
(11), That computation is beyond the scope of this study but will be

carried Qut at a future date.
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111, CONCLUSIONS

The orientation distribution function for rigid colloidal particles
in Couette flow with an electric field normal to the velocity was de~-

rivede 1t contains terms with coefficients involving the factors

2 2

= A
M~ + 4K =3

e
il
[ ]

: =M
B sin 2\ = D
2

B cos 2 =~E¥
2 . 2 . . 2 . .
(B 'bll,zsln 2y) «C(B%sin 2 sin 2y) = Bsin 2 sin (¢ = 2A)

ﬁzsin 22 (sin 29 cos 2\ = cos 2¢ sin 2\)

Lii

sin ZQ-Bzosin 2\ cos 2\ - cos 2¢'stin22k

2
='2M§ * sin 2¢ ~'§§ cos 2¢ ,

D

H

_ 2
2 . :
B 'an’zcos 2y) OC-&E% e sin 2¢ + —422 * cos 29, etc.

These clearly contain products MK of the electric field and the veloeity
gradient as well as functions of the squares of the electric field and
the velocity gradient. Therefore the addition of the two effects is
non-linear and one would expect that the simultanecus application of

the two effects will yield new information independently. For example
if the size and shape of the particle is found by SBR and the rotary
diffusion coefficient, D, is found by EBR (the Kerr effect) then the

dielectric constant can be found by ESBR.
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The orientation=distribution function derived here can be used to
determine the angle of extinction, x, and the birefringence, 4n, of
colloidal suspensions subjected to the simultaneous application of
electric and hydrodynamic fields. Both these quantities will contain
products of the terms M and K as well as the sum of their squares and
the incomplete expressions of Tolstoi, equations 1 and 2,are of very
limited value. The technique of measuring X and An may be improved
by carrying out experiments at a constant velocity gradient with a
variable electric field. #

Since the viscosity of a suspension or solution depends on the
distribution of orientations of the suspended or solute particles
(v. Peterlin (17)), it appears that the viscosity is dependent on the
electrostatic field. The orientation=distribution function for ESBR

derived here can also be used to study that dependence.
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,APPENDIX A
COORDINATE SYSTEMS AND TRANSFORMATIONS OF THE ORIENTATION PROBLEM

Use is made in this study of some of the results of Jeffery (20) and
therefore his coordinate system is adopted in describing the orientation
of the general particle. Thus axés xt, Y', 2! are fixed in direction
with x' along the axis of the concentric cylindefs, y' along the direction
of the velocity gradient (i.e. along the radius from the inner to the
outer cylinder when the outer is rotating) and z' along the direction
of the flow velocity (see figures 1, 2 and 3 of the text). The axes
of the ellipsoid (fixed in the ellipsoid and rotating with it) are x, y
and z, with the semi-major axis laid out on x. Jeffery gives the di-
rection cosines of the axes of the ellipsoid (x,y,z) referred to the
axes xyyyz'with values (ﬁl,ml,nl)éﬂz,mz,nz) and GE3,m3,n3) respectively.
Then he introduces the three Euler angles, 6, the angle between the
axes x and x'y ¢  the angle between the planes x'y' and x'x, and ¥, the
angle between the planes of x'x and xy. As may be seen from figures 1,
2 and 3 of this Appendix, the coordinate system x,y,z may be formed from
the system x'y, y',z' by the following sequence of rotations:

First rotate about x' counterclockwise by an angle ¢ to produce the

system x*,y",z". This transformation is represented by the matrix

1 0 0
D= 0 cos @ sin @ (1=4)
0 -sing cos @

Then rotate about z" counterclockwise by an angle O to produce x,y™!, z".

Note that now x is contained in the plane of x',y",y™ . This transfor-



v

Z
FIGURE 3, APPENDIX A
EULER ANGLES OF PARTICLES AND
TRANSFORMAT I ON OF AXES
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mation is represented by the matrix

cos 6 sin © 0
CcC= -sin & cos O 0 (2-4)
0 0 1

Finally rotate about x counterclockwise by the angle ¥ to produce the

system xyy;ze This transformation is represented by the matrix

1 0 0
B = 0 «cos¥y siny (3-4)
0 =-siny cos V¥

Finally the complete transformation from x'yy',z' to x,y,z is given by

the product mattix A,
A = BCD, (4-4)

cos © sin © cos 9 sin ¢ sin ©
A = | ~sinfcosy  cospcosjycosd-sinysing sinpcosycosd + sinjcosp |(5-A)

sinBsiny -simjcosBcosp - sinpcosy ~sinpsinlcosb+ cosycose
This corresponds to Jeffery's matrix
"
b mom (6-4)

3 m3 n3

for the cosines of the angles



xx! R 4&' ’ xz!
A
;;' S A ;3' o (7=4)

Using the matrix A we can transform any vector given in coordinates

x'yy'y2? into a vector in coordinates x,y,ze Thus equations 21 of the

text are derived by the operation

LEx’ LEx
Al gy ey (8-A)
LEz' LEz

It should be noted here that the angles 9,0 are identical with the
normal spherical coordinates of a system with volume element
&2 = sin 6 d6 de (9-A)

Therefore the operators v and div will be written directly in spherical

coordinates with r = 1,
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APPENDIX B
COMPONENTS OF THE ELECTROSTATIC TORQUE EXPRESSED IN TERMS
OF THE EULER ANGLES

Of interest in this discussion are the angles a and ®" between the
axis x of the particle and the electric field and between the axis x!'
of the fixed frame and the electrcstatic torque LE (measured counterclock=-
wise) respectively (see figures 4a, b, c and d of the text). It should
be noted that L. lies entirely on the plane of x'z' under all possible
orientations of the particle (as long as the electric field is along
the axis y').

Referring to figure 4a of the text notice that ABC, ACO, BCO and

ABO are right triangles and the angle COB is ¢« Then

AB = OA sin (90° - 8) = OA cos 6,
0B = OA cos (90° - 8) = OA sin 6,
OC = 0B cos ¢
and therefore
OC = OA sin 6 cos ¢ = OA cos d.
In addition
B =08 sing
0B = OA sin ©
and therefore
CB = OA sin O sin .

Finally, since

(ae) = ./ (8)° + BC)% = 0A sina



we obtain

sin 20 = 2 sina cos a = 2 sin 6 cos ¢ sinzesin2@-¥c0329 (1-B)

Again referring to figure 4a of the text, notice that

l. Lg is wholly on x'z' plane since L; 1 E.

2. Plane ACB Il x'z' and line AB || x'.

3. Therefore LE Il plane ACB.

4, In addition, LE L x, since L is normal on xy! plane which
contains the angle a between axes x and y's

We may now prove that 3 = d' as follows:

5. CB 1 Ox', since x' | ;' and’z'| CB.

6e L. L AC, since AC is contained in plane xy'.

7. Therefore L L AC.

8. Then & = d' since their sides are mutually perpendicular and
lie on parallel planes.

Observe niow that

AB = QA cos O,
BC = AC cos 8,
BC = 0B sin ¢,
0B = OA sin O,

and therefore
BC = OA sin O sin ¢ = AC cos &.

Hence

_BC _ QA sin s sin @ sin O Sln ]
cos d = =% = = (2-B)
AC \//(AB)Z + (BC)¢ \//sinze sinp + coslh

*
The angle d' is the smallest angle made by the x' axis and L-«
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AB = AC sin & = QA cos ©

and therefore

sin & = /JA_—_[-&Q—:,“ 8 === . (3-8)
(aB)“ + (BC) \//Sln 0 sin“p + cos O
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APPENDIX G
ELECTROSTATIC TORQUE L ACTING ON A PROLATE SPHEROID

It may be shown that if a dielectric prolate spheroid (ellipsoid of
revolution shaped like a cigar) with a relative capacitivity K {di-
electric constant) is placed in an electric field E, its axis of revolu~

tion x making an angle a with the field, the torque acting on it is
-2 2 .
=% new(K - )b aE(El - E5) sin 2a. . (1=0C)

Here K = 8/8w where € and € are the values of tHe capacitivity, di-
electric constant or permittivity of the particle and of water, re-
spectively, a is the semi-major axis, b is the semi-minor axis and E,
and E5 are the resultant field inside the particle when x is normal and

when x is parallel to the field, respectively, given by

E .
E, =~ (2-C)
! {K=-Ds[Q ~ 52) coth™ls + s] = K}
2F
E, = —= (3-C)
2 2+ &-1s[Q = 52) coth~ls + s}
where
s = a(a2 - b2)-1/2. (4-C)
Therefore
L = BE” sin 2 (5-C)
where

- .2 - B2 1 2
B=-%m K l)ba(SO-K+2+SOj’ (6-C)
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and
So = (K- Ds[(1 - 52) coth™! s + s]. (7-C)

These formulas are also given by Smythe (23), The dielectric constant
of the particle may be adjusted to account for the Gouy-Freundlich (24)
effect. The anomalous behavior of the dielectric constant of the parti-

cle was recently studied by O'Konski and Haltner (25).
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APPENDIX D
DEFINITIONS OF SYMBOLS USED IN EXPRESSIONS FOR HYDRODYNAMIC TORQUES

According to Jeffery (20) and using his definitions (equation 6-A),

f = 36(myng + mang),  Fp = 36 (myny = myny),

=4 _ 1
g) = 28(myn) + myng), gy = 3G(mgn; - myng), > (-D)
_ A _ A
hy = 26(mny + myny)y by = 28(mny = mony),
while the spins wywyyw3 can be written in terms of o, ¥, and 8 as
follows -
W = ¢ cos B +V,
w, = 0 sin{y = ¢ sin 6 cos ¥ , > (2-D)
w3= 0 cos{ +¢ sin 6 sin ¥ .
The quantities Ax’ Ay, A, are given by
Ac = 216%&: 2
3(b BO +b YO)
> (3~D)

- 16w
y 3(b2Yo + 32(10)

?

and

A = lgnu
z 2
3(a"ag + bBy)

where



el
B =N = - | - 1 log \'4 §2“' b2 + a
0 O (3.2‘ b2) (b2) 2(32_ b2)3/2 e /a2~ b2 -a
and > (4-D)

é2_b2 ral|l 1
.,/az«-b2 -3 a

2 { ! log
(32_ b2) 2(32" b2) 1/2 e

%




-4le

APPENDIX E
DERIVATION OF ORIENTATION DISTRIBUTION FUNCTION
FOR COMBINED KERR AND MAXWELL EFFECTS

We seek solutions of the equation

V2F = ~'%(3 sin26 sin 2y + [3 cosze - 1] sin 2\)F
+ A sin 20 (sin 2y = sin 20) &
2
+ %(cos 2y + 92%-—)"') %? (1-£)

where

2
1 Q¢ . 9. 1 0
Sin © w@mea&+sm% ol

F = distribution function,
2\ = a constant defined by M = A sin 2\ and 2K = A cos 2\
2

2 .2
l .[a_«b 1/ _BE
where K = _G<m). and M = .._....__..>,
4 a2+ b2 Ay a2+b2

and

D = rotary diffusion coefficient.

Let %E B and let F be repressnted by the series

bl .
F=) BIF .
=0

(2-E)

Then FJ- satisfies the inhomogeneous equation:
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V2FJ = =(3 sin29 sin 2y + 3 c0529 - 1] sin 2A)F

j1
1 oF . _,
+ 7 sin 20 (sin 2y = sin 2)\) —sé——
1 oF . 4
+ (cos 2y + ] cos ) —== ., (3-E)
ar
Here Fj may be expressed in terms of a series of spherical harmonics as
[os]
_ 1 . 2m _
FJ =5 E:ano,jPZn E: Ej(a jeos 2my + b, ,J51n 2my)P2n (4-E)
n=0 n=1 m=1

where 210, 2nmyj? bnm,j are the appropriate coefficients, P, are the
appropriate Legendre polynomials and P%: are the appropriate Legendre

functionses

Now observe that the coefficients of equation 3-E may be expressed

as

3 sin26 sin 2y + [3 c0526 - 1l]sin 2x = Pg sin 2y + 2P2 sin 2\

(5-E)
% sin 20 = 2
Then équation 3~E becomes
PF; = =(P5 sin 2r + 2, sin 2VF,_)
oF .
+-§ P2 (sin 2y - sin 2x)-——L—-

1 aF._l

+ (cos 2y + 7 cos 22\) —a'#— (6-E)

Note that equation 4-E yields

oF .
=1 _
a6 -2 E: 210 JPZn z: E:(anm 9J= ~1€08 2my
n=0 n=1

+ bnm,J 1sxn 2my) (2m cot 6P2m - P2m+l) (7-E)



and
oF 2 n 5
j=1 - _ . . m _
By E% E%( Zmanm,J_131n 2my + 2mbnm’i_lcos 2my)P2n (8=E)
=1 m=
where

P§m+1 = 0 when m = n.
n

oF. oF,
The functions FJ’ 5§¢, 5;4 can now be expressed in terms of

Legendre functions and polynomials. They appear in Tables l, 2 and 3
of this Appendix. The coefficients are computed as follows: From

equation 3~E we obtain

VF, =0

0

2 oF oF
Fi=fFfotfasg * P35y
2 oF,  oF,
Fo=fF + 55+ f oy > (9-E)

where Fl, fy and F3 are equal to (P% sin 2y + 2P2 sin 2\),
%‘P%(sin 2y = sin 2\) and (cos 2y +‘% cos 2\) respectively.
Noting that each Fj is a series of spherical harmonics, we obtain
for the left=hand side of equations 9-E,
o0

vzro = - Z 20 2m+1)F

n
]

VF, = »-Z 2n(@ntH1)F)

n

> (10-E)

*
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where

-1 . 2m
FJ =5 nO,J E:(a cos 2my + b ’Jsxn 2my)P2n (11-E)

and j = 0, 1, 2... while n =0, 1, 2... .

We may now form the equations

o0
- Z:Zn(2n+1)Fon =0 7]

n

v oF aF
- ZZn(2n+l)Fln =fFg+ f) 559 + fy ag

n

[~}

oF aF L o

- z2n(2n+l)F2n = f.F, +Fy 56.1_ + 1, é_Y_l_ (12-E)

n

and with the aid of Tables 1, 2 and 3 of this Appendix we may express
equation 11~E in terms of the coefficients a_ . andb_ .. We may then

nm, j nmy j
equate the coefficients of the terms x sin 2qr and x cos 2qr on either

nMyJ nm,J
is obtained by normalization of the integral JF’dQ to unity, where d{2

side and solve for a_ . and b__ . in terms of aO0,0' The value of 200,0
is the solid angle sinBdfdp and the limits are O to 2n for ¢ and O to =
for 8 (or =2n to 2m - 2\ for 2y = 29 - 2\). Since each Fj is orthogonal
to all the others and since sin 0 = Pi , if the integration of, say, the

first term over the solid angle, i.e.
J21[ jn 1
F~P; dOde

yields a finite value, this is sufficient proof that all the other inte-

grals must vanish, i.ee
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2™ ¢ 1
J ] Fpl e =0, for j> o0,
0o Yo

since these FJ terms are then orthogonal to Pi.

We may now proceed to compute the first few terms of equation 2-E.

A, COMPUTATION OF FIRST TERM
From the first equation of the set of equations 9-E, and from the
discussion preceding equation 6 of the text we conclude that F0 is a

constant equal to %'aoo 0 and that F0 = ﬁ;'. Therefore we obtain
’

- 4 -
Fo =2 200,0° (13-6)
and

This can also be shown by carrying out the operations indicated by
equations 9-E and 1ll-E, computing Fn and inserting it into equation 41

of the text.

B. COMPUTATION OF SECOND TERM

Since
Fo ='% 200,0 = constant,
we obtain
)
80 oy ¢
Therefore
- E: 2n(2n + DF, = FiFgs n=0,1,2...

n
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Since Pg = 3sin%0 and 2P, = 30080 = 1, the right-hand side becomes
- (P2 sin 2y + 2P, sin 2\) + a
2 Y 2 2 200,0
and the left~hand side becomes

-0 x 300,1 + (=2) (3) %‘alo,lP2 + (—2)(3)(a11’lcos 2y + bll,ISin QY)pg
+ (-4 (5)[ -%' a20’1P4 + ( )p% +( )pg 1+ ...

+ terms which contain P$ ) and therefore need not appear.

Since the right-hand side contains only Pg and Py, we discard all

terms higher than that, i.e.

a = 0 except for n =1 {m~1 .

nm’l = bnm,l
Therefore

. 2
~3a10’1P2 - 6(a11’1cos 2¢ + b11,131n 2y)P,
= = (P2 sin 2y + 2P, sin 2\) & |
2 Sth <Y 2 2 %00,0 *

Hence

- 200,0 _, =
aj0,1 = T3 sy a; ;=0

and
= -4
b31,1 = 12 200,0° (15-€)

C. COMPUTATION OF THIRD TERM

The third term coefficients are best derived by expressing the Lew
gendre polynomials and functions in terms of x (i.e. P\= x, Pl (1-x )1/2),
xpsin 2qy and xpcos 2qy, and comparing terms as outlined in the text under

the discussion for the general term. That yields a system of 8 simul-
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taneous equations, with solutions:
=L Ll,L1 .2
3j0,2 = 7= 3+ g sin” Magy g
a, =4 (142 sin® 2\)a
0,2 70 00,0
21,2 © 36R (cos 2Magy, g
21,2 =0

> (16-E)
_ 1
822,2 7 7 3+4:5.7+8 200,0

IS T
bj12 == T26 (sin Magg o

-1
b21 2 420 (Sln 2)\)&00’0
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APPENDIX F
DESCRIPTION OF APPARATUS AND PROCEDURES

Conceptually, the design of this apparatus for measuring streaming
birefringence does not differ from that of Edsall, Rich and Goldstein
(26). 1t consists of two concentric cylinders mounted one inside the
other with the outer cylinder rotating. (Taylor (21,22) wés first to
point out that with this arrangement higher velocity gradients can be
obtained with relatively large annular gaps before the onset of turbu-
lence.) However, a large number of improvements were incorporated into
the design of this instrument. In addition the stator was electrically
insulated from the rotor and the rest of the apparatus in order to make
possible the application of a potential across the annular gap for the
experimental study of the effect of electrostatic fields on the orienta~
tion of colloidal particles immersed in Couette flow.

The large number of delicate manipulations required to operate
previous versions of SBR equipment indicated that considerable thought
should be giveﬁ to methods for simplifying and speeding up the operation
of this apparatus. At the same time it was decided to improve the
operating characteristics and extend the range of gradients over which
SBR measurements could be made,

Thus it was decided to place the high-voltage water-cooled mercury
arc light source out of the way and for this purpose a wooden shelf was
constructed over the bench on which stands the rest of the equipment.

In order to facilitate loading and cleaning the annular gap and in order

to improve the accessibility of the drive mechanism it was decided to
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mount all the mechanical parts on one housings This housing in turn

was mounted on a sturdy vertical stand in such a way that it can be
lowered or lifted and rotated at will, This gave considerable freedom
of movement to the test area. Finally, the optical parts were mounted
on another vertical stand which can slide back and forth on rails in

the direction of the stand supporting the mechanical parts. A special
mechanism was provided for rotating the Glan-Thompson polarizing prisms
individually and for clamping them together so that they rotate while
their optical axes remain at a fixed angle with each other. The supports
of the prisms are fixed on the same frame and this frame can slide up
and down on the optical stand or rotate around it. Thus the optical
system can follow and survey the annular gap between the rotor and
stator at any required positions Clamps are provided to lock and secure
the optical stand at any required position on the rails; and the two
sliding frames (housing the motors and the prisms) at;any required posi-
tion on the vertical stands.

In order to assure an extensive range of velocity gradients with
smooth (i.es constant-speed and vibrationless operation) two motors
were provided to drive the rotor. For low speeds the rotor is driven
through a geared 1/15 HP motor and for high speeds the rotor is driven
difectly by a 1/4 HP motor. The speed éf both motors can be varied and
controlled through an electronic regulator. A V=belt is provided to
drive the rotor and by rotating the motor housing the appropriate motor
can be selected,

To measure the rate of rotation a geared wheel was attached to the

rotor and a magnetic pickup was provided to sense the rate at which the
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teeth of the gear pass a given spot. Holes are provided on the stator
for inserting thermocouples to measure the temperature of the fluid,
The stator is insulated from the rotor so that a potential can be applied
across the annular gap.

A complete set of mechanical drawings of this equipment exists at
the California Institute of Technology Central Shop under Work Orders
386 and 15003, drawings No. 1051-1132, Aug. 1956-Aug. 1957.

1l Description of Apparatus

The present design (see figure 1, Appendix F) consists of three
main pieces: A horizontal optical bench (1), overhead, containing the
light-source (la), collimator (1b) and 90° prism (lc); a vertical opti-
cal bench (2), containing the Glan-Thompson prisms (7), appropriate
fine collimator (2a) and eyepiece (2b)3; and a vertical stand (3), con=
taining the rotor and stator assembly (5,6) and the motors required to
operate it (4a,4d)s The entire weight of the two vertical stands is
supported on a sturdy wooden bench (14),

The light source (la) is a water-cooled mercury arc. This is a
high=intensity arc. It is necessary to operate it through a high=
voltage power supply (not shown here). The second adjustable and
movable collimator (2a) contains a pinhole apperture followed by a
condensing lens for focusing the resulting thin ray of light approximate-
ly half-way down the gap between the two cylinders. The thin pencil of
light begins to spread somewhat after it is halfway down the gap but
since the focal length of the lens is long (1 m) compared with the di~
mensions involved here, the light beam does not spread too much before

it reaches the eyepiece (2b)s The intensity of the light beam may be
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SCHEMATIC OF IMPROVED SBR APPARATUS



-55-

6

®
15

o

‘050 DIA,

2 a2

R

O] O™

\\\\

A LEETLR RN RREEREEENN

O ,

APPENDIX F

FIGURE 2,
ROTOR AND STATOR ASSEMBLY (VERSION I)



56

improved by inserting a lens just after the collimator (1b) to focus
the light beam on the pinhole of collimator (2a).

A drawing of the first version of the rotor and stator assembly
is shown in figure 2, Appendix Fe The narrow gap between the optically-
flat and stress-free upper window and the stator was a source of trouble
repeatedly; The reason for the existence of this gap is the need to
anchor the optical upper window to the outer cylindery which is rotating.
The width of the gap is dictated by two main considerations: the upper
window must be far enough from the stator wall so that the rotating glass
does not scrape against the stator and it must be close enough to the
stator so that no fluid leaks upward and the stream can be surveyed as
close to the stator as possible. Therefore a fine fit around the stator

is required. The first version of this gap is shown in detail in figure

Gap - :S ;; o 1; %
77TTTTT7 \\\ il
' Glass //// , g
P
/////// /
ALK

.Fluid

3, Appendix F.

. FIGWRE 3, APPENDIX F "
DETAIL OF GAP BETWEEN UPPER GLASS WINDOW AND STATOR =
FIRST VERSION

However, this fine fit was found to cause the chipping of the un-
protected inner edge of the annular upper window whenever the window edge

touched the stator during the assembly and adjustment of the system.
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Since the heavy stator had to be moved up past this narrow gap fre-
guently in order to clean the interior of the system, i{ was found
necessary to re~design that part of the equipment.

A second source of trouble originating at the upper window was the
inability of the small bubbles of air, that formed during the filling
of the gap with fluid, to escape past the narrow gap between the window
and the stator. These bubbles rotated with the upper window and des-
troyed the uniformity of the beam by refraction and reflectione.

For these reasons it was found necessary to evolve the design of
the rotor and stator assembly shown in figure 4, Appendix F. A detail

of the second version of the gap is shown in figure 5, Appendix F.

Filling—™

Shaft d \

frlatad o Gap A § - t

77777 \ [\

Glass ///ﬂ § Q \
. \ NI\
.
Inner \\ \\ \\
otor Window \
ote Frame Stator \ \

FIGURE 5, APPENDIX F
DETAILS OF GAP BETWEEN UPPER GLASS WINDOW AND STATOR =
SECOND VERSION

It was found necessary to indent the stator and fit a stainless~-
steel ring around the inner edge of the glass window. The window was

seated on this ring and fixed there with pitch. Holes, (A), were pro-

vided in 6 places around the perimeter of this inner window frame and
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these holes were connected to vertical shafts t%rough which a hypoder-
mic needle could be inserted to suck out any air bubbles that might

form. Although this version finally worked adequately, it was found

in subsequent experiments suggested by Prof. J. He Wayland and per-
formed by S. Sutera that the entire inner window frame could be removed
without introducing any adverse effects in the experiment (except for

a small gradient at the upper inner edge), provided the shaft for filling
the gap with fluid remains sealeds |t appears therefore that the de-
sign of the gap can be further improved by bringing the ledge of the
stator closer to the lower edge of the upper window, as shown in

figure 6, Appendix F.
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FIGURE 6, APPENDIX F
DETAIL OF RECOMMENDED DESIGN OF GAP

The indented stator assembly which has been found successful is

shown in figure 7, Appendix F«. The rotor and stator assembly is shown
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in figure 8, Appendix F. The optical frame for the rotation of the
Glan~Thompson prisms simultaneously or individually, is shown in figure
9, Appendix Fo The assembled streaming birefringence apparatus is shown

in figure 10, Appendix Fe.

2. Procedure

The first and perhaps most critical step in measuring streaming
birefringence consists of aligning the apparatus correctly. Thus it is
absolutely necessary that the light beam BC (see figure 1, Appendix F)
be perpendicular to all glass surfaces (lenses in collimator (2a),
upper Glan-Thompson prism (7), upper and lower window of gap between
cylinders, lower Glan-Thompson prism (7) and eyepiece prism (2b)).

To insure this, it is necessary to carry out the following steps:

(a) Insert slivers of metal under the base (16), of the SBR
stand (3) and tighten the anchoring bolts (13), until a level resting
on the rotor and stator assembly shows that the top of that assembly
is horizontal. Move the level around to different positions and make
sure the top of the assembly has no tilt. When this is accomplished,
the walls of the gap and the axes of the concentric cylinders should
be vertical,

(b) Repeat this with base (12a) of stand (2), resting the level
on the top frame (8). Make sure that the rails (12) are sufficiently
close to the other stand to permit surveying the gap on all sides of
the stator,.

(¢) Once the stands (2) and (3) are firmly in place, drop a plumb-
line from a point on the lower surface of the prism (lc) through the gap

between rotor and stator to point Ce Then adjust the orientation of the
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FIGURE 8, APPENDIX F
PHOTOGRAPH OF ROTOR AND STATOR ASSEMBLY
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FIGURE 9, APPENDIX F
OPTICAL FRAME FOR GLAN-THOMPSON PRISMS
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FIGURE 10, APPENDIX F

PHOTOGRAPH OF ASSEMBLED STREAMING BIREF RINGENCE
APPARATUS (WITH ECCENTRIC CYLINDERS MOUNTED)
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prism so that the reflected light beam follows that path. By putting
a small mirror flat at C and observing the reflected light on the prism,
the perpendicularity of the beam BC can be checked,

(d) By observing the reflection of the beam from the upper Glan-
Thompson prism on the lower surface of prism (lc), the horizontality
of the surface of the Glan-Thompson prism can be checked. Use the
specially provided fine adjustments on the latter to make it horizontal,

(e) The same procedure can be repeated with the lower Glan-
Thompson pri sm,

(f) The rotor and stator assembly has been designed so that the
lower window of the gap should be perpendicular to the light beam (i.e.
horizontal) if the upper surface of the rotor and stator assembly is
horizontale However, by observing the reflection from the lower window
on the lower surface of prism (lc), the lower window can be adjusted
(by shaving off portions of the O-ring seal between it and the rotor
assembly) so that it is perpendicular to the beam,

(g) The same procedure is repeated with the upper window which
can be adjusted by tightening the screws holding it in place against
the rotor. This procedure insures the correct alignment of the instru~
ments and the walls of the gap: The axes of the cylinders are parallel
to the light beam and all optical surfaces are perpendicular to the
light beam.

(h) The apparatus is now ready to be filled with the working fluid.
This can be done by unclamping the optical stand and rolling it away.
This exposes the filling shaft. The fluid is inserted with a hypoder-

mic needle from a 20 cc syringe.
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(i) The optical stand is rolled back on and the correct motor
speed is chosen. The motor is started and one final check is made for
bubbles and for the correct alignment of the optical surfaces (by
making sure no multiple and revolving reflections appear on the lower
surface of the prism (lc)).

() ‘The temperature is checked by reading the thermocouple voltage.

The rest of the procedure for SBR measurements follows closely that
described in reference 3. A voltage may be applied across the gap by
attaéhing the electrodes on the appropriate connection on the rotor and

the insulated stator.



