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ABSTRACT

Using the potential equations of motion of linear elasticity,
the propagation ef harmbnic waveg In sn infinite rod of elliptical
erasg—gection is Investigated. The frequency eqguations for the propa—
gation of flexural waves In rods with (1) zero surface displacements,
and (11) zero surface shresses are obbtained in the form of infinite
determinents, the elements of which involyve Mathieu functions and their
derivgbives. It 1s shown that these determinants can be written in
dlagonal form when the eeccentricity goes te zere and in the 1light of

this pessible numerical proecedures are discussed for smasll values of

the eccentrieity.
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PROPAGATTON OF HARMONWIC WAVES IN AN ELASTIC

ROD OF ELLIPTTCAL CROSS~SECTION

1.1 INTRODUCTION

The equations of motién of a linear elastic solid can bhe ex-
pressed in temms of potentials, Whicﬁ satlisfy scalar wave eguations.
In the case of axial symuetry two independent potentials are invelved,
whereas in the event of nonwaxially symmetric motions, three independ-
ent potentials arise. The former case is well known sné has been ex-
ploited in many sreas, but the latfer case seemsg to have recelved very
little attention in the elastodynamics literature (however the analogous
cese in electrodynamics has been thoroughly discussed)}, One of the
purpeses vl Lhis Lhesis Is Lo 1llusbrale how Lhe use 9f Lhe polential
equations of motion leads to more systematic solubtlon procedures to
non-axially symmetric problems, and this is shown in detail in connee-—
tion with the derivation of the frequency eguatien for the propagation
of harmonle flexursl waves in an Infinite, cirenlar, elastic red. The
main portion of the thesls 1s concerned wilth the propagation of har-
monic waves in rods of ellipticzl cross-—sectien, using the linear egua-
Tions of elasgticity in potential form. The separation solutions of
these equations, for the geometry at hand, are in the form of products
of Mathieu functions and modified Mathieu functions and these solutions
are applied to two physilcal problems, namely, the inTinite elliptical
rod with zero surface displacements, and the infinite elliptical rod
with zere surface étresses. In each of these cases it 1s found that

en infinite superposition of the separation solutions 1s necessary, It
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is further found that in both cases three basic modes of motien exist,
corresponding ta_éompressional, flexural, and torsicnal waves in a
girevlar rod. The frequerncy equations in all of the above cases are
In the form of infinite determinanis and those correspending to a
"flexural” mode of vibration have been exsmined in some detail, It is
found that when the elliptical rod becomes cireular, the infinite de~
terminants involved can be written in a diagonal form, the elements of
which are the Treguency equations for the prepagatieon of flexural and
higher circumferential modes in & eircular rod. Finally, some discus-

slon as to possible nmumerical procedures is given.
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1.2 DEVELOPMENT COF POTENTTAT, EQUATIONS OF MOTION

The eguations of moticn of a homogeneous elastic body are

- *
given by (love [1]1)

o P
O+ 27 (V- D) - wvayx 2 - Pitbf’—%w —0 (1)

when T is the displacement vector, F 1s the body force per unit vol-
ume, T 1s the temperature, A and pu are Lemé's constants, E is Young's
modulus, v 1s Polsson's rablo, p ls the density, aad @ is the thermal
caefficient of linear expansion. The dilatation & , and rotation ?{,

are given by

A=V + 3 (2)
28 =Vxa (3)
snd in terms of these guantities (1) may be written
_ N 23 o om
(A+ 20 VA~pVx2d - p Formr— VT =90 (&)

a _tg * l~2v

Taking the divergence and curl of (4) gives, on noting from (3) that

aiv @ = 0,
(7\ = BEA ? Q{E e _ i
+2p)VA_p"a{;2+v' "Iy YV I=O )
uV22ﬁ~paggﬁ+fo=O (6)
o=

% ,
Numbers in brackets designate References at end of text.
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The displacement vector may be written in terms of a scalar
potential ¢ and a vector potential 't (Lamﬁ‘s potentials) by means of

(see Stermberg [2] for a detailed analysis).

T =Ve+VxA | (7)

The left hand side of this expression involves three unknowns,
whereas the right hand side contains four, namely, @ and the three
components of K. Thus another coﬁdition must e Imposed onJK, but
this conditiorn must be such that the field quantity E remains the same,
i.e., the field quantities must be gauge invariant. The forms of this
condition will be discussed later,

Substituting (7) into (2) =nd (3) gives
A=V"9 (8)
- -3 - o5 -2
20 =V xVzx A=V (V-4A) -V A (9)
Assuming that the body force F ig given by

F-Ve+vVx3, (10)

substitution of (8) and (10) into (5) gives, as the scalar potential

equation of motion

V‘E[(?\+2u)§72¢—p?-2-2+®~ E_p] =0
atg 1-2v

A gufficient condition for the satisfaction of this equation is

2
o @ + -2 T (11)

]
ci ot?  aep (M) {1-2v)

Vi =
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where cg = (A + 2u)/p is the dilatational wave speed squared,
Substituting (9) snd (10) into (6), gives, as the vector po-

tential equation of motion

W 2(V xVx ) *—'Dggg VxR Wz B=0
which may be written
VXVX[;LVRKH pg—2§+—ﬁ] = Q

A sufficient cendition for the satlisfaetion of thils is that

2 —
vaﬁzéatg_%s (12)
8

where ci = p/p is the shear wave speed squared.
From this it asppears that the divergence of'ﬁ is arbitrary.

Conasider however the cage of 'ﬁ = 0. Taking the divergence of (9) gives
aiv 28 - 0 V2 - R) -V . W 2R)

showing that inthis aare the operators VE and V * are commubtative,

HEence taking the divergence of (12) leads to

wz-25) (v B -o (13)
5

Thus 1t 1s seen that the divergence of R is mot arbitrary bub

nmust satisfy one of the cenditions:
(1) VeE=0 (1%)

(i) VAV R -2 v Do (15)
B



- 6 -

Since A must satisfy either (14) or (15), in effect there are
enly two indepe;dént componente of the vecltor potential, In general
éylindrieal end spherical coerdinates 1t 1s possible to choose these
components such that they satipfy scalar weve equations. This Pact is
well known in electremagnetic theory (see, for instance, Morse and
Feshback [3], Chapter 13}, but does not appear to have been systematic-—
ally exploited in elastodynamics. As mentioned in the introducticn,
one of the purpeses of this secllon 1s te Illustrate how The present
approach leads to more systematic selubtion precedures.

It is shown in Appendix A that In general cylindrical copordi-

nates* the wvectors

=ge, +Vx (X5 (16)

'y
E=Vx (¥ ) +VxVx (X ) (17)

where ¥ and X are scalar functions, and E:his a unit vector in the
z~8irection, satisfy the vector wave eguation (12), with T = Q, pro~

vided ¥ and X satisfy the scalar wave equations

1 82

aa;
Fre-z 5 (19)

*By general cylindrieal coordinates, is meant the coordinates
Ry Kpy 35 where = = KB x4 iy =2=% (Kl + ixg), where I 1s ap analytbic
function of (xl + ixe).
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The nature of ¥ and X can be seen in the case of axially-
symmetric motions in circular cylindrical ccordinates. In that case
(16) becomes

T-ve-% %

where es is a unit vector in the 8-direction,

This should be compared with the more ususl approach to axially-

gymmetric preblems, namely,(i) Tor the torsionsl motion, where E= w'E:
(1i) for non-torsional motion (for exsmple, compressional wave motion

in a cireular red) where

T 6)(—?-
= 3r %

Hence, 1t is seen that ¥ represents torsional type motion and X repre-

gsente non-tersional type motion.

Tt can be shown, with use of (19), that in the case of axisl
symmetry (17) becomes,

T . X o ?—»+

555— T e@

— ey — ———

0z & ot®

33 lBaXJ_
Z

n this case, ¥ represents the non~toreional motion and X represents

the torsional motion.

Note that for the cholee of A given by (A7), V- & = 0, s0
that (14) is satisfied, whereas the choice given by (16) is such thet
v g 5% end (15) 1s satisfled, provided (18) and (19) hold

In spherical coerdinates the vector

K=Vx&$gD+VXVx@XED (20)
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R .

where ¥ and X are scalar functions, and €. is a unit wvector in the

r-direction, satisfy the vecler wave equatioen, provided

vav = = _af_j{
Ll

8
TEX = L éf&
ci at®

It ig interesting to note that in the czse of gpherlcal coordinates
—

only the cholce V+*A = O is available, since no analogue of (16) ap-

pears to exlsh.

Some applications Anvolwing eylindrical coordinate systems

of these sguations will now be dizcussed.

1.5 CIRCULAR CYLINDRICAT. COORDINATES

Here seme problems involving an infinite, circular cylindrical
rod will be discussed. The z-axis of the circular cylindrical coordi-
nate system 1s taken to be along the rod axis. Tsking I as given by

(16), the displacement components in terms of the potentials are, from

(1),
o 10 X
T R (21)
_ 1o ov ., 1%
=R -85 (22)

0p 190 , Xy 1 :
S A A RS (23)
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Tf X =s given by (17) is taken instead of (16), it can be shown bhat

the effect in (21), (22), end (23), is to replace ¥ by - % %ié and X
‘ . d

by ¥. Thus 1t is seen that there is no appreclable algebraic advantage
in chooging one form of the vecter potentlial aver the other. [This is _
illustrated by takingjg as given by (I7) in the elliptical rod case.]
Relations of the form of (21), (22) and (23) were given by
Harkrider [4] in connection with problems invelving non-axially sym-
metric sources in & layered medium, and by Baltrukonis, Gottenberg,
and Shreiner, [5] in cennection with a problem invelving a cylindfical
ghell, but these authors offer no explanation as to their origin. The

pertinent stress-strain reletions for the problems at hand are

a_ur
G-I‘I' =AY+ Ep&.— (2)-1-)
ou
R T8 e5)
' Bur buz
Opy = B &“*&f] (26)
: du ou _
NEERIEL . o

Assuming harmonic wave trains propagating in the z—direction,
the separation solutions of (11), (18), and (19), with @ =T = B = 0,

can rcodily be shown to be

#(x,6,2,%) =[BT (pa) + ¥, (pav)] oo n (-g3)e’ 50 (28)
X(r,68,2,8) = [D2d (per) + Da¥,_(par)] cos m (6-6p)el (52t (29)
Y(r,0,z,t) = [Hng(pgr) + Hgﬁﬂ(par)].cos 2 (Q—BS)ei(kZhWt) (50)
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where PR = oo L k2 (31)
v
2 .
P2 =5 - (32)
B

k is the wavenumber, w the frequency, By, Bs, Di, Dg, Hy, Ha, 61, 6z,
ané 65 are arbltrary constants, n, m, and 4, are integers (for single-
valued solutieons), and J and Y denote Bessel functions of the first
and second kind, respectlvely.

A speclfic proplem will now be considered, namely, the deter—
mination of the frequency equation (i.e., the w-k equation) describing
the propagatlon of harmonic flexural waves in an infinite, solld, ecire-
ular red, with streps frec boundarics. In this case the following
values of some of the arbitrary constants are required: {(i)n =m =
4 = 1 (so that each of the displacements has cne nodal plane inter-
secting the rod axis —— a characteristic feature of flexure), (ii)

61 =62 =0 63=7%, (111) Bp = Dp = Hp = O, for finiteness at r = O.
With these choices of constants, substitutien of (28), (29}, and (30),

into (21), (22), =nd (23), gives
_ 1
u, = Bilmd (par) - 531 (par)]

+ EHy -ig I1 (par) - (33)

1 (kz~wt)

1 )
+ ile[PaJQ(P2T) - d (per)ycos 6 e
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1
ug = - Bi 7 da (prr)

+ Hy [pad (par) ~ 2 31 (pye)] (34)

+ ik Dy % Jy (per)) sin @ ei(kZ-Wt)

1 (kz—rk )

w, = [1x By J1 (paxr) + 25 D1 J1 (par)] cos 6 & (35)

Substituting (33}, (34), and (35), inte (2k), (25), (26), and

(27), eives

2 2 2 :
o = (B {l2u(z - o) - ?\%l Jilpyr) - 27 (o,7)
. 2
+ 24 Hy [gf I, (zar) - = J1 (p2r)] . (36)

. 2 )
+ 2pik Dy [(1'3 - p2) J1 (per) - P_I.E I (par}] > cos @ ei(kZ wt)

2 b _
T.o = (2Bt [7z J1 (par) - —I.£ I, (par)]

+ Hy [ (0 - %) J1 (per) + 2—3—2- I (per)] o (37)
+ 21k Dz.[;2§ J1 (per) - B8 7 (por)1) sin @ o1 (2wt

oy 0 {2 B Iy 3, (e2) - L5y (um)]
+ 1k Hy ¢ T2 (per) (38)

! -
Dy Ipa & (par) - 2 Ja (per)lycos @ o1 (kzt)
5 o

+(§;~~2k2

The boundary cenditions for the present problem are



vhere & is the rod radius. - Applying these to (%6), (37), and (38)
glves three homogeneous algebralc equations in the three unknowns By,
Hi, and Dy. For these eguations to have a solution, the determinant
of the coefficilents must equal zerc, which yields the freguency equa-
tion. Going through this procedure one obtains, after some algebra,

the frequency eguation (see, for instance, Bancroft [6]).

Qg Ch o Cya
Qo Opp Ooz | =0 (39)
Uy, Oz Qaz

where _
%1 = [El-l(‘gg - p3) - A %’%] J1 (pya) - 2%3_1_ J, (pra)
Oz = 24 [Pf J, (pea) - -é%J:, (paa)]
Oy s = 2pik [(_a% ~p2) N1 (Pz?t) - i_e Jg (Paa)]
-2 B n o) - B, ()
s = [(pg ) B (pea) + B2 (paa)]

-

5 _
Opg = 71k| —= J3 (pza) ~ %2 Jo (Pza)]
L :

: 1
Cay = 21k | pa JQ (p1a) - a d3 (Pla)}

L.
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. ‘
Qs = ik = J) (pes)

H

Ugg pr-

s

("’2 2k*

-[Pa J, (vza) ~ tn (Paa)]

The advantage of the present methed lies in the systematic
derivation of the displacements, (33), (34) and (35). In other ap-
proaches to this problem, such as, for example, Love's presentation of
Pochammer's work {[1], pp. 291-292), these equations are presented as
solutions to the displacement equstions of metion, but they were de-
duced in an Indirect manner. The present approach can also be utilized
to give a more systematie derivation of the frequency equations of
other problems of this nature, such as the cylindrical shell problem,
ag treated by Gazis* [7]. In particular it could be applicd with come
advantage %o the problem of non-axially symmetric waves in a layered
ro@, a problem which doeg not seem to have recelved any attention in
the literature, though the symmetric layered red preblem has heen

treeted by McNiven, Sackman and Shark [8].

1.4 NON-CIRCULAR CYLINDRICAL COORDINATES

For cylindrical boundariesg other than circﬁlar, elastodynamic
problems are conglderably more complicated and only very restricted in-—
formation is avallsble. Fox and Mirdlin [9] have given a set of dis~

crete pointe of the frequency speetrum for an Infinlte rectangular rod

*1% should be noted that the comment of CGezis that the diver-
gence of A can be arbitrarily specified appears to be in errgr, in the
light of equations (1) and (15)., I% can be shown that div 4 in his
work satlsfles Lhe sualar wuve eguatlon, and so falls under the cate-
gery given by (15).
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with sgtress-free boundaries, for speclal values of the ratie of width
to depth. As pointed out by Mindlin [10], the frequency spectrum in
this caée eannot be expreséed in terms of =z Finite number of known
transcendental functions, because of the complexltles arising from mode
conversioﬁ at the two perpendieular boundaries. Mathematically these
difficulties could be anticipated because of the presence ¢f two char-
acterisbic lengths in the problem (the square rod is a degenerate cage),
and are nobt of course eonfined te the reetengular rod., They arise
whenever one has to satisfy nonmixed conditions (i.e., all stresses
specified) at two or more perpendicular boundaries. Other work on the
rectangular rod has been done by Morsc [l_l], whe sabtisfics the condi-
tion en ene boundary exactly, and on the other approximately, and com—
pares the results with experiment. Jones and Ellis [12] ﬁsed plane
stress theory to discuss pulse propagatien in wide rectangular hars,
theoretically and experimentally, Seme numerical results have been
obtained by Kyneh and Green [13], using a perturbation technique,
treating the cirewlar cylinder as the bhasis for thelr perturbatiens.
Interest in the present section is in problems invelving el~
liptical boundaries and here the available literature 1 even more re~
gtricted, However, some eﬁact theory work 1n thisg area has been given.
The recent work of Rosenfeld snd Miklowitz [1%], using the linear
equations of meotien, could be used Lo study the propagabion of low
frequency, small wavenumber, waves in an elliptical mod, Banaugh and
Goldsmith [15], using an integral equation technique and numerical

evaluation, ptudied the scatbering of plane waves by elliptical in-
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clusions in an infinilte medlum, and gave numerical resulhts for the case
of a compressi@nal wave incildent on a rigid inclusicn. Work en the
ééoustic problem has also received some attention. Barakat [16], using
a separation of varlables technigue, treated the scattering of plane
waves from an elliptical cylinder for both Dirichlet and Neumann
boundary econditiong. ILevy [17] alse studied the scatiering of acoustic
waves from en elliptic eylinder, using the Keller theory of diffractien
ag wcll as a ocparabtion of variables 'bechzgique,

Some approximate work has also been contributed. Kynch and
Green [13] treated the elliptical rod as one of the cases in their
perturbaticn technitiue and Kynch [18] later used the Rayleigh-Ritz
technique to obtain further numerical informztion (this paper alsc
contains an account of other elementary approximate theory spprosches).
Very recently Callahan ([19] and [20]) has used the Mindlin equations
of mﬁtian to study the flexural vibrations of elliptical plates and
'rings, subjJect to various types oif boundary conditions. The fregquency
equations he obtained are in the form of infinite deferminants, and no
numerical work wes attempted (for work on elliptical plates involving
classical theory, see Mclachlan [21], pp, 309-312),

Here the preoblem of harmonic wave prepagatien in an infinite
rod of elliptical cross-section will be solved, uslng the exact theory
equations of mobion.

Elliptic coordinates x3, xXp, X3, are defined in relation to

Cartesian ceoordinates x, y, %, by
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x = T cosh x; cos Xz
v = f ginh x3 sin %o (40)
4 = Xg

where T 1s a constant (half of the length of the foeal line of the
ellipse), To specify the bouwndary of the ellipse (tke rod surface),
X3 Is set equal to a constant and the geometrical characterilstics ef

this ellipse are (Fig. I).

\
a = cesh xg
b = f sinh x; > (b1)
& - b& _f 1
& a  cosh xg )

where a, b, and e, are the seml-major axis, seml-minor axisg, and ec—
cenbrielty, respectively. In terms ef these coordinates, the wave

equation (11) (with ® = T = 0) 1s (Moon and Spencer [22])

1 [ o3 o2 s 1 oA
z?é‘[&%*a% t 52 T o (k2)

where the metric coefficient h i1s given by
2 _£2 .
n® = 7~ (cosh 2x3 - cos 2xp) (43)

In this case (17) i1s chosen as the vector potential and Iin ferms of

elliptic coordinstes 1t is given by
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Xz

fl
V]
A

Flg. I. Geometry of Rod.



A = ‘7$§§g: + gél - gé’ggé'g:
x, 2 .
a2 oo (k)
where V = _h:ﬁg%; + TXBSE% + 5235%"

é: ,d =1,2,3, denotes & unit vector in the x~direction, and use has

j
been made of the fact that X satisfles (19) in arriving at (B4). Sub-

stituting (4k4) into (7),and using (18), gives for the displacements

L 1ag | 2%y 1o
WSE |3t Sadtks | & 5tPon xa) (45)

dp . 9y 1 %
Bx2 + BXEaXS * "Eg 5’[325}{1

w2 (v7)

The perviinent stress-displacement relations are (see for in -

-z (46)

stance, (#8.7), (48.9), (48.10), and problem 1, p, 185, Sckolnikoff [23].)

ou, 1 oh

Gi =N A+ 2 §X1+F&z (48)

Tie = 4 [g?g; (-if uz) +% & u:.)] (49)

O13 = B %*2%+%%%§ (50)

where A:V-Fﬁal Ey : -~ (51)

Substltuting (45), (46) ana (47) into (48), (49) and (50),

glves, on using (51) » and after some rearranging,
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Mz = W5 | B S Oxs | ¥ Oxy
1® [ 9 (13X 1. 3 [1 ¥
+p’u§§€§ Oxy | = Ox1 | Oxz | hZ Oxm
[ 3 [ 1 32y > {1 22y |
R I RZ O0x20%3 oxz |h2 Bxlgxs_ (53)
B
g1z = M Eyg;xl XB}
sl L2 (1 2%
H c2 ot | b OXo0Xa |
2 93 1 ({1
+P[H"l'axlax§—zgw(5%] (54)

- Beeking solutions to (42) representing waves travelling aleng
the xg~axis (the red axls), and vhich are separable in xy and Xz, ¢ is

of the form

¢ (x1; X2, Xg, b) = @3_(}(;)@2 (}ge)ei(kxs-wt)

Substituting this inte (42), =nd using (43), gives
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2 o
ez {n ~ 2q1 cos 2x2) ¥2 =

-0 (55)
dx% .
gfgi - {q - 2q1 cosh Zﬁ) @1 =0 (56)
BB _

shoxe @ - I of (57)

p% 15 as given by (31), and n is a separation constant, Equation (55)
is Mathieu's equation and (56) is Mathieu's modified eguatlon. Periodic
solutlons to these equations exist, provided 1 takes on cerbtain
valuee (functione of ¢y ), the so~called characteristie numbers. In

general (see Mclachlan [21]).

S S R
se (xeym)  m-b
.cgm (XlJQL) =8y

1 (x1) = (59)
Se (X;;ql) n=b,

Here ® 18 an integer, for single-valuedness, e, is the cosine~
elliptic function, characteristlic number 8.3 sem.is the sine-elliptlec
function, characteristic number bm? Gem is the modified eopine-elliptic
function characteristic number s and Sem.is ‘the modified sine—elliptic

funetion, characteristic number hm' For exsmple
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. L 1l = 1
cer (xp,41) = cox xp ~ T 41 cos Jxgp + Zr 4 (~cos 3xs + 3 08 5%p )t . .

where ag - 1 + gy ~ % qi — g% qi — maa

The second linearly indepondent solubion te (56), the form of
whiqh depends on whether n = & s OF bm,is rejected becampe it and Its
derlvative which arlse in the expressions for the displacementé are
not continucus fcross the Interfeoecal line. Tn fachk these solutlons can
be expressed as Infinite series of Y function (second selutions of the
Bessel's equation) and so have the same types of singularities as the
Y functions. The second solution to (55) is rejected because it is
not periodic in xp. Other solutions to Mathieu's equation exist (the
Floquet sclutions; see Abramowitz and Stegun [2h])but they are rejected
because of possible instabilities.

Similarly, substitubing expression of the ferm

Vi st = ¥a 0 )ia(ee) ot (V)

I kxXawl
X(x1,%2,%a,t) = Xz )Xa(x2) e (kocg-srt)

irto (18) and (19), gives

ce (x2,42), characteristic number &

Vo(x2) = (60)
se (xps92)s characteristic number Bﬁ
Ce (x1,92), characteristic number Eﬁ

Y (xy) = (61)

Sem‘(xl,qa), charaseteristic number %ﬁ
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, ce (x2,4z), characteristic number E’m
Xa(xz)

= (62)
se_ (x2,9z), characteristic nudber “Em
Ce (x1,92), characteristic number ?Lm
Ky (x1) = (63)
B (x1,62), characterlstic mumber hﬁm
P2 2
where . gz = —fg— (64)

p5 is given by (32), and a bar denotes the quantity is a funchion of
gz, as opposed to gy {2 notation used throughout the remainder of the
text).

The Mathiew funeblons 1o Lhe sbove expresglons have the follow-

ing representation formulas (see Mclachlan [21] § 2.17):

oG

ce, (¢q) = Z Aéim) cos 210 (characteristic number a, ) (65)
=0

Zm+l
ce2m+l(a,q) = Z (rI-EIL ) eoa(Pr+l ) (charscteristic nmumber 9’2m+l) (66)

I=0

_ (Em'!’l) N ’ -
Bepiil (ct,q) = z By 41 sin (2r+l)a (characteristic number bam»z-l) (e7)
r=o

se, o (0hq) = Z (Lm+‘“) sin{2r+2) (characteristic number b, 2) (68)

Here the A's and B's are koown funchtions of g. For inetance

(

+%q_+l]9’2 g + "+*), ete. (69)

1
oo[ bt

5 157
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In any preduct pair selutilons, Cem'or Sem‘is congtant on any
confocal ellipse. Hence the symmetry is governed by ce or se and it
can be seen from {65) through (68) that the following four cases arise:
(1) Cegm_(xl,q;) ces (x2,41) 15 symmetrical sbout both the major and
miner axes, (i) Cep1 (x1,43) ey g (xo,21) is symmebrical sbout the
major axis, but antisymmetrical sbout the minor axis, (1ii) Sep, i1

(x1,91) segm*i (22,91) is antisymmetrical sbout the major axis, but
symmetrical about the minor axis, (iv) Sep 4o (x1,91) sep o (¥2,q1) 1s
- antisymmetrical about the major and mirnor axes, It sheuld be noted
that these are the only combinations whiech arise, since solutions of
(55) and (56) corrccponding to thc semc charschteristic number must be
chesen.

The product solutions arising from (58) through (63), and
lineér combinetion of them, are solublong of the potential equations of
motion, In common with cireular red provlems, not all of these solu-
tions are necessary tc deserlbe a gpecific problem and only certain
combinstions will be considered. Twe specific preblems will now be
congidered, nemely, (1) the infinite elliptical rod whose surface is in
welded gontact with = rigld medium, i.e., all surface displacements are
zero (11) the elliptical rod whose surface is stress—free. It 1g
found that four cases, or modes of motlon, arise in both these problems
and thecsé will now be digcussed, |

(a) The solutions of the potential equations of motion are taken

ag



o~ 2k -
w ’ . .
EP(XJ.:XEJXS:'E) = Z :ng 062m (le'feu.) CCom (Xa;%) e
m=0
e8]
w(XlJXEJXBJt) = E:: FEm Ceam (XJJQE) Ceom (X2:QE) =
mn=0

i (kxg-wt) (70)

i) (71)

: 0
i1 (Exa—wh
K imat) = ) ong Bonp (082) S0 (raste) © (eeamitt) (g0

=G

where Ibnﬁ FQm? and HpmﬁhQ are conshtants. Inspection of the displace~
ments, as given by (45}, (46), and_(hT), and noting the symmetry prop-—
ertles described above, shuws Lhal wilh this cholee of petentlals, uy
and us are symmetric with respect to both major and minor axes, and ug is
antisymmetric sbout both axes. Thus the mede of motion deseribed by (70),
(7L), and (72) corresponds to cmﬂpresﬂiénal weves in a circulsr rod and
it may be generated by the uniform nermsl loading of the end of a semi-
infinite elliptical rod. It should be neted that the situatlon here 1s
markedly different from that for the circular red. In the cilrenlar red
ease no infinite superpesitien 18 necessary, but here approaches taking
only one term of (70) through (72) do not appear te be frultful. The
choice of the sine—elliptic function in (72) is perhaps best understood
by recalling thet in the circulaer red case (for flexure) cos & appeared
in the © and ¥ -expresslons, whereas sin € appeared in the ¥ ~expressilon.
| () The solutions of the potential equations of motlon are taken as
e
9(x1,%e,%a,t) = Z D2m+l Ce%l (x1sq3) CCopy1 (x2,q1) ei(.kxsﬂwt) (73)

mn—e
22]

2 1 (kx gt
¥lm e ma,t) = ) Fpu Cep (a,82) eopy (repae) o2 0F58) ()
s
- > 1 (kxg-wt )
XCXJ,;XQ;XB;t) = Z H2m+l Segm+l (XIIQE) Se2m+l (X?.J%) e 2
' - m=0

(75)
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where DEm&l’ Fzm&l’ and HBm#l’ are. constants,. In this case 1t is

found that uy and ugz are symmetrical about the major axis, but anti-
syﬁmetrieal about the minor axis, whereas u2 18 anbigymmetriczl abouk
the majof axis, butrsymmetrical aboﬁt the wminor axis. The mode of
motien in thils case corresponds to a flexural mede in the circular rod
and may be generated by ernd surface loads acting parallel o, and sym—
metrical about, the major axils of the ellipse.

(¢) The solutions of the potential equatilons of motion are taken as

o0
. . ] 1 a

m=o

o |
I (kg
Virgeest) = ) TpoSe o (a,ae)se, . (reyas) o E5W) ()
m=a
[re]
1{Xxe—wh
Z LomiaCoomy (F1s82)0ey ) (es2) @ (foamart) (78)

m=Q

L

X(X1:X2:X8:t)

where IQm#l’ T2m+l’ and IEm#l’ are eonslante. In thioc eosc it is found
that uwy and ug are antlsymmetrical about the major axis, but symmetrical
sbout the minor axis, vhereas up 1s symmetrical shout the major axis,
but antisymmetrical about the minoer axis. This mede of mobtion 1= =lso
‘of the flexural type, but now the external genarating loads act parallel
to, and symmetrical about, the minor axls of the ellipse, For external
leads aeting in an arbitrary direction, combinations of (b) and (c)
should be taken,

(d) The solutlens of the potential equations of motion are taken agi



-
o

| ' 1 (kx gt
CP(XlJXE}XS}t) = Z :[2131"{‘2 2m+2(x1"qzl')segm+2(}{2’ql) e ( 3 ) (79)
m=o0
o .
, . i (kxn~wh

w(leXEJx&!t) = z Tgm_;_gseamg(Xl:%)segm+g(x21%)el( s ) (80)
m=Q
o0

X(XLJXEJXBJE) = Ez: Lgmpeam(XLJQ2)Cegm(XEJQE) €
m=0 '

i(sz~Wt) (81)

where I2m+2’ szﬁg, and Lgm?'ure consgbauty. In this case it 1s lound
that uy and ug are antisymmetrieal about the msjor and minor axes s
whereas up is symmetrical about the major exls, but antisymmetrical
.about the minor exis. This mode of motleon 1z the analegus of torsibnal
waves In a clrcular red., The partleulsr physilcal problems at hand will
now be discussed,
(1) Freguency equation for "flexural' waves in an elliptieal rod,

vwhoge surface 18 1n welded contact with a rigid medium,

Though this problem is of interest in 1ts own right, its majer
usage here will be te illustrste the selution procedure. Subsbltubing

(66) and (67} into (7%), (74%) and (75), gives, as an alternative form

Tfor the potentials,

o o
2 el
¢ (K;-.’Kf?.; XS}'t‘ ) = z Z :ng-}-l“l‘z(rfil)ceBm,Fl(Xl} qﬂ,) cos (21’+l)2§26:i (k_Xg wh )
m=0 I=0
w0 (82)
2 Ca—y
V(% ,%z,Xa,t) = :E: E{: Py Aé m*l)Ce2m+l(xl,qg)cos(2r+l)x2ei(kXB wt )
m=g r=o .
% © (83)
2111’3'1 1 (ex et
X(XlJXQ}Xait) = EZ: 5: Hém&l £r+l Sezmﬁi(xi’qE)Sin(2r+l)229 ( it )
. N=0 I=0 . (84)

Substituting (82}, (83), and (84) into (45), (46), and (47), gives for the

displacements
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(Em$i) d

o0 €0
1 .
TR z Z DomniPorsl &y “Comr (x2,91)
m=0 =0 |
(2m+l) i
Fomey ¥ Bope1 Ty CComn (F2r22) (85)
o Femly 1 (kxg-wt)
2mtl o2 (2r+L)B, [ 8e, 1 (¥1,82)) cos(2r+l)xze
L 2m+l) |
a2 Ty Z Z D?m—l-l(gr-'-l) 1 Gegm+j_ (Xl:%.)
m=0 I'=0
2ml
ey otk (ere1) BEEY g (a,n) (66)
of =(emtl) 4 1 (Kxg-E )
* Mo fg B2r+l axy Be gmfl(XA:Q2) sin(2r+l)xgpe
(Cm+1)
Z Z Pome1 forsl  “Comia (x1,01)
m=0 I=0
= —(2m+l)’ 1 (kxg-wt) 8
+ PS EmﬁlAE Ce,p yq (¥1,02)) cos(2r+l)xae (87)

Iet the boundary of the ellipse be specified by x3 = & (con~

stant). Then the boundary conditions are
U = Uz = Ug = Oy X3 =& -

Applying these to (85), (86), and (87), glves, on interchanging the

order of summation,
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W 00 ( ) . )
2wl _
Z Z Domeaforsl .[d_xl' Ceem+1(X1’Ql)] Xy=E

' =(Pm+1)
oz (@r+l) Hppyy Bargy * Seppyy (E542)

2wl
+ikF, (TT‘]“ )[— cegm_"l(x:.,q,e)}x -t cos(2r+l) xa=0 (88)

oG o
2+l
z Z (@r+l) Doy (_r+1 ) Ceom1(5 %)

+ 1k (2r+l) Fp o Ae(em‘Ll) Cepppq (E5d2)

S+l
w;’ Fom1 BPErIi )[cﬁc}__ “e2m+1(x3-’92>} L =g 510(20H1) x2=0 (09)

o0
2m-
Z Z w0, AT Ceoms (8s1)

+ P2 ¥ —(2m+1)

om+l Pl CeEIE:'I"l(g’qe) cas (21‘+l) .XE:O (90)

The satilsfaction of these equations requires that y» using the

linear independence of the sets of Tunetions cos(2r+l)xe, sin(Pr+l)xe,

r=0, 1, *** :

By A.(l) l:d—x'-— Cel(xl,ql)J xg =t + Hy _DJ; ()Sel(i;%a)

+ F]_ {ik Al [—'— Cel(xl,qa)} §}
+ Da{ (3)[“““ Cea(xl:‘h)] }"‘ Hs{;; 3(_ 3) Ses(E;ﬂa)}

+ F‘-a%.k K;Eﬁ)[ﬁng Ceg(xl,qa)] x;.mg} 4 oeee = 0 (91)



- 29 -
Dy {A£l) cgl(g,qlf} + B {_- B(l) [___ Se;_(xl,qg)] Xl:g}
) 151
C o+ Fy {ik A( ) Cel(g,qg)} + Dg {A:EB) Ces(g,ql)}
| + { Bm[-—-— Ses(xl,q.e)] - g} + 'Fa {ik K](_E)Cea(g,qa§+ cee =0
S
(92)
Dy {ﬂs A{l) Uel(é:@lﬂ.)} + By {O} +Fy {p% "A":(Ll) Uel(ﬁ;qa)}
+ Da {ik A:?) Ces(g,qlg} + Hg {O} + Fqy {pg Kij)Ces(g,qE)} + -+ =0
(93)
{1 st o [y £ ]
+ 7y { ix A(l) --—-~ - Cex(ua,a2), )+ D 'A’G)[—‘—i-— Cen(x1,d)
a\F1, Ry =t 3 3 axy 3\4Ls Xy =t
+ Hg{ 3B (5) Ses(g,qg)} + Fa {lk A?)[-—- Cea(X;,qg):l }-;- <re =0
| (9h)
Dy {3‘:A5(1) ce;(ﬁ:m)} + Ha {ci él){a;{— 5&“—‘1(&1:012)} X1=§}
+ Fy {5ik ‘_5(1) Cex (& qE)} + Ds{aA('?’) Cea(t, ?
. ¥ 5 ealg,t1
(gl ]

+ Fs{ﬁk E?) Ces(ﬁ;q_a)} + ++r =0 (95)

Dy %}; Aél) C‘e:_(é:fh)} + Hy {0} + By {PE E.gl)cel(éf%)}
+ Da {ik Ajb) Ces(g,ql}-i— Ea {o} + Fa { (5) Ces(g,q2§+

H
]

(96)



Thus it 1s seen that these are an infinite number of equaticns

to determine the infinite number of unknowns Di, Hy, Fi, Da, Ha,

Fg, +--

, and for their satisfaction the determinant (infinite) of the

coefficlents must equal zere, and so the freguency equatien is of the

form:
A Ara e
Bsy Bas -0 (97)
where
A:El)[-d%lcea.(xl,;ql)]m:g %§£1)Sel(£;q2) ikK:El)[a%cel(Xl:%)] X1=;
Ay = Aj(_l) Cex(§ran) ',fa: :{l)[g*; Scs.(k:r.;@.a)} g 1k K£1)661(§;qa)
1x a6y (2, 02) 0 o8 EMoes (5,02)
- (9%)
A£5)[a~x@;,ea(xl,ql)]xl t E§B(5)Se (&,92) m(ﬁ)[&%ea(&uqa)}xlzg
sra-| %) cesls, ) '"f B[ gh seatarsaa)],, , 2P oea(t,a)
1x A6 (¢,a1) 0 pEEP)cea(t, 02)
L -

(99)
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e G, 255 s (8,02) M) [ cea (s 00)] ot
Bea = %(%)CELGJQJ.) ‘;g B[ se(asee)] L, 5511?%1)061(5:@25

1k Jél)ce;(g,qi) 0 p5 '"él)cel(é,cm)

h (lOO-)

;§5)[E—§I0ea(xl,q;)]xlzg }% B3804 (8, ) ikﬂg)[d%%a(xl,qz)]a%
sose| mfloestem) B g mabasee)],, o 5l oea(s02)

1 17ceq(t,0) 0 08 B cea(t,q2)

Tt 18 interesting to see what happens to the frequency equation
(97) in the event that the elliptical rod becomes circular. This is
achieved by setting the eccentricity equal to zero, or equlvalently,

from (M1), (57), and {64), @y = gz = 0. Inspection of the coefficients

(Pm+l) —(Cmt1) end B(2m+l)
Ao 7 P 2 Dptl

1, fer v = m, and to G for r # m (see, for instance, (69))., Hence (97)

shows that in this case they reduce o

reduces o a dlagonal determinant and the frequency eguation is of the

form

A;u_ . ABS"' =

but (see McLachlan [21], pp. 3%68-369).
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Ceomt1 (Xl’qj). c= o Fomtl Jom (Pja)
Seome1 (?‘1«"13) oo Boued Tome (Pga)
4

T Ceowry F00Yy) TTT Eoun B [a'f Tom1 (PfJLa ¢ a2

d
—_— 1 -
EE; SeEm#l (Xl’qj) e =+ o kEm:l-l & [dr JEmﬁl (pjr{Lza

, (102)

: ' *
where k9m+l and k2m+1 are censtants,” for fixed m, and & is now the

circular rod radius. Henece (98) reduces to:

a{é% Jl(plr{}r:a J1 (p=a) ika{g; Jl(pgrilrza

: d .
K§ ki d1(p1z) a[g; Jl(Parilr=a ik J1(pzs)

ik Jy(p1a) 0 8 J1(pea)

This last expresslon seb egual to zerc can readily be shown £o
ke the frequency equation deseribing the propagatlon of flexural waves
in an Infinjte circular rod, of radius a, when the surface displacementis
are zero. Similerly it cen be shown that Agg set equal to zero reduces
to the freguency equaticn for the propagation of a higher circumtieren—
tial type mode (i.e., (28), (29), and (30), with n =m =£ = 3) in en

Infinite circular rod when the éurface displacements are zero.

*¥In the form given by Mclachlan these constante are ratios of
funetions of q. Their value as q goes to zero is of no Interest here,
since they cancel In the final result.
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(1i) Frequency egquation for "flexural” waves in an elliptical rod
whose spurface ls stress-free.
The stress-potential relstionships, given by (52), (53}, and
(54), may be written, on substituting for the derivatives of the metric

coefficlents and doing some rearranging:

' =
g‘llzﬁ]—:{ %h4§—§+p[ 112—2 fesinh2xl§—+f251n2x25&

BXJ_

+2h2——-—‘1’——f2 sinh 2xlra§‘l’—+f2 sin QXQ%%]
3

axlaxs

HLO0Xz

- ™% K, e
g B—HI: 2h% SerSwa 2 sinh 2Xy &; ~ 2 sin 2% E}; (105)

' _ o2 ' 3 S 33
= 2 2 g _ ,

a‘lghh-'% 2n W;La-f 81nh2x1£§~f‘28in25§2§%+2h2$15§§&;
32 32 1 32 82){ _O%X

—_ 2 e — i "

2 ginh 2y m% 2 gin 2xp Bx_lé_:‘i,; + == 5‘%2’1: S N
8 X:. *2
X
+ £% gin 2xp e 1% ginh 2xy r] (10k)
R FFp 3 [ 1 &7 LY 1 9%

Uiz = axlaxs * axy, cg 5?;,{ *+2 352 c:g 0t20%20x5 (105)

3

Substituting (73), (7h), and (75), into (103), (104), and (105),

glves, on using (66) and (67),

- o BN 3
4 — _ !.\12?\ 4 o d2
h¥cyy = z Z D2Iﬂ+l d h Cegnﬁ-l (Xl."?il) + 2 I [;— Cegm+]_(xl’q-l)

m-o0 r=Q =S

d A(?,m-l-l)

—_ 2 i
B T2 ginh 2:»:;[3}(: Ceyn (X:L:‘h)] Dot cos(Er-t-l)_xg e (kxgwt)



s -

o o

' ‘ P+l
-Z ZD2m+l p.fz Ceem+l(x1,q;_) (2_1-+.'1.) ( ml )sin2xesin(2r+l)x2e

=0 r=e

1 (kxg-wh )

) a
+Z ZF2m+l Ephaik — Ce (x1,92)| - nf®1k sinhSxy E—Ceem+l(xl,q2)
M=0 I=0 . dx 2m+l

% A(.2m+1) 1 (kxg-wt)

ortl cos(Cr+l)xs e

2 (R ¢

2mt+1 I{kxa-wh
—-z ZFQmﬂ_ P faikcegm+l(xl’q¢?)(2ﬁl)ﬁg(£l )sinQXQSin(EHl)XEe (kxg-wt)
m=0 T=0

o) e
2| 4
+Z ZHEmH_ = 2h [dx Ses il (Xl’q?)]

W= 1=

16 | =(2m+1 -
- %_- 2 ginh2x, Segm+l(xl,qa) (Qﬂl)Bélill )com(ﬁm-l)xe Ci(kXS Wt )

242 g 1L 1 (kxa-h
“Z ZHEm-I-;L E-CT[dX_ Se 2m+l(xl’q2):| 9(»1‘+l )Sinzxasm(gﬁl)xge (et
s

(106)
4 o oo
n _ o[ a
T 12 F "zzbem-rl 2h [dxl Ceome (xl’C*l)]
mM=0 I'=G

~ % sinh 2%y Ceopi1 (x;_,ql) (QHl)A‘oE"erlgin(Zﬁl)xa o1 (gt )

[ & omt+1 1 (lex gt
—Z ZDEm-l-l £ [a-i- Ce 2m+l(x1,q_1)J 2(r+l )sin2xgcos(2ﬁl)x2 e (kxg-wt )
m=0r=0

=2 4
yz. ome § 1 ER l: 2m+l (X:LJQE)}

m=C =0

(2m+l );
r+l

- #2 ik sinh 2z, 062 +l(xl,q2) (2.[+l) Sin(2r+l) Xa e". (kYS“W‘f’)
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w0 w '
a —(2m+l) . 1 (kxg-wh)
__E: E:FQmﬁl = ik{&i; C82m+l(x1,qaﬂ bl sinfxscos (2ril)xge

0, © s 2
. SR S 2 2
.‘Ei Hyoq o2 4P I}Xf Seam*l(x;,q25]+ h® (2r+1) Seg . (x2rd2)

5(2ntl)

- 2 gimh 2xl[—‘L Emﬂ(xl,qg)} ot st (2rel) xp ol (Exgmut)

H 2mHl) 1 (kxgvr
Ej EZjEm&i fE Se, +l(xl,q3)(2r+l) £r+l )51n2x2cos(2r+l)x2e (kg )

M= X==0

(107)
m @13’=§: E: 2m+ Lix 2m+1(xl;Qlﬂ £r+1 )cos(2r+l)x2 ei(kxs"Wt)
=0 I'=0 .
1Y ) Panes € - 2|y O ()| sy 55
M=0 =0

z: §:H2m+l wz 1k Se, +1(K1:Q2)(2T+1)B(2mil)cos(2r+l)x ei(kXB“Wt)(lOB)
=0 T=0

It should be noticed that both sines and cosires of Xz, and
products of sines and coslnes of xp, arise in (106) and (107). To cb~
taln & uniform dependence in these functions, which, as the previous

example shows, 1s necessary to obtaig the solution, the following

trigonometric identitles will be employed, listed in the order of thelr

ocourrence:
m m
Z (Err_ﬂ:l)coc 23 coa(lr+l)xs =Z éf:_ﬂ;l) coo (2r+l) xz (109)
r=0

vhere U(e?l) 1 [_A:. (em+l) | A3(2m+1)] (110)
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(Crmtl) 1 (2m+l) (2n1+l)
Uzrﬂ_ 2 21-1 + r = 1,2,

(Pm+1)

oo
IIH-l
ZAE )cos hxz cos (2r+l )xs =Z W oot cos(2r+l)xp

T=Q

[ (emel) | (2ml) |
A% + AT

L o

where W

—

- (om
A(l +1) A(?m)_

2r+1l

g (Bm+l) _ { A12(21:&-&) A2(2m+l)] 2,3, -

Z(2r+l) (2m+l ein 2xp ein(2r+l)xs = Z P(2m+l)eos (2r+1)xs
=0 =0

wnere rl(zm*'l) =3 [ A(imﬂ) + 5 A(.;Ml)]

rg(grﬁl) = [(2r+5)A2(2m+l) (2r-1) A(Emﬂ)], o= 1,2, e

o0

Z(ETH‘)B(Z m:i!.) cosxpcos (Br+l)xe = Z K,{_Eiﬁl)cos (Cr+l)xz
=0
where K(?_m"‘l) =3 [§(§m+l) +3 B(%m-l)]

r+1L -1 or+3
0

“éarfil) sin 2% sin(Pr+l)xs = z‘ (2m+l) cos{2r+l}xs
r=0 r=0

where

F(2mr1) _ [ =(2m+1) —(2m+l)]
1: 2 3

plem) g [ (2r-1) B(2m+l) + (ere3) (2m.+11 r=1,2, -

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

“The co® Ux, arises becausa of the h* term in (106).
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—(2m+l) 1| glewtl) | 5(2wel) D 1.p. e
r+#l 2 2r+5 Bopy 2 T = LB

Z(Er»t—l) (2m+l) cos 2xp sin(2r+l)xs Z Q(i;n;:l) sin(2r+l)xg

I'=0

where

?f(:?imﬂ) 3 [jA(f;mﬂ) ~ A(?m—[—l)]

yEm) oy [(2 1) 485 4 (one3) ff;l)} r 1,2, o

w0
Z 2m+l) gin 2xo cos(2r+l)}§2 =Z O(2m+l) sin'(2r+1)}cg

2r+l1
=0
vhere O(:QLm*l) =4 { A(iml) 3 A(im—!—l)}

O(Lm'i'l) _ %|: (Em'!'l) A(Em“i“l)}} ro= 1,2, vre

2r+l 1 2r+3
w0 @ .
Z(2r+l)2B(2m+l)cos 2%s sin(2r+l)xs :Z 62%?;1) 610 (2r+1)xs
=0 =
where _S (2mtl) 1 { 9 §(2m+l) ~ -ﬁ(Em-i«l)]
-3 3 1
2mtl 2m+l o
S -3 e 52 0 oo 52, ¢ e,
o0
v g o _(em1)
Bope1 | 005 2¥p sin(2rtl)xa = € opsy sin(eril) x
=0
where _E (Pmrl) _ 1 §(2m+l) _ §(2m+1)]
1 LD 1
z(eml) _ 3 [(emtl) | o(ome1) | o
ora1  TF | BT B T =12,

(124)
(125)
(126)
(127)
(128)
(179)

(130)

 (a31)

(132)

(134)

(135)

(136)
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0 . 0
Zl(2r+l) ‘ﬁéim;l) sin 2xs cos(2r+l)xs :Z (]- :gif{l) gin(2r+l)xs  (137)

r=0 : I'—;O

where 5 (L'mil) [ B(Limll) 3B 5m+1)] (138)

o fema) l@r -1) ) (ar4) g‘iil;l)], r=1,2, 0 (139)

Using these expressions, the stresses (106), (107), and (108),

may e wrlbbens

< = 11 \=T0t _ N St
e _ZZ Dom1  Zorsl (x2) + Fomi1 1VErH_ (x1)
m=c I'=Q
T 2m+1 (2m+l) (x1) ) cos(Br+l) xo el (kxg-wt)
(140)
0 ©
n* A 12, (2m+l) C ie(Pmil)
B a2 —E—Z D2m+ 23 gl (x2) + Fomil Vol (x1)
m=c =0
HEm—l-l Q2(2m+l) (22) ) min (2r+l)xs ot (kx gt
(141)
: 0 ( ) : )
8 = 13- (Z2m+1 1 Smbl
M _Z}: Dot Zopq (1) + Fp o VST ()
W=0 I'=0
+ H2m+l 13 (iil-jl:l)(x ) cos(zwl)xg ei(kj(s-;wt) (1:2)
2m+l — PATS ol

_ wPagt (Pmel) | oPas® (om+1)
8c2 Wore1 ~ F TBe 2c§ cosh 2% U2r+1
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+ p £2 cosh 2xy (a2 ] = 291 cogh 2% 1) (2m+l)
2m+l
- p £ (801 = 2{;1 cosh 2x3) U 2(3:3}1 )
2m+1
S rér—l—l )} Ce oy (¥2,0) -
£2 sinn oxy ATL) 4 (x1,91) (1b3)
- B B2 L Poppl | A% 2B1+l l:q-l

Z2(2m+l) (x3)=£2 { Bf‘éiﬁl) {(2r+1)coshlxy, (2m+l) a(ii'il ] l:a'%i—cegm 1 (X:L,.r‘ll%

+ 2 (2r+l) sinh 2x; Azam-}_l) Cepin (x1,91) (k)
27 (PP () < oa A;m*l’[ ey (xl,m] (135)

€L lV (Em-i-l)

— 2m+1 2+l
Bl (x1) = pike® [(a.?m__‘!_] 2¢p coshlxy ) (cosh2x; A2 ) ( )

2 r+1

2mtl 2m+l
+ l‘érfﬁ )}Cegmﬂ (x1,92) ~ sinh 2xy Aérﬂfl )[ T Cegm_'_l(xz.;t.‘e)j' (145)

(Ewrtl) = (2m-{-l)

J.EV(EHIH) (x1) = 1kf® ly(&ﬁl) 5 im

. (2
Sl ) (2r+l) cosh 2xy A2

)

d
X[@&: Cepiq (Xl:-ﬁz)] + (2rtl) sinh 2x Az(efil) Ceppeq (xusaa) Y(IHT).

Zﬁ (2m+l) [ CeEm+l (=1, 92)} (148)

2r+1
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SPE 2m+l 2 =
uQ2(2m+l) (x1) = E%%E_ [(21'-1—1) cosh 2xy Bg(rﬁ: ) -~ A 2(;:11) éinzl)]

"x[&g__ Seomr1 (Xl:QE)] - (Brel) siun 2 Be(aiil) Seompy (x1,02)) (149)

QE(QH&J‘)( x1) = 2c2 '.[032111-1-1 2qe cosh 2x;)(cosh 2x3 Béi:il) +€éimil)

+ & 2] o )Roosn 25 BT - o7 CEMl)]Seaml(X“qa)

21+l Dyt 2r+l
+ 2 sigh oy, BEEHL) & o (x1,92) (150)
L Poril |y “Comiy VFLsU2
pary w2 2m+l
laQQ(:::-l ) ( ) = '_'; ik (21""1) g(rl_ﬁl ) Segm+l (xl;qE) (151)

The boundary conditions for the problem at hand are
Op1 = 012 = Oag = 0; X3 = &

where, as before, x3 = £ denotes the boundary of the elliptiecal rod.
Applying these conditions to (140), (141), and (142}, gives, on inter-

changing the order of summation;

) )\ Pemi nzéiﬂl)(g) * o ST (8)

=0 m=0

2mt1) (£)) cos (Brtl) x2 = 0 (152)

2m+21. Q’2(

2. & (Pm+1) (Bmt1)
Z Z Dpmiy P ppyy © (8) + Fpp Vo0 (8)
Trw=0 m=0

L 22T ()Y gin (2re1) %2 - 0 (153)
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iy (2m+1) (2m+1)
'Eiijii. Do)~ Popyy (&) + Fopyy *505050 (&)
=0 =0
+ HEm+i 13 (ifil) (E)} cogs (2r+l) %= = O (154)

Using the linear independence of the trilgonometric functions,
(152), (153), and (154), yield an infinite set of equations for the in-

Tinite number of unknowns D

om+1’ F

o1’ 204 Hy

m+l,m=0, 1,2, =+,

and for these equations to have a solubtion, the determinant of the coef-

Ticlents must equal zero. Thus the frequency equation is ¢f the formi

Ay A% R- I

Agy Ags v+ o |=0 (155)

where | 115 {1 (¢ wylt) 2ty
T S R O N TN EA SIS (126)

SO ORI O

11253)(§) llV£5)(g) 11Q£3)(§)
L I O T S BN ) (157)

laz£5)(g) 13V£5)(§) L3Q£5)(§)'
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P e )
A e
lszgl)(g) 13v§l)(g) 13Q§1)(§)

12,00) Pl 2Py
e[ =Pw P | e
25 (2)()  2eyBgy 2y

As in the previous example, the guestion of the elliptieal red
approaching the circular rod will now ke exsmined. To illustrate the
process, the term 1'123(_1)&) will be examined in detail, To this end it

should be noted that (a) as the cccentricity e goes to zero the coef-

flcilents A(gﬁi), —(fiﬁl), and §2(i|.nil)’ go To one, for r = m, and go to

zero fur r # m (b) as e goes Lo zere 1t follows from (1) that £ goes
to zero and xy (Ll.e., £ in the above) goes to infinity (c) a, .1 &nd

by .1 80 O (emt1)® as g {l.e., e) goes to zero (see [24], p. 124).
Using these facts it follows frem (57), (6h), (102), (110), (112), and
(117), and the fact that the semi-major axis a and the seml-minor axis b

now approach the circular rod radius (a, say) that

Do 4 Fo) B_p
LimllZJEl) (£)=Lim [., w-k; costiZE 4 HefeoshZe |, ZafpTooshag }Cel(g,ql)
) e~0 b el cosh*g cosh®¢ 4 cosn® g

 paZsinhot [ d_ oo ( ' ]
- £,da)
cosh® ¢ d g R
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A=Y 2 2
= a%Kky {—* =t = p3|| Jr(paa) ~ g& PlJO(P:L a)
d

Similarly 1t can be’ ghown that

Lim 1221(_1)(&) = 2k a* t a%— Ty (p2a) - &0 (ma)]
e-0

It

Lin 222{1) ()

1
2ikk; a [PI_L I (paa) - = 0 (Pla)]
e0

1]

Lim 11vl(l) (¢)

2 - V
2ulkky a‘*[ (55 ~ pZ) J1 (pea) - %2' R (Pza):l
e~o .

Tim mv§l)(g)

1

2
21kky a* [ % J1 (pea) - 22 5 (P.e&_)]

nin 2 (e) < (6 - 2?) a[Pa 3, (pea) - = 3 (pza)]'
20 s

AR P
Lim llQ](_l)(ﬁ) = _Ew_d_c%,_g_[ P;z I, (pza) - fg— Ji (Pza)}

e 2201 ) - FEE T2 - ) 5 (pea) + 225, (pen)

- e7o 8

Lim lsq(i)(g) = 1kk! %Z— J1 (pea)
e~o ' =

Hence it is’ readily ccen that A , as glven by (156)_,_ set equal
t0 zero reduces to the frequency eguation (39) for the propagation of
harmonic flexural wavesg in an Infinite circular rod of radius a with
gtress-free boundaries. In a similar fashion 1t can be shown that as
the eccentricity e goes to zero the off-diagonal terms‘in (155) go to

zero ard Agg goes te the frequency equatlen for the propagation of a



Ll

higher order circumferential mode in a circular rod of radius a, with
stress-free boundaries. Thus, as In the previeous example, the freguency
eqﬁation reduces to a- prcduét .of‘ circular rod frequency equatlonsz, each
degeribing the propagatlion of & circumferential mode.

The other possible modes of propagation, i.e., the other "elewu-
ral” type, the "compressional" type, and the "torsional" type, can be
treated in the game fasghlon and freguency eguations In the form of in-
finite determinants are obtained In each case.

Though the theory of infinite determinants iz well-developed
(see, Tor instence, Whittaker and Watson [25]8§2.8), very little infor-
matlon as to possible numerical procedures seems to be avellable. ‘laylor
[26], in connection with the buckling of a rectangular plate, evaluates
en infinite determinant by examining the convergence of & sequence of
n x n determinants, nw = 2,3,4, --- , taking the upper left hend cormer
of the infinite determinant as the starting point. Thiﬁ procedure could
be adopted in the present case also, but in general the problem appears
to be gquite formidable. However the approach doesg lock feagible for
small velues of the eccentriclity e. In the present work the first

_determinant of the sequence should be.the 3x3 determinant A, as glven
by either (98) or (156), since it ls known that this describes the basic
physical process in the circular rod case. Sebbting thils egqual to zero
enables one to obtain an u-k relationshi?. The next determinant in the
sequence 1s s 6x6 determinant and inspection of (97)and §3.31in Reference
[21] shows that this set equal to zero gives a relationship of the form

Agy = O(e*), g0 that the correctlion term ls small for small values of e,
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This approach, which looks guite promising, will be examined in greater
detall in a later ﬁork. In connection with any numerical evaluation,
the increasing appearance of new tables of Mathieu functions should bhe
mentioned (see [24] for a bibliography of tsbles and Barakat, Haustor,
and Levin [27] for later work),

Finally, mention will be made of other problems to which the
sbove technigues are applicable. The infinite elliptical sghell could
be treated in the same fashion, the only difference being that In this
case the second linearly independent solutions to (55}, (56}, ete.,
must be retained. BSBlmllar type of work cowld be done for cylinders
Lyrmed by porabollc ares, but the mumerical difficulbtles are even more
severe in this cage, because of the limited tabulation of the parabolic
eylindrical functions. In this connection Nakonechny and Callshsn [28],
using. the Mindlin equations, obltalned frequency equatione in the form of
infinite determiﬁants for plates formed by parsbelic arcs., .Of pessible
intereet alsc is the question of wave propagaticn in s parabolic wedge,

sinee in that case the problem of a sharp edge does net arise.
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APPENDIX A

' SOLUTION OF THE VECTOR WAVE EQUATION

IN TEEMS OF SCATAR PCTENTIALS

In this appendix 1% will be shown that the vector wave equation
can be solved in terme of two scalesr potentials, which satisfy scalar
wave equations, for the case of (i) general cylindrical coordinates and

(ii) spherical coordinates.

(1) GENERAL CYLINDRICAL COORDINATES

General cylindrical coordinates are defined by the orthogonal

tranaform

x + iy = w(E) =fw(xl + 1ixXs)

(A1)

where w(t) 18 an anslytic funchtion of £ = x1 + 1xs. If ¥(¥1.¥%0,X%a,t) 18

a scalar function, then i1t can be readily shown that

(a) Vi G0 =V YT (32)
VEVx G W =V S - 5TV (a3)

where ey is a unit vector in the xg-direction.
3

(b) If V¥(x1,%2,%a,t) satisfies the scalar wave equation

vay -2 &Y (k)

oz
<}
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then substitution of (A4) into (A3) glves

Vv o=V & - E};j—gg-} (85)

(c) If ¥ satisfies V&Y = L % (46)

and X satisfies VE% = j—é gzé- | (A7)
then k= vx(e qn+\7xvx (e x) (a8)
sabisfies 2R - g‘—i g_?;; . (r9)

Proef

Taking the divergence of (A8) gives

V- &=0 (A10)

Taking the curl of (A8) gives, on using (A5),

—1 32X
Vxk=VxVx (e )+VK[V(T) g B 51-,2}
=V (g;,%) - _: = ?T%" c2v (exa 3335) (a11)

Taking the curl of (Al1l) gives, on using (A8) and (A10),

V’XVXKEV(V*K) - V24 = - 73R

Ve - R -3 (e*&g]



?'“;;ggq;pf[VX(eXa N+ V@, X)]

-~ 534 (A12)
Hence V3K = -e% gﬁ m3)
(4) It (A6) ard (A7) are satisfied, then
£=2"v+Vx (e %) (A1k)
w11l =lso satisfy V2R = :li gfg .
Preof
Taking the divergence of (All) gives
v - LG -3 (a15)
Taking the curl of (Alk) gives,on using (A5),
VxA=Vx ex v+ (e x.)]
(G WV G - (116)

Teking the curl of (Al6) gives, on using (A3), (Alk), =nd (Al5),
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—

ViVxh=V(V-%) -V21L

=v:<[w (¥ o) +“<7(§—’§;3 - “é;;;%%—?;—}

-V EL) -5 ;%%~v:c(“e"’“»§g%’é)

=vtv-z>_§§§§ (a17)
Hence V2% = % %g (A18)

(11) SPHERICAL COORDINATES

ir y(r,8,9,t) is a scalar Tunction of the spherical coordinates

r,8,p, then it can be readily shown thab:

(a) Ve, r 9= (Vr ) xe_ (819)
VxVzx (6] r w)=‘§7(g§’f)~'"e";rv2w (a20)

where EZ? ig a unlt veckor in the r—direction.

(b) If ¥(x,8,9,r) satisfies the scalar wave eguation

=2
ver =55t (821)
8

then substitution of (AP1) inte (A20) gives

%

VeV (:r—r ¥) =V(§ij) ,__e—"r-.:_L..d (a22)

T o= =
8

ot
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(c) Tf  y satisfies U2y = (%5%‘;%
. B

and X satisfles SRR = cg e
then K=Vx(-é:r ﬂr)+VxV’x€;rX)
01X — 1 OFTX
(_’_I'WHV( )mer 32;3-152*
=7 L BEK
patisfles VoA = -c—,g Sie
Proof

Taking the divergence of (A25) gives

Taking the curl of (A25) glves, on using (A22),

i 2 :
vXA=VX[Vx (e ) +v(arx) Erzjé"atrx
8

-vEY - % w(“;;;g‘fgﬁ)

Teking the curl of (A28) gives, on using (A27) and (A25),

VxVxA=V (VL) -VRE =-V2L

=VK{ (H) - —.—1 agr)( ~—Vx('§;£§

[++]

62

IA.* _—%W[V}: ("e';r ) + VeV (e rX)

(A23)

(A2k)

(a25)

(a26)

(427)

(828}



iiel’

Hence
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