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ABSTRACT

1. DRates of Nuclear Reactions in White-Dwarf Stars

In stellar matter as cool and dense as the interior of a white
dwarf, the Coulomb energies between neighboring nuclel are large
compared to the kinetic energies of the nuclei. Each nucleus is
constrained to vibrate about an equilibrium position, and the
motion of the ﬁuclei in the interior of a white dwarf is similar to
the motion of the atoms in a solid or liquid. A method i1s Pproposed
for calculating the rate at which a nuclear reaction proceeds between
two identical nﬁclei oscillating abqut adjacent lattlice sites. An
effective potential U(g) derived by analyzing small lattice vibra-
tions is used to represent the influence of the Coulomb flelds of
the lattice on the motion of the two reacting nuclei. 'lhe wave
function deséribing the relative motion of the two reacting particles
is obtained by solving a Schrodinger equation containing the effective
potential U(;). From this wave function an expression for the reaction
rate is derived. Applied to the p + p reactioﬁ, this method predicts
a reaction rate about 100 timeg the original estimate made by Wildhack;

12 12 . o .
+ C reactiong, the present work implies a rate

applied to the C
about ten orders of magnitude smaller than the rate calculated by the

method previously suggested by Cameron.
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ABSTRACT
2. The Cooling of Neutron Stars

The emission of neutrinos from neutron stars is studied, and
those characteristlics of neulron-slar maller that affect cooling are
investigated. The validity of the particle model (which we adopt) is
discussedQ The effects of strong interactions on the composition of
neutron-gtar méttcr are described. The question of superfluldity in
the neutron-proton gas is discussed, and the 1limil of stability of
the nucleon;gas to formation of "nuclei" is estimated. Calculations
of the rates of the cooling reactions n + n-=n + p + e+ §é and
n + MTpn +'e + 5; are presented; the rates of the closely related
mucon-producing reactions and the four inverse processes are also
given. The calculated cooling rates indicate that a neutron star
contalning quasi-free pions would cool wiﬁhin a few days to a tempera-
ture so low that photon emission from the star's surface would be
unobgervable. Uncertainty about the properties of neutron-star matter
prevents precise predictions about cooling rates, but it is possible to
establish a lower limit on the cooling rate of a neutron star. This
lower limit on the cooling rate implies that the discrete X-ray sources
located in the direction of the galactic center are probably not neutron

stars.
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1. NUCLEAR RBEACTLONS IN WHLTE-DWARF STARS#*

I. INTRODUCTION

The motions ofknuclei in the interiors of cool, denge gtars
resemble the motions of atoms in solids or liguids. The mean free
path betweén éollisions suffered by a given nucleus 1s much smaller
than thé averagé digtance hetween nuclei and may be comparable to
the particle's quantum-mechanical wavelength. Each nucleus is,
therefore, forced to oscillate about a fixed position 1n a lattice
structufe-(l)’(g)’(g)

Reactions between charged particles in starg are inhibited by
the small probability of peneﬁrating the Coulomb barrier between
nucled . However,Athe prébability of penetrating the barrier
increases raplidly with the energies of the colliding particles. In
most stars, the effective energles are due primarily to Lhermal
motions. In stars as cold as white dwarfs, the thermal energies
alone are too small to allow charged particles to react'at gignifi-
cant rates. However, the Coulomb potential of the lattice combined
with the ground~state vibrational energy of the reacting nuclel can,
at high densities, enable nuclel at adjacent lattice sites to react
rapidly even at zero temperature.

It iIs importaht that one be able to calculate the rates of reac-

tions occurring at high densities and low temperatures, reactlions to

* ,
A very similar report on this work was published in Phys. Rev.,

137, B1634 (1965).
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(L)

which Cameron has applied the name "pycnonuclear”. Cameron has
suggested that such reactions might be the source of energy for

nova explosions. A knowledge of the rates of pycnonuclear reactions
would also be useful in mathematical stﬁdies of white dwarfé. From
the rates of reactions at high densities, oné can infer certain limi-
tations on the possible compositions of the interiors and envelopes
of white dwarf stars(S); compositions which would otherwise be com-
pletely unknown. Any fubture attempts to evolve stellar models into

the white-dwarf state from higher temperature configurations will also
require detailed knowledge of the rates of pycnonuclear reactions.

In the present work we attempt to calculate the rate at which
nuclear reactiong proceed between particles vibrating about adjacent
lattice:sites. We congider only réactions among nuclel in & lattice
of identical parﬁiclesu For reactions between particles with Z > 2,
the solid-state approach applies to the temperatures and densities in
Region I of Figure 1. Filgure 1 also shows typical central temperatures
and dengities for various types of stars.

The problem of reactions between ildentical particles in a lattice

(1)

was first considered about twenty-five years ago by Wildhack' ™/, who

made a rough estimate of the rate of the p + p reaction. Van Horn(6)
hag recently carried out calculations on the ratc of reactions between
nuclel in a8 lattice of identical particles; his methods are similar to
the ones uséd in the present wérk.

| (7)

A related problem has recently been considered by Kopyshev ;

he calculated the rate of the p+ p reaction for the case where a small
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number of protons act as intefstitials in a lattice of nuclel
having Z approximately equal to ten. He neglects the motion of
the heavy nuclel of thé lattice, and considers Just the motion
of vairs of protons in the fixed Coulomb Lield ol the lattice ions.

In a lattice of identical nucléi, the motionsg of any pair of
nuclei are strongly coupled to the'motions of other nuclel nearby.
In order to compube the mean lifctime for a rcaction between two
adjacent nuclei without solving the complete many-body problem
exactly, we make ﬁhe fundamental assumption that the effect of the
rest of the lattice on the relative motion of the two reacting parti-
cles can be adequately represented by a static potential U(ﬁ). The
reaction rate depends strongly on U(g) through the barrier penetra-
tion factor.‘ In Section IT, we anélyze the small vibrations of the
lattice to find U(r). Then in Section ITII, we solve the Schrodinger
equation for the wave functlion characterizing the relaﬂive motion of
the two reacting particles. Having found this wave function, we
derive an expression for the reacfion rate. Section IV contains a
discussion of the limitations ot the solid-state treatment. In
Section V, we present numerical results for the rates of the ptp and
012+ 012 reacﬁions. Applied to the ptp reaction, the present method
predicts rateg about 100 times the rates originally calculated by

L

wi1anack M. applied to the 2+ C'2 reaction, our method predicts

rates about ten orders of magnitude slower than those obtained using

(1) (8)

“the procedure of Cameron . Salpeter has developed a way of calcul-
ating reaction rates at temperatures higher than those covered by the

solid-state method; our results are consgistent with those of Balpeter.
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IT. THE EFFECITVE POTENTTAL

A. Pormulation of the Problem

We consglder a plece of stellar matter containing N nuclei, each
of mass M and charge Z. The number density of nuclei is taken to be
b™3; we assume that there is also a mumber density 7b™3 of electrons
to assure overall charge neutrality.

The electrbns are highly degenerate at the temperatures and
dengities to which the solid-state model gpplies. The energy of
the Coulomb interaction between an electron and a nucleus is comparable
to the avérage electron kinetic energy only at distances small compared
to the electron's wavélength. Cohsequently, the flelds of individual
nuclel cannot signifioantl& affect the electron wave functiong. The
électrons can react only to lattice vibrations with very long wave-
lengths. By solving the Thomas-Fermi equation for the electron

distribution, one can show that the electron motion affects a negligible

part of the vibrational spectrum as long as

b<<a 7~1/3 , (IT.1)

where ao is the Béhr radius. Sin¢e inequality (II.l) always hblds
under the éonditions to’which the solid-state model applies, we assume
aqummwﬁMmﬂmﬁﬁnonMGWWma

The electrostatic potential energy felt by the nucleil is thus the
sum of two terms, one representing the interaction between the nuclel
and the uniform distributioﬁ of electrons, and the other representing

the Coulomb interactions among the nuclei themselves.
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The lowest energy state of a collection of positively charged
identical particles in a negatively charged medium is a body-centered

(9)

cubic lattice » providing the particle density is sufficiently 1ow*.
We shall assume that the nuclel perform small oscillations about equi-
librium positions in such a lattice, and consider the rate at which a
nuclear reaction proceeds between two nuclei (labelled 1 and 2) oscll-
lating about adjacent lattlce sites. We let the relative disgplacement
;;; Iz of particles 1 and 2 be r, and assume that the equilibrium
positions of the two nuclei are separated by a distance bnn along the
z axig.

We assume ﬁhat the nearest-nelghbor distance brm is much larger
than the nuqlear radii. The rate at which a nuclear reaction proceeds
between particles 1 and 2/ 1s the pfoduct of p(E,Q‘O)’ the probability
denslty for particles 1 and 2 being very close together, and a factor
that depends primarily on the properties of the nuclear reaction itself.

Because of the strong coupling of the motlonsg of the many nuclel
in the lattice, the motions of all the nuclei have to be considered in
the calculation of p(r). The demsity matrix for a group of N nuclei
alt a temperature (kB)il can be‘written in terms of Feynman's path

integrals as follows:

i ot) [y el iz, LG Vg )]
P iﬂ"'km’l}"‘im m}"'iN expl % u A X1 e Xy f
| (11.2)
The integral includes all paths such that §i(0) and %i(B) are equal

. 4 . I 7
- regpectively to z; and L, - To obtain p(£) from p<£l"'£N5IF"'£N)’

*
The density limitation for the solid-state treatment is discussed
in Sectlon IV.
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“we set ;% equal to Ei’ integrate over all the Ei except r1 and rp, and
then integrate over the center of mass /z(m“jgﬁ) Tor particles 1 and 2.
Although exact calculation of the density matrix would clearly be
difficult, Eq. (II.2) is relatively transparent in two simple cases,
for ry-rp and r nxg approximately equal to zero, and for small dis-
placements from equlllbrlum.

In the first case, all important paths would involve only X3 -Xp
approximately equal to zero. Thus, Xi-Xg could be set equal to zero
in all terms in V(g;-..§ﬁ), except for the term ZFGB/L%lj%;[; which
repregsents the direct interaction between particles 1 and 2. Inte-
grating over all the coordinates except X1-%p to obtain p(z), we then

find that, for small r,

p(r NIA171§IX1 xa ) exp{ Jhdu£2h (d(;:'l mﬁ))e x1~x I]} , (11.3)

where A 1s a constant that ig difficult to calculate, and |4 is equal
to M. We now assume that there exists some effective potential

U(%Aj%g) such that (TI.1)

8 5%,
) mi [TB (- g ol Juizs <d§ Iy le__xl+ 0032 ) 1}

for all r. In the next subsection, we calculate UQ%ljgg) in the small-

displacement region, where X3-Xgz is near (O’O’bnn)'

B. Small Vibrations
For small displacements of the nuclel from their equilibrium
positions, the potential energy can be written to good accuracy in the

form
V=Vo +Va , (I1.5)
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where Vo 1ls independent of the nuclear displacements, and Vo is a
homogeneous polynomial Qf second order in the displacements. Using
the usual normal mode procedure¥, We canvfind linear combinations
QS of the displacements of the nuclel such that the total Hamiltonian

of the system of nucleli can be written in the form

= LY P R UUE P
=352 (PM° +Mw7q°) (II.6a)
where, classically,
PL=MQ (II.6b)

and MS and dga are congbants independent of the nuclear displacements.
For Lhe case of small displacementls, lhe densily malrix can Lhus

be written aé the product of the density matrices for all the normal

modes. The diagonal elements of the density matrix for a single har-

monic ozcillator can be written
; = b [=%0 ®/4q ®
p(QS;QS) Bexp [ 5Q, /<QS 1, (rT.72)

where

Q") = %(h /MW ) coth Haw (TT.7b)

and B is an irrelevant normalization constant. Since the normal coor=-
dinates Qs are linear combinations of the displacements of the various
particles from their equilibrium positions, the diagonal elements of

the density matrix can be written in the form

*

For a discussion of the normal-mode approach as applied to solid
lattices, see, for example, J. M. Ziman, Electrons and Phonons,
(Oxford University Press, London, 1960) Chapter 1.
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plza-- Il CGXP[ z z Z Elem m - e ), (5, - am)j:l ?

1=1 j=1 k=1 mw=1
(11.8)

where o is the equilibrium position of ﬁucleus k.

Succegsive integrations of pQ£l":£ni£l"2£n) over the displace-
ments do nbt alter the general functional form. BEach integration
yields a pure exponential with a homogeneous polynomial of second
order ag £he exponent. Asguming the lattice invariant under the
operations (x—-x, y—=y), (=%, y—-y), and (z—y, y—=-x), we

obtain an expression of the form

A - . 2 2 -
P(}:‘,) =D eXﬁPL";é (x<;:_-23§ ) - 2<jz> _J (II.%)

where
r=(x,y,2) . (IT.9p)

Comparing Fgs. (II.7) and (II.9) we find that the probability
density for the relative motion of particles 1 and 2 ig, for small
displacements from equilibrium, the same as the probabllity densily
for a three—diménsiohal harmonic oscillator. Thus, if we are to
represent the effects of the lattice on the relative motlion of 1 and 2
by a potenlial U(ﬁ), we must require that, for £’&:(0,0,bnn),

2 3

e
b
nn

) w2
ot

+0(0,0,5, ) + % 1 O (5 5)

4+ L Z (z- & .
s 0 (z bnn) (IT.10a)

where
&) = %) = 5(n/u Q) coth (36nQ ) (II.10b)
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and
((z—bnn)2> = %(n/ W QZ) coth (% B 4 QZ) . (IT.10c)

We shall congider the calculation of <:{2> and. ((z~'bnn)2> in Sec. IID.

c. ‘Choice of the Effective Potential
We have shown that an effective potential accurately describes
the effects of the lattice Coulomb fields in two caseg: r near zero
and r near (0,0, bnn)" We assume that an effectlve potential can
adequately represent the effects of the lattice Coulomb fields on p(x)
for all r. In accordance with Eg. (TI.3) and (II.4), we choose the
zern of energy such that

U(0,0,0) = 0. (IT.11)

Since nuclei 1 and 2 are assumed identical, the potential UQQ) satisfies

the relation

[

Ur) = U(ra-xe) = U(ze-ma) = U(-x)

which implies that

il
O

vu(0,0,0) (Iz.12)

Considering Eqs-(II.lO), (11.11) and (IT.12), we assume that

U(r) = ke ¥ + ke 2° + K (P 57) (II.13a)

where ’
‘ -3 :
ke =2 %% b -5 u0” (TT.13b)

= _y2 B -4 2 !
ks Z’e"b Tt 1/3 W Qb , (IT.13¢)
and

k' =%5u0° . (zr.133)
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The reaction rate depends on U(E) primarily through a WKB barrier
penetration integral. This integral depends strongly on the behavior
of U(r) near the equilibrium position (O’O’bnn)’ but it does not depend
strongly on the behavior of U(y) for smaller r. Since the value of
U(r) for r near (0,0,bnn) is determined directly by Eq. (II.10), the
value of the barrier penetration integral is relatively insensitive to
the arbitrariness 1o Lhe cholce of a Lform for U({). Several olher
smooth forms chogen for U(r), forms still consistent with Egs. (I1.10)
to. (II.lE), have been found to give values of the barrier penetration
integral thot arc within a fcw percent of the valucs obtalncd using Egq.
(II.13).

D. Calculation of the Oscillator Frequencies

The eff@ctivp poten%ial U(g) éan now be determined if we can cal-
culate the quantities (x®) and <(Z-bnn)2>' The oscillator frequencies
QX and QZ could then be determined using Egs. (II.10b) and (II.10ec),
and. the parameters ks, ks, and k' could be calculated from Egs. (II.l3b)
- (IT.13a)-

The phonon approach of solld-state physics provides an easy way of
calculating (x°) and ((z—bnn)g>. For the case of a periodic lattice,
the normal mode vibrations can be described as lattice waves with given
wave numbers and polarizations. The characteristic Tfrequencies and
polarization vectors for a body-centered cublc lattice were calculated
numerically for several thousaﬁd wave numbers in the first Brillouln

* [} o
zone , and the expectation values (x°) and ((z—bnn)“> were computed

*The normal-mode eigenvalues and eigenvectors for the lattice of like
charges have been calculated by other authors for the purpose of cal-
culating the ground-state energy of the lattice. BSee, for example,
reference 9.
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using a sultable average over the first Brillouin zone. For zero

temperature, we obtain, using Eqs. (IT.10b) and (II.10c).

G =1l.28w (IT.1ka)
and
ax . w .
0 =1 88 o (IT.14b)
where
w = Ze (m®)"% . (II.1ke)

These numerical values are expected to be accurate to within 1% for
the physical model adopted here.

The oscillators fredquencies QX and QZ are nearly independent of
temperature: Thelr values at all temperatures are within about 20%
of the zero~tem?erature values. Since we shall find that the solid
state approaéh applies only to temperatures small compared to h&g/k,

it is sufficient to use Just the zero-temperature values.

E. Comparison with the Statlic Model

We have determined the lattice potential U(g) by examining small
vibrations of the lattice. The strong coupling betwecen the relative
motion of two reacting particles and the motion of neighboring nuclel
ig thus taken into account approximately.

The frequencies Q& ahd Qz can be obtalned more easily if one
neglects the lattice motion and calculates U(g) using a purely elec-
trostatic model. This procedure has the advantage of allowing direct
,numerical.caiculation of U(z) for any r, thereby eliminating the need

for relying on an extrapolation formula like Eq. (II.13a). Van Horn
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has shown that, in this static approximation,

Q= 1.85 w (II.15a)

Cand , }
0 =2.39 0 (II.15b)

for the bece lattice structure.

Comparigson of Bgs. (TT.15) with Rqs. (IT.1h) indicates that
coaplingrfo the lattice motion decreases the osclllator frequencies
somewhat. The‘second derivatives BQV/BZE (0,0,bnn) and
v/ (O’O’bnn) are reduced by 38% and 52%, respectively, by the
motion of the lattice. The lattice effectively polarizes under the
influence of the motion’of the two reacting particles. This polari-
zation acts to reduce the Coulomb fields that oppose displacements
of the reacting nuclei from their equilibrium.pbsitions. Iattice
polarization increases the reactlon rate noticeably. Tilgure 3 compares

reaction rates computed using the static and dynamic values of Q{ and QZ—
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ITT. CALCULATION OF THE REACTION RATE
In this gection, we derive an expression Ffor the reaction rate.
We begin by finding a formula for the réaction rate in terms‘of the

wave function corresponding to the nonnuclear potential

V(x) = 73R M kvt ket k(X% y7) . (I11.1)

In Subgections III-B and ILI-C, we derive the wave function, and in

Subsection III-D we obtain the reaction rate itself.

A. CGeneral Expression for the Reaction Rate
The total potential affecting the relative motion of two reactlng
particles is the sum of %he nonnuclear potential V(r) of Eq. (III.1)
and a nuclear potential. The nuclear potential is effectively zero
except within a radius R, where

<= .
R<b (111.2)

since we limit ourselves to densities well below nuclear densities.

We decompose the regular solution to the Schrodinger equation
} {v’a—r 2w [E - v(;;)]} ¥(g) =0 (IrI.3)
in terms of spherical harmonics as follows:

Y(g) = EZ aIM:fIﬁE;r) YLM(Q) . (TIT.4)
M

- Iet the regular solution to the Coulomb-wave Schrodinger equation

{v %y oun™ [B - e ] } ¥(r) = 0. (I1I1.5)
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be written

() = ) 8t £ me) ) (111.6)
M

Since
V(r) ~ 7e®r ™t (TT1.7)

fdr r << bnn’ the radial functiong fIﬂE;r) and fIF(E5r) must differ
only by a constant factor when r 1s near the nuclear radius R, which
is small compared to bnn- Thus it 1s interesting to compare the reasc-
tion rate T(E) for an external potential V({) with the rate IC(E) of
the same reaction at the same energy but with an external potentisl
722,71

We limit ourselves to reactions in which one incident orbital
angular momentum value L dominates the reaction rate. We also choose
a Wc(g) which approaches a plane wéve of unit intensgity as r — @,
except for the usual slowly varying phase factor characteristic of

Coulomb waves. We‘normalize fIf(E;r) such that

fLC(E;r)—-(Kr)'l sin Kr - alr)] (111.8)
as r—==, Then one can show that the reaction rates for external poten-
tials V(ﬁ) and deg/r are related as follows:

T 3y Pold” e (T

I‘LC Wi 2T+ ) 0 fLC(E;r)

2

(1TT.9)

In the following subsections, we find expressions for a1y and,

fL(E;r) for substitution in Eq. (IIL.9).
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B. The Radial Equation
The remaining problem is to solve Eq. (III.3) for YQQ)- We con-
cluded in Sec. II that the harmonic oscillator appfoximation is valid

near the point (O’O’bnn)' Thus near (O’O’bnn) we can write

% apy £(r) T (0) = U (a sx) Uy(nySy) U (o sz) .

(I11.10a)
The right side bf Fq. (TTT.70a) represents a normalized three-dimensional
harmonic oscillator wave function with frequencies Qx’ Qx’ and @E and
occupation numbers O ny, and nZ.

The harmonic oscillator wave functions describe the total wave
function accurately except in regions far from the classically allowed
domain. Since the wave function is extremely small in the remote
‘regions where the harmonic oscillator approximation breaks down, the
haymonic oscillator approximation provides an excellent approximation
to the energy eigenvalucs. Toking account of the fact that the poten-

tlal is not zero at the equilibrium position, we find that

e : - L
E ~ V(O, O,bnn) + (nz'i 5 ) n, + (nx'%' ny+ 1) Bl . (IIT.10b)

The harmonic oscillator wave functionsg are large only near x = O,

y=0, z= bnn’ or, in other words, r =‘bnn’ 8 = 0. Thus the product

Uk(nx;x) Uy(ny;y) eggentially expresses the angular dependence of the

wave funcfion while UZ(nZ;z) describes the radial dependence. Hence

we can write : -
fL(nZ;r) ~ Uz(nzgr)bnn ; (TIT.11)
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for r near bnnkand
dx

! . . * o
aLM(any) b dy Uk(nx,x) U&(ny,y) Yy [x,y)]

8 Sy §
%‘——ﬂS

(1IT.12a)

In this approximation the cocfficlients A1y depend on n and ny, but not
on n_- We have shown that the radial wave function ls independent of nX

and ny For r near bnn’ and we shall show later that £ is approximately

L
independent of hX and ny for amaller r.
We should note that the integration in Eq. (III.lEa) can be per-

formed readlily for the important special case where o = ny = L=M=0,

and the result is

3
-%

g % 0 ab
865(0,0) 8% (4 Q b ) . (III.120)

According to Eq. (ITIT.11), fL(nZ;r) must satisfy the same differ-

ential equation as Uz(nzsr) for r near bnn' Thus we find that

[_ a2 + gl(r)J flﬂnz;r) ~ O (III.l3a)
dre

for r near bnn' The quantity gl(r) 1s defined by

g(r) = 2w [v(0,0,x) - v(0,0, ) - (n+ %) nQ] .

(IIr.13p)
We want to compare Egs. (III.13) with the equation fL satisfies
for small r. At small r, we can neglect the anisotropy of the poten-

tial and separate the solution into radial and angular components in

the usual way. Then, for r << bnn’ fL satisfies the equation
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f‘gig ; L(igl)~+ gg(r)] [ £(nse)] =0 ,  (IIT.1k)

where

gor) =@m(r) -2 un™ a (ot n * 1) . (III.1kb)

It would, of course, be convenient if fL(nZ;r) satisfied the same
differential equation for all r, O < r < bnn' We now show that the

radial wave function approximately satisfies the differential equation

[“ §;g + Iiigl) + gl(r)] [ gy (n se)] =0 (II1.15)
both for r a b = and for r <<b by noticing that Bgs. (IIT.13a) and
(III.lS) are approximately the same for r near bnn and that Eqs.
(III.1ka) and (IIIflS) are essentially equivalent for small r. Comparing
Egs. (III.l3a) and (III.lB) wea hote the following factsg: (l) The term
L(I#+1)r ® in Eq. (III.15) is negligibly small for r near b providing
the expectation value ((z-bnn)2> is small compared to'bnng; and (2) the
quantity rfi(nz;r) can be accurately approximated by brln flﬂnzsr) for r
'near bnn' It follows that Egs. (III'l3a) and (III.15) are essentially
the same for r near bnn' Comparing Egs. (III.1ka) and (III1,15) for

r << bnh’ we notlce that the quantity Gvy defined by

- L
eXy ",2 vl Qxh (nx+ ny+ 1), (IIT.16)

is small compared to 2 W Z°e®h °r *. Thus Egs. (IIT.1ka) and (III.15) ‘
differ little for r << b . We have now established that Eg. (IIT.15)

holds accurately in the limits of large and small r. We assume bthat

it holds apprcaximately for intermediate r.
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By making various approximations we have shown that the radial
wave function satisfies Eq. (III.IS) for a1l r. In Subsection III-C
~we use a modified WKB approximation to solve Eq.(III.15) for fL(nZ;r)-
The effects of the approximations made in deriving hq. (lII.L5) can be
estimated by examining the WKB barrier-penetration integral. One finds
that the most serious approximatidn involved in Eq. (III.15), the neg-
lect of gxy for small and intefmediaie vy, should cause an error of less

than 2% in the barrier penetration integral.

C. ‘'Une Radial Wave Function
Our method of s;lving Eq. (IIT.15) approximately for fL(nz;r) is
algebraically complicated but straightforward. It introduces errors
$mall compared to those due to the approsimablous Lovolved in Eqg.
(III-lS) itself. Iﬁus we only outline the procedure briefly.

(10)

We usge the modified WKB approximation in which the centrifugal

2

potential is represented by (1#+%)°+7% instead of L{IH+1)r" We deter-
mine the normalization by matching the WKB approximation to the harmonic
oscillator wave function for r near bnn' The WKB integral cannot be
evaluated analyticslly, but it can be expressed to a good spproximation
as the sum of two‘integrals which can be calculated exactly. The first
integral 1s the one that appears in the WKB approximation to a Coulomb
wave Tunction. Thus the radial wave function flﬁnzgr) can be written

as the product of a Coulomb wave function and a correction factor.

The Coulomb wave function appearing in fL(nZ;r) is ch(E';r), where
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E' = zzezrc"l (1+71) . (III.17)

The relation

£ =02 ulfe™n™ (I&}g)“grc - (IIT.18)

defines the parameter &, which i1g usually much larger than one. Thus
B ig approximately the energy of a pure Coulomb wave with classical
turning point L The classical turning point radius can be expressed

in the approximate form

e % -%
r,~b Lh(gnz+ 1) 1% QZ) ,  (111.19)

providing the vibrations are small.
To find the reaction rate using Eq. (TTT.9), we must calculate
Lhe rallio Q given by

1im Trln,sr)

Q = (ITT.20)

r—=0 ¢

fII(E;r)
where E ig defined in Eq. (III.10b). The quotient Q is the ratio of
the Coulomb wave functions tor energies E’ and E multiplied by a
correction factor.

We must define four parameters occurring in the two Coulomb wave
Tunctions. The expressions

- 1
K=n" (ouE)? (III.21)

and _ ok
K'=1" (pur’)* (ITI.22)

express the wave numbers in terms of the energles, while the equations
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n=zm At (TII.23)
and
n' = () (TII.2L)
give the Coulomb field parameters in terms of the wave numbers.
We maist also define some parameters ocecurring in the correction

factor that multiplies the ratio of the Coulomb wave functions. Let

2
1l

2 Megh ®(LH%) r * (1II.25)

and.

G
]

o pkah'g(L+%)“2rC5 . (III.26)

Then define A, B, C, and D by the relations

A= (1/16) (38°+ LE®- LE) (1 + g)T/2 , (zIT.27)
B = (1/128) (298%+ 728%+ oL~ & - 48) (1 + §)"9/2 s (IIT.28)
¢ = (1/2h) (957+ 326+ 8) (1 +§)° (111.29)
D = (1/192) (87E™+ 35687+ 3568 + 192) (1 + &)™* (11T.30)

Finally, let
I=(5+%) [(cos™a) (¢A+0B) +CC+oD] , (IIL.31a)
where | » o = ~§(§ +2)7 . (III-Slb)

Then one can show that

Q=F explk I‘~ T (n/— ml (III.32a)
where A2 1, s —a\h
EHQZ(K ) 1+ s | ( )
F= | —F— ! l —_ , III.32b
el 1+ 77
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The quantity Q gives the ratio of the wave function fL(nZ;r) to
the Coulomb wave function for the energy E. We now use Egs. (III.32)

in Eq. (ITT.9) to find the reaction rate.

D. The Reaction Rate
We first consider the reaction rate from an initial state
(nx,ny,nz). Substituting Egs. (IIL.32) in Eq. (ITI.9) yields

TL(nX,ny,nZ) = Gfic(ﬂ) , (1II.33a)

where

¢ = [hn(em1) 1™ F° Gy fap,(n,n )| ® exp [T-2n(n’- m)]

(IIT.33b)
and Iif(E) is the reaetion rate‘for a pure Coulomb wave with energy E.
To find the average lifetime of a nucleus iIn a stellar interior,
we must perform a thermal average over oscillator states. We shall
Tind in Section IV that the theory applies only to temperatures low

enough that

n Qx(krﬂ)'l» 1. (ITI.34)

Thus we asgume n and ny are both zero. The sum over n, must be

- !
carricd out, however, duc to the strong dependence of T on nZ.
Congistent with our previous assumption of a bee lattice, we agsume

each nucleus has eight nearest neighbors and obtain the expression

TL‘I = 8 Z r.(o, O,nz) exp [ n A QZ(kT)'ﬂ , (1II1.35)

n =20
b4
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for ﬁhe inverse lifetime.
In the important special case of an s-wave interaction, the
reaction rate corresponding to a Coulomb wave with unit number den-

slly al infinity 1s often wribteu(ll)

¢ = g(m) vate™™M | (III.36)

where the croge~gection factor S(E) can usually be determined from
the results Qf laboratory experiments; it contains all of the purely
nuclear aspects of the reaction rate. The quanfity v in Eq. (ITI.36)
is the velocity corresponding to energy F and wave mmmber X . Uging
Egs. (II.14), (III.12b), (III.32b), (III.33), and (III.36) in Eq.
(III.35), one finds that the inverse lifetime for an s-wave reaction
is glven by

fro'l = J ZDZS(E) exp {- o+ T - nZhQZ(kT)"l] (IIT.372)

where

J = 1.00 (p/M)B/gh—l . (TII.37h)

The quantities ﬂ’ and I were defined in Eqs. (III.24) and (ITI.31),

regpectively. The energy E can be written in the convenlent form
. 4 / 1
B = 1.48 7% (p/M)*/ %+ 1.88 (n+ %) nZep” Mt (III.38)

Equations (III.35) and (III.37) give the inverse lifetime of a
nucleus in a solid lattice of density p. In Section IV we describe
the range of temperatures and densities to which these formulae

apply.
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Iv. LIMITATIONS

A.  Assumption of One L-Value

We have assumed that one initial value of orbital angular momen-
tum dominates the reaction rate. Reactions between light nueclel are
predominantly s~wave, butb several different orbital angular momenta
may be important in reactions between heavier nuclel. Incorrectly
assuming that one L~value dominates the rate, one may overlook the
effects of interference and may make errors in the geometrical fac-
tors a1 but such errors are unlikely to amount to as much as a
factor of ten. The barrier penetration factors for reactions between

50 to e-lsofor the conditions to

hegvy particles range from about ef
which the solid-state model applies. Due to our incomplete knowledge

of U(;) and oﬁr approximate method of solving the Schrddinger equation,
we are likely to maeke errors of several percent in the barrier penetra-

tion exponents. These errors are likely to be larger than any caused

by incorrect assumptions about the dominant L~values.

B. Regonant Reactiong
The treatmenf outlined above doeg not apply directly to reactions
with strong resonances at energies smaller than about two or three times
degb_l, which ranges from 1es$ than 1 keV for protons at 10° gm/cc to
several hundred keV for carbon nuclel at ZLO]“O gm/cc. The widths of the
harmonic oscillétor states are likely to be large compared to the widths
of the nuclear resonances-. To apply the solid-~state treatment to a

reactlon like 3 He4~o-ClB+ v
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which involves low-lying resonances, one would have to estimate the
widths of the osclllator states and replace the sum in Eq. (IIT.37a)

by an integral.

C. High-Densgity Limit

At high densitiesg, the amplitudes of the ground-state vibrations
may become comparable bo‘bnn. When Llkils happens, the nuclel no longer
form a bee lattice, as assumed in Sections IT and ITT. Several inves-
tigators have estimated the "melting density” of a lattice consisting
of clecetrons immcrscd in a uniform distribution of positive charge.
These estimates can easlly be converted to apply to the case of a
lattice of nuclel in a uniform negative charge density. The most

(12)

" recent estimates are those by de Wette Hia work locatesg the

melting density in the range
1.6 x 10* 78a% < p,< 1.6 X 100 72°a4% (1v.1)

(13),(1k)

where pm is in gm/cc. Earlier work indicated a melting
density of aboutb 10° z°a* gm/cc.

Just above the melting point, the nuclel form a fluid rather
than a periodic lattice, but the motion is still largely vibrational.
In this liquid range, where the mean free path between collisgions is
small compared to bnn but the vibrations are still too large to allow
a strictly periodic latticé,‘it still seems reasgonable to treat the
relatiﬁe motion of two particles using the potential of Eg. (II.l3a)

That potential depends. on the assumption of a bec lattice through the

paremeters b, QX and QZ. The nearest-neighbor distance varies only



_25_
a few‘percent from one lattice structure to another. The frequencies
QX and QZ have been calculated for the fcc lattice and for a 'smeared
out" lattice intended to resemble a liquid, and the results are within
aboul 10% of Lhe values obtalned Cor Lhe bee lattice. Thus we conclude
that the parameters b, Q&, and Qz are nearly independent of the geo-
metrical arrangement of the lattice, although they depend strongly on
the density and on the charge and mass of the nucleli. It 1s, therefore,
reasonable to expect that the values of bnn’ Qx’ and QZ for the bee lat-
tice also suffice for the range of densities where the nuclel execute
small vibrations in a nonperiodic lattice. The range of applicabllity
of the formula‘could then be extended to a density given by the
approximate relation

o, A 10°7° 4% em/cc . (Iv.2)

The above considerations are important mainly for reactions
between protons. At densities greater than about 10° gm/ce, a zero-
temperature proton star could be described more accurately as a degen-
erate gas than as a solid. Thus'the solid-state approach fails to apply
to protons at densities well below those expected in neutron gtars.

We hgve also agsumed that the nearest-neighbor distance is large
compared to the nuclear radius. Thus the solid-state model applies

only if
p << 10"* gm/cc . ‘ (1v.3)
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D. High-Temperature Iimit
The tempefature enters the expregsion for the reaction rate
through the sums over n_ in Egs. (III.BS) and (III.SY). Below a

critical temperature TC, given approximately by the relation
00 74t p* )
T, ~ 1200 ZATh p* (IV.4

where Tc is in “K and p is in gm/cc, essentlially all reactions take
place from thé.ground state. Thus for T << Tc’ the rate ig indepen-
dent of T. Near the temperature Tc’ the first few excited states
become important, and the rate begins to increase with’temperature.
At a temperature just slightly above Tc’ most reactions take place
from unbound states, and the solid-state approach falls. Just above
the critical temperature, most of‘the nuclel in the lattice are still

in thelr ground states because
1 (3 Loy
n (k7)) wadk (Iv.5)

and
ﬁQZ(kTC)'l A 3.5 . (1v.6)

However, the exceptionally energetic nucleil that are most likely to

react have enough energy to break through the lattice. The mean free
path between collisions of these unusually energetic nuclel is large
compared to bnn’ and they can be treated approximately as gas parti-

(18)

cles. Salpeter has developed a method for calculating reaction

rates for T >>-Tc.
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V. NUMERICAL RESULTS

A. Proton-Proton Reactions

Equations (III.3T) have been uged to calculate the mean lifetime
of the protons in hydrogen stars at various temperatures and densities.

The protons were assumed to undergo the reactions

H+ B —— B+ e + v (v.1)
and |

H+e +1I — I+ Vv . (v.2)
For densities greater than about 10° gm/ce, the extreme degeneracy
of the electrons causes the capture reaction (V.Q) to dominate the
proceés of hydrogen burning.

Figure 2 shows the temperature dependence of the mean lifetime

at a density of 10° gm/cc. Below a critical temperature of about

2 X 10° OK, the reaction rate is independent of temperature. Above

(8)

about 10° © , Tthe formula of Salpeter should be accurate.
B. Carbon-Carbon Reactions
The mean lifetime of ¢*® nuclei in stare of pure carbon have
also‘been computed. Two carbon nuclel may react to form the follow-
ing products: Mg84+ Y, Na®%+ H%) Mg23+ , We® O+ Hé4, and O'°+ ome®.
Equations (III.BT) were used to calculate the mean lifetime of the
carbonvnuclei, even though there is no reason to expect that the

(l)) has expressed the

reactions are predominantly s-wave. Reeves
rate of the carbon-carbon reactions in terms of the cross section

parameter S(E). The small errors caused by estimating the
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geométrical factors aEM Incorrectly and by neglecting interference
effects should not be serious because of the strong density-dependence
of the reaction rate.
Figure 3 shows the mean lifetime of & carbon nucleus at 107 °k.

At low temperatures the reaction rate is significant for densities
greater than about 10°° gm/cc. The rate of the C**+ C'® reactions
depends much more sghtrongly on dengity than the rate of the proton-
proton reactions because the barrier penetration exponent is much

larger for Z = 6 than for Z = 1.

C. Comparison with Earlier Work
Cameron(n) has suggested calculating the rates of pycnonuclear
reactiong by treating the system‘of nuclel as a gas with Coulomb inter-
actions between the particles. The curve marked "GAS(CAMERON)" in
Migure 3 was computed by a method simllar to that proposed by Cameron,
using the same value of the cross-section parameter S(E)(15) ag in the
solid-state calculation.

Figure 3 indicates that for the C=+ ¢

reaction, the solid-
state method predicts rates ten to fifteen orders of magnitude smaller
than those compited by the gés model. The large discrepancy in the
predictions of the two models ie due to the different estimates of the
classical turning point radius, L which is an important factor iﬁ
the barrier penetration exponent. According to the solid-state
approaéh, r, 1s slightly less than the nearest-neighbor distance.

According to Cameron's model of electrostatic screening at low temp-

eratures, r, is slightly less than the charge-cloud radius, given by
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’(3Zﬁ)1/8(hﬂhe)ml/3; where 7y 2 Zp. Tor Zy = Zg, this charge-cloud
radius is only 0.57 of our nearest-neighbor distance. Due to the
gstrong dependence of the barrier penetration factor on the classical
turning point, this factor of 0.57 causes & large differenée in the
predicted rates. Cameroﬁ‘s method should be reasonably accurate,
however, if Z3 -~ Zg.

Shorlly afler lhe lmportancedf Lhe ptp reaction in main-geduence

(1)

gtars was First pointed out, Wildhack made an egtimate of the rate
of the ptp reaction in white-dwarf stars. As in the present work, he
cstimatcd the ratc at which the reaction proceeds between protons
ogeillating about adjacent lattice sites. Wildhack was primarily
interested in answering the simple question of whether the interior
of a white dwarf could be maﬂe‘u@ primarily of protons; he was not
interested in obtaining an accurate number for the reaction rate.
ansequently; he made only a rough analysis of the lattice Coulomb
fields and he neglected motions of neighboring protons. He also used
the unmodified WKB approximation in a way that is known not to be
valid. Consequently, his estimates of the rate of the prp reaction
are about two orders of magnitude smaller than the results obtained
here, for densities less than 10° gm/cc. At higher densities,

Wildhack's rate diverges further from ours because he neglected reac-

tion (V.2).
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) ®
2. THE COOLING OF NEUTRON STARS

I. INTRODUCTION

The existence of neutron stars was long ago predicted theoreti-

(1)

2
cally by Landau , Baade and Zwicky( ), and others. Neutral matter

at densities of 10°° or 10t° gm/cm8 should, except at extremely high
temperatures, congist primarily of neutrons. Stellar models<3)m(6)
indicate that stable stars with masses less than about one solar mass
could exist with central densities of 10'* to 10'° gm/cma. Such
dense configuratibns might be seen in nature as remnants of supernovs
explogionsg. It has recently been suggested that neutron stars might
be detected indirectly through the effects of thelr oscillations£7)’(8)
but the most obvicus and convincing way to establish the exlstence of a
neutron star would be to detect photons radiated from the star's surface.
The thermal photons should be in the X-ray region because of the high
temperatures expected on the surfaces of neutron stars.

Measurements made on recent rocket flights above the esrth's atmos-
phere have demonstrated the existence of several discrete sources of

(9)-(12) (13)-(15)

galactic X-rays s, and various authors have suggested

that these observed sources might be the long awalted neutron stars.

Other suthors have proposed that the observed X-rays may be synchrotron

(16)

radiation from energetic electrons in magnetic fields or bremsstrah-

(16),(17)

lung radiation from hot clouds of electrons and nuclei.

%A preliminary account of this work 1s given in the following communi-
cation: J. N. Bahcall and R. A. Wolf, Phys. Rev. Letters 14, 343
(1965). The details of the treatment are described in two papers
that are to be published in the Physical Review, and observational
consequences are discussed in a brief note to be published in the
Agtrophysical Journal.
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Ihe neutron star hypothesis is the most specific of the suggested
X-ray producing mechanisms, and it is thus the easiest hypothesis to
disprove by observations. The most obvious property of a neutron star,

. : 8
its small size, has led to observational proof(l')

that thevprincipal
X-ray source in the Crab nebula is not a neutron star; the results of
the recent occultation experiment indicate that the source in the Crab
has a diameter of the order of one Light year. Another important proper-
ty of a neutron star is that it should radiate approximately as a black

(19),(20)

body. Recent detailed measurements performed on the X-ray
gsource in Scorpius have shown that thce cpcetrum of the source doeg not
resemble that Qf a black body and that the flﬁx of high-energy photons
ie much greater than one would expect from a neutron star with a reason-
able surface temperature. These observations have not, of course, shown
that neutron stars do not contribute any of the X-rays from the Crab or
Scorpius, but they do show that most of the X~-rays from the Crab come
from g diffuse source, and that most of the short-wavelength radiation
from Scorpius comes from something other than a neutron star.

In the present work, we attempt to estimate the rate of neu-
trino emission from neutron-star matter. Our original goal in performing
detalled cooling calculations was to derive g unique, reasonably accur-
ate expression for the rate at which a neutron slar must cool. Thils goal
has not been attained fqrtwq reasons. First, we have found that the\rate
of neutrino’emission depends sﬁrongly on the density of the neutron-
star magtters the cooling rates of stars with different magsses may,
therefore, differ by several orders of magnitude. Second, more

careful consideration of the processes involved in neutrino emlssion
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from ﬁeutron—star matter has increased, rather than decreased, the
apparent theoretical uncertalnty about the cooling rate of a given
star. In particular,‘the cooling rate depends strongly on the
assumptions made about the followlng difficult theoretical @oints:
the existence of quasi-free plons in neutron-star matter, the exis-
tence of a superfluid-gap in the excitation spectra of the neutron
and proton gases, and the stabllity of neutron-star matter to the
formation of large»scale irregularities that resemble nuclei.

Although one cannot give a unique, reliable formula for the
cooling ‘¥'ate of a neutron star, one r:an‘ with reasonable confidence
place a lower limit on the cooling rate, taking into account the
Obvious theoretical uncertaintles as well as the variation of the
cooling rates with stellar mass. This lower 1imit on the rate is
gtill sufficiently high fhat it‘can be of some use in interpreting
the X-ray observations. TFor example, the limiting cooling rate im-
plies that the X-ray sources observed in the direction of the
galactic center are very unlikely to be neutron stars.

We attempt to calculate the rates of the reactions

n+n—-n+p+et se s (r.1)
ﬁ +n—n+p+ -+ GH 5 (I.2)
T+ n-—-n+e+ Qe ) (1.3)
and | M n—n 4 , (T.14)

as well as the inverse processes
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n+pt+e ——n+n+ Ve 5 (1.5)

‘n+p+ P —n+n+ VH 5 (1.6)

n + e'm»-n-s—ﬁ'«f»ve o, (z.7)

and n -+ u‘—ﬁ> n o+ o+ VH 5 (1.8)
Reactions (1.1) and (I.5) were first discussed by Chiu and Salpeter(lB)

and the corresponding neutrino luminosities have previously been cal-

culated(gl)’ (22)

under the implicit assumption that the neutrons and
protons in a neutron star form a normal Fermi fluid. Our result for
the rate of reactions (I.l) and (I.S) is, with the assumption of a
normal Fermi fluld, about five times larger than any of the earller
results.

Réactions (r.3), (T.4), (I.7), and (I.8) would proceed extremely
rapldly in any neutron star containing a significant number of quasi-
free piong; the pionic reactions are so fast that a neutron star con-
taining quasi-free plons would cool within a few dajs to a tempersture
so low that the star's surface radiation would be unobservable. The
guestion of whether quasi-free plons can exist in neutron stars depends
on the binding energiles of protons, m mesons, and T particles in
neutron—star matter. It is still unclear whether quasi-free pions can
eﬁist in neutron-star matter, because all of the relevant binding
energies are difficult to calculate.

Reactions (I.1) to (I.8) are likely to contribute importantly to
neutrino production in neutron~star matter between nuclear density and

five or ten times huclear density, for temperatures greater than about

2 x 107 °K. The Appendix containg brief discusslons of other relevant
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?eactions and their rates.

In this work, a neutron star is pictured as a collection of inter-
acting particles, Jjust as a nucleus is usually pictured as a collectlon
~of interacting neutrons and protons. We begin in Section IT by
discussing the limitations of this type of description. Then, adopting
the particle-model once and for all, we discuss in Section IIT the
calculation of the number densities of various species of particles in
a neutron star. The Fermi-fluid model of neutron-star matter is
discussed in Section IV. The formation of Cooper pairs is considered
along with the question of the stability of large-scale irregularities
in the nucleon gas. Section V is devoted to estimating the effective
masses of neutfons and protons in neutron-star matter.

Section VI contains a discussion of the opacity of neutron-star
matter to low-energy uneutrinos. The calculated value of the mean free
palh of a neulrluo In neulron-star matter is many orders of magnitude
larger than the radius of a neutron star. Thus nearly all the neu-
trinos emitted from the interior of a neutron star escape from the
star.

The lagt four sections are devoted primarily to the calculation
of the contributions of reactibns (1.1)-(1.8) to the cooling rate of s
neutron star. Section VII includes, firat, a general discussion of the
calculation of the neutrino luminosity of a star, and, second, some‘
simple heurigtic arguments that indicate the proper orders of magnitude
~for the fates of neutrino production by the nucleon-nucleon and plon-
nucleon reactions. Bections VIIT and IX contain the details of the

calculation of the rates of reactions (I.1)~(I.8). The connection
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between the neutrino luminosity and the rate at which the star's surface
cools 1s considered in Section X. The cooling rates are worked out in
detall for several simple cases, and & lower limit is established for
the cooling rate of a neutron star. The relation between cocling times

and observability ig discussed briefly.
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1T. THE PARTICIE MODEL

The baryon number and charge of a neutron star in gravitational
equilibfium uniquely determine the star's ground-state and excitation
spectrum, Jjust as the atomic number A and charge Z debermine the ground
state and excitation spectrum of & nucleug. DBut to deduce the detailed
properties of a neutron star theoretically from knowledge of the baryon
number and charge, one must use a detalled model. Most theories of
nuclear structure involve picturing a nucleus as a collection of inter-
acting neutrons and protons; such particle-models have been reasgonably
successful in explaining the observed properties of nuclei. In the
same spirit, WG’shallkpicturc ncubron stars as collections of inter-
acting particles. All calculations performed so far on neutron stars
have leaned heavily on the idea that these nucleus-like stars are
collections of individual particles.

Thejparﬁicle—model is clearly the most reasonable one at low
densities. Collisions between particles are then rare, and they can be
treated adequately using phenomenological potentials. As the density
increaseg, collislons become more frequent. Since collisions between
nucleons involve virtual transitions to other baryon states, an increase
in dehsity brings a corresponding increase in the "amount of time" each
nucleon "spends" in a virtual state involving strange particles. The
particle-model aleo prcdiotsvthat otrange particlco should appcar in
» non~virtﬁal; quasi-free states at high densities, because the neutron
and proton Fermi energies become so high that formation of non-nucleoric

hadrons becomes energetically favorable. Thus, if we pursue the particle
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model. to densities large compared to nuclear density, we find that the
ground-state of neutron-star matter containg an abundance of strange
particles in both virtual and non-virtual states.

The particle-model consequently loses its usefulness at high
densities. The short-range part of the nucleon potential, the part
that is due to the exchange of strange particles, 1s not at all well-
known; the interactions among the strange particles themselveg are not
well understood; and the problem of treating a complex colleétion of
relativistic strongly-interacting particles would be mathemagtically
intractable even if the individual interactions were understood.

It is easy to place a high-density limit on the usefulness of the
particle-model. The short-range part of the nucleon-nucleon potential,
the part that 1s often represented by a hard core, has a range approxi-
mately equal to the Compton wavelength of the K-meson, which is about
0.4 F. The mean distance between nucleons is equal to 0.4 F at about
2 x 10M6 gm/cmg. Strange particles should be produced in profusion in
a neutron star when the neutron Fermi energy is of the order of 400 Mev;
. which, according to the free-particle approximation, corresponds to g
density of about 5 = 10t° gm/cms. It ig clear that the individusl-
particle model i1s completely unworkable above about ten or twenty times
nuclear density. (luclear densitykis about 3.7 x 10" gn/en”).

The ultimate answer to the problem of describing matter at extreme-
1y high densities may lie in constructing a theory based on entities
that, unlike pariicles, are conserved in strong interactions. But such
a theory has not yet been constructed, and for the present work we shall

use the particle model, hoping that its success in the treatment of
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nuclel indicates its approximate validity for densities not teoo far
from nuclear density. We restrict ourselves in the present work to

densitles legs than gbout five times nuclear density.
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ITI. CONCENTRATIONS OF PARTICLES

A. General Discussion

Having adopted the particle model, we now attempt to estimate the
relative abundances of the different types of particles present in a
neutron sfar. We follow thé treatment of Ambartsumyan and Saakyan(QB),
but we generalize thelr work by formally ilncluding the effects of inter-
actions between particles.

We begin by making some definitions. The conditions of chemical
equilibrium among varilous sgpecies of particlesg are expressed most eagily
in terms of chemical potentials, and it is convenient to write the cheml-
cal potential pi for Fermion spceicos 1 in the form mi02 - EFi + E&,
where m, is the rest mass for species i, EFi is the Fermli energy for
that species, and EE is what we shall call the binding energy for species
i. The quantity Bi represents the change ﬁhat the interparticle inter-
actions cause in the chemical potential of species 1. The chemical
potential for a boson of gpecies j is written in the form mjc2 -+ ?j’
because, at zero temperature and in the absence of interactions between
particles, all bosouns settle into a single-particle state with zero
kinetic energy. |

Neutrino-opacity calculations summarized in Section VI show that
neutrinos and antineutrinos escape readily from a neutron star. Thus
Lhe densibty of neutrinos and antineutrinos is esseuntially zero, and
these pérticles make a negligible contribution to the free energy of a
neutron star.

Minimizing the free energy F subject to the conditions of conserva-

tion of charge and baryon number produces the required equilibrium
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relations among the various chemical potentials. It is thus convenient
to make the definition

$=F -AZ A -0Za (T11.1)
i o+ i 1 ,

where Ai~and Zi are the baryon number and charge of a particle of
species 1, and A and O are lagrange multipliers. Minimizing ¢ with
no external constraints i1s equivalent to minimizing F with charge and

baryon number held constant.

B. DNeutrons, Protons, and Electrons
ror a syslem conlaining neutrong, protons, and electrons, minimiz-

ing ® with respect to n np, and n, produces the relation

Hp+ M- B, =0 (III.2)

Writing Eq. (III.2) in terms of the binding energies Bi and neglecting

the small quantity (mp+ m_ - mﬁ)cg+ Be’ one then obtaing the condition

G+ B - E_+ B - =0 . .
o B - B 5p B (111.3)

The number densities of protons and electrons must be equal if the
neutron-star matter is electrically neutral and contains no other
vspecies of partiéles. The neutrality condition and Eq. (III.3) are
sufficlent to determine the electfon—proton number density as a
function of ﬁhe number density of neutrons. The composition of neutron-

(6),(23)

star matter has been determined in previous work on the basis of
the free-particle approximation, the approximation in which the binding

energles Ei are all set equal to zero. The free-particle approximation
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produces the Tollowing numerical expressions:

n w2 X lOSS(p/phucl) em 2 (III.La)
ng ~n, w2 X 1036(p/pnucl)?'cm'3; (ITI.kb)
B, B~ 7 X 10 (o, P ey (TTL.4c)
B Q:S(p/pnuci)é/BMeV; (TI1.4a)
Prn ~ b X 102(p/pnuel)l/3MeT/c; (III.ke)
Ppe ~ Py ~ T X 1ol(p/pnucl)2/gmev/c . (L. hf)

Here ;> i 57 and P 5 are, respectively, the number density, Fermi

F F

kinetic energy, and Ferml momentum for particles of type i, and pnucl
is the densglity of nuclear mstter (3.7 X 10+% gm/cc). Equations (III.M)
were derivedkin the low-temperaturc limit. Ab the ncutron-star
temperatures to be considered here, k' is less than about 0.2 MeV and

is thus small compared to any of the relevant Ferml energies. We there-

fore conglder only the low-tempersture limit in estimating the number

densities of particles.

C. Muong
As a second example, consider a system containing L mesons and
electrons. Minimizing ¢ with respect to the number densities of muons
and electrons, one finds that
MM‘; b (rrr.s5)
The elecfréns and muong do not interact strongly with the neutron-star

matter. Consequently BM and Be are negligible, and
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2 = 2 . .6
muc EFM mec EFe (1T1.6)

The threshold density for the production of muonsg is the density at
which the electron Fermi energy reaches (mu- m@)cg, or approximately
105 Mev. The free-particle approximation, Eq. (III.AC) implies that
the threshold density for muon production is about 1.8 pnucl'
D. X Particles

We next cbnsider production of the > particle, which has a rest
energy of 1198 Mev. Minimizing ¢ with respect to n, N and ns -
ylelds the equation

Hyw = Mob (1IT.7)

The threshold density for the production of % particles i1s the density
at which

=R PPOR—. - g ™
EFE+ EFn (mZ: m me}c + By-- Bn . (111.8)

In the free-particle approximation, L wparticles will be produced

above about 2.5 pnucl.

E. Pions

Finally, the production of the T meson is governed by the relation

Mp = by (1I1.9)
or . o ‘
Ep, = (mﬂf me)c + By . | (IIr.10)

The free-particle approximgtion implies that the threshold for forma-
tion of pionsg is higher than the threshold for the production of )

particles. Above the £ threshold, Z particles tend to be formed
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instead of electrons, and the electron Fermi energy then does not
increase significantly with increasing density. Consequently, the

free-particle approximation implies that pions should not be formed

(6),(23)

at densities less than 100 @ . .

F. Effects of the Strong Interactions

Strong interactions have a number of effects on the composition
of neutron—sﬁar matter. One of their important effects is to increase
the number densities of protons and electrons. The quantity Bp - Bn
in Ey. (III.3) is apparently large and negative. (The effective neut-
ron-proton force is attractive and is sﬁronger than the neutron-neutron
force. Since the number density of protons in a neutron star is much
smaller than the number density of neutrons, protons are bound much
more strongly in neutron-star matter than neutrons are.) Preliminary
estimates of Bp and Bn indicate that the strong proton binding may
increase the number densities of protons and electrons by as much as
a factor of five at nuclear density. At higher densities, the enhance-
ment in the numbers of charged particles may be sufficient to allow
ordinary neutron decayg‘whichknormally proceeds extremely slowly
in neutron-star matter,.to occur very rapidly. (The rate of ordinary
neutron decay in neutron-star maﬁter is considered briefly in the
Appendix. )

Stroﬁg interactions alsé enter importantly into the question

ol the existence of quasi-free pions in neutron-star matter. FPions

are likely to occur at reasonable densities only if the threshold
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for the T is lower than the threshold for the &£ . It will be shown
in Section IX that the existence of quasi-free plons would tremendously
increase fhe cooling rate of a neutron star. Thus 1t would be interegt-
ing to find out whether the strong interactions could shift the T -
threshold‘below the & -threshold. Equations (III.3), (III.8), and
(III.10) imply that the T - threshold will be lower than the & -

o <2 o - - 2 i
threshold if B . @E(mZ m Qmﬁ)c EFp+ Bs- Bp] (IIT.11)

>~ B_-< -10 Mev + %[Bs- - B,- EFp] . (TrT.12)
The binding energies Bﬂ,and Bz-are difficult to estimate, and it
is gtill not known whether inequallty (IIT.12) is satisfied at reason-
able densities. The question of the production of pions is Turther
clouded by the questionable validity of the particle-model: We have
not been able to justify our implicit assumption that Y -like and T -
like excitations can continue to exlist at densitles from one to five

times nuclear density.
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IV. THE STRUCTURE OF NEUTRON-STAR MATTER
To calculéte the cooling rate of a neutron star, one must have
some knowledge of the structure of the'ldw—lying excited states of
neutron-star matter. In this section we discuss several possible
forms that neutron-star matter might take. For the purposes of the
present discussion, we shall neglect the effects of plons and strange
particlesband congider low~density neutron-star matter in which the

only strongly interacting particles are neutrons and protons.

A. TNormsl Fermi Fluld

The most obvious way to treat neutron-star matter is to employ
the methods developed for the treatment of nuclear matter. (Nuclear
matter by definition contains equal numbers of neutrons and protons.
Neutron-star matter containe many more neutrons than protons, as was
indicated ih Section III-B.) In nuclear-matter calculations, the basic
one-particle states are characterized by definite momentum. Collisions
between particles cause local distortions in the wave function, but the
exclusion principle prevents true scattering(gh). If the neutrons and
protons form a normal Ferml fluld, the exclltation spectrum ls continu-
ous: There is no gap between the ground-state and the first excited
state. The effect of the interparticle interactions on the spectrum of
low-lying cxclted states can be represented eaglily through the use of
effective masses for the neutron and proton.

The present.caleulations of cooling rates are baéed primarily on
the idea of a normal Fermi fluid. Section V contains estimates of the

effective masses of the neutron and proton.
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B. Formation of "Nuclei"
Ruderman(gs) has suggested that s uniform Permi fluid of neutrons
and protons in a neutron star may be unstable to the formation of a
lattice of "nuclei". Each "nucleus” would contain a higher density of
both’neutfons and protons than the surrounding medium, and all the pro-
tons might, in faect, bhe bound in the "nuelei". The properties of the
“nuclei" (their charge, maximum density, etc. ) have not yet been
established.

The lowest state of neutral matter at densities less than about

10° gm/cm? involves only Fe°® nuclei and degenerate electrons. As the

density increases above about 10° gm/cmé, the ratio % of the stable

Olln':-)

4 . . : 3
nuclear specilies lncreases; then above about 1 gm/cm , & degenerate

(26)

gas of neutrons beginsg to form The neutron gas becomes dominant at
higher densitles, but remnants of the original nuclel apparently persist
up to densities of the order of nuclesr density, where they finally
become unstable (as we now show).

The properties of these "auclei" at densities near nuclear density
are difficult to determine, but it is still possible to formulate g
simple criterion for the stabllity of a uniform neutron-proton gas to
formation of such Targe-scale irregularities. Tet 2 up, n, s and np

represent the chemical potentisls and number densities of the neutrons

‘ agn Ol
and protons in neutron-star matter. Using the fact that By and SEQ
n b

are positive one can show that the criterion for stability of the

uniform neutron-proton gas is
O, OM_ oM O
s 2R >0 | - (Tv.1)

dn_ dn._  dn. on
n o p p n
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Rough calculations of. the quantities involved in Eg. (Iv.1)

indicate that the stability criterion is satisfied for densities

Bph I8!
greater than approximately nuclesr density. Both 5o SHR and
auh Ok aph E&B 0o
I §E£ are positive, but PR, which ig large at low dens?ties,
P n P O O

decreases much more rapidly with increasing density than EEQ EEE does.
n

C. Superfluldity
Ginzburg and Kirzhnits(gT) have suggested that neutron-star
matter may form a superfluid. The Bardeen-Cooper-Schrieffer (BCS)

(28)

theory of superconductivity implics that an attractive potential
acting between pafticles in a Ferml gas causes an energy gap 260
between the ground-state and first excited state of the systenm.

The BCS theory ia often applied to the treatment of heavy nuclei
(29)-(31) (32)

In particular, Brueckner, Soda, Anderson, and Morel

and Emery and Sessler(33)

attempted to use the BCS theory to cslculate
the energy gap in nuclear matter, hoping thereby to explain the gap
observed between the ground and first excited?sfates of heavy even-
e&enbnuclei. For the present work, we have converted the results of
Emery and Sessler(Bg) t0 the case of ﬁeutron—star matter, despite the
fact that Emery and Sesgler were not successful in explaining the
energy gap observed in heavy even-even nuclel. Their fallure to obtain
the observed gap may be attributable td surface effectg, which are im-
portant in’nuelei, buﬁ which were not included in the nuclear-matter
calculafions-

Our application of the results of Emery and Sessler indicates that,

for a neutron effective masg of 1.0 m.s the energy eo for a neutron in a
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zero-temperature neutron star 1s between 1 Mev and 2.3 Mev for densities

between 0.01 ancl and 0.3 pnuc and is zero for densities greater than

1

0.5 p For a proton effective mass of 0.6 mn,theemergy eozﬂﬂra pro-

nucl’

ton is between 0.1 Mev.and 0.35 Mev for densities between 0.1 — and

1.8 Py 04 ig zero beyond abaut 2.8 Prnel” It should be noted,
however, that the energy gap 1s roughly proportional to the fourth power
of the effective mass. We shall find in Section V that the uncertainty
in the effective masses ig about 15 to 20%, which implies & fairly laree
uncertainty in the energy gaps for neutrons and protouns.

Agide Trom sensitivity to the effective masses, there are several
other reasons for doubting the validity of our straightforward calcula-
tion. of the proton and neutron energy gaps. First, the BCS theory has
nevef been succegsful in predictiné‘the observed values of the enerpgy
gaps in superconducting metals or in nuclei. The BCS theory itself is
not necesgsarily responsible for this lack of success, however, because
the electron-electron intersction in metals 1& not known with any
accuracy at all, and complete energy-gap calculations for finite nuclei
have, as Tar as I know, never been carried out. Nevertheless, the
ability of the BCS theory td predicﬁ energy gaps has hever been demon-
strated.

We have based our estimates bf the energy gaps on the work of
Emery and Sessler, who applied only the most gtraightforward form of
the BCS ﬁhebry to nuclear mattér. In particular, they neglected the
complex problemvof three-body collisions. Polarization of the neutron
medium by the protons might make a significant contribution to the

effective proton-proton force in neutron-star matter.
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The question of angle-dependent pair-correlations will not be
discussed here. Treatments based on such non-isotropic correlations
have been unsuccessful in explaining the low-temperature properties
of liquid He® Angle-dependent correlations change the density of
states above the Fermi level, but do not produce a true gap in the
spectrum. Consequently, their effects on the cooling rates of neutron

stars are much smaller than the effects of ordinary superfluldity

caused'by attractive S-wave potentials.

*For example, K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel,
Phys. Rev. 118, 1hk2 (1960), and V. J. Emery and A. M. Sessler, Phys.
Rev. 119, 43 (1960), predicted & phase transition in liquid He® at

- about 0.1°K. No transition has been observed above 0.01°K, but there
way be a plase change at a lower temperature. See Vo P. Peshkov,
Soviet Physics JETP 19, 1023 (1964), and W. R. Abel, A. C. Anderson,
W. C. Black, and J. C. Wheatley, Phys. Rev. Ietters 1k, 129 (1965).
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V. THE EFFECITVE MASSES

A. Definitions
According to the individual-particle model, the aeXpression for

the density of states available to & single nucleon is
Cp(E) = 27 PR ap/aE (v.1)

where p(E) is the number of states per unit energy interval per unit
volume, and p and E are the momentum and energy of the nucleon. For

a non-relativistic nucleon, the free-particle model implies that

o(E) =27'm*n* pm (v.2)

where m ig the mags of the nucleon. The effect of interparticle inter-
actions on the energy spectrum of a star can be reprcscnted approxi-

mately by writing the energy of each individual nucleon in the form

E(p) = ¢ Wn"co+ p? - mc+ U(p) (v.3)

where U(p) ig the change in the gingle~particle energy produced by
interactions with nelghboring nucleons. We define the effective mass

*
m (p) by the relation

eel R i 1+ & dg(p) ) (v.4)
m (p)  (n*+pPc®): PP
which leads to the expression
] e - %
p=2"1"0"" pn (p) (v.5)

for the density of single-particle states. Note that Eq. (V.4) reduces

(2k)

to the usual non-relativistic definition of an effective mass if p/e
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is neglected relative to m in the first term on the right-hand side of
Eq. (V.4). The additional relativistic correction (-% p°m ¢ ) is
small (~'5%) for nuclear matter. We are interested primarily in the

density of states near the Fermi momentum P , becauge this ig the

F

guantity that enters into neutrino cooling rates. Thus we need calcul-
*% . *

ate only mn(PFn) and m,p (P ), which we can now write more compactly as

Fp
* %

mrl and mb , respectively.

B. Calculation of the Effective Masses

We need the effective masses of both the neutron and the proton
for our calculations of cooling rates. There are, however, two impor-
tant simplificationsg that result from the fact that the number density
of protons 1s much smaller than the number density of neutrons; one can,
with sufficient accuracy, neglect the effect of neutron-proton inter-
actions on the neutron energy as well as the effect of proton-proton
interactions on the proton energy.

The nucleons are only slightly relativistic for the densities at
which an individual-particle treatment is valid, and the term p = dU/dp
in Eq. (V.4) is not large compared tom . We thue treat both the

2 -2 ‘ . R R
¢ ) and the interasction-correction as

relativistic correction (-% pgm—
small perturbations and do not conslder reltivistic corrections to the
interaction term in Eqg. (v.h). Following the non-relativistic treat-

(24) |

ment of Gomes gt al., we make several simplifying assumptions:

(l) The potential acting in an odd-parity nucleon-nucleon state is

negligibly omall;
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(2) The potential acting in even-parity states is spin-independent
. . core
and consists of a short-range hard-core potential, V (r), and a
. tt
long-range attractive potential, Va (r);
(3) The repulsive core makes a negligible conlribulion Lo dU/dp;
(4) ‘The Born approximation provides an accurate estimate of the
expectation value of the attractive potential (because of the effect

of the excluglon principle on the nucleon wave funections ).

(o4)

Gomes et al. have shown that the above approximations result in
small errors at densitles near nuclear density.

The four assumptions listed above imply a simple correspondence
between nuclear matter and a neutron star with the same number density
of neutrons. In computing U(p) er a neutron in a neutron star, we
include interactions with only half the neutrong in the star, because
assumption (1) and the exclusion principle Imply that there is no
interaction between neutrons with parallel spin. The corresponding
U(p) for nuclear matter (which containg equal. numbers of neutrons and

protons) includes contributions from half the neutrons snd all the

protons present. Thus we conclude that

n.s._, ol .m.m.
0 (ps ) & 3 Tﬁ (p, p,) (v.6)

‘ '
' denote, respectively, "neutron

» 1" 1} " t

where superscripts n.s. and n.m.
T .

star" and "nuclear matter", and the subscript "n" represents "neutron".

One can use a simllar srgument to show that

UU.S.

o (esoey) ~EU (s p) (v.7)

3P

The assumptions (l)—(h) can be used to show that the neutron and
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proton energies have the form:

n.s., . oy eSeg .
Ul’l (P; pn) AS g UJ; (P) pn) (V-SEL)

~ (2TR)7° f daq{jagr cosag§'£) Vatt(r) , (v.8b)

1< Pry

where : k = (en)™* (p - q) . (v.8¢)

and PFn is the neutron Fermi momentum.
The effective masses of the neutron and proton have been calculated
using Egs. (v.Lk) and (V.8). The computations have been carried out for
the following potentials: (1) an attractive square well with a repul-
sive core (the potential used by Gomes et agl.); and (2) several
combinations of attractive Yukawa potentials and repulsive cores (the
potentials suggested by Presbom)(gu). There Ls a signlficanl varlgllon
in the values of the effective masses calculated using these potentials,
in spite of the fact that all the potentisls were chosen to fit the low-
enefgy nucleon-nucleon scattering dats. In the next two paragraphs, we
describe the general behavior of the effective masses as functions of

density, indicating the extent to which the numerical results depend on

the particular potential chosen.

1. Neutron Effective Mass

The neutron effective mass takes on its minimum value at a density.

of the order of p For 0.5 < p/p

. ¥n.s. . .
mass m 1s in the range

< 5, the neutron effective

nucl’ nucl

*n.s. :
<
0.90m <m <1.15m (v.9)
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For p << pnucl’ the effective mass can be expressed 1n the form

*n

.s.m; . + . 2/3
m Ao L 1 a(p/pnucl) 0.08 (p/pnucl) ) (v.10)

where o = 2.5 * 0.5.

2. Proton Effective Mass

*

The proton effective mass reaches its minimum value m.. ata
den51ty pmin’ where
0.5m <m <O (v.11)
.5 mosmo. .75 m V.11
and
. < <0 .
09 Pryetl = Pmin ~° Pruel (v.12)
For p << pnucl’ the effective mass can be expressed in the Form
Yp.e. [
m am (1Y (p/pnuclil s (v.13)
where
vy = 5.0 £ 1.0. (v.1h)

These values of the effective masses will be used in Sections VIIT and

IX in the calculation of the cooling rates.
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VI. NEUTRINO OPACITY

Neutrinos produced by thé reactions (L.1)-(I.8) have typical
energies of the order of k7T, with kT less than or of the order of 100
keV. For neutrinos of such energles, the largest contribution to the
neutrino-opacity% comes from neutrino-electron scattering for Ve and
neubrino-muon scattering for VM' Thig result can easily be established
by examining ﬁhe possible reactions. We consider first electron neu-
trinos, Ve-

The following reactions are forbidden for typical neutron-star
conditions by conservation of energy and momentum: ve + n—~p 4+ e-,
5@ + p—=n + e+, and 5@ +ptn—+nt+tn+t e+. The reactlon
Qe +n+n+p+e + n' and related reactions involving strange parti-
cleg, e.8. A s or Z"/s, occur rarely because the cross section is of
the order of 10 *? cm® times several factors of (REVEF)- Neutrino
absorption by heavier elements on the surface of the star is negligible
because the cross sections are small and %he heavier elements are rare.
Thus neutrino-electron scattering is the mogt important interaction
for ve.

A similar analysis has been carried out for muon neutrinos; it .-
shows that the only interactlions allowed by the selection rules and by

energy congervation are vM - H_ and QM - u* scattering.

% - , :
The general problem of the scattering of neutrinos in stellar matter

is considéred by J. N. Bahcall, Phys. Rev. 36, BL16k (196L4).
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The mean free path of an electron neutrino passing through a
degenerate electron gas can be computed directly using the conserved-

(35)

vector-current theory The general result cannot be written
exactly in simple form, but, for an eiéctron gas at a temperature T,
the mean free path of a neutrino with an energy of the order of kT is

given roughly by the relation

A

PF C -
Vom (11X 100 ) (505

100 MeV I (vI.1)

 where Ty is the temperature in units of 10° °K.

The mean free path of an electron neutrino in g neutron star is,
therefore, of the order of 10° times the radius of a neutron star; the
mean free path of an electron antineutrino is of the same order of mag-
nitude. Muon neutrinos and antinéutrinos have somewhat longer mean
free paths because muons are less numerous than electrons. We there-

‘ fore conclude that the opacity of a neutron star to low-energy

neutrinog and antineutrinos is completely negligible.



- 57_

VII. COOLING: GENERAL DISCUSSION AND HEURISTIC CALCULATTONS
In order to compute cooling times, one must consider the excited

states of a neutron star. A neutron star is almost completely isotherm-
al, except for an extremely thin atmosphere. For the purposes of
caleulating the rale of neulrino emission, one can neglect the atmos-
phere and imagine that the exclted states of the star are populated
(according to the usual Boltzmann factor) by placing the star in contact
with a thermal bath at & finite temperature T. The star then hag a
definite baryon number and total electric charge but does not have
definite energy. The rate of energy loss (cooling) by neutrino emission

ig given by an expression of the form:

= ‘ . 2 . . -
L, = (emn) . I I(sg,v | le s M® E, 5(Eq- Eg E\)) exp ( Ea/kT) s
VOB S
‘ (VIL.1)
where Sa, SB,are states of the entire star, Hw is the weak interaction

Hamiltonian, E_ is the energy of the emitted neutbtrino VvV, and the summa-

v
tion over B ig limited to states for which EB < Ea'

In practice, cooling rates must be computed with the help of a
model; we employ the particle model. We also approximate the thermal
average (Eq. VII.l) over the states of the star by assigning a Fermi-
Dirac or Bogse-Eingtein distributibn to each kind of particle in the
star. As we discussed earlier, 1t is not possible to decide at present
whether or hot neutron stars céntain a significant number of quasi-free

" pionsg; hence our calculations have been carried out for both assumptions,

pions present and plons not present.
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One can estimate the order of magnitude of the energy logs due to
processes (I.l)—(I.8) by a simple heuristic argument that is not entire-
ly fraudulent.  The main feature of this argument is that only Fermions
on the edge of thelr degenerate seas can undergo elastic scattering.
Thus only a small fraction of the order of (kIVEF) of the Fermions of
a given type can participate in the cooling reactions. Since neutrinos
escape from a neutron star (see Section VI), this argument does not
apply to ihem. However, the net amount of energy transferred to a neu-
trino in any of the cooling reactions must be, by conservation of
energy, of the order of kT. It is reasonable to replace the dimension-
less neutrino phase space, which ig proportional to Eva, by
(xT)°/ [EFnEqu

reactions (I.3) and (I.4).

] for reactions (I.l) and (I-E) and similar lfacltors for

The energy loss from reactlon (I.1) can now be crudely estimated
from the familiasr asrgumente o kinetic theory. One writeso for the encrgy
loss from a volume () by reaction (I.1):

(vir.2)

kT |+ kT
E
Fn Fp

L(l) ~Qn *{ov) E {———

% n Y E s
where n is the neutron number density, the weak-interaction cross
section 0 ~ 107 *° (EFh/l MeV)® em®, the relative velocity v ~ ¢/3,
the neutrino encrgy Ev ~'kT/3, and the vorious Fermi energies can be
‘estimated from Eqs. (III.h). We have included in Eq. (VII.2) one
factor of kTVEF for each degeﬁerate Fermion that ocecurs in process(I.l);
we have also made use of the Tact that EFe is, according to Sec. IIT,
approximately equal to EFh' We consider a mass Ms of neutron-star

matter at a uniform density p and a uniform temperature T. Using
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Eq. (ITI.4) in Eq. (VII.2), one finds that the neutrino luminosity due

to reaction (I.1) is given by
(1) (¢ x 1 - N
Ly~ (6 X 1077 erg-sec )M /Mo)(o  o/0)° T° ,  (VII.3)

where Nk)is the mass of the sun and Ty is the temperature in billlions
of degrees. BEquation (VII.3) yields energy lossco that arc not enor-
mously different from the energy losses computed from our more

complicated analysis of Sec. VIIL. Moreover, Eg. (VII.3) gives

(2)

correctly the érucial'depenﬂence of TV on temperature, although the
density dependence cannot be obtained correctly without a more careful
analysis.

A gimilar crude argument can be used to obtain an egtimate of the
energy losses from reaction (I.3)L Note that process (1.3) contains
two fewer Fermions than processes (I.1) and (I.2); hence the rate of

(I.3) is faster than (I.1) by a factor of the order of (E_ /kT)®. Thus:

I{f) ~ (4 x 10*® erg-sec_l)(nﬂ/nn)(Ms/Mg)(p

o/

/p)B/S TQS

(VII.3a)

nucl

The heuristic arguments show clearly what quantities must be cal~
culated in a careful analysis, namely, the phase-space integrals (which
we have approximated by factors of kTVEF) and the nuclear matrix
elements (which we have approximaﬂed by an average weak-lnteraction -

cross section).
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VIII. NUCLEON-NUCLEON COOLLING

A. General Expressions
We now make explicit use of the particle model to calculate the
rate of reaction (I.l). We degcribe the state of the entire star in
terms of the states of its individual particles, introducing corrections
to account for the interactions among the various particles. Following

(2k)

the work of Gomes et al., we label each single-particle state by its
momentum p; the energy assigned to a state of particle species 1 with

momentum p is glven by

E (p) =2 ¢t p2 ¢2 +U.(p) -m c° . (vIrz.1)
i 1 i i
The Fermi energy EFi is defined by
— 2 4 + 2 2 _ =2 .
En Vﬁi c (Pp)® ¢ - m c , (VIII.2)

where PFi is the Fermi momentum for a particle of species i. The zero

point of Ui(p) is defined such that Ui(PFi) is equal to the binding
ehergy Bi’ which was defined in Sec. III-A. Thus, Ei(p) is the energy
required to take a particle of type 1 from infinity and place it in the
neutron star in a state wilith momentum Ql(gravitatiohal Interactions not

considered). The guantities Wi(p) and wFi are defined to be equal,

. + 2 2
respectively, to Ei(p) m, ¢ and EF&'+ m,

The ncutrino luminogity Iél) aricing from rcaction (I.1)

(n+n=>n+p+e+ Qe) in a volume () is:
(1) _ “1 3 ) 3_ 7 .3 3 3
N [ @®n; a®ng @®ny g n d°n, a’ng 8

spins _ 5
X Eg 6(Ei- Ef) |<n,p,e,velﬂﬁl n,n)|?, (VIII.3a)



w3 -
where the subscripts 1, é, l', P, e, and V denote the two initial
neutrons, the fiﬁal neutron, the proton, the electron, and the anti-
neutrino, respectivelﬁ- We have included a factor of one-half which
arises from the identity of the two initial neutrons. The density of
individual-particle states can be expressed in terms of the particle
momenta as follows:

3 = - N3 =]
a'n; = (2mn)™” Qp” ap, a0 . (VIII.3D)

The quantity S is a product of Fermi-Dirac distribution functions for
each particle appearing in reaction (I.1), except the neutrino; S
corrects the density-of-gtate factors for the effect of the exclusion
principle in the final state and gives the appropriate occupation numbers

in the initisl state. More explicltly,

5
s=ms (VIII.3c)

=1

where for the two initisal neutrons,
- -1
s, = [1+exp B(E - E, - B)]™ (viIz.sa)

and for the final neutron, proton, and electron,

Si = [1 + exp B(EFi+ Bi— Ei)]_l . (VITI.3e)

We have get (kT)~1 equal to B in Egs. (VIII.Bd) and (VIII.3e). The weak

Hemiltonian fs:

| Ho= 075 [ a® ﬁp(§g yd(cv- C, Y5) b (x) $e Ya(l + Y5) b, * h.c.

(VIII.3F)
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One can separate out the center-of-mass motion of the nucleons in
the matrix element {(n, p, e, QQIH%I n, n) by introducing the following

center-of-mass and relative coordinates:

K= (g+k) , (VIII.ha)
k=2" (- k) (VIII.l4b)
R=2" (mu+tre) (VITI.ke)
and r=(r-r) (VIII.4a)

where 5;, Eg, I, and Iz are, respectively, the wave numbers and posi-
tions of the two nucleonsg in the initial state. Primed variableswill
be used for the analogous final-state quantities. The nucleonic wave

functionsg in the initial and final states are of the form:

07 exp (1 K+ R) wnﬁ (5 z) x(s, M) (VIII.5a)

il

I
/
and om0 e WSRO (8 p) x(eh ug)
(VIII.5b)
In Egs. (VIII.5) the functions | describe the relative motion of the
palrs of nucleons; the incoming part of the asymptotic form of

wS

np
vector k}. The function X(S', Ms/) describes a two-particle spin-sgstate

I; r) is e same as e incoming part of a plane wave with wave
(ks r) is th the 1 i t of a pl ith

with total spin 8’ and z~componen£ M e

3
The nucleon matrix element that appears in Eq. (VIII.3a) can now be
R | : . s s’

expressed as an ilntegral over the relative wave functions wnn and ¢np .
- Before writing down an explicit formula for the matrix element, we make

two simplifications: (1) We assume that the nucleon-nucleon potentisal

acts only in even-parity states; and (2) we neglect all terms involving
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the lépton mnoments . The'firét assumption has frequently been used in
nuclear-matter calculations and does not appear to give rise to any
large errors. The second simplification .can be shown to introduce
errors of the order of 15% if the first approximation is vaiid.
Making the simplifications described above, we square the matrix
element and sum over all spins, obtalining

Z l<n:p;e:sel HWI n?n>|8
cepins

e [Cv2|Mv)l2 Y IMAlg] O R O SN (E=

where Kﬂ_is the Compton wavelength of the pion; the dimensionless matrix

elements are defined by

=% [t 0% Ofys -
my =70 fate oy G ) Gy x) (VIII.6b)
and '
= -3 .8 Kle s, O .
My = A J b e o) v G x) (VL. 60)

Substituting Eq. (VIII.6) in Eq. (VIII.3) we find:
(l) - 4 2 -1, -9 2 2 2 2
Ly =6k r Q0 n K] [Cv ]le +3 ¢y IMAI P, (VIII.7)

where the dimensionless phase-space factor P is given by the following

equation:

6
— "8 15 3 = (3) ‘ _
P=0% " | iEZL d’n, 8By 67 (K'- K) 8(E- B,) .(VIIL.8)

Since each factor dsni is proportional to the volume (), the phase-gpace

(1),

integral P is actually independent of (2. Thus Lv 15 proportional Lo Q.
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Inserting the appropriale numerical values 1n lhe expression for

1
Lg ), one finds:

ot Iéf>= (5.2 X 10*8 erg—cmma—secfl) P (lMﬁ¢?+ M.31MA,2) .
(VIII.9)
Ag was apparent from our earlier heuristic discussion, two types of
quantities must be calculated, the nuclear matrix elements Mﬁvand MV"
and the phase-space factor P. Equation (VIII.9) has been derived only.

for the case of reaction (I.l); we shall consider in Sec. VIII~D the

modifications necessary to account for reactions (I.2), (1-5), and

(1.6).

B. The Phase~-Space Factor

1. Gcn¢ral Discuspion

Chemical equllibrium among the different types of particles present
in a neubtron star is ensured by various weak-interaction processes,
particularly reactions (I.l) and (1.5). The concentrationg of the
various particles can be brought to their equilibrium values in typical
weak-interaction times of the order of 10 ° to 10 ° sec. However, the
exclusion principle greatly inhibits all these reactions when the stellar
matter is near chemical equilibfium at low temperature. For example, the
lifetime of a neutron in a neutrén star at equilibrium at 10° “K is,
Cassuming a nbrmal Fermi fluid¢ of the order of 10™ sec, which 1s lO+18A
to 10+39 tiﬁes longer than the time required to establish chemical equi-

librium. Superfluidity in the neutron or proton gas can increase the

neutron lifetime at equilibrium still further.
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This enormous reduction in the reaction rates near equilibrium
results from a decrease in the number of available initial and final
states. Equation (III.E),states that, in a neutron star at equilibrium
at OOK, two neutrons at the Lop of thelr Ferml dlsbributionvhave Just
enough energy to produce a neutron, a proton, and an electron at the
top of their respective Fermi seas, plus a zero—enefgy neutrino. At
temperaturcs greater than zero but still small compared to the relevant

Fermi energles, neutrons with energies near E_ have sufficient energy

Fn
to produce a neutron, proton, and electron in unoccupied states near
the tops of their respective Fermi seas, plus a neutrino with an energy
of the order of kT. Thus the neutrons destroyed in reaction (I.1) all
come from a narrow band of states with encrgies within a few kT of Eﬁh’
and the ﬂeutrons, protons, and electrons produced in reaction (I.1) must
have energies within a few kT of thelr respective Ferml energles. The
relatively slow rate of reactions (I.1) and (1.5) ét equilibrium is due
to the fact that only a small fraction of the total number of particle
states can actually be involved in the reactions. The phase-space
tactor P of Hq. (VIII.8), which we evaluate in the followlng paragraphs,
cohtains a quantitative description of the inhibition of the reaction
rate due to the emall number of available states. The phase-gpace fac-
tors for the allowed reactions (I.l) and (I-S) are the principal
guantities that determine their absolute rates, just as the ordinary

phase-space factor (usually denoted by f)primarily determines the labora-

tory decay rates .of superallowed nuclear beta decays.
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2. Initial Approximations

The integrations involved In the phase~space factor P can all be
performed analytically for the case of a‘ﬂormal Fermi fluid; the
approximations required for’carrying out the integrations giVe rise to
errors of only a few percent. One can evaluate the integrals rclatively
accurately because of the simplifications that result from the fact that
kT is, for the problems of interest, much less than the relevant Ferml
energics. For example, the energy kT is 0.086 MeV at 10° °K, whereas

E. EFe’ and E_, are, respectively, of the order of 7O MeV, 70 MeV, and

n 'p
3 MeV at nuclear density.
The integrand of P is negligible except in the restricted "{mpor-
tant"” region of phase space where all the particle energles are within
g few kT of their Ferml energies. It is convenient to neglect
contributions to the integral from certain regions that are far from the

"important” region. In particular, we consider only those parts of the

region of integration that satisfy the inequalities

py T |pr - pe|<pi <p1 *pe - P, (VIII.10)
and p1 ~ P, 2 (VIII.11a)
where

p, =2, tp, toy - (VIIT.11b)

The largest error made in restricting ourselves to the domain

described by relations (VIII.iO) and (VIII.ll) is of the order of
—EFp/kT

e ; ,which 1s less than 1072 for the temperatures and densitles of

interest.
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3. ThevAngular Integral

We begin the evaluation of the phase-space factor I given in
(VIII.8) by performing the integrations over the solid angles.

st the angular integral be defined by the relation

a=Jam [ o [ [an [ ey o (g 8)
(VITI.12)

We can rewrite 53(§f- K) as follows:

P ©)= 1 ()7 (0 - 0) 8l - @) (vIILag)

her = py; + ps - - - pre  Tac angular delte function 8%(Q)- Q
where ,.% }%1 Pr ;Qp "Qe ;QJ\) (¢ g T dclta ( 1 ,ﬂ,)’
which requires that the directions of Q{ and g be the same, allows one

to perform the integration on @E immediately. We note that
/ / 2 2 %
5(py = a) = &|p1 - (s"+ po"+ 25 pu)®| ,  (VEII.1Y)

where g = py. - Ep - Ee - RS and W 1s the cosine of the angle between je
and g. Inequality (VIII.10) requires that the quantity pf -~ g eqgual
zero for some value of H between -1 and +1. Hence the integral over (i
can be carried out immediately, with the result that
A=omn® (pe p)?t [a0 [ an, J a0, [agg ™
(VIIr.is)
Hepeated use of inequality (VIII.11) allows one to perform the remalning

integrations directly. One finds that

A= () 8% (2 py po p/) 7t . (VIII.16)
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L. The Radial Integral (Normal Fermi Fluid)

We now perlform the integrations on the lengths of the momentum
vectors in Eq.(VIII.8). Substituting Eq. (VIIT.16) into Eq. (VIIL.8)

and using Eqg. (VIII.3b), we obtain:

6
P =3 f 'El Piz dpi S EQ G(Ef - Ei) (p1 P2 p ), (VIII.17a)

where

B=2 "2 mie (mn,c)“l5 . (VIII.le)

The integration over the neutrino momentum Py o which one can
perform immediately using the energy delta function, contributes s
factor (B + B - B - W_ - Ep)8 ¢™®. We now explicitly assume that
the neutrons and protons form a normal Fermi fluid with no gap in its
excitation spectrum. Defining the effective masses ag in Section V,

we Ffind that

*
a = m AE VIIT.10
p, WP, =, (pp) o ( a)
and
%
P, dpn =m (pn) dEn . (VIII.18b)

The electron energy Wé is nearly equal to pec, since the electrons are
highly relativistic.
It is convenient to express P in terms of the following dimension-

lesgs variables:

=B (B - By - B) (VIII.19a)
X5 = - B (E{I- Ep. - Bn) , (VIII.19Q)
Xz =-B (Wé - Wre) R (VIIT.19¢)
x, = B (Eg - Ep - Bn) , (VIII.194)
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| and = _ _ _ _
Xg B (Ep : EEP Bp m + mn) . (VIII.19¢)

Substituting Egs. (VIII.18) and (VIII.19) into the expression for

P, and using the equilibrium condition, Eq. (II1.3), we obtain

o y Y ¥
I3 e @
P=5Bc *(xr)® [ax [axs [axs [ ax, jp dxs J ,(VIII.20a)
: Vo o “Va - (1 Foxatxatxy )
where
= [ + — =
v, = B B E (p O)] ) (VIII.20b)
= [ 2 .
Ve T B Vg ~mg © ] ’ (VIII.20c)
Ty = B[y t By Ty -m - B = o)] , (VIII.204)
5 3 |5 5 ( \ Xl} -
J = X X ol X x I L+e
i=1 i=1 Y i=1
X ?I &) *E) p (E) p 20 ) (VITT.20e)
T A T MRS -7 0e

The function e(y) is defined to be equal to unity when v is positive and

zero when y is negative.
X, -1 -X

The factor 8(2& Xi) Hi (1+e ™) is always less than e 2, Hence,

replacing the limit yp‘by infinity increases the integral in Eq.
._y :
b

(VIII.20) by a term proportionsl to e + The guantity yp is approxi-

mately equal to B EFp’ which is greater than ten for the temperatures
-y

of interest here. Hence, terms proportional to e P

can be neglected
and the limit yp can be replaced by infinity. The limits y and y_can
also be replaced by infinity since they are at least ten times larger

than .
yP
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The effective masses and momenta contained in J can be expanded in

*
a power serles.  For example, ohe can cxprecs m, (El) in the form

o
* _ * n n
m (F) =m (B, +3)+ iEIAhl (k/E, )" A

-y

Thus 1f we neglect small terms of order e p, the integral P can be

expressed as a power series in kT. BSince kIVEFP is less than one-tenth
for neutron-star temperatures and densities of interest, we can obtain

an adequate,approximation for P by congidering just the first term in

the power series expansion of

3 * % o
T omy (Ei) m (Ep) P, (Ep) P, (Wé)
Ci=l
We then obtain
= 8 ~4yr ®ya ¥ 2
P =B (kT)? ¢ (mﬂ ) my Ppo Pp T (VITI.21a)
where 2=y o0 [os) oo o
I=[axy [axp [ axs [ dxg i dxe
- - - - - () Hxptrg g )
5 3 5 X e
x| & x. i [1+ 1] (VIII.21b)
. 1 .
i=1 i=1
_ 11,513
150960 (VIII.2lc)
~ 903 (VIIT.21d)
a % % ;
an m o= (B v B) (VIII.zle}
* *
m =m (E. +B) . (VIII.2lr)



.."(l..
N =1 . .
Setting PFp and PFe equal to ¢ ‘WFe, one can write the phase-space

Tactor in the convenient form

%13 ¥ 3
- mn m 'WF
P 2.6 X 10777 -k < e . (VIII.22)
- mp mﬂpg

The phace-epace factor is, as expected from the heuristic argument
given in Sec. VII, proportional to T; it is also proportional to the
product of the effective masses of the four nucleons involved, because
the number of éingle~nucleon states per unit energy ls proportional o
the nucleon effective mass.

Althbugh the integrations involved in P are accurate to within a
few percent, the numerical value of P is difficult to estimate to much
better than an order of magnitude because of the uncertainties in the
effective masses and the electron Ferml energy. Using Egs. (v.9) -
(V.lS), we estimate that the product (mn*/‘mn)3 (mp*/mp) ig equal to
&6&:&3.fMeekmmmnmeiemwgrﬁmaﬂsonI%—Qy the difference
between lhe binding energies of the neutron and proton. This difference
might easily be as large as 50 MeV at nuclear density, but unfortunately
no reliable theoretical estimates of Bn~ Bp are yet available. We shall
aseume that Bn— gp is much emaller than 7O MeV and use the free-particle
relation, Eq. (III.MC), for the electron Ferml energy. We then obtain

a simple but highly approximate expression for P,

P 1.9 X 10779 (p/p P oms . (VIII.23)

nucl
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5. The Radial Integral (Superfluid)

We first comsider the situation wherce the protons are supercon-
ducting but the neutrons are not, a situation that probably obtains for

densities between 0.5 and 2.8 p , according to the results
nu nucl

cl
of Sec. IV-C. ;

In the Bardeen-Cooper-Schrieffer (BCS) theory(28), the ground-state
of a supérconducting gas involves pairing of particles with opposite
spins and momehta. The state vector for the whole system is expressed
in the second-quantization formalism as the product of the state vec-

tors for the pairs. The four possible state vectors for the pair

(k}, -k+) are given by

b ot &

’s£(1)> = [:h}{ Eﬁ%* a:}E* + (l-h}g)] | 0> (VIIT.2ka)

|5, (2)> = %TUO) (VIIT.2k)

1Sk(3)> = a*k‘lo> (VITI.2he)
and

S (4)> = | (l-h );2 al, al | - n* 0> (VIII.2Wa)

'g:: O/ Ft By nk]’ 3 :
where :ELJr for example, is the creation operator for a particle with

kt ’
momentum k and spin up, and \O> is the vacuum state. The coefficient

hk ig defined by

L
b = (1 - ak/Ek)«z p (VIII.2ke)
where ~ -~

€ = (1%/2m) (& - k) (VITI.252)

and

=, 2 2 : ) )
By = W §° + e (VIII.25D)

" ~d
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The gquantity eo is approximately independent ol k.
State 18,(1)) is the ground-state of the (kt -ki) system. The
energies of é;étes lSk(E)) and |Sk(3)> are greater than the energy

of ISK(1)>'by an omount Ek' The fourth state has an energy of 2Ek°

~

We now apply this formalism to the treatment of reaction (I.1).
Consider the casge where there is a gap eop in the proton spectrum, and
let the wave number of the proton emitted in reaction (I.1) be E@- The
matrix‘elemeﬁts of the transitions in which the energy in the (Epf"5@+)

P>
system is raised by Ek are proportional to (1 - hk )2, and the matrix
~p ~p
elements of the transitions in which the energy in the (g@%,—k@#) system

1
2

is decreased 'by‘Ek are proportional to hk . The statistical factors

for these two typgg of transitions are, rggpectivelyg [(1 + exp(-B B, T
- ' ~p
and [1+exp (BE_)]7". We thus find that
~p
I=Py C" (VITI.26a)
[an) L0 [av] [e] [e2]

{ 4

‘&1BS_£ del_£ deg_£ del_i dep_£ ae_ 8

by (er+ eo+ E_ - e’ ee)3 (1—hk e+ es- E, - e’- ee)3
"

1+ exp(BE ) 1+ exp(-B B )
~n ~p
(VIII.26Db)
where . . _ ’ L@ "1
s =[(1+ )1+ PRy + ™)1 ) L (vaTT.obe)
The term proportional. to hk' is defined to be zero when
' ~p
(el+ eyt Ek - e’ ee) ig negative, and the term proportional to (l-—hk )
~r ~p

is similarly defined to be zero when (eg+ e~ Ek -¢e'- ee) is negative.
~p
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Iﬁe expression for I that is given in Eq. (VIII.26) is, in the
limit as Beop goes to zmero, the same as Eq. (VIII.Elb). In that case,
we found that I was approximately 903. We therefore define a correc-

tion factor Y(Beop) such that

]

Y(Beop) I(Beop)/903 5 (VIII.27a)

fi

P Be )/(0) . (VIII.27b)

The correction-factor ¥ is pldtted against B er in Fligure 1.
(28)

It should be noted that eop ig a function of temperature and

is zero above the criltlcal temperature Tc’ where

kT &~ 0.5
< e 0.57 eOp(O) 2

and SOP(O) is the energy gap at zero temperature. DBut eop(T) goes
rapidly to EOP(O) when T is small compared to TC. M gure 1 indicates
that the superconductivity correction is in any case unimportant for

B eop(T) less than 5, or, in other words, T greater than about 0.35 Tg-
Thus the temperature-dependence of the energy gap is unimportant for the

present purposes and one might just as well consider EOP equal to EOP(O)

‘ ii) Superconducting Neutrong

The energy-gap speculations in Sec. IV-C indicate that the neutrons
should form a superfluld at densities less than about 0.5 pnucl and that
the energy gap should be gréater than 1 MeV over most of the superfluid:
range. We ‘therefore agsume that the neutron energy gap is large
compared to both the proton energy gap and kT. |

In the low-temperature Limit, the phase-space integral can be
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written, for the case of a neutron superfluid, in the form

Pge =61
where
_ e 18 -15 *g ® 2 8 ,~lgo
c=2 T mﬂ. mn mp PFp PF@ (RT) ¢ ’
and © o o o
8
T &’%T [aer [ dep [ae’ [ae [ae 8'(n-¢e)®

The quantities M and S are given by

n=E+ B +E'- e

and

g = El+eBE})(l+@BE2)(l+éBE )(l+e—8sp)(l+e_ﬁee] 1

(VITT.28a)

(VIII.28b)

(VIII.28c)

(VIII.284)

(VIII.28¢)

The integral I can be evaluated easily in the low-temperature limit,

with the following result:

N, g 7 _—2Beon
I~0.123 (Be_ )" e | )

(VIII.29)

where € is the neutron energy gap. Using Egs- (VIII.28a), (VIII.28b),

(VIII.29), and (III.Lf), we find that

: - -27 v ~2Beon 2
PSC(Beon) e X 10 eom © (p/pnucl) qb’

(VIII.30)

where éon 18 expressed in MeV. Comparison of Egs. (VIII.ES) and

(VIII.30) indicates that PSC(Beon) is much smaller than P for tempera-

ﬁures less than 10° °K if eon is greater than 1 MeV.
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C. Estimateé of the Matrix Elements

1. Definitions

The dimensionless matrix elements of Eq. (VITT.A) can be written
as follows:
‘ g 5 . o ¥ o
M. = S i TR A\ ;
v Xﬂ I a°r [ecos k T HP(E)] [cogs k = nn(r)]’
(VIII.31)

M, = Xﬂf3 f dazlﬂcos ks r+ A;p(z)]*[cos kot A;n(z)] .
(VIIzI.se)

The initial-state wave function [cos k - T+ A;n(z)] describes the
relative motion of two neutrons with total gpin zero. The functions
[cos k' ¢ + A;p(g)] and [cos k'* r + A;P(E)] correspond to neutron-
proton pairs in states with spin zero and spin one, respectively.‘ We
c&nsider only states that are even under exchange of positions of the
two nucleons, because we have neglected nucleon-nucleon scattering in
cdd-parity states.

Our lack of detalled knowledge of the effects of strong interac-
tiong makes accurate calculation of MA and Mﬁ.difficult. In the
following subsection, we use a dimensional argument to guess the order
of magnitude and density dependence of the matrix elements. We then

uge two specific models for the nucleon-nucleon colligions to obtain

more detalled estimates of MA and Mv.

2. Dimenglonal Egtimate

The'infegrals over r in Egs. (VIII.31) and (VIII.32) must yield
a quantlity proportional to the cube of a length. Thus we can estimate

Mv.and MA by congildering the physical lengths involved in the problcm.
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There are two lengths associated with the nucleon-nucleon potential:
the attractive potential has a range of about Xﬂ,and the core radius
is about O.4 Kﬂ. The relevant wave numbers X, k, and k' are all large
fractions of Pﬁhﬁ—l and A PanlRﬁO-M Xﬂ(p/pnucl)_l/a.

Since .all the lengths ihvolved are nearly equal at nuclear density,
we expect ‘Mﬁlg and ‘MVJQ to be of the order of unity at nuclear density.
Furthermore, the effective range of 4 is probably determined primarily

by k, k', or Pthnl. Thus we might expect M, and M, to be proportional

v

, 1.e., to decrease as p_l. In any event, we expect M, and M

-3
to P A v

Fn

to decreasge slowly wilh increasing density, for moderate densities.

3. Beattering Model

'In thic model, we assume that the function A in Eqe. (VIII.31) and
(VIII.32) 1s an outgoing scattered wave; that is, we assume that

iQL . ikr
A~ E e sin § %ﬁﬂ) e [kr (VIII.33)

for kr > 1. Equation (VIII.33) does not describe the wave function for

the region kr < 1, a region which contributes a large part of the inte-

grals MV and MA' In order to estimate the wave function for small
radii, we must assume a gpecific form for the interaction potential. We
(36) |

adopt the separable potential suggested by Yamaguchi The corres-

ponding s-wave scattering wave function ils given by
. ) (S) - , ” .
cos k * r+ e1 sin © (eikr— e BI)(kr) o (VITI.34)

where

e*0%in & = {—i +-E [— % +%— (%)2+ (emPAB) T (B%+ kz)z}}—l .(VIII.35)
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The parameters A and B, which represent, respectively, the coupling
strength and range of the separable potential, can be determined from
the singlet and triplet scattering data. The effective Hamiltonians
acting on the space parts of the singlet and triplet wave fﬁnctions are
different. But the two singlet wave functions contained in Mv.are
eigenfunctions of the same Hamiltonian; since the two eigenfunctions
correspond to different nucleon energies, they are orthogonal. Thus
the free—scatfering model impiies that Mv.equals Zero.

We have computed MA using values of B and A that reproduce the
experimental phase'shifts between 25 and 100 MeV. ‘he resulting
expression for MA is complicated, but, for p §,pnucl it can be accur-

ately approximated as follows:

fM I’“’ ~ 0.3 (p /p)”/B . (VIII.36)

A nucl

Note that the model described above neglects all correlations

between the colliding nucleons and the other nucleons that are present.

4. Nuclear Mstter Calculation

In using the scattering model discussed above, we have neglected
“the fact that the exclusion principle prohibits scattering into occu-
pled states. Nearly all the states that are energetically accessible
to two colliding nucleons are, in fact; occupied in a neutron star;
hence there i1s almost no free écattering. The wave function describing‘
the relétiVe motlon of two nucleons in a neutron star or 1n nuclear
matter is a symmetrized plane wave, except‘for some distortion for

small internucleon separations. Thig distortion is described by the
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functions A in FEgs. (VIII.31) and (VIII.32). One can describe the
collision between two particles most simply by using a two-particle
Schrodinger equation. The effect of the interactions between the
two colliding particles and Lhe olher aucleons can be repx‘esénbed
approximately by replacing the free-particle masses by the effective
masses. However, the Schrddinger equation must also be modified to
toke account of the fact that the stateg below the relevant Fermi
levels are largely occupied; ‘the appropriate modified form of the
Schrodinger equation 1s the Bethe-Goldstone equation, which is often
nsed in nuclear-matter calculations(gu). In the Bethe-Goldstone

‘equation, the usual potential-energy term V(r) ¢(£) is replaced by
qV(;) W(K): where ¢ 1s a projection operator that eliminates those
Fourier components of V(r) w(y) thét corregpond to occupied states.

Since the operator qV(r) is not hermitian, the solutions to the Bethe-
Goldstone equation for different energles are not necessarily orthogonal.
Thug Mv.need not be zero as 1t was in the scattering model of subsection
3.

(oh)

We follow Gomes et al. in assuming spin-independent forces,

A

equal, since the exclusion principle differentiates between neutrons

which implies that M, and Mv.are equal. However, Ann and Anp are not

and protons. Using the foet that (k| ic different from k'] to show
p ~t . T

that

f a°r cos k} "reosk e r =0

o~ ~t

we can rewrite Egs. (VIII.31) and (VIII.32) in the form

M, =My : (VIII.37)

5 0%y [eos ke o A (r) + cos k - o YA (2) b ()] .
Xﬂ J &x Lcos k' o nn(ﬁ) cos k idAnp(ﬁ) b np(%) nn(k)]
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The function Ann(r) hag no Fourier components corresponding to the
scattering of either neutron into an occupled state, 1.e., Ann(r)

has no components with wave number p for which ,%(@ +p

<P_%h *.
2 Fn
Since %f Ls approximately one-half K, Aang) has no Fourier component

with wave mmber + k‘, and

f °r cos ke r A (r) =0 .
~ A~ Tante

We follow Gomes et al. in assuming that the nucleon-nucleon
potential consists of an attractive square well and a hard core. The
long-range attractive well has little effect on the wave function for

densities comparable to pnu ; the distortion functions A are due

cl
almost entirely‘to the hard core. We consider Lhe case where the core

radius,‘a, is much less than h[PFm]_l. The resulting low-deneity app-.
roximation should be ressonably accurate up to densities about equal to
nuclear density. In the low-denesity 1limit, one can moke the following
simplifications: first, we need only congider s-waves; second, we can

neglect the last term in Eq. (VIII.37) because the product AanE)AnnCE)
ig of second order in PFna/h5 third, in computing Anp(x) we can neglect
the leakage of the wave function inside the core as well as the changes
in the wave function's normalization caused by the distortion terms A.
One can then use the Bethe-Goldstone equation to find the Fourier com-~

ponent of Anp(g) that corresponds to the momentum k. In this way, one

finds that

]

i

[(Lma) (k®- k)71 xﬂ']z : (VIII.38)

ey ®

it
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The values of k and k' are determined by kinematics and the
exclusion principle. We found in Sec. VIII-B that the particles
involved in reactions (I.l) and (1.5) nuet be in & narrow band of
states at the top of thelr respective Fermi seas. Thus the'momeﬁtum
of each particle involved in & reaction must be nearly equal to the
Fermi momentum for that particle. The neutron Fermi momentum is
large compared to the proton and electron Fermi momenta; the neutrino
momentum, whiéh is of the order of kEVc, 1g completely negligible.
Hence the momentum.gg of the final neutron must be approximately equal
to the momentum in the initial state,rgl*'gﬁ- I0 we neglect Uhe momern-
ta of all particles except the neutrons, we find that the three neutron
momenta form an equilateral triangle with sides of length Pﬁh' Tt
follows that k ig equal to 3%(2h)~1 PFn and k' ig equal to (on)™* PFh.
Substituting these values of k and k' in Eq. (VIII.38) using FEq.(III.Le),

and choosing the core radius a to be 4 X 10** em, we find that

ity

1.0 (p

i

gy | ?

]

/p)é/3 . (VIII.?39)

nucl

5  Summary

The scattering model and the model based on the usual picture of
nuclear matter both predict that ’MAJB is of the order of unity near
nuclear density and that 'MA'E‘decfeases With‘increasing density. The
7 relatively emall difference between Eqs. (VIII.36) and (VIIL.39), and
the agreement of both equations with a dimensional analysis, indicates

that the value of the total matrix element is not critically semsitive
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- to the unCertainty in our knowledge of the strong internucleon force.

D. Related Reactions

1. The Inverse Reaction

We have calculated so far only the rate of neutrino energy loss
via reaction (I.1). At the' temperatures and densgitlies for which reac-
tions (I.l) and (I-5) are the dominant means of ensuring chemical
equilibfium in the n-e-p system, the rates of reactions (£.1) ana (I.5)
must be equal in order to preserve the equlilibrium. We shall now show
that the rates of neutrino energy. lLoss by the two reactlions are in tact
equal within the approximations we have used in calculating the rate of
reaction (Iml).

For reaction (I-l), Big. (VIII.G) provides an evaluation of
Espinsl(fl H|1)|®; this equation is accurate if the lepton momenta
are small compared to the neutron momenta. The expression for
zspinsl<f' H | 4i)l® for reaction (T.5) ig identical to Eq. (VITI.6) if
the lepton momenta are again neglected. The nucleon matrix elements
MA and MV tor reaction (I.5) are the complex conjugates of MA and MV
for reaction (I.1). Furthermore, one can easily show that Eq. (VIII.20)
for the phase—spacé factor P holds equally well for reactions (I.1) and
(I.5). Thus, Eq. (VIIT.T), which gives the neutrino luminosity in terms

of MV’ Mﬁ? and P, predicts the same rates of energy loss for the direct

and inverse reactions.
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2. Muon Production

Muons are present in s neutrbn star if the electron Fermi energy
ig grealter than the muon rest energy mup2§ muon neutrinog are then
‘produced by reactions (1.2) and (1.6). The rate of reactions (I.2)
and (I.6) can be computed by the method used for reactions (L.1) and
(I.5). The only difference in the rates of production of muon and
electron neutrinos results from the fact that the density of muon
states‘at the top of the muon Fermi sea differs from Lhe density of
electron gtates at the top of the electronFerml sea by a factor F,

e
where, for er greater than mpF s

¥=Pr, /P . | (VIII.LO0)

P = [1-n o/ EIE (VITT.H1)

. . . 2 .
"The ratio F is, of course, zero whenVJFe ig less than me . Using

Eqg. (III.MO) to estimate Wﬁe, we find that

=
#

4:/8 lf’. =
pue1/P) ] for  p>1.8p | (VIII.h2s)

[1 - 2.25 (p

and.

F=0 | for p <1.8p . (VIII.k2b)

nuecl

Ey, Numerical Expressions(
We now combine the results of the last few subsectlons to obtain
a numerical expression for energy loss by neutrino emission by reactions
(.1), (z.2), (T.5), and (i.6). We consider densities high enough to

ensure that the neutrons do not form a superfluid and that the nucleon
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gas is stable to the formation of "nuclei”.
| We substitute Egs. (VIII.23) and (VIII.39) into Eq. (VIII.9),
multiply by 2(1 + F) to take account of reactions (I.2), (I.5), and
(£.6), and multiply by Y to correct for proton superconductivity. We

then obtain

Ipﬂ

¥ /208 y(1 + ), (VIIT.53)

. OBO -3 -1
(1 erg cm - sec )(p/pnucl
where F is given in Eq. (VIII.22) and Y is plotted in Figure 1.

The luminoéity of a mass Mq of neutron-star matter with a uniform

density p 1s gliven by the expression

/p)l/3 % v(1 + F) , (VIII.Lk)

V

nn 38 s
L @ x 10°° erg sec ™) (MS/M@) (pnucl

where M® is the mass of the sun.

F. Comparigson with Previous Work
Several authors have previously calculated the rates of nucleon-
nucleon reactiong using the model of a normal Fermi gas. Chiu and

(15) first suggested that reactions (I.l) and (I-B) might

Salpeter
contribute importantly to the coollng of neutron gtars. They used

a dimensional analysis to obtain the expression

LSS = (2 x 10°° erg/sec) T,° (Eﬁh/SO MeV)—g'BE(MS/MtQ

for the rate of energy loss by neutrinog produced in reactions (1.1)

and (I.S). "The result given.by Chiu and Balpeter has the correct temp-
~ erature aepéndence, but it is typlcally two or three orders of magnitude
smaller than our best estimate (as given in Eq. (VIII.hL), if proton

superconductivity 1s neglected.
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(21)

Fingzi hag performed a detailed calculation of the rate of

reaction (I.1) at a dengity of 1.6 p Hig treatment of the matrix

nucl’
element differs from ours in several ways. First, he neglected the
effects of the exclusion principle on the relative motion of two collid-
ing nucleons.  Second, he treated the strong nucleon-uucleon interaction
as g first-order perturbation; the nucleon scattering matrix element was
assumed to be equal to a constant, which was determined by the require-
ment that the same first-order perturbation treatment yleld s value of

3 X 10_26 cm® for the scattering cross section for free nucleons. Third,
he treated the nucleons and leptons as scalar particles (instead of
Fermions) in calculating the amplitude associated with the weak vertex.
Finzi's treatment of the phase-space factor P differs from ours in two
ways: Flrst, a minor error in his integrations results in an extra
factor that is approximately equal to 2/3; second, he uses the free
masses m aﬁd w, instead of effective masses mn* and mp*'to describe the

dengity of single-particle states. Finzi gave the following expression

for the luminosity of 0.6 MO of neutron star matter at 1.6 Prel

LvF = (8.83 x 10°7 erg/sec) T,% .

Tﬁis‘result differs from the luminosity predicted by Eq. (VIII.4k) for
the same mass and density by about a factor of one-fifth (if we set F
equal to zero and neglect superconductivity). The disagreement between
the two-answers is small compared to the obvious uncertainties in either
approach. The closeness of the two resulls Tor lhe rate of energy loss
arises partly from the faét that the matrix element is, as we mentioned

in Sec. VITI-C, relatively insensitive to the details of the model used
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to calculate it.

Ellis(eg)

has reqently reported a similar calculation of the rate
of energy loss by reactions (.1) ana (1.5). Following Finzi, he
employed second-order perturbation theory to estimate the ftransition
amplitude, using the known nucleon-nucleon scattering data to determine
the coupling at thé strong vertex; he also neglected the effects of the
surrounding neutrons on the relative motion of the colliding nucleons.
Unlike Fingi, Ellis treated the nucleons and leptons as Fermions, and
he performed the calculation for a range of densities. Although he did
treat the nucleons relativistically, he dld nol conslder lhe protons to
be degenerate, despite the fact that EFp/kT is of the order of 50 for
most temperatures and densities expected in neutron sgtars. Ellis per-
formcd part of the integration over phase space by a Monte Carlo

‘techniques he gave the following formula, which accurately represents

his numerical results:

I E .

v = (6 X 10° erg/sec) (Ep /50 MeV) ™7 (M /M ) %7 .

The peculiar temperature dependence is due primarily to the fact that he
assumed that the protons were non-degenerate. The above relation does
not differ from that obtained by Finzi or by us by more than a factor of

ten in the mosgt interesting domains of temperature and density.
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IX. PION COOLING

A. General Discussion

In this section we calculate the rétes of several neutrind-
producing reactions that wiil ocecur 1f quasi;free pions are present
neutreon-star matter. ‘Quasi—free plons, 1f they are present at all in
a neutron star, must be highly degenerate; that is, nearly all the
pions must be in the lowest-enérgy single-particle state. The momentum
Rﬂ_and energy &%_of this lowest single-particle state are not known.
The reaction rate fortunately does not decpecnd genoitively on Ry and
we can assume Eﬂ‘is zero without making a serioug error. The energy
wﬂ can be written

W = Bﬂ_ +m_c s (1x.1)

‘where Bﬂ,, the plon binding energy, was defined in Sec. III.

Reactions (I.3), (I.L4), (I.7), and (I.8) should be the most impor-
tant reactions involving quasi-free pions. We shall first derive an
expression for the rate of energy loss by reaction (I.3), and then
modify the formula to take account of the other reactions.

The rate of energy loss per plon by reactiomﬂ(I.g) 1g glven by

Lss)‘= ern™t 0 [a®n a®ny’ @n, a'ng 8 8(E, - E,)
spins ©

By Kn,e™, 911 | (n,r7) +))° (zx.2)

- The notation used in Eq. (1X.2) ig similar to that used in Eq. (VIII.g):

the differentials d°ny, d°ny 7, dane, and dsng refer to the initial

neutron, the final neutron, the electron, and the antineutrino,
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resgpectively. The statistical factor S is identical to that defined in
Eg. (VITI.3c), except that it only includes factors for the two neutrons
and the electron (all pions are assumed to be in the lowest energy
state). The initial state vector |(n,T ) +) is an elgenstate of the
strong Hamiltonian; the incoming part of I(n,ﬂ’) +) correspénds to a
neutron with momentﬁm,gl and a pion with momentumwgﬂ, The final state
vector (11,63—,5)> is & product of momentum eigeﬁst&tes repreagcenting a
neutron (with momentum.g}ﬁ, aﬁ electron (with_momentumfge), and &
neutrino (with momentum ;QJ\—)).

We again find it convenient to separate the neufrino luminosity
into a dimensionless phase-space factor, a dimensionless matrix element,
and a constant factor. The matrix element 1g nearly constant over those
fegions of phase space where the staﬁistical factor S is non-negligible.
Thus we can remove Tthe matrix element from theiintegral and write the

neut rino luminosity in the form

\()e) =PM G (em)at At (IX.3a)

where
= (o) 71lR -9 [ 43 a_ 1 .8 3 _ 3 _ _
P=(2m) P (ne)® [ a'p a°p a°p, a°py O(E.- B) 6°(B- B) S E;
(IX.3b)

M2 67 ( ) =6 xﬂfg(gn-ﬁ)"g

X I Klme ) E | (am) &), (T.3)
sping

andtgi andlg% are the initial and final momenta, respectively.
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In the following sections, we estimate the values of P and Mg,
employing arguments that are analagous to those we have previously
used to calculate the nucleon~nucleon cooling rate. We shall see,
however, that our knoWledge of the relevant matrix elements is much
less acéurate.for pionic cooling than it is for nucleon-nucleon

cooling.

B. The Phase~3Zpace Factor

As in the case of the nucleon-nuclecon cooling, we describe the
density of available initial and final states by the phase-space fac-
tor P, which, for reaction (I.3), is defined in Eq. (IX.3b). It is
unlikely that quasi-free pions could occur at densities less than
nuclear denéity and it seems likely that the neutrons in a neutron
star do not have a gap in their spectrum for densities greater than
nuclear density. Hence we do not consider neutron superfluidity in
the calCulation of the rate of cooling by plon reactions. We exclude
the formation of "nuclei" for the same reason: We saw in Sec. IV-B
that such "nuclei" should not be stable at densities greater than
nuclear density.

1"

The integrand in hg. (IX.3b) is concentrated in the small "impor-
tant region" of phase space where the. energy of each particle is within
a Tew kT of its Fermi energy. dJust as in Sec. VIII-B, we neglect the

- contribution to the integrai P from certain regions far from the

"important region”; in particular, we consider only the parts of phase

space satisfying the following inequalities:
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' !
pitpgt P -P, SP SPy-pg-p trR, (IX.}a)

pr 7Py tp. (IX.k4Db)

The phase-space factor for reaction (I-3) can be evaluated by the
methods uged tQ calculate P for reaction (I.l). We use inequalities

(IX.L) to evaluate the angular integral A, where

A‘g f dﬂh‘f dQQ I dQe f dﬁﬁ/ 68<El+ P~ Pl/ -,ge~£5)- (IX~5)
The result is

A =321 (p1’ b, p) (x.6)

Substituting Eq. (IX.6) into Eqg. (IX.3b) and uging the energy

delta function to integrate over the neutrino momentum yields

o o Pm
/ 7/ f o .
P=D[ prdp [ pam’ [ p oap (B s, (IX.7a)
O O 6]
where
D=2"7 1% mﬂfg ¢t (IX.70)
E=E +W_ - E, ‘- LA (rx.7¢)

and P is defined such that EO is equal to zero when P, equals P

Ag in Sec. VILI-B, it is convenient to change variables: We define

* . S .
m (En), X1, X, and xz by Bgs. (VIII.18b) and (VIII.19a-c), respective-

1y. We then use the conditions of chemical equilibrium (Egs. (III.10))

to obtaln
) @ Y. ¥
& -5 p ¥ nox, e
P =D (kT)% J m (1) axg Imn (B, ) axs f dxsa
_yn -0 - Xl+ XE)

X (wﬂ - kT x5) (%34 %+ x3)° 8, (1x.8)
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.ere y, and y_ were defined in Eqs. (VIII.20b) and (VIII.2Oc). To

lowest order in kTVEFh we can set the effective masses equal to

their value at the neutron Fermi energy and neglect xg kT relative to

W _. Replacing the limits v and y by infinity causes errors of the

i _BEFh -8 ! n e

order of e and e s respectively; these errors can be neglected

since PE, and BEFé are both much greater than 100. We then obtain the

Fn

followlng expression for Lhe phase-space factor:

P =27 W (w fm®) (nm P T(T/n ), (D.9a)

where .
[0} [se] (e} > X.
I= f dxq j;dxg f dxa (x1+ Kot XS)B ﬁ [l + e 1] s
- -1t g i=1
(IX.9p)
= (4s7/5080) TF . | » (1X.9¢)

The phase-space factor is proportional to Iﬁ, as expected from the
heuristic argument in Sec. VII. The factor P for reaction (1.3) depends
on the density only through the effective mass mn* and the pion ground-
state energy uh. Referring to the results of Sec. V-B, we assume that
the neutron effective masgs ls 1.0 m - We also assume that the pion
binding ehergy Bﬂ— is small cdmpared to m_c°. Then the pion phase-space

i

‘factor can be convenlently expressed in the form

P=5.6x107°%m% - (1x.10)

C. Matrix HElement
It 1s much more difficult to estimate the matrix element for
reaction (I.3) than it was to determine the matrix element for reaction

(I.l), because the piong must be treated relativistically and it is thus
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~difficult to describe the plon-nucleon scattering by means of g poten-
tial. We use a dimensional argument to estimate the pion matrix
celements, using specific crude models for the interaction to indicate
which of the relevant lengths are in faét important in the matirix
element.
The mos?® obvioﬁs physical lengths involved in the matrix element
-1

M are the following: heW

s Blm )™, alm )™, n(R )7, he(Eg)T,

h(PFn)fl, and the range of the plon-nucleon potential. The range of
the pion-nucleon potential is of the order of the scale length XTV

The pion binding energy Bﬂ_ is probably not large compared to mﬁcgg

1
W
hC

and h(PF%)_l are thus also of the order of A_. If these physi-
cal lengths were the only ones important in M, one would conclude that
the dimensionless matrix element is of the order of unity.

However, there remain four relevant lengths that are not approxi-
mately equal to A _: nec Ea_l, ﬁ(mec)_l, ﬁ(PFn)_l, and h(mnc)—l. To
obtain some idea of the Importance of each of these lengths in the
matrix element M?, we calculated the matrix element using the models
indicated by the Feymman diagrams of Figure 2. In the first diagram,
the reaction is assumed to occur through decay of a pion, while the
pion is colliding‘with a neutron. This assumption provides some insight
becausge 1t enables one to separaté the contributiong from the strong and
weak vertices. In evaluating the contributions from diagrams (2b) and

(20) we used the simple pion-nucleon Hamiltonian(37)

HS Ly I¥s ¥y - @ (IX.11a)

where
g1k . (IX.11b)
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Diagrams of higher order in g than (2p) ana (2c) would, of course,
make significant contributions, because of the large value of g. We
- still use diagrams (2b) and (20), however, to indicate what lengths
are important |

We find that the energy EQ enters the problem only through Eei Eg.
Since Ee is much lafger than ED’ the length he Ev“l does not affect the
reaction rate appreciably.

The momentum and energy fransferred to the leptons do not depend
strongly on PFh’ and, at least for the simple models we counsidered, the
amplitudes at the strong vertices do not depend strongly on th either.
Thus the matrix element 1s not critically dependent on h(PFn)_l.

The momentum and energy transferred to the leptons do not depend
on m s the gtrong-vertex contribution and the energy denominators are
thus largely independent of h(mec)"l. For diagrams that lnvolve pion
decay, as (2a) and (2b) do, the amplitude at the‘weak vertex is propor-
tional to m, - The same factor occurs in the rate of the electron~decay
of‘the free pion. The contributions to M ° from diagrams like those
in Figs. (2a) and (2b) are therefore reduced by the small factor
ﬁ%/mﬂ)g. The neutron-decay dlagram (2c) is not inhiblited by such a
factor, and the cbntribution from diagram (2c) is consequently much
larger than the contributions from the diagrams of Figs. (2&) and. (Zb).
The contributions from the dominant diagrams that do not involve pion
decay are eésentially independént of m,» and the total reaction rate
" thus doce not véry gignificantly with (h/mec).

A1l of the lengths that are important in determining M ® are thus

of the order of Xﬂ, except for one length, h/mnc, which differs from
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’Xﬂ by a factor of mﬂ/mn- The effect of the nucleon mass on the matrix
element 1s subtle; the masses of the hadrons and the coupling constants
characterizing their interactions are connected in a complicated way.
The ratio (Kﬂ/Xn), or mn/mﬂj is typical of the dimensionlegs quantities
arising in strong-interaction calculations. Our dimenslonal reasoning
can only suggest that M should be of the order of unity, within perhaps
a couple of Tactors of mn/mﬂ.

Explicit calculation of the dimensionless matrix element using the
diagram of Fig. 2c implies that M ? is of the order of ten, and we shall
use that value in numerical expressions, realizing that our gucecs for

M ® could easlly be wrong by at least an order of magnitude.

D. Related Reactions

Muons are expectbed to be present in neutron stars that contain
piong if &%_is greater than mMcg (cF. Egs. (III.6), (III.lO), and (IV.1)).
When muons afe present, reaction ( I.h) contributes to the rate of neutri-
no production. The phase space factor forzreaction (T.4) is the same as
for reaction (I.3) if, as expected, w_ - muc2 is much larger than kT.
The matrix element M ig, on the other hand, not the same for decays pro-
ducing‘muons and electrons. In Sec. IX-C we found that diagrams such as
Fig. 2c that involve the decay of a neutron into a proton, electron, and
antineutrino were much more important than disgrams such as Figs. 2a and
ob that involve the decay of a virtual T into an e and a Ge' However,
the pion¥deéay processes that are inhibited by a factor of (me/mﬂ)g in
the case of decay into a e and Qe are only inhibited by a factor of
(mﬂ/mﬂja in the cuse of decay iulo a W and QM. Thus diagrams such as

Figs. 2a and 2b may contribute importantly to the rate of production
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of muon neutriﬁos. The rates of production of electron and’muon
neutrinos may nevertheless be of the same order of magnitude, and,
lacking an accurate estimate of either rate, we shall assume that
the rates of energy 1dss by muon and electron neutrinos are equal.
As in the case of the nucleon-nucleon reactions, the rate of
energy loss by the inverse processes (reactions (I.7) and (I.8) can
be proved equal to the rate of energy loss by the forward processes

(reactions (I.3) and (I.Mj).

E. Numerical Expressions
The rate of enefgy loss by neutrinos produced in plon reactions
can be obtained by substituting valuesg of M® and P in Eg. (IX.3a).
In particular, wc usc Eg. (IX.10) for the phage epace factor and cget
M equal to ten. Multiplying by four to account for the muonic decay
(reaction (I.4)) and the inverse processes (reaction (I.7) and (I.8),
we find the expression

Ign A~ 1071 erg/sec (IX.12)

for the rate of energy loss per pion. The neutrino luminosity of a

WA 5 MS of stellar matter is then given by
T 16 ‘m 6
Lv ~ (10 erg/sec) Ty (nﬂ/nb)(Ms/MG) ; (1x.13)

where nﬂ/nb,is the ratio of the number density of quasi~free pions to
the number'density of baryons. HEquations (IX.12) and (IX.lB) are prob-
ably accurate to within g factor of something like one-hundred. The

result given in Eq. (IX.13) is about twice the rate indicated by the
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heuristic discusslon in Sec. VII. We note that the energy loss by the
pionic procegses ig of the order of 107 T, ° times the energy loss by
the nucleon-nucleon processes 1T a significant number of quasi-free

pions are present.
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X. COOLING TIMES AND OBSERVABILITY

A. Specific Heat of a Neutron Star

Consider a systém congisting of a mass Ms of neutron~star
matter with uniform density p and uniform temperature T. The
contribution of the neutron gas to the specific heat of the sys-

tem is given approximately by

8 }
eut ~ (10" erg/10” k) Ty (0/0 puen) 2/3

x (MS/MO) et , (X.1a)

where Ib is the temperature in units of 109 QK, and Qneut repre-
sente the change that superfluidity causes in the specific heat

- of the neutron gas. The factof Qneut 1s equal to unity above

the critical temperature for superfluidity. A large superfluid
gap in the‘Spectrum, of the gas greatly reduces the specific heat,
and Qneut goes exponentially to zero as the temperature decreases
below TC , the critical temperature for superfluidity. Bardeen
gﬁvg;.(28) have shown that the modification in the specific heat
caused by superconductivity is represented reasonably accurately
for most T < Tc‘by

-~1.bk T /T

Q ~ 8.5 (Tc/m) e (X.1b)

neut

where

kT, = 0.57 eon(T=o) . (X.1ce)

If "nuclei" are not present in the neutron-star matter,

the proton specific heat is given approximately by



elsH

neut’’

(m % /m ¥ (Pp/Pry) (. 0i/Qens)s (X-2)

prot’w Cneut

where Qpr is the correction caused by proton superconductivity.

ot ,
Assuming that mp*/mﬂ* is about 0.6 and using Egs. (III.L) to

estimate (PFP/PFH)? we find that

C

/Q

neut

(q ) (x.3)

~ 0.1
prot 0 Cneut prot
near nuclear density.

Similarly, the electron specific heat is given approximately

by

C ) (X.h)

(PFe/mn*c) (PFe/PFh) (l/Qneut

Ft:O'OlCneut (l/Qheut) (x.5)

elect Rﬁcneut

near nuclear denslly. The eleclrons in a neutron star should
not be superconducting; consequently the electron speéific heat
would be dominant 1f both the neutron and proton energy gaps
were large compared to kT.

The muon specific heat is always small compared to the

electron specific heat; it is given by

Comon ™ (PFM /PFe) (mfic/PFe) Celect’ (X'Q)
Pions would not contribute significantly to the specific
heat of a star even if a large number of T 's were present.

Since the degeneracy temperature for a pion gas is given roughly
by

v~ (x10%) (/a3 o/ V3, (x)

deg nucl
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pions are highly degenerate in a neutron star if they are present
in significant numbers., If there is no gap in the plon excitation
gspectrum, the pion specific heat is proportional to (T/Tdeg)3/2
and ig small compared to the electron Specific heat for temperatures
lesg than 109 %K. Any gap in the pion spectrum would reduce the
pion specific heat still further.

Thermal’excitations such as sound waves, plasma waves, spin
waves, and isospin waves contribute negligibly to the specific

heat because the density of such thermal excitations goes rapildly

to zero ag the temperature goes to zero.

B. Sample Cooling Rates

We consider neutron-star matter cooling by the following
processes: radiation of photons from the surface, the plasma-
neutrino proccos ( Y SRRV ), the nucleon-nucleon processes
(reactions (I1.1), (I.2), (I.5), and (I.6)), the neutrino-brems-
strahlung process (e + Z—~e” + Z +V + V), and the pion-nucleon
reactions (reactions (I.3), (1.4), (1.7), and (I.8)).

We assume that the star radiates photons from its surface like
a black body; the detailed atmospheric calculations of Orszag(38)

indicate that the black-body assumption is a reasonable overall

approximation. The photon luminosity is then given by
- 36 -1 i 2
Ly (7 x 107 erg sec ) TeY Ry s (x.8)

where T is the effective surface temperature in units ol lO7 g

Toq

is the radius of the star in units of 10 km.

5

and RlO

Emission of neutrinos by the plasma process takés place primarily
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(15)

close to the surface of the star. Chiu and Salpeter have
used the results of neutron-star model calculations to arrive
at the following approximate expression for the neutrino lumi-

nogity by the plasma process:

DLy 1036 -1 b 10
Ly, ~ (2 x 10 erg/sec)(Ms/M@) Bl Ty - (X.9)

We consider the nucleon-nucleon reaction at densities high
enough that the neutrons do not form a superfluid. The rate is
then

nn 38

3 -1
L, ~ (6 x 10~ erg sec ) (MS/MQ)

/ 0)t/3 158 Y (1 +F),  (VITI.h)

£ ( pnucl

where Y represents the correction for proton superconductivity
and (1 + F) is the factor allowing for the presence of muons.

(25)

Ruderman has calculated the rate of the neutrino brems-

strahlung reaction,

T+ T FZF VY , (X.10)
where Z represents a "nucleus" of charge Z. Reaction (X.10)
occurs only at densities low enough that the "nuclei" are stable.
Ruderman's expression for the rate of reaction (X.lO) implies

that a mass MS of uniform neutron-star matter would have a neut-

rino luminosity given by

L, ’: (2 x 1057 erg sec-l) (MS/M@)

x 77 (nz/nb) I§6 : (X.11)

where o, is the number density of nuclei and n, is the number
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density of baryons.
Finally, the neutrino luminosity caused by the pion-nucleon

reactions is written .

Ly~ (10% erg sec™) (M fuy) (n /o) TS (x12)

The rate of change of the interior temperature can easily

be computed (if the ratioc of the interior to surface temperature

is known) using the relation

aT pl nn Ze mn
L. - Lv - L - L - Ly

Cneut at 77 Ty v v s (x.13)

where we have assumed that the neutrons make the dominant con-
tribution to the specific heat.

We now reproduce the equations of cooling for a few simple
cases. Neglecting neutron superfluidity, the effects of "nucleil"
and pilons, and thc plaéma—noutrino process, we find that the timc

required for a star's interior to cool from T(i) to T(f) is given

by
At ma ol {[(x Tg(f):l -2 [a T9(i)] -2
+ Db [tan"l Xo - tan™t X, 1} s (X.1ha)
where ‘
a s (1900 yr) (MS/M@)1/3 s (X.1hp)

b~ 8.5 (p/ o )Y L)Ye, (x1ke)

x, = bExT9(iﬂg

(X.1ka)

N

and
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x, = b [o T9(f)] e (X.1ke)

We have assumed that the temperature parameter w(T), defined by

1072 1/m (X.152)

o ()

or

il

%(T) = Ty/T, ;o (X.15b)

is approximately constant for T between T(i) and T(f).

Tt is cléar from Eq. (X.1k) that the cooling rate depends
strongly on the parameter a (T) , which must be determined
from theoretical models of neutrons stars. We wish to stress that
o isg, in fact, the only quantity derived from neutron-star models
that enters sensitively into the theoretical predictions of the
cooling rates. It is primarily through o that the models affect
the question of the observability of the surface radiation from
neutron stars, and future model calculations ghould therefore
éttempt to establish the uncertainty in o due, for example,
to uncertainties in the equation of state.

If the neutrino-bremsstrahlung process is dominant, the fime

required for the interior to cool from T (i) to Tb(f) is

9

p(z) = (b ) 22 (n/n) (p/p )73

nucl
e =B
S RO X . (x.16)
A‘similar expression
Me(pions) = (8 x 2077 yx) (n/n_) (o /p )%

x [?9(f)”4 - Té(i)'“] (X.17)
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gives the ceooling rate when the pion-nucleon processes are dominant.
Figure 3 shows the results of cooling-time calculations
performed for a typical neutron star with average density P puel

and mass M The "nn + v ", "Ze", and "mn" curves are based

o
on FEgs. (X.14), (X.16), and (X.17), respectively. The values of

Ot used are listed in Table I. We set Z equal to ten in Eq. (X.16)
and adopted the value 0.001 for nZ/nb, in agreement with Eq. (III.L).

The cooling times with the plasma-neutrino and photon processes

*
operating together were taken from the results plotted by Tsuruta.

C. Minimum Cooling Rate

In this‘subseotion we establish a lower limit on the cooling
rate of a neutron star,va limit that is valid despite the ob-
‘vious theoretical uncertainties and despite the variation of the
cooling rate with stellar mass. With the present uncertainty
about emission of neutrinos from the dense matter deep in the
interior of a neutron star, one can best establish a minimum
cooling rate by considering primarily processes that involve the
relatively low-density material near the star's surface. TWO
such processes are the plasma-neutrino resction (y—= v +*;)

and surface emission of thermal photons. The rates of these two

* In her thesis, Miss Tsuruta (Ref. 6) used the general expressions
for the rate of the plasma-neutrino process that are given by J. B.
Adams, M. A. Ruderman, and C H. Woo, Phys. Rev. 129, 1383(1965).
Minor errors in these general expressions have recently been pointed
out by M. H. Zaidi, Nuovo Cimento (to be published). The correspon-
ding corrections have been made in the "plagma + Y" curve in Fig. 3.
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processes have been considered in Tsuruta's detailed neutron-
star models, and the cooling rate she obtained for one mbdel
is plotted in Fig. 3.

The "plasma + y" curve in Fig. 3 is a reasonable lower limit
for the cooling rate of a neutron star. The reasons for choosing
the plotted "plasma + y" rate as a lower limit are summarized in
the following three paragraphs:

(1) Most néutrinos emitted by the plasma-neutrino process(lB)
originate far out in a neutron star, where the density is of the
order of lolo or lOll gm/cc. The photons originate from matter of
even lower density. The rate of emission of photons and plasma-
produced neutrinos thus depends on the properties of very high-
density matter only through their dependence on the mass-radius
relation of the star. The rate of energy loss by the plasma and
photon processes is thus independent of the details of the excita-
tion spectrum of matter at densities near — and is not
strongly dependent on the equation of state assumed at high densi-
ties.

(2)  Superfluidity and the existence of "nuclei” in the interior
of a neutron star tend to reduce the specific heat of the star.
The cooling rates plotted in Fig. 3 were calculated under the
assumptioﬁ that the nucleonstform a normal Ferml f£luid. Hence

the coéling rates due to the plasma and photon proéesses would

be increased, ratler than decreased, by gaps in the energy

ospcetrum of dense neutron-star matter.
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(3) The cooling rates do depend somewhat on the mass (or, alter-
natively, the central density) chosen for the stellar model; the
cooling rates for the plésma and photon processes vary inversely
with the central density. The model corresponding to the curve

plotted in Fig. 3 had a central density of about 1.9 p The

nuel’
plasma and photon processes would proceed more rapidly in a star
with lower central density. ' In a star with central density greater

than 1.9 P the pion-nucleon and/or nucleon-nucleon procegsesg

nucl’
should proceed rapidly because "nuclei"” should not exist at such
high densities, and the neutron energy spectrum should not have

a gap in it. ‘The nucleon~-nucleon processes would he faster than

. the plasma-neutrino processg if the proton gap is less than about
1 Mev, and the energy-gap calculations described in Sec. IV-C
indicate that the proton gap is. in fact, considerably less than
1 Mev. We thus conclude that the cooling rates of stars with

central densities greater than 1.9 F)n should be greater than

ucl
the rate indicated by the "plasma + Y'" curve in Fig. 3, despite
the fact that the rate of cooling by the plasma and photon
processes alone‘woulé, for such dense stars, be slightly lower
than the plotted rate.

We conclude that the "plasma +Y" curve in Fig. 3 1s a lower

limit for the cooling rate of a neutron star.

D. Cooling Times and Observability

The probability of ever observing a neutron star by detecting

radiation from its surface depends strongly on the rates at which
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. such stars cool; A star that contains quasi-free pions, or one in which
ordinary neutron-decay can take place (see Appendix), would emit detect-
able efays Tor no more than a few days, and the probability of observing
it would be small. A star that cools only by the nucleon-nucleon and
photon processes would be detectable for a longer time.

We now consider the flux of photons that would be produced‘at a
digtance r by a neutron star with effectlve temperature Te- The flux

% of photons with wavelengths less than Xm is given approximstely by

1 RlO ¢ T 2 -X
3 ~ - —_— (5x"+x+1)e™, (X.132)
2.5 em® sec kpc 3 X 10° °x
where Ry is the stellar radius in units of 10 km, v, is the distance

kpe

to the star in kiloparsecs (l kpe a2 3.08 X lOglcm), and x is defined as

follows:
x = 4.8 (10 R/xm) (3 x 10° OK/E;) . (x.13b)

Approximately ten X-ray sources have been identified by Glacconi
1.09) (10),(11) (12)

et al., Bowyer et al., and Clark et al. . These sources

~are concentrated near the galactic plane, and about half of them are

located in the direction of the galactic center. The weakest source

(11)

produced g measured flux of 0.7 cm ~sec ©,

detected by Bowyer et al.
and, because of absorption in the earth's atmosphere and in the counter
iteelf, the observed X-rays must have been concentrated in the wavelength
range from 1.5 R to 8 K; since the sun is approximately 8 kiloparsecs
from theAcenterVof the galaxy, we conclude from Bg. (X.13)that the

effective temperature of an observed source located at the galactic

center must bc greater Tthan 2 X 107 °K, if the source ig no larger than
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a neutron star. Comparison with the "plasma + Y" curve in Fig. 3
indicates that a neutron star with a temperature of 2 X 107 °K
would have to be less than a week old. The X£-ray sources in the
direction of the galactic center have beeh oObserved several times
in the last few years,(g)’(ll)’(lg) and the flux from these sources
has not changed, wiﬁhin the observational uncertsinties (about a

factor of two or thr@e). Hence we conclude that the sources in the

direction of the galactic center are not neutron stars.
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APPENDTX

We consider here a number of obvious reactions and classes of
reactions, indicating the densities at which some of them may be impor-
tant, and showing that the rest of them are always slower than reactions

(I.1)-(I.8) in neutron-star matter.

1. Ordinary Neutron Decay

At chemical equilibrium, momentum and energy conservation imply that

n—7p +*te + V (A.1a)
proceeds at an extremely slow rate unless

< :
Py PFp P (A.1b)

Equations (ITII.4) make it clear that inequality (A.lb) cannot be satis-
fied at reasonable densities in the free-particle approximation. But

strong interactions can raise P, and P - gignificantly above their free-

Fp F

particle values, because the guantity Bn - Bp in Eg. (III.3) is positive

and can be comparable to B One cannot, with much confidence, calcu-

o
late binding energies at densities much greater than{DHucl, but rough

estimates of B and B, indicate that inequality (A.1b) may be satisfied

for densities greater than about 30 . If inequality (A.1b) is satis-

cel’

fied, the neutrino luminosity due to reaction (A.la) and its inverse is

Lﬁ ~ (I x 10%*® ergmsec-l)(Ms/MCQ(p /) Tg® . (A.le)

nucl
Thus neutron-star matter satisfying inequality (A.1b) would cool very

rapidly--at about the rate indicated by the "n" curve in Fig. 3.
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2. kxtra Particles

Reactions that involve large numbers of Fermions are slow because
only a small fraction (of the order of kT/EFi) of the particles of a
given species 1 are near enough to their Fermi level to scatter into

unoccupied stategs. Tor example, the reaction
n+nt+tn-—+=n+nt+tpte +V (4.2)

is slower than reaction (I.1) by a factor of the order of (kIVEFn)a.

3. Pogitron Reactions

A reaction that, like
.+. -~
e tnton=->sn+p+V | (A.3a)

involves an incident positron, produces Ffew neutrinos because the con-~
centration of positrons is proportional to exp ( - Eﬁb/kT ) . Positron-

producing reactione like
+ -
n+p—+n+nte +V (A.3Db)

are slowed by the same factor of exp ( - Eﬁb/kT ) » because the number of
" neutron-proton pairs with enough energy to produce two neutrons in unoc-

cupied states is proportional to exp ( - Eﬁb/kT ) .

L. Regetiong Involving Sound Waves

Several types of sound waves may exist in nuclear matter or low-
temperature neutron-star matter: density waves, spin waves, and isospin
0), (k1 o
w:-“mres(Sg)’(LL ),(hv). The number density of charge-carrying isospin

waves 1s extremely small because excitation.of such a wave redquires an

energy of the order of EEh' The other types of sound mentioned above
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have dispersion relations of the form
w=kv * (a.La)

for wave numbers kK small compared to h_lyPF“. The velocity'v‘is unsually

comparable to the velocity of a neutron at the Ferml level.

Iet € represent a sound wave with dispersion relation (A.ka)

»

The reaction E =V + Y (A.Lb)

could not proceed because of conservation of momentum and energy,
because v must be less than the speed of light.
A reaction of the form

n+g-—»n-+v-+ v (A.Mc)
ié allowed by conservation of enérgy and momentum, but it would proceed
at a very slow rate because (l) the number density of thermal sound wawves,
which is proportional to (kT)®, is small at Low temperatures, (2) the
phagse gpace availlable to the neutrinos is small (m (kT)a), (3) 8 small
Traction (OC kT) of the neutron-states are near enough to the top of the
~Termi sea to be involved in the reaction, and (4) the coupling would bc
indirect and would necessarily involve a factor of & because an electron-
positron pair would have to be formed. Reaction (A-&c) would be at least
slx or eight orders of magnitude slower than reaction (r.1).

A reaction of the form o
) E4+n=—+rpn+te + vV (A.Hd)

could only consérve momentum and energy if the sound wave had an energy

comparable to the neutron Fermi energy; thus the rate would be propor-

—QEFn/kT

tional to an extremely small quantity e , where { is of the order

of unity.
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We conclude that reactions involving thermal sound waves are not

important.

5. Plasma Vibrations

Photons propagating through neutron-star matbter interact with the
charged particles 1n the medium. Creation of one of these quasi-free

photons (usually called “plasmons") requires an energy greater than h&g

where Ug is the plasma frequency in the medium(ul). Consequently, the
rate of a reaction such as

~hw /K
which involves one external plasmon, is proportional to e . The

plasma frequency 1ls of the order of 5 MeV at nuclear density, and the
rate of reaction (A.B) lg small in>the interior of a neutron star. Very
near the surface of the star, reaction (A.S) does contribute significant-~
15, (15)

- The cooling rate of a star emititing neutrinos only by reaction

(A.5) is shown in Fig. 3.

6. Conversion of Muons to Electrons

Reacllons lnvolving more than one neubtrino are generally slow because
of the small amount of phase space avallable to such processesg. The
amount of phase space available to a neutrino with energy less than kT is

proportional to (kT)B. Congequently, the rate of the reaction
p+u —pte + De LT (2.6)

~is smaller than the rate of reaction (I.l) by a factor of the order of
. ,

(kT/EFn) .
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T+ Neutrino Bremsstrahlung

The rate of the reaction

e +p—>e +pt+VEVY (a.72)

is, like the rate of reaétion (I.l), proportional to T. The rate of

reaction (A.7a) also containg a factor of ag, however, which causes it

to be smaller than the rate of reaction (I.l) by about a factor of 104,
At densities low eﬁough that a lattice of "nuclei” can form, the

"nuclei" can transfer momentum to the electrons in the process
e +g—>e +tygt+tv+V . (A.7b)

Ruderman's expression for the rate of reaction (A.Tb) is given in Eq.
(X.11). The rate is proportional to (KT)® because the "nucleus" in
reaction (A.Tb),‘being'bound in a laftice, does not contribute any
factors of (kT) to the reaction rate. Consequently, the reaction (A.Tb)

. . 1 Py .
is important when Tnuclci” arc stable.

8. Pionic Reactions

Turning to reactions Involving quasi-free pions, we can use some of
fhe arguments presented in the last few paragraphs to show that the
following types of pion reactlons are slower Than reactions (1.3), (I.h),
(T.7), and (I.8): +the free decay of the pion (M — W + QH), reactions
involving large numbers of Fermions, positron processes, and plonic
reactions involving more than one neutrino.

The reaction

Mo+ =Tk QM , (A.8a)

however, might be faster than reactions (I.3), (I.k), (I.7), and (I.8)
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- if the lowest quasi-free pion state hag a momentum greater than about
% PFMS the momentum of the lowest pion-state is completely unknown.

Similarly, the reactions

T o+ Z—u +Z+\—)H~ (A.8b)

and/or ~ _ N
ok Zmel hZt Y (A.8¢)

would be extremely fast in the unlikely event that quasi-free pions and
"nuclei" were both present simultaneously in the same neutron-star
matier.

The question of whether reactions (A.8) could proceed faster than
reactionsg (I.}), (I.M), (I.T), and (1.8) is not particularly important,
because reactions (I.3), (T.4), (I.7), and (I.8) alone would be suffi-
éient to cause & neutron star to cool fast enough to make the star

nearly lmposgible to observe by surface radiation.
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FIGURE CAPTLONS

RATES OF NUCLEAR REACTIONS IN WHITE-DWARF STARS

Central temperatures and densities of various types of stars.
The solid-state approach to nuclear reactions applies to Reglon
I on the figure. In Region IL, most nuclear motion is vibra-

tidnal, but the nuclei most likely to react have enough energy

to break through the lattice. In Regionsg IIT and IV, the nuclei

move like atoms in a gas. In Region III, the electrons are deg-

enerate, while in Begion IV they are nondegenerate.

Predictions of proton lifetimes at 10° gm/cc. The lifetimes
predicted by the method of Salpeter are compared to those com-
puted by the solid-state method using oscillator freguencies
obtained by analyzing lthe dynamlics of the lallice. The dotted
line indicates a reagonable interpolation between the two

formulae.

Predictions of the lifetimes of protons and 0*® nuclei. The
lifetimes computed uging oscillator frequencies based on an
analysis of lattice dynemics are compared with the lifetimes
computed assuming a rigld lattice. Proton lifetimes calculated
by Wildhack and carbon lifetimes calculated by the method of

(ameron are also shown.
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FIGURE CAPTTONS

THE COOLING OF NEUTRON STARS

Fig. 1. The proton-superconductivity correction factor for the rate of
the ﬁucleon~nucleon reactions. The logarithm of the correctlion

factor ig plotted against the ratio eop/kT.

Fig. 2. Several Feymman disgrams for the reaction n + 7 —n' +e + 9 .
o

Fig. 3. Cooling times calculated for g typlcal neutron star. The curves
marked "m" and "Ze" give the cooling times for a neutron star
emitting neutrinos by the pion—nucleon and neutrino-bremsgstrahlung
processes, respectively. The "Y' -curve represents a star cooling
just by surface photon emission, while the "nn + y" and "plasma
+ oyt curves represent stars emitting neutrinos by the nucleon-
nucleon processes and the plasma neutrino process, respectively,
as well as surface photons. All curves refer to a star of about

one solar masgs with average density pnucl'
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TABIE TI.

. Témperature parameter a(= 107 T/Te). The values of O were obtained by

interpolation of a table given by Teuruta.

Eé? o
2.0 1.92
1.0 1.65
0.8 1.61
0.6 1.59
0.4 1.53
0.3 1.48
0.2 1.39
0.1 1.10

a)

'S. Tsuruta, Ph.D. thesis, Columbia University (1964) (unpublished),

p. 322.
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