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ABSTRACT

This thesis presents the results of measurements of the veloci-
ties of edge and mixed dislocations in aluminum as a function of
temperature and applied shear stress. All tests were conducted on
99,999% purity aluminum single crystals. Dislocation velocities were
determined by observing the positions of dislocations by the Berg-
Barrett X-ray technique before and after applying a stress pulse.
Torsion stress pulses of microsecond d;ration were applied by propa-
gating torsional waves along the axes of cylindrical crystals. Re-
solved shear stress up to 16 X 106 dynes/cm2 were applied at tempera-
tures from -150°C to 70°C. Measured dislocation velocities ranged
from 10 to 2750 cm/sec. The velocities measured are believed to be
characteristic of single straight dislocations moving through essential-
ly perfect crystals, where the velocity is not significantly influenced
by dislocation curvature, impurities or dislocation-dislocation inter-
actions.

The results of this study indicate that the velocity of edge and
mixed dislocations is linearly proportional to the applied resolved
shear stress in the temperature range studied. Dislocation velocity
increases as temperature is.decreased. These results are compared to
the predictions of theories which treat the interaction between moving
dislocations and the lattice (phonon interactions). The theoreti-

cally predicted variation of dislocation velocity with temperature and
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stress agrees fairly well with the experimental results, but the pre-
dicted velocities are about six times less than the experimental

velocities. Possible reasons for this discrepancy are discussed.
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"I. INTRODUCTION

Dislocation dynamics attempts to predict the plastic deformation
behavior of crystals by considering how dislocations move, multiply,
and interact with other dislocations or other barriers to their motion.

The basic equation governing the plastic behavior of crystals is
y = p_bv 1
7 = p bV (1]

where 7 is the plastic shear gtrain rate, P is the total length of
moving dislocation line per unit volﬁme hereafter called the density
of mobile dislocations, b 1is the.Burgers vector of the dislocations,
and v is the average velocity of the mobile dislocations. Dislocation
dynamics has been successful in explaining a number of plastic flow
phenomena, for example Johnston and Gilman (1), who performed the first
measurements of dislocation velocity, successfully predicted yield
points in lithium floride. Transient creep (2), high velocity impact
phenomena (3), and yield points and delay times in single crystals (&)
have also been successfully explained using dislocation dynamics,

As shown'by equation [1] the average velocity of mobile dis~
locations is an important parameter in describing the plastic flow of
crystals. The average velocity of mobile dislocations is a function
of many factors such as applied stress, temperature, intermal stresses,
impurities, etc. The starting point for understanding the average
dislocation velocity is an understanding of how the velocity bf individ-

uval dislocations varies in pure, perfect crystals as a function of



,tress and temperature. Once this is understood, attempts can be made
to account for other factors such as impurities. In this thesis the
velocity of dislocations in high purigy, essentially perfect, single
crystals of aluminum is studied.

Dislocation velocity has been measured by various direct and
indirect methods. In the direct methods, individual dislocation
positions are observed. In the indirect methods, dislocation velocity
is deduced from measurements of the macroscopic behavior of a crystal
using some assumed dislocation model. The indirect tests are in
general easier to perform, but the results are uncertain because of
possible errors in the assumed models. For example, internal friction
measurements such as those for aluminum (5) provide data on the ratio
pu/B, where L is the density of mobile dislocations and B is a drag
coefficient defined as the ratio of the applied force on a dislocation
to its velocity. The density of mobile dislocations must be assumed
in order to obtain a value for the drag coefficient. Strain rate tests
are also difficult to interpret. In strain rate tests a step change
in strain rate is imposed on a specimen and the instantaneous change
in stress is measured. The éhange in strain rate aé a fﬁnction of the
change in stress is.then related to the variation in the velocity of
dislocations as a function of stress by means of equation {1]. As dis-
cussed by Guard (6), changes in the density of mobile dislocations as
strain rate is changed can confuse thé interpretation of results.

Direct dislocation velocity measurements have been performed on



a variety of materials using etch pit (1, 7-13) and X-ray techniques
(8, 14, 15). 1In these measurements, dislocation position was determined
before and after applying a stress pulse, and the velocity was deduced
from the measured dislocation displacement and known duration of the
stress pulse. These measurements have shown that dislocation velocity
in covalently or ionically bonded materials and in metals with a BGCC
crystal structure is much less than one ecm/sec at their flow stress.
Also, dislocation velocity in these materials increases rapidly as
temperature.is increased. .The low valués and strong temperature
dependence of the dislocation velocity indicate that the dislocation
velocity is controlled by interactions with barriers which require
thermal activation to be orver'come, such as Peierls barriers (lattice
forces in the perfect crystal) or lattice distortion due to impurities.
Direct dislocation velocity measurements have recently been
performed for dislocationé moving on close packed planes in HCP and
FCC metals, high purity zinc (15, 16) and copper (10-12), and nickel
with 80 ppm of carbon (9). These measurements iIndicate that dis-
location velocity at the flow stress is much larger than one cm/sec
in high purity zinc and copper, that the dislocation velocity is
nearly linearly proportional to applied stress, and thét dislocation
velocity either decreases slowly with increases in temperature (16)
or remains constant (11). This weak dependence on temperature is
interpreted as meaning thét thermal activation does not control dis-

location motion on close packed planes in high purity FCC and HCP



metals, but that some viscous damping mechanisms are involved. Various
damping mechanisms have been proposed and will be discussed later in
this thesis. The results obtained for nickel with 80 ppm dissolved
carbon (9) indicate low dislocation velocity and strong temperature
dependenée of dislocation velocity. This behavior, typical of that

for thermal activation controlled disiocation velocity, is attributed
to the 80 ppm carbon dissolved in the nickel.

The strength of the viscous damping mechanisms controlling the
velocity of dislocations oﬁ close packed planes of HCP and FCC metals
may depend on the dislocation stacking fault width. Copper and
aluminum are both FCC metals, but copper has a low stacking fault
energy and thus a large dislocation stacking fault width, while alumi-
num has a high stacking fault energy and a low stacking fault width (17).
Tests are underway (18) to determine the temperature dependence of dis-
location velocity in copper. One of the purposes of this investigation
of dislocation Velécity in aluminum was to determine the stress and
temperature dependence of dislocation velocity in a FCC metal with
high stacking fault energy to provide a comparison with the behavior

of dislocations in a material with low stacking fault energy.



II. TEST SPECIMEN PREPARATION

The test specimens used were single crystals of 99.999% pure
aluminum>machined into small right circular cylinders with the [111]
direction along the cylindrical axis as shown in Figure 1. Test speci-
mens were prepared by growing single crystals from which five or more
specimens were machined. The machined specimens were then prepared
for use by a cleaning and annegling treatment. A detailed description
of the techniques used in test specimen preparation is given in the
sections which follow.

Crystal Growth

Single aluminum crystals were grown using 99.9997 pure aluminum
which was supplied by Alfa Crystals, Division of Alfa Inorganics,
Beverly, Massachusetts, by United Mineral and Chemical Corporation,
New York, New York, and by Wilshire Chemical Company, Gardeﬁa, Cali-
fornia. GSatisfactory crystals were grown in high purity graphite molds
under high vacuums (about'].O-5 mm Hg) using a modified Bridgeman
technique and a furnace similar to that described by Young (19).

Grade AUC graphite supplied by the Natioﬁal Carbon Company, Division
of Union Carbide, New York,‘NeW York was used. The mold was coated
with 'dag' dispersiomn No. 154 (colloidal graphite in alcohol) supplied
by Acheson Colloids Company, Port Huron, Michigan, and baked at iSOOC
in air before installing the aluminum chargé in order t6 prevent

bonding of the aluminum to the mold.
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A satisfactory crystal was also grown by a soft mold technique
similar té that described by Noggle (20), except that a helium atmos-
phere was used rather than high vacuum. It was necessary to bake the
aluminum charge and alumina mold powder at 600°C under mechanical
pump vacuum before growing the crystal. If the prior bake was not
done, bubbles formed in‘the-aluminum, apparently due to hydrogen picked
up from water vapor attached to the alumina powder.

The best crystals produced in the graphite molds had subgrains
of 3 or 4 millimeter diameters after a one hour anneal'at 630°C. The
crystals grown by the soft mold technique required about two weeks of
annealing while cycling the temperature between 4800C and 6350C once
an hour to obtain comparable subgrain sizes.

Specimen Machining

The as grown crystals were one inch in diameter and about six
to ten inches long, and had a conical tip. The orientation of the
crystallographic axes with respect to the macroscopic geometry of the
crystal was determined using the Laue back reflection X~ray technique.
Cylinders with a 1.78 cm diameter and with (1117 axes were then
trepanned using a spark discharge machine. A trepanned crystal,
together with a trepanned [111] axis specimen, is shown in Figure 2.
The ends of the specimén were then sawed off approximately perpendicu-
lar to the specimen axis using a spark discharge machine.

The specimen was mounted on a goniometer and the crystallographic

orientation checked using the Laue back reflection technique with a



Fig. 2. Trepanned Crystal and [111] Axis Specimen.



5 cm specimen to film distance. One end of the specimen was spark
planed perpendicular to the [lilj direction. The specimen was then
removed fromithe goniometer and the spark planed end was attached to
a polycrystalline aluminum therwal buffer using an electrically
.conducting wax.
The specimen was machined to a final diameter of 1.415 + .008
cm using an electrslytic lathe. This machining removed all the material
from the cylindrical surfages which was damaged by spark machining.
All electrolytic machining was done using an ele;trolyte of 2 parts
methanol to 1 part nitric acid. The electrolytic lathe, illustrated
in Figure 3a, consisted of a rotating bakelite wheel with a stainless
steel rim covered by flannel cloth which served as the catho&e. As the
wheel turned, thercloth picked up electrolyte._ The specimen was also
rotated, and rested lightly on the flgnnel cloth covering the cathode.
The final step in the machining processes was to machine the end
of the cylinder which would be the test surface éhown in Figure 1.
The specimen and thermal buffer were installed on a goniometer and
aligned to within 4 1/2 degree using the Laue back reflection technique
with a 5 c¢m specimen to filﬁ distance. At least 1 1/2 mm was then .
electrolytically machined off the end of the crystal using an electro-
lytic lap. The electrolytic lap, shown in Figure 3b, has a rotating
stainless steel plate covered Witﬁ flannel cloth as the cathode. The

specimen, which was also rotating, bore lightly against the flanmel



10

a. PHOTOGRAPH OF SPECIMEN [N LATHE

b. PHOTOGRAPH OF SPECIMEN IN LAP

Fig. 3. Electrolytic Machining Equipment.
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¢. PHOTOGRAPH OF SPECIMEN IN FINAL POLISHING LAP

Fig. 3. continued
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cloth., Finally, the specimen, still on the goniometer, was electro-
lytically machined for a few minutes using the final polishing lap
shown in Figure.3c. This lap had a bare stainless steel plate rotating
at high speed as the cathode. The specimen was held about .008 cm
above the plate during machining, and was also rotated.

A current density of about 1 ampere/cm2 was used for most of the
electrolytic machining. If the surface had a thick oxide coating it
was found useful to use a current density of about 5 ampere/cm2 for
the first fifteen seconds to break down the oxide coating uniformly
over the surface.

Test specimens were used several times., After use, the specimen
was mounted, aligned, and the teét surface repolished using the same
techniques as for new specimens.

Annealing

After final polishing the specimens were cleaned and annealed to
remove stray bulk dislocations, that is, dislocations not a part of a
subgrain boundary. A one hour anneal at 630°C was found to remove
all stray bulk dislocations to a depth observable by the Berg-Barrett
X~ray technique (about 10 micfons).

Cleaning of the‘specimens before anne#ling consisted of the
following steps:

1) Removing the mounting wax by washing in xylene at 65°C.

2) Washing the specimens with acetome and methanol.
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3) Swabbing the test surface with acetone, washing in water,
swabbing with concentrated nitric acid, washing in water,
swabbing with distilled water, and finally swabbing with
reagent grade methanol.

The atmosphere used for annealing was helium passed through

an anhydrous CaS0, drying tower and activated charcoal held at -196°C,

4
or high purity argon passed through an anhvdrous CaSO4 drying tower.

The two atmospheres worked equally well., TFor unknown reasons, pitting

of the test surface would occasionally occur with either atmosphere.
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ITI. EXPERIMENTAL TECHNIQUES

Dislocations were produced near the test surface by scratching
or by damaging with a focused laser pulse. Berg-Barrett X-ray micro-
graphs were taken to determine the'before test" position of the dis-
“locations produced by the scratching or laser damage. The specimens
were then tested using a torsion loading machine at various tempera-
tures and stresses. After the test, another set of Berg-Barrett X-ray
micrographs were taken to determine the final position of the disloca-
tiomns,

Three or more tests were run at temperatures of 7000, 2300, -100%
and -150°C. The maximum shear stress at the outer edge of the speci-
mens varied from 0.43 to 2.16X10° dynes/cm?.

The experimental techniques used aré described in detail in
the sections which follow.

Methods for Producing Dislocations near the Test Surface

Dislocations of edge type and mixed type were produced on (111)
planes close to the test surface by scratching in the [112] and [110]
directions respectively. Tﬁe scratching was done using an A1203
whisker mounted on an arm attached to a calibrated torsion wire. Loads
of 50 to 200 mg were used, and various speeds of scratching. A load

of 50 mg and a scratching speed of 9 cm/minute were found to produce

the best dislocations, i.e. with long lengths parallel to the scratch.
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An enlargement of a typical Berg-Barrett X~-ray micrograph
showing the damage caused by scratches is given in Figure 4a. The
enlargement in Figure 4a is not sufficient to show individual dis-
locations. Scratches in both the [115] and [1I0] directions shown
in Figure 4a produced dislocations parallel to the scratches. Both
edge type and mixed dislocations were produced by scratches in the

[11Z] direction, with Burgers vector b, for the edge and 52 or 53 for

mixed dislocations, where 51, b_ and 53 are defined as shown on Figure

2
4a. Mixed dislocations with Burgers vector 52 or 63 were produced by
scratches in the [110] direction.

Laser pulses were also used to produce dislocations. The arrange-
ment used is shown in Figure 5. A pulse of energy from the ruby laser
was focused to a 3.mm long line on the specimen surface by means of
the cylindrical lens. The width of the line was kept to about 0.02 mm
by the slits. The pulse duration was about 20 to 50 X 10—9 seconds
and the energy of each pulse was about 0.08 joules, Tﬁe neutral density
filter and slits reduced the power incident on the specimen surface
to about‘0.01 joules; the energy actually absorbed by the specimen was
not measured. ~Three or more pulses, spaced at ten minute intervals,
were used at each damage location on the specimen.

The gas laser shown in Figure 5, which was ouperated at too low

a power to damage the specimen, was aligned with the optic axis of the

ruby laser and was used to orient the slits and specimen. The ruby
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3
a. ENLARGEMENT OF BERG-BARRETT MICROGRAPH
SHOWING SCRATCHING DAMAGE,ABOUT 5X
(i
D
b2
[n'z]
by

b. ENLARGEMENT OF BERG-BARRETT MICROGRAPH
‘SHOWING LASER DAMAGE, ABOUT 5X

Fig. 4. Micrographs of Scratching and Laser Damage.
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- laser was made to discharge in a "giant" single pulse by adjusting the
concentration of the cryptocyanine in ethanol sdlution. The bowmb
diode and oscilloscope were used to monitor the pulse. The mirrors
established the optiéal cavity for the ruby laser.

An enlargement of a Berg-Barrett X-ray micrograph showing typical
laser damage is shown in Figure 4b. The enlargement of Figure 4b is
not sufficient to show individual dislocations. All of the laser
damage lines are in (115) type directions, and produce dislocations
of mainly edge character nearly parallel to the damage line with
Burgers vectors perpendicular to the damage line. All the démage lines
are oriented approximately rédially.

X-ray Technique for Observing Dislocations

Dislocations on (111) planes near the test surface of the speci-
men identified in Figure 1 were observed using the Berg-Barrett X-ray
technique describéd by Turner, Vreeland and Pope (21). This technique
makes use of the fact that the diffracted X-ray beam intensity in a
Bragg reflection from a nearly perfect crystal is stronger in reéions
where strains such as those caused by dislocations distort the crystal
lattice. As shown in Figuré 6, X-rays from the target of the X-ray
tube are collimated by slits and diffracted by the specimen on to
the photographic plate, Bécause of the large size of the specimen
compared to the X-ray source, only a portion of the specimen would

diffract at a single angle between the X-ray beam and the specimen



19

PHOTOGRAPHIC PLA'_I';;

Laxis oF
ROTATION OF
SPECIMEN AND
PHOTOGRAPHIC PLATE

SPECIMEN

— — ———

X-RAY
SOURCE

Fig. 6. Arrangement for Taking Berg-Barrett X-ray Micrographs.
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surface. Therefore, the specimen and photographic plate were ro-
tated as a unit about the axis shown in Figure 6 to cause the whole
surface to diffract. The angle of rotation was varied through about
1/2 degree with a period of about four minutes. The photographic plate
is placed nearly parallel to the X-ray beam, producing an unmagnified
and slightly distorted image of the test surface., Figures 4a and
4b are enlargements of typical photographic images.
Characteristic iron radiation from a Machlett A-2 diffraction

tube operating at 50KV and 7.5 ma was used. The focal spot was 1 mm
square, the X~ray séurce to specimen distance was 16 cm, and the speci-
men to photographic plate distance ranged from 0.5 to 2 mm. The re-
flecting planes used were the {220} planes in the test specimen as
shown in Figure 7. The X-rays entered at an angle of eight degrees
‘from the plane formed by the [111] axié and the normal to the reflect-
iné plane, as shown on Figure 7a. This location for the X-ray beam
was chosen to avoid reflections from other crystallographic.planes.
The X-rays approached the test surface at an angle of 80, as shown on
Figure 7b; Kodak high‘resolution plates were used, and no filter was
used except for a 0.012 cm fhick black plastic film to exclude light.
Thevrésolution obtained by this technique was about 10u.

~ The Burgers vector 6f a dislocation can be determined using the
fact that a dislocation will not alter the intensity of the diffracted

X-ray beam, and therefore, will not be imaged on the photographic
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Fig. 7. Crystallographic Orientation of Reflecting Planes and

Dislocation Burgers Vectors.
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[
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SECTION THROUGH TEST SPECIMEN SHOWING (220)
REFLECTING PLANE AND (l11) SURFACE. X-RAYS FOR
THE (220) REFLECTION ENTER AND LEAVE AS SHOWN,
EXCEPT THEY ARE ROTATED OUT OF THE PLANE SHOWN
BY EIGHT DEGREES.

Fig. 7. continued
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plate, if b.n = 0 where b is the Burgers vector and n is the normal

to the reflecting plane. As shown in Figure 7a, for each of the three
possiblevBurgers vectors there is one and only one {220} type reflect-
ing plane for which a dislocation with that Burgers vector will not be
imaged. By taking micrographs using all three reflecting planes, it
is, therefore, possible to determine the Burgers vectors of all the
dislocations.

Loading System

The torsion machine described by Pope, Vreeland and Wood (22)
was used to produce torsion stress pulses of 15 to 108 psec duration.
The maximum stress produced at the outer edge of the specimen varied
from 0.43 to 2.16X107 dynes/cmz. The torsion machine operates by pro-
ducing a zero mode torsional stress wave which propagates down a
cylindrical rod and through the specimen, and is then reflected from
a free end and propagates up the rod and through the specimen as an
unloading wave.

The specimen loading procedure was as follows: The test surface
of the specimen was glued to a polycrystalline aluminum gage bar of
the same diameter as the spécimen as shown in Figure 8. The poly-
crystalline gage bar was permanently attached to the torsion machine
which was constructed of titanium. A rod of polycrystalline alumi-
num was then glued to the bottom of the test specimen; this rod is

identified as the extender in Figure 8. A step input of torsional
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stress was produced by the torsion machine and propagated down the

/2

titanium rod of the torsion machine at a speed (G/p)1 where G is the
modulus of rigidity and p is the mass density of the rod. The stress
wave propagated through the gage bar, the specimen, and the lower
~extender rod, and reflected from the free end of the extender as an
unloading wave of the same magnitude as the original loading wave. The
stress duration at the test surface of the specimen was thus the timc
taken for the 1oaaing wave to propagate through the specimen and ex-
tender plus the time taken'for the unloading wave to propagate back to
the test surface. The different durations of the stress pulses in
different tests were obtained by varying the length of the specimen
plus lower extender rod.

In the polycrystalline rods the stress wave has an elastic stress

-distribution such that the shear stress T is linearly proportional to

the radius:
T=3 (2]

where T is the torque, r the distance from the specimen axis, and J is
the polar moment of the cross-section. The éingle crystal specimen
behaves approximately in an'isotropic manner, as is shown in Appeﬁdix
.A, and the stress distribution on the (111) test surface slip planes
is approximately that given in equation [2].

The magnitude of the stress pulse wgs'determined by measuring

the strain on the surface of the gage bar using 500 ohm semiconductor
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strain gages attached to the gage bar., The gage output was monitored
using an oscilloscope as described in reference (22). A typical stress
pulse is shown in Figure 9.

The torsion machine uses a 1.27 cm diameter titanium rod. The
~diameter of the aluminum gage bar was selected to prevent stress wave
reflections at the titanium to aluminum interface. As shown in refer-
ence (10), a torsional wave will mot be reflected at the interface of
two cylindrical bars of different radii if the wavelengths are long

compared to the radius change and if the quantity

z =g (Gp)ll2 3]

is continuous across the interface, where z is the torsional acoustic
impedance, G is the modulus of rigidity, p is the mass density, and a
‘is the radius. The test specimen radius was made the same as the
gage bar radius since the acoustic properties of a [111] oriented
aluminum crystal are not very different from polycrystalline aluminum.

Techniques for Gluing Specimens to Gage Bar

The gluing technique used at each temperature had to satisfy
three basic requirements:
1. The gluing technique should not damage the test surface or
cause any motion of the dislocations. This required the
shear stresses on the test surface due to the glue to be

less than 0.3 X 106 dynes/cmz.
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— 6.7x10° DYNES/ CM2

Fig. 9. Typical Torsion Stress Pulse Record.
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2. The glue had to have a high enough modulus of rigidity and
the glue joint had to be thin enough so that the stress
wave could be transmitted without reflection or excessive
decrease in its rise time. Appendix B contains an analysis
of the problem of transmitting a torsion wave in a cylindri-
cal rod across a gap containing a low modulus material.

3. The glue should not fail when subjected to a maximum shear
stress of about 2X107 dynes/cm2 applied for times up to
100 psec.

Several different glues for each temperature were tried. Many
glues had to be rejected because differential thermal expansion between
the glue and the specimen damaged the specimen test surface. A glue
was tested for suitability by going through the entire gluing and un-
.gluing procedure described below, but without passing a torsion pulse
through the specimen. The specimen was then examined by taking Berg-
Barrett X-ray micrographs to determine if any damage or dislocétion
motion had occurred. The gluing techniques described below were found
to produce no @islocation motion or surface damage.

The glue used for room temperature tests was Quartz Type Sticky
Wax with a melting temperature of 7SOC, supplied by the Corning Rubber
Company, Brooklyn, New York. The extender, which is identified in
Figure 8, was first heated to just above the melting point of the wax,

and the wax was applied to the surface to be bonded to the specimen.
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The bottom of the specimen, which was at room temperature, was then
pressed on to the egtender. The gage bar was then heated to just
above the melting point of the wax; the wax was then applied, and the
specimen and extender, which were at room temperature, were gently

. pressed on to the gage bar. Subsequent to testing, the extender was
removed by heating it sufficiently to allow it to{slide off, and

the specimen was removed by heating the gage bar until the specimen
slid off. The specimen was then washed in xylene to remove the
remaining wax.

Low temperature tests were performed using mixtures of glycerin
and ethanol as glues. ‘Three parts glycerin to two parts ethanol was
used at -100°C, and one part glycerin to five parts ethanol was used
at ~150°C. The procedure used for low temperature tests was the
"following:

1. The specimen and extender were assembled in position below
the gage bar as shown in Figure 10 at room temperature, with
the appropriate glycerin-ethanol mixture already in the gaﬁs
between the specimen and extender and specimen and gage bar.
The extender was éupported on a teflon bali seat which
rested on a movable yoke. The alignment of the specimen
to the gage bar and to the extender was maintained by thin

_bakelite alignment collars as shown in Figure 10.

‘2. The gage bar, specimen, and extender were then cooled down
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to the test temperature ip the apparatus shown in Figure 10,
The cooldown rate was about SOC/min. The cooldown, and
subsequent temperature stabilization and heatup, were con-
trolled by varying the rate at which dry nitrogen gas was
bubbled into the liquid nitrogen bath and by varying the
voltage supplied to the heater shown in Figure 10.

3. The gaps filled with the glycerin-ethanol mixiures were
closed by applying a compressive load of three pounds with
the movable yoke‘shown in Figure 10. The load was applied
during the cooldown at -90°% fér the -100°C tests and at
-110°%C for the -150°C tests.

4. The temperature was stabilized at the test temperature and
maintained for ten minutes for -100°C tests and for five
minutes for -150°C tests. The compressive load was then
removed and the torsion test performed.

5. The assembly was heated up at SOC/min. to room temperature.

 As the glycerin-ethanol mixture softened, the gaps opened
and the specimen and extender settled down on to the ball
seat, but were held in place by the alignment collars.

The glue used for the 70°C tests was a 120°C melting temperature

wax supplied by Fiber-Resin Corporation, Burbank, California which was
filled with levigated alumina powder until the wax-powder mixture

would just flow when above 120°%. The 70°C test procedure was as
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The specimen and extender were assenmbled in position at room
temperature as shown in Figure 11, Chips of the wax-alumina
powder mixture were placed in the extender to specimen and
specimen to gage bar gaps. The extender rested on a ball
seat which was supported by a movable yoke. The specimen
and extender alignment was maintained by the use of thin
bakelite alignment collars. A thin rubber sleeve protected
the extender, spécimen, and gage bar from the glycerin bath.
The glycerin bath was heated to 125°C to melt the wax in the
gaps. A compressive load of three pounds was applied with
the movable yoke shown in Figure 11 to close the gaps and
the temperature was maintained at 125°C for ten minutes with
the load applied.

The glycerin was allowed to cool to 70°C. After the tempera-
ture was stabilized at 70°C for five minutes the compressive
load was removed and the test performed.

After testing, the gage bar, épecimen and extender assembly
was removed from the torsion machine and transferred to a
70°C bath of an aromatic hydrocarbon solvent. The solvent
was then heated until the wax-alumina powdér joints softened
and the extender and specimen could be removed without damag-

ing the specimen.
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Temperature Measurement

Temperature measurement for low temperature tests was by copper-
constantan thermocouples attached to the gage bar and shielded from
the atmosphere with a rubber sleeve as shown in Figure 10. Trial runs
demonstrated that the gage bar and specimen temperature agreéd within
2°C; the overall accuracy of the temperature measurement is estimated
to be + 5°C.

Temperature measurement for the 70°C tests was by copper-constantan
thermocouples in the glycefin bath shown in Figure 11. Trial runs
showed that the glycerin and specimen temperatures agreed within ZOC;
the overall accuracy of the temperature control is estimated at + 5°C.

The specimen temperature was not measured during room temperature
tests. However, adequate time after gluing was allowed (1/2 hour or

. . . o
‘more) to permit the specimen to attain room temperature (23°C).
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IV. EXPERIMENTAL RESULTS

Dislocation Displacement Measurements

Figure 12 contains enlargemeants of Berg-Barrett X-ray micrographs
showing dislocation positions before and after torsion testing for a
wécratched specimen and for a laser damaged specimen. The maximum dis-
placement of dislocations during the test was measured on the Berg-
Barrett X-ray micrographs u;ing a microscope fitted with a calibrated
filar eye piece. Each location along a‘scratch or line of laser damage
where dislocation displacement reached a maximum provided a data point.
The measurements were not made where the dislocations appeared to have
been impeded by subgrains or where the "after test' dislocations were
tangled, i.e. where the leading dislocation was not.free of entangle-
ment for a length of 0.1 mm or more. Therefore, the dislocation
velocities calculgted frbm these measurements aré the maximum values
for all dislccations which were observed to move at a given tempera-
ture and stress. |

The displacements measured frﬁm the micrographs were used directly
in calculating the dislocat;on velocity since the maximum error in
distances on the micrographs relative to actual distances in the crys-
tal was calculated to be less than five percent.,

.It can be seen from Figure 12 that the'disiocations moved out
from only 6ne side of the scratch or laser aamage. This occurs since

the scratching or laser damage should produce dislocations of the same
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Fig. 12. Berg-Barrett X-ray Micrographs Show1ng Dislocations Before
and After Torsion Tests.
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sign on both sides, as shown in Figure 13. The forces due to
scratching or laser induced thermal expansion tend to produce dis-
locations with extra planes on the surface side of the dislocation
slip plane. The applied shear stress during the torsion test tends
to return the dislocations on one side to the scratch or laser damage
while it tends to move those on the other side away from the scratch
or laser damage. There were occasional instances of dislocations
moving in both directions, showing that some dislocations of the
opposite sign were produced.

The dislocation displacements observed in a typical test are
plotted in Figure 14 as a function of the product of the radius, R,
and the stress resolution factor, cos 6, where 6 is the angle between
the tangential direction and the Burgers vector. The approximately
‘linear trend of thé data in Figure 14 shows that the dislocation
velocity is approximately linearly proportional to the resolved shear
stress, as discussed in detail in Appendix C.

Stress and Time Measurements

Figure 9 is a typical torsion stress pulse record. The top trace
shows the long-time behavior of the stress, and the lower trace shows
the stress pulse itself in greater detail. The method used to obtain
the average stress and appropriate pulse duration from the record was
as follows:

1. Stress pulses were measured using strain gages located about

0.7 cm from the end of the gage bar. As shown in Figure 15a,

a stress pulse with the gage bar alone, without a specimen or
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" lower extender rod attached, had a short duration correspond-

ing to the time taken for the stress wave to pass the gages,
be reflected from the free end as an unloading wave, and to
return to the gages. As shown in Figure 15b, the stress
pulse duration was increased by attaching a specimen and
extender to the gage bar. The additional area of the stress
pulse, marked A in Figure 15b, is thus the portion of the
stress ﬁulse due to the stress wave travelling down and back
through the specimen and extender, and gives the stress-
time history at the test surface. This area, A, was measured
With a planimeter.

The maximum stress Thax? 728 taken from the pulse record;
the short duration noise was averaged out in selecting this
maximum stress., The numerical value of this maximum stress
was obtained by :comparison of fhe pulse record with records
of previous tests run with dummy polycrystalline aluminum
specimens and rigid glues.

The area A under the stress-time curve was considered to be
equivalent to a square pulse with the same magnitude, Tmax’
and an equivalent duration, to’ obtained by dividing the>
area A by Tmax'

The stress and duration of the equivalent square pulse,"rmax

and to, were then used in the calculation of the stress and
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velocity of the dislocations.
The above procedure does not introduce any errors in the ratio
of velocity to stress since the dislocation velocity is linearly

proportional to stress, as was shown above. This conclusion is shown

by:
D = j‘o v(t)dt = kj'o T(t)dt (4]
D = k (area under stress-time curve)
=kT ot [5]
v = D/to=k Tmax [6]

where D is the displacement, v(t) is the instantaneous velocity which
equals k v(t), T(t) is‘the instantaneous maximum stress, k is a constankt
including factors such as the radius of the dislocation and the stress
resolution factor; T sax and to are Ehe stress pulse amplitude and
duration obtained as discussed above, and v is the calculated disloca-
tion velocity. If the value of Tmax is incorrectly selected, the value
of v chaﬁges proportionately and no error is introduced into the ratio
of disloeation_veloéity to applied stress.

The values of Tnax and t0 for all the tests used in this experi-
ment are listed in Table I.

Applied Resolved Shear Stress Determination

The applied stress acting on a dislocation was obtained by

measuring the distance of the dislocation from the center of the
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TABLE I
o T R 106 , MSec
TEST  TEMPERATURE, C max o

16 -150 10, 17.
17 -150 15. 18.
18 -150 15.‘ 17.
19 -150 12. 24.
10 -100 15. 22,
12 -100 zi. 15.
13 -100 15. 20.
14 -100 21. 18.
15b -100 15. 23,
4 23 21, 21,
6 23 4. 108
15a 23 21, 17.
20 70 15, 40.
21 70 15 31.
22 70 21, 22,



45

specimen, and assuming a linear stress distribution as given in equa-
tion [2] in the section on experimental techniques. A linear stress
distribution is approximately correct for a [111] oriented aluminum
specimen, 1f the stress remains elastic, as is shown in Appendix A.

In addition, a linear stress distribution requires that there not be
excessive plastic flow in the specimen. The amount of plastic flow
which occurred during the tests listed in Table I did not significantly
affect the stress distribution in regions where dislocation velocity
was measured as is shown bélow.

Examination of the Berg-Barrett X-ray micrographs showed that in
the central, low stress region of the specimens essentially no dis-
location motion occurred except for the artificially introduced
dislocations, i.e. there was negligible plastic flow in the central
region. In some tests, dislocation multiplication and motion was
evident in the outer regions of the specimen, i.e. plastic flow
occurred. In the worst case, plastic flow occurred in the outer 20%
of the radius. Using .the conservative assumption of an elastic-perfectly
plastic materigl, it is shown in Appendix D that the stress in the
central elastic region is only increased 87 in this worst case.

The resolved shear stress acting on a dislocation was obtained
by using the relation

T = Tcosd [7]
r

where Tr is the resolved shear stress, T is the applied shear stress,
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and 6 is the angle between T and the Burgers vector of the dislgcation.
The Burgers vector was determined from the Berg-Barrett X-ray micro-
graphs as discussed in the experimental procedures section of this
thesis, while the direction of T was assumed to be perpendicular to

the radial line passing through the dislocationm.

Dislocation Velocities

Dislocation velocities were calculated by dividing the measured
displacement by the torsion stress pulse duration. Tt was assumed that
the dislocation velocity was in phase with the applied stress, i.e.
that the dislocation acceleration time was negligible; this assumption
is justified as is shown later in the diécussion section., The dis-
1oca£ion velocity data are piotted as a function of resolved shear
stress for each temperature in Figure 16. The data for each tempera-
ture are fitted by a straight line from the origin through a point
obtained by averaging all the stresé-velocity data for that temperature.
This procedure was used since the data seem to roughly fit a linear

stress distribution. The straight lines for each temperature are:

4

70%: v = 0.985%10" T
23%: v = '1.16x1o"*frr
-100%: v = 1.50}(10"‘%r
-150°%: v = 1.96X10-4'rr

where v is the velocity in cm/sec and Tr is the resolved shear stress in

dynes/cmz. Other curves could have been fitted to the data; however,
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the scatter in the data did not seem to warrant more precise fits.

Dislocation Drag Coefficient

If the velocity is linearly proportional to the stress, the
velocity-stress relationship can be represented by the use of a viscous
drag coefficient B. The force F per unit length on a dislocation due

to the applied resolved shear stress T is

F=1Thb [8]

where b is the Burgers vector of the dislocation. During steady motion
this force is considered to be balanced by a viscous drag force, so

that
F = Trb = Bv (9]

where B is the drag coefficient and v is the dislocation velocity.

Solving for B one obtains:

T
r -
B=—5>
- 10l
The drag coefficient B obtained in this experiment is plotted as
a function of temperature in Figure 17. It can be seen that the viscous
drag decreases as temperature decreases, which means that dislocation

velocity for the same stress will increase as temperature decreases.
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V. DISCUSSION

Effect of Line Tension

The line tension of a dislocation can reduce the net force on
the dislocation if the dislocation is curved. The line tension of a
" dislocation is commonly estimated as Gb2(23), where G is the modulus
of rigidity and b is the Burgers vector. The resolved shear stress T
required to maintain a dislocation with a radius of curvature r in
equilibrium is

= 22 [11]

A typical radius of curvature of the dislocations in a tested
specimen is 0.03 cm. The stress required to maintain this radius is
about 0.2 X 106 dynes/cmz, a small stress compared to the applied
stresses in this work. Therefore, it is concluded that the influence
of the curvature of the dislocations upon their velocity, in this
investigation, was negligible,

The typical visible length of segments of dislocation line in
the Berg-Barrett X-ray micrographs was 0.02 cm. At the locations
where the dislocation becomes invisible the dislocation line might
continue at fight angles to the visible segment. This would produce
a retarding force of.about 2Gb2, which would balance an applied stress
of 0.7 X 106 dynes/cmz, a small stress compared to applied stresses
in this investigation. Therefore, it is concluded that this effect

was negligible,
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Effect of Dislocation Interactions

The stress fields of nearby dislocations on the same slip plane
can change the effective stress acting on a dislocation. The dis-
locagion furthest from the scratch or line of laser damage is-
typically about 0.002 cm from the nearest dislocation, both before
and after testing. Assuming that the dislocations lie on the same
slip plane and are edge dislocations, the interaction stress would be
about 0.8 X 106 dynes/cmz. This is a small stress compared to the
applied stress for most dafa points; therefore, dislocation inter-
action effects are believed to be small.

Effect of Pinning by Point Defects and Dislocations on Other Slip Planes

The effects of point defects and dislocations on other slip planes
cannot be quantitatively assessed. The number of point defects was
‘minimized by the use of 99.999 percent pure material. Diffusion of
point defects to dislocations produced by scratches or laser damage
is believed to be small since delays varying between one hour and
four-days between producing the dislocations and torsion testing did
not appear to affect the number of dislocations moving or their speed.
The effect of dislocations on other slip systems is also believed to
be small. Essentially all dislocations in the crystals close enough
to the surface to affect the observed dislocations Wére coalesced into
subgrain boundaries by annealing. This was confirmed in several cases

by electrolytically removing about 50u of material from the surface of
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an annealed crystal and observing the dislocations as revealed in
Berg-Barrett X-ray micrographs.

Acceleration Times

The method used to obtain dislocation velocities from the dig-
placement and time duration data assumed that the dislocation motion
was in phase with the applied stress. This assumption is reasonable
if the dislocation acceleration time is small compared to the stress
pulse rise time of about 2 X 10“6 seconds,

The effective mass m.per unit length of a dislocation is about
(23)

_ Gb

(127

[OJ N

where G is the modulus of rigidity, b the Burgers vector, and cq the
/2

1
shear wave velocity which equals (G/p) where p is the mass density.

The equation of motion for a dislocation then is

m%—%='rb—}3v [13]

where T is the applied resolved shear stress, B is the drag coeffi-

cient and v the velocity. Solving for v one obtains

v = g_h (1-¢ Bt/my [14]

The acceleration time constant is thus m/B, which for this experiment
-11 , ;
is on the order of 10 seconds. This shows that the acceleration

time is negligible, and thus that the dislocation velocity was
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essentially in phase with the applied stress during the applied stress
pulscs used in this investigation.

Comparison with Other Experimental Results

The drag coefficient for dislocation velocity has been measured
by two indirect techniques, internal friction tests (5) and impact
shear tests (24). The resulté obtained by these measurements are shown
in Tigures 18 and 19.

As noted in reference (5) the intermal friction measurements
actually determine the ratio B/pm, where B is the drag coefficient and
P is the density of mobile dislocations. The measured values of B
shown in Figure 18 are based on an assumed density of mobile disloca-
tions of 8 X 106 cm/cmg. The difference in magnitude of the drag co-~
efficient as obtained by intermal friction measurements and in the
present experiment is not meaningful, since P is very uncertain. How-
ever, the temperature dependence of B as determined by the internal
friction measurements agrees quite well with the results of this experi-
ment, as can be seen in Figure 17. The values of B from the internal
friction measurements shown in Figure 17 were obtained b, using a
7alue for P of 1.23 X 106 cm/cm3.

The drag coefficient obtained from the impact sh ‘ests (24)
was determined as follows:

1. Small test crystals were deformed in shear in sn impact test.

From the stress-time records, the shear stress and strain rate
were deduced, Tests were performgd at a variety of stress
levels and temperatures. The data obtained are reproduced

in Figure 20,
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The shear stress-strain rate data were fitted with the formula
Toe T T Toep = Q7 [15]

where T is the applied shear stress, TB is a back stress
defined in Figure 20, Teff is the effective shear stress, 7
is the strain rate, and & is selected to fit the data.

The drag force on a moving dislocation is set equal to the

effective applied force:

Bv = _.b f16]

where B is the drag coefficient, v the dislocation velocity,
and b the Burgers vector. Equation [1] from the introduction

was

7 =pb7T [1]

Ce pm is the density of mobilc dislocations and v is the
¢.urage velocity of mobile dislocations. If v of equation
[16] and v of [1] are assumed to be the same, then equations

[1573, [16] and {17 reduce to
B=p b« [17]
Using equation [17], values of B were obtained using a de-

termined as discussed above and by assuming a value of P of

2 X 108 cm/cm3.
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The drég coefficient as determined by the impact tests,
which is shown in Figﬁre 19, is grea#er in magnitudec than that de-
termined in this experiment. Also, it shows the opposite temperature
dependence when compared to the results of this experiment and the
_internal friction tests cited previously. The magnitude difference in
B can be attributed to the unknown value of pm. The opposite tempera-
ture dependence, as discussed in reference (24), may be due to dis-
locations in the shear iﬁpact tests interacfing with other dislocations
or impurities, 1In addition, the value of pm could vary with tempera-
ture, stress, strain or strain rate, and confuse the analysis of the
data; for example, as seen from equation [17], é fairly small decrease
in‘pm_as temperature is decreased would reverse the temperature
dependence of B, It is concluded that the drag coefficient determined
by the impact shear tests is not applicable to individual dislocations
interacting with'the lattice.

Comparison with Theoretical Mechanisms

Governing Dislocation Velocities

The theoretical mechanisms governing the velocity of dislocations
in relatively pure materials can be divided into two groups, mechanisms
whigh do and do not involve a thermal activation process. In the
theories involving thermally activated processes.dislocation velocity
is considered as being determined by the time required for thermal

fluctuations to assist the dislocation to overcome some barrier to
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motion. The thermaliy activated mechanisms for governing dislocation
velocity, such as interactiohs of dislocations with point defects
(25,26), Peierls barriers (27), and forest dislocations (28) predict
rapidly increasing dislocation velocities with increasing temperature
since the expression for the velocity contains an exponential term
describing the activation process. A thermal activation process clearly
does not control dislocation velocities in high purity aluminum single
crystals under the conditions in this experiment since the dislocation
velocity is found to decreése’with'increasing temperature.

The proposed mechanisms governing disiocation velocity which do
not depend on thermal.activation involve interaction of dislocations
with electrons and with lattice thermal vibrations. Each of the
various theories of this nature which have been proposed will be dis-
cussed briefly.

Phonon Viscosity

The development of the phonon viscosity theory given below is
based on the work of Mason (29). The quantized lattice vibrations of
a crystal can @e treated as'a gas of phonons. These phonons can inter-
.act with each other through the non-linear elastic coupling of atoms
in the crystal. Therphoﬁon-phoﬁon interactions result in a character-
istic relaxation time for phonon energies in different modes of lattice
vibration to‘approach equilibrium.

A shear stress can be resolved into a compressive stress and an

orthogonal tension stress. If a step change in shear stress is impressed
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on a region of a crystal, the radiation pressure of the phonon gas in
the compression direction is increased with a corresponding increase
in phonon temperature; in the tension direction the radiation pressure
and temperature are decreased. These changes in radiation pressure
cause an increase in the modulus of rigidity of E0/3,where Eo is the
thermal energy density. The increase in the modulus relaxes with a
characteristic time,T, determined by the rate at which phonons of
different modes approach equilibrium. As a function of frequency, w,

the modulus of rigidity, G, can be represented by

iwT
G =G + Eo/3 Tiioe [18]

where G0 is the elastic modulus of rigidity determined by slowly applied
sﬁrains. |

The relaxation time T for phonons is determined by the same
processes which are involved in lattice thermal conduction. Using the
‘standard relationships from the kiﬁetic theory of gases one obtains

for lattice thermal conductivity and the phonon relaxation time

c Vi .
K= T = % = égt; [19]
v cv”
v

where K is the laftice thermal cqnductivity, Cv the specific heat per
unit volume, f the phonon mean free path, and V the weighted mean phonon
velocity. |

The relaxation time T is found to be of the order of 10’11 sec.

A dislocation strain field has a characteristic width of the order of
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10—6cm. The strain in the lattice as a dislocation passes by at a
velocity of about 103 cm/éec thus experiences a half cycle of strain
with a frequency ® of the order of 109 cycles per second. Therefore,

T is much less than unity and equation [18] reduces to

C=g¢ +'o'=co+iwn [20]

where T is the viscosity of the phonon gas and is given by:

EOT EoK
=22 [21]
3 C Vl
v

The rate of energy dissipation for dislocation motion caused
by the phonon viscosity is determined from the integrafion over the
dislocation strain field of the product of the viscosity times the
strain rate squared. The rate of energy dissipation W per unit length

for a screw dislocation is found to be

W= h—"-z—" [22]

where b is the Burgers vector, v the dislocation velocity and a the
dislocation core radius. The energy dissipation for an edge disloca-

tion is not much different. The energy dissipated by a dislocation

per unit length is related to the drag coefficient B by:

W= v’B [23]
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Using equations [217, [22] and [237] one obtains

b2TL b2 EoK
B="—5 = 5 5 [24]
8ra 8na CVV

The above equation for the drag coefficient was based on the
assumption that the material in which the dislocation moved was iso-
tropic. As discussed by Mason and Bateman (30), in a crystalline
material the relatioﬁ between strain and changes in lattice vibration
frequency and hence phonon temperature, varies in different directions
in the crystal. This effect can result in increased phonon viscosity.
To account for this effect equation [24] should be multiplied by a

non-linearity constant D, giving

B = 5 "3 [25]

According to Mason and Bateman (30), the value for the non-lipnearity
constant can be calculated if the third order elastic constants are
known. For aluminum, the third order elastic comstants are not known
and the non-lipearity constant has not been evaluated. Mason and
Rosenberg (5) estimate that a value of D = 3.95 is necessary to make
theoretical values of dislocation damping fit their internal frictiom
data; however, since this fit also depends on their assumed values for
dislocation density and dislocation core radius, the value of the non-

linearity constant remains uncertain.
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In addition to uncertainty in the non-linearity constant,
equation [25] for the drag coefficient is also uncertain because of
the difficulty of Hetermining the proper values of the dislocation
core radius and the lattice thermal conductivity. Mason (29) original-
ly used a core radius of a = b/6, but subsequently (31) recommended
using a =(3/4)b or a = v/T whichever was larger, where v is the dis-
location velocity and T is the phonon relaxation time given in
equation [19]. The value of a =(3/4)b is justified by Mason on the
basis that it is the limit to which linear elasticity theory holds,
and a = v/7 is justified on the basis that for a radius less than v/T
phonon relaxation will not occur during the transit time of the dis-
location core. On the other hand, Lothe (32) comsiders that 2, the
phonon mean free path, should be used as the core radius.

If Mason's choice of the core radius or any other constant core
radius is used the temperature dependence of the drag coefficient
given by [25] is determined by the variation of Eo’ K and CV with
temperature. If Lothe's (32) choice of the core.radius is used, the
value of the drag coefficient becomes, using eqﬁétion [19] for Z:

szEOCV
B = 721K [26]

which shows a much more rapid fall off with temperature than if a
constant core radius is used because CV decreases and K increases as

temperature is decreased.
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The temperature dependence of the drag coefficient calculated

using a constant dislocation core radius agrees fairly well with

the results of this experiment, However, the magnitude of the drag
coefficient calculated by Mason énd Rosenberg (5) using a core

radius of a =(3/4)b and a non-linearity constant D = 3.95 is about
six times greater than that measured in this experiment. Their
theoretical results, using a =(3/4)b and D = 3.95, are shown in
Figure 18. TIt appears that in the phonon viscosity theory a constant
core radius should be used, but that the value of the core radius
must be increased and possibly the non-linearity constant must also be
decreased.

Electron Viscosity

The free electron gas in a metal can cause viscous damping of
dislocation motion in the same manner as discussed above for the

phonon gas (33, 34). The viscosity M of a free electron gas is

M= ______m;{v [27]

vwhere N is the density of free electrons per unit volume, M is the
electron mass, 4 is the electron mean free path, and v is the average
speed of free electroms. Uéing‘the average electron velocity for a
Fermi distribution of energies, and using the electron mean free path
as determined by resistivity measurements, Mason (33) obtains for 1
0 - 02 :311?21\1: 2/3'

SeZR (28]



68

where h is Plancks constant divided by 2m e is the electron charge, and
R is the resistivity,

The drag on a moving dislocation is then calculated by inte-
grating over the straiﬁ field of a moving dislocation as was done above
using the phonon viscosity, with the result that the same equation,

namely

B = P—-%— [29]

holds for the drag coefficient B except that the values used for the
viscosity T and core radius a are those appropriate to electron damping.
The value of B again is uncertain because of uncertainty in the proper
value of the core radius a. Rosenberg and Mason (5) have computed

the drag coefficient due to.electron viscosity as a function of
temperature using equations [28] and [29] together with the assumption
that the core radius is about 10-7 cm. Their results are shown in
Figure 18 together with data from internal friction measurements. The
theoretical results and internal friction measurements indicate that

at about IOOOK_the effects of electron viscosity on the drag coefficient
should become’noticeable. The present experiment did not reagh a
sufficiently low temperature to test that prediction.

Glide Plane Viscosity

Gilman (35) has proposed that the losses near the dislocation
core be calculated using a viscosity such as that due to intermolecular

forces acting directly across the glide plane with a finite relaxation
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time. Gilman shows that if this viscosity is applied to the bulk of
the crystal as well as the dislocation core, the viscous losses in
the core region will exceed those in the bulk of the crystal by a
factor of about eight. Gilman suggests that the value of viscosity
N computed by Mason using thé phonon viscosity theory is the appro-
priate value to employ, for metals, in his expression for the drag
coefficient, B.

A quantitative analysis of glide plane viscosity cannct be
performed since there is as yet no way of estimating an appropriate
value of the viscosity. Phonon viscosity is not applicable to the
dislocation core since phonon viscosity depends on phonon-phonon
interactions and therefore, is not applicable to regions much smaller
than the phonon mean free path. Also, if the phonon viscosity value
of T were used in Gilman's theory, it would result in a drag coefficient
B about 50 times greater than that obtained in the present investigation.

Thermoelastic Effect

Eshelby (36) demonstrated that the compressive and tensile
stresses around. a moving edge dislocation will cause irreversible heat
flow to take place and thus ﬁill dissipate energy. Calculations using
the equations of Weiner (37) and Lothe (32) show that this effect results
in a drag coefficient for aluminum three or more orders of magnitude
less than that determined in this experiment. The low rate of energy

dissipation in aluminum due to this effect is a result of the high
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thermal conductivity of aluminum, which makes the compression and
tcnsion around the edge dislocation occur in a nearly isothermal
manner .

Anharmonic Radiation from the Dislocation Core

The vibrational energy of the atoms in the highly distorted
region of the dislocation core will be increased as the dislocation
moves because of the anharmonic coupling forces between atoms, The
radiation of this energy away from the dislocation contributes to
dislocation damping. Lothe (32) has estimated the effect. of anharmonic

radiation for an edge dislocation and obtained

!2ﬁ}2 3€o eoehvo/kTév 2
B = T () (0]

g - 2 kT

nb o

where B is the damping coefficient, €, is the mean thermal energy per
atom, n is the number of atoms in the dislocation core width, b is the
Burgers vector, v, is the frequency of vibration of an atom in an
undisturbed region of the crystal, 8v the change in frequency of an
atom in the dislocation core relative to vo, V is the weighted mean
speed of sound; k is Boltzmann's constant and T is the absolute tempera-
ture.

Using a dislocation core width of n = 5, a frequency change of

Sv

'l 1/10, a thermal energy density of Eo =3 So/b3, and assuming that

o
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. hvo/kT
at high temperatures ®o° ~ 1 , Lothe obtains
kT :
Eob
B=— [31]
12v

The value obtained by Lothe is uncertain because of the
difficulties in estimating the appropriate frequency change and core
width. The frequency change is difficult to estimate since it is a
function of the anharmonic terms in the atom coupling and is sensitive
to the actual atomic arrangement in the dislocation core.

Equation [31] gives .a value of the drag coefficient at room
‘temperature about an order of magnitude lower than that measured in
this experiment. In addition, the value of the drag coefficient given
by equation [31] decreases more rapidly as temperature decreases than

does the experimental drag coefficient.

Phonon Scattering

The various mechanisms by which dislocation damping can be
caused by phonon scattefing have been reviewed by Lothe (32). At
temperatures below the Debyg temperature for materials withla negli-
gible Peierls barrier such as aluminum, there are two significant
phonon scattering mechanisms. The first mechanism is the scattering
of phonons by the dislocation strain field in a manner analogous to the
refraction of light. The second mechanism is the absorption of energy
from phonons by the dislocation and subsequent vibration of the dis-

locations with re-radiation of phonons.
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The dislocation strain field affects phonons through the
anharmonic coupling of the atoms, which results in a scattering
probability for an incident phonon. A stationary dislocation in an
isotropic flux of phonons will thus have a symetric energy flux per

‘unit time W per unit length scattered from it. TIf the dislocation is

‘moving with a velocity u, the scattered phonon radiation is asymetric

.
and gives off a net amount of quasi-momentum Wy per unit length,

=2
_ \Y
where V is the .weighted average velocity of phonons. This results in

a drag coefficient B of

=

B =
v [32]

N

Using rather uncertain estimates for the scattering probability
to evaluate W Lothe (32) finds that the drag coefficient from strain

field scattering will be

Eb E_b
— < B< —/— [33]
607 . 5V

where Eo is the thermal energy density and b is the Burgers vector.
It should be thed that the'drag coefficient due to this mechanism will
decrease faster with temperéture than the thermal energy density since
the scattering probability will decrease as the average.phonon energy
decreases.

Phonon scattering by induced vibrations of the dislocation has

been considered by several authors, Leibfried (38), Nabarro (39),
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Eshelby (40) and Lothe (32, 41). This mechani sm again _results in a
symetric flux of scattel:*ed radiation for a stationary dislocation,
and makes use of equation [32] to obtain the drag coefficient. Lothe

(32) obtained for this mechanism:
B Fv(1/16\'r)j‘qmElx d | [34]
\ 0 1 % qmax—“g

where B is the drag coefficient, q is the phonon wave vector, V is
average speed of sound, and ¢ is the average energy of a thermal wave

given by

h -
e(w,T) = E%ET w = Vq [35]
. e -1

~ where w is the frequency, T the absolute temperature, and k is
Boltzmanns constant. In the high temperature limit ¢(w,T)=kT and

the thermal energy density is Eomi?g- where b is the Burgers vector,

and the damping coefficient becomes

Eob
B = — [36]
10v
The drag coefficient from both types of phonon scattering is then
about Eob
5V

The magnitude of this drag coefficient at room temperature is
about one fourth of the experimental value, and it decreases with

decreasing temperature more rapidly than the experimental value.
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This comparison of theory with the results of the present
experiment indicates that the thermoelsstic effect is negligible
compared to the other mechanisms, and that the glide plane viscosity
theory is difficult to quantitatively evaluate but tentatively appears
.to predict too large a dislocation damping. The electron viscpsity
mechanism may contribute to the_low temperature damping; however, the
magnitude of the effect was too low to be detected in the test
temperature range of the present investigation. Anharmonic radiation
.and phonon scattering may contribute significantly to dislocation
damping at higher temperatures (room temperature and above) but phonon
viscosity appears to be the pre&ominant damping mechanism governing
the mobility of glide dislocations on the (111) planes in aluminum
in the temperature range -150% to 700C. fhis_conclusion is based on:

1. The phonon viscosity theory using a constant dislocation

core radius predicts a drag coefficient decreasing more
slowly with decreasing temperature than the thermal energy
density while the anharmonic radiation theory and the phonon
séattering theories predict a drag coefficient decreasing

as fast or faster than the thermal energy density. Figure 21
shows the dislocation drag coefficient, B as a function of
absolute temperature as determined by
- a) results of the present experiment

bS phonon viscosity theory using values for the non-linearity

constant and core radius selected to give a good fit with

the results of this experiment.
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c) phonon scattering and anharmonic radiation theory with

constants selected to give agreement with the results

of this experiment at 350°K.
Figure 21 shows that the drag coefficient, B, from the phonon
viscosity theory and the experimental results have about the
same temperature dependence, while the drag coefficient from
the phonon scattering and anharmonic radiation theofy
decreases téo rapidly as temperature is decreased. Electron
viscosity effects (5), ifladded to the>phonon scattering and
anharmonic radiation results, are not suffiéiently great to
correct thé temperature dependence discrepancy of the phonon
scattering theory.
The magnitude of the dislocation drag coefficient predicted
by the phonon viscosity theory is‘about 6 times greater
than the experimental value. This is not significant,
however, considering the uncertainties in the dislocation
core radius, non-linearity constant and lattice thermal
conductivity. The magnitude of the sum of the phonon
scati:ering and anharmonic radiation theories is about 3 times
too small; though again this is probably not significant

considering uncertainties in the theories.
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VI. SUMMARY AND CONCLUSIONS

Dislocations of edge and mixed character were produced within
a depth of about 10p below the (111) test surface of 99.999% purity
aluminum single crystals by s;ratching and by damaging with laser
pulses. Movement of these dislocations on the (111) glide planes
parallel to the test surface was produced by resolved shear stresses
ranging from 0.5 to 16 X 106 dynes/cm? applied to the test'surface for
periods ranging from 15 to 108 ysec. Tests were performed in the
temperature range -150°¢ to.7OOC. Dislocation displacement was
measured uSing the Berg-Barrett X-ray technique.

Dislocation velocity detefmined from the test data at each test
temperature was approximately linearly proportional to the applied
resolved shear stfess. Dislocation velocity increased as temperature
decreased at the same stress. The dislocation drag coefficient ranged
from 1.5X10-4dyne-sec/cm2 at -150°C to 2.§X10-4dyne-sec/cm2 at 70°C.
The variation of dislocation velocity with stress and with temperature
agrees approximately with the predictions of the phonon viscosity
theory (5,29,30). The theory predicts somewhat lower velocities than
those observed,hqﬁever. This discrepancy may result from uncertainty
in the appropriate dislocation core radius and non-linearity constant
to use in the theory. Phonon scattering and anharmonic radiation of
phonons from the dislocation core (32) may.a;so contribﬁte signifi-

cantly to limiting dislocation velocity, particularly in the higher
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temperature portion of the test range. The glide plane viscosity
theory (35) predicts dislocation velocities much lower than those
observed and thus does not appear to be the mechanism governing dis-

location velocity under the conditions of the present investigation.
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APPENDIX A

The Propagation of an Elastic Torsion Wave Along the [111] Axis of an

Aluminum Single Crystal.

The stress distribution associated with an elastic torsion wave
in an aluminum single crystal may differ from the simple stress dis-
tribution for torsion of an isotropic material given by the elemen-
tary theory of elasticity due to the anisotropy in the elastic
properties of aluminum single crystals. The purpose of this analysis
is to estimate the magnitude of this effect in the case when the
torsion wave propagates along a circular cylindrical rod whose axis
is parallel to the [111] direction of the crystal structure. This is
accomplished by assuming that the displacements associated with the
torsion wave are the same as those in the elementary theory (the
cross sections normal to the axis rotate as rigid bodies and do not
warp) and calculating the stresses produced by such a deformation.

The stiffness moduli far.[lll] oriented aluminum are tabulated
in reference (33) and are:

10.82 X 10udynes/cm2

€11 =
C12 = 6,13 X 1011dynes/cm2
044 = 2.85 X 1011dynes/cm2

These stiffness moduli must be transformed into the set of con-
stants appropriate to a [111] axis single crystal. This transfor-

mation is carried out in Appendix A of reference (10) and will not be
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duplicated here. The relation of the original set of coordinate axes
and the new set of coordinate axes is shown in Figure A-l. Coordinate

1
axis X1 is aligned with the [111] axis of the crystal, while coordi-

nate axes X2 and X3 are radial lines in the plane perpendicular to the
crystal axis, i.e. in the (111) slip plane. The effect of angular
position about the cylinder axis on the stress can be determined by

varjing the angular position of the coordinate axes Xé and Xé.

As discussed earlier, we assume that a pure twisting motion is

5

being the only strain. Using the transformed elastic constants de-

applied. We align the coordinate axes so that this results in ¢

veloped in reference (10),we have as the resulting stress state:
' =
Cl 0

v _ Ccosb _ '
o, = —355 (1 2 cos 29)65

cé = -Ccosf (1 - 2 cos 26)s§
3/2
T _ . . 1
64 = 031n2 (1 - 2 cos 29)e5
S '
95 = G C+Cy)eg
g =0

where the angular position & is defined in Figure A-1 and C is defined

by = - -
C=0Cyy = Cyp - 2G,

Evaluating the stresses using the elastic constants for aluminum

é and Gi are all less than ten

percent of the radial shear stress Gé. The low values of the cé, )

shows that the maximum values of Gé’ g

3

and Gi indicate that the [111] axis aluminum is behaving in a nearly
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X5 [00]]

X, [1o0]

‘Fig. A-1. Coordinate Axes Transformation
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isotropic manner since the elementary theory predicts that the only
stress would be O;. Therefore, the stress state calculated using the
elementary theory of elasticity is a reasonable approximation of the

actual stress state.
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APPENDIX B

Transmission of Elastic Torsion Waves Along a Cvlindrical Bar Containing

a Gap with a Low Modulus Elastic Material.

The purpose of this analysis is to estimate the effect of a gap
filled with a low modulus material oﬁ the rise time of a torsion stress
wave travelling along a cylindrical bar. Consider an incident torsion
wave travelling in the positive x direction as shown in Figure B-1.

Assume completely elastic behavior so that the following equations hold:

-Lr
T =3 [B1]
AT = p C Av [B2]
I r4
where T is the shear stress, T is the torque, r is the radius, J =-—E—
is the polar moment of inertia, p is the density, C = (G/P)l/zis the

shear wave speed, G is the modulus of rigidity, v = %% r is the

o

particle velocity, and at

is the angular velocity.
The boundary conditions between regions I, II and III of the rod

are

1. Continuity of torque. Because of equation [B1], this leads to

tinui = - .
continuity of stress, TI T11 at X5 Top TIII at x,
2. Continuity of parti i = =
ontinuity of particle velocity, vI Vip at Xl’ vII Virt
t .
at x,

where Roman numeral subscripts refer to regions of the rod. Arabic
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numeral subscripts are used to identify waves as shown in Figure B-1.
Continuity of stress requires
At + Av, = Av B3
1 2 3 (B3]
Continuity of particle velocity requires
+ = A
vy b, Vg [B4]

Substituting equation [B2] into [B4], and recognizing that

ATZ = - pICIAv since the wave is travelling in the negative direction,
gives
p._C
—-—l—L———CH (A'rl- A’rz) = ATB [B5]
’r *1
Solving equations [B3] and [B5] for b, gives
p. C
- At (1 - I-CI)
AT, = P11z
2 0. ¢
(1+ "1—51' )
P11 11

The remaining stress waves shown on Figure B~1 can be obtained in

a similar manner. Letting PIICII = ¢ the stress waves are:
’ C
1 ™1
Stress Wave Value
ATl ATl_
-Ar -9
ATy 1 1+ a)
1
A —_
A"'3 200 By (1+
At 1
4oy At ———
4 1 (1+ oz)2
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bt 200 AT 1——¢'—°0—-2-,—
(1 + @

v b pr L9

1 (1 + a)3

2
AT7 2o ATi—Li—:-gl§~
(1 +

2
Mg hor ATl—’(‘_l"‘l 2
(1L + o)

1 - o 3

Lo+ o
etcec.

It can be seen that subsequent transmitted waves in rod III

will be:
2n - 2 4 o AT 2n
w, =tas AL L, ol [s6]
n>‘1*n (1+ a) (L - @)

and subsequent reflected waves will be:

2n - 1
AT = 4 o AT -—S—l_-:;..g). [B7]
4n + 2 1 2n+ 1
o>l (1+ o

The first reflected wave, ATZ, is an unloading wave while the
subsequent reflected_wa&es are loading waves tending to restore the
stress in rod I to the original value of ATl. The transmitted waves
are all 1oading waves tending to buil& up the stress in rod III to AT._.

Using the standard formula for the.sum of a geometric progression,

the sum of the first N transmitted waves is found to be:
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N 2N

: 1 -«
Elmm = ml (1 - (1+ 0, ] (B8]

The criteria for the gap to pass a torsion stress wave success-
fully is that a large fraction f be transmitted within the desired
rise time At. To transmit a fraction f of the incident wave, requires

N transmitted waves where:

N
nElAT4n 1 -« 2N
£ “Ta 1-G5% [89]
Solving for N gives
N-dindl-D [B10]
9
" Y e

The time for the transmitted wave to build up to a value of fAT
.is thus seen to be, using Figure B-1, the time required for 2N stress
waves to cross the gap. Setting this time equal to the desired rise

time gives

bt = =2 [B11] -

Solving for the required shear wave speed in the gap, and using

equation [B10], gives .
_2Nh

_hbh 1n(1 -9
II At At ln(l - a) [312]
1+«

Equation [B12] relates the required material propérties, i. e.
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CII = (GII/pII)llz, with the desired stress pglse rise time At and the

fraction of the stress wave passed during the rise time, f. For a gap
material having a low elastic modulus, @ will be much less than unity,

and equation [B12] reduces to

p.C
G =-_.I_.I..1:_1

11 5 AL 1n(l - £) [B13]

For example, if h = .0025 cm, At = ].0_6 sec, £ = 0.9, and
pICI = 8.4X16—5 gm/ cmz- sec (typical for aluminum), then GII must be
more than 2.4X10° dynes/cmz.

In conclusion, it appears‘that a modulus of rigidity of about
10° dynes/cm2 is required to pass a torsion wave with a rise time of
about a psec across a thin, ;0025 cm, gap. From equation [B13], it
can be seen that the rise time At is inversely broportional to the
‘modulus of rigidity G; if the modulus is decreased, the time taken
to pass a given percentage of the stress across the gap increases
proportionately. Aléo, if the gap height h is increased, the time

‘taken to pass a given percentage of the stress increases proportionately.
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APPENDIX C

Demonstration That Dislocation Velocity is Linearly Proportional to

Resolved Shear Stress (43).

The purpose of this analysis is fo show that the dislocation
velocity is linearly proportional to resolved shear stress if the
elementary elastic stress distribution for torsion applies and if it
is observed that the dislocation displacement, D, is linearly pro-
portional to the product of the radius and the stress resolution
factor, rcos 6.

The displacement of a dislocation is given by

[ee]

D =f v(t)dt {c1]
0

where v(t) is the dislocation velocity and t is the time. Assume
that the velocity is some monotonically increasing function of

resolved shear stress, Tr:

v = f(Tr) [c2]

Assume that the shear stress acting on the test surface is
linearly proportional to the radius, i. e. that the elementary elastic

stress distribution applies:

T(r,t) =K x S(t) [c3]
a

where r is the radius, a is the outer radius of the specimen, S(t) is

the strain gage record, and K is a constant involving the moment of

inertia and the elastic constant.

The resolved shear stress Tr then is
T = Tcos 8 [ca]

where O is the angle between the perpendicular to the radial line
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through the dislocation and the Burgers vector of the dislocation.

Using equations [C3] and [C4] the resolved shear stress is

T, = Keos 8 r s(t) [cs]
a

Equations [C1] and [C2] give for the displacement

o]
D = { (7 )dt [c6]
Differentiating the displacement with respect to rcos O gives
@K @ .
a = of(r )dt = [ df (7 ) o dt (c7]
O(rcos ©) 0 0
3(xcos 6) dTr d(rcos 0)
Using [C5] in [C7] gives
©
D =£dﬂn)f S(t)dt [c8]
d(rcos 8) a dTr 0

The experimental measurements have shown (Figure 14) that the
displacement is linearly proportional to rcos & for a given test,
therefore:

3D = C, = Constant Lc9]
d(rcos 0)

Also, for a given test,

o

f‘S(t)dtv= C, = Constant [c10]
0

Combining equations [C8], [C9] and [C10] gives

df(1 ) =C; a = C_. = Constant fc11]

1 3

C
dTr 2 K
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Integrating [C11] gives
v=1£f(r)=CT +¢C [c12]

Assuming that the velocity is zero for a zero stress results in

C, = 0 and gives

4
v =Gt fc13]

which shows that the velocity is linearly proportional to the resolved

shear stress.
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ATPENDIX D

Affect of Plastic Yielding on the Stress Distribution in a Cyvlinder

under Torsion.

The purpose of this calculation is to show that plastic yielding
in the outer regions of the test specimen did not significantly alter
..the stress distribution in the inner elastic regions where dislocation
velocity was measured. The conservative assumption is made that the
material behaves in an elastic - perfectly plastic manner.

The elastic stress distribution Te in a cylinder to which a

1
torque T is applied is given by

= 2T
To1 _"f (D1]

ma
where r is the radius and a is the outer radius.

An elastic ~ perfectly plastic matecrial is one which has a linear
stress - strain relation up to a yield stress T , and a constant
stress for any fufther strain. If a cyliqder is made of an elastic =
perfectly plastic material, the torque carried by the cylinder when

the outer part of it has yielded is given by (42):

T = 217 a3(1 - _§3) [D2]
3 7 4

where B is the ratio of the radius of the boundary between the elastic
region and the plastic region to the outer radius. The stress T in

the elastic region is given by

T=T r (D3]

Solving equation [D2] for Ty gives

T = 3T [D4]

y 3 3

2na”(1 - 8")
4
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Equations [D3] and [D4] combine to give

T = 3Tr EDSJ
2na45(1 '.§3)
4

Using equations [D1] and [D5], the ratio of the stress in the
elastic central region of a plastically yielded cylinder to the stress
‘at the same radius in a cylinder without plastic yielding. and

carrying the same torque is

T = 3 ’ [p6]

- -

Tel 4B(1 - 8°)
-4

Significant plastic yieldiﬁg involves the motion of large numbers
of dislocations. Examination of Berg-Barrett X-~ray micrographs
showed that dislocation multiplication and motion sufficient to
result in significant plastic yielding occurred in the worst case for
the outer 20% of the radius. In this worst case, B = 0.8, and the
stress in the central region is increased relative to the elastic case

by eight percent.
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