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ABSTRACT

A steady-~state model is devéloped for the solar wind in the
equatorial plane. Included in the equation of motion are forces due
to gravity, viscosity, pressure gradients and magnetic fields. The
electrical conductivity of this plasma is taken to be infinite. Since
it is impossible to determine the qualitative features of the solar
. wind motion from a study of the complete sect of equations, a simplified
model is treated at first. This model has an isotropic pressure, no
viscosity and an energy supply characferized by a polytrope law. It is
found that the solution of the radial motion must pass through three
cfiticallpoints, whose significance is e#plained in terms of the
characteristic velocities with which small amplitude disturbances
propagate. Similarly, the solution of the azimuthal motion has to pass
through the radial Alfvénic critical point where the radial Alfvénic
Mach number equals unity. The conditions at this point together with
the solution‘of the radial motion then deterﬁines uniquely the values of
the azimuthal velocity and of the magnetic field everywhere, in parti-
cular at fhe surface of thé sun. A numerical solution is obtained for
typical parameters. The solution indicates that the magnetic field
produces only a modest tendency toward corotation of the solar wind,
azimuthal velocities of the order of 1 km sec-1 at 1 a.u. being typical,
but that the magnetic stresses apply a torque to the sun equal to that
required to produce effective corotation out to the radial Alfvénic

critical point. For typical solar wind values this will occur between
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15 and 50 solar radii out, which implies a substantial loss in the angu-
lgr momentum of the sun.

The polytrope model does nof represent a very real model of the
energy supply to the solar wind. To obtain information on the energy-
transport in the inner part of the solar system a solar wind model is
developed in which the density distribution between the photosphere
and 10 r, is determined from observations and where between 10 r, and
.1 a.u. heat is supplied by thermal conduction only. With this model
the amount of heating due to waves in the solar corona can be determined.

Since the azimuthal motion doés not influence the radial
motion appreciably, the stability of the azimuthal motion is investi-
gafed on the assumption that the radial solution is a given function of
distance. It is shown that under these conditions disturbances travel
along the characteristics and that for such disturbances the model is
stable. Using the same assumption about the radial wvelocity, the
effect of viscosity and anisotropy in the pressure on the azimuthal
motion is investigated. The results indicate that the total torque on
the sun is slightly less than that obtained from the non-viscous model,

but that the torque on the solar wind due to these additional forces
results in an azimuthal velocity at 1 a.u. which is approximately

5 km sec .
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I. AN INTRODUCTION TO THE SOLAR WIND

I.1 Particles in Interplanetary Space

Interplanetary space, the region between thé sun and the planets
had ﬁor a long time been tacitly treated as a vacuum, void and empty,
except for comets, asteroids, light,and cosmic rays. In reality it is
filled with a large number of moving particles which make up what is
referred to as the interplanétary medium. These particles have a great

.range in energy and with few exceptions have originated at the sun. As
they move butward from the sun, these particles determine the over=-all
properties of interplanetary‘space.

Thus the inner boundary of this region, if one may speak of this
as a boundary at all, is the top of the sun's atmosphere, indeed a very
poorly defined surface. The transition between the sun's corona and
interplanetary space is so gradual that one can easily consider the
interplanetary space as the sun's uppermost atmospheric region, which
then, of course, implies that all the planets move in the atmosphere of
the sun.

The large extent of the solar atmosphere is due to the fact that

.the solar corona has a temperature of a few million degrees. The
gravitational field of the sun cannot contain this hot gas and thus the
coroﬁa expands continuously. In the corona with its high temperature,
all elements are ionized and because of the low probability of re-
combination, gases which move out_from the sun will in general remain
ionized to a distance of at least a few astromomical units. The

continuous, steady stream of ionized gas particles which is emitted
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from the sun constitutes dn electrically neutral plasma, which is highly
conductiﬁg electrically. It is therefore strongly influenced by and
couéled to the magnetic fields which are present, which in turn are
affected by the motion of the plasma. To this process the name ''solar
wind" has been given (P#rker, 1958) .

| In addition to this steady ”boiling off" of particles from the
quiet .sun, there occur transient and localized emission of particles.
These originate from active regions on the sun, where violent processes
throw particles off which will travel with very much higher velocities
. than £he solar wind. These particles may reach the earth in a few
‘minutes to hours, whereas the solar wind requires a few days for this
journey.

As the solar wind with the magnetic field embedded in it flows
away from the sun it will eventually come to a region,'where the
momentum flux of this outflowing gas and the interstellar cosmic ray
'plus magnetic pressure become comparable to each other. 1In this region,
the solar wind will be slowed down, and a shock wave will be produced.
This region may be considered as the outer boundary of interplanetary

space.

1.2 Early Work and Experimental Observations

The earliest known suggestions of a close connection between
auroras, geomagnetic storms and other related phenomena and a possibly
existing solar corpuscular radiation were made around the turn of the
century (FitzGerald, 1892, 1900; Lodge, 1900). They were generally
ignored or even argued against very strongly (Kelvin, 1892). It was

the close parallelism between the fluorescence produced by cathode rays
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in a tube and the aurora in the atmosphere that had triggered the
suggestion of the existence of‘a solar corpuscular radiation which could
excite the atoms in the upper atmos@here and thus produce the aurora.
Very detailed observations of auroras and geomagnetic activity and
~related laboratory experiments on magnetized spheres were performed by
Birkeland (1908, 1913) in the period from 1897 until 1903. It was
largely due to his work and later work by Stormer (1955) and Chapman
(1918, 1919) that the idea of the existence of particle streams froﬁ

the sun began to gain acceptance. Some thirty years later, Chapman and
Ferraro (1931) derived theoretical models that explained how such effects
as the sudden commencement and the initial phase of a geomagnetic storm
could be accounted for by localized streams of particles thrown off the
sun. About the same time, the anti-correlation of the galactic cosmic-
ray intensity with the solar activity was discovered by Forbusﬁ (1938).
VThe observations of acceleration of molecular ions in the tail of

type I comets by Wurm (1943) led Biermann (1951) to suggest that the
emission of particles from the sun was a continuous process.

With the availability of deep space probes a new era has begun in
‘this field. It has now become possible to determine in some detail the
properties of the interplanetary medium in the vicinity of the earth.
Mariners II and IV even permittéd us to obtain certain data for the
region between Venus and Earth and Earth and Mars, respectively. Thése
and other spacevproﬂes have provided much needed data on particle
velocity, density, and magnetic fields outside the earth's magnetosphere.
Neugebauer and Snyder (1966), Wolfe, Silva, and Meyers (1966) and others

have observed a steady stream of particles near 1 a.u., which is



-4 -

supersonic. At the saﬁe time measurements of the magnetic field have
been made and were ?cported by Davis, Smith, Coleman, and Sonnett (1966)
and Ness, Scearce and Seek (1964). Within the last year satellites

have been launched with still more sophisticated measuring devices,

with which more detailed studies of the solar wind properties can be
made. During the part of the solar cycle that has been explored, the
typical solar wind near 1 a.u. may be described as having a velocity
‘which is nearly radial and has a magnitude between 300 km sec“1 and

700 km sec:—1 with occasional excursions to perhaps 275 km sec-l, and,
when the sun is active, to at least 800 km sec-l. The observed

particle densities are usually of the order of 2 to 10 ions cm-3 even
thodgh 3-hour density averages on Mariner II have ranged from as low

as 0.4 ions cm-'3 to values as high as 80 ioms cm-3. The solar wind
proton temperature varies between 3 x 104 and 9 x 105 °k with an
7average value of approximately 1.8 x 105 °k. The average interplanetary
magnetic field near 1 a.u. has a magnitude which fluctuates from
approximately 2 to 8y and the field vector lies mainly in the equatorial
plane. A typical set of average solar wind values is represented by a
radial velocity of 400 km sec—l, a density of 5 ions cm-3, a tempera-

ture of 2 x 10° %k and a magnetic field of 5y.

I.3 Theoretical Investigations and Scope of Present Work

Biermann's (1951) suggestion that the sun emitted corpuscular
radiation continuously was for some time largely ignored or rejected.
Parker (1958) revived the idea by demonstrating that the solar corona

would not be in hydrostatic equilibrium and thus had to expand
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continuously. Later work of Parker (1963,1965) dealt with more general
ﬁroperties of a radially expanding plasma. Many other investigators
have discussed various properties of the solar wind, but until very
recently all models treated were restricted to plasmas with purely
radial flow only,in which magnetic forces had been neglected. Parker
(1963) has discussed some of the general properties which the magnetic
field in the solar wind should have.

The present work treats the motion of a plasma which has an
‘azimuthal as well as a radial velocity and which carries embedded in
it a magnetic field. From the solution of the azimuthal equation of
. motion we obtain the wvalue of the torque which the solar wind exerts on
‘the sun in the equatorial region. In addition we will show that from a
solution of the solar wind equation together with a knowledge of the
coronal density we are able to deduce the amount and distribution of
- energy which has to be deposited in the corona to drive the solar
wind. Finally, we will discuss some of the effects which an aniso-
tropic pressure tensor and viscosity may have on the azimuthal motion
of the solar wind in the presence of a magnetic field.

Very recently,<paper$ by Brandt (1966), Pneuman (1966),
Modisette (1967) and Weber and Davis (196?) have begun an exploration of

the problem treated here.
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~II. THE SOLAR WIND MODEL

II.1 Basic Postulates and Assumptions

In this model we will use the magneto-hydrodynamic equations of a
perfectly conducting fluid to describe the behavior and properties of
the éolar wind. For thié to be true, randomizing processes have to
exist and operate in the region of interest. If Coulomb collisions were
the only such process acting in the solar wind, the hydrodynamic

"approximation would be inappropriate as soon as we get out from the
sun more than a few solar radii. The success with which models, using
the hydrodynamic equations,vhave predicted the general behavior and
the over-all properties of the solar wind all the way out to the orbit
of Mars can be considered the best proof that there exist other random-
izing processes in interplanetary space besides Coulomb collisioms.
'Such processes may be scattering from local field irregularities and
local instabilities which tend to make the velocity distributions
isotropic. There may still be many other mechanisms which are not yet
known. All indications which we have at the present time seem to
support the assumptioq that the hydrodynamic or magneto-hydrodynamic
equations are a reasonably accurate means of describing the properties
of the solar wind.

In our model the sun is assdmed to have a general magnetic field
that depends only on latitude. The local irregularities in the field,
the polarity reversals and wind velocity fluctuations of the sector
structure, and the waves superimpésed on the smooth field in inter-

planetary space are all unessential in treating the basic behavior of
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the solar wind. The average magnetic field in the equatorial plane
éan‘have no substantial component normal to this plane as has been shown
by Davis (1966). Accordiﬁgly, we will examine primarily a steady state
model with complete axial symmetry and mirror symmetry about the
,equa?qrial plane in which the field is combed out by the solar wind.
There will be a flux return at other latitudes which we do not need to
consider if we concentrate our attention on the solar wind in the
.equatorial plane only. Thus in spherical polar coordinates r, the
_distance from the center of the sun, is the only independent variable,
~there being no @ dependence. We assume further the plasma in the solar
wind is made up of pure hydrogen. The presence of helium ions in the
solar wind will give only relatively slight complications which do not
affect the results significantly.
For simplicity the functional dependence of variables on r will

“not be indicated. All variables with a subscript ( )@ refer to values
for the sun, those with subseript ( )o to values at an arbitrary
reference level, those with ( )e to values at the earth's orbit, i.e.,
at 1 a.u., and those with subscripts ( )C, ( )a’ and ( )f to values at
the three critical points which will be derived in the solution and
Which will be explained in the next section. In all our work we will
further assume that in the steady-state solar wind the velocities and
magnefic fields as well as their derivatives are continuous, smooth

functions of position, i.e., no shocks exist anywhere.

II.2 Solar Wind Equations

In the equatorial plane we may describe the velocity of the

solar wind by



+v_e (I1.2.1)

where r, 6, ¢ are the usual spherical polar coordinates in an inertial
frame whose polar axis is the sun's axis of rotation. In the steady

state, conservation of mass requires that
2
pur = constant (11.2.2)
. o -3 e c .
where p is the mass density in gm cm ~. The magnetic field is given
in a similar way by
B=B e +B & (I1.2.3)

But from Maxwell's equation we know that div B = O and hence

: 2
rzB = constant = r B : (I1.2.4)
T 0 ro

The solar wind is a perfect conductor and thus the electric field in an

inertial frame E is given by
~

v X §

E:-

p (I1.2.5)

in Gaussian units. In a steady state we obtain furthermore from

Maxwell's equations

‘[r(uBcp - vchr)] =0 (11.2.6)

&>

=1
c(V x E)@ =7

But in a perfectly conducting fluid, y is parallel to B in a frame
that corotates with the sun. This allows us to evaluate the constant

which we obtain from the integration of Eq. (II1.2.6) and thus

o 2
r(uBcp - vcp Br) = constant = - Qr B, (II.2.7)
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where O is the angular velocity of the roots of the lines of force in
t.he' sum. |

This model has @ symmetfy and we may obtaih the equation of
motion in the Q-directipn in the following way. Let us consider a
ring of fluid bounded by surfaces at r, r + & and 6 = 90° + n9/2.
This ring has volume anzém A6 which moves outward with a radial
velocity u. As this annulus moves out, the change in the angular

momentum of the fluid enclosed in this volume must equal the net torque

on it, i.e.,

Here ¢ is the angular momentum in the volume, n is a unit vector
directed outward from the surface and da is a surface element, and T
is the total stress temsor. The integral is to be evaluated over the
total surface S eﬁclosing the volume of the fluid. As the annulus

moves outward its thickness Ar is given by

Or = u At (I1.2.9)

where At is a constant time interval. The angular momentum of the fluid

in the annulus is given by

4= 2nr3p vcp or A6 (11.2.10)
The cross product under the integral in Eq. (II1.2.8) is defined by

(E x E)xp - de
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nort . ' . _ .
where 1 is the completely asymmetrical temsor and g is the determinant
of the metric tensor. The metric tensor in turn ’'is given by
1 0 0

g,., = 0 r2 0

0 0 rzsinze

The surface integral on the right-hand side of Eq. (II.2.8) can now be

evaluated quite readily to give
T (r + A)2m(r + AX)OM6 - T (r)2xron8 = 2xM0ar = (27T ) (11.2.11)
P T _ £ e = 2x i - .2,

This is the only contribution to the integral since we restrict our dis-
ccussion to the equatorial plane? and with the assumption that vQp depends
only as sin 6 on the polar angle 6, the Té¢rcomponent is identically
zero.' Using Eqs. (II.2.9), (1I.2.10), and (I1.2.11) we can now

evaluate Eqs. (I11.2.8). 1In a steady state this yields

d 2 4, 3
2 N8 At u i (upr rv®) = 2% NG At u ar (r Tr¢) (11.2.12)

which may be integrated immediately to give

2 3 2 '
pur rv@ = r Trcp + K pur (1I1.2.13)

2
where K pur is a constant of integration. The total stress temsor T
is made up of the Maxwell stress temsor M and the mechanical stress
tensor JoF which is just the negative of the pressure tensor p plus the

viscous stress temsor ¢°, Thus we may write for the r® component of T

Tr@ = ﬁrw + Urm = i B, B -p._+o«C (I1.2.14)
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Wg will discuss how»ong‘may calculate Gr$ and prw in Section IV and in
Appendix A.

To describe completely the motion of the soiar wind we need an
equation to express the‘conseryation of'iinear momentum in the solar
~wind. The forces acting on the plasma in the radial direction are
those due to the gravitational attraction of the sun, the gradient of
the scalar pressure in the radial direction, the magnetic forces, the
centrifugal force due to the azimuthal motion of the wind and all those
Additional forces which are caused by the terms in the mechanical stress
tensor. Thus we can take as the steady state radial momentum equation

v 2

UQE:_ E:_M_Q__R_'__];(JXB + _&_’__1_.@._(
PY 4r P c '~ ~)r - r3 dr

d r3 [} 3
2 dr
T

-r

%rr prr)
(IT.2.15)

where G is the universal gravitational comnstant, M0 is the mass of

the sun and J is the current density. Appendix A gives a derivation

which indicates how the last term is calculated. But from Maxwell's

equation we know that
J = im VxB (11.2.16)

and thus the magnetic force in the radial direction may be expressed

as
1 _ o1 . d
s G ED. = IE By o OB (11.2.17)

As the equation of state of the solar wind plasma we may use
the ideal gas law. Since in a fully ionized gas of pure hydrogen the
total number of particles is 2p/m, where m is the mass of the hydrogen

atom, the equation of state is
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p = a P (1I1.2.18)

m

where T is the temperature of the gas (assumed equal for ionms and
clectrons), and k is Boltzmann's constant. In order to determine a
connection between the temperature and the density, we need an energy
equation. As the solar corona expands and forms the solar wind, the
total energy flux has to be a constant, since there are no sources or

sinks in interplanetary space. The total energy flux per steradian, F,

.is given by

S _ 2
GM B BB
2 (121 2 @5kT> \2(cp ot x )
F=1rpu (2 u -+ 5 vcp i + o +r Lt u - b V@
20 241, 2
muro.  -kT + r S(r) (11.2.19)

where k is the thermal conductivity of the plasma which is proportional
“to T5/2(Chapman and Cowling, 1952; Chapman, 1954), S(r) is a source
function whose physical significance we shall discuss in more detail
later.

On the right-hand side of Eq. (II.2.19) the terms in the first
bracket represent the energy convected out by the solar wind itself in
the form of kinetic and potential energies and in its enthalpy. The
terms in the second bracket represent the Poynting energy flux, while
the third and fourth terms are the energy flux associated with the
viscous stress tensor (Scarf and Noble, 1964) and the heat conduction,
respectively. To explain the physical significance of the last term
it is best to comnsider the‘conditions near the surface of the sun in

more detail. It is observed that the temperature of the solar plasma
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increases as we go outward from the visible surface and the photosphere
to the chromosphere and the corona, with the latterreaching a temperature
of a few million degrees. The corona looses energy constantly by heat
conduction and due to the solar wind. This energy has to be supplied
to the coroné in some way, otherwise it would cool off very rapidly.
Alfven (1947), Biermann (1948), Schwarzschild (1948), Parker (1960)

and Osterbrock (1961) have presented physical explanations of this
phenomenon. Today it is generally assumed that the corona is principally
. heated by the dissipation of hydromagnetic waves, which in turn were
generated from internal gravity waves and the dissipation of shock
waves in the chromosphere. This heating by hydromagnetic wave dissi-
pation is not necessarily confined to the lower solar corona, but may
expend for a significant distance out from the sun and thus supply
energy to the solar wind directly. This additional emergy flux from
the sun will be répresented by the function S. Since weihave at the
present time very little quantitative information about this heating
mechanism and the dissipation of hydromagnetic waves, we do not know
anything about the form of this function S(r). In Section III.6 of
this thesis we will discuss how a knowledge of the demsity function

in the vicinity of the sun willbenable us to determiné the amount of
_energy deposition required in the solar corona and in the solar wind,
and thus, in turn, will allow us to obtain information about this
function.

The total energy flux as given by the right-hand side of
Eq. (11.2.19) is a constant. Thus we have basically four equatioms,

namely (II.2.7), (II.2.13), (II.2.15), and (II.2.19) in four unknowns:
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g, V¢’ B@, T. Alllothér variables may. be expressed in terms of these
four by use of the other equations. As they stand these equations form
a set of non-linear, second order differential equations which cannot

be solved analytically. Even numerical solutions are very difficult, if
- not impossible, for the following reasons. First and foremost, the
function S is unknown and we have at the present time neither a theory
which would predict its form and properties, nor experimental results
from which it could be determined directly. One could overcome this

. difficulty by arguing that this function S is identically zero and that
the energy transported by heat conduction is sufficient to drive the
solar wind. This may be justified beyond approximately 2r6, but it

is certainly not correct in the regiom between the sun's surface and
2r0. But even if one considers a case for which § = 0, one will find
that it is still extremely difficult, if not impossible,to obtain
‘numerical resultsifor the complete set of equations. The reason for
this is that the equations are very sensitive and that there exist criti-
cal points which govern the behavior of the solution. A more elaborate
and detailed discussion of this fact will be given in the next sectiom.
Furthermore, while we wish to understand the general behavior of the
solar wind in as much detail as>possib1e, we wish in this discussion
mainly to investigate the angular motion of the solar wind and the
effec£ it has on the angular momentum of the sun. Therefore, we

shall discuss in the next sections two slightly simpler models of the
solar wind, which will nevertheless give us a great deal of insight into
the behavior and a good understanding of the properties of the solar

wind.
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III. MODELS OF THE SOLAR WIND WITH AN ISOTROPIC PRESSURE TENSOR

III;I General Discussion

The major difficulty which we encounter in trying to solve the
set of Eqs. (II.2.7), (II.2.13), (I1.2.15), and (II.2.19) which describe
the solar wind is the presence of the traceless mechanical stress tensor
g- Models of a purely radially moving solar wind in which this tensor
has been replaced simply by the ordinary viscous stress tensor as given
‘by Landau and Lifshitz (1959) have been investigated by Scarf and
Noble (1965), and Whang, Liu and Chang (1966). Parker (1965) and
Meyer and Schmidt (1966) have commente& on these solutions and the
latter authors have argued that the presence of the magnetic field in
the‘interplanetary space should change the form of the viscosity term
drastically. Similariy Pneuman (1966) has investigated the purely
azimuthal motion of the solar wind using again the viscous stress tensor
as given by Landau and Lifschitz. Since the stress tensor g and espe-
ciglly its orcp component will be significantly altered by the presence
of the magnetic field and the anisotropy which is thus introduced in
space, we do not feel that the results obtained neglecting the presence
of the magnetic field‘in a discussion of the azimuthal motion of the
solar wind will predict properly the behavior of the solar wind. On
the other hand, if we neglect all effects on the motion due to any
anisotropy in the p#essure, and if we furthermore consider a non-viscous
model of the solar wind, we shall have a model which, although not com~
plete, is simple enough that we can solve it readily. Furthermore,

solution will be complete enough to give a sound understanding of
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the azimuthal motion of the solar wind, the extent to which there is
effectivé corotation, and the rate of loss of angular momentum from

the sun. In addition, we will be able to calculate the effect which the
azimuthal motion of the solar wind and the presence of the magnetic
field‘have on the radial motion itself.

In the general framework of non-viscous, isotropic pressure
models we shall discuss and solve in detail a model in which S(r) is
assumed to behave in such a way that T and p are connected by a poly-
trope law. This model will then be used to obtain the desired results
for the azimuthal wind velocity and the torque exerted by the solar
wind on the sun. Secondly, we shall discuss a model which uses the
.complete energy equation (II.2.19), except that O:r and p_, are set
equal to zero, thus obtaining S(r) from the observed run of density near
the sun, from the assumption that S is zero beyond a given distance

from the sun and from suitable boundary conditions at 1 a.u.

IITI.2 Polytrope Model of the Solar Wind

Since we have no information about the nature and distribution of
sources of energy in the solar wind, we will not try to determine the
temperature from the energy equation (I1.2.19). Instead we will make
the approximation that is usual when the sources are poorly known and

use the polytrope law

Y Y '
N T B
p= p°<po> = pa< ) (III.2.1)

where y is the polytropic index.

If there is a large amount of heating in the neighborhood of
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the sun, then we would éxpect Y to have a value close to 1 in this region.
dn the other hand, §ery far away from the sun we expect that there is no
substantial heating of the solar wind due to waves, etc., and if the
- temperature drops sufficiently fast, there will also be practically no
- heating due to thermal conductivity. Thus y should approach the
adiabatic value of 5/3 as r becomes large. It is hence clear that y
is really not comstant, but is a slowly varying function of r. Never-
‘theless, let us, for simplicity, treat the case in which vy is a constant
and then later indicate the effect of making vy a slowly varying
function. Using the polytrope approximation to the energy equation,

we may immediately rewrite the radial momentum equation (II.2.15):

GM p v-1 B : v
du__Ho __a_P_.> do _Jo_ a Yo
Y ar P72 ¥ P, (pa dr 4pr dr (rB@) +to T
(I11.2.2)

where use has beer made of Eq. (I1.2.17). Since we assume Gij = 0 we
can evaluate Eq. (II1.2.13) using only the magnetic terms of Eq. (I1.2.14)

for the stress tensor and obtain

. _ro_ |
r v(p r lrpu L (I11.2.3)

where we have used L instead of K for the constant of integration.
This gives us now two equations relating v@ and Bw, namely (II.2.7)
and (111.2.3) which may be solved for either one of these variables as
a function of u and-r only. First, it is convenient to introduce a
new variable, MA, which we call the radial Alfvénic Magh number and

which is defined by



2 hmpu®
M © o= I (IIT1.2.4)
A B 2
T

Now, -solving for the azimuthal velocity, we obtain

2. =2 -1
GﬁA Lr @ - 1)
v = Qr 5 (I1I1.2.5)

¢ ™,” -1

The radial Alfvénic Mach number MA is much smaller than 1 near the
surface of the sun, but at 1 a.u. MA is approximately 10. Thus there

.exists a point between the sun and the earth where MA = 1; let the
'radius’and radial velocity at this point be called r, and u_,
respectively. This point will be called the Alfvénic critical point.
The deéenominator of the above expression will go to zero at this point
ana the angular velocity would become singular unless the numerator
vanishes identically at the same point. Thus the condition that V¢
must remain finite at the Alfvénic critical point requires that the
magnetic field must arrange itself so that the constant L has the
value

2

1, = ‘Qra . (111.2.6)

‘ : 2
But from Eqs. (II.2.2), (II.2.4), and (III.2.4), we see that MA /(urz)

is a constant which may be evaluated at the Alfvénic critical point to

give
| 2 |
2 _ ur” _"a
MA = 7”5 (I11.2.7)
ur
aa
This reduces Eq. (III.2.5) to
(u - u)
v = QE 5 (111.2.8)
¢ Ya 1-M
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The azimuthal magnetic field is thus given by

2 2
r -~

a
(I11.2.9)
V) r u 2 _ 2
ar, (1 MA h)

The asymptotic behavior of these functioms, vcp and Bcp can now
be obtained. TFor r >> r s the radial velocity, u, in the usual

A
Bcp vary as 1l/r. For r << r where u << s Eq. (III.2.9) gives us

solutions is almost a constant, u and thus M, « r and both vCP and
=]

for the azimuthal field

- 2
= - ar _r S, -
B, = -3 % [ . (1 . )+ ] (I11.2.10)
. a r a
. a
whereas
: u, r2 )
V(p = Or [ - -1-1— (1 - —E + —--] (111.2.11)
, . a ra N

Near the surface of the sun most of Lhe angular momentum loss is
’due to the torque exerted by the magnetic fields. As we go farther away
from the sun, the azimuthal fluid velocity increases and the magnetic
stress decreases until at large distances their relative contributions
to the total angular momentum loss are [1 - (ua/um)] andvua/um,
respectiveiy. An impoftant feature of the solution which is worth
noting is that the constant L is not determined by the values of Bcp
and v¢ at the sun. Instead, L is détermined from conditions at the
Alfvénic critical point and this fixes B¢. At the surface of the sun,
where the density becomes very large and the radial velocity approaches
zero, we can see from Eq. (III.Z.lO) that the ¢ component of the

magnetic field does not go to zero as has been assumed by many
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investigators, but gppfoaches the value - Br %I:' (1 - rz/raz). Having
thus obtained expressions for vcp and B(P which are functions of u and
T bnly, we can use these expressionsvas well as the mass conservation
equation (II1.2.2) to rewrite the momentum equation (III.2.2) as a

first-order, non-linear differential equation. After some algebraic

manipulation we obtain

du _ u N(u,r) :
dr ~ r D(u,7) - (I1I.2.12)

where the numerator function is given by

P oM
N(u,r) = (zy ;—@- MA'Z(Y'D - —r-g) (MAZ - it (ﬁ—— - ) (III.2.13)

a : a
A u u
a a
and the denominator is given by
' P - - 2 2 2
D(u,r) = (u? - y 2n 20 1)>(M 2 03 At ? - Dt a11.2.18)
pa A A A a

It will be noted immediately that the Alfvénic critical point r =T,
is also a critical point of the radial equation. As we shall see below
this differential equation possesses two additional critical points.
For a polytrope model with its simple relationship between p, T, and S,
. the energy equation is the integ‘ral of the radial momentum equation.

Thus for this model we obtain for F, the total enmergy flux per steradian

2 p GM er 4
e a2l B Y fag 2(v-D) | e a
F pur 5 + Yy - 15 MA ” + > (I11.2.15)

2r )
. (: (ZMA2 -1 (rz- raz)zj
L

a (MA
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Since we have written Fias a function of u and r only, the fourth term
in the above equation represents the sum of the'magnetic and rotational
enérgies. Since we use a polytropic iaw, the second term is the sum
- of the enthalpy and the energy transported by thermal conéuction, and
waves-as described by S(zr).

Equation (III.Z.lS)‘supplies us with an algebraic equation rela-
ting u and r. Before we proceed to solve this equation, it is interes-

ting to investigate the behavior of the solution in general.

II1I.3 Properties and Topology of the Radial Solution

If we consider the region close to the surface of the sun, we
can obtain two asymptotic forms for the radial wvelocity u which are

given by

u = uor(B-ZY)/(Y-l)[l +'a1r - a2r3 + -=-] (1I11.3.1)

and

u = bor-l/zll +br - b2r(5'3\0/2 + -m-] © (ITI.3.2)

"Equation (IIIL.3.1) shows clearly that there is no solution in which u

approaches zero for sméll r when y > 3/2. As r tends to zero, the

-1/(y-1) 3/2

density increases as r for the case of (III.3.1) and as r

b,, b

0’ "1’ "2

depend on the initial conditions and the parameters entering

for the case of (III.3.2). The constants ays a1 2y, b

Eq. (IIT.2.15). If the solutions are required to run through the
critical points, these constants depend on the properties there. The

asymptotic behaviors at large distances are given by
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; 1 1 ..
u, Ob [} + ql f2<V'1) + az " + a3 rz + _] (111.3.3)
and . .
= B -2 1 - v (B - B, /r) + ---:f (I1I.3.4)
U T Fot 2 By -3

wheré again the values of the o's and B's are determined in the same
way as thekconstants of Eqs. (IITI.3.1) and (IIT1.3.2). It is of
interest to determing in particular the asymptotic behavior of those

" solutions which pass through the critical points. If the constants are
evaluated for these solutions we find that two branches behave like u,
and two like u,. If we call these soiutions U,

B a2’ g1

then we find that ual gives the behavior of a supersonic, super-

; and uBz,

Alfvenic wind at infinity, whereas Uyo will remain super—Alfvéhlc,
but becomes subsonic again after passing through the critical points.

If uoé1 has a velocity at infinity of 425 km sec"1 then the value for

. . -1 .
U will be approximately 9 km sec ~. For both w1 and U the

pressure tends to zero as r becomes very large. The remaining two

solutions u and u132 vield non-zero pressures at infinity.

Bl
The topology of the solution is shown in Figure III.3.1 which

appears to show two critical points only, a standard "X"-type
singularity at r = r, and a much higher order singularity at r = -
Actually, as shown by Figure III.3.2, which is an enlargement of a

small area around r of Figure ITI.3.1, two singularities nearly

a

coincide, one being a higher order singularity at r = r, and the other

a simple "X"-type singularity slightly further out at r = r_..
y slightly ¢

If one performs an expansion around r = r. and r = Tey ONE finds
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that both of these points are standard "X"-type singular points. The

same procedure does not work around r = r,- If one sets

[a
il

r (1+¢) | (III.3.5)

[=t
it

u (1 +8) | (1II.3.6)

then Eq. (II.3.4) becomes to lowest order

45 _ B

ryialis (111.3.7)
which can be solved immediately to give

® = me (I11.3.8)

If one uses an expansion in which the next higher term is retained we‘
obtain a fourth order equation in m. If calculations are made it is
found that two roots are real and two are complex. The real roots have
different signs and give the directions with ﬁhich Solutiqns uO[1 and u52'

pass through the radial Alfvénic critical point. If a more general form

for & is used such as
=%k e (111.3.9)

oné finds that the only permissible value of n is 1.
o1’ Yo gy and Ugo are indicated also on

Figures II1.3.1 and III.3.2. 1In order to have a solution for which u

The four branches u

goes to zero for small r and has a value close to the observed one at
1 a.u. the solution has to pass through all three critical points. This
means that the detailed behavior of the solution will depend very largely

on these critical points. As usual, all these singularities are found
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Figure III.3.1

Family of solutions of Eq. (III.2.14) for a given y and T, -
The solutions passing through the critical points are designated as
u_ and u, (with zero pressure at infinity) and u, and u, (with non-

% 2 | Py By
zero pressure at infinity).

Figure III.3.2

Enlargement of Figure III.3.1 about the critical point r/ra = 1.
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at points where ﬁhe flow velocity equals the velocity of a characteris-
tic wave disturbance in the fluid. Fof a model without magnetic
effects as discussed by Parker (1963) there will be only one critical
point which will be close to r. There the fluid velocity will equal
the sound velocity. If magnetic fields are present, there exist other
possible wave fronts besides those formed by sound waves. In magneto-
hydrodynamics, disturbances may travel in addition as Alfvén waves

and the structure of the characteristic manifold is therefore much
‘more complicated. The direction of the magnetic field establishes a
preferred axis and thus introduces anisotropy into the fluid.
Friedrichs and Kranzer (1958) have shown that all possible speeds of
the longitudinal wavefronts can be determined from the characteristic

condition. The characteristic condition is

wz[ 2] =0 (II1.3.10)

4 2 2. 2 2
- +
Wv (VAT + v w Ve Van

where w is the velocity of the disturbance relative to the fluid;

v, = (2\/1<T/m)l/2 is the local sound velocity;

VAT
1/2
N (Br2/4ﬁp) / is the local

= [(Br2 + B@z)/4ﬂp]1/2
is the local Alfven velocity; and Vi
Alfvén velocity along the component of the magnetic field normal to the
wavefront.of interest; i.e., the radial Alfven velocity in our model..
All these‘quantities vary with r. In the region between the surface

of the sun and the critical radius s the angle 8(r) between the
magnetié field vectér and the radius vector ranges from a very small

value to approximately 1/7 radiam. Thus Bcp <« - SBr and to lowest order

in 8 we can solve Eq. (III.3.10)for the characteristic disturbances
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This is valid as long as VAN is not close to Vo whic¢h is the case for
the sun. We can see from (IIIL.3.11) that there are thus two separate
wavefronts traveling with two different possible velocities, a "slow"
wave and a "fast" wave.
The set of equations describing the motion of the disturbance is
in this case a first order system of hyperbolic equations, from which

the characteristics can be obtained as

r Gyt w (IIT.3.12)

It is along these characteristics that all small scale disturbances
travel in the solar wind, except those which travel with the solar
wind, i.e., which have w = 0. Figure III.3.3 shows a sketch of the
characteristics in the r~t plane.

At s the fluid velocity is equal to the velocity of the "slow"

wave, or the sonic wave and at r_., u is equal to the velocity of the

f
"fast'" wave. These then are the two critical points besides L which

~we have in the solution of this model.

II1.4 Numerical Solution of the Equations

By integrating all the differential equations of motion, we have
considerably simplified the problem, but it is still necessary to use
machine computations to obtain a specific solution of the algebraic

equations that remain. It is necessary to determine values for the
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Figure III1.3.3

A sketch showing the characteristics in the r-t plane. The
.characteristics for the "fast" wave are shown in heavy lines, and for the
"slow" wave in light lines. The solid lines refer to the solutiom of
Eq. (II1.3.12) with the + sign and the dashed lines refer to the - sign.

ro-refers to the base of the corona.
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vgrious parameters suchbas the total mass and energy fluxes, and the
critical radius and velocity, r, and u - In éddition, beundary
conditions are needed at T to determine the radial magnetic field,
pressure and density at this point. Finally, we have to choose a
value.of y which will then determine where and how much energy is
supplied to the expanding solar atmosphere. A major difficulty is the
determination of values for all these quantities that are mutually
ponsistent, that lead to a physically possible solution passing through
all three critical points and that éorrespond to typical solar conditioms.
The boundary conditions could in principle be determined near the surface
of the sun, but we prefer to set r, = 1 a.u. and determine them at the
orbit of earth on the basis of observations from recent interplanetary
probes. The subseript ( )e rather than ( )o is ﬁsed for these parameters.
We assign values for our model that are reasonably typical of conditions
in 1964; somewhat aifferent values could have been used without causing
important changes. These values were

400 km sec-l

u
e
Bre =0y ‘
P, = 11.7 x 10-24 grams cm-3, i.e., 7 protons cm-3 (II1.4.1)
T =2x10 %%
e
Q9 = 3.0 x 10-6radians"sec-

Having thus specified the total mass flux, we cannot independently
specify vy, since to obtain the mass flux, a specific energy supply is
required and this implies a specific, as yet unknown value of y.

This can also be seen from a purely mathematical point of view.
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We have specified pe/pe'== 4.7 x 1018 erg gm_l and the constant

-

pﬁr2 = 1.05 x 10ll gm sec”1 sterfl; GM@ is 1.33 x 1026 dynes cngm

By using Eqs. (II1.2.18), (III.2.1) and (III.2.4) we get

, - 2, v-1
2kTa P, P, (Ei) Y 1v 2kTe 2(y-1) ZkTe (4ﬂppu9 )
= -— M = )
p m Ae m
re

a e e B
(I11.4.2)

In order to be able to use Eqg. (III.2.15) to obtain a solution we must
first find T U F and y. However, unless our solution passes through
~all three critical points it cannot extend from very small to very

large values of r; Thus there must be three pairs of values of (r,u)
each of which makes both the numerator‘and denominator of Eq. (I11.2.12)
become equal to zero. The pair (ra,ua) of course does this, but we must
find two more pairs, (rc, uc) and (rf, uf) that also do this. This
gives us 4 equations, but we now have 8 unknowns. In addition, the

energy equation must be satisfied at r = T rc, r and r, and we have

:E)
thus the necessary 8 equations. If we had tried to specify vy, i.e., the
power supply, the system of 8 equations would be over-determined unless
we regarded u or p at T, = re as unknown. Since the 8 equations are
non—linéar, there might be more than one solution. ‘We have proceeded
by an iterative procedure of machine calculations to find one set which
appears to be satisfactory and have assured ourselves that there is no
other physically acceptable solﬁtion for the given set of boundary
conditions.

The equétioné’of motion of the solar wind are greatly simplified

and better adapted for machine calculations if they are rewritten in

dimensionless form. Let us'define new variables as follows:
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X = r/ra : (II1.4.3)
y = u/u (I11.4.4)
7 = MA2 = x%y (111.4.5)

Since all constants are evaluated at the earth's orbit, it is
convenient to define the radial Alfvénic critical radius as a fraction

J
of 1 a.u., i.e.,

a=r /r =x /x (IIT1.4.6)
a e a e
-Since z is equal to unity at r = ra, the velocity at the Alfvénic

critical point is immediately given by.

Xe 2 1 ue 1
u = ue (—) —_= ;—-— -—é- (1II1.4.7)
e e Qo

It is also convenient to introduce the constants

2 2
Q ra
8, = Ty (ITI.4.8)
u
a
= Yy — i.9
Sp = v, /0,7 =7 (I11.4.9)
a
e .
8, = 5 (II1.4.10)
r u
a a

Using the above equations, the radial momentum equation (III.2.12) takes

the dimensionless foirm

dy _ N(x.¥y) III.4.11
dx ~ D(x,y) (I11.4.11)

where the numerator function is given by
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NGo,y) = (25p 2 Y - S/%) (2 - D>+ s (v - x> (x2y% +y - 3z + 1)
(111.4.12)

and the denominator is

' ~y 2 2.2
D(x,y) = x[(y - 8.2 YY) (e - 1> - 5,(1 = %) z) (I11.4.13)
The energy flux equation (III.2.15) becomes

[(z-l):2 + (2z-1) (1-x2)2]
2x2(z-1)2

_ 2 21 2 1 l-y
F—ua pur R4 +Y-————_ lSTZ -SG/X-I-SQ

(I11.4.14)

In a similar way, the expressions for the azimuthal velocity and magnetic

field can be brought into the simpler forms

Qr 2

- _ al (1 -x)
Bw(x,y) = s x (O-D (I1I.4.15)
' Vo (xy) = ar x LL———l(Z - 1) (I11.4.16)

The essential dimensionless parameters on which the character of
the solution‘depends are y, £ = F/(uazuprz), S'I" SG, and SQ' If these
are the same for two models, one will find that u/ua, i.e., y, is the
same function of r/r;, i.e., x, in both. Thus, if these essential
parameters are held constaﬁt, P2 ga and ra may be varied independently
to generate a 3‘parameter famiiy of equivalent solutions. It is
difficult to replaqe r, and y by more directly observable quantitieé
and thus there is no easy way to predict whether two different sets of
observed boundary conditions at r >> r, correspond to essentially the

same solution without working out one solution in detail.
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In determining a numericgl solution, we will find that this model
is ‘plagued by the same difficul;:ies which have been experienced by
other simpler models which use the polytropic approximation to the
energy equation, namely that it is impossible to reproduce the physical
_conditions both at the earth and at the sun. This model uses the boun-
dary conditions at the earth, with the consequence that at the sun,

the radial wind velocity is still very high, the temperature is

2.7 x 106 °k and the density is only 3 x 107 particles cm-3. Values
resembling more closely those known to exist at the sun can be obtained
by using a slowly varying polytropic index y between the sun and the
critical point. But this is just another way of saying that the

energy supply given by any constant y is incorrect. We can improve the
model by using a slowly varying y, where y approaches a value close

to 1 near the sun's surface. This will yield a much better fit for the
~conditions in the coronal region. |

The solution corresponding to the boundary conditions (III.4.1)

yields y = 1.221, r, = 24.3 r i.e., a=0.1131, u = 3.32 x 107 cm

-1

sect r =3.0r,u =1.82x10 cmsec ', r, = 26.6 1
C [S] [+ (0]

f
uf = 3,33 x 107 cm sec-l, and F/pur2 = 9,02 x 1014 ergs gm-lsec.

The determination of u as a function 6f r, and from this all other
properties of the solution, follows by direct numerical solution of the
algebraic eqﬁation (III.4;14). The radial velocity is shown in Figure

I1I1.4.1. For comparison, this figure also shows the radial Alfvénic

velocity and the sound velocity. The density profile is shown in

VAN
Figure III1.4.2. The temperature of the gas predicted by this

model is indicated in Figure III.4.3. As soon as the
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Figure III.4.1

The solution of the radial velocity u from the polytrope model. For
comparison the radial Alfvénic velocity VN and the local sound velocity
v ar¢ also shown. The critical point r. is very close to the inter-
section of the curves u and Ve whereas the other two critical points

r, and r. are at and very near the point where u = VaN"
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Figure II1.4.2

Solar wind density profile derived from the polytrope model
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Figure II1I1.4.3

Solar wind particle temperature profile from the polytrope model.
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radial velocity and thebAlfvé%ic critical points are known, the
aﬁimuthal magnetic field can be calculated and the result is indicated
ip'Figure IIT.4.4. On the same graph we have alsé shown for comparison
the radial magnetic field component. The result shows ciearly the 1/r
dependence of BCP as compared to the l/r2 dependence of Br'

In this comnection it is of considerable interest to determine
the pattern which the magnetic field produces in interplanetary space.
If (r,¥) are the polar coordinates of points along the mégnetic field

lines, then Y(r) must satisfy the equation

B N
dy 0 ' (IT11.4.17)
dr Br

which we can integrate to obtain

: Bdr  ar AL 2 .
v(r) - v, =f met ) f T . dx (III.4.18)
X

r
(¢}

0

'where Wo is a constant of integration. The result is shown in Figure
ITI.4.5. The spiral pattern of the magnetic field in the equatorial
plane resembles very closely the Archimedes spiral given by Parker (1963)
and shows no anomalies at the Alfvénic critical point. For example, a
bline of fofce spirals 620 in solar longitude between the surface of the
sun and 1 a.u. The magnetic field vector is almost radial near the
solar surface and makés an increasingly larger angle with the radius_
vector as the distan?e from the sun iﬁcreases. The change in this
angle, commonly called the "hose'" angle is shown in Figure III.4.6..
From it we can see that the magnetic field near 1 a.u. makes

approximately an angle of 45 deg. with the radial direction.
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Figure II1I.4.4

The magnetic field components in interplanetary space. Br is
the radial component and Bm the azimuthal component of the magnetic
field vector. The curve labeled N is the B¢ component for the non-
viscous, isotropic model whereas the curve labeled V refers to the

solution of Bcp for the viscous, anisotropic model treated in Section IV.
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Figure III.4.5

Equatorial magnetic field pattern swept out by the solar wind.
The spiral resembles the one obtained by Parker (1963), for which he
assumed rigid corotation of the plasma to a certain radius and no
azimuthal wind velocity from then on, but differs from it since the

actual radial dependence of Bcp was used.
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Figure III.4.6

The magnitude of the "hose angle', the angle which the magnetic
field vector makes with the radius vector. In the neighborhood of the
sun this angle is strongly dependent on the azimuthal velocity of the
wind, whereas near 1 a.u. the magnitude of the hose angle is given

-1
by tan “(Qr/u) with a maximum error of approximately 1%.
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Certain time varying features of the magnetic field which have
their origin in the vicinity of magnetically‘active regions on the surface
of the sun are associated with the lines of force originating in this
region and can be observed by space probes. Such active regions are
also-the origin of high and low velocity plasma jets which have been
observed. It is thus of interest to know the elapsed time (y(r) - wo)/Q
between the passage of the foot of a line of force on the sun beneath the

subsolar point of an observer at a distance r from the sun, and the
passage of the actual line of force past .the observer. This is
indicated by curve 1 in Figure III 4.7. Curve 2 on the same figure
shows the transit time t(r) which the plasma requires to reach any given

point in space. We obtain the tramnsit time from

r

tr) -t = dr (IT1.4.19)

N u
(0]

where to is again a constant of integration. This transit time is
again important in that it allows us to make a prediction when
disturbances traveling with the bulk velocity of the plasma reach any
»given point in space. At 1 a.u. the elapsed time (w(re) - WO)/Q is
only 4.65 days, compared to the plasma transit time of 5.65 days.

The transit time is quitg sensitive to the details of the model

just above the sun's surface, since the plasma has a low velocity in

this region and thus spends a relatively long time there. In contrast,
the elapsed time shown in curve 1 is almost completely insensitive to
the exact behavior of the radial wvelocity in this regiom.

The dependence of the azimuthal velocity on radius is shown in
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Figure I1I.4.7

The solid curve gives the total time required between the
central meridian passage of the photospheric foot of a line of force,
assuming the model is valid clear to the photosphere, and the passage. of
this line of force past any given point r.

The dashed line indicates the total transit time of the plasma
from the time it left the sun's surface until it reaches any given

point r.
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FigureIIL4.8. It gppréaches the sun's velocity at T increases to a
maximum value nearly twice as high at approximately 12rO and then
deélines. The increase in azimuthal Velocity is never as rapid as though
there were strict corotation with the sun, the angular velocity at
12r® being only about 0.16 that at the surface. The angular momentum
convected by the solar wind increases monotonically with radius as
indicated in Figure III.4.9, but never produces nearly as large an
effect as the torque due to the magnetic field, which is shown for
comparison in the same figure. The sum of the angular momentum loss and
the torque on the sun is a constant and represents the total angular
momentum loss of the sun per gram of matter lost due to the solar wind,
which amounts to 8.67 x 1018 cm2 sec-l. Together with a total mass
flux of 1.054 x 1011 gm sec“1 steradian this represents a loss to the
angular momentum of the sun of 9.15 x 1029 dynes-cm steradian
This will have a décelerating effect on the angular motion of the sun.
To obtain this braking torque, we need only to assume that the
calculations'made for the equatorial region apply to the entire surface,
except that the factor sin 6 is inserted for the latitude dependence.
The total rate of change of JQ, the total angular momentum of the sun
can then be written as

dJ@ 9 " dM® J

2 =S = -% (I1I.4.20)

where T is a characteristic time, which for this particular model turns
out to be about 7 x 109 years for a uniformly rotating sun. Thus the
solar wind should have a substantial influence on the total angular

momentum of the sun.
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Figure I1I1.4.8

Azimuthal Qelocity of the solar wind. If there were rigid
corotation the azimuthal velocity would increase proportional to r,
‘Whereas if the angular momentum would be conserved, the azimuthal velocity
would decrease inversely proportional to r. In the actual solar wind,
the azimuthal velocity increases for some distance and then declines.

The increasec is much less than one would obtain for the case of a

corotating gas. For this model the maximum azimuthal velocity is at
11.5 . where its angular velocity is only 16% of the solar angular
velocity. Near 1 a.u. the azimuthal velocity falls off very nearly

inversely proportional to r.
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Figure III1.4.9

The magnetic torque and the angular momentum in the solar wind.
The angular momentum convected by the éolar wind increases monotonically
with radius but never produces nearly as large an effect as the torque
due to the magnetic field. Any increase in the plasma angular momentum
is exactly balanced by a decrease in the torque, even though this is
not quite apparent from the figure, which shows these quantities on a
logarithmic scale. The asymptotic value for rvcp will be

2 . 2
r, Q- (1 - ua/um) and for the magnetic torque r, Q. ua/uw.
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The use of a polytropc model implies a specific form for S(r)

which is given by

| _ Y -2(y-1) _ -4/3] P ar .
S(r) pul:Y ) MA 5/2 MA ‘ + & ir (II1.4.21)

ﬁolm

From the solution we have calculated S(r) and the result is indicated
in Figure III.4.10.

Polytrope models in which the magnetic and centrifugal force terms
have been neglected had been treated earlier by Parker (1958, 1963),
Dahlberg (l§63) and other investigators and we are now in a positiom to
,comparé the size of these neglected terms to the pressure, gravitational
or inertial terms for the radial motion. If this is dome we find that
the size of the neglected terms are only of the order of 1% of the
size of the other terms. Thus their neglect will not change the
general behavior of the radial wind velocity to any significant extent.
On the other hand if we wish to apply the fheory of the solar wind to
thé.expanding coroﬁas of other stars, especially to highly magnetic
stars or to stars with a large surface rotation rate, the model
presented here has to be used rather than Parker's model. Although
polytrope modelskhave a number of features which definitely do not
represent the physical situation accurately, they are models which can
‘be solved or at least understood qualitatively quite readily. In the
next section we will discuss a more complicated model, which will allow

us to gain some insight into the energy balance of the solar corona itself.

III.5  The Heating of the Solar Corona and the Solar Wind
In using a polytrope model of the solar corona and of the solar

wind, we have, as has been shown by Eq. (III.4.21), in fact specified
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Figure III.4.10

The convection of thermal energy and the energy deposition into a
p
- Yy “2(v-1) 2 3
T Y - 1 MA pur pa represents
the sum of the enthalpy plus the energy transported by thermal

polytrope solar wind model. F

conduction, waves, etec. for the polytrope model.

- P
F, = 2 M 4/3 pur2 -2 represents the enthalpy convected out by the
. dT |, .
solar wind, FC = -1y E:f: is the energy flux due to thermal conduction

alone and FS = r2 S(r) is the energy flux which has to be supplied
in order that the polytrope approximation be a correct description of

the solar wind.
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20

FIGURE I1.4.10
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how much energy is depdsited at any given point. This particular
distribution is not readily explained physically and it would be of
interest if ome could determine a more realistic function S(r) for a
study of the solar wind. This would also presumably result in a model
of the solar wind more realistic than the polytrope model. If we
‘consider the complete energy equation ( II.2.19) for a case in which
there is no viscosity and where the pressure is isotropic, G:r and P
are equal to zero. Furthermore we have found in the previous section’
‘that the influence of the magnetic field and of the.azimuthal motion

on the radial motion is very slight. Therefore we neglect the energy
carried by the field and in the azimuthal motion compared to the kinetic
energy in the radial motion and to the gravitational or thermal energies,
i.e., we set vCP and B¢ equal to zero. With these assumptions the

energy flux equation (II.2.19) may be solved for S,

5kT dT

2-@‘;+—— +r 4L (111.5.1)

2 1
S(r) = F/r =~ pu 5 u — ir

For this simple model the radial momentum equation is

+ T

du _ @ _ 1) dr . . dol 2
rz o o} ar ar m (I11.5.2)

These two equations could be solved for S(r) if we had some experimental
data from which we could determine either the solar wind velocity,
density or temperature as a function of radius and a suitable set of
boundary conditions. The experimental determination of these solar
wind pfoperties, at least in the region between the sun and earth, have
not yet been made and, because of their complexity and diffieculty, will

not likely be made for some time. But solar coronal density data are
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available from observations by Van de Hulst (1950), de Jager (1959) and
Pottasch (1960) for the region between the chromosphere and 10 r out.
Actual data are shown by these authofs for distances to approximately
30 L but it has been argued by Blackwell and Ingham (1961) that not
too much significance should be attached to the values beyond 8 - 10 r. -
From physical considerations we expect that in the case of a
quiet corona and a quiet solar wind most of the energy carried by
waves, and represented by the function S(r), will be deposited in the
corona itself, mainly in the region between 1 andlé T In particular,
we expect that beyond 10 r@ the energy‘carried by waves is negligible
compared to the emergy carried by the solar wind itself or by thermal
conduction. This will not be ﬁrue in regiohs where we find plasma
jets of different velocities interacting with each other since at their
boundaries a large amount of heating may take place. But for quiet solar
wind conditions we expect that |

- 4T 9&3
le 35 1, 5= >> 8] (I11.5.3)

and thus S(r) may be set equal to zero beyond 10 T With these
assumptions and suitable boundary conditions at 1 a.u. equations
(II1.5.1) and (II1.5.2) can be solved in the region between 10 ry and
1 a.u.

For the fegion between 1 r, and 10 r, we have usea the density
distribution as given by Pottasch (1960), which may conveniently be
approximated by

o = po[ (ro' ';r@)/(r - re)]7/3 (III-S.&-)
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with po = 3.8 x 106_partic1es cm-3 and'(r0 - ro) = 5 x 1010 cm.

Figure IL1I.5.1 shows that this equation is a very good approxi-
mation to the observed density distribution, except in the lower corona
where the true situation is much more complicated and where we would
‘really not gain significant insight into the problem by using a better
analytical fit to the experimental data. The solution obtained for the
solar wind in the region between 10 r, and 1 a.u. has now to be
continued smoothly to the solution in the lower region between 1 . and
10 o In this way the function S(r) is determined.

In the actual solution of these‘equations many problems have to
be solved. The coronal density measurements quoted by Pottasch were
made4over a period of years, mainly between 1953 and 1955. During
that time, no solar wind measurements were taken, because the first
satellite was onlyv launched in 1957. Thus we have no idea what the
typical solar wind values were during the time the cororal observa-
tions were taken. If we assume a set of "reasonable " solar wind values,
we may find that it is not possible to match the solutions in the two
regions, smoothly and continuously. The best solution which we
obtained has as boundary values F = 9.184 x‘1025 erg secn1 steradian-l,
’purz = 6,714 x 1034 ions sec-l, u, = 300 km sec-l, Pp = 10 ions cm-3.
The resulting temperature at 1 a;u. is 2.4 x 105 oK. The general
behavior  of the solution of the radial solar wind equation does not
deviate appreciaBl& from the solution of the polytrope model, except
that as r approaches r. the density increases enormously and thus the

radial velocity falls off rapidly. This decrease in the radial velocity
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Figure III.5.1

The density profile of the solar corona as given by Pottasch

(1960) . The dashed straight lime is the demsity function

rx=np[(r - rp)/(r - 1‘@)]7/3 which was used in the work of section III.5.
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is much more pronounced in this model than in the polytropic model, and
appears to be more realistic. Another marked difference for this model

is the temperature profile in the corbna, which is shown in Figure III.5.2.
This distribution exhibits the characteristic rise in temperature

between the chromosphere and the corona.

Figure III.5.3. shows the various components of the energy flux,

/ .
with F = pur2 Kl u2 et + QEE) being the energy flux per steradian
w 2 r m
2
convected by the solar wind, FC = - gr g% the energy flux per steradian

transported by thermal conduction and FS = rZS(r) the energy flux per
steradian due to waves. The dashed lines indicates the total energy flux
per steradian, F. From this figure we can see that FS is only important
in the region between the sun and approximately 3.5 T The exact

shape of this function is still uncertain, since the two regions were

not matched exactly. Ncvertheless, we have shown that the method out-
lined in this section provides a means of determining the amount and
distribution of energy supplied to the solar wind from the dissipation

of waves in the corona.
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Figure III.5.2

Temperature profile of the solar wind obtained from the
solution of the solar wind equation with heat flux for r > 10 ro and
using the density function given in Figure III.5.1 in the region

r <r<10r .
@ = - @
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Figure II1.5.3

The total energy flux FT and its components. Fw is the energy
convected by the solar wind, Fc the energy flux due to thermal conduction

and Fs the energy flux in the form of waves.
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3.6 Stability Considerations for the Azimuthal Motion

The complete general problem of the solar wind stability is at
the present time toovcomplicated to be solved. Various attempts have
been made to discuss specific cases of the stability of the radial
motion of the solar wind. Parker (1966) has discussed the stability of
his model, in which no magnetic fields are considered. He has shown
that no intrinsic instabilities appear as the sole result of the exist-
ence of the solar wind. Carovillano and King (1966) have‘investigated
the dynamiéal stability of the solar wind with boundary perturbations.
They considered an expansion of the solar wind in spherical harmonics
and they too concluded that the solar wind is stable.

We will attempt here to show that small-scale disturbances of
the azimuthal motion propagate with the predicted characteristic
velocity, and that their amplitude cannot grow infinitely large. In
the’treatment of this problem we assume that the radial motion is not
affected by disturbances in the azimuthal velocity and magnetic field.
Thus u, p, and T are functions of r only, whereas vcp and B@ are functions

of r and time t. The time-dependent azimuthal equation of motion is

B
- _ g
\Bt + u ar)(rvcp) o o% (rB@) (IT11.6.1)

and from Maxwell's equation we obtain

2, . oL (2 L, &
(Bt *u 5r> (rB(p) B, ( dr r) (rv(p) chp dr
(111.6.2)

This set of time-dependent equations was solved by a numerical method.

In Appendix B we indicate how the finite difference equations were



- 71 -

written and the seQuence of the calculations. As initial condition
for the azimuthal velocity we assumed a Gaussian distribution of the

2
form [:(r B rg)
(r =) ~ 5 r@

‘ - - D
v$(r,0) V@O ” e (I11.6.3)

where rp was taken as 7.5 LI The initial value of BCP is then given by
Bm(r,O) = Br(vw(r,O) - Qr)/u (111.6.4)

For the radial solution u(r) we used the solution described in
Section III.5.

Since the decoupled time-dependent equations (IL1I.6.1) and
(II1.6.2) are linear in v(p and B(p the values of vCp and BCP as given
above can be considered as disturbances superimposed on the steady-
state solution or as arbitrary initial conditions. The only steady-
state solution which is physically possible is the one given by
Eqs. (IT1.2.8) and (II1.2.9) and thus we expect this initial distri-
bution to spread out and to decrease in amplitude. Since we have
decoupled the radial from the azimuthal motion, all disturbances

should be propagated through the medium with velocities u + v and

AN
a - v,y Where v, = BrA/Z;ET This is indeed the case as can be seen
from Figure IIL.6.1. This figufe shows the pbsition of points of
maximum and minimum amplitudes of the azimuthal velocity as a function
of time and space ag obtained from the numerical calculations. The

characteristics are clearly recognizable and if we calculate the

~lopes of these curves, they correspond exactly to the predicted wvalues
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Figure III.6.1

The lines indicate:the position of points of maximum and
minimum amplitude of the azimuthal velocity disturbance as functions of
time and space. These points were calculated by a computer for the

case when the azimuthal equations are decoupled from the radial motion.
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u + VaN and u "V From Figure III1.6.1 we can also see that as the
main wave component of the disturbance moves.away from the region
around 7.5 ro the short wave‘componeﬁts of the initial disturbances
may be observed as they appear there.

Calculations were made for a period corresponding to 10 hours,
For the first 5 hours, the amplitudes stayed fairly constant. During
the period from 5 to 10 hours the amplitudes seemed to grow, mainly
those of the short wavelength disturbances. This does not
necessarily imply that the azimuthal motion is unstable, and it is more
likely that this growth in amplitudeis‘introduced by the use of the
finite difference equations or by round-off errors from the computer.
1f tﬁe difference equations are not absolutely stable, the uncoupling
of the azimuthal equations from the radial equations will result in the
transfer of energy from the radial motion to the azimuthal motion which
in turn will result in a growth of the amplitude of the azimuthal wave
disturbances. The case of disturbances traveling with the characteristic
velocities can be further studied to see if they have amplitudes Which
will grow infinitely large.

The two equations (III.6.1) and (II1.6.2) can be solved for
(rv@) or (rB¢). If we use 4. = rvCP then the partial differential equation

for £ is given by

, 2 2 ) |
(5 +_d_u) %-2ug§—a¥+(u2-vz)§—i+éy-(§—t-+2ué—>-

ot  dr 3t AN 3r r\d ar
2 ' )
2v 2
A (3,0 o dulo o ., 22 _2
T (r_zar) E—uer or T % or vAN(r r) 4

(I11.6.5)
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We now assume that the time dependence of the solution is of the form
=it . : .
e =, where w is the frequency of the wave. TFrom Figure IIT.6.1 we
-3 . . . o
can see that ® ~ 10 and the results of the previous section indicate
-5
that u/r ~ 10 ~. Therefore rw/u >> 1 and thus the changes in the

- radial velocity occur on a much larger scale than the changes associated

with the wave motion. We will now write

-d - -a, (r) o1 _ -a_(xr)
o= A ifwt 'y+(r)]e + Ay ilot = ¢ (2] e
(III.6.6)
where the function Y(r) is defined by
dyy :
+ W
— = (I11.6.7)
dr u x VAN

and the a's have to be determined. Substituting this expression for £

back into Eq. (III.6.5) and defining

da,
By = 35 ' (II1.6.8)
we find that
. - 1 [:u + VAN du u = 3VAN:] (111.6.9)
+ -+ L0
+ 2(u * VAN) 2y dr T
Now both B+ and B_ may increase or decrease as r changes, but neither

Q|
one of the two behaves anywhere in such a way that e =~ increases

without bound. For the particular case when u =V it can also be

showﬁ that the solution is perfectly well-behaved near r = r .

a
. u
For large r, v, <K, du/dr << ” and
L1 )L du _ul, 1
By * %9032 dr T e (I11.6.10)
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i.e., :

-1/2

v ~ T
s

This means that wave disturbances traveling with the characteristic

velocity do not have amplitudes which become infinitely large. And

thus for this type of disturbances the model presented here is stable.
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IV. THE EFFECT OF VISCOSITY AND ANISOTROPY IN THE PRESSURE ON THE

AZIMUTHAL MOTION OF THE SOLAR WIND

IV.1 General Discussion

From the results obtained in the previous section we can see
that for the sun the azimuthal motion and magnetic forces have only a
small effect on the radial motion. Even if the azimuthal velocity
should increase to 20 km sec-1 at 1 a.u., the centrifugal force term
will only be of the order of 5% of the acceleration term in the radial
equation of motion. Therefore we now assume that a solution of the
radial motion is known everywhere and that this solution is not greatly
affected by the azimuthal motion or the presence of the magnetic fields.
This will permit us to solve the azimuthal equation of motion (II.2.13)
as soon as wé know or have determined the constant K and the r@

component of the stress tensor, i.e., T__ .

r®

IV.2 Determination of the Stress Tensor

Results of recent measurements of solar wind properties on
Pioneer 6 as reported by Wolf, Silva, McKibbin and Mason (1966) and, on
the Vela series of satellites (Hundhausen et al., 1967) indicate that
p”, the pressure in a direction parallel to the interplanetary magnetic
field vector, is larger than pi, the pressure perpendicular to the field.
One possibility for thiskanisotropy is that it is due to the partiél
conservation of thé first adiabatic invariant. The magnetic moment u

is given by

=

T
Lol
== Iv.2.1
B ( D

B=gT
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where the temperature T, is defined by

L

_ o
T, = 35 Py (1V.2.2)

If p were to remain constant, then the energy W, in the random motion

L
perpendicular to the field has to decrease as B decreases. B falls off
inversely proportional to r2 in the viéinity of the sun and inversely
proportional to r farthervout. bThus Tl would have to decrease as B. On
. the other hand the parallel temperature TH , defined in a manner
analogous to Tl decreases less rapidly than 1/r in the region between
the sun and 1 a.u.. This would result in a decrease in TL relative to
TH. If the magnetic moment would be totally conserved, TH should be
appfoximately 25 times larger than Tl at 1 a.u. Scarf, Wolfe and

Silva (1967) have pointed out that such large anisotropies cannot

exist in the solar wind because they cause instabilities, which in

turn would then c?eate irregularities in the magnetic fields,

turbulence and possible shock waves. These processes would tend to
restore the plasma of the solar wind to a more nearly isotropic
distribution. This seems to be confirmed by the latest measurements

1

orbit of earth, indicating that the magnetic moment is only very

- on space probes. Experimental data indicate that TH = 2T, at the

weakly conserved. In a local cartesian coordinate system aligned with
its x-axis along theé direction of the magnetic field, the pressure

tensor may be written as

[P0
' = p =] .2.3
Pyy = P \0 P, 0 (Iv )
0 0
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The off-diagonal terms may in general be different frém zero, but they
will be smaller than the diagonal terms by a factor of 1/wr, where w

is the cyclotron frequency and T the.time between collisions (Simon

and Thompson, 1965). In the case of the solar plasma wr is much larger
than unity and thus these off-diagonal terms can be neglected.

From this pressure tensor the hydrostatic pressure is defined by
p = L (o + 2p ) (IV.2.4)
3 Y L

and the temperature T of the gas is in turn given by the ideal gas law,
Eq' (II.Z.lS)’ ioEn,

m
T= 2kp P

Under a rotation of the coordinate system through an angle ¥, the local

hose angle, the r® component of the pressure temsor is given by

| prcp = cos ¥ sin (p_L - pH) (Iv.2.5)

Since the exact form of (pl - pH) is not known at the present time, we

will assume for convenience that

B 2

9 ‘
p (IV.2.6)
52

. 2
p“ Py T esin s p” = €
If ¢ is equal to zero we will have a model in which there will be
no anisotropy in the pressure. If we set e equal to unity (which will
be done for the numerical calculations) then this assumed function will
reproduce those values of the anisotropy in the pressure which seem to

be indicated at the present time. This function will approach zero

near the surface of the sun where B¢ << B and where the pressure is
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isotropic. Near 1 afu., p“ - P will be close to pH/Z which is the
Vvélue indicated by the experimental observations of the Vela
satellites.

In addition tq the torque resulting from the ansiotropy in the
pressure there exists a torque on the fluid due to the effect of the
fluid viscosity. The viscous stress tensor for an ionized fluid with
a magnetic field embedded in it has been given by Chapman and Cowling
(1952), Braginski (1959), Herdan aqd Liley (1959), and Burgers (1958).
In Appendix A the viscous stress tensor is expressed in spherical

polar coordinates, yielding in particular the r@®-component

2 2
| v B_“B
PO FUCS AP
@ +a)A+bha) : | B
. 2
. IQ g5 252 4 (8) s 2O L (81 (y.2.7)
B4 dr \r B2 dr \r

where % wr and p is the coefficient of viscosity given by Chapman

(1954) as

- 5/2 -1 -1
p=1.2 x 10 16 T / gm cm sec (Iv.2.8)

Near 1 a.u. w ¥ 10-1sec-l, T = 104sec and thus o < 103. To the

extent that between the sun and 1 a.u. w is dominated by Br’ it follows
from Eqs. (II1.2.2) and (II.2.4) that ¢ is proportional to u and hence
a” >> 1 throughout the entire region where the solar wind has any

significance. Thus we can approximate Eq. (IV.2.7) by
2_ 2

o B B 4 v
o =1 <3 _Q_ZE_ r __.(Jf)

e P T N 8 E) (17.2.9)
QP B dr | 4 r 0] dr \r

B
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Except for the factor 3B$2Br2/B4, the first term on the right-hand side
of this equation is the "ordinary' viscous stress. The effect of

this stress on the azimuthal motion‘has been investigated by Pneuman
(1966). 1In his solution very near the sun, vcp is increased above the
solution for p = 0, but farther out is reduced. This result depends on
his particular choice of boundary conditions which, although plausible,
we believe to be incorrect. If he had included the factor 3Br2B®2/B4,

, which reduces the effective viscous force due to the presence of the
magnetic field, this term would become very small and unimportant
compared to the other terms near the sun. The second term in Eq. (IV,2.9)
is due to the coupling of the radial viscous force to the azimuthal
motion. This is caused by the anisotropy of space resulting from the

presence of the magnetic field.

IV.3 Solution of the Azimuthal Equations of Motion

With the aid of Eq. (I1.2.13) we can write the expression for

v. in the form
%

ol ]
d:
+
ol b

v, = (Iv.3.1)

¢

Equations (I1.2.14), (IV.2.5) and (IV.2.8) provide us with explicit

 expressions for Tr which when substituted in the above equation give

¢$
' B B gV3B 2B 2 B B
_ro_ . p o r 4 252) COr gp 2 g 2y, & (m)l .
v_ = + r — + (2B -B J)r — -
¢® - 4xpu pu-1 B4 dr \ r Bé r ] dr kr
| 3
B "B
L o X (1V.3.2)
pu o4 | r

Here € from Eq. (IV.2.5) has been set equal to unity. If the expréssion
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for B(p as a function of V¢’ u and r given by Eq. (II1.2.7) is substituted,
the following first order non-linear differential equation for vm'is

obtained after some algebra:

2

5 - 4 -2 K -2
VCP(,l-MA)-l-th EerA -r-4(1-MA )Qx:l+

dr \r

' 2KT
3 2. 22 2 -2 d
Vo I:Z(l-MA Y(3e%r" + u) - aan, T - Zoar +——mJl+}§r—(E)]+

' 2KkT
- -2
A 20357 + D @ng? -5 - aa - @ - uHar - mr[__llm *

- -2
v, g - @+ uh? - 4@+ uh @, -

¢
2kT : 2
2.2 ' da | d
30r [—[ﬁ—ﬂ' +Eral\%)]>- Zqu——(-&) +

o

’ 2KT
2 2 2.2 =2 K 2 22 . p_4d [u ) 33
(u +Qr)(QrMA -r)+(2u -‘Qr)prdr(r)nr — Q'r
3v. - ar)lu? B & e =0 ' (IV.3.3)
¢ o) dr \r

This is a first order differential equation and its solution contains
one constant of integration in addition to K, both of which must be
determined from boundary, continuity or stability conditions. One of
the boundary conditions is that for large r when u goes to zero, rv¢‘
approaches a constant valﬁe. The evaluation of the other comstant is
much more difficult; To evaluate this second constant of integration,
Pneuman (1966) used the condition that v@(r@) = Qr@. This implies

immediately from Eq. (II.2.7) that Bw(r@) = 0. Referring back to
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Eq. (IV.3.2) we can see that this would fix the value of K = Qr@z, a
.very much smalierAvalue than that obtained in Section III for the non~-
viscous case. This value of K clearly does not‘¥epresent a physical
solution and indeed when this value was used in the numerical integration
of Fhe equation no satisfying result was obtained. Since the boundary
conditions at the sun are not known there is actually no way to deter-
mine this constant of integration exactly. On the other hand we can
obtain a goodAapproximation of the value of K in the following way.
If we estimate the size of the various terms which appear in Eq. (IV.3.3)

v
we find that the term proportional to 51_(%) is much smaller than the

dr

other terms in the equation and thus as a first approximation we may
neglect this,term. The remaining equation is now a fifth-order poly-
nominal in vcp and depending on the value of K we obtain a particular
value of v@. The property of this family of solutions is that for all
values of K but dne, the values for vw which one obtains are dis~-
continuous. There exists only one particular solution which passes from
a value of v¢(r®) ~ Qro to a value of vcp which goes to zero as r
becomes very large continuously and the value of K associated with
this solution is then taken as the constang of integration. This
solution for v(P in the region between the sun and the Alfvénic critical
radius is not altered significantly if we restore the first derivative
terﬁ into the equation.

In order to oﬁtain quantitative results we require a solution

to the radial equation of motion. The general behavior of the solution

for v¢ can be explored using any reasonable radial solution, although
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the detailed behavior of the solution will depend on the particular
radial solution. used. Thus the particular Q@ obtained from our
numerical calculations and presented here should be considered as
illustrating the general and mnot necessarily the detailed properties
of the solution.

The particular radial solution which we have used for the
calculations presented here was the one obtained from the polytrope
. model presented in Sections III.2 to III.4. We have also used the
solution of the radial equation obtained from a model with heat
conduction as discussed in Section IIi.S and have found that both
solutions for v¢ have a very similar behavior.

The solution to Eq. (IV.3.3) with the coefficients evaluated
using the radial solution from the polytrope model yields a value for

18 cmzsec_l. This implies that the total

the constant K of 5.72 x 10
torque on the sun is slightly less than in the case of the non-viscous
model.

Figure IV.3.1 shows the values thus obtained for v@/@r as a
function of radius for the viscous ansiotropic model (curve V) as well
as for the non—viscodé isotropic model (curve N). The viscous model
predicts at the orbit of Earth am azimuthal wind velocity of 5.lvkm
sec . , which is approximately 5 times larger than the value obtained
from the non-viscous modei. This increase in VCP is completely due fo
the tofque on the éuter surface and thus if 1 goes to zero, vCp will

drop rapidly. The coefficient of viscosity used here was based on the

fact that collisions in the plasma are only due to Coulomb interactions.



Figure IV.3.1

The dimensionless angular velocity v@/(ﬂr)- Curves N and V
refer to the solution of the non-viscous, isotropic pressure and

viscous, anisotropic pressure models, respectively.
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Since we expect other randomizing processes to occur in the gas, the
effective value of p will be much smaller and the effect of viscosity may
be completely negligible. The value for vcp obtained in this section
should thus be regarded as an upper limit with the actual value of vCP
being much closer 1 km'sec-1 at 1 a.u.

Preliminary results from solar wind measurements on Vela 2 by
Hundhausen, et al. (1966) indicate an average angle between the solar wind
velocity vector and the radius vector of approximately 1.50, with a vari-
. ation in direction of approximately 15°. This should be compared with
angles of 0.75° and 0.15° predicted by the viscous and non-viscous models,
respectively. Thus the theoretical médels predict a lower value for the
steady-state wind velocity than has been observed on Vela 2. But it should
be noted that 'the most interesting general feature of the solar wind as
revealed by the Vela 2 observations is its non-radial, non-uniform and
non-steady nature', (Hundhausen et al., 1966) . Thus the averages of the
solar wind properties as measured by satellites .do not necessarily repre-
sent the properties of a steady-stéte quiet solar wind. We feel that the
question of ﬁhe correct value, even of the correct order of magnitude value
of the azimuthal quiet solar wind velocity has not yet been definitely
determined from the observations. There exists, of course, the possi-
bility that the azimuthal velocity is substantially increased by
disturbances in the solar wind éroperties and by variations in the inter-
planetary wind and that in reality no steady-state, quiet azimuthal
velocity occurs; If it does occur at times, the theory predicts that
the angle between the radius vector and the solar wind velocity vector
should lie somewhere between Q.150 and 0.75° for conditions which we

regard as typical.
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V. SUMMARY

The work which we have presented here makes it possible to
understand the large-scale properties of the solar wind, especially of
its azimuthal motion. From the analysis of a non-ﬁiscous model of the
solar wind we have discovered the very important fact, that the
azimuthal velocity and the azimuthal magnetic field are determined
uniquely by the conditions at the radial Alfvénic critical point r,

The magnetic field has to arrange itself in such a way that at this
critical point the sum of the angular momentum per unit mass plus the
torque associated with the magnetic stress has the value L = Qraz. This
condition inkturn implies that at the solar surface the magnetic field
cannot be purely radial but has to have an azimuthal component. At the
surface of the sun the radial velocity of the plasma is very small, but
nevertheless finite, and thus the angular Qelocity of the foot of the
lines of fo;ce will differ from the angular velocity of the plasma.

The size‘of this differential rotation is governed by the magnitude

of the azimuthal magnetic field. Therefore, the conditions at the
radial Alfvéhic critical point determine the value of the azimuthal
magnetic field as well as the Qalue of the angular velocity of the plasma
at the surface of the sun and in general throughout space. Even though
theie is no rigid corotation of the gas with the sun, the gas does -
convect away a substantial amount of angular momentum and the torque
due to the magnetic field is even more effective in decelerating the

angular motion of the sun.
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Since the location of the radial Alfvénic critical point is
.important in determiﬁing the properties of the angular motion of the
solar wind and the torque on the sun, it is useful to estimate the

change in ra caused by reasonable changes in the solar wind parameters

as observed near earth. From these parameters M, can be calculated at

A
1 a.u., and r_ can then be estimated from the fact that Eq. (III.2.4)
shows MA to be proportional to ul/zr. A reasonable approximation,

which is a lower limit, is obtained by assuming u to be constant. For
example, using our parameter, MA = 9.6 at 1 a.u. and hence r, > 22 Ty
which is a good approximation to the result obtainedi Using typical
solar wind data, we estimate that the critical Alfvénic radius may lie
' between 15 r, and 50 ro-

The general features of the solution are not changed when we
include the éffect of viscosity and of an anisotropic pressure in
the determination of the azimithal motion. The torques due to both
of these forces are very small in the vicinity of the sun and thus the
torque on'the sun is given essentially in the same manﬁer as for the
non-viscous case. The conditions at the sun are again determined by
the conditions in the wvicinity of the radial Alfvénic critical point and
thus viscous forces play a &ery minor role in decelerating the sun.
On the other hand, the azimuthal motion of the gas at distances 1arger
than the critical :adius is greatly affected by the torques due to
viscosity and anisotropy in the pressure. This torque accelerates the
solar wind in the azimuthal direction and we obtain thus at 1 a.u. an
angular velocity of the plasma which is substantially higher than for

the non-viscous case. But as the viscous forces decrease for large
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values of r, we expect the azimuthal velocity to drop rapidly to the
value predicted by thé non-viscous model. We would also expect a

lower angular velocity of the solar wind if the coefficient of viscosity
should not be proportional to TS/2 as given by Chapman (1954), but should
decrease more rapidly ﬁith radius. In the solar wind, there exist many
proéésses which may cause a decrease in the viscous forces. Turbulances,
shocks and instabilities in the solar wind as well as irregularities

in the interplanetary magnetic field all tend to decrease the effective
" mean free path of the plasma ions and thus decrease the coefficient of
viscosity. Since these processes are all transient in nature, we

expect to observe large fluctuations in the magnitude of the

azimuthal solar wind velocity, which have indeed been observed recently
(Hundhausen et al., 1967). The value of vCP obtained from the viscous
model presented here should therefore be considered as an upper limit to
the quiet azimuthal solar wind velécity.

During the past year several investigators have discussed topics
which Weré also treated in this report. We wish to mention in
particular that the conclusions reached by Modisette (1967) regarding
the properties of the azimuthal wind velocity, Ehe azimuthal magnetic
field and the torque on the sun are in general agreement with the
findings presented here. However, we do not agree with his statement
that the large azimuthal solar wind velocity of 9 = 3 km sec_1 at 1 a.u.
deduced by Bfandt (1966) from observations of type I comet tail
deflections can be explained by the "total momentum flux, both in the

particles and the fields" causing the deflection. We have already
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~mentioned in previous sections the model treated by Pneuman (1966).
This model possesses a whole family of solutions, from which Pneuman
selected a particular one by choosing a specific set of boundary
conditions at the sun. We have already commented in Section IV on

the validity and the physical significance of his particular choice of
boundary values. 1In view of the findings of this investigation and
due to the fact that the boundary conditions at the sun are not known,
it is very plausible that the selection of a particular solution will
be determined by other criteria which have to be imposed on the behavior
of the solution. The azimuthal motion and the magnetic fields do

not significantly influence the general behavior of the radial solar
wind velocity and thus the actual numerical radial solution obtained
from our model is essentially that obtained much earlier by Parker
(1963). On the other hand, by including the centrifugal and magnetic
force terms in the radial momentum equations, we have altered the basic
structure of the radial solution significantly. While in Parker's
model all the solar wind properties were determined by the conditioms
at the sonic critical point r_, our model requires that the radial
sblution passes through three critical points in order to satisfy the
known boundary conditions, namely that the radial wind velocity at
the,sun's surface is very small and that the solar wind velocity is
supersonic and super-AlfVénic near 1 a.u.. These three critical points
are found at pointé where the radial flow velocity equals the velocity
of a characteristic small amplitude wave disturbance in the fluid. And

in the presence of magnetic fields we have now three possible modes of
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propagation instead ofbonly one as in Parker's model. The existence of
ﬁhese critical poiﬁts can alter the nature of the radial solution
significantly and thus the more complete model presented here has

to be used to calculate the properties of stellar winds for stars

- which have such a high rotation rate or such large magnetic fields

that the corresponding terms in the radial equation of motion are
important.

Another very important feature of this model is the prediction
of two possible branches ualand uot2 (see Figure III1.3.1) along which
the solar wind can expand and still yield a zero pressure at infinity.
While both solutions are thus possible we know from observations that
the solar wind follows the upper branch U, on which its velocity is
supersonic and super#Alfvénic. This poseslthe very interesting question
of why the solar wind follows the upper rather than the lower branch.
We conjecture thaf the reason for this is that the conditions along
the upper branch are more stable. 1In passing through the critical
points and onto the curve uof2 one encounters a discontinuity in the
slope of this curve. If there exists any finite amount of viscosity
this discontinuity would be smoothed out, and thus would not cause
any trouble. Nevertheless the rather rapid decrease ih the radial
velocity along the lower branch;and the associated sharp increase
in the magnitude of the azimuthal magnetic field and the rapid
reversal of the direction of the azimuthal wind velocity seem to
indicdte that a solar wind expanding along the branch ua may be much

2
more susceptible to instabilities than a gas following the upper branch,



- 93 -

along which the gradieht of all quantities does not vary significantly
over short distances. Furthermore along the lower branch the radial
velocity becomes smaller than the local sound velocity and thus
disturbances at large distances can propagate upstream. Such a situ-
atiop is inherently less stable than one in which all disturbances are
convected out by the plasma. Thus it is plausiBle that the conditions
are less stable along U, than along ua , and hence the solar wind

2 1
.expands along the supersonic and super-Alfvénic branch.

As can be seen from the discussion in Section III, the poly-
trope model is clearly not a model from which we expect an accurate
quantitative description of the solar wind over all space. Neverthe-
less, because of its analytical simplicity, the polytrope model is
best suited for a study of the qualitative features of the motion of the
solar wind. The general properties of the solution of this particular
model and the conélusions we draw from them are equally applicable
to the results of more complicated models, which are intended to give
better quantitative information on the solar wind, but which may not
be as readily understood due to their complexity. The model presented
‘hefe provides an understanding of the coupling between the magnetic
fields and the plasma motion. In particular, from it we have been
able to determine the behavior of the angular motion of the solar wind,

the shape and value of the interplanetary magnetic field and information

on the angular momentum loss of the sun due to its expanding coroma.
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APPENDIX A

The form of the viscous streés tensor in the presence of a
magnetic field has been given by Chapman and Cowling (1952) for the
special case Qhen the fluid velocity and the magnetic field are each
aligned with one of the axes of a cartesian coordinate systém. By a
suitable transformation this formula may be expressed in any coordinéte
‘system and for arbitrary angles between the velocity and the radius
vectors. On the other hand it is much simpler to derive the equations
for this case directly. If we define p to be the classical coefficient
of viscosity in an unmagnetized plasma (Chapman, 1954),

a =(3/2)7(eB/m), where T is the collision time, e and m are the charge
and mass of an ion, respectively, and B is the magnitude of the
magnetic field, then Herdan and Liley (1959, 1959) have shown that in
a first approximaﬁion the symmetrical viscous stress tensor gf may be

obtained from the solution of the. equation

2
a o o - 2 &0 + E?

B ~ ~ ~
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where e is the symmetrical traceless velocity gradient tensor and B is

the magnetic field vector. The symmetrized cross product is defined by
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where 1 is the completely asymmetrical tensor and g is the determinant

=~

of the metric tensor g given by
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0 0 rzsinze

The last term on the right-hand side of Eq. (A.2) is identically zero
. : . . o . . .
in this particular case since ¢ is a symmetrical tensor and 7 is an

asymmetrical tensor. The velocity gradient tensor may be derived as

follows. Let us define the covariant velocity vector v, with components
1

2 2
v, = (Vl’ 0, v3) = (u, 0, r sin 6 w) (A.4)

where the local angular velocity w is assumed to be a function of r only

and 'is defined by

v
S A
r sin 6 (&.5)
The velocity gradient tensor e is obtained by taking the covariant
derivative of the velocity vector v given by the first form of
Eq. (A.4), i.e.,
nd | 0 s
dr r
_ _ 0 v cos O (A.6)
elJ B vl,J— 1 sin 6 3
?Zé - ZQ éZé - cos 8 v r sinze v
or T L sin 6 '3 1

The symmetrical traceless velocity gradient tensor e® is then

immediately given by
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But using the second form of Eq. (A.4) the ezg and elg components
reduce to
'ezg = % {2 sin 6 cos 6 rzw} - cos @ sin © rzm =0 (A.8)
o 1 ) 2 . 2 do 212 2 dw
€3 =3 {2r sin"0 w + r sin" 6 = }—rsin6w= 5 ¥ osin 6 7 (A.9)
and we have
2 ({du wu 1.2, 2 dw
3(dr"r) 0 g rsimogy
o 1{u dul _2
ij 0 3<r-dr) 0
1.2 .2 do 1({u dul. 2 2
> r sin 6 ar -0 . 3 (r dr)‘r sin 6
(A.10)

The components of the covariant magnetic field vector Bi are given by

B, = (Bl,,o,kBB) = (Br’ 0, B¢r sin 0) (A.11)

Equatioﬁ (A.1) may now be expanded to give the following six relations:
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For the azimuthal equation of motion we need to know only Glg and

solving for it we obtain
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To obtain the physidal Ur; component we divide Ulg by r sin 6,

thus
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We can similarly show that
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All other components can be derived in a like manner.
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APPENDIX B

The time-dependent differential equations for vm(r,t) and

B$(r,t) are

IQ_ o _ Br d _ S
Kbt +u Br) (rvm) = Zrpu u 57 (rBw) =1u3z (rB@) (B.1)
and

(%E + u %;) (rB¢) =B (%; - %:)(rv@) - rB(p %% (B.2)

where 1 = Br/ﬁnpu is a constant. The last equation is more conveniently

rewritten as

2B (u-1nB)
) _ r _n du r’ 0 _
3 B = = —=1vy B — - ———— 5 (rvw)

0) ro ¢ dr nr ¥, (®-3)
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Since‘these equations are too complicated to lend themselves
to an analytical solution, we will employ a‘numerical method to in-
vestigate their behavior. To use numerical calculations, the differen-
tial equations have to be converted to finite difference equations.
Since it is only too easy to use difference equations which are not
absolutely stable, the answers which one obtains from a numerical
treatment of such difference equations do not necessarily represent the
solution of the differential equation which they are intended to
_ approximate. There is as yet no adequate theory or complete criteria
with which to treat or to test thé stability of any but the most
elementary finite difference equations. Therefore we have tried to

follow as closely as possible the scheme suggested by Richtmyer (1957).
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For this approach we uée finite Eulerian difference equations where
the functions are calculated at specific points in space and time.
Those points form a fixed gridvin the r,t plane with a spatial
separation Ar and a time difference At between neighboring points.
"The values for Ar and At were taken as r@/& and 180 sec, respectively,
where ro = 6.96 x 10lo cm. We have thus defined a set of points in
this r,t plane given by r = jAr + T t = nAt (n,j = 0,1,2,...). Let the
values obtained from the difference equation for v¢(jAr + r@,nAt) and
B@(jAr + T nAt) be denoted by %)? and B¢§, respectively. The
values of the function u(jAr + re), du/dr (jAr + r@) and Br(jAr'+ re)
are known exactly and will be denoted by uj, du/drj and Brj.
Similarly, we will call (jAr + r@) simply rj..

The finite difference equations are obtained by essentially.the
procedure that we approximate all derivatives with respect to r by
differences centefed at the point where the derivative is desired,
i.e., using values at j + 1 and j - 1 to get (B/Br)j, while derivatives
with respect to time at t are approximated by the difference of
quantities referred to times t and t + A t.

Following this procedure and using the notation described above,
" the finite difference equations take the form
n+1_ v n . f . . \

v
o i o - . 1 n_ n - n - n
At 2r At T~ 0 B T T5e1(pger 70 Bp-1)

(B.4)

and
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Using a set of initial conditions, in particular the one given
in Section IIL.6, we calculate first all v@'s at the time t + At from
"Eq. (B.4) and then use these advanced values of vCp to calculate the
values of B@ at the new time from Eq..(B.S). This process is then
repeated over and over again. Since we are not able to calculate the
values of v(p " and B °

0 0 by this method these values have to be fixed.

For our model, we assumed that the surface of the sun acts like a mirror
n

= B =
o0

2} n

The values of v_ . and B, are calculated by linear extrapolatiom
max ? Jnax

using the values of the functions at the two previous spatial points.

and reflects all disturbances'and thus assumed that v 8 0.

Using thié sequence of calculations, the results are then given in a
series of tables, each of which shows the spatial variations of v_ and
Bw;for a given time. Initially only the main wave componeﬁt of the
initial gaussian disturbance was apparent, but eventually waves with
smaller wavelengths become notiqeable. The propagation of the maximas
and minimas of these waves could be followed to give the characteristics
shown in Figure III.6.1. The amplitude of these wavelets often increased
markedly with time, but the analysis of Section IIIL.6 indicates that

this is an artifact of the numerical analysis rather than an indication

of a serious physical instability.
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