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~ ABSTRACT

The béhavior of the particle size distfibution of coagulating
dispersions is studied thao}etically. If the collision frequency
factor is é homogenecus function of particle volume, the partial
integro-differential equation desecribing the coagulatioﬁ kinetics can
be transformed into an ordinary integro-differential equation by é
Similarity transformation originally proposed by Friedlander. The
solution to the resulting equation, called the self.preserving spectrum,
1s determined for three different collision mechanisms: (1) constant
collision frequency factor, (2) Brownian motion, and {3) simultaneous
Brownlian motlion and shear flow, in which the shear rate decreases with
tiﬁe in a particular way. The results of this study indicate that the
shape of the self-preserving spectrum is greatly influenced by the
collision mechanism.

If a slip correction for the particle drag is taken into consider-
.atioen, the coagulation_eqnatinn for Brownian motion cannot be reduced
to an ordinary integro-differential equation. However, the coagulation
equation can be written in terms of a reduced size spsctrum, By
assuming that the reduced size spectrum varies slowly with time, a
family of "quasi-self-preserving" spectra are obtained for various
values of a parameter /) , which is a function of the mean free path
of the fluid, the total veolume concentration and the total numbor cone

centration of particles.



iv.
The self-preserving hypothesis concerning the particle size distri.
bution is proved to be true for tha case of constant collision
freguency factor, For Brownian coagulation, arguments are presented to
support the hypothesis.
In the cases which are worked out, it is assumed that the particles
- are uncharged and spherical in shape and that their density is conserved

in the coagulation process,



Chapter
L

i1,

IIT.

v,

Y.

TABLE OF CONTENTS

Ihtroduction
Theory of Coagulation
A. Particle Size Distributions

B. Coagulation Equations

Iransformations of the Coagulation Equation

A, The Self-preserving Similarity Transformation
B. A General Transformation

A Simplified Coagulation Model

A, The Self.preserving Size Spectrum

B. Particle Size Spectra for Systems Initially

Possessing a Particular Class of Gamma Dis-
tribution
C. The Asymptotic Behavior of Size Spectra of
Systems with Arbitrary Initial Distributions
Brownian Coagulation

A. The Self.praserving Size Spectrum for Brownian

Coagulation (In the Absence of a Slip Correction)
- B. Concerning the Unimodality of the Self.

preserving Spectrum for Brownian Coagulation

Page

14
th
16
19
20
22

25

29
30

42

C. Checking the Numerical Solution by the Relation- 43

ships Among the Moments of Y (7D
D. Some Physical Properties of Self.preserving

Systems

L



vi.
TABLE OF CONTENTS (Cont'd.)
Chapter |
E, Asymptotic Behavior of Particle Size
Distribution for Brownian Coagulation
1. Approximate Solutions for the Lower and the
Upper Ends of the Reduced Size Spectrum
2. Relationships Among the Momenis of the
Reduced Size Spectirum
F, Particle Size Distributions for Brownian
Coagulation with the Cunningham Slip
Cofrection
1. Quasi-self.preserving Size Spectira
2, OSystems with Constant Mean Free Path
VI. Coagulation by Brownian Motion and Simultaneous
Shear Flow
A, The Self.preserving Size Spectrum for
Coagulation by Brownian Motion and Simultaneous
Laminar Shear Flow
B. Coagulation by Brownian Motion with Simultaneous
Isotropic Turbulent Shear
ViI. Sumnary and Conclusions
APPENDICES
1. Applicability of the Method of Series Decompostion
in Solving the Coagulation Equation

II. Some Self.preserving Size Spectfa in Clossd Form

Page

50

5e

56

56

62

68

69

79

83

85

86



vii.

TABLE OF CONTENTS (Cont'd. )}

Page
APPENDICES 7
II1. Checking the Normalization Conditions for the 91
Solution to the Transformed Coagulation Equation
with Constant S (v o)
v, Perivation of Eq. (31) from Eg. {30) o113
'R The Asymptotic Behavior of the Moments of the 96
Reduced Size Spectrum for the Case of Constant B(v¥)
VI. The éequeme of Moments for the Distribution e © 98
NOMENCLATURE | 99
REFERENCES 102

PROPOSITIONS 105



1,
'I. INTRODUCTION

Disperse systems, consisting of solid of liquid particles suspend. -
ed in a fluid, play a significant role in nature and industry. Cloud, a
suspension 6f water drops in atmosphere, is a major factor affecting
c¢limate. The atomization of liquid fuels and the pulverization of solid
fuels, are common industrial operations which generate disperse systems.
Many chemical materials are handled in the form of emulsions during
manufacture. Some disperse systems are undesirable, such ﬁs dusts
formed during mechanical processing of rocks and smoke evolved during
the combustion of fuel.

The physical properties of a particle or drop depend on its size,
The rate of evaporation of a spherical drop, for example, is proportione
al £o its radius, The fraction of light scattered by a particle larger
than the wavelength of light is proporticnal to the square of its radius.
The sedimentation velocity of a particle with radius much larger than
the mean free path of the suspending medium is also proportional to the
square of its radius. In general, disperse systems consist of particles
of many different sizes and knowledge of the size distribution is neces-
sary to understand the behavior of the system as a whole (1). A bstter
ﬁndarstanding of the particle size distribution of disperse systems has
application in the processing of emulsions, gas cleaning, water treat-
ment, and the study of cloud physies and.éir pollution.

Particles in a disperse system move in response to externsl forces
such as gravitational and electrical fields, hydrodynamic drag and

fluctuating forces resulting from the thermal motion of the ambient
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fluid, Relative movement of partioles can bring them into contact;
when they collide and stick, the process is called coagulation. As a
result of coagulat;on, diffusion and sedimeﬁtation, the particle size
diétribution of a disperse éystam changes coﬁtinually.

The basic theory of coagulation produced by Brownian motion and by
laminar shear flow was developed almost 50 years ago by Smoluchowski
(2). Howsver, no general analytical solution has besn obtained to the
integro-differential equation of coagulation. Previous mathematical
studies of the coagulation equation can be roughly divided into tﬁo
groups., The first includes those in which the Smoluchowski theory was
tested for the initial stage of coagulation. The agreement between
theory and experiments is satisfactory. The second group includes
those concerned with the particls size distributions of aged disperse
systems. Thelr results indicate that the particle size distribution of
an aged coagulating system approaches a universal asymptotic form
called the self.preserving particle size distribution. It is hypothe.
sized but not yet proven that the shape of the self.preserving distri.
bution is independent of the initial distribution, although it does
depend on the mechanism of coagulation. If the self-preserving hypo-
thesls can be firmly established, the tedious job of the determination
of particle size distribution can be reduced to the determination of
only a few parameters for aged systems., In view of the abundance of
aged disperse systems in nature and indusfry, the self-preserving
hypothesis should have many practical applications, Prévious studies
in this field were mainly concerned with tésting the self.preserving

hypothesis by experiments and by numerical solutions of coagulation
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equation. This work is concerne& with the theoretical foundation of
this hypothésis and the solutions to the equations for the self.
preserving spectra for various collision meﬁhaﬁisms. The asymptotic
beﬁavior of the coagulatioﬁ equation is studied for a simplified
coagulation model and for Brownian cozgulation, In the simplified
coagulation model, the collision frequancy between particles is assumed
to be independent of particle size. Self-preserving particle size dis
tributions are determined for the simplified coagulation model, for
Brownian coagulation, and for coagulation.caused by simultaneous
Brownian motion and shear flow. In the cases which are worked out, it
is assumed that the particles are uncharged and spherical in shape and

that their density is conserved in the coagulation process.
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'II. THEORY OF COAGULATION

In this Chapter, the theory of coagulation originally developed by
Smoluchowski is briefly summarized. A short review on the previous

works devoted to the study of the coagulation equation is given.

A, Particle Sizé Distributions.

The particle size distribution of a coagulating system can be
described by either 2 discrsis or a continuous model. In the discrete
model, the number concentration ™, (L) represents ths number of

particles with volume in a unit volume of the system at time
.t

in the size range from Vv to V+dU at time t is represented

. In the continuous model, the number concentration of particles

by n(v,t)dv.

Two useful parameters associated with a disperse system are the
total number of particles per unit volume of the system N , and the
total volume of particles per unit volume of the system ¢ . These
two quantities can be evaluated from the following relations:

in the discrete model:

0

N = 2 " (L)

in the continuous model:

NG = [ nut)dy (1)

-]

.

™3

v N, (t)

L=l

Oo
¢ = I wn(utddu (2)



5.

Particle size distributions are best visualized by plotting the
number distribution function n(v;t) versus the volume </ using
the time 1  &s parameter. The total number concentration N (%)
is-reprasented by the area ﬁnder the distribution cuive, and the total
volume concentration ¢  is represented by the first moment of the
curve, In a coagulating system isolated from its surroundings, both

n(v,t)  and  N(t)  are functions of time € . The
total volume concentration is _invariant with respect to time if the
density of particles is assumed to remain the same throughout the

ecagulation process.

B. Coagulation Equations.

If collisions of three or more particles are neglected, the
collision frequency f;  beilween particles of volume U, and

1& is proportional to the product of their number concentrations:

= B nits) ny )

in which B, 15.) is the eollision frequency factor. In
gensral, the collision frequency factor is a function of the physical
properties of the medium and the colliding particles. However, it will
be written as B (vi, Uj) , since particle size is the main
variable to be considered in this study,

The collision frequeney factor is determined by the mechanism for

producing relative motion of the particles., For Brownian motion of
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spherical particles, Smoluchowski (2) showed that

ﬁ(vjﬂi 47T(D+D)(n *

in which D, is the diffusion coefficient for particles with

radius 1, . If particle radii are larger by at least an order of
magnitude than the mean free path of the medium, the Stokes-Einstein
rolation for the diffusion coefficient {3) can be used. By

for Brownian motion can then be expressed as

2RT v ! I
g = 57 (v (g * i) (3)
¢ J

in whiech %  is Boltzmann's constant, T the absolute tempera-

ture, and AL the viscosity of the medium. When the particle radii

are of the same order of magnhitude as the mean free path of the medium
A , & slip ("Cunningham") correction (&) for Stokes' friction

formula can be used to account for the increased mobllity of particles,

/D’ ('U‘,;,'Uj) for Brownlan motion of such small particles is then
given by
ZkT A R ! A i
ﬁ(’%ﬂ{}) = —3'/1 )( T 1/3) (%)
L J J

A, = 12sT + 0.4 exp (- LIn:/n)

The limitations on this approximation have been discussed by Fuchs (1),
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For spherical particles in laminar shear flow, Smoluchowski (2)

showed that'

. ) L Y 3
fs(TfL,UJ) S QAN (5)

in which G is the shear rate. In deriving this expression,
particles are assumed to have no effect upon the flow field.

The collision of drops in turbulent flow has been studied by
Levich (5), and subsequently by Saffman and Turner (6). For drops much
smaller than the small eddies of the turbulence, the collision freguency
factor depends only on the dimensions of the drops, the rate of energy
dissipation per unit mass € , and the kinematic viscosity of the

medium 2 ., The exprsssion derived by Saffman and Turner is

AL = (25) (e = 021 (B %y’

(6)
which is valid for 1&,/15 between one and eight.
If particles adhere to each other at every collision and the

density of particles is conserved in the process of coagulation, the

rate of change of the number concentration of particles is given by

aln G:) oo
=7 Z ﬁ(‘)}a%)ﬁ.(t)nh(f) *.Z By :Tﬁ)ﬂi(t)hj(t) (7)
J:I

L=1, 2,
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in which the volume = U; is related to the smallest volume <V, by
the relation VU = jvU; = . The first term on the right of Eq. (7)
represents the number of particles with volume U; formed by coag- -
ulation of smaller particles; the saéond term represents the number of
particles with volume V;  lost by coagulation with other particles.
Eq. (7) is the coagulation equation written in terms of the disa
erete size distribution. The corresponding equation for the continuous

distribution is
.
an(vt) _ o BT, v-i) (@, n(v-T, 1) dg
ot = J

o =)
— jp(w-ﬁr) nv ) (U L dT (8)

The expression for the rate of change of the total number concen-
tration of particles ocan be readily obtained by integrating both sides

of Eq., (8) with respect to U from O %o co :

() o - a ~
dd[\-jt = -5 JS PTIMAIN(@ 1) dv dT €9)

By multiplying both sides of Eg. (8) by U and integrating with
respect to U from O to 0 it can be shown that the total volume
cancmtration of particles ?5 is invariant with respect to time,

Analytical solutions to the coagulation equation have been found
for the following simplified collision frequency factors:
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(1) fg(hUZE}J = constant (indapendeht of v and v )(2,7,8)
(2) f(r, 7Y = constant x (1r+T) (9)
(3 3 (v, 7) = constant ¥ v U (10,11,12,13)

- The solution to Egq. (7) with constant JEXETRTS! for an

initially monodisperse system is

kT ne) T il
Yl,(ﬂ)[ L_lj
e .
M) = _ 1=1,2, - (10)
4an|(”.)'t L+t
1+ J
3 4

in which V(> is the initial concentration of particles with volume
vy . The total number concentration of particles in this cass is

given by

—_— A —— (11)

This set of solutions is of particular interest, since it is 2 good
approximation for the initial stage of coagulation of a nearly mono-
disperse system, and therefors can be.nsed to test the results of coagu-
lation experiments. Eq. (10) has been experimentally tested by
Turkevich (14) and Higuchi et al (15). Eg. (11) has been experimentally
tested by Zsigmondy (16), Kruyt and van Arkel (17), and Tuorilér (18).
The agreamant between theory and experiments was satisfactory for the
early stages of coagulation. |
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The effect of ﬁolydiSpersity on coagulation has been studied by
Junge (19) and Zebel (20) by solving numerically the coagulation equa
tion for Brownian motion with the Cunningham slip correction. This
approach gives results for particular initial distributions, but little
information on the general behavior of polydisperse systems. Martynov
and Bakanov (21) suggested that the coagulation equation can be solved
by a method of series decomposition. They asserted that the method
permits a general study of the initiazl stagse of'coagnlation. However,
their method is in faet not always applicable, The applicability of
this method in solving the kinetic equation for Brownian coagulation is
discussed in Appendix I.

The question of the pariicle size distribution for an aged coagu-
lating disperse system was first discussed by Schumann (7). For the
coagulation equation with constant S (V%) , Schumann found a
Jlifﬂlz GXF(“ M%%?) s corresponding
to the initial distribution of the same form. He also found that the

particular solution, (v 1) =

-8ize spectrum for an initially monodisperse sysiem asymptotically

approaches the same axponential form as 1 o0 . Based on these
results, he suggested that the exponeﬁtial form might be the asymptotiec
solution for any initial distribution but was unable to give a rigorous
proof,

For Brownisn coagulation, Todes (22) argued that the size distri-
bution bacomes very diffuae after a suffi#iently long time, so that the
individual peculiarities in the initial distribution become smoothed
out and the size spectrum tends to a 1imi£ing form independent of the
initial distributions. Todes found that, if B(V¥) 'is a homo-



11,
gensous function of its arguments, the coagulation equation can be
transformed into an ordinary integro-differsential equation by the
simllarity transfomation niv,t) = —?;_ h(“u’*) » in which
' * B

v = ‘t »

funetion v (v, t) given by this transformation does not behave

A and [® are constants, However, the

properly a8 t — 0 ., In order for the total volume concentration to

remain finite, the function h (™) must vanish faster than

\/(U*)z as vt s, Therefore, as tT—o0 , the
function n(v,t) = % ho( %U:) vanishes everywhere except at U=0,

A similarity theory for the size spectrum of coagulating disperse
systems was developed independently by Friedlander (23,24,25) to
account for similaritles in the shapes of atmospheric aerosol spectra
o'bs-erved experimentally. One of the similarity transformations used by
Friedlander is

nv,ty = 9 Y (12)
V)
in which 3 (t) and vet) are functicns of time. By substitut.

ihg Eq. (12) into Eqk. (1) and (2), it was found that F#> and

v ) can be expressed as functions of N® and ¢

q(e) = D’ L ndepdr
i U:O‘Jf(mdmf




1z,

N B _fo N (pdn

vice) = 6 -
| ) wmdn
_ _ "

in which the two integrals JoflLPCq)dfl and Jo qf(ﬁ) Jq_
are dimensionless constants. The following two normalization conditions
can be imposed on 14f C15 and Y

)

[[(Wweodn = 1 . (13)

frial

J mpepd = (14)

The similarity transformation repressnted by Eq. (12) then becomses:

NEDN
n (vt) = j;-ﬂﬂﬂ> (15)
_ Nwv
1 ¢

The kinetic equation for Brownlan coagulation can be reduced to
an ordinary integro.differential equation by the transformation given
in Eq. (15). If the solution to the resulting ordinary integro-
differential equation exists, it represents a particular solution to
the coagulation equation. This particular solution does not depend on
time explieity, and is therefore called the self-preserving size
Specfrum. If the particle size distribution of a disperse system is
initialliy in the self.preserving form, the shape of its size spectrum

will be preserved throughout the coagulation process.
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The experiments of Swift and Friedlander (26) showed that the size
distributions o:_ff coagul'a.ting' hydrosols approached a self-preserving form.
Subsequantly. Hidy (27) solved the discrete version of the kinetic
equafion of Brownian coagulation by a numerical method. His results
indicated that essentially the same self.preserving form was approached
by an initially monodisperse sol and a sol initially in four peaked
distribution, 1f the Cunningham slip correction was not taken into cone
sideration. Thus the expsrimental results of Swift and Friedlandsr,
and the numeriecal caleculations of Hidy support the self.presarving
hypo;thesis which oan be stated as follows:

| "The particle size spectra of coagulating dispersions

approach a form indspendent of the initial distribution

after a sufficiently long time, This holds true for certain
classes of particle collision mechanisms."
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III, TRANSFORMATIONS OF THE COAGULATION EQUATION

In this chapter, the equation obtained by applying the similarity
transformation given in Eq. (15) to the coagulation equation is
presented, A general transformation is introduced for the purpose of

studying the asymptotic solution of the coagulation equation.

A, The Sslfwpreserving Similarity Transformqtion.
If the collision frequency factor  3(v;<7)  4s a homogeneous

function of its arguments, the coagulation equation given in Eq, (8)
can be reduced to an ordinary integro.differential equation by the
similarity transformation. Substituting Eq. (15) into Egs. (8) and (9)

and then combining the resulting equations gives

L TBaD W@y Gdndg ] mcg:fL f200)
y L o .
+L BUL-DWED P (-dR - - aL BV YERIR=0 (16)

The solution to this equation, if it exists, is a particular
solution to the coagulation equation and is called the self-preserving
specirum,

The function Blv, ) given in Eq. (3) for Brownian motion
is a homogeneous function of degree zero. Substitﬁting Eq. (3) into

Eq. (16) gives after some simplifications:
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% * -4
Ctph sl -+(% = A= Ay ey

I”w(w(q-m 1+ (” 1 ”] Jdif =0 (17)

in which jLT/E, and ,u.fl/s are two constants given by

¥ 0 g
My = i. Ty dn (18)

* Y
o= 3 y d
/u‘ &) L 11 I‘JCTI. q (19)

Eq. (17) is equivalent to one originally derived by Swift and
Friedlander (26). This equation will be studied in detail in Chapter V.,
The functions f(viT)  tor laminar and turbulent shear flow,
given in Eqs. (5) and (6) respectively, are homogeneous functions of
degree one, Substituting these twe different expressions for [5(\.5 7

into Bq. (16) gives the same ordinary intogro-differential squation:

(2+ ¢ /u% pta,é)n d¢

i3 3y
+ (2402 Ay oy —2n =Gl - 640, M) Py

'y'[ . 5 " Yl ~ zf_g ~3 |/3 ~
N YDA + 6 [P (T ()9 = 0 =)

3 ]
in which M, = J qﬂxp(q)dq , V=3 5 . E. (20) is squiva-

lent to one originally derived by Swift and Friedlander (26). This



16.

eqﬁation, howaver, does not seem to have a solution with finite value
at M =0 . This can be seen by observing that if Y (D is
finite at the origin,Eq. (20) can be approximated by the following
equation for small values of V]

3
(2+6 4y, Mt/a)qg% + (2t 1z )l O bed=o

The general solution to this first order ordinary differential equation

is
¥ *
o+ G,Myaﬂgé
. Y Ly
k})(-rl) = cCconstant = "1 * b
whioch indicates that \U(YD — @ as nN—o ,

Small particles suspended in a shear flow are also subject to
fluctuations in the ambient fluid and exhibit Brownian motion. The
coagulation equation with the form of PCUT)  given by Egs. (5)
and (6) cannot describe the complete physical situation. It is
necesgary to consider the effect of both shear flow and molecular

collisions, This problem will be studied in Chapter VI.

B. A General Transformation.
In order to study the asymptotic behavior of the coagulation

equation, the following transformation is introduced:



niupt) =

|
o
HH
—~
=
e

(21)

The Jacobian of this transformation is

Mt 2 pNdpR
= ¢ ] &

(v, 1) N (o3

which differs from zero everywhere and hence assures that the trans.
formation i& a general one. By suppressing the dependence on T ,
the function @ ("],t) reduces to the self-preserving form W (1>
given in Eq. (15), which is a degenerate transformation, é@(ﬂ,t} has

the following iwo normalization conditions
0
L@(q,ﬂdq = | (22)
00
Lf@(q, Odn = | (23)

These two relationships can be readily obtained from Eqs. (1)(2) and
(21).
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If the collision frequency factor is a homogeneous function of its
arguments, substituting Eq. (21) into Eqs. (8) and (9) and then com-

bining the resulting equations gives:

[L g,, F'(*lffl') ® (.0 @(ﬁ,ﬂdqdr‘” [Y[ ai(:l{ﬂ P20 + ngi (q,t)]

-t

y .~ ~ " o - o ~
+{ BENDETOTN DT -2 [ pODEMOBA =0 (2w

Eq. (24) is the coagulation equation written in terms of the reduced
size spectrum function @ (1<)  and the reduced volume Y]

In thé next two chapters, Eq. (24) will be used to study the asymptotic
behavior of the size distributions for a simplified coagulation model
with constant collision frequency factor and for the more realistic

case of Brownian coagulation.
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IV, A SIMPLIFIED COAGULATION MODEL

The collision freﬁuency factor for Brownian motion given in Eq. (3)
is a homogeneous function of degree zero, The coagulation eguation for
Erownian motion therefore can be written in terms of the reduced
spectrum Ifunction g@ (ﬂ,f). « However, an analytical solution of
this equation does not seem possible, The simplest form of f3(vjﬁ)
with zero degree of homogeneity is jgfiﬂﬁ) = gonstant (independent
of U and {} ). Since the collision frequency factor for
Brownian motion can be approximated by B, ¥) = constant if the
range of particle size is not too wide, it seems worthwhile to study the
asymptotié solution to the transformed coagulation equation with constant
. /%(V?J) +  The manner in which the reduced size spectrum function

P M. ® approaches the self.preserving form can be seen clear.
1y for the case of constant [3(v; 7D , Since analytical solutions
to the transformed coagulation equation can be found for certain initial
distributions. The study of the case of constant )S(U:GJ should
shed light on Brownian coagulation. The mathematics involved in this
study also has some interest in its own right.

In this chapter, the self.preserving size spectrum for the simpli-
fied coagulation model is determined, and the transformed coagulation
equation with constant P is solved for systems initially
possessing a particular class of gamma distributions. It is shown that
the function ﬂ@(q,c) for this ¢lass of initial distributions
asymptotically approaches the self.preserving form, Finally, the

mathod of moments is employed to show that the size spectrum of a
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system with an arbitrary initial distribution approaches the self=

preserving form asymptotically.

A.  The Self-preserving Size Spectrum.
It PBlunod is constant, the equation for the self-

preserving size spectrum represented by Eq. (16) reduces to

(I e
’1‘%{ " 'L PEDY (- dF =0

Taking the Laplace transform of this equatién gives
d -~ - — 2
- P CI_P_\P(P) - qJ(P) =+ [ LjJ (‘P)] = 0 (25)

in which () 1is the Laplace transform of (7)) defined as

Do

@(q) = j e—PYImeMQ

[

Solving Eq. (25) for kl-j(‘r’) gives

Ppy = 7

The inverse transform of @@3 gives the self.preseving size spectrum
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for the case of constant R(u,¢) *

U =e

It can be readily shown that this form of W (")  satisfies the
two normalization conditions given in Eqs. (13) and (14)., The particle
#ize distribution corresponding to this form of the self-preserving

z2
N b = rN;m @ NG

spectrum is xp (- T) » which has a nonezero

value at =0 . Such a distribution is not unrealistie, as can
readily be seen by writing it in terms of mMm{(nt)dn | which is the

number concentiration of particles having radii between s and n+dp .

n{n4)  is related to N (v:t) by nr =4 nt),

Therefore the function 7" (nt) corresponding to W (M) = e_yl is

LT 3
n(nt) = SNOT N

> & » which vanishes at =0

-
A solution equivalent to (=€  was obtained by Schumann

(?7) by a different approach,

* This is one of the few self-preserving size spectra which can be
expressed in closed form. Iwo other self.preserving size spectra
writien in closed form will be given in Appendix II.
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B. Particle Size Spectra for Systems Initiallx Possessing a

Particular Class of Gamma Distribution

If /B(U, T) is a constant, the transformed coagulation equation
represented by Eq. (24) reduces to

SE(nT) N ACRD - L
2T 32 + 7 > + L @(n,z)é(qmq,adqz ¢ (26)

This equation is to be solved with the initial condition
¢ (1,1) = §,(p

Taking the Laplace transform of Eq. (26) gives

28(p0) 2B (pT) = - >
T TP Sy T EenrlBtho]ie

in which i(f Y is the Laplace transform of & (T{'t);

p(pT)= j efm§(q;) dn

If the Laplace transform of the initial distribution is represented
by &.(p) , the solution to Eq. (27) is found to be
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T 3, (pd<)
Te & (pR)— @ (pR) + 1

Cj_i(’ﬂﬂ =

Formally, the solution to Eq. (26) is

ct+ L oa £1

o = T ¢ &,Crmdp
. 27 i - NT B (p)- LPT) + |

[

(28)

in which i is the imaginary unit and ¢ is a constant greater than the
greatest real part of the singular points of P (<)
The inversion integral givem in Eq. (28) can be worked out if the

-]
initial distribution is of a particular class of gamma distributions

represented by

v

@o@l) = __Y_l, Yl e‘“'rl

e
(29)

* The gamma distribution is given by (28)

R 7
/chf)—_— _C_L'_. X, ¢ , for %I%o
" (s)
= 0 for X <0

in which % >¢, ® >o
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in which n is any positive integer, Substitutiﬁg the Laplace trans.
form of Q,H_SOC'Q) given in Eq, (29) into Eq. (28) and carrying out the
integration yislds |

{-nyyn =

$ ()= (1-42) 5oexp (B 4 b (30)

k=i

4
in which ﬁi = Jﬁ? [Ci—ﬁ‘) " exp (2ekmi/m) —1]

This is the solution to the transformed coagulation sguation for
the initial conditdon given in Eq. (29)., It is shown in Appendix II
th_at- this solution satisfies the two normalization conditions represente
ed by Eqs. (22) and (23).

By using Euler's formula, Eq. (30) can be rewritten as

—-h"ll/ﬁ': n

M -5 ok
B0 L exp (e Jon e ]

(31)
which is a better form for computing & (7, t) . The details of
the algebra involved in the derivation of Eq, (31) are presented in
Appendix IV,

A solution equivalent to Eq. (30) but expressed in terms of

M t) and U was obtained by Melzak (8) by a different method.
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The behavior of @ (1),<) as t>mw can be found by letting
T->o  in Eq. (30). The result is

lim @ (1) = o

tT->0

' -1
~ Which is identical with the self.pressrving spectrum I1U(7’L) =C

This shows that the size distributions for systems initially possesse
ing the particular class of gamma distribution represented by Eg. (29)
approach the self.preserving form asymptotically. To visualize how
the function & (M approaches e 1 o Eg. {3M) with n =2
was used to compute the function ©(M,©) for several values of T .
The results are shown in Fig. 1. Ii can be seen that the upper end

(."’[ > 0.1) essentially becomes self-preserving at T = 0.001 .

C. The Asymptotic Behavior of Size Spectra of Systems with Arbitrary
Initial Distributions.

Although an analytical solution to the transformed coagulation
‘equation represented by Eq. (26) does not seem possible for an arbitrary
initial distribution, the asymptotic solution for long times can be
found by the method of moments, Under certain conditions, a distribu.
tion is uniquely determined by its moments (29). To show that the size
spectrum of a system with an arbitrary initial distribution approaches
the self-preserving form e—"l asymptotically, it suffices to show
that the moments of the size distribution of this system asymptotically
approach the moments of S » To faoilitate the discuseion, the

following change of variable is introduced:

- 26
T=e
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¢ vanishes at €= 1 (or equivaiently at t = o) and approaches infinity
85T — o (or equivalently at t — o0 ). The transformed coagulation

equation represenied by Eq. (26) becomes after change of variable:

2d .0 ~ 28 (1 6)
=R - art

N L
[ 8 0801-7,6) 47 (32)

(¢

The n-th moment of the reduced spectrum function @ (4 ¢) is defined

as

Ao = | "B 0L6) 4

in which n is any positive interger. Multiplying both sides of Eg., (32)
by- YLn and integrating with respect to 7] from o to oo gives
the following equation

d Mn =
&"% = DMy + 5 (D) ity s n=1.2--+  (33)

i=0

in which (i) are the binomial coefficients.
Eq. (33) is a system of first order ordinary differential equation
for M, , n=1, 2,... These equations can be solved one by one,

starting from =n = 1. The solutions to the first three equations are;



28,

M ®=

M= 21+ [ pd-211 &’

Ma@= 31 30 L phd-217 & ?

+ { Tps0- 311 =3y (@213 €

in which 4, (o) represents the initial value of U.(8). It can

be sean from these thres solutions that

dim pdn(8) = m for n=1,2,3 (34)
f—w

A general solution for _A({, is not obvious, but it can be shown that
Eq. (34) is true for all moments. (See Appendix .V). It is also easy
to prove that the n-th moment of the self.preserving spectrum 6—7 is
M !, Thus the asymptotic value of the n.th moment of the reduced size
spestrum funetion of a system with arbitrary initial distribution is
equal to the n-th moment of the self.preserving spectrum. Since the
distribution & © is uniquely determined by its moments (see Appendix
VI), it can be concluded that the size spectrum of a system approaches
the self.preserving form asymptotically no matter what the initial

distribution might be.
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V. BROWNIAN COAGULATION

In this ch#pter, the selfpreserving size spectrum is determined
for_Brownian coagulation of particles having radii larger by at least
an order of magnitude than the mean free path of the medium. Because
of the complexity of the colliéicn frequency factor, an analytical
solution for the whole spectrum does not seem possible. Approximats
solutions are derived in closed form for the upper and the lower end of
the spectrum, and a numerical soluﬁion is given for the whole specirum,

The asymptotic behavior of the reduced spectrum function D)
15 studied by the method of moments. The system of ordinary differen-
tial equations for the moments of &(7 ) is too complicated to be
attacked in the same manner as in the case of constant 23 (v &)
Nevertheless, the values of the moments of g?(fzc) seem to
approach the moments of the self.preserving spectrum aéymptotically.

The inclusion of the Cunningham slip correction for Stokes!
friction formula destroys the homogeneity of the collision frequency
.factor /B(V‘ﬁa » and therefore makes the similarity transformation
inapplicable. The idea of quasiwself-preservation, according to which
the reduced spectrum function varies slowly with time, is introdueced
o solve this problem. By neglecting the <* .derivative term, the
transformed coagulation equation can be solved as an ordinary integroe
differential equation containing a time.dependent parameter. The
solution to this simplified squation for each value of the parameter
is called a quasi-selfmpreserving size spectirum. Approximate analytical

solutions are derived for the upper and the lowsr ends of these spectra,
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and numerical solutions for the whole spectrum are given for several

values of the time-dependent parameter.

A; The Self-Ereservins Size Sgoctrum for Brownian Coagulation
{in the Absence of a Slip Correction).

The equation for the self-preserving size spectrum for Brownian

coagulation of particles in a stationary medium is given by Eq. (17),

viz.

¥ K dyr ¥ # x -
(4t My SN 37+ (2 My =40, 1= 4, 50 ()

[wepwnn Ls ()% - .

(17)
in which A, amd L), are two undetermined constants given by
Egs. (18) and (19):
x = ot
W =[Py dy (18)
¥ *
M, = Lﬂ, o () o7 (19)

The integral term in Eq. (17) comes from the convolution integral
in the original coagulation equation (Ey. (8) ), and therefore repre-

sents the gain of particles by coagulation of smaller particles., A
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part of the second term in Eq.r(i?) comes from the sscond integral term
. {8). The saconﬁ term in Eq. (17) thérefore partly represents the
loss of particles due to coagulation.
" The two undetermined constants in Eg. (17) can be reduced to one
by the following transformation:

- ' (1 /u“ng""l
Y = (/{: s )((5) (35)
- '/3
<!+/‘L‘/3 1/3)3

Substitution of these two equations into Bq. (17) yields:

d%fﬁ) + [ 20k~ ok (1= 28" ]%CS)

8 -
-, XX -1 (E£)° ] dg =0

(37}
which contains only one constant 4, given by

* x
/L[‘ g _1"‘ 1/3

o
\

(38)
l -+ /d’l/:; 1/3



.
In terms of X;C(8) , the two normalization conditions (Egs. (13)
. *
and (14) ) and the two defining equations for .4, and _;Lfbé

(Egs. (18) and (19) ) become

Jo X&)ds = 1-4 (39)
Ty = 1 (%)
jb X C“?;s‘) (‘_&)1 |
| 8K = | ()
[ €18 = A1) (42)

Eq. (37) is an ordinary integro-differential equation for
X (3 » to be solved with the constraints given in Eqs. (39)
through (42)., Although an analytical solution does not seem possible,
approximate solutions can be derived for the lower end and the upper
end of the speotrum.
For the lower end of the spectrum, the integral term in Eq. (37)
can be neglected since the product of 1(5) is much smaller than

dX(%) ) L _
4;%5 and X (8) itself as 3 — O , (This assumption

can be checked later). Eq. (37) then becomes a first order ordinary
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differential aquation:
d ?C( 8).

5“;‘5" + [20(—&(1*0{)5/3* g"é] X(e)s 0

The general solution to this equation is
(j, = —1
Ay = e exp [zoz_o—aog -3¢ 7] (43)

in which C% is an integration constant to be determined hLy ihe
constraints on ,]f(%J . Substitution of this form for X(5) into
Eq. (37) confirms the assumption that the integral term is negligible
for small % . This can be explained by the fact that the gain of
particles by coagulation of smaller particles is not important in the
lower end of the spectrum.

For the upper end of the speectrum, the second term in Eq. (37) is
d A(s)

d5
the same order of magnitude. Neglecting the second term in Eq. (37)

negligible if it is assumed that (&) and

are of

glives

d% )|

j%fgr{(g O+ (G5 ]c!'ﬁ'}:o

(k)
4 solution to this equation is



: c, e
X = - (45)

in which B is the beta function, and C?_ is a constant to be deter-
mined by the constraints on {(5) , In obtaining this solution, the
integral term in Eq, (44) is evaluated by using Eq. (45) for X( &)
throughout the whole range of integration. This is not exact sines the
lower end of the speetrum canmot be deseribed by Eq. (45). However,
when the upper limit of the integral is large, it can be shown that the
value of the integral term evaluated in this way differs only by a
small percentage from that éva.luated by using the exact form for 7(( g
at the lower end of the spectrum. Substitution of Eq. (45) into Eq.
(37) shows that the second term is indeed much smaller than the other
terms. This can be partly explained by the fact that the loss of
particles by cosgulation is not important in the upper end of the
spectrum.

The evaluation of the constants C, , C. and A in BEgs. (43)
and (45) regquires information on the whol.e spectrum., OSince no simple
approximate expression is available for the central part of the
spectrum, thess constants were evaluated by numerical solution of
By, (37), using the IBM 7094 computer at the California Institute of
Technology. Eq. (37) can be solved as a first order ordinary differ.
entlal equation by any standard finite difference method. To
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facilitate numerical computation, Bg. (37) was transformed into the

following £ orm

d Y
o o

]

[ok(l« LHe? v e —Zol} Y ()

x x 2 ey &
*J YUY (Bnle e ))[l+(—&«~) Je dx
. e

(46)

by the changes of variables & = ex and hED =%(%) . The
advantage of this transformation is that Y(=> looks approximately
like a normal distribution, whereas X(g) is a highly skew distri.
Eution. The range of the argument of Y(x) gpansg from —oo to Do
The numerical calculation was carried out only for the range between

X = «B 4 and = = 5.4, since the values of Y¢x) outside this
range are negligibly small. The Adams extrapolation formula (30)
truncated after the fourth difference term was used to compute Y (x)
at an interval Ax = 0.1. The integral term in Eq., (46) was trans.
formed into the form

> -Z

e - Z - ~3Z
3'5 L YCI‘%Z)Y(XhQn(I-—Eﬂ'/))[Q Z/2+(;,e /)5edz

2 .
by the change of variable % =3(X-%) .| The value of this integral
was computed by the 32.point Gaussian-laguerre quadrature formula (31).
The starting values for Y(x)  were calculated from the approximate

solution for small % given in Eq. (43). Since Eqs. (43) and (46)
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contain two undetermined constants (, and d\'. » the numerical calcu-
lation described above involves a trial-andeerror procedure, Values for
C, and o were first assumed for computing  Y(x> and then

checked by Egs. (39), (41) and (42). The integrals in Egs. (39) through
{42) were also evaluated by Gaussian-Laguerre quadrature formula. It
was found that the assumed values of C;, = 0,2788 and ¢ = 0,53 gave
a satisfactory result. |

oo

L %(@)ojg = 0.4(74 compared with |l—d = 0.4700
oo yb

L £ X(g) dg = 1,000} compared with 1
* Vs

L 57X(8)ds =0.2491 compared with d(i-d)=0.2491i

The value of the constant jf,f/z was computed by Eq. (40) and
found to be 0.9046. The constant 7, was found to be 1.2480 by
Eq. (38). The values of these two constants were then used to calculate

G by Eq. (35). The results thus obtained are given in
Table 1, and compared with Hidy's limiting solution for the discretes
spectrum (27) in Fig. 2. The agreement betwsen these two curves is
fair.

It is interesting to _note that the self-preserving size spectrum

does not depend on the physical properties of the medium. The particle
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Teble 1. Self-preserving particle size distribution
for Brownian coagulation obtained from
Eq. (17) by finite-difference method,

i o Wop
0.0010 0.0030
0.0019 0.0165
0.0035 0.0593
0.0052 0.1154
0.0070 0.1750
0.0104 _ 0.2764
0.0190 0.4593
0.0345 0.6409
0.0515 0.739%
0.0695 0.7543
0.1037 0.8373
0.1400 0.8451
0.2089 . 0.8215
0. 34k 0.7371
0.5138 0.6279
0.6935 0.5256
1.0346 0.3729
1,8852 0.1572
3.4351 0.0317

5.1246 0.0050



38,

‘wmnaloads 919I0STIP 23Ul X0f UcTin[os Iuritwai] s,AprTH ylrm pasedwios
sT wnijdsds snonuruod syl Icy morenbs Tenusrsrp-oxfajur Axeurpio oyl
Fo uomnios Aq poureiqo 3nsal a8yl Jeuwroudol Arsrvwrxoxdde Lisa st untog

ayr, ‘ucernieod URUMOLY I0F UOTINGLIISIp 2218 2[o0Ied Sutazessad-ylag 7
| L
0G of oro oo

[22] AQIH —— =
(6)03 O
>e_—>" | {b)o3 o©
(L1) 53 OL NOILNTOS TVOIHINNN ——

1000
0o
-120
dyo €
n.

. =3
490 Nz_¢
480

ol



39.
size distribution of a self.preserving systam is uniquely determined
by :.ts total number concentration N and total volume concentration
$ , and is independent of the viscosity and the temperature of the
medium.
Substituting C, = 0.2788 and o\ = 0.53 into Bq. (43) and trans.
forming X((3) and & back inte WP (7> and 7] gives the

following approximate expression for the lower end of the spectirum:
0.5086 : —an’3 1Y
L'J(’Vl)z“?‘;g— eXP(l.'T‘Dg‘/L - L2775 'z 3) (47)

The approximate expression for the upper and of the spectrum given
in Eq (45) can be rewritien in terms of L,U(’Z) and 7] :

_C
LP(T[) _ ( I+ )J—l/slia ‘/5) c (11.8)
|+ B
in which _‘ C ( h—ji'/é/u‘_é) ST
.1/!‘1/3

The valuses of C;; can be estimated by fitting this expression to the
upper end of the spectrum obiained numerically., It was found that

Eq. (48) with  C; = 0,95 fits the upper end of the spectrum fairly
well, Inserting numerical values for /L:l.:;,;t;;and Cj into Eq. (48)
gives the approximate expression for the ﬁpper end of the spectrum:



-~ 0.981
P =05 e 49)

Values for qJ(“p computed by Egs. (47) and (49) are plotted
in Fig, 2 for comparison with the numerical solution. The agreement
between these two results is satiasfactory for Y[(o! and 1710

The self-praseiving spectrum for the case of constant [3(v; /)
and that for Brownian coagulation ars compared in Fig. 3. It can be
seen that the upper ends of the two self.preserving spectra almost
coincide with each other,

| The self.preserving spectrum for Brownian coagulation has a maxi-
mum value 0,8452 at 7] = 0,136, Since it looks approximately like a
logenormal distribution, a logenormal distribution with its peak
coincided with that of Brownian self.preserving spectrum is also shown
in Fig. 3 for comparison. The log-normal distribution is represented

by

o.242

J o = exp [—0.268 (P! + o.r327)2]
LN

which bas been normalized to satisfy the condition

fq{N(q)dq = |
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B. Concsrning the Unimodality of the Se]_f-presérving Specﬁrug
for Brownian Coagul ation,

Some argumaﬁts can be given to support the result of the numerical

ealculation that the self-preserving distribution is unimodal. Since
Lp(ﬁ[) is non-negative and its first derivative vanishes at a

maximum, it can be seen from Eq. (17) that maxima can ocour only when

the coefficient of \P(’?‘l) in the second term is negative, The

3 2
coaefficient of L[J (VD has negative value when "] <§M?}3) (1= fi H,u*} o )
. %kl
¥ 3 R
or Wq > CLLpgy (5 +‘J \ —--j}—; ) . It can be shown by
Lﬂé“‘%
Sobwarg inequality that .y, u’, 21 . Since () satisfies

the two normalization conditions given in Eqs, (13) and (14), it seems

¥ X
reasonable to assume that }L‘/s }**_\/3 has a value near 1.1 and
_/U('#l-/g has a value near 0.9. With thess numerical values for
*
/u.*'/«, and )U\T@ My » the coefficient of L[J(ﬂ]) is

negative when Y <025 or "7 1.6 , If any maximum occurs in
the lower end (M <o.25) » it must lie very close to "} = 0,25,
since the integral term in Eq. (17) is negligibly small and hence can-
not compensate for the relatively high negative value of the second
‘term for very small fl . The integral term continues to increase
after \U(fyi_) reaches its first peak, while the second temm is
vanishing when " is approaching the value 0.25. The inereasing
positive value of the integral term must now be counterbalanced by the
increasling negative value of the first term containing the derivative
a4

« Therefore, there should be no maximum between the
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first maximum and "] = 0.25. Thus if there is a second maximum, it
muét occur in the upper end ( N > 1.6). In the upper end, it seems not
unreasonable to assume that W (7)) can at most be the same order of
magnitude as %—\% . The second term in Eq. {17) therefore can be
neglected. 7The first term must always be negative to compensate for
the positive integral term. This implies that there is no maximum in
the upper end.

The above arguments indicate that there can be at most one maxi.
mum which occurs near V) = 0.25. Since the Brownian self-preserving
spectrum vanishes at both ends, thore chould be at least ons maximum
in the spectrum. These arguments indicate that the self.preserving
size distribution is unimodal. The position of the maximum is predicted
to occur in the range 'Y[_< 0.25, which is in agreesment with the numeri-
cal solution {the peak occurs at V}_ = 0.136).

C., Cheeking the Numerical Solution by the Relationships Among the
Moments of LP 1) .

The accuracy of the numerical solution to BEg. (17) can be checked
using certain relationships among the moments of the self-preserving
size spectrum., For this purpose, the definition of the moment is
generalized to inelude nonintegral moments, If J/ is a.real number,

the 1) -th moment of the function Y ("l) is defined as

x

P R IORL] (50)
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The values of the momentis can Be obtained by numérical integration using
values of QJPQ) given in Table 1.
Multiplying both sides of Eg. (17) by Tln-(n = integer ) and
integrating with respect to '} from O to o0 gives the following

relationships among the moments of Y (1)

'3

"=k
n F X X x
H M, .+
LG Wl v ) .

Cn-0y Cre s w00

n= 2,3

, -
in which {7) are the binomial coefficients. Eq. (51) can be used
ﬁo compute the values of intégral moments from the lower moments
evaluated by Eq. (50). The values of the integral moments calculated
from BEq. (51) can be compared with those from Eq. (50). Table 2 shows
that the agreement betwesn the values of ,Ui; ,» b= 2,3,4,5, obtained
in these two different ways is satisfactory. In evaluating ,Liﬁf
from Eq. (50), the integral was divided into two parts. The first part,
covefing the range of 7/ from 0 to 1.05, was evaluated by Simpson's
rule, using the value of Hﬁfﬂ) given in Table 1, The approximate
expression for the upper end of the spectrum given in Eq. (45) was used
in calculating the second part of the integral covering the range of ¥

from 1.05 to infinity.

D. Some Physical Properties of Self-preaerviQEVSystcms.

For the case of constant PO, the time rate of change

of the total number concentration of particles given in Eq. (9)
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Table 2. Comparison of the integral moments of
the self.preserving speatrum for Brownian
coagulation evaluatsd by Eq. (50) and Eq.
(51) respectively.

From Eq. (50) From Egq. (51)

7 2.014 2.029

My 6.100 6.087

A 204,77 24, 5
*

5 125.9 124,93
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reduces to
IN _ _4RT =2 » hT
Jt = ‘—"3)1‘ N [}or ﬂ(u’,fu) = ‘571_' :l (52)

which indicates that the decrease of N is second order with a rate

constant KC_ = 4-1QT/3/M. . Solving Eq. (52) for N yields:

Nt) =
1, 4RT
NCo) 3

For Brownian coagulation, Eq. (9) can be integrated to give

_ _ 2kT

dn - _

at o (N*+ om, m, (53)

in which My and m,, 13 are functions of time given by

(2]
m, = L 'u'/sm(v, > dv

cxa
_ s
m_yz = jo VvV Tn(w tdd v

~ Since it is not possible to express My, and LLLIV
explicitly as functions of N when the form of ™(v,t) is undeter.

mined, an explisit soluticn for N cannat be abtained from Eq. (53).
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If the particle size distribution is self-preserving, the right
gide of Eq.' (9) can be written in terms of I{J Cfl) and then inteo-

grated to yield

AN _ kT .. ox oa L~
ge T mp U s d N (54)

in which }f; and /Uf Vi, are respectively the one third

and negative one third moments of KP’("].J . Eq. (54) was

originally derived by Swift and Friedlander (26). Since .ALﬂ;/3 and
,u«fb@ are constants, Eq. {54) indicates that the decrease of

N.is sescond order with a rate constant Ksg = ?—31}1“ ( 1+,u: Mj},})_

The ratioc of the rats constant for a self.preserving system to that for

a homogeneous system (equivalent to the case of constant 3 (v, v))

is
Kss L+ uf:/g
o= (55)
Ke 2.
Inserting the numerical values for /lj_:‘;g and /uffi /s
K
into Bg. (55) gives ~}—<-5-§ = 1.065. The experimental value of

this ratio determined by Swift and Friedlander for oil.in.water

emulsions is 1,162 (26).
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Eq. (54) can be solved to 'give_ the expression for N of a selfw

presar\fing system:

|
Nt =
Gy * Keet (56)

Dividing ¢ by N(t) given in Eq. (56) yields the expression for

the average volume of particles in a self-presserving system:

’U’(—E) = o + Karg, (P t

which shows that u ) is a linear function of time,

The total surface area of particles in a unit volume of the sysiem
is given by

‘/3 o9 2/3
A = (z6&m) So 1 Tatan EYdU
(57
If the size spectrum is self-preserving, Bq. (57) becomes:
5 Vs Y
As(t) = (3énd” u) &7N"
s 4

A (t) can be expressed as a function of time by substituting the
expression for N(t) given in Eq. (56) into Eq. (58)
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v+
(3¢ ® Moy ¢ 7°

1/3

Aty = l
_ [m? + Ksat]
4oy %7

./
[Kj%o) + ]<5Bt] ’

If the densityrof particles is f; , the total mass of particles

with volume larger than <V  in a unit volume of the system is given

by

o0

M (v ) = (?Pj vn(w ) dv
v

For a self-preserving system, Eq. (59) bscomes

M d = Pé [ Pl dn
N

’'s
s

(59)

(60)

The approximate expression for the upper end of the self-preserv.

ing size spectrum given in Eq. (49) can be substituted into Eq. (60) to

obtain

M (nt) = o4 £ (d+ atsNy) e
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which is the total mass of parficles with volume larger than v~ in a
unit vﬁlume of the systsm. The egquation is‘valic.i only for vV 7 vy
Differentiating the above expression for [VI(ut) with respect
to .time yields the rate of transfei of mass into the upper end of the
size spectrum
_ 095N

fa?)

+ .
M = 095 KSBPE' N e (v > Ud)

ot

E, Asymptotic Behavior of Particle Size Distributions for Erownian

Coagulation

1. Approximate Solutions for the Lower and the Upper Ends of the
Reduced Size Spectrum,

The analytical results obtained in Chapter IV show that the self.
preserving hypothesis holds for the case of constant [3(1/: ), The
collision frequency factor for Brownian coagulation is toc complicated
to permit the problem to be attacked in the same way as in the case of
constant | JER L TD . Nevertheless, some arguments can be given
to support the self.preserving hypothesis for Brownian ccagulation,

Substituting the expression of  B{(vT)  given in Eq. (3) into

Eq. (24) yields the transformed kinetic equation for Brownian coagula.

tions
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(61)
in whieh M, and M., are functions of time given by
o7 "/6
fos = | M B0 dn (62)
ey J”L 2 () d" (63)

An analytical solution to Eq., (61) does not seem possible, How-
ever, the general sclution to the aquation obtained by neglecting the

integral term in Eq. (61) is

I/L Vg
3‘2(7[ 1) = {C"’[/{fz) EJCP{ Mg d 3 i M-y dr

G AL IR

. j‘ Jd'/s)l’{‘-l/g dt
e |

(64)
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in which £ /£ s ;n arbitrary function of 7 /7"
to be determined by the initial distributioh and the constraints on
&0 ) .
It can also be shown that a particular solution to the equation

obtained by neglecting the third term in Eq. (61) is

~ | Cl+BE 5)n JT
e fcl 65
&M< = C ey { T Jm-%@%vﬁg )

in which B is the beta function and C is a constant to be determined
by the constraints on @ (7M. <),

| Egs. (64) and (65) are not sufficient to determine the whole
spectrum, since they are approximate solutions for the lower end and
the upper end only. However, it is interesting to note that, if

Ay and M _ i are assumed to vary slowly with time, Egs.
(64) and (65) approach asymptotically the approximate expressions for
the lower end and the upper end of the self-preserving spectrum given

in Eqs. (47) and (49) respectively.

2. lRalationships Among the Moments of the Reduced Size Spectrum.

Some arguments based on the moments of the distribution can be
given to support the conjecture that the self.preserving spectrum is
also the asymptotic spectrum approached at the later stages of
Brownian coagulation. To facilitate the discussion, the following

change of variable is introduced:
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O, vanishes at T=1 (or equivalently at t = 0) and appreaches
infinity as © — 0 (or equivalently as t - ), if Mia and
AL are assumed to remain finite for o<TsS! . Eq.

(61) becomes after change of variable:

a®(n,6) o2 IR
o = UMDyt A AT ) B )

1 R s L ,
* _L [\+ (qf]q) ] E_EC’TJG.)@@"}/&QJQ

(66)

This is another form of the kinetic equation for Brownian coagula.
tion. 7The definition of the moment is generalized to include the
nonintegral moments. If )/ is any real number, the v _th moment

of the reduced size distribution & (% g,)  is defined as:

Ay, = S:OF’IV@['Y[ 19‘;) c‘lq

An expression for the time rate of change of the n-th moment

(n = integer) of  &(7,6)  oan bo derived by multiplying both



" ,
sides of Eq, (66) by 7  and integrating with respect to ’Vl from

v to oo b

=

Lo

d o - (‘h"D (‘+%/5M'l/3§/MW -+ Z C‘T) (/ui#n-r'_‘*’ﬂwvg_yaﬂ -)

Y
i= &

!
It

Mn=273, - (67)

in which CYLL) are the binomial coefficients. Eq. (67) is a system
of first order ordinary differential equations for M, , n=2,3,4,.. .
These equations are not gufficient to solve for M, since they contain
the nonintegral moments  A,.,, , n=0,1,..., whose time rate of
change cannot be calculated from Eq. (66), Nevertheless, the asymptotic
behavior of the moments can be examined at least approximately by intro-

ducing a family of time dependent functions a5 8) defined as:

Al ey M
aL. ( Q' ) = e
4 My AL
Replacing i s AL by a,; (9,)/&”/(\1- in Eq. (67) yields

d o S
S + (n-1) (1+ ao’a)/“n - }«:; (.T) ( r a;,n,i\/u:_ M

= 2,3 --- | (68)
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The exact solution to Eq. (68) with n = 2 is

fara,nds o <fawa, ddg IO +a, D d8,
M, = C e + 2e (H(l.hl)@. CI&I

(69)

in which the integration constant ¢ is determined by the initial dis.
tribution. The integration in the right side of Eg., (69) cannot be
carried out, since the forms of the functions aidc ¢, are

unknown, However, it seems not unreasonable to assume that the

509D vary siowly with #  and approach certain constant

values Ciij when 8,  becomes sufficiently large. With

this assumption, it can be shown from Eg. (69) that

*
201+ a, )
’gf‘/ﬂ’l /(,L 2 = E,—l‘_l“

.*
91_;,00 |+ aao‘o

or written in terms of it

2 ( i+/uz/3)u /=)
7z (70)

/&"m Mz :,gt'm’l_

Gl—-?w QI_,”-;o !+ }"‘VaﬂLJ/B
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Eq. (70) is identical to Bq. (51) with n = 2, which is the relationship
among the moments of the self-preserving spectrum. Relationships for
the #sympt.ot.ic values of higher moments of _@' (’7,8,) can be
obtained by the same arguments, and shown to be identlcal to those given
in Eq. (51).

To prove by the method of moments that the self-preserving size
spectrum is the asymptotic solution to the coagulation equation, it is
necessary to show that (1) the moments of the reduced size spectrum

@f(?,t) approach those of the self.preserving spectrum asymptoti-
eally, and that (2) this sequence of moments -daterminos s unique dis.
tribution. The above analysis merely suggests (but does not prove)
that the relationships among the moments of the reduced size spectrum
of a system with an arbitrary initial distribution asymptotically
approach the relationships among moments of the self.preserving spectrum,
It remains o be shown that the infinite number of relationships given
in Eq. (51) determine a unique distribution. Thus the proof of the

self-preserving hypothesis for Brownian coagulation is incomplete.

F. Particle Size Distributions for Brownian Coagulation with the
Cunningham Slip Correction.

1. Quasi-self.preserving Size Spectra

If the particle radil are of the same order of magnitude as the
wean free path of the medium, the Cunningham slip correction for
Stokes! friction formula may be used to account for the increased
partiele mobility. The ineclusion of a slip correction destroys the
homogeneity of the collision frequency factor and makes the similarity
transformation represented by Eq. (15) inapplicable. However, the
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co#gulation equation with the slip correction can still be transformed

by the genei-al transformation given in Eq. (21). To simplify the
analysis, the sxponential term in the Cunningham slip correction will
be neglected. The collision frequency factor of Eq. (4) can then bs

written as

y W 257 a f.25Tn
ﬁ(v,us) = 233".( (Vo r U2 'Vs ! Z/; ¥ ~1-% + _;3 )
M ¢ ; Y Y

The error introduced in p(v.%) by neglecting the exponential term
is at most 24.2%4 as can be scen from the expression for A. given in
Eq. (4). Substituting Eq. (21) into Egs. (8) and (9) with this form of

ﬁ (o, Vi) and combining the resulting equations yields

22 28
[l +/li(3)'t-l/3 +-A'()/L,|/3"|'M'/3MJ2/$5_] (21" ;‘E + W, 9—;’1 )

_ Y5 -V
N [Z’M%M% ¥ A(M—‘/aJrZ/u%ﬂ‘—%) - (’“*stﬂ M—'Z/b)r’- '(/uvsﬂ\) ’vl

. (R )
S 800 <], Te B (0 50 BEDE 05047 =0

AYs
1

(71)
in whieh M., , M, , M,, and /\ are functions of T

given by



:'Jo ,q])@(/q,-[)dq ‘U":‘T;-'J“';_ “—§"

3
A = a.zsva(%") :,mm (_> At e (72)

Eq. (71) is a partial integro~differential equation for the
reduced spectrum function | & (",c) and is to be solved with the
initial condition $ (7, 1) . Although a general solution does
not seem possible, particular solutions similar to the self.preserving
solution can be found. By suppressing the T.derivative term, Eq. (71)
can be solved as an ordinary integro-differential equation for sach
fixed value of /N

p @ﬂ )

) *
(14 5y 0 (il adly i, 211 3
x A x X ox * * Vi
+ [Z#VEM_,@ AN 2, s, ) — (M AU, T
-%/3

- (&, +A)71'/3—~ Wy AL E UL A)

+f 1+ ﬁ' NI ,%) ¢ (LAYE(1T,A)d7 =0

(73)
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in which the spectrum function is written as & ( n, N to
indicate its dependence on /N . The moments /LLE are defined

as

* ® _
AL, = L “’lus"é(ﬂ,-fx)dq | p=5 -3 "% (74)

The assumption that the t.derivative term is negligible can be
checked by comparing i (%%)A with

2t (%%)n =2t (&), dn , in which both (%% N

and ( 287 can be evaluated from the sclutions obtained for
an’n

- different values of /) ., The validity of the assumption depends on

4
dT *

with time to make the approximation valid, the solutions can be called

ﬁhe value of the term If /\ changes sufficiently slowly

"quasi-self.preserving® spectra, indicating their slow variation with

—1/
time. If the mean free path . increases with time as N 3 s Lthe
derivative %’% vanishes and the solutions are exaci, Thess

exact solutions are the self-preserving spectra for different values
of Uw _

For each assumed value of /> , Eq. (73) can be solved in the
same way as Eq. (37). Approximate solutions in elosed form can be
found for ihe lower end and the upper end of the quasi-self-preserving
spectrum by the same approach used in obt;iining Eqs. (43) and (45).

The resylts are:



for the lower and:

| * * s x 5 # -
< exfo{ 3 ({L-va_ﬂrj\}i«—yg,)'l = 3(W,+ M1 -1.5 4L, A7) }
Q?(Y[ A) = | +,U.f:3ﬂj/3 FAC}L{],3+ J.Lj.‘:ls u,’f%)
S ol x ¥ r
2#‘!/5 )u-r_,|/3 + A (/ui.l/3 T ZMV?,J‘L—'Z/g J
'Y]_ b Wul o+ A C PRAEYTA 0
and for the upper end:
¢ Cs ot | * ¥ ~Cs]
POy = o [ SRRl
-8G5 -

The constants C‘,,, Cx and/Uj., v = 13, =1/3, =2/3, are to be
determined by the integral coustraints on () given in
Eqs, (13), (14) and (74). This can be achieved by solving Eq. (73)
numerically by the same method used in solving Eq. (37). Since there
ars four undetermined constants (a4, #«ZJ Mj/s and Mi /= » the
computing time used in the trial and error procedure is greatly increas-
ed. It is more convenient to start from /\=0 and gradually increase
its value, Ea. (73) with = /\ =0 is identical to Eq. (17), which is
the equation for the self.preserving size spectrum of Brownian coague
lation without the slip correction. For small values of /> , the
spectrum lies very close to the curve with /N =0, and the moments
should not differ mueh from those for the ./~ =0 spectrunm.

Fig. 4 shows the quasi-self_presorving sizs spectra for
I =0, 0,05, 0.275, and 0.495, obtained by the numerical method

described above, The numerical values for these spectra are presented
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in Table 3. The assumed and the calculated values of the moments of
@ (TL/A\) ' are alsc shown in the table to indicatse the

accuracy of the numerical solutions.

2., Systems with Constant Mean Free Path.
If the mean free path §f the fluid remains constant throughout the

coagulation process, the parameter /L ogan be expressed as /\ =/(o) ‘\:}é
in which AJ(o) is the value of /A at t = 0. The quantity Zt@;‘?ﬂ

) 1
is then given by

2e(E) = 2 (&) 42 = 4 ()

at™M oA dT AN

The derivatives (%%),1 and ga—f)n can be estimated

from Fig. 4. At A = 0.05 and 7] = 0.02, they are found to be

2
(50, ~

28
(a’l no e
The ratie of 2T (z—f)n te 7 (%%— . is about 1/9.6,

which confirms the assumption that the ‘T-derivative term in Eq. (71) is
negligible in the lower end. The assumption can also be substantiated
for the upper end.

Two distribution curves taken from Hidy's numerical solutions (27)

are shown in Flg. 4 for comparison. Hidy's two curves represent

the spectra at t = 45+ and t = L respeotivaely,

RT N RT N(o)
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Table 3. Quasi-sglf.preserving size distribution for
Brownian coagulation with the Cumningham
slip correction, obtained from Eq. (73) by
a finite difference method

=0.05 M $(n,n
| 0.0018 0.0025
0.0030 0,013
0.0050 0.0466
0.0082 0.1198
0.0136 0.2402
0.022% 0.3959
0.0369 0.5588
0.0608 0.6973
0.1003 0.7872
0.1653 0.8152
0.2725 0.7760
0. 4493 0,6698
0.7408 0.5061
1,224 0.3122
2,0138 0.1391
3. 3201 0.0359

5. 4740 0.0034
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Table 3., (Cont'd,)

N=0275 M _ D,
©0.0050 0.0025
0.0082 0.0164
0.0136 0.0643
0.0224 0.1690
0.0369 0.3291
0.0608 0.5112
0.1003 0.6687
0.1653 0.7637
0.2725 0.7753
0.4493 0.6968
0.7408 0.5372
1.2214 0.3307
2.0138 0.1424
3.3201 0.0336

5.4740 0.0024



NA=0495

és.

Table 3. (Cont'd.)

Y

0.0091

0.0150
0.0247
0.0408
0.0672
0.1108
0.1827
0.3012
0.4966
0.8187
1.3499
2.2255
3.6693
6.0497
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Table 3., (Cont'd.)

_/\ . Moments Assumed
Gos g 0. 9044
i 1.2300
W, 1.8000
% 1.(required value)
J&T 1.{required value)
c, = 0,5060
0,275 ALYy, 0.9170
M2 1.19%
5% 1.6100
a® 1.(required value)
L 1.(required value)
C, = 0.5600
0.495 A 0.9200
AT 1.1830
My 1.5250
JTAN 1.(required value)
AL

1.(required value

C, = 0.6100

Comguted
0.9087

1.2201
1.7623
0.9891
1.0185

0.9197
1.1853
1.6083
0.9903
1.0203

0.9222
1.1780
1.5562
0.9934
1,0026
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of an initially monodisperse system with 7\/ ﬂn. = 1, The values of
/> for these two spectra are 0,275 and 0.495 respectively, The
agreaﬁxent between Hidy's results and the numerical solutions to Eq. (73)
is fair,

Since the slip correction is most important for the smallest
particles, the upper ends of the quasi-self.preserving spsctra should
lie close to the distribution for 4N = 0. This is confirmed by the
results shown in Fig. 4. |

The lower end of the quasi-self-preserving spectrum lies closer
to the seli-preserving apectrum for small values of /A , or sgquivae-
lently for long timss.  This is to be expected since Eq. (73)
gradually reduces to Eq. (17) as /\ decreases. This is also in agree=
ment with the physical picture that the slip correction becomes less
important as particles grow larger. The conclusion of Hidy that the
self.preserving size distribution varies with the ratio 2 /n,
appears to be incorreect.

For a system started from an arbitrary distribution, the size
spectrum will differ from the quasi.self.preserving spectra in the sarly
stages of coagulation. From the similarity between Igs. (61) and (71),
it can be expected that the size spectrum will become quasi-self-
preserving as coagulation proceeds; and as it approaches the final
self-preserving form ( /% = 0), it will pass through the family of

quasi-self-praserving spectira near <> = Q,
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VI, COAGULATION BY BROWNIAN MOTION AND SIMULTANEOUS SHEAR FLOW

Equations for the collision frequency dmong particles have been
worked out for Brownian mptisn.and laminar shear considersd as separats
mechanisms. No theory exists for the case of the two effects occurr-
ing simulltaneously. A detailed analysis of this phenomsnon is beyond
the scope of this study. For the purpose of this analysis, it will be
agsumed that the collision rate for small particles in a shear field
is simply the éum of the collision rate for Brownian motion and that for
shear flow, Since Brownian motion and shear flow are separately of
controlling importance in different ranges of particle size (25), the
agssumption of additivity of the collision raetes may not lead to appre-
ciable error.

The homogeneity of the function A(VU) is destroyed when

(v, %)  for Brownian motion is added to that for shear flow.
However, if the shear rate varies with time in a particular way, it is
found that the coagulation equation has a self-preserving solution.
The shape of the self.preserving spectrum depends on the value of a
parameter T s Which in turn depends on the total volume concen-
tration of particles and the pratio of the initial shear rate to the
initial total number concentration. In this chapter,an approximate
solution in closed form is derived for the lower end of the spectrum.
Numerical sclutions are obtained for the whole spectrum for several
values of I° . The applicability of these results to coagulation in

an isotropic turbulence is discussed,
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A. [The Self.preserving Size Spectrum for Ceagulation by Brownian

Motion and Simultaneous Laminar Shear Flow.
Assuming additiviiy, the collision frequency factor for Brownian
motion and simultaneous laminar shear flow is given by:

%

G (% ¢

— 2kT S AP I | %
B('U:U) = :;-37.1._ (U + U )(UV3+ ’UVQ +'F_'E(U

2

D)
Substituting the similarity transformation represented by Eq. (15)

into Egs. (8) and (9) with this form of ]9(vr§) and then combine

ing the resultiing equations yields:
dy
(|+A?t/3/uf_l/3 t P+3P}}’*J/suzf3jqjﬁ
¥ ¥ N I L S S R
t Lol + B Oy — Aoy T - (i, +3F ) ~3Be 121y

Uj N irs BRSPS
NI (’l_ﬁ’l) + B3P P e = o
(75)

in which [? is given by

P 3G P
2R TN

#*
and AL is the 1 _th moments of (7))  defined as
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W= § e dn B (76)
¥=3, 3, -3

If the laminar shear rate G variss with time in such a way that
the ratio G/N remains unchanged throughout the coagulation process, the
parameter F is constant and Eq. (75) is then explicitly independent of
time. Bq. (75) with time-independent parameter [ is similar to the
equation [or the self-preserving size distributlon for pure Brownian
coagulation given in Eq.(17). For each value of £ , Eq. (75) can be
solved in the same way as Eq. (17). The solution so obtained is a
particular solution to the coagulation equation for Brownian motion
and simultaneous laminar shear flow with constant G/N. The form of the
solution depends on the value of [ . For a system started from a
self-preserving distribution, the reduced size spectrum remains un-
changed throughout the process of coagulation. The time rate of change

of the total number concentration of such s selfapreserving system is:

T =~ Kegs N (77)

in which the rate constant [Ksgs 15 a function of [ :

I o o - -
Kses = 3n UO [(47,;—;%;3) (7% + PO Pep P ndi]
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Eq. (77) can be readily obtained by substituting Eq. (15) into Eq. (9).
Integrating the rate equation for N gives:

S
N® N(e) KSBSt

The laminar shear rate O can now be expressed as a function of time:

A 3 G (0)

= r (78)
Kmst SV b+ Ky Nt

G=aN

in which ¥ is the proportionality constant and G(0) is the value of
G at t = 0, Thus, for the system to be seli-preserving, the shear rate
must be varied with time as specified by Eq. (78).
The three undetermined constants, ,U—_ts ' JU’*'L/B and
/U’-Xz_/b , in Eq. (75) can be reduced to two by ecombining /lf/s
and 3F }Uj/s . By letting (1 represent the sum of /utf‘.'/:,,

and 3P u%,; , Eq. (75) becomes:
dy s s
(1o, @) 15, {T+28,8-08,1 - a1 =3B TP §
}1 = 2
paa P N w4 ~ N
+£[1+(%?) P SR PE Y- T = g

(79)
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Ain approximate solution to the lower end of the spectrum can be

obtained by neglecting the integral term in Eg. (79). The general

solution to the resulting firsi order ordinary differential equation is

Propiq y =/ -
T Pt @ a0 % 4:5}"7\:/’3Fr1%+?‘2_%’u‘23qvg
Wep = C, M exp 5 )
1+ P+, &
(80)

in which dé is an integration constant to be determined by the con-
straints on W C’YD .

Both .the coefficient of \P("D and the kernel of the integral
in Eq., (79) contain the independent variable Y] up to the first degree,
This makes the equation significantly different from that for pure
Brownian coagulation., As a result, an approximate solution could not
be found for large values of ’Y]_ .

Eq. (79) can be solved numerically by the same approach used in
.solving Eq. (37). The approximate solution for the lower end of the
spectrum given in Eq. (80) was used to compute the starting values of

W( ) . Bince there are three undetermined constants, (3
Mfﬁs and C ¢ » the computing time for the trial and error
procedure 1s much greater than in the case of pure Brownian coagulation.

Eq. (79) with [=o0 is identical with the equation for the selfw
preserving size spectrum of Brownian coagulation. For small values of
P, the constants (A ' M%._,—; and C, do not differ muoh

from those for Brownian coagulation and therefore are easy to guess.
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For this reason, the calculation was made by sefting j?: o and
gradually ihcreasing its value,

The values of \P (M)  thus obtained for F = 0.01, 0.1 and
0.3 are prasentéd in Table 4 and Fig. 5. The self-preserving size
apectrum for Erownian coagulation is also shown in Fig. 5 for comparison,
The computed and the assumed values of the undetermined constants are
included in Table 4 to indicate the accuracy of the numerieal solution.

Fig. 5 shows that the spectra are quite close to each other for

M > 0.5, but differ greatly for " < 0.1. The shift in the

position of the maximum is noticeable.

If the laminar shear rate is maintained constant, the parameter
P will vary with time. In view of the similarity between Eq. (75)
and Eq. (73), it might be expected that the effect of constant shear
rate on the size distribution could be treated in the same way as the
effect of the slip correction for constant mean free path. There is,
however, an important difference beiween these two cases: the parameter
P  for constant shear rate increases with time whereas the parameter
Iy for constant mean free path decreases. Fig., 5 shows that as ¥
inereases, the size spesctrum changes drastically. Thus the quasi-self.

preserving hypothesis is not applicable to the case of constant shear

rate.
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Table 4. Self.preserving éarticle size distributions and their
moments for cocagulation by Browmian motion with simul.
taneocus shear flow, obtained from &q. {(75) by a finite
difference method.

P =0.01 " W ()
0.0010 0.0041
0.0017 0,016k
0.0027 0.0497
0.0045 0.1183
0.0074 0.2304
0.0123 0. 3800
0.0202 0.5456
0.0334 0.6991
0.0550 0.8151
0.0907 0.8776
0.1496 0.8794
0.21466 0.8198
0.4066 0,7014
0.6703 0.5335
1.1052 0.3393
1.8221 0.1621
3.0042 0.0482

k.9530 0.0061
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Table &, (Cont'd.)

gy

N rr——

0.0005
0.0010
0.0020
0.0037
0.0067
0.0123
0,022k
0.0408
0.0743
0.1353
0.2466
0.4493
0.8187
1.4918
2,7183
k9530
7.3891

P D

0.0044
0.031%
0.1322
0.3136
0.5728
0.8492
1.0665
1,1743
1.1623
1.0490
0.863%0
0.6352
0.3991

0.1955
0.0631

0.0097
0.0012
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Table 4, (Cont'd.)

N
0.00012

0.00022
0.00041
0.00074
0,00136
0.00248
0.00452
0.00823
0.0150
0.0273
0.0498
0.0907
0.1653
0.3012
0.5488
1,0000
1.8221
3,320
7,3891

Y

0.
C.
0.
0.
g.
1.
2.
2,
<.

2.

0039
0302
1408
4378
9795
6786
3225
7085
7564
343

0942
.6097
SALisg
.7H92
51
.2343
L1046
.0366
0046
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Table 4. (Cont'd.)

£ rMomshts Assumed
0.0l o uf, 0.8950
M_.’; +5P}L’:é 1.2950
ut 1.(required value)
/4ﬁ 1.(required value)
Cg = 0.4720
o iy, 0.8850
”35*3?“% 1.6040
a 1.(required valus)
7 1.(required value)
d. = 0.3050
.3 Mgy 0.8120

who+3pab 2,3250

o 1.(required value)

*

My 1.(required value)

C, = 0.1620

Computed
0.8983
1.2917
0.9949
0.9913

.8720
1,642

0.9933
0.9842

0.8200
2,3814
1,0016

1.0126
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Fig. 5 Self-preserving particle size distributions for coagulation by
" Brownian motion with simultaneous shear flow
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The value of W(%)  in Table 4 were used to evaluate the

cummulative distribution defined as

(22

’ oo
gf - L Svnw,%)dv“ = [ wepdn
il
in which ﬁhf represenis the total number of particles with volume
larger than V' in a unit volume of the system. Fig. 6 shows two
curves corresponding to £ = 0.1 and 0.3 obtained by numerical integra.
tion (32), Two cumulative distribution curves reported by Swift and
Friedlander (26) for shear coagulation experiﬁants with oll-water
emulsions are also shown in Fig. 6 for comparison. Sines their experi-
ments were carried out at constant shear rates, thsse experimental
cufves cannot be used to confirm the theoretical results. However, it
is interesting to note that both experimental and thecoretical curves
show the same trend thai the lower end of the spectrum tends to shift

down as [ increases.

B. Coagulation by Brownian Motion with Simultaneous Isotropic
Zurbulent Shear

For particles much smaller than the small eddies of the turbulence,
the collision frequency factor is given by Eq. (6), viz,

7 r
ROz, vy = 021 (5) (v,%+u"y (6)

which is similar in form to that for laminar shear flow, In fact Eq.(6)
can be obtained from Eq. (5) by replacing the laminar shear rate G by
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81. .
0.975  (&/») vz s in which € is the local rate of energy dissipation
and 1/ the kinetic visoosity of the fluid., Conseguently, the self-
preserving size spectra obtained for coagulation by laminar shear flow

is applicable to coagulation by isotropic turbulence if the parameter

P is now defined as

5

? _ 1_46#43 (E)

ThT N v

To maintain P as a constant throughout the process of coagulation,

€ must vary with time as N~ or

E(0)
[ [+ Ksps N(d)ij’a (81)

in which €(® is the value of € at t = 0.
According to the experimental results, the early part of the decay

process of turbulence is described by (33):

Co

(—L + '“f’b )2 (82)

in which <, and +. are constants determined by the initial con-
ditions of the turbulence.

- It can be seen from Eqs. (81) and (82) that the self.preserving
size spectrum will be preserved in the early period of an isotropic

turbulent flow if the initial conditions are such that
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i
t, = ———
- Ksgs N
This result must be accepted with caution since Eq., (6} is

applicable only for UT;/’UE between one and eight.
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VII, SUMMARY AND CONCLUSIONS

If the collision frequency factor ]3(w350 is a homogeneous
function of its arguments, the partial integro-differential equation
describing the coagulation kinetics can be transformed into an ordinary
integro-difrerential equation by a similarity transformation originally
proposed by Friedlander (24), The solution to the resulting equation
is a particular solution to the coagulation equation and is called the
self.preserving speatrum. The shape of the self.preserving spectrum
is greatly influenced.by thé form of the collision frequency factor,

The ordinary integro.differential aquation obtained by the
similarity transformation can be solved analytically for the case of
eonstant B(v. 7> . For Brownian coagulation in the sbsence of
the slip correction, approximate solutions are derived in closed form
for the lower and upper end of the spectrum, and a numerical solution
can be obtained for the whole spectrum.

If a slip correction for the particle drag is included, the
function /3 (v ) for Brownian motlion is no longer homogeneous.
The coagulation equation, however, can be writien in terms of a reduced
size spectrum with a reduced volume 7 and a reduced time T as in-
dependent variables. According to the quasi.self.preserving hypothesis,
the reduced size spectrum varies slowly with time, By suppressing the
T-derivative term, the equation can be solved as an ordinary integro-
differential equation containing a parameter A , which is a function
of the mean free path of the fluid, the total volume concentration P
and the total number concentration N of particles. The shapes of the

quasi-self-preserving spectra depend on the parameter /A . If the
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mean free path of the fluid increases with time as N7, these
solutioﬁs are exact self—préaarving solutions, For a system with oons
stant mean free path, the reduced size spectrum variles slowly with time,
confirming the quasi.self-preserving hypothesis.
The collision frequency factor for coagulation caused by simul-
taneous Brownian motion and shear flow is not a homogeneous function.

However, the coagulation equation will have self-preserving solutions

. L : ' G (oD
if the shear rate decreases with time as s in which

| + Ksgs Nt

Kegs is the coagulation rate constant, G(0) and N(0) are the
initial values of the shear rate and the total number concentration of
particles. The shape of the self-preserving spectrum depends on the
value ofa parameter [ , which is a function of the shear rate, the
total volume concentration and the total number concentration of
particles,

The self-preserving hypothesis can be stated as follows:

"The particle size spectra of coagulating dispersions
approach a form independent of the initial distribution after
a sufficiently long time. This holds true for certain classes
of particle collision mechanisms."

The hypothesis is shown to be true for the case of constant

,KgCLC€7) . For Brownian coagulation, arguments ars presented

Lo suppori the hypothesis, bul the proof is incomplels,
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Appendix I. Applicability of the Mathod of Series Decomposition in

 Solving the Coagulation Equation.

Martynov and Bakanov (21) claimed that a method of series decome
position, originally proposed by Tunitskii (34) for solving the coagula-
tion equation with constant collision fregueney factor R (v ¥°)
can be generalized to the case in which Bv, T is not a
constant. The purpose of this appendix is to show by a counter example

that this method is not always applicable,
NCod— N
N>

Martynov and Bakanov introduced a new variable [
for time, and a new function ¥ (v <) = ””(ﬁ*D/N(UD for the size

spectrum. In terms of $iv, =) ., the coagulation equation

becomes

v 7 | &2
S Olgey L BEEDRE0P T 0dF - 2 AU DO6T R ) I
27T, -

j:Iwﬁ(WTHfJD el (T, dvdr

(z-1)

According to the method of series decomposition, the function

Plvt, D can be represented by
pa }
"
Plv, 1,3 = — P, o$T L (1.2)
TI=0 :

in which % (vD  is the n-th T-derivative of U T,)

evaluated at T, = 0. The first derivative is given in Eq. (I-1): the
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higher derivatives can be-obtained from Eq. (I-1) by successive
differentiation.
For Brownian coagulation with the initial distribution

— Afe X
Ple) = @gE? e NP ihe function P (vD  is obtained

from Eq. (I-1) by straightforward integration.

Mou- )

1
No N _ o ey [N g )
P = aq’ T e ‘[["“B( ijf -2 F{J)LPTU[ E
'3 =
fi:'ﬂ { + B(%SD

4

(1-3)

It follows from Bg. (I-3) ihat @ (v>  approaches infinity as V—o ,
Thus the function P T)  cannot be représanted by the series given
in Eq. (I=-2). This simple example demonstrates that the method of
series decomposlition is not applicable to Brownian ceoagulation with
initial distribution in exponential form. It is not difficult to show

' that the series representation fails if the dispersion initially

possesses a gamma distribution,

Appendix Il. Some Self-preserving Size Spectra in Closed Form

Because of its complexity, the ordinary integro-differential
equation for the self.preserving size spectrum can be solved analyti-
cally only for certain forms of the collision frequency factor

/3 ), An analytical solution was derived in Chapter IV for
the case of constant /3fv?i7) . In this appendix, solutions in

closed form are obtained for two other casas. These solutions do not
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represent any known physical problems and are presented here simply
for their mathematical interest.

The equation for the self-preserving size spectrum is given in

Eq. (16), viz,
| LJ;O:U(WL>LJJ(%)[%OM)JV(AQ"] [ni—% +2y |
| n - o V i o 'nd ~ - ' Lond
+f B@Y@RY A -zfuﬁ(n,wph)wq)dq = 0

(16)

The function (1) must satisfy the two normalization conditions
given in Eqs. (13} and (14)

j:otp(wp d =1 (13)

[, PEdy =1 (1)

Since the function B U)>  and the product L/—’(ﬁ] qJ(B']" )
always appear together in Eq. (16), a new funetion F (m %) can be
introduced to replace them:

o 7 pa P (D
" "Z,"l = oo, &0 E
LT R ol #andy

(11-1)
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Tt follows from Eq. (II-1) that F (1, 7) has the normalization

condition:

ffF(”l,ﬁ ) dn d7 - l (11-2)

In terms of this new function, Egq. {16) becomes:

Y]— ~ &2 ~ ~
q§%+z¢+f'Fﬁymwl_zﬁpmﬂ)&1=o (11-3)

It is clear that, if F (1 7D is a known function, Eq. (II~3)
reducas to a first order ordinary differential equation. This leads to
the possibility of finding self-preservihg spectra in closed form from
Eq. (II-3). By assuming a form for F (7,7 and normalizing it by
Eq. (II.2), Eq. (II-3) can be solved for W(7) . If the solution
‘satisfies the two normalization conditions given in Egs. (13) and (14),
it is a selfwpreserving spectrum for the following collision frequency

factor:

-~ [ F(’ ,T'J)
pOL = i (11-4)
W ¢ (7D

in which ¢ is an arbitrary constant.
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For example, if F (1,7  takes the form

o szl '“a(n+ﬁ)
7 = N
Fi e [

a,

.\ e— b(n+ﬂ1)]

in which a and b are positive constants, Eq. (II-3) becomes:

-aq “bq

of
H
P

: _aq ~b b
ngfj_{ rap e Lhet - 2 (5

The general solution to this equation is
....IDVI

! ol
W(ﬂ):ab(i-f-e;)_kc

a%+ b° o b

in which C is an integration constant. The normalization conditions

given in Egs. (13) and (14) require

(1I1.5)

. Consequently, the self.preserving spectrum is

a2 i -b7
LR

LP() +b
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From Eq. (II-%) it follows that the corresponding collision frequency

factor is givan by

I

g™,

in which < is an arbitrary constant.
In a similar manner, if F (1,5 has the form

. _.a(qw]) _l,(qr')
Foh = %—MC’M y [ "

the self.preserving spectrum and the collision frequency factor are

found to be
._.qu _b
wep = 28 e, Gude QJ
20048 b*
. &) L)
cchwp [e + e }
f&(qﬁ) =

—~a —-h ~ -“";ll ~b
I(cmn)e , (bede 'j[(am'?e L e ﬁ]

a“ L ot b



gt.
in which <= 1is an arbitrary constant; a and b are positive constants

satisfying

30 +2b% = 24%bL + 2a b?

Appendix I1I, Checking the Normalization Conditions for the Solution

to the Transformed Coagulation Eguation with Constant
By, &)

The solution to the transformed ceagulation equation with constant
BT for a system initially possessing a particular class
of gamma distributions is given by Eq. (30), viz.

Tt

Toep (5

= ‘t)m o ke

Qkﬂc-

k1]\ (30)

in which

T Vi )
LA = [(\1{)/ exp( 2k T/ ) - 1]

To show that this 1is indeed & solution, it 1s necessary to prove

that it satisfies the two normalization conditions given in Egs. (22)
and (23):
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'So (M. <)dn =

[718 oy -

For this purpose, Eq. (30) is rewritten as

_ 1 n

k

in which

2176/')1
w= az primitive n.th root of unity = e

The following two identities are used in the proof:

- n
ﬂ_gn i _ Z wa
n ~ k
i~ g p=1 - Fw
n- F
hz _ i Lo k
L =N

(22)

(23)

(III.1)

(111-2)

(IIL.3)
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in whick 5  is any real number between zero and one. These two

relationships can be established as follows: Integrating beth sides of

Eq. (ITI-2) with respect to ¥ from 0 to ¥  yields:
"
h
*®=

which can be shown to be an identity by noting that both sides are
n-th degree polynomials having the same n roots (= 1, @, %, ..., &)
and the same .coefficient for Eﬂ . Consequently, Eq. (III-2) is
itself an identity.

If both sides of Eq. (III-3) are integrated with respect to £
from 0 to g » the following relationship is obtained:

4 (III-4)

By series expansions of both sides, it can be shown that Eq. (III-4)
is an identity for O $% <l ., This proves that Eq. (III-3) is valid
for %  in the same range.

Integrating both sides of Eq. (III=1) with respect to 7] from
0 to oo gives:

o vl k
J B0l =— T J —2

TL(E-,F—.()H_ R/ et = (!‘_ﬂ-)l/ﬂu_\k

(111.5)
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It follows from Egs. (III-5) and (IIL.2) that

09 .
[ 80, =

which is the {irst normalization condtion.

The second normalization condition, Eq. (23), can be proved in a

similar way.

Appendix IV, Derivation of Eq. (31) from Eq, (30)

For the case of constant [3(v;v), the reduced size spectrum
for a system initially possessing a particular class of gamma distri.

bution is represented by Eq. (30), viz,

® (<) = W Z exp (ka B (30)

in which

I
Pk‘:% }:(s-ﬁ)/ e,ng(21e'nt/»n)— !]

For the purpose of the analysis, it is more convenient to express
d (n, ) in terms of trigonometrie functions. Substituting
Euler's formula into Eq. (30) gives after some simplifications:
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—Y‘-Y} PAsy "

@(“‘[ ©) =

ﬂﬁchﬂ“) 2R Ay ﬂ
eXP[ J [zkn+ 1 Dt J

(n-10/m e
(-4%) o {‘kﬂ = roo

=

i Z exr)[ﬂ”[(i .J"E)/ z‘kw],mffb _Z_.Fflt. n.T[(rJ‘) M%ﬁﬁ_‘-’]}

(1Iv.1)
By making use of the identity
n
y exp[«%zk"] ' (%ﬁf +xm;%-ﬁj,—f) =0 (1v-2)
B=1
Eq. (IV-1) reduces to
...avlflé-r“t " {“ )I/
o = - ex [*m R 2{211] (Q_kzr*n’?(\—.riyf 2k
(q(l fr) %L P AT U)’{.- n = P T
(31)

which is the desired expression for @(d{,-r_)
Eq. (IV-2) is obtained from the following identity by diffarena

tiation with respect to x:
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2k
Koo n ‘ ‘ Zk'ﬂl
e i (K pirn = Y = O (IV.3)

M3

That Eq. (IV-3) is valid for any real x can be proved by noting
- that the k-th term and the (n-k)-th term in the summation always cancel
out, and that the neth term is identisally equal to zero. If the summa-

tion has even terms, the (-’zl)-t.h term always vanishes.

Appendix V. The Asymptotic Behavior of the Moments of the Reduced Size

Spectrum for the Case of Constsnt [3 (v T)

The moments of the reduced size spectrum for the case of constant

Bl T ) is described by Eq. (33):
Lom
d_ii‘--h = - (‘Y\«i— D}Aﬂ -+ E ( i ) ﬂ; )LLYL-L (33)
d e L=q
n=y, 2,
By letting Mo = 1! (/u‘:+ 1) ., BEq. (33) becomes
d s -2 o o ot o
E o e e M M+ 2N (v-1)
de i=2 i=2
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It is not difficult to show that the solutions to Eq. (V1) for

n==2and 3 are

= gl e ?

_ ° -2&
S M = 2 ulco) e . E}L\s(u)~’2jj2(u)] e

It can be seen from Bg. (V-1) and these two solutions that the
ne-th moment should take the form

Al = 3 Cup € (v-2)

The coefficients Cn. k can be determined by substituting Eq. (V-2)
into Eq. (V-1) and equating terms of like power in ¢ °

It follows from Eq. (V-2) that

Lim  ma(e> =0

§—> o

Consequently, the limiting value of  u.(8) as ¢ =200 is M1
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Appendix VI. _The Sequence of Moments for the Distribution €

The pu.rpose of this appendix is to prove that the sequence of
moments M| determines a unique distribution,
According to Reference (29), a sufficient condition for thse

uniqueness of a distribution with moments . is that the series

[]
;l C MY an diverges.
If MU, =71l , the series can be written as
Co -1/2an o2 A
Z (M) = >_. T (vi-1}
= n 2 ]:(2"0!]'/21'1

To prove that this is a divergent series, it suffices to show
that each term in this series, after a certain term, is numerically

oo
greater than the corresponding term of the divergent series )’ —J-{_

It is equivalent to proving the inequality
n

o> (2n)| for n sufficiently large

The asymptotic expansion for (270! is
—2n 2n e \"2" —
(2! = € Jgan () =(5) Jamn =
—2n

It is clear that (&/2) fmn << | for large n. Con-

sequently, nt (2n) | if n is sufficisntly large. This

completes the proef that the sequence of moments n ! determines a

unique distribution.
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NOMENCLATURE

a  dimensionless constant

-a':.,j (8l = ﬂa;-* Y 'U“j-\/a //JL.; »U('J

A coefficient in Stokes-Cumningham correction,

dimensionless

As total surface area of particles per unit volume, cm®/ce
dimensionless constant

Co a constant in Bq. (82), cmzlsec

€, ¢, dimensionless constantis

C C.C,C,  dimensicnless constants

G .Ce Co

D; diffusion coefficient of particles of volume
cmzl sec

{LJ- _ collision frequency between particles of volume U;
and;:}f,collisiona/(cc) (sec)

f£an /< an arbitrary function of " /c<'* , dimensionless

FenA) = BODPIVERY/ (P @ HWEDPE) dndT
dimensionless

G shear rate, sec™!

R ' Boltzmann constant

K coagulation rate constant, ce/sec

m, Lr -th moment of the distribution function n(v,t)

My t) mass of particles with vol@e larger than ¥ in a

unit volume of the system,gm/cc
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NOMENCLATURE (Cont'd.)

n, (1) | " number of particles per unit volume with volume V. ,
particles/cc

'n(n,‘t)J particle size distribution function, particles/cm6

7 (v, t)

N(E) total number concentration of particles, particles/cc

N number of particles with velume larger than UV in a

unit volume of the system, particles/cc

¥ parameter of Laplace transfor
T - G‘r@/(z-rrk’r ND op l-46n9 E‘/z(‘TﬁTM-V.QJ ; dimensionless
el = }Af?f\/-} + 313}’“*;./5
n particle radius, em
t time, sec
T, a constant in Eq. (82), sec
T absolute temperature, °K
v,V particle-volume, cmd
X = 1ln§
A dimensionless function of x
Greek Symbols
A = whul 7/ Civ A WS
B s5,v;) colli.sion frequency factor between particles of

volume V; and Y eccfsec

b4 a proportionality constant in Eq. (78)
& rate of energy dissipation per unit mass by turbulence,
2 3 '
cm [sec

) = (1+ul, M’fvs)aﬂ./ Catyed”



¢
&M,
X (5)
Y

LPLN(TP

W)

Subseripts
C
cB
oBS

101,
reduced particle volume, dimensionless
= -'52" nt
- L'Jl dr
2z CI-PMySM;\A‘)'C
mean free path, cm

= 1,257 2 (ﬂgggﬂ)bg , dimensionless

viscosity, gm/(cm)(sec)

n-th moments of & (74, <)

n.th moments of (")

kinematic viscosity, cmzfsec

particle density, gm/cm3

= [¥27% | dinensionless

total volume concentration of particles, cefce

reduced particle size distribution function, dimensionless

= (w0 Y /T al a"

seli~.preserving particle size distribution function,
dimensionless

log normal distribution

a primitive root of unity

the case of constant collision frequency factor
self.preserving systems coagulating by Brownian motion
self-preserving systems coagulating by simultaneous

Brownian motion and shear flow
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PROPOSITION I
OPTIMUM VOLUME RATIOS FOR MINIMUM RESIDENCE
~ TIME IN STIRRED.TANK REACTOR SEQUENCES,

It was first pointed out by Denbigh (1) that maximum conversion can
be.obtained by a suitable choice of the ratio of the rsactor volumes for_
irreversible reactions ogcurring in a sequence of two reactors with a
fixed total volume. In his paper, Denbigh reported that for a first«
order reaction both reactors should be of the same size, but in the
case of second- and third-order reactions the optimum ratios were 2.0
and 3.0, respectively. Working on the problem of minimizing the total
reactor volums for a fixed conversion, Leclerc (2) confirmed the cone
clusion of Denbigh regarding first-order reactions and pointed ocut
that Denbigh's conclusions regarding second. and third-order reactions
depend on the assumption that the concentration of the reactant leaving
each reactor is much smaller than the concentration of the reaclant
entering that reactor. By a graphical trial-and-error procedure,
Leclerc obtained the results that the optimum volume ratios for seconde
and third.order reactions are 1.3 and 1.7 respectively for the conver-
sion of a reactant from a concentration of 0.7 to a concentration of

'0.5. Subsequently, Wood and Stevens (3) used the method of Lagrangian
multipliers and the dynamic programming technique to compute the

optimum volume ratios, and found that Leclerc's results for sscond. and
thirdeorder reactions are in error. Usiﬁg an IEM 709 computer, Wood and
Stevens also calculated the optimum volume ratics for the three reactor
sequence and concluded that the optimum volume ratios are functions of

the overall conﬁarsion only.
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The purpose of this proposition is to show that by using the
technique of the discrete makimum principle, this particular optimiza-~
tion problem can be solved with less amount of computing labor. A set
of equations relating the optimum volume ratios and the overall converw
sion 1s pressnted. For a second-order resaction occurring in a sequence
of two reactors, the optimum volume ratio is expressed as a function of
the overall conversion in a closed form.

An Nestage stirred tank reactor sequence is schematically shown in
Fig. 1. The concsntration of the reactant is represented by € and
the resctor volume by V., The subseript n denotes the stage number.
The flow rate is represented by Q. The residence time, defined as the
ratio of the reactor volume to the flow rate, is designated by O .

If the reaction occurring in the reactor is 1/ «th order with a
rate constant k, a steady-state material balance for the nth reactor

gives:
O, =C + ko Cy (1)

© B,

The problem is to find the values of the ratio, B

s D= 2,3,...,
N, so as to minimize Téé 8. , with given C, and Cy.
It follows from Bq. (1) that Cn can be considered as a function
of C,_4 and O .
Cp =T (Cpots B p) n=1,2,...,N (2)
The optimization problem belongs to the class of one.dimensionsal

processes discussed in Reference (&), According to Reference (4), a



107.
ocne-dimensional process is a muiti-staga process whose performance
equation is identical with Eq. (2) and the function to be minimized can
be_expressed as a sum 7é§.c% (dn_,J 8.) , in which C is the state
variable and 6 the decision variable. The optimum values of 0O ,,
n=1,2,...,N, for such a process can be determined by the following

N relationships:

aG—n‘ (C‘h*'a en) aG(CJn em-l)

2 O _ D6 . 2T (Cu_,gnu ) _ QG(CHIQ,,,.,J
a T Cch_la en) aT(Cn’GrH‘lj 9 Cn 9 C-)"l,

2 Bn 20n+1

n=1,2,,,.,81 (3]
Cy = given value

For this particular problem, G {Cp.1, ©,) = U, and hence Eq. (3)

reduces to
aT(dmo QhH)
g‘T(Gp96n17= 3O n= 1,2, .. ,K1 £
2 Qr\_ QTCCn R GH‘H)

5C,,

From Eqs. (1) and (2), it can be found that

IT(Chastn) _ ’k C:

- —_ nz 1'2)000.N
2 6n ‘+)J'k@,,c:] (5)
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and

_oT(Cmey 1 n=1.2...¥ (6)

2Cn-, 1+ k9, ¢

Substituting Eqs. (5) and (6) into Eq. (&) gives:

kel (S".)y a=1,2,..,Na1 (%)

It follows from Eq. (1) that

G = Ca
R CE

On = n=1,2,...,N (8)

Substituting this expression for O , into Eq. (7) yields

e T D(EL_,) n=1,2,...,81 (9)

ldnﬂ

N
in which }, = d,./c,,_. « It can be readily seen that C‘N/C‘,, :nt_[. 4. .

and the overall conversion T is related to Vn's by

_g:: . = l*y’{f"an (10)
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The values of 8,1 ,n=1,2,...,N, can be obtained by solving

simultansously the N relatlonships in Egs. (9) and (10).
ratio \73//\ﬁ

If the volume

' is denoted by ~J, , it can be found from Egs. (9)
and (10) that

| 45

n= 12 N

-] " -
}/ = )Jh ! TE _'_]—"'—'z"f‘,_ Fp Ty
=2 l—'j,;: (11)

R

Eq. (11) indicates that the optimum volume ratio is a function

of yh's, which in turn are functions of the overall conversion only,

For the simple case with 4/ = 2 and N = 2 Egqs., (9}, (10) and
(11) can be solved to give:

¥, - <
HA—#EH%_S

in which

1/3
_ "’5 ’n—@" H
A = '& i+ (t ZJ 1+ ==+
Uk
I- (L—’_{;)‘ 3
B3 = —é‘ { ' +£| n° [ ,J }

» A and B can be approximated by

- Y
Az (EH?
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The approximate solution for the optimum volume ratio is

XZ = ‘.--g Q.]_E |/3 i |_§ 5/3
L e () () (12)

The values of o calculated from Eq, {(12) are shown in Fig. 2.
The result is in good agreement with that obtained by Wood and Stevens,
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C

< O = %

Subseript

n

111,

. goncentration

reaction rate constant
total number of stages
flow rate

reactor volume

cnlcn_i

Vn/vi

residence iLime

order of reaction

overall conversion

stage designation
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The Optimization of Continuous Complex Processes
by the Maximum Principle?

By Curv-Sen Wane] and Liang-Tsewe Fan

Chemical Engineering, Kangsas State University, Manhattan, Kansas
[Received January 1, 1964)

AnsTnace

A scheme which can be used to optimize a continucus complex process by
means of the maximum principle is presented. The continuouns complex
process is a process which is compossd of interconnected branches whose
performances can be described by a set of differential equations, An
example of optimizing & simple feedback process is given to illustrate the
use of the method.

$ 1. INTRODUCTION

Tu® maximum principle was originally formulated by Pontryagin (1962)
for the optimization of continuous simple provesses, i.e. the processes
which dynamically follow simple paths, with each following only one
path as depicted in fig. 1. Many processes employed in industry are,
however, composed of several intereonnected branches. While such a
complex process usually can be decomposed into several simple sub-
processes which can be optimized separately, special care must be taken
in dealing with the state vector at the junction point of the snh-processes.
Thus, 1t is desirable to devise a scheme which can be directly used to
optimize a complex process without decomposing it. The purpose of
this paper is to propose such a scheme.

§ 2. DEMINITION

A process refers to the dynamical change of the state of a system. A
process can be classified cither ag a time-wise or as a space-wise proocess,
depending on whether the change of the state is along the time or the space
coordinate. Since these two types of processes are mathematically
identical, the coordinate, t, will be used tc denote either time or space
in the following discussion,

For a deterministic process, the state of a system at a certain time
or position, ¢, iz completely described by the state vector, w(f). The
change of the state is a result of the action of the decision vector, 8(f),

T Communiocated by the Authors.
I Present address : California Institute of Technology.



116.

200 Chiu-Sen Wang and Liang-Tseng Fan on the

which can be manipulated independently. In a simple continuous process
(see fig. 1), the change of the state can be described by the following

performanee equation :
dx; ' .
E?a=ﬁ(w1:--->xs; 91,...,9,.), %=1’2""’S
or in vector form
dx
E:f(m; ), B 3

where s and r are the dimensions of x and # respectively. The length of
the process is denoted by 7" which is the distance between fwo end points

in the ¢-eoordinate.
Fig. 1

a(t)
Pororo
' S S

i
X(o) —=|

)
| X(M
Siwple provess.

As mentioned in § 1, all of the complex processes are composed of several
interconnected branches. The point where Lwo or more branches connect
is called & junction point. There may be, as shown in fig. 2, three different
types of junction points : (a) separating point, (b} combining point, and
(¢) crossing point. A separating point represents a point where one
branch of the path splits into several branches. A combining point is a

Fig. 2
9(2}(1)
| N R I N I S
.+ + 4 4+ 4 ¥
. —]——-X‘Z’(Tz)
)
bbb b
. |— x®(Ty)
e(l](t)
N T
xm(o)ﬁﬁ‘—“—'—'—‘—*—j-%_.
) (n),
o

1 e —
e —
e
-
s —

4
— x"m)
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Fig, 2 (continued)

Q(n“)
TRV
Xy —| ' —
6
[ T R N O I |

e(l)(” e{m-(-l}(ﬂ
| B T I I R | | S T A T I |
I I B 2 I | I TR R B I N |
xm(o) _;l R - |““‘"x(mﬂ)(Tml)
g%h) e 2(1)
| I A | I N R RN I | .
+ + ¥ 4 v ¥ ¥ ¥ 4 ¥y ¥ ¥ 4 4
XBo)—| — — X2 Tore)
L1
in)
e} I i 8™ (1)
| S I O | II [ N N I
+ 4 ¢ 4 4§ ¥ ¥ ¥ ¥ -

(c)
(@) Separating point ; (b) combining point ; (c) erossing point.

point where several branches combine info one single branch. A junction
point where several branches combine together and then split again into
soveral branches may be oolled a crossing point.

/> Each branch in a complex process is deseribed by a performance equation
of the type categorized by eqn. (1). The form of the function, f(x ; 8),
and the length, 7', may differ for different branches. A number may be
arbitrarily assigned to each branch for convenience. The superscripts in
f®(®) 5 §%) and the subscript of 7', represent the branch number.
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The arrows at the junction point show the direction of the flow of the
process streams. The relationships between the state vectors of different
branches at the junetion points are described by the ¢ junection equations’.
They are (for convenience, all the stage numbers are referred to fig. 2) :

(I) Separating points : :

#(0) = g®(D(T,)),
2®(0) = g®((T,)),

w(ﬂ)((}) = g(“)(m(l)(fl’l)).
(2) Combining points : )
F(0) = g e (1), a(Ty), ..., (T, ). <o (3)
{3} Crossing points :
AH(0) = g D@ (L), 2Ty, .., T,), |

AH(0) = g D@D T ), (L), . . ., 2" Ty)),

&M () = gD (L), @B(Dy), . . ., a™(T)),
where the function ¢™(®(T'.)) is the wvector form of g¢®(z,®(T,),
2T, . e ®(T ), Tt may be noted that the dimensions of the
state vector may be different from branch to branch. Superseripts, such
as in s, are used to distinguish the differences. '

In a complex process, there may be some branches which do not possess
the decision vector, such ag the upper branch of a simple feedback loop

Fig. 3
AU N - O B
I T T S I
x("(o) —-——-bl ’—i—"-"’ ——L | —_— X(S)(Ta)
x(l)(-l-l) x(z)(O] Xu‘(‘rg) Xll)(o)
Simple feedback loop.

gshown in fig. 3. The performance equation tor such a non-decision branch
is :

d .
-d—f:f(x). N £9)

A complex process may have several initial points and final points, and
the values of the state vectors at these points are called initial states and
final states respectively.

The'optimiz'ation problem under consideration may be stated as follows.
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Given all of the performance equations, junction equations, lengths,
and initial states of a complex process consisting of a path with N branches,
& initial points, and f final points, find the devision vectur funcbion of
each branch so as to maximize a certain linear function of the final states
of the process, such as

(&)

s
2. Z BT ),

b==1 4=
where ¢/ are constants; the summations are taken over all the
componenbs uf the stabe vectors and over all the final states. :
The set of the decision vector functions, §%(), k=1,2,...,N, thus

found is called the optimal policy. The function to be maximized is
called the objoetive function.

§3. OPTIMIZATION PROCEDURE
The procedure to find the optimal pulivy for a complex process can be
divided into two steps.

Step 1. Introduce a covariant vector, z®(t), and a Hamiltonian fune-
tion H®)(x, 2, 8) for each branch satisfying :

5B
H®(w,2,0)= 3 20f®(@,®, .z m®; 0®, 0 @), . (6)
-1 -
oH® (x, 2, 8 dz B |
@20 B0 i ve e
P dt

with the values of 2% at the junction points and final points satisfying
(for convenience, all the stage numbers are referred to fig. 2) :

{a) Separating points :

n B gg .
zTy) =3 Py 2M0); i=1,2,...,s0, .. (8)
h—2 jo1 0%

() Combining points :
) gg 0 )
ST = S 5RO G =L k=Ll ()
i=
(¢} Crossing points :
no D gk

zi(p)(Tp) = z 2 Do ZJ‘(]f)(O) RES 1,2,... ,8<p), p=L12,...,m, (10)
B=mi1 je1 0%

(d) Final points :
B(T)= ~¢® 5 i=1,2,.. . 8%, k=1,2,....f . . (11)

Step 2. Find the decision vector function, 6%, from the following
conditions :

H®(zx, z, ) = mimimum at every point t,—1,2,...,N. . (i2)

In other words, the optimal functions, %), are obtained by varying 0%
until the minimum value of H® is attained at each point.
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§4. DERIVATION

The condition, eqn. (12}, will now be briefly derived.
Let 8™(z) be the optimal decision vector functions and £¥(t) the optimal

state vector functions of the kth branch, then :

AER) 1)
di

fuc)("'(ic) (jl-’ﬂ)) e e e (13)

If an independent small perturbation of the decision vector is made at
every point of the process, sach that

BB, €)= 80(L) + e +0(e2), . . . . . (l4)
the state vector function will be perturbed to :
2B ) =ZR(E) + ey () +0(e2), . . . . . (15)

where $0(f) and y(f) are arbitrary functions of ¢, having the same dimen-
sions and order of magnitude as 6% and 2™ respectively ; represents a
very small number ; 0{c?) denotes the terms including ¢ and of higher
order.

By means of Taylor’s expansion, a variational equation can be obtained
from eqns. (13) and (15) as :

dy-(") ) ) e))
= fi(m(m(k) ; g(k)) — j"i(’@(ac(") : 5(k)) + Z eyj(k)
i=1

€

BT 5 Gy
= (&
axj( )
The relationships between the variations of the state vectors of different

branches at the junction points are obtained by expanding the junction
equations in powers of ey, as follows :

+0(e2). )

(1) Separating points :

() g e, (T, ..., 2 (T
4o0) = 2. ey, (1) i ﬂax St Dy o,
o Z}

i=1,2,...,8®, k=2,3,...,n (17)
(2) Combining points : :

&%) i(‘n)(x(l)(T ) w(uml)(T ))
ey (0) = 21 2 ey (T ) b aw & 217 4+ 0(e),

j:‘—“

P=1,2,...,8™ . . . . . . (18)

(3) Crossing points :

(t'v) a (1) x(l) T e ,x(m) T

)= 3 '3 ey P T g,
k=1 j= 3

t=1,2....89 p=m+lm+2,...,0. (19)
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Since all the initial states of the process are given and fixed, we have :
yBO)=0; i=1,2,...,s®, k=1,2,...,b .. (20)

Now if we substitute the expression for dz®/di from eqn. (7) and that for
dy®{dt from eqn. (16) into the following equation :

sk &) dy #%) d (I.:)
5 2 U0 = Z 62“‘)7 + Z ey — >
. :w=1
we obtain :
&) (%)

3 2, U = 3 OO 00) a5 09, =1, 2, .

In obtaining the above equation, the term 0(€?®) is deleted on the assump-
tion that all of the functions, f®(x, #), depend smoothly on x and #. The
same assumption will also be made for the junction functions, g¥(x}, so
that the term 0(€?) also can be deleted from eqns. (17) through (19).
Integrating from t=0 to =17, and summing over all branches give

N &) T, $(&)
z Z e[y(k) 7”5){T ) y(k) g(k) ]—— z ZZU‘:)
=14i=1 =1

X [fR(E0 ; ewl(—ﬂmwk) ; o)]de. (21)
Applying eqns. (8) through (10) and eqns. (17) through (20) to the left-hand
side of eqn. (21) yields :

5
2 Z T )BT )

F=3 {=
N (T s (k)
_z zz(k)[ i (E® 5 gy — fiag® o gRy| e, (22)
Since 6%, k=1,2,..., N, is the sequence that maximizes

e

i z (o (T
k=1 i=1

-

the effect of the pertuﬂo ation represented by eqn. (14) can only be to make :

&)

I
Y T ey BTa<0. L. L . L . (28)

k=1 i1=1

Combination of eqns. (11), (22} and (23) gives :

F6)
z z 2] f0(zR ;g0 f(lc} 0 5 §RY]dt 0. . (24)

k=1v 0 i=1
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Now since the perturbed functions, 8%, are independent of each other,
it may be concluded that the integrand of each integral in eqn. (24) must
iteelf be non-negative ; thus :

R
z zi(k)[ fl_(k)(x-(m ; Gy — f;{k)(j(k) ; g(k))] =0,
i=1

k=1,2,...,N

2

which is equivalent to eqn. (12).

From the above derivation, it follows immediately that if the objective
function is to be minimized instead of maximized, the optimal policy can
be found by the same procedure except that eqn. {12) is replaced by :

H¥(g, z, ) = maximum, e e - . (2B

§5. Ax ExamMPLE
To illustrate the use of the optimization procedure presented, let us
consider the simple feedback loop shown in fig. 3.
The process consists of four branches with the following performance
equations :
oy D

=0, . . . . . . . . .. (26

dx,®@
e = em®0®, @]

dx,® o )

@ " (28)

da®
—— =0 . . . . . (29
7 (29)

The junction equations are :

2P0y = w (T + BTy, . . . L L (30)
5!51(3)(0) = wl{z)(Tz)z P T (31)
a®0)=2,2Ty). . . . ... L (32)

It is desired to find the decision function 8,%(t) to minimize the integral
_ 2,
£[ Mt o @
0

with the initial state given as : :
#HO0)=y. . . . . . . . . (33)
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‘To solve this problem, we introduce a second state variable :
oot
w0 =4 | TP+ (03 .
0

It follows immediately that the performance equations for z, are :

do®  da)®  day®

- =0, ... ... (34
di di dt T (34)

de,@
e/ Rt

‘he junction equations are :
£20)=0, . . . . . . . . . . (36
B0y =T, . . . . . . . . (370
@,9(0) = 0. Y £ 531

The initial gtate is :

2 2(0)=0. B 1)

The optimization problem is now transformed into one of minimizing
29T} for a process described by eqns. (26) through (39). Since the
objective function is x,®(T;), we have ¢,@ =0 and ¢,8=1.

Avvording to egus. (6) and (7), we wribe ;

HY =% =g,

H® =q2,@2,9 + $2,2(g,@ 4. 5, 090.@ 4 Lo gy (40)
de®  dey®  dey® e de®  da,® il
dt“‘“dt“dﬁ“dﬁ‘dt“dt”"()
dz,®
T];‘ =+a@—2,@e® 0 . . L L., 42
dz,®

=0 L )

According to eqns. (9) and (8), we have at the combining point :

O =ay®(0), . . . . . . . (44)
HOT)=F0), . . . . . . . (45)
HOT)=0, . . . . . . . . . (46)

2®T)=0, . . . . . . .. . @]
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and at the separating point ;

(M) =20)+2,®0), . . . . . . (48)
ZB(Ty=200). . . . . . . . . . (49)
Applying eqn. (11), we have
24T =0, S 13
2T)=—1. . . . . . . . . (B8]

It is seen from eqns. (41) and (43} that :
z®(t)=constant ; i=1,2, k=1,3,4andi=2, k=2 (32)
Inserting eqns. (60) and (51) into eqns. (48) and (49) and employing eqn.
(52) give :
2 O(T,) = 2,9(0) = 2,9(T), C .. (53)
BB =—1. . . . . . . . . . (34
From eqns. (43) and (53), we obtain :
B @(0)=2T,). . . . . . . . (B5)
Substituting z,@(f) = -1 into eqn. (40) gives :

H® = gz Oy @ — (@2 4 5 (39 B 1 ()2, .. (56)

According to eqn. (25), with the assumption that the maximum of H®
occurd at the stationary point, we can obtain ¢,®(#) by putling ;

DH®

00,

The result is ; .
BB =22 . . . . . . . . (BT)

- Inserting the above expression of #,%(¢) into eqn. (27) gives :

dar,®

= = — g+ 2@ B 123
From eqn. (42), we have :

dz,®

czlz = -+ 1@ =g ®, R )

Equations (88) and (59) can be readily integrated to give :

2, @) =A, exp (M) + A, exp (— M), B (10
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2@ = Agexp (M) +d.exp(—Af), . . . . (61)
where :
A=y/(@*+1), dy=(a+N)4,, and 4,=(a-A)4,.

The constants 4, and 4, are to be determined by eqns. (30) and (55).
It is seen from eqns. (26) and (29) that »® and 2,9 are constant.
Substitution of eqns. (32) and (33) into eqn. (30) yields :
2,2(0) =ty + B, ®(Tp). Coee e (62)

Applying eqns, -(55) and (62) to eqns. (60) and (61), we have :

e [ay/1 —Bexp (AT)]
VU i-T[(a+A)(1—Bexp (—ATo))(B—exp (AT3)]/[(a—A)
x {1 —Bexp{+AT,))(B— exp (—AT,))]
and

e  [ay/1—Bexp (\Ty)]
® 1= Bexp (—AT)]/[1 -~ Bexp (AT,)] '
— [(a—N(B— exp (~ NT) /[ N(B—exp (AT))]

Since 0;®(f) =2z,®(t), the optimal policy is :

A8F) = (u+ A)A, exp (Af) + (@ — X) A exp (— ).
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THE RELATION BETWEEN RATE CONSTANTS

AND EQUILIBRIUM CONSTANT

Blum and Luus (1) gave a mathematical proof for the relation that
the ratio of the forward and the reverse reaction rate constants is a
simple power of the equilibrium constént. They stated that this relation
is valid for the entire class of reversible reactions for which the
overall resaction rate is written "conventionally" asz the difference of
two separable rate terms. It is felt that the conditions under which
this relation holds have not béen clearly stated. The purpose of this
proposition is (1) to discuss the conditions under which this relation
will be applicable and (2) to give an alternative mathematical proof for
this relation.

This discussion will be limited to the class of reversible reactions

which can be represented as

0= 3 A, (1)

in which ) are the stoichiometric coefficients, positive for
products and negative for reactants, and A; represent the chemical
spacies involved.

If Eq. (1) represents an elementary reaction, the overall reaction
rate for any species /xican be expressed as the difference of the for-

ward and the reversse resction rate:
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Vi

1 diA] _faTt(A) ..-k:c(m (2)
o4t

UJ{O) (u,,>a)

in which k and k” are the forward and the reverse reaction rate CONe
stants; ( A; ) and [ A. ] are the activity and concentration of Ag
i

B!
T (A represents the product of (A;) over all
(<a)

negative .
If the coefficients . in Eg. (1) have a highest common divisar
n, the equilibrium constant K is expressed as

" Vi/n
K = T[ (AEE) (3)
t=1

in which the subscript e indicates the state of squilibrium, Since
the net reaction rate vanishes at equilibrium, it follows immediately
from Bgs. (2) and (3) that the ratio of the forward and the reverse

reaction rate constants is a simple power of the equilibrium constant,

A complex reaction consisting of /~ elementary reactions

M

0= ¥ u A Ra, 2 e p ()

™.

can also be represented as Eq. (1) by adding the individual equations in
Eg. (4), each individual equation being multiplied by an appropriate
integer S, called the stoichiometric number (2). The oversll reaction

rate for any species A j 1in this complex reaction is
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d[/—\] £ Yyl ', Vin
Tt Z V [k ﬂ(A\) _-k T(A) } (5)

(JJ <o) (J_J n?n}

which, in general, cannot be raduced to a différence of two single rate
terms. The simple relation between the rate constants ratio and the
equilibrium constant therefore does not exist in a general complex
reaction. However, when there is only one rate.determining step in

Eq. (4) and when the stationary-state approxim#tion is applicable, it
is-poséible to express the net overall reaction rate as a difference of
two rate terms. This special case has been treated by Horiuti (2), who
obtained the conclusion that

" /4
+ d
> = K (6)

in which k and k’~ are the forward and the reverse reaction rate
constants for the complex reaction; Sy is the stoichiometric number
of the rate.determining reaction; and n is the highest common divisor
in Eq. (1). The proof given by Horiuti is based on the transition-
state theory. A mathematical proof which does not depend on the
transition-state theory will bs presented in the following.

When there is only one rate-determining step, the net reaction

rate of species /\j in a complex reaction can be approximated by:

o dLA7 . m chi , m o .
5 S = kO T ADT - Ke T (A) )
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where the exponents ¢, and ck;/ in general differ from the stoi.

chiometric coefficients; ¢ is a function of the activities of the

intermediates,

Since the net roaction rate vanishes at equilibrium, it follows

from Eq. (7) that

Wl d,; *o{;
%’ B iiti (A ®

Both the equilibrium constant X and the ratio k/k’ are functions

of temperature only and therefore can be related as
fﬁ’ =.5:(}<) (9)
R
Combining Egqs. (8) and (9) gives:
m - .
fGO =7 (A (10)

Differentiating Eq. (10) with respect to (Aje) gives:

d:F(K). _Jd_f'_( _ (ej — &p) frTrct (Aiq)&:—‘h
d K n(AR (Ae) &

which may be simplified to

d £n fexd _ @)

dx v K (i)
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The subseript j in Hg. (11) can be any number from 1 to m.
It can be seen from Eq. (11) that the expression (o'~ 4;? / Y
must have the same valuse for any number of Jj. By representing the
expression (dyc'Aj)//{r by q, the solution to Eg. (11) can be
written as:
"q
fao=ck (12)
Since k/k’ = 1 when K = 1, it follows from Eqs, (9) and (12) that
c=1

Consequently,

ko k"t
w = K (13)
which shows that the ratio of rate constanits is a simple power of the

equilibrium constant.
As an example, consider the dissociation of hydrogen on a hot
tungsten surface. The overall resction is

H, == 2H (14)

Blum and Iuus (1) have shown that the overall reaction rate is

dIH] % ,
3 5% = kPa - KF (15)

whera hﬁg and Py are tha partial pressures of H, and H.
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The equilibrium constant and the ratio -E,' are given by

K = :i@e (16)

kR The

P EQ | (17)
Comparing Egs. (16) and (17) gives

%] _ l/\l/z (19)

Since the exponents of the partial pressures in Eq. (15) differ

from the stoichiometrie coefficients, the reaction must be a complex

one. It may be postulated that ithe mechanism is

Hz = Hz[a:) (19)
Hy@)e= 2 H(a) (20)
Hey = H , (21)

where (a) refers to the adsorbed state on the tungsten surface. The
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stoichiometric numbérs for Eqs.. (19), (20) and (21) are 1, 1 and 2
respectively, Bgv (10) shows that n/34 = 1/2. Therefors the reaction
represented by Eq. (21) is the rate determining step. Tha rate expres.
sioﬁ, Eg. (15), can be deduced from the postulated mechanism. Let
Ky and K» be the aguilibrium constants for Eqs. (19) and {20); k3 and
k3’ be the forward and the reverse reaction rate constants for Eq.(21).

If Eq. (21) is the rate.determining step, one may write:

)PH?_(:‘.O = Kl ‘PHZ (22)
l/z

Pracay = (K By o) (23)
and

d [H] )

TT = RsPh - R o (24)

Combining Eqgs. (22), (23) and (24) gives

d[}.l] 2 % 14 Y,

:L—’: = k’a Ko Kq o, ~ ks T:H
which is the same as Eg. (15) if one puts = 3 k. K, Kz’/z
and ..k/ ""—“';' ?"3/ |



Notation

(4y)
[41]
_ k

ot »nw £ 'Y
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activity of A,
concentration of Ay
reaction rate constant
squilibrium constant

partial pressure

CHRET Y2

" stoichiometric number

time
exponent in the rate expression

stoichiometric coefficient

state of equilibrium

refers to ith species

refers to nth reaction
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PROPOSITION IV

APPLICATION QF THE SELF-PRESERVING
SIMILARITY TRANSFORMATION TO THE KINETIC EQUATION
FOR SIMULTANEOUS COAGULATION AND

CONDENSATICN PROCESS

The purpose of this proposition is to derive the conditions under

which the kinetic equation for simultaneous coagulation and condensa.

tion process can be transformed by the similarity transformation

originally proposed by Friedlander (1) for the coagulation equation.

The growth rate of a drop with volume U resulting from condensa-

tion can be expressed as (2)

in which

dvu _
dt

b

o
o«

b =1 =W o= h EF O o

i

i}

% % )
3 @ny (s v

%%
sowmp  per | T D TRV 3 )
KRT: = BDM

saturation ratio = —E

vapor pressure of the system

saturation vapor pressure of the system
mechanical equivalent of heat

latant heat of condensation of the vapor
molecular weight of the vapor

density of the liquid condensed from the vapor
thermal conductivity of the medium

universal gas constant

absolute tsmperature '

diffusion coefficient of the vapor
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Eq. (1) is derived by assuming (1) that the drop is at rest, (2)
that the heat and mass transfers betwaen the dro§ and its surroundings
have attained stéady state, and (3) that the drop should be sufficiently
large so that the effeet of the curvature on the equilibrium vapor
pressure is negligible,

The rate of change of the particle size distribution

resulting from Brownian coagulation and condensation is given by

an(ut) v L . -
T~ E'J ﬁ(uuwmn{v,t)n(v‘v,f) dv

[~ ]
_ ) TA)dT - 2 rd
ifiiu,v iy n(T4)dU axr[?li n(qﬂl (2)

in which j—E is the drop growth rate given in Bq. (1); ﬂ (v )

is the collision frequency factor:

_ 2kT P i !
Pty = 3p (vt T7) (,U‘/3+ 57/3)

The expressions for the rate of change of ths total number cone
centration N and the total volume concentration ¢ of particles can

be obtained from Eq. (2) by integration:

AR L (T es SDdds ()
d+ di J;’Yl('b",“_f)dv —_"--2~ S;Lﬁ,(uu)ﬂ(uf)n(u vdv
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]

I 'i vnwtddy = DT80 S'U S ) dv (4}

dt
The similarity transformation originally proposed by Friedlander

(1) for the coagulation equation is
S

It may be noted that ¢ 1s invariant for a pure coagulation, but
increases with time in a simultaneous ccagulation and condensation
process,

Substituting Eq. {(5) into Eqs. (3) and (&) gives:

dN 2

i =% LJ B 8 PO dy dF 6)
d¢’ _ 7 23 L/

5= DN Te [ “Pepdn ?)

Substitution of Egs. (5), (6) and (7) into Eq. (2) yields after

some simplifications:
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|+ d":b BAD# S-1 * dy
(A i "’3)(2”’”’ ’7 Tk e M (W 15)

|:tj'l,§ - ~ , *,g.*_.-l/3
s [ 70 T @7 - (24 17w

3,U-ID S -1
2RT N 37 ‘#(“1)4‘7! J
(8)
in which /Azf@ and ‘xifig are given by
(774 W, ) __|,
= [, 7 pepdy V=3, 73 )
3 D* 51

If the gquantity is a constant, kEq. (8)

2kT NBPS
becomes an ordinary integro-differential equation independent of time
explicitly. It is to be solved with the two constraints in Eq. (9) and

the following two normzlization conditions:

[ wep dy =

f:}n Ylpdy =

The solution to Eq. (8), if it exists, is a particular solution
to Eq. (2). This is a self-preserving spectrum, since its form

remains unchangaed throughout the process.
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It follows from the above 'analysis that the condition for the

system to be self-praserving is

up’® S-1
2kT NPp?

= c,ons'f'c-l.n't' = C,* (10)

If the system is kept at constant temperature, the saturation ratio

- KENE-Y:
S5 must be varied with time as 2RT ¥ N ¢ %@aﬁ") + 1 to make the

system self-preserving. Solving Eqs. (6) and (7) for N and ¢  gives:

I

i 2kT *
— L (M, DT
N(O) + 3}L ( /U"/a /3

“ ¥
A

H
1 +}j,.t;é ""'—‘l/3

¢ = (}b(o)]: | + %{i{ (1*’;4.1;,1,_1) N{o)‘t‘]

The saturation ratio for a self-preserving system is therefore

given by:

2 c*r‘-x;{; |

YA TiaF s 3
2kT. ¥ 2Rr/ o X ¥ Ry
S=1+ 55 S [we] ] [1+520 A > Neort o

If the saturation ratio is kept constant (for exampls, by a
chemical reaction), the system will be self-preserving provided its

initial conditions are such that



1%l.

£ LR P R
(Neer] [CP@] S DR,

This relation can be derived from Eq. (11).
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PROPOSITION V
UNSTEADY-STATE EVAPORATION IN A TUBE
- OF FINITE LENGTH

In this proposition, a partial differential equation is derived
for the evaporatioh of a volatile liquid A into a gas B in a tube of
finite length, The method for solving this equation is discussed. The
total pressure of the system can be predicted from the solution to the
partial differential equation. Such a result may be used to determine
the diffusivities of gases.

| The system is sketched in Fig, 1. The tube has a length L and a
cross-sectional area A. The liquid laval is maintained at position
2= 0 at all times. The entire system 15 maintained at constant temper.
ature. It is aasumed that (1) A and B form an ideal.gas mixture and
{2) B is insoluble in A,

The equation of continuity for A and B are

,.a;.(‘ﬂ o D_E..I.Az
2+t >z (1)
?—9«-{5 = - Q_N,.Bz
_Qt Dz (2)

in which €, = molar concentration of A
Cg = molar concentration of B |
Njz = molar flux of.A relative to stationary coordinates
Npz = molar flux of B relative to stationary coordinates.



| 143,
According to Fick's law of diffusion (1), Ny is given by

2Xa | (3

55

NA‘). = .A'<NAZ+NBZ)‘ - CD

in which x, is the mole fraction of A, C is the total molar concentra-.
tion, and D the diffusivity.

‘Since there is no motion of B at the interface, N,, and N, have
the following values at 2:= O:

__cD e,
Nao =~ b= %ag oz la=0 )
Ng, = 0 (5)

in which x40 is the eqﬁilibrium gas-phase concentration; for an ideal-
gas mixture this is Jjust the vapor pressure of pure A divided by the
total pressure P,

Adding Eqs, (1) and (2) gives

2= = - 2 (N Ne) (6)

Since A and B are assumed to form an ideal-gas mixture, C is related
to the total pressure P and the temperaturs T by

RT

T | | )

in which R is the universal gas constant. It can be seen from Eq. (7)
that C is a function of time only. |
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Bq. (6) can be integrated with respect to 2 to giva:

‘Q_

<&

NA2.+ MB;_Z_ t

z o+ ?(fj _ (8)

N

The arbitrary fﬁnetion g(t) is dotermined by HEqs. (4) and (5) to be
3(1':) = N A0
Sincs both Nj, and Np; vanish at & = L, it follows from Eq. (8) that

4¢ o

4t — L

Thus the sum Njyg + Np, can be expressed as

Nas + Ma, = Nao ('——f:) )

Substituting Eq. (9) into Eq. (3) Sivaés

Niz = > Ngy G=7) - CD ?? (10)

Substitution of Eq. (10) into Eq. (1) yields for constant D

A B’Z’xp, z . 5% x, N,
— = — {1 - =y €74 A A0
=y cCD 572 Nao ) 32 -+ L

By making use of the relation #A = C,/C, the above equation can be
mewritt.en as
= _
2% _ %% . P ax, AXa (1)

2
2t 5z° 5=, O -9

— &,
| AQ Z=0g

This is the partial differential equation for the diffusion process in
this system. It is to be solved with the initial and boundary condi-

tions:



I-ct at t=0 » . IA‘:-'U
.B.C. 1 at z=o, Xy = Kgy

Boco 2 at z =] 12_3(_4

3z
For short times, since the vapor A has not penetrated too far into
the gas phase, the guantity % in Eq. (11) can be neglected, and the
B.C.2 ecan be replaced by "x; = 0, at 2 = oo ", With these two simpli-
fying assumptions, Eq. (11) can be solved by the methed o:f combination

of variables to give (2):

Z

Za _ b —erf (G — %0
X
B b+ erf @ (12)
in which - Tae d X
¢ 2 (=%, d7 rmo
~ X
X - zﬂo
= 2.
JaDt

For large t, the above simplifying assumptions are not valid, tmt
By

Eq. (11) can be solved by numerical method. Since X0 and

Z=yg
are unknown functions of time, special analysis is required in solving

Xy
2=

Eq. (11) numerically. A relationship between X)0 and

z=0

can be found a3 followsa:

The time rate of ohange of the toital pressure is given Sy

42 5 d¢ PD Dz,
£ RT EE L%, 2=

=9
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Tntegration with respect to t gives

. |
Ry TR 4t

© ;,3‘:40 EE I PN

P o= P(;,-)_ e - (13}

If the vapor pressure of liquid A is represented by P,°, it
follows from Eq. (13) that

t
o 1 ] ) 4
N N 7 CB e B ()
Aa P Peo
? X,
which is a relationship between %50 and " ..

To avoid the difficuliy in numerical slolution__‘: causad by the dis-
continuity of X, at t =0 and z = 0, BEq. (12) can be used to compute
the values of x, for small t.

It can be seen from Eq. (13) that the diffusiviiy can be expressed

as

oo ~Ldn e

J" L
@ l—on Jz

(15)

dt

Z=g

This eqnat_.:l.on may be used to determine diffusivities of gases, The
quantitiea P and *20 in this expression can ba measured expsrimentally:
the value of %l,i" .=o ©an be obtained from the numerical sclution
to Eq. (11), Sinece =, is a function of D and t, it

requires a trial and srror procedurs to determine D by Bq. (15).
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Liquid A

Fig. 1. A Diffusing System



