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ABSTRACT

In the spirit of the bootstrap hypothesis, =

dynamical model is developed for the ¥ hyperon, taking

for the exchange of A, T, Yl* {1385 Mev), YC* {1405
Mev), and p form the inputs to dynamical calculations
which utilize an extension of the matrix ND™% method.
The properties ¢f all particles other than the ¥ are
taken from experiment, cr, where they are experimentally
uncertain, estimated on the basis of current thecretical
ideas and then varied in the calculations. The cutoff
which governs the damping of the input amplitudes at
high energies is alsoc varied. It is found that quite

a few combinations of the experimental unkncwns and

the cutoff do lead %o a sell-consistent 3+, I = 1

A=l bound state, identified as the T, with reasonable

alu for the m )y : 2
v es T BSS &Z and couplings gﬂAZ/kn and

2 b R 1 " E » 4
gﬂZZ/hﬂ X These results favor the conjecture that the

% i=m & composite particle.
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I. INTRODUCT ION

The bootstrap idea is that the family of strongly
interacting particles generates itself. Each particle is
a composite object, being & bound or resonant state of gll
the multi=-particle systems with which the various ccnser—
vation laws allow it to communicate. The binding forces
come from exchange of the strongly interacting particles
themselves; hence the self-generation. In the mathematics
corresponding to this idea, one has equations which, hope=-
fully, can eventually be built up to the pocint where they
determine all the masses and ccupling strengths of the
strongly interacting particles, and possibly their quantum
numbers as well. These relations are based simply on the
self=-consistency requirement that the particles producing
the forces be the same as the particles these forces
produce.

In practice, a realistic calculation involving all
of the baryons and mesons {stable and unstable) simultane-
ously would be out of the question. One therefore looks
for situations where a small number of particles {e.g.,
one or two) are expected to support themselves, largely
without ocutside help or interference. An illustration
is the early bootstrap of the o meson(l)The p was pictured

as primarily & nm resonance; other "channels" with which



the p can communicate, such as ™w, were neglected. Having
tentatively decided what a dynamical ¢ is made of, one has
to find out what forces operate between the constituents,
and verify that the forces are indeed attractive and pro-
duce the p resonance. The forces which the pions feel
come from the exchange of various objects between them,
and one hopes that the most important forces will be the
long-range ones caused by the exchange of light objects.
The least massive system that two pions can exchange is
a pion paire.. Since pion pairs exhibit the very prominent
p resonance, ocne can try to approximate the influence of
the exchanged pion pair by finding instead the force pro=
duced by an exchanged ¢+ The latter force does indeed
turn out to be attractive in the p-wave, I=1 nm state,
where the ¢ resonance appears. And a dynamical calcula=-
tion with the p force as input, neglecting all shorter
range effects, does show that a ™ resonance with the o
quantum numbers is produced. Variation of the input »
mass and width until consistency between these quantities
and the corresponding outputs is achieved yields a mass

2
of 350 Mev and pmT coupling of i%%[ = 2,l,, Ihese numbers
do not compare well with the actual values of 750 Mev
and .5, but the calculation is still qualitatively success~
ful in that the dominant force turns out to be attractive

and does produce & self=consistent resonance.
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The present work is & dynamical explanation of the
¥ hyperon along the lines of the bootstrap philosophy.

The £ is pictured as partly a mA and partly a TZ bound
state. To the extent that multi-particle exchanges ecan

be approximated by resonance exchanges, all long and
medium long range forces are taken into account. Actually,
quite & number of particles contribute forces which in-
fluence the properties of the L. Since it would be im-
practical to bootstrap all of these particles simultane=
ously with the L, the properties of the other particles
have been taken from experiment, or from some other thecry.
In other words, we have trled to show that 1in & universe
vwhere all particles other than the T already exist with
their observed properties, the T should also exist as a
dynamically produced bound state.

The purposes of the calculation are twofold. First,
to shed light on the question of whether the ¥ in particu-
lar is a composite object, and hence to increase our
information 6n the question of whether all the strongly
interacting particles are composite. Secondly, to study
the detailed techniques of the bootstrap theory as applied

in a somewhat new and more elaborate way than previously.
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IT. THE MODEL OF THE Z

A T can be made up out of WA, 1YL, 2nA, EN, 2nL,

ﬂYﬁ, etc. The physical scattering thresholds of these

TABILE 2.1l. Thresholds of channelsz which can

couple to the T

Channel Threshold (Mev)
A 1255
T 1330
2mA 1395
KN 1440
2nL 1470
e 1525

channels are indicated in Table 2.1. Intuitively, one
expects the channel with the lowest threshold, mA, to

be the most important. Furthermore, if one thinks of

the other channels as coming in through virtual trane—
sitions of the ¥ state between its A mode and its higher
threshold modes, then one expects the influence of a
given channel to be smaller the further its threshold

is from that of the Mp channel, because of the greater
violation of energy conservation involved. Also, because
of the existence of the baryon and meson rescnances, it

can tentatively be hoped that the main effects of a three
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particle channel such as 2MA will come from situations in
which the 2mA system is in a two-~particle state like ﬂYf
or pA. This is because two-particle phase space is larger
than that for three particles, sc that transitions to a
two~particle state are more likely. Thus the effective
2mA threshold is 1525 Mev, not 1395 Mev.

| The simplest thing to try is a2 model in which only
the mA channel is included. Table 2.1 makes it clear,
however, that the neglect of the other channels, particu-
larly 7%, is likely to be a very bad approximation. In=-
deed, calculations based on the MA channel alone heave
shown severe sengitivity of the results to the crudely
represented high-energy effects.(z)

Thus it is evident that a treatment of the Z must
take into account the lowest two channels, at the very
least, and probably should include more. Beyond two
channels, however, the amount of electronic computing
time involved becomes prohibitive, so it was decided to
try to build a model of the Z based on the ™A and MT
states.

Suppose the two=channel treatment is successful in
predicting that the % is a dynamical particle. Could this
conclusion be changed by the inclusion of the first omit-
ted channel, KN? ‘hen three channels are included the Z

will spend part of its time in a mMA or nl state, in which,
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as we shall see,the forces are attractive, and the rest
in a KN state. If the forces in the KN state are wildly
repulsive, then the inclusion of the KN channel could
drastically affect our results. If, on the other hand,
the forces in the KN channel are attractive and of moderate
strength, then they are just like the forces which the Z
already enccuntersg in the mA and ML channels, and thus
they can hardly destroy the bound state.

The principal forces in the KN channel are sxpected

to come from P, w, and ® exchange:

\ K

{Baryon exchange is imposgsible because the baryon would
have to have strangeness +l1.) If the p couples univer-
sally to the isospin current, then the p force will be
repulsive in the I = 1 state {which is the state of
interest because the T has I = 1), where the K and N
isosping are parallel. As for the w and 9, presunably
some combination of them, Wgs couples to the baryon
current, while the orthogonal combination, My s couples

to the hypercharge current. wp makes no contribution
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because the K is not a baryon,; but my will produce an
attractive force, since the K and N hypercharges have
opposite sign. Together, the ® and © thus produce an
attraction.

By looking at KN scattering, where the o and W - ¢
exchange contributions are simply related to the corres-
ponding forces in the KN case, Dalitz verified the above
conjectures about the signs of the forces, and found that
the w - o contribution is more than 3 times stronger than
that of the 90(3) Thus the force in the I = 1 state of
the RN channel is attractive, and the inclusion of the
KN channel is not likely to wipe out the bound state
predicted on the basis of the two=channel model, although
it could cause significant changes in the numerical
results obtained there.

By now it is quite well-established that the rela-
tive TA parity is even,{h) 80 we shall look for the &
as a Py» I=1nmi=-nT hound stote.

The particle exchanges which lead to forces in the
mA and ™% channels, as well as tomy - MY transitions,
are shown in Fig. 2.1. Multi-particle exchanges are
approximated bj resonance exchanges; hopefully the non-
resonant contributions thug omitted are small. All
established particles with masses up to about 1400 Mev

are taken into account as possible sources of forcee.
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It would be pointless to include higher mass exchanges
explicitly, since we are already neglecting the high-
energy effects associated with the channels above nT.

To substantiate our model of the © as a ng - w%
bound state, we must verify that the forces we've listed
add up to & net attraction, and, by putting these forces
into some dynamical scheme which plays the role assumed
by Schrodinger's equation in simple problems, we have to
show that these forces in fact produce a bound state. e
also hope to be able to make this bound state self-con=
sistent, sc that the ¥ which emerges as an cutput has
identically the same properties as the T which entered
as an input.

Of course, &8s the reader realizes, some of the
properties of the particles which appear here are experi-
mentally uncertain (e.g., spin and parity, widths). As
discussed in detail in Section V, these uncertain quanti-
ties have been estimated on the basis of both current
theoretical ideas and any available experimental evidence,
and have been varied in the calculations, so that our
results can be stated for quite a wide range of values

of the things we don't yet know too well,



III. S-MATRIX THEORY AND THE ND™) METHOD

The dynamical calculations will be done with the
digpersion techniques based on the unitarity and analy-
ticity of the S-matrix. The ¥ bound state will be sought
for as a pole in the matrix of Py I=1 mp-nl scattering
amplitudes. If we call the mA system channel 1 and the
7Y channel 2, then the ij element of this 2 x 2 matrix
is just the 3", I = 1 partial wave amplitude for scatter—
ing {inelastically if i # j) from channel j to channel i.
Symbolically:

A{nMA>mA) QMS->m4)
Scattering Matrix = |
| (Cl(mxew!:) Z{nBeng) |,
Because of time-reversal invariance, the phases of the
states can be so chosen that the 12 and 21 amplitudes are
equal; we will choose them to achieve this equality. Each
amplitude in the partial wave scattering matrix is assumed
to be a real analytic function in the complex plane of the
total center-of-mass energy W, except for the unitarity
and force cuts discussed below.

In detail, the particular amplitudes we shall work
with afe defined in terms of the usual S-matrix as follows.
For a transition from state i to state f, we write the

S-matrix element in the fonn(s)



upTu;
J/ thEimfmi £2540

where M, p, E, u are the mass, 4 - momentum, total energy,
and Dirac spinor for the initial or final baryon, depend-
ing on the index, and q, w are the corresponding 4 -

(6)

momentum and total energy of the initial or final pion.

The matrix T can always be written as

T=-A+ iflBj Q = Ei_%.ﬂﬁ ’ (3.2)

in which A and B are functions of the usual invariants

s, t, u, and also depend on the initial and final charge
states (¢ = Y,Q,). In the center-of-mass frame, we define
fl and f2, simply related to the spin-flip and non=flip
amplitudes,by expressing the barycentric differential
_cross gsection, for specific initial and final spin states,

in the form (3 is the Pauli spin matrix)

——>.—95>

do q d « q . 2
AL AL 1.2
Ay 95 h q; 2

2
iy (. (3.3)




E)and g (f or i) now refer to the pion momentum and its

magnitude in the center-of=-mass. By ccmparison, the cross

section is related to upTu; by

do
6e) g5

Writing ﬁfTui out in terms of Pauli spinors and matrices,

qp MiMf 2

EZ LW

. (3a4)

1 f’I‘u i

one finds that

JE. + M) (E, + M) M, o+ M)
= i i f £ e S
= B [A * <W 3 >BdJ
(3.5)
e = j(Ei - M) (Ef - M) s <w . M, + Mf> ;
2 8ny 2 ';

Denote by §(+ the S-matrix element between states of

definite orbital angular momentum £, and definite total

angular momentum J = f+%. The customary partial wave

amplitudes {(+ are then defined by

i - (3.6)
j;‘; 21 /_q_i_q_:é_ @ '
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In terms of these partial wave amplitudes, fl and f2 are

£, =% f,, P! -3 ’ |
122 G+ By 1{cos 8) 1521},_ P 1lcos 8)

(3.7)

fa=Z (5 -2 B (cos o).

(Here 8; (cos 8) is the derivative of the usual Legendre

polynomial.) The inverse relations are

£,, = % latcos e)[flz} (cos ) + £, ,  (cos e)] (3.8)
21 )

We shall assume, in accordance with the Mandelstam
representation and with the indications from perturbation
theory, that the Lorentz-invariant amplitudes A and B can
be written in terms of s, t, and u alone, with no depen—
dence on quantities like /'s» In that case, it follows
from (3.5) and (3.8) that the f

Y
the MacDowell reflection property:

4488 functions of W, have

f/(+ ("'W) - = f(,(-l- 1).—(W) (3'9)

»
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Thig says that the two amplitudes for the same J but
opposite parity are simply reflections of each other
through W = 0, apart from a minus sign.

The p} amplitude fl - {= fp%) as deflined above
hag a number of purely kinematical singularities and
zeroes which we would like to eliminate. This is both
so that kinematical singularitieg will not be confused
with the dynamical singularities of interest, and so
that the important general features of the true scatter-
ing amplitude will automatically be maintained by the
approximation techniques to be introduced. In removing
the kinematic singularities, we would like to leave the
present asymptotic behavior of fp%, which goes to 0 as
1l or faster at large W, unaffected, for reasons which
3111 become clear.

Working in the W plane, the properties to be
"corrected™ are (1) Threshold zeroces: It follows from

the assumption that A and B satisfy the Mandelstam repre-

sentation that fp% cc(qiqf) {more generally {eicz{qiqff),
not only at the physical scattering threshold, where we
expect such hshavior, but also at all positive energies
W where. either 9; Or qp has a zero. From the formulae
in Appendix A, these points are {M, & u), (M, fu). By
the MacDowell reflection rule, fp% (4) will then go like

(9;9¢)° = constant at the negatives of these points.
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{2) Double pole at W = O; Due to the factors

)

£ M. t
(Es& M;) (B p) g (w Milz- u?) (v = Mﬁz" u2)

W ";;2 2 2

in £ and f2’ {3.5), the amplitude ?pa will have a second-
order pole at W} = O.

Speaking now of the Pi amplitude, and suppressing
the A% subscripts, we define the amplitude we shall be

working with, h, by

s

, B - W\ /B, =W

he = f£1 0 oopy = /(28 Te)7d i) (3.10)
1 gfi ; W N ®

With the observation that, for j = 1 or 2 referring to

either channel,

q.
~——l— ©c¢ constant near positive energies
Ej - Mj W where q5—? 0, and that

) (=

i
as W—>- W, pfj_——-)/( W )3 and that

. - M
El,ﬁ__i-——aé as W—r=,
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we see that division of ffi by Pps cancels all the kine=-
matical zeroes, and removes the double pole at W = 0, with=
out disturbing either the constant behavior at all the
"thresholds™ in the left-hand plane, or the asymptotic
behavior.

‘e remark that the decision to work in the W plane,
rather than in the s = W8 plane, is motivated by the fact
that as a function of s, {(i would have a branch point at
S ® 0, due to the presence of W = /5 in (3.5),

Now we can discuss the unitarity and singularities
of the Pi amplitude h. Figure 3.2 shows the singularities.
In the first place, each amplitude hij (i and j run from
1 to 2) has the usual "physical" cut on the real W axis
ranning from the physical threshold of the process i<¢—j
up to s The physical threshold is the A threshold for
#A—nA; for the other three reactions the 7% threshold
is the physical threshold. The physical scattering ampli=-
tude at energy W for ie«—j is the value of hij Just above
the cut, by j (W + ie)» The two-channel unitarity condition
for the amplitudes hij in their respective physical

regions is

2
Im by (W) iﬁ. 1 B (W) 8y (W) Ty (W) 5



where 1,J = 1,2, W 2 physical threshold
{3.11)
for i«-j, and is taken above the cut,

and @k (W) = g (W) Prk (W) 9k (W)'

Here 8, {w) is the unit step function which is 1 above

the threshold for channel k and o below. This set of
relations is just the two=channel analogue of the familiar
statement for a one=channel problem that the partial wave
Sea=~1

A% has the form sin 3
25 £E
phase shift 8 g4 - In writing (3.1l), the symmetry of the

amplitude el®4t yith a real

scattering matrix, hij = hji’ which follows from time=
reversal invariance, has been assumed.

It is frequently assumed that the relations
represented by {3.11) are true, not only above the physical
thresholds, but everywhere above the threshold of the
lowest channel (mA), for all ij. For hys = hyy and hy,,
this represents an extension of the unitarity condition
into the region between (Mp + u) and (Mg, + n). Below nT
threshold, the unitarity eqguation for h12 or hy, does not
have the physical significance of a statement of conser-
vation of probability, because we are at unphysical values
of W Consequently, the validity of the extended unitarity
conditions cannot be taken for granted, but must be estab-
lished by looking at perturbation theory or by a procedure

of analytic continuation.(7) Let us agsume for the



moment that conditions in the present problem are such
that the proofs which have been given apply. Then,

collecting all the amplitudes hij into a matrix h, and
defining a diagonal matrix ® {w) with diagonal element

B {w), we can write

Imh = h¥ Oh, at all W + ie, W real, with W 2mA (3.12)
threshold.

Since the real analytic function hij {w) now has a non=-
vanishing imaginary part all along the real axis from
+ » down to A threshold, it has a branch cut extending
down to this point. This cut, which goes below the
physical cut except for hy;, will be called the unitarity
cutbs

By the MacDowell reflection rule, {3.9), there
is also a ™unitarity cut™ in the left-hand plane, running
from W = - (MA + M) to W= - ®. Plugging the rule into
the unitarity relation for the right unitarity cut, one
finds that if the definition of the ® matrix is extended
so that for all (real) W,



( )<E - M)
qq ({W] 8, { 1WI
olw) = 1 Kl 1 (W) ©
| (3:13)
E=M .
then above the left unitarity cut we again have
In h = h* en. (3.14)

Apart from the unitarity cut, there remain the
driving or input cuts, which correspond to processes in
which one cr more particles are exchanged between the
scattering particles. In the elastic amplitudes, hll
and h22’ these exchanges represent attractive or repulsive
forces, while in h12 they simply correspond to transitions
between the channels mediated by particle exchange.
Frautschi and Walecka (8) discuss in detail the loecating
of the driving cuts by lcoking at the assumed Mandelstam
representation of the invariant amplitudes A and B. Their
analysis shows that the exchange cuts can be found simply
by locating the singularities of the propagators for the
exchanged objects. The exchange of a mass m, carrying

"energy" u{or t) leads to a factor 1 {or 1 )
2

u - mg? t - mg
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in the amplitudes A and B for the exchange process. In
projecting out the partial waves, we will thus encounter

expressions of the form

1

a, {s) = %j d{cos o) Pef{cos 0) .,
4 =] U = mg

From Appendix A, we have

2 {zf‘li’nj - 2‘42) -{s+ g™ = Elj)
U - Ele = quQj

- cos 9.
29193
Let
© e (2‘”1mj - 2!,-12) - {8+ mez-— 'Sij)
xs - 2 (3*15)
29,9
so that
u - mez - Zqiqj E;: - CO8 8] °
Then a, {s) becomes
1
) 3\ a | B, (cos 8) ( e
ag(s) = cos 9 Q, (xg)»
£ 1 2qqu (xg;- cos A) 2qlqj £

Ql(x) is the Legendre function of the second kind, and

has a branch cut running between x = £ 1, {The branch
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points associated with the factor qiqj a&re taken care of
when the kinematical singularities are eliminated.) 1In

terms of s, the points x§ = + 1 correspond to

SH LR

e

(3.16)

3 [(Bi - mez) - &2} [(Ei - mez)- ?.12]

mg mg,
and to s = 0, = =,
The notation here is
T T 20uf + M3R), 8y = (ug? - ), iy = i My My2.
Note the complete symmetry of {3.16) in i and j, which

is necessary if the matrix h is to be symmetric. For

elastic scattering {j = i), {3.16) reduces to

(3 .168)
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A given exchange thus leads to two cuts in the g plane,
one from - = £to 0, the cther connecting the two finite
points determined by {(3.16). In the 7 (= /s) plane, the
first of these appears as a cut running the entire length
of the imaginary axis, while the second becomes a pair
of relatively short cuts symmetrically placed on either
side of the imaginary axis. The complete set of cuts
resulting from all u exchanges is found by letting mg
vary over the entire range of effective masses which
can be exchanged. For hyj, my can be My (T exchange),
or anything from (My + u) to @ {mA or ny exchange); for
ha2s My My and (Mﬁ + 1) to »; and for h12’ My, and
(My + 1) to =

Completely parallel remarks apply to the t ex-
changes. The E—%fﬁgz pole corresponding to exchange of
& mass Mg in the t channel again leads to Qp functions
in the partial wave amplitudes, this time with argument

x$ given by

, 2 -2
e Rwsws = 24° 3 mg

1 J - e 2 e
X @ T L - Mg = ‘quq s XS - CO8 ?,
s zqiqj J [ 3.17)




[ |

and at 5= 0, -~ =,

For elagtic scattering in channel i, this reduces to

s=3 (5 -n2) 3 (m?2 - 4u2) (m2 - 4M2);
) o) 4 ned - ) (ng 75 100)

.Sao,“@o

Of course, formulae for the branch points do not
completely determine the connecting cuts; fﬁrthermore,
I have not said which of the four points in {3.18)
correspond to Xg = + 1, and which to x8 = = 1, so we
don't even know which pairs of points to try to join.
To locate the cuts in detail, one must see where s goes
when x§ goes from - 1 to + 1. As an illustration, con=
sider p exchange in "L elastic scattering. Omltting

the index i = 2 from kinematical quantities, we have



PG

20R = 2u? 4 2 m, 2

xP = I, I
s P =t o2

2q 29

Ariting out the right hand side explicitly in terms of

$, and then solving for s in terms of x[, one obtains

.
zm 2 am 2 |2

+ o ||+ —2— | -8
x§ -1 x§ -1

(3,19)

This shows explicitly that there are two points g for
every point x§, so that the branch cut running along

the real axis from = 1 to + 1 in the x§ plane maps into
two branch cuts in the s plane, corresponding to the two
signs in {3.19). As x§ goes from - 1 to + 1, s traverses
the curve in Figure 3.la, if we pick the upper sign, and
that in Figure 3.1lb, if we pick the lower. Together
these two branch cuts add up to the configuration in
Figure 3.lc. With reference to {(3.18a), we now know
which branch points in g correspond to which value of

xg {(the two points given by the non-trivial formula in
{3.188) are the ends of the circular arcs in Figures

3.12 and 3.1b).
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It is now clear how the exchange cuts arise, and
how they can be located in the s or the W plane. In
the mA—> A amplitude, hll » we have the following
collection of cuts {in the W plane):

(1) u - exchanges
a) From & exchange, a pair of short cuts on

the real axis with (MAZ - Mz) <
B&T -

bt

jz {Mﬁz + u2) - Mgz, and a cut along the

{Wig

entire imaginary W axis, from = i @ to
+ i,

b) From mA, or other multi-particle exchange,
a real cut - (Mp-u) € W g {Mp= 1), and a
cut along the whole imaginary axis.

{2) t - exchanges

a) No single stable particle exchanges are
possible.

b) From mm, or other multi-particle exchange,

a circular cut with radius MA - uz, and

again a cut along the whole imaginary axis.

These cuts &re drawn in Figure 3.2.
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The singularities of the MAeasny and ML_H7YT
p%, I =1 amplitudes are very similar in structure to
those of the corresponding mwA_ mA amplitude, so it is
unnecessary to deal with them in detail. Each amplitude
has a unitarity cut and an array of driving cuts in the
right half ¥ plane, and reflected cuts on the left.
Each fp%, I = 1 emplitude also has a pole at W = My, as
discussed below.

It should, however, be noted that in nl elastic
scattering, there is an anomalous threshold. Because
1%2 > M‘,.\2 + uz, there are diagrams, involving A exchange,
in the process n‘n-_;'ig which have anomalous thresholds

in the variable t, which is the energy for mn— 2;‘5, The

anomalous region extends down to

= 2{Me? 2y w2 _ 2 _ ,22
bo = 205? +uf) - w2 - 02 - )2 5.20)

My
whereas the normal t threshold is huz.w) The spectral
representation of the full nZ-—nY amplitude now involves
values of t down to t,, so that in locating the singu-
larities of the m¥-—nY partial waves, we must let the

effective exchanged mass Mg go all the way down to mezg

Tos to use the language of the preceding analysis., If
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we replace mez by to and xg by xg in (3.19) and again
follow the s cuts given by this formula, we find that

there is & cut on the real s axis which runs from Mg

until Just above the np threshold {MA + )2, In effect,
then, the unitarity cut appears to run without interrup-
tion from » down to MA?, instead of stopping at the
"normal" place, (MA & u)z, 80 one speaks of the unitarity
‘cut as having an anomalous threshold.

On the other hand, ﬁe will be approximating multi-
particle exchanges by resonance exchanges, and neglecting
the non-resonant "background” contributions. Since the
anomalous threshold in nf-n¥ comes from such a back-
ground process, it will not appear once the resonance
approximation is made, and hence, will cause no practical
difficulties. From now on we will, therefore, assume
that there is complete separation between the unitarity
cut and the driving cuts in each amplitude hij'

Although all the partial waves for a given process
i<—j have the same branch cuts, the Pi, I =1 amplitude
has in addition the T pole at W = My, corresponding to
ic<—j via an intermediate state cconsisting of just a T.
From the point of view of scattering theory, the question

of whether the ¥ is a dynamically produced particle or



not is Jjust the question of whether this pole follows
from the other singularities already present, or not.

In other words, if the amplitudes in the scattering
matrix h are required to have certain specified driving
cuts, are they then forced into also having a pole at
W= Mﬁ in order to satisfy the general properties of
scattering amplitudes? If so, the T is a dynamical con-
sequence of the driving forces, and as an intermediate
state in reactions, can be pictured in exactly the same
way as one pictures the compound nmuecleus whieh ig formed

in reactions in nuclear physics.
-1
THE ND  METHOD

The ND™+ method(lo) is a manageable technique for
making approximate calculations of partial wave scattering
matrices, such as h, with two important features. First,
the approximate h which results from an "N over D" com=-
‘putation will automatically possess the main general
properties required of it: it will be exactly unitary,
have cuts in the right places, be analytic where it should
be, and be symmetric. Other properties will be main-
tained as well. Secondly, in the np~i method, it is

possible to sgpecify an approximate set of driving cuts



{forces), and see if the h possessing these cuts has =a
dynamically produced pole as well.
Let us assume that the two-channel scattering

matrix h can be represented in the form
h(w) = MWD (W), {(3.21)

where N{W) and D{(W) are real analytic 2 x 2 matrices,
and D has cuts only where h has unitarity cuts, while
N hag cuts only where h has driving cuts., {Jithin the
permitted regions, the various Di

and N;; can have cuts

J J
in different places.) In the one-channel case, this
agsumption can be rigorously Jjustified by actually dis-
playing formulae for N and D in terms of the phase
shift.ill) For the multi-channel case no such explicit
proof existg as yet, but the multi—channel generalization
is very plausible, and a partial proof has been givenilZ)
The unitarity condition In h = h*@h, obeved
by h above both left and right unitarity cuts { U cuts),

can be rewritten as

Im (h-l) = - 8, above U cuts. (3.22)



This is obtained using the fact that for a complex matrix
* o ar.= 1
A, Im (A-l) - - }\'1 Al »
If h = ND'I is to be unitafy, we must have, above

the U cuts,
D = Im(h™ N) = In(h™2)N = - BN (3.23)

{Recall that N is real in the "unitarity region"). Also,
if h is to have driving cuts {F cuts) with & specified

discontinuity disc h, we must have
disc N = (disc h) D (3.24)

in the region of the F cuts {where D is analytic). MNote:
Since we are dealing with real analytic functions and the
U cuts are on the real axis, the discontinuity across
these cuts is just 21 times the imaginary part above the
cuts. However, the driving cuts are not restricted to
the real axis, so for these cuts, the discontimuities do
not amount to the imaginary parts.

#e now wish to obtain more explicit represen-—
tations for N(Ww) and D{wW). To this end we define a matrix
B{W} as the dispersion integral over just the driving

cuts of ht
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dise h{w')
awr . {3.25)
WY =W
F

B (W) =

2mi

f means, of course, the integral over the F cuts. (3.24)
F

now becomes

dise N = (disc B)D ; F cuts. {3.242)

Then across the F cuts,
disc (N = BD) = {disc B)D = {dise B)D = O,

so that (N = BD) is singular only on the U cuts, above
which

In (N~-BD) = =B Im D = BaN. (3,26)

Next we write dispersion relations for D and for {N - BD),
making the minimum number of subtractions needed in order
to get & convergent, consistent set of equations. This
involves the simplest assumptions one can make about the
asympﬁotic behavior of N and D. It is easy to show that
if B(W)~:%_ as W—i =, as our approximate B will (after

being damped), no subtractions will not work, but one
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subtraction in D, with none in (N = BD), is sufficient.
Because h is being represented as a "quotient?, ND'l,
there is obviously & multiplicative freedom in the
specific choice of N and D, which we utilize by normalize
ing D to the unit matrix I at the subtraction point Wo.
Then, denoting by g an integral above both left and right

U cutss we have

W-, [ @) N{w) dwr

D{W) = I - (3.27)

n (0t = W) (W - wy)
and

B{wt)®{wr)N(W) dwW -
W= W

J{W). {3.28)

1

N{w) = B(W)D(W) = - _(
7

¢!

Substituting the dispersion relation for D into {3.28),

we obtain

1
N(W) = B(W) + ..jdw,ga(w*) - 5{3.29)

o

W= B (W IN{wr)
° B{W-)] (
U

W - W, Wo- W
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which 1s a linear integral equation for N, given B.
These equations are identical in form to those for the
single-channel Casea(lB)except that now N, D, etc. are
matrices, so one has to keep the order of multiplication
straight. The ranges of integration which appear in
{3.27) = {3.29) are actually controlled by the step
functions in the @ matrix, as given in (3.13). Some
integrals start at |W| = My 3+ 4y, others only extend to
Wi = MD + e

Now the point is that if we have some reasonable
approximation for B{W), we can use the basic relations
(3.29), then (3.27), then {3.21), to calculate a corre-
sponding approximate h{W),and this h will be gxactly
unitary, will have precisely the driving cuts and dis=-
continuities implicitly specified by giving B, and will,
ag we shall show, be properly behaved in several other
respects as well. And all this is independent of the
approximation made for B. The unitarity results simply
from our maintaining the relation ImD = - AN above the

U cuts, so that there

Im‘(h'l) = IIII(DN-I) = (BHD)N-.:L = - @NN-J' = = 9,
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And h will have the prescribed driving cuts, i.e., the
cuts of B, because we calculate N in such a way that
across the F cuts disc N = {disc B)D, so that there

disc h = disec {ND™L) = (disc N)D™ts disc Be

In terms of the elemencs of D,

ol o= [Pez “haz\ D
= E == 1 A = determinant of D. (3.30)
-1 D A
21 1l

If the forces represented by the driving cuts result in
a nA = n¥ bound state, the corresponding pole in h will
snow up &8s a zero of A.

The additional properﬁies which the matrix ND™T
has, whether calculated with the true B or with some

approximate B as input, are as follows:

A) Symmetry

Bjorken and Nauenberg(lh)proved that if N and D
both satisfy unsubtracted dispersion relations, and if
the inﬁut B is symmetric, then the output h = ND™L will
be also, and will thus satisfy the requirement of time

reversal invariance. Their argument, which also applies
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to the present case, where D is somewhat more divergent
at ® and requires a digpersion relation with one sub=

traction, is reproduced here for completeness.

Consider the matrix function

A(W) = 0T - h)p = pT(wp - (p=1)TT)p

3.31)
= ply - Tp (

where DT is the transpose of D, etc. A can he singular

only where h is. On the driving cuts,
disc A = D {disc B - disc BL)D = O, (3.32)

since the input matrix B ig assumed to be symmetric. On

the unitarity cuts,
InA = {ImDT) N = NY(ImD) = - NToTN + N'eN = O, (3.33)
since the diagonal matrix ® is its own transpose. If h

has a dynamical pole somewhere because the determinant

of D is zero, this will not produce a pole in A = DTN-NTD,
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At infinity, if the input B goes like %, N will also

{as can be shown from {3.29)), and D cannot diverge

as fast as W or the once=subtracted dispersion relation
for it would be wrong. Thus, A goes to zero &t infinity,
and is not singular anywhere in the finite plane, so it

must be identically zero. Hence, h is a symmetric matrix,
hzht, (3.34)

B} Threshold Behavior

The h being represented as np~L was deliberately
chosen not to have threshold zeroes, which the ND™%
method cannot be expected to produce when an approximate
B is used as input. Threshold zeroces would have %o
come from zeroes in the N matrix, which will hardly come
out of the integral equation (3.29) regardless of the
approximations in B. However, when the h is so chosen
that there are no threshold zeroes required, one can say,
if one wants to put it this way, that the correct thres-

hold behavior is guaranteed.
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C) Reality of the Coupling Constants
If, as anticipated, the input forces result in
a zoro of A = det D at some energy W= M in the region
0 < dx< (Mﬁ + 1), so that we have a dynamical bound state,

h near the pole will look like

ND_ N(M)D () R
— st

ha= ND‘l - =
s A (W)Lﬂ(w “-M WeM.,

(3.35]

Here &' (W) is the derivative of A(W) at W = M. As ve
shall see,mthe elements of the residue matrix R at a
single {stable) particle pole are real coupling constants
multiplied by real coefficients, so the R which results

-1 caleulation had better be real,

from an approximate ND
if this approximation scheme is to be sensible.

That R will be real is easy to see. In the region
of interest, D{hence D and A) is real. Thus A'{W)| is
real, and we only need to show that N(M)ﬁ (M) is regl.

Noting that DD = A, we see that near the pole

Tm (ND) = (ImN)D = (ImB)DD = {ImB)a. ~ (3.36)

At the'pole A is zero, so Im{ND) vanishes. In fact, re-
calling that the integral equation for N can be written

as in (3.28):
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we see that

ND = BDD + JD = BA + JD . (3.37)

Hence, at the bound state pole,

ND = JD . (3.38)

The integral J{W) is clearly real below the mA threshold,
so this relation shows explicitly that ND is real at the

pole, and will be useful in the numesrical calculations.

D) Independence of the Subﬁraction Point

Since it is not transparent from {(3.29) and {3.27)
that ND-l ig completely independent of the subtraction
point WO used in calculating it from some approximate B,
we will demonstrate this explicitly. Instead of aealing
with (3.29), it is simpler to use the equivalent {3.28).
Suppose, then, that N(W) and D{W)} are the solution of
the set of equatiocns

N(W) = B(W)D(W) + _ !

b1

daw

1 pBWew )N )
g {3.392)

w o~
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D{W) = T - . (3.39b)

W=, jﬂ(W’) N{wr) awr

m (Wr = w){wr - WO)

Using two other subtraction points Wi and Wé, we can

also write for thig same D,

D{W) = D(V,) -

2

W= S@(T;‘I’)N{W*}dhﬁ

" (W = (W - )
u (3+40)
i - 13 2a
Now define the matrices Ni(w) and Dy {) by
N (W) = N{W) D-l(W )
R ! i
1 (3.41)
Di(W) = D(W) D (Wi) .

Then multiplication of (3.39a) and (3.40) by D-l(wi)
yields



Ay

Iqi{w) - B(N)Di(w) +

15 B{W)® (wr )N, (wr)dw

mn WY - W

i - 132a {301)'2)

W= W, O{Wr )N (W )dw?

n (W = W W - wy)

U

For each value of i, these are the usual equations of the
ND”l method, corresponding to a subtraction point Wi, with
D normalized to I at the subtraction point. And by con=
struction, their solutions differ only by a constant

matrix A which cancels out of ND'l:

Ny (W = 1y (W) A,

and (3.43)
D, (W) = py(w) A,
so that
-l -]
NZDZ - NlDl - (3 0414'3

By way of comparison, we should mention at this
point the lowest order determinantal method. Thig tech-
nigue, which is computationally vastly less involved than
the full ND-:L method employed here, may be viewed as the
lowest order in an iteration solution to the ND™ equsim

tions. Effectively, the integral equation for N, {3.29),
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is replaced by the approximation N{J) = B{W), and then
D is calculated from N by the usual dispersion relation,

(3.27) 2%} -1

determinantal epproximation yields an output matrix

y comparison with the full ND ~ methed, the
which is not symmetric and is not independent of the
subtraction point. Furthermore, if the ocutput pole
happens tc lie on top of one of the input driving cuts,
the output ccupling constants will‘be complex, which is
nonsense. In the present problem, if a self-consistent
bound state can be found, the output Z pole will lie
right in the middle of one of the cuts coming from I
exchange in the 7mZ channel (Put i = 2 and me2 = ME2 in
{3.16a) to see this.). Thus, the determinantal method
will never lead to a self-consistent T with real coupling
constants, and for this reason alone it cannot be used

here.

THE OVERLAPPING CUT

We have been assuming that the driving cuts are
completely separate from the unitarity cuts in each of
the amplitudes hij' In fact, however, this is noﬁ the
case. The source of the difficulty is the A exchange
force in the nIsnI amplitude (see Fig. 2.1). The
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reader may be familiar with the fact that an exchange
graph of this type cannot lead to a cut in the physical
region (i.e., above the nzythreshold) unless the © is
50 heavy that it is unstable for decay intom and p, to
vwhich particles it is coupled at each vertex. This is
verified by {3.16a). However, in the n¥ elastic scatter—
ing amplitude, the unitarity cut extends below the
physical region down to the mj threshold, and there is
nothing to stop the short cut associated with a process
like ap exchange from creeping above the unitarity thres-
hold at W= (M, 4 y), even though no physical instability
is involvecd. Indeed, application of (3.16a) shows that
for the experimental mass values, the right hand short
cut coming from A exchange does lie between the mjp and
nd thresholds. This situation is illustrated in Fig. 3.3.
A mirror-image arrangement is, of course, simultaneously
present in the left half W plane, but for simplicity we
shall speak in terms of what is happening in the right
half plane near the actual physical region; it will be
clear that the steps taken apply as well to the reflected
overlap.

Now that a force cut overlaps the unitarity cut

in the unphysical region in one of the hij’ the problem



X, -

_ W plane

w&wmwmww

772, threshold (physical scattering threshold)

m/\ threshold (onset of unitarity cut)

Figure 3.3, The overlapping cuts in h__. In this view
of the real exis in the right half W pigm , the unitarity
cut extends from ma threshold to =, with the overlapping
A cut lying betwesn the mA and n¥ thresholds. For
clarity, the A cut is drawn slightly above the axis.

is to find out what becomes of the extended unitarity
16

condition, (3.12)( ), and to try to find a practical

computational scheme which still works when the "usgual?

unitarity relation no longer applies.

Let us pretend that the A is a little heavier

than it really is, sc that the overlapping cut recedes
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to a less troublesome position below nmA threshold£l7)

In this situation, which is represented in Figure 3.4,
the usual unitarity relation, {3.12), is assumed to be
correct, and the Np™L formalism previously discussed

applies. Imagine that the A is now made lighter, so
W plane

mﬁww

T2 threshold

A cut

N

TA threshold

Figure 3.4. The A and unitarity cuts in h2 when the
masses are s¢ related that there is no overiap.

that the A cut obtrudes into the unitarity region. Since
the crossging of the w\ threshold by the A cut is not
associated with any actuasl physical occurrence, such as

(18)

the ¥ becoming unstable for nj decay, one expects the
scattering amplitudes hij (W) to vary smoothly as the A
mass is decreased. Thus, one would like to find some

explicit way of analytically continuing the matrix h(W)
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in the A mass, from values where there is no overlap to
values where there is.

We have at hand the means for achieving this
analytic continuation in a trivial way: namely, the
ND™! method itself. To make this clear, we rewrite the
basic equations used to calculate N and D in the non=

overlap cage, explicitly indicating the channel indicses.

Hi
- T Ve |
wr- W) (W= )

__ W= Wy oy (WHIN (1t dwe
Nij(w) = B, (W) Ty = S\? _k

!

{3.452)
1 /B, (W)e, (WIN  (wr)aw
+ ..5 k kK] s 1,3 = 1,2;
o WY -
U - W
We=W_re.(W)N, (w)dyr
D, (W= I., - °S = 1J i,5 = 1,2+{3+450)
iJ 1J - (We= W) (W= W) » 123 = 1,2.03

Table 3.1 shows the range over which each funetion Nij(w)
is integrated in this pair of equations, this range

being common to both.
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TABLE 3.1l. Energy ranges over which the Nij(w)
are integrated in the N and D equations, (3.45a,
b). Each function is integrated in the region
from the lower limit listed to + « a&s well as in
the reflected region at negative energies.W%A

and W;, denote the ¢p and ¥ thresholds.

N Function Threshold of Region of Integration

Nyq () W
N, (W) W
N, (W) oo
N, (W) 75

TABLE 3.2. Energy regions where tThe input functions
Bij(w) are required in order to solve the integral
equation for N. We assume the input is symmetric:

By (W) = le(w}. The notation is as in Table 3.1l.

Input Function Threshold of Region where Reguired

Byq (W) s
By2 (W)= Byq (W) A
B,o (W) n



Now we vary the A mass so as to bring the p cut
up above the A threshold, and see what happens to the
N and D equationsslg) To solve the N equation,one need
only consider the various Nij(w) in the energy regions
over which they are integrated. In the first term of
{3.45a), which amounts to Bik{W)ij(W), By (W) will enter
only the equations for N,q (W) and sztw), but in these
equations, one is only dealing with energies W above g
threshold, so the A cut between the two thresholds will
not be involveds. Similarly, in the last term of {3.45a),
322 will always stand next to a ®,, 80 that integrals
over B22 will start at the n% threshold. Thus, the ob-
truding cut in B,, actually does not appear when one is
solving (3.452), so this equation can still be used to
define a matrix of real analytic functions Nij(w), and
these functions will be analytic continuations { in the
A mags) of those for the non=overlap case.

Due to the Bik(w)ij(w) term in {3.45a), the
Nyq (W) and N,, (W) defined by this equation will be sin-
gular on the A cut of B,,, between the two thresholds.
In the D equation, however, the range of integration for
Nij begins at the threshold for channel i, so no cuts

have crept into the integrands of this dispersion relation
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either,and it can serve to define real analytic functions
Dij(w) which are analytic continuatious of the Dij for
the non=overlap situation.

Finally, we can put these Nij and nij together
to form a real analytic scattering matrix h = ND'l, which
will be the analytic continuation of the h we had before.
And since we have been able to achieve this by a simple
extension of the computational formalism we had before,
no new difficulties will be encountered in practical
calculations bvecause of the overlapping cuts(zc).

From the extended equations {3.45a, b}, it follows
that the discontinuities of N and D are given by the same

relationsg as previousgly:

disc N = {(dise B)D F cuts {3.46a)

Iln D=~ @N U cuts,. (3al+6b)

Now, however, there is an "F" cut in the unitarity region,
and {3.46a) holds for this singularity as well as for all
the other "F" cuts.

Using the extended np™L formalism, we canlnow
find out what has happened to the usual unitarity condi-

tion, Im h = h*ph. Except on the ; cut, the N matrix is
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real throughout the unitarity region, so, using (3.46b),
we have as before
1

In (0™) = In (DN) = (ID)NLe - ol la - 5. (3.47)

On the overlapping A cut, however, both N and D are com=

plex, so that

Im(h-l) = Im{DN"l) = (IIHD]R»@(N—J') +{ReD) Im{N'lg (3.48)

In working this out, it is important to note that on the

A cut
A(ImB) = (ImB)® = 0. (3.49)

This is because these matrices, in this region, have the

form

Py O 0 O
D = s ImB = » {3.50)
0 O 0 IInBzz

. - - - *
Since Re (N 1} =N l(ReN)N 1 > the first term of (3.48) is

(applying (3.46D))
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- N[N (Re)N*] m - O(Nea iTmN)NxTL.
From {(3..463),
®(ImN) = @(ImB)D = O,
so0 we are left with
(ImD)Re(N™1) = = 0 .
For the second term of (3.48), we have
ReD = D* 4 1{ImD)* = D* = i®N* ,

and

Im(¥) = = N1 Tan) Nt = - N=1%(mB)pN~L

= - N=1¥(mB)n~t ,
Then
(ReD)Im(N‘l) = = (D¥- 1®N*)m‘1*{1ms)h’l

s =[h2*- ia] (mB)A™T = - ™Y (mmB)n"Y,

(3.51)

(3.52)

(3.53)

{3.54)

(3+55)
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using {3.49). Consequently, on the overlapping cut,
™) =z =@ = 0¥ (@Rl . (3.56)

In view of (3.47), this relation is also true in the
rest of the unitarity region, where ImB = 0. Inverting,

we find that the unitarity condition has become
Imh = h*fh + ImB. {3.57)

In the search for a self-consistent ¥, the
input T mass will be varied, with the A and =« masses
held fixed. Situations will therefore arise vhere
the £ is lighter than the 1, in which case overlapping
may be expected in the mA~snA amplitude, coming from

the diagram



This circumstance, however, is completely identiecal

to that just discussed, except for the roles of channels
1 and 2 being interchanged, and the previous solution
applies. On the other hand, if one were to take for

the input ¥ mass a value outside the range (MA - u)e

Mg < (MA + W), then either the % or the i would be un=-

stable for decay into the other baryon plus a pion.

If the ¥ is unstable, then

hag & cut in the physical region of the »T elastie
scattering amplitude; that is, above the nT threshold.
If it is the A which is unstable; then T exchange leads
to a cut in the physical region of the MA scattering
amplitude. In either c¢ase, the previous analysis no
longer applies. The question of what happens when there
is actual physical instability is a matter of current
debate. In any case, it seems probable that major

computational complications will be involved, and so
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it was decided to restrict attention here to input Z
masses between My + M. The "window"” thus defined
extends from 975 Mev to 1255 Mev, the actual T mass
being 1193 Mev. As long as one stays within this
window, the method just developed, which allows for
overlap in the unphysical unitarity region of the
elastic amplitude with the higher physical threshold,
is perfectly adequate. From (3.16) one may verify
that for Mz within the window, no cut from any of the
possible exchange processes i1n the lnelastic amplitude
ever wanders into the unitarity region. In fact, as

ME“’MA - M, a short cut from

comes exactly up to the lower {n¥%) threshold, but then

retreats.



IVY. THE BORN AMPLITUDES

The input forces pictured in Figure 2.1 will be
represented in the dynamical calculations by the
corresponding Born amplitudes, whose singularities
will be the driving cuts. Because of the dispersion

. 1
denominators bn

W
the singularities near the region of interest (W

in the equations we work with,

around ME) are weighted more heavily than the more
distant singularities. Now the light mass exchanges
lead to the nearest driving cuts, so if one approxi-
mates sach Bij(w) by the sum of the Born diagrams
{suitably damped) for i¢«j in Figure 2.1, the important
nearby cuts will be quite accurately treated, although
the far-off singularities will be only crudely repre=-
sented.

If a Born amplitude is calculated for exchange
of a mass M in, say, the u channel by using Feynman's
rules, the invariant amplitudes A and B will come out

in the form

gl{s,u)

. (4.1)
u - MR

Als,u) =




w5 Chm

&

Expanding g{s,u) in powers of (W - M?),

g{s,u) = g(s,M?) + a(s,M?)(u - M3)

+ b(s,M?) (u = M9)2 4...,

one can write A as

8( S:MQ)

+ als,M%) + b{s,M2) (U = M) 4usn  (4.2)

remaining terms, which we shall refer to as the off=-
mass-shell parts of A, do not have a pole at u = Mz.
These off=-shell parts of A and B lead to terms in the
partial wave amplitudes which have no dynamical cuts.
On the other hand, the Bij(W) which are to be approx-
imated by adding up the i¢—J Born amplitudes are just
dispersion integrals over the driving cuts, (3.25),
with no extra "cut-less" terms. Therefore, any off-
shell pieces in the A and B for some Born diagram should
be dropped when computing this diagram's contribution
to the relevant Bij(w)(Zl). There generally are ambi=-
guities in the off-shell pieces of A's and B's calcu=-



g:n:f;l’) =Y
st

lated from Feynman's rules {but not in the on=-shell
parts), stemming from the lack of uniqueness of the
interaction Hamiltonian appropriate to a given vertex.
These ambiguities are eliminated when the off=-shell
pieces are dropped. It should also be mentioned that
in the only instances in the present work where the
computations were so done that the A and B of a parti=-
cular diagram involved off-ghell pieces at first {p
exchange, with qukv coupling to the baryons, in nTnl
and TANZ), the rejection of these pieces resulted in
a mere ~ 6% change in the partial wave projections of
the diagram, at n¥% threshold.

The caleculation of the Born amplitudes is greatly
facilitated by extensive use of the crossing relations.
Disregarding isospin, crossing the outgoing and incoming
pions in a given Feynman diagram, as in Figure 4.1,
corresponds to the interchange 9; &>=0g» Or sespu. Thus,
the invariant amplitudes for the crossed graph, Ac, Bc,
are related to those for the uncrossed {("direct®") graph,

44, B9, by

A%(s,u) = 4%u,s) (4+33)

B%(s,u) = ~BY(u,s). {4.3b)
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These follow from {3.1) - (3.2), and the fact that Q
=3t 9
2

changes sign under crossing.
As for the isospin, the mjp system can only have

I =1, while nT can have I = 0, 1, 2. Labeling the pions

+ in
and sigmas by Cartesian isospin indices (n*= ™y 2,
/2
etc.), the mp states of total isospin I = 1 and I, =0
are just
imas I=1; I =0 = I A> (hay)

while the corresponding m¥ states are

-
mTx T

/2 a

|TTZ'; Iﬂl‘; IG. =O>= Ii >o (14-05)
The possibly odd-loocking choice of phase for the I = 1 1%
states is necessary to having a symmetrie gseattering motrix
h. Later we shall also use the following representations

for n¥ states with I =0 and T = 2:

InZ; I=20, I;=0% =) > {4.6a)

)WE; I=2, I.z=2-’ﬂ‘z; T=2, IZ=-2>




=) =

= liﬂxzy/: x5 (1-6b)

Although we are after amplitudes corresponding
to definite (conserved) total isotopic spin, Feynman's
rules will be used to calculate amplitudes for processes
of the form ﬂazg,_)nBZG, The connection between these
two types of amplitudes is conveniently discussed to-
gether with the isospin crossing matrices.

For mA.5 mA scattering the isospin is trivial;
the amplitude for ﬂaﬁ._)ﬁaﬂ is also the I = 1 amplitude,
and the crossing relations {4.3) can be used as they
stand.

In nT 5 nT scattering, the isospin conserving
amplitude fOr‘"azi-—bnszj can be expressed in terms of
three independent functions. Let aBjé_lfHu% stand for
either of the invariant amplitudes & and B for some
diagram in which waIg__)wB 57 A convenient choice of
the three functions is defined by writing

“eji§3?3= a(s,u)adiﬁsj+ b(s,u)aaabij+ cl{s,u)8 (La?7)

ajaai'
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The relation between a, b, ¢ and the usual isospin
amplitudes for the seme process is established by writ-
ing the latter in terms of the former with the aid of
the representations for the isospin states, (4.5) and

{4,.6). The relation is

(22 =z=b 4+ ¢
A. =D =

1 ¢ (4.8)
czo =3a +b+¢

where a; 1s the amplitude for isospin i.

The isosgpin dependence of nI scattering diagrams

will be summarized by writing their amplitudes as column

vectors, in the fomm

a
a=1a |. (4+9)
Ay
As far as charge is concerned, crossing of the incaming
and outgoing piong corresponds to a<«yB {see Fig.4.l1l).
. d c
If the amplitude . 4 S, i
e amp s QBJ(-(-%":'E) and QBjL?f?) for a direct
and the corresponding cross graph are both expressed

as in {L.7), it is obvioug that
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a%(s,u) = cd(u,s)

v°%(s,u)

bd(ugs) | (4.10)
CC(S:;U.) - ad(uas)

{the kinematical minmus sign in {4.3b) being temporarily
disregarded). The restatement of (4.1l0) in terms of
the isospin amplitudes yields the isospin crossing matrix

X:
/6 1/2 1/3

X=(5/6 1/2 =1/3). (411)

5/3 -1 1/3

The full crossing relations for the invariant amplitudes

A and B are
AS(s,u) = xa%u,s) ; B(s,u) = ~xB%(u,s), (L.12)

where A, ete., are understood to be wvectors as in {(L.9).
In the mp —5nZT transitions, our phase convention

on the nZ states is such that

(su) = L .
aaaﬁ.g% fz GaBj a].(Sgll) » (LF 13)



Here g, .(s,u) stands for the A and B of some diagram
8'}(’——&1\

in which naA._,nBEj, and al(s,u) ie the corresponding

normalized isospin amplitude (Only I = 1—I = 1 tran-

sitions are possiblel). €.pj ¢ the umal totally anti-

symmetric object. Since e j changes gign under a—>8,

ag
there is an isosgpin crossing factor X = =1, and the
full crossing relations for the I =1 A*s and B's are

A; {5,u) = -Ag {u,s) ;: B C(

1%0som) =+ B3, w,8)e (4.24)
The Born diagrams of Figure 2.1 were calculated
in three different ways. {l) Feynman's rules were used
to obtain the amplitudes for the stable baryon exchanges:
in this way the amplitudes are expressed in terms of
coupling constants with which people will be familiar
from Hamiltonian field theory. Since the A and T direct
{s = pole) graphs are alsc needed {the A in future
regsearch), the procedure for the A and T diasgrams was
to caleculate first the direct graph from Feynman's
rules, and then to use the crossing relations to obtain
the exchange amplitude. {2) The mescn exchanges were
computed directly from Feynmant's rules. (3) The unstable

baryon exchange emplitudes were obtazined using cnly the



NS

crossing relations and the general formulae for partial
wave decomposition. Feynman's rules are unnecessary
when one only desires to express the force strength in
terms of the experimental width of the forece carrier,
and not in terms cf some arbitrarily defined coupling
consgtants which would be completely unfamiliar para=—
meters. Furthermore, in the case of the diagrams in=-
volving the spin 3/2 T*, the use of Feynman's rules
would require vastly more labor than is involved in
simply exploiting the crossing relations.

To illustrate method (1), I will calculate the
diagrams involving an internal T in wl_n¥ (Fig. 4.2).
The nZL coupling constant will be defined by writing
the nI¥ interaction Hamiltonian density in terms of
field operators as

— -3
™

2 {4.15)

\n
[Sew=
®

where the vector symbols refer to isogpin space.

This H corresponds to & vertex factor in Feynman's rules

2

of

/ nEE5%al1 (4.16)

T o 2

AN
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The rules then give for the & = matrix element of the

direct graph (after some manipulation)

(4.17)

We thusg have {see (3.2))

ez

A,. =0, B, . ® ——1 -
Bimai” ' TBje-al Mz?{ﬁajési 8agdig)e (4.18)

The amplitudes for definite isospin are then, by (4.8),

S

-gT L

A=0,B =|2 — . (4.19)
>

Hence, by {3.5),

2 + ——
=& mid: (E =M W+ 1
oty )
b 20 s - MP

fl,2 =

) {4.20)

O v O



and finally, from {3.8), the vartial wave with the T nole,

fpg’ is > h
0\ -gfzz E - M
fp%= 2 r_1 . z (4.21)
' L 2y W o MI
g /7
‘y 3

(Txceph for the partial wave with the name =pin and oupowe
zite parihy, fgéj all the eobher partisl wave amplitudes
DT AN, ) )

From the present point of visw, Feynman's rules
may be thought of as essentially a powerful nachinery
for automatically keeping track of the conservation of
various quantities at vertices where states are cocupled
together, and for handling some of the kinematics. They
need not be connected with the existence of any "fields",
although I shall always quote the conventional Hamiltonian
which corresponds to my definition of some coupling con-
stant, in order to make the definition clear in familiar
terms. MNeither need the particles dealt with be elemen=—
tary; (4.21), for example, applies equally well whether
the 7 is composite or elementary. Thus, if the T turns
up as a dynamically prcduced pole in the scattering
matrix h {defined by (3.10)), we see from {L.21) that
the "output" value of the coupling strength gznzzjhﬂ is



1=

related to the 22 element of the residue matrix R
{cf(3.35)) by

g
-E‘g-z-*z = - R22 , {4.22)

Turning now to the caleulation of the T exchange
graph, we obtain the A and B for this diagram by applying
the crossing relations, (4.12), to the direct A and B,
{(4.19):

1 2
A® 20, B® . 1\ g m= (4.23)
-2] u - Ng®
. 2 2 =
Since u - Mp* = 29° (% ~ cos 8), (4a24)
where 2
s + M -3
X =1 - z
5= 2% 2 (4.25)
it follows that
T ”ggnm ~_ (B £ M) (W F M)t L (4.26)
o o= M)W F M L2
152 =2/ im Lg® z z

o cosh
£g



Projecting out the partial waves by (3.8), we obtain

{suppressing the "c")

1 2 -
EnIz 1 [ z
£o=(1 — [{E + M) (W - Ms)Q, {x
/1 ("’2) Lm l;qu = = S)

(L.27)

+ (B - M) (W + MG, 1(:%)] ,

for

The contribution of ¥ exchange to the driving function
B22(W), (3.25), is then obtained {aside from the damping
explained at the end of this section) by dividing fi.
for I =1 by the Py kinematical factor LYY (3,10).

The other stable baryon exchange amplitudes are
arrived at in identical fashion, and on the way, the
relations between the output couplings and the remaining
residue matrix elements Ry, = Ry1 and Ry, are found.

An example of the direct use of Feynman's rules
to obtain the meson sxchange amplitudes is the calculation

of the p exchange diagram in mpA_. 1%, Figure 4.3.



ﬂ'a/«qi i A(r)

Figure 4.3. The p exchange diagram in npA—rnZ.

The p can couple to a pair of baryons such as the A and T
in two independent ways, corresponding to the fact that
both the 381 and 3Dl AT states have the quantum numbers
of the p: J"= 1", I = 1. The independent couplings can
be taken as the familiar Y, (charge) and 0Ky (magnetic
moment) types, where k, is the momentum transfer carried
by the p. Here we shall calculate only the part of the p

exchange amplitude which corresponds to the Ouvkv coupling.



P lyom
The pmnr coupling constant will be defined as the
strength with which the p couples to the pion isospin

current. Thus we write the pmnm interaction Hamiltonian

as

2 ([p.;zg)

This leads to a verbex factor of

qf}\wb
\>ﬂuf\u*\/\, 18y meeap st aply , (4429)
/P

Qa/*1n

where the u and £ on the p are its 4 = vector and isospin
indices, respectively.

To define the magnetic pAT coupling constant,
g;ﬁzﬂ we write for the magnetic part of the ppAT inter=
action

pAT "

Hnag® Ezﬁglﬁ;)(ﬂcuvz + zcuvA).(aupv - avpu),. (4.30)



m?ﬁs'a

corresponding to a2 vertex factor of

p AL .
W ka;\‘sh »
A (4.31)

Application of Feynman's rules to the diasgram

of Figure 4.3 then yields for the & - matrix element

Spi = =il2m¥ a(‘*){qf+ Pom Gy= P;) My
; i Tl [ e—
L}l!liwalEf
\ fs) — {Le32)
LE —
EormEorr Uy (Pr) [{qi + qf)ucmkﬂuﬁ\r) (p;)
» ejaB.
2 2
MA+ M:: kc + m,
To analyze the spinology, we first note that
- g -
(4.33)

= TP [ = . —>
= Uglpe) E%Mm + i{p; + pf)u] u,lps),



where

E — {4.34)

Then, since k = P; = Py

- -3
Uy (Pp) [(qi + qf)pcmkﬂuh(pi)

{4.35)
= 55(5%)[§M g+ i (qi + qf)(pi + pfi]uh(ﬁi)

»

(qi + qf) » (Pi + pf) being equal to (u - S), e have,
in the notation of (3.1),

k
v o Commpan [=(u = s) + 4H 1 ﬁl_

- ie . N
2M t - mp2 EJQB

(4.36)

From {4.13), the amplitudes Ay and By for I = 1 are thus

¥

g g
by zvp PIURAE B - (4.372)
2M t =-m 2
p
g g -
2}71 t - m 2 *

p
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5 when written in terms of s and t alone, is
t =-m '
p

U =8 212 - 25 =m 2

= P -1 (4.38)
) + - mpz ?

t = m

so weé see that Al involves one of those off-shell pieces
discussed previously. We will keep this piece temporarily
to show what it leads to, and drop it at the end. From
(3.5),

g__g N
£ 0= s, O pAT _}; JE, & M, ) (Bg & Mg_)_
b 2M 2y *

T am 2

» [z (Byp- 28 = m2) + (W ﬁ)u’ﬁ] :
P

Y /2 Somforr 3 [, 21 (Eps @[, 1] (4.39)
L 2l 2y R

Writing

2 2
_ p -
t - mp2 = -2q;4, %{S - cos é] 3 % o= RwpWo= 247+ m

2qlq2

(4.40)
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we find that the partial wave amplitudes are

1 ]
= =/2 Somnbopx 1 1

L ] : )
Mt\ & Mz lFWquZ

-+ %

oI
A

. \j(E At M,) (Boer M) {-23+2 (M M)W = 2(M, My pz)umngﬂ(xg)

+ j(E o M) (By- My {25 +2(Mr M)W+ 2(M Mo u? )+mg}Q ixgﬂ
=1

-f2 !
/2 BommEoaT 1 _;(:{EA+ M, ) (Ep+ ME)§&0 {4.41)

L MA+ MZ 2W

The last line of this expression is the contribution of
the off mass-shell part of A;; it evidently has no dyna-
mical singularities, and is tc be disregarded when apply=-

ing (4.41) to the calculation of the approximate By, (W).
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Method (3) for getting Born exchange amplitudes
will be illustrated by the treatment of the Yl* exchange
force in mp—y mp scattering (Fig. L4.4). We are after
the mags-shell parts of the invariant amplitudes for the
crcesed (foree) process, and to obtain these it is
sufficient tc know the on-ghell parts of the correspond-
ing amplitudes for the direct {resonance) process. These,
in turn, could be found if we knew all the partial waves
for the direct process near the resonance pcle. But
these we do kncw; the only non=zero partial wave ampli=-
tude, fp3/2,{22) is given near the resonance position by
the Breit = Wigner formula:

. ) —T(Ylf_,ﬂﬁ) %é%f
P3/2 . (hoh2)
s = Mgl* + i FtoéYl*)Myl*

Here Tyop{Y7¥) is the full width at half-maximum of the
¥1¥* resonance, T (Y9¥*_, na) is the partiasl width for ma
decay, g* is the center of mass momentum for the mA system
when the center of mass energy is MYl* » and MYl* is of
course the Y,% mass. The zero-width approximation will

be made for the positions of all the resonances to be



B0

(b)

Figure bL.l. Croising of the Y.* resonance pole (a)
to obtain the Yl exchange forde in mp scattering (b).

dealt with; in this approximation {L.42) becomes

%

. Yy ma) 2 .

P3/2 = - g —_ (ho43)
s - M¥2 s = M¥2

where Myl* has been abbreviated to M*,
Adding up the partial waves, we cbtain for fy

and f, near W = g

f.o= f P_'(cos 8) = o f .
1 P3/z 2 3cos P3/2 (L.hba)



f, = -pr/2 P1%{cos o) = ffp3/2 ’ {4+ 44D)
with fP3/2 given by {(L.43), snd where
u+ MR oy
cog 8 = 1 = — Z {4.45)
q

when W = M*. From the relations inverse to (3.5), the

on-ghell invariant amplitudes are then

% * '
A = M___"'_Iiﬁ_ 3 cos 8 + M - Mp - R {L16)
bmo LE* + My EF - 11, | 5 = 5% |
B | 3 coss 1 - R
[ M, EX - Mn} Y {4-47)

where E¥ is the total energy of the A when W = ¥,
The mass=-shell parts of the invariant amplitudes

AC, B® for the ‘Il* exchange graph are now easily obtained

by applying the crossing relations (4.3} to (L.4&6)-{4.47):

A fu* 4m - -
i ,-_[ . + By Ix. % 4 M Mp R (4.482)
E¥ + M, E¥ - My | u - 1¥2



=5 D

B® 3, % 1 -
— = - LI (4+18b)
L E™ &+ Mﬂ E" = MA u = M

>eing the crossed version of cos 0, {4.45}. The partial

vaves can then be projected out in the usual way. First,

o

bl =

E o+ My 3xg*(u-aMy- %) (-2 -1%)] R
+ (4.50a)

2W E¥ + M, EF - M, - 1R

£

_E -, [3::,1*(*:; + My W) (-w—214A+M*)J R
) =

s (4»50b)
2W E¥ + M, E¥ - Mp |u=M"%.

Then, since

s + M2~ ¢

G 5 * 1
S (4.51)

u = M*2 z 2¢° [s* - cos e] PRSP

the partial wave amplitudes are

£ T{(Yp¥omp)M* 4
A = .

- q* LR




:""’83? -

3%, F (W=, %) (a2 -2 *

JIE + M ){ 2 A + A Q™) {4.52)
A p 3

{ L E* + My E* = M,

3x M (W2MHF*)  (<W-21 AHIF)
. + 0,, (2%
ET + 1, E¥ - Ny 1 (%1 .

The partial wave amplitudes for the exchange

diagramg of Figure 2.1 can all be written in the fomm

fﬂt(’n =

E. + M)(E: + M) g{u¥ )
Tinge, [j( 3+ M) (Ey + My) g() Q, (%5

{4.53)

gt s

..j(Ei - Mi)(Ej - Mj)g(-w) (fe)]

The indices i and j are the final and initial channel
numbers. C is a strength factor, which for nT—»al
scattering includes a vector 2% giving the relative
strengthe of the force in the ?rgrious isospin states.
The argument of the Qﬁ functions, rc'g, is determined by
kinematics, including the mass of the exchanged particle
€.

4 convenient summary of the input amplitudes is

then given by a tabulation of C, g(W), and x: for the
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various exchanges, Table h.l.{ZB) The coupling constants
which appear in some of the strength factors are defined
in Table 4,2, which gives the Hamiltonian densities and
vertex factors for the ccrresponding vertices.

We also record here the complete residue matrix
R at the T pole in h in terms of the mAT and n¥T coupling
constants, as derived from consideration of the diagrams
in Figure 4.5. With the abbreviations Brar = g,,

Ener
= &, h near the pole is

2

—— ik

La 2 Ly E

Figure 4.5. The prccesses corresponding to the ¥ pcle
in the scattering matrix h.
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In approximating the input function Bij(w),
(3.25), on the basis of the Born amplitudes in Table 4.1,
it is both necessary and appropriate to improve on the
high energy behavior of Bij(W) by damping. In the first
place, the Yl* and p amplitudes ;Ei » because of the high
spin being exchanged, have an asyégtotic behavior which

exceeds 1 . But E is the least convergent behavior

W W

possible for a true amplitude hi related tc the unitary

J
9§ - matrix by {(3.6) and {3.10). Thus the high spin
exchange amplitudes are plainly wrong at high energies,
and should be damped. Secondly, if the particles ex=-
changed in the input graphs are all composite structures,
as we believe, then according to Reggeism the partial
wave exchange amplitudes will be tamer at high energies
than the un-Reggeized amplitudes of Table 4.l = {4.53).
It 1s therefore appropriate to damp all the Born ampli=
tudes, not just those which violate unitarity, in order
to crudely represent the effects of Reggeism. The
simplest procedure is to damp all the input diagrams in
the same way, so as to introduce as few extra parameters
as possible. The most divergent exchange amplitudes are
those associated with the ¥;* exchanges in mA—mA,

.y 7L, and mMA«s» T, which go like W at infinity. The
damping factor which will multiply all Born amplitudes



should therefore go like %2 at = in order to bring the
Yl* anplitudes in line-wiéh the requirements of unitarity.
It should alsoc leave the inputs essentially unchanged in
the low energy region around threshold. Lastly, it is
desirable that the damping factor be singular only in
places where B(W) is already supposed to be singular.
{Its singularities will have to be far from W= M, for
B{W) to be left relatively undisturbed there.)

A suitable factor by which to modify each Born

amplitude in the reaction i1¢«-j is then

whers W£ is taken to be the mA threshold (MA + u) for

ij = 11, and the n¥ threshold (MZ + 1) for ij = 12, 21,
22. For the experimental situation, M2 > Mﬁa this amounts
to choosing W, as the physical threshold for each precess.
One's intuitive guess is that a reasonable valus for the
cutoff parameter Z is something like 5 lambda masses,
rather than 1 or 20. Z will have to be varied to verify

that our results are gualitatively independent of 1it.

The distant poles of the damping factor at W =z ii/Zz - Wig
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can be thought of as a very crude representation of the
short-range forces we do not know how to take into account
properly.

To summarize, our approximation to each of the
driving functions B,s» {3.25), is obtained by adding up
all the amplitudes fp%; f,= given in Table 4.1 = {4.53)
for the reaction i¢-J, dividing by the p% kinematical
factor Py (3.10), and multiplying by the demping factor
{Le55):

2 ey

all input
graphs for is—j
By, (W) = ; v (4a55)
ey, 2
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V. THE PLAN OF THE DYNAMICAL CALCULATIONS

The self-cconsistent ¥ bound state that we anticie
pate getting will be characterized by three numbers: its

mass My, and its couplings to the mmp and n¥ channels,

gﬁAZ/hﬂ and ggzz/hﬂ. These three parameters are then
to be compared with experiment. Now MX is, of course,
very well established as 1193 Mew, but cur knowledge ¢f
the coupling constants is nct at all precise. de Swart
and Iddings(zé)have learned something about them by
simultaneously fitting hyperfragment data and the obw
served I9/(5° + A) fractions in ©™ + p—n + £° (or A)
and in 7 4+ d—>2n + I° (or A) with a static hyperon-
nucleon potential. In each state, this potential includes
a pion exchange contributicn which depends on the
couplings of interest, and a phenomenological hard core
of (unfortunately) unknown radius. It was not possible
to determine the couplings cloﬂely, but the result@
favored values in the ranges l‘7< gﬂl\b < 35, 0< éﬂ%<3.

However, the analysis could not rule out the possibility

that both g2 AT/ b and g°

nzz/u are about as large as

2 {
g - l -
ﬂNN/hn 5)
This ignorance about the coupling constants isg
both fortunite and vnfertunate. On the ons hand, it will

be harder to test the numerical success of our model, but
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on the other hand, the numbers we get for gﬁAZ/hﬂ and
g%zz/aﬂ will take on the aura of predictions.

One might ask whether the present calculation
will predict the relative sign of Enar and gpyr. The
answer is that this relative sign cannct be measured
(This is explained in Appendix B.), so the model being
developed here had better not {and does not) predict it.

The philosophy in this dynamical explanation of
the T is to take the properties of all the other particles
from experiment. For the Yl*’ YO*, and p, however, there
are uncertainties in the experimental picture, and one
must make guesses based on a combination of current
theoretical ideas and any experimental information evaile
able. The uncertainties with which we have to contend
are the following:

ﬁtfg {1385): One can be fairly certsin that the
spin and parity are 3/2 T. Although the data allow the
assignment 5/2 T as well as 3/2 1, (Zﬁythe Yl* mass fits
so heautifully into the pattern expected for the masses
of a unitary decuplet consisting of N¥{1238), Yl*(1385)”
=*(1530), anc N~ (1686 * 12), that it seems very likely
that the Y1* has the same spin end parity as the N,
Although not éll experiments agree on the total width,

it is reasonably safe to assume it to be 50 * 19 Mev.(26)



However, all we know about the branching fraction
T{Ylf_,nz)/rtotal(Yl*) is that it is not more than 8%.uﬁ)
It could be O. Unitary symmetry predicts 7-16%, so we
shall favor the experimental upper limit of 8%.

Yo*(lhOEJ: There is almost noc evidence at all
on the spin-parity, which are, however, conjectured on
theoretical grounds to be 3. The totel width is 50
Mey. (27)

p(750): The spin-parity of 17 is firmly estab-
lighed. Alsc, we know that I'{p—32n) = 100 Mcv, from
which it follows thet gZ /- = 2.0. But the p-hyperon
coupling strengths are not, of course, available froem
experiment.

What can we say about these p-~hyperon coupling

constants? Consider first the charge (Yu) couplings, Ep A

and Eovr® If we assume that the vector mesons dominate
the electrcmagnetic charge form factors cf all the
baryons, and the pion form factor as well, then at zero
momentum transfer the unitary symmetry coupling of the
vector mesons to baryons must be pure F in order that the
baryons have their observed charges, and ngE = Eomms

(28) However, the couplings which stand in

while gpAZ = 0.
frent of our partial wave amplitudes for p exchange corre-

spond to a& momentum transfer t on the mass shell of the



P 1.8, $O0 ¢t = mpz, not to t = 0. At t = mpz, Ep px MBY
well be non-zerc.

.
AT and gpzzg
we note that something ig known about the related coupling

Turning to the magnetic couplings, g;

g:NNJ which measures the strength of the magnetic (o, k)
coupling of o's to nucleons. Let us make the meaning of
g! definite by writing the magnetic pNN interaction

PIIN
Hamiltonian as

H = “pHBN . -

where M, is the nucleon mass. In fitting N-N scattering

with m, p, w, etc. exchange, Scotti and Wong (29)f cund that

2

g
_PHN _ 49, (5.2)
I

Their fit, however, only determines this parameter to with=-
in a facter of about 2. They also found, again to within a

factor of 2, that

= 5.1, (5.3)




where ngN measures the p coupling to the nucleon isospin

current. 8pecifically, SonN is defined by writing for

the pNN charge coupling

_-3 ¥

R S |

A check on these numbers is provided by the e.m. form
factors. The assumption that the p dominates both the

electric and magnetic nucleon isovector form factors

leads to the relation

?

g
—EE\LN- = ul(ja)— p.(g) - 3¢70n (5'5)
g

pPNN

Here “?a) and u(g) are the proton and neutron anomalous
magnetic moments, measured in units of the nuclear mag=

neton e/QMN . From (5.5) we should then have

g?E 2

pNN gDNN _ 10 , (5.6)
Lm Ly 5.1

the Scotti and Wong ratio of 49/5.1 is erudely consistent
with this.
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Once g;NN is known, the desired couplings g;AZ
and gzzz may be related to it through unitary symmetry.
We assume that the qukv coupling of the vector mesons
to baryons follows the pattern prescribed by SUBQCBO)
Unfortunately, there are two posgsible types of coupling,
"F" and "D", sc that the general unitary invariant

coupling has the form {omitting factors such as Uu\)kv)

D-type+ f(BVB)F_type ]; d+f=1. (5.7)

pattern pattern

H = G{}{EVBJ

G functions as a_strength parameter, while £ and d

indicate the relative proportions of the two types of

coupling present. B, V, and B stand for baryon, vector
)

meson, and anti-baryon; (BVB) is actually a long string

of terms of the form (Fp%p + ;? Eﬁpoﬂ_ %F ) S W S
By referring to an explicit representation of the

(30)

pattern schematized in (5.7) , one finds that g;

NN?

! and g;zz’ as I defined them, are related to the

gpnz’
parameters of (5.7) by

2G{d + ) = 2@ (5.8a)

G (5.8b)

i)
L)
&

i

S
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gpzz - 2Gf a (5-8(3)

From Scotti and Wong's results, we can estimate that

aR 1 12
— _— gpNI‘I = }_ (1{.9) - 12n25u (5’9)
bem b T L

The d/f mixing ratio may be estimated from the fact that
the nucleon isoscalar anomalous magnetic moment is very
small. If we take this moment to be zero, the assumption
that the vector mesons dominate the baryon form factors
then requires that the magnetic coupling g;NN of the w

meson t¢ nucleons vanish. Since

k {

- . o o] fg
ngka' 73 d + /30

we have

a/f = 3. (5.10)

Combining the strength of {5.9) and the mixing ratio of 3,

we come up with

pZL
L

= 3.06 | {5.11a)




g12

PR - 9.18. (5.11b)
Ly

Apart from sign, then, the coupling combinations which

apprear in our "magnetic p graphs" are (g§

3
S om8osy

Ln

2.48 {5.12a)

g
P _PAZ - . 27. {5.12b)
b

From this discussion it is clear that although
we have some ideas on the p couplings, we have no definite
knowledge. The seme is true of the Y1* branching
fraction. Therefore, the procedure followed in the
dynamical calculations was to vary all of these para=-
meters, favoring values near the estimates above, and see
how the self-consistent solution depends on them. In
this way one can study in detail the influence of various
kinds of input forces on the self=consistent results, and
find out to vhat extent the main conclusions the would like
to draw arz independent of the precise valuss ¢f experi-

mental unknownss
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p exchange in mZnI, and all the input graphs
for mAeTE, involve different vertices at the two sides
of the diagram {see Fig. 2.1), so that relative signs of
coupling constants are required to determine the signs of
these graphs. Thus, for example, we need the signs of
8ommBpxs /s and Y(Ylﬁ_anA)Y(Yl?Lanz), which we wouldn't
know even il the Y™ branching ratioc had been accurately
determined. All these required signs are provided by
unitary symmetry combined with considerations of form
factors. And although uniteary symmetry and the model in
which the vector mesons dominate the form factors are
only approximate, so that magnitudes predicted by these
theories are not accurate, the sign predictions are
probably quite reliable; the theories would have to be
very crude for them to be wrong.

The matter of signs in the mA«any transition
amplitude deserves some explanation. Because the initial
and final states are different and involve independent
phase conventions, the overall sign of the transition
amplitude h12 = h21 has no significance. However, the
relative signs of the mA<mMZ input graphs cbviously do
make a difference, because these graphs have to be added
together. The relative signs of these graphs depend on

the signs of L-way products of coupling constants:



«100-

signign vénsy v(Y*>na)y(¥1¥>nT)), and sign

(gnﬁxgnzzgpnng;AZ) (assuming that Bpsyz = 0). Note that,
unlike Baps8nIs s vhose sign is a metter of convention,
these products involve svery particle an gven number of
times. To get the signs of the L-way products, we first
cbserve that if the p dominates both the m form factor

and the N isovector charge form factor, then sign

(g + + Then, from the assumption that the
P : - A3 . ¢) z A3 o wad * p
PNN/g . ) »
dominates both the electric and magnetic N isovector form
factors, sign {g' =+ , (5.5). The required sign
DNN/gpNN)

involving p's can therefore be replaced by sign

(gnAzgnzzg;NNg;ﬂz)° The unitary symmetry patterns for

the coupling of the pseudoscalar mesons, the wvector mesons,
and the 3/2 + baryvon decuplet to the 1/2 + baryon cocteh
can now be used to determine both regquired signs. This

is accomplished by choosing a set of conventions and then
picking off the signs of the indiwvidual factors in each
b=way product, one-by=one. In doing this, one must be
extremely careful to keep all the conventions consistent,

so that they will cancel out when the 4=way products are

1 1
onnGoaz’
involves two mixing ratios: d/f for the magnetic vector

formed.(Bl) ) i : 3
The determination of sign {gﬂﬁzgnzzg

meson~baryon coupling, which we have decided is positive,
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(5.10), and 4/f for the pseudoscalar meson=baryon coupling,
which is thought to bte positive {(for the phase convention
of reference 20) from the dynamical considersticns of
various authors, and from the experimental estimates for
Enaz and gnpg- %) sien (g, apenry v(¥1 8y ma)y (T35 nE))
depends only on the latter mixing ratio, the unitary
symmetric coupling of the baryon decuplet to the baryon
octet baing unique. Given the mixing ratios, we conclude

that

sign (gn rEresy (N 5s Ay (1%, mm)) = +, (5.13a)

and

sign (g B ox8omSon) = *- {5.13b)

P > 8 pTITT QZL)
1 ]

om v n y 4
= 818 (8pNngzz} from form factors, and from SUB the

latter sign is +. The remaining sign (gpﬂﬂgpzx) has

already been said to be -+.
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ARE THE FORCES ATTRACTIVE?

The character of the forces in the p%, I=1
state, in the mA or mI channel, may be crudely estimated
by looking at the elastic Born amplitudes at physical
threshold. Except for a positive kinematical factor,
the contribution (4.56) of each exchange diagram to the

input function By; is just {sin 6e15)p' Since

2, Twl ®
a positive phage shift means that the %a;e function is
being sucked in by the potential, a positive contribution
to the threshold value of B;; corresponds to an attractive
force in channel i.

The threshold contributions, caleculated from
Table 4.1 for the experimental masses and for coupling
strengths typical of those which were involved in the
dynamical calculations, are given in Table 5.1. Ve see
that in both channels the input forces add up to a net
attraction. The existence of a bound state is thus a
strong possibility; the dynamical calculations will show
whether one is actually produced or not.

A more ccmplete picture of all the input ampli-

tudes, including those for MAaMI, is given in Figse. 5.1 =

523
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TABLE 5.1. The input forces in the np and 1% channels, in the p,, I = 1
state, at the physical thresholds. The numbers are baged on the*experi-
and coupling strengths typically in-

mental masses, in pion mass units,
volved in the dynamical calculatio

NS

TA_channel
Contribution to Bll Which
Exchange at nA Threshold Equals When
g2 2
b ~. 111 _%%Z =3.32 E—ZAg - 30
n
Yl* + 14.1 T(Ylt—+ﬂﬁ’ 4470 F(Ylf—;nh): L6 Mev
Total : Attractive
ng channel
Contribution to B22 Which
Exchange at nT Threshold Equals When
150 521@2 g
A +e +13.5 A
m = 30
Ln
2 2
4
-.187 _?_3 “3.7h Enrr =
T = I 20
T,* +40.7 T(Y;*5nr) +1.18 MY, *5nE) = 4 Mev
Y * +.245 T (Y *pnz) + .09 r(Y *3nz) = 50 Mev
g
p (%) ++862 ZMTGZE +1.72 Zom€ast = 2.0
n
g g '
p(ouvkv) +4490 _EEE_£§§ +1.22 ggﬂﬂgpzz = 2.5
n L

Total:

Attractive
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As indicated in Fig. 2.1, the £© resonance at
1250 Mev was initially considered for inclusion as &
force carrier. This particle would have been awkward
to handle, however, because of the controversy over its
quantum numbers, and the complete ignorance of the fOp,
and £°vy coupling strengths. Ascuming the £° to be 2%,
I =0, I computed the fO exchange amplitudes, and found
that for generous estimates of the £2aA and £y ccupling
constants, the f° forces were not large encugh to have
any substantial effect on the numerical results. So the
I° was dropped.

From Table 5.1 it is also apparent that the Yo*
force is negligible, if the Y ™ really has d" = 47, as
has been assumed in celculating the force. The Y _* was
actually retained because it happened to have been in-
cludsd in the original computer program, but it is of no
consequence.

In the search for a self-consistent bound state,
the properties cf 2ll particles other than the T are to
be kept fixed. In the case of the Yl* {and the unim-
portant YO*), however, the question arises whether one
should hold fixed the mx decay width. or the Y *nmy
"ooupling constant." If one were doing the ideal grand

bootstrap, the properties of all the particles would be
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varied, and & simultaneous self-consistent sclution
sought. CSuppose that the approximate self-consistent
solution involved 2 Yl* with the correct mass, but a ¢
which is 100 Mev too light. The phase space available
to the Yl* for ny decay would then be considerably greater
than it is in "real life", because of the (momentum)3
dependence of p - wave phase space near threshold. One
would guess that the Yl*nz coupling constant would not
be as far away from reality as the phase space, so that
the Yl* of the bootstrap would have a much greater partial
width T(Ylé_éﬂZ) than in actuality. It therefore seemed
more sensible in the present, more restricted, bootstrap
to hold the Yl*ﬁz {and the Yo*nz) coupling strength,
rather than the decay width, constant.

Suitable coupling constants were defined by

taking for the Yl*nt vertex a factor
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and for the YO*WE vertex a factor of
p
Y,

g Ed
YO TTE @
/

«
’r 2

{The wave function for the spin 3/2 Yl* is a combination
Dirac spinor = 4 vector, hence the L=vector index "u" in
the vertex picture.) The relation between these couplings
and the corresponding widths is, apart from constants
which do not depend on the variable ¥ mass,

2

* EY. ¥z 43 ypx .
T (Y, ">l o L "3 (E¥ + M) (5.14a)

2
r(YO*—>nr)oc gYE*ﬂZ q* (E* + My)' {5.14b)
p- )

In each of these expressions, q° and E* are the c.m.
momentum and T energy, respectively, in the ny channel
when the total c.m. energy W is at the position of the
'relevant resonance. When varying the ¥ mass in the
dynamical calculations, we will therefore hold fixed

the guantities



=11 lm=

P(Ylf%>ﬂ2)

a2 (g* 4 M)

Y, %>ns)

q* (E* + M)

{5.15a)

{5.15b)
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VI. NUMERICAL PRCCEDURES

The ssarches for self-consistent bound states
corresponding to varicusg combinations of the experi-
mentally uncertain parameters were carried out numeri=
cally, using the California Institute of Technclogy's
IBM 7040-7090 computer system. After the first z.c.
{self-consistent) sclution was found, the experimental
parameters were varied slowly, sC that one would slweys
have a rough idea where the new s.¢. solution would lie.
This new s.c. point was then pinned down by calculating

2
the output T mass and couplings, Mglg‘t Ggut = Smax »

out g2 : : m
GZ = °mzZ , for each of 8 or more combinationg of the
bt in Ain @in
corresponding inputs, Mz » G37s G¥, and then using

linear interpolation. A typical pass at the computer
would involve the calculation of the outputs for about
) combinations of the inputs. The program would then

automatically decide on and perform any interpolations
which might be appropriate, including interpolations

between the latest results and the results of previocus
passes, the latter having been stored within the com=

puter system.
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To find the 3 outputs for a given set of inputs,

the computer must:

1. Calculete the Born functions of Table 4.1,

2. Put them together to make the kernel of the
integral equation for N,{3.29).

3. Solve this egquation.

4. Integrate over N to get D, according to {3.27).

5. Search for a zero of the determinant of D in the
region between W = 0 gnd the lower of the two
thresholds.

6. If there is a zero, locate it precisely, and
calecalate the cutput couplings, using (3.35),
(3.38), and {4.54).

Almost all the computing time is spent in solving
the integrél equation. The integrals over W' oceurring

there, which are all of the form

= Ve

- W @

f A g S

Yo * » OT + » are transformed into
Wm\ g Wﬂz
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integrals from =1 to 1 by setting x = ﬁ?ﬂ » OT X = ﬁgz »

whichever is appropriate. From the integral equation

W W

it follows that if B-% at «, then Nﬂ,%_at = also, s0
that the integrands inwﬁhe integral eqﬂation go like E o
Cur particular change of wvariable results in an integggnd
which is constant on either side of x = 0, which is
advantageous for numerical purposes.

Now a linear integral equation of the form

1
fi{x) = g(x) + S K(x,x') £lx’)dx'

for the unknown f{x) in terms of the known @(x) and

K(x,x") can be approximated as

flx) = ¢g{x) +.§' h.

Kilz,x. )P {x.
R ( axa) (xg)

by writing for the integral a Simpson's rule sum over
n mesh points, using the weight factors hj from Simpson?s

rule. In particular, this approximste equation is trme

for x equal to any one of the mesh points x4

flx,) = Flxg) + ji’l BK (x;,%5)2085) 5 i=l,n. (641)



=1] 5-

But this is just a system of n linear equations for the n
unknown f(xi), which can be solved by matrix inversion,
Our "N equation” is actually a system of four
coupled integral squations for the four Nijs but these
equations can also be transformed into one big system
of linear algebraic equationsg by applying Simpson?s rule.
The actual procedure was to make a matrix equation by
grouping all the numbers representing N into a 2n x 2

matrix of the form

n - l’ L 2n ? (64-2)

)

Here the column vector

|

Nyq) »

!

for example, is the collection of the n numbers represente=
ing the function N,,(W) at the n sample points where it
is used in the integrals. The input B is made intc a

similar 2n x 2 matrix@s
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In analogy to the original 2 x 2 input matrix

. By, (W) Blz(w)
»le{W) B, (W)

in channel space, we define a2 2 x 2 kernel matrix

K{w,w") by

Wi

Koy (17,0") =z {B-« (W)= === By (W) e (W) (6.3)
ik m |[Tik Wy T W

]

Tat of this matrix we then make a 2n x 2n matrix

n }
L > € >
ﬁ
K1y K12 n
%: ¥ 3 (602{—)
K1 Koo n
v

in which the submatrix

12 ?
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for instance, is the ccllection of numbers representing
Klz(w,w’) with W and W! running over the n sample points
(W varies as you go down, u' as you go across). The
integral equation for N, {3.29), is then approximately

(33)

equivalent to the matrix equation
n=g +4n- (6.5)

vhere we have absorbed factors coming from the change of
variable and from Simpson’s rule into’k’ , and the usual
rules of matrix multiplication are to be understood.

To solve {6.5), one must invert the matrix

= ¥ =X, being the 2n x 2n unit matrix. 3By vary=-
ing the number of sample points, it was found that for
most sets of inputs, a 76 x 76 matrix 9 is adequate for
achieving 2% numerical accuracy in the output T mass and
couplings. In rare cases, where conditions weren't too
stable, a 100 x 100 matrix was used instead.

At this point one should perhaps mention the
vital statistics. The calculation of Mgut” GEUta Ggut
from a given set of inputs, using a 76 x 76 matrix, took
gbout one minute on the 7090. The cost of ccmputer

time for the entire project was 352000,
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VII. HESULTS

The dynamical calculations were begun with the
n"guxiliary parameters"” (the experimentally unknown
properties of the Yl* and p, and the cutoff Z) chosen
as in Table 7.1. Except that the magnetic p = baryon
couplings were initially turned off to cut down on the
number of unknown parameters for the time bheing, the
choices given in Table 7.1 represent our best guesses
about the p and the Y_*. The remaining experimental
inputs, which are well established and were used
throughout the calculations, are collected in Table 7.2,

Given the initial auxiliary parameters, the

first thing toc see is whether reasonable values for

in in
Mo GA
It was found that they do! Next, one tries to vary

s and Gén dc in fact lead to a bound state.

the inputs until (M;ut;, Giutg G;ut) = (Min, G::an’ oin )
X h 3

A suitable procedure is to use several values of Mi%,

recording for each the value of Mgut when qoUb_ Gﬁﬂ and

A

GO ¢iM, and then interpolate in the mass variable

T
to find the fully self-consistent point. Following this

method, I found that for each of a get of values of M%n

exhausting the allowed range (Mﬁ - u to MA + @), the Mgut
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TABLE 7.1. The initigl chcice of the auxiliary para-
meters. A listing of 8% for the Yl* branching fraction
means that as the T mass is varied, the ¥;* ncoupling",
(5.15a), is held fixed at a value corresponding to a
brinching fracticn of 8% when MZ has its experimental

- w K
Z = 5M, T (Y,"snz) - 84
*
rtotal(Yl )
gpﬂﬂngE = 2.0 gpnngpAZ = 0
Ln Lo
" k §
Somm&ozs - Bomnfoar -

L L
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TIRLF 7.2, Well=established experimental numbers used
in the dynamical caleculations. The mass of the pion

riplet, taken as 138 Mev, was used as the unit of mass.
The T mass of 1193 Mev is, of course, not included in
the table because My is to be "predicted™ by the self=
consistency requirements.

Particle lMass{Mev) Total Width{Mev)
T 138 -
A 1115 -
T 1385 50
Yo* 1405 50

p 750 100
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corresponding to self-consistent ccuplings for that 0
was about 20% below M%n. Thus there is no self-consistent
solution in the region we are allowed to search for this
gset of suxiliary parameters. (A bold extrapolation of
the results suggests, however, that there is a self-
consistent sclution socmewhere around 600 Mev.)

It was then discovered that, with all other
inputs fixed, increases in Eoax with sign
(gnﬁzgnzzgpﬂﬂgpﬂz) = + produced increases in the output
mass, without having much effect on the cutput couplings,
gpAZ was therefore turned on quite strongly in hopes of
obtaining a2 self«consistent solution within the accessible

megs region. And indeed, it was found that for
Bomm o4z
——————————e = 205,
TV

and the remaining parameters as in Table 7.1, thers is

a self-consistent bound state, with

My = 1158 Mev
40.1 {7+1)

[op]
e
1t

Gz - 22'1 »
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{Let us adopt the convention that sign (gnAZgnEE) =+

s0 that meaningful signs such as that of Bn AsBnsrBonmBo AT
EommBo AT

may be indicated by writing I
i

&s a positive or
negative number.)

Although we can expect departures from the value
Eopr = 0 suggested by unitary symmetry for zero momentum
transfer, a value of 2.5 for ggnngpﬁz/hw seems rather
large, so that one would hope that adjustments of the
other parameters would allow gpAZ to be cut back withoutb
having the self-consistent solution slide down out of
range.

Before this tquestion was investigated, however,
a measure was taken of the entoff sensitivity of our
results. With the Y1* and p parameters fixed, the cut=-
of f Z was varied from 3.0 MA to 6.5 My and the corre-
sponding variation in the self=consistent solution (7.1)
was found (Fig. 7.1). While G, is quite sensitive to
the cutoff, My and Gy vary by only about 10% as Z runs
from 3.5 M, to 6.0 M. However, for Z = 3.0 My or Z =
6.5 My, there is no self-consistent solution in the
allowed window from 975 Mev to 1255 Mev. Thus our results
are certainly not entirely cutoff-independent, but a
satisfactory éelf~consistent solution definitely does

exist for Z throughout the reasonable range from 3.5 to
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The variaticns of the Yl* and p properties were
now begun. To get some idea of the effect of each experi~
mental unknown on the self-consistent bound state, the
parameters were varied more or less one at a time, using
the values of Table 7.1, with ggnwgpAZ/hﬂ replaced by
2.5, as a "central point." Begides this, an effort was
made to find a set of parameters agll close to the "best
guesses" of Section V which leads to &n s.c¢. solution in
the accessible region. The cutoff Z was kept at SMA
throughout.

Table 7.3a shows the effects of varying ngZ

and gpﬁz -« Bcth MZ and GE are quite ingensitive to ngZ”
but MZ depends snough on gpﬁz to make it impossible to
decrease gpnngpAZ/hn much below l.5. Table 7.3a also

gives the value of g? , and the d/f ratio for the

PNN/lym
vector meson=baryon yu-type coupling, which correspond

according to unitary symmetry to each set of values for
govr and EoAT® The pNN coupling is to be compared with
the indicaticn from N-N scattering that g%NN/hﬂ = 5,{5.3).
In the 8oy variations an interesting phenomenon
was found which emphasizes that a bound state, once it

exists, may greatly modify the effects expected of a
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Figure 7.1. Sensitivity of the self-consisgtent I to

the cutoff Z. :Experimental" inputs were T (Yq%=nE)/

Pooalifa™) = 8%y 8onnEonz/in= 2 BBy pn/in = 2-5

magneltic p couplings turned off, Z = 51, is the

standard cutoff used throughout the dynaz‘}xical caleu~
lationSa



TABLE 7.3. Self=-consistent point as a function of the
experimental unknowns. The values of the inputs that
were kept fixed in obtaining each part of the table are
indicated beneath it. The decreases in g,, in tables
(a) and {b) were made both to keep the s.gs point within
the accessible region {975 Mev to 1255 Mev) and to see
how small g,,y could be made. Table (a) gives the mixing
ratio and p7y coupling which correspond, according to
unitary symmetry, to each ccmbination of gorx and 8o

Self=Consistent Point

Eomnprz EomnEp AT My (Mev) Gx’\ Gy, d/f gpIqu
L bem L
2.0 2.5 1158 4.1 22.112.16 20
2.5 2+5 1190 35.4 22.8(1.73 23
3.0 2.5 1222 31.2 23.611.45 27
3.0 1.5 1085 32.5 21.5| .86 16
3.5 1.5 1122 29.4 2291 74 19
Z;..O 105 1163 2609 214—01.[- a65 22

T{Y . *>n3%) . magnetic p couplings
1 = 8% ; turned off.

. %
Itctallyl )

(a)



TABLE 7.3 = Continued
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Self-Consistent Point

(c)

T(Ylﬁ—anZJ gpﬂngpAZ
% T _CA :
rtotal(Yl ) T MZ(Mev) GA GE
8% 2.5 1158 40.1 22.1
L% 25 1191 3245 21.0
2% 1.5 1077 20.0 17.8
0% 1.5 1175 25.5 15.2
g g
_EEEHEEE = 2 § magnetic p couplings off.
111
(v)
g g R Self~Consistent Point
pTITpTL Eommois
L N
b ¥ (lev) Gy Gy
0 0 1158 40.1 22.1
2.48 0 1144 35.8 24L.5
2011-8 2.0 1159 14-2-3 2600
2..8 3.5 1177 L8.0 26.7
T (Y% >nz) _ 8% & omnBors/kn = 2
* - 3
rtotal (Yl ) ' gpmgpj\)"_,/hn = 2
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given input Born amplitude on the basis of Table 5.1.
p exchange with Yy coupling in the n¥ channel has a
positive sign, so one would expect that if this p force
is strengthened by increasing gpﬂngpzx/kn’ leaving all
other inputs {including MER, Ginﬂ ng) fixed, the ontput
mass would decrease. Instead, it increases! This
effect may be due to the fact that we are dealing with
a multi=-channel system, but it coculd alsc occur in a
cne channel situation. The effective input to the D
dispersion relation, which determines where the bound
state will lie through the condition determinant (D) = O,
is N» N,in turn, is the raw input B modified by D
according to disc N = (discB)D. If the D matrix is very
different from I at the cuts of B, as it certainly is
for those cuts near the bound state, then the effective
input force represented by N can be rather different
from the original input B. It is perfectly possible
for an attraction to be turned into a repulsion.

Next the Y;* branching fraction was varied down
from its upper limit of 8% to O(Table 7.3b). The s.C»
point depends only weakly on the branching fraction,
and any value between the experimental limits of 0%

and 8% can be very comfortably tolerated by our mcdel.
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Finally, the magnetic p couplings were turned
on (Table 7.3¢c). Neither of these parameters has very

much effect on the s.c. point either, except that when

1 . N
gpnngpAZ/hﬂ was increased to 4.0, the behavior cf the

determinant of D started getting wild. This made it
necessary %o use bigger matrices in the numerical
calculations, and the search for a self=consistent
solution was abandoned as not being worth the money.

- Seversl attempts were made to find acceptable
ccmbinations cf the other parameters that would make
it possible to knock &omm8p A5 /4 dcvm, but these never
succeeded in decreasing this coupling below 1 without
having the s.c. mass go below 975 Mev. 1, on the other
hand, is not implausibly large; then too, not every
conceivable combination was tried. Except fer Eopx?
it was easy tc put all the unknowns simultaneously near
their guessed values and cbtain a satisfactory self=-

consistent soclution. For example,

i
rtotal{Yl*)

gpﬁﬂgng =2 Sommépay = 1.5

L Lyt



—:1.2 9"’

? 7

=S - "
pPTIITT T pTL = 2.5 gpﬂ”ﬂgpf\z = 2.5
e Ly

leads to an s.c. point with

M2 = 1045 Mev

Gy oz b3 (7.2)
G = 24.1.
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VIII. CONCLUSICNS AND REMARKS

What can we say, now, about the ¥ and about the
method we have used? The method has twoc main difficul=~
ties: a computational complexity which limits one, in
practica, to two channels, and a dependence on experi-
mental gquantities which aren't always very well known.

On the other hand, our results were quite insensitive te
the experimental unknowns, nor was the dependence on the
cutoff very serious, Thus, in situations where it is
sufficient to consider just one or two channels, and
where the unknown parameters are either very few or not
very influential, the techniques we have employed are
quite adequate for testing the hypothesis that some
varticle is composite. It would clearly be advantageous,
however, to have a computational scheme capable of handle

ing many channels at a time, without grossly mistreating

gach one, and capable of simultaneously predicting the
masses and couplings of several particles by the self=-
consistency requirement.
Now how about the £? Is it composite? Our
results strongly suggest that it is. After all, we

were able to c¢btain self-ccngistent dynemical £'s



el e

with reascnszble masses and couplings for quite 2 wide
range of values for the unknown ﬁarameters» The fact
that we did not succeed in finding a self-consistent
sclution in the accessible mass range for Eopx = 0 can=

not be taken tovo geriocuslv. For gpAZ = 0 did leazd to

output bound staies, sven though the output and input %
parameters did nct exactly match within the mass "window."
Perhaps if one were to include scme of the cmitted
effects, such as the kIl channel or the higher resonance
exchanges, this situation would be cleaned up. Then tco,
perhaps &onmBo AT /b actually isn’t very small.

Until not sc long ago the relative TA paricy was
an open question, and one might ask whether our model is
capable of predicting this parity. Would cur calculation
have worked if we had assumed all other particles with
their experimental properties, but then tried to make &

"g" with JT = 37 cut of mp and U"T"?  In an effort to

answer this question, the changes induced in the elastic
Born amplitudes of Table 4.l by & reversal of the I
parity were figured out, and a new "threshold forcen
table analogeus to Table 5.1 was prepared. Of course,
the Bdrn amplitudes were thig time evalusted in the s%
ni state, and the p%, I=1mns state, where a 2™, 12;:1

£ would appear. In estimating the force strengths, the



I couplings were taken to be gﬁAZ/hn = %, ggzz/hn = 20,
These values represent a possible fit to the data on
hyperfragments and £™ 4 p reactions with the assumption
of odd T parity.(BiF)

In the ) channel, the forces turn ocut to be
repulsive, although if we had taken gﬁﬂf/ﬁw =1, we
would have gotten attraction. In the nT channel, there
is an urnambiguous huge atbraction. Although a repulsion
in one channel and a huge attraction in the other is
certainly a strange looking situation, we cannot come to¢
any definite conclusions on the hasie of these congiderw
ations alone. To rule out odd T) parity., we would have
to show that the detailed dynamical calculations based
on this assumption fail, or that odd TZA parity leads to
repulsive forces in the 3/2+, I =1 state where the ‘3{1’3‘
resonance exists, etc.

Finally, we speculate on whether dynamical trest-
ments of the A and the ¥;* similer to that just given
for the T, and based on the same channels and ferces,
are likely to work. Because cf isospin, the ) cannot
be made out of nm and A,.so we would lock for the A only

in the p,, I = O nT state. With reascnable estimates
<

for the couplings, the exchange amplitudes of Table 4.1
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add up tc a weak repulsion in this state at threshold.
This repulsion involves a contribution from A exchange,
however, and since the A force drops off very fast with
increasing energy above threshold (Fig. 5.2), the sum
of the forces will guickly turn intoc an attraction.
Thus a A bootstrap based on the nI channel would probably
work, and may be attempted shortly.

The Yl* {1385) appears in the p3/2, IT=1 A
and nT states. ZEstimating the forces as before, we find
at threshold an attraction in the njp channel and a
repulsion in the nf channel. But the latter is due
mostly to A exchange, and so the force in the nT channel
will beccme cnly weakly repulsive, or even attractive,
not far above threshold. Since,experimentally, the Yl*
seems to couple much more strongly to the mjp channel
than to the nI, one might reasonably suppose that this
particle can be well understocd in terms of the mp
channel alone. However, it would be nice if we could
explain the small branching fraction of the Yl*, and
for this reason dynamical calculations taking into

account both the mA and ni channels are planned.
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APFENDIX A: SYMBOLS AND KINEMATICS

The

employed.

/Bi

{ng]

i
W

w

-

following kinematical symbols have been

plon mass

A mass = Ml
L mass = M2
Yi mass

x
Yo mass

p mass

channel = channel 1

channel = channel 2

=

2(M12 +p); i=1,.2
(Miz -p?) 3 i=1,2

2u% 4 Mi2 + M2 i, = 1,2

3 .
total center-of-mass energy
wz

pion L-momentum, oOr mggnitude of center of
mess momentum, depending on context

baryon energy, usually in c.m.
pion energy, usually in c.m.

barycentric scattering angle
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g, E, and w will generally be indexed. Vhen the letters
i and £ are used together as indices, as in a; + dg, they
refer to the initial and final states of the reaction in
question. But when the letters i and j occur, together
or singly, they are channel numbers taking on the values
1{mp channel) and 2{nT channel). The indexed quantities
then stand for the center-of-=mags wvariables in the
appropriate channel.

The varicus c.m. variables in channel i are re=-

lated to the c¢c.m. energy W by

b9;% = 5 =3 + 81 /s

(W + M)%0 42
2%

Ei + wy = .

In & reaction in which the initial and finsl
pion L-momenta are g, and 9ps and the corresponding

baryon momenta ps and Pps the usual invariants are

n
L]

2
T - (qi - Qf)



MR

2
U= - (qi - Pf)

If the final and initial channels of the reactiocn are

i and j, the invariants are related by
s+t+11a§flij*

In terms of the c.m. variables,

072

0]
8

2
2w, w, -

Tt = =2q.q. { i) s
1] zqiqj

- cOs 6)

2
2w, w, = 24
U=7T.. =g+ 294, (3] - ¢05 8)»

+J 299;

For exchange of a particle of mass me in the t or u

channel, the characteristic denominatcrs are

o 20,0, = 2u° + m 2
L o m,e*‘*{g -zq'q 1] e _ cos B
1 29,9,

2
u - m“< = Zqiq'j

[(Zmimj 2u~) (s + m32 zij) - COSB}

249

a



Channel indices are sometimes cmitted frem c.m.
quantities such as q; > Ei’ Zi when a reaction involving
only one channel is being discussed. In describing

dlagrams with a resonance as an intermediaste particle,

we use q*, E*, and w* to denote the values of g, E, and
w when W eguals the rescnance mass.

The convention used for scalar products between
L-vectors is

- . pe >
D.¢q = (P, 1PO)~(C1; .Lf}c) = qu = Pglg »

Qur Dirac spincrs for the \ or ¥ in spin state

r vbey (f ® TPy
(6 - i) withg) 2o,

(36 o J-Mr) \lér) (-.5)) =0,

and are normalized to

Our Hermitean y-matrices satisfy
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YUY\’ + vvyp -2 6“\, 3 Ms v = 1,4,
In terms of the YH“ we define

Y =
5 = Y¥573Y), -

and
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APFENDIX B: RELATIVE SIGIS
OF COUPLING CONSTANTS

The sign of any product of coupling constants
which mentions one or more particles an odd number of
times depends on conventions. For example, the sign of
EnaxEnyy 1s not independent of conventions, in the way
that the relative =aign of the electric charg:s nf the
proton and electron {(i.e., sign (gyppgyee}) is, simply
because what one person calls "A" another may call "=\R,
0f course, the product g;,rgpyy can en%er into more
involved combinations, such as g -grry€omnBpars “hose

signs are independent of conventions.
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APPENDIX C: UNITARY STMMETRY
AND MANY CHANNEILS

Since the p and n are essentially the same
particle in two different charge states, and similarly
the n%, 19, and n™ are basically identical, it would
be nongensical to construct a dynmmical model of the P
which pictures this particle as a wop bound state, but
ignores the fact that it can also be made up out of
m*n. HNow from the point of view of unitary symmetry, the
m and N are both parts of octets, aso it would seem that
a bootstrap treatment of the N based on the nN channel
should include the nN, KA, and K¥ channels as well,
since the relationship between these channels and 7N is
analogous to that between m¥n and nCp. The analogy is
not that good quantitatively, however, because the mass
splittings in a unitary supermultiplet are far greater
than those characteristic of an isospin multiplet. In
the N bootstrap, the influence of the nN, Ka, and K3
channels is depressed by the fact that their thresholds
are all 400 Mev to 600 Mev above that for nN (see Table
C.1l), the nucleon bound state being below all the thres-

holds. Thus, there may be some grounds for neglecting
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the NN, KA, KL channels; indeed, caleulations involving
this approximation have worked rather well. (13)

It is unfortunate that we have as yet no guick
yet quantitative way of estimating the importance of
a channel without actually including i% in a full-
fledged dynamical treatment; we can only make guesses
baged on meager experience. Considering only thoge
channels which are related by unitary symmetry to the
lowest in each case, Table C.l is a crude attempt %o
compare the importance of higher channels in dynamical
models of the N, A, T, and = (the members of the 3+
baryon octet). For each particle, the table shows the
geparations between the higher thresholds and the lowest,
and compares the strengths with which the particle
couples to normalized isospin states in each of the
channels. These couplings have been estimated by using,
unmeodified, the coupling pattern which holds in the
limit of exact unitary symmetry.

One thing which stands out in Table C.1 is the
relative unimportance of the higher channels in a
dynamical model of the N, as conty:sated with the sit-
uation'for the =, where the higher thresholds are both

nearer and more strongly coupled. {Note also the in-
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teresting fact that in both cases the coupling to the
second lowest channel is very weak.) This ig congig-
tent with the fact that a single=channel bootstrap of
the N works nicely, while a = -gtrap based only on the
= channel would not work at all.

The T, with which we are dealing here in detail,
ig somewhere between the N and the =. The first
channel we have omitted, KN, is probably not negligible,
as has been said before. On the other hand, we have
argued that inclusion of the KN channel would not destroy
the T bound state we have found, so now we ask about the
still higher channels, nT and KEI, With respect to the
separation between their thresholds and that of m4i,
thease channels are comparable to the higher channels in
the I problem. The couplings to nI and X= are, however,
rather larger than the corresponding couplings in the N
case, though not quite as large as thosge for the =.
Thus, on the basis of the numbers in Table C.l alone,
one cannot say whether nI and K= are more like the
(apparently) relatively unimportant higher channels for
the N, or the important higher ones for the = .

| It should be realized that while the considera=-

tiong above ars matural from the point of wview of unitary
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symmetry, the numbers in Table C.1 are not necegsarily
the most relevant ones in deciding which channels should
be included and which can be left out. In the case of
the nucleon, for instance, the next two-particle channel
above nll is ni™, and not any of the channels listed in
the table. From the large N width, the Npn™ coupling
is evidently not small, so if one is wondering whether

a second channel should be included in an Nestrap, he
should probably worry first about wl*, not nN¥, Ka, or
KZ. There is nething in the dynamical squations which
can meke a channel more important just because it is
related, according to unitary symmetry, to the lowest

channel.



TABLE C.l.
for N, A T, and = .

wLlylye

Comparison of importance of higher channels
For each particle, the "Threshold
Distance” column lists the distance from the lowest
threshold to each of the higher ones.
sach particle to normalized isospin states in the rele-
vant channels have been estimeted assuming two alter=—
native plausible values for the £/d mixing ratio.
couplings are always normalized so that the lowest

channel couples in with unit strength.

Channel

i

R
K
Kg

Channel

e

KN

N
Threshold Coupling Coupling
Digtance (£/4=1/3) (£/d=1/2)
(Mev)
- 1 1
410 0 .11
535 «5 +55
610 1Y 5 "33
A
Threshold Coupling Coupling
Distance (f/§:1/3) (£/a=1/2)
(Mev)
- 1 1
110 282 1.02
335 .58 .58

490 0 .20

The couplings of
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TABLE C.l.~ Continued

z

Threshold Coupling Coupling
Channel Distance (£/a=1/3) (£/d=1/2)

(Mev)
A o= 1 1
‘}’TE 75 082 la22
K 185 .82 .61
ne L85 1 1
K= 565 1.6L4 1.83
Threshold  Coupling upling
Channel Distance /p“"L/B ) ( d=1/2)
(Mev)
mn= - 1 1
K 155 0 233
oy 230 2 3
n= 510 1 1.67
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