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Abstract

Wrinkling of thin membranes due to different in-plane loading and boundary conditions has drawn

attention of researchers in structural engineering since the development of thin webs for early air-

craft structures. More recently, prestressed lightweight membrane structures have been proposed

for future space missions, for example solar sails, the next generation space telescope sunshield and

space-based radar systems. These structures are often partially wrinkled during operation. The

formation of wrinkles alters the load paths and the structural stiffness of the membranes. More

importantly its occurrence degrades the surface accuracy of these structures, which is a key design

parameter.

This dissertation focuses on wrinkling of thin rectangular membranes subjected to uniaxial ten-

sion and investigates the onset and profiles of wrinkles using both experimental and numerical

approaches.

An optical method, which integrates fringe projection method with four-frame phase-shifting

technique, pre-conditioned conjugate gradient phase unwrapping algorithm and series-expansion

carrier removal technique was developed in order to measure the full-field out-of-plane displacement

of membranes, and an optical system was constructed including a uniaxial tension testbed, a LCD

projector and a CCD camera. A series of uniaxial tensile tests were carried out on silicone rubber

membranes of varying dimensions and aspect ratios in order to investigate the effect of geometric

factors such as membrane dimension and aspect ratio on wrinkling onset; and a series of measure-

ments were performed on each membrane at several desired strain levels to understand the evolution

of the wrinkles, in particular wrinkle amplitude and wavelength.

A numerical study was carried out using the commercial finite element software ABAQUS to

further understand the important characteristics of wrinkling of thin membranes observed in the

physical model. Geometrically nonlinear finite element models of membrane structures were con-

structed with thin-shell elements. A series of simulations were carried out for different membrane

dimensions. The critical buckling load and buckling modes was predicted for each dimension using
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a pre-buckling eigenvalue analysis. The desirable buckling mode was selected and introduced into

the structure as a geometric imperfection. The formation and growth of wrinkles were simulated in

the post-buckling analysis.

Finally, an idea of suppressing wrinkle instabilities of dielectric elastomer membranes using

through-thickness electric field was proposed and verified in both experiment and numerical simu-

lations.

Keywords: wrinkling; membrane; critical buckling strain; wrinkle onset; wrinkle wavelength; wrin-

kle amplitude; fringe projection method; finite element; thin shell; dielectric elastomer; dielectric

actuation.
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Chapter 1

Introduction

1.1 Wrinkling Phenomenon

Thin membranes wrinkle whenever they are subjected to compressive load. This is due to the inher-

ently small bending resistance of membrane structures which buckle out-of-plane under the action

of even small in-plane compressive stress.

This phenomenon is common and it can be observed in many structures in daily use, ranging

from umbrellas and temporary tents to large fabric roofs for airports and stadiums. Wrinkling is

not a concern for designing small structures because it has no structural consequences. In large

scale structures, such as membrane roofs, wrinkling can be counteracted by applying a biaxial stress

state by means of cables or compressive rings, as shown in Figure 1.1. More often a compensation

scheme is used, in which the fabric is cut to a smaller size than that required to generate purely the

geometric shapes that are required according to the form-finding process. Additional stretching of

the fabric is thus required in order to eliminate potential wrinkles.

Figure 1.1: Denver International Airport fabric roof (www.flickr.com).
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1.2 Types of Wrinkles

Wrinkles due to loading or boundary conditions are completely reversible if the membrane does not

yield. These wrinkles are termed structural/elastic wrinkles; their magnitude varies with the loading

and boundary conditions. Wrinkles where the material yields are permanent and irreversible, and

are termed material/plastic wrinkles. This type of wrinkles can be random and can be thought of as

an initial set of very extreme imperfections (Wong and Pellegrino, 2006). Only structural wrinkles

are considered in the present study.

1.3 Motivation

Recently the idea of using large and ultra-lightweight membrane space structures to carry out various

future interplanetary probes has been put forward by several mission planners. Examples include

solar sails, sunshields for the Next Generation Space Telescope (NGST), inflatable antennas and

mirrors, as well as structures for Synthetic Aperture Radars (SAR). These structures use thin mem-

branes (having thicknesses of the order of 5 to 200 μm and dimensions of few to hundreds of meters)

as their main structural component which carry loads primarily in tension. The main advantage

of using thin membranes in deployable structures is their low volume packaging capability and low

mass; as well as their ability to be deployed with minimum driving forces. These advantages also

suggest the possibility to use several alternative propulsion technologies in addition to those are

currently available. Therefore, the use of gossamer structures provides significant advantages for

space missions with ambitious goals and tight economic constraints.

Wrinkles may form on these structures due to the boundary conditions they are subjected to or

the mechanical forces generated during deployment. On the other hand, wrinkling may also occur

due to packing or manufacturing imperfections of the membrane.

However, most of these applications demand very smooth surfaces. For instance, parabolic in-

flatable reflectors (Figure 1.2) can be used as a large aperture radio frequency (RF) antenna. A

typical surface accuracy requirement for an optical quality mirror reflector is 1/20th the wavelength

of interest. This means a surface precision of the order of less than 1 μm RMS (root mean square)

error may be required. The occurrence of large wrinkles on the surface of these structures is highly

undesirable. The surface accuracy of reflectors with lower skin stress may be compromised by diffu-

sion of projected images and scattering of light.
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Figure 1.2: Wrinkles on a 3-meter inflatable reflector demonstrator with very low internal pressure
and film stress (L’Garde Inc., www.lgarde.com).

Ultra-lightweight solar sail, such as the one shown in Figure 1.3, are prestressed in their op-

erational configuration by applying concentrated corner loads which are likely to cause wrinkling.

Surface reflectivity is the main design parameter of solar sails since solar photon pressure is used for

propulsion. The occurrence of wrinkles may affect the performance of the sail by changing the angle

of reflection of incident photons, thus causing thrust degradation in the sail. Large wrinkles might

also cause local concentration of solar energy, thus creating high thermal stress within the struc-

ture. This may then result in material creep, and shorten the intended design life-span of a solar sail.

Figure 1.3: Wrinkles on a four quadrant, 20-meter solar sail. The solar sail system is fully deployed
during testing at NASA Glenn Research Center’s Plum Brook facility in Sandusky, OH (NASA,
www.nasa.gov).
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The NASA Next Generation Space Telescope (NGST) sunshield (Figure 1.4) consisting of closely

spaced layers of insulating membranes, is used to protect the telescope from sunlight. The design

requirement is to achieve an operational temperature which is less than 50 K. The thermal efficiency

of the sunshield is highly dependent upon the spacing between membrane layers, surface specularity

and layer angles. If large scale wrinkles occur, then the surfaces of adjacent membrane layers may

touch each other and consequently cause thermal shorts in the structure.

Figure 1.4: Wrinkles on a full-scale sunshield of the James Webb Space Telescope (JWST). The
sunshield is undergoing folding and deployment trials to verify its design concept and deploy-
ment techniques at Northrop Grumman’s Space Technology facility in Redondo Beach, CA (NASA,
www.nasa.gov).

The conventional solution of preventing large wrinkles by introducing biaxial stresses or ap-

plying higher stress, however, are not feasible for ultra-lightweight thin membrane structures for

space applications, because of the potential risks of crack propagation and material creep, and po-

tential increase in the overall cost and mass of the structures. Therefore, engineers now face the

task of estimating the extent and amount of waviness and seek ways to control or suppress wrinkling.

1.4 Scope and Layout

The dissertation is organized as follows.

Chapter 2 reviews the existing literature and previous work on wrinkling of thin membranes

which can generally be categorized into theoretical, numerical and experimental approaches.
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Chapter 3 illustrates the experimental set-up for conducting uniaxial tension test on rectangular

membranes. Silicone which is utilized as the membrane material is characterized by stress-strain

curves. Experimental procedure is reported with emphasis on the shape measurement of the wrin-

kled membrane. The fringe projection method combined with phase-shifting technique is introduced

to carry the full-field out-of-plane displacement measurement. The experimental observations are

discussed which form the basis of the numerical studies in the following chapters.

In Chapter 4, a finite element analysis is performed to model wrinkling of membrane structures

in uniaxial tension using thin shell elements in the commercial package ABAQUS. Pre-buckling

eigenvalue analysis and post-buckling analysis are carried out on the prescribed model. The onset

and growth of wrinkles on membranes of various aspect ratios are discussed.

Chapter 5 compares the experimental results with the numerical simulation results in detail.

Chapter 6 explores a concept of suppressing membrane wrinkling by means of dielectric actuation

utilizing properties of dielectric elastomers. A simple analytical model is developed, and experimen-

tal and numerical studies are carried out to verify and validate this idea.

Chapter 7 concludes the dissertation and recommends subjects for further investigation.
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Chapter 2

Literature Review

2.1 Introduction

The depiction of wrinkles in art is as old as the subject itself. However, the scientific study of

wrinkles is a much more recent subject as it involves the large deformation of naturally thin flat

sheets whose behavior is governed by a set of nonlinear partial differential equations known as the

Föppl-von Karman equations. Yet, interest in the subject has grown rapidly in recent years as

evidenced by the number of publications and citations on the Web of Knowledge; these are shown

in Figures 2.1 and 2.2 respectively. This chapter reviews important contributions from the existing

literature dealing with the wrinkling of thin membranes starting from the beginning of last century,

which can be categorized into analytical, numerical and experimental approaches.

2.2 Wrinkling Criteria

Membranes by definition have zero bending stiffness and can only carry loads in pure tension.

Therefore, a membrane is unstable when subjected to in-plane compression and tends to deform

out-of-plane to form wrinkles. Figure 2.3 shows that the length of the horizontal side of the mem-

brane becomes shorter than its original length after the formation of wrinkles, due to geometric

shortening, i.e., L
′
< L. Figure 2.3 also shows schematically the stress redistribution in the mem-

brane after wrinkling.

Generally, a membrane is in one of three different structural states. It is shown in Figure 2.3(a)

that a membrane is in a taut state if it is biaxially stressed, i.e. both in-plane major and minor princi-

pal stresses denoted by σ1 and σ2 are positive. In a wrinkled state, the lowest in-plane principal stress

must be zero, i.e., the membrane is stressed uniaxially. Also the troughs and crests - the lines along

which the maximum out-of-plane deformation on either side of the membrane is attained - of the
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Figure 2.1: Number of publications about membrane wrinkling from 1970 to 2008 (Web of Knowl-
edge).

Figure 2.2: Number of citations about membrane wrinkling from 1970 to 2008 (Web of Knowledge).
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wrinkles are parallel to the major principal stress direction as shown in Figure 2.3(b). The direction

of wrinkles is always perpendicular to this tension line. Finally there is also a slack state, which is

the extreme case of a wrinkled membrane where all the stresses are zero (Wong and Pellegrino, 2006).

Figure 2.3: A membrane in (a) taut state, (b) wrinkled state (Wong and Pellegrino, 2006).

Note that there is zero stiffness in the direction perpendicular to the major principal stress in

the wrinkled regions. Therefore, the membrane becomes softer when these regions grow in size.

The overall structural behavior of a partially or fully wrinkled membrane is nonlinear, even if the

material constitutive relationship - valid in the taut regions of the membrane - is linear. Further,

the fact that the maximum wrinkle amplitudes are always found to run parallel to the maximum

tensile stress direction for isotropic material implies that stress concentrations may occur. Together

the contribution of softening due to the growth of the wrinkled regions, and the threat of stress

concentrations lead to a rather complex behavior.

The above description of the formation of wrinkles based on the sign of the principal stresses is

only one of the three wrinkling criteria that have been proposed. The wrinkling criterion based on

principal strains is formulated in a similar way to the principal stress criterion: the membrane is

in a taut state when the major principal strain is positive (tensile), and the minor principal strain

must be greater in magnitude than the strain predicted purely by Poisson’s effect if the membrane

was under uniaxial stress state (Miller and Hedgepeth, 1982). It is slack if both principal strains

are non-positive. In both the taut and slack states there is no wrinkling in the membrane. Thus, a

wrinkled state occurs in the membrane when the minor principal strain is less than the strain due

to Poisson’s effect and the major principal strain is positive.

For wrinkling based on the combined criterion, the membrane is defined to be taut when the

minor principal stress is positive. It is in a slack state when both the major principal stress and
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strain are non-positive. When the minor principal stress is non-positive and the major principal

strain is tensile, the membrane is wrinkled (Roddeman et al., 1987).

The wrinkling criteria described above are summarized below, where σ1, σ2 and ε1, ε2 are the

major and minor principal stresses and strains respectively (hence σ1 ≥ σ2 and ε1 ≥ ε2).

1. Principal stress criterion

Taut: σ2 > 0

Wrinkled: σ2 ≤ 0, σ1 > 0

Slack: σ2 ≤ 0, σ1 ≤ 0.

2. Principal strain criterion

Taut: ε1 > 0, ε2 > −νε1
Wrinkled: ε1 > 0, ε2 ≤ −νε1
Slack: ε1 ≤ 0, ε2 ≤ 0.

3. Combined criterion

Taut: σ2 > 0

Wrinkled: σ2 ≤ 0, ε1 > 0

Slack: σ1 ≤ 0, ε1 ≤ 0.

The first two criteria, based on principal stresses or strains only, are fairly easy to apply. How-

ever, the slack regions defined by the principal stress criterion may in fact experience positive strain.

Whereas, the principal strain criterion may underestimate the taut regions in the membrane since

negative strain may exist together with a positive minor principal stress due to Poisson’s effects.

The combined criterion overcomes the potential shortcomings mentioned above and provides the

most accurate description of a wrinkled membrane (Liu et al., 2001).

2.3 Theoretical Approach

The criteria described above provide a quick guide to the presence/absence of wrinkles at a single

point. The analysis of an entire membrane subjected to a complex of boundary conditions requires

a more complete theoretical approach.

2.3.1 Tension Field Theory

The classical approach to analyzing membrane wrinkling is the tension field theory first introduced

by Wagner (1929) for the analysis of thin webs in I-beams that are allowed to go much beyond their
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initial buckling load. In its original form, this theory considered a set of parallel wrinkle lines but

later a simpler geometrical formulation was proposed (Reissner, 1938), which allowed for nonparallel

tension rays. A further generalization (Mansfield, 1968) of this theory showed that the direction of

the tension rays maximizes the (stretching) strain energy in the membrane. Closed-form solutions

for membranes with different shapes and anisotropic membranes were also developed. A summary

of this theory (Mansfield, 1968) is presented next. Note that the notation used here is based on

the mentioned reference and hence is not necessarily the same as the general notation defined and

employed elsewhere in this dissertation.

Consider an initially flat linear-elastic, isotropic membrane of any shape, with uniform thickness

which is subjected to given planar displacements at its boundaries. A tension field is assumed to

be generated over the membrane due to this boundary condition. The primary objective in tension

field theory is to determine the orientation of the tension rays in a highly wrinkled state of the

membrane. Note that a tension ray is referred to as the line of major principal stress.

The strain energy in the membrane is due to only the tensile stresses along the tension rays,

since there are no normal and shear stresses across adjacent rays. Mansfield formulated a principle

of maximum strain energy by postulating that the true distribution of tension rays maximizes this

tensile strain energy. A membrane of constant thickness, t, with reference axis Ox is shown in Figure

2.4. Two adjacent tension rays denoted by LK and L′K ′, intersect the x-axis at angles α, α + δα

and meet at the point H . A general point in the membrane is defined by α and η, where η is the

distance along the tension ray; it is a function of α and x. Maintaining equilibrium along the tension

ray requires the continuity of the tensile load carried by the tapered strip of material enclosed by

adjacent rays, with the assumption that there is no stress across, the ray as shown in Figure 2.5

gives

ηση = constant, (2.1)

where ση is the normal stress along a ray.

The integral of the strain εη along line LK is equal to the change in length of LK and will be

denoted by Δα; its values depends on the given boundary displacements. Therefore, the constant

in Eq. (2.1) can be evaluated and

εη =
Δα

η
(
ln η2

η1

) , (2.2)

where η1 and η2 are the boundary values of η, as shown in Figure 2.4. The strain energy in the

membrane can then be determined by integrating over an elemental slice bounded by two adjacent
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locus of points H

Figure 2.4: An arbitrary membrane with two adjacent tension rays (Mansfield, 1968).

Tension
Rays

Figure 2.5: Equilibrium of infinitesimal element of membrane defined by two adjacent tension rays
(Mansfield, 1968).
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rays

U =
1
2
Et

∫ ∫
ε2dA =

1
2
Et

∫ ∫ η2

η1

ηε2ηdηdα =
1
2
Et

∫
Fdα (2.3)

where

F =
Δ2

α∫ η2

η1

1
η
dη. (2.4)

The value of η on the x-axis, ηx, can be determined by geometrical considerations,

ηx = ±
(

dx
dα

)
sinα, (2.5)

where the sign in Eq. (2.5) depends on the position of pointH relative to the x-axis. The relationship

between α and x is determined by maximizing U ; therefore the general equation is

x′′Fx′x′ + x′Fxx′ + Fαx′ − Fx = 0, (2.6)

where x′ = dx/dα, x′′ = d2x/dα2, Fx = ∂F/∂x, etc. Hence, F is a function of the variables α, x

and x′. Note that if F does not contain x explicitly, Eq. (2.6) can be integrated once to give

Fx′ = constant. (2.7)

From Eq. (2.1)-(2.7), it is seen that the determination of the distribution of tension rays is based

solely on the displacement components along the tension rays. This relationship is used to determine

the stress distribution in the membrane. Note that the theory is valid only if

Δα > 0 and εα + νεη ≤ 0. (2.8)

Mansfield extended the general equations developed above to the study of membranes with

different strip lengths and boundary conditions and verified this theory with some experimental

observations.

This theory was later incorporated into ordinary linear-elastic membrane theory (Pipkin, 1986)

by replacing the strain energy density with a special form of strain energy density function, known

as a relaxed strain energy. In the wrinkled regions, this function represents the average energy per

unit initial area over a region containing many infinitesimal wrinkles. It would then produce a state

of a uniaxial stress, i.e., zero minor principal stress if the states of strain in an ordinary, i.e., linear

elasticity membrane theory would require compressive stresses. Therefore, the underlying assump-

tions in tension field theory can be reproduced with this approach.
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A further extension of this theory was proposed by Steigmann and Pipkin (1989) to consider

finite elastic deformations of membranes subject to in-plane and pressure loading. Roddeman et al.

(1987) developed an alternative model to account for large deformation wrinkling problems. Wu

and Canfield (1981) were the first to treat wrinkling as a geometrical non-linear problem using plane

stress theory but limited only to isotropic material. Roddeman’s model is based on deformation

gradient tensors obtained from a fictitious, non-wrinkled membrane surface; these tensors are modi-

fied so that they are always consistent with tension field theory. This model can be used to analyze

both isotropic and anisotropic materials. A generalization of tension field theory in the context of a

saturated elasticity theory has been proposed by Epstein and Forcinito (2001).

2.3.2 Variable Poisson’s Ratio Theory

An alternative approach has been proposed for partially wrinkled membranes such as a pressurized

cylindrical tube in pure bending. This theory, generally known as Wrinkling Theory (Stein and

Hedgepeth, 1961), was derived from the linear-elastic, isotropic plane stress theory based on the

assumptions given below.

The basic assumptions made in this theory are:

1. Compressive stresses are eliminated completely by the formation of wrinkles. Therefore, the

minor principal stress is non-negative everywhere in the membrane.

2. The troughs and crests of wrinkles run in the directions of the local major principal axis.

3. The load in the wrinkled regions is carried only by the wrinkles in the directions of the troughs

and crests. Hence, the minor principal stresses in the wrinkled region (perpendicular to the

load paths) are zero.

4. There are only taut and wrinkled regions in a partly wrinkled membrane.

In the taut regions, the membrane is assumed to behave according to standard linear-elastic

plane-stress theory. In the wrinkled regions, a modified set of constitutive relationships is used,

by using a variable Poisson’s ratio (which takes into account the over-contraction caused by the

wrinkles) determines the membrane behavior. The variable Poisson’s ratio must match the material

Poisson’s ratio at the boundaries between wrinkled and taut regions. The minor principal stresses

must be positive in the taut regions and zero in the wrinkled regions.

Stein and Hedgepeth (1961) used this theory to produce closed-form solutions for three simple

structures: a biaxially stressed membrane subject to in-plane bending, an internally pressurized My-
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lar cylinder in bending, and a stretched circular Mylar sheet attached to a rigid hub that is rotated.

Mikulas (1964) generalized this theory and produced a closed-form solution for the rotating circular

membrane model. This theory is only capable of estimating an average strain normal to the wrinkle.

It is used to determine the regions of a membrane that wrinkle, the pattern those wrinkles take, and

the resulting stress field and load paths.

Figure 2.6: Wrinkles on a bent Mylar cylinder (Stein and Hedgepeth, 1961).

Figure 2.7: Wrinkles on a circular membrane with center attached to a rigid hub and rotated for a
certain angle (Stein and Hedgepeth, 1961).
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2.3.3 Theories With Finite Bending Stiffness

In the two previous approaches, the membrane is modeled as a non-compressive material with neg-

ligible bending stiffness. This amounts to assuming that a wrinkled membrane forms an infinite

number of infinitesimally small wrinkles. An analytical solution of the gravity-induced wrinkling in

a hanging blanket, for the first time considered a critical compressive stress in the membrane.

Figure 2.8: Wrinkles on a hanging blanket due to self-weight (Rimrott and Cvercko, 1985).

The effect of in-plane compression on the wrinkling of a thin blanket hung between two level

supports was investigated by Rimrott and Cvercko (1985). A series of cosine-shaped wrinkle lines

were assumed to form in the blanket due to gravity, as shown in Figure 2.9(a) and each region

bounded by two neighboring wrinkle lines was called a tension strip.

Rimrott and Cvercko (1985) noted that equilibrium of the membrane in the out-of-plane distorted

configuration requires each finite-size wrinkle to carry a uniform horizontal force component; this

horizontal force is equal in each wrinkle. Hence, having shown that the boundaries of the wrinkle

lines have amplitudes an, ..., a0 that form a geometric progression (ai/ai+1 =constant), it follows

that the horizontal stress component, σx
1, at the center of the wrinkle is largest in the more closely

spaced wrinkles at the top of the membrane. Associated with σx, there is a compressive stress σy

1Note that the notation used here is based on the cited reference and hence is not necessarily the same as the
general notation defined and employed elsewhere in this dissertation.
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Figure 2.9: (a) Wrinkle lines in a blanket suspended in gravitational field; (b) stress components in
the third tension strip (Rimrott and Cvercko, 1985).

that vanishes at the edges of each finite-size wrinkle and reaches a maximum along the center line

of the wrinkle. They assume that the critical value, σcr, of this compressive stress is a characteristic

of the blanket material and showed that for any chosen value of σcr, there is corresponding number

of finite-sized tension strips in the membrane.

The assumptions that underlie this approach are different from those in the previous two theories,

and can be stated as follows.

1. Bending stiffness is present in the membrane, since a finite number of wrinkle is observed in

the experiments. Hence a small compressive stress can be carried and its magnitude is limited

by a critical compressive stress in the membrane.

2. The strain energy in tension is zero, as the material is assumed to be inextensible in tension,

and is negligible in compression.

3. The bending strain energy in a wrinkled membrane is not negligible.

This study shows that even a small bending stiffness, that certainly exists in any membrane, is

responsible for the finite number of wrinkles and corresponding amplitudes that are observed, when

a membrane is subjected to in-plane compressive body force.

Epstein (2003) set up an approximate strain-energy analysis of a field of uniform, parallel wrin-

kles. Having assumed the wrinkles to be of sinusoidal shape longitudinally and to form circular arcs
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transversally, Epstein developed a differential equation that describes the wrinkle amplitude in a

membrane by relating it to the wrinkling strain determined from the elastic strain energy formula-

tion. This geometric strain is a function of the membrane bending stiffness, wrinkle wavelength and

curvatures of a wrinkle. He showed that, given a longitudinal strain εξ and a transverse strain εη,

the wrinkle amplitude is

A =
√

2kL(ξ̄ − ξ̄2), (2.9)

where k =
√

3ε2ηt2/2εξ(1 − ν2) and ξ̄ = ξ/L is a nondimensional length variable along the wrinkle

(where L is the length of the wrinkle).

Cerda et al. (2002) studied an elastic sheet under tension and determined the wavelength λ and

amplitude A of the parallel wrinkles by minimizing the potential energy

U = UB + US , (2.10)

where UB ≈ Et3(A/λ2)2LW is the energy due to bending primarily in the transverse direction and

US ≈ Etγ(A/L)2LW is the energy due to stretching strain γ along the wrinkles, subject to the

geometric constraint of transverse inextensibility (A/λ)2 ≈ νγ. Minimizing U with respect to λ

gives a scaling law for the wavelength

λ ≈ (tL)1/2/γ−1/4 (2.11)

and the amplitude

A ≈ (νtL)1/2γ1/4. (2.12)

A refined calculation in Cerda and Mahadevan (2003) gives the following expressions for the pre-

factors: Cλ = λγ1/4/(tL)1/2 = (4π2/3(1−ν2))1/4, and CA = A/(νtL)1/2γ1/4 = (16/3π2(1−ν2))1/4.

The wrinkle amplitude and wavelength need to be uniform throughout the membrane surface for

the above expressions to be valid. Experimental results obtained by stretching polyethylene sheet

of thickness 0.01 cm, width 12 cm and three different lengths shows quantitative agreement (Figure

2.10).

Wong and Pellegrino (2006) presented a general analytical framework for predicting the location

and pattern of wrinkles in thin membranes, and for making preliminary estimate of their wavelength

and amplitude. The key ideas in their analytical model are as follows. First, the wrinkled region and

the direction of the wrinkles can be determined from a two-dimensional stress field that admits no

compressive stress anywhere, satisfies equilibrium, and provides a reasonably close (upper) bound to

the actual complementary strain energy of the membrane. Second, the wavelength of the wrinkles
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Figure 2.10: Wrinkle in a polyethylene sheet. Plot the dimensionless wavelength λ/(tL)1/2 against
1/γ1/4 for various lengths of a polyethylene sheet. Lengths: circles, 25.4 cm; stars, 30.4 cm; triangles,
34.5 cm. The data span more than an order of magnitude in strain, with γ ∈ [0.01, 0.2]. The
line corresponds to the theoretical prediction λ/(tL)1/2 = (4π2/3γ(1 − ν2))1/4. For polyethylene,
ν = 0.35, so that λ/(tL)1/2 ≈ 2/γ1/4, which is consistent with the results of the experiments (Cerda
et al., 2002).

was estimated by considering a (small) compressive buckling stress in the direction transverse to the

wrinkles, and by ensuring that this stress component and the longitudinal stress (given by the two-

dimensional stress field) are in equilibrium in the out-of-plane direction at the center of the wrinkles.

Third, the amplitude of the wrinkles was determined by matching the sum of the material strain

and geometric strain due to wrinkling, in the direction transverse to the wrinkles, to the boundary

conditions imposed by the nonwrinkled region.

This analytical model has been applied to two different problems, a rectangular membrane under

simple shear and a square membrane loaded at the corners. In the first problem, the model predicts

the wavelength and the wrinkle amplitude to be inversely proportional and directly proportional to

the fourth root of the shear angle respectively as shown in Eqs. (2.13) and 2.14. Both values are

directly proportional to the square root of the height, H , and thickness, t, of the membrane, and

both are independent of the Young’s modulus.

λ =

√
πHt√

3(1 − ν2)
, (2.13)

A =

√√√√2Ht
π

√
(1 − ν)γ
3(1 + ν)

, (2.14)

where γ = δ/H is the shear angle and ν is the Poisson’s ratio.
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The same strategy was used in the second problem except that no tension field solution is known

for this problem. They first proposed four different, no-compression equilibrium stress fields and

then chose the particular distribution that produces the lowest upper bound for the corner deflection

(according to the theorem of minimum complementary energy) as the best approximation to the

actual stress field in the membrane.

Two wrinkling regimes have been identified. The first is characterized by relatively uniform,

small, radial corner wrinkles and occurs for load ratios smaller than 1/(
√

2 − 1). The number of

radial wrinkles, n, determined by considering the out-of-plane equilibrium in the middle of a wrinkle,

is proportional to the fourth root of the outer radius of the wrinkled zone, Rw, and the corner forces,

T :

n = 4

√
3
√

2π2(1 − ν2)(Rw + a)3

64Et3(Rw − a)2
T . (2.15)

Here the radius of the wrinkled region is proportional to the radius of the uniaxially stressed wedge

field in Figure 2.11. The amplitude of these wrinkles is inversely proportional to this number and

T2
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(a)                                                                                                          (b)

Figure 2.11: (a) Equilibrium stress field. A trapezium denotes a purely radial stress field, (b) radially
stressed wedge region (Wong and Pellegrino, 2006).

directly proportional to the square root of the radius of the wrinkled region and to the corner force:

A =
1
n

√
Rw + a

2
√

2Et

(
ln

2R
Rw + a

− ν

)
T . (2.16)

The second regime occurs for load ratios larger than 1/
√

2 − 1 and is characterized by a large diag-

onal wrinkle, plus small radial wrinkles at all four corners.
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2.4 Numerical Approach

Closed-form solutions based on the theoretical approaches described in the previous section exist

only for simple boundary conditions. For more complex geometries, numerical solutions are the only

viable option.

2.4.1 Iterative Membrane Properties (IMP) Method

The first finite element solution to incorporate wrinkling theory was implemented by Miller and

Hedgepeth (1982) and Miller et al. (1985) to iteratively modify the membrane stiffness until all

compressive stresses had been eliminated. Three different states of the membrane, namely taut,

wrinkled, and slack were considered.

A recent extension of this approach has been implemented as a user defined material (UMAT)

subroutine that exploits the powerful numerical solvers currently available in commercial finite ele-

ment packages, e.g., ABAQUS and NASTRAN. Successful predictions of the shape and pattern of

the wrinkled regions in a square membrane subjected to point loads and inflated balloons of different

shapes were obtained (Adler et al., 2000). The combined wrinkling criterion introduced in Section

2.2 was used in the implementation of this modified material definition. The main problem encoun-

tered with this approach is that the solution tends to diverge if there are too many slack regions.

Johnston (2002) used this ABAQUS subroutine to analyze the static and dynamic behavior of a

one tenth scale next generation space telescope (NGST) sunshield. The finite element model based

on this modified wrinkled material definition was found to predict lower natural frequencies com-

pared to those obtained from standard shell and membrane elements.

2.4.2 Penalty Tension Field Parameter Method

A tension field model was developed by introducing a penalty parameter to approximate the stress

state in wrinkled membranes and incorporated into a nonlinear finite element code TENSION6 (Liu

et al., 1998). The main difference of this method from IMP is that, instead of modifying the material

properties iteratively, the user pre-selects a so-called penalty tension field parameter to provide some

stiffness in the wrinkle direction, and thus overcome the numerical singularities due to vanishing di-

agonal terms in the tangent stiffness matrix. This approach has been implemented to simulate the

deployment of a parachute. Modeling issues, including the selection of the penalty term, influence

of the order of integration and local remeshing in the wrinkled regions were also discussed.
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Liu et al. (2000) used this approach to estimate the wrinkle details in a square membrane sub-

jected to a combination of tension and shear force. The analysis was carried out in two steps. The

wrinkled region and directions were determined in the first step using this approach, then a standard

eigenvalue analysis was carried out to determine the number of wrinkles. A critical compression co-

efficient assuming the membrane as a plate was introduced. Wrinkle wavelength and amplitude in

this wrinkled region were estimated by correlating the principal strains, the compression coefficient

and the stiffness ratio of the membrane.

2.4.3 No-compression Material Method

A different scheme that models the membrane as a no compression material in a non-linear geomet-

rical analysis has been successful in simulating the shapes of inflated air-bags (Contri and Schrefler,

1988), including the formation of some large folds in the surface and also of extensive wrinkled

regions.

A similar approach has been implemented in ABAQUS by using the *NO COMPRESSION pa-

rameter to define the material properties. The elastic behavior of the membrane is determined, first

by solving for the principal stresses, assuming linear elasticity. Then, any compressive principal

stresses are set to zero and the associated stiffness matrix coefficients are also set to zero. The

directions in which the principal stresses are set to zero are recalculated at every iteration, hence

the results are not history dependent.

A three-node triangular isoparametric plane stress wrinkling element was developed based on

the Roddeman’s model, and made available in DIANA (TNO, 1998), a commercially available fi-

nite element package. Also a formulation based on the relaxed energy method (Pipkin, 1986) has

recently been incorporated into standard finite element schemes for membrane elements (Barsotti

and Ligaro, 2000).

A general feature of all of these numerical approaches is that they adopt a purely two-dimensional

model of the membrane. This approach can accurately predict the stress distribution in the mem-

brane, including wrinkled regions, and also the extent of these regions, but it provides little infor-

mation on wrinkle details. This requires modeling the membrane as a thin shell.

2.4.4 Models Using Thin Shell Elements
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Tomita and Shindo (1988) were the first to make use of a three-dimensional shell description of a

wrinkled membrane, in a study of the residual wrinkles in a thin metallic plate that has been pulled

diagonally. This paper startes with an analysis of the onset of wrinkling, which was assumed to be

the outcome of a bifurcation from plane deformation to out-of-plane deformation of the plate. The

plate was initially represented by a mesh of thin plate elements, including the effects of material

nonlinearity, but the growth of the wrinkles was then traced by switching the model to isoparametric

shell elements following bifurcation.

The last five years have seen regular use of the ABAQUS software package, and recently also of

ANSYS, to simulate the onset of wrinkling in a tensioned strip and the growth of wrinkles. Friedl et

al. (2000) studied the phenomenon of plate buckling under global tension computationally and ana-

lytically. They discussed the case in which the instability is a result of clamped boundary condition

that prevents lateral displacements along edges being loaded. The origin of the lateral compressive

stresses is explained by means of a simple cantilever plate model. The stabilizing effect of the global

tension was shown through an investigation of a rectangular plate, simply supported along all four

edges. Minimum half wave numbers in lateral direction was estimated. Numerically calculated

buckling modes for two different aspect ratios are presented. A novel diagram with critical buckling

coefficients as a function of the aspect ratio is introduced, allowing calculation of critical tensile

stresses in the same practical way, as used for conventional plate buckling problems.

Three approaches to simulate wrinkle growth have been proposed, differing in the way the out-

of-plane deformation is triggered at the beginning of a geometrically nonlinear analysis. Wong and

Pellegrino (2002) and Wong et al. (2003) started by extracting a set of eigenvalues/eigenvectors of

the tangent stiffness matrix of the structure. Instead, Leifer and Belvin (2003) applied a set of

equal and opposite, small magnitude forces perpendicular to the membrane with a resultant of zero.

Finally, Tessler et al. (2003, 2004) and Papa and Pellegrino (2005) imposed randomly distributed,

out-of-plane imperfections, of similar magnitude to those imposed in Wong and Pellegrino (2002).

The choice of the type of elements and the type of analysis are essentially equivalent in the three

simulation techniques, so the key difference between the first approach and the other two is the ad-

ditional burden of the initial eigenvalue/eigenvector extraction. Wong and Pellegrino (2006) showed

that this additional computation requires only a small fraction of the total simulation time, and the

eigenvector-based perturbation provides better agreement with experimental results than the one

based on random imperfections.
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2.5 Experimental Approach

Early experimental studies measured the overall response of wrinkled membranes and compared the

measurements to predictions from the various theories. Physical measurements of wrinkle details

have been attempted more recently following the increased importance attached to this piece of

information.

2.5.1 Overall Behavior

Early experiments on wrinkled membranes focussed on the measurement of overall response param-

eters, such as the end rotation of a pressurized cylinder in pure bending (Stein and Hedgepeth,

1961) or the torque-rotation relationship of a stretched circular membrane attached to a central hub

(Stein and Hedgepeth, 1961; Mikulas, 1964). These particular experimental studies were carried out

to validate the wrinkling theory outlined in Section 2.3.2, and to confirm that the membrane retained

most of its stiffness after wrinkling first occurred, although a notable softening was in fact observed

with the growth in the extent of the wrinkled regions. Mansfield (1968, 1970) investigated and

determined the orientation of the wrinkle lines in membranes with different shapes and subjected to

different boundary conditions. Only qualitative correlations between theory and the experimental

observation were given.

2.5.2 Measurement of Wrinkle Details

Performing detailed measurements on thin membranes is not easy, mainly because high accuracy

non-contact measurement apparatus is needed. A set of carefully planned experiments, including

accurate measurements of wrinkle details by using a capacitance proximity sensor, were carried

out on a square Mylar membrane subjected to different combinations of shear and tension forces

(Jenkins et al., 1998). These experiments showed that both the wrinkle amplitude and the number

of wrinkles increase with the applied shear force, but decrease with the tension force. The reverse

relationship was found between wrinkle wavelength and applied forces.

The measurement technique introduced by Jenkins et al. (1998) has been extended to measure

the surface profile of a thin, aluminized 0.5 m square Kapton membrane subjected to four corner

loads (Figure 2.12(a)), and to include the effect of thermal gradients within the membrane (Blandino

et al., 2002). In addition, a complete out-of-plane displacement contour plot (Figure 2.12(b)) was

also produced for the membrane with the aid of photogrammetry, and was compared with the mea-

surements made by the capacitance sensor at one corner of the membrane. The experimental data
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shows good agreement between the two techniques, with an accuracy of up to ±0.02 mm for the

wrinkle amplitude measurement.

(a) (b)

Figure 2.12: (a) Experimental setup of square membrane subjected to symmetric corner loads, (b)
contour plot of out-of-plane displacement at the corner section of the membrane; four peaks and five
valleys were identified (Blandino et al., 2002).

Wong and Pellegrino (2006) used a charge coupled device (CCD) laser displacement sensor (LK-

081, KEYENCE) to measure wrinkle profiles on Kapton membranes subjected to pure shear and

point load at corners. A scanning frame was designed as shown in Figure 2.13, on which the laser

sensor glides on a linear guide driven by a motor to measure a line profile on the membrane surface.

This device provides a measurement range of ±15 mm and a resolution of 3 μm.

The main disadvantage of capacitance sensors is that they need a metallic surface target and

the sensor must be in electrical contact with the membrane. Similarly laser sensors need a surface

with sufficient reflectivity and can only acquire a line profile of the wrinkled surface. As for pho-

togrammetry, a large number of target points is required in order to capture fine wrinkle details

and the postprocessing of the image can be time-consuming. However, the latest applications of

this technique, based on the commercial software package Photomodeler 4.0 (Blandino et al., 2003),

have shown that this technique is making rapid advance.
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Figure 2.13: (a) Experimental setup of a square Kapton membrane subject to corner loads. A two-
dimensional laser scanning frame was built to measure the wrinkle profile at corner; (b) schematic
drawing of the laser scanning frame; (c) wrinkle patterns for a 0.025 mm thick Kapton film under
shear displacement of 3.0 mm; (d) plot of the displacement along the cross section A-A (Wong and
Pellegrino, 2006).
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2.6 Optical Methods for 3D Shape Measurement

Optical techniques for 3D shape measurements have been widely studied as the conventional ap-

proach using mechanical probes is not suitable for non-contact or full field measurement. Numerous

methods, such as those based on the Moiré, interferometry and fringe projection technique, have

been developed.

In the Moiré technique, an object profile is coded into a Moiré fringe pattern produced by one

(shadow Moiré) or two (projection Moiré) gratings. The phase angle of the fringe pattern is related

to the object surface depth and can be extracted to the object surface depth and can be extracted

by well-known fringe analysis algorithms, such as phase-shifting and Fourier transform methods.

The Moiré technique is useful for measuring small objects but its application for large object mea-

surement is limited by the size of the gratings and the measurement accuracy is dependent on the

resolution of the gratings.

Shape measurement techniques based on interferometry, such as those using the Newton, Fizeau

and Michelson interferometers, have been known for a long time. Although the basic set-ups of these

interferometers are simple, they can be developed into various forms depending on applications. The

advantage of interferometry based techniques is that high measurement accuracy, a fraction of the

wave length of light, can be achieved. However, the surface of the test object must be highly reflec-

tive and monochromatic light source must be used for interference. In recent years, another trend

in 3D shape or surface roughness measurement is based on white light (incoherent light) interferom-

etry. The accuracy of the techniques using white light is even higher than that using coherent light

because the coherence length of white light is very short and the generation of white light fringe

pattern ensures high accuracy. However, since white light fringe pattern is observable only in a small

range, it is necessary to scan perpendicularly through an object surface to reconstruct a 3D profile.

Hence, the measurement speed is relatively slow and large amount of data is involved in processing.

Fringe projection technique is based on the principle of triangulation. Before the advent of dig-

ital fringe projector, gratings served as the source of fringe pattern. The most commonly used is a

square wave grating, which is composed of transparent and dark stripes. Takeda and Mutoh (1983)

proposed a carrier fringe Fourier transform method to extract phase data from a square wave fringe

pattern. Srinivasan et al. (1984) applied phase-shifting algorithm to extract an object surface profile

from a projected sinusoidal grating. Similar to the Moiré technique, the accuracy of both methods

is dependent on the resolution of the gratings. The advent of the digital fringe projector, such as the

programmable liquid crystal display (LCD) projector, has advanced the fringe projection technique.
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Any computer generated fringe pattern can be projected. Furthermore, phase shifting, fringe density

and intensity can be changed digitally without modifying the physical set-up. A number of papers

have reported the use of the digital projection device. Coggrave and Huntley (2000) studied the pre-

cision of a shape measurement system based on a LCD projector. Sansoni et al. (1997) developed a

gray-code light projection technique which could be used to evaluate objects with discontinuous sur-

face. Quan et al. (2001) applied the LCD projector with long working distance microscope (LWDM)

on small object measurement and achieved an accuracy of 1 micron.

2.6.1 Phase Extraction Method

Two phase extraction algorithms for automatic fringe analysis have been developed: Fourier trans-

form method with a single image and phase shifting technique with multiple images. The purpose

of these algorithms is to find a phase information at every pixel, and thus to determine a fractional

fringe order at every point in the fringe pattern.

Phase-shifting interferometry technique has been exclusively employed for multiple-frame analy-

sis. It requires at least three phase-shifted interferograms each with a known phase shift. It is often

the first choice for phase-demodulation whenever atmospheric turbulence and mechanical conditions

remain constant during the time of obtaining the interferograms. When the above conditions are

not fulfilled, one may use Fourier transform technique provided the image has an added carrier

fringe. The most important advantage of the Fourier transform method is that it requires only one

interferogram for the analysis. It is ideal for the automatic measurement of full-field displacements.

Although ideal in the mathematical description, the Fourier transform method has several practical

limitations, such as the lack of capability of handling discontinuities and requirement of exact integer

number of the carrier fringes in the digitized image for digital processing.

The phase shifting method utilizes a series of fringe or phase shifted interferograms to compute

the fractional fringe orders. The algorithms were originally implemented for classical interferometry.

Recently their applications have been extended for other advanced photomechanics methods such

as Moiré and fringe projection to increase the surface contour resolution. Experimentally a series

of three intensity distributions with a uniform phase shift π/2 is recorded. The three intensity
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measurements may be expressed as

I1(x, y) = Im(x, y) + Ia(x, y) cos
[
φ(x, y) +

1
4
π

]

I2(x, y) = Im(x, y) + Ia(x, y) cos
[
φ(x, y) +

3
4
π

]

I3(x, y) = Im(x, y) + Ia(x, y) cos
[
φ(x, y) +

5
4
π

]
, (2.17)

where I is the recorded intensity, x, y are spatial variables, Im is the average intensity (background),

Ia(x, y) is the intensity modulation, and φ(x, y) is the phase to be determined. The phase at each

point is then simply

φ(x, y) = arctan
I3(x, y) − I2(x, y)
I1(x, y) − I2(x, y)

. (2.18)

For a phase shift other than π/2, the phase can be calculated using

φ(x, y) = arctan
(

1 − cos(α)
sin(α)

I1(x, y) − I3(x, y)
2I2(x, y) − I1(x, y) − I3(x, y)

)
, (2.19)

where phase shifts of −α, 0 and α are assumed.

For a more accurate phase calculation, algorithms using five phase shifted imaged have been

developed. The five different intensities are obtained with a symmetric phase shift as

I1(x, y) = Im(x, y) + Ia(x, y) cos[φ(x, y) − 2δ]

I2(x, y) = Im(x, y) + Ia(x, y) cos[φ(x, y) − δ]

I3(x, y) = Im(x, y) + Ia(x, y) cos[φ(x, y)]

I4(x, y) = Im(x, y) + Ia(x, y) cos[φ(x, y) + δ]

I5(x, y) = Im(x, y) + Ia(x, y) cos[φ(x, y) + 2δ]. (2.20)

The phase is given by

φ(x, y) = arctan
[
1 − cosδ

sin δ
I2(x, y) − I4(x, y)

2I3(x, y) − I1(x, y) − I5(x, y)

]
. (2.21)

If δ = π/2,

φ(x, y) = arctan
I2(x, y) − I4(x, y)

2I3(x, y) − I1(x, y) − I5(x, y)
. (2.22)

This algorithm was developed to diminish the cases of denominators with zero or near zero values,

and thus to reduce uncertainties in the phase calculation.
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With the phase shifting method, uncertainties in phase determination are present when the

phase shifting amount δ is not correctly introduced during the measurement. When the three-step

algorithm is used, the phase is more sensitive to the phase shift error. Small errors in the phase

shift result in significant overestimation or underestimation of the phase. Using more phase steps,

the errors in the phase shift can be smoothed out, which produces more stable results. Considering

the computational time, the widely used four-frame phase-shifting is selected for this thesis and its

details will be presented in Section 3.3.3.

2.6.2 Phase Unwrapping Algorithm

The phase information extracted at each pixel is wrapped within the range of [−π, π] due to the

operation of ARCTAN function. Phase unwrapping is the process in which the absolute value of

the phase angle of a continuous function that extends over a range of more than 2π (relative to a

predefined starting point) is recovered. Phase unwrapping is illustrated in Figure 2.14.

(a)                                                                                               (b)

Figure 2.14: Wrapped and unwrapped phase for a linearly changing displacement field: (a) wrapped
phase, (b) unwrapped phase (Wang, 2003).

Numerous of phase unwrapping algorithms have been developed and categorized into two cat-

egories, path-following algorithms and least-squares algorithms. Path-following algorithms use lo-

calized pixel-by-pixel operations to unwrap the phase, while least-squares algorithms minimize a

global measure of the differences between the gradients of the input wrapped phase and those of the

unwrapped solution. For example, the Quality-guided algorithm (Xu and Cumming, 1996) and the

Flynn’s minimum discontinuity algorithm (Flynn, 1997) are two typical path-following approaches.

The Quality-guided algorithm relies completely on a quality map to determine the order in which

the phase data are unwrapped. It begins at a “seed” pixel and “grows” a region of unwrapped

pixels, beginning with the highest-quality pixels and ending with the lowest -quality. The resulting

unwrapping path depends on the quality map. The best results have been obtained with quality
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maps defined by the correlation coefficients or phase derivative variances.

The Flynn’s minimum discontinuity algorithm works with or without a quality map. It finds the

unwrapped surface that is congruent to the unwrapped phase and whose discontinuities (neighboring

pixels whose difference exceeds π radians in magnitude) are minimal in some sense. The algorithm

utilizes a tree-growing approach that traces paths of discontinuities in the intermediate unwrapped

surface, detects the paths that form loops, and adds multiples of 2π to the phase values enclosed by

the loops to reduce the number of discontinuities. It performs this process iteratively until no more

loops are detected. The process is guaranteed to converge to an optimal solution.

The path-following algorithms work well when the original wrapped phase values do not have

any path inconsistencies (as is the case in virtually all practical 2D problems). Inconsistencies are

present when multiples of 2π cannot be added to each wrapped phase sample over a 2D grid to

eliminate all adjacent phase differences greater than π radians in magnitude. Least-squares algo-

rithms were developed to attack path-integral discrepancies in a robust manner. Pre-conditioned

conjugate gradient (PCG) method (Ghiglia and Romero, 1994) uses fast cosine transforms for 2D

unweighed least-squares phase unwrapping and iterative techniques for weighted least-squares phase

unwrapping in the case of regional phase noise, aliasing or measurement error, etc.

The choice of algorithm in practice depends on the characteristics of the phase data at hand.

In this thesis all three algorithms mentioned above have been tested. The PCG least-squares phase

unwrapping algorithm provided the best performance and will be introduced in detail in Section

3.3.4.

2.6.3 Carrier Removal Technique

In fringe projection profilometry, a carrier fringe pattern is projected onto an object surface to

encode depth information. A deformed fringe pattern captured by CCD camera can be expressed

more realistically as

I(x, y) = Im(x, y) + Ia(x, y) cos [2πf(x, y) + φ(x, y)] , (2.23)

where f is the frequency of the carrier fringe. The continuous phase distribution retrieved by the

phase unwrapping process contains both shape-related phases φ(x, y) and carrier fringe-related phase

components 2πf(x, y). Hence the carrier must be removed from the overall phase distribution for

evaluation of the phase, φ, of interest.
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A number of carrier-removal techniques have been developed, such as spectrum-shift, average-

slope, plane-fitting, reference-subtraction, phase-mapping, and series-expansion methods. Depend-

ing on the linearity of the carrier phase function 2πf(x, y), the carrier can be classified into two

types: linear carrier with f(x, y) being a first-order function of x or y, and nonlinear carrier with

f(x, y) being a higher-order function of x or y. Furthermore, if f(x, y) is related to only x or y,

i.e., the carrier fringe is in a specific direction, then it is called a one-dimensional (1-D) carrier; if

f(x, y) is related to both x and y, i.e., the carrier fringe is in an arbitrary direction, then it is called

two-dimensional (2-D) carrier.

The average-slope approach removes the carrier’s phases by subtracting the first derivative (av-

erage slope) from an unwrapped phase map. It is applicable to 1-D carrier only. The reference-

subtraction approach requires individual measurement of an object and a reference plane. The

unwrapped phase maps of the object and reference plane are calculated. The reference phase map

contains only the carrier phase component, while the object phase map has both carrier and shape-

related phases. Subsequently, the subtraction of the reference phase map from the object phase map

gives the phase distribution of the object profile. This method is robust whatever features of a carrier

(1-D or 2-D, linear or nonlinear) are obtained by measurement of the reference plane. Hence the

method is generally applicable to diverse systems geometries. However the disadvantages of using

two sets of recordings hinders application on measurements that require a high data-recording speed.

Another undesirable outcome of reference subtraction is that the phase measurement uncertainty is

doubled in the subtraction process.

Table 2.1: A comparison of carrier-removal techniques (Quan et al., 2006).

Technique 1-D 2-D Linear Nonlinear Measurement No. of
uncertainty measurements

Spectrum shift Y Y Y N Not affected 1
Average slope Y N Y N Not affected 1
Plane fitting Y Y Y N Not affected 1
Reference subtraction Y Y Y Y Magnified 2
Phase mapping Y N Y Y Magnified 1
Series expansion Y Y Y Y Not affected 1

Table 2.1 shows a comparison of the capabilities of the various carrier-removal techniques. It can

be seen that except for the average-slope and phase-mapping approaches, all the other techniques

are capable of removing 2-D carriers. Among the techniques that can handle nonlinear carriers,

only the series-expansion method does not magnify the phase measurement uncertainty. Generally,

if the Fourier-transform method is used to retrieve a phase map and a linear carrier is inherent in
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the system geometry, the spectrum-shift approach should be applied for carrier removal because it

requires minimal additional computation. If the phase-shifting algorithm is used to extract phase

data, the plane-fitting approach becomes a better choice, since a least squares fitting process is nor-

mally faster and more accurate than the process of Fourier transform, filtering, and inverse Fourier

transform.

In a parallel illumination setup, the carrier phase component is usually linear, and the projected

fringes maintain equal spacing. The illumination from an LCD projector is nonparallel (divergent

for large objects and convergent for small objects), and fringe spacing is not constant. As far as

a nonlinear carrier is concerned, the series-expansion method is considered first, as it outperforms

other techniques in several aspects, such as experimental simplicity, accuracy, and automation. A

major advantage of the series-expansion approach is that it is generally applicable to different mea-

surement geometries. It also enables a high level of automation that requires little manual interven-

tion. Furthermore, as a series function instead of measurement data is subtracted from the overall

phase distribution, the measurement uncertainty will not be affected. However, the series-expansion

method is valid only when phase data on a reference plane are retrievable or the measured object

has a self-reference. Details of applying the series-expansion technique for carrier phase removal will

be described in Section 3.3.5.
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Chapter 3

Experimental Studies

This chapter describes the experimental setup and the procedures to examine wrinkle onset and

measure wrinkle profiles in rectangular thin membranes under uniaxial tension loading. The prop-

erties of the silicone membrane is characterized. The fringe projection method, four-frame phase-

shifting technique, PCG phase unwrapping algorithm and series-expansion carrier removal approach

are integrated as one inclusive method for non-contact full-field measurement of wrinkling profiles.

Membranes of different dimensions were investigated at different levels of tensile strain.

3.1 Membrane Material

Many kinds of dielectric elastomers were pre-selected as membrane candidates, such as polyurethane,

polyethylene (LDPE, HDPE and UHMW), polyester (PET), fluoropolymer (PFA, FEP, PTFE and

PVDF), and rubber (latex rubber and silicone rubber). After some preliminary tests, the silicone

rubber sheets provided by Specialty Silicone Fabricators (Paso Robles, CA) were selected for our

study because it has

1. Appropriate thickness. The thickness has to be sufficiently small for membrane structures

to exhibit surface instability since the bending stiffness is greatly dependent on the thickness

of shell-like structures. However, very thin membranes tend to fold when peeled off from a

rigid plastic carrier due to self-adhesion and electrostatic forces, and thus causes difficulty in

controlling the unstressed morphology.

2. Low Young’s modulus and negligible plasticity and viscoelasticity. Membranes with low

Young’s modulus have small bending stiffness and thus easily get wrinkled. Our study focuses

on the elastic deformation and tries to avoid irreversible wrinkling due to plastic deformation.

3. Appropriate optical properties to provide good sensitivity and accuracy to the optical shape

measurement. The ideal surface would be opaquely white and non-reflective for the fringe
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projection method.

4. Good dielectric properties. The concept of suppressing wrinkling instability by dielectric ac-

tuation will be introduced in Chapter 6. This actuation effect requires membrane material to

have large dielectric constant and high breakdown strength.

Table 3.1: Material certification of silicone (SSF-MLTN-950) supplied by Specialty Silicone Fabri-
cators (Paso Robles, CA).

Description Test results Units Specification limits
Low High

Specific gravity 1.14 N/A 1.11 1.16
Durometer1 45 Shore A2 45 55
Tensile strength 1404 PSI 1000 N/A
Elongation 673 % 400 N/A
Tear strength 218 PPI 200 N/A

aDurometer is one of several ways to indicate the hardness of a material, defined as
the material’s resistance to permanent indentation.

bThere are several scales of durometer, used for materials with different properties.
The two most common scales, using slightly different measurement systems, are the
ASTM D2240 type A and type D scales. The A scale is for softer plastics, while the D
scale is for harder ones. However, the ASTM D2240-00 testing standard calls for a total
of 12 scales, depending on the intended use; types A, B, C, D, DO, E, M, O, OO, OOO,
OOO-S, and R. Each scale results in a value between 0 and 100, with higher values
indicating a harder material.

Silicone rubber (SSF-MLTN-950, Specialty Silicone Fabricators, Inc.) membranes of thickness

ranging from 0.002 inch to 0.05 inch (0.05 mm to 2.00 mm) are available. They are supplied with

protective covers on both sides. On one side a rigid plastic sheet is attached as a carrier to keep the

silicone film from getting tangled up and stuck together, while on the other side a soft nonsticky

plastic film is covered to keep the exposed surface from dust or scratches. Also on this side the

rolling direction can be recognized by observing the surface texture (parallel fine lines). Table 3.1

lists several material properties provided by the material vendor. Preliminary tests on different

thicknesses showed that 0.004 inch (0.1 mm) is an appropriate thickness for this study. All the

membranes are 0.004 inch thick in this study unless specified otherwise. Samples of dimension 20

mm long, 6 mm wide were cut in two orthogonal directions, the rolling direction and the direction

normal to it, in order to check for anisotropy.

Figure 3.1 shows the results of the uniaxial tensile test performed on an INSTRON material test-

ing machine at a constant strain rate, 0.01 s−1.1 In Figure 3.1(a) samples cut in both directions were

loaded up to 40% strain and then unloaded. Rubber-like nonlinear material behavior is observed
1The strain-rate dependence of the stress-strain curve was not tested. However the strain-rate of 0.01 s−1 is

sufficiently small to achieve repeatability.
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Figure 3.1: Uniaxial tensile test results for silicone rubber (a) tensile strain up to 40%, (b) tensile
strain up to failure.

with hysteresis loops between the loading and unloading curves indicating the Mullins effect of the

silicone rubber. In Figure 3.1(b) samples cut in both directions were loaded up to failure. Within a

larger strain range, the silicone behaves more like a linear elastic material with the rolling direction

slightly less stiffer than its orthogonal direction. A linear fit of the stress-strain curve yields the

Young’s modulus, and Poisson’s ratio is determined by evaluating the compressibility of the silicone

in ABAQUS using the same set of tensile test data. The details will be discussed in Section 4.4.1.

The material properties determined from these tests form the basis of the material models in the

later finite element analysis.

3.2 Uniaxial Tension Testbed

3.2.1 Design and Structural Details

A frame was designed and fabricated in polycarbonate to conduct uniaxial tension test on rectangu-

lar membranes. For measurement convenience and to avoid sag due to gravity, the membranes are

clamped in the vertical plane and stretched upright as shown in Figure 3.2. The clamping boundary

condition is enforced on the two short edges of the membrane. Each edge is sandwiched by a pair

of grip pads with double-sided adhesive tape attached on interior side and screws fastened from

exterior side to ensure that no slippage occurs. The upper grip (moving edge grip) is pinned to a

threaded rod through three pin holes as shown in Figure 3.3(a). When the membrane is loaded,

the two arms of the upper grip are guided by the side rails to keep the load in-plane. The lower

grip (fixed edge grip) is mounted on a supporting unit which is carried by a frictionless linear guide

(NDN 1-30.20, Schneeberger) enabling it to glide smoothly to minimize the unwanted shear stress

due to misalignment in the mounting process, as shown schematically in Figure 3.3(b). The side

rails are graduated so that the tensile strain can be determined from the initial and final position
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of the moving edge of the membrane. The design drawings of the testbed is attached in Appendix A.

(a) (b)

Figure 3.2: The uniaxial tension testbed: (a) 3D schematic assembly drawing, (b) photograph of
the apparatus fabricated in polycarbonate.

3.2.2 Membrane Set-up

Membranes were first cut into rectangular shapes using a paper cutter before being peeled off from

the carrier. The two short edges were then sandwiched between a pair of plastic strips with double-

side tape adhered from both interior sides. The plastic strip was tailored to be a little longer than

the membrane width and 10 mm wide, as shown in Figure 3.4. To prevent the membrane from

slipping out when stretched, membrane edges were stapled together with the plastic strips. These

steps prepare the membrane with rigid edges and make the mounting easier. Next, the membrane

sample was mounted on the testbed by clamping the rigid portion with the upper and lower grips.

The whole process of preparing and mounting the sample took many attempts because the silicone

membrane is very soft and slightly adhesive. Imperfect initial configuration caused by misalignment

at the boundary can alter the loading path and wrinkle pattern.
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(a) (b)

Figure 3.3: (a) The upper and (b) the lower grips.

Figure 3.4: A 101.6× 50.8 mm (4 × 2 inch) membrane sample.
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3.2.3 Experimental Procedure

At the beginning of a test, several load-unload cycles were performed to verify that the membrane

was still within its elastic range and that no slippage had occurred in the clamping grips. The

check was first performed by simple visual inspection, then by optical measurement. It was found

that the membranes exhibit more consistent elastic characteristics after being pre-stretched in a

few load cycles. After a few initial load cycles, the membrane was loaded. The continuous mem-

brane behavior was recorded in video using a CCD camera (UP-2000, Uniq). At several designated

displacement levels (usually every 0.5 inch or 12.7 mm), the out-of-plane displacement was measured.

3.3 Measurement of Wrinkles

3.3.1 Optical system

Figure 3.5: A schematic of the experimental setup.

As we discussed earlier in Section 2.6, the fringe projection method was selected for measuring the

wrinkle profile. An optical system was assembled comprising of a CCD camera facing the membrane

and a LCD projector (EP719, Optoma) projecting from a certain angle, as shown in Figure 3.5. The

CCD provides a resolution of 1620× 1236 pixels and 16 Hz frame rate. A lens (18-55mm f/3.5-5.6G

ED AF-S DX, Nikon) is mounted on the CCD camera to provide adaptable focus and aperture. The
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video signal from the CCD camera is received by a digital frame grabber card (R3-CL, Bitflow) and

can be displayed on a monitor. The system uses transmitted, white-light illumination generated by

a 100 W incandescent light bulb. The LCD projector provides a resolution of 1024×768 pixels, each

of which can be set to a relative transparency of 0− 255. The matrix display builds up configurable

fringe patterns for projection and the fringes can be as small as 1×1 pixel for measurement of small

objects.

3.3.2 Fringe Projection Method

Figure 3.6: The geometry of the optical system for fringe projection method (Quan et al., 2001).

Figure 3.6 shows the optical geometry for projection and imaging system used in the experiment.

Points P and E are the center of the exit pupils for projection and the imaging optics respectively.

If the distance between the camera and the object reference plane is large compared to the pitch of

projected fringes and under normal viewing conditions, the phase and height relationship is readily
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derived using the well-known method of triangulation (Quan et al., 2001),

h(x, y) =
L

d
AC =

L

d

φ(x, y)
2πf

= kφ(x, y), (3.1)

where L is the distance between the camera and the reference plane, d is the distance between the

camera and projector, f is the spatial frequency of the projected fringes in the reference plane,

k = L/(2dπf) is the coefficient related to the configuration of the optical measuring system and

φ(x, y) is the phase which contains the surface out-of-plane deformation information.

The sensitivity of the system depends on the angle between the axes of the projector and the

camera, and the direction from which the fringes are projected. In general the sensitivity increases

with the angle. An increase in the angle would however create shadow areas on the object, e.g.,

behind a crest on a wrinkled membrane. In the experiment, an angle of 30◦ was chosen for the

measurement. The fringes were projected to the membrane surface in the direction of ±45◦ to the

wrinkles, which were found to be aligned with the tensile load. The projector was placed at a

position with minimal distance from the object within its focal range such that the resolution of the

projection is optimized. The distance between the camera and the object can be adjusted to attain

the desired field of view. Every adjustment of the position of any optical component was followed by

a recalibration of the optical system. For better consistency, the configuration of the optical system

was fixed for all the tests and the parameters listed in Table 3.2 were achieved for the measurement.

Table 3.2: Summary of measurement parameters.

Field of view 400 × 300 mm
Spatial resolution 200 μm/pixel
Resolution of measurement 10 μm (1/10 of the membrane thickness)
Range of measurement 0-5 mm
Dynamic/static measurement? static or quasi-static

3.3.3 Phase-shifting Technique

To obtain the phase at each pixel φ(x, y) on the membrane surface we used the four-frame phase-

shifting technique. As shown in Figure 3.7 four phase-shifted sinusoidal fringe patterns with phase

shifts of 0, π/2,π and 3π/2 within one period of the fringe were generated in MATLAB, displayed

as images slides in computer, projected onto the object surface as seen in Figure 3.8 and captured

by the CCD camera.

The following equations describe the four successive intensity distributions from frames with
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π/2
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3π/2

sinusoidal intensity distribu�on

Figure 3.7: Four fringe patterns with sinusoidal intensity distribution and π/2 phase shift.

(a)

(b)

Figure 3.8: Fringes projected onto (a) a cone of known shape on a reference plane (for later cali-
bration), (b) a 254 × 101.6 mm (10 × 4 inch) membrane sample on the testbed subjected to 10%
strain.
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phase shift between each frame:

I1(x, y) = Im(x, y) + Ia(x, y) cos [φ(x, y)]

I2(x, y) = Im(x, y) + Ia(x, y) cos [φ(x, y) + π/2]

I3(x, y) = Im(x, y) + Ia(x, y) cos [φ(x, y) + π]

I4(x, y) = Im(x, y) + Ia(x, y) cos [φ(x, y) + 3π/2] , (3.2)

where Im(x, y) is the average intensity (background), Ia(x, y) is the intensity modulation, and φ(x, y)

is the phase to be determined. By solving the above four equations simultaneously the phase at each

detecting point (x, y) in the image can be obtained.

ψ(x, y)1 = arctan
I4(x, y) − I2(x, y)
I1(x, y) − I3(x, y)

. (3.3)

Figures 3.9 and 3.10 illustrate the wrapped phase of the cone and the wrinkled membrane corre-

sponding to their configurations in Figure 3.8 (a) and (b) respectively. It is noted that periodic 2π

discontinuities exist throughout the phase map.
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Figure 3.9: Wrapped phase of the cone on a reference plane (Figure 3.8(a)) in the range [−π, π].

Since phase calculation by the computer gives principal values ranging from −π to π, the phase

distribution is wrapped into this range and consequently, has discontinuities with 2π phase jumps for
1ψ is principal values of φ in [−π, π].
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Figure 3.10: Wrapped phase of the 254 × 101.6 mm (10 × 4 inch) membrane (Figure 3.8(b)) under
10% strain in the range [−π, π].

variations larger than 2π. These discontinuities can be corrected by phase unwrapping algorithms.

3.3.4 Phase Unwrapping Algorithm

Given the wrapped phase values ψi,j
1, we wish to determine the unwrapped phase values φi,j at the

same grid locations by applying a phase unwrapping algorithm. The three typical two-dimensional

phase unwrapping algorithms introduced in Section 2.6.2 were tried and the best performance was

given by the PCG method.

The PCG method looks for φi,j such that the phase differences of φi,j agree with those of ψi,j

in the least-squares sense. We define a wrapping operator W that wraps all values of its argument

into the range (−π, π) by adding or subtracting an integer number of 2π rad from its argument.

Therefore, for example, W{φi,j} = ψi,j .

Next we compute two sets of phase differences: those differences with respect to the i index and

those with respect to the j index. Specifically, from our known values of the wrapped phase ψi,j , we

1i, j are used instead of x, y mentioned in the previous section for indexing the pixel.
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compute the following wrapped phase differences:

Δx
i,j = W{ψi+1,j − ψi,j}, i = 0...M − 2, j = 0...N − 1,

Δx
i,j = 0, otherwise; (3.4)

Δy
i,j = W{ψi,j+1 − ψi,j}, i = 0...M − 1, j = 0...N − 2,

Δy
i,j = 0, otherwise; (3.5)

where the x and y superscripts refer to differences in the i and j indices, respectively. The solution,

φi,j , that minimizes

M−2∑
i=0

N−1∑
j=0

(φi+1,j − φi,j − Δx
i,j)

2 +
M−1∑
i=0

N−2∑
j=0

(φi,j+1 − φi,j − Δy
i,j)

2, (3.6)

is the least-squares solution.

The solution to the least-squares phase unwrapping problem above is given by the following

linear equation:

φi+1,j + φi−1,j + φi,j+1 + φi,j−1 − 4φi,j = Δx
i,j − Δx

i−1,j + Δy
i,j − Δy

i,j−1. (3.7)

A simple manipulation of Eq. (3.7) yields

(φi+1,j − 2φi,j + φi− 1, j) + (φi,j+1 − 2φi,j + φi,j−1) = ρi,j , (3.8)

where

ρi,j = (Δx
i,j − Δx

i−1,j) + (Δy
i,j − Δy

i,j−1). (3.9)

Eq. (3.8) is a discretization of Poisson’s equation on a rectangular M ×N grid,

∂2

∂x2
φ(x, y) +

∂2

∂y2
φ(x, y) = ρ(x, y). (3.10)

It is important to note that Eq. (3.8) is valid for all indices on the rectangular grid, i = 0...M−1, j =

0...N − 1, and that the appropriate phase differences that are used to compute ρi,j in Eq. (3.9) are

nonzero only if they come from phases entirely within the rectangular grid. This requirement results

directly from the least squares formulation and forms the discrete equivalent of the imposition of
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Neumann boundary conditions on Poisson’s equation. Specifically we require that

Δx
−1,j = 0, Δx

M−1,j = 0, j = 0...N − 1, (3.11)

Δy
i,−1 = 0, Δy

i,N−1 = 0, i = 0...M − 1. (3.12)

To solve Eq. (3.7) we use a specific form of a cosine expansion that leads to a fast discrete cosine

transform (DCT) implementation. A specific form of the 2D discrete cosine transform pair is as

follows.

Forward 2D DCT:

Cm,n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑M−1
i=0

∑N−1
j=0 4xi,j cos

[
π

2Mm(2i+ 1)
] [

π
2N n(2j + 1)

]
,

0 ≤ m ≤M − 1; 0 ≤ n ≤ N − 1

0 otherwise.

(3.13)

Inverse 2D DCT:

xi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
MN

∑M−1
m=0

∑N−1
n=0 w1(m)w2(n)Cm,n cos

[
π

2Mm(2i+ 1)
]
cos

[
π

2N n(2j + 1)
]
,

0 ≤ i ≤M − 1; 0 ≤ j ≤ N − 1

0 otherwise.

w1(m) = 1/2, m = 0,

w1(m) = 1, 1 ≤ m ≤M − 1,

w2(m) = 1/2, n = 0,

w2(m) = 1, 1 ≤ n ≤ N − 1. (3.14)

The above cosine expansion imposes the Neumann boundary conditions, ∇φ · n = 0, automatically

and leads to the exact solution of Eq. (3.8) as shown below.

Let us expand the desired solution φi,j in the form of Eq. (3.14):

φi,j =
1

MN

M−1∑
m=0

N−1∑
n=0

w1(m)w2(n)φ̂m,n cos
[ π

2M
m(2i+ 1)

]
cos

[ π

2N
n(2j + 1)

]
, (3.15)

and substitute Eq. (3.15) into Eq. (3.7). Performing a similar expansion and substitution for the

right-hand side of Eq. (3.8) and rearranging the result yields the following exact solution in the

DCT domain:

φ̂ =
ˆρi,j

2
(
cos πi

M + cos πj
N − 2

) . (3.16)

Now the unwrapped phase φi,j is easily obtained by the inverse DCT of Eq. (3.16).
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It is easily shown by simple substitution that the expansion given by Eq. (3.15) automatically

imposes the discrete equivalent of the required Neumann boundary conditions:

φ0,j − φ−1,j = 0,

φM,j − φM−1,j = 0, j = 0...N − 1;

φi,0 − φi,−1 = 0,

φi,N − φi,N−1 = 0, i = 0...M − 1; (3.17)

The 2D unweighted phase unwrapping algorithm is summarized as follows:

1. Perform the 2D forward DCT (Eq. (3.13)) of the array of values, ρi,j , computed by Eq. (3.9),

to yield the 2D DCT values ρ̂i,j .

2. Modify the values ρ̂i,j (Eq. (3.16)) to obtain φ̂i,j .

3. Perform the 2D inverse DCT (Eq. (3.14)) of φ̂i,j to obtain the least-squares unwrapped phase

values φi,j .
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Figure 3.11: Unwrapped phase of the cone (Figure 3.9) on a reference plane.

Figures 3.11 and 3.12 demonstrated the unwrapped phase map of the cone and the 254× 101.6

mm (10 × 4 inch) membrane under 10% tensile strain. The 2π discontinuities have been corrected



47

150

100

50

0y (mm)

200

250

300

0
50
x (mm)

100

Figure 3.12: Unwrapped phase of the 254×101.6 mm (10×4 inch) membrane (Figure 3.10) wrinkled
under 10% strain.

and continuous phase planes are obtained. However the height of the object is not ready to be

calibrated according to Eq. (3.1) yet. A nonlinear carrier which originates from the divergent or

uncollimated illumination of the projector has to be removed.

3.3.5 Carrier Removal Technique

To cope with the nonlinear carrier problem, the series-expansion technique (Quan et al., 2006) is used

to remove the carrier’s phase from the unwrapped phase map. The rigorous mathematical expression

of a nonlinear carrier is normally complicated and related to various system geometrical parameters.

Therefore, it is impossible to quantify unknown geometrical parameters directly. However, it is

found that a carrier function can be approximated by a series expansion

φc(x, y) = a0,0 +a0,1x +... +a0,N−1x
N−1 +a0,Nx

N

+a1,0y +a1,1xy +...

+... +... +...

+aN−1,0y
N−1 +aN−1,1xy

N−1

+aN,0y
N ,

(3.18)
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where am,n are coefficients of elements in the series. Eq. (3.18) is a series expansion of a 2-D

carrier. This indicates that whatever the form of a specific carrier function, it can be estimated by

fitting a series function to experimentally obtain the phase data on a reference plane. Hence, the

quantification of geometrical parameters in various situations can be unified into a simple process

of fitting a curved surface (2-D carrier). In Eq. (3.18) the mathematical expression for a curved

surface of the N th order has (N +1)(N + 2)/2 unknown coefficients. The terms that carry the form

xpxypy (px and py represent the power of x and y, respectively) take into account the rotation in

the direction of the carrier fringes and distinguish the surface fitting from a simple combination of

the line fittings in the x and y directions individually. An error function is defined as

Ec(a0,0, ..., a0,N , ..., aN,0) =
∑

(x,y)∈U

[φc(x, y) − φc,exp(x, y)]
2
, (3.19)

where φc represents the series, U denotes the domain of all points on the reference plane and

φc,exp(x, y) refers to the experimentally obtained unwrapped phase value. To minimize the error,

the partial derivatives of Ec with respect to each of the unknown coefficients are set to zero. This will

produce (N + 1)(N + 2)/2 equations, from which the unknowns can be solved. On substituting the

calculated coefficients into Eq. (3.18), one can obtain the estimated carrier phase function in terms

of the minimum error. When the carrier phases are subtracted from the overall phase distribution,

the carrier phase component is removed.

A higher value of N would provide a better approximation to the nonlinear carrier. However, it

should be noted that beyond a certain value of N , the carrier estimation accuracy will not improve

any further, since subsequent improvement would be smaller than phase measurement uncertainty.

From the study of Chen and Tay (2006), it was found that second-order (N = 2) curve fitting pro-

vides sufficient accuracy for most applications. It is important to note that data points used for the

estimation of the carrier function should be in the vicinity of the reference plane. Hence this would

require a certain degree of human intervention to distinguish the reference plane from the test object.

A MATLAB function was developed for N = 2 based on the above mechanism. It first displays

the image of the object captured by the CCD camera and then requests the user to select the region

of interest within which the data points are used for the estimation of the carrier function, and the

vicinity is considered as the reference plane or self-reference. Two examples are shown in Figure

3.13. For the cone on a reference plane, a polygon box was drawn to enclose the circumference

around the base of the cone tangentially. For the wrinkled membrane, no flat reference plane was

placed beneath it. However it was found that membranes neither wrinkle near the two clamped

edges nor at the two free edges. Hence a rectangular box can be drawn to separate a narrow joint
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border area from the central region of the membrane.

(a) (b)

Figure 3.13: Selection of region for the estimation of the carrier phase using polygon tools in MAT-
LAB, (a) the standard cone on a reference plane (Figure 3.8(a)), (b) the 254 × 101.6 mm (10 × 4
inch) membrane (Figure 3.8(b)) partially wrinkled under 10% tensile strain.

The carrier’s phases extracted using the series-expansion method for the two examples are shown

in Figures 3.14 and 3.15, which were then subtracted from the unwrapped phase map (Figures 3.11

and 3.12) to obtain the genuine phase information. Figures 3.16 and 3.17 illustrate the phases of

the cone and the membrane, which reflect the real shape of the objects.

3.3.6 Calibration Process

The last step of the optical measurement is to find the proportionality k in Eq. (3.1), which relates

the height of the object to the phase with carrier removed. One way of calibrating is to shift the ob-

ject itself by a known distance and measure the corresponding phase change. In this work, however,

calibration was achieved by measuring a standard object with known dimensions. A standard cone

of diameter 92.8 mm and height 25.4 mm was used for calibrating both the in-plane and out-of-plane

shape. By multiplying the calibration coefficient k with the phase, eventually the surface profile of

the cone and the membrane were obtained as a 3D contour map as shown in Figures 3.18 and 3.19.

To evaluate the performance of the integrated optical method, a cross-sectional plot of the cone

is shown in Figure 3.20. Accuracy on the order of 0.01 mm was achieved, which is sufficient for the
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Figure 3.14: Carrier phase of the cone (Figure 3.13(a)) on a reference plane.
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Figure 3.15: Carrier phase of the 254× 101.6 mm (10× 4 inch) membrane (Figure 3.13(b)) wrinkled
under 10% strain.
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Figure 3.16: Phase of the cone (Figure 3.13(a)) on a reference plane after removal of the carrier -
top view.
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Figure 3.17: Phase of the 254× 101.6 mm (10× 4 inch) membrane (Figure 3.13(b)) wrinkled under
10% strain after removal of the carrier - top view.
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Figure 3.18: Shape of the cone (Figure 3.13(a)) on a reference plane after calibration.
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Figure 3.19: Shape of the 254.6 mm (10× 4 inch) membrane (Figure 3.13(b)) wrinkled under strain
10%.
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study of 0.1 mm membranes. The accuracy can be improved by reducing the pitch of the fringes.

However there is a trade-off between the resolution of measurement and the field of view. In order

to capture finer fringes in good contrast and avoid Moiré effects, the CCD camera has to be placed

closer to the object and record images of a smaller area rather than a full-field.
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Figure 3.20: Cross section of the cone through the apex.

3.4 Observations

3.4.1 Wrinkle Onset

One interesting question that arises with regard to thin membrane structures is their critical buckling

load, which quantitatively describes the resistance of the membrane structure to external loading. In

our study the “load” is represented by the tensile strain applied to the membrane, and thus critical

buckling strain is used instead.

Membrane samples of 27 different in-plane dimensions and uniform thickness of 0.004 inch (0.1

mm) were tested on the uniaxial tension testbed. Ideally the initial configuration of an unstressed

membrane is a flat plane, but in reality it is usually partially taut and partially slack due to the

imperfections induced in the sample preparation and mounting stages, and the viscous relaxation
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from previous loading cycles. This is especially true for large membranes, which appeared to wrinkle

immediately after the tensile load was applied. Whereas small membranes became taut and flat once

being stressed longitudinally and remained free of wrinkles as they were stretched. Therefore, it was

difficult to determine the strain at which the first wrinkle forms. Instead, we qualitatively compared

the wrinkling onset among the membranes of different dimensions in Figure 3.21.
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Figure 3.21: Wrinkling onset for membranes of 27 different in-plane dimensions (AR=Aspect Ratio).

Evidence of wrinkling onset is marked at each dimension tested. The green circles represent the

dimensions that wrinkled as the tension load was applied; while the red crosses represent the dimen-

sions on which wrinkling was not observed and the membrane surface stayed flat up to 100% strain.

The dashed lines of different slopes divide the dimension map into different aspect ratio zones so that

one can understand the effect of both the membrane size and the aspect ratio on the wrinkling onset.

At fixed aspect ratio, the membranes in larger sizes exhibited lower surface stability than those

in smaller sizes, and were more likely to wrinkle. Membranes in intermediate aspect ratio, i.e.,

1.5 ≤ AR ≤ 4), exhibited lower surface stability than those in extreme aspect ratios, i.e., AR=1 or

AR=5, corresponding to the membranes in square shape and slender shape. Among all the wrinkled

samples, the smallest one (101.6 × 50.8 mm or 4 × 2 inch) had an aspect ratio of 2.
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3.4.2 Wrinkle Profile

For each of the 27 membrane samples, a series of measurements were taken at discrete strain levels

during the tests. Let us take a close look at the 254 × 101.6 mm (10 × 4 inch) membrane, which

was the largest sample among those that have been tested and exhibited the largest wrinkle ampli-

tude. The overall wrinkle pattern is shown in Figure 3.22 by plotting a series of contour maps of

the full-field1 out-of-plane displacement at 0% (initial configuration), 5%, 10%, 15%, 20% and 30%

strains.2 Initially the unstressed membrane is slack in the central region and is not flat. Three wrin-

kles appear right after the membrane is stretched, and align themselves with the loading direction

in a symmetric manner with the largest crest in the middle. This pattern and the number of the

wrinkles remained unchanged during the entire loading process.
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Figure 3.22: Wrinkling profiles of 254× 101.6 mm (10× 4 inch) membrane under strains up to 30%.

The detailed wrinkle profiles are demonstrated in Figure 3.23 by plotting the cross section along

the transverse midplane of the membrane. If the imperfect initial configuration of the membrane is

neglected, as the membrane is loaded uniaxially, the wrinkle amplitude suddenly increases and then

gradually decreases; whereas the wrinkle wavelength monotonically decreases.

The wrinkles are not of uniform amplitude. Their profiles can be fit into damped sinusoidal

functions in the form of w(x) = A exp(β|x|) cos(2πfx), where A is the wrinkle amplitude, β is the

damping factor, and f is the frequency. For instance, for the wrinkle profile at 10% strain, A = 0.46,

β = −0.087, and f = 0.076 as shown in Figure 3.24.

1At higher strains the upper portion of the membrane was stretched out of the field of view of the CCD camera
and thus was not included in the measurement.

2Due to the limited length of the side rail, the testbed allows only 30% tensile strain to be applied on the 10 inch
(254 mm)long membrane. Also, the field of view of the CCD camera was limited to 400 mm horizontally and 300 mm
vertically to achieve good spatial resolution.
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Figure 3.23: Wrinkle profile along the transverse midplane of the 254 × 101.6 mm (10 × 4 inch)
membrane under several tensile strains.
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Figure 3.24: The damped sinusoidal fit of the wrinkle profile along the transverse midplane of the
254 × 101.6 mm (10 × 4 inch) membrane under 10% tensile strain.
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More details of the wrinkles and wrinkle patterns of other membrane dimensions will be revisited

and discussed in Chapter 5 when compared with the results from the numerical simulations.
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Chapter 4

Numerical Studies

This chapter presents a detailed numerical study of rectangular membranes in uniaxial tension using

the commercial finite element software ABAQUS (Hibbitt et al., 2001). This study aims to capture

the important characteristics of wrinkling of thin membranes observed in the physical model, using

the thin shell finite element model. A three-step analysis is introduced. Preliminary analyses were

carried out to address several simulations issues related to modeling of thin silicone membranes,

such as material model, element type, mesh density, imperfection sensitivity and stabilizing factor

to serve as a benchmark for subsequent analysis. Wrinkle onset and wrinkle profiles of membranes

in different dimensions are discussed based on the results of pre-buckling eigenvalue analysis and

post-buckling analysis respectively.

4.1 Finite Element Modeling Using ABAQUS

Wrinkling of thin membranes is highly geometrically nonlinear and involves instability in the struc-

ture. To simulate this type of problem generally requires a nonlinear solution method and a fully

dynamic, transient analysis (or at least a pseudo-dynamic simulation). The main non-linear solution

method in ABAQUS is the full Newton-Raphson method. The solution is usually obtained incremen-

tally by solving a sequence of non-linear equilibrium equations with increasing load or displacement.

An alternative solution for solving post-buckling snap-through problems is the arc-length method,

also known as the modified Riks method in ABAQUS. In this approach, a sequence of equilibrium

states is sought in the space defined by the nodal displacement parameters and the loading parame-

ter. Both parameters within each increment are used to obtain equilibrium solutions, instead of only

controlling a single load or displacement increment as in the Newton-Raphson method. Previous

studies (Wong and Pellegrino, 2006) showed unsuccessful attempts to use the Riks method due to

a highly localized instability. Hence monotonic displacement incrementation is the only viable option.
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The bending stiffness of a membrane, although small, plays a key role in determining the shape

and amplitude of the wrinkles. It is essential that it should be included in any models that aim to

capture this kind of detail. Therefore the family of thin shell elements was employed for this study.

The specific type of thin shell element will be discussed later in Section 4.4.2.

4.2 Analysis Procedure

The flowchart in Figure 4.1 summarizes the complete simulation procedure.

Eigenvalue Pre-buckling analysis
(Linear perturba�on analysis)

Post-buckling analysis
Stress distribu�on

Buckling load

Buckling modes

Wrinkling profiles

Construct FE model
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Figure 4.1: Flow chart for wrinkling analysis in ABAQUS.

4.2.1 Initial Conditions

The initial stage of the analysis applies a small uniform prestress to the membrane to stabilize it.

The shell elements are thin, hence their bending stiffness is so small that obtaining meaningful re-

sults can be a real challenge when in-plane loads are applied. It is important that the amount of

prestress applied at this stage should be large enough to successfully steer the subsequent buckling

mode analysis, but without significantly affecting the final results.

To apply the prestress, a edge displacement is prescribed to attain the level of prestress required.

After applying the initial prestress, a static, geometrically non-linear equilibrium check is performed.
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This check allows a small redistribution of the state of prestress, together with small in-plane dis-

placement.

4.2.2 Pre-buckling Eigenvalue Analysis

The next step of the analysis determines the buckling mode-shapes of this lightly pre-stressed mem-

brane. These modes are then used to seed small imperfections that trigger the formation of wrinkles

in the subsequent geometrically non-linear analysis.

An eigenvalue buckling analysis in ABAQUS (*BUCKLE) is used to predict the buckling load

and possible wrinkling modes of the membrane subject to its actual boundary conditions and load-

ing. Instead of forces, the load here is defined as an edge displacement.

In a general eigenvalue buckling problem we look for the loads for which the model stiffness

matrix becomes singular, so that the problem

KMNvM = 0 (4.1)

has nontrivial solutions. KMN is the tangent stiffness matrix when the loads are applied; vM are

the nontrivial displacement solutions; M and N refer to degrees of freedom of the whole model. Two

eigensolvers are available in ABAQUS to extract the eigenvalues, namely the Subspace iteration and

the Lanczos method.

For modeling thin membrane structure, the eigenvalue buckling problem is a little complicated

due to the prestress applied in the initial step. A prestress that is not large enough may lead to

two consequences: computation fails to converge, or only negative eigenvalues are reported in the

eigenvalue buckling analysis. The negative eigenvalues indicate that the structure would buckle if

the loads were applied in the opposite direction, e.g., membrane is more likely to buckle when the

tensile load is replaced by a compressive one. Such physical negative buckling modes can usually be

avoided by applying a sufficiently large preload before the buckling analysis. With Lanzcos eigen-

solver, one can get positive eigenvalues only by imposing a lower limit to the eigenvalue.

The state of the model at the end of the initial step, during which preload (“dead” loads), PN ,

is applied to the membrane as edge displacement, is identified as the base state of the buckling

step. The buckling loads are calculated relative to the base state of the structure. An incremental

load (“live” load), QN , is defined in the eigenvalue buckling prediction step. The magnitude of
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this loading is not important; it will be scaled by the load multipliers, λi, found in the eigenvalue

problem: (
KNM

0 + λiK
NM
Δ

)
vM

i = 0, (4.2)

where KNM
0 is the stiffness matrix corresponding to the base state, which includes the effects of

the preloads, PN if any; KNM
Δ is the differential initial stress and load stiffness matrix due to

the incremental loading pattern, QN ; λi are the eigenvalues; vM
i are the buckling mode shapes

(eigenvectors); and i refers to the ith buckling mode. The buckling loads are then

P = PN + λiQ
N . (4.3)

Normally the lowest value of λi is of interest. The preload PN and perturbation load QN may be

of different types. In this study they are both in the form of edge displacement in the longitudinal

direction. The buckling mode shapes vi are normalized vectors and do not represent actual mag-

nitudes of deformation at critical load. They are normalized so that the maximum displacement

component has a magnitude of 1.0. These buckling mode shapes are often the most useful outcome

of the eigenvalue analysis since they predict the likely failure mode of the structure.

In an eigenvalue buckling prediction step ABAQUS/Standard first does a static perturbation

analysis to determine the incremental stresses, Δσ, due to QN . The stiffness matrix KNM
Δ cor-

responding to Δσ is then formed. In the eigenvalue extraction portion of the buckling step, the

stiffness matrix KNM
0 corresponding to the base state geometry is formed. Initial stress and the

load stiffness terms due to the preload, PN , are included and calculated based on the geometry of

the base state.

PN +λ1Q
N with λ1 being the lowest eigenvalue generally provide a good estimate for the critical

buckling load except for some structures with closely spaced eigenvalues, which can cause numerical

problems. A series of closely spaced eigenvalues indicates that the structure is imperfection sen-

sitive. An eigenvalue buckling analysis will not give accurate predictions of the buckling load for

imperfection-sensitive structures.

Because buckling analysis is usually done for “stiff” structures, it is not usually necessary to

include the effects of geometry change in establishing equilibrium for the base state. However, it

was found for some membrane dimensions, the preload has to be large enough in order to obtain

positive eigenvalues. In these cases the preload may induce significant geometry change in the base

state. Hence geometric nonlinearity feature in ABAQUS (*NLGEOM) is included for the base step

and throughout the whole analysis in each simulation.
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4.2.3 Post-buckling Analysis

After computing the buckling mode-shapes, a linear combination of some selected eigenmodes is

introduced into the structure as a geometric imperfection. The eigenvectors corresponding to the

lowest eigenvalues are often those of great interest in a structural analysis, and so normally the

imperfections that are seeded in a structure are obtained as linear combinations of these particular

eigenvectors. The choice of the imperfection modes that are introduced in the membrane has to

be based on the expected, final wrinkling pattern. Hence the chosen eigenmodes should at least

resemble the wrinkle pattern that the users aim to predict.

Once the appropriate eigenmodes shapes have been chosen, geometrical imperfections in the form

of out-of-plane deformations are introduced using the feature *IMPERFECTION in ABAQUS:

δz =
∑

i

φivi (4.4)

where vi is the ith eigenmode and φi is a scaling factor whose magnitude is chosen as a proportion

of the thickness of the membrane. Values between 1% and 100% of the thickness have been used,

considering different imperfection magnitudes to test the sensitivity of the predicted response.

A geometrically non-linear (*NLGEOM) incremental analysis is carried out under edge displace-

ment incrementation, using the Newton-Raphson solution method. To go past an instability, a

transient analysis was carried out using the stabilize function (*STABILIZE) available in ABAQUS.

This option automatically introduces pseudo-inertia and pseudo-viscous forces at all nodes when

an instability is detected, and simulates a possible dynamic response of the structure as it snaps

in order to obtain the first static equilibrium state after snapping has occurred. Then, instead of

continuing with the quasi-static analysis, ABAQUS automatically switches to a dynamic integration

of the equations of motion for the structure, thus reducing the likelihood of numerical singularities.

4.3 Description of the Finite Element Model

A finite element model of the rectangular silicone rubber membrane subjected to uniaxial tension

was constructed, based on the physical model described in Section 3.2. The dimension and material

properties of silicone film determined in Section 3.1 are summarized in Table 4.1. In ABAQUS two

sets of units are typically used, SI and SI(mm) as listed in Table 4.2. In our simulation all the

prescribed parameters were converted to SI(mm) units before implemented and this set of units has

been consistently used.
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Table 4.1: Basic parameters of the membrane model.

Parameters Physical model Numerical model
Length, L 10 inch 254 mm
Width, W 4 inch 101.6 mm
Thickness, t 0.004 inch 0.1 mm
Young’s modulus, E 106 Pa 1 MPa
Poisson’s ratio, ν 0.5a 0.5

aThe Poisson’s ratio is determined by evaluating the compressibil-
ity of the material in ABAQUS using the uniaxial tensile test data
presented in Section 3.1.

Table 4.2: Two sets of units commonly used in ABAQUS.

Quantity SI SI(mm)
Length m mm
Force N N
Mass kg tonne (103kg)
Time s s
Stress Pa (N/m2) MPa (N/mm2)
Energy J mJ (10−3J)
Density kg/m3 tonne/mm3

Figure 4.2 shows the finite element mesh and the boundary conditions used for a preliminary

analysis. It consists of 6477 four noded quadrilateral S4R thin shell elements and each element has

an aspect ratio of approximately one. The left edge of the membrane was fully constrained in all

its degrees of freedom by using the *BOUNDARY, ENCASTRE option in ABAQUS. On the right

edge only the translation in the x-direction was allowed . The top and bottom edges are free edges.

This set of boundary conditions remained active in all analysis steps.

4.4 Implementation of Finite Element Analysis

The detailed analysis procedure has been outlined in Section 4.2 and its implementation is given

below.

The initial step started by pre-tensioning the membrane by moving the right edge in the x-

direction. Then a geometrically non-linear equilibrium check was performed. This displacement

plays the role of preload (dead load) ahead of the linear perturbation analysis in order to provide
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Figure 4.2: The boundary conditions and mesh of the finite element model.

the thin membrane an initial geometric stiffness and enable us to obtain positive eigenvalues. The

amount of the preload may vary for different membrane dimensions. The smallest possible preload

for each dimension was sought and applied to the model.

In the next step, an eigenvalue buckling analysis, which essentially is a linear perturbation anal-

ysis, was carried out with a prescribed horizontal displacement of 1 mm at the right edge as an

incremental load (live load). The model boundary conditions were modified in this step by using the

*BOUNDARY, OP=MOD option in ABAQUS. The Lanczos solver was set such that only eigen-

modes corresponding to the positive eigenvalues are computed.

Several different combinations of eigenmodes and scaling factors were considered to test the sensi-

tivity of the model to the magnitude of the prescribed imperfections to be introduced in the detailed

wrinkling analysis. For each set, a complete wrinkling analysis was carried out, which involved the

creation of a new input file, with geometrical imperfections seeding to the pristine mesh by the

*IMPERFECTION command. The stabilize function was activated to facilitate the solution.

The final step consists of two analysis substeps. The first substep was similar to the initial pre-

tensioning step as described earlier, but this time with the right edge only displaced by 0.1 mm to

give an initial prestress of approximately 0.04 MPa. Note that in the initial step, a much higher pre-

stress value was required in order to avoid many localized modes (noise) in the eigenvalue buckling

analysis step. However, a smaller prestress was prescribed in the final analysis to provide sufficient

initial out-of-plane stiffness to membrane but without affecting the final results. Then in the second
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substep, the right edge was translated longitudinally by a prescribed distance to apply the tensile

strain, (i.e., 76.2 mm for 30% strain) while all the other degrees of freedom were constrained. An ex-

ample ABAQUS input file of a complete wrinkling analysis for this model is available in Appendix B.

4.4.1 Material Model

Silicone rubber, like most elastomers (solid, rubberlike materials) has very little compressibility com-

pared to their shear flexibility. ABAQUS provides a powerful tool to evaluate the compressibility of

elastomers by incorporating them in hyperelastic material models.

In ABAQUS hyperelastic materials are described in terms of a “strain energy potential”, U(ε),

which defines the strains energy stored in the material per unit of reference volume (volume in the

initial configuration) as a function of the deformation at that point in the material. There are sev-

eral forms of strain energy potentials available in ABAQUS to model approximately incompressible

isotropic elastomers: the Arruda-Boyce form, the Marlow form, the Ogden form, the polynomial

form, the reduced polynomial form, the Yeoh form, and the Van der Walls form.

The modified Mooney-Rivlin model is the most typical form in the polynomial class, whose strain

energy potential can be expressed as

U =
N∑

i+j=1

Cij(Ī1 − 3)i(Ī2 − 3)j +
N∑

i=1

1
Di

(Jel − 1)2i, (4.5)

where N is a material parameter; Cij and Di are temperature-dependent material parameters;

Ī1 and Ī2 are the first and second deviatoric strain invariants defined as Ī1 = λ̄2
1 + λ̄2

2 + λ̄2
3 and

Ī2 = λ̄−2
1 + λ̄−2

2 + λ̄−2
3 , where the deviatoric stretches λ̄i = J− 1

3 λi with λi being the principal

stretches, J being the total volume ratio, and Jel being the elastic volume ratio (which equals to J

when there is no thermal expansion). The initial shear modulus and bulk modulus are given by

μ0 = 2(C10 + C01), K0 =
2
D1

. (4.6)

The modified neo-Hookean model is the simplest (of order 1) form in the reduced polynomial

model with strain energy potential,

U =
N∑

i=1

Ci0(Ī1 − 3)i +
N∑

i=1

1
Di

(Jel − 1)2i, (4.7)

where Ci0 and Di are temperature-dependent material parameters. The initial shear modulus and



66

bulk modulus are given by,

μ0 = 2C10, K0 =
2
D1

. (4.8)

Another well-known model is the Ogden form with strain energy potential,

U =
N∑

i=1

2μi

α2
i

(λ̄αi
1 + λ̄αi

2 + λ̄αi
3 − 3) +

N∑
i=1

1
Di

(Jel − 1)2i, (4.9)

where μi, αi, and Di are temperature-dependent material parameters. The initial shear modulus

and bulk modulus for the Ogden form are given by,

μ0 =
N∑

i=1

μi, K0 =
2
D1

. (4.10)

ABAQUS/CAE automatically determines the optimal strain energy potential(s) based on the

experimental test data provided, computes all the coefficients in the strain energy potential formula,

and creates the stress-strain curve(s) of corresponding hyperelastic model(s) in the same plot with

the experimental curve. Usually one needs to obtain test data for the deformation models that are

likely to occur in the simulation, and provide more data at the strain magnitudes that the material

will be subjected to during the simulation. The four sets of stress-strain data of the silicone rubber

from the uniaxial tension test performed in an Instron testing machine, as presented earlier in Figure

3.1, were imported to ABAQUS/CAE *EVALUATION function for four separate evaluations. The

evaluation results are shown in Figure 4.3.

All the models except neo-Hookean fit the uniaxial tension test data well within a small strain

range (< 40%). Within a large strain range (up to failure strain 500%), the polynomial model of

order 1 and 2, and Ogden model of order 2 provide good fit to the experimental data. Among the

models which can accurately describe the silicone rubber, the Mooney-Rivlin model is of the simplest

form, whose strain energy potential,

UMR = C10(Ī1 − 3) + C01(Ī2 − 3) +
1
D

(Jel − 1)2, (4.11)

has only three coefficients C10, C01 and D. Hence this model is chosen for determination of the

Poisson’s ratio. From Eq. (4.6), the initial bulk modulus, K0 and the initial shear modulus, μ0 can

be determined by these coefficients. We can assess the compressibility of the silicone rubber by the

ratio in Eq. (4.12), which essentially is the Poisson’s ratio of the material,

ν =
3K0/ν0 − 2
6K0/ν0 + 2

. (4.12)
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Figure 4.3: Material model evaluation by fitting the experimental stress-strain data of the silicone
membrane obtained in uniaxial tension test (a) along the rolling direction up to 40% strain, (b) along
the normal direction up to 40% strain, (c) along the rolling direction up to 500% strain, (d) along
the normal direction up to 500% strain, into several hyperelastic models provided in ABAQUS.
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Table 4.3 lists the evaluation results for the Mooney-Rivlin model, primarily the three coeffi-

cients in the strain energy potential and the calculated material properties, based on the four sets

of uniaxial tensile test data. A fully incompressible material with Poisson’s ratio of 0.5 was suggested.

Table 4.3: Coefficients in the Mooney-Rivlin model evaluated in ABAQUS/CAE and calculated
material properties based on four sets of uniaxial tensile test data.

Test Coefficient Material parameters
Direction Strain range C10 C01 D μ0 K0 ν
Rolling 0-40% 646111.865 -448263.257 0 395697.216 ∞ 0.5
Rolling 0-500% 407411.710 -122799.772 0 569223.876 ∞ 0.5
Normal 0-40% 863076.127 -682611.888 0 360928.478 ∞ 0.5
Normal 0-500% 507376.129 -214563.479 0 585625.300 ∞ 0.5

However, when using the Mooney-Rivlin model or any other hyperelastic material model in

ABAQUS, it is not possible to assume that the material is fully incompressible because the program

has no mechanism for imposing such a constraint at each material calculation point. Instead, we

must provide some compressibility. The difficulty is that, in many cases, the actual material behav-

ior provides too little compressibility for the algorithms to work efficiently. By default ABAQUS

assumes Poisson’s ratio of 0.475. An upper limit of 0.495 is suggested since larger values introduce

high frequency noise into the dynamic solution.

In general hyperelastic materials are highly unstable during simulations compared to linear elas-

tic ones. All the attempts of using the evaluated Mooney-Rivlin material model in buckling analysis

were unsuccessful. Hence, linearly elastic material model with Young’s modulus 1 MPa and Pois-

son’s ratio 0.5 is used for all the numerical simulations in this study.

4.4.2 Element Choice

Another important issue in computational simulations is the selection of element types that are used

to discretize the structure. ABAQUS offers a number of structural element types, of which thin

shell1 elements were identified as potential candidates for modeling membrane structures.

ABAQUS provides a number of three dimensional shell elements, which can be classified into

two types, conventional shell element and continuum shell element. Conventional shell elements dis-
1Thin shell refers to the homogeneous shells with thickness less than about 1/15 of a characteristic length on the

surface of the shell, such as the distance between supports for a static case or the wavelength of a significant natural
mode in dynamic analysis.
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Figure 4.4: Three dimensional shell element name convention in ABAQUS (Hibbitt et al., 2001).

cretize a body by defining the geometry at a reference surface, and have displacement and rotational

degrees of freedom. In contrast, continuum shell element discretize an entire three-dimensional body,

and have only displacement degrees of freedom. For general purposes, the former provides robust

and accurate solutions to most applications.

Conventional shell elements include both finite-strain and small-strain elements. Element types

in ABAQUS such as S3, S3R, S4, and S4R account for finite membrane strains and arbitrarily large

rotations; therefore, they are suitable for large-strain analysis. Elements S4R5, S8R, S8R5 and S9R5

are provided for shell problems with small membrane strains and arbitrarily large rotations. The

small-strain shell elements in ABAQUS provide a computationally efficient alternative to the finite-

membrane strain elements for appropriate application although solution accuracy may degrade as

membrane strains become large. Depending on the amount of membrane in-plane stretching and

compression, problems of shell structures undergoing large-scale buckling behavior may use either

of the two types of elements.

Three dimensional shell elements in ABAQUS are named as shown in Figure 4.4. For exam-

ple, S4R is a 4-node, quadrilateral, stress/displacement shell element with reduced integration

and a large-strain formulation; and SC8R is an 8-node, quadrilateral, first-order interpolation,

stress/displacement continuum shell element with reduced integration.

Among the three dimensional conventional shell elements provided in ABAQUS/Standard, some

use five degrees of freedom (three displacement components and two in-surface rotation components)

such as S4R5, S8R5 and S9R5, while others use six degrees of freedom (three displacement compo-

nents and three rotation components) at all nodes. The elements that use five degrees of freedom

can be more economical. However, they are available only as ”thin” shells and they cannot be used
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for finite-strain applications.

For conventional shell elements in ABAQUS/Standard one must specify a section Poisson’s ratio

as part of the shell section definition to allow for the shell thickness in finite-strain elements to

change as a function of the membrane strain. If the section Poisson’t ratio is defined as zero, the

shell thickness will remain constant and the elements are therefore suited for small-strain analysis.

For typical large-strain applications with rubber-like materials, the section Poisson’s ratio should be

set to 0.5 (the default value) to reproduce the incompressible response of the material at large plas-

tic or hyperelastic deformation. The change in thickness is ignored for the small-strain shell elements.

Having understood the difference among the the three dimensional thin shell elements, elements

S3, S4, S4R, S4R5 and S8R5 were selected as candidates and investigated in preliminary analyses

as described in Section 4.2. Table 4.4 summarizes the primary results of both pre-buckling and

post-buckling analyses of a 254× 101.6 mm (10× 4 inch) membrane, based on each type of element.

Table 4.4: Effect of element type on the results of pre-buckling and post-buckling analysis.

Element type S4Ra S4R5 S4 S8R5
No. elements 6477 6477 6477 6477
Critical buckling strain 3.82% 3.27% 3.9% 3.22%
Computation timeb (s) 1639 3725 3129 6497
No. of wrinkles 3 3 3 3
Amplitude at strain 5% (mm) 0.1720 0.2363 0.1557 0.2378
Amplitude at strain 10% (mm) 0.2912 0.2977 0.2848 0.2961
Maximum amplitude (mm) 0.2938 0.3013 0.2878 0.3000
Strain@wmax

c 11.06% 8.82% 11.17% 8.70%

aThe S4R element reduces the four integration locations of S4 element to only one
integration location.

bThe time is for the post-buckling analysis only.
cwmax is the maximum wrinkle amplitude.

Simulations built with all the four elements produced the same number of wrinkles and approx-

imately the same maximum wrinkle amplitude. The critical buckling strain computed by S4R5 and

S8R5 elements is smaller than the one by S4R and S4 elements, as well as the tensile strain at

which the maximum wrinkle amplitude was reached. This is not surprising because the S4R5 and

S8R5 are both small-strain elements and may underestimate the membrane strain. Consequently

they overestimated the wrinkle amplitude at small strain, i.e., 5%. Another problem associated with

these small-strain shell elements is that the cross-sectional thickness change is ignored, and thus

they are incapable of reproducing thickness strain induced by thermal field or electric field, which

will be discussed in Chapter 6. Both the S4R and S4 elements can model fairly accurately and S4R
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was chosen since it is computationally more economical. Shell element S3 was also tested, but failed

probably because the mesh of 6477 elements was not fine enough. Therefore, S4R was adopted for

all following wrinkling analyses.

4.4.3 Mesh Density

To investigate the effect of mesh density on the numerical results, S4R element of different mesh

densities were seeded in the model of a 254×101.6 mm (10×4 inch) membrane. In order to properly

resolve the wrinkles, the element size had to be at least smaller than the wrinkle half-wavelength.

Table 4.5 compares several representative results of both the pre-buckling and post-buckling analyses

for different mesh densities.

Table 4.5: Effect of mesh density on the results of pre-buckling and post-buckling analysis.

No. of elements 1600 2890 6477 11492 25908
Computation timea (s) 9 20 74 98 233
Critical buckling strain 3.85% 3.72% 3.64% 3.61% 3.59%
Computation timeb (s) 180 584 1639 2600 5231
No. of wrinkles 3 3 3 3 3
Amplitude at 5% strain (mm) 0.1354 0.1706 0.1720 0.1724 0.1772
Amplitude at 10% strain (mm) 0.2759 0.3091 0.2912 0.2880 0.2942
Maximum amplitude (mm) 0.2800 0.3132 0.2938 0.2921 0.2972
Strain@wmax

c 11.29% 11.41% 11.06% 11.41% 11.29%

aThis time is for the pre-buckling analysis only.
bThis time is for the post-buckling analysis only.
cwmax is the maximum wrinkle amplitude.

In both the pre- and post-buckling analyzes it was found that the solution becomes mesh-

independent after a particular level of refinement. Since the computational time increases roughly

proportionally to the number of elements, it would be pointless to use a mesh finer than that in the

analysis. Therefore the finite element model comprised of 6477 elements was chosen, whose mesh

density is approximately 0.028 mm−2 and mesh size is about 35 mm2. The results presented and

discussed in the following sections were all based on this mesh density.

4.4.4 Imperfection Sensitivity

In ABAQUS the exact post-buckling problem often cannot be analyzed directly due to the dis-

continuous response (bifurcation) at the point of buckling. To analyze a post-buckling problem, it

must be converted into a problem with continuous response instead of bifurcation, which can be
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accomplished by introducing a geometric imperfection pattern in the perfect geometry so that there

is some response in the buckling mode before the critical load is reached.

Imperfections are introduced by perturbations in the geometry. Typically there are two ways to

define an imperfection in ABAQUS: a linear superposition of buckling eigenmodes from the displace-

ments of a static analysis or specifying the node number and imperfection values directly. ABAQUS

then calculates the normals using the usual algorithm based on the perturbed coordinates. Usually

the first approach is used unless the precise shape of an imperfection is known.

The response of some structures depends strongly on the imperfections in the original geometry,

particularly if the buckling modes interact after buckling occurs. By adjusting the magnitude of the

scaling factors of the various buckling modes, the imperfection sensitivity of the structure can be

assessed. Usually (if the structure is not imperfection sensitive) the lowest buckling mode should

have the largest factor. The magnitudes of the perturbations used are typically a few percent of a

relative structural dimension, i.e., shell thickness. Normally, a number of analyses should be con-

ducted to investigate the sensitivity of a structure to imperfections. Structures with many closely

spaced eigenmodes tend to be imperfection sensitive.

In our study it was found in a series of preliminary analyses that the eigenmodes always came in

pairs, one is symmetric (about the longitudinal midplane) and the other is antisymmetric, both of

which correspond to the same eigenvector. However, the eigenvalues for adjacent pair of eigenmodes

are not closely spaced. Prior experimental observations and measurement of wrinkle patterns of

membrane in different dimensions may provide us with some insight on choosing the eigenmodes.

For example, in experimental studies the 254 × 101.6 mm (10 × 4 inch) membrane demonstrated a

symmetric wrinkling pattern with the largest wrinkle in the center of the membrane and remained in

this pattern during the entire loading process. Hence only the symmetric eigenmode corresponding

to the lowest eigenvalue was selected instead of a pair as imperfection. A wide range of scale factors

were chosen, from 0.25% to 10% of the membrane thickness t in order to test the sensitivity of the

model to the geometric imperfection. For each magnitude, a complete wrinkling simulation was

carried out, which involved the creation of a new input file, with geometrical imperfections seeding

to the pristine mesh by the *IMPERFECTION command. The stabilize function was activated to

facilitate the solution. In Table 4.6 several principal results from the post-buckling analysis are listed

and compared.

The maximum wrinkle amplitude and corresponding strain are not sensitive to the magnitude

of the geometric imperfection even though the largest scale factor differs from the smallest one by
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Table 4.6: Effect of imperfection magnitudes on of results of post-buckling analysis.

Scale factor wmax (mm) strain@wmax strain@wrinkle onset
0.0025t 0.3000 11.46% 4.0%
0.01t 0.2997 11.28% 2.9%
0.025t 0.2995 11.58% 2.0%
0.1t 0.2972 11.28% 0.8%

two orders of magnitude. Whereas wrinkling onset, characterized by the tensile strain at which the

first wrinkle forms, is quite different. Here the formation of wrinkles is defined to be the moment at

which the maximum out-of-plane displacement of the membrane surface reaches 1% of the maximum

wrinkle amplitude wmax. For small imperfection, the deformation is quite small (relative to the

imperfection) below the critical load. The response grows quickly near the critical load, introducing

a rapid change in behavior. On the other hand, a large imperfection tends to trigger the structural

instability at an earlier stage, and the post-buckling response will grow steadily before the critical

load is reached. In this case the transition into post-buckled behavior will be smooth and relatively

easy to analyze. A reasonable intermediate scale factor of 1% of the membrane thickness was adopted

for all following wrinkling analyses.

4.4.5 Stabilizing Factor

Buckling problems are unstable due to the nonlinear geometrical nature. ABAQUS/Standard pro-

vides an automatic mechanism for stabilizing unstable quasi-static problems through the automatic

addition of volume-proportional damping to the model. The mechanism is triggered by including

automatic stabilization in any nonlinear quasi-static procedure.

It is assumed that a problem is stable at the beginning of the step and that instabilities may

develop in the course of the step. While the model is stable, viscous forces and, therefore, the

viscous energy dissipated are very small. Thus the additional artificial damping has no effect. If a

local region goes unstable, the local velocities increase and, consequently, part of the strain energy

then released is dissipated by the applied damping. ABAQUS/Standard can, if necessary, reduce

the time increment to permit the process to occur without the unstable response causing very large

displacement. ABAQUS/Standard calculates the damping factor based on the solution of the first

increment of a step. In most applications the first increment of the step is stable without the need

to apply damping. The damping factor is then determined in such a way that the extrapolated

dissipated energy for the step is small fraction of the extrapolated strain energy. The fraction, called

the dissipated energy fraction, has a default value of 2.0 × 10−4 and can be prescribed.
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To achieve good accuracy, it is generally desirable to set this parameter to the lowest possible

value for which convergence can still be achieved. This parameter was adjusted almost continuously,

according to the level of difficulty of converging to a solution, by using the *RESTART option.

This approach allows the numerical damping to be made very small initially to minimize the devi-

ation between the computed equilibrium path and the actual path, and to be increased only when

necessary. As listed in Table 4.7, the principal results of the post-buckling analysis with different

stabilizing factors imposed are almost the same except for the computational time. Typically, a

smaller stabilizing factor requires a longer computation time. The smallest factor chosen for the

simulations was 1 × 10−8.

Table 4.7: Effect of stabilizing factor on the results of post-buckling analysis.

Stabilizing factor Computation time (s) wmax (mm) strain@wmax

2 × 10−4 (default) 1920 0.2974 11.28%
1 × 10−6 2734 0.3002 11.47%
1 × 10−7 3452 0.3002 11.43%
1 × 10−8 5254 0.3000 11.24%

4.5 Discussion

4.5.1 Wrinkling Onset

In Section 3.4.1 we have shown that wrinkling onset in terms of the critical buckling strain was very

difficult to capture and measure in experiments. However observations suggested that membrane

dimensions (i.e., in-plane dimensions, L, W , thickness t, and aspect ratio L/W ) play important

roles in determining the membrane structural instability in the event of in-plane tensile loading. To

understand these roles in a more quantitative and efficient way, numerical tools were employed. A

series of simulations have been designed and carried out for various membrane dimensions in the

pre-buckling analysis stage. 144 dimensions with lengths ranging from 1.75 inch to 10 inch (44.45

mm to 254 mm), widths ranging from 0.9 inch to 7.5 inch (22.86 mm to 190.5 mm) were selected

such that they can be compared with experimental results.

A contour map of the critical buckling strains for all the dimensions was generated by interpo-

lating1 the 144 data points which are listed in Table C.1 in Appendix C and is shown in Figure 4.5.

The coordinates of each data point on the contour map specify the length and width of membrane

that it corresponds to. Each isoline connects the dimensions with the same critical buckling strain
1Using a surface fitting tool, Gridfit, developed by John D’Errico in MATLAB language.

(URL:http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8998)

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8998
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value. For example, the isoline representing the critical buckling strain value of 2% encloses all the

dimensions with which membranes wrinkle under 2% tensile strain or less.
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Figure 4.5: Contour map of the computed critical buckling strain for 0.1 mm (0.004 inch) membranes.

Some interesting trends are observed on this contour map. Generally wrinkles are more likely

to occur on large membranes than small ones. Among all the tested dimensions, the 10 × 5.5 inch

(254 × 139.7 mm) membrane has the lowest critical bucklings strain, 1.5%, while the 4 × 1.25 inch

membrane has the highest value, 62.2%. In addition, wrinkles are more likely to occur on membranes

with intermediate aspect ratios than those with extreme ones. It is noticed that these contours are

self-similar. The valley of each isoline points out the smallest dimension among all the membranes

with the same critical buckling strain. If these valleys are connected, a straight line with a slope of
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about 2 emerges, which reflects the fact that rectangular membranes with aspect ratio 2 have lower

instability to in-plane tension load than those with the same surface area but other aspect ratios.

The effect of individual factors (i.e., membrane thickness t or aspect ratio L/W ) is also inves-

tigated. The thickness has been nondimensionalized by dividing it by the width since membrane

strain is only a function of dimensionless parameters instead of absolute geometries. For example,

a 203.2 × 101.6 × 0.1 mm (8 × 4 × 0.004 inch) membrane has almost the same critical buckling

strain as a 101.6 × 50.8 × 0.05 mm (4 × 2 × 0.002 inch) one in simulation with small discrepancy

due to computational uncertainties. Therefore, it makes more sense to use a dimensionless thickness

t/W when comparing the critical buckling strains than to use an absolute thickness. The previous

simulation results of the 144 dimensions were sorted by their aspect ratio. For each aspect ratio,

quadratic dependence of the critical buckling strain on the dimensionless thickness, t/W , was found

as shown in Figure 4.6.
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Figure 4.6: Critical buckling strains vs. dimensionless membrane thickness, t/W , for different aspect
ratios.

Given this quadratic relationship, now it is simple to predict the critical buckling strains of 0.05

mm (0.002 inch) thick membranes with different dimensions based on the contour map of the 0.1
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mm (0.004 inch) thick membrane. Figure 4.7 overlaps the two contour maps for comparison. The

threshold for wrinkling has been significantly lowered by reducing the membrane thickness t by one

half, which is equivalent to doubling both in-plane dimensions, L and W . The information provided

in this kind of contour maps is comprehensive and thus they can serve as a guide to design or to

failure analysis in many applications of thin membranes in tension.
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Figure 4.7: Contour maps of critical buckling strains for 0.05 mm (0.002 inch) and 0.1 mm (0.004
inch) thick membranes of various dimensions.

Furthermore, dependence of the critical buckling strain on membrane aspect ratio, L/W , is

discovered. In Figure 4.8 the critical buckling strain is normalized by (t/W )2 and plotted as a
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function of the aspect ratio, which ranges from 1.33 to 6.0. The normalized critical buckling strain

is a non-monotonic function of the aspect ratio and reaches its minimum when the membrane as-

pect ratio equals to 2 approximately. As the aspect ratio increases from 2, the normalized critical

buckling strain increases gradually and stays almost constant for L/W ≥ 4.25; on the other hand

when the aspect ratio decreases from 2, the normalized critical buckling strain increases rapidly.

At L/W = 1.33, this value becomes 25 times higher than the minimum value at L/W = 2. The

pre-buckling analysis failed to converge for models with L/W < 1.33 based on the implementation

parameters we adopted in the computation.
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Figure 4.8: Normalized critical buckling strain vs membrane aspect ratio, L/W . The critical buckling
strain is normalized by the (t/W )2. Data points corresponding to 144 membrane dimensions are
sorted by the length of the membrane.

The eigenvalue buckling analysis predicts not only the critical buckling load (eigenvalue) but also

the buckling modes (eigenvectors). Figures 4.9-4.13 illustrate the first symmetric wrinkling modes

corresponding to the lowest eigenvalues of membranes with different aspect ratios.1

1The corresponding membrane dimensions were 76.2×50.8 mm (3×2 inch), 101.6×50.8 mm (4×2 inch), 152.4×50.8
mm (6 × 2 inch), 254 × 50.8 mm (10 × 2 inch), and 406.4 × 50.8 mm (16 × 2 inch).
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Figure 4.9: First buckling mode of membrane with aspect ratio L/W = 1.5.

Figure 4.10: First buckling mode of membrane with aspect ratio L/W = 2.

Figure 4.11: First buckling mode of membrane with aspect ratio L/W = 3.

Figure 4.12: First buckling mode of membrane with aspect ratio L/W = 5.
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Figure 4.13: First buckling mode of membrane with aspect ratio L/W = 8.

These normalized wrinkling modes provide constructive ideas about the potential deformation

that membranes may form into upon the critical buckling strain. Wrinkles form parallel to the load-

ing direction. In most cases, three major wrinkles were predicted in the first mode except for the

case of extremely small aspect ratio (i.e., L/W = 1.5) where five wrinkles were predicted. It is also

found that the locations at which wrinkling first occur on the membrane vary with the aspect ratio

though they are always on the longitudinal midplane for symmetric modes. This is suggested by the

locations of the maximum magnitude of the eigenvectors, whose dependence on membrane’s aspect

ratio is illustrated in Figure 4.14. For membranes with aspect ratio L/W ≤ 2.8 wrinkles initiate at

the center of the membrane; whereas for membrane with L/W ≥ 2.9 wrinkles occur at two separate

points equally apart from the center. The larger the membrane aspect ratio is, the further they are

apart from the center.

The wrinkling modes usually come in pairs, one being symmetric and the other being anti-

symmetric. The first two modes correspond to the lowest eigenvalue, indicating that in numerical

simulation membrane has an equal chance to deform into each mode beyond the critical buckling

load. Figure 4.15 compares the first two eigenmodes of three membrane models with the same width

and aspect ratios of 1.5, 2 and 4 by plotting the transverse cross sections through the point of max-

imum amplitude1. The membrane with aspect ratio 2, which has the lowest critical buckling strain
1The corresponding membrane dimensions were 254 × 63.5 mm (10 × 2.5 inch), 127 × 63.5 mm (5 × 2.5 inch) and

95.25 × 63.5 mm (3.75 × 2.5 inch).
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Figure 4.14: The ratio of the longitudinal off-center distance of the point of the maximum amplitude
to membrane half length, L/2, vs. membrane aspect ratio.

among the three, tends to form wrinkles with larger wavelength than the other two.

Higher wrinkling modes may also be of interest later on when membrane heavily loaded is stud-

ied. Figure 4.16 shows the cross-sections of the first six wrinkling modes of a membrane with aspect

ratio L/W = 2. In high modes, the total number of wrinkles increases, and the maximum normal-

ized wrinkling amplitude moves towards the lateral side.

4.5.2 Stress Distribution

Compressive stress or shear stress is the driving force of most buckling phenomena. A two dimen-

sional static analysis was carried out prior to the buckling analysis to study the stress distribution

on thin rectangular membranes when clamped at two ends and subjected to uniaxial loading. 4-node

bilinear plane stress quadrilateral element with reduced integration (CPS4R) was used in the model.

The material properties remained the same as in the eigenvalue buckling analysis. The analysis

procedure was comprised of two steps. In the first step, clamping boundary conditions were applied

to both ends of the membrane such that there is no lateral contraction at the end. In the second

step, one end was fixed while the other end was imposed an edge displacement in the longitudinal

direction to produce a 50% tensile strain.

The normal stresses in the transverse direction, σ22, for membranes with different aspect ratios

are shown in Figures 4.17-4.21(a). To show the exact position of the maximum compressive stress,

negative σ22 is plotted along the horizontal centerline in Figures 4.17-4.21(b). On each contour map
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Figure 4.15: The cross section of (a) the first symmetric mode, and (b) the first anti-symmetric
mode, corresponding to the lowest eigenvalue through the point of the maximum amplitude for
membranes with aspect ratios L/W = 1.5, L/W = 2 and L/W = 4.

the values of the isolines are not scaled uniformly, i.e., the difference between adjacent isolines in

the tension region is 300 times larger than the one in the compression region, because compressive

stress is smaller than the tensile stress by 2-3 order of magnitude. However the compressive stress

is crucial to the onset of the wrinkling phenomenon.

The distribution of σ22 is symmetric about both the longitudinal and transverse centerlines of

the membrane with the maximum tensile σ22 concentrated at the four corners, and the maximum

compressive σ22 at the center of the membrane (for small aspect ratios) or separated at two points

equally apart from the center along the horizontal centerline. This is consistent with the locations

where wrinkles first form on membranes with these aspect ratios. For large aspect ratios (i.e.,

L/W = 5 and L/W = 8), the central area of the membrane does not feel the existence of the clamp-

ing boundary condition and behaves as if the membrane was free to contract laterally everywhere

due to the Poisson’s effect. Therefore σ22 becomes zero in the central area.

We also generated contour maps of the shear stress σ12 for membrane with different aspect ra-

tios in Figures 4.22-4.26. The distribution of σ12 is antisymmetric about both the longitudinal and

transverse centerlines, along which σ12 = 0 as well as the closed loop in the center. At the corners
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Figure 4.17: The distribution of the normal stress σ22 of membrane with aspect ratio L/W = 1.5
subjected to 50% tensile strain. (a) isolines of σ22, (b) σ22 along the horizontal centerline in the
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Figure 4.20: The distribution of the normal stress σ22 of membrane with aspect ratio L/W = 5
subjected to 50% tensile strain. (a) isolines of σ22, (b) σ22 along the horizontal centerline in the
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Figure 4.21: The distribution of the normal stress σ22 of membrane with aspect ratio L/W = 8
subjected to 50% tensile strain. (a) isolines of σ22, (b) σ22 along the horizontal centerline in the
region σ22 ≤ 0.

of the membrane σ12 is concentrated, while the central area is free of shear stress.
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Figure 4.22: The distribution of the shear stress σ12 of membrane with aspect ratio L/W = 1.5
subjected to 50% tensile strain.

4.5.3 Wrinkling Profile

After we identified the wrinkling mode(s) from all the eigenmodes computed in the pre-buckling

eigenvalue analysis, a geometric imperfection was determined and seeded into the post-buckling

analysis to study the wrinkling profile on membranes of different dimensions.

The incremental solution method allows us to vary the edge displacement by a prescribed small

amount1 at each frame and thus provides us a continuous image of the deformation. Figure 4.27
1The lower and upper limits were prescribed for the increments. Usually the increments are not equally spaced.
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Figure 4.23: The distribution of the shear stress σ12 of membrane with aspect ratio L/W = 2
subjected to 50% tensile strain.
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Figure 4.24: The distribution of the shear stress σ12 of membrane with aspect ratio L/W = 3
subjected to 50% tensile strain.
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Figure 4.25: The distribution of the shear stress σ12 of membrane with aspect ratio L/W = 5
subjected to 50% tensile strain.
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Figure 4.26: The distribution of the shear stress σ12 of membrane with aspect ratio L/W = 8
subjected to 50% tensile strain.
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demonstrates the out-of-plane displacement of the 254 × 101.6 mm (10 × 4 inch) membrane model.

Over 100 frames were generated in the loading step for the 30% strain, among which six frames were

picked at the desired strains levels. The color schemes of the contour maps are adjusted so that they

are comparable with the optical measurement results which we have shown earlier in Figure 3.22.

Detailed comparison will be discussed in Chapter 5.
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Figure 4.27: Out-of-plane displacement of the 254 × 101.6 mm (10 × 4 inch) membrane model at
different tensile strains.

The wrinkle profile is symmetric about both the longitudinal and transverse midplanes. The line

profiles along the cross section of the membrane midplanes are shown in Figure 4.28. The maximum

wrinkle amplitude remains at the center of the membrane.

Figure 4.29 shows the variation of the amplitude and wavelength of the central wrinkle at the

transverse midplane section with the applied tensile strain. The wrinkles initiate at the center of the

membrane when the tensile strain reaches 2.9%.2 Then the wrinkle amplitude increases rapidly and

reaches its maximum 0.29 mm when membrane is stretched by approximately 11.3%. Beyond this

point, further tensile strain reduces the wrinkle amplitude at a slightly slower rate. At 30% tensile

strain the wrinkles almost disappear. On the other hand, the wavelength of the central wrinkle

decreases monotonically with the tensile strain. At 5% strain the wavelength is approximately 17

mm and reduced to 15 mm at about 10% strain when the amplitude is maximal. At 30% strain

when the wrinkles become very shallow, the wavelength decreases by roughly 30%, to 12 mm.

The distributions of the major and minor principal stresses, σ1 and σ2, were obtained at different

strain levels as shown in Figures 4.30 and 4.31. σ1 and σ2 along the midplanes were also obtained

The analysis begins with the smallest increment prescribed and ends with the largest one which is subjected to change
to achieve convergence.

2The pre-buckling analysis computed the critical buckling strain is 3.2% for membrane of this dimension.
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Figure 4.28: Wrinkle profiles of the 254×101.6 mm (10×4 inch) membrane along (a) the longitudinal
midplane, (b) the transverse midplane under different tensile strains.
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Figure 4.29: (a) The maximum wrinkle amplitude vs. the tensile strain for the 254 × 101.6 mm
(10 × 4 inch) membrane. 104 data points were extracted from the computational results of 104
increments directly and fit into a curve; (b) the wavelength of the central wrinkle vs. the tensile
strain. 6 data points at the six desired strain levels were extracted manually and fit into a curve.

at strain of 11.3% when the wrinkle amplitude is maximal as shown in Figure 4.32. The major

principal stress is positive throughout the membrane surface at all strain levels. Whereas the minor

principal stress is positive at the two clamped ends and fluctuates around zero in a wavelike pattern

in the central region. According to the wrinkling criteria introduced earlier in Section 2.2, the taut

region and the wrinkled region are distinguished by the contour of σ2 = 0, and there is no slack

region in the membrane.

The relationship is found between the distribution of the minor principal stress and the out-of-

plane displacement of the membrane in Figure 4.33, which compares the wrinkle profile with the

minor principal stress along the transverse midplane at 11.3%. The crests and troughs fit in the

regions where the compressive stress and tensile stress are localized respectively.
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Figure 4.32: Principal stresses at 11.3% strain along (a) the longitudinal midplane, and (b) the
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Chapter 5

Comparison and Discussion

This chapter compares the experimental observations and measurements with the results of numer-

ical simulation from the aspects of wrinkling onset and wrinkle profile.

5.1 Comparison

5.1.1 Wrinkling Onset

Figure 3.21 showed the experimental observation of the (non)existence of wrinkles in membranes

with 27 different dimensions. Figure 4.5 showed the numerical prediction of wrinkling onset of

membrane with 144 different dimensions. The axes of both maps are identical, which are membrane

length and width respectively. The overlap of the two maps is shown in Figure 5.1. An envelope (the

dashed line in the figure) is drawn to distinguish the dimensions of the membranes which wrinkled

in experiment from those which did not wrinkle. The shape of this envelope coincides with the

isolines of the 20% critical buckling strain computed in simulations. This agreement can be under-

stood as follows. Numerical simulations always provide the critical buckling strain (eigenvalue) to

a membrane structure as long as the convergence can be achieved. However in reality, the silicone

membranes behave in a more complicated manner. They either form wrinkles at a very small strain

or do not wrinkle at all. No onset of wrinkles at intermediate strain levels was observed in the

experiments. The contour map may not predict the absolute value of the critical buckling strain

for a specific membrane dimension, but it successfully predicts the relative structural instabilities in

membranes subjected to in-plane tension load.
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5.1.2 Wrinkle Profile

We have shown the contour plots of the out-of-plane displacement of the 254 × 101.6 mm (10 × 4

inch) membrane under a series of tensile strains based on both the calibrated measurement results

in Figure 3.22 and the computational results from the post-buckling analysis in Figure 4.27. The

overall wrinkling behaviors, including the symmetric wrinkle pattern and the total number of wrin-

kles, predicted in the simulation agree with those observed in the experiments. In order to compare

the wrinkling details, wrinkle profiles along the transverse midplane are plotted in Figure 5.2. The

changes of the maximum wrinkle amplitude and the wavelength with the tensile strain are plotted

in Figure 5.3.
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Figure 5.2: Wrinkling profiles along the transverse midplane of the 254 × 101.6 mm (10 × 4 inch)
membrane under different tensile strains obtained from (a) the experimental measurement and (b)
the numerical simulation.

Due to complexities involved in dealing with the thin silicone sheet, the bifurcation at small strain

predicted in the simulation was not observed in experiment. The maximum wrinkle amplitude shows

the same trend for the experimental and numerical results when the tensile strain is between 10%

and 20%, and the numerical one is smaller than the experimental one by about 15%. The amplitude

at 30% strain is significantly underestimated in the simulation. Numerically, wrinkles almost dis-

appear at about 32% strain, whereas experimentally membrane may require a much larger tensile

load to smooth out the wrinkles. Wrinkle disappearance was not observed in experiment because

the limited length of the side rails on the testbed allows only 10% tensile strain to be applied to a 10

inch long membrane. The monotonically decreasing wrinkle wavelength obtained in the simulation
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Figure 5.3: Comparison of the experimental and numerical results for (a) the maximum wrinkle
amplitude, and (b) the wavelength of the largest wrinkle, of the 254 × 101.6 mm (10 × 4 inch)
membrane vs. tensile strain.

matches the experimental data fairly well.

5.2 Discussion

So far we have been consistently using the 254 × 101.6 mm (10 × 4 inch) membrane for discussion,

which was actually the the largest membrane sample among all the samples that have been tested.

It also exhibited the largest out-of-plane deformation when wrinkling, indicating the wrinkle profiles

are scaled with the membrane in-plane dimensions. Wrinkling behaviors of thin membrane struc-

tures in other dimensions were also studied using both the experimental and numerical tools. Here

we restrict our discussion to only the overall wrinkling behavior, primarily the wrinkle patterns and

growth under tensile strain.1

Figures 5.4-5.17 demonstrate the wrinkle of membranes of several other dimensions at different

strain levels in the form of contour plots generated from both experimental measurement and finite

element analysis as comparison.

Some common features were observed from all the dimensions tested. As the membrane is loaded

uniaxially, the wrinkle amplitude first increases and then decreases; whereas the wrinkle wavelength

decreases monotonically. Membranes typically deform into either a symmetric or an anti-symmetric
1For some membranes of small size, the comparison and discussion become difficult because the measurement

uncertainties and computational error may not be negligible compared with the wrinkle amplitudes.
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wrinkling patten, whose profiles can be characterized by damped cosine function and damped sine

function respectively. Dimensions like 254×101.6, 254×82.55 and 165.1×82.55 mm (10×4, 10×3.25

and 6.5 × 3.25 inch) exhibit the symmetric pattern with the largest wrinkle along the longitudinal

midplane; other dimensions like 203.2× 69.85, 190.5× 76.2 and 146.05× 69.85 mm (8× 2.75, 7.5× 3

and 5.75× 2.75 inch) exhibit anti-symmetric pattern with the largest crest and trough at either side

of the longitudinal midplane.

strain        0%                  5%                                10%                             15%                              20%                              30%           

Figure 5.4: Experimental wrinkling profiles of the 254× 82.55 mm (10× 3.25 inch) membrane under
strain of up to 30%.
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Figure 5.5: Numerical wrinkling profiles of the 254 × 82.55 mm (10 × 3.25 inch) membrane under
strain of up to 30%.

For the 254 × 82.55 mm (10 × 3.25) inch membrane (with aspect ratio L/W 
 3.0), the maxi-

mum wrinkle amplitude initially occurs at the center of the membrane. As the tensile strain becomes

large, the elongation of the membrane in the longitudinal direction exceeds its contraction in the
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transverse direction, and thus its aspect ratio changes. Beyond a certain strain, the point of the

maximum amplitude split into two and moves toward the clamped edges. This trend was observed

on the membranes with aspect ratio close to 3. Typically, for membranes with aspect ratio less

than 3 (i.e., the 254 × 101.6 mm one), the maximum wrinkle amplitude remains at the center of

the membrane even when tensile strain becomes large; while for membranes with aspect ratio larger

than 3 (i.e., the 254 × 63.5 mm one), the maximum wrinkle amplitude initially occur at two points

equally apart from the center.

strain        0%               5%                                        10%                                       15%                                        20%  

Figure 5.6: Experimental wrinkling profiles of the 254 × 63.5 mm (10 × 2.5 inch) membrane under
strain of up to 20%.
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Figure 5.7: Numerical wrinkling profiles of the 254×63.5 mm (10×2.5 inch) membrane under strain
of up to 20%.
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For the 203.2 × 82.55 mm (8 × 3.25 inch) membrane, the out-of-plane deformations shown in

the measurement results and the numerical results were in the opposite direction. Conventionally

the numerical model always chooses to display the maximum wrinkle amplitude on its front side.

However in the experiment the maximum wrinkle amplitude has equal chance to occur on either

side of the membrane, not necessary on the front side which is facing the camera. This also reflects

the bidirectional nature of bifurcation phenomena.

strain        0%          12.5%                                  25.0%                                   37.5%                                    50%  

Figure 5.8: Experimental wrinkling profiles of the 203.2×82.55 mm (8×3.25 inch) membrane under
strain of up to 50%.
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Figure 5.9: Numerical wrinkling profiles of the 203.2 × 82.55 mm (8 × 3.25 inch) membrane under
strain of up to 50%.
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strain    0%            12.5%                          25.0%                           37.5%                           50.0%                           62.5%           

Figure 5.10: Experimental wrinkling profiles of the 203.2 × 69.85 mm (8 × 2.75 inch) membrane
under strain of up to 62.5%.
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Figure 5.11: Numerical wrinkling profiles of the 203.2× 69.85 mm (8 × 2.75 inch) membrane under
strain of up to 62.5%.
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strain    0%                    13.3%                                   26.7%                                  40.0%                                  53.3%             

Figure 5.12: Experimental wrinkling profiles of the 190.5× 76.2 mm (7.5× 3 inch) membrane under
strain of up to 53.3%.
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Figure 5.13: Numerical wrinkling profiles of the 190.5 × 76.2 mm (7.5 × 3 inch) membrane under
strain of up to 53.3%.
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strain        0%             7.7%                             15.4%                           23.1%                           30.8%                          38.5%           

Figure 5.14: Experimental wrinkling profiles of the 165.1 × 82.55 mm (6.5 × 3.25 inch) membrane
under strain of up to 38.5%.
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Figure 5.15: Numerical wrinkling profiles of the 165.1×82.55 mm (6.5×3.25 inch) membrane under
strain of up to 38.5%.
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strain    0%             8.7%                            17.4%                           26.1%                           34.8%                           43.5%           

Figure 5.16: Wrinkling profiles of the 146.05× 69.85 mm (5.75 × 2.75 inch) membrane under strain
of up to 43.5%.
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Figure 5.17: Wrinkling profiles of the 146.05× 69.85 mm (5.75 × 2.75 inch) membrane under strain
of up to 43.5%.
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Chapter 6

Suppression Wrinkling by
Dielectric Actuation

In this chapter, we examine the conceptual idea proposed in Chapter 1 about suppressing wrinkling

on thin membrane structures by means of dielectric actuation which was verified.

6.1 Literature Review: Dielectric Elastomers as actuators

6.1.1 Electroactive Polymers (EAPs)

Fundamental and technological interest in electroactive polymers (EAPs), a broad class of organic

actuators that exhibit large dimensional changes relative to their inorganic counterparts upon electri-

cal stimulation, has grown tremendously over the past decade or so. Electroactive polymers can best

be described as soft, flexible materials that are capable of converting electrical energy to mechanical

energy and thus imparting a force or motion. EAPs are considered smart materials due to their

responsive and often tunable properties, and they behave as actuators since they convert electrical

energy into mechanical energy much in the same fashion as an electric motor can be used to generate

torque. Since EAPs are also lightweight, flexible, tough, shape-processable and inexpensive (unlike

their rigid and often fragile inorganic counterparts), they afford tremendous promise in emerging

technologies ranging from micro air vehicles and flat-panel speakers to active video displays and

artificial muscles (Shankar et al., 2007).

The EAP family includes two large categories: ionic EAPs and electronic EAPs. Examples of

ionic EAPs are carbon nanotubes (CNTs), conductive polymers (CPs) and ionic polymer-metal com-

posites (IPMCs). The electronic EAPs commonly are distinguished on the basis of their actuation

mechanism as either electrostrictive (ferroelectric polymers) or electrostatic (dielectric elastomers).
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6.1.2 Dielectric Elastomers

In dielectric elastomers (D-EAPs, also referred to as electroelastomers or electrostatically stricted

polymers, ESSPs), the electric field-induced actuation response is initiated by the electrostatic at-

traction between oppositely charged conductive layers applied to the opposing surfaces of a thin

elastomeric film.

x3

x1

x2

Figure 6.1: Schematic illustration of the operational principle of D-EAPs. Prior to actuation, the
elastomer film is coated on each side with a compliant electrode. An applied electric field promotes
attraction of the oppositely charged electrodes, thereby introducing a compressive Maxwell stress
along the x3 direction (Pelrine et al., 2000).

Upon application of a transverse electric field via compliant electrodes coated on opposing film

surfaces (Figure 6.1), the D-EAP film compresses along the x3 direction and expands laterally due to

attractive electrostatic charges across the electrodes and repulsive like charges along each electrode.

The Maxwell stress, commonly regarded as an electrostatic pressure acting perpendicular to the

D-EAP film surfaces can be expressed as:

p = ε0ε(V/t)2 (6.1)

where ε0 is the free-space dielectric permittivity (ε0 = 8.85 × 10−12 F/m) and ε is the dielectric

constant of the silicone rubber (Pelrine el at., 2000).

Two parameters are commonly used to characterize the actuation performances of D-EAPs, the

transverse strain (or thickness strain) and the in-plane strain (or areal strain). The transverse strain

ε33 reflects a dimensional change in the thickness direction of an EAP film due to the normal pressure

induced by an electrostatic Maxwell stress and is defined as (t−t0)/t0, where t and t0 are the current

thickness and original thickness respectively. If the strain is sufficiently small (i.e., < 20%) such that

the deformation due to actuation can be presumed to be linearly elastic, Hooke’s law can be used

to directly relate the transverse strain to the applied electric field:

ε33 = −ε0ε V
2

Et2
. (6.2)
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The in-plane strain is defined as (A − A0)/A0, where A denotes the active area of actuation in the

x1 − x2 plane and the subscript 0 denotes pre-actuation. Compared with the transverse strain, the

in-plane strain is relatively large and easy to measure. using a circular test configuration illustrated

by diagrams and images displayed in Figure 6.2. Areal strain of 380% has been reported for acrylic

D-EAPs as shown in Figure 6.3.

Figure 6.2: Circular experimental setup used to measure the electromechanical behavior of D-EAPs
in the presence of an electric field and corresponding optical images. An elastomeric film is commonly
subjected to a mechanical pre-strain and subsequently fixed to a frame prior to coating the active
area on both film surfaces with a compliant electrode. Actuation upon electrical stimulation results
in an increase in the active area, which is digitally measured and quantified (Shankar et al., 2007).

Figure 6.3: 380% in-plane strain of an acrylic based dielectric elastomer film due to an applied
voltage (Kornbluh et al., 2000).

As seen from Eq. (6.1), the ideal dielectric elastomer material has a high dielectric constant ε,

a high breakdown strength (V/t), and a low elastic modulus E. Desirable material also have low

viscoelastic losses, large strain energy density and high electromechanical coupling efficiency. The

electromechanical coupling efficiency is defined as the ratio of energy converted to mechanical work

per cycle and electrical energy applied per cycle. Table 6.1 summarizes the performances of some

typical dielectric elastomers.
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Table 6.1: Representative dielectric elastomer materials performance (Pelrine el at., 2000).

Elastomer

Elastic Actuation Thickness Young’s Electric Dielectric Coupling
energy density pressure strain modulus field constant efficiency
(J/cm3) (MPa) (%) (MPa) (V/μm) (%)

Silicone 0.22 1.36 32 1.0 235 3.2-9.8 54
Polyurethane 0.087 1.6 11 17 160 7.0 21
Fluoroelastomer 0.0046 0.11 8 2.5 32 12.7 15
Latex rubber 0.0059 0.11 11 0.85 67 2.7 21

One of the most important actuation metrics is the voltage- or field-induced actuation strain,

and its dependence on applied voltage is presented in Figure 6.4 for various EAPs. The acrylic

elastomer and some silicone elastomers exhibit the highest in-plane and transverse strains upon

electrical stimulation and can sustain high electric field.

    (a)                                                       (b)                                                        (c)

ThicknessIn-plane area

In-plane area

Figure 6.4: Comparison of the actuation-strain levels achieved for (a) various EAPs as a function of
electric potential, and (b, c) D-EAPs and ferroelectric polymer as a function of electric field. The
actuation strains are labeled in each part and include (a) in-plane areal strain, (b) in-plane area
strain, and (c) thickness strain. The dotted lines serve as guides for the eye (Shankar et al., 2007).

Elastomer films can be made by casting, dipping, spin coating, or spraying. Spin coating gen-

erally yields the best-performing films because the spin coating process is able to fabricate films of

high uniformity. Spin coating is also the preferred process for the thinnest films.

6.1.3 Compliant Electrodes

A key feature of dielectric elastomer technology is the use of compliant electrodes. If the electrodes

cannot stretch in at least one planar direction of the film while its thickness contracts, actuation
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is dramatically reduced because the polymer is essentially incompressible, i.e., its bulk modulus

is much greater than its elastic modulus. Fortunately, the compliant electrodes need not be very

conductive, due to the high voltage, low current drive situation.

The selection of electrode materials remains an area of ongoing research. Ideally we want a thin,

extremely low-modulus electrode that provide uniform charge distribution over the surface of the

film under the electrodes. The most successful materials have typically been based on small particles

of carbon such as ultrafine graphite powder, carbon black and carbon grease.These materials can be

deposited directly on the film in a screen-printing process, or they can be sprayed on the film with a

fast-evaporating carrier liquid. In this study, carbon black grease CW7200BLK from Circuit Works

is brushed on to the surface of the film through a stencil. It is difficult to get a smooth and uniform

electrode layer. For many of the silicones that are capable of undergoing extremely large strains, it

was necessary to coat these electrodes with a mixture of silicone-polymer-based graphite grease and

carbon-filled silicone (Chemtronics CW7200 and Stockwell RTV 60-CON respectively) in order to

ensure full coverage at large strains.

6.1.4 Applications of EAP Membranes

Macro-scale EAP membranes can perform specific out-of-plane displacements under activation, and

thus is promising to drive lightweight structures with continuous surfaces to accomplish large active

shape changes. Potential applications include drag and/or oscillation reduction of wind-exposed

objects (i.e., bridges, buildings and ropeway gondolas) or fish-like propulsion of vehicles through air

or water (Figure 6.5).

Ac�vated

Deac�vated

Propulsion

DE actuator

Figure 6.5: Inspired by the continuous shape changes of stingray wings for locomotion, a fish-like
propulsion of a blimp with EAP membranes was proposed by Lochmatter et al. (2007).
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Very large spherical or paraboloidal space telescope mirrors are designed by connecting segments

of stretchable membrane with electrostatic curvature (SMEC). Each of the membrane segment forms

a slight concave curvature under electrostatic pressure. The electric potential can be spatially and

temporally controlled to obtain uniform curvature despite the non-uniform tension in the membrane.

In this way a deployable space telescope of very long focal length can be made and rolled up for

launch.

Figure 6.6: A three-inch stretched circular membrane mirror with electrostatic curvature. Here the
out-of-plane deformation on membrane surface is favorable for the purpose of optical focal plane
(Stamper et al., 2000).

6.2 Simple Analytical Models

As we discussed previously, wrinkling of thin membrane is essentially caused by in-plane compres-

sion, which may be suppressed by in-plane strain induced by electrostatic pressure. This forms the

basis of the idea of suppressing wrinkling of dielectric elastomers by means of dielectric actuation.

We consider a piece of silicone rubber with material behavior described by the Mooney-Rivlin

model occupying the space {Ω : (−L
2 ,

L
2 ) × (W

2 ,
W
2 ) × ( t

2 ,
t
2 )} and subjected to a uniaxial tension

load in x1 direction up to a certain stretch λ1. Due to Poisson’s effect, the rubber contracts in the

x2 and x3 directions uniformly1. Now we fix the stretch in x1 direction and apply an electric field

such that at equilibrium the contraction in the x2 direction can be canceled by the expansion due

to the dielectric actuation, that is,

λ2 = 1. (6.3)

1For simplicity, the clamping boundary conditions are not considered.
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In Section 4.4.1 we have shown the material behaviors of the silicone rubber can be described by

the Mooney-Rivlin model through the material evaluation tool in ABAQUS. Eq. (4.11) gave the

general expression of the strain energy potential of Mooney-Rivlin materials, in which the coeffi-

cients were determined based on experimental tensile test data and listed in Table 4.3. Due to the

incompressibility, the last term in Eq. (4.11) can be eliminated. Ep. (4.11) can be rewritten as

UMR = C10

[
λ2

1

(λ1λ2λ3)2/3
+

λ2
2

(λ1λ2λ3)2/3
+

λ2
3

(λ1λ2λ3)2/3
− 3)

]
(6.4)

+ C01

[
(λ1λ2λ3)2/3

λ2
1

+
(λ1λ2λ3)2/3

λ2
2

+
(λ1λ2λ3)2/3

λ2
3

− 3
]
,

where λi are the stretches along xi directions.

By solving the equilibrium problem we try to find the relation between the uniaxial tensile stretch

λ1 and the applied voltage V . Given the strain energy potential in Eq. (6.4), the normal stress in

each direction is

σ11 =
∂UMR

∂λ1
+ p̄, (6.5)

σ22 =
∂UMR

∂λ2
+ p̄,

σ33 =
∂UMR

∂λ3
+ p̄,

σij = 0, i �= j,

where p̄ is the hydrostatic pressure and can be solved by letting σ22 = 0. Combining Eq. (6.3) with

incompressibility, we have

λ3 =
1
λ1
. (6.6)

The equilibrium equation in the x3 direction can be written as

σ33 = −εε0
(
V

tλ3

)2

. (6.7)

Substituting conditions Eqs. (6.3) and (6.6) into Eq. (6.7) yields an implicit relation between V

and λ1

−εε0
(
λ1

t

)2

V 2 =
2
3
C10

(
−λ3

1 + λ2
1 − λ1 − 2 +

2
λ1

+
1
λ2

1

)
+

2
3
C01

(
−2λ3

1 − λ2
1 + λ1 + 2 +

1
λ1

− 1
λ2

1

)
.

(6.8)

Figure 6.7 illustrates the relationship between the tensile stretch and the voltage that needs to be

applied to the silicone rubber through its thickness direction such that at equilibrium the mem-

brane has no contraction in the transverse direction. Here the coefficients C10 = 863076.127 and
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C01 = −682611.888 are used, which are calculated based on the tensile test along the normal direc-

tion up to 40% strain (Table 4.3). The two curves correspond to ε = 3.2 and ε = 9.8 respectively,

between which typical dielectric constant of silicone rubbers ranges.

Vo
lta
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 (V

)
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2500
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1.051.0251.0
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Figure 6.7: The voltage that needs to be applied to the silicone rubber through its thickness direction
such that at equilibrium membrane has no contraction in the transverse direction vs. the uniaxial
tensile stretch based on Mooney-Rivlin model.

6.3 Experimental Studies

6.3.1 Experiment Set-up

The uniaxial tension testbed introduced earlier in Section 3.2.1 was used for the experiments of mem-

brane wrinkling under electric field. The testbed was made in polycarbonate material and assembled

using plastic fasteners so that it is nonconductive. Membrane specimens were prepared in the same

way as we mentioned in Section 3.2.2. A stencil ink brush was used to brush the compliant con-

ductive grease (Molykote 41 Extreme High Temperature Grease, Dow Corning)1 on the membrane

surface, and then a stencil ink roller was used to smooth out the grease such that the compliant

electrode layers becomes more uniform, though the absolute thickness was very difficult to measure

and control. The grease was painted on the central area of the membrane to prevent shorting be-

tween the two electrodes at the edges. As seen in Figure 6.8(a) a copper wire was clamped between

1Chemical component of the grease: 40-70 wt% Phenylmethyl siloxane, trimethyl-terminated, 15-40 wt% Dimethyl,
phenylmethyl siloxane, trimethyl-terminated, 15-40 Carbon black, 1-5 wt% mixed zinc carboxylates.
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the grips at each end of the membrane from different sides in contact with the grease layer. The

high-voltage input signal was generated by a programmable digitally synthesized function generator

(Global Specialties, Inc. Model 2003) connected to a high voltage power amplifier (Trek, Inc. Model

10/10B) with a voltage range of ±10 kV DC or peak AC as shown in Figure 6.8(b). The amplifier

takes a low voltage input of the function generator and amplifies it to provide a high-voltage output

with a gain of 1000×. A voltmeter was used to monitor the voltage change.

(a) (b)

Figure 6.8: The experimental setup of suppressing membrane wrinkling using dielectric actuation,
(a) membrane with electrodes on both sides clamped on the uniaxial tension testbed, (b) high voltage
amplifier, function generator and voltmeter (from bottom to top).

6.3.2 Observations

As we discussed earlier in Section 3.4.1, it is very difficult to experimentally capture the moment of

wrinkling onset and quantitatively determine the critical buckling load. With carbon grease elec-

trode on the membrane surface becomes more unfavorable in terms of reflectivity and the fringe

projection method is no longer capable of wrinkling shape measurement due to the lack of contrast

on the fringes and the gain of reflectivity on membrane surfaces. The reflectivity of the surface finish

plays a negative role in the optical measurement using fringe profilometry. Some regions on the wavy

surface of the membrane may reflect the light from the LCD projector too much to carry the fringe

information. Based on the above concerns, therefore, only post-buckling membrane response to the

electric field was tested.

In order to capture the membrane’s response to the through-thickness electric field, a sinusoidal

mode with frequency 0.25 Hz and initial amplitude 3 V was chosen as the output signal from the
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function generator. This signal then was amplified to 3 kV by the high-voltage amplifier and applied

to the membrane electrodes. Amplitude of the sinusoidal signal was raised by 0.5 kV each time up

to 8.5 kV. About 10 membrane specimens of different dimensions were tested under electric field,

most of which failed at the initial voltage by burning at a point on the surface covered with grease.

Failures were most likely to occur at a point where the membrane is thinner than the surrounding

areas such that the electric field is higher. Among all the specimen the highest DC voltage that

a membrane sustained was 8 kV. As the voltage was raised to 8.5 kV, the membrane immediately

broke down. This indicates the breakdown strength of the silicone rubber we used is about 80

V/μm . Figures 6.9(a)-(c) demonstrate three snapshots of the wrinkling profiles of a 127× 63.5 mm

(5×2.5×0.004 inch) membrane at 20% strain in one period of the sinusoidal voltage with amplitude

8 kV. The snapshots were captured by the CCD camera at a rate of approximately 2 images/s.

   (b)                                      (c)                                     (d)                                            (e)  
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Figure 6.9: Membrane with conductive grease as compliant electrodes on both sides subjected to
(a) a voltage in sinusoidal mode with amplitude 8 kV and frequency 0.25 Hz, (b)-(e) snapshots of
wrinkling profiles on a 127×63.5 mm (5×2.5 inch) membrane at three moments within a sinusoidal
period, (d) breakdown of the membrane at 8.5 kV amplitude.
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6.4 Numerical Studies

6.4.1 Simulation Techniques

ABAQUS limits the types of load that can be applied on a thin shell model. Unfortunately electro-

static pressure is not among those allowed. Hence an equivalent way by replacing the electric field

with a thermal field is proposed. ABAQUS can analyze buckling due to thermal strain/stress. In

an eigenvalue buckling analysis, nodal temperature can be specified, and the incremental thermal

strain will be generated given the thermal expansion coefficient of the material. Both the incremental

thermal strain and incremental tensile strain contribute to the incremental stiffness matrix, whose

eigenvalues will be computed and used to predict the critical buckling load.

A simple analysis was developed to verify this equivalence and find out the relation between a

voltage difference ΔV and a temperature difference ΔT for subsequent simulations.

We begin with the constitutive relation (Hooke’s law) of a linearly elastic material for the three

dimensional shell model under an electrostatic pressure,

σij = λεkkδij + 2μεij . (6.9)

For simplicity we neglect the boundary effect and assume the membrane is contracted uniformly

under tension load, thus σ13 = σ23 = 0. The constitutive relation is rewritten as

σ11 = λ(ε11 + ε22 + ε33) + 2με11, (6.10)

σ22 = λ(ε11 + ε22 + ε33) + 2με22, (6.11)

σ33 = λ(ε11 + ε22 + ε33) + 2με33, (6.12)

σ12 = 2με12. (6.13)

From (6.12),

ε33 =
1

λ+ 2μ
[σ33 − λ(ε11 + ε22)] . (6.14)

Here the σ33 is the prescribed electrostatic pressure, p = εε0
(

V
t

)2
. By plugging (6.14) in (6.10),

(6.11) and (6.13), and replace σ33 with p, we eliminate the thickness strain, ε33, and get

σ11 =
(
λ+ 2μ− λ2

λ+ 2μ

)
ε11 +

(
λ− λ2

λ+ 2μ

)
ε22 +

λ

λ+ 2μ
p, (6.15)
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σ22 =
(
λ+ 2μ− λ2

λ+ 2μ

)
ε22 +

(
λ− λ2

λ+ 2μ

)
ε11 +

λ

λ+ 2μ
p, (6.16)

σ12 = 2με12. (6.17)

Similarly we can write the constitutive relations of a three dimension shell model subjected to a

thermal field given the thermal expansion coefficient of the material, α, Young’s modulus, E′ and

the Poisson’s ratio ν′ of another linearly elastic material,

σij = λ′εαkkδij + 2μ′εαij , (6.18)

where εαij = εij − εTij , and and εTij = αΔTδij is the thermal strain. In the case of thermal load, the

model is in a plane stress state. Write Eq. (6.18) explicitly,

σ11 = (λ′ + 2μ′) ε11 + λ′ε22,−2(λ′ + μ′)αΔT (6.19)

σ22 = (λ′ + 2μ′) ε22 + λ′ε11,−2(λ′ + μ′)αΔT (6.20)

σ12 = 2μ′ε12. (6.21)

Compare the stress state under electrostatic pressure described in Eqs. (6.15)-(6.17) and the stress

state under thermal field described in Eqs. (6.19)-(6.21), we find the conditions on which the two

kinds of loading are equivalent. The temperature and voltage satisfy,

αΔT = − λ

2(λ+ 2μ)(λ′ + μ′)
εε0

(
V

t

)2

, (6.22)

and a new linear elastic material needs to be defined which satisfies,

E′ = E
1 + 2ν

(1 + ν)2
, (6.23)

ν′ =
ν

1 + ν
. (6.24)

6.4.2 Finite Element Model

The previous finite element model and the analysis procedure discussed in Chapter 4 were employed

with several minor changes. The material property was modified to include a thermal expansion

coefficient 10−6 K−1; the Young’s modulus and Poisson’s ratio became 0.89 MPa and 0.33 respec-

tively instead of 1 MPa and 0.5. In the initial step, besides the pre-stress, a uniform temperature

field equivalent to the desired electric field was prescribed to the entire model as the base state

of the buckling step. A larger pre-stress may be required to generate positive eigenvalues. In
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the post-buckling analysis, the membrane was first stretched to reach a maximum amplitude and

subjected to an electric field through the thickness direction while the two clamped edges were fixed.

6.5 Discussion

6.5.1 Wrinkle Onset

In Section 4.5.1 the influence of membrane dimension, thickness and aspect ratio on wrinkling onset

were discussed. In this section this influence will be reexamined, this time under an electric field of

5×107 V/m (5 kV voltage across 0.1 mm membrane) by conducting the eigenvalue buckling analysis

on the same 144 membrane dimensions.

The contour map of the critical buckling strains is revisited. In Figure 6.10 the dotted isolines

representing the results with electric field show similar shapes as the solid isolines representing the

previous results without electric field but enclose smaller area than the solid isolines of the same

value. The dimensions which fall between a solid isoline and the dotted isoline of the same critical

buckling strain value are the ones that wrinkle beyond that strain without electric field but do not

wrinkle any more with electric field. In short, the electric field raises the threshold of the wrinkling

instability.

Table C.1 in Appendix C compares the critical buckling strains without electric field and with

5 × 107 V/m electric field for each membrane dimension simulated.

An interesting consistency is found between the two sets of results. Among all the dimensions

simulated, the 254 × 139.7 mm (10 × 5.5 inch) membrane consistently has the lowest critical buck-

ling strain, 1.5% without electric field versus 10.0% with electric field; while the 101.6 × 31.75 mm

(4 × 1.25 inch) membrane consistently has the highest critical buckling strain, 62.2% versus 72.0%.

Their threshold of wrinkling are raised by 591% and 15% respectively. Considering all the dimen-

sions, the increase of the critical buckling strain due to the emergence of electric field spans from

11% to 610%, and is more significant for those dimensions which originally exhibit lower structural

stability without electric field.

For a specific dimension, this threshold of wrinkling can be further raised by turning up the

applied voltage. Figure 6.11 shows a nonlinear monotonic relation between the critical buckling

strain and the applied voltage. The critical buckling strain under 8 kV voltage is almost 6 times

the one under 1 kV voltage. The plateaus at the two ends of the trend curve indicates that the
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Figure 6.10: Contour maps of critical buckling strain for thickness t = 0.1 mm (0.004 inch) under 0
V (solid line) and 5 kV (dotted line) voltage.
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applied voltage has to be large enough to be effective, and beyond a certain voltage the effect may

be saturated.
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Figure 6.11: The critical buckling strain versus the applied voltage for the 127 × 63.5 mm (5 × 2.5
inch) membrane.

Next we reduced the thickness of the model by one half and repeated the simulations for all the

dimensions. Now we have four sets of critical buckling strain results for the combinations of mem-

brane thickness (0.05 mm and 0.1 mm) and voltage (0 V and 5 kV), all of which are listed in Tables

C.1 and C in Appendix C. The contour map in Figure 6.12 compares the critical buckling strain

under 0 V and 5 kV voltages for membrane of 0.05 mm, and once again confirms with electric field

dielectric elastomer membranes need a larger tensile load to pass the barrier of bifurcation. We also

compared the critical buckling strains of the 0.05 mm membrane with the 0.1 mm one under 5 kV

voltage in another contour map in Figure 6.13. In general thicker membranes have larger bending

stiffnesses and thus higher structural stabilities.

In the previous analysis in Section 4.5.1 the dependence of the critical buckling load on nor-

malized membrane thickness, t/W , was studied and a quadratic relation was discovered. Here this

dependence under 5 kV applied voltage is reexamined and compared with the previous one in Figure

6.14. In the presence of electric field a quadratic dependence of the critical buckling strain on t/W

is established. Note that only curves corresponding to membrane aspect ratio 2 are shown in this

figure. For other aspect ratios the quadratic relation are also valid. The difference between the two

quadratic curves is non-uniform, and is larger for thickness membranes, indicating that the same

voltage has greater influence on thicker membranes.
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Figure 6.14: Critical buckling strain vs. normalized membrane thickness t/W for fixed aspect ratio
L/W = 2 without and with 5 × 107 V/m electric field.

Lastly the dependence of the critical buckling strain on membrane aspect ratio is reexamined.

The critical buckling strains of the 144 dimensions are first normalized by (t/W )2 and then plotted

as a function of the membrane aspect ratio L/W . In Figure 6.15, two sets of results are compared:

the results with electric field in color markers sorted by the width of the membrane and the previous

results without electric field in black dots. Prior to the application of electric field the dependence

of the normalized critical buckling strain on the aspect ratio can be described in the form of a single

function, which is nonlinear with a minimum at around L/W = 2. This means the critical buckling

strain once normalized is unique for any given aspect ratio. However, it is a different story when

there is an electric field. Instead of one curve, a band of curves emerge, each of which corresponds to

a t/W ratio and a minimum at L/W = 2. This can be understood better by looking at one specific

aspect ratio, L/W = 2. In our simulation there are 14 different dimensions corresponding to this

aspect ratio. In the case of no electric field their normalized critical buckling strains are the same

because their critical buckling strain is proportional to (t/W )2 with zero offset as seen in Figure

6.14. While with electric field, the 14 data points shift upward by different amount and spread out

vertically, because the quadratic relation between the critical buckling strain and t/W is offset by

the electric field in different amount as seen in Figure 6.14. Hence, a simple normalization cannot

take their critical buckling strain to the same value.
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6.5.2 Stress Distribution

Similar to the two-dimensional static analysis we discussed in Section 4.5.2 a two-dimensional static

analysis was conducted prior to the post-buckling analysis to study the influence of electric field on

the stress distribution of dielectric elastomer membranes. Previously we have found that generally

the magnitude of the compressive stress does not increase monotonically with the uniaxial tensile

load. For example, for the 127×63.5 mm (5×2.5 inch) membrane, the maximum compressive stress

occurred when tensile strain applied reached 19.1%. Further stretch leads to a decrease in the com-

pressive stress and the wrinkling amplitude accordingly. Therefore, a numerical test was designed as

follows. A uniform zero temperature field was predefined in the initial step; following which a tensile

load was applied to membrane in terms of edge displacement up to the point where the maximum

compressive stress is reached. In the third step, the predefined temperature was ramped up to a

certain value representing the desired voltage with the relation defined in Eq. (6.22). The material

properties and element type remained the same as the previous stress analysis except a thermal

expansion coefficient was introduced. We restrict our discussion to the 127× 63.5 mm (5× 2.5 inch)

membrane in the present section and next section.

Figures 6.16-6.20 demonstrate the evolution of the normal stress σ22 on the 127 × 63.5 mm

(5 × 2.5 inch) membrane under electric field. As the strength of the electric field increases, both

the magnitude of the compressive stress and the region it covers decrease. Accompanied with the

reduction of the compressive stress, the magnitude of the tensile stress near the clamping boundary

is also reduced, and the membrane is expanded laterally. When the voltage reaches 8785 volts (Fig-

ure 6.20), the membrane surface becomes almost stress free and the lateral contraction due to the

Poisson’s effect is canceled by the expansion due to the dielectric effect.

As the incompressible membrane is squeezed in thickness direction by the Maxwell stress, it

expands laterally and recovers its original rectangular shape. As a result, the magnitude of the σ22

is significantly reduced in both the tensile and compressive portions, which can be clearly viewed in

Figure 6.21 by plotting σ22 along the entire longitudinal centerline. The compressive portion of σ22

is 2 orders of magnitude smaller than the tensile one and thus its variance is hardly observed in this

figure.

Should the applied voltage be further raised, the membrane would overexpand laterally and the

region of compressive and tensile σ22 would switch, that is, tension appears in the central area while

the compression stress of one order of magnitude higher appears near the clamping boundary as

shown in Figure 6.22.
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Figure 6.16: The distribution of the normal stress σ22 on a 127× 63.5 mm (5× 2.5 inch) membrane
subjected to 20% tensile strain. (a) isolines of σ22, (b) σ22 along the longitudinal centerline in the
region σ22 ≤ 0 only.
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Figure 6.17: The distribution of the normal stress σ22 on a 127× 63.5 mm (5× 2.5 inch) membrane
subjected to 20% tensile strain and 2000 V voltage subsequently. (a) isolines of σ22, (b) σ22 along
the longitudinal centerline in the region σ22 ≤ 0 only.
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Figure 6.18: The distribution of the normal stress σ22 on a 127× 63.5 mm (5× 2.5 inch) membrane
subjected to 20% tensile strain and 4000 V voltage subsequently. (a) isolines of σ22, (b) σ22 along
the longitudinal centerline in the region σ22 ≤ 0 only.
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Figure 6.19: The distribution of the normal stress σ22 on a 127× 63.5 mm (5× 2.5 inch) membrane
subjected to 20% tensile strain and 6000 V voltage subsequently. (a) isolines of σ22, (b) σ22 along
the longitudinal centerline in the region σ22 ≤ 0 only.
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Figure 6.20: The distribution of the normal stress σ22 on a 127× 63.5 mm (5× 2.5 inch) membrane
subjected to 20% tensile strain and 8785 V voltage subsequently. (a) isolines of σ22, (b) σ22 along
the longitudinal centerline in the region σ22 ≤ 0 only.
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Figure 6.21: Comparison of the normal stress σ22 along the horizontal centerline on a 127 × 63.5
mm (5 × 2.5 inch) membrane in 20% tensile strain under different voltages.
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Figure 6.22: The distribution of the normal stress σ22 on a 127× 63.5 mm (5× 2.5 inch) membrane
subjected to 20% tensile strain and 10 kV voltage subsequently. (a) isolines of σ22, (b) σ22 along
the horizontal centerline.

6.5.3 Wrinkling Profile

The finite element post-buckling analysis was carried out on the 127× 63.5 mm (5× 2.5 inch) mem-

brane and presented in Figure 6.23. Prior to the electric field, membrane was first loaded uniaxially

to 11% strain where the maximum wrinkle amplitude can be reached. The whole process can be

divided into three stages. In the first stage for voltage less than 4000 V, the wrinkle amplitude is

dramatically reduced though the wavelength does not change much. In the second stage for voltage

between 4000 V and 7000 V, accompanied with the disappearance of the central crest, the two

troughs in the center merge into one trough. As a consequence, the total number of wrinkles drop

as well as wrinkle wavelength. In the last stage for voltage greater than 7000 V, the membrane is

overexpanded laterally. The re-distribution of the compressive and tensile σ22 leads to the migra-

tion of wrinkles from the center towards the two clamped edges followed by a increase of wrinkle

amplitude and wrinkle numbers.

These wrinkle behaviors are described in a more quantitative way by plotting the cross section

along the transverse centerline of the membrane in Figure 6.24. The maximum wrinkle amplitude

throughout is reduced by approximately 85% at 5 kV. In reality a higher electric field may not al-

ways be helpful in suppressing the wrinkling instability since it may break down the thin membrane.

Figure 6.25 shows the wrinkle amplitude at the centroid of the membrane can be reduced by about

90% at 4 kV voltage, and central crest is almost removed at 5 kV.
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Figure 6.23: The wrinkle profiles of the 127 × 63.5 mm (5 × 2.5 inch) membrane under applied
voltages of (a) 0 V, (b) 3000 V, (c) 4000 V, (d) 5000 V, (e) 5500 V, (f) 6500 V, (g) 7000 V, (h) 7250
V.
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Figure 6.25: The out-of-plane displacement at centroid of the 127×63.5 mm (5×2.5 inch) membrane
vs. the applied voltage up to 5 kV.

Interestingly, it is found that the lateral contraction of the membrane in the midplane linearly

increases with the uniaxial tensile strain (up to 11%) and then quadratically decreases with the

applied voltage as shown in Figures 6.26(a) and (b) respectively. At around 6600 V voltage, the

membrane is brought to the original width by the applied electric field and starts to expand.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the main achievements and conclusions of this study and recommends

areas for further investigation.

7.1 Conclusions

The objectives of this study were to investigate the wrinkling behavior of thin silicone membranes

subjected to uniaxial tension and post-wrinkling behavior of dielectric elastomer membranes sub-

jected to electrostatic pressure. The study has identified various parameters that govern wrinkling

behaviors by using both experimental and numerical approaches.

First, a series of experiments were conducted to gain insight into the wrinkling phenomenon,

using physical models. Membrane samples were made from commercially fabricated silicone rubber

sheets of 0.1 mm (0.004 inch). The silicone rubber was characterized through a conventional uniaxial

tensile test using Instron testing machine, and was found to behave as a linear elastic material with

small anisotropy. The Young’s modulus of the silicone in the rolling direction is 1 MPa, which was

determined directly from the stress-strain curve. The Poisson’s ratio of the silicone is 0.5, which was

determined by evaluating its compressibility by using the hyperelastic models in the finite element

software ABAQUS.

An integrated optical method was implemented for measuring the full-field out-of-plane displace-

ment of the membranes, which combines fringe projection method with four-frame phase-shifting

technique, pre-conditioned conjugate gradient phase unwrapping algorithm and series-expansion

carrier removal technique. The phase measured using this method is proportional to the height of

the membrane surface and the proportionality was calibrated using a standard object with known

geometry. An optical system was constructed, which is comprised of a LCD projector, a CCD cam-
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era, a frame grabber card and a computer as well as an imaging processing software developed in

MATLAB. The measurement sensitivity and accuracy of this system were optimized by adjusting

the relative positions of the project and camera to the testbed. An accuracy of 0.1 mm for the

out-of-plane displacement was achieved.

A series of uniaxial tensile tests was carried out on membranes in 27 different dimensions in

order to investigate the effect of membrane dimension and aspect ratio on the structural instability

in terms of the wrinkling onset; and a series of measurements of the quasi-static deformation were

performed on each membrane at several desired strain levels for understanding the evolution of the

wrinkling deformation. During the loading process, the two short edges of the membranes were

clamped and thus refrained from contracting laterally, while the two long edges are completed free.

It is found that the wrinkle onset and the overall wrinkle patterns are strongly dependent on

the inherent factors such as membrane dimension, thickness and aspect ratio, while the wrinkle de-

tails such as the amplitude and wavelength are dependent on the external factors such as boundary

(mounting) conditions and tensile load. In experiments it was found that for some of the membranes

the initial unstressed configuration can not be perfectly flat and wrinkles appeared spontaneously

after the load was applied. Therefore it is very difficult to accurately determine the strain at which

wrinkles first form on the membrane of each dimension. However, qualitatively, membranes with

larger in-plane dimensions (relative to thickness) and intermediate aspect ratios around 2 exhibited

lower structural instability.

Some common features were observed on all the membranes tested. Wrinkles form along the

longitudinal loading direction. Wrinkle patterns were symmetric about the transverse midplane due

to the symmetry of loading. Regarding the wrinkle details, the wrinkle amplitudes first increase and

then decrease as the membrane is loaded, whereas the wrinkle wavelengths monotonically decrease.

Features dependent on the membrane dimension and aspect ratio were also observed. For exam-

ple, wrinkle patterns were either symmetric or anti-symmetric about the longitudinal midplane of

the membranes, whose profiles on the transverse midplane can be characterized by damped cosine

function and damped sine function, respectively. For membranes with small aspect ratios, wrinkles

initiated from the center of the membrane and the maximum wrinkle amplitude remained at the

center as the membrane was stretched, while for those with large aspect ratios, wrinkles initiated at

the two ends close to the clamped edges. For membranes with intermediate aspect ratios around 3,

wrinkles initiated at the center and then grew toward the ends upon elongation.
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A numerical study of rectangular membranes in uniaxial tension was carried out using the com-

mercial finite element package ABAQUS aiming to capture the important characteristics of wrinkling

of thin membranes observed in the physical model. Geometrically nonlinear finite element models

of membrane structures were constructed using thin-shell elements. The boundary conditions were

defined at the two short edges of the rectangular membrane. One edge was fully constrained in all

its six degrees of freedom. On the other edge only translations along the longitudinal direction was

allowed. The two long edges were completely free.

A three-step analysis procedure was introduced following the sequence of the initial step, the

pre-buckling eigenvalue analysis and the post-buckling analysis. In the initial step, a small in-plane

prestress was applied to stabilize the thin shell model by providing some initial bending stiffness.

The next step was a linear perturbation analysis, in which incremental load was applied to the

membrane in terms of edge displacement, and the eigenvalues and normalized eigenvectors of the

incremental stiffness matrix were computed. The buckling load of each mode then was determined

as the sum of the prestress and the product of the eigenvalue and incremental load, among which the

critical buckling load is the smallest one corresponding to the lowest eigenvalue. In the final step, a

static incremental analysis was performed to simulate the formation and growth of wrinkles on the

membrane. A linear combination of some buckling modes selected from the eigenvectors previously

computed was introduced into the structure as a geometric imperfection such that the bifurcation

can be numerically dealt with. The stabilize function was activated to facilitate the solution by

introducing pseudo-inertia and pseudo-viscous forces into the model and switching the quasi-static

analysis to a transient analysis, and thus enabling the simulation of the actual dynamic response of

the structure as it snaps. Preliminary analyses following this procedure were carried out to address

several simulation issues related to modeling of thin membranes, such as material model, element

type, mesh density, imperfection sensitivity and stabilizing factor. S4R thin-shell element was chosen

for constructing the mesh at a density of 0.028 mm−2. 1% of the membrane thickness was adopted

as the magnitude of the geometric imperfection and 1 × 10−8 was adopted as the stabilizing factor

unless a larger value was needed for accomplishing convergence.

A series of simulations was conducted up to the pre-buckling stage based on the models of 144

dimensions, spanning over the range of the physical models. A contour map of the critical buckling

strain was generated by interpolating the values of the 144 data points. The effect of the membrane

dimension and aspect ratios that were observed and qualitatively described was reproduced in a

quantitative manner. The critical buckling strain normalized by the surface area of the membrane

is a quadratic function of the membrane thickness. The critical buckling strain normalized by both

the area and the square of the thickness is a nonlinear function of the aspect ratio and reaches its
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minimum at aspect ratio around 2. It was also found in the eigenvalue analysis that correspond-

ing to each eigenvalue there were always two eigenmodes, one symmetric and one anti-symmetric,

indicating the membranes may have equal chance of deforming into either of the two wrinkle patterns.

Next, a few models with dimensions exactly the same as those of the physical models were

selected for post-buckling analysis. Either the first symmetric mode or the first anti-symmetric

mode was implemented as a geometric imperfection for each dimension according to the real wrinkle

pattern it exhibited in experiment. The incremental analysis reproduced the continuous image of

the deformation on wrinkled membranes, including the overall wrinkle pattern, the total number

of wrinkles and the wrinkle wavelength, except that in simulation wrinkle amplitudes were slightly

smaller than those measured in the experiments, and decreased more rapidly beyond the strain at

which the maximum wrinkle amplitude occurred.

A significant immediate benefit of the numerical study is that one can probe the simulation

results in order to gain additional insights into the characteristics of wrinkles and their evolution

under varying loads or boundary conditions.

Finally, a concept for suppressing wrinkle instabilities of dielectric elastomer membranes was

proposed using the electric field-induced actuation. The mechanism of the dielectric actuation is as

follows. Prior to actuation, the elastomer film is coated on each side with a compliant electrode. An

applied electric field promotes attraction of the oppositely charged electrodes, thereby introducing a

compressive Maxwell stress along the thickness direction. A simple analytical model was developed

to determine the voltage at which membrane lateral contraction due to mechanical tensile load is

canceled by the expansion due to electrical load, as a function of the applied tensile strain using the

Mooney-Rivlin model previously characterized. This model was then applied to the silicone rubber

membrane with typical dielectric constant between 3.2 and 9.8.

Electric field of varying strength was applied to a wrinkled membrane through the compliant

electrodes painted on both surfaces, and the dynamic structural response of the membrane were

captured in the experiments. In the numerical study, a simulation technique was developed to over-

come the inability to apply electrostatic pressure. The previous finite elements models and analysis

procedures were employed with minor changes. Through the pre-buckling analysis we found that

the buckling modes were not affected in the presence of electric field, but the critical buckling strains

were significantly raised by 11%-610% for different dimensions. In other words, the wrinkling insta-

bility of thin membranes is suppressed by electric field in the sense that the wrinkle onset requires

higher external loads. In the post-buckling analysis, the membrane was first stretched to reach a
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maximum amplitude and subjected to an electric field through the thickness direction while the two

clamped edges were fixed. Simulations predicted a significant decrease in the wrinkling amplitude

and the magnitude of the compressive stress due to an increasing applied voltage.

7.2 Open Issues and Future Work

Several research areas were identified during the course of this study, in which further explorations

could contribute to the future study of wrinkling of thin membrane structures.

On the experimental aspect, the uniaxial tension testbed was designed to test membranes of up

to 10 inches long and 4 inches wide. Larger sizes will exceed the geometrical capability of the appa-

ratus. A 10 inches long membrane can only be stretched to about 30% strain. Partial modification

to the test frame, i.e., longer side rails or wider grips, would allow us to study larger membrane

samples. Scaling implies that reducing the thickness and increasing the size of membranes have the

equivalent effect on lowering the threshold of wrinkling instability. All of our experimental results

were based on membrane samples cut from commercially fabricated silicone rubber sheets of thick-

ness 0.004 inch. A thinner sheet of 0.002 inch (minimum thickness commercially available) made

the sample preparation very difficult because it folded up as it was peeled off from the substrate

carrier mainly due to chemical-induced self-adhesion and electrostatic forces generated at peeling,

and also residual stress may be induced during the peeling. This suggested a very narrow range of

thicknesses for testing.

There are several other issues associated with the silicone rubber material and sample mounting,

such as anisotropy, imperfect initial unstressed configurations (partially slack and partially taut)

induced by the sample preparation and mounting procedure, and irreversible material wrinkles after

loading-unloading cycles. Membranes fabricated in the lab by spin-coating may resolve the material

anisotropy.

In experiments 27 different membrane dimensions were tested among which 16 wrinkled. Two

types of wrinkle patterns (symmetric and anti-symmetric) were observed among the tested mem-

branes. In order to discover the membrane’s behavior in choosing the wrinkle pattern from a

statistical point of view, a large number of membranes in a wide range of sizes and aspect ratios

need to be tested .

Due to electrical safety concerns all the components on the testbed are nonconductive and the
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frame was placed on a wooden table rather than an optical table. The tensile load was applied by

manually turning a plastic threaded rod connected to the upper grip, and the value of the tensile

strain was determined by reading the position of the moving edge of the membrane from a ruler

on the side rail. Manual control induced vibrations to the frame during the loading process and

may have influenced the wrinkling configuration. A motor driven metal threaded rod would be a

good alternative. In addition, a displacement gauge (i.e., a Linear variable differential transformer)

will provide more accurate measurement on tensile strain and a load cell will allow us to directly

quantify the tensile load. However, careful operations are necessary on these modules in the presence

of electric field.

As for the measurement techniques, the fringe projection method can only measure the out-of-

plane displacement and it has to be combined with several other techniques in order to extract the

height information on the object surface. The phase shifting technique requires a static or quasi-

static deformation process since it takes time for the fringes to be shifted and captured. The carrier

removal technique requires a reference plane beneath or a self-reference on the object to be identified

during the image processing, and thus requires human intervention. Therefore, automatic contin-

uous measurements were not accomplished. Instead, wrinkle profiles at discrete strain levels were

measured. In order to capture the wrinkle evolution, a fully automated optical method is needed.

3D digital image correlation (DIC) may be a solution, which also enables one to obtain the in-plane

strain distribution. This will be helpful in understanding the driving force of the wrinkling instability.

In the finite element analysis, the membrane material, silicone rubber was defined as a linearly

elastic model with the Young’s modulus and Poisson’s ratio extracted from the results of a uni-

axial tension tests performed using the Instron testing machine. The loading curve exhibits small

curvatures and hysteresis within a load-unload cycle indicating the hyperelastic and viscoelastic

properties built in the material. These test results were imported into ABAQUS for hyperelastic

material model evaluation. For more accurate characterization, other types of tests are needed, for

instance bi-axial tension test and volume dilatation test. The hyperelastic material model is highly

unstable in the computation and failed to provide a convergent solution in either the pre-buckling

or the post-buckling regime. New analysis techniques need to be developed to overcome the conver-

gence difficulties associated with hyperelastic materials.

The compliant electrode is a big barrier to our study on suppressing membrane wrinkling by

means of dielectric actuation. Ideally the electrode layer should be uniform and much thinner

(∼1/10th) than the thickness of the dielectric elastomer membrane. Currently there is no good way

of controlling the thickness of the electrode layer since the traditional coating or printing techniques
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are not applicable for soft elastomer membrane substrate especially when applied on both sides of

the membrane. The black carbon grease also refrains us from using the fringe projection method

for shape measurement. Seeking alternative compliant electrode materials and painting techniques

is still an on-going area of research.



139

Appendix A

Construction Drawings for the
Experimental set-ups
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Appendix B

ABAQUS Input Files

B.1 Input File, Initial and Eigenvalue Buckling Analysis

*Heading

Rectangular membrane subjected to uniaxial tension load with two short edges

clamped and two long edges free using S4R thin shell element.

*Preprint, echo=NO, model=NO, history=NO, contact=NO

** PARTS

*Part, name=Part-1

*Node, input=node_10x4.tex

*Nset, nset=_PickedSet2, internal, generate

1, 6656, 1

*Element, type=S4R, input=element_10x4.tex

*Elset, elset=_PickedSet2, internal, generate

1, 6477, 1

** Region: (Section-1:Picked)

*Elset, elset=_PickedSet2, internal, generate

1, 6477, 1

** Section: Section-1

*Shell Section, elset=_PickedSet2, material=Linear

0.1, 7

*End Part

** ASSEMBLY

*Assembly, name=Assembly

*Instance, name=Part-1-1, part=Part-1

*End Instance

*Nset, nset=_PickedSet4, internal, instance=Part-1-1, generate
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1, 6529, 128

*Elset, elset=_PickedSet4, internal, instance=Part-1-1, generate

1, 6351, 127

*Nset, nset=_PickedSet16, internal, instance=Part-1-1, generate

128, 6656, 128

*Elset, elset=_PickedSet16, internal, instance=Part-1-1, generate

127, 6477, 127

*Nset, nset=Set-1, instance=Part-1-1, generate

1, 6656, 1

*Elset, elset=Set-1, instance=Part-1-1, generate

1, 6477, 1

*Nset, nset=_PickedSet20, internal, instance=Part-1-1, generate

128, 6656, 128

*Elset, elset=_PickedSet20, internal, instance=Part-1-1, generate

127, 6477, 127

*End Assembly

** MATERIALS

*Material, name=Linear

*Elastic

1., 0.5

*Expansion

1e-06,

** BOUNDARY CONDITIONS

** Name: Clamping Type: Symmetry/Antisymmetry/Encastre

*Boundary

_PickedSet4, ENCASTRE

** ----------------------------------------------------------------

** STEP: Step-1

*Step, name=Step-1, nlgeom=YES

preload

*Static

1., 1., 1e-05, 1.

** BOUNDARY CONDITIONS

** Name: Preload Type: Displacement/Rotation

*Boundary

_PickedSet16, 1, 1, 3. _PickedSet16, 2, 2 _PickedSet16, 3, 3



157

_PickedSet16, 4, 4 _PickedSet16, 5, 5 _PickedSet16, 6, 6

** OUTPUT REQUESTS

*Restart, write, frequency=0

** FIELD OUTPUT: F-Output-1

*Output, field

*Node Output

CF, RF, U

*Element Output, directions=YES

ELEDEN, ELEN, ENER, LE, PE, PEEQ, PEMAG, S, STH, SVOL

*Contact Output

CDISP, CSTRESS

** HISTORY OUTPUT: H-Output-1

*Output, history, variable=PRESELECT

*End Step

** ----------------------------------------------------------------

** STEP: Step-2

*Step, name=Step-2, perturbation

*Buckle, eigensolver=lanczos

12, 0., ,

** BOUNDARY CONDITIONS

** Name: Clamping Type: Symmetry/Antisymmetry/Encastre

*Boundary, op=NEW, load case=1

_PickedSet4, ENCASTRE

*Boundary, op=NEW, load case=2

_PickedSet4, ENCASTRE

** Name: Preload Type: Displacement/Rotation

*Boundary, op=NEW, load case=1

** Name: live load Type: Displacement/Rotation

*Boundary, op=NEW, load case=1

_PickedSet20, 1, 1, 1. _PickedSet20, 2, 2 _PickedSet20, 3, 3

_PickedSet20, 4, 4 _PickedSet20, 5, 5 _PickedSet20, 6, 6

*Boundary, op=NEW, load case=2

_PickedSet20, 1, 1, 1. _PickedSet20, 2, 2 _PickedSet20, 3, 3

_PickedSet20, 4, 4 _PickedSet20, 5, 5 _PickedSet20, 6, 6

** OUTPUT REQUESTS

*Restart, write, frequency=0
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** FIELD OUTPUT: F-Output-2

*Output, field, variable=PRESELECT

*NODE FILE

U,

*End Step

B.2 Input File, Post-buckling Analysis

*Heading

** Job name: static_10x4_electric

*Preprint, echo=NO, model=NO, history=NO, contact=NO

** PARTS

*Part, name=Part-1

*Node, input=node_10x4.tex

*Nset, nset=_PickedSet2, internal, generate

1, 6656, 1

*Element, type=S4R5, input=element_10x4.tex

*Elset, elset=_PickedSet2, internal, generate

1, 6477, 1

** Region: (Section-1:Picked)

*Elset, elset=_PickedSet2, internal, generate

1, 6477, 1

** Section: Section-1

*Shell Section, elset=_PickedSet2, material=Linear

0.1, 7

*End Part

*IMPERFECTION,FILE=buckle_10x4,STEP=2

2,0.01

** ASSEMBLY

*Assembly, name=Assembly

*Instance, name=Part-1-1, part=Part-1

*End Instance

*Nset, nset=_PickedSet4, internal, instance=Part-1-1, generate

1, 6529, 128

*Elset, elset=_PickedSet4, internal, instance=Part-1-1, generate

1, 6351, 127
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*Nset, nset=_PickedSet16, internal, instance=Part-1-1, generate

128, 6656, 128

*Elset, elset=_PickedSet16, internal, instance=Part-1-1, generate

127, 6477, 127

*Nset, nset=Set-1, instance=Part-1-1, generate

1, 6656, 1

*Elset, elset=Set-1, instance=Part-1-1, generate

1, 6477, 1

*Nset, nset=_PickedSet18, internal, instance=Part-1-1, generate

1, 6656, 1

*Elset, elset=_PickedSet18, internal, instance=Part-1-1, generate

1, 6477, 1

*Nset, nset=_PickedSet21, internal, instance=Part-1-1, generate

128, 6656, 128

*Elset, elset=_PickedSet21, internal, instance=Part-1-1, generate

127, 6477, 127

*End Assembly

** MATERIALS

*Material, name=Linear

*Elastic

1., 0.5

*Expansion

1e-06,

** BOUNDARY CONDITIONS

** Name: Clamping Type: Symmetry/Antisymmetry/Encastre

*Boundary

_PickedSet4, ENCASTRE

** PREDEFINED FIELDS

** Name: Predefined Field-1 Type: Temperature

*Initial Conditions, type=TEMPERATURE

_PickedSet18, 0.

** ----------------------------------------------------------------

** STEP: Step-1

*Step, name=Step-1, nlgeom=YES

preload

*Static
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1., 1., 1e-05, 1.

** BOUNDARY CONDITIONS

** Name: Preload Type: Displacement/Rotation

*Boundary

_PickedSet16, 1, 1, 0.1 _PickedSet16, 2, 2 _PickedSet16, 3, 3

_PickedSet16, 4, 4 _PickedSet16, 5, 5 _PickedSet16, 6, 6

** OUTPUT REQUESTS

*Restart, write, frequency=0

** FIELD OUTPUT: F-Output-1

*Output, field

*Node Output

CF, RF, U

*Element Output, directions=YES

ELEDEN, ELEN, ENER, LE, PE, PEEQ, PEMAG, S, STH, SVOL

*Contact Output

CDISP, CSTRESS

** HISTORY OUTPUT: H-Output-1

*Output, history, variable=PRESELECT

*End Step

** ----------------------------------------------------------------

** STEP: Step-2

*Step, name=Step-2, nlgeom=YES, inc=100000

*Static, stabilize=1e-08

0.0001, 1., 1e-08, 0.01

** BOUNDARY CONDITIONS

** Name: Clamping Type: Symmetry/Antisymmetry/Encastre

*Boundary, op=NEW

_PickedSet4, ENCASTRE

** Name: Preload Type: Displacement/Rotation

*Boundary, op=NEW

** Name: stretch Type: Displacement/Rotation

*Boundary, op=NEW

_PickedSet21, 1, 1, 76.2 _PickedSet21, 2, 2 _PickedSet21, 3, 3

_PickedSet21, 4, 4 _PickedSet21, 5, 5 _PickedSet21, 6, 6

** OUTPUT REQUESTS

*Restart, write, frequency=0



161

** FIELD OUTPUT: F-Output-1

*Output, field

*Node Output

NT, U

*Element Output, directions=YES

E, S, STH, SVOL, TEMP

** HISTORY OUTPUT: H-Output-1

*Output, history, variable=PRESELECT

*End Step

** ----------------------------------------------------------------

** STEP: Step-3

*Step, name=Step-3, nlgeom=YES, inc=100000

*Static, stabilize=1e-08

0.0001, 1., 1e-08, 0.01

** PREDEFINED FIELDS

** Name: Predefined Field-1 Type: Temperature

*Temperature

_PickedSet18, 18647.

** OUTPUT REQUESTS

*Restart, write, frequency=0

** FIELD OUTPUT: F-Output-1

*Output, field

*Node Output

NT, U

*Element Output, directions=YES

E, S, STH, SVOL, TEMP

** HISTORY OUTPUT: H-Output-1

*Output, history, variable=PRESELECT

*End Step
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Appendix C

Table of Critical Buckling Strains

Table C.1: Computation results of critical buckling strain without and with 5×107 V/m electric field

for membranes of 0.1 mm (0.004 inch) thick. P0 is the preload, λ is the eigenvalue, Pcrit = P0 +λPΔ

is the critical buckling load in terms of edge displacement, where PΔ is the incremental load and set

to be 1, εcrit is the critical buckling strain.

Without electric field With electric field

L W L/W P0 λ Pcrit εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch) (inch) (inch)

1.75 0.9 2.00 0.01 0.9986 1.0086 57.1% 0.08 1.0332 1.1132 63.6%

2 1 1.60 0.01 0.8915 0.9015 44.6% 0.1 1.0226 1.1226 56.1%

2 1.25 2.20 0.01 1.0565 1.0665 52.8% 0.1 1.1667 1.2667 63.3%

2.75 1.25 1.83 0.03 0.9011 0.9311 32.8% 0.15 1.0317 1.1817 43.0%

2.75 1.5 2.40 0.03 0.6515 0.6815 23.7% 0.15 0.7663 0.9163 33.3%

3 1.25 2.00 0.03 1.0984 1.1284 36.6% 0.15 1.1842 1.3342 44.5%

3 1.5 1.71 0.03 0.6339 0.6639 21.1% 0.2 0.9099 1.1099 37.0%

3 1.75 1.50 0.03 0.6203 0.6503 20.7% 0.2 0.8844 1.0844 36.1%

3 2 2.80 0.03 1.1716 1.2016 39.1% 0.2 1.6075 1.8075 60.3%

3.5 1.25 2.33 0.03 1.7204 1.7504 49.2% 0.2 2.0801 2.2801 65.1%

3.5 1.5 2.00 0.03 0.8116 0.8416 23.2% 0.2 1.0463 1.2463 35.6%

3.5 1.75 1.75 0.03 0.5249 0.5549 15.0% 0.2 0.7131 0.9131 26.1%

3.5 2 1.56 0.03 0.4982 0.5282 14.2% 0.2 0.6764 0.8764 25.0%

3.5 2.25 3.20 0.03 0.743 0.773 21.2% 0.2 0.9406 1.1406 32.6%

4 1.25 2.67 0.03 2.4867 2.5167 62.2% 0.2 2.68 2.88 72.0%

continued on next page
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Without electric field With electric field

L W L/W P0 λ Pcrit εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch) (inch) (inch)

4 1.5 2.00 0.03 1.1844 1.2144 29.6% 0.25 1.6496 1.8996 47.5%

4 2 1.60 0.03 0.448 0.478 11.2% 0.25 0.6858 0.9358 23.4%

4 2.5 1.45 0.03 0.5454 0.5754 13.6% 0.25 0.8049 1.0549 26.4%

4 2.75 3.00 0.03 1.1219 1.1519 13.6% 0.25 1.5469 1.7969 44.9%

4.5 1.5 2.25 0.03 1.6808 1.7108 37.4% 0.25 2.094 2.344 52.1%

4.5 2 1.80 0.03 0.53 0.56 11.8% 0.25 0.7652 1.0152 22.6%

4.5 2.5 1.50 0.01 0.3335 0.3435 7.4% 0.25 0.5603 0.8103 18.0%

4.5 3 1.38 0.01 0.6995 0.7095 15.5% 0.3 1.1359 1.4359 31.9%

4.5 3.25 3.33 0.03 1.9611 1.9911 44.2% 0.27 2.6335 2.9035 64.5%

5 1.5 2.86 0.03 2.204 2.234 44.1% 0.3 2.9461 3.2461 64.9%

5 1.75 2.50 0.03 1.2179 1.2479 24.4% 0.3 1.7097 2.0097 40.2%

5 2 2.22 0.03 0.6961 0.7261 13.9% 0.3 1.0424 1.3424 26.8%

5 2.25 2.00 0.03 0.4609 0.4909 9.2% 0.3 0.7199 1.0199 20.4%

5 2.5 1.82 0.01 0.3217 0.3317 6.4% 0.3 0.5791 0.8791 17.6%

5 2.75 1.67 0.01 0.2975 0.3075 6.0% 0.3 0.5425 0.8425 16.9%

5 3 1.54 0.01 0.3359 0.3459 6.7% 0.3 0.597 0.897 17.9%

5 3.25 1.43 0.03 0.5254 0.5554 10.5% 0.3 0.806 1.106 22.1%

5 3.5 3.67 0.03 1.0801 1.1101 21.6% 0.3 1.5148 1.8148 36.3%

5.5 1.5 3.14 0.03 2.69 2.72 48.9% 0.3 3.2946 3.5946 65.4%

5.5 1.75 2.75 0.03 1.5958 1.6258 29.0% 0.3 2.0485 2.3485 42.7%

5.5 2 2.44 0.03 0.93 0.96 16.9% 0.3 1.2793 1.5793 28.7%

5.5 2.25 2.20 0.03 0.5705 0.6005 10.4% 0.3 0.8545 1.1545 21.0%

5.5 2.5 2.00 0.03 0.392 0.422 7.1% 0.35 0.6778 1.0278 18.7%

5.5 2.75 1.83 0.01 0.291 0.301 5.3% 0.35 0.5582 0.9082 16.5%

5.5 3 1.69 0.01 0.269 0.279 4.9% 0.35 0.3712 0.7212 13.1%

5.5 3.25 1.57 0.01 0.2926 0.3026 5.3% 0.35 0.5596 0.9096 16.5%

5.5 3.5 1.47 0.03 0.4144 0.4444 7.5% 0.35 0.7054 1.0554 19.2%

5.5 3.75 1.38 0.03 0.7075 0.7375 12.9% 0.35 1.128 1.478 26.9%

5.5 4 4.00 0.03 1.7796 1.8096 32.4% 0.35 2.7809 3.1309 56.9%

6 1.5 3.43 0.05 3.3387 3.3887 55.6% 0.33 3.8674 4.1974 70.0%

6 1.75 3.00 0.03 1.9701 2.0001 32.8% 0.35 2.667 3.017 50.3%

6 2 2.67 0.03 1.2068 1.2368 20.1% 0.35 1.7184 2.0684 34.5%

continued on next page
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Without electric field With electric field

L W L/W P0 λ Pcrit εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch) (inch) (inch)

6 2.25 2.40 0.03 0.7402 0.7702 12.3% 0.35 1.1275 1.4775 24.6%

6 2.5 2.18 0.03 0.4814 0.5114 8.0% 0.35 0.7913 1.1413 19.0%

6 2.75 2.00 0.01 0.3263 0.3363 5.4% 0.35 0.6112 0.9612 16.0%

6 3 1.85 0.01 0.2657 0.2757 4.4% 0.35 0.5219 0.8719 14.5%

6 3.25 1.71 0.01 0.2458 0.2558 4.1% 0.35 0.4915 0.8415 14.0%

6 3.5 1.50 0.01 0.2603 0.2703 4.3% 0.35 0.512 0.862 14.4%

6 4 1.41 0.03 0.5183 0.5483 8.6% 0.35 0.8268 1.1768 19.6%

6 4.25 4.33 0.03 1.0368 1.0668 17.3% 0.4 1.762 2.162 36.0%

6.5 1.5 3.71 0.03 3.5126 3.5426 54.0% 0.35 4.2839 4.6339 71.3%

6.5 1.75 3.25 0.03 2.3169 2.3469 35.6% 0.35 2.9234 3.2734 50.4%

6.5 2 2.60 0.03 1.4959 1.5259 23.0% 0.35 1.9809 2.3309 35.9%

6.5 2.5 2.17 0.03 0.6083 0.6383 9.4% 0.4 1.0062 1.4062 21.6%

6.5 3 2.00 0.01 0.2942 0.3042 4.5% 0.4 0.583 0.983 15.1%

6.5 3.25 1.86 0.01 0.2445 0.2545 3.8% 0.4 0.5042 0.9042 13.9%

6.5 3.5 1.73 0.01 0.2265 0.2365 3.5% 0.4 0.4748 0.8748 13.5%

6.5 3.75 1.63 0.01 0.2353 0.2453 3.6% 0.4 0.4886 0.8886 13.7%

6.5 4 1.53 0.01 0.2775 0.2875 4.3% 0.4 0.5556 0.9556 14.7%

6.5 4.25 1.44 0.03 0.4076 0.4376 6.3% 0.4 0.7189 1.1189 17.2%

6.5 4.5 1.37 0.03 0.6961 0.7261 10.7% 0.4 1.1308 1.5308 23.6%

6.5 4.75 4.67 0.05 1.7752 1.8252 27.3% 0.4 2.5161 2.9161 44.9%

7 1.5 3.50 0.03 3.8645 3.8945 55.2% 0.36 4.5515 4.9115 70.2%

7 2 2.80 0.03 1.7751 1.8051 25.4% 0.4 2.4488 2.8488 43.6%

7 2.5 2.33 0.03 0.7653 0.7953 10.9% 0.4 1.189 1.589 26.8%

7 3 2.00 0.03 0.3654 0.3954 5.2% 0.4 0.6655 1.0655 17.8%

7 3.5 1.75 0.01 0.2264 0.2364 3.2% 0.4 0.4878 0.8878 14.0%

7 4 1.56 0.01 0.2151 0.2251 3.1% 0.45 0.4657 0.9157 12.8%

7 4.5 1.40 0.01 0.3169 0.3269 4.5% 0.45 0.6401 1.0901 13.4%

7 5 5.00 0.05 1.0765 1.1265 15.4% 0.5 1.9639 2.4639 17.0%

7.5 1.5 3.75 0.03 4.1908 4.2208 55.9% 0.38 4.8962 5.2762 70.3%

7.5 2 3.00 0.03 2.0346 2.0646 27.1% 0.4 2.6486 3.0486 40.6%

7.5 2.5 2.50 0.03 0.9413 0.9713 12.6% 0.4 1.4794 1.8794 25.1%

7.5 3 2.14 0.03 0.4421 0.4721 5.9% 0.45 0.7964 1.2464 16.6%

continued on next page
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Without electric field With electric field

L W L/W P0 λ Pcrit εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch) (inch) (inch)

7.5 3.5 2.00 0.01 0.2459 0.2559 3.3% 0.45 0.5284 0.9784 13.0%

7.5 3.75 1.88 0.01 0.2108 0.2208 2.8% 0.45 0.4718 0.9218 12.3%

7.5 4 1.67 0.01 0.1961 0.2061 2.6% 0.45 0.4475 0.8975 12.0%

7.5 4.5 1.50 0.01 0.2204 0.2304 2.9% 0.45 0.4866 0.9366 12.5%

7.5 5 1.36 0.03 0.4048 0.4348 5.4% 0.45 0.74 1.19 15.9%

7.5 5.5 5.33 0.05 1.5826 1.6326 21.1% 0.45 2.3119 2.7619 36.8%

8 1.5 4.00 0.03 4.4987 4.5287 56.2% 0.41 5.3263 5.7363 71.7%

8 2 3.20 0.03 2.273 2.303 28.4% 0.45 3.0843 3.5343 44.2%

8 2.5 2.91 0.03 1.124 1.154 14.1% 0.45 1.6716 2.1216 26.5%

8 2.75 2.67 0.03 0.7746 0.8046 9.7% 0.45 1.2311 1.6811 21.0%

8 3 2.46 0.03 0.5384 0.5684 6.7% 0.45 0.9257 1.3757 17.2%

8 3.25 2.29 0.03 0.3872 0.4172 4.8% 0.5 0.7398 1.2398 15.5%

8 3.5 2.00 0.01 0.2806 0.2906 3.5% 0.5 0.5958 1.0958 13.7%

8 4 1.78 0.01 0.1972 0.2072 2.5% 0.55 0.4459 0.9959 12.4%

8 4.5 1.60 0.01 0.1846 0.1946 2.3% 0.55 0.4215 0.9715 12.1%

8 5 1.45 0.01 0.2387 0.2487 3.0% 0.5 0.5268 1.0268 12.8%

8 5.5 1.33 0.01 0.4901 0.5001 6.1% 0.5 0.9332 1.4332 17.9%

8 6 5.67 0.05 2.2101 2.2601 27.6% 0.5 3.8425 4.3425 54.3%

8.5 1.5 4.25 0.05 5.0208 5.0708 59.1% 0.43 5.6385 6.0685 71.4%

8.5 2 3.40 0.05 2.6098 2.6598 30.7% 0.5 3.5101 4.0101 47.2%

8.5 2.5 2.83 0.05 1.3649 1.4149 16.1% 0.5 1.9773 2.4773 29.1%

8.5 3 2.43 0.03 0.6503 0.6803 7.7% 0.5 1.1095 1.6095 18.9%

8.5 3.5 2.13 0.03 0.3438 0.3738 4.0% 0.5 0.6803 1.1803 13.9%

8.5 4 2.00 0.01 0.2113 0.2213 2.5% 0.5 0.4951 0.9951 11.7%

8.5 4.25 1.89 0.01 0.1853 0.1953 2.2% 0.5 0.4522 0.9522 11.2%

8.5 4.5 1.70 0.01 0.173 0.183 2.0% 0.5 0.4316 0.9316 11.0%

8.5 5 1.55 0.01 0.1847 0.1947 2.2% 0.5 0.4507 0.9507 11.2%

8.5 5.5 1.42 0.01 0.27 0.28 3.2% 0.5 0.5885 1.0885 12.8%

8.5 6 6.00 0.01 0.6483 0.6583 7.6% 0.55 1.2428 1.7928 21.1%

9 1.5 4.50 0.05 4.763 4.813 52.9% 0.55 5.0796 5.6296 62.6%

9 2 3.60 0.05 2.8147 2.8647 31.3% 0.55 3.9327 4.4827 50.8%

9 2.5 3.00 0.05 1.5403 1.5903 17.1% 0.55 2.2904 2.8404 33.1%
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Without electric field With electric field

L W L/W P0 λ Pcrit εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch) (inch) (inch)

9 3 2.57 0.05 0.8055 0.8555 8.9% 0.55 1.319 1.869 22.5%

9 3.5 2.25 0.03 0.4071 0.4371 4.5% 0.55 0.7914 1.3414 14.9%

9 4 2.00 0.01 0.2358 0.2458 2.6% 0.55 0.5416 1.0916 12.1%

9 4.5 1.80 0.01 0.1747 0.1847 1.9% 0.55 0.4365 0.9865 11.0%

9 5 1.64 0.01 0.1623 0.1723 1.8% 0.55 0.4144 0.9644 10.7%

9 5.5 1.50 0.01 0.1935 0.2035 2.1% 0.55 0.4698 1.0198 11.3%

9 6 1.38 0.03 0.332 0.362 3.7% 0.55 0.6793 1.2293 13.7%

9 6.5 4.75 0.03 0.944 0.974 10.5% 0.6 1.7618 2.3618 26.2%

9.5 2 3.80 0.08 3.1966 3.2766 33.6% 0.55 4.0205 4.5705 48.1%

9.5 2.5 3.17 0.05 1.7044 1.7544 17.9% 0.55 2.4329 2.9829 31.4%

9.5 3 2.71 0.05 0.9348 0.9848 9.8% 0.55 1.4707 2.0207 21.3%

9.5 3.5 2.38 0.03 0.4817 0.5117 5.1% 0.55 0.9021 1.4521 15.3%

9.5 4 2.11 0.01 0.2696 0.2796 2.8% 0.55 0.6108 1.1608 12.2%

9.5 4.5 2.00 0.01 0.1854 0.1954 2.0% 0.8 0.3804 1.1804 12.4%

9.5 4.75 1.90 0.01 0.1653 0.1753 1.7% 0.8 0.3275 1.1275 11.9%

9.5 5 1.73 0.01 0.155 0.165 1.6% 0.8 0.3005 1.1005 11.6%

9.5 5.5 1.58 0.01 0.16 0.17 1.7% 0.8 0.316 1.116 11.7%

9.5 6 1.46 0.01 0.2102 0.2202 2.2% 0.8 0.4593 1.2593 13.3%

9.5 6.5 1.36 0.01 0.3815 0.3915 4.0% 0.8 0.9753 1.7753 18.7%

9.5 7 5.00 0.05 1.2914 1.3414 13.6% 0.8 4.2752 5.0752 53.4%

10 2 4.00 0.05 3.1863 3.2363 31.9% 0.6 4.4097 5.0097 50.1%

10 2.5 3.64 0.05 1.8572 1.9072 18.6% 0.6 2.7186 3.3186 33.2%

10 2.75 3.33 0.05 1.4126 1.4626 14.1% 0.6 2.1441 2.7441 27.4%

10 3 3.08 0.03 1.0428 1.0728 10.4% 0.6 1.6859 2.2859 22.9%

10 3.25 2.50 0.03 0.7616 0.7916 7.6% 0.6 1.3239 1.9239 19.2%

10 4 2.22 0.03 0.324 0.354 3.2% 0.6 0.6879 1.2879 12.9%

10 4.5 2.00 0.01 0.2034 0.2134 2.0% 0.6 0.5074 1.1074 11.1%

10 5 1.82 0.01 0.1568 0.1668 1.6% 0.6 0.4253 1.0253 10.3%

10 5.5 1.67 0.01 0.1452 0.1552 1.5% 0.6 0.4042 1.0042 10.0%

10 6 1.54 0.01 0.164 0.174 1.6% 0.6 0.4386 1.0386 10.4%

10 6.5 1.43 0.01 0.2353 0.2453 2.4% 0.6 0.5639 1.1639 11.6%

10 7 1.33 0.03 0.499 0.529 5.0% 0.65 1.0106 1.6606 16.6%
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Without electric field With electric field

L W L/W P0 λ Pcrit εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch) (inch) (inch)

10 7.5 1.33 0.03 1.6486 1.6786 16.5% 0.65 3.4776 4.1276 41.3%

Table C.2: Computation results of critical buckling strain without and with 5 × 107 V/m electric

field for membranes of 0.05 mm (0.002 inch) thick. The εcrit in the case without electric field is

calculated from the εcrit of the 0.1 mm thick membrane listed in Table C.1 based on the quadratic

dependence of critical buckling strain on membrane thickness.

Without electric field With electric field

L W L/W εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch)

L W L/W εcrit P0 λ Pcrit εcrit

175 90 1.94 15.9% 10 36.231 46.231 26.4%

200 100 2.00 14% 11 33.358 44.358 22.2%

200 125 1.60 15.8% 11 37.791 48.791 24.4%

275 125 2.20 10.7% 16 33.664 49.664 18.1%

275 150 1.83 8.3% 16 26.046 42.046 15.3%

300 125 2.40 11.1% 17 40.231 57.231 19.1%

300 150 2.00 9.2% 17 26.427 43.427 14.5%

300 175 1.71 9% 18 26.087 44.087 14.7%

300 200 1.50 15.1% 18 42.499 60.499 20.2%

350 125 2.80 16.3% 20 61.221 81.221 23.2%

350 150 2.33 8.9% 20 33.878 53.878 15.4%

350 175 2.00 6.5% 20 24.699 44.699 12.8%

350 200 1.75 6.3% 21 23.655 44.655 12.8%

350 225 1.56 8.1% 19 90.175 109.175 31.2%
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Without electric field With electric field

L W L/W εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch)

400 125 3.20 18% 22 84.442 106.442 26.6%

400 150 2.67 11.9% 23 47.534 70.534 17.6%

400 200 2.00 5.8% 23 23.475 46.475 11.6%

400 250 1.60 6.6% 24 26.556 50.556 12.6%

400 275 1.45 11.2% 24 45.64 69.64 17.4%

450 150 3.00 13% 26 65.227 91.227 20.3%

450 200 2.25 5.6% 28 27.352 55.352 12.3%

450 250 1.80 4.5% 27 21.081 48.081 10.7%

450 300 1.50 8% 27 33.995 60.995 13.6%

450 325 1.38 16.1% 28 80.396 108.396 24.1%

500 150 3.33 16.2% 28 82.296 110.296 22.1%

500 175 2.86 10% 29 52.468 81.468 16.3%

500 200 2.50 6.7% 29 34.84 63.84 12.8%

500 225 2.22 5.1% 29 25.941 54.941 11%

500 250 2.00 4.4% 31 20.979 51.979 10.4%

500 275 1.82 4.2% 30 20.343 50.343 10.1%

500 300 1.67 4.5% 30 22.055 52.055 10.4%

500 325 1.54 5.5% 30 28.326 58.326 11.7%

500 350 1.43 9.1% 30 48.213 78.213 15.6%

550 150 3.67 16.3% 31 99.808 130.808 23.8%

550 175 3.14 10.7% 32 66.677 98.677 17.9%

550 200 2.75 7.2% 32 44.381 76.381 13.9%

550 225 2.44 5.2% 32 31.538 63.538 11.6%

550 250 2.20 4.7% 33 24.25 57.25 10.4%

550 275 2.00 4.1% 33 20.829 53.829 9.8%

550 300 1.83 3.3% 32 16.041 48.041 8.7%

550 325 1.69 4.1% 33 20.909 53.909 9.8%

550 350 1.57 4.8% 33 25.083 58.083 10.6%

550 375 1.47 6.7% 33 36.388 69.388 12.6%

550 400 1.38 14.2% 35 81.229 116.229 21.1%

600 150 4.00 17.5% 34 115.94 149.94 25%

600 175 3.43 12.6% 35 80.871 115.871 19.3%

continued on next page



169

continued from previous page

Without electric field With electric field

L W L/W εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch)

600 200 3.00 8.6% 35 55.392 90.392 15.1%

600 225 2.67 6.2% 35 38.965 73.965 12.3%

600 250 2.40 4.8% 35 29.189 64.189 10.7%

600 275 2.18 4% 36 23.221 59.221 9.9%

600 300 2.00 3.6% 36 20.353 56.353 9.4%

600 325 1.85 3.5% 36 19.381 55.381 9.2%

600 350 1.71 3.6% 36 20.104 56.104 9.4%

600 400 1.50 4.9% 36 30.292 66.292 11%

600 425 1.41 9% 37 50.901 87.901 14.7%

650 150 4.33 17.8% 37 130.75 167.75 25.8%

650 175 3.71 12.6% 37 93.012 130.012 20%

650 200 3.25 9% 38 66.843 104.843 16.1%

650 250 2.60 5.4% 38 35.147 73.147 11.3%

650 300 2.17 3.8% 39 22.425 61.425 9.5%

650 325 2.00 3.5% 39 19.972 58.972 9.1%

650 350 1.86 3.4% 39 19.057 58.057 8.9%

650 375 1.73 3.4% 39 19.523 58.523 9%

650 400 1.63 3.7% 39 21.671 60.671 9.3%

650 425 1.53 4.3% 39 26.688 65.688 10.1%

650 450 1.44 5.9% 39 38.531 77.531 11.9%

650 475 1.37 11.2% 41 78.723 119.723 18.4%

700 150 4.67 17.5% 40 144.48 184.48 24.6%

700 200 3.50 10.9% 41 78.012 119.012 15.9%

700 250 2.80 6.7% 41 42.216 83.216 11.1%

700 300 2.33 4.5% 42 25.634 67.634 9%

700 350 2.00 3.5% 42 19.662 61.662 8.2%

700 400 1.75 3.2% 42 19.091 61.091 8.1%

700 450 1.56 3.3% 42 24.36 66.36 9.5%

700 500 1.40 4.3% 43 52.227 95.227 13.6%

750 150 5.00 17.6% 42 155.07 197.07 26.3%

750 200 3.75 10.2% 44 88.561 132.561 17.7%

750 250 3.00 6.3% 44 49.957 93.957 12.5%

continued on next page
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continued from previous page

Without electric field With electric field

L W L/W εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch)

750 300 2.50 4.2% 45 29.81 74.81 10%

750 350 2.14 3.3% 45 21.288 66.288 8.8%

750 375 2.00 3.1% 45 19.413 64.413 8.6%

750 400 1.88 3% 45 18.608 63.608 8.5%

750 450 1.67 3.1% 45 19.995 64.995 8.7%

750 500 1.50 4% 46 27.88 73.88 9.9%

750 550 1.36 9.2% 47 76.496 123.496 16.5%

800 150 5.33 17.9% 47 172.29 219.29 27.4%

800 200 4.00 11% 46 97.561 143.561 17.9%

800 250 3.20 6.6% 47 57.928 104.928 13.1%

800 275 2.91 5.3% 47 44.719 91.719 11.5%

800 300 2.67 4.3% 48 34.792 82.792 10.3%

800 325 2.46 3.9% 49 27.569 76.569 9.6%

800 350 2.29 3.4% 48 23.706 71.706 9%

800 400 2.00 3.1% 46 46.52 92.52 11.6%

800 450 1.78 3% 48 18.513 66.513 8.3%

800 500 1.60 3.2% 49 20.964 69.964 8.7%

800 550 1.45 4.5% 49 33.65 82.65 10.3%

800 600 1.33 13.6% 52 121.58 173.58 21.7%

850 150 5.67 17.8% 48 179.46 227.46 26.8%

850 200 4.25 11.8% 49 106.71 155.71 18.3%

850 250 3.40 7.3% 50 65.797 115.797 13.6%

850 300 2.83 4.7% 51 40.371 91.371 10.7%

850 350 2.43 3.5% 51 26.805 77.805 9.2%

850 400 2.13 2.9% 51 20.544 71.544 8.4%

850 425 2.00 2.8% 51 19.044 70.044 8.2%

850 450 1.89 2.7% 51 18.327 69.327 8.2%

850 500 1.70 2.8% 52 18.328 70.328 8.3%

850 550 1.55 3.2% 52 23.352 75.352 8.9%

850 600 1.42 5.3% 52 41.916 93.916 11%

900 150 6.00 15.6% 49 152.84 201.84 22.4%

900 200 4.50 12.7% 52 115.32 167.32 18.6%

continued on next page
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continued from previous page

Without electric field With electric field

L W L/W εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch)

900 250 3.60 8.3% 53 73.379 126.379 14%

900 300 3.00 5.6% 54 46.308 100.308 11.1%

900 350 2.57 3.7% 54 30.494 84.494 9.4%

900 400 2.25 3% 54 22.46 76.46 8.5%

900 450 2.00 2.7% 54 18.907 72.907 8.1%

900 500 1.80 2.7% 55 17.397 72.397 8%

900 550 1.64 2.8% 55 19.411 74.411 8.3%

900 600 1.50 3.4% 55 26.595 81.595 9.1%

900 650 1.38 6.6% 56 54.284 110.284 12.3%

950 200 4.75 12% 55 123.5 178.5 18.8%

950 250 3.80 7.8% 56 80.593 136.593 14.4%

950 300 3.17 5.3% 56 52.631 108.631 11.4%

950 350 2.71 3.8% 57 34.665 91.665 9.6%

950 400 2.38 3.1% 57 24.882 81.882 8.6%

950 450 2.11 3.1% 57 20.036 77.036 8.1%

950 475 2.00 3% 58 18.014 76.014 8%

950 500 1.90 2.9% 58 17.364 75.364 7.9%

950 550 1.73 2.9% 58 17.741 75.741 8%

950 600 1.58 3.3% 58 20.993 78.993 8.3%

950 650 1.46 4.7% 58 30.91 88.91 9.4%

950 700 1.36 13.4% 60 73.777 133.777 14.1%

1000 200 5.00 12.5% 58 131.34 189.34 18.9%

1000 250 4.00 8.3% 59 87.426 146.426 14.6%

1000 275 3.64 6.9% 59 71.582 130.582 13.1%

1000 300 3.33 5.7% 59 58.607 117.607 11.8%

1000 325 3.08 4.8% 60 47.693 107.693 10.8%

1000 400 2.50 3.2% 60 27.75 87.75 8.8%

1000 450 2.22 2.8% 60 21.612 81.612 8.2%

1000 500 2.00 2.6% 61 17.911 78.911 7.9%

1000 550 1.82 2.5% 61 17.166 78.166 7.8%

1000 600 1.67 2.6% 61 18.496 79.496 7.9%

1000 650 1.54 2.9% 61 23.096 84.096 8.4%

continued on next page
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Without electric field With electric field

L W L/W εcrit P0 λ Pcrit εcrit

(inch) (inch) (inch) (inch)

1000 700 1.43 4.2% 61 36.665 97.665 9.8%

1000 750 1.33 10.3% 65 104.61 169.61 17%
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